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JAMES VAN YPEREN, DOCTOR OF PHILOSOPHY

NUMERICAL ANALYSIS AND SIMULATION OF MATHEMATICAL MODELS

FOR THE RICE BLAST FUNGUS

ABSTRACT

In this thesis we present numerical analysis and simulations of mathematical models
relating to the model for the rice blast fungus proposed in [102]. We begin with a compu-
tational study of a diffuse interface approximation of surface advection-diffusion equations
on evolving surfaces. We study the experimental order of convergence produced by the fi-
nite element approximation presented in [44, 63] with added streamline diffusion from [63]
and the stability term introduced in [44]. Furthermore we study the instabilities caused
by an advection-dominated advection-diffusion equation and we introduce a finite volume
approximation of the diffuse interface approximation. We then extend the computational
study to include models in which the velocity law of the surface satisfies curve shortening
flow. Next we prove optimal error bounds for a semi-discrete finite element approximation
for a system consisting of the evolution of a curve evolving by forced curve shortening flow
coupled to a reaction-diffusion equation on the evolving curve, such that the curve evolves
in a given domain Q C R? and meets the boundary, 99, orthogonally. We compliment
this analysis with error bounds for a fully discrete finite element approximation of curve
shortening flow in the same fixed boundary configuration without the reaction-diffusion
coupling. We also present numerical experiments and show the experimental order of
convergence of the approximations that we analysed. Finally we derive a diffuse interface
approximation to the mathematical model of the rice blast fungus presented in [102] and

present numerical simulations that are consistent with the simulations presented in [102].
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Chapter 1

Introduction

In this thesis, we study mathematical models relating to the model of the rice blast fungus
presented in [102]. Aspects of the models we study are of interest in the surface evolution
community. As we progress through the thesis, we will demonstrate how the content we

introduce links to the mathematical modelling of the fungus.

The rice blast disease occurs in over 85 countries and accounts for the annual loss
of 11-30% of global rice yield [112]. Explicitly, in China between 2001-2005, 5.7 million
hectares of rice was destroyed [119], and, in 1995 in Bhutan, more than 700 hectares of
rice were affected and led to the losses of 1090 tonnes of rice [114]. It poses a significant
threat to global food security. Magnaporthe Oryzae (a.k.a the rice blast fungus) causes

this disease.

The study of the fungus itself is prevalent in the biology sector. It has been studied
both in-vivo and in-vitro for decades [80, 96, 113, 118]. Gaining a good understanding of
the behaviour of fungus is imperative to the success in stopping it. Growing the fungus and
studying its behaviour takes time and resources that are often expensive and not available
to everyone. This aspect is one of the many reasons why the mathematical community
develop mathematical models. Mathematical models have been behind some of the leading
research into real-life phenomena. Although simplifications are necessary for forming a
model, they offer insight that might not have been obtainable in a laboratory. Multiple
simulations with changing parameters can be run in parallel, while mathematical analysis
can identify essential parameters and thresholds which can then be interpreted into real-
life data and strategy. Indeed, the collaboration between biologists and mathematicians

that resulted in the model in [102] that we are using found that a specific molecular species
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is the driving force behind the invasion into crops.

In this introduction, we briefly introduce mean curvature flow, one of the central
themes in this thesis. We then go on to discuss and compare a parametric formulation of
mean curvature flow with a phase field approximation to mean curvature flow. Next, we
introduce surface partial differential equations and in particular surface advection-diffusion
equations and surface reaction-diffusion equations, the other central theme of this thesis,
by considering different frameworks as well as real-life applications. Finally, we give an

overview of the whole thesis.

1.1 Mean curvature flow

Definition 1.1 (Mean Curvature Flow).
A family of hypersurfaces I'(¢) are said to evolve by mean curvature flow if they satisfy
the law

V=K on I'(t), t € (0,77, (1.1.1)

where v is the velocity of I'(¢) in the normal direction 7 and & is the mean curvature of

(1)

Remark 1.2. Often mean curvature flow is described by v = —k, we note here that the

sign is dependent on the orientation of the surface.

Remark 1.3. Forced mean curvature flow is mean curvature flow with a forcing term,
that is
v=K+D. (1.1.2)

Again we mention that orientation is important for the sign of p.

Remark 1.4. From [{1], mean curvature flow is the result of the L? gradient flow of the

energy functional

ET](t) = / ds. (1.1.3)
I(t)
There are many applications of mean curvature flow, a few of which we list here:

e Grain boundary motion. Grain boundaries in alloys are interfaces which separate
bulk crystalline regions of the same phase but with different orientations. Diffu-

sion and surface tension drive the interface which mathematically is modelled by,
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some variant of, (1.1.1). Moreover, when the alloyed material is placed in a differ-
ent material’s vapour, the particles from the vapour diffuse through the interfaces,
depositing themselves into the bulk exciting the motion of the travelling interface.
This deposition can be modelled mathematically by a conservation law that holds
on the evolving interface. This process is called diffusion induced grain boundary

motion, see [26, 41, 43, 93].

e Image processing. One of the most important aspects of image processing is the
detection of edges/contours of an object by reducing the noise of the image. Since
(1.1.1) is analogous to the geometric heat equation [41], it poses smoothing properties
for curves, and so provides an appropriate model. Several applications come to mind
instantly in medicine, such as in magnetic resonance imagining or an ultrasound scan,

see [3, 41, 91, 101].

e Cell tracking. Cell migration is a fundamental process in biology; it is one of the
factors that explains the process for biological events such as would healing, inflam-
mation and tumour invasion. Cell tracking is the mathematical process of tracking
the cell shape from images. Detecting the geometry of the cell is essential as it
provides knowledge of the edges of that cell, and thus (1.1.1) plays an important
role. The shape of cells are also affected by their surrounding environment, such
as nutrients. Similarly to diffusion induced grain boundary motion, this supplies a
conservation law defined on the evolving surface that describes pattern formation on

the surface, see [17, 89, 120).

We now closely follow [41] in describing two prevalent forms of mean curvature flow
which we consider in this thesis, namely parametric mean curvature flow and the phase
field approach to mean curvature flow. Other descriptions are the mean curvature flow of

graphs, see [38, 88], and the mean curvature flow of level sets, see [39, 105].

1.1.1 Parametric mean curvature flow

In this thesis we only consider the parametric mean curvature flow of curves in R?, also
know as curve shortening flow, whereby, for motivation purposes, we assume the curve I'(t)
is closed. We choose to specifically introduce this for curves and not generally for surfaces
as the techniques needed are slightly different. Curve shortening flow is a so-called front-

tracking method or explicit method. By this we mean that it explicitly tracks the curve
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I'(t) and its movement, and the resulting partial differential equation (PDE) essentially
provides the coordinates of the curve. To be more precise, let I'(t) C R? be a family of
closed curves parametrised by & : I x [0,7] — R?, where I := R\ Z is the periodic unit

interval. Then ¥ satisfies the relation
ft =KU= Ap(t)f, in H, t € (O,T], (114)

where Ap(;) denotes the Laplace-Beltrami operator on I'(¢) defined in Definition A.7. One
notices that taking the inner product of (1.1.4) with 7, one recovers v = k on I. By
considering textbook results in differential geometry, such as Frenet’s formula (3.2.2),
(1.1.4) takes the form

Ty — Tas = 0, in [0,4], t € (0,77, (1.1.5)

where s denotes the arc-length parameter associated to I'(t) and ¢ denotes the total arc

length of the curve. We go into more detail about curve shortening flow in Section 3.2.1.

1.1.2 Phase field approach to mean curvature flow

Although in this thesis we again only consider the phase field approach to mean curvature
flow of curves, we introduce the concept for a general surface since the techniques are the
same. The phase field approach is an example of an implicit method in which, for some
small positive parameter ¢, we assume there exists a function ¢ : R"*! x [0, 7] — R, with
n = 1,2, such that

L.(t):={peR"™ . —1+Ce<p(pt) <1-Ce},

where the constant C' depends on the type of potential we use to describe the phases. The
phases, ¢ &~ 1 and ¢ ~ —1, approximate the two sides of the evolving surface and thus ¢ is
consequently described as the phase field function of I'(¢). The phase field approximation
to (1.1.1) is derived by taking the regularized L? gradient flow of the Ginzburg-Landau-

Wilson functional
Bl = [ 51Vl OF + JW (1) da,
which results in a function ¢ that satisfies
epr = eAp + éW’(cp), in Q, t e (0,7], (1.1.6)

where W defines the potential and Q C R™"! is some set satisfying T'-(t) C Q, Vt € [0,T].
The approximation to I'(¢) is then I'c(t)|,(.4)=o. Although it is not directly formulated
from the definition of I'(¢) like (1.1.4), one can note the similarity to (1.1.3). We go into

more detail about the phase field approach to mean curvature flow in Section 2.2.
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1.1.3 Comments on the discretisation of the mean curvature flow of

curves

In this thesis we concentrate mainly on using the finite element method to numerically
approximate the mean curvature flow of curves. Omne can ask the question, how is it
known which of the approaches introduced should be used for a given application? For
an in-depth analysis and computational study we refer readers to [12] where the authors
compare a phase field implementation versus a parametric implementation with emphasis
on Stefan problems, such as the Stefan problem for undercooled solidification, see [103].
Here we will highlight some appropriate advantages and disadvantages of the finite element
discretisation of the phase field versus the parametric formulations of the mean curvature

flow of curves:

e Implementation and simulation. Since curve shortening flow can be parametrised
by the arc-length parameter s, a variable in R, the associated finite element dis-
cretisation is easily implementable and does not require the use of specific finite
element packages. The phase field approach to curve shortening flow, however, is
defined in R? and is thus not as straight forward to implement without the use of
finite element packages due to, for example, the need for adaptive mesh refinement.
Moreover, since (1.1.6) is defined throughout 2, the computational domain has sig-
nificantly more nodes in its triangulation compared to an equivalent partition of
[0,1] for (1.1.5). Thus it is not hard to reason that the computational time needed
for phase field approach to mean curvature flow is a lot larger than for a parametric

formulation of curve shortening flow.

e Topological changes. Although it is well known that a closed curve evolving under
curve shortening flow shrinks to a point [70, 72], under forced curve shortening flow
one might expect topological changes to happen, such as self-intersection. Here we
consider how the parametric and phase field approaches handle such changes by
considering a pinching dumbbell. In Figure 1.1 we demonstrate this problem using a
parametric formulation of forced curve shortening flow. As it is an explicit method it
has no notion of interior, and so it cannot detect the pinching of the curve. However,
the phase field approximation to forced mean curvature flow does have a notion of
interior and this allows the phase field function to react to the pinch by splitting into
two curves, as seen in Figure 1.2. Thus phase field approximations can provide an

important insight for applications in which I'(¢) models an evolving boundary that



splits like in cell tracking.

X oo o=

(a) Initial curve (b) Before self-intersection (c) After self-intersection

Figure 1.1: Parametric implementation of a pinching dumbbell evolving under forced curve

shortening flow.

=000

(a) Initial curve (b) Before self-intersection (c) After self-intersection

Figure 1.2: Zero level set of the phase field implementation of a pinching dumbbell evolving

under forced mean curvature flow.

1.2 Surface partial differential equations

As the name suggests, surface PDEs (SPDEs) are PDEs defined on a surface. More
precisely, they are the study of PDEs on manifolds. PDEs themselves have a large number
of applications and this extends to SPDEs. Due to the fact that SPDEs are defined on
surfaces, one needs to give care not only to how we describe the resulting mathematical
operators, but also to the surface. Indeed one has to consider whether the surface is
stationary or moving and how this changes the representation of the equations. In addition
to this, regularity plays an important factor. In standard PDE theory the relaxation of
solutions to weak formulations or even to a distributional setting is well defined, however
for surfaces this is not so easily accessible. PDE theory is large and vast, see [68], and is
rich in history in comparison to SPDEs. For a review of the finite element analysis for

SPDEs we direct readers to the recent review publication [61].

In this thesis we first focus on surface advection-diffusion equations (SADEs) and then
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on surface reaction-diffusion equations (SRDEs), more specifically advection-diffusion or
reaction-diffusion equations on curves, so in this section we introduce the aspects im-
portant for these. Since both SADEs and SRDEs have a similar structure, the main
difference in this context of this thesis being the forcing term dependencies, we only refer
to advection-diffusion for the remainder of this section. Contextually PDEs are often the
result of a conservation law, and an advection-diffusion equation is no different, both in
the traditional sense and also on a surface. In the traditional sense, the equation comes
about from, for example, the conversation of mass with an advective and diffusive flux.
The derivation then comes from the ability to interchange the derivative and integral, as
well as the definition of the flux. The same techniques can be applied to surfaces, but we
need to consider in addition if the surface evolves. Considering an evolving surface, the
interchanging of the derivative and integral becomes more tricky as we need to consider
the velocity of the moving surface. In this section we assume that the velocity of the

surface is known and takes the form
v=v0V+ Uy, (1.2.1)

where v is the normal velocity of I'(¢), ¥/ is the unit normal to I'(¢) and ¥, is the tangential
component of the velocity. However, we note that in many instances the velocity might
be defined by a velocity law such as mean curvature flow. We note that in the literature

U is often called the material velocity.

As preluded to, we will only consider the parametric representation of surface evolu-
tion for curves, however we will introduce the notation here for surfaces for completeness
and derive the results for curves in a later chapter. Similarly, we introduce the associ-
ated equations using an implicit representation even though we only consider the diffuse
interface approach, as the concepts are nevertheless important for derivation purposes.
Throughout this section we will be following the review publication [58] closely. We start

with the parametric representation of a surface.

1.2.1 Parametric representation of SADEs

An advection-diffusion equation on a parametrised surface takes the following form
8{u + udin(t)(ﬁ) - din(t) (d Vp(t)u) = f, on F(t), te (0, T], (1.2.2)

where 07 denotes the material derivative 0fu = u¢ + (¥, Vu), with (-,-) denoting the

standard Euclidean inner product, divr is the surface divergence defined in Definition
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A.5, V() is the surface gradient defined in Definition A.4, d denotes a diffusion coefficient

and f is a forcing term. If we set ¥y = 0 then (1.2.2) is synonymous to
ug + v (Vu, 7) + kvu — divpyy (d Vigu) = f, on I'(¢), t € (0,T]. (1.2.3)

In order to be able to derive a finite element method for surfaces, we need the weak formu-
lation of a PDE. Traditionally this means multiplying by a test function, integrating, and
potentially using integration by parts and Leibniz’s rule. One asks, are these techniques
extendable to SPDEs and the numerical solution of SPDEs? Only recently has this been
the case, by work pioneered by Dziuk and Elliott [53, 54, 55, 56, 57], in which they derived
methods for numerically solving SPDEs for the parametric and implicit representations
of surfaces. For a review of these techniques see [58]. We briefly mention the numer-
ical techniques for the numerical solution of SPDEs in the parametric representation of

surfaces:

e Evolving surface finite element method (ESFEM) [53]. By approximating I'(¢")
with a polyhedral approximation I'»", one approximates the surface gradient using
the approximate normal to I, Then, similar to the traditional finite element
method, the matrix contributions are the surface integral of the basis functions
over I'™ using the approximate surface gradient if necessary, in order to obtain
a numerical scheme which is similar in structure to a finite element approximation
of a standard reaction-diffusion equation. ESFEM is an extension to the originally
conceived surface finite element method (SFEM) which is for the finite element

approximation of PDEs on stationary surfaces, see [50].

e Arbitrary Lagrangian-Eulerian ESFEM (ALE ESFEM) [67]. In ESFEM only the
normal velocity of the surface I'(t") is considered when moving the triangulated
surface T". There are situations where the evolution of I'»" causes the clumping
of nodes. To prevent this clumping of nodes an artificial tangential motion of the
nodes can be introduced. In such instances this adds an extra term to the numerical
scheme which is the difference of the introduced advective velocity of the surface and

the material velocity of the surface.

1.2.2 Implicit representation of SADEs

When considering I'(t) to be implicitly defined, the resulting SADE will be different to
(1.2.2). Indeed, rather than deal with I'(¢) explicitly one defines it as the zero level set of
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some function ¢ and then defines the SADE in some bounded domain © € R™*!, such that
[(t) C Q,Vt € [0,T]. To be more specific, let ¢ € C?(Q) be a non-degenerate function,
that is |Vo(p,t)| # 0, for p € Q, and define

I(t)={peQ: ¢(p.t) =0},
then the SADE takes the following form
1
Ofu + udivy (V) — =—div (d|V¢| Vsu) = f, in Q,te (0,7 (1.2.4)

Vol

—

Here divg can be thought of as the ¢-extension to divp,, defined as divy(v) = div(?)
(V(U,Uy), Up), where Uy = % which can be thought of as the ¢-extension to the unit
normal 7 to I'(t), V4 can be thought of as the ¢-extension to Vp(, defined as Vyu =
Vu — (Vu, V), and Ofu is as above. One notes that € has a boundary, as opposed
to I'(t) which doesn’t, and so one can reason that the natural choice for the boundary

conditions would be

(Vou, iq) = 0.

An advantage of using the implicit representation of a surface for the finite element ap-
proximation of a SADE is that one bypasses the difficulty of approximating I'(¢); however,
one still needs to choose ) appropriately. Indeed, if €2 is chosen to be a generic domain,
like a square, then the level sets of ¢ will intersect the boundary of €2, which results in
imposing the additional boundary condition above. Alternatively, one can choose 2 in
terms of ¢; however, this may introduce geometric errors into the scheme if €2 is curved.
Considering the implicit surface finite element method, to obtain a numerical scheme the

basis functions are integrated over the whole domain € rather than over I'(t"), see [55].

1.2.3 Diffuse interface approximation to SADEs

The diffuse interface approximation to SADEs is based on a phase field approximation of
the surface and so, for a non-negative function p., which we define shortly, we introduce

the diffuse interface approximation to I'(¢) as

Le(t) :=={p€Q: p(p,t) > 0}.

