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Model specification and news announcements:
Theoretical and empirical aspects of option pricing

Summary

This thesis covers the e↵ects of macroeconomic announcements and model specification on
option pricing. In the first main chapter a novel design for an approximative solution to
a non-a�ne stochastic volatility model for option pricing is derived, inspired by methods
frequently used in physics. This methodology is then compared against numerical solutions
and is found to perform very well. In the second main chapter we conduct an empirical
study of high-frequency option pricing on S&P 500 options. The chapter has two objec-
tives: to examine the equity price uncertainty surrounding information released in FOMC
announce-ments. Additionally, we quantify this impact on formal option pricing models.
Secondly, to investigate option market maker biases to volatility accrual and this biases abil-
ity to explain why option returns, on average, are negative overnight and positive intraday.
We also investigate this e↵ect on formal option pricing models. In the third main chapter
we investigate equity option returns and their behaviour around earnings announcements.
We document a robust novel finding that delta-hedged equity option returns increase with
increasing earnings announcement variance of the underlying stock. This result is separate
from existing anomalies in stock and options markets and cannot be explained by standard
risk factors. The thoughts demonstrated in this thesis lay the foundations for further inter-
esting research and practically relevant applications. Please note that the first main chapter
has been publish in the journal of Futures Markets, DOI: fut.22061.
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Chapter 1

Introduction

In the three main chapters of this thesis we discuss a range of aspects relevant to option

pricing. Since the seminal work of Black-Scholes (1973), empirical option pricing and model

specification has received a substantial amount of attention in the literature. The model of

Black-Scholes (1973) was the first to give mathematical rigour to option pricing.1 The model

gives a theoretical estimate of the price of European-style options, which is unique regardless

of the expected return of the underlying asset. While the Black-Scholes (1973) model has

been incredibly successful, it is not without its drawbacks. For example, the main problem

of the Black-Scholes model is the assumption of constant volatility regardless of moneyness

(defined as the ratio of strike price to underlying asset price) or time to maturity (defined

as the amount of time left until the option expires, measured in years) of the option. This

assumption is strongly at odds with empirical findings. For instance Macbeth and Merville

(1979) find implied volatilities are not flat and often exhibit a ”volatility smile” or ”smirk”

pattern. Where implied volatility is defined as the volatility value of the underlying asset

which when supplied to an option pricing model returns a theoretical value equal to the

current market value of the option contract. For the purposes of this thesis the model in

question is always the Black-Scholes (1973) model, however, in theory other models would

be valid. The empirical shortcomings of the Black-Scholes model prompted research along

1However, Bronzin was a precursor to Black-Scholes, publishing his ”Theory of Premium Contracts” work
in 1908, containing many elements of modern option pricing. However, his work was quickly forgotten and
less well-known.

1



2 CHAPTER 1. INTRODUCTION

dimensions relaxing the restrictive assumptions. Consequently, a very substantial body of

literature exists utilising stochastic volatility models, which allow the instantaneous volatility

of asset returns to evolve stochastically, with respect to time. An example of such a stochastic

volatility model is the Heston (1993) model:

dSt = µStdt+
p
VtStdW

S

t
, (1.1)

dVt = (✓ � Vt)dt+ ⇠

p
VtdW

V

t
, (1.2)

where St denotes the price of the underlying asset at time t, with rate of return µ. Vt is the

instantaneous latent variance process of St. The variance process possesses the parameters

, ✓, ⇠ with the following definitions: ✓ is the long run variance level, where  represents

the rate at which Vt tends to ✓. ⇠ represents the volatility of volatility and determines

the variance of Vt. While these stochastic volatility models are very popular and certainly

provide much empirical improvement against the Black-Scholes (1973) model there are many

di↵erent potential model specifications, making this still an actively researched area. A

popular choice is to model the volatility using a di↵usion process, such as in Merton (1976).

This leads to the popular a�ne square-root volatility model of Heston (1993). However,

there is a substantial strand of literature which finds that the popular square-root stochastic

volatility model is misspecified (see e.g., Eraker et al. (2003), Duan and Yeh (2010) to

name a few). Model misspecification is defined as models which are specified in error, as

any model is only an approximation to reality. Misspecified models are known to manifest

biased parameter estimates. While using a non-a�ne framework is more realistic to model

the volatility of returns, there is a drawback of these models which is a general lack of closed

form characteristic function, which makes pricing much more challenging. It is this aspect

of option pricing model specification which we are concerned with in the first main chapter

of this thesis. Specifically we are concerned with attempting to overcome the problems of

pricing such models in a timely and accurate fashion.

Continuing the theme of a�ne volatility models additional research has shown there

to be substantial empirical evidence to support large magnitude jump-like movements in

returns, for example the 1987 crash. Bates (1991) (initially) uses random Poisson jumps in
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the price process to model such events. This leads to the jump-di↵usion class of models, for

example Merton (1976). Further research in jump-di↵usion models suggests the volatility

of returns can increase suddenly. Without jumps, the volatility of returns, is driven by a

Brownian motion, thus it can only increase gradually via a sequence of normally distributed

increments. Evidence from Bates (2000) and Du�e et al. (2000) has shown empirically that

the conditional volatility of returns can increase rapidly. Eraker et al. (2003) demonstrate

that jumps in volatility allow the volatility of returns to increase suddenly.

While single factor jump-di↵usion models are very popular in the literature there is

strong empirical evidence to suggest a multi-factor volatility framework is needed, with one

highly persistent and one quickly mean-reverting factor. For example, Christo↵ersen et al.

(2009) find using a two-factor framework improves the ability to model the slope and level of

the volatility smile, which move largely independently. As such their findings demonstrate

significant improvement over a benchmark Heston model. It is this a�ne two-factor jump-

di↵usion model type that we primarily investigate for the second main chapter of this thesis.

We conduct extensive empirical exercises to determine which model processes and features

are relevant to model high-frequency options data on the S&P 500. This links to the first

main chapter in part by analysing model specification for option pricing, this time from an

a�ne volatility framework.

There is also a further branch of the literature which investigates systematic patterns

in stock returns and or return volatilities. For example, French and Roll (1986) find stock

volatility is higher during trading hours mainly due to private information accrued during

periods of non-trading. More recently, Kaplanski and Levy (2015) investigate a number

of volatility seasonalities, showing weekend, holiday and overnight trading breaks generate

excessive perceived risk in options markets. A part of the second main chapter deals with

capturing such volatility seasonalities and incorporating them into traditional option pricing

models, further linking to the first main chapter by building upon improving option pricing

model specifications.

The second main chapter further links to the first by investigating option pricing model

specification in the face of macroeconomic announcements. The notion of uncertainty as a
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fundamental driving force for asset prices is intuitive and has been extensively documented.

For example, Kelly et al. (2016) study international equity option quotes and demonstrate

that political uncertainty from national elections and global summits is priced by investors

with the result that options spanning important events are on average more expensive.

The third main chapter of the thesis links to the second by investigating the e↵ect of

news announcements on option pricing. The third main chapter investigates the e↵ects of

earnings announcements on individual stock options and constructs a robust trading strategy

on earnings announcement variance. The following paragraphs provide a more detailed

overview of each chapter.

The second chapter investigates option pricing model specifications under a non-a�ne

volatility framework. To quote Chourdakis and Dotsis (2011): ”Does analytically tractability

come at the cost of empirical misspecification?”, we propose to use methods common in

physics to find an analytical approximation to a general one-factor non-a�ne stochastic

volatility model. We find our method performs well in simulated time series calibration

exercises and provides very fast computation of option prices.

The third chapter investigates novel empirical option pricing model specifications under

high-frequency, intradaily options data on the S&P 500. We wish to determine which factors

and processes are relevant in this new age of data. We decompose this research question

into three sub-questions, each building on a respective area of the literature. Firstly, we

wish to determine if standard factors and processes, which have been shown in prior studies

using lower-frequency daily or weekly data (such as Christo↵ersen et al. (2009), Eraker et

al. (2003), Du�e et al. (2000)), are still relevant. We find empirical evidence to confirm, at

high-frequencies, multiple variance factors and jumps in the price and variance process are

important. Secondly, we are interested in incorporating model processes to capture option

market maker biases towards volatility accrual during di↵erent periods of the week. Our

work builds on that of the overnight e↵ect by Muravyev and Ni (2019) and also on the week-

end e↵ect by Jones and Shemesh (2018). We support the conclusion of Muravyev and Ni

(2019) that market makers ignore the day-night volatility seasonality in options and find our

proposed model specification to capture this e↵ect reduces out-of-sample errors by approxi-
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mately 7%. Thirdly, we wish to understand the e↵ect of macroeconomic announcements on

option prices. We investigate the Federal Open Market Committee (FOMC) announcement,

utilising the high-frequency data it is possible to observe the e↵ect of the announcement on

options in minute detail. We find evidence to suggest that FOMC announcements contain

important information for option pricing.

The fourth chapter follows empirical studies by Cao and Han (2013) and Cao et al. (2005)

who analyse delta-hedged option returns on individual stock options, specifically we are in-

terested in the e↵ect of the idiosyncratic volatility component which earnings announcements

provide. We define idiosyncratic volatility as the component of total volatility of the assets

returns that cannot be explained by market returns. While Cao and Han (2013) consider to-

tal idiosyncratic volatility, finding a negative relationship between delta-hedged returns and

idiosyncratic volatility we construct an earnings announcement variance measure which is

positively related to delta-hedged option returns. We form an option trading strategy based

on sorting firms by their earnings announcement variance. Our trading strategy is found to

be robust against standard risk factors and the idiosyncratic volatility trading strategy of

Cao and Han (2013). We also document our strategy is robust to trading costs.

Chapter five concludes by summarising the main results. The Appendix contains a range

of tools that are used throughout this thesis: Appendices 6.1 - 6.4 provides mathematical

details needed for the derivation of our solution to the non-a�ne model considered in Chapter

two and details of the simulated time series calibration exercise. Appendices 6.5 - 6.11 discuss

the pricing of the model specification for the third Chapter and also provide checks as to

our methodology at various points.



Chapter 2

An Analytical Perturbative Solution

to the Merton-Garman Model Using

Symmetries

2.1 Introduction

Calculating the price of an option is an important challenge in mathematical finance. The

first attempts in that direction are attributed to Louis Bachelier who in his Doctoral thesis,

Théorie de la spéculation, published in 1900, considered a mathematical model of Brow-

nian motion and its use for valuing options. This work provided the foundations for the

Black-Scholes model (Black, Scholes (1973)). However, while the Black-Scholes model was

a breakthrough in the field, it is widely accepted that it has limitations. In particular, the

volatility is treated as a constant which is not very realistic.

Since the seminal works of Black, Scholes (1973) and Merton (1973), more sophisticated

models with a time dependent volatility have been proposed. For example, the a�ne Heston

model (See Heston (1993)), which assumes a time-dependent volatility, with a stochastic

process involving the square-root of the stochastic volatility, and a leverage e↵ect, has been

implemented in a large number of empirical studies (Andersen et al. (2002), Bakshi et al.

6
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(1997), Bates (2000), Bates (2006), Chernov et al. (2003), Huang andWu (2004), Pan (2002),

Eraker (2004) to name a few). Such models have however limitations and are often modified

artificially by combining them with models of jumps in returns and/or in volatility (such

as in Jones (2003) and Benzoni (2002)). As a consequence, there is a substantial strand

of literature devoted to non-a�ne volatility models, which note that the popular square-

root stochastic volatility model is not very realistic (see e.g., (Eraker et al. (2003) Duan

and Yeh (2010), Aı̈t-Sahalia, Kimmel (2007) Christo↵ersen et al. (2010), Chourdakis and

Dotsis (2011) and Kaeck and Alexander (2012)) to name a few). However, the issue with

such models is a general lack of closed form characteristic function, which makes pricing

much more challenging. As stated in Chourdakis and Dotsis (2011) when regarding the

place of non-a�ne models and the debate of their tractability against a�ne models: “does

analytically tractability come at the cost of empirical misspecification?”. It is a useful

endeavor to study non-a�ne model as we propose in this paper, if an analytical solution for

the option pricing formula can be found.

A well-known example of such models is the Merton-Garman model (Garman (1976) and

Merton (1973)) which is indeed a more realistic model as it allows for a time-dependent

volatility and it is not restricted to an a�ne model for the volatility. However, solving non-

a�ne models is time consuming, as it involves numerical methods. Thus, many practitioners

are still using the Black-Scholes formula to obtain a fast, albeit not necessarily very reliable,

price quote for an option.

The aim of our work is twofold. We will derive an analytical approximative solution

to the partial di↵erential equation describing the Merton-Garman model which enables fast

calculations of option prices. This requires us to identify a “symmetric” version of the model

which can easily be solved analytically. One can then reintroduce the symmetry breaking

terms of the original Merton-Garman di↵erential equation and do perturbation theory around

the symmetric solution thereby obtaining an approximative but analytical solution to the

original Merton-Garman di↵erential equation. We then propose a new approach to model

building in option pricing based on the concept of symmetry groups and representation

theory. This concept has been extremely successful in modern physics. It is at the origin



8
CHAPTER 2. AN ANALYTICAL PERTURBATIVE SOLUTION TO THE

MERTON-GARMAN MODEL USING SYMMETRIES

of all successful models in physics, e.g., in particle physics, cosmology or solid state physics.

We note that perturbation theory has been used in option pricing models (Baaquie (1997),

Baaquie et al. (2003), Blazhyevskyi and Yanishevsky (2011), Aguilar (2017), Kleinert and

Korbel (2016), Utama and Purqon (2016)) but here we organise perturbation theory around

a very specific solution, namely that of the symmetrical model which we will introduce in

this paper.

This paper is organised as follows. In section 2, we derive the partial di↵erential equation

which describes the Merton-Garman model. In section 3, we explain how to reduce the

original Merton-Garman to a simple, symmetrical, model. We present an exact analytical

solution to the symmetrical model. We then restore the original Merton-Garman by re-

introducing the symmetry breaking terms and provide an analytical perturbative solution

to the Merton-Garman model. In section 4, we compare our solutions to di↵erent numerical

solutions found in the literature. In section 5, we propose a new approach to model building

in mathematical finance. Finally, we conclude in section 6.

2.2 The Merton-Garman Model

In the Merton-Garman model, the price of an option is dependent on the time t, the price

of the underlying S and the volatility V . Both S and V are taken to be time-dependent

functions and thus the Merton-Garman model has the potential to provide a more accurate

calculation of an option price than e.g., the Black-Scholes model.

We start from the stochastic di↵erential equations for the price of the underlying S and

for the volatility V , under the risk-neutral measure

dS = rSdt+
p
V SdW

S
, (2.1)

dV = (✓ � V )dt+ ⇠V
↵
dW

V
, (2.2)

which is a stochastic, mean reverting, volatility regime. Here, ⇠ is the standard deviation of
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the volatility and  is the speed of mean reversion to the long run variance ✓. The interest

rate r is assumed to be constant. The model described by Equations (2.1) and (2.2) covers

many well-known stochastic volatility models, for instance setting ↵ = 1, 1/2 recovers the

Hull and White (see Hull and White (1987)) and Heston models, respectively. However, we

do not constrain ourselves to either of these worlds. Here, ↵ can take arbitrary values. We

will denote the correlation between the two Brownian motions W S and W
V by ⇢.

We shall first consider a call option, but our results can be extended to a put option in a

straightforward manner. Our first step is to find the associated partial di↵erential equation

which describes this model. We do so by applying the Feynman-Kac formula, see e.g Hull

(1997), which states that for the price of a call option, as defined by the model dynamics in

Equations (2.1) and (2.2) is given by:

@C

@t
+
X

i=1

µi(t, x)
@C

@xi

+
1

2

X

i,j=1

⇢ij�i(t, x)�j(t, x)
@
2
C

@xi@xj

� rC = 0, (2.3)

where C is the price of a call. Using this formula, one obtains (see Srikant (1998))

@C

@t
+ rS

@C

@S
+

1

2
V S

2
@
2
C

@S2
+ (�+ µV )

@C

@V
+ ⇢⇠V

1/2+↵
S
@
2
C

@S@V
+ ⇠

2
V

2↵
@
2
C

@V 2
� rC = 0, (2.4)

where � = ✓, µ = �. The call price C = C(S, V, t) depends on the time t, the price

of the underlying S and the time dependent volatility V = V (t). In this model, there

are four free parameters ⇢, �, µ and ↵. As we explained previously, existing solutions to

this partial di↵erential equation are numerical ones which have been obtained using Monte

Carlo methods (except for the case of ⇢ = 0, where an analytical solution exists, see Srikant

(1998)). Note that the put price P = P (S, V, t) fulfills the same di↵erential equation, but it

is subject to a di↵erent boundary condition.
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2.3 Reduction to the Symmetrical Model and Pertur-

bative Solution to the Merton-Garman Model

By studying the partial di↵erential equation given in Equation (2.4), it quickly becomes

clear that the di�culty in finding an analytical solution to Equation (2.4) is due to the lack

of symmetry between the di↵erent terms of the partial di↵erential equation. It is useful to

study the dimensions of the di↵erent terms and constants in this partial di↵erential equation.

The price of the call is obviously given in a specific currency which we shall take to be the

USD or $. The remaining dimensions follow from this. We have:

• [C] = $,

• [@C
@t
] = $/time,

• [rS @C

@S
] = [r]$ thus [r] = 1/time,

• [1
2
V S

2 @
2
C

@S2 ] = [V ]$ thus [V ] = 1/time,

• [(�+ µV )@C
@V

] = ([�] + [µ]1/time) thus [�] = 1/time2 and [µ] = 1

time,

• [⇢⇠V 1/2+↵
S

@
2
C

@S@V
] = [⇢][⇠](1/time)1/2+↵$ time = $/time thus [⇢][⇠] = time↵�3/2,

• [⇠2V 2↵ @
2
C

@V 2 ] = [⇠]2(1/time)2↵�2$ = $/time thus [⇠] = time↵�3/2 and ⇢ is dimensionless.

It is instructive to see that S and V have di↵erent dimensions. Nevertheless, our goal is

to treat S and V as symmetrically as possible to make a global Galilean invariance in 2+1

manifest (see Section 2.5). This can be achieved by adequate variable transformations and

by identifying the terms in the di↵erential equation that violate this symmetry.

2.3.1 Symmetrical Model

Our aim is to derive a di↵erential equation that is symmetrical in S and V . With this aim

in mind, let us introduce an averaged volatility �2 which is constant. As in the case of the
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Black-Scholes model, di↵erent definitions for the averaged volatility are possible, the specific

choice will not impact our methodology and results.

Inspecting the di↵erential equation (2.4), it is clear that we need to pick ↵ = 1 (corre-

sponding to the Hull and White (1987) model) to emphasize the symmetry between S and

V . We thus consider

@C

@t
+ rS

@C

@S
+

1

2
�
2
S
2
@
2
C

@S2
+ µV

@C

@V
+ ⇢⇠0V

3/2
S
@
2
C

@S@V
+ ⇠

2

0
V

2
@
2
C

@V 2
= rC. (2.5)

We need to keep in mind that we will need to reintroduce 1

2
V S

2 @
2
C

@S2 , �
@C

@V
and the terms

corresponding to deviations from 1 for ↵. Note that ⇠0 is di↵erent from ⇠, in particular they

do not have the same dimensions. Finally, we see that there is a mixed derivative term which

needs to be eliminated. We thus set ⇢ = 0 and we will reintroduce this term as symmetry

breaking term. We thus end up with:

@C

@t
+ rS

@C

@S
+

1

2
�
2
S
2
@
2
C

@S2
+ µV

@C

@V
+ ⇠

2

0
V

2
@
2
C

@V 2
= rC. (2.6)

This partial di↵erential equation can be massaged with standard substitutions into a 2+1

dimensional heat equation (see Appendix 6.1) in which case the symmetry in S and V

becomes manifest. In order to do so, we introduce

x = log(S/K), (2.7)

y = log(V/V0), (2.8)

and

C(x, y, ⌧) = K�(x, y, ⌧) 0(x, y, ⌧), (2.9)

where K is the strike price and V0 is some constant with units of 1/sec. The function

�(x, y, ⌧) and the rescaled time ⌧ are defined in Appendix 6.1. Standard manipulations

described in Appendix 6.1 lead to

@ 0

@⌧
=
@
2
 0

@x2
+
@
2
 0

@y2
. (2.10)
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which is manifestly symmetrical in x and y. We will thus refer to the model described by

the di↵erential equation (2.6) as the symmetrical model. Another reason for massaging the

symmetrical model into a heat equation is that this equation is easy to solve analytically.

We impose the standard boundary condition for the call price:

C(S, V, T ) =

 
S(T )�K

!+

. (2.11)

For a put option we have

P (S, V, T ) =

 
K � S(T )

!+

. (2.12)

2.3.2 Solution of the Symmetrical Model

Details of the derivation of the analytical solution of the symmetrical model, i.e., of the 2+1

dimensional heat equations, are given in Appendix 6.2. We find

C0(S, V, t) = SN (d1)�Ke
�r(T�t)N (d2), (2.13)

where

N (d) =
1p
2⇡

Z
d

�1
exp

✓
�z

2

2

◆
dz, (2.14)

and

d1 =
xp
2⌧

+

p
2⌧

2
(R1 + 1) =

log(S/K) + (r + �
2
/2)(T � t)

�
p
T � t

, (2.15)

d2 =
xp
2⌧

+

p
2⌧

2
(R1 � 1) = d1 � �

p
T � t. (2.16)
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Remarkably, because of the boundary condition that only depends on S, it is identical to

the Black-Scholes solution. For a put option, the very same procedure leads to

P0(S, V, t) = C0(S, V, t)� S +Ke
�r(T�t)

, (2.17)

equally we could have applied put-call parity. In the next subsection, we shall restore the

symmetry breaking terms and discuss the full Merton-Garman model.

2.3.3 Symmetry Breaking Terms and Solution to the Merton-

Garman Model

We are now in a position to solve the full Merton-Garman model using perturbation theory

around the symmetrical solution C0(S, V, t). We organise perturbation theory as an expan-

sion in terms the coe�cients of the symmetry breaking terms. We first need to restore the

full model by re-introducing the symmetry breaking terms

@C

@t
+ rS

@C

@S
+

1

2
�
2
S
2
@
2
C

@S2
+

c1S
2

2

 
V � �

2

!
@
2
C

@S2
+ µV

@C

@V
+ c2�

@C

@V
+ ⇠

2

0
V

2
@
2
C

@V 2

+ c3

 
⇠
2
V

2↵ � ⇠
2

0
V

2

!
@
2
C

@V 2
+ c4⇢⇠V

↵+1/2
S
@
2
C

@S@V
� rC = 0. (2.18)

Note that we have introduced dimensionless coe�cients ci which denote the strength of the

symmetry breaking terms. In the limit ci = 1 one recovers the original Merton-Garman

model. These coe�cients are simply introduced as a bookkeeping trick to keep track of

which terms correspond to a deviation of the 2+1 Galilean invariant theory. In the end of

the day, we set ci = 1. We now do perturbation theory around the symmetrical solution
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C0(S, V, t) (see Appendix 6.3 for details) and obtain

C1(S, V, t) = �K

�
S

K

� 1

2
� r

�2
e

0

@ 4 log
2( S

K )+(2r+�
2)

2
(t�T )

2

8�2(t�T )

1

A

4
p
2⇡
⇣p

2�

�⇠0
+ 1
⌘p

�2(T � t)
(2.19)

⇥
 
1

2
�
4

 p
2�

�⇠0
+ 1

!
(t� T ) + V

✓
e

1

2
�
2

⇣p
2�

�⇠0
+1

⌘
(T�t) � 1

◆!
,

where we have set c1 = 1. We expect that our approximation should work well when � and

⇢ are small, when ↵ is close to one and when the variation of V around is average value �2

is not too large. In the limit when V is large, �2 is large as well and we expect that, as in

the Black-Scholes case, the price of the call becomes the price of the underlying S.

It may appear surprising that the leading order correction does not depend on the sym-

metry breaking terms parametrised by c2, c3 and c4. It can easily be shown (see Appendix

6.3) that the boundary condition (6.13) insures that only the contribution from the c1 term

survives. The boundary condition implies that the contributions of c2, c3 and c4 vanish to

leading order in the perturbation theory. These symmetry breaking terms will, however,

contribute to higher order corrections. Higher precision, if required, can be obtained by

going to higher order in perturbation theory. However, as demonstrated in Section 2.4 the

error from going to first order only is su�ciently small. In a simulated calibration exercise

the error, as measured by implied volatility RMSE, is of the order of < 2%, in comparison

to the Merton-Garman model (see Tables 2.2 and 2.3). This magnitude of error is well

within expected option implied volatility bid-ask spreads. Option prices can be calculated

extremely rapidly using this formalism. Note that, in principle, if we resummed perturbation

theory to all order in ci, the dependence on � and ⇠0 would vanish. It is also worth noticing

that our results are independent on V0 which is only introduced to match the dimension of

V .
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It is straightforward to show that we obtain the same result for a put option

P1(S, V, t) = �K

�
S

K

� 1

2
� r

�2
e

0

@ 4 log
2( S

K )+(2r+�
2)

2
(t�T )

2

8�2(t�T )

1

A

4
p
2⇡
⇣p

2�

�⇠0
+ 1
⌘p

�2(T � t)
(2.20)

⇥
 
1

2
�
4

 p
2�

�⇠0
+ 1

!
(t� T ) + V

✓
e

1

2
�
2

⇣p
2�

�⇠0
+1

⌘
(T�t) � 1

◆!
.

The prices obtained to leading order in perturbation theory for a call and put option are

thus given by

C(S, V, t) = C0(S, V, t) + C1(S, V, t), (2.21)

and

P (S, V, t) = P0(S, V, t) + P1(S, V, t). (2.22)

In the next section we shall compare our results to solutions obtained numerically.

2.4 Comparison with Numerical Simulations

In this section we investigate how the approximative solution compares to a Monte Carlo

simulation of the full Merton-Garman model. It is well-known that the Merton-Garman

model is not solvable analytically, however it can be solved using numerical methods. The

first step is a comparison of static cross sections of options. Then we compare using a

simulated time series calibration exercise.

2.4.1 Static Cross-Section Comparison

The first step in evaluating the performance of the leading order perturbative solution is

to compare to a multitude of simulated data of the Merton-Garman model to ensure that

the approximation is su�cient to fit a range of di↵erent options at one time. We start by
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describing the data simulation of the Merton-Garman model, then move onto the calibration

procedure for the approximative solution and discuss the results.

We choose a standard Monte Carlo framework, using stratified sampling and antithetic

variables, simulating seven million paths with a time step of one-tenth of a day for option

maturities. We choose a spot underlying price of S = $100 and a strike range of K 2

[90, 110] to give a moneyness range of K/S 2 [0.9, 1.1] to simulate call options throughout

the spectrum of moneyness 1. We simulate the Merton-Garman model with the structural

parameter vector: ⇥MG = {1.5, 0.08, 1.5,�0.5, 1} 2 and initial volatility V (t = 0) 2 [10, 35]%.

The leading order perturbative solution is independent on the symmetry breaking terms,

characterized by c2, c3 and c4. The solution is thus independent of the parameters ⇢ and ✓.

However, as a by-product of the perturbation theory we introduced the following parameters:

⇠0, �. From inspection we fix ⇠0 using ⇠0 = ⇠�
2(↵�1) which guarantees that it has the right

dimensions. While � remains to be determined by calibration. Yielding the parameter

vector: ⇥pert. = {, ⇠,↵, �}.

The parameter � is determined by calibration. When fitting � to these simulations, there

is a risk of overfitting expensive out of the money (OTM) options. For that reason, it is

best to consider the implied volatility objective function (this is noted in Christo↵ersen et

al. (2014)) which is given by:

IV RMSE =

vuut 1

N

NX

i=1

(IVMCi
� IVpert.i

)2, (2.23)

where IVMCi
stands for the implied volatility of the i

th-option simulated using the Monte

Carlo and IVpert.i
is the implied volatility of the ith-option calculated using the leading order

perturbative solution. The calibration exercise is extremely fast as our formula for option

prices is an approximative analytical solution. Figure (2.1) and Table 2.1 demonstrates the

results of the static calibration exercise for a 30 day maturity horizon 3. It should be noted

1In this exercise we simulate call options only, as put prices can be calculated from the put-call parity.
2We also simulate for ↵ 2 [0.75, 1.5] and  2 [1.5, 5], ⇢ 2 [�0.5,�0.9], ✓ 2 [0.08, 0.15]. However, the results

of the calibration exercise are represented by the choice of parameters made above.
3While we simulated time horizons between 5-100 days, this is representative of our results and we drop

the other results for brevity.
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that in Figure (2.1) the price Panels are the di↵erence of the log, this is needed to observe

any di↵erence in prices as the two methods produce prices which are very similar. However,

from these Panels it is clear that smaller moneyness, i.e K/S < 1 see extremely small errors

where log(CMC/Cpert.) ⇠ 0. Also apparent is that at some moneyness level the leading order

perturbative solution will over price options, the level of moneyness at which this occurs is

inversely proportional to volatility. Lastly, the range of under to over pricing is also inversely

proportional to volatility. However, as the prices from both methods are very similar it is

more informative to look at the implied volatility cross-section in the even Panels of Figure

(2.1) along with the IVRMSE column of Table 2.1. These show throughout the range of

volatility regimes the leading order perturbative solution is able to approximate successfully

a low IVRMSE, with a maximum occurring from the low volatility regime (Panel 8) of 1.57%.
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Figure 2.1: Static Price and Implied Volatility Fits
Comparative fit of four di↵erent initial volatilities. Odd numbered panels (1,3,5,7) display the
natural logarithm di↵erence of the prices, while even numbered panels (2,4,6,8) display the
implied volatility curves. For the implied volatility panels the solid black line represents the
Monte Carlo implied volatility and the dashed line is that of the leading order perturbative
solution. We pick an option maturity of 30 days.
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Table 2.1: Static cross-sectional calibration errors
This table reports the results of static cross-sectional calibration exercises between our lead-
ing order perturbative solution compared to a Monte Carlo simulation of the Merton-Garman
model. We simulate four di↵erent initial volatilities (V), 10, 18, 25, 35%, for a time horizon
of 30 days. The column denoted � reports results from the calibration, using the IVRMSE
objective function of Equation 2.23, as to the calibrated value of the average volatility pa-
rameter. The final column reports the IVRMSE of each simulation. All value are given in
decimal percentages.

V � IVRMSE
0.3500 0.3254 0.0055
0.2500 0.2361 0.0037
0.1800 0.1730 0.0070
0.1000 0.1069 0.0157

Another way to test the consistency of the perturbative expansion is to consider the ratio

C1/(C0 + C1) as a function of moneyness, K/S , where C0 is the contribution to the price

of the symmetrical solution and C1 is the leading order correction in perturbation theory.

Figure (2.2) shows these ratios for several cases. Clearly C1 ⌧ C0 even when the volatility

is large. This demonstrates nicely the validity of the perturbative expansion even in the

case where the volatility is large. While this exercise confirms that for fixed scenarios the

perturbative solution is a very good approximation to the actual Merton-Garman solution,

it is essentially a multiple curve fitting exercise, a more thorough analysis is needed to be

able to gauge the reliability of the perturbative approximation. This is what we shall focus

on next.

2.4.2 Simulated Time Series Calibration

The second step in evaluating the performance of the leading order perturbative solution

is to estimate it against a time series simulation of the Merton-Garman model. The time

series uses 100 di↵erent Monte Carlo paths to simulate the asset price and variance paths

including 6 unique maturities within [7, 180] days, for details see Appendix 6.4.

The benefits of the stress test is twofold: firstly it is particularly pertinent to run a

number of di↵erent simulations for di↵erent parameter values, specifically investigating the
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Figure 2.2: Pricing corrections of first order approximation
Test of the validity of the perturbation theory. These panels depict the ratios C1/(C0 +C1)
in % where C0 is the contribution to the price of the symmetrical solution and C1 the leading
order correction in perturbation theory. One has C1 ⌧ C0 even when the volatility is large.
This demonstrates the validity of the perturbative expansion. The four cases correspond
respectively to panels (1,3,5,7) of Figure 1.

e↵ect di↵erent ✓, ⇢ has on performance, as the other parameters in the ⇥pert. vector will have

to attempt to absorb the information contained in the absent parameters. Secondly, it also
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provides a first estimate into the applicability of the perturbative solution to di↵erent types

of options markets. We simulate four di↵erent data sets with varying parameter vectors,

described below.

• data set 1 : ⇥MG = {1.1768, 0.0823, 0.3000,�0.5459, 1.0000}, with a negative correla-

tion which is a reasonable choice for modeling equity options, such as the S&P 500.

• data set 2 : ⇥MG = {1.1768, 0.0823, 0.3000, 0.0000, 1.0000}, with a correlation of zero.

• data set 3 : ⇥MG = {1.1768, 0.0823, 0.3000,+0.5459, 1.0000}, with a positive correla-

tion coe�cient; this is used to gain inference about modeling VIX options, see Park

(2015).

• data set 4 : ⇥MG = {1.1768, 0.1250, 0.3000,�0.5459, 1.0000}, with a high(er) central

tendency we investigate an equity style option market with a central tendency which

is significantly higher than the initial variance value of: 0.08 and thus tests how the

leading order perturbative solution handles significant change in the variance path.

For the following simulated calibration exercises, it is imperative to note the di↵erence in

IVRMSE and parameters between the data sets as this will highlight the following: firstly,

parameter regions where the leading order perturbative solution might breakdown. Secondly,

potential di�culties in estimating certain parameters of the model. Thirdly, where infor-

mation contained in ✓, ⇢ might be absorbed. These results can be found in Tables 2.2-2.3.

Table 2.2 contains the results of the parameter vector estimates for data sets 1-4 along with

summary statistics comparing to the Merton-Garman parameter vector. Table 2.3 contains

results of the IVRMSE and standard deviations for each data set. The results of the data

sets are described below:

• Data set 1 : from Table 2.2 Panel 1 parameters , ⇠ appear to be challenging to estimate,

being significantly larger and with quite high standard deviations, while ↵ appears to be

stable. While ⇥Pert. does not contain ✓ a significant amount of this missing information

is absorbed by � and ⇠. Table 2.3 demonstrates the leading perturbative solution does
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very well in approximating the Merton-Garman model with an IVRMSE of 1.2977%

and standard deviation of 0.3474%.

• Data set 2 : from Table 2.2 Panel 2 it starts to become clear some of the information

contained in the correlation coe�cient is absorbed by both ⇠,↵, particularly the latter.

With the value of ↵ reducing significantly while the standard deviation approximately

doubles (relative to data set 1). Although it does appear that this regime is slightly

easier to estimate , ⇠. Table 2.3 reports a significant decrease (relative to data set 1)

in IVRMSE with a moderate decrease in standard deviation.

• Data set 3 : Table 2.2 Panel 3 demonstrates the absence of the information contained

in the correlation coe�cient has an e↵ect on the ability to estimate , ⇠,↵ in a similar

manner to that of Panel 1, observing very similar biases and standard deviations. Per-

haps suggesting that it is more the non-zero nature of the correlation coe�cient which

the leading perturbative solution struggles with. Furthermore, Table 2.3 demonstrates

very similar errors to data set 1.

• Data set 4 : from Table 2.2 Panel 4 the increase in central tendency also clearly has an

impact in ⇠,↵ the two variance related parameters of the leading perturbative solution.

This is due to the increased di↵erence in magnitude between the central tendency and

initial variance. It suggests that both parameters absorb missing information contained

in ✓. This di↵erence manifests itself in Table 2.3 with a resulting IVRMSE of 1.7199%,

the largest across all data sets.

In summary, on the estimation side  could certainly be a challenge to estimate, although

this is not unique to our approach. For substantial di↵erence between variance and central

tendency it appears that ↵, ⇠ could also be a challenge, other than this estimating ↵ is gener-

ally inconsiderable. Regarding the matter of information absorption we note that it is clear

that � absorbs significant amount of the information contained in ✓, with contribution from

↵ for large disparity between initial variance and central tendency. The parameters ⇠,↵ also

seem to share the majority of the information contained in ⇢. Table 2.3 indicates that across

data sets the leading perturbative solution does well in approximating the Merton-Garman
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Table 2.2: Simulated time series parameter estimates
This table reports the results of our simulated time series calibration exercise against a Monte
Carlo simulation of the Merton-Garman model. We use 100 di↵erent sample paths of weekly
returns and latent variance over one year. At each observation we simulate six maturities
within 7 to 180 days to maturity across a moneyness range of 0.9 to 1.1, using ten strikes.
Each option price is computed using a Monte Carlo framework with 50,000 simulations and a
time-step of 1/20th of a trading day. We simulate four di↵erent data sets, each investigating
a di↵erent initial parameter vector. The first rows (MG) presents the initial parameters used
by the Monte Carlo simulation. The second rows (Pert.) presents the mean final parameter
vector of our perturbative solution. The third rows (Bias) presents the di↵erence between
the Monte Carlo and perturbative solution parameter vectors. The fourth rows (Std. Error)
presents the standard deviation of each parameter from the calibration exercises, across the
100 di↵erent calibrations for each data set.

 ✓ ⇠ ⇢ ↵ �
2

data set 1 MG 1.1768 0.0823 0.3000 -0.5459 1.0000 -
Pert. 4.1905 - 0.8772 - 0.9698 0.0855
Bias 3.0137 - 0.5772 - 0.0302 -
Std.
Error

3.6179 - 0.4163 - 0.1717 0.0120

data set 2 MG 1.1768 0.0823 0.3000 0.0000 1.0000 -
Pert. 2.5454 - 0.6326 - 0.6178 0.0810
Bias 1.3686 - 0.3326 - 0.3822 -
Std.
Error

3.3240 - 0.4805 - 0.3584 0.0133

data set 3 MG 1.1768 0.0823 0.3000 0.5459 1.0000 -
Pert. 4.4657 - 0.8806 - 0.9585 0.0851
Bias 3.2889 - 0.5806 - 0.0415 -
Std.
Error

3.3320 - 0.3094 - 0.1448 0.0120

data set 3 MG 1.1768 0.1250 0.3000 -0.5459 1.0000 -
Pert. 5.4417 - 1.0104 - 1.6696 0.1022
Bias 4.2649 - 0.7104 - 0.6696 -
Std.
Error

4.0231 - 0.4529 - 1.4916 0.0145

model with fairly consistent errors, given the standard deviations, with an approximate error

range of 1.2� 1.7%.
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Table 2.3: Simulated time series error estimates
This table displays the resulting IVRMSE and standard deviations to the simulated time
series calibration exercise. We use 100 di↵erent sample paths of weekly returns and latent
variance over one year. At each observation we simulate six maturities within 7 to 180 days
to maturity across a moneyness range of 0.9 to 1.1, using ten strikes. Each option price
is computed using a Monte Carlo framework with 50,000 simulations and a time-step of
1/20th of a trading day. We simulate four di↵erent data sets, each investigating a di↵erent
initial parameter vector. The first row (IVRMSE) presents the average IVRMSE between
the Monte Carlo simulation and our perturbative solution. The second row (Std. Error)
presents the standard deviation in IVRMSE across the 100 di↵erent calibrations for each
data set.

data set 1 data set 2 data set 3 data set 4

IVRMSE 0.0130 0.0117 0.0132 0.0172
Std. Error 0.0035 0.0031 0.0036 0.0061

2.5 Model building in finance, symmetries and group

theory

In this section, we shall first discuss Galilean invariance, see e.g., (Bose (1995) and Lévy-

Leblond (1967)), in the context of mathematical finance before explaining how new option

pricing models can be constructed using the concept of symmetries. We shall assume that

the dimensionless option price  (x, y, t) (where x and y represent the dimensionless price

and volatility variables as defined in Equations 2.7 and 2.8 and t is the time), from which the

usual price of the option is derived, is the fundamental quantity. If we posit that  (x, y, t)

is a measurable quantity, it should not depend on the coordinate system P that is being

used to measure it. We could use P parametrised by (x, y, t) or P 0 parametrised by (x0
, y

0
, t

0)

and obtain the same dimensionless price, assuming that the two coordinate systems are

related by a transformation which we shall take to be a Galilean transformation, knowing

that  (x, y, t) is a solution to the 2+1 heat equation:

@ (x, y, t)

@t
=
@
2
 (x, y, t)

@x2
+
@
2
 (x, y, t)

@y2
. (2.24)
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A Galilean transformation can be decomposed as the composition of a rotation, a translation

and a uniform motion in the space (x, y, t) where ~x = (x, y) represents a point in two-

dimensional space, and t a point in one-dimensional time. A general point in this space can

be ordered by a pair (~x, t). Let us first consider the case where the two coordinate systems

are moving away from each other in a uniform motion fixed by a two-dimensional constant

vector ~w. A uniform motion with vector ~w, is given by

(~x, t) 7! (~x+ t~w, t). (2.25)

A translation is given by

(~x, t) 7! (~x+ ~a, t+ s), (2.26)

where ~a is two-dimensional vector and s a real number. Finally a rotation is given by

(~x, t) 7! (G~x, t), (2.27)

where G is 2 ⇥ 2 orthogonal transformation. It is easy to see that the partial di↵erential

equation obeyed by  (x, y, ⌧)

✓
@

@⌧
� @

2

@x2
� @

2

@y2

◆
 (x, y, ⌧) = 0, (2.28)

is covariant, in the sense that it is form invariant, under two-dimensional Galilean transfor-

mations Gal(2).

