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Recorded Doc Brown: No, no, no, no, no, this sucker’s electrical, but I need a

nuclear reaction to generate the 1.21 gigawatts of electricity I need...

Doc Brown in 55’: 1.21 GIGAWATTS!!?? 1.21 GIGAWATTS!?... Great scot.

(Stumbles out of the room)

Marty: What the hell is a gigawatt?!

-Back to the Future, Part I.
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Cavity QED Implementations for Distributive Quantum Computation

Abstract

The coupling of a single ion to an optical cavity is a promising route towards scalable

quantum technologies. This study presents the design, initial construction and sim-

ulations of two different ion traps for quantum computation with novel capabilities.

The first system is an end cap system that utilises Fabry Perot cavities formed by the

facets of fibres. The small mode volumes (cavity length ∼ 300µm) of the fibre cavities

are ideal to achieve high cooperativity and coupling strength. This trap features the

novel ability to mechanically adjust the position of the ion by perturbing/distorting the

trapping potential with grounded side electrodes. A capability crucial to maximising

the ion-cavity coupling. The design incorporates a number of improvements over the

previous iteration by Takahashi et al. such as increased optical access, increased mode

matching and improved mechanical stability of the cavity. To verify and test the design

modifications; Pound-Drever-Hall cavity locking was set up.

The test set up failed to lock to an error signal due to a mechanically unstable trans-

lation stage. The other design presented is a linear micro trap intended to trap strings

of ions and does not use fibre based cavities. This design features multiple different

regions reserved for storage, computation and communication and aims to implement

a shuttling scheme that will allow the selective loading of single ions from a reservoir of

ions into the desired regions. The fabrication process would utilise methods in micro-

fabrication. Simulations of the trapping dynamics were used to optimise the electrode

geometries and splitting protocol.
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1 Introduction

1.1 Requirements of a Quantum Computer

One of the earliest proposals for an algorithm that would solve problems faster than

a conventional computer was Shor’s algorithm [1] in which a large integer N can be

decomposed into it’s constituent prime factors. A quantum analogous Turing Machine

(aka a quantum computer) would solve said problem and others exponentially faster

than a classical computer. However, it wasn’t until 1996 at IBM’s research division

when David Di’Vincenzo outlined a set of requirements that would suffice to create a

physical quantum computer [2]. They include:

1) A scalable physical system with well characterised qubits.

2) The ability to initialise and prepare the state of the qubits to simple fiducial states.

3) Controlled unitary transformations which would enable a “universal” set of quantum

gates.

4) Long decoherence times, (larger than the gate operation time,(a quoted decoherence

time of 1× 106 times longer than the gate operation time)).

5) A qubit specific measurement capability.

The ‘qubits’ being analogous to the ‘bits’ of the classical computer. Trapped ions have

been demonstrated to be a suitable candidate meeting the first five requirements. Ions

surpass other qubit species on a number of aspects such as qubit coherence times [3],

readout fidelities of 99.99% [4] and the ability to be trapped for days [5].

Further outlined in Di’Vincenzo’s paper was the advent for a quantum computer to

communicate with other quantum computers potentially forming a type of ‘quantum

network’ [6]. Such a network would not only enhance quantum computation but would
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enhance the emerging fields of sensing [7], time keeping [8], cryptography [9] and commu-

nication. To envision a system that would facilitate both, two additional requirements

were established, namely:

6) The ability to inter-convert stationary and flying qubits.

7) The ability to transmit flying qubits between distant locations.

Photons are often referend to as nature’s communication qubit given their current

use in long distance communication both in free space [10] and via optical fibre [11].

The natural counterpart to trapped ions are the photons they emit and given the

ions capability to be entangled with the photon’s parameters (such as polarisation

and frequency) make trapped ions a more desirable candidate for a scalable quantum

computer. However, the interactions that govern the exchange of ions to photons is

inherently weak. The enhancement of this interaction would require placing the ion in

an optical resonator.

From this emerges cavity quantum electrodynamics (cavity QED), in which the inter-

action of the ion/atom and the cavity field is reversible and the coupling of the two

systems can be optimised to exceed the rate of decay of the irreversible process of the

photons decaying from the cavity and the decay rate of the atom. Analogous models

are seen in circuit QED in which Cooper pairs are coupled to superconducting strip line

resonators. Cavity QED in the optical domain is particularly useful in quantum net-

working in which low temperature environments are not required and fibre optics can

facilitate the exchange of photons over long distances. In recent years the development

of high quality Fabry Perot optical cavity mirrors [12] enable the exploitation of the

interaction between the ion and the modes that exist within the cavity. This interac-

tion has been shown to produce single photons deterministically [13], a crucial step in

realising a quantum network. Micro-cavities machined from the facets of optical fibres

often referred to as fibre based Fabry Perot cavities (FFPC) have been a promising
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component in the development of cavity QED systems.

In addition to the aforementioned aspects of trapped ions, other benefits include their

inherent indistinguishability. Current standards in fabrication of other qubit species

such as diamond nitrogen vacancy centres, quantum dots and superconducting qubits

do not necessarily yield identical qubits which leads to issues in implementation, [14].

It is worth adding that within the wider context of the development of a scalable

quantum computer, that the current dominating approach of which is being pursued

by the likes of IBM and Google are superconducting qubits [15, 16]. Thus far, these

systems have quickly rose to a successful standard in achieving a large number of qubits

(53 as of 2019 [17]).

However, it has been noted that due to the conditions that these qubits require (namely

the sub millikelvin temperatures that are provided by dilution refrigerators) further

scaling these systems may pose to be technically challenging and thus this architecture

may pose an issue towards scalability.

Creating a scalable system of qubits is an important step in realising a quantum com-

puter. Whereas the dominating approach in the US has been superconducting qubits,

in the UK trapped ions have been the favoured candidate. Two approaches have been

perused; one entails creating a segmented array of multiple of ions in a CCD like ar-

chitecture, dubbed as a quantum charge coupled device (QCCD). The other is a mod-

ular/networked approach in which individual traps are interconnected via optical links

[18].

In the former; a device would typically house various segments reserved for different

purposes such as memory or computation. The ions are transported by means of shut-

tling to their relevant regions. One of the earliest proposals for a two qubit quantum

gate for trapped ions was developed by Cirac and Zoller [19] dubbed as the ‘controlled-

NOT gate’. More recently, two qubit ion trap gates with fidelities as high as 99.9 %

have been achieved [20]. However, scaling a single QCCD devices pose a number of
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difficulties such as heating and efficient scalability [21]. To this end, the latter of the

two aforementioned means of scaling would be more suitable.

Trapped ions also feature the smallest ratio of entanglement generation time to en-

tangled state coherence time (order of seconds) [22]. Neutral atoms are the closest

in comparison with similar entanglement generation times to trapped ions but feature

entanglement coherence times in the order of microseconds [23]. As the ratio increases,

the overhead in resources (defined in [24] as the ratio squared) increases. These partic-

ular features make trapped ions favourable when implementing a scalable architecture

based on entanglement schemes.

To this end, trapped ions have been proven to be a promising platform that meet all

the requirements of Di’Vincenzo’s criteria with algorithms on chains of up to 79 ions

have been demonstrated [25]. Thus, a quantum network (QN) comprised of trapped

ions would not only facilitate quantum computation but would also enable scalability

in a distributive like scheme. A QN of such (or a quantum internet [6]), would use ions

due to their long storage lifetimes as the stationary qubits dedicated to gate operations

and photons to act as the flying qubit that facilitate state transfer and to act as com-

munication channels. Further developing the exchange of information between the ion

and the photon is of central importance in the development of a quantum network.

1.2 Approaches to Quantum Networks

Within the networked approach individual traps exist as a node or module [18]. Each

module contains a manageable number of trapped ions and are interconnected via

optical links. These optical channels carry the photons via optical fibres with little

decoherence. However there exists some form of exponential decay of the photon due to

scattering and absorption losses within the fibre. Classically, this has been circumvented

with the use of a repeater that amplifies the signal. A quantum analogous repeater

circumvents the no-cloning theorem [26] and has been the basis for a large scale QN
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for communication. On the other hand, QNs that do not rely on quantum repeaters

have been proposed for large scale computation. These form a distributive quantum

computer with individual nodes working in parallel with other nodes.

Two key approaches to QN exist, the first scheme is of a deterministic approach first

introduced in [27], their theoretical protocol outlines quantum transmission with unit

probability. Their set-up consists of two separate atoms in optical cavities connected

via a transmission line. Information of the internal state of an atom in one node is

transferred to the optical state of the cavity mode, the time-symmetric photon is trans-

ferred via the transmission line (optical fibre) to the second node, the optical state of

the photon in the second cavity is then mapped to the second atom. This deterministic

proposal relies on strong coupling of the optical cavity to the atoms (discussed further

in Chapter 2). Although strong coupling of a single ion to an optical cavity [28] and

schemes of deterministic photon generation [29] have been demonstrated. Achieving a

deterministic network of trapped ions has been technically challenging predominantly

due to the requirement of high finesse optical cavities [30] and the small mode vol-

umes required. Further details on the requirements of optical cavities are discussed in

Chapter 3.

Alternatively, a probabilistic network is the second approach and is one that trades small

mode volume optical cavities and the challenges that come with their implementation

for longer operation times and lower efficiency. The entanglement scheme is repeated

until a successful outcome is reached and hence unit efficiency is lost [31]. In the

probabilistic scheme, entanglement is heralded by the detection of an external photon,

this detection projects the two atoms into an entangled state.

Fig.1 demonstrates a similar scheme to one of the earlier demonstrations of a probabilis-

tic network [32]. A cavity mediates a Raman transition with the use of a π-polarised

laser pulse which drives the ion from its ground state (S1/2) to the excited state (P1/2),

this generates orthogonally polarised σ cavity photons which are dependant on the
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ion’s state. The entangled state of the ion is |ψ〉 = (|0, σ+〉+ |1, σ−〉)/
√

2. The photons

emerge from the cavities and depending on their polarisation enter the detectors. For

photons of the same polarisation both leave the same port and either enter detector 1

or 2. For photons of different polarisation; 50% of cases one detector will indicate a

measurement while during the other 50% both detectors will register a measurement.