Commonly I'.(#) is called the interfacial region. The derivation of an equivalent equation

to (1.2.2) requires a lot more technical detail, which can be found in [44, Lemma 7.1]. We
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introduce the necessary details from [44] to state the diffuse interface equivalent of (1.2.2).

Denoting
Us(t) :={p'e Q: |o(p,1)| <6},

using the extension u® of u to  outlined in [44, Section 2.2], one can show that the
suitably extended u® satisfies

1
OFu 1 dive(7°) = (o rdiv (d|V| V) = f + 6 R, in Us(0), ¢ € (0,7,

for a suitably chosen § and suitably extended ¢ and f, where R comes from the extension
of I'(t) to Us(t) and is a smooth function of ¢, u and ¢ and some of their derivatives, see
[44, Lemma 7.1]. By considering a function g € C1"}(R) such that

pe(-t) :29(M>, in Q, t€l0,T],

€

for some 0 < me < 24, the following properties hold, see [44],
o+ (U5,Vo)y =0, 97p- =0, (Vu®,Vp:)=0, in Us(t), t € (0,T].

Thus, as well as noting ' (t) C Us(t), the diffuse interface approximation of (1.2.2) is

1

O (peui) + peu divy(7°) =

div (d |Vo| p-Vuc)

=p: [+ p: O R, inQ,te(0,7]. (1.2.5)

A more in-depth review of the diffuse interface approach and the finite element approx-

imation of it is conducted in Section 2.3.

1.2.4 Application of SPDEs

There are many applications to SPDEs, we list a few here:

e Surfactants. A surfactant is a mixing agent that is added to a fluid to increase the
stability of two or more emulsifying liquids. As the surfactant mixes with the liquids,
the tension between the multiple surfaces can cause the surfactant to diffuse along
its interface, thus causing a reaction-diffusion effect. This is called the Marangoni
effect. Similar to diffusion induced grain boundary motion, the mechanics on the
interface changes the boundary layer of the surfactant, leading to a free boundary

problem, see [13, 78, 84].
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e Turing patterns. It is well known in the literature that reaction-diffusion type mech-
anics provide a framework for describing pattern formation in biology, such as spots
and stripes in skin formation. By adding specific forcing to the reaction-diffusion
equation, one can simulate diffusion-driven instabilities, also known as Turing in-
stabilities, and the patterns arising are often called Turing patterns. Focusing on
biology it is natural to use the Turing model on evolving surfaces, whereby the in-
stability can be caused by the evolution of the surface, or the instability causes a

different evolution of the surface, as described by cell motility, see [4, 5, 95, 117].

e Tumours. Although for the evolution of tumours many different types of models
have been derived and used, we specifically mention models that connect the tumour
growth and movement to a coupling of a bulk equation for nutrient and necrotic cells
to surface equations defining the movement corresponding to the concentrations of
nutrients. This application also demonstrates another mathematical use of surface

PDEs, namely coupling to interior bulk equations, see [23, 69, 81].

1.3 Overview of the thesis

The main contributions of this thesis are:

e We derive a finite volume approximation to the diffuse interface approximation for
SADEs and compare with the errors obtained using the finite element approxima-
tion for an advection-dominated problem. To our knowledge, this is the first work
that considers the experimental order of convergence of the finite volume approx-
imation to the diffuse interface approximation for SADESs, and the first work which
systematically looks at the difference between using the finite element method and
the finite volume method for an advection-dominated SADE. Moreover, this is the
first work where one considers the finite volume approximation to the diffuse inter-
face approximation for SADEs whereby the velocity law of the evolving surface is
a phase field approximation to mean curvature flow. The challenge in this section
was that ALBERTA, the software we use to numerically approximate the solution to
the SADEs, is a finite element package and therefore generating the resulting linear
system required to solve the finite volume approximation had to be developed in the

finite element framework.
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e We prove fully discrete finite element error bounds for curve shortening flow attached
orthogonally to a fixed boundary. This proof use the typical fully discrete finite
element error bound techniques for parabolic PDE problems by bounding the error by
the error at the previous time step and the residual, however since curve shortening
flow is a non-linear PDE extra care is needed. As in [6], an inductive hypothesis
is used to get a stability bound on the length element which enables the typical
techniques to be useful. However, unlike in [6] which does not require boundary
terms due to the assumption of periodic boundary conditions, the bounds resulting
from typical techniques for our problem results in the usual terms and extra terms
in the form of L™, L? norms and terms with an exponent of 4 rather than 2 which
is what is desired. To overcome this we extend the results in [42] from the semi-
discrete case to the fully discrete case and propose a strong inductive proof rather
than a weak inductive proof as in [6]. Using the concepts presented in [6], the strong
inductive hypothesis and the extended results from [42] enable us to complete this
proof. To our knowledge, this is the first work which also details fully discrete error
bounds in the L? norm, work which is the fully discrete extension to the result

presented in [42].

e We prove continuous in time finite element errors bounds for curve shortening flow
attached orthogonally to a fixed boundary with a reaction-diffusion equation on the
evolving curve. Similar to above, we use typical semi-discrete finite element error
bound techniques for parabolic PDE problems by bounding the time derivative of
the error by the error itself and the residual, but extra care has to be taken due
to the non-linearity of the problem. Semi-discrete finite element analysis of curve
shortening flow can be split into two types. The first involves using a fixed point
concept whereby the set of admissable functions is chosen as all possible functions
which satisfy the error bound required, using the standard finite element techniques,
and then showing there exists a unique fixed point of this set which is the finite
element approximation [37, 59]. The other is based upon using the same typical
finite element techniques but combined with a contradiction to show that the error
bounds must be satisfied for the whole interval [0, 7] rather than a subset [40, 42].
Both employ similar techniques, however the later is used when terms difficult to
bound in the traditional sense appear, as in the case our boundary conditions. In this
proof we are considering a coupling of curve shortening flow and a reaction-diffusion

equation on the curve, and so we extend the results in [42] using a semi-discrete
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version of the analysis presented in [6].

e We derive a diffuse interface approximation to the rice blast model presented in
[102] and present simulations that reflect the simulations in [102]. The derivation
from the sharp interface description to the phase field setting came with multiple
challenges. Firstly, the use of the evolving surface finite element method gives the
sharp interface approach a natural way to deal with the small diffusion constants
due to its derivation, which is not the case in the phase field setting as demonstrated
in Chapter 2. This was overcome by increasing the diffusion constants so that the
finite element approximation is stable. Secondly, the sharp interface description
makes uses of an obstacle potential to stop the two interfaces (the fungus and the
leaf) from intersecting until a condition is met. There isn’t a clear way of deriving
the same obstacle potential in a phase field setting which caused us to try and
approximate the obstacle force on the resulting equations by adding an extra term
into the Ginzburg-Landau-Wilson function to minimise interaction between the two

phases (the fungus and the leaf).

In Chapter 2, we introduce and investigate the phase field approximation of mean
curvature flow and then further introduce the diffuse interface approximation to SADEs.
We mirror [44, 63] by conducting tests of the experimental order of convergence of the res-
ulting finite element approximation and extend the computational experiments conducted
in [44, 63] by considering an advection-dominated simulation. This prompts us to intro-
duce the finite volume method for diffuse interface approximations. Here we demonstrate
how the finite volume approximation compares to the equivalent finite element discret-
isation in advection-dominated simulations. As well as this we discuss the profile spiking
due to the evolution of the curve and discuss how one can dampen the effects using the
edge smoothing contribution introduced in [63]. We finish off the chapter by considering
the diffuse interface approximation of SADEs, both the finite element discretisation and
the finite volume discretisation, where the velocity law is a phase field approximation to

mean curvature flow.

The main focus of Chapter 3 is the finite element analysis of curve shortening flow
for a curve that is attached orthogonally to some defined fixed boundary. We consider
a time and space discretisation of this flow as well as a purely spatial discretisation of a
model in which this flow is coupled to a SRDE. For the former, we present optimal L? and

H' error estimates. For the later, we present optimal H! error estimates for the curve
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equation and L? error estimates for the SRDE. Finally, we conclude the chapter with some
numerical simulations. Namely, we conduct a numerical study of a novel Newton method
to discretise the curve shortening flow attached to a fixed boundary. Then we go on to

show experimental order of convergence for the coupled scheme.

In Chapter 4, we consider the rice blast model as presented in [102]. We then reduce
the model from a surface in R? to a curve in R? and demonstrate a simulation coupling
curve shortening flow to a SRDE on the evolving curve. We then derive a diffuse interface
approximation to this simplified two dimensional version of the model as well as for the
original three dimensional problem and present simulations that compare well to the sim-
ulations in [102]. Chapter 5 then concludes the thesis, in it we outline future work as well
as possible improvements to the models we derived here. We note here that throughout
the thesis we present results proven within the literature which may have edited to provide

clarity.
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Chapter 2

The diffuse interface method for
surface advection-diffusion

equations

This chapter is an in-depth investigation and extension of the numerical results presented
[44, 63]. To begin, in Section 2.2, we first introduce the phase field approximation to mean
curvature flow in more detail. In Section 2.3 we review [44, 63] which analyse the finite
element discretisation of diffuse interface approximations of SADEs on evolving surfaces.
In Section 2.4 we present an extension to the numerical results presented in [44, 63] by
considering an advection-dominated simulation and the introduction of a finite volume
discretisation of a diffuse interface approximation to SADEs on evolving surfaces. We also
consider the simulation of a diffuse interface approximation to SADEs where the velocity
law of the evolving surface is a phase field approximation to mean curvature flow. Before

we begin with the content we introduce notation that will be used throughout the chapter.

2.1 Notation

As with standard theory we denote the Euclidean inner product by (-, -) associated to the

Euclidean norm [p]? = (5, p).

Since we consider diffuse interface approximations to advection-diffusion on curves,

our computational domain € is a bounded subset of R?, where we define the closure of a
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set, not just €, by Q. For some fixed h*, let (Th)0<hT§h* be a family of triangulation of €2
with hy := Tr’{lea’)r(h diam(7") being the maximum diameter of each triangle. Furthermore
we assume that 7" is shape regular, as in [44], in the sense that ¥ h7 € (0, h*] there exists
a o > 0 with

ron > ohyn, vTh e T,

where 771 is the radius of the largest ball contained in 7" and hgn is the maximum

diameter of T". Our finite element space is defined as
Sh .= {Xh €C(Q): X\hTh is affine on each triangle T" Th} :

We use the notation defined in [63] to further describe the triangulation 7" as well as sets
of nodes of the triangulation relevant to the diffuse interface approach. Let N be the set
of vertex indices of the nodes of the triangulation 7" with C" being the set of coordinates
(P1y.--,P7), J = |N|. For an index i € N let w; denote the set of nodes in A/ that have
a triangle edge in common with the node ¢, let N; denote the set of triangles that have
the ith node as a vertex and let Np» := {j € N : p; € T"} denote the set of vertices
belonging to a triangle 7" € T". We define the basis functions of S by x;(5;) = (55 and
we set I" : C(Q) — S" to be the standard Lagrange interpolation operator defined as
(I"n)(p;) =n(®j) 5 =1,...,J, and we denote I"" to be the local interpolation operator.

‘Th
We define the discrete inner product as

(n1,m2) = Z / 771772

TheTh
Further to a spatial discretisation, we also discretise in time. Let 0 = t° < t! < ... <
tN=1 < #N = T be a partition of [0, T]. We set At := max At,,, where At,, := " — "1
n=1,...,

and we define the discrete version of the time derivative as

n n—1
a’” —a

D" = —
At,

where we have denoted the continuous function a(-,t") by a”(:). In this setting we de-
note fully discretised finite element approximations by capital letters and the continuous
solution by lower case letters, e.g. A™(:) denotes the finite element approximation of the
continuous solution a(-,t™). Similarly, we denote the extension of a continuous function

from T'(¢) into €2 by a superscript e, e.g. u® denotes the extension of w.

We adopt standard notation for the Sobolev spaces WP (I), where I C R? is a bounded
domain, [ € Ny and p € [1, c0]. Here we denote the Sobolev [, p norm of a function f on the

interval I to be || f|lyy.p () and its seminorm to be | f|y1p(p). For the special case of p = 2,
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we denote W2(I) by H'(I), with the appropriate change to the norm and seminorm. For
the special case of | = 0, we work within the Lebesque spaces LP(I), where the norm
has standard notation || f||z»(;). We also denote the L? inner product over Q by (f,g).
Finally, we extend the notation to include time dependent spaces WP (0,7;X), where X

is a Banach space, with the standard associated norm and seminorm || f|lyi»(o r,x) and

| flwir(o,r;x) Tespectively.

Lastly, C' denotes a generic constant that is independent of Ay, At, and €. Multiple

occurrences of C' will not, in general, take the same value.

2.2 Phase field approximation of mean curvature flow

The phase field approach to approximating the evolution of a surface is derived from
taking variational derivatives of energy functionals, which have often come from a physical
interpretation of some interface problem. In this thesis we will only be considering the
phase field approximation of mean curvature flow, introduced in [2], however other phase
field approximations have been introduced for different geometric flows, such as the Cahn-

Hilliard equation [27] which has been shown to approximate surface diffusion, see [24].

Mean curvature flow has been formulated as the asymptotic limit of the system that
is generated by taking the regularised L? gradient flow of the Ginzburg-Landau-Wilson

functional, see [25], defined by

B0 = [ SIV6C. 07 + W et ds, fore <1, (2.2.1)

Q
where  is some set such that I'(¢) C 2, Vit € [0, 7], and W is a potential which defines the
phases. We require that the potential W (-) satisfies the following two conditions, namely
W (s) = W(—s) and the minima of W (s) are at s = £1. Assuming that I'(¢) is closed, to
give a notion of orientation, we want to describe I'(¢) as the zero level set of some function
©(t). The region where ¢ ~ —1 approximates the interior region enclosed by I'(¢) and the

region where ¢ = 1 approximates the exterior region.

We examine how the functional (2.2.1) gives rise to this description. Since we look to
minimise (2.2.1), we examine what this means for each term for a suitably small e. Firstly
we consider the potential term, due to the factor of 1/e, if W is not small this contribution

will be large. As W is minimised when s = %1, this contributes to pushing ¢ towards +£1.
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Now, although the small parameter ¢ multiplies the gradient term, the job of this term is
to penalise large jumps in gradients. One can interpret that the job of the gradient term
is to regularise ¢ and to keep it smooth, hence separating the phases, while the job of W

is to strongly define the two phases.

On the assumption that W € C2?(R), utilising Euler-Lagrange theory, see [68], taking
the regularised gradient flow of (2.2.1) yields the Allen-Cahn equation

1
epr = eAp — EW/((,O), in Q, t € (0,77, (2.2.2a)
(Vo,mq) =0, on 9N, t € (0,71, (2.2.2b)
©(-,0) = &), in Q, (2.2.2¢)

where 7ig is the outward pointing unit normal to 02, [41].

Remark 2.1. Considering forced mean curvature flow in (1.1.2), (2.2.2a) becomes
1., .
EPr = gASO - EW (90) + cwp, in (,t € (OaT]v

where cy takes the form

1
cw = \}5/1 VW (s)ds.

This term is derived from the asymptotic analysis of (2.2.2a) so that in the limit ase — 0,

(1.1.2) is recovered, see, for example, [20].

There are a variety of choices of W' in the literature. We first discuss the use of the
so called double well potential, which is depicted by the red line in Figure 2.4. This takes

the form

W(s) = %(32 _1)2, (2.2.3)

and gives rise to the following approximation of I'(t)
F.(t)={peQ: —1+Ce<ppt)<1-Ce}

for some C' > 0. By reducing ¢, the width of I'. decreases and C's decreases, which can be
seen numerically in Figure 2.1 by considering the colour scale of each sub figure. Using

(2.2.3), the Allen-Cahn equation (2.2.2a)—(2.2.2c) become

1
epr = eAp — g(,o(g02 —1), in Q, t € (0,71, (2.2.4a)
(Vp,7iq) =0, on 99, t € (0,7, (2.2.4Db)

(- 0) = ¢°(), in 0. (2.2.4¢)
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Remark 2.2. Using (2.2.3) in Remark 2.1, the double well phase field approzimation of
(1.1.2) takes the form

1 2 .
ey = eAyp — gcp(SOQ -1)+ \gp, in Q, t € (0,T].

Upon multiplying (2.2.4a) by a test function ¢ € H'(Q), and using integration by parts
as well as (2.2.4b), the weak form of (2.2.4a)—-(2.2.4b) is given by

E(on &) +e(Vo.VE) = (o — o*.6),  vee HY(R). (2.2.5)

€
When it comes to discretisation, we could use a fully explicit scheme, such as

(D" €+ (VT TEh) = (@ - (@ e, vehe st (220)

for which the restrictions on this scheme are the standard parabolic time-step constraint

At, < C hZ, see [65], or we could use a fully implicit scheme, such as
1
S(D®",§N)" + (VO™ VEh) = (0" — (@)%, M, vt e st

If this is solved using Newton’s method, then the time-step constraint is At, < C &2, see

[30]. Consulting [48], other methods that have been analysed and used are:

e Crank-Nicolson: this method takes the diffusive and potential terms both implicitly

and explicitly;

e IMEX: this method takes the diffusive part to be implicit and the potential terms

to be explicit;

e Convex splitting: this method starts by splitting the diffusive and potential terms
into convex and concave components, and then taking the convex contribution to be

implicit and the concave part to be explicit.

Another choice of potential is the so-called double obstacle potential, depicted by
the blue line in Figure 2.4. It was introduced by [15] to give true phase separations in

applications such as grain boundary motion. The double obstacle potential takes the form
1 2
W(s) := 5(1 —8%) +I_11y(s) (2.2.7)

where

I[—l,l](s) =
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This expression is also indeed minimised at s = +1 however it is not continuous at these
points. Due to this we can’t define the derivative formally, instead we define it using the

subdifferential, see Section B.1, and label it informally as

W'(s) = —s + B(s)

where
(=00, 0] s =—1,
B(s) := 0 |s| <1,
[0, 00) s=1.