Our Monte Carlo investigation of the Merton-Garman model demonstrates that the sym-

metry Gal(2) is a good symmetry of the model as the leading perturbation theory around

the symmetrical solution works very well. This demonstrates the importance of the symme-

try between S and V which is manifest when expressed in the appropriate variables. To a

very good approximation and for a range of parameters relevant to financial applications,

the Merton-Garman model possesses a hidden Gal(2) symmetry that is only softly broken.

This is very clearly illustrated by the results obtained in Figure (2.2) which demonstrates
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that the larger the volatility fluctuations are, the more the symmetry breaking terms be-

come important. In panel 4 where the volatility is very close to being constant, the leading

order correction is essentially vanishing and the symmetrical solution is very close to that

obtained with the original Merton-Garman model. This is suggestive of an alternative way

for building option pricing models. Instead of starting from stochastic processes, we could

simply have derived the symmetrical model by positing that the option price should depend

on the price of the underlying, a time dependent volatility and time. By requiring that

the dimensionless option price follows a di↵erential equation that is Gal(2) covariant, we

would immediately have obtained the 2+1 dimensional heat equation. The choice of Gal(2)

symmetry is imposed by the model we are considering, in di↵erent models there could be

Lorentz invariance, see below. The very small deviations from the Gal(2) covariance, can be

accounted for by symmetry breaking terms as explained above. This led us to an approxi-

mative perturbative analytical solution of the original Merton-Garman di↵erential equation.

We explicitly break the Gal(2) symmetry to reproduce the original Merton-Garman model.

However, as a point for further research it would be instructive to find a controlled way to

break these symmetries as in spontaneous symmetry breaking.

There is another interesting consequence of having a symmetry group as a fundamental

building block. Namely, one can classify how the di↵erent objects in the model will transform

under this symmetry. This is a very well developed field of mathematics called representa-

tion theory. In the case above,  (x, y, t) is a scalar under Galilean transformations. A scalar

representation of a symmetry group means that it is invariant under the group transforma-

tions. The di↵erential equation is covariant under such transformations. Besides the scalar

transformations, there are vector representations such as e.g., @ (x, y, t)/@x, @ (x, y, t)/@y

or @ (x, y, t)/@t which are nothing but the Greeks. They appear from a very di↵erent

perspective than is usually the case in finance.

These ideas open up new directions in model building for option pricing. One could for

example consider a 3+1 dimensional model (x, y, z, t) where the z-direction could describe

a time dependent interest rate or additionally this could be used to model a two-factor

volatility process with stochastic central tendency, see e.g., Bardgett et al. (2019). The



2.6. CONCLUSION 27

di↵erential equation for the price would be of the type

@ (x, y, z, t)

@t
=
@
2
 (x, y, z, t)

@x2
+
@
2
 (x, y, z, t)

@y2
+
@
2
 (x, y, z, t)

@z2
, (2.29)

for which it is easy to find solutions:

G(x, y, ⌧ ; x0
, y

0
, z

0
, t) = ⇥(⌧ � t)

1

(4⇡(⌧ � t))3/2
(2.30)

exp

✓
�(x� x

0)2 + (y � y
0)2 + (z � z

0)2

4(⌧ � t)

◆
.

One could also consider “relativistic” extensions of the Merton-Garman model treating time

on the same footing as the underlying price and the volatility:

@
2
 (x, y, t)

@t2
=
@
2
 (x, y, t)

@x2
+
@
2
 (x, y, t)

@y2
. (2.31)

It is well known that this model is covariant under Lorentz transformations. Clearly iden-

tifying the right symmetry group for a given financial system is of paramount importance.

Making use of symmetries to model physical system has been extremely successful in all

fields of physics. Applying these ideas to option pricing models opens up new perspec-

tives for model building in finance using the concept of symmetry groups and representation

theory.

2.6 Conclusion

In this chapter we have introduced a perturbative method to obtain analytical approximative

solutions to models such as the Merton-Garman model. The key idea consists in treating the

price of the underlying and the volatility in a symmetrical way. This leads to a model which

has an exact Galilean invariance in two-dimensions as it is described by the two-dimensional

heat equation which has an analytical solution. By folding this solution with the boundary

condition leading to the correct price at maturity for a call option, we obtained an analytical
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symmetrical solution for this model which corresponds to the Black-Scholes solution, despite

being derived from a very di↵erent perspective and in a framework with a time dependent

volatility.

The Merton-Garman model is recovered by introducing symmetry breaking terms and

we have calculated the leading order correction to the symmetrical solution. We have shown

that our perturbative solution works very well by comparing it to a Monte Carlo simulation

of the Merton-Garman model for a range of parameters which are relevant from a financial

point of view. The moneyness curves of the two prices are so overlapping that we had to

plot implied volatility curves to be able to discuss in a quantitative manner the di↵erences

between the two solutions.

We argued that the fact that the symmetrical model works so well is a sign that the

Merton-Garman model has a hidden two-dimensional Galilean symmetry which is softly

broken for the relevant parameter ranges. We have explained that the concept of symmetry,

groups and representation theory could be extremely useful in building pricing models in

financial mathematics. This clearly needs to be explored further. From this point of view,

our work is opening up a new perspective on model building in mathematical finance.



Chapter 3

Macroeconomic Announcements and

Volatility Seasonalities, a

High-Frequency Approach to Option

Pricing

The central research question in this chapter is the following. Given the move in recent

times towards high-frequency, intradaily, data what are the important factors and processes

needed to accurately model high-frequency options data? This voluminous research question

is broken up into three sub-questions, which are as follows. Firstly, are standard factors and

techniques (as used in Christo↵ersen et al. (2009), Eraker et al. (2003) and Eraker (2004)

to name a few) which have been demonstrated to be relevant to lower frequency data, such

as daily or weekly data still important? Secondly, how much does investors bias of volatility

accrual, as observed in the weekend and overnight e↵ects, impact option prices? Thirdly,

what is the e↵ect of macroeconomic announcements on option prices?1

The use of our high-frequency data set a↵ords us the opportunity to study e↵ects which

would have been previously impossible or at the very best only able to gain very noisy infer-

1Please note that the notation is not necessarily the same as the previous chapter and is self-consistent
and contained within this chapter.

29
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ence: for instance, incorporation of the overnight and weekend e↵ects into traditional option

pricing models. This involves investigating volatility accrual intra and interday, for which

we require at the very least quotes at the open and close. Muravyev and Ni (2019) find

average returns for S&P 500 index options are negative (approximately �0.7%) per day,

comprised of positive intraday and negative interday returns (referred to as the overnight

e↵ect). The authors hypothesise this is a manifestation of option market makers (OMMs)

bias in ignoring the daily volatility seasonality that the trading day is more volatile than

the overnight period (a well known seasonality). Muravyev and Ni (2019) find OMMs ac-

tually price options as if each period was as volatile as the other. We address the issue of

incorporating this bias into traditional option pricing models and provide a further empirical

test of Muravyev and Ni’s hypothesis as to the cause of the overnight e↵ect. In addition,

using a similar methodology, we attempt to capture one of the earliest and most researched

seasonalities, the weekend e↵ect. Option returns have been found to be significantly lower

over weekends, Friday close to Monday close (referred to as the weekend e↵ect), than any

other day of the week (documented in Jones and Shemesh (2018)). Jones and Shemesh

(2018) document a potential explanation of the weekend e↵ect being down to the convention

of measuring volatility accrual using conventional calendar time, thus over a weekend two

calendar days have elapsed with no trading (Friday close to Monday open) causing option

implied volatilities to be too high prior to the weekend. Secondly, on the subject of our

investigation into macroeconomic announcements we choose to investigate FOMC meetings.

We choose FOMC meetings as Stroud and Johannes (2014) find this is one of the most

significant macroeconomic announcements. Eight times a year the FOMC meet to deter-

mine near-term monetary policy. These announcements occur during the trading day, thus

without high-frequency data researchers could only gain very noisy inference (such as Chen

and Clements (2007)), while we are able to study their e↵ect on options using minute data.

Specifically we wish to determine if these announcements, whose timing is known ex-ante,

generate fundamentally di↵erent risks compared to the traditional Brownian or jump driven

risks in option pricing models, due to their predictable timing. While there is a substantial

literature base on these topics to the best of our knowledge we are the first to incorporate

these e↵ects into option pricing models.
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The work is ordered as follows: Section 3.1 provides a literature review and discussion.

Sections 3.2.1 - 3.2.4 provides an introduction and discussion into the estimators of un-

certainty around FOMC announcements, calibration methodology, VIX construction and

preliminary data analysis, while Sections 3.2.5 - 3.2.8 provide summary statistics on the un-

certainty estimates around FOMC announcements and option pricing implications of FOMC

announcements. Sections 3.3.1 - 3.3.2 undergo a more in-depth discussion of the main re-

search which influences our approach into volatility seasonalities, the model framework and

notation for the work into the overnight and weekend e↵ects. Sections 3.3.3 to 3.3.4 de-

scribe the empirical results from these investigations into the overnight and weekend e↵ects,

respectively.

3.1 Literature Review and Discussion

Empirical option pricing received a substantial increase in interest with the Black-Scholes

(1973) model, which led mathematical legitimacy to option pricing. The model gives a the-

oretical estimate of the price of European-style options, which is unique regardless of the

expected return of the underlying asset. However, one main drawback of the Black-Scholes

model is the assumption of constant volatility regardless of moneyness or time to maturity

of the option. For instance Macbeth and Merville (1979) find implied volatilities are not flat

and often exhibit a ”volatility smile” or ”smirk” pattern. The empirical shortcomings of the

Black-Scholes model prompted research along dimensions relaxing the restrictive assump-

tions. For instance univariate di↵usion models, such as Cox and Ross (1976) who investigate

a constant elasticity of variance. Geske (1979) incorporates leverage e↵ects into option pric-

ing, thus the variance of the rate of return on the underlying is non-constant.

A very substantial body of literature exists utilising stochastic volatility models, which

allow the instantaneous volatility of asset returns to evolve stochastically, with respect to

time. This usually takes the form of a di↵usion or jump-di↵usion process (such as in Mer-

ton (1976) or Du�e et al. (2000) which is what we shall focus on) but could incorporate

a regime-switching framework as in Duan et al. (2002), who consider that the conditional
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variance of the logarithmic return has a number of distinct volatility regimes, in each period

there is a probability the volatility will move into a new regime.

The inclusion of standard independent and identically distributed jumps in di↵usion

models has received a lot of attention in the literature. Bates (1991) (initially) uses Pois-

son jumps in the price process to model extreme events such as the crash in 1987. Models

with Poisson jumps match volatility smiles well for a single maturity, however, less well for

multiple maturities. Jump models with this standard assumption converge towards Black-

Scholes model option prices at longer tenor maturities, in stark contradiction to observed

smiles at these maturities. Tompkins (2001) provides details of this pattern for stock in-

dex, bond, currency and interest rate options for a number of di↵erent countries, therefore

demonstrating the feature is persistent.2 Eraker et al. (2003) study the e↵ect of jumps in

returns and volatility on stochastic volatility models and find strong support for jumps in

both processes. However, another important consideration is how to model the jump pro-

cesses. Kaeck (2013) investigates the performance of alternative jump size distributions in

the price process, using models which have separate distributions for positive and negative

price jumps. Kaeck (2013) concludes a double-gamma jump specification performs best.

This type of specification arises when the standard deviation of the negative jump is not

restricted to be equal to the mean, but this restriction applies for positive jumps.

While single factor jump-di↵usion models are very popular in the time series literature

there is evidence which suggests a multi-factor volatility framework is needed, with one

highly persistent and one quickly mean-reverting factor. Andersen et al. (2001) and Ander-

sen et al. (2003) undergo a daily and intradaily study using stock return volatilities, both

find evidence in need of a long-memory process, which could be for filled by a second latent

stochastic volatility factor. Additional evidence comes from the study of exchange rate data,

from Alizadeh et al. (2002), who also find the evidence strongly suggests the need for one

highly persistent factor and one quickly mean-reverting factor. In addition to Chernov et

al. (2003) who study multiple continuous time specifications using a 37 year period of daily

Dow Jones returns. More recently, Christo↵ersen et al. (2009) use a two-factor volatility

2Some observed phenomenon are purely market specific. For instance Kaeck and Alexander (2013)
investigate the dynamics of European equity indices and demonstrate they have significant di↵erences from
the S&P 500 index. Finding the European indices to be much simpler to model.
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model to fit the slope and level of the volatility smile, which move largely independently of

each other. Their empirical findings demonstrate significant improvement over a benchmark

Heston model.

In response to the above evidence there has been research into models which combine

these myriad of di↵erent factors. For instance Bardgett et al. (2019) consider a two-factor

stochastic volatility model with a persistent latent central tendency and a quickly mean

reverting instantaneous latent volatility. In addition to which they model for contemporane-

ous random Poisson jumps in the price and instantaneous volatility in addition to random

Poisson jumps in the central tendency. The intensities of the jumps also vary stochastically.

3.1.1 Volatility Seasonalities

Many pieces of research document systematic patterns in stock price volatility and volume of

trade. French and Roll (1986) find stock volatility is higher during trading hours mainly due

to private information accrued during periods of non-trading. Kaplanski and Levy (2015)

show weekend, holiday and overnight trading breaks generate excessive perceived risk in

options markets, presumably from asymmetric information, which encourages uninformed

option traders to postpone trading until later in the week. Wood et al. (1985) and Harris

(1986) document the well known volatility intradaily U-shape pattern, with volatility being

higher at the open (Foster and Viswanathan (1993)) and close. This same pattern is also

observed in stock bid-ask spreads, however options do not follow the same pattern, see Chan

et al. (1995). This pattern is also linked to trading volume, Stoll and Whaley (1990) find

during trading hours the relationship between higher volatility and volume is proportional.

However, according to evidence from Foster and Viswanathan (1993), the intraday correla-

tion becomes negative interday. There is also evidence from Jain and Joh (1988) to suggest

volume has a weekly seasonality, being lower on Mondays and Fridays.

We investigate and contribute to the literature on the weekend e↵ect, perhaps one of the

earliest known seasonalities (reported by Fields (1931)). The e↵ect has been shown to be

prevalent in U.S. equities since 1885 (see Bessembinder and Hertzel (1993)), and is one of
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the most researched seasonalities (although some argue the e↵ect is simple a result of data

mining, see Sullivan et al. (2001)). The weekend e↵ect has been observed in a myriad of

di↵erent markets, for instance Ja↵e and Westerfield (1985) observe evidence of the e↵ect in

international equity indices. Gibbons and Hess (1981) find evidence of the weekend e↵ect

in government bonds. However, there is also a strand of conflicting literature calling the

robustness of the weekend e↵ect into question. For instance Chang et al. (1993) study the

robustness of day of the week e↵ect in international markets. The authors test robustness

using individual sample size and/or error term adjustments. The study finds sample size

and/or error term adjustments yield U.S. day of the week e↵ects statistically insignificant.

However, five countries in Europe survive the double combination of sample size and er-

ror term adjustment. In most countries, where the e↵ects are robust, they are statistically

significant in not more than two weeks of the month. This evidence is inconsistent with

explanations of the day of the week e↵ect based on institutional di↵erences or arrival of new

information. Chang et al. (1993) suggest the e↵ect disappeared somewhere between 1970-

1980. Kamara (1997) shows the introduction of equity derivatives and institutionalisation

of equity markets a↵ects the weekend seasonality in the S&P 500. The weekend e↵ect de-

clines significantly over the sample period from 1962 to 1993, which is found to be positively

related to the ratio of institutional to individual trading. However, the seasonality for small

stocks does not decline during this period. Kamara (1997) hypothesises this is because for

small stocks, institutions receive comparable trading costs to individuals, hence keeping the

seasonality alive. Chen and Singal (2003) argue short sellers a↵ect prices in a significant

and systematic way, hypothesising the weekend e↵ect has origins in speculative short selling

before the weekend, suggesting these investors close out their positions on Friday and re-

open them Monday morning. This causes the price to rise on Fridays and fall on Mondays.

Further, reporting the weekend e↵ect seemed to vanish for firms which had options traded

on them, suggesting options might be a potential explanation of Kamara’s results. Jones

and Shemesh (2018) investigate delta hedged and un-hedged returns on options on individ-

ual equities. In response to Chen and Singal (2003) they reason a weekend e↵ect should be

seen in call and put options. The reasoning for which is if investors are averse to holding

positions with unbounded risk over the weekend, then those who have written call options
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should attempt to close out their positions. Whereas put option writers, while not facing

unbounded downside risk, still face the possibilities of losses. As hypothesised, the authors

find evidence in support of a weekend e↵ect for individual equity options, but inconclusive

results for options written on the S&P 500.

Our research also contributes to the modelling of the overnight e↵ect. Muravyev and Ni

(2019) suggest the cause of the overnight e↵ect is essentially one of behavioural bias from

market makers. There has not been a lot of research into behavioural factors in derivatives

markets (Shefrin (2010) provides a good summary of behavioural finance). Stein (1989) in-

vestigates the term structure of option implied volatilities on S&P 100 options. Finding long

maturity options tend to over react to implied volatility changes of shorter term options.

Poteshman (2001) finds option implied volatilities under-react to individual daily changes

in variance of the underlying asset returns and overreacts to mostly increasing or decreasing

daily changes in variance. Han (2008) investigates investor sentiments and if this a↵ects

prices of S&P 500 options. Finding evidence to suggest changes in investor sentiment about

the market has influence on the slope of the option implied volatility smile and also the risk-

neutral skewness. There exists a growing literature base investigating the overnight e↵ect

in equity returns. For example, Cli↵ et al. (2008) demonstrates all the equity risk premium

is a result of overnight returns. Their sample includes individual stocks, equity indexes and

futures contracts. Bogousslavsky (2018) investigates intraday and overnight return anoma-

lies in stock returns. We are aware of two papers which investigate option returns in an

intradaily manner, in chronological order they are: Sheikh and Ronn (1994) and Muravyev

and Ni (2019). Sheikh and Ronn (1994) use short term at-the-money (ATM) options on

individual equity options (30 di↵erent stocks) for a 21 month period ending prior to the

1987 crash. They report observations of the overnight e↵ect but find the results are not

statistically significant. Muravyev and Ni (2019) suggest this inconclusive result is perhaps

due to their sample size being too small. Sheikh and Ronn (1994) actually do not discuss

overnight versus intraday returns but rather focus on returns towards the end of the trading

day. Muravyev and Ni (2019) investigate delta-hedged average returns for S&P 500 index

options. Finding they are negative and large per day. This daily return is broken up into

positive intraday returns and negative interday. They find this is due to OMMs pricing
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an equal amount of volatility accrual in both the overnight and trading day periods, thus

ignoring a well known seasonality, more volatility accrues during the day than overnight.

3.1.2 Macroeconomic and Political Announcements

The notion of uncertainty as a fundamental motivating force of asset prices is not novel and

has been well documented. Influential theoretical contributions include the work of Bloom

(2009) who conclude uncertainty undergoes a discrete jump upward after major shocks. Fur-

ther evidence from Pastor and Veronesi (2012) analyse the e↵ect of government policy on

stock prices, declining at the time of the announcement. The magnitude of decline is directly

proportional to the uncertainty around the government policy. Furthermore, policy changes

should increase volatilities and correlations amongst stocks, with jump risk premiums being

positive on average.

There is also a substantial strand of literature which examines the e↵ect of information in

trading patterns. For example, Berry and Howe (1994) find a positive proportional relation-

ship between news and stock volume (for further evidence see McQueen and Roley (1993),

Mitchell and Mulherin (1994)). This also ties in with work done by Andersen et al. (2007)

who investigate high-frequency stock, bond and exchange rate dynamics across the U.S.,

Germany and UK, finding a close link with fundamental surprises in news. Continuing this

theme Scholtus et al. (2014) investigate the e↵ects of macroeconomic news on algorithmic

trading.

Theoretical contributions also come from authors utilising options, for instance Bekaert

and Engstrom (2017) introduce a consumption-based asset pricing model which allows for

realistic properties of equity index option prices and their co-movements with macroeco-

nomic outlooks. When option implied volatility is high consumption growth is more nega-

tively skewed. Furthermore, Kelly et al. (2016) study international equity option quotes to

demonstrate that political uncertainty from national elections and global summits is priced

by investors with the result that options spanning important events are on average more

expensive. Lastly, Dew-Becker et al. (2018) use options contracts on 19 di↵erent markets
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(covering a range of di↵erent components of the economy, including financial conditions,

inflation and the price of real assets) to study the pricing of shocks to uncertainty and re-

alised volatility. The entire research methodology revolves around the idea that instead of

undergoing complex and sophisticated regressions based on uncertainty, the researchers let

the investors communicate their views on uncertainty via option prices. The authors con-

struct two types of straddle portfolios: one directly hedging innovations in uncertainty, and

one hedging realised volatility. For both types of portfolio it is possible to learn about risk

premia from their average returns. The authors find hedges against uncertainty earn positive

returns and are thus not viewed as bad states of the economy. On the other hand portfolios

hedging realised volatility earn statistically and economically significantly negative returns,

indicating investors view shocks to fundamentals as undesirable.

Specifically related to our research there has been a thread of the literature interested in

the impact of FOMC announcements. For instance, Lucca and Moench (2015) investigate

returns accrued around FOMC announcements. Their results indicate since its beginning in

1994, U.S. stock returns have been on average thirty times higher on announcement days,

compared to other days. Furthermore, the abnormal returns are largely accrued twenty-four

hours before the announcement, with more than 80% of equity premium in this period. This

feature is documented over a 17 year period from 1994 to 2011. The authors explore a few

risk based theories, none of which can explain the abnormal returns. In conjunction with

evidence from Savor and Wilson (2013) who investigate the di↵erence between stock market

average returns on days when macroeconomic announcements have taken place, versus non-

announcements days. They find the average announcement day excess return from 1958 to

2009 is 11.4 basis points versus 1.1 for all other days. Suggesting over 60% of the cumulative

annual equity risk premium is due to announcement days. There is also a large body of

literature reporting the e↵ects of macroeconomic announcements utilising options as a source

of data. For instance Chen and Clements (2007) investigate the pattern of the VIX leading

up to and after FOMC announcements between 3 January 1996 and 1 September 2006.

They find no evidence to suggest a predictable movement in the VIX in the 5 days prior

to and after an FOMC announcement. However, they find the VIX falls approximately 2%

on the day of the FOMC meeting, which cannot be attributed to mean reversion. Nikkinen
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and Sahlström (2004) investigate the impact of FOMC announcements (among others) on

stock market uncertainty. They measure the implied volatility of the S&P 100 (the VIX at

this time was based o↵ S&P 100 options), concluding implied volatility increases prior to the

scheduled news and drops after the announcement. Vähämaa and Äijö (2011) study the e↵ect

of FOMC announcements on volatility of the S&P 500. They find stock market volatility

generally decreases after FOMC meetings, with a positive relationship between target rate

surprise and market uncertainty. Krieger et al. (2012) also find the VIX declines significantly

on scheduled meeting dates. They attribute the decline to resolution of uncertainty regarding

future interest rates. Nikkinen and Sahlström (2004) and Savor and Wilson (2013) theorise

the drop in VIX is mechanical. Krieger et al. (2012) mention the VIX can be thought of as

a portfolio of one-day conditional volatilities. Therefore, when a high volatility day (such as

an FOMC day) is removed from the portfolio of volatilities, a drop is to be expected. More

recently Fernandez-Perez et al. (2017) study the intraday e↵ect of FOMC announcements

on the VIX and VIX futures. They find at the time of the announcement the VIX and

VIX futures decline significantly. Fernandez-Perez et al. (2017) also report the decline

after the announcement is not instantaneous but gradually declines for approximately 45

minutes after the announcement. This is consistent with work done by Patell and Wolfson

(1984) who study the e↵ect of earnings announcements occurring during trading hours,

finding the majority of the e↵ect occurs within the first few minutes. Amengual and Xiu

(2018) model the term structure of variance in a general non-a�ne framework and conclude

most of the downward volatility jumps, measured using daily VIX changes, are associated

with FOMC announcements. Thus, confirming the findings from other studies concluding a

decrease in volatility is a result of policy uncertainty resolution. In summary although there

is some ambiguity as to when the e↵ect of the announcement manifests, the undeniable

conclusion is macroeconomic news is an important driver of uncertainty. Further this has

been shown to be evident in Bond markets by Nakamura and Steinsson (2018). The authors

demonstrate that an unexpected change in interest rates in a 30-minute window surrounding

a scheduled FOMC announcement arise from new about monetary policy. Further suggesting

that macroeconomic news has a large part to play in forecasts about output growth.

There has also been substantial research in recent times on the potential information
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asymmetry of macroeconomic announcements. Bernanke and Kuttner (2005) analyse the

impact of unanticipated cuts in the federal funds rate target on equity prices. This is

done with two aims: to estimate the size of a typical reaction, to unanticipated rate target

cuts, and further understand the reasons for the markets response. The authors find the

CRSP value-weighted index registers a one-day gain of roughly 1 percent in response to a 25

basis point easing. In relation to what explains equity prices’ response: the market reacts

minimally, if at all, to the component of rate changes which are anticipated by markets

participants. The authors find only a minimal portion of the e↵ect is attributed to the

changes on dividend forecasts and less to the e↵ect on forecasts of real interest rates. The

majority of the e↵ect of funds rate surprises comes through their e↵ect on expectations of

future excess returns. Onan, Salih and Yasar (2014) investigate the impact of macroeconomic

announcements on the high-frequency behaviour of observed implied volatility skew of the

S&P 500 index options and VIX. The authors use tick-by-tick data of SPX options contracts

for 250 trading days in 2006. As suggested by Aı̈t-Sahalia et al. (2005) sampling too

frequently might not be optimal in the presence of market microstructure noise. Onan,

Salih and Yasar (2014) therefore choose 30 minute frequency data. Onan, Salih and Yasar

(2014) find macroeconomic announcements a↵ect the VIX level significantly and the slope

to a lesser extent. Positive and negative news significantly and asymmetrically alters the

implied volatility slope and the VIX. Gospodinov and Jamali (2012) examine the e↵ect from

expected and surprise target rate changes, from FOMC announcements, on realised and

implied volatility. Their findings suggest surprise changes in the target rate significantly

increase volatility. The results also indicate the expected component of a target rate change,

along with the target rate change itself, do not significantly a↵ect volatility. Asymmetric

informational e↵ects, such as described above, are also observed in currency markets as shown

by Lobo et al. (2006). However, in contradiction to the above, Füss et al. (2018) introduce

a new information density indicator (IDI) with the aim of understanding the e↵ects of news

on prices, specifically to better understand the e↵ect upon price jumps. The IDI, which

measures the abnormal flow of information before scheduled macroeconomic announcements,

is significantly related to the likelihood of price jumps and is independent of the magnitude

of news related surprises and pre-announcement trading activity. The authors interpret this
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variable as an additional source of uncertainty in the market, inducing di↵usive beliefs among

investors. These beliefs are then resolved through the relating macroeconomic event(s) as

facts.

However, it could be that there is no asymmetry as such, rather reactions are a press

coverage issue. Gu et al. (2018) find evidence to suggest average stock returns after FOMC

announcements are positive if accompanied by the release of Summary Economic Projections

(SEP) and a press conference. The authors show several measures of uncertainty are signifi-

cantly higher on days of FOMC announcements accompanied by SEP and press conferences

than on announcement days without. Du et al. (2018) examines the informational content

of equity options around FOMC announcements. The authors findings demonstrate infor-

mation contained in option trades prior to FOMC rate change announcements, measured

by implied volatility spread,3 predicts firm stock returns to a greater extent than volatility

spread on non-meeting days. The authors go on to document that information is reflected

in options prior to stock prices. The evidence cited above provides significant motivation

to investigate macroeconomic announcements on option dynamics. Furthermore, of high

importance is understanding how agents form expectations of the short-term interest rate in

real-time is vital. Neglecting or miss-estimating risk premiums could lead to miss-perceptions

of the market’s outlook and could very possibly lead to sudden unexpected moves which were

not anticipated. Cieslak (2018) studies how agents form expectations of the short-term in-

terest rate. She finds persistent and significant di↵erences between the expected real rate

perceived by agents and the full-sample counterpart estimated by econometricians. These

results are particularly pertinent when entering recessions, agents systematically overesti-

mate the real rate and underestimate future unemployment and the amount of monetary

easing.

While there is a substantial strand of literature, discussed above, which documents the

e↵ect of macroeconomic news releases there has also been research conducted along very

di↵erent dimensions to predict Federal funds target rates, for example: Cieslak and Vissing-

Jorgensen (2020), who study the impact of the stock market on the Federal Reserve’s mone-

3Implied volatility spread is measured as the weighted di↵erence in implied volatility between put and
call options with the same strike and maturity.
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tary policy. The authors find that low stock returns tend to predict accommodating monetary

policy, to such an extent that statistically stock returns are a more powerful predictor of the

Federal funds target rate, than standard macroeconomic news releases. The authors use a

method of textual analysis of FOMC minutes and transcripts to argue that stock returns

lead Federal Reserve policy. However, this relationship is not one sided, the Federal reserve

causes meaningful impact on the stock market similarly. Cieslak et al. (2019) studies how

much of realised stock returns can be attributed to the Federal Reserve. The authors find

evidence to suggest that monetary policy news may not arrive only via FOMC announce-

ment dates, but also from discount rate meetings, held bi-weekly. The authors document

that the equity premium is earned entirely even weeks starting from the last FOMC meeting.

Evidence is found to suggest systematic informal communication from Fed o�cials to the

media and general financial sector as a channel through which news of the Feds intentions

to provide needed stimulus, thus reducing the equity premium. This two way relationship is

also corroborated by Stein and Sunderam (2018), who demonstrate that the central bank, in

clear possession of private information regarding its long-run target rate, is averse to bond

market volatility. As a consequence the central bank gradually impounds changes to its

central rate, while actively taking steps to learn what market participants think the Fed

is thinking. Prior to each FOMC meeting the Fed performs a detailed survey of primary

market participants, asking detailed questions about what they think the Fed will do.

In modelling the response of macroeconomic news many researchers have found the news

to induce a jump or discontinuity. Johannes (2004) and Barndo↵-Nielsen and Shephard

(2006) find macroeconomic news can induce jumps in interest rate models. Beber and Brandt

(2006) examine the e↵ect of regularly scheduled macroeconomic announcements on treasury

bond futures option prices closely surrounding times of announcements. Their findings show

the announcements reduce the uncertainty regardless of the content of the news. Piazzesi

(2005) investigate bond yields in response to FOMC announcements, modelling the policy

news as a pure jump process. This influences the approach to our empirical work, prior

research clearly suggests it is reasonable to model the uncertainty due to macroeconomic

announcements as a discontinuous jump in the price process, which we also adopt.
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3.2 Incorporating FOMC Announcements in Index Price

Models

This section augments FOMC announcement risks into standard continuous-time stochastic

volatility models. The first point of discussion is how to model FOMC announcements and

their impact on index prices. We assume FOMC announcements induce a jump in the

price path. The announcement releases information regarding monetary policy, the jump

sizes transforms this information into discontinuities in the price process. Thus the jump

distribution acts as a model of how information a↵ects prices. We are not alone in choosing to

model announcement e↵ects in such a way (see Piazzesi (2005) and Dubinsky et al. (2018))

who also use the jump model. Furthermore, it is consistent with statistical evidence which

suggests announcements are the cause of jumps in jump-di↵usion models (Johannes (2004),

Barndo↵-Nielsen and Shephard (2006)). As the FOMC jump times are known in advance we

use a counter, Nd

t
to count the number of FOMC announcements prior to maturity at time

T : N
d

t
=
P

j
1[tjT ], where 1 is the indicator function and tj is an increasing sequence of

predictable announcement times. FOMC announcements occur during trading hours, usually

around 2:00 p.m., we anticipate the e↵ects of the announcement to be absorbed within an

hour. An assumption which is supported by prior work, for instance Fernandez-Perez et

al. (2017) study intradaily e↵ects of FOMC announcements on the VIX and VIX futures,

finding the decline after the announcement is not instantaneous but lasts for approximately

45 minutes. Further evidence from Patell and Wolfson (1984) find, when studying earnings

announcements which occur during the trading day, that the information is absorbed within

minutes.

We consider an a�ne, mean reverting square root two-factor stochastic volatility model,



3.2. INCORPORATING FOMC ANNOUNCEMENTS IN INDEX PRICE
MODELS 43

where prices and variance processes solve, under the risk-neutral measure Q:

dYt = �(�µ̄+
1

2
Vt�)dt+

p
Vt�dW

Y

t
(Q)

+ (e⇠
y

t � 1)dZt(Q)� �µ
Q
y
dt+ (e⇠

FOMC
t � 1)dZ̄t(Q), (3.1)

dVt = 
Q
v
(mt� � Vt�)dt+ �v

p
Vt�dW

v

t
(Q) + ⇠

v

t
dZt(Q), (3.2)

dmt = 
Q
m
(✓Q

m
�mt�)dt+ �m

p
mt�dW

m

t
(Q). (3.3)

Where for a stochastic jump process Xt, we denote Xt� as the value of X prior to any

jump at time t. Denote Yt = ln(Ft(⌧)), with Ft(⌧) being the forward price, at time t with

maturity at time T and thus time to maturity ⌧ = T � t. Vt is the instantaneous latent

variance process of Yt with parameter �v, and 
Q
v
is the rate of mean reversion to mt, the

central tendency (with volatility parameter �m and Q
m

being its rate of mean reversion to

the constant parameter ✓Q
m
). We assume the three Brownian motions: W

Y

t
,W

V

t
,W

m

t
have

the following correlations:

d hW Y

t
,W

V

t
i = ⇢, (3.4)

d hW Y

t
,W

m

t
i = 0, (3.5)

d hW V

t
,W

m

t
i = 0. (3.6)

No arbitrage conditions require the volatility of volatilities, �v and �m and the correlation

to be equal under both the historical and risk-neutral measures. We define Zt as a Poisson

jump process, with constant intensity � (and with finite activity).4 In modelling the random

jumps, we assume they occur only in the index and its instantaneous variance, Bardgett et

al. (2019) use similar risk-neutral dynamics and also model for random jumps in the central

tendency but conclude these are unnecessary, based on their work we do not include them.

Furthermore, jumps are contemporaneous, occur at random times depending on the Pois-

son process Zt. Following the standard literature (see Eraker et al. (2003), Eraker (2004)

or Broadie et al. (2007)) we assume the variance jump sizes are exponentially distributed

4Better model fit could be achieved by allowing for a non-constant jump intensity which varies with the
level of the variance processes, such as is used in Bardgett et al. (2019). However, this is unlikely to detract
substantially from our work and the conclusions regarding announcement e↵ects or volatility seasonalities.
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with ⇠
v

t
⇠ E(µQ

v
). The return jumps are normally distributed with ⇠

y

t ⇠ N (µQ
y
, �

Q
y
), such

that µ̄ = exp(µQ
y
+ 1

2
(�Q

y
)2) � 1 � µ

Q
y
.5 The jump Z̄j captures the price movement in re-

sponse to information released in FOMC announcements. We assume jump magnitudes are

state independent and conditionally normally distributed under the risk-neutral measure, Q:

⇠
FOMC

t
⇠ N (�1

2
(�Q

j
)2, (�Q

j
)2), where �Q

j
represents the volatility of the FOMC announce-

ment occurring at time tj. This approach to modelling predictably timed price jumps is in

line with previous work in Dubinsky et al. (2018). The addition of deterministic jumps only

adds one additional parameter, per FOMC announcement, in order to keep the expected

growth of the underlying at the risk-free rate. Appendix 6.5 presents a derivation of the

characteristic function. Estimating �Q
j
is a basal focus of this work. The model dynamics

in 3.1-3.3 nest several models which we will use for various estimation exercises. Firstly the

single-factor stochastic volatility model of Heston (1993), defined with a constant central

tendency and no jumps, denoted SV. Secondly, the single-factor stochastic volatility model

augmented with random price jumps of Bates (2000), denoted SVJ. Thirdly, the two-factor

stochastic volatility model with no jumps, denoted SV2. The two-factor stochastic volatility

model augmented with random contemporaneous jumps in the price and variance process,

denoted SVCJ2. Finally the two-factor jump model SVCJ2 augmented with deterministic

FOMC jumps, denoted SVCJ2D.

3.2.1 Anticipated Uncertainty Estimators

The estimation and interpretation of �Q
j
is a fundamental piece for this work, as such we

first introduce a simple model to gain intuition and insight as to the information contained

in and how to estimate �Q
j
. Following the framework of Dubinsky et al. (2018) consider

a special case of the general stochastic volatility model with constant volatility and price

5Note as far as risk premia are concerned we follow Pan (2002) and Eraker (2004) and impose the
intensities of jumps be the same under the risk-neutral and historical measures. As a manifestation of
such an assumption it is imposed this jump-timing risk premium is absorbed into the mean jump size risk
premium. Details of this assumption do not a↵ect our work as we do not estimate any historical measure
parameters.
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jumps on FOMC announcements:

Ft = F0exp

"
� 1

2
�
2
t+ �Wt(Q) +

N
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tX
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Z̄j(Q)

#
, (3.7)

where Z̄j(Q) = �1

2
(�Q

j
)2 + �

Q
j
✏

Q
j
is responsible for the price discontinuities caused by FOMC

announcements with ✏Q
j
⇠ N (0, 1). Additionally, Nd

t
counts FOMC announcements prior to

time t. As the Brownian motion, WQ
t , and FOMC jumps are normally distributed the prices

follow a log-normal distribution. As such a European call option with maturity at time T

will be given by the Black-Scholes formula:

C(Ft, t) = e�r(T�t)
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�
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p
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, (3.8)

where N (·) is the cumulative normal distribution function and K is the strike price.6 How-

ever, with a modified volatility parameter to account for the FOMC jump:

�
2

t,T�t
= �

2 + (T � t)�1
X

j:t<tjt+T

(�Q
j
)2, (3.9)

this model provides the main test hypotheses we will investigate in our work for predeter-

mined announcements for option prices. Firstly, for an option with one announcement prior

to maturity, the change in implied variance (IV) just before and after the announcement

is: (T � t)�1(�Q
j
)2, implying IV drops discontinuously immediately after the announcement.