For the latter of the two cases, this event heralds the entanglement of the two ions and

is in a state |ψ〉 = (|0, 1〉 + |1, 0〉)/
√

2. The schemes have been demonstrated to work

with 40Ca+ at a fidelity of 91%, [33]. The most recent demonstration of a heralded

scheme yielded a fidelity of 94% without the use of an optical cavity [34].

In principle these schemes do not require cavities, however the use of optical cavities

have shown to increase the fidelity of the process. The use of a cavity will enable the

ion to be coupled to a particular mode of the cavity which will enable coherent control

of the interaction and will greatly increase collection efficiency. For ions in free space,

the desired photon could be emitted in all directions and only a small fraction of light

is collected through a high numerical aperture lens and hence the collection efficiency

is limited.

A recent milestone was demonstrated [33] in which tunable entanglement (control of

the phase and amplitude of the entangled state) of a single calcium ion and a photon’s

polarisation in an optical cavity is demonstrated. The scheme shows that no coherent

manipulation of the input state is necessary.
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Figure 1: The simplest example of a quantum network consists of two ions linked by
entangling the ion’s state to the photon’s polarisation. The two ions with a lambda
scheme are each in an optical cavity, beam splitters (50:50) are used to filter two gen-
erated σ polarised photons. A detection is made, heralding successful entanglement.

1.3 Coupling Ions to Optical Cavities

Deterministic entanglement has been a long elusive goal with trapped ions. One route

towards this is by having good atom-cavity cooperativity or by reaching the strong

coupling limit in which the atom-photon coupling greatly exceeds both the non-resonant

decay of the atom and the photon decay rate of the cavity. Being in the strong coupling

regime would increase efficiency and coherence of the system. Recently the achievement

of strong coupling between a single calcium ion in an optical fibre cavity [28] suggests

that such a goal is within near reach. The design used by Takahashi et al. is an end

cap style Paul trap, in which the cavity is incorporated within the main rf trapping

electrodes. The system also allows mechanical translation of the cavity such that an

optimal overlap between the cavity mode and the ion could be achieved axially whilst
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allowing for precise positioning of the ion radially in the order of micrometres. Although

the need for such fine adjustment is crucial in optimising the coupling it adds a level

of complexity specific to this system. Nonetheless, due to the scale of the cavity and

their proximity to the ion, this novel design allows for a minimal mode volume (a key

parameter in maximising the coupling strength). To overcome the issue of dielectric

interference of the cavity surface with the trapping field, the fibre cavities were retracted

into the electrodes by 5 − 10µm. It is currently the only ion trap system to achieve

strong coupling to an optical cavity. Unlike other fibre based cavity QED traps, the

cavities used in [28] feature a high degree of rotation symmetry which leads to low

birefringence. Other Paul traps that have incorporated fibre cavities with the aim

of achieving strong coupling have demonstrated the spatially dependant coupling of

the ion to the cavity field [35]. In this trap, the arrangement of the cavity and the

electrodes yield significantly less optical access to the ion in the z-y plane (15°) [36]

than in [28]. Similar traps that feature fibre based cavities with mirror coatings for

ultraviolet wavelengths have been reported to show little to no degradation over the

course of 9 months but feature a large photon cavity decay rate, limiting the system to

the weak coupling regime [37].

A vastly different trap to the end cap Paul trap used by Takahashi et al. is a linear trap.

These particular systems are useful for trapping multiple ions in the form of stings.

Linear traps combined with optical cavities have been implemented to demonstrate

coherent control of the ion’s emission into a single spatial mode and the ability to

control the temporal shape of the emitted photons, [38]. In this particular set-up, the

cavity is placed in the dc endcap electrodes and features a length of 5.3 mm which

yields a large mode volume, the cavity and ion are weakly coupled.
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(a) (b)

Figure 2: a) The electrode configuration of the system used by Takahashi et al. A pair
of electrodes with incorporated fibre cavities (upper electrode shows cross section to
highlight internal structure), surrounded by four electrodes on the radial plane [39]. b)
Microscope image of electrode cavity assembly.

1.4 Structure of Thesis

The study presented in this thesis looks at the development of a single node of a trapped

ion cavity QED processor. Chapter 2 discusses a novel proposed design of an endcap

style Paul trap based on a previous successful design that achieved strong coupling [28].

It explores a novel method of precisely positioning the ion with respect to the cavity

mode by distorting the trapping potential. In chapter 3 a number of issues during the

construction of a test system that are inherent to the implementation of fibre based

cavities in a cQED set-up are uncovered, such issues concern the structural stability

and optical limitations. In chapter 4 an alternate system is proposed. A linear style trap

without the use of fibre cavities that rely on methods of microfabrication. The proposed

alternative employs a shuttling and splitting based scheme in which separate regions of

the linear trap are reserved for tasks such as loading, computation and communication.
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2 A Novel End Cap Paul Trap

2.1 Introduction

A key development in atomic precision spectroscopy is the ion trap. The ability to

address individual particles with great precision and for long periods of time further

allowed the development in other fields such mass spectrometry and in precision time

keeping (atomic clocks). As highlighted in Section 1.2 trapped ions are now a strong

candidate for a scalable quantum computer. The two main types of ion traps are the

Penning trap and the Paul trap, both of which are being used to develop scalable

quantum computing devices. However, this thesis will focus on the latter.

The design used by Takahashi et al. [28] was the result of multiple iterations and was

developed over the course of years. An improved version of the end cap style system used

in [28] is discussed later in this chapter, with the objective of improving the system’s

performance. The system in [28] successfully achieved a coupling strength of g0 =

2π(15.1 ± 0.1) MHz, an atomic decay rate γ = 2π(11.5) MHz and a cavity decay rate

of κ = 2π(4.1± 0.1) MHz which satisfies the condition for strong coupling, namely g >

γ, κ. Various design limitations of this system are pointed out and the possible design

flaws that led to this are discussed. The new design addresses elements concerning

the mechanical stability of the cavity, optical access, limited coupling to the desired

mode and incorporating a novel feature in controlling the ion’s position. The goal is

to increase the coupling strength and to demonstrate a deterministic scheme. Prior to

this discussion some basic ion trapping theory is outlined and later simulations results

done via a finite element simulation model (COMSOL Multiphysics) that highlight the

new trap’s capability in controlling the ion’s position are presented.
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2.2 Ion Trapping Theory

The purpose of this subchapter is out outline some of the background theory associ-

ated with ion trapping. The equations derived will be useful in determining the ideal

trap geometry for an improved endcap Paul trap as well as understanding some of the

dynamics of ion trapping which will be used in Chapter 4.

Earnshaw’s theorem states that: “A charge acted on by electrostatic forces cannot rest

in stable equilibrium in an electric field”. This theorem is a direct consequence of the

fact that an electric field has no divergence in a region with no charge density. Maxwell’s

equation reads
#»5D = ρfreespace, assuming ρfreespace = 0 the divergence of zero suggests

that there are no sources or sinks. A static field alone will be incapable in trapping a

charged particle in three dimensions, as will be made clear later, the Paul trap [40] was

a means around this.

Beginning with solving Laplace’s equation (
#»52φ = 0) at the lowest order expansion

the non-static potential can be expressed as

φ = αx2 + βy2 + γz2. (1)

By choosing constants α + β + γ = 0 appropriately, the potential can be reduced to

φ = k(r2 − 2z2). (2)

In a cylindrically symmetrical system where r is the radial dimension (x2 + y2). The

potential is comprised of a static dc field and an oscillating rf. The rf voltage takes the

form V = V0 · cos(Ωt). When boundary conditions are incorporated for an end cap trap

(Fig. 4) the potential can be simply expressed as
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φ =
−Udc + Vac · cos(Ωt)

(2z2
0 + r2)

(r2 − 2z2). (3)

Where Udc are the dc potentials and Vac are the rf potentials and Ω is the frequency of

the rf. The equations of motion in the radial and axial degrees can be expressed as

#»

F = m #̈»x = −e5 #»

φ, (4)

substituting equation (3) and (4), we obtain a result that can be expressed as

Fr =
2e

r2
0 + 2z2

0

Udc + Vac cos(Ωt) · r. (5)

This is a form of the Mathieu equation and can be expressed as:

d2r

dτ 2
+ (a− 2q cos(2τ))r = 0, (6)

where τ = Ωt
2

and the two parameters a and q govern the dynamics of the trapping

behaviour. A set of solutions that govern the stable motion of our ion, (i.e. when the

ion is bound to our potential) can be found, these are

az = −2ar =
−16eUdc

mΩ2(r2
0 + 2z2

0)
, (7)

qz = −2qr =
−8eVac

mΩ2(r2
0 + 2z2

0)
. (8)

Plotting a and q for the axial and radial directions gives us the stability diagram which

highlights the boundary in which the ion’s motion exists stably.
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Figure 3: The stable trapping region for an ideal Paul trap as a function of dc amplitude
U and radiofrequency amplitude V. Stable confinement in both x and y is achieved in
the overlapped region at the centre. [41]

These solutions have been obtained from [42] and for small amplitudes and a and q can

be approximated as

u = u1 cos(ω1t+ ψ1) +
[q

2
cos(Ωt)

]
, (9)

with u = z, r. The motion consists of a slow oscillation of the ion’s position with

frequency ω which is the secular frequency and a fast oscillation with the trap frequency

called the micromotion. The secular frequency is given as.

ωi =
1

2
Ω

√
ai +

1

2
q2
i . (10)
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Figure 4: An ideal geometric structure of an end cap Paul trap, end caps provide a rf
while the ring of radius r0 provide rf ground [43]

2.2.1 Pseudopotential Approximation

The pseudopotential is the time averaged potential energy of an ion in a potential well,

it is a useful means of describing the ion’s behaviour. From which, the ion’s secular

frequency, trap depth and stability parameters (a, q used later to rely on to optimise our

trap design) can be determined. For an oscillating electric field of ~E(r, t) = ~E0 cos(Ωt),

the time averaged potential experienced by the ion is

φ̃ =
1

4

e| ~E(r, t = 0)|2

mΩ2
, (11)

where e is the electron’s charge, m is the mass of the trapped particle, Ω is the frequency

of the oscillating field.

Using φ̃ ∝ eαu2 the secular frequency which can be found for real electrode shapes by

extracting the second order coefficient α

ω =

√
2αe

m
. (12)

The above equations will be used later when simulating the behaviour of the trapping

dynamics and when exploring different trap geometries.
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2.3 Designing an End Cap Trap

2.3.1 Previous Designs

Prior to simulating the trapping dynamics of a new trap, the elements and design

features of the previous ion trap used in [28] are examined and arguments for improve-

ments are discussed below. Later in the thesis, a test set-up that incorporates those

improvements is constructed and the initial phase of which is presented in this chapter.