It has been shown, in [29], that under certain conditions of €, the double obstacle potential

gives rise to the following approximation of I'(¢)
L.(t)={pe: —1<o@t) <1} (2.2.8)

To compare the effectiveness of the use of the double obstacle potential compared to the
double well potential, we present the following simulation. Let I'(0) be a circle of radius

1 defined by
ro):={pe: |p=1}

and let it evolve under mean curvature flow, where we define Q := (—1.5,1.5)2. Under
mean curvature flow the circle will shrink to a point at a rate inversely proportional to
its radius at the current time [41, 72]. Using the relationships ¢ = %—OhT and a uniform
time step € = 20v/10At, Figure 2.1 presents the simulation using (2.2.6) and Figure 2.2
presents the simulation using (2.4.19a)—(2.4.19b) (setting p" = 0), with 7" = 0.1. In Figure
2.3 we show the transition over the line y = x starting at (—1.5,—1.5) of the phases of
both the double well, in red, and the double obstacle, in black. It can be seen that, noting
(2.2.8), the phases are sharply defined in the case of the double obstacle, and one can also

see that as € decreases, the double well gets closer to attaining values of £1.

l 1.0e+00

(a)e=04 (b) e = 0.2v/2

Figure 2.1: Shrinking circle simulation using the double well potential (2.2.3), 7' = 0.1.

The white line depicts the &V = 0 level set.
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| -1.0e+00

(a) e=04 (b) e = 0.2v2 (c)e=02

l 1.0e+00
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I -1.0e+00

Figure 2.2: Shrinking circle simulation using the double obstacle potential (2.2.7), T' = 0.1.
The white line depicts the ®V = 0 level set.
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(a)e=04 (b) e = 0.2v2 (c)e=0.2

Figure 2.3: Transition over the line y = x of the phases for the shrinking circle simulation,
with results obtained using the double obstacle potential (2.2.7), in black, and the double
well potential, in red, T = 0.1. The dashed line depicts where ®V = 0 level set should be

to approximate I'(tV).

Remark 2.3. Following [18], when we set W (p) as (2.2.7), (2.2.2a) is often written as

an inclusion

1
Egot—sAcp—gcpeB(go), in Q, te (0,7T],

or as a complimentary problem
1 .
<5(Pt_5A(P_€(P> (‘(Pl_l) :07 m Q7t€ (OaT]a

1
(6% —eAp — 5@) sgn(e) <0, || <1, in Q,t € (0,T].

A weak formulation of (2.2.2a) with (2.2.7) can be obtained by considering the min-
imisation problem of (2.2.1), we can utilise Euler-Lagrange theory, see [68], to obtain the

following variational inequality,

e(pt, € — ) +e(Vp,VE— Vo) ! (p,6—9) >0, VEeK, (2.2.9)

€
where

K:={¢eH(Q): ¢ <1}
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Figure 2.4: Different types of potentials. The red line depicts the double well, the blue
line depicts the double obstacle, the orange line depicts the tripe well, and the magenta

line depicts the logarithmic.

We also derive (2.2.9) informally in Section B.1.

Remark 2.4. Using (2.2.7) in Remark 2.1, the phase field approximation of (1.1.2) takes
the form

e(pt,§ — ) +e(Vp,VE= Vo) 1(%5—@)2%(@5—@, vEek. (2.2.10)

3

The solution of the system of algebraic equations that result from a standard finite
element approximation of (2.2.9) is not standard. In this thesis we use the projected SOR
method presented in [60], see Section 2.4.4, however other methods that can be used are
presented in [19, 41]. We close this section with some other choices of potential depicted

in Figure 2.4:

e The non-convex logarithmic potential W (s) := & [(1 + s) In(1 + s) + (1 — s) In(1 — s)]—
‘92—652, depicted in magenta, has applications in phase transitions when a binary alloy

has its temperature rapidly reduced below some critical temperature 6., see [71];

e The triple well potential W (s) := s?(s?> — 1)2, depicted in orange, has applications

in phase transitions in microemulsions such as oil-water-surfactant systems, see [86].
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2.3 The diffuse interface approximation to SADEs on evolving

surfaces

The diffuse interface method comes about by using a phase field approximation of an
interface problem, and was first introduced by Rétz and Voigt in [99] for the diffusion
equation on a fixed surface. In [99] the authors conduct asymptotic analysis and show
formal convergence towards the equivalent sharp interface problem as € — 0. This result
was then extended to moving surfaces in [87], whereby the authors also demonstrate first
order convergence in the L>-norm with ¢ = Chy. In [63] the authors introduced a finite
element discretisation of a diffuse interface approximation of a SADE and presented exper-
imental order of convergence of the discretisation as well as the existence of a numerical
solution. In [44] the authors prove finite element error estimates for a diffuse interface

approximation of a SADE.

Before we begin, we formally define what p. represents. Considering [44, 63], the
concept of p. is to approximate the delta distribution of I'(t), behaving similarly to a
characteristic function for I';, and is derived with the double obstacle potential in mind.
We re-state useful notation we described in the introduction. Considering a bounded
domain Q C R? such that I'(t) € Q, Vt € [0,7], let ¢ € C?*(Q) be a non-degenerate

function such that

I'(t)={peQ: ¢(p,t) =0}. (2.3.1)
Then we denote the diffuse interface approximation to I'(t) as
L.(t) :={peQ: p(p,t) > 0}, (2.3.2)

where p. takes the form

pe(-1t) =g <¢("t)> , inQ, t €[0,7T] (2.3.3)

cos2(r) 7| < z,

0 r| > Z.

This diffuse interface approximation takes advantage of the sharply defined phases pro-
duced by the double obstacle potential and is posed in the interfacial region, which is
the support of p.. An advantage of defining p. in this way is that there is an easy path
to couple it to a diffuse interface approximation of a SADE whereby the velocity law is

approximated by the double obstacle phase field approximation of mean curvature flow.
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In particular this coupling can take place by using p.(-,t) := 1 — ©?(-,t). We will discuss

this more in Section 2.4.4.

2.3.1 Computational study of the diffuse interface method for approx-

imating advection-diffusion equations on evolving surfaces by [63]

As detailed in Section 1.2.3, the diffuse interface approximation of (1.2.2) is (1.2.5). In
[63] the authors set ¢(-,t) = dr(-,t), where dp(-, ) is the signed distance function

dist(p, T'(t)) peR™IN\G(1),
dr(p,t) =14 0 peT(t),
—dist(p,T'(t)) pe G(t),

with dist(p, A) being the Haussdorf distance function from a point j to a set A, see [100],
and G(t) C I'(t) such that OG(t) = I'(t), which results in |V (p,t)] = 1 for p € Q. By
neglecting R, denoting the extension of u by w. to signify we are approximating (1.2.5),
and noting 97 p. = 0 and (ue, Vp:) = 0, see [62], the authors in [63] write (1.2.5) in the

following variational form

O(pette) + div (peus U¢) — div (d peVue) = pe f€, inQ,te(0,7], (2.3.4a)
(Vue, i) =0, on 0Q, t e (0,7], (2.3.4b)
ue(-,0) = u®0(.), in Q, (2.3.4¢)

where u®? is the extension of u(-,0) and u. is set to zero where p. = 0. The authors in
[63] specify that to generate, for example, f€, one extends f constantly in the (positive
and negative) normal direction to I'(¢). Multiplying (2.3.4a) by a smooth test function &,
using integration by parts and the boundary condition (2.3.4b), the weak form to (2.3.4a)—
(2.3.4b) satisfies us(-,t) =0 in Q \ I'(¢) and

(Or(peue), &) — (peuct®, VE) + (d p:Vue, VE) = (p f,€) for all smooth £. (2.3.5)

The fully discrete finite element approximation the authors in [63] use then takes the form:

given U™~ € §" find U™ € S” such that
(pdprvm. €)' (prvm e, ve)" + (dpr vUr, ver)
= (p? fe’”,Eh)h, Vehe St (2.3.6)

As can be seen, these integrals are over ) rather than within I'c(¢) and so we need to treat

the formulation with care as the equation is degenerate in terms of U™. More precisely
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pt =01in 2\ T'.(t") leading us to an ill-posed system, since the values of U™ in Q\ I'.(¢")
can’t be determined. We specify the strategy for solving this, as described by [63], in
Section 2.4.1.

In [63] the authors show unique solvability of the finite element approximation (2.3.6)
in the following theorem [63, Proposition 2.7, p. 6].

Theorem 2.5 (C. Elliott, B. Stinner, V. Styles & R. Welford, 2010).
Let At HT)’H%OO(Q) < 4d, then the scheme (2.3.6) has a unique solution with initial data

ueO(p;) i€ NP,
0 otherwise,
where

pi={i e N : 3j € w; such that ps(pj,t") > 0}.

In [63] the authors monitor the following errors as part of their computational study

e[L°, 17 = max/ (e, ") — U ()2 dS,
= N F(tn)
N
e[L? H'] := Atn/
[ ] 7121 g

N
At H) = S [T ) s
n=1

- Vrgmyu(-, ") — VU()|* dS,
tn

N
B[LQ’Hi] = ZAtn /F(tn) ‘VI‘(t")U('7tn) — Vr(tn)U”(.)|2 dS,
n=1

for fixed ratios ¢ = C h7 and h7 = CAt?. They use numerical quadrature to generate the

errors and find that they follow the experimental order of convergence

e[L®, L% < Oh%, e[L? H'1 <Ch%, e[L? H. <Ch%, ¢[L? H!] <Ch%.

2.3.2 Finite element analysis of the diffuse interface approach for SADEs

on evolving surfaces by [44]

In [44] the authors approach the description and approximation of (1.2.2) differently to
[63]. With numerics in mind, one of the main arguments supporting the use of the diffuse
interface approximation is that it allows us to use a volume integral to approximate a
surface integral. For a fixed t € [0,7] and ¢ € L}(€), see Section B.2, this can be realised

by noting that
2
Y pe(, t) [Vo(-, 1) do ~ ) dS. 2.3.7
[ €02l VL 1) da /{¢<.,t):0}f<) (2:3.7)
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This motivates the consideration that making the restriction ¢(-,t) = dr(-,t) is not neces-

sarily helpful for the analysis of the resulting equation. Denoting

Sri= ] (T(t) x ),

te[0,7
in [44] the authors rigorously extend (1.2.2) from being defined on St to Us and derive

a weak form using an Eulerian transport identity which deals with the |V¢| term, see

Lemma 2.6. To be more specific, noting (2.3.1), the authors in [44] denote

Us(t) ;== {peQ: |p(@.t) <8} and  Usr:= ] (Us(t) x 1),
te[0,T

where there exists some Jdyp such that § < &g, Us,(t) C Q, Vt € [0,7], and the following
stability bounds hold

Co S ‘Vﬁb(ﬁa t)| S C1, |D2¢(]77 t)‘a ’(bt(li t)|) ‘(z)tt(ﬁ t)’ S C2, (177 t) € u50,T7 (238)

for some 0 < ¢y < ¢ and ¢cg > 0. Although we won’t describe the extension used by the
authors in [44], we will state useful properties derived from it. Namely for some function

2z : St — R, the extension 2¢ : Us — R satisfies

(V25(p,t), Vo(p, 1)) = 0, (P, t) € Usr. (2.3.9)

Considering the extension of the velocity, the authors in [44] go on to describe that ¥ can

be extended to 7¢ = v° ¢ 4 U5, where

Ul = 0F — (U5, 0€) U° in Us,.,
and
e —e Vv —e  —e :
= —%, = !Vzl’ (U, 7°) =0, in Us 7. (2.3.10)
A simple calculation gives us
<1767 ﬁe> =" =— ‘$;’ in u(S,Tv
which implies that, for some 0 < 7e < 24,
(] 1 (] 1 ¢ e
otp-= 1 (£)oro =19 () i+ (5. v0) =o. (2.3.11)

Using these properties the authors in [44] present (1.2.5), the extension of (1.2.2) from Sr

to Us,T, which we state again for the ease of the reader

1

8;'&6 + uedIng(ge) — W

div (|Vo|Vu®) = f¢ + ¢ R, in Us, (2.3.12a)



ué(-,0) = u®0(.), in Us(0), (2.3.12b)

where R is as described in Section 1.2.3. We note that Us(t) is without boundary, hence
the lack of boundary conditions. We first introduce the Eulerian transport formula, which

will be used to generate the weak formulation of (2.3.12a).

Lemma 2.6 (Eulerian transport formula, [56]).
For some functions g : Q x [0,7] — R and 7 : Q x [0,T] — R"*! defined as &/ = v/ +
U, where U is material velocity of some hypersurface I'(¢), noting (2.3.1), the Eulerian

transport formula is defined as

d . . . o
D g 1Ve] de = / (89 + g divy (D)) |Vo| da — / 9w, 710} |V | dS,
dt Jq Q a0

where 7iq is the outward pointing unit normal to €.

Using Lemma 2.6, taking g = p-u®, £ € HY(Q) and noting (2.3.3), the authors in [44]

present the following weak formulation of (2.3.12a) as

d
— (p=u® [V o[, &) + (p: Vu© [V|, VE) — (pe u® 7 [V, VE)

dt
= (p= [ IVl €) + (p 0 R|V|,6),  VEe€ H'(Q), (2.3.13)

where the boundary conditions from the Eulerian transport formula and integration by
parts disappear due to the support of p.. Rather than considering a finite element space
throughout the domain 2, the authors in [44] consider a finite element space that is defined
on a diffuse interface domain with a slightly larger support than p. for analysis purposes.

Namely, the authors define p. by

re

ot _
pe(t) =g <¢<)> L @ te0T)
with 7 = 2, see Figure 2.5, and describe an evolving triangulation, for n =0,..., N, as

T ={T" e T" : p.(p,t") > 0 for some g€ T"NC"}, and D} := U ",
TheT

as well as an evolving finite element space
V= {¢h e CO(DY) - f‘hT}L is affine on each triangle T" € T;"},

with corresponding Lagrangian interpolant operator I7 : C°(Dy) — V;*. By neglecting
the term containing R, the fully discrete finite element approximation presented in [44] is

then as follows: given U™~ ! € V}:“l, find U™ € V} such that

Dy (s U Vo™, €") | + (o2 VU™ [Vor|, V") = (o2 U 5" V6", VE")
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98, (VU VE) = (o2 fo Vel "), Vet eV (2.3.14)

Here the additional term acts as artificial diffusion and is the crucial term that allows the
finite element analysis. Indeed, v > 0 is chosen suitably to ensure existence and stability

of the scheme.

Remark 2.7. We notice that (2.3.14) is not fully practical, in the sense of computations,
since the integrals are to be evaluated exactly. The analysis of a fully practical scheme
mvolving mass lumping would result in the interpolation of ps and, using interpolations

estimates, would introduce a term of the form

(T = I")p2 |2y < C B2 |2 20 < ¢

into the analysis, for which it is not obvious how to deal with, [44]. However, for a
stationary surface, recent work has been conducted to rectify this for a fully practical finite

element approzimation to the diffuse interface approximation of an elliptic SPDE, [7].

In [44] the authors go on to show existence and stability bounds as well as the finite

element error bounds for (2.3.14) in the following theorem [44, Theorem 5.2, p. 15].

Theorem 2.8 (K. Deckelnick & V. Styles, 2018).

Suppose that a solution of (1.2.2) satisfies

T
2 2 . 2
e lu(s Ol (o) +/0 <||u("t)HH3(F(t)) + [10; u('vt)HH?(F(t))) dt < oo.

Then there exist 0 < Aty < Aty and a constant C > 0 such that
2 n n e n n 2
max — st(wt JIVO( )| |u (-, ") = U™ ()| da
N p
#3802 [ ) [Vl )] [V ) = VU (O do < O
— ET JO
provided that (2.3.8) holds, At < max(e?, Aty), v >v1:=1+C and
COSQ(3W)

e, At<-—~87
262

0052(3{)
2c1
Remark 2.9. Noting the approximation in (2.3.7), one can see that the error results
in Theorem 2.8 are the diffuse interface approximations to the equivalent errors on the
surface T'(t). This allowed the authors in [/4] to derive formal error bounds on the surface
['(t) in the form of

n n 2
maxNHu(-,t )—U (')||L2(F(t"))

n=1,...,
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N
+ ) Al [[Vrmyu(, 1) = Ve U™ () 72y < Ce*

n=1

This motivates the computational bounds found in [63] by monitoring e[L>°, L?] and e[L*, H}].

Remark 2.10. As with all existence and uniqueness results for PDEs and the finite ele-
ment approzimation to the solutions of PDEs in bounded domains, one would expect some
sort of reqularity on the boundary of the domain Q [32, 68]. A benefit of using the diffuse
interface approach is that Q is defined large enough so that T'-(t) C Q, Vt € [0,T] and thus
there is no interaction between I's and 02, which is why 02 doesn’t appear in the analysis.
The same can’t be said for other implicit methods of approximating moving surfaces, such

as the implicit surface finite element method [58].

2.4 Further computational study of the diffuse interface ap-

proximation

As mentioned in Section 1.1.3, one major disadvantage of using the phase field approach
and the diffuse interface approach is that the entire domain 2 has to be triangulated
rather than just the surface I'(t), and if we require a fine mesh on the whole of Q this
will greatly increase the computational time. However, as defined in [58, 63], the so-called
narrow band implementation can be adopted in which the triangulation is refined in the

interfacial region where p. > 0 and coarsened elsewhere. Recalling (2.3.14) we denote

N i={i e N': 3j € w; such that p.(p;,t") > 0},

N i={i e N : 3j € w; such that p.(p;,t") > 0}

and set
Dh {Th e T" : Npw C NP} ify =0,
c {Th e T": Npw C N} if 4 > 0.