Second, implied variance increases at a rate (T � t)�1. Thirdly, fixing the number of FOMC

announcements (and therefore jumps) constant the term structure of implied variance slopes

downwards.

As noted in Dubinsky et al. (2018) there are two estimation methodologies: from the

term structure and the times series. First we explain the term structure estimate. Given two

options with maturities T1 and T2 (T1 < T2) and one FOMC announcement prior to matu-

6Note to calculate the value of a put option one would invoke the put-call parity.
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rity, then from Equation (3.9) the following must hold: �2

t,T1�t
> �

2

t,T2�t
and �Q

j
is estimated

by:

(�Q
j
)2 =

�
2

t,T1�t
� �

2

t,T2�t

(T1 � t)�1 � (T2 � t)�1
. (3.10)

The time series estimator uses information from changes in implied variance over the an-

nouncement. Let there be an FOMC announcement on date t, further let there be only

one announcement prior to maturity, then the post-announcement IV is �. The time series

estimator is thus given by:

(�Q
j
)2 = (T � t)(�2

t�,T�t
� �

2

t+�t,T�t��t), (3.11)

where due to the high-frequency data �t = 60 minutes. For details on the discussion of

robustness to stochastic volatility (the model outlined in Equation (3.7) assumes constant

volatility) and problematic areas of each methodology see Appendix 6.6.

3.2.2 Calibration Methodology

This section provides details on the calibration methodology used in our calibration exercises,

paying particular attention to the objective function and the method of latent variance

estimation.

We consider a number of nested versions of the two-factor stochastic volatility model

developed in Section 3.2. All model option prices are achieved by using the Fourier Cosine

Expansion of Fang and Oosterlee (2009) (for details of the procedure and how this relates

to the two-factor models see Appendix 6.7). For all models we estimate the latent variances

using an adapted method of Duan and Yeh (2010). The work of Duan and Yeh (2010) estab-

lishes a theoretical link between the VIX and the latent variance for a one-factor stochastic

volatility model with jumps in the price process. We extend this theoretical methodology to

encompass our model framework (the details of which are presented in Appendix 6.8). Let

O
mod

t,i
(Ft, Vt,mt, T,K,⇥Q) denote the model based price of option i, put or call, struck at K
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at time t, with maturity at time T and let

⇥Q = {Q
v
, ✓

Q
m
, �v, ⇢,

Q
m
, �m,�, µ

Q
y
, �

Q
y
, µ

Q
v
, {�Q}NFOMC

j=1
}, (3.12)

denote the structural parameter vector of the SVCJ2D model. Where the last element,

{�Q}NFOMC

j=1
, represents a vector of FOMC announcement volatility parameters, withNFOMC =

8, one for each FOMC announcement, each year. Ideally we would use the implied volatil-

ity RMSE (IVRMSE) for the objective function and comparing model performance. How-

ever, estimating the model parameters using IVRMSE is numerically very intensive as the

Black-Scholes inversion must be done for every set of model option prices queried by the

optimisation function. Instead we use a first order approximation to the IVRMSE. Denote

�
mkt

t,i
, �

mod

t,i
as the market and model implied volatility of option i at time t. To compute the

implied volatilities we invert each option price using the Black-Scholes (1973) model. A first

order expansion in the price of the option with respect to the implied volatility is:

O
mkt

t,i
�O

mod

t,i
⇡
@O

mkt

t,i

@�mkt

t,i

(�mkt

t,i
� �

mod

t,i
), (3.13)

where Omkt

t,i
denotes the market price of option i (put or call), at time t. Denote @Omkt

t,i
/@�

mkt

t,i

as the Black-Scholes option vega computed at the market implied volatility, denoted as

BSV
mkt

t,i
. Thus, an approximation to the di↵erence in implied volatilities between the market

and model can be given as:

�
mkt

t,i
� �

mod

t,i
⇡

O
mkt

t,i
�O

mod

t,i

BSV mkt

t,i

. (3.14)

Which gives our objective function as the Vega-Weighted RMSE (VWRMSE henceforth) of

Trolle and Schwartz (2009):

VWRMSE =
1

N

NX

t=1

vuut 1

nt

ntX

j=1

 
Omkt

t,j
�Omod

t,j

BSV mkt

t,j

!2

, (3.15)

where N denotes the total number of cross-sectional observations in the data (i.e., the total

number of 30 minute observations) and nt denotes the total number of unique strikes and
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maturities across all option maturities available at time t.

Throughout this work we are concerned with incorporating the e↵ects of FOMC announce-

ments and volatility seasonalities into traditional option pricing models. For each of these

two e↵ects we choose to use a two-step calibration process. Whereby we calibrate the base

model (SV, SVJ, SV2 or SVCJ2) to data from January to August, inclusive, leaving Septem-

ber to December as an out-of-sample period. In the second step we calibrate the parameters

relating to each e↵ect we are incorporating, in that specific test, e.g., FOMC announcements

or volatility seasonalities. During the second step, the parameters from the base model are

held fixed at their optimal values found in step one. In choosing this calibration method-

ology we are able to explicitly measure the advantage of including each individual e↵ect in

an option pricing framework. The reason for which is that, as the parameters from step

one are fixed, there can be no interplay between parameters of the original model and the

new parameters responsible for the new e↵ect we are measuring. When studying stochastic

volatility models the there is the challenge of having to jointly estimate the model’s struc-

tural parameters as well as the latent volatilities. As a result there are a miryad of di↵erent

approaches used in the literature. What folllows is a non-exhaustive list of some of the stud-

ies which employ di↵erent methodologies. One approach is to simply treat the volatilities

as simply another parameter which is re-estimated daily, such as in Bakshi et al. (1997).

Another approach consists of filtering the latent volatility using a time series of underlying

returns. This can be done in a number of di↵erent ways, for example Eraker (2004) does this

in a Bayesian setting. Alternatively Pan (2002) uses the Generalized Method of Moments

while Carr and Wu (2007) use a Kalman filter. Alternatively Christo↵ersen et al. (2009)

use an iterative two-step procedure (similar to Bates (2000)) by estimating the structural

parameters and spot volatilities using option data. Where on the first step for a given set

of structural parameters the latent volatilities are optimised, the second step uses the set of

optimised spot volatilities from step one to solve one aggregate sum of squared pricing error

optimisation problems for the structural parameters. A further study done by Bardgett et

al. (2019) uses a particle filter to estimate the conditional densities of un-observable latent

processes such as the volatility and jump process at every point in time. It is combined with

a maximum likelihood procedure for parameter and standard error estimations. Due to the
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many di↵erent approaches available we feel our two-step procedure is reasonable.

3.2.3 VIX Construction

The VIX is needed in order to estimate the latent variance and central tendency, using our

adapted approach of the Duan and Yeh (2010) method, for use in calibration exercises. The

necessity of having to construct the VIX is purely down to dealing with intradaily data

we need estimates for the VIX, across multiple time horizons, to match our observation

frequency.7 Whereas previous research which deals with daily or weekly data at the close

could simply obtain the recorded values from the CBOE. The VIX index is defined in the

White paper of the CBOE (2009) and is calculated practically using a mixture of S&P 500

out-of-the-money (OTM) options with maturities adjacent to 30 days. To suit our purpose

we calculate the quantity:

V IXt(⌧) =

vuut2
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er⌧
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Ft(⌧)

0
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K2
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#
, (3.16)

where Pt(K, ⌧) and Ct(K, ⌧) denote the prices of put and call options, respectively, at time t

with time to maturity ⌧ (i.e., maturity at time T , yielding ⌧ = T �t) and strike K. The risk-

free rate is denoted as r. Lastly, Ft(⌧) denotes the forward price at time t, with maturity at

time T . Therefore, the quantity V IXt(⌧) denotes the calculated VIX value at time t which

spans the time-horizon ⌧ . In practice however, as the price distribution against moneyness is

sharply peaked and decays to zero we may truncate the upper bound. We restrict the upper

bound to nFt(⌧), where n is some integer su�ciently large such that a call option with strike

nFt(⌧) is worth zero. In practice we choose n = 6, we thus approximate the VIX by:
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7The use of estimates of the VIX across multiple time horizons is required in order to estimate both the
latent variance and central tendency.
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The next issue to tackle is in calculating the option prices Ct(K, ⌧) and Pt(K, ⌧). Due to

having to integrate over these strikes we are required to be able to provide a continuum of

Pt(K, ⌧) and Ct(K, ⌧) for the strike range [0, nFt(⌧)]. In order to do so we use an interpolation

method to provide prices at all strikes. The first step is to generate a least squares regressed

implied volatility smile from the raw data with strike vector k, using a polynomial of degree

four:

IVR(k) = �̂0 + �̂1
k
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The � coe�cients are then used to generate a query implied volatility smile, IVQ:

IVQ(K) = �̂0 + �̂1
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The query strikes, K cover a range much greater than that of the data. As a result we set

any data outside the observed range [kmax, kmin] to the regressed maximum/minimum values

obtained from the regression on k:
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IVQ(K < kmin) = �̂0 + �̂1
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This mitigates potential reliability damage, due to noisy data, from options with very low

moneyness, the same process is applied in: Carr and Wu (2008), Rehman and Vilkov (2012)

and Neumann and Skiadopoulos (2013). In the low moneyness region the implied volatility

smile can start to dip down again. By setting these extreme regions of moneyness to constant

values it creates a stable environment for interpolation and it is possible to back out reliable

prices using the Black-Scholes model. We are aware of other methods of interpolating the

implied volatility surface. For instance we could have used linear extrapolation in the tails

(as used in Jiang and Tian (2007) and Aı̈t-Sahalia and Lo (1998)). The reason we chose

horizontal extrapolation is because of the evidence found in Amman and Feser (2019). The

authors examine the approaches mentioned above with the view of determining the most
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reliable. They find as the domain of available strikes declines linear out performs horizontal

extrapolation in the tails. However, they find horizontal extrapolation still performs well

(and out performs linear extrapolation) in the presence of high micro-structure noise. As

we have a relatively dense and wide spanning strike range and we analyse intradaily data

we feel it is more important to guard against micro-structure noise. The resulting shape of

prices against moneyness is a sharply peaked almost Christmas tree like distribution around

at-the-money strikes and zero in the tails.8 To calculate the integral in Equation (3.17)

we use a numerical adaptive quadrature based on a 7-point Gauss rule with a 15-point

Kronrod rule. This quadrature formula is preferred over others such as a low order adaptive

recursive Simpson’s rule or a high order adaptive Gaussian Lobatto quadrature rule. The

reason for this is the Gauss-Kronrod we use has a better resolution and is thus more robust

(see Shampine (2009) for details). The above procedure generates VIX values over every

time horizon in each cross-section. In order to standardise the resultant values we linearly

interpolate the VIX2

t
between 30 and 360 days in 30 day increments. We choose to interpolate

the VIX2

t
as this is more reliable, due to variance being linear in time. We report summary

statistics and results of the VIX time series in Section 3.2.4.

3.2.4 Preliminary Data Analysis

We obtain intradaily European options data from the CBOE. We have access to data from

Jan 2004 to July 2017. Following previous work (Onan, Salih and Yasar (2014) and Aı̈t-

Sahalia et al. (2005)) we sample data every 30-minutes during the trading day to avoid

market microstructure noise. Due to the computational burdens of investigating intradaily

data, it is not feasible to use the entire data set. Further the motivation to include the

recent financial crisis and more recent data lead to using alternate years starting in 2008 and

ending in 2016. This time series spans periods of relative calm and very turbulent periods

8In the above procedure, it would be a reasonable question to ask why we appear to create more work
for ourselves in calculating the implied volatilities, interpolating them and then converting back to prices
when we had the raw price data all along. The answer to which lies in the interpolation phase. Due to the
distribution of prices against moneyness it is significantly easier to interpolate around the volatility smile
instead.
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with extreme events, which is especially relevant in the exercise of estimating frequency and

magnitude of jumps. Thus, for investigation into the FOMC announcements we consider

only scheduled announcements starting in 2008 taking every other year (e.g., we consider

scheduled announcements in 2008, 2010, 2012, 2014 and 2016, only making for a total of

40 announcements). We choose to neglect the first 15 minutes of trading and take our first

observation at 9:45 a.m., Chan et al. (1995) show (confirmed by Muravyev and Ni (2019))

option quotes are intermittent with large bid-ask spreads during the initial open period.

Furthermore, by delaying fifteen minutes it is possible to take the last observation of each

day at exactly the close.

The maturity profile we have available to us changes significantly over the time span of

our study. In 2010 the CBOE introduced Friday weekly expiry options (symbol SPXW), in

conjunction to their existing monthly and quarterly expiration profile. The Friday weekly

options increase in traded volume dramatically during our sample period, where in 2010 they

comprised approximately 10% of trading volume by mid-2015 this grows to approximately

30% (as noted in Andersen et al. (2017)). Later in our sample the CBOE introduced an

additional two weekly expiration’s, on Wednesday and Monday, which were introduced on

February 23 and August 15 of 2016. As these weekly expiries were only introduced in one

year and they contain duplicated information with the Friday expiration we remove them

from our sample. The justification of including the Friday weekly expiries into our data

set is twofold: firstly it will increase the stability of the VIX estimation and in turn that

of the latent variance and central tendency. Without the weekly expiries we would have to

interpolate the 30-day VIX with only one data point less than 30 days. By including the

weekly expiries we increase the number of option expiries before 30 days, thus increasing

the stability of the VIX term structure. Secondly, it should be easiest to observe the e↵ects

of FOMC announcements and volatility seasonalities on short tenor options. In terms of

maturity filters we only consider options between 4 and 550 days to maturity. The longer

maturity options (those with greater than a year to expiry) are rich in information content

for determining the mean-reversion rate and variance of the central tendency process, as such

are important for the two-factor models in the calibration exercise. We also delete all quotes

which have a bid less than 50 cents. Furthermore, we delete all in-the-money (ITM) options
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since they are illiquid compared to their out-of-the-money counterparts. Furthermore, we

keep only those OTM options which are within the moneyness range: 0.8 and 1.1. We do not

delete quotes with zero volume, making the interpolation on the VIX more stable. If options

with zero volume were removed, the strike range would increase throughout the day as more

options are traded. This increasing strike range would lead to more stable inference on the

VIX towards the end of the day, but crucially would lead to more extrapolation needed at

the beginning of the day and thus a less stable VIX towards the beginning of the day.

We obtain interest rate data from OptionMetrics. Another issue we need to contend with

is our interest rate data is only quoted at a daily level at the close. The data is comprised

of three columns: a quote time, days to maturity and rate. As the interest rates are quoted

at the close for all calculations using interest rates we use the previous days data. Also

note, each day does not necessarily match the maturity profile we require. Thus, we linearly

interpolate to generate intradaily interest rates at the required maturities per cross-section.

It is important to note in the interest rate data the front maturity may not be less than

the front maturity of the cross-section. For instance, years 2008 to 2012 the front maturity

ranges between 6 to 7 days. While years 2014 to 2016 the front maturity is between 1-7

days. Henceforth, some of the front maturities are calculated using a linear extrapolation.

However, the need for extrapolation is not an issue for the last maturity as the interest rate

data always quotes a rate for a minimum of a 3561 day horizon and we consider a maximum

maturity of 550 days.9

Next, we infer the forward price using the at-the-money put-call pair (price of the options

are based on the best bid and ask price midpoints).10 This avoids two problems: firstly,

making estimations of future dividends. Secondly, the issue of using forward prices which

are not synchronised with option prices also traditionally forward contracts are only quoted

quarterly so would not be available for all maturities. Therefore, we consider the underlying

of the options is the Futures index and not the actual index itself (this method is similar to

Bardgett et. al, (2019)).11

9We choose not to add stochastic interest rates into our model framework. Following the results of Bakshi
et al. (1997) who find for out-of-sample pricing performance there is no gain for stochastic volatility models.

10However, similar results are obtained using an averaging method of all the options in each cross-section.
11This is feasible for the following reasons. At maturity the spot and forward price are equal. Furthermore,
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Table 3.1: Number of options (binned by year)
This table provides information on the numbers of out-of-the-money options used in our
data set. The table displays the number of option used in each year (Year). The table
also displays the average number of options included in the data set each week, binned by
year, (Weekly). The average number of options included in the data set per day, binned by
year, (Daily). The average number of options quoted by observation, as we sample every
30-minutes starting at 9:45 a.m. we have 14 samples per day, binned by year, (Observation).

2008 2010 2012 2014 2016

Year 731202 852620 1257787 2002583 2209493
weekly 14062 16397 24188 38511 42490
Daily 2902 3383 4991 7947 8768
Observation 207 242 357 568 626

The results of the above filtering procedure on the number of options comprising the

data set can be seen in Table 3.1. The first row of Table 3.1 reports the total number of

options contained in each year comprising the data set. The total number of options grows

substantially over time, with 2008 having 731, 202 quotes and ending with 2016 having

2, 209, 493, making up nearly one third of the total data set in one year! This increase is

most likely caused by growth on two fronts, one the number of quoted maturities (due to

the introduction and increased popularity of weekly expiry options) and two, the density

of strikes. In terms of strike density, on average in 2008 there are 28 strikes quoted per

maturity, this grows to 59 strikes per maturity for 2016. The subsequent four rows of Table

3.1 report average number of options for each year based on incrementally smaller time

aggregation methods, ranging from the number of options available, on average, per week

to per 30-minute cross-section. As a benchmark Bardgett et. al, (2019) use a data set

with a mixture of SPX and VIX options from March, 2006 to October, 2010 having a total

of 427, 061 options in the entire data set. In comparison our total data set is comprised of

7, 053, 685 options (i.e., approximately seventeen times that of Bardgett et. al, (2019)). This

gives a flavour for the computational burden we undertake by using intradaily data.

Figure 3.1 displays the returns of the S&P 500 index, sampled every 30 minutes, binned

by year. Table 3.2 reports the first four moments on the returns. The first column of Table 3.2

demonstrates the means of each year. Due to the observation frequency (every 30 minutes)

assuming a constant risk-free rate and dividend the forward must follow the same process as the spot, thus
the only di↵erence is in initial condition.
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Figure 3.1: Returns of S&P 500 index
This figure displays the returns of the S&P 500 index, using a sampling frequency of 30
minutes. The figure reports returns on years 2008 to 2016 sampling every other year.

the magnitude is expected to be approximately zero (note using daily returns measured at

the close this yields mean returns between �0.24% and 0.04% which is approximately of an

expected order of magnitude). However, as expected 2008 is the only year with negative mean

returns due to the financial crisis towards the end of the year, with the S&P 500 index falling

from a high of $1, 471 on January 02 to to $903 on December 31 at the close with a low of $747

on November 21. The second column depicts the standard deviations of returns. With 2008

standing out, having approximately double the magnitude of standard deviation (0.5983% or

42.82% annualised using daily returns at the close), compared to the next highest value seen

in 2010 (0.2835% or 18.29% annualised), with 2012 to 2016 values ranging between 0.1733%

and 0.2146% or 11.07% to 13.20% in annualised terms. The third moment (skewness) is

displayed in column three. All years are negatively skewed, suggesting tail event movements

of a large magnitude occur negatively. The fourth moment (kurtosis) is shown in column
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four. All years demonstrate consistently high kurtosis and are leptokurtic, with a minimum

value of 13.8 in 2012 and a maximum value of 19.4 in 2016. The fatness of the return tail

of 2008 is only the second largest to 2016 with values of 14.4 and 19.4 respectively. All of

which suggesting the presence of abnormal significant movements (inferred as kurtosis is a

measure of fat tails). From knowledge of events which occurred in 2008 during the financial

crisis we might expect to see significantly larger jump related parameters when calibrating

stochastic volatility (SV) jump models. Figure 3.1 demonstrates although there is some

market turbulence towards the beginning of the year around January and March, the first

two-thirds of the year (until around October with the likes of Lehman Brothers and the

Royal Bank of Scotland going bankrupt around this time) are reasonably tranquil. Thus it

could be that we might not expect jump parameters to be too di↵erent from other years,

especially as we calibrate to the first two-thirds of the year and leave the last third as an

out-of-sample region.
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Table 3.2: Summary statistics of returns on S&P 500 index
This table reports summary statistics for the returns of S&P 500, with a sampling frequency
of 30 minutes. The mean and standard deviation (Std) are given as a percentage.

Mean Std Skewness Kurtosis

2008 -0.0180 0.5983 -0.3573 14.4177
2010 0.0022 0.2835 -0.5807 13.7791
2012 0.0026 0.2046 -0.4352 13.7774
2014 0.0029 0.1733 -0.1378 12.0321
2016 0.0028 0.2146 -0.8893 19.3517

The results of the above VIX reconstruction time series are displayed in Figure 3.2 with

Panels 1 to 5 representing years 2008 to 2016. Table 3.3 reports the first four moments of

the relative di↵erence between 30 minute cross-sections of the VIX over time horizons 30 to

360 days, i.e., �VIXt,t+�t(⌧) = (VIXt+�t(⌧) � VIXt(⌧))/VIXt(⌧). We choose to only present

statistics over the time horizons of 30 and 360 days as these are the VIX time horizons we use

in calibration exercises. The Mean column of Table 3.3 displays the mean di↵erence between

cross-sections in �VIXt,t+�t(⌧) over the two time horizons. The interpretation of the mean

di↵erence is as follows. The VIX value at the beginning of the year multiplied by the mean

growth over the entire year should be approximate to the final VIX value. For example, in

2010 the initial VIX over a 30-day horizon is 20.4% and the final VIX is 16.9%. The mean

change in VIX over 30-minutes is �0.0054%, thus: 20.4 ⇥ (1 � 0.000054)(252⇥14) = 16.9%,

where the 14 represents the number of 30-minute observations in a trading day. The relative

di↵erence is of the order 0.001 � 0.02%, with both time horizons for 2008 being one order

of magnitude larger than the other years except the 30 day horizon for 2016. Secondly,

on average, the volatility (irrespective of time horizon) increased in 2008 substantially as

expected. The second column displays the standard deviations in the relative di↵erence of

the VIX. Across all years the standard deviation of the relative di↵erence in the VIX is

greater across the 30-day horizon than over the 360-day horizon, confirming our expectation

of VIX term structure that over longer time horizons the VIX is smoother. The skewness is

displayed in the third column, this is where we start to get a feel for the magnitude of turmoil

in the market during 2008. For all years, 2008 included, the skewness over a 30 day period is

positive. Notably, there is very strong positive skewness for years 2008 and 2012, with values

significantly above unity, whereas the other years in the sample only possess slight positive
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Figure 3.2: VIX time series (30 and 360 day horizon)
This figure displays the estimated VIX time series, as calculated by Equation (3.17), over a
30 and 360 day horizon for all years in the sample. The solid black line represents the 30
day horizon (denoted VIX(30)), the solid red line represents the 360 day horizon (denoted
VIX(360)). Values are reported as a percentage.

skewness in the range: 0.19 to 0.47, suggesting the distribution is relatively symmetrical.

However, over the longer time horizon of 360 days, with the exception of 2008, the skewness

of �VIXt,t+�t(360) is negatively skewed. The fourth column displays the kurtosis, across all

sample years the kurtosis is large suggesting significant movements in the volatility overall

time horizons. Indicating the need for some form of discontinuous process in the variance to

capture such extreme movements.
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Table 3.3: Summary statistics for VIX estimates
This table reports the first four moments for di↵erence in predicted VIX, �VIXt,t+�t(⌧), from
time t to t+ �t where �t is 30 minutes and ⌧ denotes the time horizon in days, either 30 or
360 days. Statistics are reported for the two time horizons (30 and 360 days) that we use in
calibration exercises. The mean is presented as a percentage. We abbreviate the standard
deviation to Std, which is also presented as a percentage.

Mean Std Skewness Kurtosis

2008 VIX(30) 0.0154 2.1129 1.5986 24.7550
VIX(360) 0.0139 0.8310 0.4280 22.0175

2010 VIX(30) -0.0054 2.2036 0.1911 30.0276
VIX(360) 0.0017 0.6340 0.0921 18.1290

2012 VIX(30) -0.0056 1.7966 1.6469 25.4846
VIX(360) -0.0071 0.6469 -0.0908 19.9859

2014 VIX(30) 0.0076 2.1512 0.4678 12.9105
VIX(360) 0.0051 0.5094 -0.2598 11.1105

2016 VIX(30) -0.0123 2.3870 0.1963 20.3028
VIX(360) -0.0029 0.6573 -0.2994 15.3451

3.2.5 Summary Statistics

Table 3.4 provides summary statistics on the implied volatility of the front at-the-money

maturity option on the first observation (at 9:45 a.m.) of each day. These statistics are cat-

egorised depending on if the day contains an FOMC announcement. The first two columns

present averaged estimates of FOMC against non-FOMC opening implied variances for the

front ATM option for each year. With the exception of 2010 all years have higher implied

variances on FOMC announcement days. To illustrate the e↵ect of FOMC announcements

on option implied variance our results imply on average approximately 3.7% of the total

annualised variance occurs on FOMC announcement days.12 FOMC implied variances are

significantly higher during the 2008 recession. However, during 2008 a similar calculation

shows total FOMC variance is approximate to the average level. Demonstrating during the

crisis the macroeconomic e↵ect of FOMC announcements are still relevant. Assuming volatil-

ity is constant across business days, FOMC announcements would account for 8/252 ' 3.2%

12For example, taking the mean results for FOMC and Non FOMC volatility, dividing the variance on
FOMCs, 8⇥ 19.852, by the total non FOMC variance, 8⇥ 19.852 + 244⇥ 18.252 is 3.73%
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Table 3.4: Summary statistics for FOMC and non-FOMC implied volatilities
This table provides summary statistics for the opening (first observation taken at 9:45 a.m.)
implied volatility of the shortest maturity at-the-money option. Statistics are categorised
depending on FOMC or non-FOMC days. We report volatility (Vol), skewness (Skew),
kurtosis (Kurt) as well as the ratio (Var Ratio) between FOMC and non-FOMC variance.
The last column (Num FOMC) provides the number of FOMC announcements in each year.

FOMC
Vol

Non-
FOMC
Vol

Var
Ratio

FOMC
Skew

Non-
FOMC
Skew

FOMC
Kurt

Non-
FOMC
Kurt

Num
FOMC

2008 35.43 31.90 1.11 0.56 1.46 1.72 4.33 8.00
2010 18.97 19.22 0.99 0.24 1.29 2.24 5.28 8.00
2012 15.50 15.12 1.02 0.01 0.82 1.93 3.68 8.00
2014 14.06 11.52 1.22 1.48 1.91 3.91 8.62 8.00
2016 15.27 13.51 1.13 0.49 1.32 1.92 4.23 8.00

Avg 19.85 18.25 1.09 0.55 1.36 2.34 5.23 8.00

of the total annualised variance. Thus suggesting FOMC announcements are responsible for

only a second order e↵ect of overall volatility generation. The third column (”Var Ratio”)

reports the ratio of average volatility on FOMC and non-FOMC days, from which the largest

disparity occurs in 2014 where FOMC variance makes up approximately 4.7% of the total

annualised variance. The skewness values being small for most years indicates for models

with random price jumps near zero jump means. In line with Dubinsky et al. (2018) who

model the impact of earnings announcements on individual equity options we assume FOMC

announcements generate a discontinuity in the sample path of equity prices.13

13See Dubinsky et al. (2018) for discussion of alternative assumptions.
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3.2.6 Non-Parametric Tests

In this section we test the main e↵ects of FOMC announcements on option prices, namely:

does IV increase prior to an FOMC announcement? Is the term structure of IV’s downward

sloping prior to the announcement? Finally, does IV decrease after the announcement?

In order to test these questions it is important to choose a test which can accommodate

the small data sample. The Wilcoxon signed rank test for-fills this criteria. Generally the

Wilcoxon test compares two related samples to asses whether the medians di↵er. In this

application it is used to test if the median is statistically di↵erent (using a 5% significance

level) to a median of zero. Regarding the two questions of if the IVs increase prior to the

announcement and decrease post announcement, as we have hypothesised the direction of

the move we use a one sided version of the Wilcoxon test. Dubinsky et al. (2018) use

the same test and implementation, so do Patell and Wolfson (1979,1981).14 For both the

increase prior to and decrease after FOMC announcement tests we use the front maturity

option and require the maturity be greater than three days post announcement. To test the

IV increase prior to announcement we measure the change in ATM IV over a week preceding

the announcement. However, our results are not robust to a two week measurement period.

For the decrease in IV post announcement we use the change in IV from the last observation

prior to the announcement and the last observation at the close of the day of the FOMC

announcement. For the term structure estimate we the use the ATM options for the shortest

two maturities, using the last observation prior to the announcement.

Table 3.5 reports the results of the questions raised above. We see for the increase

in IVs prior to an announcement the null hypothesis is only rejected in years 2010 and

2014. Suggesting for the years: 2008, 2012 and 2016 there was no statistically significant

increase in IV from a week prior to the announcement. However, when aggregated as a

whole the null hypothesis is rejected, indicating there is a statistically significant increase

in IV prior to the announcement. The result that three out of the five years we study do

not have a statistically significant increase, examined individually, coupled with the lack

14Although the Patell and Wolfson (1979,1981) implementation is di↵erent because they use volatilities.
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Table 3.5: Wilcoxon test (by calendar year)
This table presents the p-values for the Wilcoxon signed rank non-parametric test, grouped
by calendar year. We use a one-sided version to test the increase in implied variance in the
one week prior to an FOMC announcement (Increase Prior to FOMC), and the decrease in
implied variance after the FOMC announcement (Decrease after FOMC). For the decreasing
term structure of implied variance before the FOMC announcements (Term Structure on
FOMC) we use the two-sided version.

Increase Prior to FOMC Term Structure on FOMC Decrease after to FOMC

2008 0.11 0.95 0.89
2010 0.01 0.01 0.99
2012 0.58 0.32 0.77
2014 0.02 1.00 1.00
2016 0.66 1.00 0.95

Avg 0.00 0.95 1.00

of robustness across di↵erent measurement periods suggests perhaps the e↵ect is only of

second order importance. For the decreasing term structure the only year with a statistically

significant decreasing term structure is 2010. Nor is the aggregate statistically significant

either, adding evidence to our suspicion that the e↵ect of FOMC announcements might only

be of second order importance. This evidence continues when we investigate the decrease

post FOMC announcement as none of the years reject the null hypothesis that the median is

zero, indicating no decrease post announcement. The evidence documented in Table 3.5 does

not suggest the e↵ect of FOMC announcements is statistically overwhelmingly strong. In

order to deal with this potentially weak e↵ect we choose to use time varying jump volatilities,

rather than constant as used by Dubinsky et al. (2018).

3.2.7 Characterising Anticipated FOMC Volatility

Table 3.6 provides details on individual calculations of the term structure and time series

estimates of each FOMC announcement in our sample. While Tables 3.7 and 3.8 provide

summary statistics of the two estimates.

Table 3.6 displays the first two maturities ⌧1 and ⌧2 and the associated IVs of the ATM

options on the last observation before an FOMC announcement (depending on the time of
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the announcement this is either 15 or 30 minutes prior) which are used to calculate the term

structure estimate. Table 3.6 also reports the IVs of the ATM front maturity directly before

and after an FOMC announcement, (IV⌧1� , IV⌧1
), which is used to calculate the time series

estimate. With the change in relevant IVs being denoted with �IVterm, �IVtime for the term

structure and time series estimates, respectively. In the event where either of these changes

in IVs is negative the respective estimate cannot be calculated and is set to zero. Summary

statistics on the frequency of how often the estimates cannot be calculated and by what

magnitude are reported in Tables 3.7 and 3.8. While the theory of considering a special case

of the general stochastic volatility model with constant volatility and price jumps on FOMC

announcements (see Section 3.2.1), would predict the two di↵erent estimation methodologies

should yield approximate results Table 3.6 demonstrates there might not be an acceptable

level of agreement. For example on 30th January 2008 (1st FOMC announcement) the term

structure estimate is 4.99% while the times series estimate is close to double at 9.07%. Based

on the other estimates of �Q
j
for the other years these are by far the largest (although on

28th October 2008 the term structure estimate predicts �term = 9.20% but we do not include

this observation in our current conversation as the time series estimate is not calculable).

To o↵er some economic insight as to why these estimates are so large on 22nd January 2008,

following an unscheduled meeting citing concerns about a weakening economy, the Federal

Reserve cut both the federal funds rate and the discount rate by three-quarters of a percent.

This was the first unscheduled meeting cut, only eight days before a scheduled meeting,

since a cut of half a percent the day after the terrorist attacks in 2001. In conjunction

with the rate cut being the largest by the Federal Reserve since October 1984. At the time

many market participants felt the Federal Reserve would cut rates further in the upcoming

meeting the next week causing large uncertainty in the market. Another concern about the

estimation methods is the potential evidence of conflicting information. For instance on 28th

October 2008 (7th FOMC announcement) the change in term structure IV estimate yields

�IVterm = 7.16% while the time series is �IVtime = �0.45% implying the term structure

estimate is calculable and the time series is not. The reason why this example is perhaps

noteworthy is not only that one estimate is not-calculable but also the magnitude of the term

structure estimate is significantly di↵erent from zero (unlike in the case on the 25th June
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2008 (4th FOMC announcement) where the time series is calculable and the term structure is

not). Tables 3.7 and 3.8 report summary statistics on this matter, which we explain below.

Table 3.7 demonstrates an average term structure estimate across years of 1.5%. Table 3.8

reports the time series counterpart being 1.17%, in close agreement with Chen and Clements

(2007). Across years the term structure estimate mean is always greater than the median,

indicating positive skewness. The same is true for the time series estimate except for 2012

where the mean is slightly less than the median (0.73, 0.91%, respectively). We also provide

characterising statistics on the number and magnitude of hypothesis violation under columns

Err1 and Err2. Under the Err1 columns we report the number of FOMC announcements on

which the hypothesis of a decreasing term structure/implied variance after the announcement

is violated, grouped by year. While Err2 counts the number of FOMC announcements

on which the violations were more than 1.5% (using implied variances). Both estimation

methodologies seem to struggle with reliability. For instance in 2010 and 2012 the term

structure estimate predicts violation in seven and six cases out of eight, respectively. While

for these years the time series estimator is more reliable, when aggregated across years the

results for violations are 3 and 3.2 for the time series and term structure estimators. Thus,

implying there is approximately a 38% (3/8 = 37.5%) probability of the hypothesis of a

decreasing term structure/implied variance after the announcement being violated. The

number of error dates are most likely caused by low FOMC volatility. In order to compare

to a normal, non-announcement period, Table 3.9 displays summary statistics on the 1-hour

variability in implied variance (IV). We choose a 1-hour interval as when calculating the time

series estimator we use information in the observations before and after the announcement

which is a 45 or 60 minute interval, depending on the announcement time. Unsurprisingly,

the highest average variability is in 2008 due to the financial crisis. However, even with this,

the 1-hour variability in IV is between 0.45% and 0.78%, with a mean of 0.55%. The range

of IV di↵erence in the 1-hour window surrounding FOMC announcements varies between

0.06% and 2.14%, with a mean of 0.93%. Thus, the 1-hour IV di↵erence is approximately

twice as variable over the FOMC announcement as a normal window.

Next we discuss the error occurrences in Tables 3.7 and 3.8 in more detail. The main

goal is to provide some theoretical explanation behind the idea that errors can be linked to
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stochastic volatility and other market-microstructure e↵ects. To understand the e↵ects of

stochastic volatility on the estimators we will first begin with the term structure estimator.

From Equation (3.10) a low level of stochastic volatility would cause �2

t,T1
to be small, but

due to the low level there would be a large amount of mean reversion of variance causing

�
2

t,T2
to be larger, producing a downward sloping estimate. For the time series estimator the

main cause would likely come from the level of volatility-of-volatility as higher volatility-

of-volatility adds further noise to the change of IV on an FOMC announcement making

detection of an FOMC jump harder. Another contributing factor to the occurrence of errors

is the variance ratio between FOMC and non-FOMC days reported in Table 3.4. Theory

suggests a proportional relationship between years with variance ratios close to unity and

number of error occurrences, because an FOMC jump is much easier to identify if the jump

size standard deviation is large relative to the average day-to-day variation in returns.

A further e↵ect to mention which plays a role on the signal-to-noise ratio is the maturity

of the option. The signal-to-noise ratio is inversely proportional to maturity as for short

tenor options the annualised return variance will be significantly impacted by the FOMC

jump volatility. In summary, more errors are expected for years with low variance ratios

and longer front maturity options. This realisation gives evidence to why the term structure

estimator might struggle so much in years 2010 and 2012. From Table 3.7 for these years

the errors are 7 and 6 respectively. Table 3.4 reports these years have notably low variance

ratios of 0.99, 1.02 when the mean across years is 1.09. Further Table 3.6 reports 2010 has

the longest average front maturity options of 16 and 44 days.

The two estimates do seem to approximately capture the same information, using a

correlation of the mean estimates per year the results is 60%.15 In summary, the term

structure and time series estimates vary between 0% and 9.20%, 0% and 9.07%, respectively,

with averages of 1.5% and 1.17%. Chen and Clements (2007) find evidence to suggest

that the VIX falls by approximately 2% on days of FOMC announcements. Thus the term

structure and time series estimates predict a slightly smaller decline, on average, but are still

in agreement. In general we find the FOMC announcements seem to have a lesser impact

on S&P 500 index options than on the actual index itself (see Lucca and Moench (2015)).

15Using the Spearman’s rho for robustness against outliers. The result for Pearson’s correlation is very



66

CHAPTER 3. MACROECONOMIC ANNOUNCEMENTS AND VOLATILITY
SEASONALITIES, A HIGH-FREQUENCY APPROACH TO OPTION

PRICING

Table 3.6: Individual and average uncertainty estimates
This table provides individual and average estimates of �Q

j
for both the term structure and

time series estimates (reported as �term, �time, respectively). The table also displays the
constituent parts necessary for these calculations. The front two maturities (⌧1 and ⌧2) used
for the term structure estimate, also the IV of the first two maturity at-the-money options
prior to the announcement (IV⌧1� and IV⌧2

), these are used for the term structure estimates.
For the time series estimates we report the IV of the front ATM option immediately prior
to and after the announcement (IV⌧1� and IV⌧1

). Maturities are given in days and IV’s and
FOMC jump estimates are given as percentages.