The cavity within the system [28] employed a robust Pound-Drever-Hall locking (PDH)

scheme [44]. Despite this, a significant limitation of this system was the stability of

the cavity lock. This was a great constraint on the experiment. When exploring the

possible reasons, it was proposed that the entire structure of the trap, in particular the

cavity-electrode assembly was insufficiently rigid.

Another key element of the cavity QED system is the mode volume of the cavity. Given

that the coupling strength between the ion and cavity is proportional to the inverse of

the square root of the cavity mode volume; a system in which the cavity is of mini-

mal mode volume and within close proximity to the ion was designed. The final design

used tubular electrodes with fibre cavities carefully inserted and aligned concentric with

respect to the electrode. Ultrahigh vacuum compatible epoxy (LOCTITE STYCAST

2850-FT) was used to secure both components together. However, as can be seen in

Fig.5 only a small quantity of epoxy was applied at the back of the electrode holding

the fibre and electrode together. It has also been later found that the glass transition

temperate of the epoxy was 86°C which would have altered its structural properties (to

behave less like glass and more like rubber) after the bake out process, which is above

this temperature. Given that the fibre diameter was 200 µm and the inner diameter

was 300 µm, this left a large amount of space between the two components. Together

with such a gap, the electrode length being (6 mm) and the nature of the epoxy post

baking; the fibre within the assembly was unsupported and prone to vibrations. Addi-
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tionally it was also recommended that a future design would feature fewer structural

components.

(a) (b)

Figure 5: a) Close up of the rear of electrode fibre assembly showing the quantity
and location of STYCAST applied. b) Microscope image of electrode cavity assembly,
highlighting the space between the fibre cavity and electrode [43].

Other limitations of the trap include optical access. The maximum angle the beams

can enter the trap is 12° with the horizontal plane, this severely limits the degree to

which the ion can be optically cooled. Additionally, cooling in the axial direction is also

limited due to the dimensions of the trap chamber. In particular optical access through

the windows was reduced due to the installation of coils to compensate for magnetised

stainless steel electrodes used to provide the rf trapping field. Better cooling of the

ion will allow for better localisation of the ion and hence enable larger coupling to the

desired TEM00 mode.

In addition to limited locking stability of the cavity and poor optical access, the fibre

cavity used is comprised of a single-mode (SM) fibre providing input light into the

cavity and a multi-mode (MM) fibre used for florescence collection. Unlike free space

cavity mirrors, which allow for the modes within the cavity to be matched with the

input/output modes, fibre cavities do not have this capability. Any matching of the

26



modes within the cavity and the input/output light is solely the overlap of the two.

Mode matching is also limited by the cavity length. When this length is greater than

the Rayleigh range of the mode exiting the input SM fibre, the mode matching decreases

drastically. To this end, an improved design aimed at addressing the three limitations

stated above was the basis for the next design.

To address the issue of poor locking stability; the structure of the cavity-electrode

assembly has been improved, this was done by changing the dimensions of the electrodes,

reducing the spacing between the two from 50µm to 10µm. And by modifying the

insertion process used in [43] a repeatable technique was developed in which both the

fibre and cavity are secure as one component, this was done by filling the space between

the electrode and fibre cavity with epoxy. An entirely new design increased optical

access from 12°(to the horizontal) to 31°, by reducing the dimensions of the electrodes

and by using gold coated copper electrodes. To increase mode matching, the new design

will feature a generation of fibre cavities that incorporate integrated mode matching.

This was done by concatenating a SM fibre to a Graded Index (GRIN) fibre to a MM

fibre. The resulting mode matching was reported to be up to 90% for cavities of lengths

up to 400µm [45].

2.3.2 The New Design

In the system used by Takahashi et al. there exists four side electrodes which are all 1

mm away from the trap centre. Two of which provide an rf which is in phase with the

main rf. This moves the pseudopotential minimum radially to optimally overlap with

the cavity mode and to correct for the concentricity of the cavity inserted within the

main rf electrodes. The other two side electrodes are added to provide a dc bias to allow

for the compensation of micromotion. Axially, optimising the the overlap of the cavity

and the ion is done by applying a dc to the main trapping electrodes. In the new design,

a similar set-up is adopted in which four side electrodes are used to shift the ion’s po-
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sition. However, rather than repositioning the ion electronically the side electrodes are

on a piezo stage and their proximity to the ion would be mechanically adjustable. By

altering their relative position we aimed at perturbing the trapping potential and shift-

ing the pseudopotential minimum; a novel approach that has not been adopted for end

cap systems in other ion trapping groups. At the centre of the structure, two electrodes

that provided rf with fibre cavities inserted are positioned on v-grooves. Both are on

shear piezos (Noliac CASp03) that would be used to scan the cavity length over a free

spectral range for the resonance position. One of the rf electrodes was adjustable with

a piezo stage (TritorMini T-401-00), this was used to finely optimise cavity alignment.

Surrounding the rf electrodes are the side electrodes which are connected to rf ground

and are responsible for adjusting the pseudopotential minimum, these side electrodes

were held by an adjustable mount controlled by a secondary stage (Tritor 100).

(a) (b)

Figure 6: a) Design of electrode mounting structure, showing stages and piezos used.
b) A close-up view of the ion trap structure with an integrated fibre cavity. Only a
cross-section of the right most electrode reveals the internal structure: fibres inside the
electrodes. The side electrodes are located on the radial plane.
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(a)

(b)

Figure 7: Cross sectional designs of the system used a) by Takahashi et al. b) a cross
section of the new design.

2.3.3 Electrode Assemblies and Insertion Process

A similar procedure described in [43] was used to create our electrode-cavity assemblies

is followed, however the new design features a simplified structure of a fibre inserted

into a single electrode (whereas [43] uses two electrodes one inserted into the other).

To preserve the finesses of the cavity, it was imperative that the cavity facet does not

come into contact with the electrode inner walls during insertion. Additionally, it was

aimed in creating a rigid assembly with no moving components susceptible to acoustic
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vibrations within the system. To this end a process in which the space between the

electrode and fibre was filled with epoxy without letting any run on the cavity face

was developed. This was challenging considering that the spacing between the inner

electrode wall and the cavity was only 10µm and given the limitations of the stages,

cameras and the overall set-up. Briefly; the process relied on a pre-alignment step in

which the fibre and electrode were iteratively aligned to each other prior to insertion. In

this setup the fibre remains fixed while the electrode is clamped to multiple rotational

stages. A USB microscope camera was used to focus down the electrode and any minute

variations in the concentricity of the electrode could be corrected for until the rear of

the electrode and the front (insertion side) would have an optimised overlap in that

respective axis as the camera is focused down the electrode. Once inserted, 80% of

the fibre is retracted out of the electrode again and semi-cured epoxy is applied to this

portion of the fibre. Prior to epoxy deposition, the epoxy is semi-cured to a specific

duration such that it is at a viscosity that prevents capillary action from running down

the fibre and contaminating the cavity facet. The fibre is reinserted again while applying

minute amounts of epoxy from the back of the fibre while being reinserted.
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(a)

(b)

Figure 8: a) The insertion set up showing the relavant stage and cameras. b) A close
up of the fibre being insertion into the electrode.

Although the final process was repeatable, achieving perfect concentricity was infeasi-

ble. Measurements of the concentricity of the fibre with respect to the electrode post

alignment/insertion against post application of epoxy found that concentricity improved

by approximately 50%. The reason was unknown however it was postulated that an
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effect due to capillary action was the cause. Regardless, there existed some need for

adjusting the pseudopotential minimum with the desired cavity mode, which will be

discussed in the following subsection.

(a)

(b)

Figure 9: a) Microscope image of fibre-electrode assembly featured in the new design,
this iteration features less free space between the fibre and electrode in comparison to
Fig.[5]. b) The effect of epoxy deposition on the concentricity of the fibre with respect
to the electrode for different insertion and gluing attempts.

As highlighted in Fig. 9b, there exists an average concentricity offset of 3µm post

expoy deposition. Attempt 5 showed an offset of 5.75µm, hence it was anticipated that

in the worst case scenario (based on the tests) the ion would need to be repositioned

with respect to the cavity by 6 µm.
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2.3.4 Radial Adjustment of the Ion Position

A means to adjust the position of the ion in order to maximise coupling to the cavity

modes is required. As briefly described, the side electrodes are fixed with respect to

one another but can be translated with respect to the trap centre. Their position can

be adjusted with a piezo stage of travel of 100 µm and is controlled by adjusting the

dc offset from a high voltage amplifier (Piezomechanik SVR 150/3). The four side

electrodes are rf grounded and are attached to a single mounting structure. By shifting

the electrodes by +k the pseudopotential minima is displaced by ∆x.

Figure 10: Schematic of fibre-electrode assembly cross section and the alignment pro-
cess. For a cavity that is not concentric with respect to the electrode, repositioning
the side electrodes by some distance k shifts the pseudopotential minimum by ∆x to
overlap with the desired mode of the cavity

From the insertion test set up it appears that a concentricity offset of 2-6 µm would

have to be corrected for. In order to find the required eletrode distance to obtain a

specific shift of the potential minimum, we simulate the pesudopotentials of the system.

To this end a finite element simulation model to evaluate this was employed.
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2.4 Simulation

As an alternate means of positioning the ion has been proposed, it is important that

the geometries and mode of operation of this new trap is simulated prior to any fur-

ther development of the trap. To simulate the effect of the side electrodes on the

pseudopotential, a static simulation was used. The electrostatics module in COMSOL

Multiphysics was employed on a geometry that replicates the structure as close as pos-

sible. A parabola was then fitted to the simulation output and the position of the

minimum was obtained to determine the secular frequency of the ion. A trap drive fre-

quency of 20 MHz and an rf voltage of 200 V were used to calculate the pseudopotential

(9). In the simulation the axial direction was taken to lie along the cavity. About the

trap centre it was observed that the potential minimum does not maintain spherical

symmetry, this is due to the nature of the trapping geometry and the proximity of the

electrodes.