Taking the restriction that At [|7]|? (@) < Chr ensures that the approximations rhntt
and T only differ by at most a single layer of elements. Using this the following refine-
ment procedure can be adopted. At each time level, taking B" such that F? ’"UF?’"+1 c B",
the refinement procedure can be set up to refine in B” to the necessary level and coarsen
everywhere else. Considering this we continue to denote 7" by the evolving triangu-

lation with corresponding interpolant operator I" as well as redefining the mesh size as

hy = max diam(T™). We demonstrate this procedure in Figures 2.5 and 2.6. Figure 2.5a
TheB
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(a) pe support mesh (b) pe support mesh

Figure 2.5: Comparison of B" for Model: F& (2.4.2) with v =0 (a) and v > 0 (b).

shows B" for v = 0 and Figure 2.5b shows B" for v > 0. Figure 2.6 shows the refinement

and coarsen procedure happening throughout a simulation of an expanding circle.

(a) Initial Refinement (b) Movement of refinement

Figure 2.6: Refinement and coarsen procedure with a moving interface.

Another aspect of the scheme that needs to be considered is that the scheme is degen-
erate in terms of U", as mentioned in Section 2.3.1, since we are solving over the whole
of Q. For simplicity of notation we only consider the situation when v = 0. In order to
combat the degeneracy we define the coefficients of our numerical solution to be zero when

pe = 0, namely we decompose

Ur= > Ui+ Y, U= >, U+ Y. Ulx, (2.4.1)

JEND FJEN\NP JENTH JEN AN

where one notes that if i € N \ N"*! then p?(5;) = 0, which can be guaranteed using
the narrow band implementation. This is called the discrete interface assumption, see [63,

Assumption 2.3, p. 5]. We also note that, from Theorem 2.5, U}-Z =0 for j ¢ NJ.
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2.4.1 Finite element approximation of a diffuse interface approximation

to SADESs on evolving surface, Model: F&

Model: F&
The fully practical finite element scheme we will be using for our numerical computations

takes the form of

_ 1 ¢ NV ify =0,

U"(p;) =0 for ¢ h 7
i ¢ NP ify >0,

and
D[ (9ot €)' | +a (v verver) ' - (prom aerven, vet)'
AL, (1 (VU™ vgh> (ps Fom v, gh) . Vehesh (2.4.2)

Remark 2.11. In the derivation of (2.4.2) we have implicitly set the functions to £" to
only depend on space and not time, which is why we can interchange the integration and
the discrete time derivative. For analytic purposes one would need to keep the Dy inside
the integration, but since we only look at simulations in this section we are justified in

making this restriction in view of taking &" as basis functions.

Similarly to [44, 63] we look to test Model: FE (2.4.2) against the convergence results
predicted by the theorems. We look to monitor the following errors

2
Er:= sup — | I"(pe(, 1)) M (") = U"()F [V 7)) do, (2.4.33)
n—O, LN ET JQ

& _Z Atn/Ih pe (-, ™) [VIThul (-, t7) — VU ()2 VT ¢(-, t7) | dz,  (2.4.3b)

as well as the equivalent versions of e[L>°, L?] and e[L?, H!] over the surface I'(t). Following
[44, 63], in all the examples presented I'(¢) will be a circle, with radius R(¢) and centre
(t), to be defined in the example. Given this, the quadrature approximations of e[L>°, L?]

and e[L?, H!] take the form

&= s Z —|u 2 (), ") — U™z (E)))?, (2.4.3¢)
M L—1 o

Eii= Aty Ve yula ("), 1) - Vi U@ ()2, (2.4.3d)
n=1 =0

where,
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and, noting [44, 63], we set L = 200. We quantify the errors by calculating the estimated

order of convergence (eoc)
In(&ij11) — In(&i))
In(h7,,) —In(h7;)

where i corresponds to the error measurement, j corresponds to the relative mesh size

(2.4.4)

GOCZ‘,J' =

ht, and &;; corresponds to the error of the error measurement 7 at the j level. Upon
setting up the initial refinement using the refinement procedure, we note the refinement
and coarsening will maintain the shape regular properties with hy fixed throughout the
simulation. The computational domain we consider is € = (—2.4,2.4)? and the computa-
tional end time is taken to be T' = 0.1. We solve the linear system appearing at each time
step using GMRES, since the resulting system matrix is not symmetric, together with

diagonal preconditioning.
Example 1

For our first example we use a translating circle, which is the same as Example 3 in
[44] and Example 1 in Section 3.1 in [63]. Consider R(t) := 1 and cy(t) := (3 — 2¢,0)7,
with d = 1, ¥(p,t) = (2,0)T and f(p,t) = 0 for p € ['(t). Then, the solution to (1.2.2) is

1
u(ﬁ,t):e_4t <ﬁl+2—2t> Do, pE F(t), te [O,T].

The following results in Tables 2.1-2.4 were produced using the finite element toolbox
ALBERTA 2.0 [104] implemented on the University of Sussex High Performance Computer
cluster (HPC) which uses Scientific Linux as its operating system [111]. Each result used
one core, a core is a processor in the Central Processing Unit (CPU) which is the hardware
that executes the software commands, of an AMD 64 bit CPU which typically has between
8 to 64 cores. Given the HPC infrastructure, we have no way of using a specific core to
enable us to compare execution times reliably. There are many factors that may effect
execution time that we can’t foresee or manipulate, such as the current number of different
codes being executed on a core or the age of a CPU, especially when simulations last at

least an hour.

We first demonstrate the experimental order of convergence of Model: FE (2.4.2)
with v = 0 in Table 2.1 and v = 0.01 in Table 2.2. We use the same relationship in [44],
that is € = 2§th and ¢ = 20v/At, where a uniform time step was chosen, T = 0.1 and we
define ¢(p,t) = |p—co(t)|* — R%(t), for p’ € Q. We see very similar results to the equivalent
error results in [44], that is & is approaching an eoc of 4, & and &3 have eocs close to

4, and &4 has an eoc between 2 and 3. & and & have eocs that are larger than what
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is proven in the theorem, but they do have the correct order expected from the general
literature of numerical solution to PDEs [22, 32, 115], since they are L? type errors. &
has an eoc which is larger than the theory predicts and larger than we would expect from
the general literature which, since it is an H' type error, is an eoc of 2 and is thus exhibits
superconvergence. Superconvergence is a phenomenon which occurs when the computable
error, that is VI"u(-,t") — VU"(-), is a higher order than that of the total error, that is
Vu(-,t") — VU"(-). In other words, VU™(-) is a better approximation to VI"u(-,#") than
to Vu(-,t™) [115]. One often notices superconvergence in one spatial variable problems
and we speculate that, since we are approximating advection-diffusion on a curve, this is
why we see this here. £ has an eoc which is slightly larger than what the theory predicts,

but one expects that this eoc will reduce towards 2 as € decreases.

Next we test how the value of v affects the errors. In the proof of Theorem 2.8 in
[44] the authors require v > 1+ C, so in Table 2.3 we present the errors for ¢ = 0.4 with
v =10,0.01,0.1,1,2. As can be seen the errors are very similar. We stick with the choice

of v =0.01 from here onwards.

Next we demonstrate that choosing r = 2 for p. computationally is just a formality.
In Table 2.4 we present the errors for € = 0.4 with v = 0.01 and » = 1,1.2,1.5,2. As can
be seen the errors are practically identical. The important result we can extract here is
that, comparing » = 2 to r = 1.2, we can reduce the amount of degrees of freedom in the

mesh since the interfacial region of p. is smaller. From here onwards we will take r = 1.2.

Finally, we look at the computational time of some of the results. Considering the
standard setting of v = 0, taking € = 0.4, which noting the narrow band implementa-
tion equates initially to 370727 degrees of freedom (DOFs), results in approximately 140
minutes of execution whilst e = 0.11/2, which equates initially to 1047848 DOFs, results
in approximately 2760 minutes (1 day, 22 hours) of execution time. In the setting of v > 0
and r = 1.2, taking € = 0.4, which equates initially to 442139 DOF's, results in approxim-
ately 240 minutes of execution whilst e = 0.11/2, which equates initially to 1250991 DOFs,
results in approximately 3960 minutes (2 days, 18 hours) of execution time. Lastly, in the
setting of v > 0 and r = 2, taking ¢ = 0.4, which equates initially to 654423 DOFs, results
in approximately 1220 minutes of execution time whilst ¢ = 0.1y/2, which equates initially
to 2063849 DOFs, results in approximately 10800 minutes (7 days, 12 hours) of execution
time. As one can readily see, the computational time gained from taking r = 1.2 rather

than r = 2 is massive. Similarly, taking r = 1 rather than » = 1.2 gains computational
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time but you lose the guaranteed convergence from the theory.

€ E1 x 10% | eocy | E9 x 10* | eocy | E5 x 10° | eocs | €4 x 10° | eocy

0.4 1.056 - 5.959 - 2.764 - 4.770 -
0.2/2 | 0.1602 | 5.44 1.484 | 4.01 | 0.8114 | 3.54 1.812 2.79

0.2 0.03097 | 4.74 | 0.3736 | 3.98 | 0.2193 | 3.76 | 0.6371 | 3.02
0.1v/2 | 0.006715 | 4.41 | 0.09462 | 3.96 | 0.05703 | 3.89 | 0.2383 | 2.84

Table 2.1: Errors for Model: FE (2.4.2), with v = 0, for Example 1.

€ E1 x 10% | eocy | E9 x 10* | eocy | E5 x 10° | eocs | €4 x 10° | eocy

0.4 1.056 - 5.952 - 2.764 - 4.770 -

0.2v/2 | 0.1602 | 5.44 1.481 4.01 | 0.8110 | 3.54 1.811 2.79
0.2 0.03092 | 4.74 | 0.3723 | 3.98 | 0.2188 | 3.78 | 0.6363 | 3.02
0.1v/2 | 0.006691 | 4.42 | 0.09390 | 3.98 | 0.05679 | 3.89 | 0.2379 | 2.84

Table 2.2: Errors for Model: FE (2.4.2), with v = 0.01, for Example 1.

vl &1 x10% | £ x 10* | 3 x 10° | & x 106

0 1.056 5.959 2.764 4.770

0.01 1.056 5.952 2.764 4.770

0.1 1.057 5.954 2.774 4.785

1 1.065 5.982 2.877 4.936

2 1.074 6.013 2.994 5.107

Table 2.3: Errors for Model: FE (2.4.2), with varying v and fixed € = 0.4, for Example
1.

ro| & x10% | & x 10* | & x 10° | & x 10°

1 1.056 5.959 2.764 4.770

1.2 1.056 5.952 2.764 4.769

1.5 1.056 5.952 2.764 4.770

2 1.056 5.952 2.764 4.770

Table 2.4: Errors for Model: FE (2.4.2), with varying r, and fixed v = 0.01 and € = 0.4,
for Example 1.
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2.4.2 Finite volume approximation of a diffuse interface approximation

to SADESs on evolving surfaces, Model: FV

In this section we present a finite volume discretisation of (2.3.12a), for which we closely
follow the finite volume/element discretisation in [66]. Before we derive a scheme, we set
up the appropriate dual mesh. Here we follow the set up from [66] adopting our notation

for clarity.

Given a quasi-uniform triangulation 7", of a bounded, polygonal domain Q C R?,
we construct the following dual mesh: we denote each cell of the dual mesh by V; and
associate it with a node p; of 7". Each V; is bounded by the lines that bisect and are
perpendicular to the edge emanating from its associated node, see Figure 2.7. When the
mesh is acute the dual cell associated with a particular node can also be characterised
as the set of points in €2 that are closer to the node than any others. The perpendicular
bisectors will meet at the circumcentres of the triangles of 7" which form the nodes of the
complementary mesh. We refer to the edges and nodes of the dual mesh as co-nodes and
co-edges and we restrict ourselves to triangulations whose interior angles are no greater
than 7 as this guarantees that the circumecentre of a triangle will be contained within the
triangle and co-edges intersect only a co-nodes. We denote the edge of 7" connecting the
ith node to the jth node by o;; and its length by h;;. Similarly, Ugj will denote the co-edge
that is perpendicular to o;; and hgj will denote its length and we denote the portion of
hi; that is in T" by (hi;j)rn. We set &;; to be the set of triangles in T" having 0;; as an
edge: &; = {T" € T" : ;; C T"} and we note in general ¢;; contains two triangles; the

exception being when o;; is a boundary edge which only meets one triangle.

Using the notation defined in [66] we can now derive a finite volume scheme for
(2.3.12a), which follows a similar derivation to the finite element approximation to (2.3.12a)
n [63]. We multiply (2.3.12a) by p:|V¢|, noting (2.3.9) and (2.3.11), and integrate over
each volume cell V;, where j € N such that p; ¢ 99, to obtain

/V. [0F (peu) + pe u® divy (V)] | V| do — d/. div(p:|Vo|Vu®) dx

f Vi

=/‘pgferV¢\dx+/V¢p€R|wrdx.

Vj

Using the classical divergence theorem and Lemma 2.6, we obtain the weak form

d o .
[ et 1Veldnt [ poutta i) IVolds —d | p(vutii) 9ol ds
dt Jy, av; av;

J
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Figure 2.7: The basic structure of the dual mesh considered in Section 2.4.2. Here T"
denotes a triangle in the triangulation 7" and V; denotes the volume cell corresponding

to the node p; at index 4. Inspiration from [66].

— [ per Voo + [ 6. RIVod, (2.45)
v v

where ny; is the outward pointing unit normal to 9V;.

Model: FV
In a similar manner to (2.3.14), we neglect the remainder term involving R. To approx-
imate (2.4.5) for U™ in the form of (2.4.1) we set U' = 0 for j ¢ N} together with the

following upwinding scheme

1 Ur —ur
— (™) Um? —d E k7 nY) N
Atn (pa )j J m] = < hjk > (pa )Jkpjk

+2 <U? (T Ty, )|+ U (025 i, )| ) P

k‘Gw]'
71 - - - .
— Az (p?,n 1)j U.;’L lm;,b 1 + (pg)] fjem m?, vj c Nn, (246)
n

where [s]4 = max{s, 0}, [s]- = min{s,0}, (g);% = & (g; + gr) with g; = g(5;) and

w3 e s S ) 9
\Vj

TheN; Theg;p,
with
) (b2 1) it €N,
(prnh, = c (2.4.7)
0 otherwise.

The discretisation method we employ here to derive (2.4.6) from (2.4.5) is similar to the

so called Finite Volume Element method [28, 85, 94]. This method sets up the weak form
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of the equation we want to approximate in a finite volume style, i.e. integrals over volume
cells, and then approximates the integrals in a finite element style by using the nodal
values of the functions within the integrals. This enables us to use the finite element
framework set up in ALBERTA. We include upwinding in Model: FV (2.4.6) as a
tool used to dampen oscillations by introducing some form of numerical diffusion [74].
Given this setup, and how similar the resulting nodal scheme is to the one derived for
the finite element approximation, one would expect the same rates of convergence for the

conventional advection-diffusion equation, even with the addition of upwinding [46, 47, 85].

Table 2.5 demonstrates the errors and eocs using Model: FV (2.4.6) applied to Ex-
ample 1 with the same parameter choices and relationships, and the same implementation
using ALBERTA with access to one core of computational power on the HPC. By com-
paring Table 2.5 to Table 2.1 we see that the eocs for the errors £ and &4, the errors
restricted to the interface, follow a similar trend and the error values themselves are quite
similar. The diffuse interface type error & also follows the eoc trend of the finite element
results in Table 2.1 and the error values are quite similar to the finite element error values.
The diffuse interface type error & is however not converging. We speculate this is due to

the large profile spikes which can be seen in Figure 2.10.

Taking € = 0.4 results in approximately 130 minutes of execution time, which is slightly
shorter than using Model: F& (2.4.2) with v = 0. Taking & = 0.11/2 results in approx-
imately 3180 minutes (2 days, 15 hours) of execution time. Finally, taking ¢ = 0.05v/2,
which is the smallest value of € we take in this section and leads initially to 2123063 DOFs,
results in approximately 16530 minutes (11 days, 11.5 hours) of execution time. Given the
difference in computational time needed for ¢ = 0.05v/2 compared to € = 0.1v/2, one can

see that using a finer mesh would almost be intractable.

€ E1x10* | eoc; | E3 x 10% | eoca | €5 x 10° | eocs | E4 x 10° | eocy

0.4 1.084 - 6.641 - 3.385 - 5.778 -
0.2v/2 0.1778 5.22 7.887 | -0.50 | 0.9801 | 3.58 2.102 2.92
0.2 0.04000 | 4.30 2.453 3.37 | 03086 | 3.33 | 0.7812 | 2.86

0.1v/2 | 0.009010 | 4.30 2236 | -6.38 | 0.07977 | 3.90 | 0.2919 | 2.84

0.1 0.002729 | 3.45 | 7.756 3.06 | 0.02630 | 3.20 | 0.1176 | 2.62

0.05v/2 | 0.0006637 | 4.08 85.79 | -6.93 | 0.006390 | 4.08 | 0.04221 | 2.82

Table 2.5: Errors for Model: FV (2.4.6), for Example 1.
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With the rice blast model in mind, we notice the molecular species equations (4.1.2a)—
(4.1.2b) each have a small, if not zero, diffusion constant. This leads us to investigating
how Model: 7€ (2.4.2) and Model: FV (2.4.6) fare when small diffusion constants are
used. To solve the algebraic system of equations resulting from Model: FV (2.4.6) we

use GMRES but without diagonal preconditioning.
Example 1a

We consider a slightly perturbed version of Example 1. Considering R(t) = 1 and
) = (& —2t,00T, with d(p,t) = (2,0)T, f(5,t) = 4(d — Ve~ (1 + & — 2t) > for
p € I'(t), the solution to (1.2.2) is

1
wwt) = (fy-2)m FETO. 1Tl

Similarly to Example 1, we produce the results in Tables 2.6-2.9 using ALBERTA with
access to one core of computational power on the HPC. Figures 2.8-2.10 are produced

using MATLAB (R2019a) [92)].

