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SUMMARY 
Recent years have seen an increasing theoretical and empirical appreciation of bodily influences 

on adaptive processes. The body and action are proposed to play a central part in our 

interactions with the world through motivating behaviours, colouring perception with emotion, 

and shaping conscious experience. Instrumental learning is a fundamental substrate of adaptive 

behaviour, and can be used as a vehicle to understand the relationships between those 

processes. This work investigates the impact of bodily information and the need for conscious 

access in instrumental learning, as well as whether instrumentally learned, active associations 

shape conscious experience. 

Chapters 2 and 3 ask whether cardiac information affects simple forms of adaptive behaviour, 

such as unconscious instrumental conditioning. The results show evidence for absence of 

unconscious learning, in contrast to previous reports, and absence of any learning-related 

cardiac activity without stimulus awareness. Together, those chapters show that instrumental 

conditioning may require conscious awareness. Chapters 4 and 5 further investigate the 

feasibility of unconscious instrumental learning. Chapter 4 is a Stage 1 Registered Replication of 

a prominent paradigm demonstrating unconscious instrumental learning, leveraging statistical 

and methodological advances. Chapter 5 constitutes a conceptual replication of the same 

paradigm in two modes of conditioning – trace and delay – demonstrating absence of successful 

instrumental conditioning without conscious awareness. Chapter 6 shifts focus from the body 

on the inside to the body on the outside, using instrumental learning to examine the effect of 

action on our conscious experience. The results demonstrate that access to consciousness is 

facilitated by our instrumental actions in the world. 

Overall, this body of work extends the current understanding of instrumental learning as a 

fundamental component of adaptive behaviour, showing that conscious access is required to 

drive adaptive interactions with the world, and to further shape our conscious perception in line 

with action. 
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1.1. Introduction 

In recent years, embodied approaches to the study of the mind have been gaining traction. 

While the chief role of the brain-body communication axis is to ensure survival through 

homeostasis, there is an increasing understanding that bodily signals drive motivated, adaptive 

behaviour, as well as a host of other, higher-order processes. Bodily information – that is, neural 

information about the ongoing state of the internal organs (interoception), as well as its position 

in space, and movements – have been shown to influence perceptual, cognitive and affective 

processes, as well as consciousness, sense of self, and even psychiatric conditions. Stronger 

interpretations of this view go further, proposing that the body constitutes the ‘first prior’ (Allen 

& Tsakiris, 2018), where our perception is coloured by, and our emotion and conscious selfhood 

arise directly from the brain’s interpretation of the body’s internal milieu (Seth, 2013).  

Instrumental learning is a fundamental substrate of adaptive behaviour, both 

phylogenetically and ontogenetically, allowing agents to learn to approach rewarding, positive 

stimuli in their environment, and avoid bad or harmful ones. Previous work has identified bodily 

markers of learning, arguing that the autonomic nervous system provides an internal feedback 

monitoring system to support the learning process (Ullsperger, Danielmeier, & Jocham, 2014). 

The extent to which instrumental learning is affected by bodily information can thus shed light 

on the importance of the bodily signals in such adaptive processes, especially in primitive 

scenarios, where learning might occur without the influence of higher-order cognition. 

Nonetheless, the extent to which instrumental learning is possible in simple settings – such as 

without conscious awareness of the stimuli – is itself an unsettled case. Aside from the bodily 

influences, learning may require conscious awareness to be able to drive motivated 

instrumental responses. 

This theoretical overview provides a review of the relevant embodied approaches to the 

study of adaptive behaviour, before reviewing the evidence for interoceptive (conceptualised as 

the body ‘on the inside’), and active and proprioceptive (the body ‘on the outside’) effects on 

higher-order processes. It then focusses on instrumental conditioning as a fundamental 

substrate of adaptive behaviour, and outlines its autonomic and interoceptive contributions. 

Finally, it evaluates the theoretical and empirical evidence for unconscious instrumental 

learning, touching upon methodological considerations in studying unconscious learning. The 

overview culminates with an outline of the aims of the present thesis, and a brief summary of 

the empirical work conducted. 
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1.2. Embodied approaches to the study of adaptive behaviour: Relevant 

theoretical frameworks 

 

1.2.1. Embodied theories of emotion, motivation, and decision-making 

 

1.2.1.1. The James-Lange theory of emotion 

One of the earliest proposals that our perception of the world, and the resultant emotions and 

motivations might rely on the body is the James-Lange theory, put forward independently, in 

short succession, by William James (1884, 1891) and Carl Lange (1885)1. Contrary to the general 

consensus available at the time, the theory asserted that consciously felt emotional states are 

the result of physiological changes associated with an event, rather than the cause of those 

changes. Under this view, perceiving an event in the environment immediately causes a host of 

relevant physiological changes, and the perception of those changes constitutes the feeling of 

emotion. Using James’s famous example as an illustration, it is not the emotion of fear that 

causes us to flee from a bear encountered in the wild – instead, the emotion of fear manifests 

because our body is automatically engaged in the flight response. As such, the perception of 

physiological changes corresponding to the flight response constitutes the feeling of fear. Under 

the James-Lange theory, emotion is inherently embodied – in fact, James goes as far as saying 

that “a purely disembodied human emotion is a nonentity (…), emotion dissociated from all 

bodily feeling is inconceivable” (1884, p. 194). Nonetheless, the original theory is painted in 

broad strokes. James admitted that this account pertains only to coarse emotions, those coupled 

with strong physiological changes, such as anger, fear, love, hate, joy, grief, shame, or pride 

(James, 2001). In contrast, subtler emotions (such as “moral or intellectual” feelings) may not 

encompass bodily responses.  

One of the most prominent criticisms of the theory was that there is no one-to-one 

mapping between physiological states and specific emotions (Cannon, 1915), even in the coarser 

subset. Instead, similar visceral changes may occur in vastly different circumstances – for 

instance, increased heart rate may accompany fear or excitement. This was illustrated by 

Schachter and Singer (1962) in a two-factor theory of emotion, proposing that emotion is 

constructed from physiological changes and their cognitive appraisal. This opened up a more 

comprehensive, constructionist view of emotional experience. While it may be debatable 

                                                           
1 It is noteworthy that Lange’s theory focused more specifically on vasomotor changes, rather than 
general physiological activation, as James’s perspective did.  
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whether visceral changes are the direct cause of emotions, contemporary consensus is that 

emotional states encompass visceral, as well as behavioural and cognitive aspects (Cameron, 

2002; Critchley & Harrison, 2013; Damasio, 1999; Gendron & Barrett, 2009). In this perspective, 

emotion emerges from the brain’s interpretation of the body’s internal state with relation to the 

external situation (Barrett & Bar, 2009; Gendron & Barrett, 2009), where this interpretation can 

be instinctive (akin to James, 1884), or involve other categorisation or attribution processes (e.g. 

stimulus properties, motives, emotion regulation, and more; Russell, 2003). This view has been 

recently incorporated within and expanded under the predictive processing approach (see 

section 1.2.3. Predictive processing).  

 

1.2.1.2. The Somatic Marker Hypothesis 

The Somatic Marker Hypothesis (SMH) proposes that decision-making is influenced by somatic 

(bodily) markers – physiological activity arising from the internal milieu of the body, including 

the viscera, as well as skeletal and smooth muscles (Damasio, 1994, 2004). Somatic markers are 

proposed to rise when appraising different behavioural options, especially under high 

uncertainty, to bias decisions through the proxy of emotional states. Similarly to the James-

Lange theory, Damasio considers emotional states as the brain’s representations of homeostatic 

changes in a given situation (Damasio, 1994, 1999, 2004). Under SMH, somatic markers are 

proposed to guide decision making by providing an indication of the value of the encountered 

stimulus through an associated emotional state – in other words, its value for the organism 

(Damasio, 1994, 2004). They can reflect the actual bodily state (the ‘body’ loop), as well as the 

brain’s representations of whatever is expected to take place in the body in a given circumstance 

(the ‘as-if’ loop). 

Most support for the SMH comes from comparing performance of patients with damage 

to the ventromedial prefrontal cortex (VMPFC) and orbitofrontal cortex (OFC) to healthy 

controls on the Iowa Gambling Task (IGT; Bechara, Damasio, Damasio, & Anderson, 1994; 

Bechara, Damasio, Tranel, & Damasio, 1997; Bechara, Tranel, & Damasio, 2000; Bechara, Tranel, 

Damasio, & Damasio, 1996). In the IGT, participants draw one card at a time from a choice of 

four possible decks. Each draw can result in a financial loss or gain, with fixed probabilities. 

Unbeknownst to the participants, two of the four decks carry high rewards if selected, but also 

high punishment (e.g. $100). The remaining two carry lower rewards and lower punishment (e.g. 

$50). Although the high-reward cards are initially appealing, they result in a large net loss if 

chosen frequently. In order to maximise long-term gain, participants should learn to draw from 

the lower-reward decks more frequently. On the IGT, healthy participants began to choose 

advantageously (i.e. from the lower-reward decks) more often, before reporting having explicit 
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awareness of the rules of the game. When pondering the more risky choice, those participants 

exhibited an elevated skin conductance response (SCR) – a response considered a somatic 

marker. In contrast, the lesion patients continued to choose disadvantageously (often even after 

reporting explicit knowledge of the rules), and never developed the anticipatory SCR.  

This difference led to the conclusion that damage to the VMPFC interferes with normal 

processing of somatic signals, while other cognitive functions remain unaffected. Under SMH, 

VMPFC produces the somatic markers by integrating the information about the stimulus or 

event with information about the state of the body. When a stimulus is encountered, the 

emotional state associated with that stimulus on previous exposures is reproduced, either fully 

(the ‘body’ loop) or partially (‘as-if’ loop). This reproduction is the somatic marker, which 

becomes integrated with the current event to provide information about the prospective value 

of that stimulus for the organism – for example imminent loss, as in the case of drawing from 

the risky deck (Poppa & Bechara, 2018). As such, according to SMH, decision-making at the 

lowest-level is guided by neural substrates regulating emotional states and operating in service 

of homeostasis (Bechara, 2004; Reimann & Bechara, 2010).  

The SMH has received considerable scrutiny and criticism over the years, addressing 

which comprehensively is beyond the scope of this review (for a thorough treatment, see Dunn, 

Dalgleish, & Lawrence, 2006). Most notably, it has been suggested that the notion of somatic 

markers guiding decision making may have been an unwarranted conclusion due to the 

methodological faults of the task. For instance, participants completing the IGT may have more 

knowledge about the game than they explicitly report, and the broad, open-ended questions 

used in the original paradigm to assess that knowledge may not be sufficiently sensitive to probe 

awareness, invoking unconscious influences on decision-making where the knowledge is 

actually conscious (Maia & McClelland, 2004, 2005).  

Nonetheless, there has been a considerable amount of support for the physiological and 

neurobiological basis of the somatic markers. The appearance of larger anticipatory SCR 

preceding disadvantageous choices than that preceding advantageous choices has been 

replicated many times, in patients and healthy participants alike, providing support for the 

notion of somatic markers differentiating between advantageous and disadvantageous options 

(e.g. Bechara, Damasio, Damasio, & Lee, 1999; Campbell, Stout, & Finn, 2004; Carter & Smith 

Pasqualini, 2004; Crone, Somsen, Beek, & Van Der Molena, 2004; Oya et al., 2005; Suzuki, Hirota, 

Takasawa, & Shigemasu, 2003). Similarly, the VMPFC and OFC (notably, as parts of larger 

networks) have been consistently shown to be implicated in processing of rewards and 

punishments, as well as their expectation, and emotion-related learning (Critchley & Rolls, 1996; 

Elliott, Friston, & Dolan, 2000; Gottfried, O’Doherty, & Dolan, 2003; Kim, Shimojo, & O’Doherty, 
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2011; O’Doherty, 2004; O’Doherty, Deichmann, Critchley, & Dolan, 2002; O’Doherty, 

Kringelbach, Rolls, Hornak, & Andrews, 2001; Rolls, 2000). The VMPFC was also found to reflect 

fluctuations in SCR (Critchley, Elliott, Mathias, & Dolan, 2000). While the exact mechanism of 

action behind somatic markers remains a subject of ongoing work (Poppa & Bechara, 2018), it 

is now widely recognised that the physiological state of the body does affect not only motivation 

and decision making, but a range of other processes. As a result, the SMH is often incorporated 

into broader frameworks, such as interoceptive inference (see section 1.2.3. Predictive 

processing). 

 

1.2.1.3. Homeostatic control and allostasis 

The central assumption of the SMH is that physiological states of the body inform motivated 

behaviour and decision-making through the proxy of feelings and emotional states. This 

approach can be evaluated under the wider frameworks of homeostatic control and allostasis, 

where motivated behaviour serves to satisfy the homeostatic imperative – to maintain 

continuous survival through minimisation of negative internal states. On this framework, 

instrumental decisions such as approaching rewards and avoiding harm are informed by 

affective states reflecting the current physiological state of the organism. 

Bodily afferents relay to the brain the information about the state of the organism, such 

as the need for nutrients or hydration, temperature, blood oxygen levels, inflammation, etc. To 

ensure continuous survival, those variables must be monitored and maintained within an 

appropriate viable range (called a set-point) despite fluctuations in the organism’s external and 

internal environments – a concept referred to as homeostasis ("stability through constancy"; 

Cannon, 1929). Homeostatic regulation can be achieved through peripheral autoregulatory 

processes, such as buffering systems of the blood maintaining plasma pH (Dworkin, 1993), or 

central reflex mechanisms, where disturbances to the internal environment are communicated 

through visceral feedback  to trigger a compensatory response to return the deviation to its 

viable range (for example, a reduction in heart rate following increases in blood pressure; 

Berntson & Cacioppo, 2007; Berntson, Cacioppo, & Bosch, 2016).  

However, it has been argued that although achieving homeostasis through error-

correction mechanisms is necessary, it is also inherently inefficient (Sterling, 2004, 2012; Sterling 

& Eyer, 1988). Rather than correcting a variable at a time to a stable set-point2, an efficient 

                                                           
2 Some commentators note that this critique stems from a misinterpretation of Cannon’s (1929) 
description of homeostasis as “stability through constancy”. In fact, Cannon never advocated an 
invariable set-point which would lock down a variable irrespective of other environmental or internal 
demands.  
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regulatory strategy for dynamic organisms is to constantly anticipate physiological demands and 

allocate internal resources to meet them. This concept is referred to as allostasis ("stability 

through change"; Sterling & Eyer, 1988). While it remains a debate whether allostasis extends, 

encompasses, or replaces homeostasis (Corcoran & Hohwy, 2018; Power, 2004), it is commonly 

agreed that regulating the internal environment is a complex process that requires higher-order 

top-down anticipatory control, related to both internal and external conditions, in addition to 

basic homeostatic reflexes operating through error-detection mechanisms (Berntson et al., 

2016; Ramsay & Woods, 2014; Schulkin, 2003b, 2003a; Sterling & Eyer, 1988). As such, the set-

point bounds are dynamically adjusted depending on anticipated physiological demands. For 

example, blood pressure is expected to vary throughout the day in line with multiple factors, 

such as the circadian rhythm or type and level of activity. Effectively, allostasis can be considered 

as a mechanism to achieve homeostasis (Day, 2005; McEwen, 1998), allowing for anticipation of 

upcoming circumstances. 

So how does the homeostatic imperative give rise to adaptive, motivated behaviour?  

Both homeostatic regulation and allostasis operate by reorienting the organism’s physiological 

resources to deal with changes and challenges – in a more reactive or predictive fashion, 

respectively. When homeostatic regulation cannot maintain physiological variables within 

appropriate bounds through internal, reactive regulation, an organism can adjust overt 

behaviour with respect to the external world by means of ‘behavioural’ allostasis (Corcoran & 

Hohwy, 2018; Gu & Fitzgerald, 2014) – for example, engage in motivated behaviour to actively 

seek food, water, or shelter from the heat. As such, allostatic mechanisms directly drive adaptive 

behaviour, prompting organisms to act to fulfil appetitive or self-protective (or even social) 

motivational drives in order to maintain homeostasis in the longer-term (Schulkin, 2003b, 

2003a, 2011).  

This motivation has been proposed to be engendered through affective states – 

subjective feelings such as hunger, thirst, dyspnoea, or sickness, earlier also conceptualised as 

‘drives’ (Hull, 1943, 1952; Hulme, Morville, & Gutkin, 2019), which reflect deviation from viable 

states and indicate the need to adjust behaviour in order to return the body to homeostatic 

bounds (Craig, 2009; Critchley, 2005; Critchley & Garfinkel, 2017; Critchley & Harrison, 2013; 

Quadt, Critchley, & Garfinkel, 2018b).  In this light, visceral states communicating homeostatic 

errors emerge as a mechanism driving subjective emotional states, which in turn drive overt 

motivated behaviour to reduce the negative state by biasing decision-making to achieve 

advantageous, adaptive outcomes for the organism via allostasis (e.g. approaching food to 

satisfy hunger, or avoiding a sickness-provoking plant). Motivated behaviour is thus firmly 
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embodied, allowing to fulfil the imperative to maintain homeostasis (Lowe, Morse, & Ziemke, 

2017).  

While this account may initially seem restricted to motivated behaviour under current 

or anticipated homeostatic imbalance, the mechanism also extends to explain longer-term 

adaptive behaviour through instrumental or reinforcement learning. It is axiomatic that the 

purpose of adaptive behaviour is to remain alive through achieving physiologically relevant 

rewards, such as food, water, shelter, or opportunities to mate. Agents can learn the 

homeostatic consequences of their actions (i.e. disturbance or restoration), and orient their 

behaviour on future occasions to avoidance or approach, respectively, corresponding to 

instrumental learning (Balleine, 2011; Dickinson & Balleine, 1994; Dworkin, 1981; Keramati & 

Gutkin, 2014; see section 1.6.1. Instrumental learning, for a more detailed analysis). 

Homeostatic reinforcement learning (HRL) accounts show that when reward value is computed 

as a function of internal physiological state, agents seek to maximise rewards in order to prevent 

potential homeostatic disturbances, rather than merely react to them, as homeostatic and 

allostatic accounts would predict (Hulme et al., 2019; Keramati & Gutkin, 2011, 2014; Korn & 

Bach, 2015).  

The process of driving adaptive behaviour through affective states is proposed to be 

accomplished by the interoceptive system – a sensory system for communicating internal 

physiological information to the brain for coordinated regulation, sensing and representing it in 

the brain as feeling states (Cameron, 2002; Sherrington, 1948; Tsakiris & Critchley, 2016; the 

interoceptive system will be described in detail in section 1.3.2. Interoception). The key player 

of the interoceptive network is the insular cortex, implicated in encoding and representing 

visceral information, emotion, as well as decision-making (Craig, 2009; Critchley, 2005; Singer, 

Critchley, & Preuschoff, 2009). The insula’s role in representing information about the internal 

state of the body enables to contextualise the current situation with reference to the agent’s 

physiological state, provoking affective states (Craig, 2013; Gu & Fitzgerald, 2014; Gu, Hof, 

Friston, & Fan, 2013; Rosen & Schulkin, 2004). It then feeds this information forward to other 

brain systems involved with valuation and decision-making, including the OFC and VMPFC 

(Rangel, Camerer, & Montague, 2008; Rushworth, Kolling, Sallet, & Mars, 2012; Rushworth, 

Noonan, Boorman, Walton, & Behrens, 2011). Through this mechanism, representations of the 

internal state endow stimuli and choices with motivational value, informing and driving 

instrumental decision-making. 
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1.2.2. Predictive processing 

Over the past two decades, predictive processing has been emerging as one of the leading 

approaches to understanding brain function. Rooted in von Helmholtz’s idea of unconscious 

inference (von Helmholtz, 1867), predictive processing (also conceptualised as the ‘Bayesian 

brain’ hypothesis) sees the brain as a prediction machine, constantly predicting the causes of 

sensory signals. The framework has provided rich theoretical and empirical accounts of 

perception and action, as well as cognition, emotion, and the sense of self. With relevance to 

this thesis, predictive processing and its corollaries addressed below (active inference and 

interoceptive inference) offer a comprehensive, biologically plausible account of perception and 

action as tightly intertwined and inherently embodied under the homeostatic imperative.  

Under predictive processing, information about the world arriving through the senses is 

continuously interpreted in relation to prior expectations or beliefs about its causes. Because 

the brain has no direct access to the causes of the incoming information, they are referred to as 

‘hidden’.  The brain infers the hidden causes through a probabilistic process, proposed to 

operate under the principles of Bayesian inference, where the incoming information (likelihood) 

is combined with the expectations or beliefs about its causes (prior prediction) to arrive at a best 

guess (posterior prediction) of the causes of that information (Clark, 2013; Hohwy, 2013, 2020; 

see Figure 1). 

Biologically, predictive processing is often formalised through a predictive coding 

scheme (Rao & Ballard, 1999). The scheme postulates that the predictions are instantiated by 

probabilistic generative models encoded in cortical hierarchies. The inference process is 

performed in a descending fashion, where higher (deeper) levels in the hierarchy generate 

predictions about representations at lower levels. This activity encodes probability distributions 

of the states of the world causing specific sensory inputs. Incoming sensory signals are compared 

against such descending predictions to give rise to prediction errors (PEs) at each hierarchical 

level of processing, indicating a mismatch between the predicted input and the actual input. PEs 

are then passed up the hierarchy, allowing to update the higher-level predictions about the 

hidden causes. This adjustment of the higher-level prediction cancels out the PE at the lower 

level, and the process continues in cycles throughout the hierarchy (Kanai et al., 2015; Rao & 

Ballard, 1999). In this way, the hierarchies attempt to continuously predict the most likely causes 

of incoming sensory signal and “explain it away”, so that only minimal PE is left to be propagated 

back up the hierarchy – corresponding to perceptual inference (Clark, 2013; Hohwy, 2013). 

Perception thus emerges as a product of that inferential process, where incoming sensory 

signals are quashed by top-down predictions. The upshot of this process is that perception is 
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strongly determined by prior predictions used by the brain to attempt to explain sensory 

information. 

 Perceptual inference is optimised by precision-weighting of the PEs. Precision refers to 

the reliability or relevance assigned to the incoming sensory signal. In statistical terms, precision 

reflects the inverse variance of the probability distribution (highly precise distributions have 

little variance). Precision-weighing allows to regulate the interaction between the top-down and 

bottom-up signals through adjusting gain on PE-conveying neuronal populations, such that 

highly precision-weighted PEs have a greater influence in updating the predictions (see Figure 

1). Precision-weighting itself is thought to be associated with attention (Feldman & Friston, 

2010; Friston, 2009; Hohwy, 2012), where attention tunes the influence of incoming information 

by assigning higher or lower precision to the corresponding sensory channel. In practice, 

directing attention to the visual channel would increase the gain on the incoming visual 

information, increasing its precision.  

 

 

Figure 1. An illustration of Bayesian inference (left plot) and the influence of higher sensory 

precision (middle plot) and lower prior precision (right plot). The graphs represent probability 

distributions associated with sensory evidence (likelihood), prior beliefs, and posterior beliefs. 

The widths of the distributions represent their variance. Under Bayesian inference, sensory 

evidence combines with prior beliefs to form a posterior belief (left). When the sensory evidence 

is assigned high precision (it has high inverse variance), posterior belief will be dominated by the 

sensory input, proportionately to its precision (middle). The same can happen if prior beliefs are 

assigned low precision (right). Conversely, if sensory evidence is assigned low precision, 

posterior belief will be dominated by prior belief. The schematic is adapted from Adams, 

Stephan, Brown, Frith, & Friston, 2013. 

 

1.2.2.1. Active inference 

The hierarchical predictive approach to perception outlined above can be generalised to 

encompass action, considerably extending the framework beyond its account of perception as 

a passive process of inferring the most likely causes of sensory stimulation. On this extended 

account, PEs can be minimised either by updating predictions (in the process of perceptual 

inference), or by executing an action to change the sensory inputs so that they match the 
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predictions (active inference). This implies that perception is intimately tied with action, where 

action can select and shape new sensory inputs (Clark, 2013). 

According to active inference, agents actively execute actions in order to realise prior 

expectations and minimise proprioceptive PEs. The objective of action is to fulfil top-down 

expectations by either actively seeking new information so as to refine the predictive models of 

the hidden causes (in an epistemic fashion, e.g. through saccadic eye movements), or generating 

the expected sensory consequences to match the predicted ones (in an instrumental fashion, 

e.g. moving a limb to the predicted position) (Friston, 2009). In this way, motor control amounts 

to the top-down prediction of sensory consequences, which then engages action (through motor 

reflexes) so as to change the bottom-up proprioceptive or sensory inputs, minimising the PE 

(Adams, Shipp, & Friston, 2013; Clark, 2015a; Friston, 2009, 2011; Friston et al., 2010). On this 

account, perception and action are implemented by the same computational architecture, and 

are tightly intertwined – top-down perceptual predictions inform actions which then elicit the 

predicted sensory stimulation (Clark, 2015b; Friston, Adams, Perrinet, & Breakspear, 2012; see 

Figure 2). This has been suggested to be necessary for predictive control (Lauwereyns, 2012; 

Seth, 2015; Seth et al., 2016) and homeostatic integrity of an organism (Friston, 2010; Maturana 

& Varela, 1980; Seth & Tsakiris, 2018). Most importantly, in this way, action is not simply a 

response to stimuli or events in the world, but a means of selecting the next input through a 

rolling cycle of predicting the next state and bringing it about. 

 

1.2.2.2. Interoceptive inference 

In a manner parallel to active inference, the framework has also been applied to interoception, 

the sense of internal physiological state of the body. Under interoceptive inference, the brain 

performs the same active process of PE minimisation internally, with respect to interoceptive 

PEs, as it does externally with proprioceptive PEs. Interoceptive afferent signals communicate 

bottom-up PEs, which are met by cascading top-down predictions about the internal state of the 

body, where the lower levels reflect homeostatic variables, and higher levels integrate the 

interoceptive, proprioceptive, and exteroceptive cues (Seth, 2013; Seth & Friston, 2016; Seth, 

Suzuki, & Critchley, 2012). Interoceptive PEs can be suppressed either by updating the 

predictions, or by engaging autonomic control mechanisms to adjust the internal parameters in 

line with prediction (similarly to engaging motor reflexes under active inference; see Figure 2).  
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Figure 2. An illustration of active inference (upper section) and interoceptive inference (lower 

section, highlighted in orange). Blue arrows signify top-down, and red arrows signify bottom-up 

predictions. Illustration obtained from Seth, 2013.  

 

Interoceptive inference has been proposed to be crucial mechanism for adaptive control 

and predictive regulation of the internal state, underpinning homeostasis and allostasis. 

Ascending interoceptive afferents communicate the current internal state of the body, which is 

compared against the descending predictions providing a homeostatic set-point (i.e. the 

appropriate range of homeostatic values). Effector systems of the autonomic nervous system 

can then be engaged to minimise the PE, corresponding to homeostatic control (for example, by 

mobilising glucose reserves in case of hypoglycaemia). Alternatively, the predictions can be 

fulfilled through engaging in allostasis (in this example, preparing a meal; importantly, precision 

of the low-level interoceptive signal must be attenuated so that action execution ensues, rather 

than updating the predictions of not eating) (Seth & Friston, 2016). Interoceptive, proprioceptive 

and exteroceptive predictions thus act in concert to ensure homeostasis – interoceptive PEs 

inform the current motivational state, and proprioceptive and exteroceptive predictions specify 

allostatic goals (Pezzulo, Barca, & Friston, 2015). As described in an earlier section (1.2.1.3. 

Homeostatic control and allostasis), a predictive model of the internal state can thus drive value-

based choices by providing a reference to the internal state of the body in a predictive fashion 

– the expected internal state should a given behaviour be performed (Gu & Fitzgerald, 2014).  

This homeostatic imperative under the predictive processing account is formalised by 

the Free Energy Principle (Friston, 2009, 2010; Friston et al., 2010). According to FEP, organisms 

must minimise their internal entropy in order to continue living – that is, they must inhabit only 

a range of states that ensure survival, corresponding to homeostatic bounds. Venturing out of 

those bounds, for instance by allowing blood pressure or the body temperature to rise above 

the viable range, or depriving the organism of nutrients, would inevitably cause death. According 

to FEP, living organisms resist the tendency towards entropy, imposed by the second law of 
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thermodynamics, by minimising surprisal (information-theoretic surprise) or – simplifying – 

variational free-energy. Under certain mathematical assumptions (which are beyond the scope 

of this thesis), free-energy corresponds to long-term average of PE. As such, PE minimisation 

(exteroceptive, proprioceptive, and interoceptive) is a mechanism geared at resisting the 

tendency towards entropy, achieving the fundamental objective of staying alive.  

According to this view, the body has been proposed to constitute the “first prior” (Allen 

& Tsakiris, 2018). Continued existence is inherently dependent on regulating the interactions 

with the world so that they fulfil the homeostatic imperative – that is, finding oneself in states 

that are conducive to staying alive, rather than bad, “surprising” states. Organisms manage this 

feat by making use of internal models weaving in interoceptive and exteroceptive cues to 

regulate the interaction with the world under the homeostatic imperative (a view that stems 

from cybernetics; Seth, 2015). Homeostatic priors are afforded a priority status within the 

predictive hierarchy (through a high precision-weighting) to determine inference and behaviour 

based on the subjective needs of the organism. Hence, perceptual and value-based salience are 

relative to the impact a stimulus or decision might have on the organism’s condition (Friston et 

al., 2015; Pezzulo et al., 2015). Under this perspective, the internal model of the body (or the 

“first prior”) provides a reference frame to facilitate interactions with the world through a 

subjective sense of being a ‘self’ (Allen & Tsakiris, 2018; Apps & Tsakiris, 2014; Craig, 2009; Seth, 

2015; Seth & Tsakiris, 2018). 

Interoceptive inference was also proposed to be the mechanism giving rise to subjective 

feelings of emotion. On this view, emotion arises from the inference of the hidden causes of 

bodily signals, through the integration of interoceptive, exteroceptive and proprioceptive 

predictions reflecting is the organism’s current context (Barrett, 2016; Barrett & Simmons, 2015; 

Clark, 2016; Pezzulo, 2014; Seth, 2013; Seth & Critchley, 2013), thus providing a mechanistic 

account of two-factor theories like the Schachter-Singer (1962) account (visited in section 1.2.2. 

James-Lange theory of emotion). Emotional content is shaped by the hierarchy of generative 

models predicting the bodily responses and possible actions in the current environmental 

context. Thus, the process of integrating interoceptive with exteroceptive information 

inherently affects how we perceive and interpret the external world – through the lens of 

internal states. A relatable example is provided by Pezzulo (2013): because of the high precision 

afforded to interoceptive signals, if the body is in a state of arousal, such as after watching a 

horror movie, the sound of a squeaking window at night (exteroceptive information) might be 

interpreted as a burglar or a bogeyman – rather than, more plausibly, wind. 

Overall, predictive models of interoceptive signals play a fundamental role in regulation 

of the internal state, maintaining the body in viable states through homeostatic control and 
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allostasis. Consequently, they also contribute to shaping emotion, perception, and motivated 

behaviour. Both active and interoceptive inference thus highlight the complex interaction 

between the brain, body and the world, illuminating the general structure of our interactions 

with the world as firmly embodied under a single, dynamic predictive regime (Clark, 2016).3 

  

1.3. The body on the inside 

1.3.1. Interoception 

Broadly, interoception refers to the sensing, and interpreting, and integrating the neural signals 

communicating the body’s moment-to-moment internal condition (Cameron, 2002; Khalsa et 

al., 2017; Sherrington, 1948). A comprehensive definition, highlighting the levels of complexity 

of the interoceptive system, is provided by Quadt et al., 2018 (p.112): 

 

“Interoception is an umbrella term encompassing (1) afferent (body-to-brain) signalling through 
distinct neural and humoral (immune and endocrine) channels; (2) neural encoding, 
representation, and integration of this information concerning internal bodily state; (3) the 
influence of such information on other perceptions, cognitions, and behaviors; (4) and the 
psychological expression of these representations as consciously accessible physical sensations 
and feelings.” 
 

 The first, lowest level refers to the afferent signal carrying continuous information about 

the internal state of the body (including the cardiovascular, gastric, respiratory, or inflammatory 

information), its neural pathways, as well as neural readouts, such as the heartbeat-evoked 

potential (HEP; Montoya, Schandry, & Miiller, 1993) or oscillations related to gastric activity 

(Rebollo, Devauchelle, Béranger, & Tallon-Baudry, 2018). This information is then integrated in 

the brain to represent the homeostatic condition of the organism, and distributed to other 

regions, thus informing homeostatic control, allostasis (addressed in previous sections), as well 

as other perceptual, affective and cognitive processes, including emotional states and motivated 

behaviour (Berntson, Gianaros, & Tsakiris, 2018; Critchley & Garfinkel, 2017). At the highest level 

is the psychological expression of the interoceptive information, referring to conscious 

awareness of the interoceptive signals from different channels. This psychological manifestation 

is itself conceptualised across three levels: interoceptive accuracy (referring to objective 

accuracy of perceiving a bodily signal), sensibility (referring to subjective beliefs about the ability 

                                                           
3 While it is beyond the scope of this theoretical overview to evaluate the varied approaches to 
predictive processing in detail, it is important to note that while active and interoceptive inference are 
fundamentally embodied by nature (as both take root in the Free Energy Principle), some predictive 
accounts do not take that stance and instead focus on purely internal, modular representations (see 
Allen & Friston, 2018; Clark, 2015b; Dolega, 2017).  
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to perceive one’s own bodily signals), and awareness (referring to the correspondence between 

accuracy and confidence, i.e. a metacognitive measure of interoceptive performance; Garfinkel, 

Seth, Barrett, Suzuki, & Critchley, 2015; Quadt, Critchley, & Garfinkel, 2018a, but note that they 

were shown to reflect independent processes; Forkmann et al., 2016). 

 

1.3.2. Anatomical and functional organisation of the interoceptive system 

Interoceptive information encompasses distinct types of signal from the body’s viscera (internal 

organs, tissues, and cells), including visceromotor, nociceptive, thermal, metabolic, hormonal, 

and immunological information (Berntson et al., 2018; Craig, 2014; Critchley & Harrison, 2013). 

Information from the viscera (organs, tissues and cells located in the thoracic and abdominal 

cavities) constitutes the General Visceral Afferents (GVA), which convey information to the brain 

through two main pathways. Motivational GVA, such as hunger, satiety, thirst, nausea, or 

respiratory sensations, are relayed through cranial nerves, most notably the vagus nerve, the 

longest and most widely distributed cranial nerve. GVA carrying nociceptive, thermal and 

chemosensory information (largely communicating tissue damage) travel through spinal 

afferent pathway, projecting to the dorsal horn of the spinal cord, and to the spinal laminar 1 

(Craig, 2014; Saper, 2002). Both pathways terminate in the nucleus of the solitary tract (NTS).  

The NTS is the first interoceptive relay port, sensing and regulating the physiological 

state of the body. At the early stages, visceral information also inputs to the periaqueductal gray 

matter, parabrachial nucleus, hypothalamus, and the ventromedial posterior (viscerosensory) 

thalamus (Critchley & Harrison, 2013). Through the thalamic relays, visceral information is then 

propagated to a broader network of regions implicated in perception, cognition, adaptive 

behaviour and decision-making, including the amygdala, the insular cortex, the cingulate cortex, 

and frontal / orbitomedial regions (Blessing, 1997; Cechetto & Shoemaker, 2009; Critchley & 

Harrison, 2013), constituting a wider interoceptive network for representing, regulating, and 

feeding visceral information forward (Kleckner et al., 2017). Through the wide distribution, the 

system overlaps with the Central Autonomic Network (CAN; Benarroch, 1993), the emotional 

motor system, and the classical limbic system (Strigo & Craig, 2016). 

The primary cortical site for visceral processing is the insular cortex. Primary viscerotopic 

representations are localised in the dorsal-posterior regions of the insula, and the re-

represented and integrated in the mid- and anterior part (anterior insular cortex, AIC), 

suggesting a posterior-to-mid-to-anterior organisation of interoceptive representations in the 

human insula (Craig, 2009). The AIC specifically is involved with integration of the bodily signals 

into cortical representations of bodily responses and changes in the internal states (Critchley, 

2005; King, Menon, Hachinski, & Cechetto, 1999; Singer et al., 2009), as well as their conscious 
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representation (Craig, 2009; Gu et al., 2013; Wang et al., 2019). The AIC was also proposed to 

serve the function of comparing top-down interoceptive predictions against bottom-up 

interoceptive PEs under the predictive processing framework (Barrett & Simmons, 2015; Gu et 

al., 2013; Seth, 2013), a notion supported by functional magnetic resonance (fMRI) studies 

showing AIC activation in anticipation of painful of affective tactile stimuli (Lovero, Simmons, 

Aron, & Paulus, 2009; Ploghaus et al., 1999). The insula is also highly interconnected with areas 

supporting cognition, emotion, and motivation, including the prefrontal regions, the cingulate 

cortex, and the amygdala (Oppenheimer & Cechetto, 2016). 

With special relevance to this thesis, the insula is also implicated in dynamic cardiac 

regulation, gauging interoceptive and exteroceptive cues to adjust cardiac outputs to ensure 

appropriate adaptive responses (Hassanpour et al., 2018; Oppenheimer & Cechetto, 2016; this 

aspect will be revisited in section 1.6.2. Autonomic and interoceptive processes in instrumental 

learning). Insular activity was shown to be enhanced in response to asynchronous, relative to 

synchronous, cardiac feedback (i.e. tones presented out of or in synchrony with participants’ 

heart rate), suggesting that the region detects and computes physiological mismatches in 

cardiac signal (Gray, Harrison, Wiens, & Critchley, 2007; see also Banellis & Cruse, 2020; Pfeiffer 

& De Lucia, 2017; van Elk, Lenggenhager, Heydrich, & Blanke, 2014). The HEP (an 

electroencephalographic (EEG) readout of cardiac activity) was also localised to the insula (as 

well as the amygdala and the sensorimotor cortex; García-Cordero et al., 2017; Kern, Aertsen, 

Schulze-Bonhage, & Ball, 2013), and proposed to reflect precision of the interoceptive signal 

(Petzschner et al., 2019). Together, those findings suggest that interoceptive representation of 

cardiac activity and their potential reliability and usefulness for further processes are reflected 

in the insula. 

 

1.3.3. Interoceptive effects on perception, cognition, and affect 

The last twenty years have seen a wealth of research addressing interoceptive effects on a host 

of other processes, over and above behaviours operating directly in service of homeostasis and 

allostasis. While a detailed review of the rich and differentiated body of work is outside of the 

scope of this thesis, it will be beneficial to briefly summarise the findings pertaining to this topic, 

and the challenges around it (note that the literature relevant to learning will be reviewed in 

more detail in section 1.6.2. Autonomic and interoceptive processes in instrumental learning). 

A vast proportion of research on interoceptive effects on other processes has focused 

on cardiac activity, largely due to the relative ease of measurement. For example, individual 

baroreflex sensitivity was shown to affect cognitive performance and pain sensitivity (Duschek, 

Werner, & Reyes del Paso, 2013). Within the subfield, cardiac cycle is often exploited as a means 



17 
 

 
 

of evaluating processing during the physiological activity of the heart at systole (when 

baroreceptors are active and blood is ejected from the heart) compared to diastole (between 

the heartbeats, when baroreceptors are quiet). The phase of the cardiac cycle has been found 

to differentially affect emotional processes, with stimulus presentation at systole enhancing the 

processing of fearful (motivationally-relevant) stimuli (including detection, intensity ratings, and 

processing in the amygdala) in comparison to other emotions. Systole was also shown to 

enhance active visual search (Galvez-Pol, McConnell, & Kilner, 2018; Kunzendorf et al., 2019), 

visual selection accuracy (Pramme, Larra, Schachinger, & Frings, 2016), and response inhibition 

(Rae et al., 2018). In contrast, systolic presentation attenuates memory for words, pain 

perception, or startle responses (Garfinkel & Critchley, 2016). Individual differences in 

interoceptive accuracy, sensibility or awareness have been shown to modulate decision-making 

(Dunn et al., 2010), cardiac responses to emotional images (Pollatos, Herbert, Matthias, & 

Schandry, 2007), susceptibility to the rubber hand illusion (Tsakiris, Tajadura-Jiménez, & 

Costantini, 2011), or loss aversion (Sokol-Hessner, Hartley, Hamilton, & Phelps, 2015). 

However, it is important to note that the cardiac cycle is an oscillatory signal, present at 

all times. While the results showing its selective impact on higher-order processes illustrate the 

strong interaction between the brain and the body, it is difficult to assess whether the effect is 

functional, or simply a consequence of fluctuations in neural noise. This highlights the need for 

more targeted, controllable means of manipulating interoceptive signals to allow for assessment 

of causality.  

An attempt at manipulating how cardiac signal is used by the brain has been made by 

manipulating its perceived synchronicity with real-time cardiac feedback. An auditory stream 

synchronous to a participants’ own heartbeat (e.g. a stream of tones such as beeps, played in 

time with heartbeat) can enhance fairness judgments (Lenggenhager, Azevedo, Mancini, & 

Aglioti, 2013) and error processing (Łukowska, Sznajder, & Wierzchoń, 2018), while an 

asynchronous stream disrupts it. Similar results were obtained with a visual synchronous stream 

affecting body ownership (Aspell et al., 2013; Suzuki, Garfinkel, Critchley, & Seth, 2013). This 

suggests that bodily (in this case, cardiac) information might functionally inform some higher-

order processes, especially those which have an embodied component, such as the sense of 

one’s own body or empathy. More formally, it has been proposed that synchronicity increases 

the precision of cardiac information reaching the brain (i.e. cardioceptive precision; Petzschner, 

2017), although it is still a largely hypothetical assumption. Nonetheless, as mentioned in the 

previous section, the insula has been shown to be sensitive to mismatches in auditory cardiac 

feedback (Gray et al., 2007), with similar results in EEG readouts of cardiac processing (Banellis 

& Cruse, 2020; Pfeiffer & De Lucia, 2017; van Elk et al., 2014). This suggests that external cardiac 
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feedback, although an undeniably exteroceptive signal, may be a promising avenue for 

investigating the effects of cardiac precision. Interestingly, only one study thus far has applied 

this method to observe its role in performance (Łukowska et al., 2018), showing that 

asynchronous feedback disrupted performance-error related activity. This has implications for 

the study of the role of the body in instrumental learning, and will be addressed in greater detail 

in a later section (1.6.2. Autonomic and interoceptive processes in instrumental learning). 