Figure 11: Simulated potential in both axial and radial directions. We observe different
shapes due to the presence of geometric asymmetries. Axially the presence of the fibre-
electrode assembly causes the tailing off of the potential at ± 200 µm [43]
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2.4.1 Results

To determine how much the potential minimum will shift due to our displaced side

electrodes, multiple simulations with varying the positions of the side electrodes were

carried out. By default the side electrodes were of a distance of 1 mm from the trap

centre. It was observed that the closer the side electrodes were to the trap centre; the

less travel was required to shift the potential minimum, however this would compromise

optical access.

Given that the Tritor 100 is limited to a travel of 100 µm and by extrapolating the lines

in Fig. 9 it can be approximated that to correct for the potential offset in concentricity

found in 2.3.3, while maximising optical access, the side electrodes would be positioned

at a distance of (750 - 1000) µm from the trap centre.

Figure 12: left: Position of potential minimum for different electrode-ion separations,
a linear relation is preserved as the side electrodes are moved closer/further to the
trap centre. Right: table of gradients for the multiple slopes of the position of the
pseudopotential min with different electrode-ion separations (d.sim).

By taking into account both the degree to which the potential minimum would need to

be shifted and the optimal optical access that can be obtained. An optical access angle

of 28° and 31° to the vertical and a horizontal plane respectively was measured. By
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following the analysis in 2.2.1 in which a parabolic line shape is fitted to the potential,

the secular frequency of the ion as the potential minimum is perturbed can be extracted.

Driven at a frequency of 20 MHz the secular frequencies for a ion of mass 40Ca remain

within reasonable values of 2 MHz with a variation of only 100 kHz as the side electrodes

are shifted.

Figure 13: Secular frequencies for the ion when side electrodes are shifted in x and x+y

Figure 14: Pseudopotential in eV of the trap cross section when the side electrodes are
displaced by 100 µm.

From the simulations it can be concluded that it is feasible to move the ion’s position

to the cavity centre given the travel of the piezo while maintaining good optical access.

From this, the side electrodes will be placed 1 mm from the trap centre. Despite the
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effect of distorting the potential with the side electrodes it can be observed that the

secular frequencies do not vary by much and remain within reasonable values. However

before constructing the new trap a test is required to assess the cavity’s ability to

remain locked on resonance with the proposed main rf electrode structure. In the

following section a test set-up is built based on the electrode fibre assembly design that

has been tested in the insertions step Fig.8.
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3 Implementing Fibre Cavities for cQED

3.1 Introduction

Thus far a number of improvements for the new trap have been proposed and a prelim-

inary trapping simulation suggests that such are feasible. In this chapter, our attention

is now brought to the optical elements of the system by implementing fibre cavities into

our set-up. Optical cavities, namely the Fabry Perot cavity has been a major compo-

nent in the development of lasers, interferometers and parametric oscillators. A cavity

with a high finesse will have a lower photon decay rate (κ) and hence it is desirable

to have high finesse cavities in reaching the strong coupling regime. In recent years

the development of high quality optical cavities machined on the end facets of fibres

have been a promising route towards miniaturising such systems. They have proven

successful in achieving strong coupling with an ensemble of neutral atoms and single

ions [28],[46]. The following discussion begins by highlighting why fibre cavities are a

promising route towards strongly coupled cQED experiments; in particular how their

size leads to this. The approach used in this thesis uncovers a number of issues asso-

ciated with their implementation, the discussion that follows highlights their potential

drawbacks. This is elucidated by attempting to set up a robust Pound-Drever-Hall

(PDH) locking scheme. As an overview of this chapter; some theory on Fabry Perot

cavities are initially presented which will be used later when discussing the PDH set-up

and will end by examining the system’s inability to effectively lock on resonance.

3.2 Optical Cavities

Prior to any discussions, a basic understanding on the theoretical framework of optical

cavities is required. The reflectivity coefficient is derived which is required in under-

standing how an error signal is generated in the PDH scheme. How the quality of
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an optical cavity is characterised is briefly discussed, followed by a brief overview of

impedance matching.

Reflection Coefficient

Beginning with the simplest case of two mirrors with their degree of reflection and

transmission defined by the constants r and t respectively. On the assumption that

there are no losses due to absorption or scattering the following holds; r2 + t2 = 1

(r1 = r2). The incoming light of frequency ω, amplitude E0 is described by

Ei = E0e
i(kx·x−ωt). (13)

Once light has entered the cavity, a portion is immediately reflected (Er) and undergoes

a π phase shift. The promptly reflected beam is expressed as

Er1 = Eire
iπ. (14)

This light does not enter the cavity and hence does not undergo any circulation. The

Figure 15: The basic scheme of a Fabry Perot optical cavity, two mirrors with corre-
sponding reflection and transmissions(r,t). Some light is ’leaked’ out of the cavity from
both the input and output sides, the sum of which form Er or Et. Within the cavity
we observe how the build up of the circulating light (Ec) is formed.
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additional reflected beams are the result of circulation within the cavity and incur a

phase shift of ∆φ (2π).

Er2 = Eit
2rei∆φ (15)

Er3 = Eit
2r3ei2∆φ. (16)

The reflected beams can be generalised for all but n = 1, in the following expression

Ern = Eit
2r2n−3ei(2n−2) ∆φ

2 . (17)

The total reflected light is the sum over all round trips

Er = −rEi + Eit
2rei∆φ

n∑
j=2

(r2ei∆φ)j−2. (18)

Using the geometric series the sum can be expressed as

Er = −Eir + Eit
2rei∆φ

1

1− r2ei∆φ
. (19)

The ratio of the reflected field to the incident field gives us the reflection coefficient of

the cavity

R =
Er
Ei

=
r(ei∆φ − 1)

1− r2ei∆φ
. (20)

The reflected field comprises of the promptly reflected beam that does not enter the

cavity and the circulating beam that leaks from the cavity on the side of mirror 1 (M1).

This term will be returned to later when analysing the nature of the reflected field, in

particular when modulating the input beam. Following a similar analysis the expression

for the transmission coefficient is stated [47].
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T =
1

1 + 4r
(1−r)2 sin2(i∆φ

2
)
. (21)

For a system in which It → 1, the cavity is said to be on resonance. This occurs when

the length of the cavity is an integer multiple of half wavelengths, i.e. when the light

circulating in the cavity is in phase during each round trip. However a cavity’s ability

to be a resonator rests upon the mirror’s reflectivity. Typically optical cavities are

characterised by their finesse (F). Finesse can be thought of as the number of times a

photon circulates a cavity before it decays, and can be expressed as

F =
π
√
r

1− r
. (22)

The case of r = 1 means that light undergoes no losses upon reflection, in reality

r < 1 and the amplitude will always reduce for every round trip. Measurement of the

reflectivity can be particularly cumbersome, hence a finesse measurement can be done

by taking the ratio of the linewidth of the resonance peaks (∆φFMWH) in transmission

with the frequency difference between two successful reflected/transmitted intensity

maxima; known as the free spectral range (νFSR). Defined as the frequency difference

between two successive reflected/transmitted intensity maxima.

F =
νFSR

∆φFWHM

. (23)
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Figure 16: Cavity transmission for a lossless system showing three transmission peaks
spaced a FSR apart.

Impedance Matching

Thus far a lossless system in which L + T = 1 (for some loss coefficient L) and the

reflectivity of both mirrors are equal has been assumed, however very typically mirrors

that do not meet this criteria are often the case. On resonance, it is expected that

destructive interference in the reflected wave is observed; this is signalled as a dip in

the reflected light’s intensity. For two mirrors of different reflection and transmission

coefficients (r1, t1, r2, t2), the change due to a round trip is defined as

g̃r,t = r1r2e
2∆φ. (24)

The field circulating within the cavity is stated as

Ecir = Ei
t1

1− g̃r,t
. (25)

Using g̃r,t the expression for the reflected field can be rewritten as

Er = r1Ei −
Eit

2
1g̃r,t

r1g̃r,t
, (26)
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and the transmitted field as

Et = −t1t2
E − iei∆φ/2

1− g̃r,t
. (27)

For a cavity that satisfies the resonance condition (d/λ = n/2 ), we can see that e
2πd
λ = 1

(for n being some integer) and for the case when r1 = r2; on resonance

Ec
Ei

=
t

1− r2
. (28)

Given that t2 + r2 = 1, therefore

Ec
Ei

=
1

t
. (29)

The intensity (|E|2 ∝ I) of the circulating light per input intensity is given by

Ic
Ii

=
1

1− r2
. (30)

For the case where the cavity is on resonance and the reflectivity are the same for both

mirrors (impedance matched) is r2 = 0.999, Ii = 1 mW and Ic = 100 mW. Similarity

the intensity of the reflected light Ir/Ii = 0W, this would correspond to a drop in

intensity about the resonance position. However for the case when the same input

power of 1 mW into cavity the but the cavity is not impedance matched (r1 6= r2),

e.g. r1 = 0.99 and r2 = 0.995, a similar analysis would yield a circulating power of

89 mW and a transmitted and reflected power of 0.888 W and 0.112 W respectively.

An impedance matched cavity is not required for our set-up, however a good degree

of impedance matching is useful in generating a PDH error signal. Knowing that at

resonance the reflected beam would be of minimum intensity. The PDH error signal

would ideally be generated from the reflected light from the cavity. This was proven

problematic as shall be observed later.
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Figure 17: Destructive interference at resonance causes dips in the reflected signal, a
perfectly impedance matched cavity with mirrors of matched reflectivity will exhibit
complete destructive interference; no light is reflected on resonance, a less impedance
matched cavity will exhibit less interference.

The Fundamental Mode

The light resonant with the cavity is typically of the Gauss-Hermite form. Spatially

the light within the cavity is comprised of longitudinal and transverse mode functions

of the form

Elm(x, y, z) = E0Φ(x, y, z)Ψl(x, z)Ψm(y, z), (31)

where Φ describes the longitudinal modes and the transverse modes are described by

Ψl,m. The transverse modes are described by Hermite Polynomials Hl & Hm which

describe a form of the radial field distribution. Each form is described as a transverse

mode of the EM field (TEMlm). The transverse mode structure is given by

Ψlm(x, y, z) =

√
ω0

ω(z)
Hlm

√
2(x, y)

ω(z)
e(−x2+y2)/ω2

, (32)

for ω(z) is the mode radius along z, zR is the Rayleigh range
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ω(z) = ω0

√
1 +

(
z

zR

)2

. (33)

The fundamental mode (TEM00) has a Gaussian profile and has the smallest mode

volume for the cavity mirrors used.