⌧1 IV⌧1� IV⌧1 ⌧2 IV⌧2 �IVterm �IVtime �term �time

2008 16.43 29.05 10.79 51.43 25.28 3.77 18.26 4.99 9.07
3.47 27.65 28.24 31.47 26.17 1.48 -0.59 1.26 0.00
16.47 18.43 18.71 51.47 18.95 -0.53 -0.28 0.00 0.00
23.47 19.53 19.52 51.47 20.27 -0.74 0.01 0.00 0.24
10.47 21.02 20.97 45.47 20.91 0.11 0.05 0.63 0.38
3.47 41.75 42.77 31.47 29.70 12.05 -1.02 3.59 0.00
23.47 61.63 62.07 51.47 54.46 7.16 -0.45 9.20 0.00
3.45 55.46 54.30 31.45 50.85 4.60 1.15 2.21 1.04

Avg 12.59 34.31 32.17 43.21 30.83 3.49 2.14 2.73 1.34

2010 23.47 21.32 21.49 51.47 21.73 -0.40 -0.16 0.00 0.00
3.47 14.53 15.00 31.47 15.36 -0.84 -0.48 0.00 0.00
23.47 18.29 16.06 51.47 18.54 -0.25 2.23 0.00 3.79
23.47 24.05 23.75 58.47 24.42 -0.37 0.30 0.00 1.39
10.47 20.30 20.11 38.47 20.33 -0.03 0.19 0.00 0.74
24.47 18.44 18.95 59.47 20.19 -1.75 -0.51 0.00 0.00
16.47 19.84 19.08 44.47 19.68 0.16 0.76 1.08 1.85
3.43 14.46 14.22 17.43 15.02 -0.56 0.23 0.00 0.47

Avg 16.09 18.90 18.58 44.09 19.41 -0.50 0.32 0.14 1.03

2012 23.39 14.77 14.31 51.39 16.64 -1.87 0.45 0.00 1.71
3.49 11.49 12.14 17.49 13.00 -1.50 -0.65 0.00 0.00
23.43 14.33 14.59 51.43 15.39 -1.07 -0.26 0.00 0.00
9.53 18.37 19.21 16.53 16.54 1.83 -0.84 3.36 0.00
9.53 18.38 18.06 16.53 16.50 1.88 0.32 3.41 0.91
8.47 12.47 11.68 15.47 13.04 -0.57 0.79 0.00 1.35
9.53 16.96 16.59 16.53 17.35 -0.39 0.37 0.00 0.98
9.47 12.93 12.61 16.47 14.08 -1.15 0.33 0.00 0.92

Avg 12.10 14.96 14.90 25.23 15.32 -0.36 0.06 0.85 0.73

2014 9.43 17.17 14.69 16.43 16.06 1.11 2.48 2.59 2.53
2.43 11.87 11.59 9.43 11.66 0.22 0.28 0.44 0.43
9.47 11.70 11.71 16.47 11.51 0.19 -0.01 1.08 0.00
2.47 11.87 12.12 9.47 10.01 1.86 -0.25 1.30 0.00
9.47 11.81 11.58 16.47 11.43 0.39 0.23 1.53 0.77
2.47 12.97 11.53 9.47 10.85 2.12 1.44 1.39 0.99
9.47 14.25 15.47 16.47 13.44 0.81 -1.22 2.22 0.00
2.43 21.11 17.18 9.43 17.38 3.73 3.93 1.83 1.62

Avg 5.95 14.09 13.23 12.95 12.79 1.30 0.86 1.55 0.79

2016 9.43 22.52 22.93 16.43 20.85 1.67 -0.41 3.18 0.00
16.43 14.34 11.57 23.43 14.13 0.21 2.77 1.77 3.53
16.43 12.45 11.24 23.43 12.36 0.08 1.21 1.12 2.33
9.43 18.36 17.04 16.43 17.88 0.48 1.31 1.70 1.84
16.43 10.81 9.09 23.43 10.87 -0.06 1.72 0.00 2.78
16.43 14.79 11.53 23.43 13.96 0.83 3.25 3.54 3.83
16.43 19.34 19.79 23.43 17.44 1.91 -0.45 5.36 0.00
9.43 11.04 10.44 16.43 10.72 0.32 0.61 1.40 1.25

Avg 13.80 15.45 14.20 20.80 14.78 0.68 1.25 2.26 1.95

similar at 60.5%.
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Table 3.7: Anticipated uncertainty (term structure estimator, by year)
Table provides average estimates of anticipated uncertainty �Q

j
using the term structure esti-

mator. We report summary statistics overall years 2008-2016 for all FOMC announcements
pooled by calendar year. We report the mean, (Mean), median, (Median), the standard
error (Std Err), and the lower and upper quantile (25% and 75%) of all observations with-
out errors. Err1 counts the number of FOMC announcements on which the hypothesis of a
decreasing term structure is violated. Err2 counts the number of FOMC announcements on
which the violations were more than 1.5% (using implied volatilities).

Mean Median Std Err 25% 75% Err1 Err2
2008 2.73 1.73 3.15 0.31 4.29 2.00 0.00
2010 0.14 0.00 0.38 0.00 0.00 7.00 1.00
2012 0.85 0.00 1.57 0.00 1.68 6.00 2.00
2014 1.55 1.46 0.67 1.19 2.02 0.00 0.00
2016 2.26 1.74 1.68 1.26 3.36 1.00 0.00

Avg 1.50 0.99 1.49 0.55 2.27 3.20 0.60

Table 3.8: Anticipated uncertainty (time series estimator, by year)
This table provides average estimates of anticipated uncertainty �Q

j
using the time series esti-

mator. We report summary statistics overall years 2008-2016 for all FOMC announcements
pooled by calendar year. We report the mean, (Mean), median, (Median), the standard
error (Std Err), and the lower and upper quantile (25% and 75%) of all observations without
errors. Err1 counts the number of FOMC announcements on which the hypothesis of decreas-
ing implied volatility after the announcement is violated. Err2 counts the number of FOMC
announcements on which the violations were more than 1.5% (using implied volatilities).

Mean Median Std Err 25% 75% Err1 Err2
2008 1.34 0.12 3.14 0.00 0.71 4.00 0.00
2010 1.03 0.60 1.31 0.00 1.62 3.00 0.00
2012 0.73 0.91 0.66 0.00 1.17 3.00 0.00
2014 0.79 0.60 0.91 0.00 1.30 3.00 0.00
2016 1.95 2.09 1.46 0.63 3.16 2.00 0.00

Avg 1.17 0.87 1.50 0.13 1.59 3.00 0.00

3.2.8 Option Pricing Implications

We consider a number of stochastic volatility models augmented with deterministic jumps

on FOMC announcements: a di↵usive stochastic volatility model SV, which augmented with

FOMC jumps denoted as SVD. SVJ is the model with randomly timed jumps, with a con-

stant intensity in the price process and SVJD is the SVJ model augmented with FOMC
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Table 3.9: Average variability of front maturity ATM implied variance
This table provides summary statistics on average 1-hour variability on the implied variance
of the at-the-money shortest maturity option, excluding 1-hour periods which contain an
FOMC announcement. The Mean column displays the mean average percentage di↵erence.
The following columns give the i-th percentile.

Year Mean 5% 25% 50% 75% 95%

2008 0.78 0.04 0.19 0.45 0.93 3.03
2010 0.63 0.03 0.15 0.37 0.77 2.30
2012 0.45 0.02 0.12 0.28 0.58 1.42
2014 0.45 0.02 0.10 0.28 0.58 1.54
2016 0.47 0.02 0.12 0.31 0.57 1.54

Avg 0.55 0.03 0.14 0.34 0.68 1.97

jumps. SVCJ2 is the two-factor volatility model with randomly timed contemporaneous

Poisson jumps in the price and variance process, SVCJ2D denotes the FOMC deterministic

counterpart to the SVCJ2 model.16 Essentially we consider three models and their coun-

terparts with the addition of deterministic FOMC announcement jumps. The calibration

methodology is as described in Section 3.2.2, thus we initially calibrate the base models (SV,

SVJ and SVCJ2). For the second step of the calibration we fix the base model parameters

from step one and add the FOMC jump volatilities, �Q
j
, to the parameter vector. Consider

FOMC jump volatilities �Q
j
are not constant over time, there is a vector of �Q

j
’s, one for each

FOMC announcement. Hence, each deterministic jump model requires the addition of eight

parameters (one for each FOMC announcement) to the original base model. Note, as there

are FOMC announcements throughout the year we no longer have an out-of-sample period

as we consider all announcements in the second calibration step.

Table 3.10 presents the parameter estimates for each of the models: SV, SVJ, SV2 and

SVCJ2. As far as parameter error estimates are concerned we use an asymptotic standard

errors for maximum likelihood estimates approach, as in Hamilton (1994).17 Overall we find

significant evidence for randomly timed jumps in the price and variance processes and mul-

tiple stochastic volatility factors. Intuitively jumps in returns can generate significant moves

16We also calibrated the SV2D model. However, we exclude these results, for brevity, as they are qualita-
tively no di↵erent.

17As a side issue, in order to make sure our code is correct for the more complex two-factor models we
undertake a Monte Carlo exercise as is done in Bates (2006) and Fulop et al. (2014). Concluding the
numerical methods employed produce very low errors (< 0.17%) for all maturities used, see Appendix 6.9
for further details.
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in the price, such as the crash of 1987 (evidence as to the need of price jumps provided by

Bates (1991)). The volatility of returns, without jumps, is driven by a Brownian motion,

thus it can only increase gradually via a sequence of normally distributed increments. Evi-

dence from Bates (2000) and Du�e et al. (2000) has shown empirically that the conditional

volatility of returns can increase rapidly. Eraker et al. (2003) demonstrate that jumps in

volatility allow the volatility of returns to increase suddenly. The need for multiple volatility

factors is due to the relationship between the level and slope of the volatility smile being

independent. Thus, there are days with low volatility and a steep slope and also days with a

flat slope but high volatility. A single-factor volatility model can generate either a steep or

flat slope at a fixed volatility level, but cannot handle varying both for a fixed set of struc-

tural parameters. The introduction of a second volatility factor alleviates this restriction.

This finding is consistent with previous research (Bardgett et al. (2019), Christo↵ersen et

al. (2009) and Kaeck and Alexander (2012) to name a few). Table 3.10 also presents model

errors, measured by the VWRMSE (Err.). For instance, in 2008 the in-sample VWRMSE

of the standard SV model is 1.99%, with the addition of randomly timed price jumps the

VWRMSE drops to 1.67%, a reduction of approximately 16% relative to the SV model. The

addition of a second variance process modelling the central tendency yields a VWRMSE of

1.58% which is a fall of approximately 20%. Indicative of a significant role for randomly

timed jumps and a larger role of multiple stochastic volatility factors. This trend continues

to hold for all years in our sample. In terms of structural parameters, the estimates of Q
v

are fairly similar between models. For instance the SV estimates are between 2.43 and 5.73,

SVJ estimates are approximately equal. There is some variation in 2008 where the estimate

of Q
v
is lower for SVJ than SV and in 2014 where the SVJ estimate is higher. However,

the size of variations in the rate of mean reversion will not significantly a↵ect the pricing

of options. Estimates from the multi-factor volatility SV2 and SVCJ2 models are mostly

similar to the SV and SVJ counterparts. Note for 2010, 2012 and 2016 the SV2 and SVCJ2

estimated rate of mean reversion to the central tendency is higher than the SV. This is not

entirely out of line with theoretical expectation, for all three years there is multiple periods

of significantly high volatility which in turn e↵ects the level of the central tendency. Due

to the SV2 and SVCJ2 models varying the level of mean reversion a higher rate can be
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acceptable as the model struggles less to fit both high and low volatility periods (something

which can only be done in one-factor volatility models with a low rate of mean reversion

which explains the lower Q
v
’s of years 2010, 2012 and 2016). The estimates for ✓Q

m
provide

plausible long-run volatility averages ranging from 16.73% in 2014 to 36.06% in 2010. How-

ever, theoretically in the one and two-factor models the ✓Q
m
does not quite represent the same

quantity, but the values are reasonably similar. The values for �v are mostly determined

from the time-series of the volatility. Estimates of �v are similar across models for each year.

Although there is some contradiction to expectations regarding the inter-model comparison

of �v. Our expectation is that the SVJ and SVCJ2 �v is less than predicted by the SV

model, i.e., �SVJ,SVCJ2

v
< �

SV

v
, our reasoning is as follows. For the SV model the volatility is

purely determined by its di↵usive contribution while the SVJ and SVCJ2 models have, in

addition, the contribution from the randomly timed jumps.18 This is in line with Eraker et

al. (2003). This relationship is broken for the SVJ model in years 2012 and 2016. However,

the relationship holds for the SVCJ2 model for all years, showing greater reliance. However,

the estimates are generally in line with prior research (see discussion in Broadie et al. (2007)

who mention option based estimates tend to have large �Q
v
and small ⇢).

The parameters relating to the two-factor volatility models (SV2 and SVCJ2) are Q
m
and

�m. These parameters are mostly determined by long maturity options. For the SV2 model,

the rate of mean reversion in the central tendency, Q
m
are between 0.003 and 0.320. However,

estimates for 2008 and 2012 are quite low at 0.003 and 0.005, respectively. Estimates for the

SVCJ2 model are lower (with the exception of 2008 and 2012) with estimates ranging from

0.001 to 0.275, although years 2008, 2010 and 2014 represent levels of mean reversion only

e↵ective for option tenors much longer than included in our sample. These parameters are

estimated under the risk-neutral measure Q, from the discussion in Bardgett et al. (2019)

who find using S&P 500 returns, VIX index levels and S&P 500 options (similar to our data

set, only at a lower frequency) the two-factor model has a lower rate of mean reversion in

the historical measure P, i.e., Q
m
> 

P
m
. Thus, it appears under neither measure is there a

significant amount, if any, mean reversion in the central tendency. Although for many years

the two-factor models seem to mean revert, if at all, over very long time spans a two-factor

18In the jump models the conditional volatility of returns is: Vt + �((µQ
y )

2 + (�Q
y )

2).
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model with only one variance process mean reverting is still perfectly valid. For instance,

Christo↵ersen et al. (2009) find a two-factor model with only one mean reverting process

performs better out of sample. In summary, we feel small Q
m

is not a concern provided

�
Q
m

is not also approximately zero. In such a case if both 
Q
m

and �
Q
m

are approximately

zero then the two-factor model essentially collapses to a one-factor model (this happens

only once in our sample when estimating the SVCJ2 model in 2014). The estimates for �m

range between 0.025 and 0.753 for the SV2 model and estimates range between 0.002 and

0.803 for the SVCJ2 model. With the exception of 2014 the estimates for both models are

similar. Although some potentially low estimates for these parameters are not unsurprising

as suggested from our Monte Carlo calibration exercise in Appendix 6.9 displayed in Table

6.3, which implies Q
m

and �m are di�cult to estimate, with standard deviations of 0.060

and 0.087, respectively. Even given some of the theoretically low values for Q
m

and �m we

find they are in line with previous research, Bardgett et al. (2019) find Q
m

to be between

0.383 and 0.905, and �m between 0.113 and 0.206. Thus, our estimates are below for Q
m

and slightly above for �m. Besides, the estimates for �m being lower than the �v estimate is

consistent with expectation as the central tendency process should be smoother than that

of the variance. The parameters relating to the randomly timed price jumps in the SVJ

model imply between 3 to 17 jumps a year (approximately), with average jump sizes close

to zero between �0.006% and �0.13% and jump size volatilities of 1.43% to 3.55%. For the

SVCJ2 model there are significantly less jumps per year between 0.07 to 3 jumps per year,

however, the average price jump size ranges from �19.3% to 3.13% with jump size volatility

between 0.5% and 12.2%. For all years except 2014 we see a smaller jump size volatility for

the SVCJ2 model than the SVJ.19 The literature, from calibration to option prices, is a little

inconclusive when it comes to estimating the number of jumps per year. For instance, Bakshi

et al. (1997) expect less than one jump a year, however the jump in returns is of the order of

�5%. On the other hand Duan and Yeh (2010) estimate more than 100 jumps per year with

jump size of approximately 0.3%. Thus, previous research supports either large rare jump

19Although direct comparison between the number and size of jumps between the SVJ and SVCJ2 models
is not entirely valid as the SVCJ2 model contains an extra variance factor. It could be due to the misspeci-
fication of the SVJ model the jumps in this model are picking up information which is somehow contained
in the additional variance factor.
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events or small and frequent, intuitively either makes sense, when considering the overall

contribution from jumps. Given this wide range our estimates are in line with the literature.

The mean volatility jump size estimates range from 0.010 to 0.093, in line with previous

research, for instance Bardgett et al. (2019) estimates the mean volatility jump size to be

between 0.010 and 0.320. As far as out-of-sample error estimates are concerned we observe

an expected rise, compared to the in-sample counterparts. However, as anticipated the

more complex SVCJ2 model still out performs the other models out-of-sample. In summary

our estimates provide economically plausible parameters and the change to high-frequency

observations does not seem to significantly a↵ect the parameter estimates of well-established

models.
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Table 3.10: Parameter estimates (full maturity data set)
This table reports the parameter estimates of the SV, SVJ, SV2 and SVCJ2 models. The models are estimated with the
VWRMSE objective function defined in Equation (3.15). Latent volatility estimates are computed using an extended approach
of Duan and Yeh (2010) given in Appendix 6.8. The parameters are estimated on the full maturity data set 4  DTM  550.
Models are calibrated to an in-sample period January to August, each year. The parenthesis report asymptotic standard errors.
The Err. column denotes the model in-sample Vega-Weighted RMSE (VWRMSE). The OS-Err. column denotes the model
out-of-sample VRMSE.

Year Model 
Q
v ✓

Q �v ⇢ 
Q
m

�m � µ
Q
y (%) �

Q
y (%) µ

Q
v

Err.
OS-

Err.

2008 SV 5.059 0.065 0.892 -0.776 1.989 2.581

(0.006) (0.000) (0.001) (0.001)

SVJ 2.000 0.075 0.852 -1.000 14.191 -0.130 2.200 1.675 1.923

(0.000) (0.000) (0.000) (0.000) (0.001) (0.000) (0.000)

SV2 2.001 0.116 0.862 -0.847 0.003 0.753 1.583 1.872

(0.006) (0.000) (0.001) (0.001) (0.004) (0.002)

SVCJ2 2.208 0.093 0.857 -0.869 0.004 0.803 3.375 0.562 0.500 0.010 1.575 1.847

(0.011) (0.000) (0.002) (0.002) (0.007) (0.005) (0.387) (0.264) (0.695) (0.001)

2010 SV 2.937 0.104 1.489 -0.674 1.773 1.919

(0.006) (0.000) (0.003) (0.001)

SVJ 2.030 0.113 1.026 -0.886 9.741 -0.438 3.554 1.603 1.825

(0.002) (0.000) (0.000) (0.000) (0.014) (0.000) (0.000)

SV2 6.062 0.082 1.712 -0.702 0.214 0.243 1.442 1.738

(0.007) (0.000) (0.002) (0.001) (0.003) (0.002)

SVCJ2 4.233 0.083 1.303 -0.703 0.001 0.218 2.875 -6.078 0.500 0.093 1.380 1.681

(0.005) (0.000) (0.003) (0.001) (0.001) (0.005) (0.021) (0.018) (0.153) (0.001)

2012 SV 2.425 0.087 0.981 -0.792 1.044 1.579

(0.002) (0.000) (0.001) (0.000)

SVJ 2.518 0.088 1.155 -0.941 16.639 -0.048 2.022 0.915 1.527

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

SV2 2.460 0.100 1.138 -0.732 0.005 0.275 0.900 1.416

(0.001) (0.000) (0.001) (0.000) (0.003) (0.001)

SVCJ2 4.201 0.052 0.901 -0.790 0.275 0.110 0.266 3.125 0.500 0.0106 0.893 1.333

(0.002) (0.000) (0.001) (0.000) (0.005) (0.002) (0.001) (0.201) (0.038) (0.004)

2014 SV 5.728 0.032 1.082 -0.683 1.103 1.782

(0.008) (0.000) (0.001) (0.000)

SVJ 8.879 0.028 1.021 -0.722 2.727 -0.567 2.499 1.008 1.491

(0.015) (0.000) (0.001) (0.001) (0.040) (0.000) (0.000)

SV2 5.591 0.033 1.288 -0.670 0.156 0.025 1.003 1.468

(0.000) (0.000) (0.001) (0.000) (0.000) (0.006)

SVCJ2 3.498 0.031 0.788 -0.670 0.004 0.002 0.070 -19.312 12.219 0.0102 1.000 1.424

(0.001) (0.000) (0.001) (0.000) (0.001) (0.097) (0.000) (0.021) (0.018) (0.001)

2016 SV 3.615 0.057 1.198 -0.767 1.126 1.372

(0.002) (0.000) (0.000) (0.000)

SVJ 3.184 0.058 1.200 -0.843 9.837 -0.006 1.430 1.099 1.315

(0.001) (0.000) (0.000) (0.000) (0.002) (0.000) (0.000)

SV2 4.391 0.052 1.253 -0.765 0.320 0.091 1.080 1.337

(0.000) (0.000) (0.001) (0.000) (0.001) (0.002)

SVCJ2 4.411 0.053 1.055 -0.760 0.251 0.131 2.615 -0.130 0.520 0.011 1.050 1.269

(0.000) (0.000) (0.001) (0.000) (0.001) (0.003) (0.005) (0.039) (0.037) (0.002)
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Table 3.11 presents the calibration results of the FOMC jump augmented models, using

the two-step calibration procedure outlined in Section 3.2.2 (as such we use the original

structural parameters from Table 3.10). The table presents calibrations to four di↵erent

maturity categories: short (4  DTM  30), medium (31  DTM  90) and long (91 

DTM  550) and all (4  DTM  550). As a general comment there is not very strong

agreement between models on the exact value of �Q
j
and holding the model constant �Q

j
still

varies between the maturity categories, as expected. The most notable FOMC volatility jump

is seen on the 7th announcement of 2010, which correspond to the November, 3rd FOMC

announcement. It was after this announcement that the FOMC made public its intention

to purchase up to $600 billion of Treasury securities by the end of the second quarter 2011.

This announcement stands out as the market appeared to price in such a purchasing program

in the weeks prior to the announcement this is thought to be due to comments made by,

then chairman Bernanke, at the Kansas City Fed’s Jackson Hole conference (see Fuhrer

and Olivei (2011)). However, the exact magnitude and timing surrounding the purchasing

program could only be guessed prior to the announcement, still maintaining the importance

of the announcement information. Our model picks up this event information with varying

volatility jumps ranging from 0.69% to 5% depending on the model and maturity category.

The estimates from Table 3.6 on the FOMC jump volatility, using the term structure and time

series estimation methods, give an FOMC jump volatility of between 1.08% and 1.85%, which

is closely in line with that predicted by our model which gives estimates of 1.42, 1.34, 1% for

the SVD, SVJD and SVCJ2D models, respectively (it is only really applicable to compare the

estimates of Table 3.6 to the short maturity category as the term structure and time series

estimates use information only from short maturity options). In the case of the SVCJ2D

model, for 2010, we see error reductions of between 8% and 33% for including FOMC jumps in

the base SVCJ2 model, which suggests at least for some years and particular announcements

the e↵ect is very strong. In this example the most significant error reduction is seen for the

long maturity category (and least significant in the short category), this is likely explained

as these are the options which contain the e↵ects of each �
Q
j
for longest and will also be

influenced by multiple FOMC announcements, thus making the aggregated e↵ect greater.

The phenomenon of the longer maturity category displaying greater error reduction holds
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in years 2008, 2010 and 2014. However, in 2012 all values are approximately the same, with

both the short and medium categories representing a decrease of 1%, while the long maturity

category has no reduction (this is likely down to most jump volatilities being very small this

year). Chen and Clements (2007) estimate a 2% drop in the VIX on the day of an FOMC

announcement (there is no overlap with our sample, Chen and Clements use data from 1996

to 2006). For the SVCJ2D model20 the average (denoted Avg.) rows from Table 3.11, for

all option maturities, demonstrate the FOMC jump volatilities range from 0.08% to 1.51%

with a mean across years of 0.47%. Although, our results estimate a smaller drop than Chen

and Clements (2007) for 2010 where there were some significant improvements made by the

inclusion of FOMC deterministic jumps we see an average jump of 1.51% which is of an

approximate order to that of Chen and Clements (2007). By way of model improvement the

short category has error reductions of: 0% to 8%, the medium of: 0% to 23%, the long of: 0%

to 33% and the all maturity category of: 0% to 20%. To put the results from Table 3.11 into

perspective we find that the addition of FOMC jumps in the all maturity category can lead

to significant improvements, as meaningful as the addition of a second volatility factor (in

comparison with the results from Table 3.10, where the addition of a second volatility factor

is between 4% and 20%, relative to the SV model). However, the improvements from FOMC

jump augmentation are very sporadic and do not produce a consistent error reduction.

Next, consider the behaviour of average option pricing errors as a measure of overall

intradaily fit on announcement days. Table 3.12 provides the mean VWRMSE pricing errors

(aggregated across years) for the minutes leading up to and after FOMC announcements

(going from 120 minutes prior to 30 minutes post). Table 3.12 also groups errors into the

four maturity categories used above. Taking consideration of FOMC announcements provides

a moderate pricing improvement in the hours before an FOMC announcement, especially for

the short maturity category (options with less than 30 days to maturity). Considering the

short maturity category only we see the VWRMSE falls from 1.79, 1.84, 1.79, 1.78 in the SV

model to 1.72, 1.76, 1.72, 1.70 in the SVD model, respectively. A similar reduction pattern is

observed in the other models. In the short maturity category the ratio between the FOMC

20We discuss only the SVCJ2D model as it is the most sophisticated and therefore least likely to have
reduced errors due to implementation of additional parameters.



76

CHAPTER 3. MACROECONOMIC ANNOUNCEMENTS AND VOLATILITY
SEASONALITIES, A HIGH-FREQUENCY APPROACH TO OPTION

PRICING

jump and non-FOMC jump models is unity from the time of the announcement on-wards.

The reason for which is due to the maturity profile not spanning two announcements, thus as

soon as the announcement takes place the contribution from the FOMC jump falls away and

we are left with the original model. In the medium and long maturity categories the addition

of the FOMC announcement jumps makes little to no improvement in the hours surrounding

an announcement. In fact in some cases the FOMC jump augmentation performs worse,

when evaluated over the FOMC announcement, than the original model. As these maturity

categories can span multiple announcements there is multiple event information. Intuitively

it makes sense that longer term options will benefit little from the FOMC jump e↵ect in the

hours leading up to the announcement as the annualised variance will not be significantly

impacted by the FOMC jump volatility, unlike for short tenor options. The all maturity

category demonstrates the e↵ect of accounting for FOMC announcements considering all

maturity options (between 4 and 550 days). The models still demonstrate some improvement

before the announcement, approximately 1�2.5% for the SVD, SVJD and SVCJ2D models.
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Table 3.11: Individual FOMC volatility estimates
This table reports estimates of the FOMC announcement jump volatility �Q

j
(given in per-

centages) for the SVD, SVJD and SVCJ2D models. The models are estimated with the
VWRMSE objective function defined in Equation (3.15). Latent volatility estimates are
computed using an extended approach of Duan and Yeh (2010) given in Appendix 6.8. With
the structural parameters for each model fixed at the values in Table 3.10. The jump volatili-
ties are estimated over four di↵erent maturity categories: All (maturity in 4  DTM  550),
short (maturity in 4  DTM  30), medium (maturity in 31  DTM  90) and long (ma-
turity in 91  DTM  550). The Avg. column denotes the average �Q

j
given for that model,

year and maturity category. The Err. row denotes the error ratio between the FOMC jump
augmented model and the original model.

All Short Medium Long

Year SVD SVJD SVCJ2D SVD SVJD SVCJ2D SVD SVJD SVCJ2D SVD SVJD SVCJ2D

2008 �j,1 0.01 0.01 1.35 0.01 0.01 1.14 0.01 0.01 1.49 0.01 0.01 1.25
�j,2 0.01 0.06 0.00 0.01 0.01 1.28 0.01 0.01 0.00 0.01 0.01 0.00
�j,3 0.01 0.06 0.00 0.11 0.06 1.11 0.01 0.06 0.78 0.01 0.06 0.00
�j,4 0.01 0.01 0.01 0.01 0.08 0.79 0.01 0.08 0.80 0.01 0.08 0.01
�j,5 0.01 0.02 0.82 0.01 0.37 0.75 0.01 0.37 1.15 0.01 0.37 0.00
�j,6 0.01 1.46 0.00 0.66 0.49 1.55 0.29 0.49 0.59 0.01 0.49 0.00
�j,7 0.01 0.06 0.00 0.01 0.08 0.09 0.01 1.16 2.68 0.01 1.16 0.00
�j,8 0.01 0.01 0.01 0.01 0.01 0.66 0.01 0.01 0.66 0.01 0.01 0.01

Avg. 0.01 0.21 0.27 0.10 0.14 0.92 0.05 0.27 1.02 0.01 0.27 0.16

Err. 1.00 1.00 0.99 1.00 1.00 0.96 1.00 1.00 0.77 1.00 0.98 1.00

2010 �j,1 0.01 0.01 0.43 0.01 0.01 0.13 0.57 0.01 0.43 0.01 0.01 0.56
�j,2 0.01 0.01 1.07 0.76 0.55 1.21 1.27 0.55 1.05 0.01 0.01 1.20
�j,3 0.01 0.01 0.71 0.55 0.01 0.13 0.65 0.01 0.53 0.01 0.01 1.45
�j,4 0.01 0.01 0.32 0.01 0.01 0.01 0.01 0.01 0.11 0.01 0.01 0.43
�j,5 0.01 0.01 0.60 0.01 0.78 0.16 1.04 1.45 0.30 0.01 0.01 1.51
�j,6 3.23 0.01 1.03 0.00 0.01 0.00 2.73 1.79 1.50 3.87 0.30 1.07
�j,7 1.38 1.20 5.00 1.42 1.34 1.00 2.53 1.34 5.00 0.69 4.68 5.00
�j,8 0.01 0.46 2.97 0.46 0.40 1.24 0.85 0.40 1.24 0.01 0.01 2.00

Avg. 0.59 0.22 1.51 0.40 0.39 0.49 1.21 0.70 1.27 0.58 0.63 1.65

Err. 0.96 0.88 0.80 1.00 0.88 0.92 0.93 0.90 0.91 0.95 0.85 0.67

2012 �j,1 0.78 0.80 0.01 0.01 0.01 1.08 1.31 1.54 0.01 1.83 0.01 0.05
�j,2 0.63 0.46 0.01 0.01 0.01 0.11 0.79 0.46 0.01 1.88 0.01 0.01
�j,3 0.91 0.01 0.01 0.66 0.01 0.52 1.02 0.04 0.29 0.01 0.69 0.92
�j,4 0.01 0.84 0.00 0.99 1.18 0.67 0.01 0.26 0.00 0.01 1.18 0.00
�j,5 0.96 0.77 0.56 0.99 0.96 0.50 0.01 0.84 0.82 0.01 0.96 0.01
�j,6 0.01 0.01 0.01 0.01 0.01 0.82 1.16 0.01 0.01 0.78 0.01 0.01
�j,7 0.01 0.01 0.01 0.01 0.01 0.73 0.77 0.01 0.60 0.84 0.01 0.01
�j,8 0.01 0.01 0.00 0.01 0.01 0.79 0.01 0.01 0.79 0.01 0.01 0.00

Avg. 0.42 0.37 0.08 0.34 0.28 0.65 0.64 0.40 0.32 0.67 0.36 0.13

Err. 0.98 1.00 1.00 0.97 1.00 0.99 0.94 1.00 0.99 0.95 1.00 1.00

2014 �j,1 0.26 0.46 0.29 0.29 0.55 0.01 0.01 0.01 0.62 0.48 0.23 0.72
�j,2 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.21 0.29 0.44 0.44
�j,3 0.54 0.71 0.01 0.68 0.83 0.01 0.01 0.01 0.44 0.79 1.20 0.01
�j,4 0.44 0.42 0.38 0.51 0.66 0.01 0.48 0.01 0.68 0.24 0.01 0.01
�j,5 0.01 0.02 0.37 0.01 0.02 0.01 0.01 0.01 0.77 0.08 0.01 0.95
�j,6 0.01 0.04 0.01 0.01 0.01 0.10 0.01 0.01 0.15 0.01 0.01 0.01
�j,7 0.01 0.08 0.01 0.22 0.22 0.02 0.01 0.01 0.33 0.01 0.01 0.01
�j,8 1.02 0.26 0.01 1.00 0.01 0.07 0.02 0.06 0.07 1.01 1.55 0.01

Avg. 0.29 0.25 0.14 0.34 0.29 0.03 0.07 0.02 0.41 0.37 0.43 0.27

Err. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.96 0.98 1.00 0.94

2016 �j,1 0.74 1.44 0.29 0.74 1.44 0.29 0.74 0.04 0.29 0.74 0.74 0.29
�j,2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.39 0.00 0.00 0.00 0.00
�j,3 0.83 0.83 0.68 0.83 0.83 0.68 0.83 0.01 0.68 0.83 0.83 0.68
�j,4 0.00 0.00 0.51 0.00 0.00 0.51 0.00 0.01 0.51 0.00 0.00 0.51
�j,5 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.01 0.01 0.00 0.00 0.01
�j,6 0.00 0.00 0.01 0.00 0.00 0.01 0.00 4.99 0.01 0.00 0.00 0.01
�j,7 0.00 0.00 0.22 0.00 0.00 0.22 0.00 2.12 0.22 0.00 0.00 0.22
�j,8 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.46 1.00 0.00 0.00 1.00

Avg. 0.20 0.28 0.34 0.20 0.28 0.34 0.20 1.00 0.34 0.20 0.20 0.34

Err. 1.00 1.00 1.00 0.99 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00



78

CHAPTER 3. MACROECONOMIC ANNOUNCEMENTS AND VOLATILITY
SEASONALITIES, A HIGH-FREQUENCY APPROACH TO OPTION

PRICING

Table 3.12: Average pricing errors around FOMC announcements
This table reports the mean Vega-Weighted RMSE (VWRMSE) pricing errors for the SV,
SVD, SVJ, SVJD, SVCJ2 and SVCJ2D models, aggregated over all years in the sam-
ple. Pricing errors are grouped into four di↵erent maturity categories all (maturity in
4  DTM  550), short (maturity in 4  DTM  30), med (maturity in 31  DTM  90)
and long (maturity in 91  DTM  550). The columns labelled -120 to +30 provide the
mean VWRMSE for options from -120 to +30 minutes from an FOMC announcement, all
VWRMSE values are displayed as a percentage.

Cat. Model -120 -60 -30 -5 0 30

short SV 1.79 1.84 1.79 1.78 1.71 1.75
SVD 1.72 1.76 1.72 1.70 1.71 1.75
SVJ 1.60 1.64 1.60 1.58 1.52 1.56
SVJD 1.50 1.54 1.50 1.47 1.52 1.56
SVCJ2 1.54 1.59 1.54 1.54 1.56 1.56
SVCJ2D 1.50 1.55 1.50 1.50 1.56 1.56

med SV 0.78 0.80 0.77 0.77 0.81 0.77
SVD 0.78 0.80 0.77 0.77 0.81 0.77
SVJ 0.83 0.84 0.82 0.83 0.84 0.83
SVJD 0.84 0.84 0.82 0.83 0.83 0.82
SVCJ2 1.22 1.23 1.21 1.21 1.22 1.22
SVCJ2D 1.20 1.21 1.19 1.19 1.22 1.22

long SV 0.70 0.73 0.71 0.70 0.65 0.70
SVD 0.72 0.74 0.72 0.71 0.65 0.70
SVJ 1.15 1.16 1.17 1.17 1.16 1.16
SVJD 1.16 1.16 1.20 1.17 1.17 1.17
SVCJ2 1.29 1.30 1.29 1.29 1.30 1.29
SVCJ2D 1.29 1.30 1.29 1.29 1.29 1.28

all SV 1.17 1.20 1.18 1.17 1.19 1.16
SVD 1.15 1.17 1.15 1.14 1.20 1.17
SVJ 1.16 1.19 1.17 1.16 1.15 1.16
SVJD 1.15 1.18 1.16 1.15 1.15 1.16
SVCJ2 1.44 1.47 1.45 1.44 1.44 1.45
SVCJ2D 1.42 1.46 1.44 1.42 1.44 1.45

However, it could be the price improvements detected in the one-factor models are simply

down to misspecification of the original model (SV or SVJ in this case). Therefore, any error

reduction observed could be attributed to missing information being detected by the FOMC

jumps. Although, The results for the SVCJ2D model receive a similar, albeit slightly smaller,

error reduction around the FOMC announcement, reducing the impact of potential suspected

misspecification, as our results are reasonably robust regardless of model.

Figure 3.3 displays the mean VWRMSE ratio between each FOMC jump augmented

model and the original model from two hours prior to the announcement to one hour post,
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Figure 3.3: Time series of pricing errors around FOMC announcements
This figure displays Vega-Weighted RMSE (VWRMSE) pricing error ratios for the SVD,
SVJD and SVCJ2D models aggregated across FOMC announcements and years. The figure
also displays the error time series grouped by di↵erent maturity categories. All (maturity
in 4  DTM  550), short (maturity in 4  DTM  30), medium (maturity in 31 
DTM  90) and long (maturity in 91  DTM  550). Errors are observed for each FOMC
day between two hours prior and one hour after the announcement, using minute frequency
data. Error ratios are calculated as the VWRMSE of the FOMC augmented model against
the original model. The blue line presents the ratios from the SVD related models, orange
the SVJD and yellow the SVCJ2D.

using one minute frequency data. As in Table 3.12 we split the maturity categories. While

there is some information overlap between Table 3.12 and Figure 3.3 two additional points

are noteworthy: in the short maturity Panel for all models a downward drift can be observed

in the minutes leading up to the announcement, indicating the e↵ect of the FOMC jumps

becomes more pronounced closer to the announcement. Second, in all panels after the

announcement there is an instantaneous move towards an error ratio of unity. This move is

due to the shortest tenor options in each panel no longer possessing a �Q
j
, thus any e↵ect left

is due to longer maturity options for which the e↵ect is much less significant. In the case of

the short maturity panel this move causes the error ratio to collapse to unity as the FOMC

jump augmented models essentially collapse back to their original models.
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3.2.9 Summary

In this Section we investigate models which incorporate FOMC announcements for pricing

options. We take into consideration the timing of FOMC announcements and develop a

pricing approach including deterministic jumps on FOMC announcements. We explore two

di↵erent types of estimators of the uncertainty surrounding FOMC announcements and

document their reliability. To quantify the impact on option prices, we calibrate a two-

factor volatility model, with contemporaneous jumps in the price and variance process along

with deterministic FOMC jumps (SVCJ2D). Empirically we find somewhat sporadic results

for the importance of the inclusion of deterministic FOMC jumps. For all option maturities

in our sample the inclusion of FOMC jumps can have a significant impact on error reduction,

in 2010 we see a fall of 20%, due to a few important announcements. However, the jumps

do not always demonstrate a reduction in errors. The importance of FOMC jumps in the

minutes surrounding an announcement are most relevant for short tenor options, where a

reduction of a few percent is observed, when aggregated across years.

3.3 Volatility Seasonality Adjustments

This section attempts to gauge the importance of various puzzling factors reported in the

option returns literature, focusing on the overnight and weekend seasonalities, in option pric-

ing models. We attempt to reconcile these seasonalities into standard option pricing frame-

works, via a time re-ordering distribution approach. The motivation behind considering a

re-ordering of time distribution is that the time to maturity is a vital piece of information in

determining the price of an option. As the time to maturity increases, more volatility will

be accrued during the lifetime of the option, thus making it more expensive. Therefore, in

the investigation into which parts of the week accrue more volatility the idea of altering the

time weights of each part of the week, to measure such seasonalities, is intuitively appealing.

The overnight seasonality is prevalent in both equity and index option contracts and holds



3.3. VOLATILITY SEASONALITY ADJUSTMENTS 81

irrespective of moneyness or maturity category. The nature of the e↵ect is the decompo-

sition of option returns into day (intraday) and overnight (interday) periods. The overall

returns on S&P 500 options are negative and large, however, this is comprised of positive

intraday and negative interday returns. Prior research hypothesises this return asymmetry

is a manifestation of option market maker’s (OMMs) incorrectly pricing the volatility sea-

sonality between day and night (it is well known the day is more volatile than the night).