It is also noteworthy that the field has attracted some methodological criticism, mostly 

related to the validity and generalisability of the tasks used to assess individual cardiac ability. 

Those tasks typically involve counting one’s own heartbeat at rest, without touching the heart 

or pulse spots (Schandry, 1981), referred to as the Heartbeat Counting Task, or discriminating 

whether a stream of discrete sounds (e.g. beeps) is in or out of synchrony with one’s heartbeat 

(Heartbeat Discrimination Task; Katkin, Blascovich, & Goldband, 1981). Both tasks have 

attracted considerable critique in terms of validity and generalisability (Brener & Ring, 2016). 

The Schandry task especially was proposed to be fundamentally biased and rely on processes 

unrelated to actual interoception, such as participants’ prior knowledge of average heart rates 

or even counting time units (Desmedt, Luminet, & Corneille, 2018; Ring & Brener, 2018; Ring, 

Brener, Knapp, & Mailloux, 2015; Zamariola, Maurage, Luminet, & Corneille, 2018).  

 

1.4. The body on the outside 

1.4.1. Action-oriented approaches 

The interaction of action, perception, and cognition has long been a topic of enquiry (Gibson, 

1979; James, 1891). The active nature of perception and cognition was already highlighted over 

a hundred years ago, for example by Dewey (1896), who emphasised that what we experience 

with the senses is secondary to action, and determined by movement of the body, head, and 

eyes. Despite that, the long dominance of cognitivism firmly established an opposite view, 

where cognition is considered context-invariant, modular, and substrate-neutral (e.g. Fodor, 

1983), and operating through mental representations. In this view, cognition determines action, 

and perception is largely independent of action.  

However, this approach is gradually being abandoned in favour of an action-oriented 

perspective, where cognition and action are closely intertwined (Clark, 1998; O’Regan & Noë, 

2001; Valera, Thompson, & Rosch, 1992). Under this perspective, cognitive systems are 

inseparable from embodiment, and any processing is a dynamic, context-sensitive process that 

is largely driven by action of the agent in the world. Similarly, it has been proposed that the 

conscious, first-person perspective is organised for supporting adaptive, flexible action, where 
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consciousness provides an egocentric frame of reference for agents’ interactions with the world 

(Merker, 2013). Action-oriented frameworks have been yielding considerable theoretical and 

practical advances in philosophy, robotics, psychology, cognitive science, and the neurosciences, 

and thus constitute a rich field of research, vastly beyond the scope of this thesis (a state of the 

art is provided in Engel, Friston, & Kragic, 2015). The focus here will be placed specifically on 

action-oriented approaches to consciousness rooted in predictive processing. 

Action-oriented predictive processing has been applied to provide a new perspective on 

perception and conscious experience (although note that predictive processing itself is not a 

theory of consciousness). Under predictive processing, conscious experience has been proposed 

to be shaped by the posterior predictions (the generative model) that best suppress PEs (see 

section 1.2.3. Predictive processing) – that is, the model that best ‘explains away’ the incoming 

sensory input (Hohwy, 2013; Seth et al., 2016).  

However, agents do not passively perceive their environment – they actively engage 

with it. As such, perceptual experience should be influenced not only by passive predictions 

about the world, but more generally by predictions encompassing how the world changes based 

on the agent’s actions – that is, on predictions about sensorimotor contingencies (Clark, 2015b; 

O’Regan & Noë, 2001; Seth, 2014). This view is strongly related to active inference (section 

1.2.3.1. Active inference), where action is construed not as a response to perceptual inputs, but 

as a way of selecting the next input through PE minimisation. In order to successfully minimise 

PEs, the brain should not only predict the causes of sensory inputs, but employ those predictions 

to also predict how sensory input would change as a result of specific actions (Seth, 2014), a 

view termed predictive perception of sensorimotor contingencies. 

According to this perspective, the predictions that best explain the incoming sensory 

input (i.e. best minimise the PEs) are not necessarily those which are the most veridical, 

representing the world in the truest sense, but those which are best for supporting adaptive 

interactions with the world (Clark, 2015b; Seth, 2014, 2015). As such, by executing actions in 

order to fulfil sensorimotor predictions, organisms are effectively constructing their sensory 

experience in line with those predictions (Clark, 2015a, 2015b; Seth, 2014). Consequently, 

predictive processing agents do not need to model their environment in the most 

comprehensive way – instead, they model it selectively, in an action-oriented fashion, enabling 

interactions with the environment in a smooth, streamlined manner (Baltieri & Buckley, 2017; 

Land, 2012; Seth, 2015; Seth & Tsakiris, 2018; Tschantz, Seth, & Buckley, 2019). 
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1.4.2. The effect of action on perception and conscious experience 

There already is some evidence showing that action can modulate conscious perception. 

Voluntary action has been found to help disambiguate a bistable or otherwise ambiguous 

percept, if the action is congruent with an aspect of that percept, for example when the direction 

of movement executed by participants when viewing the stimulus corresponds to the direction 

of movement of the stimulus itself (Beets et al., 2010; Di Pace & Saracini, 2014; Dogge, Gayet, 

Custers, & Aarts, 2018; Maruya, Yang, & Blake, 2007; Mitsumatsu, 2009). Those findings suggest 

that a match between action kinematics and stimulus kinematics (such as motion directions) 

facilitate perception relative to mismatches. A comparable effect has been found for 

proprioception, where correspondence between the target and proprioceptive information can 

bias or sharpen the visual percept (Butz, Thomaschke, Linhardt, & Herbort, 2010; Salomon, Lim, 

Herbelin, Hesselmann, & Blanke, 2013; Yon, Gilbert, De Lange, & Press, 2018).  

 Those results are often interpreted as action and perception sharing common mental 

representations, where actions are controlled by internal representations of the desired goals 

coded as expected sensory outcomes (Hommel, Muesseler, Aschersleben, & Prinz, 2001; Prinz, 

2003). In this view, action biases perception by activating the corresponding outcome 

representations. However, this view does not preclude an influence of attentional cueing, where 

the executed movement direction would cue perception of anything moving in the same 

direction, or simple congruency effects, where any match facilitates perception over a mismatch 

(e.g. an effect also found for olfactory and visual percepts; Zhou, Jiang, He, & Chen, 2010) 

Action-oriented predictive processing approaches, described in the section above, 

considerably extend this view, proposing that it is the prediction of sensorimotor contingencies 

that brings about the conscious experience of the related stimulus. This approach provides 

testable hypotheses, although the direct effect of predictions about sensorimotor contingencies 

has not yet been investigated. A recent study on sensorimotor contingencies by Suzuki, 

Schwartzman, Augusto, and Seth (2019) is a step in that direction, showing that mere 

congruencies (e.g. veridical or reversed sensorimotor coupling of motion directions in 

participants’ interactions with stimuli) had no effect on time of breakthrough from interocular 

suppression, but live temporal contingencies did (i.e. live versus replayed interactions). This 

result suggests that there exists a dynamic causal coupling between actions and their sensory 

consequences. 
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1.5. Interim summary: The embodied mind 

The picture emerging from the above analysis is that of a strong influence of the body (both on 

the inside and the outside) on perception, emotion, cognition, and conscious experience. On the 

most basic level, the imperative for maintaining homeostasis requires living organisms to satisfy 

motivational drives (e.g. fulfilling hunger, running away from danger), which can only be 

achieved through goal-directed interaction with the environment. Motivational drives were 

proposed to produce subjective feeling states, reflecting the integrated model of the organism’s 

internal state and the environmental context the agent is in, as well as predictions of 

homeostatic objectives which can be fulfilled immediately or in the future. Those feelings states 

have adaptive value – they inform decision-making by imbuing choices and situations with value, 

so as to achieve positive states (such as attaining reward, reducing the unpleasant drive) and 

avoid negative ones. Predictive-processing accounts (especially the FEP) take this view further, 

proposing that perception, action, and emotion are firmly embodied through the imperative to 

minimise surprising states and stay alive. Under this framework, conscious perception is shaped 

by predictions of how the world changes in relation to our actions. 

A vast amount of research shows various ways interoceptive signals (predominantly the 

heart) influence perception, cognition, and affect. A separate line of research also shows the 

effects of action and proprioception on perception and conscious experience. However, direct 

causality or functional mechanisms are still hard to establish. Predictive processing approaches 

can furnish hypotheses that help address those questions, as will be evident in some of the 

empirical chapters of this thesis.  

Nonetheless, despite the development of rich theoretical frameworks and the wealth of 

empirical research on bodily influences, the embodied imperative is not without controversy. It 

has been argued that for bodily information to directly cause emotion (as under the James-Lange 

theory) or directly inform decision-making (as under the SMH) would be inefficient as peripheral 

arousal is noisy and non-specific (Rolls, 2005). Related to SMH, rat models demonstrated that 

the specific physiological state does not have to be reproduced in order to motivate a 

corresponding behaviour, as is predicted by SMH (Balleine, Ball, & Dickinson, 1994; Balleine, 

Davies, & Dickinson, 1995). Instead, what is crucial to drive adaptive behaviour is the 

representation of the given motivational state and the values of outcomes for the organism. 

Indeed, lesions to the insula and amygdala (both parts of the general interoceptive network and 

implicated in the representation of bodily states and their relevance to the organism) 

considerably impaired instrumental performance in rats (see Balleine, 2011 for an overview). 

Finally, with emotions occurring fairly late in the processing of a stimulus or event, emotions 



22 
 

 
 

were also proposed to be better viewed as a consequence, rather than a substrate (Moors, 

2009).  

However, it is important to recognise that more recent theories of embodied emotion 

and decision-making (Allen & Tsakiris, 2018; Barrett, 2016; Gu & Fitzgerald, 2014; Seth, 2013) 

do not assert that bodily activation is the direct cause of emotion or decision-making – instead, 

it is the process of  inference on the causes of ongoing bodily sensations (as noisy as they are) 

that gives rise to a subjective affective state (in that sense, emotion is a consequence). This 

process combines exteroceptive and interoceptive information to then inform emotion, and 

feed into valuation and motivating adaptive behaviour, as evidenced by the neuroimaging and 

neuroanatomy evidence reviewed above. As such, those frameworks are not incompatible with 

the position of the critics above (although of course they are not exempt from other debates, 

e.g. about the neural implementation of the predictive models). Nonetheless, the details of the 

exact psychophysiological mechanism are still unknown. 

 

1.6. The role of the body in instrumental learning 

1.6.1. Instrumental learning 

Learning is a crucial component of adaptive behaviour and, consequently, survival. Learning 

allows animals to predict the occurrence of important stimuli or events in their environment, 

and to interact with the environment to obtain adaptive outcomes and avoid harmful ones. The 

former is typically investigated with Pavlovian (classical) conditioning procedures, where a given 

stimulus acquires the capacity to provoke anticipatory, reflexive responses through exposure 

together with a direct reinforcer, such as anticipatory salivating in response to seeing a stimulus 

previously paired with food (Pavlov, 1927; Rescorla, 1988). In Pavlovian conditioning, any 

observed changes in behaviour are a reflection of the learned association predictive of an 

outcome, and outcomes are delivered regardless of the animal’s behaviour. While learned 

reflexive responses can be highly adaptive, they are not sufficient for survival in a dynamic 

environment requiring the agent to adapt by acquiring the ability to act on the environment 

itself (Balleine & Dickinson, 1998; Dayan & Balleine, 2002). This vital ability is referred to as 

instrumental learning. 

 Instrumental behaviour can be defined as actions whose “acquisition and maintenance 

depend on the consequences for the animal or, in other words, on the fact that the action is 

instrumental in causing some outcome” (Dickinson, 1994, p.47). Only instrumental behaviour 

provides the capacity to control the environment in the service of the individual’s needs or 

wants, making it the fundamental aspect of adaptive behaviour. Instrumental learning is 
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typically investigated through free-operant or instrumental (both terms refer to the same 

process) conditioning (Skinner, 1932), for example where animals learn to approach stimuli 

predictive of positive outcomes and to avoid stimuli predictive of negative outcomes (see 

Staddon & Cerutti, 2003 for a detailed review of the free-operant procedures and reinforcement 

schedules). 

 Control of instrumental behaviour is a complex process, involving not only learning of 

the action-outcome associations, but also assigning motivational value to the outcomes to 

invigorate future goal-directed behaviour, including action initiation and choices between 

different actions (Balleine, Delgado, & Hikosaka, 2007; Balleine & O’Doherty, 2010; Balleine & 

Ostlund, 2007). Instrumental learning was proposed to be mediated by at least three different 

mechanisms (Balleine, 2011; Balleine & Dickinson, 1998), including stimulus-response (S-R) 

learning, evaluative conditioning, and incentive learning.  

 Early accounts cast instrumental learning purely in terms of learning S-R associations 

(e.g. Thorndike’s law of effect, 1898, 1911). S-R accounts proposed that presentation of a 

positive reinforcement (reward) after an instrumental action is performed strengthens the 

association between the stimulus present when the action was performed and the response 

itself.4 However, S-R theory assumed that animals have no knowledge or representations of the 

consequences of their behaviour. As such, it could not account for how future responses are 

made based on the relevance of the anticipated consequences to the current motivational state 

(in this sense, the theory accounts for habitual behaviour better than motivated behaviour).  

Later developments proposed that outcomes are also encoded during instrumental 

learning, and acquire value through evaluative conditioning and incentive learning (Balleine, 

2011; Dickinson & Balleine, 1994; Dickinson & Dawson, 1987). According to this approach, 

pairings between a given stimulus and outcome (e.g. food providing a positive experience of 

reducing hunger) endow the stimulus with a higher value, corresponding to evaluative 

conditioning. In an instrumental scenario, a specific motivational state (e.g. hunger) causes an 

agent to assign a higher value to positive outcomes of their actions (e.g. obtaining food) through 

evaluative conditioning. This relationship is then represented abstractly as incentives or values 

assigned to specific outcomes (i.e. rewards), which are able to invigorate instrumental 

performance upon encountering the stimulus again, whether in that motivational state or not 

(Balleine, 2011; Berridge, 2000; Dickinson, 1994; Dickinson & Balleine, 1994). Through this 

                                                           
4 It is interesting to note that Thorndike’s original formulation included physiological drives, which he 
called ‘satisfaction’ and ‘annoyance’, loosely corresponding to reward and punishment, which motivate 
future instrumental behaviour (1989).  He later abandoned those concepts in favour of a more 
behaviourist approach. 
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mechanism, agents learn to act on stimuli associated with rewarding outcomes, and avoid those 

associated with punishing outcomes. 

The process of incentive learning is closely related to sensory or affective 

representations of the bodily state. Recent neuroimaging studies (reviewed briefly in sections 

1.2.1.3. Homeostatic control and allostasis, and 1.3.2. Anatomical and functional organisation of 

the interoceptive system) provide support for this account, showing extensive functional 

interrelationships between neural regions encoding the state of the body and its conscious 

representation with areas involved in reward, value representations, and decision-making.  

  

1.6.2. Autonomic and interoceptive processes in learning 

As described above, basic forms of learning such as classical and instrumental conditioning have 

been long understood as a strongly embodied, homeostasis-driven process, allowing agents to 

anticipate biologically relevant events or resources and to act on the world to obtain them. In 

parallel, bodily signals have also been proposed to reflect an internal performance monitoring 

system or an orienting response, supporting the learning process. 

Monitoring performance for errors is a vital part of successful decision-making and 

learning. Efficient performance monitoring allows for rapid detection of errors in performance 

and for appropriate and flexible adjustment of future behaviour. Performance monitoring is an 

inherent component of instrumental learning, where actual outcomes are compared to 

expected outcomes, with mismatches (e.g. following from an error) informing the system of the 

necessity for behavioural adjustment (often investigated with reinforcement learning (RL) 

schemes; Dayan & Niv, 2008; Sutton & Barto, 1998). This is a complex process, involving not only 

monitoring external events for feedback such as action consequences, but also evaluating the 

motivational or adaptive relevance of the outcomes (i.e. whether they are rewarding or 

punishing).  

In this light, it has been proposed that it is vital that performance is also monitored 

internally (Hajcak, Mcdonald, & Simons, 2003; Müller, Möller, Rodriguez-Fornells, & Münte, 

2005; Sokolov, 1963; Ullsperger, Danielmeier, & Jocham, 2014). Performance monitoring, 

evaluation of outcomes and options, and behavioural adjustment are achieved by a large-scale 

network associated with response organisation and selection, which also serves to modulate 

psychophysiological resources in line with dynamic environmental demands (Hajcak, Mcdonald, 

et al., 2003; Thayer & Lane, 2000; Ullsperger et al., 2014; Ullsperger & Von Cramon, 2004). This 

network has been suggested to encompass the anterior executive regions and the CAN, 

including the amygdala, the insular cortex, the anterior cingulate cortex (ACC), hippocampus, 

and the NTS (Benarroch, 1993, 2004; Devinsky, Morrell, & Vogt, 1995; Thayer & Lane, 2000). It 
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is also widely distributed, including feedback and connections with the striatum (involved with 

reward processing), as well the OFC and VMPFC, the prefrontal regions involved with valuation 

and decision-making.  

Correlates of error- or feedback-related processing have been observed in error-related 

negativity (ERN or Ne) and positivity (Pe) components in electroencephalography (EEG) 

(Falkenstein, Hoormann, Christ, & Hohnsbein, 2000; Falkenstein, Hoormann, & Hohnsbein, 

1999; Nieuwenhuis, Ridderinkhof, Blom, Band, & Kok, 2001; Overbeek, Nieuwenhuis, & 

Ridderinkhof, 2005), which are thought to originate in the ACC. The ACC is the crucial component 

of the error-monitoring network, and is involved in detection of errors and response conflicts, 

signalling the need for behavioural adjustments (Holroyd & Coles, 2002; Ridderinkhof, 

Nieuwenhuis, & Bashore, 2003) and reflecting ‘surprise’ signals (mismatches between expected 

and obtained outcomes; Hauser et al., 2014). 

 The internal performance monitoring mechanism is also reflected in a range of 

autonomic responses to errors in performance. Errors (of commission as well as omission) 

provoke pupil dilation (Critchley, Tang, Glaser, Butterworth, & Dolan, 2005; Wessel, 

Danielmeier, & Ullsperger, 2011), increased skin conductance response (Crone, Somsen, Beek, 

& Van Der Molena, 2004b), as well as – with the greatest relevance to this thesis – a deceleration 

in heart rate (HR; Crone et al., 2003). Collectively, those responses were linked to the orienting 

response of the ANS – a reflexive response geared at orienting the agent to changes in the 

environment in order to adapt the organism to any perturbations (Buser & Rougeul, 1961; 

Pavlov, 1927; Sokolov, 1963). 

HR deceleration has been observed to follow immediately after an error in performance 

(e.g. in a learning task), where the heart tends to decelerate more in response to negative 

feedback than to positive feedback (Crone, Bunge, de Klerk, & van der Molen, 2005a; Crone et 

al., 2003; Somsen, Van Der Molen, Jennings, & Van Beek, 2000; van der Veen, van der Molen, 

Crone, & Jennings, 2004a). This deceleration in response to errors has been proposed to reflect 

the processing of the error and the need for behavioural adjustment. Importantly, this response 

is only evident when feedback is valid – that is, when it carries reliable, usable information about 

performance (Crone et al., 2003; Groen, Wijers, Mulder, Minderaa, & Althaus, 2007; Mies, Van 

der Veen, Tulen, Hengeveld, & Van der Molen, 2011). Feedback is considered valid or 

informative when it can be related to the nature of the stimulus – that is, when the stimulus 

reliably predicts the outcome, and the feedback reflects the match or mismatch between the 

predicted and actual outcomes. In addition, HR deceleration has been found to diminish as 

learning progresses, instead becoming more pronounced in anticipation of negative feedback 

presentation than following it (Crone et al., 2004b; Groen et al., 2007), or even appearing as 
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early as the negative stimulus itself (Kastner, Kube, Villringer, & Neumann, 2017). This effect has 

been taken to imply that there is a shift from external, response-based performance monitoring 

to internal, prediction-based monitoring over the course of learning. Crucially, the strength of 

the phasic cardiac response to negative feedback has been found to correlate with the strength 

of the prediction error signal (derived from a RL algorithm; Kastner et al., 2017), which alerts the 

learner to the need to adjust behaviour. 

 Elsewhere, performance on decision-making tasks has also been found to be affected 

by individual interoceptive ability. Although direct evidence on instrumental learning is missing, 

it has been shown that people displaying better performance on interoceptive accuracy or 

awareness show improvements in risky decision-making tasks, such as the Iowa Gambling Task 

also used in SMH research (Dunn et al., 2010; Werner, Jung, Duschek, & Schandry, 2009; Werner 

et al., 2013), or in performance on a real-life trading floor (Kandasamy et al., 2016). Those results 

suggests that accurate perception of bodily information may mediate the relationship between 

bodily changes and cognitive-affective processing, such as decision-making.  

 

1.7. Unconscious learning 

1.7.1. Evidence for unconscious learning 

Whether learning can proceed without conscious awareness of the target stimulus has long 

been a topic of intensive research and theoretical debate. Typically, unconscious learning is 

investigated with simple associative learning paradigms, where participants learn stimulus-

stimulus or stimulus-outcome associations, or priming tasks. Most often, stimuli are rendered 

unconscious using masking or other suppression techniques. Depending on the paradigm, 

learning is usually indexed with presence or absence of the conditioned response, reaction times 

(i.e. where shorter reaction times to congruent vs incongruent pairings are indicative of 

learning), or the priming effect (where the prime influence processing of the subsequent 

stimulus, e.g. its perception).  

 Research into unconscious learning suggests that simple forms of associative learning 

and priming can take place without conscious awareness of the stimuli. This has been found for 

classical conditioning with the startle eye blink response (Clark & Squire, 1998), fear conditioning 

(Knight, Nguyen, & Bandettini, 2003; Raio, Carmel, Carrasco, & Phelps, 2012), emotional learning 

(Olsson & Phelps, 2004), visuospatial learning (Rosenthal, Kennard, & Soto, 2010; Seitz, Kim, & 

Watanabe, 2009a), associative learning between sensory modalities (Faivre, Mudrik, Schwartz, 

& Koch, 2014b; Scott, Samaha, Chrisley, & Dienes, 2018), and priming (Van Den Bussche, Van 

Den Noortgate, & Reynvoet, 2009). 
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 However, it has been pointed out that the role of conscious awareness in learning might 

vary between different learning procedures and the processing demands they impose (Knight et 

al., 2003). Most notably, unaware learning (as well as priming) is typically observed when stimuli 

are presented at short spatiotemporal intervals, or concurrently (van Gaal, de Lange, & Cohen, 

2012). For example, unaware classical conditioning was demonstrated in delay scenarios (when 

stimuli to be associated overlap temporally), but not in trace scenarios (where they are 

separated by an interval; Clark & Squire, 1998). 

In contrast to simple forms of associative learning, instrumental learning can be 

classified as a considerably more complex process. Agents must not only learn the associations 

between different stimuli, or stimuli and their outcomes, but also deploy action selectively (e.g. 

approach or avoid), and adapt their behaviour in the long-term. This involves integrating 

information over a long temporal scale and distinct modalities, as involved in processing the 

visual input, extracting its predictive value, deploying a selective response, processing the 

reinforcement, and comparing the expected outcome with the actual outcome in order to 

update the representations of stimulus value. As such, it is a considerably more complex process 

than the aforementioned simpler forms of associative learning, which do not require selective 

decisions on whether to act or not, or a behavioural adaptation from trial to trial.  

Nonetheless, there has been some evidence showing that instrumental learning can 

proceed unconsciously. It was shown that participant can learn to approach stimuli predictive 

of a monetary reward and to avoid stimuli predictive of punishment in an amended Go/NoGo 

task, where the stimuli were presented subliminally under forward-backward masking 

(Mastropasqua & Turatto, 2015; Pessiglione et al., 2008). This evidence suggests that goal-

oriented behaviour requiring behavioural adaptation does not require conscious access. While 

this result has firmly established itself in the consciousness literature (despite scant support), 

there is also recent emerging evidence suggesting that more complex forms of learning, 

including instrumental conditioning (Reber, Samimizad, & Mormann, 2018), contingency 

learning (Travers, Frith, & Shea, 2018), as well as fear conditioning (Mertens & Engelhard, 2020) 

may not be possible unconsciously. With relevance specifically to instrumental conditioning, 

Reber and colleagues (2018) found that the ability to learn instrumental associations is directly 

related to stimulus visibility, with controlled subliminal stimulus presentation resulting in an 

inability to deploy behaviour instrumentally. 

 

1.7.2. Theoretical considerations in unconscious learning 

Past theoretical and empirical accounts of conscious versus unconscious processing suggest that 

the increased level of complexity required for selective behaviour may indeed require conscious 
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access to be established. While there is no clear agreed theory demarcating what conscious 

versus unconscious mental states may represent (Breitmeyer, 2015; Dupoux, Gardelle, & 

Kouider, 2008; Kouider & Dehaene, 2007), there have been attempts at outlining conditions 

under which unconscious processing can take place (Mudrik, Faivre, & Koch, 2014). A number 

of theoretical contributions propose that consciousness is related to long-lasting, long-range 

connections between distinct brain regions, supporting recurrent information integration across 

distinct cognitive modules (Dehaene & Naccache, 2001; Dehaene & Changeux, 2011; Dehaene, 

Charles, King, & Marti, 2014; Lamme, 2006; Mudrik, Faivre, & Koch, 2014). As such, low-level or 

short-range (spatial or temporal) information integration might be possible without conscious 

awareness. However, consciousness might be necessary at increased levels of complexity – 

including (but not limited to) semantic knowledge, complex visual processing, decision-making, 

and problem-solving (Baars, 2002; Treisman, 2003), all of which involve integration of 

information across longer spatiotemporal intervals or larger spatial distance. Indeed, 

neuroimaging evidence has found conscious processing to be characterised by global, long-

range spread of activity, in contrast to more localised, shorter-range projections when 

processing is unconscious (Baars, Ramsøy, & Laureys, 2003; Dehaene et al., 2014, 2001; Dehaene 

& Naccache, 2001; Melloni et al., 2007). 

As mentioned earlier, the tasks used to probe instrumental learning (Pessiglione et al., 

2008; Mastropasqua & Turatto, 2015) involve a fairly complex process of integrating information 

over a large temporal scale and distinct modalities, necessary to process the visual input, extract 

its predictive value, deploy selective action in response to the predictive cue, and process the 

reinforcement. Their complexity is then significantly greater than in the aforementioned 

classical conditioning or associative learning scenarios, where there are fewer events, often in 

closer temporal proximity. Assuming that a subliminally presented cue is not capable of evoking 

large-scale activity to be integrated with subsequent processes, instrumental learning without 

conscious awareness should be prevented.  

 

1.7.3. Methodological and statistical issues in unconscious learning 

research 

A key challenge in any research into unconscious influences on behaviour lies in reliably 

asserting that processing is genuinely unconscious (Newell & Shanks, 2013; Rebuschat, 2013; 

Timmermans & Cleeremans, 2015). Although it is frequent practice in this line of research to 

infer unconscious processing when a behavioural measure (e.g. conditioning, priming, etc.) is 

above chance, while a separate measure of awareness is non-significantly different from chance 
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performance (e.g. a non-significant result in a discrimination task), this approach has drawn 

criticism (Dienes, 2015; Vadillo, Konstantinidis, & Shanks, 2016). A non-significant result alone 

cannot disambiguate between no evidence for an effect (i.e. insensitive data, e.g. due to the 

small sample size) and absence of an effect (i.e. support for the null hypothesis). As such, finding 

that performance on an awareness check does not significantly differ from chance is not enough 

to assert true absence of awareness – an assertion which must be fulfilled to enable any 

inferences about the effect of interest, such as presence of unconscious conditioning  (Dienes, 

2015; Shanks, 2017). In a meta-analysis, Vadillo, Konstantindis and Shanks (2016) argue that the 

seemingly chance-performance on this type of awareness test is more likely to reflect a false 

negative, especially in low-powered studies with a small sample. Those considerations cast 

doubt on the practices used in unconscious learning research (especially the older studies), and 

consequently, the validity of their results.  

However, this failing can be rectified in several ways. One is to ensure that the methods 

to assess awareness are relevant, sensitive, and immediate (Berry & Dienes, 1993; Newell & 

Shanks, 2013; Shanks & St. John, 1994). The relevance criterion posits that the assessment of 

awareness should only target information relevant to the behaviour at hand; sensitivity posits 

that the assessment should be made under similar retrieval conditions (e.g. the same stimuli are 

used on the awareness test and on the performance test; Newell & Shanks, 2013). Optimal 

experimental conditions under those criteria could be achieved by, for instance, a closer 

similarity between the awareness test and the measure of interest. The immediacy criterion 

refers to the need for the awareness assessment to be made concurrently with or immediately 

after the behaviour of interest. Here, an optimal task could involve a judgment of awareness 

immediately after performance, on a trial-by-trial basis (in this sense, it would also account for 

relevance and sensitivity).  

Another part of the solution to this problem is to apply appropriate statistical methods, 

such as the Bayes factor, which allows to determine whether a null result indicates true support 

for the null (e.g. absence of awareness) over the alternative hypothesis (presence of awareness), 

or whether the data are insensitive (Dienes, 2014, 2016; Sand & Nilsson, 2016). In conjunction, 

the above methods can be used to increase the sensitivity to detect the effect of interest in 

unconscious learning paradigms, reduce type I error, and draw substantiated statistical 

conclusions. 
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1.8. Overview of this research 

1.8.1. Conclusions and aims 

Instrumental learning is a fundamental substrate of adaptive behaviour, both phylogenetically 

and ontogenetically, allowing agents to learn to approach rewarding, positive stimuli in their 

environment, and avoid bad or harmful ones. Past research indicates that adaptive behaviour – 

including instrumental learning – is strongly dependent on the condition of the body. Under this 

perspective, the representations of the internal state of the body provide motivation for 

adaptive action in order to obtain rewards and avoid punishment (e.g. achieving homeostasis 

and allostasis, and avoiding dysregulation, respectively). Additionally, the autonomic nervous 

system has been proposed to continuously monitor performance for errors, a process reflected 

in electroencephalographic and autonomic readouts of errors, such as erroneously approaching 

a punishing stimulus. Shifting focus to the body on the outside, action and proprioception also 

appear to directly affect conscious experience, by providing an egocentric frame of reference 

for adaptive interactions with the world. Based on this literature, there are three main aims in 

the present thesis.  

 The first aim concerns the role of bodily information in instrumental learning. The extent 

to which instrumental learning is affected by the salience of bodily information (i.e. 

interoceptive precision) can shed light on the importance of bodily signals in adaptive processes, 

especially in primitive scenarios, where learning might occur without the influence of higher-

order cognition.   

 Nonetheless, the extent to which instrumental learning is possible in simple scenarios – 

such as without conscious awareness of the stimuli – is itself an unsettled case. Aside from the 

bodily influences, learning may require conscious awareness to be able to drive motivated 

instrumental responses. Investigating the role of conscious awareness in instrumental learning 

is the second aim of the present thesis. 

 The third and final aim concerns the role of action in conscious experience. According 

to action-oriented predictive approaches to consciousness, it is the prediction of our 

interactions with the world – the sensorimotor contingencies – that directly shapes conscious 

experience. Yet, direct investigations of this hypothesis are still lacking. 

 

1.8.2. Overview of the empirical work 

The first two empirical chapters investigate the role of interoceptive precision in unconscious 

instrumental learning. Chapter 2 attempts to answer the question whether precision of the 

cardiac signal can affect simple forms of adaptive learning, such as unconscious instrumental 
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conditioning. Surprisingly, the results show evidence for absence of unconscious learning, in 

contrast to previous reports, making it difficult to interpret the impact of the interoceptive 

manipulation. Chapter 3 thus aimed to replicate the result, with an added measure of cardiac 

activity to investigate whether cardiac markers of learning might be present even in absence of 

stimulus awareness, again showing evidence of absence of unconscious learning, and of any 

learning-related cardiac activity. Together, those chapters show that instrumental conditioning 

might require conscious awareness. 

Chapters 4 and 5 investigate the feasibility of unconscious instrumental conditioning 

specifically. Chapter 4 is a Stage 1 Registered Replication Report, a two-experiment direct 

replication of the prominent paradigm demonstrating unconscious instrumental learning, 

leveraging statistical and methodological advances in the field. Chapter 5 constitutes a 

conceptual replication of the same paradigm, proceeding in two modes of conditioning – trace 

and delay – demonstrating absence of successful instrumental conditioning without conscious 

awareness.  

The final chapter, chapter 6, shifts focus from the body on the inside to the body on the 

outside, and examines the effect of action on our conscious experience. Instrumental learning 

was used to build novel and unique associations between stimuli and actions, which were then 

investigated in a breaking-Continuous Flash Suppression task. The results demonstrate that 

valid, congruent sensorimotor predictions directly facilitate access to conscious awareness, 

suggesting that our perceptual experience is affected by our actions in the world. 

Overall, this body of work extends the current understanding of instrumental learning 

as a fundamental component of adaptive behaviour, showing that conscious access is required 

to drive active, adaptive interactions with the world, and to further shape our conscious 

perception in line with action. 
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2.  

THE ROLE OF CARDIAC PRECISION IN 

UNCONSCIOUS INSTRUMENTAL LEARNING 
 

 

 

Abstract 

The ability to learn the associations between stimuli and outcomes, for example through 

instrumental conditioning, is essential for adaptive behaviour. Past research suggests that 

performance in such tasks might be affected by the autonomic nervous system, which aids 

internal feedback monitoring via an orienting response which follows motivationally salient 

events, such as mistakes in performance. Yet, it remains unclear whether such autonomic 

markers are driving learning, or are simply a correlate of salient events. Here, we manipulated 

the precision of cardiac information in an attempt to functionally affect the reliability of 

autonomic information during the unconscious instrumental learning process (approximating a 

primitive learning scenario without access to higher-order cognition). Precision was enhanced 

with synchronous real-time cardiac feedback, where tones were played in rhythm with 

participants’ actual heartbeat. Conversely, precision was disrupted with asynchronous feedback. 

In the control condition, no cardiac feedback was provided. In two experiments, the 

manipulation did not reliably affect performance in the unconscious instrumental learning task. 

However, absence of learning in the control condition shows that instrumental conditioning may 

be more difficult to attain than previously thought, allowing for limited interpretation of the 

effectiveness of our manipulation. The chapter culminates with a discussion of this unexpected 

outcome and its implications. 
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2.1. Introduction 
Learning to associate stimuli or actions with the possibility of reward or punishment is critical 

for survival, allowing humans and other animals to regulate their behaviour towards attaining 

positive outcomes (such as food, water, or pleasure) and avoiding harm. In the simplest form, 

classical (Pavlovian) conditioning, agents learn to react through direct experience with 

deterministic outcomes, positive or negative (Pavlov, 1928). However, the ability to extend 

those associations and learn to exert direct control over the environment, as in the case of 

instrumental (operant) conditioning, where actions resulting in positive consequences are 

reinforced, is imperative for survival in a dynamic world (Balleine & Dickinson, 1998b). Such 

forms of learning, combining classical and instrumental conditioning (Cameron, 2002; Dayan & 

Berridge, 2014), allow an individual to make choices dependent on value expectations from past 

experience, either as stimulus-response habits, or more flexible, adaptable actions (Daw, Niv, & 

Dayan, 2005; Dayan & Daw, 2008; Dezfouli & Balleine, 2012).  

The fundamental, low-level nature of associative learning is highlighted by the findings 

that, under certain conditions, associations can be learned without conscious awareness of the 

contingencies, or even of the stimuli themselves. For example, simple conditioning (e.g. 

appetitive or aversive) was demonstrated when the predictive stimuli are rendered subliminal 

(Knight et al., 2003; Morris, Ohman, & Dolan, 1998; Olsson & Phelps, 2004; Seitz, Kim, & 

Watanabe, 2009b). Furthermore, perhaps more interestingly, associative learning was also 

shown to extend into the instrumental domain, and guide choices towards rewarding and away 

from punishing stimuli in absence of awareness of the stimuli themselves (Mastropasqua & 

Turatto, 2015; Pessiglione et al., 2008; but see Reber, Samimizad, & Mormann, 2018). This and 

other evidence suggests that motivational value can be represented and acted upon 

unconsciously (Bijleveld, Custers, & Aarts, 2012a; Pessiglione et al., 2007) 

Effective learning of any association relies on continuous performance monitoring in 

order to detect errors and adjust behaviour accordingly. It has been suggested that this 

mechanism is partly internal, and is reflected in the autonomic nervous system (Critchley, 2005). 

The most prominent examples come from the error-related negativity (ERN) and positivity (Pe), 

electroencephalographic event-related potentials observed following errors in performance 

(Hajcak, McDonald, & Simons, 2004, 2003). A similar pattern was found in skin conductance 

response (SCR; Hajcak et al., 2003), and in cardiac signal, whereby the heart rate decelerates 

more following negative performance feedback (e.g. punishment) than following positive 

feedback (e.g. reward; Crone et al., 2003; Crone, Somsen, Beek, & Van Der Molena, 2004; Mies, 

Van der Veen, Tulen, Hengeveld, & Van der Molen, 2011; van der Veen, van der Molen, Crone, 

& Jennings, 2004). ERN, Pe, SCR, and heart rate deceleration alike have been proposed to 
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constitute an internal source of performance feedback, reflecting the mismatch between the 

representation of the response and the actual response, and have been reported even in 

absence of explicit awareness of the error (Nieuwenhuis et al., 2001). Indeed, such performance-

dependent autonomic responses have been suggested to constitute an orienting response 

(Critchley, 2005; Sokolov, 1963), allowing the agent to adapt to environmental demands. 

In a more general sense, these findings fall into the broader spectrum of research on 

autonomic influences on cognition. Research suggests that a host of both conscious and 

unconscious processes can be significantly affected by the state of the body, termed 

interoception, encompassing visceral, cardiac and cutaneous afferents (Critchley & Garfinkel, 

2018). Famously, bodily signals were shown to affect decision-making by “marking” 

advantageous choices before explicit awareness (somatic marker hypothesis; Bechara, Damasio, 

Tranel, & Damasio, 1997; Carter & Smith Pasqualini, 2004). Elsewhere, interoceptive signals 

(especially cardiac afferents) have been proposed to affect a range of processes. For example, 

the cardiac cycle was shown to modulate access to visual or somatosensory awareness (Motyka 

et al., 2019; Salomon et al., 2016), visual search (Galvez-Pol et al., 2019), or processing of salient 

stimuli such as pain (Gray, Minati, Paoletti & Critchley, 2010) and fearful faces (Garfinkel et al., 

2014). These effects are sometimes modulated by individual accuracy at discerning the 

interoceptive signals, termed interoceptive accuracy (IAcc). However, despite the modulatory 

effect, those studies concern a continuous oscillatory signal from the heart, and thus provide 

limited evidence regarding the functional, adaptive effect of cardiac signal on behaviour. As 

such, the question of the extent to which cardiac signal plays a functionally important part in 

behaviour remains open. 

Combining those lines of research together, we hypothesise that cardiac signals 

functionally contribute to learning the stimulus-outcome associations, especially for stimuli 

carrying considerable motivational or affective value, such as reward and punishment. This idea 

is driven by the fact that learning appropriate responses to motivationally salient stimuli 

operates in service of homeostasis and allostasis, which, in turn, helps to maintain the body 

within viable states (Bijleveld, Custers, & Aarts, 2012b; Pezzulo et al., 2015). As such, low-level 

bodily markers – such as aforementioned autonomic internal feedback mechanisms – would 

support behaviour targeted at attaining reward and punishment, hence promoting survival. If 

this intuition is right, primitive forms of associative learning that can proceed without awareness 

and access to higher-order cognition should be similarly affected by cardiac interoceptive signals 

marking the motivational value of encountered stimuli. 

Because direct, selective manipulation of cardiac signals is challenging, some research 

has employed external manipulations targeted at disrupting the integration of interoceptive 
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signals in the brain. For example, providing subjects with real-time external cardiac feedback, in 

or out of synchrony (i.e. hearing the heartbeat through the headphones, or seeing a stimulus 

flashing) has been shown to affect performance in a visual discrimination task (Łukowska et al., 

2018), fairness judgments in the ultimatum game (Lenggenhager et al., 2013), or body 

ownership in the rubber-hand illusion (Suzuki et al., 2013). While external cardiac feedback is 

undeniably an exteroceptive signal, it has been proposed that asynchronous feedback can serve 

as a disruption to interoceptive information proper at the integration stage (Gray et al., 2007; 

van Elk et al., 2014), affecting the precision of the incoming signal, and its reliability (Petzschner 

et al., 2019; Seth, 2013; Seth & Friston, 2016). In contrast, synchronous feedback would amplify 

the cardiac signal, increasing precision of the information. 

Here, such manipulation was employed in order to assess whether disrupting and 

amplifying task-related cardiac information can impact the formation of motivationally-relevant 

stimulus-response associations in a subliminal conditioning task5 (adapted from Pessiglione et 

al., 2008). A subliminal learning task was chosen in order to approximate a simple adaptive 

learning scenario without access to higher-order cognition. Assuming that the information 

coded in cardiac frequency provides a useful marker of internal performance monitoring (e.g. 

Crone et al., 2004), we hypothesise that disrupting that information by providing cardiac 

feedback asynchronously to actual heartbeat (thus decreasing the precision of the signal) should 

disrupt unconscious learning, as task-related interoceptive information (i.e. the deceleration 

following negative performance feedback) would lose reliability. In contrast, amplifying the 

cardiac feedback in synchrony with actual heartbeat should also amplify the task-related cardiac 

information, thus improving learning. Finally, individual interoceptive accuracy should affect the 

strength of the manipulation, such that individuals high in IAcc should be more susceptible. 

 

2.2. Experiment 1 

2.2.1. Method 

2.2.1.2. Participants 

97 participants (22 males) with a mean age of 22.5 years (SD = 4.2) were recruited for 

participation via the University of Sussex online recruitment system, and an internal mailing list. 

All participated in exchange for course credit or £6. All participants reported having normal or 

corrected-to-normal vision, and no current or history of cardiac or neurological illness. Ethical 

approval was granted by the Science and Technology Cross-School Research Ethics Committee 

                                                           
5 For the purpose of this paper, conditioning and learning will be used interchangeably to refer to the 
same process of learning stimulus-outcome associations. 
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at the University of Sussex, and the study was conducted in accordance with the Declaration of 

Helsinki.  