Figure 18: Profile of the fundamental mode/Gaussian (TEM00)beam showing the mode
waist (ω0), Rayleigh range (zR = πω2/λ) for a beam propagating along the axial (z)
direction. For z � zR, ω(z) increases linearly with z.

The Rayleigh range (zr =
πω2

0

λ
) is defined as the distance from the centre of the beam

waist (in the direction of propagation) where the beam radius increases by a factor of
√

2. The spatial wave function/distribution for the fundamental mode is described as

Ψ00(x, y) =
ω0

ω(z)
e(−x2+y2)/ω2

. (34)

For a given frequency the cavity supports (which is determined by the reflective coating),

the mode waist is limited by the cavity’s boundary conditions namely Roci. A useful

parameter is the resonator g parameter, as defined in [48] as g = 1 − L/Roci for each

mirror.
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ω2
0 =

L0λ

π

√
g1g2(1− g1g2)

(g1 + g2 − 2g1g2)2
, (35)

in which a stable region exists in the range 0 ≤ g1g2 ≤ 1. This requirement is one that

is to be met for the presence of a low-loss standing wave in the cavity. Cavity mirrors

can be comprised of different mirror shapes. Symmetric cavities in which R1 = R2,

plane parallel (R1 = R2= ∞), symmetric confocal cavities (R1 = R2 = L), symmetric

concentric (R1 + R2 = L) are some examples.

Figure 19: The cavity stability showing stable regions in grey and their corresponding
cavity shapes for different values of g1 and g2. [41]

As mentioned previously, the fundamental mode features the smallest mode volume for

our cavities. This minimal mode volume increases the coupling strength of our ion to the

cavity and reduces the amount of losses due to clipping or diffraction losses. These losses

reduce the finesse of our cavity and can be addressed by optimal cavity alignment and

mode matching. The matching of modes is typically done with mode matching optics

in which the profile of the injected mode matches that of the cavity mode. However,

as the cavities used in our set-up are fibre based, the issue of matching the modes of

the incoming light in the input fibre and the cavity are of particular relevance as the
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input mode is fixed and given by the fibre output. A theoretical breakdown of the mode

matching problem comparing fibre based cavities and free space cavities are presented

in [46].

3.3 Benefits of Fibre Cavities

Thus far, the theory and background of fibre cavities have been introduced without an

explanation as to why they are desirable in our cQED system. In the context of cQED

with ions; a desirable resonator is one that maximises the coupling between the quantum

emitter (in this case a trapped ion) and the optical modes, this can be enhanced by

optimising a number of parameters. For example, the relative alignment of both mirrors

to yield the desired mode and selecting cavity mirrors that yield the smallest mode

volume both maximise coupling. Atom-cavity coupling is often quantified through

cooperativity (C ∝ g2/2κγ), said quantity takes the ratio of the coupling strength g,

and the decay rate of both the cavity and the atomic decay rate κ, γ respectively. The

coupling strength scales with the mode volume as C ∝ F/ω0, it is thus desirable to

have high finesse cavities with minimal mode volume. To this end, fibre based fabry

perot cavities have been successful in achieving optimal coupling with a single ion. The

fibre cavities in this study featured a radius of curvature in the range of (400−700)µm,

cavity length of L ∼ 400µm and finesse of F ∼ 50, 000 and exhibited low birefringence.

Free-space bulk cavities allow the matching of modes within the cavity with external

mode-matching optics. Typically this is done with a lens with some focal length (f)

placed at an adjustable distance. A similar architecture for fibre based cavities has

been developed in which a graded-index fibre (GRIN OFS, BF04432-1) with a specific

gradient constant, allows us to determine the focal length used.

The result of a careful process of cleaving and splicing yields a concatenated SM, GRIN

and MM fibre assembly. These fibre cavities hence feature integrated mode matching

optics [45] of a mode matching efficiency of up to 90%, where as standard fibre cavities
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feature a mode matching efficiently of up to 30%, said assembled fibres will be referred

to as GRIN fibre assemblies.

(a)

(b)

Figure 20: a) A fibre based cavity of cavity length 250µm, [43]b) A GRIN fibre assembly
showing the concatenated structure of the SM+GRIN+MM fibres and their respective
lengths [45].

The procedure to fabricate the mirror and shape on the end facet of the MM fibre

is one that is repeatable and reliable [49]. A CO2 laser shoots the end facet of the

fibre to create a curved surface. The profile of curvature is deduced with a Michelson

interferometer and a Guassian fit allows us to determine the radius of curvature. The

shot facets are stored and handled carefully to avoid contamination and then sent to be

coated (Advanced Thin Films-Boulder, Colorado USA) with a high reflective coating

that is specific to our desired wavelength (866 nm).

Given that fibre optics are the preferred means of channelling photons over long distance

with minimal decoherence [50], the inherent fibre coupling that exists with fibre based

cavities leads to the prevalence of fewer losses when the output of the cavity is the fibre.
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3.4 Developing a Stable Fibre Cavity System

As stated in previous sections a limitation of the trap used in [28] was its inability to

remain locked on resonance in the presence of acoustic noise. In this subchapter, the

theory of PDH locking is presented which will use some of the results of the derivation

presented in Section 3.2 as well as presenting our experimental apparatus. As stated

previously the cavity transmission intensity is frequency specific. The resonance con-

dition is one that is set by a specific cavity length and a means to maintain this strict

condition is the motivation for this section. Here the Pound-Drever Hall technique is

introduced and the implementation is discussed. A number of issues in the system are

uncovered and this leads to a discussion of the less obvious drawbacks associated with

fibre based cavities which will be presented in the following subsection.

3.4.1 Pound-Drever-Hall Locking Scheme

Modern implementations of the Pound-Drever Hall (PDH) method are able to deliver

sub-Hz stability [51]. Typically used to stabilise the frequency of a laser to a stable

cavity, in some cases the reverse is implemented in which a stable laser is used to lock

an unstable cavity at its resonance position. In the former a signal is fed to a servo

amplifier which in turn modifies the laser frequency to minimise some error. In the

latter, a feedback loop sends a signal to an actuator that modifies the cavity length

away from any spatial deviations.

Fig. 16 shows how the intensity of the promptly reflected signal varies as a function of

round trip phase, which is dependent on the cavity length. It can be seen that minute

changes about the resonance position will induce large changes in the reflected (or

transmitted) intensity. These change as a function of cavity length (or input frequency)

are independent on the input laser intensity. One could set up a scheme that locks to

this signal, however, as the reflection intensity is symmetric about resonance; the system

would have no means of differentiating between which side of the resonance position
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the cavity is on.

Conversely, the derivative of the reflection coefficient (eq.20) with respect to the cav-

ity’s position, is antisymmetric about resonance. This is because of the phase difference

above and below resonance. However, as phase alone is not a directly measurable prop-

erty, the PDH method allows us to indirectly measure this disparity via an optical

measurement. This is done by modulating the input beam using an electro-optical

modulator and taking the phase relation of the carrier and sidebands. The basic setup

is shown in Fig.23.

Quantitative Model

Our input field with the absence of modulation is simply (13), Ei = E0e
iωt. We rewrite

the reflection coefficient in terms of ω as

R(ω) =
Er
Ei

=

r

(
e
i ω
∆νFSR − 1

)
1− r2e

i ω
∆νFSR

. (36)

To highlight the phase relation we treat our input light with a constant frequency, the

reflected beam is comprised of the light that is immediately reflected from the input

side and the light that exits the cavity due to the build up between the two mirrors.

On resonance the two beams interfere destructively which correspond to the dips we

observe in Fig. 16. When the cavity length is slightly off the resonance condition but

such that there exists a build up of light, the phase relation difference between the two

beams is not π and does not undergo complete destructive interfere.

An input beam (of frequency ω) is phase modulated at a frequency of Ω has the form

Ein = E0e
i(ωt+β sin(Ω)t), (37)

β sin(Ω)t is the phase incurred due to the modulation. Using Bessel functions (J0(β),

J1(β)) we can express (37) as
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Ein ≈ E0[J0(β)eiωt + J1(β)ei(ω+Ω)t − J1(β)ei(ω−Ω)t], (38)

where the first term in the square parenthesis is our carrier and the second and third

term correspond to the sidebands. The total input power is give by P0 = | E0 |2 and

hence Pc = J2
0 (β)P0 and Ps = J2

1 (β)P0 are the powers in the carrier and sidebands

respectively. When the modulation depth (amplitude) is low, the assumption that all

power is in the carrier and first order sidebands holds. Namely that P0 ≈ 2Ps + Pc.

The reflected light is expressed as

Eref = E0[F (ω)J0(β)eiωt + F (ω + Ω)J1(β)ei(ω+Ω)t − F (ω − Ω)J1(β)eiω − Ωt]. (39)

Following the notation used in [44] the reflection coefficient (R(ω)) is expressed as F(ω).

The quantity that is measured, is the power on the photodetector, which is

P ∝| Eref |= Pc| F (ω) |2 + PsF | (ω + Ω) |2 + | F (ω − Ω) |2+√
PcPsRe[F (ω)F ∗(ω + Ω)− F ∗(ω)F (ω − Ω)] cos(Ωt)

+ ImF (ω)F ∗(ω + Ω)− F ∗(ω)F (ω − Ω)] sin(Ωt) + (2Ω terms). (40)

We are interested in the two terms oscillating at a modulation frequency of Ω as it

contains information of the phase of the reflected signal. We are interested in terms

(a) (b)

Figure 21: a) A schematic of the phase difference incurred in the reflected beam when
the cavity is a) on resonance and b) off resonance
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containing

F (ω)F ∗(ω + Ω)− F ∗(ω)F (ω − Ω). (41)

Hence the terms that oscillate with sin(ωt) and cos(ωt). A device known as a mixer

combines the signal used to modulate the input beam with the light reflected from the

cavity of the same frequency. It isolates all but the oscillating terms by taking the

product of the two inputs. One input being from the reflected signal (Pref ) and the

other the local oscillator (of frequency Ω′). The product of which is

sin(Ωt) sin(Ω′t) =
1

2
[cos(Ω− Ω′)t]− cos[(Ω + Ω′)t]. (42)

Depending on the inputs of the mixer, the output will contain terms of both the sum

(Ω + Ω′) and difference (Ω− Ω′) of the modulated signal and the signal from the local

oscillator. If Ω = Ω′, our cos[(Ω−Ω′)t] term will yield a constant (dc) signal, our error

signal. But given a phase difference of π/2 between the two signals we get

sin(Ωt) cos(Ω′t) =
1

2
[sin[(Ω− Ω′)t]− sin[(Ω + Ω′t)]. (43)

For Ω = Ω′, our dc signal vanishes. Therefore to successfully generate our error signal

we need to adjust the phase between the two signals accordingly [44].
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Figure 22: A PDH error signal generated with the reflected light, this error signal was
generated for an optimised phase, maxium amplitude is given by 2

√
PcPs, the sideband

separation corresponds to the modulation frequency Ω.