The weekend seasonality is defined as the lower returns of options over the weekend period,

relative to any other day of the week. The e↵ect is not attributed to the underlying security,

being observed in both delta-hedged and un-hedged positions. The e↵ect is wonted across

moneyness, maturity and option type (either put or call). We wish to be able to capture

these apparently puzzling seasonalities by incorporating additional factors into traditional

option pricing models.

Muravyev and Ni (2019) investigate the overnight e↵ect and show option returns are

negative and large, approximately �0.7% per day. This is comprised of positive intradaily

(approximately 0.3%) and negative interdaily returns (approximately �1%). Muravyev and

Ni (2019) hypothesise the change of sign of option returns from day to night is a direct

result of OMMs failing to price the variation of volatility from day to night, OMMs fail to

take into account the volatility seasonality that the trading day is more volatile than the

overnight period. In order to gauge how much more volatile the trading day is compared to

the overnight period Muravyev and Ni (2019) measure the standard deviation of intra/inter

daily returns, on the underlying asset, over the preceding 60 days to calculate �i, where

the subscript i is used to denote either the trading day or overnight period. The ratio of

the standard deviations � = �day/�night is found to range from 1.5 to 2.0. That is the data

suggests the trading day is up to twice as volatile as the overnight period. However, when

Muravyev and Ni (2019) introduce the notion of di↵erent volatilities in the Black-Scholes

model and simulate di↵erent levels of under-reaction to the volatility seasonality they find

the ratio of accrued volatility which fits the option return patterns in the data (that is

the change of sign of option returns between day and night) best is the case corresponding

to equal volatility accrual in both periods. This comes as somewhat of a surprise as the

standard deviation in returns of the underlying suggests this is clearly not the case. From
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this investigation Muravyev and Ni (2019) conclude OMMs completely ignore this volatility

seasonality. Our intuition behind the empirical test to include the overnight e↵ect into option

pricing models is as follows. The quantity �i can be thought of as the amount of volatility

accrual during period i, thus it is a product of the amount of time elapsed and the amount

of volatility accrued per unit time. If the hypothesis concluding that OMMs ignore the day-

night volatility seasonality is correct, we would expect a decrease in the trading period,21

thus increasing the overnight period. Deduced due to the following reasoning: as the trading

day carries higher volatility, per unit time, than the overnight period there should be an

increase in the product of overnight volatility, per unit time, and the weight of this period

in order to balance the total volatility accrual during each period.

Jones and Shemesh (2018) investigate the weekly return pattern of options, with the ob-

jective of determining why options exhibit significantly lower returns over the weekend (de-

fined by them as Friday-Monday close-close) relative to any other close-close period (coined

the weekend e↵ect). They categorise their results according to hedged/unhedged returns, on

individual equities and S&P 500 options. Their results demonstrate a clear existence of the

weekend e↵ect in both hedged/unhedged returns and implied volatilities on individual equity

options. However, they find unconvincing results for the e↵ect in S&P 500 options. Jones

and Shemesh (2018) also confirm French and Roll’s (1986) conclusion that Friday-Monday

close-close is not substantially di↵erent from any other close-close, for S&P 500 volatility.

The intuition behind the overnight test is as follows. If the observations by French and Roll

(1986) and Jones and Shemesh (2018) are indeed true, that the weekend period is not as

volatile as suggested by the elapse of two calendar days, then we would expect a shift from

the weekend time weight into the week.

3.3.1 Time Notation

To avoid confusion for what is to come we shall discuss the nomenclature. Using the regular

calendar time convention a week is comprised of three unique periods: market trading (de-

21See Section 3.3.1 below for details regarding the time re-ordering distribution.
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noted by: ttr), the weekday overnight period (denoted by: tov) and the weekend (denoted

by: twknd). The trading period occurs five times a week (for an average week exclusive of

weekday holidays) from 9.30 a.m. to 16.15 p.m. Monday - Friday. We define the overnight

period as the time between trading periods, e.g., Monday close to Tuesday open. This period

occurs four times a week Monday close - Thursday close. Therefore the weekend period is

defined as being Friday close to Monday open. Using this time convention the time until

maturity, from time t to expiry at time T , is given by ⌧ = T � t:

⌧ = (Ntr + ✏t)ttr +Novtov +Nwkndtwknd, (3.22)

where Ni 2 N and i 2 {tr, ov, wknd} denotes the number of each unique time periods which

elapse between time t and maturity at T . The ratio of time remaining during the current

trading day is denoted by ✏t. We keep ti to denote the time weight of period i as measured

by the calendar time convention and use tadj,i to denote the time weight of period i which is

a result of the calibrations and thus not measured by the calendar time convention. Thus,

in the time adjusted notation the time to maturity is denoted by:

⌧adj = (Ntr + ✏adj,t)tadj,tr +Novtadj,ov +Nwkndtadj,wknd. (3.23)

It is more intuitive to think about ratios of the time weights rather than the actual values.

As such we define Ri = tadj,i/ti where i 2 {tr, ov, wknd} to represent the ratio of period i.

Thus, the quantity Ri reflects the ratio of change of time period i under the time-adjusted

regime. The logic behind finding the ratio of adjustment easier to work with is because it

gives a direct handle on the expected ratio change of volatility accrual during period i.

3.3.2 Model Framework

We investigate two standard stochastic volatility models, a single factor stochastic volatility

model (SV) and a single factor model augmented with random Poisson jumps in the price

process (SVJ). The idea of this work is not to demonstrate which model, augmented with
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many factors produces the lowest errors, rather to demonstrate which components are now

relevant to intradaily option pricing. In unreported results we investigate these e↵ects using

a two-factor volatility model and achieve qualitatively similar results. As there is no further

additional insights into what biases are made by OMMs or the magnitude of correction we

only display the one-factor models.

The addition of the time weights increases the parameter vector by one parameter because

all the tests we implement introduce two constraint equations leaving only one parameter

to be determined by calibration. One such constraint which applies irrespective of the

seasonality is the total calendar time of a week (therefore also a year) being fixed. This fixed

time condition, of a week, may be expressed as follows:

5tadj,tr + 4tadj,ov + tadj,wknd =
1

52
. (3.24)

The additional constraint equation is seasonality dependent and will be described in each

relevant section (and are given in Equations (3.37) and (3.44)). We denote these so called

time adjusted models asMi whereM 2 {SV, SVJ} and i 2 {tr, ov, wknd}, denotes the unique

time period which is augmented into the original parameter vector. Given the constraint

Equation (3.24), this makes the new time to maturity from Equation (3.23):

⌧adj =
1

52
Nwks + tadj,tr(Ndays + ✏t) + tadj,ovNdays, (3.25)

where Ndays denotes the number of complete calendar days from time t until the nearest

Friday. This change of time to maturity a↵ects option prices from traditional models on two

fronts. Upon initial thought it may seem moving from ⌧ to ⌧adj requires no model alterations

and we can simply use the new times to maturity to generate prices. While this is true, there

is also a slightly more subtle e↵ect which needs to be considered, the e↵ect on the latent

volatility detection. As previously discussed in Section 3.2.2 we use the VIX to determine

the latent volatility in our calibrations. The VIX values we obtain as outlined in Section

3.2.3 are interpolated over integer multiples of 30 days. When calibrating one-factor models

we use the 30-day VIX value to infer the latent volatility. Therefore, in the time adjusted
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models a calendar time of 30 days is now slightly di↵erent (⌧adj). Consequently, the VIX is

mapped from a calendar time VIX2

t
(⌧) to a transformed time VIX2

t
(⌧adj). As the VIX is the

square root of the expected integrated variance over the next 30 days, a general statement

would be the VIX over the period ⌧ = T � t, is given by:

V IX
2

t
(⌧) =

1

T � t
EQ
t

"Z
T

t

Vsds

#
, (3.26)

it is then possible to find a model dependent expression for the integrated variance. For

simplicity consider a one-factor di↵usion model, whereby application of Itô’s lemma yields:

dln(St) = (r � 1

2
Vt)dt+

p
VtdWt, (3.27)

with r denoting the risk-free rate. Integration and taking expectation values yields:

EQ
t [ln(ST/St)] = r(T � t)� 1

2
EQ
t

"Z
T

t

Vsds

#
, (3.28)

by use of the forward price this yields an expression for the expected variance as:

1

T � t
EQ
t

"Z
T

t

Vsds

#
= � 2

T � t

 
EQ
t [ln(ST/St)]� ln(Ft(⌧)/St)

!
. (3.29)

By the payo↵ decomposition theorem we have:

EQ
t [ln(ST/St)] = ln(x/St)�

x� Ft(⌧)

x
� e

r⌧

Z
x

0

Pt(K)

K2
dK � e

r⌧

Z 1

x

Ct(K)

K2
dK, (3.30)

where Pt(K) and Ct(K) define the prices of European put and call options, respectively,

with strike K at time t with maturity at time T . For the regular VIXt(⌧) calculation we

choose x = Ft(⌧), thus cancelling the second term. Upon substitution the first term from

Equation (3.30) cancels with the second term of Equation (3.29), leaving:

V IX
2

t
(⌧) =

2

⌧

 
e
r⌧

Z
Ft(⌧)

0

Pt(K)

K2
dK + e

r⌧

Z 1

Ft(⌧)

Ct(K)

K2
dK

!
. (3.31)
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For the adjusted VIXt(⌧adj) we have the same, only with a di↵erent forward price Ft(⌧adj),

i.e.,

V IX
2

t
(⌧adj) =

�2

⌧adj

 
EQ
t [ln(ST/St)]� ln(Ft(⌧adj)/St)

!
. (3.32)

Similar use of the payo↵ decomposition theorem yields:

EQ
t [ln(ST/St)] = ln(x/St)�

x� Ft(⌧adj)

x
� e

r⌧adj

Z
x

0

Pt(K)

K2
dK� e

r⌧adj

Z 1

x

Ct(K)

K2
dK, (3.33)

here clearly a sensible choice would be to choose: x = Ft(⌧adj), however, we are forced to

choose: x = Ft(⌧) if we wish to use the calendar time VIXt(⌧) to calculate VIXt(⌧adj),

leaving:

V IX
2

t
(⌧adj) =

�2

⌧adj

 
ln(Ft(⌧)/Ft(⌧adj))�

Ft(⌧)� Ft(⌧adj)

Ft(⌧)

� e
r⌧adj

Z
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Pt(K)
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r⌧adj

Z 1

Ft(⌧)

Ct(K)

K2
dK

!
. (3.34)

However, as ⌧ is very similar to ⌧adj then F (⌧) ⇠ F (⌧adj), thus for all maturities the first two

terms in Equation (3.34) will always be small yielding:

V IX
2

t
(⌧adj) ⇡

e
r(⌧adj�⌧)⌧

⌧adj
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2
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. (3.35)

However, the expression in the square brackets of Equation (3.35) is simply the V IX
2

t
(⌧)

from Equation (3.31), giving the final result:

V IX
2

t
(⌧adj) ⇡

⌧

⌧adj
e
r(⌧adj�⌧)V IX

2

t
(⌧). (3.36)

Over a 30 day horizon the VIX values will change very little as we impose the constraint

Equation (3.24) and 30 days is only slightly over four weeks we must have ⌧adj ⇠ ⌧ .



3.3. VOLATILITY SEASONALITY ADJUSTMENTS 87

3.3.3 Overnight E↵ect

This subsection investigates if the model feature of a time re-ordering distribution can be

used to capture the overnight e↵ect. During this test only the trading/overnight period

becomes a parameter in the model. Imposing the condition that both the overnight and

trading day periods still sum to one day, the maturity is not altered:

⌧day + ⌧night =
1

7⇥ 52
. (3.37)

Making the two constraint Equations (3.24) and (3.37) which signify a week must still be a

week and the overnight and day periods must still sum to one day. Inferring any increase

in one time period is reflected by a decrease in the other. Therefore, for this investigation

the parameter vector only grows by one additional parameter (tadj,tr or tadj,ov), requiring the

weekend be fixed to its calendar time: tadj,wknd = twknd. The choice of calibrating to either

tadj,tr or tadj,ov is arbitrary and we only report the results for tadj,tr, although similar results

are obtained for tadj,ov demonstrating the e↵ect is robust.

In order to interpret the calibration results some bookkeeping is in order first. Define the

ratio of volatility accrual in each period, the level of bias parameter as:

� = rvol
ttr

tov
, (3.38)

where the quantity rvol represents the ratio of volatility, per unit time, between the day and

overnight periods. Following the finding by Muravyev and Ni (2019) in a fully rational world

� is between 1.6 and 1.8. This ratio is computed using the calendar time periods, tday and

tnight, i.e., how many hours the market is/is not open. This yields:

rvol = �rational
tov

ttr
, (3.39)
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as the calibration does not a↵ect this ratio we may use the same value in determining the

new adjusted volatility accrual ratio:

� = rvol
tadj,tr

tadj,ov
,

= �rational
tov

ttr

tadj,tr

tadj,ov
. (3.40)

We look at only very short maturity categories for all of our time adjusted tests, as these

will contain the strongest signals of investor biases. Our logic is as follows: for long maturity

options the exact distribution of time weight between two periods e.g., the trading and

overnight periods will have a very weak e↵ect on the value of the objective function as there

are many weeks until maturity. Making the objective function surface increasingly flat with

longer maturity options. Thus, we examine only two maturity categories an ultra-short

category (between 4 and 7, inclusive, days to maturity), short (between 8 and 20, inclusive,

days to maturity). While these categories are somewhat arbitrary we find for much longer

maturities and even for some years for the short category the surface becomes too flat.22

Table 3.13 reports the parameter estimates of the SVtr and SVJtr models (see Appendix 6.10

for initial results for the SV and SVJ models calibrated to the short maturity data sets. Once

we have the original structural parameters we employ the two-step calibration methodology

of Section 3.2.2 and calibrate to the new time weight of the trading day, tadj,tr). Table 3.13

presents a clear in-sample error reduction when compared to the original models (displayed

in the Err. Ratio column). For instance, for the SVtr model in 2008 using the ultra-short

maturity category we see a reduction of 16%. While this case is the most significant the

average error reduction, across years, for the SVtr model in the ultra-short category is 6.6%

(with a range of 1% to 16%, per year). The SVJtr counterpart average error reduction is

4.6% (with a range of 1% to 11%, per year). The short maturity counterparts are 6.4%

(with a range of 3% to 8%, per year) and 4.4% (with a range of 1% to 9%, per year) for the

SVtr and SVJtr models respectively. Table 3.13 also demonstrates the out-of-sample error

ratios with the original models (displayed in the OS Err. Ratio column). The out-of-sample

error reductions depict very meaningful model improvement for taking into account market

22See Appendix 6.11 for details on the e↵ect of a flat objective function.
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maker bias to volatility accrual between the day and night periods. For example, the average

out-of-sample reduction for the SVtr model in the ultra-short category is 8.2% (ranging from

4% to 16%). The SVJtr counterpart average error reduction is 8.8% (with a range of 5%

to 14%, per year). The short maturity counterparts are 5.8% (with a range of 3% to 9%,

per year) and 4.2% (with a range of 1% to 7%, per year) for the SVtr and SVJtr models

respectively. The � column reports the implied � resulting from Rtr given by each model

using Equation (3.40). There is generally stable agreement between models on the value of

� implying the e↵ect of OMM bias is model independent, consistent with our expectations.

Secondly, values range from 0 to 1.23 when using the short maturity category (although this

is likely the e↵ect of longer maturity options as previously mentioned, see Appendix 6.11 for

details) and from 0.42 to 1.23 using only the ultra-short maturities. The number of cases

for which � < 1 is only 4 out of 10 for the ultra-short and 8 out of 10 for the short category.

As a value of � < 1 implies OMMs price more volatility accrual during the overnight period

than the trading day, these results are placed down to maturity related e↵ects and only the

results of the ultra-short category are discussed.

With the exception of 2014 and 2016 the estimates of � are between 1.04 and 1.23

indicating a ratio well below the rational ranges suggested by Muravyev and Ni (2019) who

suggest in a rational world a range between 1.6 and 1.8. Thus, the calibration results provide

model-based evidence in support of Muravyev and Ni’s (2016) hypothesis.

In summary accounting for the overnight e↵ect leads to a clear and significant out-of-

sample error reduction of approximately 7%. This e↵ect seems to be heightened in times of

market turmoil and short tenor options, both seeing further error reductions. The e↵ect is

not model dependent. We also support the hypothesis of the overnight e↵ect being caused

by OMMs bias in ignoring the volatility seasonality between day and night, as noted in

Muaravyev and Ni (2019). With the increased popularity of weekly expiry option contracts

market participants have improved ability to acquire or reduce exposure to di↵usive and jump

priced risks. While Andersen et al. (2017) demonstrate the importance of using weekly OTM

options to gain inference on jump risks our research demonstrates the importance for market

participants to understand the risks of misspecifying the volatility accrual process, especially

at very short time horizons.
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Table 3.13: Overnight e↵ect time adjusted parameter estimates
This table reports parameter estimates and the Vega-Weighted RMSE (VWRMSE) pricing
error ratios of the SVtr and SVJtr models. The models are estimated with the VWRMSE
objective function defined in Equation (3.15). Latent volatility estimates are computed
using an extended approach of Duan and Yeh (2010) given in Appendix 6.8. The original
structural parameters of each model are held fixed at their values from Table 6.4 in Appendix
6.10. The data set is split into the representative years in our sample, from 2008 to 2016
taking alternate years. We report results on two di↵erent maturity categories ultra-short
(between 4 and 7, inclusive, days to maturity), short (between 8 and 20, inclusive, days to
maturity). The parenthesis report asymptotic standard errors. We report the trading weight
ratio as the ratio given by the model estimate for the trading weight and the calendar time
as Rtr. Also reported is the in-sample VWRMSE ratio (Err. Ratio), this is the ratio of the
VWRMSEs between the SVtr, SVJtr and SV, SVJ models. The out-of-sample VWRMSE
ratios are reported in the OS Err. Ratio column

Year Cat. Model 
Q
v ✓

Q �v ⇢ � µ
Q
y (%) �

Q
y (%) Rtr �

Err.-

Ratio

OS

Err.-

Ratio

2008
ultra-

short
SVtr 8.18 0.03 5.04 -0.48 0.75 1.21 0.84 0.92

(0.18) (0.00) (0.07) (0.01) (0.02) (0.03)

SVJtr 14.87 0.03 2.49 -0.69 20.53 0.54 1.75 0.76 1.22 0.89 0.92

(0.35) (0.01) (0.12) (0.04) (0.16) (0.01) (0.00) (0.07) (0.11)

short SVtr 2.00 0.12 1.27 -0.67 0.77 1.23 0.92 0.97

(0.00) (0.00) (0.01) (0.00) (0.03) (0.06)

SVJtr 2.00 0.13 1.23 -0.80 20.00 -0.11 1.94 0.63 1.01 0.94 0.94

(0.07) (0.00) (0.01) (0.01) (0.68) (0.00) (0.00) (0.02) (0.02)

2010
ultra-

short
SVtr 2.01 0.09 3.70 -0.46 0.66 1.06 0.93 0.84

(0.07) (0.00) (0.04) (0.00) (0.02) (0.03)

SVJtr 2.01 0.12 4.42 -0.51 18.91 -0.37 1.81 0.65 1.04 0.97 0.86

(0.02) (0.00) (0.04) (0.00) (0.27) (0.00) (0.00) (0.01) (0.01)

short SVtr 3.47 0.11 2.37 -0.63 0.00 0.00 0.97 0.92

(0.03) (0.00) (0.01) (0.00) (0.00) (0.00)

SVJtr 2.03 0.20 2.61 -0.72 19.99 -0.45 2.28 0.38 0.61 0.99 0.97

(0.01) (0.00) (0.01) (0.00) (0.08) (0.00) (0.00) (0.00) (0.00)

2012
ultra-

short
SVtr 2.93 0.04 2.51 -0.45 0.77 1.23 0.99 0.96

(0.05) (0.00) (0.02) (0.00) (0.02) (0.03)

SVJtr 3.46 0.05 2.46 -0.53 19.98 -0.05 1.17 0.77 1.23 0.99 0.92

(0.06) (0.00) (0.02) (0.00) (0.35) (0.00) (0.00) (0.01) (0.02)

short SVtr 3.35 0.08 1.50 -0.58 0.53 0.85 0.93 0.95

(0.03) (0.00) (0.00) (0.00) (0.01) (0.01)

SVJtr 2.52 0.09 1.15 -0.94 16.64 -0.05 2.02 0.38 0.61 0.98 0.93

(0.01) (0.00) (0.00) (0.00) (0.05) (0.00) (0.00) (0.00) (0.00)

2014
ultra-

short
SVtr 10.32 0.02 2.91 -0.52 0.46 0.73 0.96 0.94

(0.29) (0.00) (0.03) (0.01) (0.05) (0.09)

SVJtr 6.56 0.01 0.85 -0.76 0.78 -5.06 8.90 0.61 0.98 0.97 0.91

(0.35) (0.00) (0.05) (0.05) (0.08) (0.01) (0.00) (0.08) (0.12)

short SVtr 13.33 0.02 2.16 -0.58 0.00 0.00 0.93 0.91

(0.08) (0.00) (0.00) (0.00) (0.00) (0.00)

SVJtr 8.88 0.03 2.38 -0.59 8.97 -0.57 1.72 0.53 0.85 0.91 0.96

(0.09) (0.00) (0.01) (0.00) (0.14) (0.00) (0.00) (0.02) (0.04)

2016
ultra-

short
SVtr 10.02 0.03 2.34 -0.55 0.26 0.42 0.95 0.93

(0.20) (0.00) (0.03) (0.01) (0.04) (0.06)

SVJtr 9.98 0.03 2.42 -0.60 20.01 -0.08 1.15 0.28 0.46 0.95 0.95

(0.27) (0.00) (0.05) (0.02) (0.52) (0.00) (0.00) (0.06) (0.09)

short SVtr 6.91 0.04 1.66 -0.66 0.00 0.00 0.93 0.96

(0.04) (0.00) (0.00) (0.00) (0.00) (0.01)

SVJtr 5.87 0.04 1.70 -0.73 19.99 -0.04 1.22 0.01 0.01 0.96 0.99

(0.02) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
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3.3.4 Weekend E↵ect

This subsection is designed to test if the model described in Section 3.3.2 can also explain

the weekend option return seasonality. The empirical test is constructed by splitting the

week into two periods: week and weekend. Defined as such:

week = 5ttr + 4tov, (3.41)

weekend = twknd, (3.42)

for this test we require that the week and weekend still sum to one week, hence we have the

constraint equation:

week + weekend =
1

52
. (3.43)

For this test we are not interested in where the time weight accrues during the trading

week, only in the total time weight of the trading week. Thus, we shall keep the same

ratios between trading time and non-trading time during the week, yielding an additional

constraint equation:
tadj,tr

tadj,ov
=

ttr

tov
, (3.44)

resulting in direct calibration between week and weekend. Once again the choice of calibra-

tion to either tadj,wk or tadj,wknd is arbitrary and we only report results for tadj,wk, although

similar results are obtained for tadj,wknd. In this work the weekend is defined slightly di↵er-

ently from Jones and Shemesh (2018) (who include one trading day on Monday), our current

definition includes no trading time. As a consequence our expectation is less volatility will

accrue over the weekend than predicted using a calendar time convention. Volatility accrual

over the weekend can be expressed as:

vol =

Z
t+�t

t

Vsds, (3.45)
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where �t represents the passage of time over a weekend. As this quantity is small (⇠ 0.0074

years.23) and Vt will be relatively constant the volatility accrual can be approximated by:

vol = Vt�t. (3.46)

As the weekend includes no trading time we would expect the total volatility accrued to be

small, approximately that of the overnight period (Vt,wkndtadj,wknd ⇡ Vovtov). In the language

of Equation (3.46)

tadj,wknd ⇡
Vovtov

Vt,wknd

. (3.47)

Although Equation (3.47) is not very informative as currently stated, it seems theoretically

reasonable to assume a relationship along the lines of: Vov ⇡ Vwknd, as in both periods no

trading occurs, leaving the relation: tadj,wknd ⇡ tadj,ov.24

Table 3.14 displays the results of the SVwk and SVJwk models. Firstly, note an error

reduction of 0 � 3% in the ultra-short maturity data set with the exception of the SVwk

model in 2010 which has a reduction of 8%. For the short maturity category we see a

reduction of 0 � 3% with no outliers. Indicating, controlling for the weekend seasonality is

of less importance than the overnight seasonality as shown in Section 3.3.3 and Table 3.13.

As observed when testing for the overnight e↵ect we also observe no model dependence with

regard to error reduction.

For the ultra-short maturity category ratio values, Rwk, ranges from 0 to 0.94 (⇠ 4 days).

For the short maturity case values range from 0 to 1. Upon initial inspection the results

look very erratic. However, most results can be categorized as either: Rwk ⇠ 1 or hitting

the lower bound. In this case where Rwk hits the lower bound we suspect this is likely down

to maturity related e↵ects as previously mentioned. However, even only considering the

23A weekend, measured in the calendar time convention is 2.7188 days, this is comprised of the two days
from Saturday and Sunday plus the overnight time left from market close on Friday and the overnight time
from Monday morning until market open (which accumulates to 17.25 hours or 71.88% of a day). Thus
2.7188/365=0.0074.

24When considering the above argument relating the volatility accrual of the weekend to that of the
overnight period, it is not clear if we should be using the calendar time convention tov or the adjusted time
tadj,ov. However, as demonstrated by Table 3.13 the estimates for �tadj,ov are reasonably close together,
varying between 0.8 and 0.98 days (a range of 4 hours). Where the adjusted time of the overnight period is
calculated as: tadj,ov = 1

4 (7� twknd � 5(Rtrttr)), and taking the two most extreme Rtr of 0.26 and 0.77 from
the ultra-short maturity category in years 2016 and 2012 respectively.
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results which do not hit the lower bound none of the results align with our hypothesis that

weight leaves the weekend and goes into the week, as indicated by no results for Rwk > 1,

leading to inconclusive results for incorporating the weekend e↵ect into traditional option

pricing models. This is not unforeseen as commented upon by Jones and Shemesh (2018)

who only find evidence of a weekend e↵ect for individual equity and not S&P 500 options.

Intuitively, it might seem reasonable to expect index and individual equity options to be

driven by the same systematic risk factors. However, index options are options formed on

a portfolio whereas equity options are a portfolio of options. As such variance risk on S&P

500 options will be decomposed of two parts, individual variance risk and correlation risk,

while clearly individual equity options are only exposed to individual variance risk. The

work of Driessen et al. (2009) is the first to study the e↵ects of expected option return under

market-wide correlation shocks. Driessen et al. (2009) propose a model which encapsulates

the e↵ects of correlations on the instantaneous variance of index options. Suppose the price

of stock i, at time t, is Si(t), which follows an Itô process with instantaneous variance V 2

i
(t),

which also follows an Itô process. Thus, the instantaneous correlation between the Wiener

processes that drive stocks i and j is ⇢ij(t)dt, for i 6= j. For the purposes of this conversation

it is not necessary to place any particular restrictions on the process of ⇢ij(t), only that it

is non-constant in time. As the S&P 500 is the weighted average of the individual stocks,

given a set of weights {!i} the instantaneous variance of the index VS&p500(t)2 at time t is

expressed as:

VS&p500(t)
2 =

500X

i=1

!
2

i
Vi(t)

2 +
500X

i=1

X

j 6=i

!i!jVi(t)Vj(t)⇢ij(t). (3.48)

Therefore, it is clear that variance changes are also driven by shocks to correlations ⇢ij(t),

in addition to individual variances Vi(t)2. Thus, it could be that risk factors that drive

correlations are responsible for not observing a weekend e↵ect in S&P 500 options. As

hypothesised by Driessen et al. (2009) it could be that investors’ desire to hedge against

correlation risk by using options written on the index. This is in line with evidence found

by Jones and Shemesh (2018) and Gârleanu et al. (2009) who find that end-users are net

long index options.
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Table 3.14: Weekend e↵ect time adjusted parameter estimates
This table reports parameter estimates and the Vega-Weighted RMSE (VWRMSE) pricing
error ratios of the SVwk and SVJwk. The models are estimated with the VWRMSE objective
function defined in Equation (3.15). Latent volatility estimates are computed using an
extended approach of Duan and Yeh (2010) given in Appendix 6.8. The original structural
parameters of each model are held fixed at their values from Table 6.4 in Appendix 6.10.
The data set is split into the representative years in our sample, from 2008 to 2016 taking
alternate years. We report results on two di↵erent maturity categories ultra-short (between
4 and 7, inclusive, days to maturity), short (between 8 and 20, inclusive, days to maturity).
The parenthesis report asymptotic standard errors. We report the week weight ratio as the
ratio given by the model estimate for the week weight and the calendar time as Rwk. Also
reported is the VWRMSE ratio (Err. Ratio), this is the ratio of the VWRMSEs between
the SVwk, SVJwk and SV, SVJ models.

Year Cat. Model 
Q
v ✓

Q �v ⇢ � µ
Q
y (%) �

Q
y (%) Rwk

Err.-

Ratio

2008
ultra-

short
SVwk 8.18 0.03 5.04 -0.48 0.00 0.98

(0.18) (0.00) (0.07) (0.01) (0.01)

SVJwk 14.87 0.03 2.49 -0.69 20.53 0.54 1.75 0.00 0.98

(0.35) (0.01) (0.12) (0.04) (0.16) (0.01) (0.00) (0.99)

short SVwk 2.00 0.12 1.27 -0.67 0.00 0.97

(0.00) (0.00) (0.01) (0.00) (0.01)

SVJwk 2.00 0.13 1.23 -0.80 20.00 -0.11 1.94 0.00 0.97

(0.07) (0.00) (0.01) (0.01) (0.68) (0.00) (0.00) (0.67)

2010
ultra-

short
SVwk 2.01 0.09 3.70 -0.46 0.48 0.92

(0.07) (0.00) (0.04) (0.00) (0.00)

SVJwk 2.01 0.12 4.42 -0.51 18.91 -0.37 1.81 0.57 0.99

(0.02) (0.00) (0.04) (0.00) (0.27) (0.00) (0.00) (0.05)

short SVwk 3.47 0.11 2.37 -0.63 0.00 0.98

(0.03) (0.00) (0.01) (0.00) (0.00)

SVJwk 2.03 0.20 2.61 -0.72 19.99 -0.45 2.28 1.00 1.00

(0.01) (0.00) (0.01) (0.00) (0.08) (0.00) (0.00) (0.15)

2012
ultra-

short
SVwk 2.93 0.04 2.51 -0.45 0.00 0.97

(0.05) (0.00) (0.02) (0.00) (0.01)

SVJwk 3.46 0.05 2.46 -0.53 19.98 -0.05 1.17 0.00 0.98

(0.06) (0.00) (0.02) (0.00) (0.35) (0.00) (0.00) (0.26)

short SVwk 3.35 0.08 1.50 -0.58 0.00 0.98

(0.03) (0.00) (0.00) (0.00) (0.00)

SVJwk 2.52 0.09 1.15 -0.94 16.64 -0.05 2.02 0.00 0.98

(0.01) (0.00) (0.00) (0.00) (0.05) (0.00) (0.00) (0.00)

2014
ultra-

short
SVwk 10.32 0.02 2.91 -0.52 0.00 0.98

(0.29) (0.00) (0.03) (0.01) (0.04)

SVJwk 6.56 0.01 0.85 -0.76 0.78 -5.06 8.90 0.00 0.98

(0.35) (0.00) (0.05) (0.05) (0.08) (0.01) (0.00) (0.82)

short SVwk 13.33 0.02 2.16 -0.58 1.00 1.00

(0.08) (0.00) (0.00) (0.00) (0.01)

SVJwk 8.88 0.03 2.38 -0.59 8.97 -0.57 1.72 1.00 1.00

(0.09) (0.00) (0.01) (0.00) (0.14) (0.00) (0.00) (0.88)

2016
ultra-

short
SVwk 10.02 0.03 2.34 -0.55 0.94 1.00

(0.20) (0.00) (0.03) (0.01) (0.00)

SVJwk 9.98 0.03 2.42 -0.60 21.01 -0.08 1.15 0.94 1.00

(0.27) (0.00) (0.05) (0.02) (0.52) (0.00) (0.00) (0.13)

short SVwk 6.91 0.04 1.66 -0.66 0.76 0.99

(0.04) (0.00) (0.00) (0.00) (0.00)

SVJwk 5.87 0.04 1.70 -0.73 19.99 -0.04 1.22 1.00 1.00

(0.02) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.11)
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3.3.5 Conclusion

We investigate a number of factors, e↵ects and seasonalities which are relevant for high-

frequency intradaily option pricing. We find empirical evidence to suggest multiple volatility

factors and jumps in both the price and variance process, as suggested by more traditional

option pricing models which use daily and or weekly data, are still important.

We take into consideration the timing of FOMC announcements and develop a pricing

approach including deterministic jumps on FOMC announcements. We explore two di↵erent

types of estimators of the uncertainty surrounding FOMC announcements and document

their reliability. To quantify the impact on option prices, we calibrate a two-factor volatility

model augmented with random jumps in the price and variance process. Empirically we find

evidence to suggest FOMC announcements are an important part of option prices. We find

that accounting for FOMC announcements is meaningful for short tenor options only on

the day of the announcement, this helps reduce intradaily pricing errors by approximately

1� 2%. While accounting for FOMC jumps has a larger impact throughout the sample due

to the accumulated e↵ect of accounting for these deterministic price jumps, this can yield

error reductions of up to 20%.

We also investigate the weekend and overnight volatility seasonalities. We develop a novel

framework to incorporate such e↵ects into traditional option pricing models. We are able

to e↵ectively capture the overnight e↵ect leading to reduction in short term option pricing

errors of approximately 7%, out-of-sample. This e↵ect seems to become more pressing in

times of market turmoil. We also investigate the weekend e↵ect in our option pricing model

framework, but obtain inconclusive results for the presence of this e↵ect, in line with prior

research such as Jones and Shemesh (2018).



Chapter 4

Earnings Announcements and

Expected Option Returns

4.1 Introduction

The main test hypothesis of this work is: does a positive relationship between delta-hedged

option returns and earnings announcement variance of the underlying stock exist? We do

indeed find this to be the case. To measure earnings announcement variance we use the

square of the four-day excess return around earnings announcements.1 There is extensive

literature which demonstrates earnings announcements impact stock returns (for instance,

Bernard and Thomas (1989), Chan et al. (1996), Novy-Marx (2015), Sadka (2006) amongst

many others). There is also a growing strand of literature which documents the e↵ects

of volatility on expected option returns (for instance, Cao and Han (2013), Duarte and

Jones (2007), Hu and Jacobs (2016)). However, to the best of our knowledge there is no

work documenting that earnings announcements are an important source of volatility for

1We are aware that there are other ways to measure earnings announcement surprise, such as the stan-
dardised unexpected earnings (SUE) as used by Xing et al. (2010). Multiple reasons motivate our choice
behind choosing a return-based measure such as CAR. By definition an earnings-based measure compares
announced earnings to analyst forecasted earnings, which is a noisy proxy of the measure. Secondly, the
degree of persistence a↵ects the information content in any given earnings surprise, this is not captured by
SUE but is by a return-based measure does.

96
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expected option returns.

Our main contribution to the literature is to demonstrate that options on firms with

high earnings announcement variance earn, on average, higher returns than options on low

earnings announcement variance firms. This is the key novel finding of our work. This

finding is robust to: option type (call or put), portfolio formation, and also the length of

time for which the portfolio is held. We also investigate a number of di↵erent measurements

of earnings announcement variance and find our results are robust.

To test our hypothesis we examine a cross-section of at-the-money options on individual

stocks each month. For each optionable stock, in each month, we evaluate the return over the

following month of a portfolio that buys one call (or put), delta-hedged with the underlying

stock.2 We choose the strategy of delta-hedging option returns, instead of studying raw

returns, such that our results are not driven by sensitivities in stock price changes. Therefore,

we study the part of option returns which are related to volatility change.

Using Fama-MacBeth cross-sectional regressions from 1996 to 2017, we find high statis-

tical significance on our measure for earnings announcement variance in predicting expected

delta-hedged option returns. Our results are robust to several measures of stock, jump and

arbitrage-related characteristics. We are particularly careful to include an array of volatility-

related characteristics in our Fama-MacBeth regressions, as it could be that our results are

driven by one or more combinations of already known powerful explanatory variables. For

example, it is readily conceivable that firms with high earnings announcement variance

simply have very high total variance anyway and by extension might have high volatility

around earnings announcements. To control for this, we use a total variance specification

(similar to Cao and Han (2013)), finding total variance does not explain our results. We

further complement the findings of Hu and Jacobs (2016) on the negative relation between

expected delta-hedged call option return and underlying stock volatility. Furthermore, as

prior research documents there is a strong negative relation between delta-hedged option

returns and idiosyncratic volatility (see Cao and Han (2013)), we complement this finding.

Logic suggests, and we confirm, earnings announcements are a high source of idiosyncratic

2Please note that the notation is not necessarily the same as the previous chapters and is self-consistent
and contained within this chapter.



98
CHAPTER 4. EARNINGS ANNOUNCEMENTS AND EXPECTED OPTION

RETURNS

volatility. As option market makers do not know the outcome of the announcement, it is

hard to hedge against such events, thus they may demand a higher premium. However,

including idiosyncratic volatility in our regression framework does not take away statistical

significance from our earnings announcement variance measure. Also conceivable is that

earnings announcement variance is merely a product of jump risk. For example, option mar-

ket makers might observe a jump in returns of an underlying stock in response to an earnings

announcement and, as a consequence, adjust their jump risk premium going forward, po-

tentially completely subsuming any earnings announcement variance statistical significance.

To account for this we follow the jump measure as given in Bali et al. (2011), using several

di↵erent specifications, however the strong statistical significance on earnings announcement

variance remains. We find that our results are robust to controlling for all volatility, arbitrage

and jump-related measures.

We further create an option trading strategy which buys delta-hedged call options on

firms ranked in the top earnings announcement variance quintile, and sells delta-hedged op-

tions which are ranked in the bottom earnings announcement variance quintile.3 This strat-

egy earns approximately 0.31% per month, using an option value-weighting scheme. We also

investigate time series regressions of the returns to our option trading strategy against the

Fama-French (2015) five-factors, momentum and the idiosyncratic volatility strategy from

Cao and Han (2013). Our option trading strategy has a statistically significant positive alpha

of approximately 0.44% per month, thus our results cannot be explained by idiosyncratic

volatility and other common factors.

Ultimately, the profitability of our earnings announcement variance-based option trading

strategy depends on option trading costs. If we assume the e↵ective option spread is equal to

25% of the quoted spread, then the average return of our option trading strategy is rendered

insignificant; however, a significant time series regression alpha remains of 0.26% per month.

Following the work of Muravyev and Pearson (2019), who shows option e↵ective spread is

under 30%, this suggests our option trading strategy is reasonably robust to trading costs.