 

2.2.1.3. Stimuli and Materials 

The experiment was conducted using Matlab 2017b (MathWorks, 2017), running Psychophysics 

Toolbox (Brainard, 1997). All stimuli were presented on a Samsung 2233RZ LCD monitor (1680 

by 1050 pixels) with a refresh rate of 120Hz, with the aim of ensuring fast and precise stimulus 

presentation in line with previous recommendations (Wang & Nikolić, 2011).  

 The target stimuli included twelve neutral symbols obtained from Agathodaimon font 

in the main task, and two circular shapes in the perceptual discrimination task used for threshold 

finding (see Appendix 1). All were 180x180 pixels in size, and presented in light grey (RGB: 217 

217 217; HSV: 0° 0% 94.9%) on white background. The stimuli were forward and backward 

masked with black and white noise masks, also 180x180 pixels in size, with block size of 3x3 

pixels. The forward and backward masks were different, but kept consistent between blocks and 

participants. Low contrast cues and the type of mask were deliberately chosen in order to 

increase the duration of presentation without conscious awareness, following Scott, Samaha, 

Chrisley and Dienes (2018).  

Auditory cardiac feedback was produced using custom software developed for 

interoceptive feedback (Suzuki et al., 2014; previously checked for accuracy against an 

electrocardiogram). A Nonin soft finger USB pulse oximeter, placed on the ring finger of their 

non-dominant hand throughout the duration of the task. In the synchronous (SYNC) feedback 

condition, participants could hear beeps through the headphones that corresponded to their 

actual heartbeat, in real time, with each beep delivered at the point of R-peak, computed by 

averaging 5 previous interbeat intervals (Suzuki et al., 2014). In the asynchronous (ASYNC) 

feedback condition, the beeps were presented asynchronously, and reflected the detected heart 

rate with a 1500ms delay. In the CONTROL condition, no auditory feedback was delivered.    

 

2.2.1.3. Procedure 

Threshold setting.  

Participants were seated with their chin on a chin rest placed at 45cm distance from the 

screen. Each session began with the threshold of visual awareness determined individually for 

each participant using a masked perceptual discrimination task. Each trial began with a fixation 

cross (500ms), followed by a mask (300ms), a target cue (either a symmetrical circular shape or 

an asymmetrical circular shape, starting at 600ms), and another mask (300ms). After each 

sequence, participants were asked to report whether the target cue was symmetrical or 
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asymmetrical by pressing corresponding arrows. Next, they were asked to assess whether they 

had any confidence that they saw the cue, or if they were guessing, also using corresponding 

arrows (following Scott et al., 2018). They were explicitly instructed to press ’some confidence’ 

if they had any visual experience, even the faintest, of the cue, and ‘total guess’ only if they felt 

they did not see the cue and were responding randomly. Each time a correct response was made 

with confidence, the display duration of the target cue was reduced by 50ms on the following 

trial. When a duration of 100ms was reached, or the first guess response was made, the display 

duration returned to the previous level (+50ms), and subsequently reduced in 8.35ms steps on 

the following trials, corresponding to a single screen refresh duration for a 120Hz monitor. A 

reduction in exposure duration continued to be made after each non-guess response but not 

after guess responses.  This process continued until participants indicated guessing on six 

consecutive trials, regardless of the accuracy of responses. The cue display duration in those 

trials was recorded as their individual unconscious threshold. 

 

Main task.  

The main task was adapted from the subliminal instrumental conditioning task used 

previously (Mastropasqua & Turatto, 2015; Pessiglione et al, 2008), in which participants make 

speeded go or no-go responses to the masked cues. Here, each trial consisted of a fixation cross 

(500ms), mask (300ms), target cue (display duration determined in the perceptual 

discrimination task), and mask (300ms), followed by a decision prompt in the form of a question 

mark, during which participants had 2 seconds to make a response (see Fig.1. for task 

chronology). Pressing the space bar (Go) indicated a decision to take the risk, at which point the 

participant could win 1 token (golden token displayed on the screen) or lose 1 token (a red cross 

over the golden token displayed), depending on the type of cue presented between the masks. 

Not pressing the space bar (NoGo) indicated a safe choice, which always resulted in a null 

outcome (greyed-out token). The task contained 6 blocks of 100 trials, with 50 rewarding and 

50 punishing trials in randomised order. For each block, two target cues from the pool of 12 

were randomly assigned to be rewarding or punishing, without replacement, ensuring that each 

block contained a novel pair. Participants were incentivised to maximise their earnings in the 

task through a prize draw, with the number of entries contingent on the amount of tokens won. 

Due to the adaptation of the visual system to masking, after completing each block 

participants were asked to determine if they had any visual experience of the target cue on a 

binary (yes/no) scale. If they responded ‘yes’, the display duration was decreased by one step 

(8.35ms) in the following blocks. If they responded ‘no’, the duration was maintained. 
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 The six blocks were randomly divided between three auditory cardiac feedback 

conditions (SYNC, ASYNC, CONTROL), resulting in two blocks per condition, in a randomised 

order.  

 
Figure 3. Subliminal instrumental conditioning task (main task). Chronological screenshots 

depict a single trial sequence, with durations in milliseconds. After cue presentation using 

forward-backward masking, participants had 2 seconds to make a Go response with the 

spacebar, or refrain from responding (NoGo). Following the response, the decision and feedback 

were displayed on the screen. In the example shown, a participant responded Go, which was 

the correct response for the cue presented, thus was rewarded with one gold token. 

 

Interoceptive accuracy.  

Finally, individual cardiac interoceptive accuracy was measured using the heartbeat 

discrimination task (Whitehead, Drescher, Heiman, & Blackwell, 1977). In the discrimination 

task, participants were asked to judge whether the auditory cardiac feedback, again delivered 

through the headphones, was synchronous or asynchronous with their own heartbeat (16 trials 

of 10 seconds each, 8 with synchronous, and 8 with asynchronous feedback). Asynchronous 

feedback was produced by manipulating the heart-rate to be either 70% or 130% of the 

frequency the recorded heart-rate, with the task employing 50% of both types (Suzuki et al., 

2013) In both tasks, participants were explicitly instructed to sit still and avoid tracking their 

pulse physically. Following the interoceptive accuracy task, participants were thanked and 

debriefed. 

 

2.2.2. Data pre-processing 

2.2.2.1. Exclusion Criteria 

A two-step process was applied to exclusion criteria using the block-by-block binary judgments 

of visual awareness of the cues. Firstly, participants were excluded from analysis entirely if they 
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reported awareness of the cues on over 50% (4-6) of the blocks. This resulted in 21 excluded 

subjects. The second step was performed on the remaining 76 participants. For participants who 

indicated awareness on fewer than 50% (1-3) of the blocks, only those blocks were removed 

from further analysis, resulting in partial exclusions for 29 participants (48 blocks (11%); SYNC: 

11, ASYNC: 20, CONTROL: 17). 4 participants for whom the partial exclusions resulted in an entire 

condition missing were also removed, yielding usable data for 72 participants. 

For the reaction time (RT) analysis, RTs under 100ms or greater than 2 standard 

deviations from individual means were excluded. Two additional participants who lost more 

than 25% of RT trials (150) to those criteria were excluded, yielding a sample of 70. Note that 

NoGo trials yielded no RTs, thus were not included in the analysis.  

 

2.2.2.2. Interoceptive Accuracy 

Interoceptive accuracy (IAcc) scores were computed for each participant by averaging the 

number of correct “synchronous”/”asynchronous” responses to the auditory cardiac feedback 

in the discrimination task. 

 

2.2.3. Results 

2.2.3.1. Bayes Factor 

For hypothesis testing, Bayes Factors (Bs) will be reported alongside p-values for all comparisons 

made. Bs can help to disambiguate non-significant results as either indicating support for the 

null hypothesis (H0, positing no effect) or indicating insensitive data ( i.e. the data are not in 

favour of either H0 or H1, which uses an estimated raw effect size as the standard deviation of 

its distribution; Dienes, 2014). By convention, Bs smaller than 1/3 indicate evidence for H0. Bs 

larger than 3 indicate evidence for H1. Bs between those values indicate insensitive data.  

 

2.2.3.2. Evidence of learning: Performance  

In the conditioning task, participants were found to execute significantly more Go responses (M 

= 61%) than NoGo responses (M = 39%; t(71) = 8.23, p < .001), regardless of cue and condition, 

indicating a general response bias towards Go. In order to account for this, type I d’ ( a Signal 

Detection Theoretic measure of sensitivity to signal versus noise; Stanislaw & Todorov, 1999) 

was computed for each condition, treating Go responses to rewarding cues as Hits, and Go 

responses to punishing cues as False Alarms. The resulting measure of sensitivity can be taken 

as evidence of successful learning (i.e. discrimination between the cues) if it is significantly above 

0. In a one-sample t-test against 0 (no sensitivity, thus no ability to discriminate between the 
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cues), the total d’ was significantly above 0 (M = 0.05, SE = 0.02, t(70] =2.72, p = 0.009, BH(0,0.7) = 

1.90), suggesting that, on average and irrespective of condition, participants were significantly 

above chance at discriminating the cue, but the result is insensitive under Bayesian criteria with 

respect to the level of learning previously obtained. For computing B, the predictions of H1 

(learning is present) were modelled as a half-normal distribution centred on 0, with an SD equal 

to 0.7 (the expected effect size if learning is present; derived from Pessiglione et al., 2008).  

The presence of instrumental learning by condition was assessed using a one-way 

repeated-measures analysis of variance (ANOVA), with learning (indexed by d’) as the 

dependent variable, and cardiac feedback condition (SYNC, ASYNC, CONTROL) as the within-

subject factor. All assumptions of a repeated-measures ANOVA were satisfied. The ANOVA 

revealed no main effect of condition on d’ (F(2,142) = 1.16, ηp
2= 0.02, p = 0.317). However, an 

interesting pattern was found when assessing the presence of learning in each condition 

separately in one-sample t-tests against 0. d’ was found to be significantly above 0 in the SYNC 

cardiac feedback condition (M = 0.09, SE = 0.03, t(70) = 2.69, p = 0.009, BH(0,0.7) = 3.07), but not 

in the ASYNC condition (M = 0.02, SE = 0.03, t(70) =0.77, p = 0.442, BH(0,0.7) = 0.07). In the 

CONTROL condition, which should constitute a learning baseline with no cardiac feedback given, 

there was no evidence of learning, but the result is marginally insensitive (M = 0.06, SE = 0.04, 

t(70) = 1.66, p = 0.101, BH(0,0.7) = 0.39). See Figure 4for a graphical representation.  

 

 

Figure 4: Type I d’ values across the three cardiac feedback conditions in Experiment 1. Left 

panel: mean d’ by condition (+/- 1 SEM). Star indicates significant difference from 0 at p < .01. 

Right panel: distributions of data with boxplots. 

 

 Subsequently, an exploratory analysis was conducted in order to better understand the 

temporal nature of learning. In a normal learning scenario, performance should begin around a 

chance level, and steadily improve with time and accumulation of experience. As such, each trial 
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block was split into 5 bins of 20 trials, and entered into a 3 (condition) by 5 (bins) repeated-

measures ANOVA. The result revealed no interaction of condition and bin (F(8,568) = .79, ηp
2= 

0.01, p = 0.590), and no main effect of bin (F(4,284) = 0.78, ηp
2= 0.01, p = 0.537) or condition 

(F(2,142) = 1.26, ηp
2= 0.02, p = 0.287). Thus, there was no evidence that performance was 

affected by accumulation of experience over time. Nonetheless, visual inspection (Figure 5) 

reveals that performance in ASYNC condition was diverging from SYNC and CONTROL by the end 

of the learning session. 

 

Figure 5: Type I d’ (+/- 1 SEM) values across the three cardiac feedback conditions in Experiment 

1, across 5 bins of 20 trials each. 

 

2.2.3.3. Evidence of learning: Reaction times 

For the RT analysis, an RTdifference index was computed by subtracting RTs to rewarding cues from 

RTs to punishing cues. As such, positive values indicate that participants took a longer time to 

respond to punishing cues than to rewarding cues, in line with RT-oriented indicators of learning 

(e.g. Atas, Faivre, Timmermans, Cleeremans, & Kouider, 2014). Zero indicates that there was no 

difference between the two. Overall, irrespective of condition, RTdifference was not significantly 

different from 0 in a one-sample t-test (M = 3.63ms, SE = 4.60, t(69) = 0.79, p = 0.433, BH(0,34) = 

0.28), suggesting that participants were not responding slower to punishing cues than to 

rewarding cues. B was computed with the predictions of H1 (learning is present) modelled as a 

half-normal distribution centred on 0, with an SD equal to 34ms (the expected effect size 

obtained from a past study which found an RT difference in the absence of performance effects 

in a similar task; Atas et al., 2014).  

The index was then submitted as a dependent variable into a repeated measures ANOVA 

with condition (SYNC, ASYNC, CONTROL) as the within-subject factor. The ANOVA revealed no 
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main effect of condition (F(2,138) = 0.42, ηp
2= 0.01, p = 0.660). In one-sample t-tests for each 

condition separately, the RTdifference index was not significantly different from 0 in any condition 

(SYNC: M = 5.43ms, SE = 8.02, t(69) = .68, p = 0.501, BH(0,34) = 0.42; ASYNC: M = 4.63ms, SE = 8.73, 

t(69) = 0.53, p = 0.598, BH(0,34) = 0.39; CONTROL: M = -4.37ms, SE = 7.91, t(69) = -0.55, p = 0.58, 

BH(0,34) = 0.15). See Figure 6 for a graphical representation. 

 

 

Figure 6: Mean RTdifference index (+/- 1 SEM) across the three cardiac feedback conditions in 

Experiment 1. Positive values indicate that participants took a longer time to respond to 

punishing cues than to rewarding cues, in line with RT-oriented indicators of learning. 

 

2.2.3.4. Performance and interoceptive accuracy 

The average score on interoceptive accuracy in the cardiac discrimination task was 0.53  

(SD = 0.15). In order to assess the effect of individual cardiac interoceptive ability, a second 

analysis was performed using a generalised linear mixed-effects model (GLMM). In this scenario, 

a GLMM allows to model the influence of IAcc by allowing each individual’s slope to differ, in 

line with their IAcc score. All models were fit using lme4 package  (Bates, Mächler, Bolker, & 

Walker, 2015) in R (R Core Team, 2018), by maximum likelihood with a binomial distribution and 

a logit link function. Treatment (dummy) coding was applied. Optimiser adjustments were 

applied to counter the non-convergence warnings. 

The model included correct responses (i.e. Go to rewarding cues and NoGo to punishing 

cues) as a response variable (note that this is different from d’ reported earlier – d’ cannot be 

included in this model as it already is an aggregate measure). Full model specification included 

condition (SYNC, ASYNC, CONTROL), IAcc (continuous), and their interaction as fixed effects, and 
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subject-specific random slopes for IAcc as random effect. Random intercepts were suppressed, 

in line with recommendations to address convergence issues (Matuschek, Kliegl, Vasishth, 

Baayen, & Bates, 2017; Singmann & Kellen, 2019). See Table 2 for estimated fixed effects 

regression coefficients. The analysis of deviance on the model, conducted using the Anova 

function in car package (Companion to Applied Regression; Fox & Weisberg, 2011), revealed no 

main effect of condition (χ²  = 2.80, df = 2, p = 0.25) or IAcc (χ² = 0.35, df = 1, p = .555) and no 

significant interaction between condition and IAcc (χ²=  3.54, df = 2, p = 0.171). In order to assess 

whether IAcc made a significant difference to model fit, this model was then compared to a 

simpler one, without IAcc as a fixed effect. Model comparison revealed that IAcc was not a 

significant addition to the model (BICIAcc = 54594, BICsimple = 54627, χ²= 3.82, df = 3, p = 0.281). 

 

Table 1. Regression coefficients for the fixed effects from the generalised linear mixed model 

(GLMM) in Experiment 1. The intercept refers to the control condition. N = 72, number of 

observations = 39400. Note that parameters are given on the logit (not response) scale. 

 Estimate Std. Error z p 

Intercept (CONTROL) 0.09 0.07 1.26 0.202 

SYNC -0.14 0.09 -1.51 0.131 

ASYNC -0.10 0.09 -1.09 0.276 

IAcc -0.11 0.14 -0.81 0.417 

SYNC: IAcc 0.31 0.17 1.88 0.060 

ASYNC: IAcc 0.17 0.17 0.98 0.326 

 

2.2.4. Conclusions to Experiment 1 

Experiment 1 sought to assess whether disrupting and amplifying task-related cardiac 

information with use of aurally delivered real-time cardiac feedback can influence learning in a 

simple, deterministic subliminal instrumental conditioning task. We hypothesised that 

synchronous cardiac feedback would improve learning with respect to the control condition 

(where no cardiac feedback was delivered), as task-related internal orienting or performance-

feedback responses would become more precise. In contrast, asynchronous feedback was 

predicted to impair learning, due to the impaired precision of cardiac information.  

Despite the presence of learning on average, as indexed by d’, a closer look at 

performance within each of the cardiac feedback conditions revealed that the effect is driven by 

presence of learning in the SYNC condition, but not in ASYNC or CONTROL conditions. 

Interestingly, no clear evidence of learning was found in the CONTROL condition, which should 

have served as a baseline for evaluating learning in the remaining two conditions (note the 

insensitive data – although the Bayes Factor is closer to the H0 bound). With this unclear result, 

as well as a small effect size (d’ of 0.06 in comparison to 0.7 in Pessiglione et al. (2008) and 0.45 
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in Mastropasqua & Turatto (2015)), it is difficult to make inferences about the impact of the 

cardiac feedback manipulation.  

As such, the most pertinent question is why participants in the present study failed to 

learn the stimulus-action contingency to the extent reported previously in nearly identical 

subliminal learning experiments (Pessiglione et al., 2008; Mastropasqua & Turatto, 2015). One 

candidate explanation is that the minor methodological differences in stimulus presentation 

affected the result. While the original Pessiglione et al (2008) design used white-on-black stimuli, 

presented for 33ms (corresponding to the objective threshold of conscious perception), the 

present experiment used lower-contrast grey-on-white stimuli, with a display duration 

determined individually for each participant (200ms on average). However, individual exposure 

durations and lower-contrast were introduced in order to allow for longer exposure durations 

without the cue being consciously perceived, which in turn should allow more time for the 

stimulus to be processed. As such, these changes should have, if anything, made it easier to 

obtain the effect, rather than obliterate it.  

  Another change introduced in the present experiment was the threshold of conscious 

perception. In contrast to the original Pessiglione design, which targeted the objective threshold 

(whereby responses on an awareness metric are objectively at chance), the present experiment 

attempted to target the subjective threshold (the level at which participants believe their 

performance is at chance, thus providing a closer index of subjective experience (Cheesman & 

Merikle, 1984, 1986; Dienes & Seth, 2010; Merikle & Daneman, 2000). It has been noted 

previously that subliminal effects found below the objective threshold are smaller and short-

lived (Dienes, 2004, 2007; Draine & Greenwald, 1998; Lau & Passingham, 2006). Again, this 

change should have made it more likely for the effect to be detected.  

Note, however, that in the threshold-setting task of the present experiment, 

participants were instructed to respond randomly and indicate guessing when they felt they had 

no confidence in seeing the cue presented. Typically, the subjective threshold is targeted by 

instructing to indicate guessing when participants feel they have no confidence in their 

judgment about the nature of the cue (here, whether it was symmetrical or not), as opposed to 

confidence in their awareness. This difference might have caused the thresholds to be 

determined as lower than the subjective level, bringing it closer to the objective level used in 

Pessiglione et al. (2008), albeit determined differently. Because subjective threshold implies a 

more plausible theory of consciousness than objective one (Seth & Dienes, 2010), this issue is 

rectified in Experiment 2. 

 Finally, as with any experimental investigation into unconscious processing, it is 

imperative to demonstrate that perception is truly outside of conscious awareness (Dienes, 
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2015; Newell & Shanks, 2013). While the present experiment attempted this by finding each 

participant’s threshold individually and conservatively excluding an entire block if any cue 

awareness was reported, it does not preclude the possibility that participants might have seen 

the cues occasionally, yet failed to report it at the end of the blocks (an issue also pertinent to 

the original Pessiglione et al. (2008) design). As such, it is possible that some undetected 

conscious knowledge could have contributed to the learning process. Even if the visual 

experience was transient or degraded, the present study provided no means of assessing this 

on a trial-by-trial basis. This methodological flaw is addressed by Experiment 2. 

 

2.3. Experiment 2 

In order to address the methodological issues of Experiment 1, Experiment 2 replicated the 

paradigm and introduced three changes aimed at increasing the sensitivity of the task. Firstly, 

the threshold setting task instructions were amended to appropriately target the subjective 

threshold of conscious perception. Secondly, the main task included a trial-by-trial awareness 

check, allowing to exclude all trials with conscious knowledge of the type of cue presented. 

Finally, the number of trials in the cardiac discrimination task was increased from 16 to 40. All 

other details remained unchanged. 

 

2.3.1. Method 

2.3.1.1. Participants 

 46 participants (15 males, 1 unknown) with a mean age of 23.7 years (SD = 9.84) were recruited 

for participation via the University of Sussex online recruitment system, and an internal mailing 

list. Sample size was determined using the Bayesian Stopping Rule, with data collection 

continuing until a sensitive result was obtained in the main (learning) task (see Analyses and 

Results for detail). All participated in exchange for course credit or £6. All participants reported 

having normal or corrected-to-normal vision, and no current or history of cardiac or neurological 

illness. Ethical approval was granted by the Science and Technology Cross-School Research 

Ethics Committee at the University of Sussex, and the study was conducted in accordance with 

the Declaration of Helsinki.  

 

2.3.1.2. Stimuli and Materials 

Stimuli, materials, equipment and software used were identical to Experiment 1. 

 

 



46 
 

 
 

2.3.1.3. Procedure 

 Threshold setting. 

Experiment 2 addressed the issue of the threshold likely being determined at a lower 

level than intended in Experiment 1. As in Experiment 1, participants we presented with a single 

cue (symmetrical or asymmetrical; starting at 600ms), forward-backward masked (300ms). 

Following the presentation, they were asked to report if the cue was symmetrical or not, and 

assess whether they had any confidence in their decision (as opposed to confidence that they 

saw the cue or not). They were explicitly instructed to press ‘some confidence’ if they had any 

confidence in what the cue was, even just a hunch, and ‘total guess’ only if they had no idea and 

were responding randomly. The staircasing procedure remained identical to Experiment 1, with 

the threshold being set when participants reported guessing on 6 consecutive trials, irrespective 

of decision accuracy. 

 

 Main task. 

 In order to be able to assess cue awareness with greater immediacy and sensitivity 

(Berry & Dienes, 1993; Shanks & St. John, 1994), Experiment 2 included a trial-by-trial awareness 

check. Following the Go or NoGo response on each trial, participants were asked to report 

whether the masked stimulus was symmetrical or asymmetrical by pressing corresponding 

arrows, followed by a binary assessment of confidence (‘some confidence’ or ‘total guess’), in a 

manner identical to the threshold setting task. If they responded correctly with confidence three 

times in a row, cue display time was reduced by 8.35ms, corresponding to single screen refresh 

duration. All other task details remained identical to Experiment 1. 

 

 Interoceptive accuracy. 

 Identical to experiment 1. Following recommendations  (Brener & Ring, 2016), the 

number of trials was increased from 16 to 40. 

 

2.3.2. Data pre-processing 

2.3.2.1. Exclusion Criteria 

In order to ascertain that analyses are conducted only on trials that were truly unconscious, all 

individual trials where participants made a correct symmetry judgment with confidence were 

marked as aware and excluded (12.05% of all trials). Five participants who were aware on more 

than 25% (150) of all trials were excluded from further analysis. One participant was excluded 

due to failure to make any Go responses, yielding a final sample of 40 participants.  
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For the reaction time (RT) analysis, RTs under 100ms or greater than 2 standard 

deviations from individual means were excluded (8.76%). One participant who lost more than 

25% of RT trials (150) to those criteria was excluded, yielding a final sample of 39 participants 

for the RT analysis. Note that NoGo trials yielded no RTs, thus were not included in the analysis.  

 

2.3.2.2. Interoceptive Accuracy 

Interoceptive accuracy (IAcc) scores from the heartbeat discrimination task were computed for 

each participant, by averaging the number of correct responses. 

 

2.3.3. Results 

2.3.3.1. Evidence of learning: Performance 

Similarly to Experiment 1, participants made more Go (M = 57%) than NoGo responses (M = 

43%; t(39) = 2.07, p = 0.045), indicating a general response bias towards Go. Type I d’ was 

computed in order to account for this. Boxplot inspection and studentized residuals test 

revealed one outlier in the ASYNC condition, which was removed. At the group level, d’ scores 

were entered into a one-sample t-test against 0, which indicates no ability to discriminate the 

stimuli. B was computed for the difference, with the predictions of H1 modelled as a half-normal 

distribution, mean specified as 0, and d’ of 0.7 as the SD of the mean (corresponding to the 

expected effect size from Pessiglione et al., 2008). In line with the Bayesian Stopping Rule, data 

collection continued until a sensitive result was found in support of either H0 (absence of 

learning) or H1 (presence of learning). The result indicates that the average (all conditions) d’ 

was not significantly different from 0 (M = 0.01, SE = 0.03; t(39) = 0.38, p = 0.706, BH(o,o.7) = 0.06). 

As such, we found evidence of absence of subliminal instrumental conditioning on average. 

 Presence of instrumental learning by condition was assessed using a one-way repeated 

measured ANOVA, with learning (indexed by d’) as the dependent variable, and cardiac feedback 

condition (SYNC, ASYNC, CONTROL) as the within-subject factor. All assumptions of a repeated-

measures ANOVA were satisfied. Again, ANOVA revealed no main effect of condition on d’ 

F(2,76) = 0.59, ηp
2= 0.02, p = 0.566). In one-sample t-tests against d’ of 0 (no sensitivity) for each 

condition separately, we found no evidence of learning in any of the conditions (SYNC: M = -

0.04, SE = 0.042, t(39) = -0.90, p = 0.374, BH(o,o.7) =0 .03; ASYNC: M = 0.01, SE = 0.05, t(38) = 0.23, 

p = 0.822, BH(o,o.7) = 0.08; CONTROL: M = 0.02, SE = 0.05, t(39) = 0.37, p = 0.714, BH(o,o.7) = 0.09).  
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Figure 7: Type I d’ values across the three cardiac feedback conditions in Experiment 2. Left 

panel: mean d’ by condition (+/- 1 SEM). Right panel: distributions of data with boxplots. 

 

A 3 (condition) by 5 (bins of 20 trials) repeated-measures ANOVA, with d’ as the 

dependent variable, revealed a main effect of bin F(4,156) = 3.40, ηp
2= 0.08, p = 0.011), but no 

interaction between condition and bin (F(8,312) = 0.55, ηp
2= 0.01, p = 0.819), and no main effect 

of condition (F(2,78) = 0.77, ηp
2 = 0.02, p = 0.467). In pairwise comparisons (Sidak-adjusted) 

between the bins, only bin 3 (M = -0.13, SE = 0.05) and bin 5 (M  = 0.12, SE = 0.06) differed 

significantly (p = 0.028), suggesting that overall performance improved from bin3 (middle of 

task) to bin 5 (end of task; see Figure 8). Note that Bs were not computed for those comparisons 

due to the difficulty of obtaining a reasonable expected effect size. 

 

Figure 8: Type I d’ (+/- 1 SEM) values across the three cardiac feedback conditions in Experiment 

2, across 5 bins of 20 trials each. 

 

 



49 
 

 
 

2.3.3.2. Evidence of learning: Reaction times 

Identically to Experiment 1, an RTdifference index was computed by subtracting RTs to rewarding 

cues from RTs to punishing cues (with positive values indicating longer response times to 

punishing than to rewarding cues). Overall, RTdifference was not significantly different from 0 in a 

one-sample t-test (M = 2.80ms, SE = 9.35, t(39) = 0.30, p = 0.767, BH(0,34) = 0.34), suggesting that 

participants were not responding slower to punishing cues than to rewarding cues, as would be 

expected had learning occurred (note the marginally insensitive Bayes Factor, indicating that by 

conventional thresholds of evidence the data cannot be taken to support the null hypothesis of 

no difference). 

 In a repeated-measures ANOVA with condition (SYNC, ASYNC, CONTROL) as the within-

subject factor, we found no evidence for an effect of condition on RTdifference (F(2,74) = 0.87, ηp
2 

= 0.02, p = 0.402). In one-sample t-tests for each condition separately, the RTdifference index was 

not significantly different from 0 in either (SYNC: M = -19.11, SE = 11.18, t(37) = -1.71, p = 0.096, 

BH(0,34) = 0.12; ASYNC: M = -10.96ms, SE = 22.44, t(37) = -0.49, p = 0.628, BH(0,34) = 0.41; CONTROL:  

M =  -11.03ms, SE = 17.02, t(37) = 0.65, p = 0.521, BH(0,34) = 0.76; but note insensitive data in 

ASYNC and CONTROL; see Figure 9). 

 

 

Figure 9: Mean RTdifference index (+/- 1 SEM) across the three cardiac feedback conditions in 

Experiment 2. 

 

2.3.3.3. Learning and interoceptive accuracy 

The average score on interoceptive accuracy in the cardiac discrimination task was 0.51  

(SD = 0.12). The effect of individual cardiac interoceptive accuracy was modelled with a GLMM 
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specified identically to Experiment 1. See Table 3 for estimated fixed effects regression 

coefficients. The analysis of deviance on the model, conducted using the Anova function in car 

package (Fox & Weisberg, 2019), revealed no main effect of condition (χ²  = 1.14, df = 2, p = 

0.565) or IAcc (χ² = 0.67, df = 1, p = 0.413) and no significant interaction between condition and 

IAcc (χ²=  0.06, df = 2, p = 0.971). In model comparison, a simpler model was again favoured, 

suggesting that IAcc was not a significant predictor (BICIAcc = 30407, BICsimple = 30378, χ²= 0.73, 

df = 3, p = 0.867). 

 

Table 3. Regression coefficients for the fixed effects from the generalised linear mixed model 

(GLMM) in Experiment 2. The intercept refers to the control condition. N = 40, number of 

observations = 21925. Note that parameters are given on the logit (not response) scale. 

 Estimate Std. Error z p 

Intercept (CONTROL) -0.03 0.13 -0.31 0.759 

SYNC -0.06 0.15 -0.43 0.666 

ASYNC -0.01 0.15 -0.05 0.957 

IAcc 0.13 0.25 0.53 0.599 

SYNC: IAcc 0.07 0.28 0.24 0.812 

ASYNC: IAcc 0.01 0.28 0.07 0.942 

 

 

2.3.4. Conclusions to Experiment 2 

Experiment 2 attempted to improve the methodology of Experiment 1 in order to assess 

whether disrupting or amplifying task-related cardiac information can influence learning in a 

simple, deterministic subliminal instrumental conditioning task. In the present study, the stimuli 

were presented reliably below the subjective threshold of conscious perception, and a trial-by-

trial awareness check was used in order to eliminate all trials where participants displayed cue 

awareness and ensure only truly subliminal trials were analysed.  

 The results of Experiment 2 demonstrate that no subliminal conditioning was achieved 

under those conditions. This was the case on average, as well as when evaluating the three 

cardiac feedback conditions separately. In fact, after excluding all trials where participants were 

aware of the cue, the effect size found here was still smaller than in Experiment 1 (d´ of 0.01 

overall and 0.02 in the control condition, in comparison to 0.05 overall 0.06 in the control 

condition of Experiment 1). Similarly, we found no evidence of learning in the RT data (although 

note that the data is insensitive, preventing a strong conclusion from being drawn), and no 

evidence of an influence of individual interoceptive accuracy on learning. Again, lack of learning 

at baseline prevents any conclusions about the effectiveness of the interoceptive manipulation 

used. 



51 
 

 
 

2.4. Discussion 

The ability to learn the associations between stimuli and outcomes is the cornerstone of 

adaptive behaviour. Previous research suggests that this process might be partially driven by an 

internal feedback monitoring mechanism in the autonomic nervous system, which allows for an 

orienting response following motivationally salient events, such as errors in performance (Crone 

et al., 2004b; Łukowska et al., 2018). Yet, it remains unclear whether such autonomic or bodily 

markers are functionally driving learning, or are simply an autonomic correlate of adaptively 

salient events. Here, we took a step towards answering that question by designing a 

manipulation targeted at disrupting and amplifying the precision of cardiac information. 

Participants listened to the real-time rhythm of their own heartbeat delivered asynchronously 

and synchronously while performing a subliminal conditioning task, chosen in order to 

approximate a simple adaptive learning scenario without the need for higher-order cognition. 

We hypothesised that if the information coded in cardiac frequency (i.e. cardiac deceleration 

following negative performance feedback; Crone et al., 2004) is functionally useful for 

instrumental learning, disrupting its precision should disrupt performance, while amplifying its 

precision should improve it.  

 Unfortunately, our ability to draw conclusions regarding the impact (or lack thereof) of 

the cardiac feedback manipulation is limited due to the lack of evidence of learning in the first 

place. Our manipulation relied on the assumption that instrumental conditioning is feasible 

without explicit awareness of the stimuli (Atas et al., 2014; Mastropasqua & Turatto, 2015; 

Pessiglione et al., 2008). In Experiment 1, we found strong evidence of learning in the 

synchronous cardiac feedback condition, but the methodological limitations cast doubt on the 

reliability of this result. Experiment 2 rectified those by correcting the individual threshold-

setting task, as well as introducing trial-by-trial awareness checks, allowing to exclude all trials 

where participants might have been aware of the cues. The results of Experiment 2 demonstrate 

that when participants had no conscious awareness of the rewarding or punishing nature of the 

stimuli, they were unable to discriminate between them and adjust their behaviour accordingly 

(choose to Go or NoGo, respectively). Bayes Factors were used to supplement null hypothesis 

significance tests, allowing us to assert that the null result obtained indicates lack of learning. 

 In this light, we must echo the question posed in conclusions of Experiment 1, and ask 

why participants failed to learn the stimulus-outcome contingency, contrary to previous 

research using the same task (Mastropasqua & Turatto, 2015; Pessiglione et al., 2008).  Arguably, 

the methods employed in Experiment 2 to ensure processing is genuinely below the threshold 

of conscious perception are more rigorous than those used previously. Here, we excluded all 
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trials where there was evidence of cue awareness, and all subjects who demonstrated 

awareness on over 25% of trials, thus analysing performance only in genuinely subliminal cases. 

In contrast, previous studies assessed absence of awareness by comparing performance 

between the conditioning task itself, and a separate discrimination task. Although it is frequent 

practice in implicit learning research to infer unconscious processing when a behavioural 

measure (e.g. conditioning) is above chance, while an explicit measure of awareness yields 

chance performance (e.g. a null result in a discrimination task), this approach has been heavily 

criticised. Firstly, a non-significant result alone cannot disambiguate between no evidence of an 

effect (i.e. insensitive data, e.g. due to the small sample size) and lack of an effect (i.e. support 

for the null hypothesis). As such, a non-significant result in a discrimination task serving as an 

awareness check does not indicate that awareness was indeed absent, casting doubt on the 

practice used in the original study (Pessiglione et al., 2008). In a meta-analysis, Vadillo, 

Konstantindis and Shanks (2016) argue that seemingly chance-performance on this type of 

awareness tests is more likely to reflect a false negative, especially in low-powered studies with 

a small sample. This issue is addressed more fully in Chapter 3 of this thesis. 

 It is also possible that the conflicting findings are due to the differences in task and 

stimulus presentation parameters. The high-contrast, white-on-black cues used in the original 

task (Pessiglione et al., 2008) could increase the likelihood of becoming visible on occasion, 

especially given that individual differences in perceptual thresholds were unaccounted for. 

Similarly to the issue in Experiment 1, lack of trial-by-trial awareness checks in the previous 

studies risks the possibility that participants had some awareness of the cues or their parts (e.g. 

a distinctive edge), even if brief or degraded, and failed to report it when prompted at the end 

of the task. To avoid those pitfalls, we used low-contrast, light grey-on-white stimuli, in order to 

maximise the exposure duration under masking, and maximise the likelihood of being processed 

while still being consciously undetected. We also used a staircased perceptual discrimination 

task in order to determine the threshold for each individual (following the robust procedure of 

Scott et al., 2018), and presented the stimuli just below the determined subjective threshold. 

 It might also be the case that instrumental conditioning requires some degree of 

awareness. While evidence exists that other forms of simple associative learning can take place 

unconsciously, even under conservative awareness criteria (Dupoux, Gardelle, & Kouider, 2008; 

Scott et al., 2018) it is unclear whether the same is possible for more complex processes, such 

as numerical or semantic processing (Hasselman et al., 2015), or learning across larger 

spatiotemporal intervals (Clark & Squire, 1998; Mudrik et al., 2014), but note that this also 

appears to be subject to task parameter differences such as similarity between stimuli; Gaillard 

et al., 2007; Reber, Luechinger, Boesiger, & Henke, 2012). The present task might be subject to 
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the latter problem. In order to effectively learn when to act and when to refrain from acting, 

participants must learn from three temporally distinct events: the stimulus itself, their action, 

and the consequences. It is plausible that the subliminal cue cannot evoke a sufficiently large-

scale activity to be integrated with subsequent information across the length of the trial (up to 

4 seconds in total). In contrast, in the aforementioned simpler forms of associative learning, the 

information to be associated typically follows immediately. As such, it is possible that some 

degree of consciousness might be necessary for behaviour requiring goal-directed, selective 

action  (Dehaene & Naccache, 2001; Kouider & Dupoux, 2001). Support for this idea comes from 

Reber et al. (2018), who, employing yet another means to degrade cue awareness, also showed 

that instrumental conditioning failed to take place below the threshold. Chapters 3 and 4 of this 

thesis address this issue more extensively, and explore the conditions under which instrumental 

conditioning might be possible. 

 Finally, it is conceivable that our methodology, although more rigorous, made it more 

difficult for learning to happen. For one, with the trial-by-trial awareness check, we introduced 

a further variable time lag (about 2 seconds) between the trials. This might have further 

disrupted the already precarious process of temporal integration discussed above. However, 

given that this disruption occurs between trials, it could be argued that it would only affect the 

long-term consolidation of the associations learned within trials. If so, a sufficient number of 

trials should eliminate the issue. In the original study, evidence of learning plateaued after 

around 60 trials, uninterrupted by an awareness check. As such, it is possible that the 100 trials 

per block were not sufficient to produce conditioning in our case. Yet, even in the final bin (80-

100 trials), the index of learning in the present experiment was considerably smaller than that 

reported at plateau in the previous experiments. 

 To summarise, in two experiments we found no evidence of successful instrumental 

learning at baseline. We propose that forms of learning involving selective action might be more 

challenging to evoke under sub-threshold conditions than previously thought. Future 

experiments should methodically explore the conditions under which unconscious instrumental 

learning succeeds or fails (see Chapters 3 and 4 of this thesis for a more thorough treatment of 

this issue). Unfortunately, the present result limited our ability to assess the effectiveness of the 

manipulation of interest, which attempted to affect learning by amplifying or disrupting cardiac 

precision. Taking this forward, Chapter 2 explores whether there is any indication of learning-

related cardiac activity in the same task. 
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3.  

CARDIAC CONCOMITANTS OF 

UNCONSCIOUS INSTRUMENTAL LEARNING 

AND THE ROLE OF CARDIAC PRECISION 
 

 

 

Abstract 

Performance monitoring is a vital aspect of successful learning and decision-making. Past 

research shows that performance monitoring is reflected in autonomic nervous system activity, 

including a deceleration in heart rate following errors in performance. Such autonomic 

responses were proposed to constitute an orienting response that indicates a need for 

behavioural adjustments. However, it is unclear whether autonomic signals directly drive 

performance, or are simply a correlate of salient events such as errors. Similarly, it is unclear to 

what extent those signals are present without conscious awareness of the task stimuli. In this 

experiment, we used unconscious instrumental learning as an approximation of a primitive 

adaptive learning scenario without access to higher-order cognition to investigate the functional 

role of cardiac information in the learning process. We manipulated the precision of cardiac 

information as participants performed the learning task, and collected electrocardiography to 

measure their cardiac activity throughout the learning process. The results demonstrate 

absence of instrumental learning without stimulus awareness, precluding a meaningful 

interpretation of the effectiveness of the cardiac manipulation. We also found absence of 

learning-related cardiac deceleration, suggesting that the autonomic performance monitoring 

mechanism might not be engaged when stimuli are perceived unconsciously. Those results 

suggest that conscious awareness may be necessary for successful decision-making. 
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3.1. Introduction 

Performance monitoring is a critical aspect of successful decision-making. Efficient monitoring 

involves the ability to swiftly detect errors in performance in order to adjust future behaviour 

accordingly. This can be achieved by monitoring external events for feedback (e.g. consequences 

of action, such as reward or punishment). In the instrumental conditioning or learning process6, 

actual outcome is compared to expected outcome, with mismatches (e.g. following from an 

error) informing the learner of the necessity for behavioural adaptation. However, it has been 

proposed that performance is additionally monitored internally by the autonomic nervous 

system (ANS) (Hajcak, Mcdonald, et al., 2003; Müller et al., 2005; Sokolov, 1963). Correlates of 

error- and feedback-related activity have been observed in error-related negativity (ERN or Ne) 

and positivity (Pe) components in electroencephalography (EEG) (Falkenstein et al., 2000; 

Nieuwenhuis et al., 2001; Overbeek et al., 2005), skin conductance response (Crone et al., 

2004a), and in evoked cardiac deceleration (Crone et al., 2003; Somsen et al., 2000). Together, 

they have been suggested to constitute an internal feedback monitoring system which reflects 

mismatches between an internal representation of the response or its predicted outcome, and 

the actual outcome.  