Given that the cavity is fibre based, to minimise losses the majority of the beams are

fibre coupled. An input beam of 866 nm is locked to a wavelength meter and shows

the input beam fibre coupled to a polarisation maintaining (PM) SM-fibre. The beam

is phase modulated with a fibre based EOM at a modulation frequency of 190 MHz.

Light enters the cavity and a fibre based beam splitter is used to split the reflected beam

which is comprised of the circulating light and the beam that is promptly reflected from

the surface of the input mirror. The split beam enters a fast photo detector (FPD) that

sends the signal to a mixer (Mini circuits Mixer ZAY-3) that combines the signal used to

modulate the input beam with the reflected light from the cavity of the same frequency.

The product of the two signals varies for different sides on resonance. This output

is our measure of error on the cavity length, it is referred to as the the error signal

and denoted ε. The entire setup works to minimise this error to zero. The desired

part of the mixed signal is isolated with a low pass filter (LPF) and a feedback circuit

comprised of a proportional and integral circuit generates a signal that is amplified

with a piezo driver (PiezoDrive HVA PDm200)/high voltage amplifier (HVA). This is

then sent to an actuator that corrects the cavity length. In the following subsection,

the PDH scheme is tested and by doing so a number of issues were uncovered, a few of
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which elucidate the lesser known drawbacks of fibre cavities.

Figure 23: A schematic of a PDH system. The 866nm is locked to a wavelength meter.
The λ/2 wave plate is used to shift the polarisation direction of linearly polarised light.
All fibres (beam splitter included) are single mode (SM) polarisation maintaining (PM).

3.5 Drawbacks of Fibre Cavities

Although fibre cavities come with many benefits, there are also a number of drawbacks

associated with their implementation. A particular issue that has been reported is

the non-spherical laser-ablations which can lead to polarisation-mode splitting [46].

Another issue which was of particular relevance to our set up was the inherent in-fibre

coupling of the fibre cavity mode which is greatly limited by the alignment of the cavity.

Arguably our greatest challenge was engineering a rigid structure (not susceptible to

vibrations) while maximising optical access and maintaining some means of in situ

alignment. These issues became apparent while attempting to generate an error signal

in reflection and in locking the fibre cavity to an error signal in transmission. This

was uncovered during the attempt to test the new electrode-fibre assembly outlined in

chapter 2.3. The aim of the test setup was in assessing the locking stability with the

improved insertion process outlined in Chapter 2.
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(a) (b)

Figure 24: a) The test set up showing the mounting structure and relevant electrical
and optical connections enclosed in a protective perspex housing. b) A close up on the
two electrode-cavity assemblies

3.5.1 The Setup

The setup in outlined in Fig.23, to best replicate the proposed trap design in chapter

2. The test setup is a simplified version of the final design presented in Chapter 2 and

comprises of a mount in which the output of the cavity is fixed and a 3D translation

stage (TritorMini, T-401-00) with a travel of 38 µm. The electrode-fibre assemblies are

fixed onto v-groves with a conductive epoxy and are carefully aligned with respect to

each other with translation stages. Once the cavities are coarsely aligned at a length of

∼ 200 µm they are glued with UHV compatible epoxy (EpoxyTek H21D) onto shear

piezos (Noliac Piezo CSAp03) with a free stroke of 1.5 µm.

Once the epoxy cures, the Tritor stage allows for fine cavity alignment. A finesse of

23,000 was measured, however over time as the setup was continuously modified and

the protective housing open, a reduction in finesse to 14,000 was observed.

3.5.2 Generating an Error Signal in Transmission

The initial test was to observe an error signal in reflection. However, despite adjusting

the relative phase of the local oscillator and the modulation frequency a slow oscilla-

tion in offset in the reflected beam was observed. This variation was of ∼ 5 Hz. It

was concluded that variations in the interference of the reflected beam was the cause.
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Given that the EOM is polarisation dependant and despite using polarisation main-

taining (PM) fibres, our fibre cavity is a SM non-polarisation maintaining fibre. It was

likely that oscillations in the polarisation of the reflected beam was causing this. It was

later found that upon generating the error signal used in [43], the authors also encoun-

tered the same issue. Unless a PM fibre was used as the cavity fibre, polarisation will

constantly vary.

A solution would be to generate an error signal in transmission. However, this would

be limited by the response time of the cavity. Any cavity fluctuations that occur on

a time scale greater than the circulating time cannot be detected in an error signal

in transmission and hence cannot be corrected for. Under arbitrary parameters, the

amplitude of our error signal was 60 mVpp. By adjusting the phase of the local oscillator

and the modulation frequency, it was found that the optimal frequency was about the

linewidth (45 MHz). Further optimisation lead to an increase in amplitude of the error

signal in transmission by a factor of 10 (600 mVpp)

(a) (b)

Figure 25: a) Cavity transmission of linewidth at half maximum of 45 MHz. The
generated error signal is for an arbitrary set of parameters. b) The error signal for an
optimised modulation frequency of Ω = 45 MHz.

As it is desirable to maximise the amplitude of the error signal, the PDH error signal

for an impedance matched (r1 = r2) cavity of FSR = 3.1 MHz and FWHM = 1.9 GHz

was simulated. The modulation frequency for a range of 0 − 5(∆φFWHM) was varied
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and their lineshapes plotted along with their amplitudes as a function of Ω.

(a) (b)

(c) (d)

Figure 26: Simulated PDH error signal for a range of modulation frequencies, the
insets show how the amplitudes vary for different Ω. a) Real component of error signal
in reflection, b) imaginary component in reflection, c) real component in transmission,
d) imaginary component in transmission.

3.5.3 Attempting to Lock in Transmission

The procedure for engaging the lock is as follows: as the cavity length is scanned by

a FSR, the scan parameters are adjusted such that the amplitude of the waveform

applied to the piezo is reduced. The amplitude is reduced further while manually

adjusting the offset on the HVA to remain over the cavity linewidth. When the scan

amplitude is effectively 0 V, we manually adjust the dc offset on the HVA to remain

approximately at the resonance position. A transmission peak on the output signal

is no longer observed but an offset corresponding to the transmission peak height is

57



present. The proportional and integral component of the feedback loop is engagned

when the cavity is on resonance and the gain parameters are adjusted such that the

system locks to the resonance position.

We initially observed that upon reducing the piezo scan amplitude (→ 0 V), the reso-

nance peak would fluctuate x10(∆φFWHM). It was evident that some source of noise

was attributed to this. When manually adjusting the offset voltage on the piezo, one

would expect to see an offset in the optical signal corresponding to the resonance po-

sition. Rather, a series of pulses due to the cavity briefly being on resonance was

observed. The full width at half maximum of these pulses corresponded to a duration

in the tens of microseconds which suggests that the cavity only remained on resonance

for a few hundred nanoseconds, this suggests that the cavity is fluctuating in and out

of resonance in the kHz range.

(a) (b)

Figure 27: a) Cavity transmission signal when the piezo is manually adjusted to the
resonance position, the cavity is fluctuating in and out of resonance. b) A close up
of a single trace of a resonance peak as the cavity is fluctuating, the cavity stays on
resonance for approximately hundreds of ns.

By investigating sources of electrical and optical noise it was concluded that mechan-

ical instabilities within the set-up was the source of this. These fluctuations (which

shall be referred to here on as mechanical jitter) were eventually reduced by installing

sorbathane isolators and enclosing the system in a closed wooden box which reduced
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the mechanical jitter by a factor of two. However it appeared that the source of these

mechanical instabilities were from the input fibre, in particular it seemed that the

translation stage (TritorMini, T-401-00) in which the input fibre was mounted on was

susceptible to acoustic vibrations. It has been observed in other studies that this par-

ticular stage has a medium-Q mechanical resonances in the low acoustic range [52].

The jitter was further reduced by clamping down all electrical and optical connections

to prevent vibrations travelling to the system and clamping sorbathane to the trans-

lation stage. Despite the mechanical jitter now reduced to twice the ∆φFMWH , this

ultimately reduces the amplitude of the fluctuations and does not increase the amount

of time the cavity spends on resonance which was measured to be unchanged. Despite

maximising the bandwidth of the components in the system, three root issues identified

were ultimately a roadblock.

The first of which is that the feedback loop has to be engaged when the cavity is

on resonance, given the narrow time frame in which the cavity remains on resonance

(∼200 ns), which is too brief for any of the components to engage in. The second,

is that even if the feedback loop could be engaged on resonance, overall changes in

the cavity position are too fast for the electronics in the feedback loop to successfully

correct for, in particular the HVA is the slowest of components with a bandwidth of

200 kHz. The final issue is that despite only being able to observe changes in cavity

position in 1D (along the cavity axis) through changes in cavity transmission intensity,

the jitter was most probably in 3D. This is particularly plausible given that the source

of the mechanical instability is most likely due to the translation stage. Furthermore,

the locking scheme will not be able to correct changes in XYZ as the current set up

feeds back to the shear piezo correcting only the cavity length (Z).
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(a) (b)

Figure 28: a) The signal from the cavity transmission, the mixer and the PI feedback
loop showing the delay in response. b) The signal from the PI feedback loop and the
HVA which feeds back to the shear piezo correcting the cavity length, the response
delay of the HVA is particularly evident at 700 µs.

To determine whether or not the translation stage was the source of mechanical insta-

bilities, this was replaced with a machined block. The v-groove that holds the fibre-

electrode assembly is aligned and glued in place with a mechanical translation stage.