3It is for this reason that we consider the CAR2
4 and not CAR, it is not because CAR has less predictive

power, rather to do with the shape of the function. Using CAR one would obtain a U-shaped profitability
as both firms with very high and very low CAR have high earnings announcement variance, thus making it
very challenging to construct a trading strategy.
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Our results demonstrate that idiosyncratic volatility contains a positive component in

relation to earnings announcements, while the overall relationship with delta-hedged option

returns is negative. Although this seems like an apparent contradiction, one potential ex-

planation is a demand-based model. We find that investors have diminishing demand for

options with increasing earnings announcement variance, therefore this elevates pressure on

option market makers in relation to such firms, potentially lowering the premium as mar-

ket makers are net long individual equity options (see Christo↵ersen et al. (2017)). This

economic reasoning is in line with previous research on demand-based option pricing, e.g.,

Gârleanu et al. (2009). However, we find that controlling for open interest does not drive

our results.

The work is structured as follows. We describe the data in Section 4.2 and detail the

measurement of the delta-hedged option returns and earnings announcement variance mea-

sure. Section 4.3 presents summary statistics on the data and the main regression-based

results. Section 4.4 presents the portfolio-sorting results and studies the option trading

strategy, taking into account trading costs. Section 4.5 provides robustness checks on our

results. Section 4.6 discusses a possible economic interpretation of the sign relation between

delta-hedged option returns and earnings announcement variance. Section 4.7 concludes the

work.

4.1.1 Literature Review

Although there has been tremendous growth in the equity options market in recent decades,

there is still room for growth in knowledge about the determinants of expected returns in this

market. Partly, the issue is that index and individual equity options behave di↵erently, thus

there is less known about equity option expected returns as there has been emphasis by some

to investigate index option returns (for instance, Coval and Shumway (2001), Bakshi and

Kapadia (2003)). In contrast, there is an extremely substantial literature on the cross-section

of expected stock returns. This work attempts to bridge some of the gap.

Bakshi and Kapadia (2003) investigate delta-hedged option returns in S&P 500 index
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options. The motivations for their research is to investigate whether a volatility risk pre-

mium is priced into options, and if so, what this signifies? Their results indicate that the

volatility risk premium exists and is negative. Second the delta-hedged returns of S&P 500

index options are negative, on average. The authors control for jump risks by assuming (in

line with Bates (2000) and Bakshi et al. (2003)) that the skewness and kurtosis of the risk-

neutral distribution can be used as a proxy for the mean jump size and the jump intensity,

respectively. Thus, they include the skew and kurtosis as variables in their regression frame-

work, using the model-free approach of Bakshi et al. (2003). However, even accounting for

jump risks, the volatility risk premium still significantly a↵ects delta-hedged returns. The

work on volatility risk premia is continued by Duarte and Jones (2007), who analyse volatil-

ity risk premia using a large cross-section of option returns on individual equities. Their

results strongly suggest the presence of a volatility risk premium which is increasing in the

level of overall market volatility. This risk premium provides compensation for risk from

the underlying asset and from characteristics of the option contract. As the work of Duarte

and Jones (2007) demonstrates, option returns can be a↵ected by option implied volatility

and volatility from the underlying stock. However, does option implied volatility have any

predictive power for stock returns? An et al. (2014) demonstrate stocks with large increases

in call option implied volatilities over the previous month tend to have high future returns.

The authors also find the reverse is true for put options. Sorting stocks ranked into decile

portfolios by past call implied volatilities, produces spreads in average returns of approxi-

mately 1% per month. The authors also document that this finding is highly persistent, with

return di↵erences lasting for up to six months. Continuing the theme of predictive power

from stock volatility characteristics on option returns, Hu and Jacobs (2016) investigate the

relation between expected option returns and the volatility of the underlying security. In

the cross-section of stock option returns, they find returns on call option portfolios are nega-

tively related with underlying stock volatility. The authors also document a positive relation

between put options and underlying stock volatility. Continuing the topic of volatility and

option returns, Vasquez (2017) investigates the relationship between implied volatility term

structure and option returns, finding a positive relationship.

There is also a strand of literature dealing with the e↵ects of skewness; for instance, Boyer
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and Vorkink (2014) investigate the relationship between option ex-ante total skewness and

returns on equity options. The authors’ results suggest that total skewness demonstrates a

strong negative relationship with average option returns. Their results indicate that large

option premiums are required to compensate intermediaries for bearing unhedgeable risk

when accommodating investors’ desire for lottery-like options. Although the work done by

Boyer and Vorkink (2014) is very interesting, it does not capture the option’s lottery-like

characteristics caused by the underlying stock’s lottery-like behaviour. Byun and Kim (2016)

investigate such a relationship, demonstrating that call options also present a strong negative

relationship between option returns and underlying stock lottery-like behaviour. Blau et al.

(2016) investigate whether the gambling behaviour of investors a↵ects volume and volatility

in options markets. The authors find that the ratio of call option volume to total option

volume is greater for stocks with return distributions that mimic lottery-like behaviour.

Amongst the voluminous literature on stock cross-sectional returns, there is a subsection

which uses informational content from options to predict stock returns. Such papers include

Pan and Poteshman (2006) who present strong evidence suggesting option trading volume

is a predictor for future stock returns. Cao et al. (2005) investigate mergers and find that

information is received into the options market before the stock market. Bali and Hovakimian

(2009) investigate whether realised and implied volatilities of individual stocks can predict

cross-sectional variation in expected returns. They find there is a significant relation between

volatility spreads and expected stock returns.

There has also been a large amount of work done in the area of earnings announcements

and their e↵ect on the cross-section of stock returns. Notable on this last point is the

work of Chan et al. (1996) who find past returns and past earnings surprises each predict

large drifts in future returns, even after controlling for the other. The point that earnings

announcements are of extremely high importance, on an individual firm level, is one which

is stressed in the finding of Novy-Marx (2015). Novy-Marx (2015) documents that earnings

momentum (i.e., the tendency of stocks that have recently announced positive earnings to

outperform those which have announced weak earnings) can explain the performance of

strategies based on price momentum (i.e., the tendency of stocks that have performed well
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over the prior year to outperform, going forward, stocks that have performed badly over

the prior year). That is, earnings surprise measure engulfs past performance in the cross-

sectional regressions of returns on firm characteristics (in contradiction to the results of Chan

et al. (1996)). Novy-Marx goes on to document that controlling for earnings surprises, when

constructing price momentum strategy, significantly reduces their profitability. There has

also been work done on option volatility characteristics which can predict earnings shocks.

For instance, Xing et al. (2010) investigate the shape of the volatility smile and its e↵ect on

cross-sectional predictive power for future stock returns. Xing et al. (2010) find that stocks

which exhibit the steepest smile in their options outperform stocks with the least pronounced

smile. The predictability is persistent up to six months, and firms with the steepest volatility

smiles experience the most severe earnings shocks in the next quarter. This finding is then

harnessed in Atilgan (2014) who supports Xing et al. (2010) in finding that the predictability

of equity returns by volatility spread is stronger during earnings announcements. It is also

found that option volatility spreads can be used to predict stock returns, as in Cremers and

Weinbaum (2010) who study how deviations from put-call parity contain information about

future stock returns. They use the di↵erence in implied volatility between pairs of call and

put options, finding that stocks with relatively expensive calls perform better than stocks

with expensive puts by 50 basis points per week. This observation cannot be explained by

short sale constraints or by stocks which are hard to borrow.

We find an economic interpretation of our results lies in that of demand-based models.

For instance, Gârleanu et al. (2009) model demand pressure e↵ects on option prices. Their

model shows that demand pressure in an option increases its price by an amount directly

proportional to the unhedgeable part of the variance of the option. Along a similar path

the authors find demand pressure increases the price of any other option by an amount

which is directly proportional to the covariance of the unhedgeable parts of the two options.

Along a similar theme Bollen and Whaley (2004) investigate the relation between net buying

pressure and the shape of the implied volatility smile for index and individual stock options.

The authors find changes in implied volatility are directly related to net buying pressures,

with S&P 500 options most strongly a↵ected by buying pressure from index puts, while

changes in implied volatility from stock options are dominated by call option demand. In
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response to the findings of Gârleanu et al. (2009) who document that end-users are net

sellers (supported by Lakonishok et al. (2007)) Christo↵ersen et al. (2017) document a

positive option illiquidity premium in expected equity option returns. The authors’ results

indicate a positive premium, i.e., expected hedged returns on less liquid options are higher

than those on more liquid options. The authors find returns of 3.4% per day for at-the-

money calls and 2.5% for at-the-money puts. These finding are consistent with evidence

that suggests market-makers hold large, risky net long positions, and a positive illiquidity

premium compensates them for this. Furthermore, the idea that demand-pressure and order

flow can impact prices is cemented by the work of Muravyev (2016). Muravyev (2016)

investigates inventory risk faced by market-makers, which he shows has a first-order e↵ect

on option prices. Muravyev also documents that order imbalances have a greater predictive

power, than any other commonly used predictor, on option returns.

Even given the literature setting detailed above, to the best of our knowledge, we are

the first to study the e↵ect of earnings announcement variance on equity option expected

returns.

4.2 Data and Delta-Hedged Option Returns

This section introduces the data used in the empirical work and describes the measurement

of the key variables of interest: delta-hedged option returns, the earnings announcement

surprise and our metric of earnings announcement variance.

4.2.1 Data

We use equity option and stock market data for the period January 1996 to December 2017.

We obtain data on the U.S. individual stock options from the Ivy DB database provided by

OptionMetrics. The data fields we use include: daily closing bid and ask quotes, trading

volume and open interest of each option, implied volatility, as well as the option’s delta
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(which is computed by OptionMetrics). These are all obtained from the price OptionMetrics

file (opprcd). We also obtain interest rate data from OptionMetrics using the zerocd file,

where the interest rate is calculated from a collection of continuously compounded zero-

coupon interest rates at various maturities, known as the zero curve. We also retrieve daily

and monthly split-adjusted stock returns, stock prices and trading volume from the Center

for Research in Security Prices (CRSP). We focus our analysis on the options of common

stocks only (CRSP share codes of 10 and 11). We further get the daily and monthly Fama-

French factor returns from Kenneth French’s data library.4 By way of filtering methodology,

we follow the standard practice in Cao and Han (2013) and Cao et al. (2015). At the end

of each month, for each optionable stock, we collect one call and one put option which are

closest to being at-the-money (where moneyness is defined as stock price divided by strike

price, i.e., we choose a put and call pair with a ratio of stock price to strike price closest

to unity) and have the second shortest maturity (i.e., we choose options with the shortest

maturity which is greater than a month, in line with Cao and Han (2013) and Cao et al.

(2015)). The option filters we apply are as follows. For our analysis, we choose options

whose stocks do not have an ex-dividend date prior to option maturity (i.e., we will exclude

an option if the firm pays a dividend during the remaining life of the option). We obtain

dividend date and amount information from the OptionMetrics Distribution file (distrd).5 In

order to mitigate the e↵ects of market microstructure noise, we apply the following additional

filters. We retain only options whose trading volume and open interest (in line with Choy

and Wei (2020)) implied volatility and bid quotes are positive, with the bid price strictly

smaller than the ask price; additionally, the midpoint of the bid and ask prices is at a

minimum of $1/8. We also require that the option has standard settlement (i.e., 100 shares

of the underlying security are delivered at exercise, denoted in the opprcd file by a zero in

the SS flag field), in line with Hu and Jacobs (2016). We also require that the last trade date

of the option matches the underlying security price date (this step is in line with accepted

4The data library is available at http://mba.tuck.dartmouth.edu/ pages/faculty/ken.french/.
5Using short maturity options, the early exercise premium is small and we confirm that including options

whose underlying stock pays a dividend before maturity does not qualitatively a↵ect our results. However,
by excluding the dividend, we e↵ectively consider only European-type calls, as the call is not optimal to
exercise early.
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data filtering techniques, such as used in Cao and Han (2013)).6 Furthermore, we exclude

options with moneyness (the ratio of underlying stock price over option strike price, given

as a percentage) less than 80 or higher than 120. While this moneyness range does include

other types and not strictly at-the-money options (which technically are those with a value

of exactly 100) we consider deep in and out-of-the money options (as defined by Chung et

al. (2016)) so as to get good coverage of firms. However, as demonstrated by Table 4.1 the

mean option moneyness used for our analysis is at-the-money, although we do use some in

and out-of-the money options, thus increasing the robustness of our findings. Our reason

for using at-the-money options only is that they will be the most sensitive to changes in

volatility.

This leaves us with a cross-section of options which are approximately at-the-money

with a common short-term maturity. Our final sample contains 1, 423 firms, on average each

month. The total data has 354, 379 observations for delta-hedged call returns and 286, 328

observations for delta-hedged put returns.

4.2.2 Delta-Hedged Option Returns

We define the delta-hedged gain (our definition follows that of Bakshi and Kapadia (2003))

as the change in the value of a self-financing portfolio consisting of a long call position,

hedged by a short position in the underlying stock (to ensure the portfolio is not sensitive

to the movement of the underlying stock price), whereby the overall investment earns the

risk-free rate. Let us consider a portfolio of a call option that is hedged discretely N times

over a period [t, t + ⌧ ], with the hedge being re-balanced at each of the dates tn, with

n 2 {0, 1, 2, ..., N � 1}, where we define t0 = t and tN = t + ⌧ , with t0 < t1, ..., < tN . Thus,

6Our results are also qualitatively similar if we exclude firms with an initial stock price of under $5.
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over the period [t, t+ ⌧ ] the call option gain is defined as:

⇧(t, t+ ⌧) =Ct+⌧ � Ct �
N�1X

n=0

�C,tn [S(tn+1)� S(tn)]

�
N�1X

n=0

(ertn (tn�tn�1)/365 � 1)[C(tn)��C,tnS(tn)], (4.1)

where the price of the call option on date tn is denoted as C(tn) and �C,tn is the delta of the

call option on date tn. The price of the underlying stock on date tn is denoted as S(tn). The

continuously compounded risk-free rate is rtn . The definition for the put delta-hedged gain

is the same as Equation (4.1), except with put-related price and delta replacing their call

counterparts. Equation (4.1) represents the excess dollar return of a delta-hedged call option.

As the option price is a function of the underlying stock price, ⇧(t, t+ ⌧) is proportional to

the initial price of the underlying. In order to be able to compare across stocks, we need to

use a scaling function. Cao and Han (2013) solve this issue by dividing the call delta-hedged

gain by (�tSt � Ct).7 However, they also note their results are qualitatively similar when

scaling by the initial stock or option price. We shall scale by (�tSt�Ct) and we refer to the

delta-hedged call return as ⇧(t, t+ ⌧)/(�tSt � Ct).

4.2.3 Earnings Surprises

For earnings surprises, we use a measure commonly employed (see e.g., Chan et al. (1996),

Daniel et al. (2020)): the cumulative four-day excess returns (CAR4). Following Chan et al.

(1996), we measure the earnings surprise over a four-day window, starting two days prior to

the earnings announcement date (EAD), as the cumulative excess returns around the most

recent quarterly earnings announcement date.8 Define the earnings surprise for firm i as

CAR4,i, given by:

CAR4,i =
d=1X

d=�2

(Ri,d �Rm,d), (4.2)

7The put delta-hedged gain is divided by (Pt ��tSt).
8This refers to the RDQ field in COMPUSTAT.
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with Ri,d denoting the return on day d of stock i and Rm,d denoting the return of the market

on day d, relative to the earnings announcement (thus d = 0 is the announcement day). As

in Daniel et al. (2020), we require that there be at least two days with valid returns over the

four-day horizon. Furthermore, it is necessary that the earnings announcement date be at

least two trading days prior to the end of the month. When forming the portfolios, if there

is no announcement date in the previous six months, we exclude firm i.

We use a function of the earnings surprise measure, CAR4, as a metric to gauge earnings

announcement variance. With the present construction of observing earnings surprise, firms

which have very large positive returns will have a large CAR4, while firms which have very

large negative returns will have a very negative CAR4. However, both of the above categories

of firms will have large earnings announcement variance; thus, for our empirical analysis we

wish to construct a measure wherein both types of firms will be categorised by the same

metric. To satisfy this criteria we choose to use the CAR2

4
, thus both extremely high and

low excess returns will both have large CAR2

4
. We will use this measure throughout to

denote earnings announcement variance. However, our results are qualitatively similar when

we use di↵erent measures of earnings announcement variance. Instead of squaring the final

excess return value (CAR4) we achieve similar results if we use the sum of squared results.

Secondly, our results are qualitatively similar when we use |CAR4| as our measure of earnings

announcement variance instead. Thirdly, we achieve similar results by constructing a specific

earnings announcement volatility-based measure constructed as the standard deviation of

excess returns around the EAD.

4.3 Empirical Results

Section 4.3.1 presents an investigation into the summary statistics with di↵erent lengths

of holding the portfolio. Section 4.3.2 reports our results of Fama-MacBeth regressions.

We investigate the e↵ects of including stock, volatility and jump characteristics as well as

investigating limits to arbitrage. Furthermore, we include a total Fama-MacBeth regression

test, in which we include an intersection of the previously investigated independent variables.
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Table 4.1: Summary statistics of individual equity options data
This table reports the descriptive statistics of delta-hedged option returns. The option
sample period is from January 1996 to December 2017. Delta-hedged gain is the change
over the month (or until maturity) in the value of a portfolio consisting of one contract of
long option and a proper amount of the underlying stock, re-hedged daily. The call option
delta-hedged gain is scaled by (�S � C), where � is the Black-Scholes delta, S is the price
of the underlying stock and C is the price of the call option. The put option delta-hedged
gain is scaled by (P ��S), where P denotes the price of the put option. All return measures
are given as a percentage. Maturity is given as the number of calendar days until maturity.
Moneyness is the ratio of stock price over option strike price, given as a percentage.

Variable Mean Median Std 10% 25% 75% 90%

Panel A. Calls

Delta-hedged gain until maturity -1.16 -1.56 17.48 -10.16 -5.06 1.59 6.79
Delta-hedged gain until month-end -0.65 -1.10 8.34 -7.21 -3.57 1.34 5.77
Days to maturity 48.17 48.00 2.28 45.00 46.00 50.00 51.00
Moneyness 98.87 99.20 5.65 91.94 95.83 101.95 105.20

Panel B. Puts

Delta-hedged gain until maturity -0.89 -1.59 12.20 -8.88 -4.60 1.21 5.80
Delta-hedged gain until month-end -0.84 -1.15 8.93 -6.43 -3.29 0.92 4.55
Days to maturity 48.15 48.00 2.27 45.00 46.00 50.00 51.00
Moneyness 100.22 100.17 5.82 93.54 97.32 103.21 107.02

4.3.1 Summary Statistics

Table 4.1 displays summary statistics on the data. Table 4.1 shows the average moneyness,

defined as the price of the underlying divided by the strike price given as a percentage i.e.,

100⇥S/K for call options is 98.25 and 100.26 for puts, with standard deviations of 5.66 and

5.82 respectively. The time to maturity ranges from 45 to 51 calendar days across our sample,

with the average being 48. Table 4.1 Panels A and B also provide mean and median delta-

hedged option returns for individual firms. Both Panels demonstrate that the average option

returns are negative for puts and calls. This is not a↵ected by the period over which the

option return is measured, nor is it a↵ected if maturity is included. To illustrate, the mean

delta-hedged at-the-money call option return is �0.65% over the next month and �1.16%

if held until maturity (which is on average 48 calendar days). The median delta-hedged

call option return is �1.10% (�1.56%) over the next month (until maturity). The mean

delta-hedged put option return is �0.84% (�0.89%) over the next month (until maturity).

The median is �1.15% (�1.59%) over the next month (until maturity).
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4.3.2 Fama-MacBeth Regressions

Table 4.2 reports Fama-MacBeth regressions controlling for stock-related characteristics.

The dependent variable is call option delta-hedged gain until month-end, scaled by (�S�C)

at the beginning of the period (delta-hedged returns). We re-balance daily the delta-hedges

to minimise the e↵ect of change in underlying stock price. The common time to maturity is

approximately one and a half months. Model 1 runs the regression of the CAR4, measured

as the firms’ excess return around the most recent earnings announcement, and CAR2

4
our

earnings announcement variance measure. The beta for CAR4 and CAR2

4
both demonstrate

strong statistical significance with respective betas of 0.0070, 0.0659 and t-statistics of 2.2735

and 2.6745. Even though delta-hedges are re-balanced daily, it could be that the strong link

between delta-hedged option return and earnings announcement variance is attributable to

some imperfections in the delta-hedges. Thus, the results of Model 1 could potentially be

attributed to some known pattern in the cross-section of expected stock returns. To address

this, the regressions reported in Models 2 - 6 include several stock characteristics which are

known predictors of the cross-section of stock returns; we include: size of the underlying firm,

past stock returns and various jump risk measures. The CAR2

4
coe�cient remains highly

statistically significant in all regressions of Table 4.2. In Models 2 and 3, we control for

past stock returns from the previous month (Model 2) and stock returns over the previous

year (skipping the prior month to avoid diluting price momentum by short-term reversals, as

suggested in Novy-Marx (2015)). We find no statistically significant coe�cients for the past

returns, thus the coe�cients on CAR2

4
change very little, ranging from 0.0635 to 0.0639, with

t-statistics 2.7078 and 2.5889 respectively. In Model 4, we control for any size-related e↵ects.

The size variable (ME) is the product of monthly closing stock prices and the number of

outstanding shares, in the previous month. The coe�cient for size is strongly positive (in line

with prior research, see for example: Christo↵ersen et al. (2017) and Xing et al. (2010)), with

a beta of 0.0014 and t-statistic of 3.8792. However, the earnings announcement variance beta

is still significant, with t-statistic of 3.3920. Although thus far, stock characteristics do not

explain the strong positive relation on earnings announcement variance, it could be that firms
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with high earnings announcement variance are just those which have high jump risk and there

is nothing unique about the EAD. To account for such an e↵ect, model 5 includes a measure

for jumps in the underlying stock price. To proxy for jumps, we follow the work of Bali et

al. (2011) and include a measure of extreme returns (MAX(Ret
0,12

)) which is calculated as

the maximum absolute daily return of the underlying stock from the previous 12 months.9

Model 5 depicts a statistically significant negative relation between delta-hedged option

return and maximum daily return (this is in line with the relation between maximum daily

return and expected stock returns, as found in Bali et al. (2011), and is also in line with prior

research on expected option returns, see Byun and Kim (2016)). However, more importantly,

inclusion of a jump measure does not take away statistical significance from our earnings

announcement variance measure as model 5 has a t-statistic of 3.9994 on CAR2

4
, concluding

that jumps do not explain our results. However, there is other work which investigates the

preference for lottery-like payo↵s from investors. For instance, the work of Boyer and Vorkink

(2014), who use a measure of total skewness for option returns, is executed by assuming a

lognormal distribution of stock prices. Their results also demonstrate a negative relation

between options with high jump risk and expected option returns. However, their measure

does not capture the options’ jump characteristics, caused by jump risk in the underlying

stock, due to the simplifying assumption of lognormal stock prices. Therefore, their option

skewness measure is a function of only the underlying stock’s expected return and volatility

for given option parameters. It is for this prior reason (the lack of consideration of the

underlying stock’s jump risk), that we do not use this measure. Although, as Byun and Kim

(2016) find complementary results for option returns, using the maximum return method of

Bali et al. (2011) and the skewness measure of Boyer and Vorkink (2014), we feel confident

that our results would be qualitatively robust to a skewness-based measure of jump risk.

The positive coe�cient on the earnings announcement variance measure is not a↵ected by

controlling for all independent variables in Models 2-5 in one regression. Model 6 presents

a total regression model which still loads positively on CAR2

4
, with a coe�cient of 0.1045

and t-statistic of 4.6236. In summary, the significant positive relation between delta-hedged

option returns and the earnings announcement variance measure is robust to accounting for
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Table 4.2: Fama-Macbeth regressions stock-related characteristics
This table reports the average coe�cients from monthly Fama-MacBeth cross-sectional re-
gressions; variables are formed at the end of each month. The dependent variable is call
option delta-hedged gain until month-end scaled by (�S � C) at the beginning of the pe-
riod. Earnings surprise is measured using the cumulative four-day excess returns around
the most recent earnings announcement (CAR4), taken from the previous month. We also
include our measure for earnings announcement variance (CAR2

4
), taken from the previous

month. The stock return in the prior month is denoted by r0,1. Past performance is repre-
sented using the individual monthly stock returns, measured over the previous year, skipping
the most recent month (r1,12). Size is accounted for in the ME variable, which is calculated
as the product of monthly closing price and the number of outstanding shares in the previ-
ous month. We also include a jump risk proxy (MAX(Ret

0,12
)), which is calculated as the

absolute value of the largest daily return from the previous 12 months. To adjust for serial
correlation, robust Newey-West (1987) t-statistics are reported in brackets. All independent
variables are winsorized each month at the 0.5% level. The sample period is from January
1996 to December 2017.

Variables Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

Intercept -0.0036 -0.0038 -0.0039 -0.0243 -0.0010 -0.0233
(-2.3325) (-2.5444) (-2.5577) (-3.8599) (-0.7213) (-3.9352)

CAR4 0.0070 0.0069 0.0067 0.0066 0.0090 0.0072
(2.2735) (2.4177) (2.2725) (2.2283) (2.8770) (2.5826)

CAR2
4 0.0659 0.0635 0.0639 0.0917 0.0959 0.1045

(2.6745) (2.7078) (2.5889) (3.3920) (3.9994) (4.6236)
r0,1 -0.0011 -0.0020

(-0.3958) (-0.7198)
r2,12 -0.0006 -0.0012

(-0.7741) (-1.5978)
Ln(ME) 0.0014 0.0014

(3.8792) (3.9442)
MAX(Ret0,12) -0.0205 -0.0182

(-5.2285) (-2.1159)

various stock-related characteristics.

Table 4.3 investigates Fama-MacBeth regressions controlling for volatility-related char-

acteristics. The dependent variable is still call option delta-hedged returns until month-end.

There is a strand of literature which investigates the cross-sectional characteristics of volatil-

ity measures on delta-hedged option returns, such as: Duan and Wei (2008) and Cao and Han

(2013). Firstly, we wish to confirm our data sample and filtering methodology is reasonable

by complementing key findings of these works. Secondly, we wish to confirm that our results

are not simply driven by firms which have high volatility. Thirdly, we wish to investigate

the e↵ect of earnings announcements on idiosyncratic and systematic volatility. Cao and

9We also investigate two other specifications of jump risk: we take the maximum absolute value of daily
returns over the past month and 6 months, achieving similar results.
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Han (2013) posit a strong negative relationship between delta-hedged option returns and

idiosyncratic volatility. The economical justification for their results is that firms with high

idiosyncratic volatility attract attention from speculators, however these firms are di�cult to

hedge against, consequently market makers charge a higher premium, yielding lower returns.

Tying into this argument, our expectation is that earnings announcement dates are a source

of high idiosyncratic volatility, relative to each firm. Therefore, if the dates surrounding the

EAD are removed, then a substantial part of that month’s idiosyncratic volatility should also

vanish. Fourth and finally, we wish to understand if idiosyncratic or systematic volatility

measures drive our results. Model 1 includes independent variables for CAR2

4
and total vari-

ance (VAR), as measured by the square of the standard deviation of daily stock returns over

the previous month. The coe�cient on CAR2

4
remains positive and statistically significant,

with beta of 0.0900 and t-statistic 4.6208. Model 1 also complements the results of Cao and

Han (2013) (as well as Hu and Jacobs (2016), although they study raw option returns) in

finding a statistically significant negative coe�cient for variance of the underlying, regressed

on delta-hedged option returns. Therefore, we have demonstrated that our results are not

driven by highly volatile firms. Models 2 and 3 investigate the e↵ect on idiosyncratic and sys-

tematic variance of removing the dates surrounding the EAD (two days prior to, and one day

post, each EAD). The idiosyncratic volatility (IVOL) is measured as the standard deviation

of the residuals of the Fama and French three-factor model, estimated using the daily stock

returns over the previous month and is the same definition as used in Ang et al. (2006). The

systematic volatility (SysVOL) is measured as:
p
VOL2 � IVOL2 and is the same definition

as that used in Duan and Wei (2008). Model 2 investigates the measures using all trading

days each month, for which the beta on idiosyncratic variance is �0.0050 with a significant t-

statistic of �2.0344. Model 2 also reports that the beta on systematic variance is 0.0038 with

an insignificant t-statistic of 0.7060, thus further complementing the findings of Cao and Han

(2013), who conclude there is a negative idiosyncratic volatility relation with delta-hedged

option returns. Model 3 investigates the e↵ect on idiosyncratic variance with the exclusion

of the dates surrounding the EAD for firm i (if firm i under-went an earnings announce-

ment that month). This demonstrates two key points. Firstly, removal of the dates around

the EADs causes the idiosyncratic variance to become non-significant, with a t-statistic of
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�1.2489 and a non-significant beta on systematic variance (SysVOL2

exc. EAD
). Secondly, the

beta on idiosyncratic variance becomes more negative, in line with the notion that earnings

announcement variance is directly proportional to delta-hedged option returns.10 With the

understanding that every firm has to have four earnings announcements every year, thus

approximately only one-third of firms will have dates removed each month and this has a

marked e↵ect on the statistical significance, we conclude that earnings announcements are

a high source of idiosyncratic volatility. Models 4 and 5 investigate the e↵ect of including

our earnings announcement variance measure, CAR2

4
, into the regressions of models 2 and

3. Both models demonstrate a statistically significant beta on our earnings announcement

variance measure, indicating our results are robust to idiosyncratic and systematic variance.

Our intuition as to the positive sign of earnings announcement variance is also supported

by the results in Models 4 and 5. For instance, in both pairs (Models 2 and 4, Models 3

and 5) the addition of a separate beta to model the earnings announcement variance compo-

nent renders the betas for idiosyncratic variance (IVOL2 for Model 4 and IVOL2

exc. EAD
for

Model 5) more negative in order to balance the significant positive beta from the EAD. In

summary, our results are not driven by high variance firms or firms with high idiosyncratic

and/or systematic variance. We also show that earnings announcements are a high source of

idiosyncratic variance with a positive component in relation to delta-hedged option returns.

Table 4.4 reports regression results while controlling for limits to arbitrage. We do so

because arbitrage between stocks and options is more challenging when transaction costs in

options are high and/or when the underlying stock is illiquid. Furthermore, as these cases

are associated with high stock volatility, there is a possibility that some of these measures

might explain the large movements around earnings announcements and therefore leave

the earnings announcement variance measure insignificant. In order to investigate this, we

include as independent variables: relative option bid-ask spread to proxy for transaction

costs in trading options, and option demand, measured by option’s open interest scaled by

monthly stock trading volume (the same definition as used in Cao and Han (2013)). To

10For this table we report the idiosyncratic variance not volatility as variance is a linear measure and it is
thus easier to see the e↵ect of removal of the EAD dates.
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Table 4.3: Fama-Macbeth regressions volatility-related characteristics
This table reports the average coe�cients from monthly Fama-MacBeth cross-sectional re-
gressions; variables are formed at the end of each month. The dependent variable is call
option delta-hedged gain until month-end scaled by (�S � C) at the beginning of the pe-
riod. We include our measure for earnings announcement variance (CAR2

4
), taken from the

previous month. VAR is the square of the standard deviation of daily stock returns over
the previous month. Idiosyncratic variance (IVOL2) is the square of the standard devi-
ation of the residuals of the Fama-French three-factors model, estimated using the daily
stock returns over the previous month. Systematic variance (SysVOL2) is the square root
of (VOL2 � IVOL2). The variables with the subscript: ”exc. EAD” refer to the original
variables (IVOL2 and SysVOL2) calculated with the exclusion of the CAR4 dates. To adjust
for serial correlation, robust Newey-West (1987) t-statistics are reported in brackets. All
independent variables are winsorized each month at the 0.5% level. The sample period is
from January 1996 to December 2017.

Variables Model 1 Model 2 Model 3 Model 4 Model 5

Intercept -0.0031 -0.0029 -0.0031 -0.0032 -0.0035
(-2.3180) (-2.1912) (-2.4449) (-2.4389) (-2.7160)

CAR2
4 0.0900 0.0910 0.0719

(4.6208) (4.6312) (3.2311)
VAR -0.0045

(-2.5799)
IVOL2 -0.0050 -0.0071

(-2.0344) (-3.1585)
SysVOL2 0.0038 0.0016

(0.7060) (0.2780)
IVOL2

exc. EAD -0.0054 -0.0058
(-1.2489) (-2.3117)

SysVOL2
exc. EAD 0.0024 0.0005

(0.4209) (0.0888)

proxy for stock illiquidity, we use the Amihud (2002) illiquidity measure.11 Model 1 provides

the univariate regression with only CAR2

4
which remains positive and statistically significant

in the absence of CAR4. Model 2 includes our measure for demand as an independent

variable, which is strongly negatively loaded against delta-hedged returns, with a beta of

�0.0750 and t-statistic �7.0651. Thus demonstrating that delta-hedged option returns

are more negative with high in-demand options (consistent with findings in Cao and Han

(2013) and demand-based models of option pricing). However, controlling for demand does

not appreciably diminish the significance of our earnings announcement variance measure.

11The Amihud (2002) measure of illiquidity for stock i at month t is defined as:

ILi,t =
1

Dt

DtX

d=1

|Ri,d|/VOLUMEi,d,

where Dt is the number of trading days in month t and Ri,d is stock i’s daily return, while VOLUMEi,d is
the stocks’ trading volume in day d of month t.
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Model 3 includes the proxy for option transaction costs, relative option bid-ask spread.

The coe�cient on relative option bid-ask spread is 0.0050, with a significant t-statistic of

3.3566. Inclusion of transaction costs does not dampen any of the significance of the earnings

announcement variance measure. Model 4 includes the natural logarithm of the Amihud

(2002) measure of illiquidity. The regression reports a highly statistically significant and

negative relation between stock illiquidity and delta-hedged option returns, with beta of

�0.0013 and t-statistic �3.5447, demonstrating that delta-hedged option returns are more

negative with less liquid stocks. There is a slight increase in beta and significance of the

earnings announcement variance measure when a regressor for illiquidity is included, but

not a momentous amount. However, this does demonstrate that options are not redundant,

as the negative relation, between delta-hedged option returns and stock illiquidity, is in

distinct contrast to expected stock returns and stock illiquidity, with many studies in the

equity literature finding a positive relationship (first observed in Amihud and Mendelson

(1986)). This point confirms that our results are not just some distorted reflection of the

already known and highly researched results on the cross-section of expected stock returns.

Model 5 reports the total regressions of all the limits to arbitrage variables, even for which

there is no significance taken out of the earnings announcement variance measure. Table 4.4

also complements the results found in Cao and Han (2013) regarding the negative relations

between delta-hedged option returns and the limits to arbitrage variables.
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Table 4.4: Fama-MacBeth regressions limits to arbitrage
This table reports the average coe�cients from monthly Fama-MacBeth cross-sectional re-
gressions; variables are formed at the end of each month. The dependent variable is call
option delta-hedged gain until month-end scaled by (�S � C) at the beginning of the pe-
riod. CAR2

4
is our measure for earnings announcement variance. Option open interest is

the number of option contracts open at the beginning of the period. Stock volume is the
stock trading volume over the previous month. Relative option bid-ask spread is the ratio of
bid-ask spread to midpoint, at the beginning of the period. Illiquidity is the average of the
daily Amihud (2002) stock illiquidity measure over the previous month. To adjust for serial
correlation, robust Newey-West (1987) t-statistics are reported in brackets. All independent
variables are winsorized each month at the 0.5% level. The sample period is from January
1996 to December 2017.

Variables Model 1 Model 2 Model 3 Model 4 Model 5

Intercept -0.0035 -0.0013 -0.0045 -0.0312 -0.0361
(-2.3251) (-0.8615) (-3.3041) (-3.6961) (-4.8726)

CAR2

4
0.0650 0.0600 0.0646 0.0867 0.0824
(2.8286) (2.5916) (2.8243) (3.5699) (3.2979)

(Option open
interest/stock
volume)*103

-0.0750 -0.0685

(-7.0651) (-9.8331)
Relative option
bid-ask spread

0.0050 0.0084

(3.3566) (6.7450)
Ln(illiquidity) -0.0013 -0.0016

(-3.5447) (-4.9011)

Table 4.5 reports several robustness checks on our results. In previous regression tables,

the dependent variable has been delta-hedged option returns measured until month-end. In

Table 4.5, we also include results for if the holding period is changed to be until maturity.

Models 1 and 2 of Table 4.5 report regression results using monthly delta-hedged returns,

while Models 3 and 4 report the delta-hedged returns until maturity. Furthermore, the

Table also reports regression results using put options instead of calls, Models 2 and 4. In

all regression results the coe�cient for CAR2

4
remains positive (varying between 0.0780 and

0.0371) and statistically significant. Thus, not even controlling for stock, volatility or limits

to arbitrage measures can explain the significant positive relation between delta-hedged

option returns and our earnings announcement variance measure (CAR2

4
).
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Table 4.5: Fama-Macbeth regressions, alternate measures of delta-hedged re-
turns
This table reports the average coe�cients from monthly Fama-MacBeth cross-sectional re-
gressions; variables are formed at the end of each month. The dependent variable is call
option delta-hedged gain until month-end scaled by (�S�C) at the beginning of the period
for Model 1. For Model 2 the dependent variable is the put option delta-hedged gain until
month-end scaled by (P ��S) at the beginning of the period. For Model 3 the dependent
variable is call option delta-hedged gain until maturity scaled by (�S�C) at the beginning
of the period. For Model 4 the dependent variable is the put option delta-hedged gain until
maturity scaled by (P ��S) at the beginning of the period. All independent variables are
the same as in Tables 4.2 to 4.4. To adjust for serial correlation, robust Newey-West (1987)
t-statistics are reported in brackets. All independent variables are winsorized each month
at the 0.5% level. The sample period is from January 1996 to December 2017.

Variables Model 1 Model 2 Model 3 Model 4

Intercept -0.0390 -0.0490 -0.1055 -0.1122
(-5.6556) (-9.1520) (-10.0755) (-11.3499)

CAR2

4
0.0760 0.0780 0.0371 0.0476
(3.0995) (2.8024) (2.4939) (2.3585)

IVOL2

exc. EAD
-0.0031 -0.0070 -0.0090 -0.0076
(-1.1997) (-2.9483) (-1.7084) (-1.9374)

SysVol2
exc. EAD

0.0028 -0.0032 0.0030 0.0076
(0.9303) (-0.3379) (0.7417) (1.1762)

r0,1 0.0013 -0.0035 0.0016 -0.0006
(0.5082) (-1.2319) (0.4876) (-0.1312)

r2,12 -0.0003 -0.0015 -0.0007 0.0038
(-0.4486) (-2.3344) (-0.6406) (2.6932)

Ln(ME) -0.0001 -0.0033 -0.0066 -0.0035
(-0.1114) (-5.3060) (-6.2536) (-3.8157)

(Option open inter-
est/stock volume)*103

-0.0666 -0.0623 -0.0857 -0.1079

(-8.7257) (-7.1261) (-15.7616) (-14.2921)
Relative option bid-
ask spread

0.0088 0.0278 0.0043 -0.0035

(7.1549) (6.6863) (1.0834) (-0.9279)
Ln(illiquidity) -0.0017 -0.0043 -0.0094 -0.0077

(-2.3005) (-7.7667) (-8.9176) (-8.8591)
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4.4 Earnings Announcement Option Trading Strategy

This section studies the relation between delta-hedged option returns and our earnings an-

nouncement variance measure (CAR2

4
) using a time series regression and the portfolio sorting

approach. We confirm the results obtained by the Fama-MacBeth regressions, introduce an

earnings announcement variance-based trading strategy and examine the impact of transac-

tion costs on our option trading strategy. Our option trading strategy is formed as follows,

at the end of each month, we rank firms with traded options into five quintiles based on

their CAR2

4
. The strategy then buys the delta-hedged options with firms ranked in the top

quintile (quintile number five) and sells the delta-hedged options with firms ranked in the

bottom quintile (quintile number one). As before, the delta-hedges are re-balanced daily.