  Cardiac deceleration in response to feedback has been extensively studied in the 

context of learning. The heart tends to decelerate more in response to negative feedback 

(initiated in anticipation of feedback and continuing until after its presentation), reflecting the 

processing of error and the need for behavioural adjustment, than in response to positive 

feedback, which elicits faster recovery (Crone, Bunge, de Klerk, & van der Molen, 2005b; Crone 

et al., 2003; Somsen et al., 2000; van der Veen et al., 2004a). Notably, this response is only 

evident when feedback is valid – that is, when it carries reliable, usable information about 

performance (Crone et al., 2003; Groen et al., 2007; Mies et al., 2011). Feedback is considered 

valid or informative when it can be related to the nature of the stimulus – that is, when the 

stimulus reliably predicts the outcome, and the feedback reflects the match or mismatch 

between the predicted and actual outcomes. In addition, this deceleration response has been 

found to diminish as learning progresses, instead becoming more pronounced in anticipation of 

negative feedback presentation than following it (Crone et al., 2004a, 2003; Groen et al., 2007), 

or even appearing as early as the negative stimulus itself (Kastner et al., 2017). This effect has 

been taken to imply that there is a shift from external, response-based performance monitoring 

to internal, prediction-based monitoring over the course of learning. Crucially, the strength of 

                                                           
6 For the purpose of this paper, conditioning and learning will be used interchangeably to refer to the 
same process of learning stimulus-outcome associations. 
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the phasic cardiac response to negative feedback has been found to correlate with the strength 

of the prediction error signal (derived from a reinforcement learning algorithm; Kastner et al., 

2017), which alerts the learner to the need to adjust behaviour.  

While feedback-related cardiac deceleration appears reliably in standard learning 

paradigms (e.g. probabilistic learning), the extent to which internal feedback monitoring 

mechanisms operate in unconscious learning remains unknown. It has been previously 

demonstrated that instrumental learning can occur without conscious awareness of the 

outcome-predictive cues themselves, which also precludes conscious associations between the  

cues and their contingent outcomes (Mastropasqua & Turatto, 2015; Pessiglione et al., 2008). In 

the original Pessiglione et al (2008) task, subjects learned to approach rewarding stimuli and 

avoid punishing ones without ever seeing them consciously. At this point, it is noteworthy that 

the capacity for complex forms of unconscious learning, such as those involving adjustment of 

instrumental responses in the absence of cue or contingency awareness, has recently been put 

into question (Mertens & Engelhard, 2020; Reber, Samimizad, & Mormann, 2018; Travers, Frith, 

& Shea, 2018; see also Chapters 2, 4, and 5 of this thesis). Nonetheless, error-related cardiac 

deceleration has been demonstrated to occur in an unconscious stimulus discrimination task, 

where participants judged the orientation of a masked Gabor patch, albeit to a lesser extent 

than visible stimuli (Łukowska et al., 2018). As such, it appears that internal feedback monitoring 

is indeed active in the absence of reportable awareness of the nature of the cue.  

If this assumption is true, it is plausible that there could be cardiac behaviour indicative 

of differentiating between the stimuli, before any behavioural manifestation of learning (i.e. 

instrumental adjustment of behaviour). Although in the aforementioned conditioning task 

feedback is always consciously perceived, error-related cardiac deceleration would only be 

expected if it is informative – that is, if the mechanism can associate the nature of the 

unconscious cue with the feedback presented. As such, differentiating whether the stimulus is 

rewarding or punishing is essential for feedback to provide any information (i.e. I made an error 

approaching a punishing cue). To explore this, the first objective of the present experiment is to 

replicate the Pessiglione et al (2008) unconscious conditioning paradigm, including a continuous 

measure of cardiac activity via an electrocardiogram (ECG) to assess presence of cardiac 

deceleration both in response to feedback, and to the predictive cue itself. 

However, the evidence described earlier is insufficient to determine whether cardiac 

activity actually drives learning, or is simply a correlate or a marker of the learning process 

(although its correlation with the magnitude of prediction error in a reinforcement learning 

model is a promising start; Kastner et al., 2017). One of the ways to assess that would be to 

directly manipulate the precision or reliability of the cardiac signal, affecting the quality or 
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usefulness of the learning-related cardiac information in the brain. Because direct, selective 

manipulation of the cardiac signal is challenging, some research has employed external 

manipulations targeted at disrupting the integration of interoceptive (internal) signals in the 

brain. One such approach is auditory cardiac feedback – providing subjects with an auditory 

stream either in direct synchrony, in real-time with their heartbeat, or out of synchrony. While 

external cardiac feedback is undeniably an exteroceptive signal, it has been shown that the brain 

processes synchronous cardiac feedback in a manner similar to other self-generated sounds (van 

Elk et al., 2014), and that it reacts to unexpected omissions from a cardiac-synchronous auditory 

stream, but not from an asynchronous one (Pfeiffer & De Lucia, 2017). It has been proposed that 

asynchronous feedback can serve as a disruption to interoceptive information proper at the 

integration stage, affecting the precision of the incoming signal, and its reliability (Gray et al., 

2007; Petzschner, 2017; van Elk et al., 2014). In contrast, synchronous feedback would increase 

the precision of cardiac information. The construct of precision is formalised in the interoceptive 

inference framework (Owens, Allen, Ondobaka, & Friston, 2018; Owens, Friston, et al., 2018; 

Petzschner et al., 2019; Seth & Friston, 2016; Seth, 2013), which proposes that predictions (also 

called beliefs) about internal states of the body are continuously updated based on the afferent 

neural signal from the body. Put simply, the brain makes continuous inferences about the state 

of the body based on prior expectations and the incoming signal, both of which are weighted 

according to their expected relative precision in a given context. A mismatch between the prior 

prediction and the actual signal, called a prediction error, would update the beliefs. Importantly, 

belief update is increased if the prediction errors are precise, and reduced if the predictions are 

precise (Petzschner et al., 2019). 

In the context of learning, if cardiac signal functionally informs the learning process, 

then amplified, high-precision signal should improve the ability to learn, and disrupted signal 

should impair it (see also Chapter 2 of this thesis). For instance, performance error-related 

cardiac deceleration that is deemed very imprecise should have less impact as a learning-related 

marker than signal that is precise. In this view, cardiac signals would impact instrumental 

behaviour insofar as they modulate the inference in line with their precision. Thus, the second 

objective of the present experiment is to investigate the effect of cardiac precision on 

instrumental learning. 

To summarise, we present an unconscious instrumental conditioning task modelled on 

Pessiglione et al. (2008), with an added manipulation of cardiac precision via auditory cardiac 

feedback and a continuous ECG measure. We focus on 3 questions: 1) Is there evidence for 

instrumental learning and is it affected by the precision of cardiac signal, manipulated with 

auditory cardiac feedback? If cardiac information is functionally important for learning, 
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performance should be affected by amplifying or disrupting cardiac precision, relative to 

baseline. 2) Is there evidence of performance feedback-related cardiac deceleration in the 

absence of cue awareness? The presence of this pattern would indicate that the cue-feedback 

association is still being processed without explicit awareness of the contingency. 3) Is there 

evidence of feedback-related deceleration decreasing, and cue-related deceleration increasing, 

in line with previously reported markers of learning? Again, the presence of this pattern might 

suggest that the heart is incorporating the informative value of the cues and feedback.  

 

3.2. Method 

3.2.1. Participants 

40 participants (13 males, 2 unknown) with a mean age of 25 years (SD = 3.27, range = 21-33, 

age for 7 participants unknown) were recruited for participation via the University of Sussex 

online recruitment system. All participated in exchange for course credit or £9.00. All 

participants reported having normal or corrected-to-normal vision, and no current or history of 

cardiac or neurological illness. Data for one participant was removed due to software 

malfunction. Ethical approval was granted by the School of Psychology ethics committee at the 

University of Sussex, and the study was conducted in accordance with the Declaration of 

Helsinki.  

 

3.2.2. Stimuli and Materials 

The experiment was conducted using Matlab 2018b (MathWorks, 2018), running Psychophysics 

Toolbox (Brainard, 1997). All stimuli were presented on a Samsung 2233RZ LCD monitor (1680 

by 1050 pixels) with a refresh rate of 120Hz, with the aim of ensuring fast and precise stimulus 

presentation in line with previous recommendations (Wang & Nikolić, 2011). The target stimuli 

included twelve neutral symbols obtained from Agathodaimon font in the main task, and two 

circular shapes in the perceptual discrimination task used for threshold finding (see Appendix 

1). All were 180x180 pixels in size, and presented in light grey (RGB: 217 217 217) on white 

background. The stimuli were forward and backward masked with black and white noise masks, 

also 180x180 pixels in size, with block size of 3x3 pixels. The forward and backward masks were 

generated afresh on each trial by randomly scrambling the noise image. Low contrast cues and 

the type of mask were deliberately chosen in order to increase the duration of presentation 

without conscious awareness, following Scott, Samaha, Chrisley and Dienes (2018). Responses 

were collected with a standard keyboard. 
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Auditory cardiac feedback was produced using custom software developed for 

interoceptive feedback (Suzuki, Garfinkel, Critchley, & Seth, 2013; previously checked for 

accuracy against an electrocardiogram). The program detected the R-peaks of the cardiac QRS 

complex (adjusted by an average 400ms transit time between the finger and the heart) with a 

Nonin soft finger USB pulse oximeter, placed on the ring finger of their non-dominant hand 

throughout the duration of the task. In the synchronous (SYNC) feedback condition, participants 

could hear beeps through the headphones that corresponded to their actual heartbeat, in real 

time, with each beep delivered at the point of R-peak, computed by averaging 5 previous 

interbeat intervals (Suzuki et al., 2013). In the asynchronous (ASYNC) feedback condition, the 

beeps were presented asynchronously, and reflected the detected heart rate with a 1500ms 

delay. In the CONTROL condition, no auditory feedback was delivered.    

 

3.2.3. Electrocardiography 

Electrocardiogram (ECG) was recorded for the duration of the main task using Biopac MP36, 

running Biopac Student Lab 3.7.7 (Biopac Systems, 2012), with a sampling rate of 500Hz. The 

data was acquired using three disposable Ag/AgCl ECG electrodes, two placed below the left and 

right collarbones, and one on the left back, below the ribs.  

 

3.2.4. Procedure 

 Threshold setting. 

Participants were seated with their chin on a chin rest placed at 50cm distance from the 

screen. Each session began with the determination of the threshold of visual awareness 

individually for each participant, using a masked perceptual discrimination task. Each trial began 

with a fixation cross (500ms), followed by a mask (300ms), a target cue (either a symmetrical 

circular shape or an asymmetrical circular shape, starting at 600ms), and another mask (300ms). 

After each sequence, participants were asked to determine whether the target cue was 

symmetrical or asymmetrical by pressing corresponding arrows. Next, they were asked to assess 

their level of confidence in that judgment, also using corresponding arrows (following Scott et 

al., 2018). They were explicitly instructed to press ’some confidence’ if they had confidence in 

their judgment, even a hunch, and ‘total guess’ only if they had no idea what the cue was, and 

were responding randomly. Each time a correct response was made with confidence, the display 

duration of the target cue was reduced by 50ms on the following trial. When a duration of 100ms 

was reached, or the first guess response was made, the display duration returned to the previous 

level (+50ms), and subsequently reduced in 8.35ms steps on the following trials, corresponding 
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to a single screen refresh duration on a 120Hz monitor. A reduction in exposure duration 

continued to be made after each non-guess response but not after guess responses.  This 

process continued until they indicated guessing on 5 consecutive trials, regardless of the 

accuracy of responses. The cue display duration in those trials was recorded as their individual 

unconscious threshold. 

 

 Main task. 

The main task was adapted from the unconscious instrumental conditioning task used 

previously (Pessiglione et al, 2008), in which participants make speeded go or no-go responses 

to the masked cues. Here, each trial consisted of a fixation cross (here, 1500ms in order to record 

HR at baseline), forward mask (300ms), target cue (display duration determined in the perceptual 

discrimination task), backward mask (1000ms), and blank screen jitter (500-700ms), followed by 

a decision prompt in the form of a question mark, during which participants had 2 seconds to 

make a response (see Fig.1. for task chronology). Pressing the space bar (Go) indicated a decision 

to take the risk, at which point the participant could win 1 token (golden token displayed on the 

screen) or lose 1 token (a red cross over the golden token displayed), depending on the type of 

cue presented between the masks. Not pressing the space bar (NoGo) indicated a safe choice, 

which always resulted in a null outcome (greyed-out token displayed). Feedback was displayed 

for 2000ms immediately following the decision (or after the 2s of decision prompt elapsed, in 

case of NoGo). The task contained 3 blocks of 120 trials, consisting of 60 rewarding and 60 

punishing trials in randomised order. For each block, two target cues from the pool of 6 were 

randomly assigned to be rewarding or punishing, without replacement, in order to ensure each 

block contained a novel pair. Participants were incentivised to maximise their earnings in the 

task through a prize draw, with the number of entries contingent on the amount of tokens won. 

Following the Go or NoGo response on each trial, participants were asked to determine 

whether the masked stimulus was symmetrical or asymmetrical by pressing corresponding 

arrows, followed by a binary assessment of confidence (‘some confidence’ or ‘total guess’), in a 

manner identical to the threshold setting task. If they responded correctly with confidence three 

times in a row, cue display time was reduced by 8.35ms, corresponding to single screen refresh 

duration.  

The three blocks were randomly assigned to the auditory cardiac feedback condition 

(SYNC, ASYNC, CONTROL), ran in a randomised order for each participant. 
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Figure 10: Unconscious instrumental conditioning task (main task). Chronological screenshots 

depict a single trial sequence, with durations in milliseconds. After cue presentation using 

forward-backward masking, participants had 2 seconds to make a Go response with the 

spacebar, or refrain from responding (NoGo). Following the response, feedback was 

immediately displayed on the screen. In the example shown, a participant responded Go, which 

was a correct response for the cue presented, thus was rewarded with one gold token.  

 

Interoceptive accuracy.  

Individual cardiac interoceptive accuracy was measured using the heartbeat 

discrimination task (Whitehead, Drescher, Heiman, & Blackwell, 1977). In the task, participants 

were asked to judge whether the auditory cardiac feedback, again delivered through the 

headphones, was synchronous or asynchronous with their own heartbeat (40 trials of 10 

seconds each, 20 with synchronous, and 20 with asynchronous feedback). Asynchronous 

feedback was produced by manipulating the heart-rate to be either 70% or 130% of the 

frequency the recorded heart-rate, with the task employing 50% of both types (Suzuki et al., 

2013) In both tasks, participants were explicitly instructed to sit still and avoid tracking their 

pulse physically. Following the interoceptive accuracy task, participants were thanked and 

debriefed. 

 

3.3. Data pre-processing 

3.3.1. Exclusion Criteria 

In order to ascertain that analyses are conducted only on trials that were truly unconscious, all 

individual trials where participants made a correct symmetry judgment with confidence were 

marked as aware and excluded (16.9% of all trials). The number of aware trials was not found to 

differ between conditions in a repeated measures ANOVA (SYNC: M = 65.7, SD = 22.9; ASYNC: 

M = 70.7, SD = 25.6; CONTROL: M = 66.6, SD = 26.1; F(2,76) = 1.31, p = 0.277). Nine participants 
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who were aware on more than 25% (90) of all trials were excluded from further analysis. Three 

participants who made only Go or only NoGo responses in any one or more blocks (e.g. due to 

a failure to understand the task), were also excluded, yielding a final sample of 27. Outlier 

analysis using boxplot inspection revealed no other outliers. 

For the reaction time (RT) analysis, RTs under 100ms or greater than 2 standard 

deviations from individual means were excluded (0.9%). Note that NoGo trials yielded no RTs, 

thus were not included in the analysis.  

 

3.3.2. Interoceptive Accuracy 

Interoceptive accuracy (IAcc) scores from the heartbeat discrimination task were computed for 

each participant, by averaging the number of correct responses. They will not be analysed in the 

context of this paper. 

 

3.3.3. Electrocardiography 

Initial pre-processing of the ECG data was done in Biopac Student Lab 3.7.7. The ECG data was 

filtered offline with a high-pass filter (1Hz), and R-peaks of the QRS complex were detected for 

the length of the task. Heart rate (HR) in beats per minute (BPM) was subsequently computed 

from the R-R intervals. The data, complete with task event markers, was then exported into 

Matlab, where average BPM was computed for each subject at each event of interest (B0 at 

baseline, cue presentation, and feedback presentation), as well as one beat before (B-1), and 

one (B1) and two beats (B2) following each event. Events where the average BPM deviated from 

the subject’s mean by more than 3 SDs were excluded from analysis (as reduced or inflated 

values could reflect electrode displacement, excessive motion, or other artefacts). A total of 

3148 events (1%) were removed (note that this is from a total of 4 beats computed around 9 

events in the task). Two participants were excluded due to large unusable segments of data. 

Data was complete for all participants included in the behavioural analysis. 

 

3.4. Results 

3.4.1. Bayes Factors 

For hypothesis testing, Bayes Factors (Bs) will be reported alongside p-values for all comparisons 

made. Bs can help to disambiguate non-significant results as either indicating support for the 

null hypothesis (H0, positing no effect) or indicating insensitive data ( i.e. the data are not in 

favour of either H0 or H1, which uses an estimated raw effect size as the standard deviation of 
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its distribution; Dienes, 2014). By convention, Bs smaller than 1/3 indicate evidence for H0. Bs 

larger than 3 indicate evidence for H1. Bs between those values indicate insensitive data.  

 

3.4.2. Evidence of learning: Performance 

Type I d’ ( a Signal Detection Theoretic measure of sensitivity to signal versus noise; Stanislaw & 

Todorov, 1999) was computed for each condition, treating Go responses to rewarding cues as 

Hits, and Go responses to punishing cues as False Alarms. The resulting measure of sensitivity 

can be taken as evidence of successful learning (i.e. discrimination between the cues) if it is 

significantly above 0. In a one-sample t-test against 0 (no sensitivity, thus no ability to 

discriminate between the cues), the total d’ was not significantly different from 0 (M = -0.04, SE 

= 0.04, t(26) = -0.90, p = 0.377,  BH(0,0.7) = 0.03), suggesting that, on average and irrespective of 

condition, participants were not able to learn the cue-outcome association. For computing B, 

the predictions of H1 (learning is present) were modelled as a half-normal distribution centred 

on 0, with an SD equal to 0.7 (the expected effect size, previously found if unconscious learning 

is present; Pessiglione et al., 2008).  

Looking at each condition separately, no evidence of learning was found in either SYNC 

(M = -0.21, SE = 0.09, t(26) = -2.29, p = 0.031, BH(0,0.7) = 0.04), ASYNC (M = 0.05, SE = 0.07, t(26) = 

0.69, p = 0.498, BH(0,0.7) = 0.19) or CONTROL (M =0.07, SE = 0.08, t(26) = 0.97, p = 0.339, BH(0,0.7) = 

0.28). A repeated-measures ANOVA, with learning (d’) as the dependent variable and cardiac 

feedback condition (SYNC, ASYNC, CONTROL) as the within-subject factor, revealed no main 

effect of condition (F(2,58) = 1.88, p = 0.16, ηp
2 = 0.16). See Figure 11 for a graphical 

representation.  
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Figure 11: A: Type I d’ values across the three cardiac feedback conditions. Left panel: mean d’ 

by condition (+/- 1 SEM). Star indicates significant difference from 0 at p < .05. Right panel: 

distributions of data with boxplots. B: Average proportion of correct responses at each trial, in 

each cardiac feedback condition, with superimposed smoothed regression line in red, visualising 

erratic rates of correct responding averaging around the chance level (0.5). 

 

 

3.4.3. Evidence of learning: Reaction times 

For the RT analysis, an RTdifference index was computed by subtracting RTs to rewarding cues from 

RTs to punishing cues. As such, positive values indicate that participants took a longer time to 

respond to punishing cues than to rewarding cues, in line with RT-oriented indicators of learning 

(e.g. Atas, Faivre, Timmermans, Cleeremans, & Kouider, 2014). Zero indicates that there was no 

difference between the two. Overall, irrespective of condition, RTdifference was not significantly 

different from 0 in a one-sample t-test (M =-1.26ms, SE = 11.71, t(26) = -0.11, p = 0.915, BH(0,34) 

= 0.29), suggesting that participants were not responding slower to punishing cues than to 

rewarding cues, against the RT-oriented indicators of learning. B was computed with the 
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predictions of H1 (learning is present) modelled as a half-normal distribution centred on 0, with 

an SD equal to 34ms (the expected effect size obtained from a past study which found an RT 

difference in the absence of performance effects in a similar task; Atas et al., 2014). 

The index was then submitted as a dependent variable into a repeated measures ANOVA 

with condition (SYNC, ASYNC, CONTROL) as the within-subject factor. The ANOVA revealed no 

main effect of condition (F(2,52) = 0.12, ηp
2 = 0.01, p = 0.892). In one-sample t-tests for each 

condition separately, the RTdifference index was not significantly different from 0 in either SYNC (M 

= 9.61ms, SE = 21.40, t(26) = 0.45, p = 0.657, BH(0,34) = 0.74), ASYNC (M = 7.83ms, SE = 19.24, t(26) 

= 0.41, p = 0.687, BH(0,34) = 0.67) or CONTROL (M = -1.90ms, SE = 19.80, t(26) = -0.10, p = 0.924, 

BH(0,34) = 0.46). Note that all Bs indicate that the data are insensitive (i.e. a strong conclusion 

cannot be drawn). See Figure 12 for a graphical representation. 

 

 

Figure 12: Mean RTdifference index (+/- 1 SEM) across the three cardiac feedback conditions. 

Positive values indicate that participants took a longer time to respond to punishing cues than 

to rewarding cues, in line with RT-oriented indicators of learning. 
 

3.4.4. Cardiac responses to performance feedback 

The analysis of cardiac behaviour proceeded in two stages. First, following past research, we 

assessed whether the heart decelerates more following punishing performance feedback (i.e. in 

case of a Go response to a punishing cue) than following rewarding performance feedback (Go 

to a positive cue) in the unconscious instrumental conditioning task. Secondly, following the 

observations that over the course of learning the deceleration response starts to appear 

following the predictive cue itself, we assess whether the heart decelerates more following the 
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punishing cue than following the rewarding cue. As a side analysis, we also checked whether the 

cardiac response differed between the cardiac feedback conditions (see section 3.6 

Supplementary Material). 

Prior to analysis, we checked whether there were any fluctuations in HR across 

conditions. HR in BPM at baseline (1500ms fixation period), computed by averaging BPM0 at the 

time of fixation cross presentation in each trial), did not differ between the cardiac feedback 

conditions (SYNC: M = 77.6, SD = 11.38; ASYNC: M = 77.41, SD = 11.02; CONTROL: M = 77.41, SD 

= 10.95; F(2,52) = 0.08, p = 0.922, ηp
2 = 0.003). Due to the short interval between cue and 

performance feedback presentation after action execution (1500-1700ms), we also checked 

whether HR returned to baseline following any potential cue-evoked changes in HR. In a paired 

t-test, HR in BPM at baseline (computed as above) did not differ significantly from HR as 

computed at 1 beat before feedback presentation (B0 at fixation: M = 75.58, SE = 1.89; B-1 at 

feedback: M = 75.50, SE = 1.91; Mdifference = 0.71, SEM = 0.24, t(35) = 0.30, p = 0.766).  

 

3.4.4.1. Cardiac response to rewarding vs punishing performance feedback 

In order to assess whether the heart decelerates more following punishing than rewarding 

feedback, HR (in BPM) across all conditions was submitted as a response variable into a linear 

mixed-effects model, fit using the lme4 package (Bates et al., 2015) in R (R Core Team, 2018). 

Linear mixed-effects models have an advantage over regular repeated-measures ANOVA in that 

they are more robust to imbalances in the data (e.g. randomly missing values), and allow to 

incorporate each participant’s individual baseline (random intercepts) and responsiveness to the 

manipulation (random slopes). The model included feedback valence (rewarding/punishing), 

beat (B-1, B0, B1, B2) and their interaction as fixed effects (predictor variables). The random 

effects structure included subject-specific random intercepts and random slopes for feedback 

valence. Note that this random effects formulation was used following the parsimonious 

approach given a singular fit under maximal specification (i.e. subject-specific random intercepts 

and random slopes for the interaction of feedback valence and beat) (Matuschek et al., 2017). 

Treatment (dummy) coding was applied. The model was fit using maximum likelihood 

estimation. Note that only Go trials were used, as NoGo trials yielded no performance feedback 

and were not informative for task performance (they were construed as a safe choice or a pass). 

See Table 4 for regression coefficients. Analysis of deviance on the model, conducted 

using the car package (Companion to Applied Regression; Fox & Weisberg, 2019) revealed a 

significant main effect of beat (χ²  = 132.26, df = 3, p < 0.001). There was also a main effect of 

feedback valence (χ²  = 6.89, df = 1, p = 0.009), but no interaction between feedback valence and 

beat (χ²  = 4.38, df = 3, p =0.223). As such, contrary to our predictions, we found no support for 
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the idea that the heart responds with more deceleration to punishing than to rewarding 

feedback. Instead, cardiac deceleration was evident for both kinds of feedback (although 

rewarding feedback does appear to elicit a marginally faster acceleratory recovery; see Fig. 13). 

Regardless of feedback valence, cardiac deceleration initiated before feedback presentation and 

continued until one beat after feedback presentation, before recovering, in line with past 

evidence.  

To test whether the effect differs between the first and second half of the task, the full 

block length was split into 2 bins of 60 trials, and bin number was added to the model as a fixed 

effect. As before, there was a main effect of beat (χ²  = 132.64, df = 3, p < 0.001). There was also 

a main effect of bin (χ²  = 62.25, df = 1, p < 0.001). All other effects and interactions remained 

non-significant, as in the previous model.  

See Supplementary Material for the differences in HR response between the three 

cardiac feedback conditions. 

 

Table 4. Regression coefficients for the fixed effects from the linear mixed model (performance 

feedback events). The intercept refers to B-1 for rewarding feedback. N = 27, number of 

observations = 22938.  

 Estimate 
(BPM) 

Std. Error df t-value p 

Intercept (B-1:REW) 77.62 2.09 27.11 37.20 < 0.001 *** 
PUN -0.17 0.19 91.48 -0.93 0.355 
B0 -0.69 0.15 22884.41 -4.68 < 0.001 *** 
B1 -0.56 0.15 22884.48 -3.82 < 0.001 *** 
B2 0.41 0.15 22884.44 2.80 0.005 ** 
PUN:B0 -0.07 0.21 22884.40 -0.36 0.720 
PUN:B1 -0.30 0.21 22884.42 -1.45 0.146 
PUN:B2 -0.37 0.21 22884.40 -1.78 0.074 

 



68 
 

 
 

 

Figure 13. Change in cardiac activity (+/- 1 SEM) in response to performance feedback 

(rewarding, punishing). B-1 refers to BPM as measured 1 beat before feedback presentation. 

Stars indicate significant difference between the beat means, averaged across both feedback 

types due to no evidence for a main effect of feedback valence (**: <0.01, ***: <0.001).   

 

 

3.4.4.2. Cardiac response to rewarding and punishing cues 

Subsequently, we repeated the analysis focusing on the cue as the event of interest, as opposed 

to performance feedback, following Kastner et al. (2017). The original model was rerun again, 

with cue valence (rewarding/punishing), beat (B-1, B0, B1, B2) and their interaction as fixed 

effects (predictor variables. All remaining model parameters remained the same. 

See Table 5 for regression coefficients. Analysis of deviance on the model revealed a 

significant main effect of beat (χ²  = 26.12, df = 3, p < 0.001; see Figure 14). There was no main 

effect of cue valence (χ²  = 0.32, df = 1, p = 0.573) and no interaction between cue valence and 

beat (χ²  = 0.21, df = 3, p =0.976). As such, we found that the heart did respond with a 

deceleration following cue presentation, but no evidence that this response is differentiated to 

rewarding vs punishing cues throughout the duration of the task.  

However, the deceleration response to cues found by Kastner et al. (2017) was more 

pronounced later on in the learning process. As such, the full block length was split into 2 bins 

of 60 trials, and bin number was added to the model as a fixed effect. The expanded model 

revealed that the main interaction of interest (cue valence*beat*bin number) was not 
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significant (χ²  = 0.19, df = 3, p = 0.980), neither was the beat*bin number interaction (χ²  = 0.36, 

df = 3, p = 0.948) nor the cue valence*beat interaction (χ²  = 0.21, df = 3, p = 0.975). The cue 

valence*bin number interaction was significant (χ²  = 10.82, df = 1, p = 0.001). As earlier, there 

was also a main effect of beat itself (χ²  = 26.18 df = 3, p < 0.001) and of bin number (χ²  = 82.34, 

df = 1, p < 0.001). There was no main effect of cue valence (χ²  = 0.31 df = 1, p < 0.578).  

 

Table 5. Regression coefficients for the fixed effects from the linear mixed model (cue events). 

The intercept refers to B-1 for rewarding cues across both bins. N = 27, number of observations 

= 38497.  

 Estimate Std. Error df t-value p 

Intercept (B-1:REW) 78.23 2.05 27.06 38.08 < 0.001 *** 

PUN -0.08 0.16 69.75 -0.47 0.643 

B0 0.02 0.12 38443.07 -0.18 0.855 

B1 -0.27 0.12 38443.13 -2.35 0.019 * 

B2 -0.33 0.12 38443.09 -2.88 0.004 ** 

PUN:B0 -0.04 0.16 38443.06 -0.22 0.824 

PUN:B1 0.04 0.16 38443.08 0.22 0.823 

PUN:B2 0.01 0.16 38443.10 0.09 0.930 

 

 

Figure 14: Change in cardiac activity (+/- 1 SEM) in response to cue valence across both bins in all 

conditions. B-1 refers to BPM as measured 1 beat before cue presentation. Stars indicate significant 

difference between the beat means, averaged across both cue types due to no evidence for a main effect 

of cue valence (*: < 0.05, **: <0.01, ***: <0.001). 
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3.5. Discussion 

Successful learning and decision-making rely on efficient monitoring of performance feedback. 

Past research showed that performance feedback is both external (e.g. rewarding or punishing 

outcomes), as well as internal, manifested by feedback-related autonomic markers. Out of 

those, error-related cardiac deceleration has been studied in the context of learning, with 

evidence showing that the heart responds to negative (error-related) feedback with a more 

pronounced and longer deceleration than to positive feedback (Crone et al., 2003, 2004; Groen 

et al., 2007; Kastner et al., 2017). However, there is limited evidence regarding whether cardiac 

behaviour drives learning, or is simply a correlate of the learning process. Here, we employed 

an unconscious instrumental learning task with an added manipulation of cardiac precision 

through aurally delivered cardiac feedback, targeted at amplifying and disrupting the reliability 

of the performance-related cardiac information, as well as a continuous ECG. We sought to 

assess 1) whether there is evidence for unconscious instrumental conditioning, and whether it 

is affected by the precision of cardiac signal, manipulated with auditory cardiac feedback; 2) 

whether there is evidence for performance feedback-related cardiac deceleration in the absence 

of cue awareness; and 3) whether there is evidence of feedback-related deceleration 

diminishing, and cue-related deceleration increasing, in line with previously reported markers 

of learning. We address those questions in turn. 

 The behavioural results demonstrate that, on average, participants were unable to learn 

the association between the cues predictive of reward or punishment and their corresponding 

outcomes, without having conscious awareness of the cues. Trial-by-trial measure of cue 

awareness ensured that only truly unconscious trials were analysed, rectifying a flaw in the 

previous experiments (Mastropasqua & Turatto, 2015; Pessiglione et al., 2008). Evidence of 

learning was absent in the control condition, as well as in both the synchronous and 

asynchronous cardiac feedback conditions. Interestingly, synchronous cardiac feedback resulted 

in worse performance than the control condition. This runs contrary to our predictions, which 

stated that amplifying the precision of the cardiac channel by playing synchronous cardiac 

feedback should effectively increase the reliability of cardiac information, which should improve 

learning. However, due to the lack of evidence for learning at baseline, it is impossible to draw 

strong conclusions regarding the impact (or lack thereof) of the cardiac feedback manipulation. 

 This result speaks to recent proposals that instrumental learning might in fact require 

some degree of awareness (e.g. Reber et al., 2018). While there is evidence that some forms of 

simple associative learning can be achieved without stimulus awareness (Dupoux et al., 2008; 
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Scott et al., 2018), it is unclear whether the same is possible for more complex associations or 

learning across larger spatiotemporal intervals (Clark & Squire, 1998; Faivre, Mudrik, Schwartz, 

& Koch, 2014; Hasselman et al., 2015). In the present scenario, in order to learn effectively when 

to deploy an action and when to refrain from it, participants must integrate the information 

about the nature of the stimulus and the outcome it presents when action is executed, in a fairly 

long temporal interval. Yet, unconscious processing of any kind is argued to be short-lived and 

distributed only locally, preventing long-range associations (Baars et al., 2003; Dehaene et al., 

2001; Melloni et al., 2007). As such, it might be the case that an unconscious cue is not processed 

extensively enough, or held in the working memory for long enough, to be integrated with 

subsequent information across the length of the trial. What follows is that a shorter temporal 

interval (e.g. delay conditioning; Clark & Squire, 1998) might enable instrumental learning (but 

see Chapter 5 of this thesis). Another possibility is that some degree of consciousness is 

inherently necessary for goal-oriented, selective action (Dehaene & Naccache, 2001; Kouider & 

Dupoux, 2001), but this question is beyond the scope of the present discussion. 

 However, it is noteworthy that the current paradigm might have disrupted the already 

fragile process of temporal integration. Large gaps between the events in the task had to be 

introduced in order to measure cardiac activity – critically, the backward mask was 1 second 

long, followed by another 500-700ms blank, separating the predictive cue from its outcome (in 

between which the action is executed, immediately followed by feedback). Those gaps were 

essential to allow the recording of cardiac activity following the event of interest uninterrupted 

by other processes. Yet, as mentioned before, the short-lived or short-range nature of 

unconscious processing might prevent learning across such large temporal scales. Consequently, 

extending the gap between the stimulus and outcome would inherently reduce the chance of 

successful learning. While this could be a serious limitation, the gap between stimulus and 

outcome is in fact comparable to the Pessiglione et al. (2008) design, where the response 

window was open for 2 seconds irrespective of whether the response was made or not. 

Regardless, past research already pointed to the infeasibility of unconscious learning under 

shorter inter-stimulus intervals (Reber, Samimizad, & Mormann, 2018; Chapters 2, 4 and 5 of 

this thesis). 

 The physiological results suggest that the heart failed to differentiate between 

rewarding and punishing performance feedback, contrary to past evidence showing that the 

heart decelerates more in response to punishing feedback (indicative of an error) than to 

rewarding one (Crone et al., 2005b, 2003; van der Veen et al., 2004a). Here, cardiac deceleration 

was evident for both types of feedback (albeit visual inspection suggests that recovery is slightly 

faster following rewarding one), starting a beat before feedback is presented and continuing 
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until one beat after, in line with past research (Groen et al., 2007). Failure to observe a 

differentiated response to rewarding and punishing feedback suggests that it was not 

informative – it did not reflect a mismatch between the expected outcome, predicted by the 

cue, and the actual outcome. This, in turn, suggests that the unconscious cue was not processed 

to the extent allowing for integration with feedback. That is, cue identity was not predictive of 

the expected outcome, so any feedback signifying actual outcome was rendered meaningless 

and uninformative, as the performance monitoring mechanism was unable relate the two.  

 One of the potential reasons behind this could be the same as the reason for the 

absence of learning – if the unconsciously presented cue is processed only locally, information 

about its identity cannot be integrated with subsequent processes, including those determining 

an instrumental response and those governing the performance monitoring mechanisms. If so, 

it would be unsurprising that the lack of ability for unconscious instrumental learning is 

paralleled by the lack of corresponding markers of learning. However, it is interesting that the 

previously reported unconscious discrimination task (Łukowska et al., 2018) found the expected 

error-related cardiac activity in the absence of cue-awareness (note that in their task no 

performance feedback was provided – HR deceleration was found following an error in type I 

decision). This might suggest that the nature of the cue was processed sufficiently to be fed into 

the internal performance monitoring system. If so, the crucial difference might indeed be timing, 

and our introduction of a lengthy (around 2 seconds) gap between the stimulus and feedback 

might have prevented their integration. If so, future research could rectify this flaw by 

requesting a response immediately following cue presentation (e.g. during the backward mask). 

However, this would limit the ability to record an uninterrupted ECG signal following cue 

presentation alone. 

 Regarding the cardiac deceleration following the predictive stimuli themselves, we 

failed to observe any differentiation in response to rewarding or punishing cues. However, the 

response found previously was learning-contingent – as learning progressed, subjects came to 

exhibit the deceleration response earlier, suggesting the predictive nature of the cue was 

learned, resulting in an increased reliance on the internal, predictive mechanism (Groen et al., 

2007; Kastner et al., 2017). Here, we observed an absence of learning of the cue-outcome 

association, which means that the participants failed to learn which cue is predictive of which 

outcome. It is not surprising that lack of this knowledge was also reflected in the cardiac data, 

and the heart did not come to differentiate the cues by their rewarding or punishing nature.  

 It is also important to recognise that the current cardiac feedback manipulation 

technique might not be robust enough for the purpose of manipulating interoceptive precision. 

Presenting an auditory stream corresponding to participants’ own heartbeats is undoubtedly an 
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exteroceptive signal, and there is still limited evidence regarding its processing in the brain. 

Recent EEG evidence demonstrates that the brain does process external synchronous cardiac 

feedback in a manner similar to other self-generated sounds, suggesting that it can be 

differentiated from cardiac-asynchronous sounds (van Elk et al., 2014). Elsewhere, unexpected 

omissions from a synchronous, but not asynchronous, auditory stream were found to elicit a 

surprise response (Pfeiffer & De Lucia, 2017). Still, the proposal that such manipulation is in fact 

affecting precision of the cardiac channel, as formalised in the interoceptive inference 

framework (Petzschner, 2017; Petzschner et al., 2019), remains theoretical. As such, different 

manipulations of cardiac precision should be explored and tested to fully understand its role in 

other processes. One such technique could be transcutaneous Vagus Nerve stimulation (tVNS), 

shown to directly amplify the afferent cardiac signal, and recently found to improve 

interoceptive accuracy (Villani, Tsakiris, & Azevedo, 2019).  

 As the cardiac precision manipulation is targeted at amplifying or disrupting the 

precision of the cardiac channel as represented in the brain, we assumed that it would affect 

the learning process, but it should not noticeably affect cardiac behaviour itself. Interestingly, 

previous research did report that error-related deceleration was abolished when participants 

listened to an auditory stream that was asynchronous to their own heartbeat (Łukowska et al., 

2018). The authors proposed that participants’ heart rate became aligned with what they 

perceived to be their own heartbeat, but was in fact a pre-recorded resting heart rate of another 

person, thus disrupting any error-related markers (though it is noteworthy that they did not 

conduct analyses to confirm this). This could indeed occur through the mechanism of prediction-

error minimisation, as formalised in the active inference approach to interoceptive inference 

(Friston, 2010; Friston & Kiebel, 2009; Pezzulo, Rigoli, & Friston, 2015). Under active inference, 

the brain strives to continuously minimise prediction errors (mismatches between afferent 

sensory, or bodily, signals and the prior prediction) by adjusting internal parameters (e.g. 

homeostatic or other reflexes, including cardiac behaviour). A deviation in their actual state from 

prediction would provoke downstream changes to those parameters. As such, it is plausible that 

when the cardiac channel has low precision, prior predictions could provoke changes to the 

actual heart rate in line with the prediction. In the case of cardiac feedback, this could mean 

aligning the heartbeat with the perceived one, or engaging a prediction of what the heart 

“should” be doing. However, the precise, biologically plausible mechanism behind active 

inference in the interoceptive domain remains a heavily studied and debated topic (Adams, 

Shipp, et al., 2013; Barrett, Quigley, & Hamilton, 2016; Gentsch, Sel, Marshall, & Schütz‐Bosbach, 

2019; Owens et al., 2018). Hence, we restrained ourselves from making strong predictions about 

potential effects of our cardiac precision manipulation on actual cardiac behaviour, especially 
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given that its application in an unconscious learning paradigm is itself a novel and uncharted 

territory. Interested readers are invited to refer to the Supplementary Material of this chapter, 

where we present an exploratory analysis of performance feedback-related cardiac deceleration 

between the three cardiac feedback conditions.  

 Finally, previous research noted that HR measurements can be confounded by 

respiration rate, as respiration can affect the length of interbeat intervals (Berntson, Cacioppo, 

& Quigley, 1993). Whether to correct for respiration in HR measurements is an ongoing debate 

(Laborde, Mosley, & Thayer, 2017; Quintana, Heathers, Kemp, Tarvainen, & Billman, 2014). In 

the present experiment, we did not record respiration rates, so any potential influences of 

breath on cardiac deceleration, whether sharing a common basis or a confounding variable 

(Thayer, Loerbroks, & Sternberg, 2011) cannot be assessed. 

 To summarise, the present study investigated unconscious instrumental conditioning, 

its cardiac concomitants, and the influence of cardiac precision on learning. We found that 

participants were unable to learn the associations between predictive cues and their outcomes 

when the cue was presented unconsciously. We also found no evidence that cardiac responses 

could differentiate between rewarding and punishing performance feedback without cue 

awareness. Finally, we found no evidence that cardiac precision affected learning. Overall, we 

conclude that unconscious conditioning might be harder to achieve when properly controlled. 

Lack of learning at baseline prevents us from drawing stronger conclusions about the potential 

influence of cardiac precision on the learning process. Due to numerous timing constraints, 

which could heavily influence whether unconscious learning happens or not, it might not be 

possible to study the question of its cardiac concomitants in a sufficiently robust manner in the 

first place.  
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3.6. Supplementary material 

The effect of cardiac precision manipulation through auditory feedback on cardiac response to 

punishing vs rewarding performance feedback. 

In order to assess whether the cardiac response to performance feedback is affected by cardiac 

precision (manipulated through auditory cardiac feedback in three conditions; SYNC, ASYNC, 

CONTROL), the conditions were added as a fixed effect to the linear mixed effects model used 

in the main analysis. The expanded model failed to converge under the original random effects 

specification (subject-specific intercepts and slopes for feedback valence), so the random slopes 

were suppressed entirely, leaving subject-specific random intercepts.  