Tables 2.6-2.9 depict the errors of Example la whilst Figures 2.8-2.10 depict the
profile of UY on the line y = z starting at (0,0). Table 2.6 demonstrates how Model: F&
(2.4.2), with v = 0, performs when d is reduced, for ¢ = %hT, e =20vVAt and € = 0.1V2,
T = 0.1 and ¢(p,t) = | — é(t)| — R(t) for 5 € Q. This value of & results initially in
19997 DOFs. We display the profile of U in Figure 2.8, in which we see that there seems
to be an appearance of instabilities over the interfacial region as d reduces. One may
expect that this could be due to the CFL type condition in Theorem 2.5, however the
instabilities appear magnitudes of d before this condition is not met since At =5 x 107°
and [|v||pe(q) = 2. Moreover we also see large peaks close to the edge of the interfacial
region, we will discuss these peaks in Section 2.4.3. We reduced hy by a factor of 2 and
At by a factor of 4 and saw no major improvements, as shown in Table 2.7. In Figure
2.9 we see a similar profile for Model: FE (2.4.2) with v = 0.01. In Table 2.6 we
display the errors for Model: FE (2.4.2) with v = 0.01 and we see that & and & are
significantly better than the errors for v = 0 in Table 2.6 even though this is not evident
from Figure 2.9. This improvement of the errors for v > 0 can be expected due to the
added diffusion the stabilisation term gives. Table 2.9 demonstrates how Model: FV
(2.4.6) performs when d is reduced. With the exception of & we see that Model: FV
(2.4.6) performs well even for very small values of d. Figure 2.10 displays the profile of
UN obtained using Model: FV (2.4.6), in it we see that, as d is reducing, no instabilities
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appear, however there also seems to be sharp peaks close to the edge of the interfacial
region. Taking d = 1, the computational time solving Example la using Model: F&
(2.4.2) with v = 0 was approximately 80 minutes of execution time whilst using Model:
FV (2.4.6) was approximately 120 minutes of execution time, a similar difference in
times compared to Example 1. Taking d = 0, the computational time solving Example 1a
using Model: FE (2.4.2) with v = 0 was approximately 690 minutes of execution time
whilst using Model: FV (2.4.6) was approximately 390 minutes of execution time. We
expect that the instabilities caused by d = 0 whilst using Model: FE (2.4.2) caused an

increased number of iterations of the GMRES solver at each time step, hence the longer

computational time.

d | & x10° | & x 10* | &3 x 106 | & x 10°

1 1.18 1.479 2.348 1.741
1071 | 4.022 48.33 0.1356 2.484
1072 | 1967 29711 | 0.2266 74.95
1073 | 22202 | 610920 9.488 6465
1074 | 167224 | 3865034 | 175.9 | 117704
107° | 289409 | 6447880 | 368.2 | 232113

0 310241 | 6941655 | 405.3 | 254757

Table 2.6: Errors for Model: FE (2.4.2), with varying d, and fixed v = 0 and € = 0.1y/2,

for Example 1a.

d | & x10° | & x 10* | &3 x 10° | &£ x 10°

1 1.1166 1.375 2.204 | 0.4382
1071 | 0.5351 1.910 | 0.06514 | 0.5861
1072 | 25.82 1983 | 0.01511 | 18.42
1073 | 544.0 63230 | 0.7940 1767
107% | 2299 | 564966 | 48.46 | 113730
107° | 8144 | 2230500 | 289.7 | 674849

0 10750 | 3235908 | 387.7 | 931739

Table 2.7: Errors for Model: FE€ (2.4.2), with varying d, and fixed ¥ = 0 and ¢ = 0.1/2

but with a smaller hs and At, for Example 1la.
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d | & x10° | & x 10* | & x 106 | & x 10°

1 1.18 1.478 2.348 1.741

1071 | 0.5559 5.752 0.1355 2.484

1072 | 8.061 616.2 0.2267 74.94
1073 | 29.52 5690 9.48 6459
1074 | 49.95 51727 174.2 117200

107° 109.7 117598 362.9 230440
0 124.7 131751 399.2 252775

Table 2.8: Errors for Model: FE (2.4.2), with varying d, and fixed v = 0.01 and ¢ =
0.1v/2, for Example 1la.

d | & x10° | & x 10* | & x 10% | & x 10°

1 2.390 14.48 17.68 1.952

1071 | 2.367 65.07 12.50 2.486
1072 | 4.106 535.8 9.776 21.19
1073 | 50.21 10417 9.891 67.34

1074 | 63.52 15934 9.920 80.75
107° | 63.36 15934 9.923 82.24
0 63.99 15988 9.924 82.40

Table 2.9: Errors for Model: FV (2.4.6), with varying d and fixed e = 0.1y/2, for Example

la.



41

(a) Zoom out (b) Zoom in

Figure 2.8: Profile of UV demonstrating appearance of instabilities when reducing d using
Model: FE (2.4.2) with fixed v = 0 and ¢ = 3—32h7, e = 20V/At and € = 0.1V/2, for
Example la. The red line is d = 1, the green line is d = 1072 and the blue line is
d = 107, with the black dashed line being the profile of the true solution. The grey

dashed lines in (a) represents the zone that (b) is demonstrating.
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Figure 2.9: Profile of UY demonstrating appearance of instabilities when reducing d using
Model: FE (2.4.2) with fixed v = 0.01 and € = %h% e = 20v/At and € = 0.1V/2, for
Example la. The red line is d = 1, the green line is d = 1072 and the blue line is d = 1074,
with the black dashed line being the profile of the true solution. The grey dashed lines in

(a) represents the zone that (b) is demonstrating.
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(a) Zoom out (b) Zoom in

Figure 2.10: Profile of UY demonstrating appearance no instabilities when reducing d
using Model: FV (2.4.6) with fixed € = 3—32h7—, e = 20v/At and € = 0.1v/2, for Example
la. The red line is d = 1, the green line is d = 1072 and the blue line is d = 10™%, with
the black dashed line being the profile of the true solution. The grey dashed lines in (a)

represents the zone that (b) is demonstrating.
2.4.3 Edge smoothing for Model: FE&

Studying Figures 2.8-2.10 we notice spikes at the edge of the profiles of U for large h and
small d. The authors in [63] note that this could be the result of the surface evolving and
subsequently investigate how to remedy it by considering the one dimensional problem

with Q C R. We reiterate their calculations with the inclusion of the diffusion constant.

Let @ C R, and 7" = U}]:Njy where 0; = (pj—1,p;j) and |oj| = hj. By denoting
v; = v(p;), let i € NT* be a node index such that (p”); = 0 but (p2);—1 > 0 and (p2~1); > 0.
Then, considering o; in Model: FE (2.4.2), whereby for simplicity we set v = 0, with
(p2)i+1 = 0 by default, one has

1 (hi @+ hi gl

_ o 1 "
~ . ) (2P = 5 ()i U1 T2
n

2

n

d q7; n n n
+ 2, (p2)i1 (U = Uity) =0, (2.4.8)

where ¢' = ](g{)ﬁ )z|. It is easy to see that, in general, U will be different from U]* |, thus
resulting in peaks. Considering a uniform mesh size h and a uniform time step At, it can
be verified that p?~!(a;) = O(At?) as At — 0 and p?(a;_1) = O(h?), from [62]. Thus, the

€

authors in [63] conclude that

\U* = U | =0(h), ash—D0.
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We can see this behaviour in Figure 2.11. Here, we also add that the peaks scale linearly
in d~', which can be seen in Figure 2.12. Indeed we speculate that as d gets smaller, this
forces |U* — U 4| to get larger, thus creating the larger peaks. By including ~ in the
expansion (2.4.8), this also heuristically shows why the errors £ and & obtained from
Model: FE (2.4.2) with v > 0 are smaller when d is reducing compared to the errors with
v = 0. Nevertheless taking v > 0 doesn’t actually help with the peaks in the interface, as
demonstrated by Figures 2.13 and 2.14.

Model: Fé&s

Although these spikes occur close to the boundary of the interfacial region, this can still
have an effect on the overall solution given enough time, especially in situations when the
scalar quantity is used in other equations, such as for our application of the rice blast. To

reduce the size of the peaks, in [63] the authors present a streamline diffusion term in the

form of
[ 1M TR V) T da, g e N (2.4.9)
where, for p’ € €,
ce ldr(@)] |dr (5t)]
(P,t) = ’ AT i BT 25 (2.4.10)
ge\D, 1) 1= b (\dp(ﬁ,t)| F) _ 4.
=zl -7 otherwise,

and 775;; is an approximate projection of %™ in the normal direction, which is approxim-
ately orthogonal to the boundary of I'?. The role of g, is to add small levels of diffusion
close to the boundary in the approximate normal direction, hence the given description of
streamline diffusion. The addition of (2.4.9) to (2.4.2), with U (p;) = 0 for i ¢ N7, yields

the following scheme
nyrn n| ¢h h n n n h h nrrn —e,n n h h
Dy | (p2Um 196", €")"| +d (o2 VU™ V67|, V") = (g2 Um 59", VEr)
h(~n n h n /-2en n\ —e,n n h h
+ A, (ME)VU, VM) + (g2 (T, VU™ 557 V6", Ve
h
= (s romvgnlen),  wetesh (2.4.11)

With the addition of (2.4.9) into Model: FE (2.4.2), continuing from (2.4.8), noting that
(92)i = (92)i+1 = 0, the authors in [63] yield

1 (hiq" ' +higy B 1 .
( L S (e Ut - 3 (P2)ia U1 07 gty

d % n n n 1qi n —e,n n n
+ 5= ()i (UP = UP1) + 555 (90)ia [(@)ia P(UF = Uy) = 0. (2.4.12)
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Thus, since go = O(h) as h — 0, the authors in [63] conclude that with the addition of
(2.4.9) one has
|Ur —UM,| = O(h?), ash—0.

Since ge < Cd™!, as opposed to in (2.4.8), where d getting smaller makes |U* — U |
get larger, d getting smaller implies the contribution from g¢. gets larger, thus forcing
|U—U!" ] to stay small, dampening the spikes. In [63] the authors extend their uniqueness

result Theorem 2.5 to include (2.4.9) with d = 1.

Remark 2.12. We note that the same edge spiking phenomena happens for Model: FV
(2.4.6), see Figures 2.15 and 2.16; however, we leave the edge smoothing for Model: FV

for future research.

Tables 2.10 and 2.11 depicts the errors resulting from Example 1 using Model: F&s
(2.4.11) with v = 0 and v = 0.01 respectively, whilst Tables 2.12 and 2.13 depict the
errors resulting from Example la using Model: FEs (2.4.11) with v = 0 and v = 0.01
respectively. Figures 2.11-2.14 depict the profile of UV resulting from a reduction in hy
and d using Model: FE (2.4.2) with v = 0 and v = 0.01 on the line y = x starting
at (0,0), whilst Figures 2.15 and 2.16 depict the same except using Model: FV (2.4.6).
Figures 2.17 and 2.18 depict the profile of U" resulting from Example la using Model:
FEs (2.4.11) with v =0 and v = 0.01 on the line y = x starting at (0,0).

In terms of errors, it is reported in [63] that using Model: FEs (2.4.11) rather than
Model: FE (2.4.2) doesn’t largely affect the errors since it is only present close to the
boundary of the interfacial region, we see this in Tables 2.10 and 2.11. In Table 2.10 we
see the errors for Example 1 obtained using Model: F&s (2.4.11) with v = 0, while
Table 2.11 shows the errors for Model: FE&s (2.4.11) with v = 0.01. Considering the
setting of v = 0, taking € = 0.4 resulted in approximately 150 minutes of execution time
whilst taking e = 0.1y/2 resulted in approximately 2880 minutes (2 days) of execution
time. Considering the setting of v = 0.01, taking € = 0.4 resulted in approximately 270
minutes of execution time whilst taking ¢ = 0.11/2 resulted in approximately 4380 minutes
(3 days, 1 hour) of execution time. As one can see, adding the edge smoothing term only
adds a small amount of computational time which is probably due to the assembling of
an extra matrix. Even though the addition of the edge smoothing term gives stabilisation
and thus should improve the solving time for each linear system, the choices of h and At
in Example 1 are suitably small and so the edge spiking has a relatively small impact.

Tables 2.12 and 2.13 display the errors for Example la for Model: FE&s (2.4.11) with
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v =0 and v = 0.01 respectively. Considering Table 2.12 first, comparing to Table 2.6 we
can see that initially the addition of (2.4.9) has a positive effect on the errors, however as
d reduces it has a negative effect. Although we can see from Figure 2.17 that the profile
is a lot smoother at the edges, even when d is small, wiggles still appear in regions where
there is no edge smoothing, but the edge smoothing results in a jump of the profile. We
speculate that this is caused by a combination of the instabilities outside the region of
edge smoothing and the fact that the finite element approximation is continuous. We see
a similar behaviour for Model: FE&s (2.4.11) when v > 0 in Table 2.13 and in Figure
2.18. Taking d = 1 resulted in approximately 45 minutes of execution time whilst taking
d = 1078 resulted in approximately 510 minutes of execution time. Here we can see that
reducing the effects of the edge spikes enables a faster solving time as one expects the
solver converges quicker. For the comparison of Figures 2.11-2.16 we note here to be wary
of the different scaling used for the y—axis. In these simulations we have used the same
implementation in ALBERTA with one core of power on the HPC but used GMRES with
diagonal preconditioning for the solution to the algebraic system resulting from Model:

FEs (2.4.11).

€ E1 x 10* | eocy | E2 x 10* | eocy | E5 x 10° | eocs | E4 x 10° | eocy

0.4 1.056 - 5.950 - 2.763 - 4.769 -

0.2v2 | 0.1601 | 5.44 1.481 4.01 | 0.8102 | 3.54 1.810 2.80

0.2 0.03085 | 4.75 | 0.3719 | 3.99 | 0.2182 | 3.79 | 0.6353 | 3.02
0.1v/2 | 0.006634 | 4.43 | 0.09384 | 3.97 | 0.05621 | 3.91 | 0.2369 | 2.84

Table 2.10: Errors for Model: FE€s (2.4.11) with v = 0, for Example 1.

€ E1 x 10* | eocy | E2 x 10* | eocy | E5 x 10° | eocs | E4 x 10° | eocy

0.4 1.056 - 5.950 - 2.764 - 4.770 -

0.2v2 | 0.1601 | 5.44 1.481 4.01 | 0.8108 | 3.54 1.811 2.79

0.2 0.03092 | 4.74 | 0.3719 | 3.99 | 0.2188 | 3.78 | 0.6363 | 3.02
0.1v/2 | 0.006691 | 4.42 | 0.09385 | 3.97 | 0.05679 | 3.89 | 0.2379 | 2.84

Table 2.11: Errors for Model: FE€s (2.4.11) with v = 0.01, for Example 1
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d | & x10° | & x 10* | &3 x 105 | & x 10°

1 1.176 1.404 2.351 1.741
1071 | 5.108 0.6212 0.124 2.484
1072 | 0.04293 | 11.47 0.223 74.94
1073 | 0.6292 890.7 9.441 6329
107 | 15.13 12642 95.64 68726
1075 | 75.48 23889 155.9 | 112827
1078 | 19668 | 8562119 | 33420 | 1960620

Table 2.12: Errors for Model: FE&s (2.4.11), with varying d, and fixed v = 0 and ¢ =

0.1v/2, for Example 1la.

d | & x10° | & x 10* | &3 x 106 | & x 10°

1 1.176 1.404 2.351 1.741
10~' | 0.5108 | 0.6213 0.124 2.484
1072 | 0.04293 | 11.46 0.223 74.94
1073 | 0.6286 890.0 9.433 6323
1074 | 15.12 12607 95.44 68575
107° | 75.50 23811 155.5 | 112535
1078 | 19665 | 853545 | 33315 | 1949437

Table 2.13: Errors for Model: F&s (2.4.11), with varying d, and fixed v = 0.01 and

e = 0.1v/2, for Example 1la.
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Figure 2.11: Profile of UY demonstrating profile spiking when reducing h7 using Model:
FE (2.4.2) with v = 0, for Example 1a. The red line is h7 = 2.4 x 2765, the green line is
h7 = 2.4 x 277 and the blue line is hy = 2.4 x 2775, where ¢ is fixed and At = %(hT)Q.
The black line depicts the profile of U™(-) using Model: FEs (2.4.11) with v = 0 and

h7 = 2.4x2765, The grey dashed lines in (a) represents the zone that (b) is demonstrating.
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Figure 2.12: Profile of UV demonstrating profile spiking when increasing d using Model:
FE (2.4.2) with v = 0, for Example la. The red line is d = 0.1, the green line is d = 0.2
and the blue line is d = 0.4, where ¢ = 0.1/2, ¢ = 3—32h7— and ¢ = 20v/At are fixed. The
black line depicts the profile of U™(-) using Model: FE€s (2.4.11) withy =0 and d =0.1.

The grey dashed lines in (a) represents the zone that (b) is demonstrating.
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Figure 2.13: Profile of UY demonstrating profile spiking when reducing hs using Model:
FE (2.4.2) with v = 0.01, for Example 1a. The red line is hy = 2.4 x 2765, the green line
is h = 2.4 x 277 and the blue line is h7 = 2.4 x 277, where ¢ is fixed and At = %(hT)Q.
The black line depicts the profile of U"(+) using Model: FEs (2.4.11) with v = 0.01 and

hy = 2.4x2775, The grey dashed lines in (a) represents the zone that (b) is demonstrating.
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Figure 2.14: Profile of UV demonstrating profile spiking when increasing d using Model:
FE (2.4.2) with v = 0.01, for Example la. The red line is d = 0.1, the green line is
d = 0.2 and the blue line is d = 0.4, where ¢ = 0.11/2, ¢ = 3—32h7— and e = 20v/At are fixed.
The black line depicts the profile of U"(-) using Model: FE€s (2.4.11) with v = 0.01 and
d = 0.1. The grey dashed lines in (a) represents the zone that (b) is demonstrating.
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Figure 2.15: Profile of UV demonstrating the profile spiking when reducing h7 using
Model: FV (2.4.6), for Example la. The red line is h7 = 2.4 x 276 the green line is

h7 = 2.4 x 277 and the blue line is hy = 2.4 x 2775, where ¢ is fixed and At = %(hT)Q.