As in Section 4.3, for each optionable stock we choose only one call and put option that is

closest to being at-the-money and has a common time to maturity of, on average, 48 calen-

dar days. Equation (4.1) defines the long position of delta-hedged gain. The short position

involves selling one contract of call option against a long position of � shares (where � is

the Black-Scholes call option delta) of the underlying stock. We measure the performance

over the next month.12

4.4.1 Time Series Regressions

The purpose of the time series regressions is essentially to see whether, after controlling for

common risk factors and other known option trading strategies, the alpha on our option

earnings announcement variance strategy is significant. We do so by regressing the returns

of the option trading strategy onto the returns of explanatory strategies, including the Fama

and French five-factors, momentum and idiosyncratic volatility trading strategy of Cao and

Han (2013). Table 4.6 reports the results from the time series regressions. For the time

series regression, we use the option value-weighted trading strategy (weighting by the market

12Section 4.5 investigates robustness to using returns held until maturity for which we achieve qualitatively
similar results.
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value of total option open interest multiplied by the midpoint). Model 1 includes only

the market excess return (in excess of the risk-free rate); we measure the excess return

(MKT-RF) as the value-weighted portfolio of all U.S.-based common stocks in the CRSP

database, minus the risk-free rate.13 Model 1 demonstrates the alpha for our option earnings

announcement variance trading strategy is statistically significant, with a positive alpha of

0.3850% and t-statistic 2.4300. Model 2 is a time series regression, using the Fama and

French five-factors. Including the Fama and French five-factors has no powerful e↵ect on

the statistical significance of our trading strategy with an alpha of 0.4082% and t-statistic

2.5157. Model 3 includes the momentum strategy, loading negatively on momentum with

statistical significance; however, there is little change to the magnitude or significance of the

alpha. Model 4 reports results for controlling for the idiosyncratic volatility strategy of Cao

and Han (2013) along with the Fama and French five-factors. The option trading strategy of

Cao and Han (2013) is constructed as follows: at the end of each month, firms are ranked into

five quintiles based on their idiosyncratic volatility; the strategy then buys the delta-hedged

call options on firms ranked in the bottom quintile, and sells the delta-hedged call options

on firms ranked in the top quintile. We find the idiosyncratic volatility trading strategy has

little statistical significance, in contrast to Cao and Han (2013). However this is in line with

research by Karakaya (2014) who, using an extended sample to Cao and Han (2013), find

that the idiosyncratic volatility trading strategy is completely explained by the Fama and

French three-factor model. Therefore including the idiosyncratic volatility trading strategy

does not subsume our earnings announcement variance-based trading strategy. Model 5

reports a regression controlling for all strategies. Even with this large array of strategies

implemented, it does not take away any significance from our trading strategy, with the

alpha being statistically significant at 0.4409% with t-statistic of 2.7319.

13In practice, we obtain the daily excess returns for this portfolio from Ken French’s website.
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Table 4.6: Time series regressions
This table reports the results of monthly time series regressions on the return of our option
trading strategy, using returns held until month-end, in the option value-weighting scheme.
Our option trading strategy consists of selling delta-hedged calls on low earnings announce-
ment variance firms (measured by CAR2

4
) and buying delta-hedged options on high earnings

announcement firms. For this time series regression we use the option value-weighted scheme.
The regressions include Fama-French (2015) risk factors (MKT-RF, SMB, HML, RMW,
CMA), the momentum strategy (UMD), and the idiosyncratic volatility trading strategy of
Cao and Han (2013) (IVOL). To adjust for serial correlation, robust Newey-West (1987)
t-statistics are reported in brackets. All independent variables are winsorized each month
at the 0.5% level. The sample period is from January 1996 to December 2017.

Variables Model 1 Model 2 Model 3 Model 4 Model 5

Intercept 0.3850 0.4082 0.4435 0.4037 0.4409
(2.4300) (2.5157) (2.7631) (2.4760) (2.7319)

MKT-RF -0.0938 -0.0797 -0.1054 -0.0800 -0.1055
(-2.6707) (-1.9045) (-2.4897) (-1.9073) (-2.4849)

SMB -0.0864 -0.0665 -0.0862 -0.0665
(-1.5318) (-1.1860) (-1.5260) (-1.1835)

HML -0.0030 -0.0576 -0.0023 -0.0569
(-0.0437) (-0.8079) (-0.0336) (-0.7964)

RMW -0.1221 -0.0975 -0.1237 -0.0985
(-1.6144) (-1.2976) (-1.6296) (-1.3049)

CMA 0.2762 0.2955 0.2744 0.2945
(2.7369) (2.9626) (2.7109) (2.9415)

UMD -0.0836 -0.0832
(-2.6738) (-2.6496)

IVOL 0.0510 0.0275
(0.3622) (0.1972)

Adj. R2 0.0898 0.148 0.163 0.117 0.181

4.4.2 Average Portfolio Returns

Table 4.7 reports the average returns of five option value-weighted portfolios sorted on earn-

ings announcement variance; each portfolio consists of buying delta-hedged calls. Table 4.7

also reports the ”5-1” portfolio as the di↵erence in the average returns of the top and bot-

tom option value-weighted earnings announcement variance quintile portfolios, which is by

definition the return of our earnings announcement variance-based trading strategy. Table

4.7 demonstrates that the average return of buying delta-hedged calls is negative (as demon-

strated by Table 4.1) and increases with earnings announcement variance, corresponding to

the significant positive relation between earnings announcement variance and delta-hedged

option returns. Over the entire sample period, we find our option-based trading strategy has

statistically and economically significant returns of 0.31% per month (with a t-statistic of
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Table 4.7: Average monthly returns of option trading strategy
This table reports the average returns of the call option earnings announcement variance
trading strategy, using returns until month-end. At the end of each month we rank all firms
with options traded into five groups by their CAR2

4
. Our option trading strategy consists

of selling delta-hedged calls on low earnings announcement variance firms (measured by
CAR2

4
), and buying delta-hedged options on high earnings announcement firms. We weight

by the market value of the option open interest at the beginning of the period. All values
are expressed as a percentage. To adjust for serial correlation, robust Newey-West (1987)
t-statistics are reported in brackets. All independent variables are winsorized each month
at the 0.5% level. The sample period is from January 1996 to December 2017.

Quintile 1-low 2 3 4 5-high 5-1

Average returns -0.44 -0.32 -0.23 -0.13 -0.13 0.31
(-2.82) (-2.49) (-1.35) (-0.76) (-0.71) (2.05)

2.05).14 In terms of placing the economic size of this e↵ect with previous research consider

the following. Table 4.6 demonstrates a monthly alpha of 0.44%, a monthly return of 0.44%

corresponds to an annual return of 5.28% without compounding, which is approximately a

third of the e↵ect from the bid-ask spread (e.g., 13.44% as reported by Cao and Wei (2010)).

Figure 4.1 displays a time series plot of the returns to our option trading strategy.

14Section 4.5 investigates the returns of our trading strategy using di↵erent weighting schemes and con-
cludes our trading strategy is robust.
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Figure 4.1: Time series of returns
This figure displays the monthly time series of the di↵erence in the option value-weighted
average returns of selling delta-hedged calls on firms ranked in the bottom earnings an-
nouncement variance quintile (as measured by CAR2

4
), and buying delta-hedged calls on

firms ranked in the top quintile. The delta-hedged option positions are re-balanced daily to
be delta-neutral. The earnings announcement variance CAR2

4
is the square of the four-day

excess return of the stock following an earnings announcement and is taken from the previous
month. Our sample consists of short-term at-the-money call options on individual stocks
from January 1996 to December 2017.

Table 4.8 investigates the e↵ect of various double sorts on the profitability and significance

of our trading strategy, using option value-weighted returns. The table also reports the

intercept (↵) from time series regressions using the Fama and French five-factor model,

momentum and the idiosyncratic volatility trading strategy of Cao and Han (2013). The

size row investigates further the e↵ect size has on the profitability of our option trading

strategy. Each month we first sort firms into five quintiles by their market capitalisation and
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then, within each size quintile, we sort firms into one of five earnings announcement variance

quintiles (as measured by CAR2

4
). We then take the average across all the size quintiles

for each of the five earnings announcement variance quintiles as well as the 5-1 portfolio.

The average 5-1 portfolio sorted on size is still statistically and economically significant at

0.34% per month, with a statistically significant time series regression alpha of 0.37% and

t-statistic 2.46. The average profitability is similar to that of Table 4.7 (which reports an

average return of 0.31% per month), suggesting that size does not drive our results. The

second row sorts by total volatility and earnings announcement variance. The returns in

all categories of earnings announcement variance, except the last, are statistically di↵erent

from zero. The 5-1 portfolio is economically and statistically significant with 0.38% return

per month, with a significant alpha of 0.48% and t-statistic of 3.27. The third row sorts by

idiosyncratic volatility and earnings announcement variance. The returns in all but the last

two categories of earnings announcement variance are statistically di↵erent from zero. The

average 5-1 portfolio is still statistically and economically significant at 0.36% per month,

with a statistically significant time series regression alpha of 0.46% and t-statistic 3.37. The

fourth row sorts by relative option bid-ask spread and earnings announcement variance. The

returns at all categories of earnings announcement variance are statistically di↵erent from

zero. Furthermore, the average 5-1 portfolio is still statistically and economically significant

at 0.19% per month, with a statistically significant time series regression alpha of 0.27% and

t-statistic 2.09. Comparing the profitability from the average of the 5-1 portfolio to that of

Table 4.7, we see a marked decrease with returns going from 0.31 down to 0.19 (decreasing by

approximately 40%), demonstrating trading costs are highly relevant to the profitability of

our option trading strategy. The fifth row sorts by stock illiquidity (using the Amihud (2002)

measure of illiquidity) and earnings announcement variance. The average 5-1 portfolio is still

statistically and economically significant at 0.43% per month, with a statistically significant

time series regression alpha of 0.54% and t-statistic 3.07. Comparison with Table 4.7 suggests

the profitability of our trading strategy is also highly sensitive to stock illiquidity. Thus, in

line with Cao and Han (2013) we find from the investigation into stock illiquidity and option

bid-ask spreads that limits to arbitrage from both the option contract and the underlying

are highly relevant to profitability. The sixth row sorts by option open interest (formed at
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the beginning of the period) and earnings announcement variance. The average 5-1 portfolio

is still statistically and economically significant at 0.20% per month, with a statistically

significant time series regression alpha of 0.24% and t-statistic 2.74. Demonstrating option

open interest is an important part of the profitability to our trading strategy, however our

results are not driven by option open interest.

In summary, the double sorts indicate little di↵erence in profitability when accounting

for the size of the firm, in line with the Fama-MacBeth regressions in Tables 4.2 and 4.5.

We also confirm controlling for both total and idiosyncratic volatility has little e↵ect on

profitability, further supporting the conclusion from Tables 4.3 and 4.5 that our results are

not driven by highly volatile firms. Table 4.8 also confirms that limits to arbitrage proxies

play an important role on profitability, with both stock and option limits to arbitrage seeming

highly relevant. Table 4.8 further shows that option open interest is of high relevance to the

profitability of our option trading strategy
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Table 4.8: Average monthly returns, double portfolio sorts
This table reports the average return of buying short-maturity at-the-money call options
on firms with traded options, using the option value-weighting scheme. For each stock we
buy one call option contract against a short position of � shares of the underlying stock
(where � is the Black-Scholes call option delta). The delta-hedges are re-balanced daily.
We compound the daily returns of the re-balanced delta-hedged call option positions until
month-end to arrive at a return over the next month. At the end of each month we rank all
firms into five groups by their CAR2

4
. We then sort based on either the market capitalisation,

total volatility, idiosyncratic volatility, relative option bid-ask spread, stock illiquidity (using
the Amihud (2002) measure of illiquidity) or option open interest. All values are expressed
as a percentage. To adjust for serial correlation, robust Newey-West (1987) t-statistics are
reported in brackets. All independent variables are winsorized each month at the 0.5% level.
The sample period is from January 1996 to December 2017.

Quintile 1-low 2 3 4 5-high 5-1 ↵

AVG. Size -0.74 -0.68 -0.69 -0.20 -0.40 0.34 0.37
(-4.12) (-4.97) (-4.45) (-0.90) (-2.66) (2.17) (2.46)

AVG. VOL -0.49 -0.35 -0.33 -0.17 -0.11 0.38 0.48
(-2.90) (-2.75) (-2.38) (-1.98) (-0.84) (2.38) (3.27)

AVG. IVOL -0.47 -0.27 -0.32 -0.21 -0.11 0.36 0.46
(-2.79) (-1.99) (-1.99) (-1.52) (-0.74) (2.49) (3.37)

AVG. Bid-ask spread -0.56 -0.54 -0.41 -0.44 -0.37 0.19 0.27
(-3.78) (-4.27) (-2.85) (-2.29) (-2.30) (2.04) (2.09)

AVG. Ln(illiquidity) -0.82 -0.69 -0.64 -0.34 -0.39 0.43 0.54
(-5.34) (-4.40) (-4.47) (-1.72) (-2.32) (2.58) (3.07)

AVG. Open interest -0.48 -0.41 -0.39 -0.28 -0.29 0.20 0.24
(-3.31) (-3.04) (-2.91) (-1.86) (-1.95) (2.50) (2.74)

4.4.3 Controlling for Trading Costs

For all of the prior results, we have made the standard assumption that options can be

traded at the midpoint of the bid and ask price quotes. However, realising this is an idealised

assumption, Table 4.9 investigates the impact of transaction costs on the profitability of our

earnings announcement variance option trading strategy. To simulate the costs of trading

options, we assume the e↵ective option spread is equal to 10% or 25% of the quote bid-ask

spread. We define e↵ective spread as twice the di↵erence between the execution price and

the market quote at the time of order entry, i.e., the midpoint corresponds to an e↵ective

spread of 0%. The row ”MidP” of Table 4.9 represents the zero e↵ective spread returns, as
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in all previous tables. Table 4.9 displays the average return of our trading strategy using

the option value-weighting scheme.15 The final column of Table 4.9 also displays the alpha

from time series regressions using the Fama and French five-factors, momentum and the

idiosyncratic volatility strategy of Cao and Han (2013). Due to the first row using zero

e↵ective spread, it is the same as that from Table 4.7 regarding the returns. At an e↵ective

spread level of 10%, the profitability is slightly under statistical significance; however, the

alpha remains economically and statistically significant at 0.37% per month, with a t-statistic

of 2.48. Even when the e↵ective spread is increased to 25% the alpha remains statistically

significant at 0.26% per month, with a t-statistic of 1.98 (significant at the 5% level). While

the statistical significance on the alpha of our trading strategy will clearly not be strong at

much of a higher e↵ective spread level, Muravyev and Pearson (2019) demonstrate that, at

high frequencies, option traders are able to time their executions to buy when the option

fair value is close to the ask, and sell close to the bid. Muravyev and Pearson (2019) find

that option traders who exploit this predictability can reduce their e↵ective spread to just

under 30%, thus the fact that our trading strategy is significant at 25% indicates reasonable

robustness to trading costs. Figure 4.2 displays a time series plot of the returns to our option

trading strategy, using the option value-weighted scheme with e↵ective spread levels of 10%

and 25%.

4.5 Robustness Checks

This section details several robustness checks on our results. We investigate the e↵ects of

di↵erent weighting schemes on our option trading strategy. Secondly, we have only consid-

ered the profitability of our option trading strategy using options held until month-end (in

line with Cao and Han (2013)) we investigate the further holding pattern of returns held

until maturity. This section demonstrates that our results are robust to di↵erent weighting

schemes and portfolio holding periods.

15Section 4.5 investigates the e↵ect of trading costs using two further weighting schemes and achieves
qualitatively similar results.
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Table 4.9: Controlling for trading costs
This table reports the impact of trading costs of stock options on the profitability of our
option trading strategy based on earnings announcement variance, using the option value-
weighted scheme. In the first row (MidP), we assume the options are transacted at the
midpoint of the bid and ask quotes (e↵ective spread zero). The other two rows report
varying levels of e↵ective spread for the 10% and 25% levels. At the end of each month
we rank all firms with options traded into five groups by their CAR2

4
. Also reported is the

intercept (↵ reported as a percentage) of a time series regression using the Fama-French
(2015) five-risk factors, momentum and the idiosyncratic volatility trading strategy of Cao
and Han (2013). To adjust for serial correlation, robust Newey-West (1987) t-statistics are
reported in brackets. All independent variables are winsorized each month at the 0.5% level.
The sample period is from January 1996 to December 2017.

Quintile 1-low 2 3 4 5-high 5-1 ↵

MidP -0.44 -0.32 -0.23 -0.13 -0.13 0.31 0.44
(-2.82) (-2.49) (-1.35) (-0.76) (-0.71) (2.05) (2.73)

10% -0.55 -0.43 -0.35 -0.26 -0.31 0.24 0.37
(-3.55) (-3.40) (-2.07) (-1.58) (-1.74) (1.62) (2.48)

25% -0.71 -0.60 -0.52 -0.47 -0.59 0.12 0.26
(-4.68) (-4.77) (-3.17) (-2.81) (-3.29) (1.09) (1.98)

Table 4.10 reports results for two di↵erent weighting schemes of our earnings announce-

ment variance-based trading strategy: equal-weighted and stock value-weighted (by the mar-

ket capitalisation value of the underlying), using returns until month-end. The table also

investigates the impact of transaction costs on the profitability of our earnings announce-

ment variance option trading strategy using the new weighting schemes. Panel A reports

the equal-weighting scheme. There is a linear decrease in the profitability of our trading

strategy for increasing e↵ective spread. At zero e↵ective spread the strategy has profitabil-

ity of 0.19%, with a t-statistic of 2.52, a time series regression alpha of 0.21% and t-statistic

of 2.78. This demonstrates that our trading strategy is robust to using an equal weighting

scheme instead of option value-weighted. However, this decreases to a profitability of 0.08%

and alpha of 0.09%, with neither being statistically significant, for an e↵ective spread of 10%.

This demonstrates that the e↵ect is not as robust to trading costs using an equal-weighting

scheme rather than the option value-weighting scheme. Panel B reports the stock-value

weighting scheme. There is again a linear decrease in the profitability of our trading strat-

egy for increasing e↵ective spread. At zero e↵ective spread, the strategy has profitability of
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Figure 4.2: Time series of returns with e↵ective spread
This figure displays the monthly time series of the di↵erence in the option value-weighted
average returns of selling delta-hedged calls on firms ranked in the bottom earnings an-
nouncement variance quintile (as measured by CAR2

4
), and buying delta-hedged calls on

firms ranked in the top quintile. The delta-hedged option positions are re-balanced daily
to be delta-neutral. The earnings surprise measure CAR2

4
is the square of the four-day ex-

cess return of the stock following an earnings announcement and is taken from the previous
month. The first panel uses an e↵ective spread of 10%, the second panel uses an e↵ective
spread of 25%. Our sample consists of short-term at-the-money call options on individual
stocks from January 1996 to December 2017.

0.14%, with a significant t-statistic of 2.15, a statistically significant time series regression

alpha of 0.23% and t-statistic of 2.66. For an e↵ective spread level of 10%, the alpha remains

statistically significant, at the 5% level, at 0.17%, with a t-statistic of 1.98. However, for an

e↵ective spread level of 25%, neither the profitability nor the alpha are statistically signif-

icant. In summary, we have demonstrated that our earnings announcement variance-based

option trading strategy is robust to di↵erent weighting schemes.
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Table 4.10: Controlling for trading costs, alternate weighting schemes
This table reports the e↵ect of using di↵erent weighting schemes while investigating the
impact of trading costs of stock options on the profitability of our option trading strategy,
based on earnings announcement variance, using returns until month-end. In the first row
(MidP), we assume the options are transacted at the midpoint of the bid and ask quotes
(e↵ective spread zero). The other two rows report varying levels of e↵ective spread for the
10% and 25% levels. At the end of each month, we rank all firms with options traded into
five groups by their CAR2

4
. Also reported is the intercept (↵ reported as a percentage)

of a time series regression using the Fama-French (2015) five-risk factors, momentum and
the idiosyncratic volatility trading strategy of Cao and Han (2013). To adjust for serial
correlation, robust Newey-West (1987) t-statistics are reported in brackets. All independent
variables are winsorized each month at the 0.5% level. The sample period is from January
1996 to December 2017.

Quintile 1-low 2 3 4 5-high 5-1 ↵

Panel A. Equal weight

MidP -0.55 -0.54 -0.57 -0.51 -0.36 0.19 0.21
(-3.02) (-3.28) (-3.15) (-2.71) (-1.57) (2.52) (2.78)

10% -0.71 -0.71 -0.75 -0.72 -0.63 0.08 0.09
(-4.77) (-5.25) (-5.03) (-4.74) (-3.93) (1.05) (1.23)

25% -1.11 -1.11 -1.18 -1.19 -1.20 -0.10 -0.09
(-7.39) (-8.21) (-7.84) (-7.75) (-7.47) (-1.30) (-1.16)

Panel B. Stock value-
weight

MidP -0.15 -0.14 -0.09 -0.03 -0.01 0.14 0.23
(-1.25) (-1.27) (-0.68) (-0.20) (-0.08) (2.15) (2.66)

10% -0.24 -0.23 -0.18 -0.14 -0.17 0.07 0.17
(-1.99) (-2.10) (-1.44) (-1.06) (-1.12) (1.76) (1.98)

25% -0.37 -0.37 -0.32 -0.31 -0.40 -0.03 0.06
(-3.12) (-3.37) (-2.61) (-2.35) (-2.71) (-0.31) (0.74)

Next, we move onto investigating the profitability of our option trading strategy when

forming portfolios at the beginning of the month and holding until maturity, using the option

value-weighting scheme. Table 4.11 reports results from time series regressions. Model 1

demonstrates that the alpha for our option earnings announcement variance trading strategy

is statistically significant, with a positive alpha of 0.3717% and t-statistic 2.3501. Model 2 is a

time series regression using the Fama and French five-factors. Including the Fama and French

five-factors reduces the alpha slightly to 0.3173% and is still statistically significant, with t-
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statistic 2.4204. Model 3 includes the momentum strategy, loading negatively on momentum

with a statistically significant beta of �0.0795 and t-statistic �2.1342 (in agreement with

Table 4.6). Even with inclusion of momentum, there is still statistical significance in the

alpha at 0.3461%, with t-statistic 2.3181. Model 4 reports results which control for the

idiosyncratic volatility strategy of Cao and Han (2013) along with the Fama and French

five-factors. Once again, we do not find that the earnings announcement variance-based

trading strategy is subsumed by the idiosyncratic volatility trading strategy of Cao and Han

(2013). Model 5 reports a regression controlling for all strategies. Even with this vast array

of strategies implemented, it does not take away any significance from our trading strategy,

with the alpha being statistically significant at 0.3473%, with t-statistic of 2.9517.
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Table 4.11: Time series regressions, held until maturity
This table reports the results of monthly time series regressions on the return of our option
trading strategy, using returns held until maturity, in the option value-weighting scheme. Our
option trading strategy consists of selling delta-hedged calls on low earnings announcement
variance firms (measured by CAR2

4
) and buying delta-hedged options on high earnings an-

nouncement firms. For this time series regression we use the option value-weighted scheme.
The regressions include Fama-French (2015) risk factors (MKT-RF, SMB, HML, RMW,
CMA), the momentum strategy (UMD), and the idiosyncratic volatility trading strategy of
Cao and Han (2013) (IVOL). To adjust for serial correlation, robust Newey-West (1987)
t-statistics are reported in brackets. All independent variables are winsorized each month
at the 0.5% level. The sample period is from January 1996 to December 2017.

Variables Model 1 Model 2 Model 3 Model 4 Model 5

Intercept 0.3717 0.3173 0.3461 0.3189 0.3473
(2.3501) (2.4204) (2.3181) (2.1751) (2.9517)

MKT-
RF

-0.0318 -0.0069 -0.0279 -0.0076 -0.0283

(-0.7894) (-0.1375) (-0.5475) (-0.1500) (-0.5542)
SMB 0.0150 0.0269 0.0135 0.0257

(0.2284) (0.4103) (0.2038) (0.3899)
HML -0.0172 -0.0706 -0.0171 -0.0703

(-0.2110) (-0.8317) (-0.2084) (-0.8264)
RMW -0.0087 0.0085 -0.0087 0.0085

(-0.0967) (0.0940) (-0.0956) (0.0939)
CMA 0.1948 0.2222 0.1930 0.2208

(1.6747) (1.9131) (1.6535) (1.8937)
UMD -0.0795 -0.0793

(-2.1342) (-2.1219)
IVOL -0.0388 -0.0289

(-0.2750) (-0.2060)
Adj. R2 0.0015 0.0010 0.0014 0.0048 0.0097

Table 4.12 investigates the impact of trading costs on the profitability of our earnings

announcement variance option trading strategy, using returns held until maturity and the

option value-weighting scheme. The final column of Table 4.12 also displays the alpha

from time series regressions using the Fama and French five-factors, momentum and the

idiosyncratic volatility strategy of Cao and Han (2013). There is a linear decrease in the

profitability of our trading strategy for increasing e↵ective spread. At zero e↵ective spread,

the strategy has profitability of 0.35% with a t-statistic of 2.40, a time series regression

alpha of 0.35% and t-statistic of 2.95; both the profitability and alpha are economically and
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Table 4.12: Controlling for trading costs, held until maturity
This table reports the impact of trading costs of stock options on the profitability of our
option trading strategy based on earnings announcement variance, using returns until ma-
turity. The first row (MidP) we assume the options are transacted at the midpoint of the
bid and ask quotes (e↵ective spread zero). The other two rows report varying levels of ef-
fective spread for the 10% and 25% levels. At the end of each month we rank all firms with
options traded into five groups by their CAR2

4
. Also reported is the intercept (↵ reported

as a percentage) of a time series regression using the Fama-French (2015) five-risk factors,
momentum and the idiosyncratic volatility trading strategy of Cao and Han (2013). To
adjust for serial correlation, robust Newey-West (1987) t-statistics are reported in brackets.
All independent variables are winsorized each month at the 0.5% level. The sample period
is from January 1996 to December 2017.

Quintile 1-low 2 3 4 5-high 5-1 ↵

MidP -0.73 -0.54 -0.52 -0.54 -0.38 0.35 0.35
(-4.44) (-3.50) (-2.68) (-2.79) (-1.92) (2.40) (2.95)

10% -0.79 -0.60 -0.58 -0.61 -0.48 0.31 0.31
(-4.79) (-3.88) (-3.01) (-3.15) (-2.40) (2.14) (2.46)

25% -0.88 -0.69 -0.67 -0.72 -0.62 0.26 0.26
(-5.33) (-4.45) (-3.50) (-3.70) (-3.11) (1.74) (2.14)

statistically significant. This decreases to a profitability of 0.31% (t-statistic 2.14) and alpha

of 0.31% (t-statistic 2.46) for an e↵ective spread of 10%; thus at this level, the profitability

and alpha are still statistically significant. At an e↵ective spread level of 25%, only the alpha

remains statistically significant at 0.26%, with t-statistic of 2.14. In summary, our trading

strategy is robust to using di↵erent portfolio holding periods and transaction costs.

4.6 Discussion

The aim of this section is to o↵er a possible economical explanation as to why the relationship

between earnings announcement variance and delta-hedged option returns is positive. The

sign of this result is potentially at odds with economic instinct as previous studies have found

there is a negative relationship between stock volatility and delta-hedged option returns (Hu

and Jacobs (2016) for example), furthermore studies have shown (and we confirm) that total

idiosyncratic volatility also has a negative relationship with delta-hedged option returns,
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e.g., Cao and Han (2013).

It could be that this positive relationship is caused by demand-pressure e↵ects. Table

4.4 demonstrates (consistent with Cao and Han (2013)) that delta-hedged option returns de-

crease with option open interest, supporting the idea that, due to limits to arbitrage, option

market makers charge higher premiums for options with high end-user demand. However, as

Table 4.13 demonstrates, cross-sectional averages of option open interest sorted by earnings

announcement variance decreases with earnings announcement variance by approximately

35%.16 Therefore, investors demonstrate less demand for options on high earnings announce-

ment variance firms. Thus, consistent with the negative relationship between delta-hedged

option returns and option open interest it is self-consistent that earnings announcement vari-

ance is proportional to delta-hedged option returns. Consistent with demand-pressure e↵ects

(for instance, Gârleanu et al. (2009)). Furthermore, Christo↵ersen et al. (2017) demonstrate

that market makers are net long positions in equity options, suggesting that a plausible eco-

nomical explanation of our results is that market makers charge a lower price for options on

high earnings announcement variance firms due to the lack of demand and given their net

position is long they would prefer to buy for a price below the ”fair value”. However, as

Table 4.8 demonstrates, our results are not purely driven by open interest, therefore while

demand-pressure e↵ects seem reasonable they do not explain our results.

As further research it would be instructive to also study the relation between our earn-

ings announcement variance trading strategy with an alternative strategy based on the price

of volatility risk. Duarte and Jones (2007) demonstrate that the conditional volatility risk

premium varies with market volatility. Furthermore, the implied volatility distribution is

majorly e↵ected by earnings announcements causing non-normality (see Dubinsky and Jo-

hannes (2006)). It could be that this would cause a di↵erence between implied and historical

volatility which is being captured by the earnings announcement variance measure. How-

ever, the issue with this type of approach, considering the volatility risk premium, is one

of liquidity. As in order to construct the variance risk premium one has to compute the

expected return variation, this integral is calculated numerically, to ensure reliability it is

16We achieve qualitatively similar results if we use the option open interest stock volume ratio, as used in
Table 4.4.
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Table 4.13: Investor demand sorted by earnings announcement variance
This table reports the average option open interest, sorted by earnings announcement vari-
ance. Option open interest is the number of option contracts open at the beginning of the
period. To adjust for serial correlation, robust Newey-West (1987) t-statistics are reported
in brackets. All independent variables are winsorized each month at the 0.5% level. The
sample period is from January 1996 to December 2017.

Quintile 1-low 2 3 4 5-high

Option open interest/1000 1.14 1.12 1.02 0.90 0.75
(12.86) (12.99) (13.78) (13.81) (14.73)

standard to use two in-money options, one at-the-money and two out-of-the-money options.

This data requirement means an approximate halving of firms which can be considered (see

Cao and Han (2013)).

4.7 Conclusion

This work provides a comprehensive study of delta-hedged individual stock option returns.

The key novel finding is that the average delta-hedged option return is increasing with an in-

crease in the earnings announcement variance of the underlying stock. Our finding is robust

to call and put options. It is statistically and economically significant. Furthermore, our

trading strategy is robust to di↵erent portfolio formation dates and lengths of holding. For

example, when using delta-hedged call option returns over the next month, options ranked

in the top earnings announcement variance quintile, on average, out-perform the portfolio

of delta-hedged call options on firms ranked in the bottom earnings announcement variance

quintile by 0.31% per month, using an option value-weighted scheme. A time series regres-

sion exercise demonstrates our trading strategy yields a robust and statistically significant

alpha of approximately 0.44%, per month, after controlling for the Fama-French five-factors,

momentum and the idiosyncratic volatility trading strategy of Cao and Han (2013). We

suggest that the positive relationship between delta-hedged option returns and earnings an-

nouncement variance is consistent with demand-pressure e↵ects. Given market makers are
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net long positions in equity options they thus charge a lower premium, coupled with the de-

creased demand for options with high earnings announcement variance potentially explains

the positive sign between the idiosyncratic volatility component to earnings announcements

and delta-hedged option returns.



Chapter 5

Conclusion

In the second chapter of this thesis we concern ourselves with aspects of theoretical op-

tion pricing, specifically non-a�ne model specifications. We consider a general one-factor

stochastic volatility model with a non-square root dependence on volatility in the variance

process. Using perturbation theory we construct a first order approximation solution to

this non-a�ne model. In a simulated Monte Carlo time series estimation exercise our solu-

tion performs very well and is able to generate accurate prices with very low computational

burden.

Tying into model specification concerns from the second chapter, the third chapter under-

takes an empirical investigation into novel aspects of high-frequency option pricing model

specifications. The task of pricing options in a high-frequency intradaily setting opens the

door to a plethora of new phenomena, one of which is market maker biases to volatility

accrual. We develop a novel approach to traditional option pricing by incorporating a mech-

anism to account for the change in sign of option returns from day to night. We find our model

reduces errors in short term options by approximately 7% percent out-of-sample and seems

to carry more emphasis in times of market turmoil. An additional potentially important

aspect of intradaily option pricing model specification is the e↵ect intradaily macroeconomic

news announcements have on options. As the timing of such news events is known ex-ante

we account for such an e↵ect by inclusion of a deterministic jump process in our model

specification to empirically test the importance of FOMC announcements. Our empirical

136
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results show FOMC announcements are an important part of option pricing. We also find

additional evidence that indicates FOMC announcements are particularly important during

times of economic distress. We conclude that macroeconomic announcements are potentially

highly relevant to option pricing models.

The fourth chapter of this thesis links to the above work concerning the importance of

news announcements on option pricing, we examine the impact of earnings announcements

on individual equity options. We study delta-hedged option returns within a six month

aftermath of earnings announcements and find that, on average, firms with high earnings

announcement volatility out-perform firms with low earnings announcement volatility, over

the period 1996 to 2017. We perform a time series regression exercise which demonstrates our

trading strategy yields a robust alpha of approximately 0.44%, per month, after controlling

for the Fama-French five-factors, momentum and the idiosyncratic volatility trading strategy

of Cao and Han (2013). We suggest the positive relationship between delta-hedged option

returns and earnings announcement volatility is consistent with demand-based models and

market makers being net long positions in individual equity options, thus charging a lower

premium.

I will now provide some details for further research. Evidence in Chapter 2 clearly

demonstrates that the concept of perturbation theory is a fruitful methodology for option

pricing models. Further research might be conducted along the dimension of considering

di↵erent base-case models. In Chapter 2 we consider a base-case of the Black-Scholes (1973)

model, however as noted previously this model has the significant short coming of constant

volatility. Thus further improvements could be made by considering a stochastic volatility

base case model, for example the Heston (1993) model, this would be achieved by setting

↵ = 1/2 in the Merton-Garman model and using Taylor series expansions for the two ↵

dependent terms.1

Regarding Chapter 3 it would be instructive to consider di↵erent modelling approaches

1Of course by setting ↵ = 1 one could do a similar approach using the Hull and White (1987) model as a
base-case. However, the Heston (1993) model has the advantage of an analytical solution to the price of the
option, with only numerical methods required to compute the integral, whereas the Hull and White model
is more challenging.
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towards the e↵ect of macroeconomic news announcements, specifically FOMC announce-

ments. There is evidence from the literature which suggests the Federal Reserve is averse

to surprising investors (e.g., Stein and Sunderam (2018)). To combat this potential surprise

on FOMC announcement date the Federal Reserve also uses discount rate meetings to guide

investors’ expectations and to also a�rm that the Fed will choose the path investors prefer

(e.g., Cieslak et al. (2019)). As such one idea to deal with the small-sample issues would be

to use the same modelling methodology but to consider the biweekly discount rate meetings

as well. Separately, one could consider an alternative modelling choice entirely. Asset prices

will move to the surprise news component, implying the existence of news-related jumps and

their magnitude could be state-dependent (i.e., how surprised markets are by the news). An

alternative modelling methodology could investigate jump volatility dependent on a function

of the news surprise (see Kuttner (2001)). Although this new methodology brings with it a

major downside that one would loose the nature of the deterministic approach used in this

research.

In relation to Chapter 4 it would be interesting to investigate the e↵ect short sale con-

straints might have on the earnings announcement variance strategy. There is a substantial

debate around the e↵ects of short selling enhancing price e�ciency around earnings an-

nouncements. This debate initially started with Ball and Brown (1968) and sees sporadic

evidence on both sides. For example, Cao et al. (2007) finds weak evidence to suggest short

sellers reduce drift after earnings announcements. However, McKenzie (2012) finds short

selling increases after negative earnings shocks, however concludes it does not remove long-

term PEAD, measured over the following quarter. However, using daily data on shorting

flows Boehmer and Wu (2013) demonstrate that short sellers promote e�cient pricing, thus

removing the drift over the next quarter for negative surprises. Based on evidence provided

by Christo↵ersen et al. (2017), that market makers hold net long positions in equity options,

it could be they are buying calls from end users and hedging by short selling the underlying.

There exists the possibility that shorting the underlying stock is more di�cult for portfolios

with low earnings announcement variance, meaning that a temporary misalignment between

stocks and option embedded information might be a contributing factor to the returns of

the strategy.
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Chapter 6

Appendix

6.1 Heat Equation

In this Appendix, we show how to massage the partial di↵erential equation corresponding

to the symmetrical model:
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into the heat equation in 2+1 dimensions. To do so, we now make the standard substitutions

for the underlying and variance, transforming them to dimensionless variables:

x = log(S/K), (6.2)

y = log(V/V0), (6.3)

where K is the strike price and V0 is some constant with units of 1/sec. Re-casting Equation

(6.1) in terms of x and y, we obtain
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In order to remove the constant term, 1

2
�
2 in front of the second derivative with respect

to x, we make the time transformation: ⌧ = �
2

2
(T � t), yielding:
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where R1 = 2r

�2 and ⌘ = 2⇠
2

0

�2 . We then proceed with the further substitution: y = 1p
⌘
y,

transforming the coe�cient of the second derivative with respect to y to unity:

�@C
@⌧

+ (R1 � 1)
@C

@x
+
p
2
�

�⇠0

@C

@y
+
@
2
C

@x2
+
@
2
C

@y2
�R1C = 0 . (6.6)

Next, we make the price transformation:

C(x, y, ⌧) = K�(x, y, ⌧) 0(x, y, ⌧), (6.7)

with:

�(x, y, ⌧) = e
ax+by+c⌧

. (6.8)

The constants a, b and c are chosen by inspection, after substitution into Equation (6.6) we

see that the choice:

a = �1

2
(R1 � 1), (6.9)

b = �1

2
(R2 � 1), (6.10)

c = �1

4

 
(R2 � 1)2 + (R1 + 1)2

!
, (6.11)

where: R2 = 1 +
p
2�/�⇠0, leads to the heat equation in 2+1 dimensions:

@ 0

@⌧
=
@
2
 0

@x2
+
@
2
 0

@y2
. (6.12)

There are well known techniques to solve this partial di↵erential equation analytically. It

is also well known that the heat equation has a symmetry based on the Galilean group in

2+1 dimensions. This symmetry is now manifest. In particular, the variable x and y are
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interchangeable as advertised previously. Before we can solve the heat equation, we need to

specify an appropriate boundary equation.