 See Table S3.1 for a full table of regression coefficients. Analysis of deviance on the 

model revealed that the interaction of primary interest (condition*beat*feedback valence) was 

not significant (χ²  = 1.25, df = 6, p = 0.974), suggesting that cardiac precision manipulation might 

not affect the cardiac response to rewarding/punishing feedback itself. The model revealed a 

significant main effect of beat (χ²  = 132.09, df = 3, p < 0.001), confirming that the heart 

responded with deceleration to feedback presentation regardless of condition and feedback 

valence, main effect of feedback valence (χ²  = 24.54, df = 1, p < 0.001), and condition (χ²  = 

48.00, df = 2, p < 0.001), as well as a significant interaction between condition and feedback 

valence (χ²  = 7.28, df = 2, p = 0.026). This pattern is intriguing, suggesting that it was the ASYNC 

condition that produced the largest differentiation between rewarding and punishing feedback 

across all beats (see Figure S3.1.) The remaining two-way interactions (condition*beat and 

feedback valence*beat) were not significant.  
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Table S3.1: Regression coefficients for the fixed effects from the linear mixed model (all 

conditions, performance feedback events). The intercept refers to B-1 for rewarding feedback 

in the control condition. N = 27, number of observations = 22938.  

 Estimate Std. Error df t-value p 

Intercept 

(CONTROL:REW:B-1) 

 

77.43 

 

2.07 

 

27.38 

 

37.41 

 

< 0.001 *** 

SYNC 0.47 0.25 22911.03 1.86 0.062 

ASYNC 0.07 0.25 22911.04 0.27 0.790 

PUN -0.22 0.25 22911.05 -0.86 0.390 

B0 -0.65 0.25 22911.00 -2.63 0.009 **  

B1 -0.47 0.25 22911.00 -1.90 0.058  

B2 0.55 0.25 22911.00 2.21 0.027 * 

SYNC:PUN 0.14 0.36 22911.04 0.39 0.695 

ASYNC:PUN -0.04 0.36 22911.20 -0.10 0.922 

SYNC:B0 -0.02 0.36 22911.00 -0.06 0.955 

ASYNC:B0 -0.09 0.36 22911.00 -0.26 0.798 

SYNC:B1 -0.09 0.36 22911.00 -0.26 0.796 

ASYNC:B1 -0.19 0.36 22911.00 -0.52 0.602 

SYNC:B2 -0.36 0.36 22911.00 -1.02 0.309 

ASYNC:B2 -0.05 0.36 22911.00 -0.15 0.882 

PUN:B0 -0.01 0.36 22911.00 -0.03 0.973 

PUN:B1 -0.21 0.36 22911.00 -0.60 0.551 

PUN:B2 -0.24 0.36 22911.00 -0.66 0.507 

SYNC:PUN:B0 -0.09 0.51 22911.00 0.18 0.861 

ASYNC:PUN:B0 -0.28 0.51 22911.00 -0.56 0.579 

SYNC:PUN:B1 -0.05 0.51 22911.00 0.11 0.917 

ASYNC:PUN:B1 -0.33 0.51 22911.00 -0.63 0.525 

SYNC:PUN:B2 -0.05 0.51 22911.00 0.10 0.928 

ASYNC:PUN:B2 -0.45 0.51 22911.00 -0.87 0.383 

 



77 
 

 
 

 

Figure S3.1: Change in cardiac activity (+/- 1 SEM) in response to performance feedback in all 

cardiac feedback conditions. B-1 refers to BPM as measured 1 beat before feedback 

presentation.   
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4.  

FEASIBILITY OF UNCONSCIOUS 

INSTRUMENTAL CONDITIONING:  

A REGISTERED REPLICATION REPORT 
 

 

 

Abstract 

The extent to which high-level, complex functions can proceed unconsciously has been a topic 

of considerable debate. While unconscious processing has been demonstrated for a range of 

low-level processes, from feature integration to simple forms of conditioning and learning, 

theoretical contributions suggest that increasing complexity requires conscious access. Here, we 

focus our attention on instrumental conditioning, which has been previously shown to proceed 

without stimulus awareness. Yet, instrumental conditioning also involves integrating 

information over a large temporal scale and distinct modalities in order to deploy selective 

action, constituting a process of substantial complexity. With this in mind, we revisit the 

question of feasibility of instrumental conditioning in the unconscious domain. Firstly, we 

address the theoretical and practical considerations relevant to unconscious learning in general. 

Secondly, we aim to replicate the first study to show instrumental conditioning in the absence 

of stimulus awareness (Pessiglione et al., 2008), following the original design and supplementing 

the original crucial analyses with a Bayesian approach (Experiment 1). Should the replication be 

successful, we will attempt to replicate the effect yet again with improved methods to address 

the methodological issues related to sensitivity and immediacy (Experiment 2).  
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4.1. Introduction 

Ever since the earliest demonstration of subliminal perception (Peirce & Jastrow, 1886), the 

extent to which information can be processed in the brain without conscious awareness has 

been a widely studied question. Unconscious processing has been demonstrated for many low-

level processes such as feature detection and integration (e.g. integrating colour, shape and 

texture of an object into one coherent percept; Blake & Fox, 1974), as well as simple forms of 

learning, for instance emotional (Olsson & Phelps, 2004), visuospatial (Rosenthal et al., 2010) or 

associative (Scott et al., 2018). However, the extent to which unconscious processing is possible 

for higher-level, more complex functions remains a topic of debate (Axelrod & Rees, 2014; 

Mudrik et al., 2014; Sterzer et al., 2014). One such example is learning the contingencies 

between stimuli and outcomes, especially in instrumental scenarios, where the agent must learn 

from multiple temporally separated events: the stimulus itself, their action, and its 

consequence. This kind of learning has apparently been shown to be feasible in the absence of 

stimulus awareness (Mastropasqua & Turatto, 2015; Pessiglione et al., 2008). However, 

following recent evidence to the contrary (Reber et al., 2018) and discussions about the minimal 

conditions for unconscious processing (e.g. Mudrik et al., 2014), as well as developments in 

methods used to assess conscious awareness (Dienes, 2015; Rothkirch & Hesselmann, 2017; 

Shanks, 2017), we revisit the finding that instrumental learning can occur unconsciously. Here, 

we attempt to replicate the original result of Pessiglione and colleagues (2008), leveraging the 

developments in the field of unconscious processing to apply a more robust statistical approach 

(Experiment 1), and a more rigorous methodology (Experiment 2). 

While there is no clear agreed theory demarcating what conscious versus unconscious 

mental states may represent (Breitmeyer, 2015; Dupoux et al., 2008; Kouider & Dehaene, 2007), 

there have been attempts at outlining conditions under which unconscious processing can take 

place (Mudrik et al., 2014). A number of theoretical contributions consider consciousness a 

necessary component for higher-level processing, including (but not limited to) semantic 

knowledge, complex visual processing, as well as problem solving and decision-making (Baars, 

2002; Treisman, 2003). In those views, consciousness plays a role in enabling information to be 

integrated across distinct brain regions through long-range feed-back and feed-forward 

connections (Baars, 2002; Dehaene & Changeux, 2011; Dehaene, Sergent, & Changeux, 2003). 

In contrast, unconscious processing appears to be confined to separate areas, and does not 

result in a global spread of activity (Baars et al., 2003; Dehaene et al., 2001; Melloni et al., 2007). 

In support of this view, previous research in the fields of associative learning and priming 

suggests that low-level or short-range spatiotemporal (Lin & He, 2009; Van Den Bussche et al., 
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2009) and multisensory (Faivre et al., 2014b; Scott et al., 2018) information integration can 

proceed without conscious awareness of the stimuli (typically achieved with subliminal 

presentation methods such as masking or continuous flash suppression). Conversely, higher-

level or longer-range spatial and temporal processing (e.g. for tasks requiring longer-term 

information maintenance or selective, flexible decision-making) should require conscious access 

(Dehaene & Naccache, 2001; Dehaene et al., 2003; Kouider & Dupoux, 2001). Previously 

reported instances of unconscious learning are in line with those assumptions. For example, 

classical conditioning can be achieved without awareness in delay scenarios (where stimuli to 

be integrated overlap temporally), but not in trace scenarios (where stimuli are temporally 

separated (Clark & Squire, 1998)), with similar results in other associative learning tasks (Knight 

et al., 2003; Raio et al., 2012; Seitz et al., 2009a). 

As such, the idea that instrumental learning can proceed with unconsciously perceived 

stimuli is an interesting case. In the first experiment to demonstrate it (Pessiglione et al., 2008), 

participants learned to adjust their behaviour, through Go/NoGo decisions, in line with 

subliminally presented rewarding and punishing cues, learning to approach the rewarding and 

avoid the punishing stimulus without ever consciously perceiving them (constituting an example 

of trace instrumental learning). In order to successfully learn when to act and when to refrain 

from acting, participants had to learn from two temporally separated events across the length 

of the trial (up to 4 seconds): the subliminal stimulus itself, and its consequences, presented 

supraliminally as monetary reinforcement. Such a form of learning thus involves a fairly complex 

process of integrating information over a large temporal scale and distinct modalities, necessary 

to process the visual input, deploy selective action in response to the predictive cue, and process 

the reinforcement. The task is then considerably more complex than the aforementioned 

classical conditioning or associative learning scenarios, where there are fewer events, often in 

closer temporal proximity. Assuming that subliminally presented cue is not capable of evoking 

large-scale activity to be integrated with subsequent processes, the case of unconscious 

instrumental conditioning might appear at odds with the theory and previous experimental 

evidence covered above. Yet, instrumental conditioning is also one of the earliest and most 

fundamental forms of adaptive behaviour, both phylogenetically and ontogenetically. As such, 

the extent to which it requires conscious access is a question of considerable theoretical value. 

A key challenge in any research into unconscious influences on behaviour lies in reliably 

asserting that processing is genuinely unconscious (Newell & Shanks, 2013; Rebuschat, 2013; 

Timmermans & Cleeremans, 2015). Although it is frequent practice in this line of research to 

infer unconscious processing when a behavioural measure (e.g. conditioning, priming, etc.) is 

above chance, while a separate measure of awareness is non-significantly different from chance 
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performance (e.g. a non-significant result in a discrimination task), this approach has been 

heavily criticised (Dienes, 2015; Vadillo, Konstantinidis, & Shanks, 2016). A non-significant result 

alone cannot disambiguate between no evidence for an effect (i.e. insensitive data, e.g. due to 

the small sample size) and absence of an effect (i.e. support for the null hypothesis). As such, 

finding that performance on an awareness check does not significantly differ from chance is not 

enough to assert true absence of awareness – an assertion which must be fulfilled to enable any 

inferences about the effect of interest, such as presence of unconscious conditioning in the 

original Pessiglione and colleagues study (Dienes, 2015; Shanks, 2017). This fallacy can be 

rectified in two ways: 1) ensuring that the methods are relevant, and sufficiently sensitive (Berry 

& Dienes, 1993, p.38; Shanks & St. John, 1994), and 2) with use of statistical methods, most 

prominently the Bayes factor, which enables to determine whether a null result indicates 

support for the null (e.g. awareness absent) over the alternative hypothesis (e.g. awareness 

present), or whether the data are insensitive (Dienes, 2014, 2016; Sand & Nilsson, 2016).  

With these considerations in mind, we revisit the suggestion that instrumental learning 

can proceed without stimulus awareness. Experiment 1 will attempt to replicate the effect found 

by Pessiglione and colleagues (2008), following the original design and supplementing the 

original analyses with a Bayesian approach geared to determine a genuine absence of 

awareness, at least as measured by their test of awareness (whether this measure is a justified 

measure of awareness is an issue we will return to). Should the replication be successful, 

Experiment 2 will attempt to replicate the effect once again, this time with improved methods, 

to address the methodological issues related to the criteria of sensitivity and relevance in the 

original study. 

In order to test whether stimuli that produce a certain level of learning are subliminal, 

one needs to know how much conscious perception would be needed to produce that level of 

learning (Dienes, 2015). Thus, a pilot study was conducted in which stimuli were presented 

moderately above the objective threshold in order to determine a relationship between the 

level of awareness (given the test of awareness used by Pessiglione et al, 2008) and learning. 

Thus, first we ran a pilot study to norm the relationship between learning and required 

awareness levels when the learning is based on conscious perception. 

 

4.2. Pilot: Relationship between level of awareness and learning 

above the objective threshold 

The pilot study aimed to assess both perceptual discrimination accuracy when awareness is 

present in a same/different discrimination task (as ensured with supraliminal stimulus 
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presentation), and the corresponding level of learning subsequently achieved in a Go/NoGo task 

with the same stimulus exposure duration. This will be assessed employing a methodology 

identical to that of the replication study, Experiment 1. The observed relationship between 

awareness and learning will be used to identify the rough appropriate effect size for Bayes Factor 

calculation in the corresponding task conducted without awareness. The pilot was pre-

registered at https://osf.io/rwnt7. 

 

4.2.1. Method 

4.2.1.1. Participants 

26 participants (3 males, MAGE = 22, SDAGE  = 4.3) were recruited. Sample size was determined 

with G*power (Faul, Erdfelder, Lang, & Buchner, 2007), using a Cohen’s d of 0.7 (a large effect 

size is justified given the supraliminal nature of the stimuli and the simplicity of the task), with 

95% power. One participant was excluded after reporting to have misunderstood the learning 

task during debrief, yielding a final sample of 25 participants. 

 

4.2.1.2. Stimuli and materials 

The stimuli included 9 randomly selected characters from the Agathodaimon font presented in 

a white typeface on a black background (see Appendix 2), with a size of 70 x 70 pixels. For each 

participant, 3 were randomly assigned to the first perceptual discrimination task (PDT1; 

threshold-setting), 3 to PDT2 (awareness check), and 3 to the main leaning task (1 to be 

associated with rewarding, 1 with punishing, and 1 with neutral outcome). Two black-and-white 

visual noise masks of the same size as the stimuli were generated by scrambling one character 

image into 8.75 by 8.75 pixels squares. The same two masks were used for all participants in the 

same fashion (one preceding and one following the target stimulus). The outcome images were 

a circled £1 coin image for reward, a crossed-out £1 image for punishment, and a greyed-out 

coin for neutral.  

 The task was programmed using Matlab 2018b (MathWorks, 2018), running 

Psychophysics Toolbox (Brainard, 1997), and presented on a Samsung 2233RZ LCD monitor with 

a 120Hz refresh rate (following recommendations for precise visual presentation; Wang & 

Nikolić, 2011). Responses were collected with a standard keyboard.  

 

 

 

 

https://osf.io/rwnt7
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4.2.1.3. Procedure 

Perceptual discrimination task 1: Threshold finding. 

 This task aimed to establish a cue display duration that permitted conscious 

discrimination at above-chance levels without reaching ceiling. Participants were seated at a 

50cm distance from the screen (ensured with a chinrest). Each trial began with a fixation cross 

(500ms), followed by presentation of two cues (display duration starting at 600ms), both 

forward-backward masked (67ms), separated by a 3s interval indicated by a fixation cross, 

following the method of Pessiglione et al (2008). Following the displays, participants were asked 

to indicate whether the cues presented were the same or different, and judge their confidence 

in that decision (on a binary scale between “some confidence” and “total guess”). Both 

responses were made using the arrow keys. Cue display duration started at 600ms, and dropped 

by 50ms with every correct and confident discrimination. Once participants reached 100ms or 

indicated guess for the first time, the display duration was increased by one increment (+50ms), 

and proceeded to decrease by smaller increments (8ms, corresponding to a single screen refresh 

duration on a 120Hz monitor). Once participants responded guess 6 consecutive times 

(irrespective of symmetry judgment accuracy), the corresponding display duration was taken to 

be their threshold of conscious perception. 

 The display duration was then set to be 16ms greater than the identified threshold and 

participants required to continue to make the same symmetry and confidence judgments for a 

minimum of one block of 10 further trials. If objective discrimination accuracy for those 10 trials 

was between 70 and 90% (above chance, indicating that participants can reliably discriminate 

the cues, but are not at ceiling), the task terminated and the duration was recorded as the 

display duration to be used in the main task. Note that confidence was discounted in this 

measure, and only objective accuracy was taken into account. If discrimination accuracy for 

these 10 trials was greater than 90% then the display duration was reduced by 8ms and the 

process repeated for another 10 trials until discrimination accuracy fell into the desired range 

(70-90%).  Similarly, if discrimination accuracy for the 10 trials was below 70% the display 

duration was increased by 8ms and a further block of 10 trials completed until such time as the 

desired discrimination accuracy was achieved.  

 

Main conditioning task. 

 In keeping with the original protocol (Pessiglione et al., 2008), participants were asked 

to choose between making a response by pressing a spacebar (Go), or refraining from a response 

(NoGo), to masked cues. In each block, one cue was paired with reward, one with punishment, 
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and one with the neutral outcome. Hence, participants could choose either to take a “risky” 

action (where they might win £1, lose £1, or have a neutral outcome depending on the 

proceeding cue) or to refrain from acting and thus ensure a neutral outcome.  

 Each trial began with a fixation cross (500ms), followed by a forward mask (67ms), one 

of the target cues (determined supra-threshold display duration), and backward mask (67ms). 

Subsequently, a question mark appeared on the screen, indicating that the response could be 

made. Regardless of the response (Go or NoGo), the response window remained open for 

3000ms, after which the choice made (Go! or No!) was displayed (500ms), followed by the 

outcome (reward, punishment, or neutral; 2000ms). There was one block of 90 trials, with 30 

rewarding, punishing and neutral trials each, in a randomised order. 

 

Perceptual discrimination task 2: Awareness check. 

 The second and final discrimination task was used to assess the objective level of cue 

awareness, as indexed by same/different discrimination accuracy. No further adjustments to 

display duration were made, which remained at the level determined in the perceptual 

discrimination task. There was one block of 100 trials, with 50 same and 50 different trials in a 

randomised order. 

 

4.2.2. Analysis and results 

Bayes factors (B) were used to assess the strength of evidence for the alternative hypothesis, 

H1, over the null, H0  (Wagenmakers et al., 2017). All Bayes factors, B, reported here represent 

the evidence for H1 relative to H0; to find the evidence for H0 relative to H1, take 1/B. Here, 

BH(0, x) refers to a Bayes factor in which the predictions of H1 were modelled as a half-normal 

distribution with an SD of x (see Dienes & Mclatchie, 2017); the half-normal can be used when 

a theory makes a directional prediction where x scales the size of effect that could be expected. 

With the  assumptions we used for modelling H1, as it happened, where an effect yielded a p 

value less than .02, the Bayes factor was above 6, though there is no guarantee of such a 

correspondence between B and p values (Lindley, 1957). To indicate the robustness of Bayesian 

conclusions, for each B, a robustness region will be reported, giving the range of scales that 

qualitatively support the same conclusion (i.e. evidence as insensitive, or as supporting H0, or 

as supporting H1), notated as: RRB>6 [x1, x2] or RRB<1/6 [x1, x2]  or RR1/6>B>6 [x1, x2]  where x1 is 

the smallest SD that gives the same conclusion and x2 is the largest (see Dienes, 2019). 
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4.2.2.1. Data pre-processing 

In order to account for potential response bias, type I d’ (a Signal Detection Theoretic measure 

of sensitivity to signal versus noise; Stanislaw & Todorov, 1999) was computed for both PDT2 

and the main conditioning task. Type I d’ can be used to index awareness level corresponding to 

the objective threshold, where chance performance corresponds to lack of awareness, 

regardless of confidence or subjective awareness reports. Note that this measure is used here 

following the procedure of Pessiglione et al (2008). For the PDT, correct same/different 

responses were treated as hits, and incorrect responses as false alarms. In the conditioning task, 

Go responses to rewarding cues were treated as hits, and Go responses to punishing cues as 

false alarms. Go responses to neutral cues were discounted, as participants are expected to 

respond arbitrarily to them due to their null outcome. 

 

4.2.2.2. Awareness check 

At the group level, d’ scores for the PDT2 were entered into a one-way t-test against 0, which 

indicates no ability to discriminate the stimuli (no sensitivity between signal versus noise, akin 

to chance performance). A Bayes Factor (B) was computed for the difference, with the 

predictions of H1 (awareness is present) modelled as a half-normal distribution centred on 0, 

with an SD equal to a d’ of 1 (the average expected effect size corresponding to 70% hit rate 

(accuracy) and 30% false alarms, an estimate of above-chance and below-ceiling performance). 

The results indicate that participants were able to successfully discriminate the stimuli, 

with the average d’ significantly greater than zero (M = 0.946, SE = 0.197, p < 0.001, BH(0,1) = 

25554, RR[0.07, 303.5]).  

 

4.2.2.3. Main conditioning task 

The d’ scores for the conditioning task were entered into a one-way t-tests against 0, indicating 

lack of discrimination between the cues, and consequently, lack of learning. B was computed for 

the difference, with the predictions of H1 (learning is present) modelled as a half-normal 

distribution centred on 0, with an SD equal to 0.7 (the expected effect size if learning is present, 

derived from Pessiglione et al., 2008).  

The results indicate that participants were able to successfully learn, with the average 

d’ significantly greater than zero (M = 1.793, SE = 0.301, p < 0.001, BH(0,0.7) = 2514517, RR[0.081, 

633.5]).  
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Figure 15: Learning (d’) plotted against objective level of awareness (d’) obtained in the 

supraliminal pilot study. Ribbon represents a 95% confidence interval. N = 25.  

 

4.2.3. Pilot: Discussion 

The purpose of the pilot was to establish a rough relation between the level of 

awareness as measured by the awareness measure by Pessiglione et al (2008), and the level of 

learning it can support. In the pilot, the mean awareness was d’ = 0.9, and the mean learning 

was d’ = 1.793. These are all the crucial facts we need.  If both these measures result from the 

influence of the same knowledge base, namely conscious perception, then as conscious 

perception goes to zero, both should also go to zero (Dienes, 2015). Thus, on a plot of awareness 

against learning (Figure 15), a line from the point given by the two means going to (0,0) gives a 

rough estimate of the relation that should be obtained between awareness and learning, 

assuming it is linear. While there are uncertainties in both the estimates and their linearity, we 

only need a rough estimate, as we will model uncertainty around this estimate, and robustness 

regions will be provided. Now we are in a position to proceed with the replication. 

The theory that the Pessiglione et al. (2008) method produces unconscious learning 

involves two predictions: 1) participants will perform at chance on the awareness measure; and 

2) participants will show conditioning. These are the crucial tests we will consider below. 1) 

might be regarded as an outcome neutral test in order for the paradigm to be relevant for 

showing unconscious learning. From the point of view of a replication, however, it constitutes a 

crucial test of whether the procedure does result in stimuli being subliminal. 
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4.3. Experiment 1: Direct replication 

Experiment 1 aims to directly replicate unconscious instrumental conditioning found in 

Pessiglione et al. (2008). For this reason, all methods will be in keeping with those employed in 

that original study.  The original frequentist analyses will be supplemented with Bayes Factors, 

in order to disambiguate potentially non-significant results as either indicating support for the 

null hypothesis, or indicating insensitive data. 

 

4.3.1. Method 

4.3.1.1. Participants 

Participants will be recruited at the University of Sussex. Sample size will be determined with 

the Bayesian Stopping Rule, using previously obtained effect sizes as empirical priors, or cease 

at 200 participants if the result in the awareness check remains insensitive (see 3.2.2. Planned 

Analyses for detail). In keeping with the original study, participants will be told they will be 

reimbursed with their earnings from the task, but at the end this will be rounded to a fixed 

amount of £6. Ethical approval was granted by the School of Psychology ethics committee at the 

University of Sussex, and the study will be conducted in accordance with the Declaration of 

Helsinki.  

 

4.3.1.2. Stimuli and materials 

All stimuli and materials used will be equivalent to those reported in the original study. The 

stimuli will be 15 randomly chosen characters from Agathodaimon font, presented in white 

typeface on a black screen, with a size of 240 by 180 pixels. For each participant, 3 will be 

randomly assigned to PDT1, 3 to PDT2, and 9 to the main task, with 1 rewarding, 1 punishing, 

and 1 neutral cue in each of the 3 blocks. Two black-and-white visual noise masks of the same 

size as the stimuli will be generated by scrambling one character image into 30 by 30 pixel 

squares. The same two masks will be used for all participants in the same fashion (one preceding 

and one following the target stimulus). The outcome images will be a circled £1 coin image for 

reward, a crossed-out £1 image for punishment, and a greyed-out coin for neutral. 

 The task will be programmed using Matlab 2018b (MathWorks, 2018), running 

Psychophysics Toolbox (Brainard, 1997), and presented on a Dell LCD monitor with a 60Hz 

refresh rate (manufactured in 2006 to approximate the screen technology used in the original 

experiment by Pessiglione et al). Responses will be collected with a standard keyboard.  
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4.3.1.3. Procedure 

Perceptual discrimination task 1. 

 Participants will be seated with their chin on a chin rest placed at 50cm distance from 

the screen. Each session will commence with a PDT used to determine the individual cue display 

duration.  The duration will be either (33 or 50ms); the largest for which they show chance-level 

(<=50%) discrimination performance. In the task, participants will be shown two cues, each 

forward-backward masked (67ms), separated by a 3s interval indicated with a fixation cross, 

following the method of Pessiglione et al (2008). Following the display, they will be asked to 

report whether the cues presented were the same or different, using the arrow-keys. The task 

will consist of 2 blocks of 120 trials (with 60 same and 60 different trials in each, in a randomised 

order). The first block will be conducted with 50ms display duration of each cue. If discrimination 

accuracy at this stage is at chance (assessed with a chi-squared test for each participant), the 

task will be ended and a 50ms display duration adopted in the main task. If performance in the 

first block is above chance, the duration will be decreased to 33ms for the second block, and 

performance assessed again. If it is at chance at the end of the second block, the duration of 

33ms will be adopted in the main task. Participants who remain above chance at 33ms will not 

be able to take part. 

 

Main conditioning task.  

 The task will be identical to the original protocol and the pilot study, with the exception 

that the cues were presented subliminally, for the duration determined in the PDT1 (33 or 

50ms). Participants will be asked to choose between making a response by pressing a spacebar 

(Go), or refraining from a response (NoGo), to masked cues. In each block, one cue will be paired 

with reward, one with punishment, and one with the neutral outcome. Hence, participants can 

choose either to take a “risky” action (where they might win £1, lose £1, or have a neutral 

outcome depending on the proceeding cue) or to refrain from acting and thus ensure a neutral 

outcome.  

 Each trial will begin with a fixation cross (500ms), followed by a forward mask (67ms), 

one of the target cues (determined subliminal display duration), and backward mask (67ms). 

Subsequently, a question mark will appear on the screen, indicating that the response may be 

made. Regardless of the response (Go or NoGo), the response window will remain open for 

3000ms, and participants’ response will be collected at the end – Go if the spacebar is being 

pressed, and NoGo if it is released. Finally, the choice made (Go! or No!) will be displayed 

(500ms), followed by the outcome (reward, punishment, or neutral; 2000ms).  
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In order to counterbalance motor conditions, the ‘risky’ response will be pseudo-

randomised to be Go for half the participants, and NoGo for the other half. There will be 3 blocks 

of 120 trials, with 40 trials of each type (rewarding, punishing, neutral). 

 

Preference task. 

 Following each of the three conditioning blocks, the three cues used will be shown on 

the screen side by side, unmasked, in a randomised order. Participants will be asked to rate them 

in order of preference, from most (3) to least (1) liked.  

 

Perceptual discrimination task 2. 

 A PDT with 120 trials (60 same, 60 different) and 3 new stimuli will be repeated at the 

end of the testing session. There will be no adjustments to the display duration, which will be 

kept at the level determined in PDT1. The task will allow to determine whether or not 

participants’ cue awareness remained at chance level.  

 

4.3.2. Planned Analysis 

4.3.2.1. Data pre-processing 

Identical to pilot study. 

 

4.3.2.2. First crucial test: awareness check 

Absence of awareness will be determined by assessing discrimination performance on the 

second perceptual discrimination task, indexed by type I d’ scores (corresponding to the 

objective threshold of awareness). At the group level, d’ scores will be entered into a one-way 

t-test against 0, which indicates no ability to discriminate between the stimuli (no sensitivity 

between signal versus noise). B will be computed on the obtained mean d’, with the H1 

(awareness present) modelled as a half-normal distribution with a mean of 0 and a SD equal to 

the value derived from the pilot study, following the regression method outlined by Dienes 

(2015, p.211-213). The mean learning d’ (1.793) and the corresponding mean awareness d’ (0.9) 

from the supraliminal pilot will be used to estimate the mean awareness d’ expected from the 

obtained level of learning in the main subliminal conditioning task. This will be done using the 

regression line drawn between the supraliminal mean values and the point of origin (no learning, 

no awareness). The expected d’ if awareness is present in the unconscious task (H1) can then be 

derived from the learning d’ value we actually obtain in this experiment. In line with the Bayesian 

Stopping Rule, data collection will continue until support for the H0 at the group level is found 
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(BH(0,X) < 1/6), or cease at 200 in the event of the data remaining insensitive. The upper cap was 

determined with the Bayesian sample size estimation method (Dienes, 2015b), using the above 

regression method to derive the average awareness d’ (0.37) expected from Pessiglione et al 

(2008) learning d’ (0.7), and adjusting the awareness SE obtained in the pilot (0.2) in line with 

sample size increases. A robustness region will be reported, as described in the Pilot. 

Following the original method, performance for every individual compared to chance 

(50% accuracy) will be assessed with chi-square tests. Participants who show significant above-

chance performance will be excluded from further analysis, as well as those who explicitly report 

seeing the stimuli on-screen. 

 

4.3.2.3. Second crucial test: main conditioning task 

Presence of learning in the conditioning task will be assessed with d’ scores. d’ scores will be 

entered into a one-way t-tests against 0, indicating lack of discrimination between the cues, and 

consequently, lack of learning. B will be computed with H1 modelled as a half-normal distribution 

with a mean of 0 and a SD equal to 0.7 (expected effect size if learning is present, derived from 

Pessiglione et al., 2008). Resulting BH(0,0.7) > 6, will be taken as evidence of learning.  

BH(0,0.7)  < 1/6, will be taken as evidence for absence of learning. In the event of an insensitive 

result, data collection will cease at 170 participants (upper cap estimated in the same way as in 

section 3.2.2., using a learning d’ of 0.7 as the expected effect size and learning SE of 0.3 

obtained in the pilot).  A robustness region will be reported, as described in the pilot. 

 

4.4. Experiment 2 

Experiment 2 will be conducted only in the event of Experiment 1 replicating the effect found in 

Pessiglione et al (2008). In light of the methodological and theoretical advances and debates in 

the field of unconscious learning (e.g. Dienes, 2015; Mudrik et al., 2014; Newell & Shanks, 2014), 

Experiment 2 will aim to replicate the result, introducing changes to the paradigm targeted at 

increasing the methodological rigour.  

Firstly, in the original study, the measures in the awareness check and the learning task 

pertain to two different aspects of decision-making. The perceptual discrimination tasks (serving 

as threshold-setting and as awareness check) required a same/different perceptual judgment of 

2 cues, separated by a 3s interval. In contrast, the main conditioning task required an 

approach/avoid response after a single stimulus. Hence, the measure used in the perceptual 

discrimination task reflected a different decision process than was required in the conditioning 

task, violating the relevance and sensitivity criteria (Berry & Dienes, 1993; Newell & Shanks, 
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2014). As such, the threshold-setting task will be amended to match the conditioning task more 

closely. 

Secondly, the separate awareness check will be replaced with a trial-by-trial measure, 

allowing to access the information about participants’ awareness in a more immediate fashion 

(Berry & Dienes, 1993; Newell & Shanks, 2014).  

Thirdly, the original task design leaves open the possibility that participants might 

occasionally experience awareness of the stimuli in the learning task, which does not become 

apparent in the final PDT. This might occur either where the same brief moments of awareness 

do not reoccur in the PDT or where they are too infrequent to significantly influence the overall 

objective accuracy measure. Reliably excluding individual trials is impossible when only objective 

discrimination measures are collected. With this in mind, the trial-by-trial awareness check will 

also include confidence ratings, allowing to exclude trials where participants were subjectively 

aware. Because the initial staircase should sensitively settle on sub-threshold conditions, a trial-

by-trial check should only elicit a small number of aware trials. While post-hoc trial exclusion of 

conscious trials can lead to regression to the mean (Shanks, 2017), its effect is negligible if the 

majority of trials are unconscious. We examined this assumption by modelling worst-case 

scenarios for presence of conscious trials at different proportions of observed unconscious trials, 

at different error rates (see Supplementary material). This allows to determine the maximum 

percentage of conscious trials which could inadvertently contribute to unconscious knowledge. 

Thus, if we observe 80% of unconscious trials (leaving room for error in the remaining 0-20%), 

the maximum proportion of conscious trials possibly contained within our observed unconscious 

trials is 1.59%. This would be the percentage of our conscious knowledge potentially accounting 

for the learning effect. Using the observed d’ found in the pilot study of 1.8, we find that the 

maximum influence from conscious knowledge where 80% of responses are attributed to 

unconscious responding is d’ = 0.03. We consider this negligible and as such will adopt a strategy 

whereby provided the proportions of responses attributed to conscious responding does not 

exceed 20%, our exclusion criteria will be applied (see section 4.2.2.). 

Finally, the forward and backward masks will be generated afresh on each trial by 

randomly scrambling a black-and-white noise image. The use of different masks on each trial 

reduces the likelihood of participants building erroneous associations from possible salient 

repetitive features of the masks (or of some stimulus-mask combinations). 

As in Experiment 1, original frequentist analyses will be supplemented with Bayes 

Factors.  
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4.4.1. Method 

4.4.1.1. Participants 

Participants will be recruited at the University of Sussex. Sample size will be determined with 

the Bayesian Stopping Rule, using previously obtained effect sizes as empirical priors, or cease 

at 170 participants should the result remain insensitive (see 4.2.2. Planned Analyses for detail). 

In keeping with the original study, participants will be told they will be reimbursed with their 

earnings from the task, but at the end this will be rounded to a fixed amount of £6. Ethical 

approval was granted by the School of Psychology ethics committee at the University of Sussex, 

and the study will be conducted in accordance with the Declaration of Helsinki.  

 

4.4.1.2. Stimuli and Materials 

The stimuli will be 11 characters from Agathodaimon font, chosen pseudo-randomly to ensure 

six symmetrical and seven asymmetrical characters. All will be presented in white typeface on a 

black screen, with a size of 240 by 180 pixels. For each participant, two characters will be 

randomly assigned to PDT1 (with one symmetrical and one asymmetrical character). The nine 

remaining stimuli will be pseudo-randomly assigned to the main task, with one rewarding, one 

punishing, and one neutral cue in each of the three blocks, such that each block contains both 

symmetrical and asymmetrical cues. Both the forward and backward masks will be generated 

afresh on each trial by randomly scrambling a 240 by 180 pixels black-and-white noise image in 

blocks of 3x3 pixels. 

  

4.4.1.3. Procedure 

Perceptual discrimination task 1. 

 Each session will commence with a PDT, allowing to determine the individual cue display 

duration. The duration will be either 33 or 50ms, the largest for which results in chance-level 

(<=50%) discrimination performance. In this task (in contrast to Experiment 1), participants will 

be shown a fixation cross (500ms), followed by a single cue (display duration starting at 50ms), 

forward-backward masked (67ms) cue. Following the display, they will be asked to report 

whether the cue presented was symmetrical or asymmetrical, using the arrow-keys. As in 

Experiment 1, the task will consist of 2 blocks of 120 trials (with 60 symmetrical and 60 

asymmetrical trials, in a randomised order, in each block). The first block will be conducted with 

50ms display duration of each cue. If discrimination accuracy at this stage is at chance (assessed 

with a chi-squared test for each participant), the task will be ended and a 50ms display duration 

adopted in the main task. If performance in the first block is above chance, the duration will be 
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decreased to 33ms for the second block, and performance assessed again. If it is at chance at 

the end of the second block, the duration of 33ms will be adopted in the main task. Participants 

who remain above chance at 33ms will not be able to take part. 

 

Main conditioning task.  

 The conditioning task will be identical to Experiment 1, with the exception that an 

awareness check will be added at the end of each trial. Following feedback presentation 

(reward/punishment), participants will be asked to report if the masked cue was symmetrical or 

asymmetrical, using the arrow keys. Next, they will be asked to report their confidence in that 

judgment on a binary scale (between ‘some confidence’ and ‘total guess’). There will be 3 blocks 

of 120 trials, with 40 trials of each type (rewarding, punishing, neutral), in a randomised order. 

Prior to beginning, participants will be explicitly instructed that the symmetry judgments are not 

related to the rewarding/punishing outcomes. They will also be shown a different pair of 

example cues to illustrate what is meant by symmetry.  

 

Preference task. 

 Identical to Experiment 1.  

 

4.4.2. Planned Analysis 

4.4.2.1. Data pre-processing 

Identical to Experiment 1.  

 

4.4.2.2. Crucial test: main conditioning task 

Individual trials where participants make a correct symmetry judgment with confidence will be 

marked as ‘aware’ trials and excluded. In cases where exclusions exceed 20% of trials, the entire 

participant will be excluded from analysis. The remaining trials will be analysed with type I d’ in 

a manner identical to Experiment 1. B will be computed with H1 modelled as a half-normal 

distribution with a mean of 0 and a SD equal to 0.7 (expected effect size if learning is present, 

derived from the original study). Resulting BH(0,0.7)  > 6, will be taken as evidence of learning. 

BH(0,0.7)  < 1/6, will be taken as evidence for absence of learning. In the event of an insensitive 

result, data collection will cease at 170 participants (upper cap estimated in the same way as in 

section 3.2.3., using a learning d’ of 0.7 as the expected effect size and learning SE of 0.3 

obtained in the pilot). A robustness region will be reported.  
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For reasons given by the simulations in the Supplementary material, if more than 20% 

of participants have to be excluded due to having more than 20% of conscious trials, we will use 

an interval null hypothesis, with the interval being from 0 to the maximum d’ that could be 

contributed by regression to the mean, as determined by the exact formulae in the 

Supplementary materials. We will calculate the contribution to d’ from excluding trials, then 

from excluding participants, and add the contributions together.  The model of H1 will remain 

the same. (This entails an overlap in the effects predicted by H1 and H0, implying a maximum 

expected Bayes factor given by the ratio of marginal likelihoods of H1 to H0 at the population 

effect size). 
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4.5. Supplementary material 

Calculating the maximum potential influence of regression towards the mean resulting from 

post-hoc trial or participant exclusion. 

 

Our paradigm proposes to use a trial-by-trial test of awareness in order to permit the exclusion 

of any trials where participants report having conscious knowledge of the stimuli.  This approach 

has a number of key advantages over alternative approaches such as examining the mean 

accuracy in a separate test block.  Firstly, it maximises the sensitivity of analysis by reducing 

unnecessary whole participant exclusions i.e. individual conscious trials can be excluded rather 

than all of a participant’s responses excluded based on their mean accuracy.  Secondly, the 

ability to exclude conscious trials in this way permits us to target an exposure duration that is as 

close as possible to the conscious threshold rather than having to deliberately aim substantially 

below that threshold in order to avoid the possibility of a small number of conscious trials 

contaminating the analysis. Finally, if a person’s threshold is subject to variation over time, only 

a trial-by-trial analysis as proposed can reliably ensure that the effects of such momentary 

variations in conscious awareness are mitigated.   

While employing a trial-by-trial awareness check has obvious advantages, any post-hoc 

exclusion of conscious trials or conscious subjects from the full sample brings a potential 

influence of regression to the mean (Shanks, 2017).  In essence, while excluding the reported 

conscious trials will give the impression of leaving a set of purely unconscious trials for analysis, 

any noise in the measure of awareness (participants’ reports of conscious perception) will mean 

that the selected subset may contain some proportion of conscious trials that were (due to 

measurement error) mislabelled as unconscious.  Here we conduct an analysis that establishes 

the maximum potential influence that regression to the mean could have on our analyses for a 

given proportion of trials or participants excluded and a given error rate.   

 Our paradigm tests participants’ ability to discriminate consciously whether a given 

shape is symmetrical or asymmetrical.  For each symmetry-judgement, participants are required 

to report either that “I am guessing” or “I have some confidence”.  Any accuracy apparent in 

responses attributed to guessing is assumed to be unconscious and any apparent in responses 

attributed confidence is taken to be conscious.  Because the awareness judgement is a two-

alternative forced choice, the conscious plus unconscious attributions amount to 100% of 

responses.  Crucially however, the observed proportions of each will differ from the true 

proportions according to the degree of error in the awareness report i.e. the number of trials 

where the true state is unconscious and yet reported with some confidence, or the true state is 
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conscious but reported as guessing.  For simplicity, we assume that there is a fixed amount of 

error in this measure and that it is the same for both conscious and unconscious attributions.  It 

follows that the observed proportion of unconscious trials (those attributed to guessing) will be 

the proportion of trials that are actually unconscious * the proportion of judgements without 

error + the proportion of trials that are conscious * the proportion of judgements made with 

error (misattributions).   Note, that the maximum error is bounded by the proportion of 

responses attributed to each of the unconscious and conscious categories, e.g. if 90% of 

responses are attributed to unconscious judgement then the maximum error is 10% as this 

would account for all the conscious responses (10%).  Adopting the following abbreviations, the 

formulae for observed proportion of unconscious trials can be written as below: 

 

obsUC  = The observed proportion of unconscious trials (trials attributed to guessing) 

trueUC = The true proportion of unconscious trials 

error = The proportion of judgments misattributed due to error  

 

𝑜𝑏𝑠𝑈𝐶 = (1 − 𝑒𝑟𝑟𝑜𝑟) ∗ 𝑡𝑟𝑢𝑒𝑈𝐶 + 𝑒𝑟𝑟𝑜𝑟 ∗ (1 − 𝑡𝑟𝑢𝑒𝑈𝐶) 

 

This simplifies: 

𝑜𝑏𝑠𝑈𝐶 = 𝑡𝑟𝑢𝑒𝑈𝐶 + 𝑒𝑟𝑟𝑜𝑟 ∗ (1 − 2 ∗ 𝑡𝑟𝑢𝑒𝑈𝐶) 

𝑜𝑏𝑠𝑈𝐶 = 𝑒𝑟𝑟𝑜𝑟 + 𝑡𝑟𝑢𝑒𝑈𝐶 ∗ (1 − 2 ∗ 𝑒𝑟𝑟𝑜𝑟) 

 

From this, we can derive a formula for trueUC: 

𝑡𝑟𝑢𝑒𝑈𝐶 =
(𝑜𝑏𝑠𝑈𝐶 − 𝑒𝑟𝑟𝑜𝑟)

(1 − 2 ∗ 𝑒𝑟𝑟𝑜𝑟)
 

 

And a formula for the proportion of conscious contamination of observed unconscious: 

𝑐𝑜𝑛𝑠𝑐𝑖𝑜𝑢𝑠 𝑐𝑜𝑛𝑡𝑎𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 =
𝑒𝑟𝑟𝑜𝑟 ∗ (1 − 𝑡𝑟𝑢𝑒𝑈𝐶)

𝑜𝑏𝑠𝑈𝐶
 

 

For example, if 90% of responses are attributed to unconscious responding (obsUC = 

90%) and 10% to conscious it follows that the maximum error is 10% i.e. if 100% of responses 

are truly unconscious then 10% error would account for all the observed conscious responses.  