The grey dashed lines in (a) represents the zone that (b) is demonstrating.
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Figure 2.16: Profile of U demonstrating the profile spiking when reducing d using Model:
FV (2.4.6), for Example 1a. The red line is d = 0.1, the green line is d = 0.2 and the blue
line is d = 0.4, where ¢ = 0.1V/2, ¢ = %hT and € = 20/ At are fixed. The grey dashed

lines in (a) represents the zone that (b) is demonstrating.
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Figure 2.17: Profile of UV demonstrating the appearance of instabilities when reducing d
using Model: FEs (2.4.11) with fixed vy = 0 and € = 33—2h7, e = 20V/At and € = 0.1v/2,
for Example la. The red line is d = 1, the green line is d = 1072 and the blue line is
d = 107, with the black dashed line being the profile of the true solution. The grey

dashed lines in (a) represents the zone that (b) is demonstrating.
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Figure 2.18: Profile of UY demonstrating the appearance of instabilities when reducing d
using Model: FEs (2.4.11) with fixed v = 0.01 and ¢ = %h% e =20VAtand e = 0.1v2,
for Example la. The red line is d = 1, the green line is d = 1072 and the blue line is
d = 1074, with the black dashed line being the profile of the true solution. The grey

dashed lines in (a) represents the zone that (b) is demonstrating.
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2.4.4 Coupling the diffuse interface approximation of a SADE on an
evolving surface to the phase field approximation of mean curvature

flow

Following [63, Section 4.1], we now look to extend Model: 7€, Model: FE&s and Model:
FV to the case where the velocity ¥ isn’t a given function but instead is the solution of

an equation that approximates mean curvature flow. As in [63] we set
po(t) :=1—*(p,t), FeQ,te0,T] (2.4.13)

where ¢ is the solution to (2.2.9). In essence, this means that all appearances of ¢ in
(2.3.12a), subsequent weak formulations and finite element and finite volume approxima-
tions will be replaced by ¢. In particular, this means that the phase field approximation to

the normal velocity of I'(t) and the unit normal vector of I'(¢) in (2.3.10) are respectively

V(1) 1= ICUN Dy, t) 1= Vel,t) in Q, t € [0,7). (2.4.14)

Vel 1) Vel )
Moreover, since we consider mean curvature flow, we note that ¥, = 0. Denoting the

approximation of p, and v, as

Dy@"() Vor() a9

po() :=1—(®"()*  Ug():=— : in Q,
® ® Ver()| [Vonr(.)]
with an abuse of notation we redefine
» = {i €N : 3j € w; such that pg(p;) > 0}
and set
rhm = {Th e T" . Npw C NP} (2.4.15)
Model: ACFE

With the velocity of the surface given by (2.4.14), the coupling of the finite element
approximation to the diffuse interface approximation to SADEs to the finite element ap-
proximation to the phase field approximation of mean curvature flow takes the form of
U"(p;) =0 for i ¢ NJ* and
N W\ A
D | (s v (v01.6")'| +a (o v (v ve?)
h h h h h h
~ (U opIven|, veh) = (o fom IVOnLEh) T, et e st (2416a)
h h h
e (DthD",n —@”) te (v<1>",vn —ch”)

1 h h
— (cpn,nh 7 @”) _ % (p“,nh _ <1>”) >0, Vi'ekh, (2.4.16b)
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where

={n"esh: |n" <1}

Model: ACFEs
Similarly, the coupling of the finite element approximation to the diffuse interface approx-
imation to SADEs with edge smoothing to the finite element approximation to the phase

field approximation of mean curvature flow takes the form of U (f;) = 0 for i ¢ N;* and
h
D (o (90161)'| +a (o 70 (90 ")~ (phun agivarl.ver)”

h h
+ (g0 (55, VU G5 VO], VEM ) = (o fom [VO"], €M), Vel e sh, (24.17a)

e (Dt(b”, i — @”)h te (V@", Vit — V<I>">

1 h h
_= (@”,nh _ c1>") _ % (pn,nh _ <I>”) >0, Vio'ekh, (2.4.17b)
9

with 17172 ¢ being the approximate projection of ¥y in the approximate normal direction
Vp. Given the form of g, in (2.4.10), we can approximate dr(-,t") by using ®"(-), noting
(2.4.20) and see [41], which is how we calculate ge o.

Remark 2.13. One notices that Model: ACFE and Model: ACFEs do not have the
added streamline diffusion term from [44]. This is because we could not find a way to
define pe for any time without the explicit knowledge of the curve, and hence we could not
extend the term to this coupled case where the approzimation of the curve satisfies its own

velocity law.

Model: ACFV

The coupling of the finite volume approximation to the diffuse interface approximation
to SADEs to the finite element approximation to the phase field approximation of mean
curvature flow takes the form of U (f5;) = 0 for i ¢ N and

A U )y =4 3 () i

kEw;

+Z( (B0 i, )]+ UR [<<pgﬁ;">jk,ﬁg;k>})<p$>jk

k€w;

1 n,n— n— n— en . n
= " U s+ () S (), VI €A, (24.18a)

¢ (Dtcbn, - @”) te (VCD”, v — V(b")

1 h h
_= (cp”,nh _ qﬂ) _ % (pn,nh _ <I>”) >0, Vo'ekh, (2.4.18b)
9
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where (pi""); as defined in (2.4.7), and

(m3); = 3 Ve, / W)k = > (W) [VOL, |

TheN; Theg i,

Example 2

For our second example we use an expanding circle, which is the same as Example 2
in Section 3.2 in [63], whereby we want to see how Model: ACFE (2.4.16a)-(2.4.16b),
Model: ACFEs (2.4.17a)—(2.4.17b) and Model: ACFV (2.4.18a)—(2.4.18b) react to a
small diffusion constant. Consider R(t) = 0.75 + 5t and &(t) = (0,0)7, with @(p,t) =

Ilﬂ’
and f(p,t) =4(d —1)e’ R(t> (t)ITQ for p'e I'(t). Then, the solution to (1.2.2) is
u(p,t) = esrm P12 7e (), t € [0,T).

IO e

One notices that the velocity in Example 1 was not in the normal direction; however, for
this example it is which allows us to compare the errors from diffuse interface approach to
the errors from the coupled Allen-Cahn diffuse interface approach. As I'(t) is a circle, this
implies that v = R/(t) and x = —R(t)~!, and hence we take the forcing for the Allen-Cahn

equation, noting (1.1.2), to be

T S
P=UTR=OH oy

We solve the algebraic system of equations resulting from the diffuse interface approx-
imation of the SADEs using GMRES with diagonal preconditioning only for the finite
element approximations (2.4.16a) and (2.4.17a), we do not use diagonal preconditioning
for (2.4.18a). For the solution of algebraic system resulting from (2.4.16b), (2.4.17b) and
(2.4.18b) we use the projective SOR method presented in [60], which, Vj € N, gives

e n n £ 1 n— h ™, n h
AL ((I) ,x]) +e <V<I> ,VXj> = <At + > (<I> I,X]) + 1 (", x;)", (2.4.19a)
"= P, (2.4.19b)
where, as in [41], P is defined as the component-wise projection
(Pz); := max{—1, min{1l, z;}}, jeN.

Simplistically this can be thought of as the semi-implicit finite element approximation to
the ‘equivalent’ variational equality to (2.2.9) whereby if a nodal value goes above 1 or

below -1 it gets truncated to make sure that ®” € K. Initially, see [41], we consider the
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profiles for (2.4.16b), (2.4.17b) and (2.4.18b), for 5 € Q, to be ®° := "0, where

1 if dp(ﬁ, 0) > %E,
©°(7) == sin (m) if |dr(5,0)] < ==, (2.4.20)
—1 ifdr(ﬁ,(]) < —%‘E.

As before, the following results were produced using ALBERTA using one core of pro-
cessing power on the HPC whilst the visualisations were produced in MATLAB. To
quantify how each system is reacting we consider &3 and &, in (2.4.3c) and (2.4.3d) re-

spectively. We take ¢(p,t) = | — co(t)| — R(t), for j € Q, and set ¢ = 0.1, hy = g—;,

2

At = 155, and T' = 0.1. This value of ¢ results initially in 21221 DOFs. Table 2.14 depicts
the errors resulting from Example 2 comparing Model: FE (2.4.2) and Model: ACFE
(2.4.16a)—(2.4.16b), Table 2.15 depicts the errors resulting from Example 2 comparing
Model: FEs (2.4.11) with Model: ACFEs (2.4.17a)—(2.4.17b), and Table 2.16 depicts
the errors resulting from Example 2 comparing Model: FV (2.4.6) with Model: ACFV
(2.4.18a)(2.4.18b). Figures 2.19-2.21 depict the profile of UV resulting from Example 2
using Model: FE (2.4.2), Model: FEs (2.4.11) and Model: FV (2.4.6) respectively
on the line y = z starting at (0,0), whilst Figures 2.22-2.24 depict the same profiles but

resulting from the Allen-Cahn variants of the schemes.

Table 2.19b demonstrates how Model: ACFE (2.4.16a)—(2.4.16b) performs when d
is reduced, while for comparison Table 2.19a demonstrates how Model: FE (2.4.2), with
v = 0, performs when d is reduced. We display the profiles of U resulting from Model:
FE (2.4.2) and Model: ACFE (2.4.16a)—(2.4.16b) in Figures 2.19 and 2.22 respectively.
Unlike in Figure 2.8 for Example 1a where we saw the appearance of instabilities, albeit
for smaller values of d than here, the edge spikes are causing a much larger problem, es-
pecially for Model: ACFE (2.4.16a)—(2.4.16b). Taking d = 1, the computational time
solving Example 2 using Model: FE (2.4.2) was approximately 120 minutes of execution
time whilst using Model: ACFE (2.4.16a)—(2.4.16b) was approximately 70 minutes of
execution time. As one can see the simulation using Model: ACFE (2.4.16a)—(2.4.16b)
is faster, which is somewhat surprising. Taking d = 0, the computational time solving
Example 2 using Model: FE (2.4.2) was approximately 720 minutes of execution time
whilst using Model: ACFE (2.4.16a)—(2.4.16b) was approximately 620 minutes of exe-
cution time. In Table 2.19b we display the errors for Model: ACFEs (2.4.17a)—(2.4.17b)
and Table 2.19a displays the errors for Model: FE&s (2.4.11) for comparison. Figure
2.20 depicts the profile of UV resulting from Model: FE&s (2.4.11) while Figure 2.23
depicts the profile of UV resulting from Model: ACFEs (2.4.17a)-(2.4.17b). In a sim-
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ilar fashion to Example la, the edge smoothing contributions affect the errors when d
is small but largely improve the profile of UV, as we see from comparing Figure 2.23 to
Figure 2.22. Taking d = 1, the computational time solving Example 2 using Model: FEs
(2.4.11) was approximately 150 minutes of execution time whilst using Model: ACFEs
(2.4.17a)—(2.4.17b) was approximately 120 minutes of execution time. Taking d = 1078,
the computational time solving Example 2 using Model: FE&s (2.4.11) was approxim-
ately 405 minutes of execution time whilst using Model: ACFEs (2.4.17a)—(2.4.17b) was
approximately 510 minutes of execution time. Table 2.19a displays the errors for Model:
FV (2.4.6) for the comparison to Model: ACFV (2.4.18a)—(2.4.18b) whose errors are
displayed in Table 2.19b. As in Example la the interface errors using Model: ACFV
are significantly better than the respective errors of Model: ACFE (2.4.16a)—(2.4.16b)
and Model: ACFEs (2.4.17a)-(2.4.17b); however, like in Example la, the profile of U
resulting from Model: FV (2.4.6) and Model: ACFV (2.4.18a)—(2.4.18b) both suffer
from large edge spikes, which for Model: FV (2.4.6) can be seen in Figure 2.21 and in
Figure 2.24 for Model: ACFV (2.4.18a)—(2.4.18b). Taking d = 1, the computational time
solving Example 2 using Model: FV (2.4.6) was approximately 80 minutes of execution
time whilst using Model: ACFV (2.4.18a)—(2.4.18b) was approximately 45 minutes of
execution time. Taking d = 0, the computational time solving Example 2 using Model:
FV (2.4.6) was approximately 300 minutes of execution time whilst using Model: ACFV
(2.4.182)—(2.4.18b) was approximately 240 minutes of execution time. For the comparison

of Figures 2.19-2.24 we note here to be wary of the different scaling used for the y—axis.

d | Ex100 | & x 104 d | Ex100 | & x 104
1 6.368 1.316 1 295.0 2.202
1071 | 10.40 9.876 1071 | 7274 19.37
1072 | 7240 808.9 1072 | 7705 2822
1073 | 1390 58593 1073 | 6466 344237
1074 | 7138 372797 1074 | 22130 | 1334963
1075 | 9538 484733 107° | 25552 | 1559463
0 9871 499776 0 25930 | 1559463
(a) Model: FE (b) Model: ACFE

Table 2.14: Errors comparing Model: FE (2.4.2) to Model: ACFE (2.4.16a)—(2.4.16b),

with varying d, and fixed € = 0.1, for Example 2.



o6

d | & x10° | & x 104 d | & x10% | & x 10*

1 6.327 1.315 1 302.7 2.224
1071 | 7.423 9.859 1071 | 838.8 21.02
1072 | 59.69 808.7 1072 | 2230 2865
1073 | 1288 50174 1073 | 45293 | 279309
1074 | 5275 195772 1074 | 192630 | 955223
1075 | 961604 | 3969932 107° | 201504 | 992176
1078 | 996891 | 4178887 1078 | 224957 | 1164530

Table 2.15: Errors comparing Model: FEs (2.4.11) to Model: ACFEs (2.4.17a)-

(a) Model: FE&s

(b) Model: ACFE&s

(2.4.17b), with varying d, and fixed € = 0.1, for Example 2.

d | & x10° | & x 104 d | & x10% | & x 10*

1 38.23 1.585 1 442.2 3.476
1071 | 93.56 11.17 1071 | 1125 42.24
1072 | 1321 175 1072 | 1754 802.5
1073 | 146.0 402.3 1073 | 1790 1956
1074 | 146.7 451.6 1074 | 1789 2197
107° | 146.8 457.4 107° | 1789 2224

0 146.8 458.0 0 1790 2227

Table 2.16: Errors comparing Model: FV (2.4.6) to Model: ACFV (2.4.18a)—(2.4.18b),

(a) Model: FV

(b) Model: ACFV

with varying d, and fixed € = 0.1, for Example 2.
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Figure 2.19: Profile of UY when reducing d using Model: FE (2.4.2) with fixed v = 0,
€= %h% e =20V At and € = 0.1, for Example 2. The red line is d = 1, the green line is
d = 107! and the blue line is d = 1072, with the black dashed line being the profile of the

true solution. The grey dashed lines in (a) represents the zone that (b) is demonstrating.
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Figure 2.20: Profile of U" when reducing d using Model: FEs (2.4.11) with fixed v = 0,
€= %hT, e =20v/At and € = 0.1, for Example 2. The red line is d = 1, the green line is
d = 10! and the blue line is d = 102, with the black dashed line being the profile of the

true solution. The grey dashed lines in (a) represents the zone that (b) is demonstrating.
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Figure 2.21: Profile of U" when reducing d using Model: FV (2.4.6) with fixed ¢ = %hT,
e = 20v/At and € = 0.1, for Example 2. The red line is d = 1, the green line is d = 107!
and the blue line is d = 1072, with the black dashed line being the profile of the true

solution. The grey dashed lines in (a) represents the zone that (b) is demonstrating.
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Figure 2.22: Profile of UM when reducing d using Model: ACFE (2.4.16a)(2.4.16b)
with fixed ¢ = %hT, e = 20v/At and ¢ = 0.1, for Example 2. The red line is d = 1, the
green line is d = 107! and the blue line is d = 1072, with the black dashed line being the
profile of the true solution. The grey dashed lines in (a) represents the zone that (b) is

demonstrating. The blue line goes up to approximately 100 and down to approrimately -4.
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Figure 2.23: Profile of UY when reducing d using Model: ACFEs (2.4.17a)-(2.4.17b)
with fixed € = %hfr, e = 20v/At and € = 0.1, for Example 2. The red line is d = 1, the
green line is d = 10~! and the blue line is d = 1072, with the black dashed line being the
profile of the true solution. The grey dashed lines in (a) represents the zone that (b) is

demonstrating.

25 T T T T " ! T 0.95
0.9

0.85

0.8

0.75

0.7

0 i . . . 0.65 . .
105 11 115 12 125 13 135 1. 105 11 115 12 125 13 135 1

1
1
1
1
1
1
1
4

1.45

(a) Zoom out (b) Zoom in

Figure 2.24: Profile of UV when reducing d using Model: ACFV (2.4.18a)-(2.4.18b)
with fixed ¢ = %hT, e = 20/At and ¢ = 0.1, for Example 2. The red line is d = 1, the
green line is d = 10! and the blue line is d = 1072, with the black dashed line being the
profile of the true solution. The grey dashed lines in (a) represents the zone that (b) is

demonstrating.
2.4.5 Summary of numerical results
In this section we have introduced a finite element approximation of the diffuse interface

approximation to SADEs without edge smoothing Model: FE (2.4.2) and with edge

smoothing Model: FEs (2.4.11), as well introduced a finite volume approximation of
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the diffuse interface approximation to SADEs Model: FV (2.4.6). We mirrored the error
results and estimated orders of convergence found in the literature for Model: FE (2.4.2)
and Model: F&s (2.4.11) and we demonstrated that Model: FV (2.4.6) has similar
errors as well as follows a similar experimental order of convergence, except for £&5. We then
showed that for an advection-dominated simulation Model: FV (2.4.6) has significantly
better errors for a small diffusion constant d; however, like Model: FE (2.4.2), it suffers
from large spikes in the profile of the approximate solution near the edge of the interface.
The edge smoothing term (2.4.9) was introduced by [63] to dampen these profile spikes
which we demonstrated for Model: FE (2.4.2), but we are currently unable to show a
similar feature for Model: FV (2.4.6). We then coupled these approximations to the
finite element approximation to the phase field approximation of mean curvature flow,
whereby the velocity of the SADE satisfied mean curvature flow. We demonstrated errors
for the systems Model: ACFE (2.4.16a)-(2.4.16b), Model: ACFEs (2.4.17a)-(2.4.17b)
and Model: ACFV (2.4.18a)—(2.4.18b) and showed that, in terms of errors, Model:
ACFYV (2.4.18a)—(2.4.18b) was still superior; however, in terms of profile, still suffered

from edge spiking.