While the epoxy cured, the cavity was iteratively aligned and the jitter on the cavity

transmission signal was examined. No mechanical jitter was observed (< ∆φFMWH)

and it was found that the cavity remains on resonance for ∼ 2 ms. Which confirms that

the piezo stage was the source of mechanical instability. However, upon unclamping the

v-groove, it was found that cavity alignment was lost and with no means of correcting

alignment, there was no way to lock the system.
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Figure 29: Cavity transmission signal when the piezo is manually adjusted to the
resonance position, we observe that the cavity remains on resonance for much longer
(> 1 ms) when the translation stage is substituted with a solid block.
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3.6 Conclusion

A test set up that replicates the cQED endcap design presented in Chapter 2 was built.

The new design maximises optical access and aimed at delivering a more robust lock

by improving the mechanical rigidity of the overall system. A PDH locking system was

employed to verify this however, generating an error signal in reflection was troublesome.

This was due to the fibres that comprised the cavity were not polarisation maintaining,

and a lack of interference of the reflected light and the input beam did not yield an

error signal in reflection. Nonetheless, despite a reduced locking bandwidth, generating

an optimised error signal in transmission was possible.

It was later observed that prior to engaging the feedback loop, mechanical noise was

causing our cavity to go in and out of resonance on a time scale that was out of

the bandwidth of any of the components. This was ultimately due to the translation

stage (TritorMini, T-401-00) used for fine cavity alignment. It was observed that upon

replacing this stage with a machined block the cavity was able to remain on resonance

on the order of milliseconds which would have been enough time for the feedback loop

to engage and lock the cavity. However, a misalignment when dismounting rendered

the system defective beyond further testing.

A 3D translation stage to maximise optical access whilst allowing for fine adjustments

in cavity alignment was used. An alternative would be to machine a monolithic system

in which no moving parts are present. However to correct for minute errors in the

mounting and glue curing process would add a layer of complexity to the system.

Furthermore, the tolerances with which a monolithic system could be machined to was

a further limitation.

After much consideration, the use of fibre based cavities were deemed too problematic.

Instead, miniature free space cavities were opted for. The designs for a linear microtrap

system that uses free space cavity mirrors in the following chapter are presented.
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4 A Linear Microfabricated Trap

4.1 Introduction

Thus far, the focus of this dissertation was on developing an endcap Paul trap capable

of strong coupling. As discussed, the design was developed by further iterating on the

design used in [28]. However, as was observed the use of fibre cavities uncovered a num-

ber of unavoidable technical challenges. In a new design presented here, fibre cavities

are not used and instead free space cavities will be implemented. In this chapter the

initial design for a linear microfabricated Paul trap is presented. Unlike the endcap de-

sign discussed in Chapter 2, this system will have the ability to trap strings of ions. The

trap will feature a segmented architecture with different trapping regions reserved for

different purposes. There are four different regions; loading, storage, computation and

communication. The storage segment will be used to keep a reservoir of ions, loaded

from the atomic oven. The reservoir will be a string of ions which can be selectively

shuttled from this reservoir into the computation node reserved for gate operations.

The final node being the communication node which will rely not on fibre based cavi-

ties but will use micrometer free space cavities. The benefit of using these is that they

are able to provide small mode volumes (the main benefit behind fibre cavities) while

allowing external mode matching optics to be implemented while circumventing the

issues discussed in Chapter 3. Prior to fabricating the components of the trap, an un-

derstanding of the trapping dynamics is required to optimise the splitting protocol. To

this end, the trapping dynamics under different electrode dimensions are simulated. It

begins first by simulating the rf dynamics radially and axially to optimise the electrode

dimensions, then the preliminary results of the splitting protocol are presented.
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4.2 Proposed Design

Linear segmented traps have been a popular choice for scalable trapped ion quantum

processors, [5, 53, 54]; these systems can trap several ions and can be built using

methods of microfabrication or laser machining and have been a popular architecture

for QCCD based devices first mentioned in chapter 1.1.

This design is an initial iteration developed by M.Keller and adopts a three-dimensional

blade-shape-electrode configuration in which each blade features segmented electrodes

perpendicular to the trap axis that provide axial dc confinement. These electrodes will

be used to shuttle and transport ions along the trapping axis. And will also feature an

rf tip that runs parallel to the trap axis and will be used to provide the main rf trapping

field. Each blade is composed of a sapphire substrate with gold electrodes. The four

blades will be mounted at right angles to each other and held by a mounting structure.
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(a)

(b)

Figure 30: a) CAD image of the linear micro-trap, showing the plane of optical access.
b) A close up of the communication/cavity segment showing the cavities and the four
perpendicular blades.

To maximise optical access the atomic oven and cavity mounting structure are shielded

from the main area of optical access. The electrode dimensions will vary depending on

their function. In the loading region electrode-ion separation is larger than in other

areas, this is to reduce contaminating the electrodes with calcium during the loading

process. The widths of the axial electrodes can be adapted to optimise the splitting

process, similarly for the computation segment; the electrode dimensions can be opti-

mised to carry out gate specific operations that require control over motional degrees
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of freedom.

Figure 31: The proposed arrangement for the axial segmented electrodes highlighting
the varying dimensions specific to their operations.

4.3 rf Simulations

In this subsection, the same finite element simulation model (COMSOL Multiphysics)

used in simulating the trapping dynamics in chapter 2 is adopted to optimise the elec-

trode dimensions. Our initial test was to vary the electrode-ion (trap centre) separation

and to observe the effect this had on the pseudopotential and optical access. The effect

of varying the amplitude on two neighbouring electrodes was also varied to observe the

effect this has on the position of the potential minimum radially, this is so that the

ion’s position can be shifted.

4.3.1 rf Electrode Geometry

To maintain a small cavity mode volume (L & Rcurvature ≈ 500 µm) while shielding

the ion from the dielectric interference of the cavity mirrors, the approach adopted is

the one used in [49] and in chapter 2 in which the cavity is retracted away from the

rf field, effectively shielding the trapping region from the cavity facet. Increasing the

separation between our electrodes would increase optical access to the ion. Doing so

however, would limit the shielding of the ion from the dielectric surface of the cavity

which would effect the potential. The effect this has on the trap depth is observed and
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by fitting a second order polynomial to the potential, the coefficient of the quadratic

term is extracted and secular frequencies for different electrode-ion separations are

calculated.

(a) (b)

Figure 32: a) Schematic of the electrode-ion separation (R) distance shielding the
potential from the cavity. b) The effect of varying the rf electrode-ion separations on
the value of the pseudopotential at the trap centre with an rf voltage of Vrf = 1 V and
trap drive frequency Ωrf = 20 MHz .

Figure 33: Schematic of the cross section of the electrode structure
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Figure 34: The effect of varying the rf electrode-ion separation on the ion’s secular
frequency, for which they exponentially decrease.

For the purpose of the next simulations the electrode-ion separation is arbitrarily set at

110 µm, this value was selected as it was found to be a balance between a reasonable

value of secular frequency and to maximise optical access. To further increase optical

access the thickness of the rf electrode tip is varied (fig 35). A minimal change in secular

frequency (< 100 kHz) is observed.

Figure 35: The effect of reducing the rf electrode thickness on the ion’s secular frequency.
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Ideal Trap Frequency

The expected theoretical value of the radial secular frequency can be determined from

the following expression

ωrf =

√
q2

2
+ a

2
Ω, (44)

where a and q are the stability parameters axially and radially respectively, first men-

tioned in chapter 2.2.1. The radial stability is given by

q =
2QVac

Mr2Ω2
, (45)

where Ω is our trap drive frequency. As the ion’s radial position is of interest in this

simulation, dc potentials are set to null and hence the a value is negligible, the secular

frequency is dependent on the rf amplitude. Based on a peak to peak rf voltage of 2

V and an r = 110 µm and a trap drive frequency (Ω = 20 MHz). An ideal secular

frequency of 2.24 MHz was calculated from (13) and a secular frequency of 2.09 MHz

is observed from the simulations. From this the ideal trap frequency can be calculated

by simply taking the ratio of the two values. A trap efficiency of 88% was observed.

4.3.2 Positioning the Ion with rf

Precisely controlling the ion’s position radially to the cavity mode is crucial in max-

imising the ion-cavity coupling. Where previously the trap potential was perturbed

with grounded side-electrodes, in this linear trap this is done solely by increasing the

amplitude of two neighbouring pairs of rf electrodes, thus changing the trap depth on

one side. In this model the rf amplitude are increased on two electrodes from 1 V to 2

V.
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(a)

Figure 36: a) Simulated radial pseudopotential, the potential falls sharply due to the
presence of the blade electrodes at ∼ 100µm, as the amplitude is increased on two
electrodes this corresponds to an increase in the trap depth. b) The position of the
pseudopotential minimum for increasing values of rf amplitude on two electrodes.

Figure 37: 2D slice showing the distribution of the potential around the electrodes
along the trapping axis (Z). Left: with equal amplitudes on all electrodes. Right: the
pseudopotential when the amplitude on the top two electrodes are increased to 2 V.

By increasing the amplitude of two electrodes to 1.7 V yields a shift in the potential

minimum of 20 µm is observed.

The ion’s secular frequency is computed and hence its q value to observe if the ion

remains in the acceptable stable region radially, (0.1 < q < 0.9). As the asymmetry of

the rf amplitude increases, a linear increase of the secular frequency and hence the q
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value is observed. The q value remains within the stable region.

Figure 38: The linear increase of secular frequency and q value as the pseudopotential
minimum is shifted for Vac = 1 V-2 V, Ωac = 20 MHz.

It has been deemed that a suitable electrode-ion spacing that does not interfere with

our trapping potential is 75− 110 µm, within this range simulated secular frequencies

are (2-4) MHz. By reducing the thickness of the rf electrode tips, optical access is

increased without compromising the ion’s stability. Additionally it was determined

that by doubling the amplitude of two neighbouring electrodes, the pseudopotential

minimum is shifted by ∼18 µm.

4.4 Axial Trapping Dynamics

Unlike the endcap trap studied in chapter 2 where a single ion was localised to a single

minima along the trapping axis, this linear segmented configuration will entail that

multiple ions are shuttled along the trapping axis. Hence, this section is dedicated to

studying the axial trapping behaviour of the system and to optimising the axial dc

electrodes. As stated previously a key aspect of the new trap is the ability to control

the axial potential such that we are able to selectively move a single ion from a string

of stored ions. This will be done by varying the dc potential on the axial segmented
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electrodes, such that a chain of ions can be split coherently, or selectively shuttle one

ion off a string of multiple ions. In principle this is done by wedging a parabolic (x2)

potential into a quartic potential (x4) which will effectively ‘split’ our chain of ions. In

order to simulate this splitting behaviour, a simulation of a single well pseudopotential

in the axial plane is done. Multiple single well potentials are combined to form a double

well potential, the results generated will then be used with a model that simulate the

dynamics of calcium ions in a potential.