The true error can be anywhere between 0% and 10%.  Applying the above formulae to each 
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possible error rate (0-10%), we find that an error of 5% gives the maximum conscious 

contamination, namely 0.31%.  That is, where 90% of observed trials are attributed to 

unconscious responding and all conscious trials are excluded the maximum extent to which 

regression to the mean could influence the observed learning is 0.31% of the conscious learning 

effect.  In the conscious pilot, the d’ for learning was 1.8.  Hence, the maximum effect of 

regression to the mean where 90% of responses are attributed to unconscious responding is 1.8 

* 0.31%, d’ = 0.01.  

Supplementary table 1 shows the percentage of conscious contamination for each level 

of error for observed unconscious responding proportions of 95%, 90%, 85%, 80%, 75%, and 

70%.  Consulting this table and using the observed d’ in the pilot study of 1.8 we find that the 

maximum influence from conscious knowledge where 80% of responses are attributed to 

unconscious responding is d’ = 0.03.  We feel that this is negligible and as such will adopt a 

strategy whereby provided the proportion of responses attributed to conscious responding does 

not exceed 20%, our exclusion criteria will be applied.  Where participants make greater than 

20% conscious attributions those individuals will be excluded as conscious. Precisely the same 

logic assessing the potential regression to the mean effect at the participant level applies.  

Hence, provided not more than 20% of participants make greater than 20% conscious 

attributions, we can be confident that the observed learning effect is not influenced by 

regression to the mean by more than a d’ of 0.03. In the unlikely event that greater than 20% of 

participants make greater than 20% of conscious attributions then we will adopt an interval null 

in the Bayes analysis to account for this.  This will modify the Bayes analysis only to the extent 

that the point null hypothesis will be replaced by an interval null modelled as a uniform from 

zero to the maximum influence of conscious contamination.  
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Table S4.1. Percentage of conscious contamination for each level of error for observed unconscious responding proportions of 95%, 90%, 85%, 80%, 75%, and 70%, 

computed with the formulae described in text. Frames highlight the maximum proportion of conscious contamination for the corresponding proportion of unconscious 

responding. 

 

Observed unconscious 95%                

error 0% 1% 2% 3% 4% 5%           

true percentage unconscious 95.0% 95.9% 96.9% 97.9% 98.9% 100.0%           

conscious contamination 0.00% 0.04% 0.07% 0.07% 0.05% 0.00%           

                 

Observed unconscious 90%                

error 0% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10%      

true percentage unconscious 90.0% 90.8% 91.7% 92.6% 93.5% 94.4% 95.5% 96.5% 97.6% 98.8% 100.0%      

conscious contamination 0.00% 0.10% 0.19% 0.25% 0.29% 0.31% 0.30% 0.27% 0.21% 0.12% 0.00%      

                 

Observed unconscious 85%                

error 0% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 11% 12% 13% 14% 15% 

true percentage unconscious 85.0% 85.7% 86.5% 87.2% 88.0% 88.9% 89.8% 90.7% 91.7% 92.7% 93.8% 94.9% 96.1% 97.3% 98.6% 100.0% 

conscious contamination 0.00% 0.17% 0.32% 0.45% 0.56% 0.65% 0.72% 0.77% 0.78% 0.77% 0.74% 0.66% 0.56% 0.41% 0.23% 0.00% 

                 

Observed unconscious 80%                

error 0% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 11% 12% 13% 14% 15% 

true percentage unconscious 80.0% 80.6% 81.3% 81.9% 82.6% 83.3% 84.1% 84.9% 85.7% 86.6% 87.5% 88.5% 89.5% 90.5% 91.7% 92.9% 
conscious contamination 

 0.00% 0.24% 0.47% 0.68% 0.87% 1.04% 1.19% 1.32% 1.43% 1.51% 1.56% 1.59% 1.58% 1.54% 1.46% 1.34% 

                 

error 16% 17% 18% 19% 20%            

true percentage unconscious 94.1% 95.5% 96.9% 98.4% 100.0%            

conscious contamination 1.18% 0.97% 0.70% 0.38% 0.00%            
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Table S4.1. continued 

 

Observed unconscious 75%                

error 0% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 11% 12% 13% 14% 15% 

true percentage unconscious 75.0% 75.5% 76.0% 76.6% 77.2% 77.8% 78.4% 79.1% 79.8% 80.5% 81.3% 82.1% 82.9% 83.8% 84.7% 85.7% 

conscious contamination 0.00% 0.33% 0.64% 0.94% 1.22% 1.48% 1.73% 1.95% 2.16% 2.34% 2.50% 2.63% 2.74% 2.81% 2.85% 2.86% 

                 

error 16% 17% 18% 19% 20% 21% 22% 23% 24% 25%       

true percentage unconscious 86.8% 87.9% 89.1% 90.3% 91.7% 93.1% 94.6% 96.3% 98.1% 100.0%       

conscious contamination 2.82% 2.75% 2.63% 2.45% 2.22% 1.93% 1.57% 1.14% 0.62% 0.00%       

                 

                 

Observed unconscious 70%                

error 0% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 11% 12% 13% 14% 15% 

true percentage unconscious 70.0% 70.4% 70.8% 71.3% 71.7% 72.2% 72.7% 73.3% 73.8% 74.4% 75.0% 75.6% 76.3% 77.0% 77.8% 78.6% 

conscious contamination 0.00% 0.42% 0.83% 1.23% 1.61% 1.98% 2.34% 2.67% 2.99% 3.29% 3.57% 3.83% 4.06% 4.27% 4.44% 4.59% 

                 

error 16% 17% 18% 19% 20% 21% 22% 23% 24% 25% 26% 27% 28% 29% 30%  

true percentage unconscious 79.4% 80.3% 81.3% 82.3% 83.3% 84.5% 85.7% 87.0% 88.5% 90.0% 91.7% 93.5% 95.5% 97.6% 100.0%  

conscious contamination 4.71% 4.78% 4.82% 4.82% 4.76% 4.66% 4.49% 4.26% 3.96% 3.57% 3.10% 2.52% 1.82% 0.99% 0.00%  
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5.  

INSTRUMENTAL CONDITIONING REQUIRES 

CONSCIOUS AWARENESS 
 

 

 

Abstract 

 

Instrumental conditioning is a crucial substrate of adaptive behaviour, allowing individuals to 

selectively interact with the stimuli in their environment to maximise benefit and minimise 

harm. The extent to which complex forms of learning, such as instrumental conditioning, are 

possible without conscious awareness is a topic of substantial importance, and ongoing debate. 

In light of recent theoretical and empirical contributions casting doubt on the early 

demonstrations of unconscious instrumental conditioning, we revisit the question of its 

feasibility in two modes of conditioning. In Experiment 1, we used trace conditioning, following 

a prominent paradigm (Pessiglione et al., 2008) and enhancing its sensitivity. Success in this task 

requires participants to learn to approach reward-predictive stimuli and avoid punishment-

predictive stimuli through monetary reinforcement. All stimuli were rendered unconscious using 

forward-backward masking. In Experiment 2, we used delay conditioning to shorten the 

stimulus-outcome delay, retaining the structure of the original task but presenting the stimuli 

under continuous flash suppression to allow for an overlap of the stimulus, action, and outcome, 

as well as replacing monetary reinforcement with primary appetitive reinforcement. In both 

experiments, we found evidence for absence of unconscious instrumental conditioning, showing 

that participants were unable to learn to adjust their behaviour to approach positive stimuli and 

avoid negative ones. This result is consistent with evidence that unconscious stimuli fail to bring 

about long-term behavioural adaptations, and provides empirical evidence to support 

theoretical proposals that consciousness might be necessary for adaptive behaviour, where 

selective action is required.  
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5.1. Introduction 

The extent to which learning can proceed without conscious awareness has been an extensively 

studied question. While there have been successful demonstrations that simple associations can 

be learned without conscious awareness of the stimuli, even between different modalities (e.g. 

Scott, Samaha, Chrisley, & Dienes, 2018), the possibility of successful unconscious learning at 

increasing levels of complexity is unclear. One example of a complex learning process which has 

previously been suggested to proceed without cue awareness is instrumental conditioning, 

where agents learn the contingencies between stimuli in the world and their outcomes, and to 

selectively act upon them (e.g. approach/avoid; Mastropasqua & Turatto, 2015; Pessiglione et 

al., 2008). However, emerging evidence suggests that more complex forms of learning, including 

instrumental conditioning (Reber et al., 2018), contingency learning (Travers et al., 2018), and 

fear conditioning (Mertens & Engelhard, 2020) may not be possible unconsciously, as originally 

thought. Adding fuel to the debate are developments in experimental and statistical methods 

used to reliably assess absence of awareness (Dienes, 2015a; Rothkirch & Hesselmann, 2017; 

Shanks, 2017). With this in mind, we revisit the topic of unconscious instrumental conditioning. 

Instrumental learning is critical to adaptive behaviour (both ontogenetically and 

phylogenetically). As such, the extent to which it is feasible without conscious awareness is a 

question of considerable importance. In what follows, we attempt to replicate the original 

findings of Pessiglione et al (2008), employing more sensitive methods and a more robust 

statistical approach, in two different paradigms: a trace conditioning task using monetary 

reinforcements, following the original task (Experiment 1), and a delay conditioning task with 

appetitive and aversive primary reinforcements (Experiment 2). 

 Past research into unconscious learning suggests that simple forms of associative 

learning, ranging from classical conditioning, to emotional, visuospatial, or multisensory learning 

can proceed without conscious awareness of the stimuli (Clark & Squire, 1998; Faivre, Mudrik, 

Schwartz, & Koch, 2014a; Knight et al., 2003; Lin & He, 2009; Olsson & Phelps, 2004; Rosenthal 

et al., 2016, 2010; Scott et al., 2018; Seitz et al., 2009a). Learning is usually indexed with presence 

or absence of the conditioned response, or with reaction times (e.g. where shorter reaction 

times to congruent vs incongruent pairings are indicative of learning). Unaware learning (as well 

as priming) is typically observed when stimuli are presented at short spatiotemporal intervals, 

or concurrently (van Gaal et al., 2012). For example, unaware classical conditioning was 

demonstrated in delay scenarios (where stimuli to be associated overlap temporally), but not in 

trace scenarios (where they are separated by an interval; Clark & Squire, 1998).  
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In contrast, instrumental conditioning can be classified as a more complex process. 

Agents must not only learn the associations between different stimuli, or stimuli and their 

outcomes, but also deploy action selectively (e.g. approach or avoid), and adapt their behaviour 

in the long-term. This involves integrating information over a long temporal scale and distinct 

modalities, as involved in processing the visual input, extracting its predictive value, deploying a 

selective response, processing the reinforcement, and comparing the expected outcome with 

the actual outcome in order to update the representations of stimulus value. As such, it is a 

considerably more complex process than the aforementioned simpler forms of associative 

learning, which do not require selective decisions on whether to act or not, or a behavioural 

adaptation from trial to trial.  

Past theoretical and empirical accounts of conscious versus unconscious processing 

suggest that such an increased level of complexity should require conscious access. A number 

of theoretical contributions propose that consciousness is related to long-lasting, long-range 

connections between distinct brain regions, supporting recurrent information integration across 

distinct cognitive modules (Dehaene & Naccache, 2001; Dehaene & Changeux, 2011; Dehaene, 

Charles, King, & Marti, 2014; Lamme, 2006; Mudrik, Faivre, & Koch, 2014). As such, low-level or 

short-range (spatial or temporal) information integration might be possible without conscious 

awareness, but consciousness might be necessary at increased levels of complexity – for 

example, semantic knowledge, complex visual processing, decision-making and problem-solving 

(Baars, 2002), all of which involve integration of information across longer spatiotemporal 

intervals or larger spatial distance. Indeed, neuroimaging evidence has found conscious 

processing to be characterised by global, long-range spread of activity, in contrast to more 

localised, shorter-range projections when processing is unconscious (Baars, 2002; Baars, 

Ramsøy, & Laureys, 2003; Dehaene et al., 2014, 2001; Dehaene & Naccache, 2001; Melloni et 

al., 2007).  

Another important consideration is related to the methodology of assessing absence of 

consciousness during task performance. Although it is a frequent practice in unconscious 

processing research to infer absence of awareness when a behavioural measure (e.g. 

conditioning, priming, etc.) is above chance, while an independent measure of awareness is not 

significantly different from chance (e.g. a separate unconscious discrimination task), this 

approach has drawn criticism (Dienes, 2015a; Vadillo et al., 2016). Finding that performance on 

a separate awareness check does not differ from chance is not enough to infer true absence of 

awareness – a non-significant result cannot disambiguate between absence of an effect (i.e. 

support for the null hypothesis) and absence of evidence for an effect (i.e. insensitive data). In 

a meta-analysis, Vadillo, Konstantindis and Shanks (2016) argue that the seemingly chance-
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performance on this type of awareness test is more likely to reflect a false negative, especially 

in low-powered studies with small samples. This approach, also adopted in the Pessiglione et al 

study, can be rectified in two ways. One is to ensure that the methods to assess awareness are 

relevant and sensitive (Berry & Dienes, 1993; Shanks, 2017; Shanks & St. John, 1994). This could 

be achieved by, for instance, a closer similarity between the awareness test and the measure of 

interest. The second is to apply statistical methods, such as the Bayes factor, which allows to 

determine whether a null result indicates support for the null (e.g. absence of awareness) over 

the alternative hypothesis (presence of awareness), or whether the data are insensitive (Dienes, 

2014, 2016; Sand & Nilsson, 2016). Both of those approaches will be used in the present paper 

to ensure true absence of awareness. 

Instrumental conditioning is a crucial substrate of adaptive behaviour. Understanding 

whether it is achievable without conscious awareness is therefore of vital importance for 

theoretical and practical research investigating the boundaries of unconscious processing. With 

recent research casting doubt on the feasibility of more complex forms of unconscious learning, 

as well as the methodological and statistical artifacts which can contribute to falsely assuming 

absence of awareness, it is imperative to rigorously address the question of the feasibility of 

unconscious instrumental conditioning. Here, we present two experimental attempts to 

conceptually replicate Pessiglione and colleagues’ unconscious instrumental conditioning task. 

The original task constituted trace conditioning – participants learned the association between 

the subliminally presented stimulus and its outcome (presented supraliminally as monetary 

reinforcement), with an intervening gap of 3 seconds, during which action could have been 

executed (approach) or not (avoid). Experiment 1 is closely based on this paradigm, similarly 

adopting trace conditioning, and introducing minor methodological changes to enhance the 

sensitivity of the task. Experiment 2 seeks to evaluate whether unconscious instrumental 

conditioning can be achieved under conditions previously found to be more favourable for 

unconscious learning, namely where there is no temporal delay between the stimulus and 

outcome. Hence, Experiment 2 is a delay instrumental conditioning task, retaining the general 

structure of the original task, but ensuring that stimulus presentation overlaps with both the 

response, and the delivery of the reinforcement. To allow for the overlap of all three (which is 

not possible in just the visual domain), we replaced the secondary visual (monetary) 

reinforcement with primary reinforcement (appetitive and aversive tastes), which have been 

previously shown to be highly effective in achieving learning in humans (Birbaumer, Klucken, 

Angrilli, Andreatta, & Pauli, 2015; Martin-Soelch, Linthicum, & Ernst, 2007; Parkinson, Cardinal, 

& Everitt, 2000). The strong spatiotemporal overlap was designed in order to maximise the 

chance of observing conditioning. Notably, primary reinforcements might also offer a stronger 
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incentive to learn. In both experiments, we used Bayes Factors to determine whether the results 

sensitively support the null hypothesis (i.e. absence of learning) or the alternative hypothesis 

(presence of learning).  

 

5.2. Experiment 1 

Experiment 1 sought to conceptually replicate the unconscious instrumental conditioning task 

(Pessiglione et al., 2008), where participants learned to associate predictive cues with reward 

and punishment, and to adjust their behaviour accordingly by responding (Go) only to rewarding 

cues, and refraining from a response (NoGo) to punishing cues. Here, we retained the structure 

of the task, and introduced a number of changes to increase the sensitivity of the paradigm. 

Firstly, we used a staircased perceptual discrimination task, allowing to determine the sub-

threshold stimulus presentation duration for each participant individually (in contrast to keeping 

the duration at 33 or 50ms, as in Pessiglione et al). We exploited modern screen technologies 

with higher refresh rates, allowing to present stimuli closer to participants’ actual thresholds. 

Secondly, stimuli were presented in lower contrast, in order to maximise the potential exposure 

durations without being consciously perceived (following Scott et al., 2018). Thirdly, we disposed 

of the neutral cue, which was not predictive of any outcome and used in the original experiment 

primarily for the purpose of comparisons in functional neuroimaging.  

Finally, we used a trial-by-trial awareness check, allowing to monitor the levels of 

awareness on an ongoing basis, and analyse only the trials which were genuinely outside of 

conscious awareness. In the original Pessiglione et al study, awareness was assessed with a 

separate measure, and participants’ performance on the task of interest is considered unaware 

if they perform at chance in the separate awareness check (this has also been a standard 

approach in the field). However, this does not account for the possibility of transient, 

undetected moments of awareness during the task being misattributed to unconscious 

knowledge. As such, a trial-by-trial check allows us to measure awareness in a more immediate 

fashion (Berry & Dienes, 1993; Newell & Shanks, 2013). Because our staircase should sensitively 

settle on sub-threshold conditions for each participant, the number of conscious trials to be 

excluded should be small. While excluding individual aware trials (or participants) can lead to 

regression to the mean (Shanks, 2017), our analyses have demonstrated its effect to be 

negligible if only a small proportion of trials or participants are excluded. Here, we will adopt a 

threshold of 25%, which corresponds to a maximum conscious contamination of a type I d’ of 

0.05 (see supplementary material in Skora, Livermore, Dienes, Seth, & Scott (accepted) for a 

method to determine the maximum proportion of conscious knowledge inadvertently 
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contributing to observed unconscious performance at different proportions of trials classified as 

unconscious).  

  

5.2.1. Method 

5.2.1.1. Participants 

46 participants (15 males, 1 unknown) with a mean age of 23.7 years (SD = 9.84) were recruited 

for participation via the University of Sussex online recruitment system. Sample size was 

determined using the Bayesian Stopping Rule, with data collection continuing until a sensitive 

result was obtained in the main (conditioning) task (see Analyses and Results for detail). All 

participated in exchange for course credit. All reported having normal or corrected-to-normal 

vision, and no current or history of cardiac or neurological illness. Ethical approval was granted 

by the School of Psychology ethics committee at the University of Sussex, and the study was 

conducted in accordance with the Declaration of Helsinki.  

 

5.2.1.2. Stimuli and Materials 

The experiment was implemented in Matlab 2017b (MathWorks, 2017), running Psychophysics 

Toolbox (Brainard, 1997). All stimuli were presented on a Samsung 2233RZ LCD monitor (1680 

by 1050 pixels) with a refresh rate of 120Hz, with the aim of ensuring fast and precise stimulus 

presentation in line with previous recommendations (Wang & Nikolic, 2011). 

The target stimuli included 12 neutral symbols (6 vertically symmetrical, 6 asymmetrical) 

obtained from Agathodaimon font in the main task, and two circular shapes in the perceptual 

discrimination task used for threshold finding (see Appendix 1). All were 180x180 pixels in size, 

and presented in light grey (RGB: 217 217 217) on white background. The stimuli were forward 

and backward masked with black and white noise masks, also 180x180 pixels in size, with block 

size of 3x3 pixels. The forward and backward masks were different, but kept consistent between 

blocks and participants. Low contrast cues and the type of mask were deliberately chosen in 

order to increase the duration of presentation without conscious awareness, following Scott, 

Samaha, Chrisley and Dienes (2018).  

 

5.2.1.3. Procedure 

Threshold setting.  

Participants were seated with their chin on a chin rest placed at 45cm distance from the 

screen. Each session began with the threshold of visual awareness determined individually for 

each participant using a masked perceptual discrimination task. Each trial began with a fixation 
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cross (500ms), followed by a mask (300ms), a target cue (either a symmetrical or an 

asymmetrical circular shape, starting at 600ms), and another mask (300ms). After each 

sequence, participants were asked to determine whether the target cue was symmetrical or 

asymmetrical by pressing corresponding arrows. Next, they were asked to assess whether they 

had any confidence in their judgment, or if they were guessing, also using corresponding arrows 

(following Scott et al., 2018). They were explicitly instructed to indicate ’some confidence’ if they 

had any degree of confidence, and ‘total guess’ only if they felt they did not see the cue and 

were responding randomly. Each time a correct response was made with confidence, the display 

duration of the target cue was reduced by 50ms on the following trial. When a duration of 100ms 

was reached, or the first guess response was made, the display duration returned to the previous 

level (+50ms), and subsequently reduced in 8.35ms steps on the following trials, corresponding 

to a single screen refresh duration for a 120Hz screen. A reduction in exposure duration 

continued to be made after each non-guess response but not after guess responses.  This 

process continued until participants indicated guessing on six consecutive trials, regardless of 

the accuracy of responses. The cue display duration on those trials was set as their individual 

unconscious threshold. The average display duration was 208ms (SD = 64ms). 

 

Conditioning task.  

The main task was adapted from the subliminal instrumental conditioning task 

approximating a deterministic instrumental learning scenario used previously (Pessiglione et al, 

2008), in which participants learn to approach (Go response) or avoid (NoGo) the presented 

stimuli. Here, each trial consisted of a fixation cross (500ms), mask (300ms), target cue (display 

duration determined in the perceptual discrimination task), and mask (300ms), followed by a 

decision prompt in the form of a question mark, during which participants had 2 seconds to 

make a response (see Fig.16. for task chronology). While the question mark was presented, 

participants could decide if they want to ‘approach’ the cue by pressing the spacebar (Go) or 

‘avoid’ the cue by refraining from pressing (NoGo). Pressing the space bar (Go) indicated a 

decision to take the risk, following which the participant could win 1 token (golden token 

displayed on the screen) or lose 1 token (a red cross over the golden token displayed), depending 

on the type of cue presented between the masks. Not pressing the space bar (NoGo) indicated 

a safe choice, which always resulted in a null outcome (greyed-out token). Participants were 

instructed that they should follow their instincts or gut feelings in making the decisions, as they 

should not be consciously aware of the type of cue presented. 

Following the feedback presentation, participants were asked to report whether they 

thought the cue was vertically symmetrical or asymmetrical, and their confidence in that 
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judgment on a binary scale (some confidence or total guess). Both responses were made with 

the arrow keys before proceeding to the next trial. Following 3 correct and confident responses 

(indicating awareness), display duration was reduced by another single screen refresh (8.35ms). 

Participants were explicitly instructed that cue symmetry was unrelated to its rewarding or 

punishing nature. They were also shown examples of vertical symmetrical and asymmetrical 

stimuli on a different sample of images. 

The task contained 2 blocks of 100 trials, each with 50 rewarding and 50 punishing trials 

in randomised order. For each block, two target cues (one symmetrical, one asymmetrical) from 

the pool of 12 were randomly assigned to be rewarding or punishing, without replacement, in 

order to ensure each block contained a novel pair. 

Note that the task was conducted as a control condition of a larger experiment (Skora, 

2020; doctoral thesis, also https://osf.io/b34uv/), not reported here, where 4 additional blocks 

were conducted with an added manipulation (600 trials in total). The control blocks reported 

here are fully independent from the manipulation. 

 

 

Figure 16. A single trial sequence. Participants are presented with a single cue (rewarding or 

punishing), rendered unconscious with forward-backward masking. After cue presentation, they 

are requested to make an approach (Go) or avoid (NoGo) response, following their instincts. In 

the event of a Go response, the response window closes immediately, but stays open for 2 

seconds if no response is recorded. Here, a participant executed the Go response following a 

rewarding cue, and were rewarded with one token. Each trial ends with a cue symmetry 

judgment and confidence judgment to assess cue awareness. 

 

 

 

 

https://osf.io/b34uv/
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5.2.2. Analyses and Results 

5.2.2.1. Exclusion criteria 

In order to ascertain that analyses are conducted only on trials that were truly unconscious, all 

individual trials where participants made a correct symmetry judgment with confidence were 

marked as aware and excluded (12% of all trials). Seven participants (15%) who were aware on 

more than 25% (50 of 200) of all trials were excluded from further analysis. Two participants 

were excluded due to failing to make any Go responses, yielding a final sample of 37 participants.  

For the exploratory reaction time (RT) analysis, RTs under 100ms or over 2 standard 

deviations from individual means were excluded (8%). One participant who lost more than 25% 

of RT trials (50) to those criteria was excluded, yielding a sample of 36 participants for the RT 

analysis. Note that NoGo trials yielded no RTs, thus were not included in the analysis.  

 

5.2.2.2. Evidence of learning: Performance in the conditioning task 

Type I d’ (a Signal Detection Theoretic measure of sensitivity to signal versus noise; Stanislaw & 

Todorow, 1999) was computed for the main conditioning task, treating Go responses to 

rewarding cues as Hits, and Go responses to punishing cues as False Alarms. The resulting 

measure of sensitivity can be taken as evidence of successful learning (i.e. discrimination 

between the cues) if it is significantly above 0.  

At the group level, d’ scores were entered into a one-sample t-test against 0, which 

indicates no ability to discriminate the stimuli (no sensitivity between signal versus noise, akin 

to chance performance). A Bayes Factor (B; Dienes, 2015, 2016)) was computed for the 

difference, with a half-normal distribution, mean specified as 0, and d’ of 0.7 as the SD of the 

mean (corresponding to the expected effect size, based on Pessiglione et al., 2008). In line with 

the Bayesian Stopping Rule (Dienes, 2015b), data collection continued until a sensitive result 

was found in support of either H0 (absence of learning; by convention indicated by a B smaller 

than 0.3) or H1 (presence of learning; indicated by a B larger than 3). 

Total d’ was not significantly different from 0 (M = 0.02, SE = 0.05; t(36) = 0.46, p = 0.649, 

BH(o,o.7) = 0.10; see Figure 17. As such, we found evidence for the absence of unconscious 

instrumental conditioning. 
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Figure 17. Left: average type I d’ with individual data points. Right: average proportions of 

correct responses (Go to rewarding and NoGo to punishing cues) across the length of the trial 

block. Ribbon represents a regression line (90% CI). Participants’ choices throughout the 

duration of the block remained erratic and around chance level, failing to display any evidence 

of learning the correct decisions. 

 

5.2.2.3. Exploratory analysis: Reaction times 

An RTdifference index was computed by subtracting RTs to rewarding cues from RTs to punishing 

cues. As such, positive values indicate that participants took a longer time to respond to 

punishing cues than to rewarding cues, in line with RT-oriented indicators of learning (e.g. Atas, 

Faivre, Timmermans, Cleeremans, & Kouider, 2014). Zero indicates that there was no difference 

between the two.  

The index was entered into a one-sample t-test against 0. B was computed with a half-

normal distribution, mean specified as 0, and a value of 34ms as the SD of the mean (obtained 

from a past study which found a RT difference in the absence of performance effects in a similar 

task (Atas et al., 2014)). The t-test revealed that RTdifference was not significantly different from 0 

(M = 14.06, SE = 17.81, t(35) = 0.79, p = 0.435, BH(0,34) = 0.90).  

 

5.2.3. Conclusions of Experiment 1 

Experiment 1 attempted to conceptually replicate the unconscious instrumental (trace) 

conditioning task, used by Pessiglione et al (2008). The results indicate that no unconscious 

instrumental conditioning was achieved – when participants had no conscious awareness of the 

rewarding or punishing nature of the stimuli, they were unable to discriminate between them 

and adjust their behaviour accordingly (i.e. choose to Go or NoGo, respectively). Bayes Factors 

were used to supplement null hypothesis significance tests, allowing us to assert that the null 
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result obtained indicates absence of learning. This result is a failure to replicate the original 

Pessiglione et al (2008) finding. 

 In light of previous research and the theoretical contributions about the limits of 

unconscious processing (e.g. Mudrik et al., 2014), we considered it plausible that the trace 

conditioning paradigm used here might make it harder to achieve learning, even if it is possible 

without cue awareness. In the present task, participants had to learn from two events – the 

stimulus and its consequence – separated by an interval of up to 2 seconds, during which they 

may or may not execute an action. If the large temporal interval is preventing the unconsciously 

presented predictive cue from being integrated with subsequent information, shortening the 

delay might offer a solution. We address this possibility in Experiment 2 by amending the task 

to constitute delay, rather than trace, instrumental conditioning. 

 

5.3. Experiment 2 

Experiment 2 sought to replicate the unconscious instrumental conditioning task again, this time 

shortening the stimulus-outcome delay. To achieve this, we used a delay conditioning paradigm, 

while retaining as much of the structure of the original task as possible. As such, we employed 

the same Go/NoGo task, where participants learned to associate predictive cues with reward 

and punishment, and to adjust their behaviour accordingly by responding (Go) only to rewarding 

cues, and refraining from a response (NoGo) to punishing cues. In contrast to Experiment 1, the 

response and reinforcement delivery occurred during (rather than following) stimulus 

presentation, constituting delay conditioning. Prolonged stimulus presentation was enabled 

through continuous flash suppression (CFS; Tsuchiya & Koch, 2005). CFS uses interocular 

suppression to render the target stimulus unconscious by presenting it to the non-dominant eye, 

while simultaneously presenting a high-contrast flashing pattern (called the Mondrian pattern) 

to the dominant eye. Instead of monetary rewards, Experiment 2 used appetitive and aversive 

tastes as primary rewards, allowing for extended delivery to overlap with stimulus presentation. 

In a fashion identical to Experiment 1, a trial-by-trial awareness check was used, with the same 

exclusion threshold of a maximum of 25% of individual trials. 

 

5.3.1. Method 
5.3.1.1. Participants 

39 participants (5 male) with a mean age of 21 years (SD = 5.2) were recruited for the study via 

the University of Sussex online recruitment system. Sample size was determined with the 

Bayesian Stopping Rule (see section 3.2.2. for detail). All participated in exchange for course 
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credit. Participants were required to have normal or corrected-to-normal binocular vision, no 

current or history of neurological illness and/or diabetes, and no allergies to gluten, lactose, milk 

or chocolate. Further exclusion criteria included dislike of chocolate milkshakes and/or smoking 

more than five cigarettes a day, as those factors might affect responsiveness to tastes. 

Participants were requested to refrain from eating and drinking (apart from water) for 2 hours 

prior to the experiment. Ethical approval was granted by the School of Psychology ethics 

committee at the University of Sussex, and the study was conducted in accordance with the 

Declaration of Helsinki. The study was pre-registered on Open Science Framework at 

https://osf.io/jt8m9. 

 

5.3.1.2. Stimuli and Materials 

The experiment was implemented in Matlab 2018b (MathWorks, 2018) with the Cogent toolbox 

(UCL LoN, 2003). All stimuli were presented on a Dell monitor (1280 by 1024 pixels), with a 

refresh rate of 60Hz7. Binocular presentation was ensured with a mirror stereoscope. Responses 

were collected with a standard keyboard. 

 The target stimuli were three geometrical shapes, including one symmetrical and two 

asymmetrical shapes (generated by randomly overlaid shapes; see Appendix 3). All stimuli were 

120 by 120 pixels in size, presented in dark grey (RGB: 80,80,80) on lighter grey (RGB: 

128,128,128) background.  

 The solution used as the appetitive stimulus was a chocolate milkshake (Shaken Udder 

Chocolush). The aversive stimulus was a mixture of food-grade quinine monohydrochloride 

dihydrate, at the FDA-approved maximum concentration (80mg/l; Sigma Aldrich), and standard 

table salt (NaCl; 12.5g/l). Custom-made syringe pumps were used to administer the solutions to 

participants’ mouths through two clean silastic tubes (one per solution), inserted into the 

corners of the mouth and placed in the middle of the tongue. The pumps were triggered directly 

from the Matlab task script, delivering a 0.5ml bolus of the corresponding solution at a time. 

 

5.3.1.3. Procedure 

Conditioning task. 

The conditioning task followed a similar Go/NoGo procedure as outlined in Experiment 

1, amended for presentation under continuous flash suppression (CFS; Tsuchiya & Koch, 2005). 

During the unconscious presentation of each cue, participants were asked to decide if they want 

                                                           
7 A 120Hz screen, as used in Experiment for the purpose of sensitive threshold finding, was no longer 
necessary for a CFS setup. 

https://osf.io/jt8m9
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to ‘approach’ the cue by pressing the spacebar (Go) or ‘avoid’ the cue by refraining from pressing 

(NoGo). Approaching the cue resulted in the delivery of a 0.5ml bolus of the corresponding 

solution – appetitive if they approached the rewarding cue, and aversive if they approached the 

punishing cue. A NoGo response was again considered a safe choice, which resulted in no taste 

outcome. In order to further incentivise learning and ensure participants do not default to the 

safe choice, each correct response additionally resulted in winning a token. Participants were 

instructed to maximise their token winnings for an extra prize draw entry. 

The cues were presented unconsciously using CFS, with the cue itself presented to 

participants’ non-dominant eye, and a colourful Mondrian pattern flashing at the rate of 10Hz 

presented simultaneously to the dominant eye through a mirror stereoscope, placed atop a 

chinrest at a 50cm distance from the screen. Ocular dominance was established prior to 

beginning with a standard Miles test (Miles, 1930). The unconscious presentation of each cue 

started with a fade-up period of 500ms. A further 500ms after the cue reached full contrast, the 

fixation dot (overlaid on displays to both eyes) changed colour from black to white, indicating 

that response was required. The response window remained open for 1000ms. When the 

participant executed a Go response, a pump was triggered to deliver the corresponding taste 

outcome (appetitive or aversive, depending on the type of the cue). The taste delivery continued 

for 2000ms, while the cue remained on-screen (concurrently with the Mondrian pattern) for 

1000ms, ensuring a full second of temporal overlap between the cue and the outcome (reward 

or punishment), constituting delay conditioning. See Figure 18 for an illustration of the trial 

sequence.  

Following the taste delivery, participants were asked to report whether the cue was 

symmetrical or asymmetrical, and their confidence in that judgment on a binary scale (some 

confidence or total guess). Both responses were made with the arrow keys before proceeding 

to the next trial. 

The task consisted of 1 block of 100 trials, with a total of 50 rewarding and 50 punishing 

trials in a randomised order, as well as a short practice round. The task used two stimuli (one 

symmetrical, one asymmetrical), out of which one was randomly assigned to be appetitive, and 

one to be aversive, for each participant. 
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Figure 18. Single trial sequence in Experiment 2, illustrating the binocular presentation with the non-dominant eye (left) receiving the cue (predictive of reward 

or punishment), and the dominant eye receiving the Mondrian pattern. Following the cue reaching full contrast, participants are required to make an approach 

(Go) or avoid (NoGo) response, and are rewarded with 0.5ml of chocolate milkshake or punished with a 0.5ml of a quinine/saline solution accordingly. The 

taste delivery overlaps with cue presentation for 1000ms and continues for another 1000ms. Each trial ends with a cue symmetry judgment and confidence 

judgment to assess cue awareness on the trial.
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Liking and familiarity ratings.  

 Following the conditioning task, the two cues used and the third, previously unseen cue 

were presented on the screen in a randomised order in a single column, alongside corresponding 

VAS scales. First, participants were asked to rate their liking of each stimulus, on a scale from 0 

(not at all) to 10 (extremely). Next, they were asked to rate their familiarity with each, again on 

the same 0-10 scale. These were not analysed in the context of this study. Following the ratings, 

participants were thanked and debriefed. 

 

5.3.2. Results 

5.3.2.1. Exclusion criteria 

The exclusion criteria were identical to Experiment 1. 31.8% of all trials were marked as aware 

and excluded. 20 (51%) participants who were aware on more than 25% (25) of all trials were 

classified as aware. The remaining 19 participants were found to be aware on 9.6% of all trials. 

The proportion of participants classified as aware on more than 25% of the trials was surprisingly 

high. We suspect that the length of stimulus presentation under CFS (2 seconds) may have made 

it easier for some participants to see the stimuli on some occasions. Once seen, the stimuli are 

typically easier to see on subsequent trials, which is what likely resulted in the high rate of aware 

trials. Because of the risk of regression to the mean following post-hoc selection of a large 

number of participants (Shanks, 2017), we found that the maximum proportion of affected trials 

could be 55%, corresponding to a d’ of 0.99 (computed with the method used in Experiment 1). 

Excluding such a large proportion of participants could lead to a false-positive result (presence 

of learning), where some conscious knowledge is mistakenly included in the measure of 

unconscious knowledge, in this case overinflating the d’ by up to 0.99. As we will show below, 

this possibility is not relevant here, because the result shows absence of learning (even after 

allowing for the contribution of conscious knowledge).  

For maximum rigour and transparency, analysis was conducted on both the unaware 

sample as planned, and the full sample (those classified as aware and unaware), after excluding 

individual aware trials. 

For the reaction time (RT) analysis, RTs under 100ms or over 2 standard deviations from 

individual means were excluded (4.49%). No participant lost more than 12% of their trials to this 

criterion. Again, NoGo trials were not included in the analysis. 
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5.3.2.2. Evidence of learning: Performance in the conditioning task 

At the group level, d’ scores were entered into a one-sample t-test against 0, which indicates no 

ability to discriminate between the stimuli (chance performance). B was computed for the 

difference, with a half-normal distribution, mean specified as 0, and d’ of 0.7 as the SD of the 

mean (corresponding to the expected effect size from Pessiglione et al., 2008). In line with the 

Bayesian Stopping Rule, data collection continued until a sensitive result was found either in 

support of the H0 (absence of unconscious learning; B < 0.3) or the H1 (evidence for unconscious 

learning; B > 3). 

For the sample with aware participants excluded (N = 19), total d’ was not significantly 

different from 0 (M = -0.10, SE = 0.10; t(18) = -1.00, p = 0.329, BH(o,o.7) = 0.07; see Figure 19. As 

such, we found evidence for the absence of unconscious instrumental conditioning. For the full 

sample (participants classified both as aware and unaware; N = 39), total d’ was also not 

significantly different from 0, but the B was insensitive (M = 0.13, SE = 0.14; t(38) =0.97, p = 

0.339, BH(o,o.7) = 0.51).  

  

5.3.2.3. Exploratory analysis: Reaction times 

The RTdifference index was computed again by subtracting RTs to rewarding cues from RTs to 

punishing cues (with positive values indicating that participants took a longer time to respond 

to punishing than to rewarding cues), and entered into a one-sample t-test against 0. B was 

computed with a half-normal distribution, mean specified as 0, and a value of 34ms as the SD of 

the mean (obtained from a past study which found a RT difference in absence of performance 

effects in a similar task, Atas et al., 2014).  For the sample with aware participants excluded (N 

= 19), the t-test revealed that RTdifference was not significantly different from 0 (M = 7.98ms, SE = 

9.69, t(18) = 0.83, p = 0.420, BH(0,34) = 0.59). The same was true for the full sample (N = 39; M = 

2.84, SE = 15.69, t(38) = 0.18, p = 0.857,  BH(0,34) = 0.48).  
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Figure 19. Panel A, left: average type I d’ with individual data points (unaware sample, N=19). 

Panel A, right: average proportions of correct responses (Go to rewarding and NoGo to 

punishing cues) across the length of the trial block. Ribbon represents a regression line (90% CI). 

Panel B, left: average type I d’ with individual data points (full sample, N = 39). Panel B, right: 

average proportions of correct responses (Go to rewarding and NoGo to punishing cues) across 

the length of the trial block. Ribbon represents a regression line (90% CI). Participants’ choices 

throughout the duration of the block remained erratic and around chance level, failing to display 

any evidence of learning the correct decisions. Note that individual aware trials were excluded. 

 

 

5.3.3. Conclusions of Experiment 2 

Experiment 2 made a second attempt to replicate unconscious instrumental conditioning 

(Pessiglione et al., 2008), this time with a delay conditioning paradigm. The results demonstrate 

that no unconscious instrumental conditioning was achieved, even when the temporal delay 

between the presentation of the stimulus and its consequence overlapped in time. Again, when 

participants had no conscious awareness of the stimuli, they were unable to adjust their 
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responses accordingly (i.e. choose to Go in response to rewarding stimuli and NoGo to punishing 

stimuli). Bayes Factors allowed us to assert that the null result obtained indicates lack of 

learning. This result constitutes a failure to conceptually replicate unconscious instrumental 

conditioning. 

  

5.4. General Discussion 

The extent to which complex forms of learning, such as instrumental conditioning, are possible 

without conscious awareness is still an unresolved question. To our knowledge, evidence for 

unconscious instrumental learning has been limited (Pessiglione et al., 2008; Mastropasqua & 

Turatto, 2015) and disputed (Reber et al., 2018). Yet, instrumental behaviour is vital and one of 

the oldest forms of adaptive behaviour (both phylogenetically and ontogenetically). As such, we 

consider the extent to which it can or cannot proceed unconsciously an important question to 

settle. In the present paper, we revisited unconscious instrumental conditioning in two modes 

of conditioning: trace (Experiment 1) and delay (Experiment 2). We enhanced the sensitivity of 

the paradigms, and manipulated the temporal delay between stimulus and outcome – 

previously identified as a key aspect of unconscious learning. 

Experiment 1 attempted to revisit the original Pessiglione et al (2008) finding obtained 

in an unconscious instrumental (trace) conditioning task. Our results show evidence for the 

absence of unconscious instrumental conditioning – when participants had no conscious 

awareness of the rewarding or punishing nature of the stimuli, they were unable to discriminate 

between them and adjust their behaviour accordingly (i.e. choose to Go or NoGo, respectively). 

Bayes Factors allow us to assert that the null result obtained indicates an absence of learning 

and not simply insensitivity. This result is a failure to replicate the original Pessiglione et al (2008) 

finding. 