We finish this section off with some general observations. Considering Model: F&
(2.4.2), judging from the errors in Table 2.6 and the plot in Figure 2.8, it seems that the
approximate solution U™ is only meaningful for d > 1073, whereas one can argue that
Model: FV (2.4.6) is meaningful for all values of d judging by the errors but, due to
the spiking, is ineffective for d < 107°. The addition of edge smoothing in Model: FE&s
(2.4.11) improves the profile massively but is heavily affected by the instabilities caused
for small d, as can be seen for d = 1 x 10~° in Figure 2.17, as the smoothing is not near the
true solution but rather whatever the nodal value of U™ is when it reaches the smoothing
zone. Each of the schemes maintain these properties upon the coupling to the Allen-Cahn
equation, and all are more susceptible to profile spiking for even larger values of d. Again,
Model: ACFV (2.4.18a)-(2.4.18b) provides much better errors compared to Model:
ACFE (2.4.16a)—(2.4.16b) and Model: ACFEs (2.4.17a)—(2.4.17b) but still suffers from
large profile spiking. We conclude that, for a small d, one should consider Model: FV
(2.4.6) and Model: ACFV (2.4.18a)—(2.4.18b) for good accuracy, but should consider
Model: FE€s (2.4.11) and Model: ACFEs (2.4.17a)—(2.4.17b) if the pointwise value of
the approximate solution U™ is needed as, for example, forcing for another equation as

part of a system.
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Chapter 3

The parametric approach for

curve shortening flow

3.1 Introduction to Model M; and Model M,

This chapter concerns itself with the derivation and finite element error analysis of the
parametric setting of curve shortening flow attached to a fixed boundary. In this chapter
we consider two models. The first is simply curve shortening flow for a curve attached to
some prescribed boundary under an orthogonal contact condition. To be more specific, let
the curve I'(t) move inside some domain €2 C R? such that we can describe the boundary,
00, as

N :={pPecR*: F(p) =0} with |VF(@)| =1 forpecoQ,

for some function F' € C%1(R?). Relating to this setup, we introduce Model M7, which
takes the following form, find 7 : [0,1] x [0, 7] — R? such that

Z — éf)'”z =0, (pt)eTx(0,T), (3.1.1a)

F(Z(p,t)) =0,  (p,t) € {0,1} x (0,77, (3.1.1Db)

(Z,(p,t), VEF(Z(p,1))) =0,  (p,t) € {0,1} x (0, T], (3.1.1c)
Z(p,0) =z%p), pelo,1]. (3.1.1d)

Here p denotes the parametrisation of # associated to Z, £° denotes the given parametrisa-
tion of I'(0) and p = (po,p1)* := (—p1,po). We denote T := (0, 1) for ease of notation,

but will refer to the closure as [0, 1] rather than Z and refer to the boundary elements as
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{0, 1} rather than 0Z. In Section 3.3 we motivate Model M; and prove discrete in time
and space finite element error bounds. The second model concerns itself with a coupling
of Model M; with a reaction-diffusion equation on the curve I'(¢). For this setup we
introduce Model Ma, which takes the following form, find # : [0,1] x [0,T] — R? and
w : [0,1] x [0,T] — R such that

aZy+ (1 — a) (T, V)0 — z:ZTQ = f(w)v, (p,t) €T x (0,7, (3.1.2a)

(7,1 ®). — (@) —d (f;j‘) ~Glgd), (o) €Tx (0T (3.1.2b)
F(Z(p,t)) =0, (p,t) € {0,1} x (0,77, (3.1.2¢)

(Z,(p, 1), VEF(Z(p,t))) =0,  (p,t) € {0,1} x (0,T], (3.1.2d)

w(p,t) = wp, (p,t) € {0,1} x (0,77, (3.1.2e)

#(p,0) =Z%p), w(p,0)=a"(p)  pel0,1]. (3.1.2f)

Here o € (0, 1], wp € R, f, g are given functions and ¢ (-, ¢) and v(-,t) define the tangential
and normal velocity of T'(t) respectively. Moreover we denote w(-,t) := w(Z(+,t),t) such
that w(-,t) : I(t) — R and w® is a given function defined on I'(0). In Section 3.4 we
motivate the reaction-diffusion equation contribution in terms of this thesis and prove
continuous in time finite element error bounds. We next introduce notation that is used

throughout this chapter.

3.1.1 Notation

We repeat some of the same notation used in Chapter 2 for the ease of the reader. As
with standard theory we denote the Euclidean inner product by (-,-) associated to the

Euclidean norm [p]? = (p,p). We let ® denote the outer product defined as

—

(d@b)” = a@b;, fordcR™andbeR", m,neN.
1)

Let us define a partition of our interval [0,1] = szlﬁj, where 0; = (pj—1,pj). We set
h = max hj, where hj = p; — pj—1. Our finite element spaces are defined as
J=L

Sh={x"eC(o,1]) : Xﬁ,, is affine for each j =1,...,J} ¢ HY(T)
J
Sh={x"eS": x"(p;) =0, for j € {0,J}}

S = {x" € S": X"(0) = x"(1)}.
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We define the basis functions of S” to be defined as x;(p;) = (5Zj and we set 1" : C(]0,1]) —

S" to be the standard Lagrange interpolation operator defined as

(I"n)(pj) = nlps)s  G=0,..0,J, (3.1.3)

h

lor

and we denote [ Jh := I to be the local interpolation operator. We define the discrete

inner product and the resultant induced norm as

J
o) =3 [ Bmmydo. [l = (0"
j=1"7
Further to a spatial discretisation, we also discretise in time. Let 0 = {5 < t; < -+ <

tn—1 <ty =T be a partition of [0,7]. We set At := max At,, where Aty :=t, —t,_1.

n=1,....,N

We define the discrete time derivative as
a® — anfl
Didt = ———
t Atn )

where we have denoted the continuous function a(-,#") by a™(-). In this setting, with the
exception of F', we use capital letters to denote fully discretised finite element approxima-
tions and lower case letters to denote the continuous solution, e.g. A™(-) denotes the finite
element approximation to a(-,t"). We add a superscript h to a lower case letter to denote
a continuous in time finite element function, e.g. a”(-, t"™) denotes the semi-discrete finite

element approximation to a(-,t").

We adopt standard notation for Sobolev spaces WHP(I), where I C R is a bounded
interval, [ € Ny and p € [1,00]. Unless stated otherwise we will be considering only
I = T and so omit this dependency from the standard Sobolev notation. We denote the
Sobolev I, p norm of a function f to be || f||;, and its associated seminorm to be |f|;,. For
the special case of p = 2, we denote W"2(Z) by H'(Z) and denote the associated norm
and seminorm to be ||f]|; and |f|; respectively. For the special case of | = 0, we work
within the Lebesque spaces LP(Z), where the norm has its standard notation || f||z»(z)
with the L?(Z) inner product denoted as (f,g). When the function is vector valued,
the function spaces are naturally extended to [W'P(Z)]" and [H'(Z)]" with appropriately
defined norms and seminorms, we however leave the notation for the norms unchanged.
We extend the notation to include time dependent spaces W'P(0, T'; X), where [0, T] C R is

the time domain and X a Banach Space, with the standard associated norm and seminorm

HfHleP(QT;X) and ‘f‘WlaP(O,T;X)'

Lastly, C' denotes a generic constant that is independent of h and Atf,. Multiple

occurrences of C' will not, in general, take the same value.
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3.1.2 Useful identities and results

Using the notation defined above, we now state the approximation identities we plan on
using throughout our analysis in this chapter. Firstly, we assume for some C' > 0 that

h<Chj, j=1,...,J, (3.1.4a)

as well as

At < CAt,, n=1,...,N. (3.1.4b)

In our notation, the standard interpolation results, see [32], are as follows, for p € (1, o],

ke {0,1},1€{1,2},s€{0,1,2}and j=1,...,J

1
h;') ’nh|0,oo,<7j + hj ‘nhh,pﬂj <C ’nh’(lp,aj v 77h S Shv (3'1-53')
(I = IYlkpsy < CREF Il VneW (o), (3.15b)
1
(T = IYle-1000, < C 2 Il VneHo), (3150
1I')s po; < C|0lspo; Ve W (g)), (3.1.5d)
where [1]¢p,o, i the seminorm of the space WhP (o). We also have that for j =1,...,J,

and for all n*, x" € S* that

[ aps [ 2 e] ap<s [ WP an (3.1.60)

J

< CR2 0 ey Wl < Chy |1y X0, (3.1.6D)

/_(I—If)(nhxh) dp

J

We also state explicitly that from the definition of the interpolant operator (3.1.3) we have
I'#(p) = 7(p),  pe {01}, (3.1.7)

We note two inequalities that we will be using a lot in this chapter. First we have Young’s

inequality, which states that, for a, b € R and § > 0,
0 2
la||b] < ~la|* + Z|b]?. (3.1.8)
2 )
Secondly we have the Gagliardo-Nirenberg inequality, which states that for n € H'(T),

018 00 < Clnlolinlly (3.1.9a)

< elnlt + C(e) 3. (3.1.9b)
Another identity we look to use, for a, b € R, is

b —a® = (a — b)? — 2a(a — b). (3.1.10)
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Using Theorem B.6 we have that H(Z) — L>(Z). Namely, for u € H(Z), we have

|ulo,00 < Cemp [|ull1- (3.1.11)

We also use the following Taylor’s expansions
F(p) = F(q) =0 — ¢ VF(D))
1
+/ (VFE(sp+ (1 —15)q) — VF(p),p— q) ds, (3.1.12)
0
for 7, § € R?, as well as
VF(p) = VF(q) =D*F(p) (7 — )
1
+ / (D*F(sp+ (1 - 5)q) — D*F(p))(p — @) ds, (3.1.13)
0
Finally we introduce the discrete version of Gronwall’s Lemma.

Lemma 3.1 (Discrete Gronwall’s Lemma, [75]).

Let y,, fn and g, be non-negative sequences and

n
Un < fn+ Y ghyr,  forn>0,
k=0
then
n n
?Jnﬁfn'i'z,fkgkexp Zgj , for n > 0.
k=0 =k

3.2 Literature review

In Section 3.2.1 we present established results relating to the finite element approximation
and analysis of curve shortening flow whilst in Section 3.2.2 we present results relating
to the finite element approximation and analysis of curve shortening flow coupled to a

reaction-diffusion equation on the curve.

3.2.1 Curve shortening flow

We begin with the seminal work produced by Dziuk in [52] who proposed a finite element
approximation to curve shortening flow for a closed curve in R?. Details of the derivation

are standard and found in a differential geometry textbook such as [116]. Namely, let s(p)
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define the arc-length of Z, then Z(s) defines the arc-length parameterisation. Thus, the

unit tangential and normal vectors of & respectively are
=7, =L, U=+ (3.2.1)

Moreover, we have Frenet’s formula, see [42, 107], which relates the tangent vector to the
normal vector and the mean curvature

7= ki (3.2.2)
Using (3.2.1) and (3.2.2) we see that the curvature in the normal direction is
ArpT =R =KV = Ts = T (3.2.3)
We also detail the tangential and normal velocities of &, namely
Y= (T, T), v=(T,V). (3.2.4)

Hence, as introduced in [52], we see that (1.1.5) can be rewritten as

1 "
ft - = (:L_,'p) = 0, (p, t) el x (O,T), (325&)
EARNEA p
Z7(0,t) = Z(1,¢), t e (0,7, (3.2.5b)
Z(p,0) = 2%p), pel (3.2.5¢)

Here we define I := R/Z to be the periodic unit interval and p is the parameter associated
to it. In an abuse of notation we use p as the parameter associated to I and also to Z.
Multiplying (3.2.5a) by |Z,| and a smooth periodic test function E, using integration by
parts and the boundary conditions (3.2.5b), the weak form of (3.2.5a)—(3.2.5b) is given by

(|:E’p| ft,£_> + (,if,&:,) =0, for all smooth periodic &, (3.2.6)
p

and the associated semi-discrete finite element approximation presented in [52] takes the

form

. o B}
(lfc’; 7, h)+<‘fg‘,£p" =0, V&M e[Shal (3.2.7)

Dziuk in [52] proves the following theorem which provides finite element error estimates

for curve shortening flow [52, Theorem 2, p. 591].

Theorem 3.2 (G. Dziuk, 1994).
Let ¥ = Z(p,t), (p,t) € I x [0,T], be a smooth solution of the curve shortening flow
(3.2.5a)~(3.2.5¢) with |Z,| > co > 0. Then there exists an hy depending on & and T such
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that for every h € (0, ho] there exists a unique solution T of (3.2.7) with initial data
i (p;,0) = z%p;), for j =0,...,J, and

T
max |7 — 2|2 +/ 7 — "2 dt < Ch?,
t€[0,T] 0

T
) ) 2
max |%; — T |5+ Ty — Ty dt < Ch
te[O,T]‘t 10 /O\t ¢l dt < ,

where C' depends on T, T and 1.

This realisation of curve shortening flow is prescribed purely in the normal direction.
For the continuous solution, this is not a problem; however, for numerical simulation, this
could lead to problems such as the nodes of the finite element approximation clumping
together since they do not have any tangential motion, see Figure 3.1. Not only can one
see the nodes clump together, but in turn this means that the distribution of the values
of the length elements is poor as well. Heuristically we can see this occurs because in the

continuous setting we have

1 11 d
=T, T Tp, T, :7777—_—2:0. 3.2.8
<t > <P > 2|.%'p’d,0 | ( )

1@l

In [37], Deckelnick and Dziuk replaced the parametrisation of (3.2.5a) by

7 — é”"; =0, (p,t) €1 (0,T), (3.2.92)
P

#(0,) = #(1, 1), t e (0,7, (3.2.9b)

#(p,0) = Z°(p), pel, (3.2.9¢)

where here we note that

1 Zp Top  (TppsT) = == Lpp
w1 (5), - e (3:210)
P rl/ p P P P

such that removing the term containing (Z,,, 7) in (3.2.10) consequentially adds a tangen-
tial component to the parametrisation. We importantly stress that neglecting the term
containing (Z,,, 7) in (3.2.10) only changes the parametrisation tangentially and thus has
no effect on the desired movement of the curve. Multiplying (3.2.9a) by |Z,|* and a test
function E € [H!.,(I)]?, using integration by parts and the boundary conditions (3.2.9b),

per
the weak form of (3.2.9a)—(3.2.9b) is given by

(I:Eprtf) + (f,,ép) =0, VE € [Hl (D], (3.2.11)

and the associated semi-discrete finite element approximation presented in [37] takes the
form

(|:z’;|2f?, *’l) n (f’;, “ph) =0, Vel (3.2.12)
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Figure 3.1: Simulation of a dumbbell moving under curve shortening flow using the nu-
merical scheme presented in [52]. The top plot is the finite element approximation Xn

and the bottom is the distribution of the (normalised) length elements |)Z';‘| T =0.15.

Here we denote ngr(]l) ={f € HM): f(p) = f(p+2),p €,Vz € Z}. In [37] the
authors prove the following theorem which provides finite element error estimates for this

new parametrisation of curve shortening flow [37, Theorem 3.1, p. 4].

Theorem 3.3 (K. Deckelnick & G. Dziuk, 1995).
Let # € C*Y(I x [0,T)) be a solution of (3.2.9a)~(3.2.9¢) with |Z,| > ¢y > 0 and

F, € L°(0, T: [H}, (D) 1 L(0, T; [H2, (D).

per

Then there exists an ho depending on & and T such that for every h € (0, hg] there exists
a unique solution " € H*(0,T;[Sh,]?) of (3.2.12) and

T
max 7 - 2+ [ 15— 2l < o
t€[0,T 0

where C' depends on T and T'.
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One thing to note about (3.2.11) in comparison to (3.2.6) is that there is no division
by the length element in the weak form. Furthermore, there is an improvement in the
distribution of the length elements of the finite element approximation by comparing

Figure 3.2 to Figure 3.1, which is due to the added tangential motion.

I ™
¥
c‘ \\\ 1 T T
- 4
I })4\ “
I o \ : M R
gﬂ/ P

e
I S

0 012 0:4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
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**4—‘4\\\& f)/. o **‘-\\\'
%% /
i bt
i : ;
*
% i kS *f
&*\‘*‘** * *—**“*f * *
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
(c) t=0.1 (d) t=0.15

Figure 3.2: Simulation of a dumbbell moving under curve shortening flow using the nu-
merical scheme presented in [37]. The top plot is the finite element approximation Xn

and the bottom is the distribution of the (normalised) length elements |)Zg| T =0.15.