4.4.1 dc Electrode Geometry and Trapping Dynamics

The axial potential from a single segment of three electrodes is simulated in this sub-

chapter. The central electrode is set to some dc voltage and the outer electrodes are

grounded. The electrodes are on a dielectric (insulator) substrate, their widths are

varied and their distance from the rf electrode are increased. The varied widths are

in a range of (50 - 800) µm, in order to observe the effect this has on the shape of

the pseudopotential; the linewidths of the potentials are measured along with the ion’s

secular frequency. By doing so, broader linewidths with wider minima are observed as

the electrode widths are increased. The broader linewidths would suggest a decrease in

confinement i.e. decrease in secular frequency. The distance between the dc electrodes

and the rf are also varied and the effect this has on the secular frequency and stability

is observed.
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Figure 39: Left: Schematic of the simulated electrode configuration Increasing the
width (W) of electrode DC 0, where W = (50 - 800) µm.

The ion’s secular motion is maximal at widths (100-200) (µm)

(a) (b)

Figure 40: The effect of varying the electrode width on a) secular frequency, b) trap
depth. The cause of the kink observed at electrode width = 100 µm for both plots is
not fully understood.

When retracting the dc electrode away from the rf, a linear decrease in the trap depth

is observed as well as a decrease in secular frequency.
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Figure 41: The effect of varying the electrode retraction on a) the potentials b) secular
frequency.

The linear decrease in trap depth causes a decrease in trap confinement as the electrode

is retracted away from the ion. This is attributed to the fact the electric field of a point

charge follows an inverse square law, which is observed in the decay of the secular

frequency. With the range of potential shapes obtained from the above simulations,

a particular electrode dimension is selected to be used in the simulation of two ion

splitting, these dimensions will be determined in the following subchapter by observing

how the quartic component of our line shapes varies as the potential evolves.

4.5 Splitting an Ion Crystal

Shuttling ions in Paul traps has been a promising means of manipulating and controlling

qubits. In particular for transporting ions into the different regions of an ion trap re-

served for different tasks such as storage and for processing. Shuttling through different

arrays has been successfully demonstrated [55, 56, 57]. In every case, configuring the

electrode geometry and optimising the shuttling parameters has been crucial in working

towards adiabatic transport. Splitting ions in an rf Paul trap was first demonstrated in

[56] and the general case of optimising electrode structure for ion crystal splitting has

been outlined in [58]. It has been noted that a challenge is that the harmonic part of
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the potential defined by α has to cross some critical point when α→ 0 where the ion’s

confinement is at it’s lowest.

In this chapter the preliminary work in simulating and studying the splitting dynamics

in our 3D segmented trap structure is presented. It begins by generating a double

well potential from the single wells simulated above. The different potential shapes are

implemented in a full 3D dynamical model that simulates the Coulomb repulsion, the

force due to the potential and an external force that represents some damping due to

laser cooling.

4.5.1 The Quartic Component

Thus far the case of a single trapped ion is presented. However, for the simplest case of

splitting two ions, some static voltage that transforms the single well into a double well

is applied. Mathematically, the potential goes from being a quadratic (x2) to a quartic

(x4), the potential is of the form

Φ(x) ≈ βx4 + αx2 + γx. (46)

where β, α, γ are defined by the trap geometries. As the potential evolves from a single

well (αi > 0) to a double well (αf < 0) the potential passes a critical point, α = 0 in

which the potential minimum become flat. It is required that β > 0 when α ≤ 0. At

the critical point, harmonic confinement vanishes and a weak residual confinement is

preserved from a combination of the coloumb repulsion of the two ions and the quartic

term of the confining potential. Hence ensuring that β is maximised at α = 0 is essential

for the splitting process.

The force due to the potential (46) in z is expressed as

∂φ

∂z
= 2α + 4βz3. (47)
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When α < 0, the defined equilibrium position of z =
√
|α|
2β

, the secular frequency is

expressed as

ω =

√
4q | α |
m

. (48)

Similarly following the steps in [58], for α→ 0, the position of the potential minimum

is

z '
(

e

2πε0β

)
. (49)

At this critical point the secular frequency is at its minimum and the dominant force

acting on our ions is due to the coulomb repulsion, the secular frequency is expressed

as

ωmin =

√
3e

m

(
e

2πε0

)1/5

β3/10. (50)

Figure 42: The evolution of the potential from a quadratic (α < 0) to the critical point
(α = 0) to a quartic potential (α > 0). This is driven by the voltage on DC 0 being
ramped from -1V to +1V.

The splitting process is driven by varying the voltage on the central electrode (DC 0),

to simulate the evolution of the quartic component, a single well potential from the
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parameters optimised above are combined and applied to three electrodes; the central

electrode (DC 0) and the left and right segments (DC 1 & DC 2). The summation of

three single welled (parabolic) potential results in the double well (quartic) potential.

For these simulations to maximise shielding of the cavity, the rf-ion separation is reduced

to 75 µm.

Figure 43: The sum of three quadratic potentials yielding a quartic potential for an
increasing voltage on the central segment (DC 0), it is observed that the critical point
occurs when the shape of the potential at the minimum is flat.

The coefficients that define the shape of each potential based on the electrode variations

are extracted. As it is desirable to maximise the quartic component at the critical point,

the electrode width that yields the highest secular frequency was found. For an electrode

separation of 10 µm, it was deemed that β is maximised for an electrode width of 270

µm.
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Figure 44: The quartic component (β) at the critical point for different central electrode
(DC 0) widths. The optimal value occur about 270 µm.

4.5.2 Molecular Dynamics Simulations

Previously, the pseudopotentials for a single well transforming into a double well were

simulated. In this section, the preliminary stages of simulating the splitting protocol

is presented. This is done by plotting the ion’s position for varying potential shapes

in a full 3D model. The model is driven by two forces; the force due to the coulomb

repulsion and the force due to the potential. The driving factor in this model is the

changing force due to the potential transforming from a quadratic to a quartic for a

central electrode width of W = 270 µm. As the ion is initially in a single well, their

separations are at z = 0. As the potential reaches the critical point, the coulomb

repulsion becomes the dominant force causing the separation between the two ions to

increase (time evolution = 30). As β increases a wedge is formed between the two

ions and once again the dominating forces are due to the potential. The two ions are

separated into two wells and oscillate about their respective equilibrium positions (at

time evolution = 60). The final separation of the two ions corresponds to the position

of the double wells ±250 µm.
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Figure 45: The splitting of two ions in a quartic potential, configured for an initial
position of z = 0 (the centre of the wedge), the ions move away from each other due to
coulomb repulsion, they then oscillate about the potential minimum or each well at a
separation of ∼ 200 µm.

This marks the preliminary stage of a full simulation of the dynamics of the splitting

of ion chains. To fully evaluate the performance of the splitting protocol, the heating

rate of the ion while the potential evolves is to be determined. The ion is particularly

susceptible to effects due to anomalous heating. Such occurs when the mean phonon

number increases due to thermalisation with electrons at scales much greater than the

electronic noise generated by the thermal agitation of charge carriers.
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5 Conclusion & Outlook

The original motivation of this work was to develop a cavity QED system in which a

single ion could be coupled to the modes of an optical cavity and demonstrate not only

strong coupling but a deterministic entanglement scheme that would form the basis for

a network of trapped ion processors. To this end an endcap system with a fibre based

cavity was deemed the most ideal system given the previous success of a similar endcap

system, the first of which to achieve strong coupling between a single ion and an optical

cavity.

An improved system based off the one used by Takahashi et al. was designed; one that

would feature a number of improvements over the previous generation of the end cap

fibre cavity trap. The design featured greater optical access by using different electrode

materials and dimensions, this was facilitated with an improved insertion technique.

Optically, the system would feature greater mode matching with the cavity mode and

fibre mode by using a concatenated assembly of GRIN and SM fibres.The trap would

also feature a novel means of adjusting the ion’s position radially to optimise ion-cavity

coupling. This was proposed by distorting the pseudopotential by mechanically adjust-

ing the position of grounded side electrodes. Simulations results showed that the travel

of the stage controlling the position of the electrodes would be enough to correct for

the eccentrics incurred during the insertion stage (∼ 6 µm).

A crucial part of developing a cavity QED system was the stability of the cavity. Of

great hindrance to the previous generation was the cavity’s inability to stay on resonance

in response to acoustic noise. This was attributed to the limited bandwidth of the cavity

locking scheme due to relying on an error signal in transmission rather than reflection

and the overall mechanical structure surrounding the system. Our design aimed at
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addressing these issues however we were unsuccessful in locking our system using the

PDH method. It was observed that mechanical noise inherent in the system inhibited

this. The noise was eventually reduced by a factor of 10 by adding dampers such

as sorbathane isolators or clamping down any lose electrical/optical connections that

were directly coupled to the system. However it was observed that the cavity would

remain on resonance for a brief period of time ∼ 100 ns, which was too brief for our

feedback loop to correct for. It was concluded that the stage used to finely adjust cavity

alignment was the source of the mechanical noise. The alternative would be to design

a monolithic system however it was deemed infeasible.

It was then decided to develop a linear micro trap, one that could trap a string of ions

that could demonstrate not only cQED but also gate operations. The preliminary design

features different regions reserved for operations related to ion-photon entanglement

and gate operations. A novel feature being the ability to selectively load single ions

from the stored reservoir. Prior to fabrication, simulations to determine the optimal

electrode dimensions were carried out. The simulations maximised secular frequency

in both axial and radial dimensions, stability parameters a & q found to be within

stable ranges. In particular, it was determined that a dc electrode width of ∼ 270 µm

would yield the highest quartic component at the critical point. Further development

of the simulations to fully evaluate the heating rate of the ion and optimise the splitting

procedure is required. This would entail dynamic simulations of the potential varying

in time under some external damping (laser cooling) force. It is evident that further

work is required for the development of this system both on the simulation front and

the apparatus. The work presented in this section outlines only the preliminary stages

for further development.
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