Following the failure to demonstrate unconscious learning, we hypothesised that the 

large temporal gap between the stimulus and its outcome might hinder the ability to learn. Past 

theoretical and empirical work has shown that unconscious associative learning or priming is 

more likely to occur at shorter temporal intervals (e.g. van Gaal et al., 2012), or when the events 

are overlapping in time (delay conditioning; Clark & Squire, 1998). Thus, Experiment 2 made a 

second attempt to investigate unconscious instrumental conditioning, this time with a delay 

conditioning paradigm. Again, the results show evidence for absence of unconscious 

instrumental conditioning, even when the stimulus, response and reinforcement temporally 

overlapped. As before, when participants had no conscious awareness of the stimuli, they failed 

to adjust their responses accordingly (i.e. choose to Go in response to rewarding stimuli and 
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NoGo to punishing stimuli). Bayes Factors again allowed us to assert that the null result obtained 

indicates absence of learning. As in Experiment 1, this result constitutes a failure to conceptually 

replicate unconscious instrumental conditioning.  

Despite extensively demonstrated effects in simpler associative learning or priming 

tasks, it appears that unconscious instrumental learning cannot be achieved even if the stimulus-

outcome delay is shortened to the point of total overlap. As such, perhaps the problem is not 

the length of the delay. Instead, it may in fact be the instrumental component of the task itself. 

Previous theoretical contributions have already suggested that conscious access might be 

necessary for higher-order processes, including selective decision-making (Baars, 2002; 

Dehaene & Changeux, 2011; Lamme, 2006). On those accounts, consciousness allows for 

information exchange between distinct cognitive modules through long-lasting, long-range 

recurrent interactions between brain areas. Hence, it might be key for flexible and lasting 

information processing strategies. Regardless of the temporal intervals between events, 

instrumental learning is a complex process, necessitating integration of information across 

distinct modalities involved in processing the visual input, extracting its predictive value from 

past interactions, deploying the response, processing the reinforcement, and comparing the 

expected outcome with actual outcome to update the representations of stimulus value. Such 

integration might simply not be possible when the stimulus is presented unconsciously, as it may 

not have the capacity to evoke such a broad range of activity. Corroborating this interpretation, 

past work has already pointed out that unconscious stimuli are less likely to evoke long-term 

behavioural adaptations than conscious stimuli (e.g. in post-error slowing or conflict adaptation; 

(de Lange, van Gaal, Lamme, & Dehaene, 2011; Kunde, Reuss, & Kiesel, 2012; Reber et al., 2018; 

Travers et al., 2018; van Gaal et al., 2012). Instrumental learning might constitute a similar case. 

If instrumental learning does indeed require conscious access to proceed, the earlier 

results supporting unconscious instrumental learning may have resulted from transient 

moments of awareness during the learning task contributing to the unconscious knowledge. 

Those may have been undetected due to the lack of immediate, sensitive measures (Berry & 

Dienes, 1993; Newell & Shanks, 2013; Shanks & St. John, 1994), such as trial-by-trial awareness 

checks. In the two experiments reported here, it was evident that most participants were aware 

of the nature of the stimuli on at least some of the trials, and that there are individual differences 

in those proportions. Capturing aware trials and excluding them ensured that the trials analysed 

were genuinely unconscious, and constituted a considerable improvement over previously 

employed methods. Crucially, it also avoids the potential for anything other than a negligible 

effect from regression to the mean (Shanks, 2017), the extent of which we computed for both 

experiments. 
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Nonetheless, it is worthwhile to address whether our methodology, although more 

rigorous, made it more difficult for learning to happen. While a trial-by-trial awareness check 

was essential to rigour, it introduced a small, variable time lag (around 1 second) between the 

trials. This might have further disrupted the process of temporal integration across trials, 

affecting the long-term consolidation of the stimulus-outcome associations learned within 

them. However, it is the integration of events within the trial that is vital to learning in the first 

place. As such, we consider any plausible interference of the inter-trial delay to be minor.  

Another important consideration is the large number of participants displaying 

awareness of stimuli in Experiment 2. According to our criteria laid out in Experiment 1, we 

allowed a maximum of 25% of aware trials to be excluded per participant. This corresponds to 

the maximum level of conscious contamination of a type I d’ of 0.05 (Skora et al., accepted). Yet, 

in Experiment 2 a half of the sample was found to be aware on more than 25% of the trials, and 

hence excluded. Exclusion of this surprisingly large sample poses a risk of regression to the 

mean, where the remaining sample might show a false-positive (evidence of learning) purely as 

a statistical artefact (Shanks, 2017). In the interest of maximum transparency, we analysed both 

samples (with individual aware trials excluded), showing that both exhibited absence of learning 

– thus rendering the risk of a false-positive on the remaining unaware sample irrelevant. 

The surprisingly large proportion of participants showing awareness of the stimuli under 

CFS on over 25% of trials is likely to have stemmed from the long duration of each CFS trial (2 

seconds), which was necessary to allow for cue presentation to temporally overlap with the 

response and the response-contingent taste reinforcement. With known individual differences 

in CFS (e.g. Gayet & Stein, 2017), it is plausible that some people may have seen the cue 

presented under interocular suppression at this duration easier than others. Once seen, it 

typically becomes easier for the stimulus to be perceived on subsequent occasions. This could 

be an issue for consideration for future research. Here, we were able to reliably account for that 

in the analyses presented.  

To summarise, we used a trace conditioning paradigm (Experiment 1, following a 

method used by Pessiglione et al., 2008) and a delay conditioning paradigm (Experiment 2) to 

investigate the feasibility of unconscious instrumental conditioning with different temporal 

delays. We provide rigorous evidence demonstrating that instrumental conditioning cannot be 

achieved without stimulus awareness, corroborating the emerging evidence that complex types 

of learning, including instrumental conditioning, require conscious awareness. This provides 

strong support for the theoretical proposals that unconscious stimuli fail to bring about long-

term behavioural adaptations, and that consciousness might be necessary for complex 
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processes, where selective action is required. As such, this result contributes to mapping out the 

boundaries of unconscious processing in adaptive behaviour. 
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6.  
SENSORIMOTOR PREDICTIONS SHAPE 

REPORTED CONSCIOUS VISUAL EXPERIENCE 
 

 

 

Abstract 

Accounts of predictive processing propose that conscious experience is influenced not only by 

passive predictions about the world, but also by predictions encompassing how the world 

changes in relation to our actions – that is, on predictions about sensorimotor contingencies. 

We tested whether valid sensorimotor predictions, such as learned associations between stimuli 

and actions, shape reports about conscious visual experience. Two experiments used 

instrumental conditioning to build sensorimotor predictions, linking different stimuli with 

distinct actions. Conditioning was followed by a breaking continuous flash suppression (b-CFS) 

task, measuring the speed of reported breakthrough for different pairings between the stimuli 

and prepared actions; including those congruent and incongruent with the trained sensorimotor 

predictions. In Experiment 1, counterbalancing of the b-CFS task was achieved by repeating the 

same action within each block but having them differ across the two. Experiment 2 sought to 

increase the predictive salience of the actions by avoiding the repetition within blocks. 

Mixed-effects modelling assessed the speed of reported conscious perception in the b-

CFS task.  In Experiment 1, breakthrough times were numerically shorter for congruent than 

incongruent pairings but Bayesian analysis supported the null hypothesis of no influence from 

the sensorimotor predictions.  In Experiment 2, reported consciousness perception was 

significantly faster for congruent than for incongruent pairings. A meta-analytic Bayes factor 

combining the two experiments provided further confirmation of this effect. Hence, we provide 

evidence for a key implication of the action-oriented predictive processing approach to 

conscious perception, namely that sensorimotor predictions shape our conscious experience of 

the world. 
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6.1. Introduction 

A growing body of experimental work, rooted in the predictive processing framework (Clark, 

2013; Hohwy, 2013, 2020; Rao & Ballard, 1999), shows that perceptual  experiences are 

influenced by beliefs or predictions about the world. Valid predictions have been shown to 

facilitate access to visual consciousness (Meijs, Slagter, De Lange, & Simon Van Gaal, 2018; 

Melloni, Schwiedrzik, Muller, Rodriguez, & Singer, 2011; Pinto, van Gaal, de Lange, Lamme, & 

Seth, 2015), reduce repetition suppression (Summerfield, Trittschuh, Monti, Mesulam, & Egner, 

2008), improve metacognition (Sherman, Seth, Barrett, & Kanai, 2015), and aid interpretation 

under perceptual ambiguity (Aru, Rutiku, Wibral, Singer, & Melloni, 2016; Panichello et al., 

2013).  

Within the predictive processing framework, predictions are instantiated by 

probabilistic generative models, encoded in cortical hierarchies. Incoming sensory signals, such 

as visual input, are compared against descending predictions to give rise to prediction errors 

(PEs) at each hierarchical level of processing. PEs can then be suppressed by updating 

predictions (corresponding to perceptual inference). In this framework, conscious sensory 

experience has been proposed to reflect the perceptual prediction that best suppresses PEs 

across hierarchical levels (e.g. Hohwy, 2013; Seth et al., 2016). In other words, conscious 

experience is shaped by the posterior prediction that ‘best’ predicts the (hidden) causes of 

sensory signals. Hence, when perceptual predictions are valid, conscious access to the target 

stimulus should be facilitated, as reported in the above studies.  

Recent accounts of predictive processing move beyond passive perception by putting 

action at the centre of the relationship between prediction and conscious experience. From this 

theoretical perspective, perceptual experience is influenced not only by passive predictions 

about the world, but more generally by predictions encompassing the coupling or contingency 

between actions and sensory signals – i.e., on predictions about sensorimotor contingencies 

(Clark, 2015a; O’Regan & Noë, 2001; Seth, 2014). According to this view, the predictions that 

best suppress PEs are not necessarily those which are the most veridical, but those which best 

support adaptive interactions with the world (Clark, 2015a, 2016; Seth, 2014, 2015; Tschantz, 

Seth, & Buckley, 2020). In this light, action emerges as not just an output, but as an integral part 

of our experience of the world. This perspective raises an important question: how is conscious 

perception shaped by the validity of predictions about sensorimotor contingencies, where such 

contingencies could reflect, for example, learned associations between a stimulus and an 

action? 
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Action is already known to modulate conscious perception in a number of ways. 

Voluntary action has been found to help disambiguate a bistable or otherwise ambiguous 

percept if the action is congruent with an aspect of that percept, e.g. when the direction of 

movement corresponds to the direction of moving dots (Beets et al., 2010; Di Pace & Saracini, 

2014; Maruya et al., 2007; Mitsumatsu, 2009; Suzuki et al., 2019). A comparable effect has been 

found for proprioception, where correspondence between the target and proprioceptive 

information can bias or sharpen the visual percept (Butz et al., 2010; Salomon et al., 2013; Yon 

et al., 2018). For instance, access to visual awareness was shown to be faster for images of hands 

that matched the orientation of participants’ own hands (Salomon et al., 2013). Crucially, none 

of these studies directly manipulated sensorimotor contingencies. As such, they cannot 

distinguish the effects of predictions about sensorimotor contingencies from the effects of 

congruency between stimuli and actions. This is a distinction of theoretical importance. It is the 

difference between examining the contribution to conscious experience made by maintaining a 

prediction about the action one will take in response to a stimulus (sensorimotor prediction), 

versus the contribution of, for example, a simple correspondence between the direction of an 

agent’s action and the direction of some stimuli in the world (stimulus-action congruence).   

We set out to test whether predictions about sensorimotor contingencies affect 

reportable conscious perception of visual stimuli. We developed a novel two-stage paradigm in 

which we operationalised sensorimotor contingencies as learned associations between visual 

stimuli and subsequent actions. We call these learned associations ‘sensorimotor predictions’. 

We were then able to examine the effects of valid versus invalid sensorimotor predictions on 

speed of access to visual consciousness, quantified through the proxy of breakthrough time in 

continuous flash suppression (b-CFS; Jiang, Costello, & He, 2007; Tsuchiya & Koch, 2005); we 

return to the limitations of b-CFS for measuring the speed of conscious access later. 

In the first stage of the paradigm, we leveraged instrumental conditioning to build 

sensorimotor predictions by linking distinct stimuli with specific actions. Two stimuli were 

arbitrarily associated with equally simple but distinguishable actions (an index finger or a little 

finger button press), and a third stimulus with no action. In the second stage, each stimulus was 

presented under CFS, where a dynamically flashing high-contrast pattern displayed to one eye 

is used to suppress visual awareness of the target stimulus displayed to the other eye, while 

participants prepared to respond with stimulus-contingent or non-contingent action. Thus, we 

test the extent to which maintaining the prediction of the relevant sensorimotor association 

(through response preparation) facilitates reported conscious access to the associated stimulus. 

Speed of access of each stimulus to visual consciousness was assessed using breakthrough time 

in CFS (breaking-CFS or b-CFS; Jiang, Costello, & He, 2007), measuring the time it takes for the 
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target to overcome interocular suppression and become consciously visible. If sensorimotor 

predictions affect conscious experience, then preparing an action conditioned on a specific 

relevant stimulus should engage a valid sensorimotor prediction, facilitating conscious 

experience of that stimulus and yielding faster reported breakthrough times. 

Two experiments were conducted with the same conditioning task but with minor 

differences to the b-CFS task. In Experiment 1, the counterbalancing of action and stimuli was 

achieved at the block level by having the same prepared action for each trial within a b-CFS block 

and actions only differing between blocks. As each block contained one presentation of each of 

the four visual stimuli, this ensured that each action was paired with each stimulus on only one 

occasion. For example, if the action for block 1 was the index finger button press, participants 

would be using the index finger to respond when each of the four different visual stimuli broke 

through b-CFS.  Then in block 2, they would be using their little finger to respond, again as each 

of the four different visual stimuli broke through b-CFS. However, requiring repetition of the 

action within a block may have limited the action’s predictive salience. Experiment 2 avoided 

this repetition by varying the prepared action within each b-CFS block, while still ensuring 

counterbalancing of the stimulus-action pairing across the two blocks. A second minor variation 

made to the b-CFS task in Experiment 2 sought to separate two different contributions to 

response times. In Experiment 1 participants’ had to indicate the orientation of a single pixel line 

overlaid on the stimulus when it broke through suppression; the inclusion of this judgment seeks 

to reduce premature responses. In Experiment 2, this line orientation judgment was made after 

the initial reaction time response, thus avoiding adding noise to the measure of breakthrough 

time. Both Experiments were pre-registered on the Open Science Framework at 

https://osf.io/ensba (Experiment 1) and https://osf.io/ez62m (Experiment 2). All material, task 

code and data will be available at https://osf.io/hpsju/. 

 

6.2. Experiment 1 

6.2.1. Method 

6.2.1.1. Participants 

68 participants (11 male; M age = 20, SD = 2.38, range: 19-32) were recruited for the study via 

the University of Sussex online recruitment system, and an internal mailing list. All participated 

in exchange for course credit. Participants were required to have normal or corrected-to-normal 

vision, and no current or history of neurological illness. Ethical approval was granted by the 

Science and Technology Cross-School Research Ethics Committee at the University of Sussex, 

and the study was conducted in accordance with the Declaration of Helsinki. 

https://osf.io/ensba
https://osf.io/ez62m
https://osf.io/hpsju/
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6.2.1.2. Stimuli and Materials 

The experiment was implemented in Matlab 2017b (MathWorks, 2017) with the Cogent2000 

toolbox (UCL LoN, 2003). All stimuli were presented on a Dell monitor (1280 by 1024 pixels), 

with a refresh rate of 60Hz. Responses were collected with a standard keyboard.  

 The target stimuli included three sets of four cues. Each set contained four 90o rotations 

of the same symbol, a neutral, asymmetrical graphic, generated by randomly overlaid shapes 

(see Fig 1. for an example and Appendix 4 for the full set). All stimuli were 119 by 119 pixels in 

size (3.43o visual angle), presented in dark grey (RGB: 80,80,80) on lighter grey (RGB: 

128,128,128) background. The Mondrian patterns for CFS were composed of coloured 

rectangles in a box 240 by 240 pixels in size (6.91o visual angle), flashing at a rate of 10Hz, and 

were dynamically created on each trial (see Fig 20.). 

 

6.2.1.3. Procedure 

Each participant completed two experimental conditions in a single experimental session, one 

where conditioning was completed consciously (where stimuli were clearly visible), and a second 

where conditioning was attempted subliminally (where stimuli were presented without 

conscious awareness). The conditions consisted of the same two main stages. Stage 1 was an 

instrumental conditioning task (2 blocks of 60 trials), and Stage 2 was a breaking-CFS task (2 

blocks of 4 trials each). A brief set of practice trials was completed prior to Stage 1. Throughout 

both stages, participants were asked to look at the screen through a mirror stereoscope, fitted 

atop a chinrest at a 50cm distance from the screen. Ocular dominance was established prior to 

beginning the experiment with a standard Miles test (Miles, 1930).  

 Here, we report the conscious condition only, as we found strong evidence that the 

stimulus-action associations were not learnt in the unconscious condition (see Supplementary 

Material for the procedure and results of the unconscious instrumental conditioning task). Given 

that our primary interest here is to examine the effect that predictions about learned stimulus-

action associations have on breaking-CFS, it would not be informative to analyse data from a 

condition where those associations were not acquired. The order of the conditions was 

randomised for each participant. The conditions were independent, and used different sets of 

stimuli (randomised). 

 

Conditioning task.  

 The conditioning task was used to establish the sensorimotor (stimulus-action) 

associations. The task used three stimuli selected from the assigned set of four. One of the 
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stimuli (cue A) was paired with action A (an index finger button press), a second (cue B) with 

action B (a little finger button press), and a third (no-action cue) with no action. For practical 

reasons, the index finger button press was made on the left arrow, and the little finger button 

press on the right arrow. Note that while the keys being pressed differed, we consider the finger 

used to make the button press to be the conditioned action, not the button. Cues were randomly 

assigned to a given stimulus type for each participant. The order of presentation was 

randomised with an equal number of exposures to each cue occurring in each block of trials. 

Participants performed 120 conditioning trials in two blocks of 60, with a 1 minute break 

between the blocks. 

In this task, both eyes were presented with the stimuli, i.e. there was no CFS and the 

stimuli were clearly visible. On each trial, stimulus presentation started with a fade-up period of 

500ms. A further 500ms after the stimulus reached full contrast, the fixation dot (overlaid on 

top of the cue) changed colour, indicating that a response was required (see Fig. 20 for a trial 

sequence). Fixation dot colours provided the distinction between action and no-action trials. For 

action cues, participants were instructed to respond with either action A or B (of their choosing), 

when prompted by the fixation dot changing colour from white to black. Following the action, 

positive or negative reinforcing feedback was delivered (‘correct!’ or ‘wrong!’ printed on the 

screen paired with a cash register or buzz sound, respectively) depending on the 

correspondence between the executed action and the cue presented, thus instantiating 

instrumental conditioning.  For example, if cue A was presented and action A was executed, 

positive feedback was delivered, but if cue A was presented and action B was executed, negative 

feedback was delivered. For no-action cues, the fixation dot started as blue, and changed colour 

to red. This indicated to participants at the onset of the trial that no response will be required. 

In these no-action trials negative feedback was delivered if participants responded with either 

action A or B, and positive feedback if they correctly refrained from action. As such, the 

presented cue became associated with the ‘no action’ response.  

On action trials, the cue disappeared as soon as participants made a response (a total of 

1000ms + reaction time after cue onset). This ensured that the action was prepared and 

executed while the participant was exposed to the cue. On no-action trials, the cue disappeared 

as soon as the fixation dot changed which for these trials was set to be 1500ms after cue onset 

(500ms longer than in action trials).  This additional 500ms sought to roughly equalise the total 

exposure duration for no-action trials, where there was no response time, and action trials 

where the exposure extended to include the participant’s response time. 
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Figure 20. Instrumental conditioning task. Chronological screenshots depict a single trial 

sequence for the action cues – each panel shows the images shown to the left and right eyes. 

After 1000ms (including 500ms fade-up of the cue), the fixation dot changes colour from white 

to black (with a white border), and participants can execute the desired action (A, an index finger 

button press on the left arrow, or B, a little finger button press on the right arrow). For a no-

action cue, the fixation dot would change colour from red to blue. Here, the action executed 

corresponded to the cue type, and the participant was rewarded with visual and auditory 

feedback. 

  

Breakthrough task. 

 The conditioning task was immediately followed by a breaking-CFS task, using the set of 

cues from the conditioning task (cue A, cue B, no-action cue), as well as the fourth, novel cue, 

never previously seen (the last from the set). In the breakthrough task, the stimuli were 

presented under CFS, with the target cue presented to the non-dominant eye, while the 

dominant eye received a Mondrian pattern (see Stimuli and materials).  

Each cue was presented with a randomly assigned horizontal or vertical line (1 pixel 

wide) overlaid on top of it. In order to quantify the time of breakthrough, participants were 

asked to report the orientation of the line using the “1” (horizontal) and “2” (vertical) buttons 

on the keypad, as soon as they were able to discriminate it. Note that they were required to 

report the orientation even for cues previously associated with ‘no-action’. The cue faded up 
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over 500ms, and remained on screen in full contrast until the response was made. See Figure 21 

for an illustration of the trial sequence. 

The task was split into two blocks, with all four stimuli presented in each block in a 

randomised order, resulting in a total of 8 trials. When indicating the line orientation, 

participants were required to make their response with the same action for all the trials in a 

single block, i.e. using the index finger to press button “1” or “2”, or the little finger to press 

button “1” or “2” throughout. The assigned action (use of index finger or little finger) was 

randomised between blocks.  This design ensured that each cue was matched with each action 

type once (e.g. action A is performed to indicate time of breakthrough for cue A, cue B, no-action 

cue, and the novel cue in one block, and action B in the other).  

 

 

Figure 21. Breaking-CFS task. Screenshots depict a single trial sequence (identical for all cues). 

Following 500ms fade-up, the cue remained on-screen with a horizontal or vertical line overlaid 

on top of it. Participants were requested to make a response indicating the observed line 

orientation as soon as they could. This response was to be made with either their index finger 

or little finger depending on the action randomly assigned to that block. On a given trial, the cue 

presented could be congruent with the trained action (i.e. associated with it in the conditioning 

stage), incongruent with it, associated with no action, or novel (not associated with any action). 
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6.2.2. Data Analysis and Results 

6.2.2.1. Bayes Factors 

For hypothesis testing, Bayes Factors (Bs) will be reported alongside p-values for all 

comparisons. Bs can help to disambiguate non-significant results as either indicating support for 

the null hypothesis (H0, positing no effect), support for the alternative hypothesis (H1, which 

uses an estimated raw effect size as the standard deviation of its distribution), or indicating 

insensitive data (i.e. the data are not in favour of either H0 or H1; Dienes, 2014). By convention, 

Bs smaller than 1/3 indicate evidence for H0. Bs larger than 3 indicate evidence for H1. Bs 

between those values indicate insensitive data.  

 

6.2.2.2. Conditioning task 

Data pre-processing and exclusions. 

 All trials with RTs under 100ms (suggesting automatic, rather than deliberate, 

responding) and greater than 3SD from each subject’s mean were excluded. This resulted in 

removal of 373 trials (4.57% of all trials). Subjects missing over 25% of trials were marked for 

exclusion. No such subjects were identified.  

Accuracy data for the conditioning task was then converted into type I d’, in order to 

account for potential response bias. Type I d’ is a signal detection-theoretic measure of 

sensitivity to signal versus noise (Stanislaw & Todorov, 1999), and was computed for each cue 

separately using the proportions of correct (correct action deployed for the corresponding cue, 

e.g. cue A – action A; Hits) and incorrect (wrong action deployed, e.g. cue A – action B; False 

Alarm) responses.  

 

Evidence of conditioning. 

 In order to assess the presence of learning, one-sample t-tests were used to contrast 

the d’ values for each cue type against 0 (indicating no ability to discern signal from noise). By 

proxy, a d’ of 0 can be taken as an indicator that learning failed to take place. Bs were computed 

with H1 modelled as a half-normal distribution centred on 0, with an SD equal to an approximate 

expected effect size of d’ = 1 (corresponding to 70% hit rate). Analysis was conducted in R (R 

Core Team, 2018).  

The average d’ scores for all cues throughout the task were significantly above 0 (see 

Table 6), suggesting that learning of the cue-action association was successfully established.  
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Table 6. Mean type I d’ and SE for each cue type (A, B, NA (no-action) in both blocks, and total, 

in the conscious conditioning task. Stars indicate significant difference from 0 (*: p < 0.05, ***: 

p < 0.001). Cross indicates a sensitive B favouring H1 (+: BH(0,1) > 3). N = 68. 

 Conscious conditioning 

Cue  Task total Block 1 Block2 

 d’ SE p BH(0,1) d’ SE p B H(0,1) d’ SE p BH(0,1) 

A 1.58***+ 0.21 <0.001 >1010 1.01***+ 0.22 <0.001 >1010 2.46***+ 0.25 <0.001 >1010 
B 1.50***+ 0.23 <0.001 >1010 0.67*+ 0.26 0.011 >1010 2.71***+ 0.27 <0.001 >1010 
NA 4.46***+ 0.06 <0.001 Inf 4.43***+ 0.08 <0.001 Inf 4.53***+ 0.05 <0.001 Inf 

 

In the conditioning stage, subjects were marked as ‘learners’ if their d’ scores for both 

cues A and B in block 2 (where learning should be evident if it had taken place) were greater 

than 0. The no-action cue was not included in this criterion, as due to the obvious no-action 

requirement it yielded a nearly perfect accuracy regardless of the ability to learn the associations 

between the other cues and their outcomes. 55 (out of 68) subjects were identified as learners 

and included in the next analysis stage. 

 

6.2.2.3. Breakthrough task 

Data pre-processing and exclusions. 

No trials with response times under 100ms were identified. Unlike the conditioning task, 

no upper cut-off on RTs was applied, as long response times were expected. All trials where 

subjects made an incorrect line discrimination (horizontal/vertical) were excluded in order to 

reduce premature responses and ensure only trials where participants paid attention were 

analysed (see Discussion for consideration of the related issue of accurately guessed responses). 

This resulted in the removal of 65 trials (11.96%). Five subjects with 50% (4) or more missing 

trials were removed. One extra trial was removed due to the participant failing to engage with 

the task, which resulted in a response time of over 10 minutes. One subject was removed from 

both conditions due to a disruption in the testing session. Both cases were noted by the 

experimenter in the session log. Only the subjects identified as learners in the conditioning stage 

were brought into the breakthrough time analysis stage. This resulted in a final sample of 49. 

We confirmed that, averaging across trial types, there was no significant difference in response 

times between actions A and B (MactionA = 5817.87, MactionB = 5894.63ms; t(172) = -0.52, p = 0.607). 

 Each breakthrough trial was given a label describing its cue-action congruence status 

(i.e. whether the action prepared to indicate breakthrough was congruent or incongruent with 

the cue, as established in the conditioning task). Action A – cue A and action B – cue B pairs were 

labelled as congruent pairs. Action A – cue B and action B – cue A were labelled as incongruent 

pairs. Cue C was always labelled as no-action, and the fourth, previously unseen cue, was 

labelled novel. 
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Breakthrough time results. 

 Due to the unevenly distributed missing values (i.e. exclusions due to incorrect line 

orientation judgments) across few data points per participant, the pre-registered analysis 

method (repeated-measures analysis of variance) was rendered inappropriate. An ANOVA 

excludes such cases listwise, resulting in excluded participants and reduced power. Given 

superior performance in treatment of repeated-measures data and data with unevenly 

distributed missing values, as well as superior ability to model repeated-measures, a generalised 

linear mixed model (GLMM) was fitted instead. Analysis was conducted using the lme4 package 

(Bates et al., 2015) in R (R Core Team, 2018).  

The model included the raw times of breakthrough as the response variable, cue-action 

congruence status (4 levels: congruent, incongruent, no-action, novel) as a fixed effect, and 

subject-specific random intercepts8 (Matuschek et al., 2017; Singmann & Kellen, 2019). A 

gamma distribution of the response variable, with an identity link function, was specified in 

order to approximate the nature of response time data without the need for transformations 

(Lo & Andrews, 2015). The model was fitted by maximum likelihood estimation. All following 

comparisons were conducted on that model. 

The GLMM revealed a significant main effect of congruence status on time of 

breakthrough (χ2 (3) = 12.52, p = 0.006; see Table 7 for regression coefficients). Subsequent 

pairwise comparisons on estimated means (Tukey-adjusted for multiple comparisons; see Table 

8) showed that only the novel, previously unseen cue (M = 6207ms, SE = 64.39) resulted in 

significantly shorter breakthrough time than both congruent (M = 6311ms, SE = 50.09) and 

incongruent cues (M = 6356ms, SE = 62.44). Despite a marginally shorter breakthrough time for 

congruent than incongruent cues, given the adopted priors and the size of the observed effect, 

the Bayes factor indicates strong evidence against a genuine difference. For B calculation, H1 

was modelled as a normal distribution centred on 0, with an SD equal to an estimated effect size 

of 774ms. This estimate was derived from the observed difference between rewarded and 

unrewarded cues in a similar b-CFS task conducted earlier by some of the authors (Scott et al., 

in preparation).  

 

 

 

                                                           
8 In R notation, the fixed and random effects of the model were specified as:  breakthrough time ~ 
congruence index + (1|subjectID). 
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Table 7. Regression estimates from the GLMM. Congruent cue-action status serves as reference 

point. Stars indicate significant difference from the intercept (*: p < 0.05, **: p < 0.001). N = 55.  

 Estimate SE t p (>|z|) 

Intercept (congruent) 6311.12 50.09 126.01 < 0.001 ** 
Incongruent 45.05 30.62 1.47 0.141 
No-action -30.92 36.12 -0.86 0.392 
Novel -103.30 33.93 -3.04 0.002 * 

 

 

Table 8. Pairwise comparisons (Tukey-adjusted) of breakthrough time means, estimated in the 

GLMM. Star indicates a significant difference (*: p < 0.05). Cross indicates a sensitive B favouring 

H1 (+: BN(0,774) > 3). Tilde indicates a sensitive B favouring H0 (~: BN(0,774)  < 0.3). 

Congruence status 
contrast 

Estimated mean 
difference (ms) 

SE df z-ratio p BN(0,774) 

congruent-incongruent -45.06  30.62 Inf -1.472 0.459 0.12 ~ 
congruent-no-action 30.92 36.12 Inf 0.86 0.828 0.07 ~ 
congruent-novel 103.30 33.93 Inf 3.04 0.013* 4.48 + 
incongruent-no-action 75.97 48.42 Inf 1.57 0.397 0.21 ~ 
incongruent-novel 148.35 46.24 Inf 3.20 0.008* 10.07 + 
no-action-novel 72.38 52.48 Inf 1.38 0.512 0.17  ~ 

 

6.2.3. Conclusions of Experiment 1 

In Experiment 1, we investigated whether valid sensorimotor predictions, built through 

instrumental conditioning, can affect conscious experience, operationalised in terms of 

reportable access to consciousness in breaking interocular suppression. If sensorimotor 

predictions shape conscious experience, we hypothesised that congruency between the cue and 

the prepared action would result in the cue breaking through CFS faster. 

While the data showed, numerically, marginally shorter breakthrough times for 

congruent than for incongruent pairs, given the adopted priors and the size of the observed 

difference the evidence was in favour of the null hypothesis. Specifically, preparing an action 

congruent with a specific cue (i.e. one previously conditioned with that action) while it was 

presented under interocular suppression does not shorten the suppression duration relative to 

preparing an action incongruent with the cue. Therefore, these data do not support the 

hypothesis that a valid prediction of a cue-action association speeds up reported access to 

consciousness of the target.  

These findings are counter to the results of previous research which, while not directly 

manipulating sensorimotor predictions as we did here, did show modulation of perception by 

action in line with action-congruent percepts (e.g. Beets et al., 2010; Maruya, Yang, Blake, 2007; 

Mitsumatsu, 2009). While it is possible that our result reflects a genuine absence of influence 

arising from sensorimotor predictions, it is also possible that the paradigm may have limited the 
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predictive salience of the prepared action.  While requiring the same action on each trial within 

a block ensured counterbalancing of the action-preparation and stimulus congruency, it may 

also have caused participants to deploy action in an automatic, rather than voluntary, goal-

oriented manner. Indeed, previous research has suggested that the stimulus-action 

contingencies should adaptively reflect a goal or objective in order to facilitate interactions with 

the world (Di Pace & Saracini, 2014; Hommel et al., 2001; Mitsumatsu, 2009; Prinz, 2003; Seth, 

2014; Seth et al., 2016; Wohlschläger, 2000). The requirement for repetitive action may have 

inadvertently eliminated this important aspect of the behaviour. 

A second potentially confounding influence arises from the timing of the requirement 

to report the line orientation. Participants were required to press the key corresponding to a 

vertical or horizontal line overlaid on the stimulus as soon as they began to see the stimulus 

break through CFS. It is plausible that the decision time relating to the orientation judgment 

added noise to the measure of breakthrough time. We designed a second experiment, 

Experiment 2, to address both these issues. 

 

6.3. Experiment 2 

Experiment 2 introduced two changes to the breakthrough task described in Experiment 1. 

Because keeping the action requirement consistent across the entire block may have resulted in 

participants executing the action in an automatic manner, thus reducing the predictive salience 

of the prepared action, we varied the action requirement from trial to trial. We also requested 

the participants to make a single response (with the corresponding action) to indicate that they 

can see the stimulus, followed by a line orientation judgment performed independently with the 

other hand. All other task parameters remained the same.  

 

6.3.1. Method 

6.3.1.1. Participants 

65 participants (18 males; M age = 20.78, SD = 4.31, range = 18-47) were recruited for the study 

via the University of Sussex online recruitment system, and an internal mailing list. All 

participation criteria were identical to Experiment 1. Data for one participant was unusable due 

to software malfunction, resulting in a sample of 64. 

 

6.3.1.2. Stimuli and Materials 

All stimuli and materials were identical to Experiment 1. 
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6.3.1.3. Procedure 

The procedure was identical to the conscious conditioning task of Experiment 1 with the 

exception of the minor changes made to the breakthrough task outlined below.  

 

Conditioning task.  

 Identical to Experiment 1.  

 

Breakthrough task. 

 The conditioning task was immediately followed by the b-CFS task, using the same set 

of cues (cue A, cue B, no-action cue), as well as fourth, novel cue, never previously seen. The task 

parameters remained the same as in Experiment 1. In contrast to Experiment 1, the response 

requirement (action A or B) was no longer repeated without variation within each block. Instead, 

participants were instructed at trial onset which action would be required to make the response 

(in a randomised order, but counterbalanced such that each of the four cues is matched with 

each of the two actions once, resulting in eight trials). This change was considered to be 

important in order to maintain the predictive salience of the action. 

Additionally, in order to eliminate the potentially confounding influence of line 

orientation judgment on pure breakthrough time, these two responses were separated. 

Participants were required to respond with the instructed action (A or B) using the return key as 

soon as they saw the image break through (as opposed to responding as soon as they were able 

to discriminate the line orientation). After the initial response both the image and the Mondrian 

pattern disappeared and participants were required to indicate the perceived line orientation; 

this was done using the “1” (horizontal) and “2” (vertical) buttons at the top of the keyboard 

using their left hand.  

 

6.3.2. Results 

6.3.2.1. Conditioning task 

Data pre-processing and exclusions. 

 Pre-processing and exclusion procedures were identical to Experiment 1. All trials with 

RTs under 100ms and under or over 3SD from each subject’s mean were excluded. This resulted 

in removal of 225 trials (2.9% of all trials). Subjects missing over 25% of trials were marked for 

exclusion. No such subjects were identified. 
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Evidence of conditioning.  

 As in Experiment 1, one-sample t-tests were used to contrast the d’ values for each cue 

type against 0 (indicating no sensitivity to signal versus noise). By proxy, a d’ of 0 can be taken 

as an indicator that learning failed to take place. Bs were computed with H1 modelled as a half-

normal distribution centred on 0, with an SD equal to an estimated expected effect size of d’ = 

1 (corresponding to 70% hit rate).  

The d’ scores for all cues in both blocks of the conditioning task, and in total, were 

significantly above 0 (see Table 9), suggesting that learning of the cue-action association was 

again successfully established.  

 

Table 9. Mean type I d’ and SE for each cue type (A, B, NA (no-action) in both blocks, and total, 

in the conscious conditioning task. Stars indicate significant difference from 0 (***: p < 0.001). 

Cross indicates a sensitive B favouring H1 (+: BH(0,1) > 3). N = 64. 

 Conscious conditioning 

Cue  Task total Block 1 Block2 

 d’ SE p BH(0,1) d’ SE p BH(0,1) d’ SE p BH(0,1) 

A 1.54***+ 0.16 <0.001 >1010 0.90***+ 0.20 <0.001 6632 2.61***+ 0.20 <0.001 >1010 
B 1.64***+ 0.19 <0.001 >1010 0.75***+ 0.24 <0.001 47.17 3.04***+ 0.23 <0.001 >1010 
NA 4.54***+ 0.07 <0.001 Inf 4.54***+ 0.08 <0.001 Inf 4.61***+ 0.07 <0.001 Inf 

 

Subjects were marked as learners if their d’ scores for both cues A and B in block 2 

(where learning should be evident if it had taken place) were greater than 0. The no-action cue 

was not included in this criterion, as due to the obvious no-action requirement it yielded a nearly 

perfect accuracy regardless of the ability to learn the associations between the other cues and 

their outcomes. 58 subjects were identified as learners and included in the next analysis stage. 

 

6.3.2.2. Breakthrough task 

Data pre-processing and exclusions. 

Pre-processing and exclusion procedures were identical to Experiment 1. No trials with 

response times under 100ms were identified. Again, no upper cut-off on RTs was applied, as 

long response times were expected. All trials where subjects made an incorrect line 

discrimination were excluded. This resulted in the removal of 46 trials (9%). Three subjects with 

50% (4) or more missing trials were removed. This resulted in the final sample of 55 subjects. 

Outlier analysis identified 5 extremely outlying trials, which were also removed. Again we 

confirmed that, averaging across trial types, there was no significant difference in response 

times between actions A and B (MactionA = 6610.41ms, MactionB = 6217.86ms; t(192) = 0.36, p = 

0.715). 
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 Each breakthrough trial was given a label describing its cue-action congruence status 

following the identical procedure as employed in Experiment 1. 

 

Breakthrough time results. 

 The model and analysis performed was identical to that in Experiment 1. A GLMM was 

fitted to the data, including the raw times of breakthrough as the response variable. Model 

specification included the cue-action congruence status (4 levels: congruent, incongruent, no-

action, novel) as a fixed effect, and subject-specific random intercepts, and was fit with a gamma 

distribution with an identity link function (Lo & Andrews, 2015). The model was fitted by 

maximum likelihood estimation. All following comparisons were conducted on that model. 

 As in Experiment 1, the GLMM revealed a significant main effect of congruence status 

on time of breakthrough (χ2 (3) = 158.28, p < 0.001; see Table 10 for regression coefficients). 

Subsequent pairwise comparisons on estimated means (Tukey-adjusted for multiple 

comparisons; see Table 11) showed that cue-action congruent breakthrough times (M = 6516ms, 

SE = 30.3) were significantly shorter than incongruent breakthrough times (M = 6809ms, SE = 

44.6), mirroring the direction of effect found in Experiment 1. Crucially, however, in this instance 

the size of the difference was substantial, with the Bayes factor providing strong evidence in 

favour of H1. Cue-action congruent breakthrough times were also shorter than no-action 

breakthrough times (M = 6691ms, SE = 39.6), but significantly longer than breakthrough times 

for novel cues (M = 6340ms, SE = 41.9; see Table 11 for pairwise comparisons). In addition, the 

cue-action incongruent breakthrough times were significantly longer than no-action 

breakthrough times. Novel cues resulted in the shortest breakthrough times.  

 The statistics obtained in pairwise comparisons for Experiment 1 and 2 were then 

combined in order to calculate a meta-analytic Bayes factor, a single Bayes factor indicating 

evidence for H0 or H1 in a group of studies. Posterior parameters were computed for each 

pairwise comparison using the estimated mean differences and standard errors from 

Experiment 1 as priors, and the estimated mean differences and standard errors from 

Experiment 2 as likelihoods (following the method from Dienes, 2014). The resulting mean and 

the standard deviation of the posterior distribution were then used in the meta-B calculation in 

a manner identical to regular B calculation, where H1 was modelled as a normal distribution 

centred on 0, with an SD equal to an estimated effect size of 774ms. See Table 11 for the meta-

Bs for each cue-action pairing. 
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Table 10. Regression estimates from the GLMM. Congruent cue-action status serves as 

reference point. Stars indicate significant difference from the intercept (*: p < 0.05, **: p < 

0.001). N = 49. N of observations: 412. 

 Estimate SE t p (>|z|) 

Intercept (congruent) 6516.27 30.34 214.80 <0.001*** 
Incongruent 292.94 34.47 8.50 <0.001*** 
No-action 174.73 23.52 7.43 <0.001*** 
Novel -176.47 28.88 -6.111 <0.001*** 

 

Table 11. Pairwise comparisons (Tukey-adjusted) of breakthrough time means, estimated in the 

GLMM. Star indicates a significant difference (*: p < 0.05, ***: p < 0.001). Cross indicates a 

sensitive B favouring H1 (+: BN(0,774) > 3). The final column presents meta-analytic Bayes factors, 

obtained by pooling the parameters from Experiments 1 and 2. 

Congruence status contrast Estimated mean 
difference (ms) 

SE df z-ratio p BN(0,774) meta-B 

N(0,774) 

congruent-incongruent -293 34.5 Inf -8.50 <0.001*** >1010+ >107+ 
congruent-no-action -175 23.5 Inf -7.43 <0.001*** >1010+ >107+ 
congruent-novel 176 28.9 Inf 6.11 <0.001*** >106+ >106+ 
incongruent-no-action 118 41.5 Inf 2.85 0.023 * 3.13+ 6.63+ 
incongruent-novel 469 44.6 Inf 10.53 <0.001*** >1010+ >1010+ 
no-action-novel 351 38.7 Inf 9.06 <0.001*** >1010+ >1010+ 
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Figure 22. Left panels: Mean reported times of breakthrough (ms) by cue-action congruence 

status in Experiment 1 (top; N = 49) and Experiment 2 (bottom; N = 55), estimated by the GLMM 

(+/- 1 SEM). Stars indicate p<0.05. Right panels: Raw distributions of breakthrough times with 

boxplots in Experiment 1 and 2. 