Guided by our intuition formed by the Black-Scholes model, we propose a boundary

condition of the form for a call option:

 0(x, y, 0) = e
1

2
(R2�1)y

 
e
(R1+1)x/2 � e

(R1�1)x/2

!+

. (6.13)

To verify that this boundary condition makes sense from an option pricing point of view, we

work out the implied boundary conditions for the call price in the original variables:

C(x, y, 0) = Ke
ax+by

 0(x, y, 0), (6.14)

and thus

C(x, y, 0) = K

 
e
x � 1

!+

. (6.15)

Substitution back to original variable, using: S = Ke
x, we find

C(S, V, T ) =

 
S(T )�K

!+

. (6.16)

This is the standard payo↵ of a call option. We have thus found an appropriate boundary

condition for the heat equation and can thus proceed to solving this partial di↵erential

equation. For a put option we have

 0(x, y, 0) = �e
1

2
(R2�1)y

 
e
(R1+1)x/2 � e

(R1�1)x/2

!+

, (6.17)

which leads to

P (S, V, T ) =

 
K � S(T )

!+

. (6.18)
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6.2 Solution of the Symmetrical Model

In this Appendix, we show how to solve the heat equation in 2+1 dimensions:

@ 0

@⌧
=
@
2
 0

@x2
+
@
2
 0

@y2
. (6.19)

So far the function  0(x, y, ⌧) is only defined for ⌧ > 0, however by introducing the Heaviside

function ⇥(⌧) we may extend the definition domain to the range ⌧ < 0

 ̄0(x, y, ⌧) = ⇥(⌧) 0(x, y, ⌧), (6.20)

Thus we get an inhomogeneous di↵erential equation:

 
@

@⌧
� @

2

@x2
� @

2

@y2

!
 ̄0(x, y, ⌧) =  ̄0(x, y, 0)�(⌧). (6.21)

This equation is solved by

 ̄0(x, y, ⌧) =

Z
 ̄0(x

0
, y

0
, 0)G(x, y, ⌧ |x0

, y
0
, 0)dx0

dy
0
. (6.22)

This is the partial di↵erential equation for the Gaussian propagator of the heat equation in

2+1 dimensions:

G(x, y, ⌧ |X, Y, 0) =
1

4⇡⌧
e
� (x�X)

2

4⌧
� (y�Y )

2

4⌧ ⇥(⌧). (6.23)

Combining the above two results, the solution can be written in the form

 ̄0(x, y, ⌧) =
1

4⇡⌧

Z
 ̄0(X, Y, 0)e�

(x�X)
2

4⌧
� (y�Y )

2

4⌧ dXdY, (6.24)

 ̄0(x, y, ⌧) =
1

4⇡⌧

Z
e
(R2�1)Y/2

 
e
(R1+1)X/2 � e

(R1�1)X/2

!+

e
� (x�X)

2

4⌧
� (y�Y )

2

4⌧ dXdY, (6.25)
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which leads to

 0(x, y, ⌧) =
1

4⇡⌧

Z
 0(X, Y, 0)e�

(x�X)
2

4⌧
� (y�Y )

2

4⌧ dXdY, (6.26)

and

 0(x, y, ⌧) =
1

4⇡⌧

Z
e
(R2�1)Y/2

 
e
(R1+1)X/2 � e

(R1�1)X/2

!+

e
� (x�X)

2

4⌧
� (y�Y )

2

4⌧ dXdY. (6.27)

Note that the two integrals can be separated:

 0(x, y, ⌧) =
1p
4⇡⌧

Z 1

0

dX

 
e
(R1+1)X/2 � e

(R1�1)X/2

!+

e
� (x�X)

2

4⌧

⇥ 1p
4⇡⌧

Z 1

�1
dY e

(R2�1)Y/2
e
� (y�Y )

2

4⌧ , (6.28)

where the first of these integrals precisely corresponds to the 1+1 dimensional Black-Scholes

model. We thus finally obtain

 0(x, y, ⌧) = e
1

2
(R2�1)( ⌧

2
(R2�1)+y)

"
e
(R1+1)x/2 + (R1 + 1)2⌧/4N (d1) (6.29)

� e
(R1�1)x/2+(R1�1)

2
⌧/4N (d2)

#
,

where

N (d) =
1p
2⇡

Z
d

�1
exp

✓
�z

2

2

◆
dz, (6.30)

and

d1 =
xp
2⌧

+

p
2⌧

2
(R1 + 1) =

log(S/K) + (r + �
2
/2)(T � t)

�
p
T � t

, (6.31)

d2 =
xp
2⌧

+

p
2⌧

2
(R1 � 1) = d1 � �

p
T � t. (6.32)

We have obtained an analytical solution to the symmetrical model. Remarkably, because of
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the boundary condition that only depends on S, it is identical to the Black-Scholes solution.

Going back to the original variables we find:

C0(S, V, t) = SN (d1)�Ke
�r(T�t)N (d2). (6.33)

6.3 Symmetry Breaking Terms and Solution to the

Merton-Garman Model

In this Appendix, we give details of the derivation of the perturbative solution to the full

Merton-Garman. We first need to restore the full model by re-introducing the symmetry

breaking terms

@C

@t
+ rS

@C

@S
+

1

2
�
2
S
2
@
2
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@S2
+

c1S
2

2

 
V � �
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+ µV
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+ c2�
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@V
+ ⇠

2

0
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2
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C

@V 2

+ c3

 
⇠
2
V

2↵ � ⇠
2

0
V

2

!
@
2
C

@V 2
+ c4⇢⇠V

↵+1/2
S
@
2
C

@S@V
� rC = 0. (6.34)

Note that we have introduced dimensionless coe�cients ci which denote the strength of the

symmetry breaking terms. In the limit ci = 1 one recovers the original Merton-Garman

model. These coe�cients are simply introduced as a bookkeeping trick to keep track of

which terms correspond to a deviation of the 2+1 Galilean invariant theory. In the end of

the day, we set ci = 1. We can now apply the same variables transformations to Equation

(6.34) that we had applied in the symmetric case and obtain

✓
@

@⌧
� @

2

@x2
� @

2

@y2
+D(x, y)

◆
 (x, y, ⌧) = 0, (6.35)
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where the operator D(x, y) is defined as:

D(x, y) =

✓
c1

2

�
V0e

y � �
2
�✓

(a2 � a) + (2a� 1)
@
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2
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◆
(6.36)
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@y
+

@
2

@x@y

◆◆
,

where a and b are respectively given in Equation (6.9) and Equation (6.10). Note that

D(x, y) is ⌧ independent.

We now do perturbation theory around the symmetrical solution  0 which was given

in Equation (6.29). To leading order in ci, we write  =  0 +  1 where  1 is of order ci.

Keeping in mind that D is order ci, we find

✓
@

@⌧
� @

2

@x2
� @

2

@y2

◆
 1(x, y, ⌧) = �D(x, y) 0(x, y, ⌧). (6.37)

This equation can be solved by the Green’s function method, we obtain

 1(x, y, ⌧) = �
Z

⌧

0

dt

Z 1

�1
dx

0
Z 1

�1
dy

0
G(x, y, ⌧ ; x0

, y
0
, t)D(x0

, y
0) 0(x

0
, y

0
, t), (6.38)

where

G(x, y, ⌧ ; x0
, y

0
, t) =

1

4⇡(⌧ � t)
exp

✓
�(x� x

0)2 + (y � y
0)2

4(⌧ � t)

◆
. (6.39)

These integrals can be performed analytically. Our result provides an approximative and

analytical solution to the Merton-Garman model. We find:

 (x, y, ⌧) =  0(x, y, ⌧) +  1(x, y, ⌧), (6.40)
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with
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to leading order. In the original variables, we find:

C1(S, V, t) = �K
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,

where we have set c1 = 1.

It may appear surprising that the leading order correction does not depend on the sym-

metry breaking terms parametrised by c2, c3 and c4. To understand what is happening,

one can organise the perturbation theory slightly di↵erent, but mathematically equivalent,

fashion by looking at corrections to the Green’s function G(x, y, ⌧ |x0
, y

0
, 0). The di↵erential

equation to solve is given by:

✓
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◆
G(x, y, ⌧ |x0
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0
, 0) = �(⌧)�(x� x

0)�(y � y
0). (6.43)

Perturbation theory is organised by expanding around the Green’s function of the symmet-

rical symmetry: G(x, y, ⌧ |x0
, y

0
, 0) = G0(x, y, ⌧ |x0

, y
0
, 0)+G1(x, y, ⌧ |x0

, y
0
, 0) to leading order.

One obtains:
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The solution to this partial di↵erential equation was given above. The correctionG1(x, y, ⌧ |x0
, y

0
, 0)

is obtained by solving:
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, 0), (6.45)
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which can be solved easily. One finds:

G1(x, y, ⌧ |x0
, y

0
, 0) = �
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0|x0
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0
, 0).

It is easy to show that this correction depends on all four symmetry breaking terms. We

find
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It is easy to see that when folding these corrections to the Green’s function with the boundary

condition (6.13) that only the contribution from the c1 term survives and one recovers the

result of (6.41). The boundary condition thus implies that the contributions of c2, c3 and

c4 vanish to leading order in the perturbation theory. These symmetry breaking terms will,

however, contribute to higher order corrections. Higher precision, if required, can be obtained

by going to higher order in perturbation theory. Option prices can be calculated extremely

rapidly using this formalism. Note that, in principle, if we resummed perturbation theory

to all order in ci, the dependence on � and ⇠0 would vanish. It is also worth noticing that

our results are independent on V0 which is only introduced to match the dimension of V .
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6.4 Time Series Simulation Merton-Garman Model

The Merton-Garman model is defined by the coupled two-dimensional SDE:

dSt = rStdt+
p
VtStdW

S

t
, (6.51)

dVt = (✓ � Vt)dt+ ⇠V
↵

t
dW

V

t
, (6.52)

with the two Brownian motion components: W S

t
,W

V

t
having correlation ⇢. We use an Euler

discretization scheme for the asset price and variance process, with a full truncation to tackle

the issue of negative variances. Conditional on a time s for t > s the discretization scheme

for the asset price and variance processes are:

St = Ss + rSt�t+ Ss

q
V

+

t �tzS, (6.53)

Vt = Vs � (✓ � V
+

s
)�t+ ⇠(V +

s
�t)↵zV , (6.54)

where �t = t� s, zV ⇠ N (0, 1) and zS = ⇢zV +
p
1� ⇢z with z ⇠ N (0, 1). This scheme is

used to generate 100 di↵erent sample paths of weekly returns and latent variance over one

year, i.e 52 observations with �t = 7 days. At each observation time we simulate six unique

maturities within [7, 180] days maturity, with a moneyness range of K/S 2 [0.9, 1.1] across

ten strikes. Each option price is computed using the Monte Carlo framework with 50, 000

simulations and a time-step of 1/20th of a trading day.

The calibration process is done using the objective function defined in Equation (2.23).

It should be noted that as initial conditions we start with the true parameter vector, i.e

⇥pert.

initial
= ⇥MG

true
and for � we start with the initial variance. We also pass the variance path

at each time step.
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6.5 Characteristic Function

This appendix provides details on the derivation of the characteristic function of the option

pricing model from Equations (3.1)-(3.3). Initially we omit the FOMC deterministic jumps

and focus only on a two-factor stochastic volatility model with random Poisson contempo-

raneous jumps (with finite activity) and a constant intensity.

Denote the characteristic function as:  (t, Y, V,m), application of Itô’s lemma yields:

d (t, Y, V,m) =  t(t�, Y�, V�,m�)dt+  Y (t�, Y�, V�,m�)dY
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+ ( (t, Y, V,m�)�  (t�, Y�, V�,m�))dZt, (6.55)

where Xt� denotes the value of X prior to any jump at time t. The superscript c denotes

the continuous part of the process and the dZt term denotes the discontinuous jump related

component. As the correlations between: W
Y

t
,W

m

t
and W

v

t
,W

m

t
are zero we neglect these

derivatives. Substitution from the dynamics in Equations (3.1)-(3.3) yields:
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+ ( (t, Y, V,m�)�  (t�, Y�, V�,m�))dZt. (6.56)

Where µ̃ = exp(µQ
y
+ 1

2
(�Q

y
)2) � 1. The Brownian motion terms have been excluded as the

characteristic function is a martingale, thus its derivative with respect to time must be zero,

as such we are only interested in the non-Brownian motion terms. By the a�ne structure of
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the problem it follows the discounted transform for u 2 R is a�ne (see Du�e et al. (2000))

the characteristic function is given by:

 (t, Y, V,m) = exp(↵(⌧) + iuYt + �(⌧)Vt + �(⌧)mt), (6.57)

the discontinuous jump terms from above can be expressed as:

( (t, Y, V,m)�  (t�, Y�, V�,m�))dZt =  (t�, Y�, V�,m�)(exp(iu⇠
Y + �⇠

V )� 1)dZt.

(6.58)

Which yields, when taking expectation value:
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V )� 1)dZt

#
= �EQ
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V )� 1] (6.59)

⇥  (t�, Y�, V�,m�)dt.

Substitution gives:
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Y + �(⌧)⇠V )� 1]� �EQ
t [(exp(iu⇠

Y )� 1)]] (t�, Y�, V�,m�). (6.60)

As the characteristic function is a martingale: d 

dt
= 0 and using Du�e et al. (2000) for the

expectation values, yields the grouped ODE’s:

�↵0(⌧) + 
Q
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✓

Q
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�(⌧)� �(exp(µQ
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)2u2)
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Q
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= 0, (6.61)
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�(⌧)� 1
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v
�(⌧)2 + i�v⇢u�(⌧) = 0, (6.62)
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�
2

m
�
2(⌧) = 0. (6.63)
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The extension to deterministic FOMC jumps is as follows. Due to the multiplication laws

of logs:

ln(Ft) = ln(F̃t) +

N
d
tX

j=1

Z̄j(Q), (6.64)

where ln(F̃t) is the standard a�ne component from above and the second term represents the

deterministic jumps from FOMC announcements. Under the assumption the deterministic

jumps are conditionally independent of the a�ne state variables the transform of ln(Ft) is

just the product of the traditional a�ne transform and the transform of the deterministic

jumps:

 
FOMC(t, Y, V,m) = EQ

t [exp(iuln(F̃t))]E
Q
t

"
exp

 
iu

N
d
tX

j=1

Z̄j(Q)

!#
. (6.65)

Simplification results in:

 
FOMC(t, Y, V,m) = exp(↵⇤(⌧) + �(⌧)Vt + �(⌧)mt + iuYt), (6.66)

where:

↵
⇤(⌧) = ↵(⌧) +

"
exp

 
iu

N
d
tX

j=1

Z̄j(Q)

!#
. (6.67)

Thus only the constant term in the exponential is changed.

6.6 Impact of Stochastic Volatility on FOMC Estima-

tors

This appendix addresses the concerns of impacts from stochastic volatility and jumps on the

FOMC announcement estimators.

The change from constant to stochastic volatility in addition to the augmentation of

asymmetric shocks could very well result in systematic biases of the term structure and time

series estimates, below we extend the conversation in Dubinsky et al. (2018) to two-factor

volatility models with non-constant contemporaneous jumps.
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Addressing the concerns around stochastic volatility. From Bates (1996) if discontinuities

to volatility and returns are independent then the stochastic volatility option price can be

expressed as the expectation of the Black-Scholes price, with the Black-Scholes implied

variance being the expected integrated risk-neutral variance:

EIVt,(T�t) = EQ
t

"Z
t+T

t

Vsds

#
. (6.68)

Assuming the Black-Scholes implied variance is an accurate approximation for the expected

risk-neutral variance, i.e.,

(�BS

t,T�t
)2 ⇡ EQ

t

"Z
t+T

t

Vsds

#
. (6.69)

The errors in assuming the above should generally be small for this analysis. Hull and White

(1987) find, for ATM options, the errors are 1.6% when ⇢ = �0.6 (and less than 1% with no

leverage e↵ect). While our parameter estimates (see Table 3.10) indicate a smaller correla-

tion value this e↵ect will be reduced by our use of very short tenor options which we use in

our empirical analysis.1

Addressing concerns raised by jumps. Chernov (2007) investigates the e↵ect of the ap-

proximation in models for index options with both jumps in prices and volatility, with a

non-zero correlation. Chernov concludes for ATM options the bias is negligible. Therefore,

we conclude assuming Equation (6.69) is acceptable and does not introduce any substantial

bias.

In the following discussion assume two ATM options maturing at T1, T2 (T2 > T1) with

a single FOMC announcement between time t and T1. For generality consider a two-factor,

square root, model as considered in Equations (3.1)-(3.3). However, in this Appendix for

completeness we consider the intensity varies with the level of the factors:

�t = �0 + �1Vt + �2mt, (6.70)

as in Bardgett et al. (2019), although we do not estimate a two-factor variance model with

1Although the errors can be large for OTM options, we use only ATM options for our estimation of �Q
j .
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non-constant intensity we include it here for understanding.

Each estimation methodology is e↵ected by the implied variance over option maturities.

Thus, to understand how stochastic volatility a↵ects the estimators we compute the expected

integrated variance, over an option which matures at time Ti:
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(Ti � t)� 1� e

�(
Q
v��1µQ

v )(Ti�t)


Q
v � �1v

◆
, (6.71)

for details of the computation of Equation (6.71) see Appendix 6.8. The term structure

estimators’ accuracy depends on how variable Equation (6.71) is with respect to Ti� t. Also

from above, the parameters which could impact the estimator are: mt�✓Q
m
,

Q
v
,

Q
m
,�0,�1,�2.

Unless there are large risk premiums ✓Q
m

⇡ ✓
P
m
. Bardgett et al. (2019) find evidence for

modest risk premium, suggesting ✓
Q
m

is larger under the historical measure, when using

returns and options on the S&P 500. Implying on average mt ⇡ ✓
Q
m
. However, for minimal

bias the term structure must also be flat to ensure even in periods of high volatility that Vt

is close to mt thus concluding Vt is also close to ✓Q
m
. Table 6.1 reports the implied variance

di↵erence between the interpolated 15 and 45 day ATM options, on trading days which are

not a↵ected by FOMC announcements. We choose these maturities as they closely represent

the front two maturities. We interpolate each IV cross section to get the 15 and 45 day

values as each cross section does not certainly contain these exact maturities. This process

is repeated for every 30 minute observation in each trading day and then averaged over each

year. From Table 6.1 all mean slope estimates using all data are negative, with the exception

of 2008. This is likely due to the impact of the financial crisis where short term volatility

was abnormally high. Even with 2008 the slope estimates are quite flat, especially for years

2012 on-wards, which is in agreement with Broadie et al. (2007) who find the gradient of

the IV term structure is small (< 1%) for S&P 500 options. As the IV term structure is

flat this implies Vt will be close to ✓Q
m
, on average. This is also supported by evidence from
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parameter estimations of the mean reversions. Bardgett et al. (2019) finds Q
m

= 0.383 as

well as evidence for a lower rate of mean reversion under the historical measure, implying a

very small rate of mean reversion in the stochastic central tendency. We find in Section 3.2.8


Q
m

is between 0.003 and 0.320, in support for a low rate of mean reversion. Furthermore,

as we only use short maturity options for our estimates, the conclusion is any impact from

stochastic volatility and shocks to the term structure estimator is small.

Next, consider the time series estimator. The estimators accuracy depends on how vari-

able Equation (6.71) is as a function of t. The time series estimator is given as:

(�BS

t,Ti�t
)2 � (�BS

t+�t,Ti�t��t)
2 = EIVt,Ti�t � EIVt+�t,Ti�t��t + (Ti � t)�1(�Q

j
)2, (6.72)

with EIVt,Ti�t being a function of Vt and EIVt+�t,Ti�t��t a function of Vt+�t. If Vt ⇡ Vt+�t

then the time series estimator will be accurate as the e↵ect of mean reversion over �t

(�t = one-hour) is negligible. However, if volatility changes substantially over �t then the

performance rapidly diminishes. Changes in Vt, from the specification above, are given by:

�v, �m,�, i.e., the Brownian paths and the jump intensity. Table 3.9 displays summary

statistics on the 1-hour variability in implied variance (IV). We choose a 1-hour interval as

when calculating the time series estimator we use information in the observations before and

after the announcement which is a 45 or 60 minute interval, depending on the announce-

ment time. Unsurprisingly, the highest average variability is in 2008 due to the financial

crisis. However, even with this, the 1-hour variability in IV is between 0.45% and 0.78%.

Dubinsky et al. (2018), comment in a daily frequency setting for individual equity options

the daily variability is between three to five percent, which implies normal variation could

cause significant movements in IV which would cause substantial errors in the time series

estimator. However, as our IV variability between observations is significantly lower errors

will be negligible. Next, consider the e↵ect of maturity. Intuitively di↵usive volatility is

more important for longer tenor options, magnifying the impact of shocks. As a result bias

will increase with maturity, however we use short term options, thus mitigating this damage.

Our conclusion is as follows: both term structure and time series estimates are reliable

and are robust to stochastic volatility and jumps. The term structure estimator depends on
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Table 6.1: Term structure slope estimates
This table provides the average term structure slope calculated as the di↵erence between 15
and 45 days at-the-money implied volatilities on trading days that are not within e↵ect of
FOMC announcements (we remove all data from 20 days prior to and 5 days after an FOMC
announcement). The columns High Vol use only trading dates on which the short-term ATM
implied volatility is at least 50% above its average. The columns Low Vol use only trading
dates on which the short-term ATM implied volatility is more than 25% below its average.
The columns 5% and 95% provide the 5% and 95% percentiles, respectively.

All
High
Vol

Low Vol

Year Mean 5% 95% Mean 5% 95% Mean 5% 95%

2008 1.65 -1.74 11.99 6.75 -1.22 15.79 -0.61 -1.79 0.74
2010 -1.06 -2.73 1.23 1.93 -0.14 4.31 -2.00 -3.25 -0.89
2012 -0.68 -2.05 1.37 1.51 -0.31 2.58 -1.81 -2.81 -1.39
2014 -0.72 -2.06 0.81 1.93 -0.08 4.53 -1.67 -2.17 -1.27
2016 -0.71 -2.18 1.86 0.77 -0.76 3.39 -1.71 -2.62 -1.08

Avg -0.31 -2.15 -2.15 2.58 -0.50 -0.50 -1.56 -2.53 -2.53

mt � ✓
Q
m
,

Q
v
,

Q
m
,� and the maturity, for reasonable parameters any bias will be small. The

time series estimator depends on �v, �m,� and the volatility shocks. In theory, as the term

structure estimator is subject to one additional parameter than the time series estimator, it

is a nosier estimator.

6.7 Pricing Method

The models are priced using the Fourier Cosine Transform method of Fang and Oosterlee

(2009). In this part of the appendix we detail the method and its adaptation to price the two-

factor models. For a probability distribution f(Y ), the associated characteristic function,

 (u) is

 (u) =

Z 1

�1
e
iuY

f(Y )dY, (6.73)

To improve computational e�ciency, we truncate the integration bounds to constants [a, b],

such that  ̂(u) ⇡  (u), where  ̂(u) denotes the truncated characteristic function. The

details of how to calculate these constants are explained below. Choosing to evaluate the
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characteristic function at u = k⇡

b�a
and multiplying by e

�i
k⇡a

b�a , yields:
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Y
f(Y )dY, (6.74)

=

Z
b

a

e
ik⇡

Y �a

b�a f(Y )dY, (6.75)

=

Z
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cos(k⇡(

Y � a

b� a
)) + isin(k⇡(

Y � a

b� a
))

!
f(Y )dY, (6.76)

where in the last step the Euler formula has been used. Taking the real part yields:
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b�a

)
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Z
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a

cos(k⇡(
Y � a

b� a
))f(Y )dY. (6.77)

Where the right-hand-side of Equation (6.77) is of the form of the cosine coe�cient from the

Fourier series expansion. Thus, we may write the Fourier series expansion of the probability

density f(Y ) as f̃(Y ), with form:

f̃(Y ) =
XN�1

k=0

2

b� a
Re

(
 ̂

 
k⇡

b� a

!
e
�i

k⇡a

b�a

)
cos(k⇡

Y � a

b� a
), (6.78)

after further truncation of the summation. Where
P

denotes the first term in the summation

is weighted by one-half. It is now possible to use this formalism to express path independent

European option prices. The value up to a constant C at time t of an option may be written

as

v(Y, t) = C

Z
b

a

v(YT , T )f(YT |Y )dYT , (6.79)

where v denotes the value of the option and YT is the natural logarithm of the forward price

at maturity, T. Substituting for the probability density function from the cosine expansion,

yielding

v(Y, t) = C

Z
b

a

v(YT , T )
X1

k=0

Akcos(k⇡
YT � a

b� a
)dYT . (6.80)
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Substituting for the Fourier cosine coe�cient Ak and truncating the summation yields

v(Y, t) ⇡ C

XN�1

k=0

Re

(
 ̂

 
k⇡

b� a

!
e
�i

k⇡a

b�a

)
Vk, (6.81)

Where we have defined

Vk =
2

b� a

Z
b

a

v(YT , T )cos(k⇡
YT � a

b� a
). (6.82)

As we only consider vanilla European options the payo↵ v(YT , T ) is expressed as

v(YT , T ) = max(◆K(eYT � 1), 0), (6.83)

where ◆ = 1 for calls and ◆ = �1 for puts. After integration of Equation (6.80)

V
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k
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2

b� a
K(⌅k(0, b)� �k(0, b)), (6.84)

V
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k
=

2

b� a
K(�k(0, a)� ⌅k(0, a)), (6.85)

where the functions ⌅k and �k have come from the integration of the payo↵ function with

the cosine and are given as:

⌅k(c, d) =

Z
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e
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b� a
)dYT ,
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1
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)ec
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The �k for k 6= 0, is given as

�k(c, d) =

Z
d
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cos(k⇡
YT � a

b� a
)dYT ,

=
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)� sin(k⇡
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!
, (6.87)
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for the case k = 0

�k(c, d) = d� c. (6.88)

In terms of calculating the truncation range [a, b] we follow Fang and Oosterlee who quote,

without proof, the formula:

[a, b] =

"
c1 � L

q
c2 +

p
c4, c1 + L

q
c2 +

p
c4

#
, (6.89)

with L = 10 and cn denoting the n-th cumulant. The cumulants are calculated as follows.

For a random variable X its corresponding cumulant generating function is given by

G(!) = log(E[exp(!X)]), (6.90)

= log( (�i!)), (6.91)

then the cumulants can be calculated using:

cn = G
(n)(0). (6.92)

Addressing the application to two-factor models. The complexity comes from the character-

istic function only being available via numerical solution of the Equations in (6.61)-(6.63), in

contrast to all the one-factor models where the characteristic function is available in closed-

form (even with the inclusion of the FOMC jumps as these simply modify the constant

term). In order to calculate the cumulants for the two-factor models numerical derivative

methods must be relied upon. We solve the di↵erential Equations in (6.61)-(6.63) via nu-

merical integration over a very fine grid in close proximity to zero. We use a cubic spline

interpolation to return query values from the numerical derivation procedure.2

On the subject of calculating the characteristic function we use the following procedure.

The di↵erential Equations (6.61)-(6.63) are solved overall unique maturities using a logarith-

mic grid with 4,500 points, ranging from 0 to 5,000. The reason for this choice of point spacing

2The algorithm for the numerical di↵erentiation is the derivest suite in Matlab.
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is the characteristic function behaves similarly to a damped sinusoidal motion. Thus for small

u large sample point density is required, however, for large u the function oscillates closely

around zero, requiring sparser sample point density. We use a cubic spline to interpolate the

query points k⇡

b�a
, which are the desired points of evaluation.
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6.8 Extracting Latent Volatility

This appendix provides a derivation of the expression used to calculate the risk-neutral

expected cumulative variance, an extension of the work of Duan and Yeh (2010). Once

again, for completeness we will consider a two-factor stochastic volatility model with non-

constant intensity, which depends on the level of the factors. Using Equation (3.1) to obtain:
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In order to calculate the expected cumulative variance we start by considering:
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Using the result for dVt from Equation (3.2), with a non-constant intensity, this produces:
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integration and taking the expected value yields:
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In order to calculate the integral in Equation (6.97) use the dynamics outlined out in Equa-

tion (3.3). Wishing to evaluate:
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substitution into Equation (6.97) yields:
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Final integration yields:
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Note if we set �1 = �2 = 0, we achieve the result for the expected cumulative variance of

Kaeck and Alexander (2012).

The central tendency calculation is as follows. As we do not model for jumps in the

central tendency we start from:

d(e
Q
mt
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Q
m
e
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Q
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Q
mtdmt. (6.101)



6.8. EXTRACTING LATENT VOLATILITY 177

Using Equation (3.3) to substitute for dmt, after cancellation:
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integration yields:
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taking expectation values and final integration yields the end result:
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By the definition of the VIX over the interval (T � t):
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using the generic payo↵ decomposition theorem
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� ln(Ft/x)� EQ
t [ln(FT/Ft)].

Choosing the threshold x = Ft(T � t) yields:
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yielding:
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Where:

� = �0µ̄, (6.110)
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6.9 Time Series Simulation Multi-Factor Models

The purpose of this appendix is to detail the checking procedures we use to ensure the

numerical methodology to price the two-factor models is correct and errors produced are

acceptable. We compare the numerical ordinary di↵erential equation (ODE) framework

solution to the model (as detailed in Appendix 6.7) with that of a Monte Carlo (MC)

framework.

We use an Euler discretization scheme for the asset price and variance processes, with a

full truncation to tackle the issue of negative variances (see Lorde et al. (2010)). Conditional
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on a time s for t > s the discretization scheme for the asset price and variance processes are:
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where Yt denotes log(Ft), the log forward price. Denote �t = t � s, zV , zm ⇠ N (0, 1) and

zS = ⇢zV +
p
1� ⇢z with z ⇠ N (0, 1) and x

+ = max(x, 0), refers to the full truncation

scheme. To simulate the Poisson process we use a Bernoulli process, denoted by bt, which

takes the value either 0 or 1 and is identically distributed and independent. This scheme is

used to generate 20 di↵erent sample paths of weekly returns and latent variances over one

year, i.e., 52 observations with �t = 7 days.3 At each observation time we simulate seven

unique maturities between 4 and 550 days to maturity. Following a maturity profile of the

first three monthly’s, then followed by three quarterly option expiries and finally one yearly

expiry. We simulate strikes which create a moneyness range between 0.8 and 1.1 across one-

hundred strikes. Each option price is computed using the MC framework4 using 500, 000

simulations and a time-step of 1/40th of a trading day for maturities less than 30-days and

50, 000 simulations and a time-step of 1/10th of a trading day for maturities greater than

or equal to 30-days.5 This choice of simulation paths and time-step based upon maturity

is somewhat ad-hoc, but reasonable. Table 6.2 documents static VWRMSE values between

the MC procedure and the numerical ODE framework solution, compared for five maturities

in the maturity range. This static exercise is done using an ad-hoc but reasonable parameter

vector. From column two of Table 6.2 the SV model has errors ranging from 0.0437% to

0.1185%, column three documents a range for the SV2 model of 0.0204% to 0.1643% and

column four presents an error range for the SVCJ2 model of 0.0187% to 0.1897%.

While all model errors from Table 6.2 across the maturity range are negligible, it is

3We choose a time step of one week so that the variance and central tendency demonstrate reasonable
change.

4In order to reduce the variance of the estimated prices we use antithetic variates when simulating our
standard normal random numbers used in zV , zm, zS .

5The reason we use two di↵erent time-step and number of simulations regimes is due to computational
burden.
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Table 6.2: Static VWRMSE of Monte Carlo against numerical ODE solution
Static VWRMSE between MC solution and ODE framework solution. This is taken
across five di↵erent maturities ranging between 4 and 550 days to expiry, displayed
in the first column under DTM. The other three columns display the VWRMSE,
as a percentage, for each model: SV, SV2 and SVCJ2. The parameter vec-
tors are as follows: ⇥SV CJ2 = {v, ✓m, �v, ⇢,m, �m,�, µy, �y, µv} and ⇥SV CJ2 =
(1.1768, 0.082259, 0.43746,�0.54589, 2, 0.2, 5,�0.005, 0.014, 0.013). Where ⇥SV

,⇥SV 2 are
the first four and six parameters of ⇥SV CJ2 respectively.

DTM SV SV2 SVCJ2

4 0.0701 0.0701 0.0484
30 0.0437 0.0284 0.0397
100 0.1185 0.0204 0.0187
200 0.0535 0.164 0.1430
550 0.0535 0.0291 0.1897

necessary to undertake a calibration exercise against the simulated time-series data in order

to establish there are no errors or inconsistencies in the ODE framework. The calibration

process is done using the objective function defined in Equation (3.15). As initial conditions

we start with the true parameter vector, i.e., ⇥true, we also pass the variance paths at each

cross-section. The results of the simulated calibration exercise for models SV2 and SVCJ2

are reported in Table 6.3, we also report results for the SV model in order to benchmark

the errors expected from the MC on the first four parameters. Comparison between the

numerically related models (SV2 and SVCJ2) with the SV Bias and RMSE show negligible

errors come from the numerical framework as the Bias and RMSE across the three models

are comparable. In examining the RMSE and Bias columns of the SV2 and SVCJ2 models,

it appears the following parameters: V ,m, �m might prove a challenge to estimate in a full

calibration setup, as they have the highest Bias and RMSE values, consistent across models.
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Table 6.3: Simulated calibration exercise
Simulated results for calibration exercise between the SV, SV2 and SVCJ2 models generated
from the MC framework and the proposed numerical framework (only relevant for the SV2,
SVCJ2 models). The models are estimated with the VWRMSE objective function defined
in Equation (3.15). True parameters used in the MC simulation are given by the True row.
Mean bias between the true parameters and the calibrated parameters are given in the second
row denoted Bias. Third row RMSE reports the standard deviation of calibrated parameter
results.

SV SV2 SVCJ2
True Bias RMSE True Bias RMSE True Bias RMSE

v 1.177 0.004 0.005 1.177 0.005 0.009 1.177 0.002 0.008
✓ 0.080 0.000 0.000 0.080 0.000 0.000 0.080 0.000 0.000
�v 0.400 0.004 0.004 0.400 0.005 0.003 0.400 0.000 0.000
⇢ -0.546 0.019 0.007 -0.546 0.013 0.004 -0.546 0.002 0.004
m 2.000 0.005 0.040 2.000 0.019 0.060
�m 0.200 0.071 0.055 0.200 0.074 0.087
� 5.000 0.000 0.000
µy -0.005 0.001 0.001
�y 0.014 0.000 0.001
µv 0.013 0.000 0.000

6.10 Short Maturity Data Set Calibrations

This appendix reports the results of the short maturity data set calibrations we use to pro-

duce the results in Table 3.13. We calibrate the original model (SV or SVJ) to each the short

and ultra-short maturity categories. The results from the calibration exercise is displayed

in Table 6.4. In comparison between the reduced maturity data sets and the full maturity

profile the SV model changes to parameters do not qualitatively change the probability den-

sity function, except for the �v estimates, which are consistently and significantly higher.

This increased value causes weight to shift out of the tails and into a sharp peak. Regarding

the SVJ model the change in parameters does not qualitatively change the probability dis-

tribution significantly. The final step to produce Table 3.13 is to fix the original structural

parameters and allow the time adjusted component to vary. In this way we ensure any error

reduction is completely down to the e↵ect of accounting for a particular volatility seasonality

and not some non-trivial interplay of the time component with one or more of the original

model’s parameters.
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Table 6.4: Parameter estimates (reduced maturity data sets)
This table reports the estimates of the SV and SVJ models. We report results on two
di↵erent maturity categories ultra-short (between 4 and 7, inclusive, days to maturity),
short (between 8 and 20, inclusive, days to maturity). The models are estimated with the
VWRMSE objective function defined in Equation (3.15). Latent volatility estimates are
computed using an extended approach of Duan and Yeh (2010) given in Appendix 6.8. The
parenthesis report asymptotic standard errors. The Err. column denotes the model Vega-
Weighted RMSE (VWRMSE), given in a percentage.

Year Cat. Model Q
v ✓Q �v ⇢ � µQ

y (%) �Q
y (%) Err.

2008
Ultra-
Short

SV 8.18 0.03 5.04 -0.48 4.94

(0.18) (0.00) (0.07) (0.01)
SVJ 14.87 0.03 2.49 -0.69 20.53 0.54 1.75 2.00

(0.35) (0.01) (0.12) (0.04) (0.16) (0.01) (0.00)
Short SV 2.00 0.12 1.27 -0.67 1.54

(0.00) (0.00) (0.01) (0.00)
SVJ 1.67 0.13 1.23 -0.80 20.00 -0.11 1.94 1.52

(0.07) (0.00) (0.01) (0.01) (0.68) (0.00) (0.00)

2010
Ultra-
Short

SV 2.01 0.09 3.70 -0.46 2.03

(0.07) (0.00) (0.04) (0.00)
SVJ 2.01 0.12 4.42 -0.51 20.00 -0.37 1.81 2.01

(0.02) (0.00) (0.04) (0.00) (0.27) (0.00) (0.00)
Short SV 3.47 0.11 2.37 -0.63 1.82

(0.03) (0.00) (0.01) (0.00)
SVJ 2.93 0.20 2.61 -0.72 19.99 -0.45 2.28 1.53

(0.01) (0.00) (0.01) (0.00) (0.08) (0.00) (0.00)

2012
Ultra-
Short

SV 2.93 0.04 2.51 -0.45 1.63

(0.05) (0.00) (0.02) (0.00)
SVJ 3.46 0.05 2.46 -0.53 19.98 -0.05 1.17 1.51

(0.06) (0.00) (0.02) (0.00) (0.35) (0.00) (0.00)
Short SV 3.35 0.08 1.50 -0.58 1.30

(0.03) (0.00) (0.00) (0.00)
SVJ 3.02 0.09 1.15 -0.94 16.64 -0.05 2.02 0.91

(0.01) (0.00) (0.00) (0.00) (0.05) (0.00) (0.00)

2014
Ultra-
Short

SV 10.32 0.02 2.91 -0.52 1.90

(0.29) (0.00) (0.03) (0.01)
SVJ 6.56 0.01 0.85 -0.76 0.78 -5.06 8.90 1.28

(0.35) (0.00) (0.05) (0.05) (0.08) (0.01) (0.00)
Short SV 13.33 0.02 2.16 -0.58 1.27

(0.08) (0.00) (0.00) (0.00)
SVJ 10.74 0.03 2.38 -0.59 8.97 -0.57 1.72 1.21

(0.09) (0.00) (0.01) (0.00) (0.14) (0.00) (0.00)

2016
Ultra-
Short

SV 10.02 0.03 2.34 -0.55 2.27

(0.20) (0.00) (0.03) (0.01)
SVJ 9.98 0.03 2.42 -0.60 20.01 -0.08 1.15 2.24

(0.27) (0.00) (0.05) (0.02) (0.52) (0.00) (0.00)
Short SV 6.91 0.04 1.66 -0.66 1.70

(0.04) (0.00) (0.00) (0.00)
SVJ 5.87 0.04 1.70 -0.73 19.99 -0.04 1.22 1.65

(0.02) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
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6.11 Maturity Related E↵ects

Here we demonstrate the e↵ects of using too many long term options in the sample data

and its e↵ect on time adjusted parameter estimates from the calibration exercise. Figure

6.1 displays the objective function (Vega-Weighted RMSE (VWRMSE)) as a function of the

trading ratio Rtr for the SVtr model in 2010 using the short maturity data sample. Clearly

for Rtr less than approximately 0.25 the objective function becomes incredibly flat, with

little variation for large moves in value of Rtr. As a result the optimiser6 will struggle to

find a value and often ends up choosing a fairly extreme value in these cases.

6We use a derivative based optimser called patternsearch from the Global Optimizer Toolbox in Matlab.
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Figure 6.1: Trading ratio VWRMSE
Vega-Weighted RMSE (VWRMSE) plot for the SVtr model calibrated to the short maturity
data set (between 8 and 20, inclusive, days to maturity) in 2010. The horizontal axis displays
the trading ratio between the model and the calendar time convention Rtr and the vertical
axis displays the VWRMSE in percentage.


	PhD Coversheet
	PhD Coversheet

	Wiesendanger Shaw, Nathaniel