 

6.3.3. Conclusions of Experiment 2 

In Experiment 2, we continued to investigate whether sensorimotor predictions, built through 

instrumental conditioning, can affect conscious experience, as measured by reported access to 

consciousness in breaking interocular suppression. We amended the b-CFS task used in 

Experiment 1 in order to address limitations in the initial design. If sensorimotor predictions 

shape reported conscious experience, we predicted that congruency between the prepared 

action and the cue would cause the cue to break through CFS faster. 
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The results show that a valid sensorimotor prediction does affect the speed of reported 

access to consciousness. Preparing an action that was congruent with the cue it was conditioned 

on resulted in significantly faster breakthrough than an incongruent action. This finding is further 

supported by the meta-analytic Bayes factor analysis, which pooled the results from 

Experiments 1 and 2. Together the data provides strong support for the hypothesis that 

conscious experience is affected by sensorimotor predictions – if the executed action is 

congruent with the cue-action predictive model, reported access to consciousness is facilitated. 

While the central hypothesis was supported, the shortest breakthrough time was seen for the 

novel cue.  While not in conflict with the key finding, the framework of action-oriented predictive 

processing does not offer a ready explanation for this pattern. We return to this issue in the 

general discussion. 

 

6.4. General Discussion 

Predictive processing proposes that conscious experience is shaped or constituted by the 

predictive model that best explains the incoming sensory input. Action-oriented interpretations 

expand this notion, proposing that perceptual predictions should encompass sensorimotor 

contingencies – i.e., predictions of the relationships between an agent’s actions and changes in 

the world (Clark, 2015, 2016; Seth, 2014, 2015). We sought to empirically test whether conscious 

experience is affected by valid predictions about sensorimotor (stimulus-action) associations – 

which we here call ‘sensorimotor predictions’.  

We developed a novel paradigm in which we leveraged instrumental conditioning to 

build arbitrary sensorimotor associations, linking distinct cues with specific actions or with no 

action. Conditioning was followed by a breaking-CFS task, where a high-contrast pattern was 

used to suppress visual awareness of the target cues while participants prepared to respond 

with cue-contingent or non-contingent actions. Through the proxy of breaking interocular 

suppression, this paradigm allowed us to test the extent to which maintaining the relevant 

sensorimotor prediction through action preparation facilitates reported conscious access to the 

associated stimulus, relative to non-contingent stimuli, as well as stimuli associated with no 

action, and novel stimuli that had not undergone any conditioning exposure.  

 In directly manipulating sensorimotor predictions, the present study extends previous 

research in a specific way. Prior investigations examining the modulation of conscious 

perception by action have suffered from the limitation that observed effects could potentially 

arise from the actions themselves resulting in response congruency or attentional cueing (e.g. 

the direction of hand movement facilitating the perception of the stimulus which moves in the 
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corresponding direction; Beets et al., 2010). In the present study, we observe the effect of 

manipulating the sensorimotor prediction itself prior to the action being taken, and hence limit 

these potentially confounding effects. 

Experiment 1 failed to find a relationship between sensorimotor predictions and 

breakthrough times. This finding went against our initial hypothesis and conflicted with previous 

evidence showing modulation of conscious perception by action (albeit not reflecting 

sensorimotor predictions; Beets et al., 2010; di Pace & Saracini, 2014; Maruya, Yang & Blake, 

2007; Mitsumatsu, 2009). However, the design of Experiment 1 likely limited the predictive 

salience of the prepared action. Requiring the same action on each trial within a block (targeted 

at counterbalancing the stimulus-action congruency) may have caused participants to deploy 

action in an automatic, rather than dynamic, goal-oriented fashion that diminished the relative 

importance of action related predictions. 

In Experiment 2, we addressed this limitation by varying the action requirement on each 

trial. We also reduced the potential for measurement noise in the breakthrough judgment by 

separating the response indicating the moment of conscious breakthrough from the response 

indicating the line orientation. While both experiments delivered numerically shorter 

breakthrough times for congruent versus incongruent cue-action pairings, the modifications 

designed to improve the predictive salience of the action resulted in considerably larger 

differences. In Experiment 2, Bayes factor analysis showed strong evidence in favour of a 

genuine difference based on congruency. Breakthrough time for the no-action cue was also 

longer than for the action-congruent cue. This is again consistent with our hypothesis, because 

executing either action A or B would engage the corresponding prediction related to perception 

of cue A or B, effectively rendering the no-action cue incongruent with either. Importantly, a 

meta-analytic Bayes factor analysis, where the results from Experiments 1 and 2 were pooled to 

obtain a single Bayes factor for each comparison, show strong support for the alternative 

hypothesis (i.e., congruent actions accelerate conscious access) across the two experiments.  

A surprising finding in both Experiments was that the novel cue was significantly faster 

to break through than both the congruent and incongruent cue-pairings.  While this result is 

contrary to some previous research examining the effects of expectation on access to awareness 

(e.g. Pinto et al., 2015), it is consistent with reports of greater attentional capture for the first 

unannounced presentation of novel cues (Al-Aidroos, Guo, & Pratt, 2010; Becker & Horstmann, 

2011; Ernst, Becker, & Horstmann, 2020; cf. Meijs, Klaassen, Bokeria, Van Gaal, & de Lange, 

2018). Indeed, there is an active debate in the predictive processing literature about whether 

predictions or prediction errors should dominate perceptual content and perceptual access, 

with the balance proposed to be modulated by attention (Feldman & Friston, 2010; Hohwy, 
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2012). Future extensions of our paradigm may usefully target this specific question (Press, Kok, 

& Yon, 2020). 

It is noteworthy that in the present task we operationalised sensorimotor contingencies 

as learned arbitrary associations between visual stimuli and subsequent actions. We called those 

associations ‘sensorimotor predictions’, and manipulated their predictive validity to evaluate 

reported conscious access. While this mapping constitutes a kind of contingency, one might note 

that it reverses the direction of what is typically understood as sensorimotor contingencies, i.e. 

how the world changes in response to our actions (e.g. Seth, 2014). Nor do our learned 

associations correspond to temporally extended relationships between actions and sensory 

signals, such as when an object is rotated (e.g. Suzuki et al, 2019). As such, the sensorimotor 

predictions used here do not correspond to fully-fledged sensorimotor contingencies, but rather 

to simpler sensorimotor mappings. Nonetheless, the present paradigm could be fruitfully 

extended to investigate sensorimotor contingencies in the more traditional sense. 

 An important criticism of b-CFS that should be noted is its interpretation in relation to 

“conscious access”. In b-CFS, the moment understood as the moment of access to consciousness 

is in fact the moment participants report having conscious awareness of the stimulus. Those 

events may or may not be the same. For example, participants might have rudimentary 

awareness of the stimulus but delay reporting it (e.g. due to low confidence). As such, our 

paradigm and many similar paradigms use b-CFS as a proxy measure of speed of access to 

consciousness, while recognizing this caveat. 

Another general criticism of b-CFS is that the time of breakthrough measure may be 

affected by other processes or biases (Stein & Sterzer, 2014; Sterzer et al., 2014). A challenge 

pertaining to all b-CFS experiments is the difficulty of disentangling the speed of access to 

conscious (reportable) awareness from the time needed to prepare the response – the 

measured time of breakthrough inherently includes the time taken to respond, which could vary 

between stimuli or types of response. In the present experiment, two different responses (index 

and little finger button presses) were a core feature of our design – indeed, we argued that the 

preparation of a congruent versus incongruent action is what causes the stimulus to break 

through faster, in line with the idea that valid sensorimotor predictions shape conscious 

experience. Importantly, however, average response times (irrespective of congruence) did not 

differ between the two actions, allowing us to rule out the possibility that the any underlying 

difference in time taken to respond with either action contributed to the result. Nonetheless, 

this does not preclude the possibility of post-perceptual biases affecting the total response time, 

such as stimulus features slowing down the action. We attempted to guard against this by 

ensuring the stimuli were as similar as possible. We used four 90o rotations of the same shape, 
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and (in Experiment 2) disentangled the response indicating the stimulus breakthrough from the 

response indicating line orientation. Still, however, the extent to which post-perceptual biases 

affect b-CFS remains a topic deserving further study. 

Our b-CFS task used only one presentation per cue-action pairing (e.g. action A was 

paired once with cue A, cue B, no-action cue, and the novel cue). This design was adopted 

because we felt that to best address the question of how sensorimotor predictions affect 

conscious experience, we should focus on the very first conscious experience of the action-

associated stimulus. While some previous b-CFS experiments have used multiple trials (e.g. 

Salomon et al., 2013), repeated exposure itself tends to reduce breakthrough times, which could 

reduce the ability to observe the main effect of interest. Adopting a single trial per cue-action 

pairing avoids this issue albeit at the cost of the reduced statistical power resulting from a 

smaller number of trials. Fortunately, our mixed-effects model proved robust to the small 

number of observations per participant and converged without issue. In addition, the Bayes 

Factor calculation ensured that the evidence for or against the differences in breakthrough times 

was sensitive.  

The inclusion of a line orientation judgment was intended to reduce the occurrence of 

premature responding (i.e. responding prior to conscious perception), and to identify instances 

where participants’ attention had been suboptimal. We excluded all such trials from analysis. 

However, theoretically this still leaves open the possibility that the analysed trials contained 

some instances where participants responded prematurely but correctly guessed the line 

orientation; any such trials would contaminate the RTs as a pure indicator of conscious 

breakthrough. Given that the line orientation decisions were not accompanied by confidence 

judgments, it not possible to directly identify accurately guessed responses. However, if guessing 

of the line orientation was a common occurrence, then we would reasonably expect the 

accuracy of the line orientation judgements to be substantially reduced. Given the observed 

accuracy was 88 and 91% in Experiment 1 and 2 respectively, we feel reassured that the 

potential contribution from accurate guesses is likely to have been negligible.  

In conclusion, in two experiments we investigated the effect of valid sensorimotor 

predictions on conscious experience, measured through breaking interocular suppression. The 

combined data from the two experiments provides strong evidence that preparing a cue-

congruent action results in more rapid reported conscious perception of the suppressed stimuli. 

This provides evidence for a key theoretical implication of the action-oriented predictive 

processing approach to conscious perception, namely, that sensorimotor predictions shape 

conscious experience of the world.   

  



143 
 

 
 

 

6.5. Supplementary material 
 

Unconscious condition of Experiment 1. 

 

6.5.1. Method 

6.5.1.1.  Participants 

As reported in Experiment 1 described in the main paper. 

 

6.5.1.2. Stimuli  

As reported in Experiment 1 described in the main paper. 

 

6.5.1.3. Procedure 

Unconscious conditioning. 

The conditioning task was used to establish the sensorimotor (stimulus-action) 

associations. The task used stimuli selected from the assigned set of four. One of the stimuli (cue 

A) was paired with action A (an index finger button press), a second (cue B) with action B (a little 

finger button press), and a third (no-action cue) with no action. For practical reasons, the index 

finger button press was made on the left arrow, and the little finger button press on the right 

arrow. Note, while the keys being pressed differed, we consider the finger used to make the 

button press to be the conditioned action.  Cues were randomly assigned to a given type for 

each participant. The order or presentation was randomised. 

In the unconscious condition, stimuli were presented under CFS (Tsuchiya & Koch, 

2005), in a mirror stereoscope setup. The dominant eye received a Mondrian pattern composed 

of coloured rectangles, flashing at a rate of 10Hz. The non-dominant eye received the target 

stimulus. Ocular dominance was established prior to beginning with a standard Miles test (Miles, 

1930). Three cues selected from the assigned set of four were presented subliminally using CFS, 

in a randomised order.  

The unconscious presentation of each cue started with a fade-up period of 500ms. 

Further 500ms after the cue reached full contrast, the fixation dot (overlaid on displays to both 

eyes) changed colour, indicating that a response was required (see Figure 1 for an illustration of 

trial sequence). Fixation dot colours provided the distinction between action and no-action 

trials. For action cues, participants were instructed to respond with either action A or B (of their 

choosing), when prompted by the fixation dot changing colour from white to black. Following 

the action, positive or negative reinforcing feedback (‘correct!’ or ‘wrong!’ printed on the 
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screen, and a cash register or buzz sound, respectively) was delivered, depending on the 

correspondence of the executed action to the cue presented, thus instantiating instrumental 

conditioning (e.g. if cue A is presented and action A is executed, positive feedback is delivered, 

but if action B is executed, negative feedback is delivered). For non-action cues, the fixation dot 

started as blue and changed colour to red. This indicated to participants at the onset of the trial 

that no response will be required. As such, the subliminally presented cue became associated 

with the ‘no action’ response. Participants performed 120 conditioning trials in two blocks of 60, 

with a 1 minute break between the blocks. 

On action cue trials, the cue then disappeared as soon as the participant made a 

response (1000ms + reaction time after cue onset). This ensured that the action was prepared 

and executed while the participant was exposed to the cue, but exposure was not prolonged 

unnecessarily following the response. On no-action trials, the cue disappeared as soon as the 

fixation dot changed (1500ms after cue onset). This additional 500ms sought to roughly equalise 

the total exposure duration for no-action trials, where there was no response time, and action 

trials where the exposure extended to include the participant’s response time. 

 

 

Figure S6.1. Unconscious instrumental conditioning task. Chronological screenshots depict a single trial 

sequence for two action cues – each panel shows the images shown to the left and right eyes. After 

1000ms (including 500ms fade-up of the cue), the fixation dot changes colour from white to black (with a 

white border), participants can execute the desired action (A, an index finger button press on the left 

arrow, or B, a little finger button press on the right arrow). For a no-action cue, the fixation dot would 

change colour from red to blue. Here, the action executed corresponded to the cue type, and the 

participant was rewarded with visual and auditory feedback. 
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Breakthrough task. 

The breaking CFS task in the unconscious condition was identical to the breaking CFS 

task in the conscious condition, as described in Experiment 1 in the main paper. 

 

 

Figure S6.2. Breaking-CFS task. Screenshots depict a single trial sequence (identical for all cues). Following 

500ms fade-up, the cue remained on-screen with a horizontal or vertical line overlaid on top of it. 

Participants were requested to make a response indicating the observed line orientation as soon as they 

could. This response was to be made with either their index finger or little finger depending on the action 

randomly assigned to that block. On a given trial, the cue presented could be congruent with the trained 

action (i.e. associated with it in the conditioning stage), incongruent with it, associated with no action, or 

novel (not associated with any action). 

 

Awareness check. 

 The session ended with an awareness check, which sought to verify that the cues 

presented under CFS in the unconscious conditioning task were outside of conscious awareness. 

The task included one block of 60 trials, and was identical to the unconscious conditioning task, 

with the exception of the cues, which were two distinct symbols: one black rectangle, and one 

irregular shape resembling the shapes used in the main task. The symbols were randomly 

allocated to be rewarding or punishing for each participant, and their order was randomised. 

There was no no-action cue. Following the feedback, participants were asked to judge if the cue 

presented under CFS was symmetrical (rectangle) or asymmetrical (the other cue). Next, they 

were asked to assess their confidence on a binary scale (some confidence vs total guess). 

Accuracy, confidence, and their correlations were computed to assess participant’s awareness 

of the cues during the task. Upon completion, participants were thanked and debriefed.  
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6.5.2. Results 

6.5.2.1. Conditioning task 

Data pre-processing and exclusions. 

All trials with RTs under 100ms (suggesting automatic, rather than deliberate, 

responding) and under/over 3SD from each subject’s mean were excluded. This resulted in 

removal of 113 trials (1.38%) in the unconscious conditioning task. Subjects missing over 25% of 

trials were marked for exclusion. No such subjects were identified. 

Subjects who showed visual awareness of the cues, assessed by above-chance judgment 

accuracy and a positive correlation with confidence in the awareness check, were excluded from 

further analysis. Those who scored below chance on accuracy, and those who were above 

chance but showed no correlation (0 or below) were retained. This resulted in the exclusion of 

37 out of 68 subjects in the unconscious task (31 participants remaining).  

 

Evidence of conditioning. 

In order to assess the presence of learning one-sample t-tests were used to contrast the 

d’ values for each cue type against 0 (indicating no sensitivity to signal versus noise). By proxy, a 

d’ of 0 can be taken as an indicator that learning failed to take place. Bayes Factors were 

computed with H1 modelled as a half-normal distribution centred on 0, with an SD equal to 

approximate expected effect size of d’ = 0.7 for the unconscious condition, following past 

research examining subliminal learning (Pessiglione et al., 2008). Analysis was conducted in R (R 

Core Team, 2018).  

In unconscious conditioning, only the no-action cue was significantly above 0 (see Table 

S6.1). For the action-related cues, average d’ for the length of the task was not significantly 

different from 0, with evidence favouring the null hypothesis, suggesting that subjects were 

unable to discriminate between the cues, and thus failed to learn the cue-action association. 

Performance on cue A in block 2 was an exception, with an insensitive B. On average, this result 

demonstrates that unconscious instrumental conditioning was not achieved in the present 

paradigm. 
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Table S6.1. Mean type I d’ and SE for each cue type (A, B, NA (no-action)) in both blocks, and total, in the 

unconscious conditioning task. Stars indicate significant difference from 0 (*: p < 0.05, **: p < 0.001). Cross 

indicates a sensitive B favouring H1 (+: BH(0,0.7) > 3). Tilde indicates a sensitive BF favouring H0 (~: BH(0,0.7) < 

0.3). N = 31. 

Cue  Task total Block 1 Block2 

 d’ SE p B d’ SE p B d’ SE p B 

A -0.06 0.21 0.80 0.23 -0.25~ 0.20 0.23 0.13 0.19 0.28 0.51 0.66 

B -0.32*~ 0.17 0.07 0.08 -0.44*~ 0.19 0.03 0.08 -0.20~ 0.21 0.344 0.16 

NA 4.44**+ 0.08 <0.001 Inf 4.56**+ 0.06 <0.001 Inf 4.35**+ 0.11 <0.001 Inf 

 

In the conditioning stage, subjects were marked as ‘learners’ if their d’ scores for both 

cues A and B in block 2 (where learning should be evident if it had taken place) was greater than 

0. The no-action cue was not included in this criterion – due to the obvious no-action 

requirement, it yielded a nearly perfect accuracy for all subjects in both conditioning tasks, 

regardless of their ability to learn the associations between the other cues and their outcomes.  

12 (out of the 31 determined as unaware) subjects were identified as ‘learners’. 

However, given that learning was absent at the group level, the learners were not passed on to 

the next analysis stage due to the risks for robustness of the analysis. Firstly, post-hoc selection 

of the aware subjects from the sample risks obtaining a false-positive through regression to the 

mean (Shanks, 2017). Secondly, a small sample size was likely to result in insufficient power. As 

such, analysis for the unconscious conditioning condition of the task was terminated after the 

conditioning stage. Since we were interested in predictions about learned stimulus-action 

associations (sensorimotor predictions) on breaking-CFS, it is not informative to analyse data 

from a condition where these associations were not learned. 
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7.  
GENERAL DISCUSSION 
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7.1. Summary of findings – revisiting the main aims 

The present thesis set out to address three specific aims concerning human instrumental 

learning. This section will re-state those aims, first set in the theoretical overview, and 

summarise the contributions of the empirical chapters (2-6) to addressing them. 

 

1. Investigate the role of interoceptive information in instrumental learning. The extent to which 

instrumental learning is affected by the salience of bodily information (i.e. interoceptive 

precision) can shed light on the importance of bodily signals in adaptive processes, especially 

in primitive scenarios, where learning might occur without the influence of higher-order 

cognition. 

 

A vital part of successful adaptive behaviour is monitoring performance for errors. Error-

related autonomic activity, such as error-related cardiac deceleration, was proposed to reflect 

the performance monitoring mechanism (Hajcak, McDonald, et al., 2003), akin to the orienting 

response (Sokolov, 1963). However, the extent to which such activity is directly driving adaptive 

behaviour is unknown.  

 Chapter 2 attempted to investigate this question through the role of cardiac precision 

in an unconscious instrumental conditioning task, a simple form of adaptive learning. In the task, 

participants learned to approach reward-predictive subliminal stimuli, and avoid punishment-

predictive ones. Performance feedback was always presented consciously following their action. 

The precision of error-related cardiac information was amplified and disrupted through real-

time auditory cardiac feedback, played as participants learned. Precision was amplified through 

synchronous cardiac feedback (an auditory stream played in rhythm of participants’ actual 

heartbeat), and disrupted with an asynchronous stream. If cardiac precision plays a functional 

role in learning, amplifying it should improve learning, while disrupting it should disrupt learning. 

Unfortunately, conclusions about the effect of the manipulation on learning were hindered by 

the strong evidence for an absence of unconscious instrumental learning at baseline. 

 Chapter 3 thus attempted to replicate this result, with an added measure of cardiac 

activity throughout the learning task. It investigated whether error-related cardiac deceleration, 

an autonomic marker of performance, might be present even in the absence of any behavioural 

manifestations of learning. The results again provide strong evidence for the absence of 

unconscious instrumental learning. Crucially, error-related heart rate deceleration (i.e. 

deceleration in response to performance feedback following an error in behaviour such as 
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approaching a punishing stimulus), which occurs reliably if performance feedback is meaningful, 

was also absent. This shows that unconscious instrumental learning fails to produce the 

autonomic markers of performance monitoring, supporting the claim that unconscious 

instrumental learning may be infeasible.  

 

2. Investigate the role of consciousness in instrumental learning. The extent to which 

instrumental learning is possible in simple scenarios – such as without conscious awareness 

of the stimuli – is itself an unsettled case. Aside from the bodily influences, learning may 

require conscious awareness to be able to drive motivated instrumental responses.  

 

Instrumental learning is a fundamental aspect of successful adaptive behaviour, 

allowing agents to learn the associations between stimuli and outcomes, and to act upon them 

to achieve reward and avoid punishment. As such, the extent to which this requires conscious 

awareness to proceed is of considerable theoretical importance for the field of consciousness 

research. While some research found successful instrumental learning in the absence of stimulus 

awareness (Mastropasqua & Turatto, 2015; Pessiglione et al., 2008), other work has cast doubt 

on this finding (Reber et al., 2018). 

 While Chapters 2 and 3 were not inherently designed to probe this question, their 

results show strong evidence against instrumental learning in the absence of stimulus 

awareness. Experiments presented in both those chapters employed the same core task as the 

most prominent paradigm in the field (Pessiglione et al., 2008), with enhanced task sensitivity 

and statistical methods.  

 Thus, Chapters 4 and 5 were designed to specifically probe that surprising result. 

Chapter 4 is a Stage 1 Registered Replication Report, aimed at rigorously replicating the 

aforementioned paradigm. Unfortunately, due to external circumstances, data collection was 

impossible during the period of registration. Chapter 5 is a completed conceptual replication, 

again showing strong evidence for absence of unconscious instrumental conditioning – when 

the stimuli was hidden from conscious awareness, participants were unable to learn to approach 

reward-predictive stimuli and avoid punishment-predictive stimuli. This was robustly shown 

across two different modes of conditioning: trace (where the stimulus, response, and outcome 

followed one another), and delay (where the stimulus, response, and outcome overlapped 

temporally).  

 These results provide strong evidence that instrumental learning, a fundamental aspect 

of selective, adaptive behaviour, cannot proceed in absence of stimulus awareness.  
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3. Investigate the role of instrumental action in conscious experience. According to action-

oriented predictive approaches to consciousness, it is the prediction of our interactions with 

the world – the sensorimotor contingencies – that directly shapes conscious experience. Yet, 

direct investigations of this hypothesis are still lacking. 

 

The final aim shifted focus, attempting to investigate the role instrumental action might 

play in conscious experience of the world. Action-oriented approaches to perception and 

cognition propose that action is a vital, inseparable aspect of our experience of the world, rather 

than a mere form of response (Clark, 2015a).  

Chapter 6 was a test of an important implication of the action-oriented predictive 

processing approach to consciousness, namely that conscious experience is shaped by 

prediction of sensorimotor contingencies. In two experiments, sensorimotor contingencies were 

operationalised as learned instrumental associations between stimuli and different actions. 

Reported access to consciousness was then measures with breaking interocular suppression in 

CFS (bCFS). The results demonstrate that learned instrumental (stimulus-action) associations, 

constituting sensorimotor predictions, speed up reported access to consciousness for predicted 

stimuli as opposed to unpredicted ones. This provides support for the assertion that prediction 

of our instrumental interactions with the world affects conscious perceptual experience. 

 

7.2. The role of the body in instrumental learning 

As reviewed in the introduction, there is extensive theoretical research pointing to the 

importance of bodily information in adaptive behaviour. Under this perspective, the current and 

expected condition of the body informs value judgments (e.g. whether stimuli in the world are 

rewarding or punishing to the organism), and drives motivation and invigoration of goal-directed 

behaviour, targeted at obtaining rewarding outcomes and avoiding negative outcomes. 

Empirically, behavioural and neuroimaging evidence provides support for this view, showing 

interconnectedness of networks related to interoception, value computation, reward, and 

decision-making (Gu & Fitzgerald, 2014). Another source of support comes from the evidence 

for autonomic markers of performance monitoring (Hajcak, Mcdonald, et al., 2003), akin to the 

much-documented orienting response, characterised by reorienting the organism’s internal 

resources to deal with new environmental demands (Pavlov, 1927; Sokolov, 1963). Those 

converging lines of evidence opened an important question: to what extent is performance-

related bodily (in this case, cardiac) information functionally important in driving adaptive 

behaviour, such as instrumental learning? 
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Chapter 2 of this thesis came short of answering that question due to strong evidence 

against the presence of unconscious instrumental learning at baseline. Consequently, learning 

was unaffected by the cardiac precision manipulation. Chapter 3 investigated this question in 

more detail through a measure of cardiac activity throughout the learning process. The 

physiological results suggest that the heart failed to differentiate between rewarding and 

punishing performance feedback, contrary to past evidence showing that the heart decelerates 

more in response to punishing feedback (indicative of an error) than to rewarding feedback 

(Crone et al., 2005b, 2003; van der Veen et al., 2004a). Instead, cardiac deceleration was evident 

for both types of feedback. Failure to observe a differentiated response to rewarding and 

punishing feedback suggests that it was not informative – it did not reflect a mismatch between 

the expected outcome, predicted by the cue, and the actual outcome. This, in turn, suggests 

that the unconscious cue was not processed to an extent permitting its integration with 

feedback. That is, cue identity was not predictive of the expected outcome, so any feedback 

signifying actual outcome was rendered meaningless and uninformative, as the performance 

monitoring mechanism was unable relate the two.  

Despite evidence for absence of learning, it is also worth noting that the current cardiac 

feedback manipulation technique might not be robust enough for the purpose of manipulating 

interoceptive precision. Presenting an auditory stream corresponding to participants’ own 

heartbeats is undoubtedly an exteroceptive signal, and there is still limited evidence regarding 

its processing in the brain. However, recent EEG evidence demonstrates that the brain does 

process external synchronous cardiac feedback in a manner similar to other self-generated 

sounds, suggesting that it can be differentiated from cardiac-asynchronous sounds (van Elk et 

al., 2014). Elsewhere, unexpected omissions from a synchronous, but not asynchronous, 

auditory stream were found to elicit a surprise response (Pfeiffer & De Lucia, 2017). Still, the 

proposal that such manipulation is in fact affecting precision of the cardiac channel, as 

formalised in the interoceptive inference framework (Petzschner, 2017; Petzschner et al., 2019), 

remains theoretical. As such, different manipulations of cardiac precision should be explored 

and tested to fully understand its role in other processes, as well as direct manipulations of the 

interoceptive signal itself. One such manipulation could be Vagus Nerve Stimulation (Paciorek & 

Skora, 2020), which was recently found to improve interoceptive accuracy (Villani et al., 2019).  

While the setback encountered in the form of absence of instrumental learning 

prevented any conclusions about the role of cardiac precision in learning, it suggests that 

perhaps there is another, equally (or more) vital ingredient for adaptive behaviour: 

consciousness. Past theoretical contributions suggested that information about the body’s 

condition is indispensable to the organisms’ survival, rendering it the lowest-level substrate, 
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almost a foundation of subsequent processing, including consciousness and the sense of self 

(Damasio, 1994, 1999). Indeed, some authors argue that the body constitutes the ‘first-prior’ 

(Allen & Tsakiris, 2018), or a frame of reference for subsequent processes and behaviour, 

providing the sense of subjective “I” or “me” (Azzalini, Rebollo, & Tallon-Baudry, 2019; Tallon-

Baudry & Park, 2014). Inference on bodily processes has also been proposed to be the basis of 

the sense of conscious self (Seth & Tsakiris, 2018) and emotion (Seth, 2013). Consequently, the 

body and consciousness seem tightly intertwined. With the imperative to keep the organism 

alive through reward pursuit, this relationship is particularly evident in adaptive behaviour. 

However, the exact mechanism of this relationship is still a matter of dispute, and is more readily 

accounted for by certain theoretical positions (e.g. embodied accounts of predictive processing 

or the FEP) than others. Further research is necessary to chart the details of the functional brain-

body connection, and to provide further evidence for or against the theoretical implications.  

 

7.3. The role of consciousness in instrumental learning 

The requirement for consciousness for processes of varying degrees of complexity has been an 

extensively studied question, both theoretically and empirically. In the context of learning 

especially, it has been found that simpler forms of learning may be possible without conscious 

awareness of the stimuli, and / or of the stimulus-outcome contingencies, including classical 

conditioning, to emotional, visuospatial, or multisensory learning (Clark & Squire, 1998; Faivre, 

Mudrik, Schwartz, & Koch, 2014a; Knight et al., 2003; Lin & He, 2009; Olsson & Phelps, 2004; 

Rosenthal et al., 2016, 2010; Scott et al., 2018; Seitz et al., 2009a). However, more complex 

forms of learning, including instrumental learning, may require conscious awareness (Reber et 

al., 2018; Travers et al., 2018). 

 A fundamental reliance on conscious awareness is indeed the conclusion supported by 

the results of Chapters 2, 3, and 5 of this thesis (as well as the data presented in the 

supplementary material of Chapter 6). Those three chapters used variants of an unconscious 

instrumental conditioning task, where participants learned to approach reward-predictive 

stimuli and avoid punishment-predictive stimuli, rendered unconscious with masking or CFS. In 

all three cases, the results demonstrate strong evidence for the absence of unconscious 

instrumental learning – participants were unable to learn those associations and adjust their 

behaviour accordingly. Those results support the view that consciousness may be a necessary 

component for higher-level processing, including problem solving, decision-making, and 

behavioural adaptations (Baars, 2002; de Lange, van Gaal, Lamme, & Dehaene, 2011; van Gaal 

et al., 2012).  
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Instrumental learning can be classified as a complex adaptive process, requiring an 

agent to not only learn the associations between different stimuli, or stimuli and their outcomes, 

but also deploy action selectively (e.g. approach or avoid), and adapt their behaviour in the long-

term. This involves integrating information over a long temporal scale and distinct modalities, 

as involved in processing the visual input, extracting its predictive value, deploying a selective 

response, processing the reinforcement, and comparing the expected outcome with the actual 

outcome in order to update the representations of stimulus value. As such, it is a considerably 

more complex process than the simpler forms of associative learning (e.g. stimulus-stimulus 

associations), which do not require selective decisions on whether to act or not, or a behavioural 

adaptation from trial to trial. 

Indeed, as outlined in the theoretical overview, past theoretical and empirical accounts 

of conscious versus unconscious processing suggest that such an increased level of complexity 

should require conscious access. A number of theoretical contributions propose that 

consciousness is related to long-lasting, long-range connections between distinct brain regions, 

supporting recurrent information integration across distinct cognitive modules (Dehaene & 

Naccache, 2001; Dehaene & Changeux, 2011; Dehaene, Charles, King, & Marti, 2014; Lamme, 

2006; Mudrik, Faivre, & Koch, 2014). As such, low-level or short-range (spatial or temporal) 

information integration might be possible without conscious awareness, but consciousness 

might be necessary at increased levels of complexity, requiring integration of information across 

longer spatiotemporal intervals or larger spatial distance, as in the case of instrumental learning. 

Nonetheless, the exact dividing line between conscious and unconscious processing 

remains a topic of ongoing debate. It has been shown that certain aspects of cognitive and 

behavioural control can still take place unconsciously. Unconsciously presented primes were 

found to trigger response inhibition (Van Gaal, Ridderinkhof, Fahrenfort, Scholte, & Lamme, 

2008; van Gaal, Ridderinkhof, Scholte, & Lamme, 2010), although the effect is less pronounced 

than for conscious primes, and occurs only in an decision-making setting (Chiu & Aron, 2014). 

Similarly, unconsciously presented rewards can enhance invigoration of behaviour (Bijleveld, 

Custers, & Aarts, 2010; Pessiglione et al., 2007), but, interestingly, they fail to engage the 

striatum and connected areas involved in motivated behaviour (including the motor cortex and 

superior temporal gyrus; Bijleveld et al., 2014). The error-monitoring network also appears to 

be active when errors are committed without awareness, with the ACC responding to aware and 

unaware errors alike (Hester, Foxe, Molholm, Shpaner, & Garavan, 2005). Similar results were 

obtained for the ERN, but not the Pe (Nieuwenhuis, Ridderinkhof, Blom, Band, & Kok, 2001; note 

that error awareness is different from stimulus awareness).  
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Together, those findings suggest that aspects of instrumental performance may proceed 

without conscious awareness. However, none of those studies investigated the entire process 

of instrumental learning. As such, it could be the case that an agent requires conscious 

awareness for novel associations to be learned and selectively acted upon, but once the 

associations are learned the brain can detect stimulus value and invigorate or monitor behaviour 

without conscious awareness. Indeed, there is some evidence that prior conscious exposure 

facilitates unconscious multimodal learning (Faivre et al., 2014b). Whether unconscious 

instrumental learning can be aided in a similar way could be an avenue for future research. 

 It is also noteworthy that the field of unconscious processing is inherently difficult to 

study, and fraught with methodological and statistical issues. Perhaps the most serious 

challenge lies in ensuring the genuine absence of awareness of the desired targets. It has been 

proposed that awareness test should be sensitive, relevant, and immediate (Berry & Dienes, 

1993; Shanks, 2017; Shanks & St. John, 1994) – for example, testing for awareness immediately 

after the performance measure of interest, rather than in a separate task. However, a 

considerable portion of research, especially older studies, fail to provide appropriate awareness 

checks. If awareness is not properly controlled for, one cannot preclude the possibility that 

rudimentary awareness was in fact present throughout the task of interest and may have 

contaminated the putatively “unconscious” effect. Certain methodological and statistical 

advances have been developed to address this issue. One approach is, as mentioned, to measure 

presence of (or the level of) awareness on an ongoing, trial-by-trial basis, allowing to exclude 

any aware trials. This approach has been used in the present thesis while ensuring that individual 

trial exclusions did not lead to regression to the mean (Chapters 4 and 5).  

However, the problem of conscious “contamination” becomes even more serious in 

unconscious learning research. Learning is an incremental process, so transient awareness of 

the target stimulus can not only contaminate the perception at that one moment, but possibly 

also affect its subsequent perception. In that sense, learning from a stimulus once consciously 

seen might not be entirely unconscious anymore. Nonetheless, this is a speculative 

consideration – more research is needed to address this issue and its implication for task design. 

Finally, while the evidence presented in this thesis overwhelmingly supports the genuine 

absence of unconscious instrumental learning, one cannot ignore the possibility that there may 

be other ways to probe this phenomenon. Type I d’, the Signal Detection Theoretic measure 

used here, is superior to pure accuracy measures, but it fails to take into account the progression 

of learning. As such, more sensitive metrics, such as RL models, might illuminate the finer-
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grained detail of an unconscious instrumental learning process9. It is also possible that 

unconscious instrumental learning may require a more sensitive task – for example, one 

including longer learning periods or more repetitions. This is also a matter for future research. 

 

7.4. The role of instrumental action in shaping conscious perception 

Action and conscious experience have long been proposed to be closely intertwined (James, 

1891). Under the action-oriented accounts, our actions are not merely responses to the events 

in the world – instead, they directly shape how we perceive our environment. This relationship 

has been formalised by action-oriented predictive processing approaches to consciousness. 

Under predictive processing, our conscious experience is shaped by the predictive model that 

best explains the causes of sensory inputs (i.e. the best posterior prediction). Action-oriented 

accounts extend this view by proposing that perceptual experience is influenced not only by 

passive predictions about the world, but more generally by predictions encompassing the 

coupling or contingency between actions and sensory signals – i.e., on predictions about 

sensorimotor contingencies (Clark, 2015b; Seth, 2014). If that assumption is correct, then 

holding valid sensorimotor predictions should directly shape access to consciousness in line with 

those predictions. 

 This is indeed the pattern observed in Chapter 6 of this thesis. Stimuli which were 

congruent with the sensorimotor prediction instantiated through training an instrumental 

stimulus-action relationship showed facilitated access to reported conscious awareness, relative 

to stimuli which were incongruent with the prediction. Stimuli unrelated to any instrumental 

action behaved similarly to incongruent stimuli. Interestingly, stimuli which were completely 

novel – that is, never previously experienced in relation to an action or no-action – showed the 

fastest access to consciousness. This result suggests that while sensorimotor predictions have a 

direct impact on conscious experience, action might not be the dominant factor. A novel cue 

could be motivationally important or life-threatening, thus requiring priority processing to 

enable an immediate reaction. This effect also points to an open question in the predictive 

processing literature – the roles of predictions versus PEs in shaping perception, and the 

potential roles of expected precisions (proposed to be mediated by attention).  

                                                           
9 A type of RL model, Q-learning (Watkins & Dayan, 1992), was in fact cautiously applied to the learning 
data in Chapter 2. The learning rates estimated by the model suggested that participants failed to learn 
the stimulus values, and their instrumental behaviour remained erratic, rather than guided by stimulus 
value. This data was not included in the empirical chapters as it was considered a side-project, and a 
work in progress besides –  the range of models and parameters which can be applied is huge, and can 
often considerably affect the result. 
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 The result of Chapter 6 provides an important extension to previous findings in this line 

of research, which showed that action can influence perception, for example by biasing the 

perceived direction of stimulus motion in line with the direction of movement (e.g. Maruya, 

Yang, & Blake, 2007; Mitsumatsu, 2009; Suzuki, Schwartzman, Augusto, & Seth, 2019). Crucially, 

however, the paradigm presented in this thesis goes beyond studying a match in stimulus and 

percept characteristics (such as a match in directions) to evaluate the role of holding stimulus-

action predictions on perceptual experience. This allows to directly investigate the mechanism 

behind conscious experience, as postulated by predictive processing.  

 The results showing changes in access to consciousness in line with sensorimotor 

predictions speak to the proposals that conscious experience is organised so as to support 

streamlined, dynamic interactions with the world. In this sense, conscious experience does not 

represent the world in the most veridical way, but rather in a way which is optimal for action 

(Clark, 2016; Seth, 2014, 2015; Tschantz, Seth, & Buckley, 2020). Indeed, it has been long 

suggested that the role of conscious experience is to provide a unified subjective frame of 

reference that enables efficient interaction with the world (Land, 2012; Merker, 2013).  

 Nonetheless, conscious experience is a complex topic to operationalise in research. 

Firstly, there is no agreed-upon definition of consciousness – the nature of consciousness differs 

based on the approach taken. For example, the Global Neuronal Workspace hypothesis might 

see consciousness as a result of global broadcasting of information in the brain (Dehaene & 

Naccache, 2001), but under the Integrated Information Theory consciousness is a property of 

information integration in any system (Tononi, 2004, 2012). Consequently, measures of 

consciousness also differ based on the definition used. Secondly, consciousness has many facets 

– one may think of levels of consciousness (e.g. from absence of consciousness, through being 

just awake, to full alertness), contents of consciousness (e.g. the phenomenal experience), or 

the subjective confidence in one’s conscious experience. Operationalising consciousness based 

on the chosen aspect of consciousness results in a host of different metrics and measures 

(Overgaard, 2015; Persuh, 2017; Seth, Dienes, Cleeremans, Overgaard, & Pessoa, 2008). The 

method used here, breaking CFS, can only address the speed of access to conscious, reportable 

awareness (in other words, the speed of reported conscious detection of a stimulus under 

interocular suppression). Although a common measure, it cannot address consciousness 

comprehensively (indeed, it is likely that no single measure can). As such, future research is 

needed to assess the role of action in the other aspects of consciousness.  
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7.5. Conclusions 

Instrumental learning is a fundamental substrate of adaptive behaviour, allowing humans and 

other animals to interact with their environments to promote survival. The present work 

investigated human instrumental learning from three perspectives: focusing on the roles of 

bodily information, consciousness, and action in shaping instrumental learning and the 

associated experience of interacting with the world. While adaptive behaviour – including 

instrumental learning – is a vast and complex phenomenon, the present thesis contributed to 

charting the potential influences from the body (on the outside, and on the inside) and 

consciousness on adaptive learning processes. 

 The main finding of the empirical research contained in the present thesis is that 

conscious access is a key ingredient for instrumental learning to proceed successfully. Across 

multiple experiments, the results show that instrumental learning cannot proceed in the 

absence of conscious awareness of the stimuli. Unfortunately, this finding prevents drawing 

conclusions about the functional role of cardiac precision in unconscious instrumental learning, 

one of the three main aims of this project. Nonetheless, this result may inform further research 

into the intersection and interrelationships between the body and consciousness in adaptive 

behaviour. Finally, while showing that consciousness may be needed for instrumental 

behaviour, we also show that instrumental behaviour further shapes conscious experience of 

the world in line with it. 

Together, those findings point to a tight, bidirectional relationship between 

consciousness and the body – on the outside, and on the inside – where the two are not 

independent of each other, but rather a part of the same package shaping the agents’ 

interactions with their environments. Consequently, this work extends the current 

understanding of instrumental learning as a fundamental component of adaptive behaviour, 

showing that conscious access is required to drive adaptive interactions with the world, and to 

further shape our conscious experience. 
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Appendix 1: Stimuli used in Chapters 2, 3, 5 (Exp.1) 

 

Main task: 

        

 

  

 

Threshold-finding: 

       

 

Example masks (note that masks were generated afresh on each trial): 
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Appendix 2: Stimuli used in Chapter 4 (pilot) 

 

Main task and threshold-finding: 

    

   

   

 

Masks: 
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Appendix 3: Stimuli used in Chapter 5 (Exp. 2) 

 

       

 

 

 

 

Appendix 4: Stimuli used in Chapter 6 
 

Main sets: 

    

    

 

Demo set: 
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