In [37, 52] the numerical analysis of curve shortening flow was only concerned with
closed curves. In [42] the authors consider curve shortening flow fixed to a boundary under

a normal contact condition, as in Model M, which we restate for clarity

) — |fp|p2 =0, (pt)eIx(0,T] (3.2.13a)
Tp
F(Z(p,t) =0, (p,t) € {0,1} x (0,7], (3.2.13b)
(Z,(p,1), VEF(Z(p,1))) =0,  (p,t) € {0,1} x (0, 7], (3.2.13¢)
Z(p,0)=2%p), pel. (3.2.13d)

The weak form for (3.2.13a)—(3.2.13c) will differ to that of (3.2.9a)—(3.2.9b) due to the
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boundary conditions, we derive the weak form formally in Section 3.3. Multiplying
(3.2.13a) by |%,|* and a test function e [H(Z)]?, using integration by parts and noting
(3.2.13c), the weak form of (3.2.13a)—(3.2.13c) is given by

. L2 L o . . = . p=1 -

(17 2.€) + (#.6) = {70 VE@NEVF@)] . vEH'@P.  (3:214)
and the associated semi-discrete finite element approximation presented in [42] takes the
form

(1gh2ar. )" + (2h.6)) = [@h VE@)E VEE)] ™ . vehels"? (3.215)
p:

In [42] the authors prove the following theorem which provides finite element error estim-

ates for curve shortening flow attached normally to a fixed boundary [42, Theorem 2.1,

p. 639]. We see that the authors of [42] have improved on the L2-error estimates originally

derived by Theorem 3.2 and have made them optimal.

Theorem 3.4 (K. Deckelnick & C. M. Elliott, 1998).
Let & € W2te145([0,1] x [0,T]) be a solution of (3.2.13a)~(3.2.13d) with initial data
70 € C*([0,1],R?) satisfying compatability conditions for p € {0,1}

F(@%(p)) =0, (VF@(0)),(@°(p))pp) =0, {(T°%p))p, VIF(T°(p))) = 0
and boundary 0Q € C** where a € (0,1), 0 < ¢ < |7,[* <1 and
Ty € L°°(0,T; [H (T))*) N L*(0,T; [H*(T)]?).

Then there exists an ho depending on T and T such that for every h € (0, ho| there exists
a unique solution & € HY(0,T;[S"?) of (3.2.15) and
h2 g h |2 2
max | — 2"|7 + T — T} |5dt < Ch?,
a7 =2+ [ 17—l <

max |7 — 2|2 < Ch?,
te[0,T]

where C' depends on T and T'.

A further study of curve shortening flow is the study of triple junctions which has
applications in material science such as grain boundary motion, for example, where grains
meet at junctions with angle conditions. Publications concerning mathematical models
involving triple junctions typically consider two different formulations. The first formula-
tion considers three curves attached to a fixed boundary and meeting at a triple junction,

see Figure 3.3. This setup requires following the boundary and triple junction conditions

F@'(1) =0, (Z,(1,1), V' F(@'(1,) =0, forte[0,T],i=123,
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#1(0,t) = 2%(0,t) = 3(0,t), fort € (0,7,

(710,1),72(0,t)) = cos 8, (72(0,t),73(0,t)) = cos#?, for t € [0,T],

where Z? denotes the i—th curve with 7% being the unit tangent vector of curve %, and

6% denotes the angle between #¢ and Z**!, see [8, 42].

Figure 3.3: Triple junction attached to a boundary. The grey dashed line depicts 0f2,
each black line depicts a curve Z* with an arrow which depicts the corresponding tan-
gential vector 7. The orientation of each vector is corresponding to the angle condition.

Inspiration from [8].

The other formulation, which is considered in [9, 98], is a closed curve formulation with
two triple junctions. The assumption that the tangent vectors of each of the curves point
away from one of the triple junctions and towards the other, see Figure 3.4, results in the

following conditions at the triple junctions

#H(0,t) = 22(0,t) = 23(0,t), Z'(1,t) = #*(1,t) = 2°(1,t), fort € [0,T],

P, 1)+ 72(p,t) + P(p,t) =0, for (p,) € {0,1} x [0,T].

For the second motivated formulation, finite element analysis has only recently been con-
ducted, in [98], for a regularised version, regularised in the sense of adding artificial tan-
gential motion, due to the difficulty of using (3.2.5a) as the basis for the curve shortening

flow.

Even though introducing a reparametrisation was designed to give the numerical
scheme tangential movement, it still did not solve the problem entirely, as demonstrated
by Figure 3.2c, because the redistribution timescale is much larger than that of the sim-

ulation timescale, see [59]. In a series of papers, including but not limited to [8, 9, 10],



Figure 3.4: Triple junction occurring from collision of closed curves. Each black line
depicts a curve &’ with an arrow which depicts the corresponding tangential vector 77.

Inspiration from [8].

about geometric evolution equations, such as mean curvature flow and surface diffusion,
Barrett, Garcke and Niirnberg introduced a scheme that equidistributes the nodes of the
finite element approximation to curve shortening flow. Shown in [11], the derivation of
the scheme differs slightly from the original version that Dziuk proposed. Namely in [11]
the authors couple (1.1.1), using v := (&, V), to (3.2.3), using K = k7, to result in a
coupled system for x and #. Furthermore they assume that the parametrisation of I'(¢) is
equidistributed, i.e.

POl = [ 1ds= [I5,0.0ldo= |z, (p0)] Voel
T(t) i

Multiplying (1.1.1) by & € Hl[l)er(]l) and multiplying (3.2.3) by £ € [Hrl,er(]l)]2, integrating

and using integration by parts in the second case, yields the following weak form
((‘ftv ﬁ>7§)r(t) - (Kag)r(t) = 07 Vf S ngl)er(ﬂ)7 (3216&)
o c = & _ Z 1 2
(57.6) oy + (#6) =0 VEE WO (3.2.16b)

We note here that in fact one can eliminate x from the above coupling to obtain

((ft, 77, E)F(t) + (fs,fs)r(t) —0, vielHL (D> (3.2.17)

To be consistent with the weak forms derived for curve shortening flow that we presented
earlier, the authors in [11] also present (3.2.16a)—(3.2.16b) using the normalised paramet-

risation in the following way

(7, 3).€) = PO (5,) =0, V& € Hjo (D), (3.2.183)

(m?[f, *) + (fpép) —0, VEe[HL D (3.2.18b)
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In [11] the authors present a fully discrete finite element approximation of (3.2.16a)—
(3.2.16b) however for consistency purposes we will state the equivalent formulations of the

finite element approximation associated to (3.2.18a)—(3.2.18b)

1 ¥ n— N h n n h
= (<X” _ Xt (XP)L>7§’L) — (K ,gh) —0, Vehesh,  (3219%)
n (vn =\ 1 T o iy
(K (Xp)%éh) + I (Xp,gph) =0, V&M e[Sk (3.2.19b)

In [11] the authors prove the following equidistributing property described in [11, The-
orem 2.3, p. 9]. Figure 3.5 demonstrates this equidistributing property, whereby we can

see that all the normalised length elements are equal to 1.

Theorem 3.5 (J. W. Barrett, H. Garcke & R. Niirnberg, 2011).
Let (f”,K”)nNzo denote a solution to (3.2.19a)—(3.2.19b). Then it holds that

Xpa = Xp| =Xy =X, j=1...,J—1, n=1..,N

In addition, (X”, K”)TJLO is a solution to the associated fully discrete finite element form

of (3.2.16a)—(3.2.17). In particular the following stability result holds for all k =1,...,N

k—1
|1—xk‘ + ZAtn (Kn+17Kn+1)};n+1 < ‘FOI'
n=0

In [59] Elliott and Fritz derived a finite element approximation to curve shortening flow
that results in a good distribution of the nodes as well as allowing for analysis of finite
element error estimates. In [59] the authors reparametrise (3.2.5a) using a well-known
instrument in differential geometry called the De-Turck trick, [45]. The De-Turck trick
reparametrises the curve (or surface) by using the inverse of the solution to the harmonic
heat flow map. This introduces a constant « € (0, 1] that provides a linear combination

between (3.2.9a) and (3.2.17). Namely, the authors in [59] present a parametrisation of

the form
ady+ (1 — o)y, 1) — ’;PTQ —0, (p,t) € I x (0,T], (3.2.20a)
P
2(0,t) = £(1, 1), te (0,7, (3.2.20b)
Z(p,0) = %)), pel (3.2.20c)

Multiplying (3.2.20a) by |Z,|? and a test function e [H]..(I)]?, using integration by parts
as well as the boundary condition (3.2.20b), the weak form of (3.2.20a)—(3.2.20b) is given
by

=\

(ypr [a s + (1 — a){dy, #)7] ,g) n (fpép) —0, VEe[HL D (3.2.21)
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Figure 3.5: Simulation of a dumbbell moving under curve shortening flow using the nu-
merical scheme presented in [11]. The top plot is the finite element approximation Xn

and the bottom is the distribution of the (normalised) length elements |)Z';‘| T =0.15.

and the associated semi-discrete finite element approximation presented in [59] takes the

form

(]a?’;]Z [a Z (1 )@, ﬁh>ﬁh} ,Eh) n (fg,gj,h) =0, VEhe[sh]h  (3.222)

In [59] the authors prove Theorem 3.6, [59, Theorem 3.5, p. 11], which provides finite

element error estimates for this new parametrisation of curve shortening flow.

Theorem 3.6 (C. M. Elliott & H. Fritz, 2016).
Let a € (0,1] and suppose that & € C*(1 x [0,T],R?) is a solution of (3.2.20a)—(3.2.20c)
with

7, € L(0, T [HL, (D]2) N L(0, T [H2,()]),

per per

|Zp| > co >0, in I x [0,T].

Then there exists a constant hy > 0 depending on & and T such that for every h € (0, hg]

there is a unique solution ¥ € H'(0,T; [Sk, (I)]*) of the non-linear, semi-discrete problem
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(3.2.22) for all £" € [Sh..(I)]?, t € (0,T), with initial data & (-,0) = (I"Z°)(-) on I, and

T T
max |f—fh%+a/ 7, — &Edt+ (1 —a)/ (Z, — &, M2 dt < Cea Th2.
t€[0,7] 0 0

The constants C' and M depend on the continuous solution T and T'.

The proof of Theorem 3.6 shows that one obtains convergence for a non zero. We can
see this numerically by looking at Figure 3.7, although the numerical scheme presented
in [11] has the equidistribution property, see Figure 3.7d, the numerical scheme presented
in [59] is closer to the “true” solution, see Figure 3.7c. Here we mean that the “true”
solution, depicted by the black line, is the numerical solution from the numerical scheme
presented in [37] using a significantly smaller value of h and At. Although formally
choosing o = 0 will result in (3.2.17), the numerical scheme presented in [59] will not
equidistribute with o = 0 since, unlike the numerical scheme presented in [11], it is not
fully implicit; however, choosing « small does lead to a good distribution of the nodes of

the finite element approximation, as can be seen in Figure 3.6.

Briefly turning our attention to surfaces, Dziuk in [51] derived a finite element al-
gorithm for the mean curvature flow of surfaces. There has been no proof of error con-
vergence for this scheme due to the difficulty of the strong form equation, as explained
in [83]. The authors in [83] managed to prove convergence for the evolution of a surface
but used Huisken’s formulation of parametric mean curvature flow, see [77], rather than

Dziuk’s, and used higher order finite elements, not just linear finite elements.

3.2.2 Curve shortening flow coupled to a PDE on the curve

In studying the rice blast fungus we want to simulate a system consisting of a moving
curve coupled to a reaction-diffusion equation defined on the curve. Noting Definitions

A.4-A.7 such a system takes the form
v=kK+ f, onI'(t), t € (0,7 (3.2.23a)

Ofw — kvw — dwss = g, on I'(t), t € (0,77, (3.2.23b)

where f and g are (coupling) functions and 9fw = w; + v (Vw, ¥), since ¢, = 0.

In [97], Pozzi and Stinner produced the first finite element error analysis for such a

coupling. By considering Dziuk’s original method (3.2.5a) for closed curves and labelling
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Figure 3.6: Simulation of a dumbbell moving under curve shortening flow using the numer-
ical scheme presented in [59] with & = 0.1. The top plot is the finite element approximation

" and the bottom is the distribution of the (normalised) length elements |)Zg| T = 0.15.

w(p,t) = w(Z(p,t),t), taking d = 1 and g = 0, the system (3.2.23a)—(3.2.23b) becomes

Ty — L (% X a
T <|a:,,|> — f(@) 7, (p,t) € T x (0, T], (3.2.24a)
o e p‘t “77
O~ <’f ) (p,t) €1 x (0, T], (3.2.24b)
#0,6) = #(1,1), (0,8) = (1, 1), te (0], (3.2.24c)
#(p,0) = °%p), @(p,0) = w”(p), pel (3.2.24d)

The derivation of (3.2.24b) from (3.2.23b) is discussed in Section 3.4. Multiplying (3.2.24a)
by |Z,| and a smooth periodic test function € as well as multiplying (3.2.24b) by |Z,| and a
smooth periodic test function 7 constant in time, using integration by parts and boundary

conditions (3.2.24c), the weak form of (3.2.24a)—(3.2.24c) is given by

<|fp| i;’t,£> <|_, |,§p> = <|§c’p| f(w) v, {) , for all smooth periodic £,  (3.2.25a)
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Figure 3.7: Simulation of a dumbbell moving under curve shortening flow using the nu-
merical schemes presented in [52] in red, [37] in blue, [59] with o = 0.1 in pink, [11] in
green and the “true” solution in black, at T" = 0.15. The top plot is the finite element
approximation X~ and the bottom is the distribution of the (normalised) length elements
X

d
7 (|2, w,m) + <1§p’, 77/)) =0, for all smooth periodic 7,  (3.2.25b)
p

and the associated semi-discrete finite element approximation presented in [97] takes the

form

o\ P o o e\ P -
(17l 7t &) +<‘jf;‘,£p’l) = (18 r@) 7€), wEh e (Sh? (3:2.260)
P

d /., wh
o (\xg\ wh,nh> + <|f§|,n§;> =0, Vntesh. (3.2.26b)

In [97] the authors prove the following theorem which consists of semi-discrete finite ele-
ment error estimates for the system consisting of curve shortening flow coupled to lateral

diffusion on the curve [97, Theorem 1.1, p. 2].
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Theorem 3.7 (P. Pozzi & B. Stinner, 2015).

Under the assumptions that

| fllwreomy < C,
|fp| Z C > 07

i e Wh(0,T; [HZ,.(D)]?),

per

w e WLOO(O, T; H;llwr(]l)) N LOO(O’ T; HZ%ET(H))’

there exist hg > 0 such that for all h € (0, ho| there exists a unique solution to (3.2.26a)—
(3.2.26b), and the error between the smooth solution and the discrete solutions can be

estimated as follows:
[ et e < on
0
up (17 =7+ o = wf -+ 117l — Il < o
with constant C > 0. The constant C depends on the final time T, on the bounds
HfHWl,oo(R) of the coupling function, on the regqularity and bounds Hf”W1,oo(07T;[H§”_(H)]2),
||’(U||W1,OO(O,T;H;€T(H)) and ||w||Loo(0’T;Hg€T(H)) of the solution (which include the bounds ||Z°|2

and ||w®||y of the initial values), on the bound from below of the length element, and on

the grid regularity.

In [6] Barrett, Deckelnick and Styles derive a fully practical scheme and present fully
discrete error estimates to a coupled system similar to that considered by Pozzi and Stin-
ner. Rather than using (3.2.5a) for closed curves, the authors used (3.2.20a) to introduce
tangential motion to the nodes of the finite element approximation, resulting in the fol-

lowing slightly different formulation compared to (3.2.24a)—(3.2.24d)

ady+ (1 - a)(f, 1) = 9‘?””2 Ff@) 7, (pt) €Ix(0,T],  (3.2.27a)
p
N 1 d (1, y .
wy - ¢wp =2\ 1= —RUVW = g(v, w)v (pvt) elx (OaT]7 (3227b)
Tyl EARNEA P
#(0,t) = #(1,1), @(0,t) =w(1,t), te (0,7 (3.2.27¢)
#(p,0) = &°p), w(p,0)=u"(p), pel (3.2.27d)

By multiplying (3.2.27a) by |Z,|? and a test function fe [H}o(I)]? as well as multiplying
(3.2.27b) by |Z,| and a test function n € H',.(I) constant in time, using integration by

per

parts and (3.2.27c), the weak form of (3.2.27a)—(3.2.27c) is given by

(1202 [0 7+ (1 = a)(@, 9)7],€) + (7.6,
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= (18,12 @) 7.€), v&eHyMP, (32.25)

d . . ~ w S .
% (‘xp‘ wﬂ?) + (¢’wﬂ7p) + d < fplanp> = (|xP’g(an>vn) ’ VU € H}ier(ﬂ)? (3228b)
P

and the associated fully discrete finite element approximation presented in [6] takes the

form
(%57 P [ DX + (1 - ) (D, X7 1] )
+ ()?3,5,?) = (\X';“IIQf(W"‘l)ﬁ"—l,Eh) L Ve e[S (3.2.29)
(s ] o) )

N h
= (!X}}lg(V”,W"*),nh) ,  Vntesh. (3.2.29b)

In [6] the authors prove the following theorem which is the fully discrete finite element
error estimates for the coupled system of curve shortening flow with a reaction-diffusion

equation on the curve [6, Theorem 2.1, p. 5].

Theorem 3.8 (J. W. Barrett, K. Deckelnick & V. Styles, 2017).

Let #° = 1"#0 ¢ [SP, ]2 and WO = ["a® € Sh

per ver- Under the assumptions that

feCH(R),

g € CH(R?),

F € Wh(0,T; [Hp, (D)]*) N H(0, T; [Hpe, (D)) N W2(0, T; [ L, (D),
w € C([0,T); Hp, (1) N WH(0, T; Hy,,.(I)) N H*(0, T; L,(I),

per per

0<m< |2 <M, onlx][0,T],

then there exists h* > 0 such that for all h € (0,h*] and At < Ch the discrete problem
(3.2.292)(3.2.29b) has a unique solution (X™, W™) € [S ]2 x Sk, n=1,...,N, and the

per.

following error bounds hold:

sup [|7" = X"} + ur — W3]

n=0,...,N

N
+) Aty [yf? — D X5+ Jw" — Wnyﬂ < Ch?,
n=1
where T := Z(-, ty,), w" = w(-, ty), & = T(-,tn), n=0,...,N.

Briefly turning our attention to surfaces, the authors of [83] have extended their result
of the convergence of the finite element approximation of mean curvature flow for surfaces
to a coupled system consisting of the mean curvature of surfaces coupled to a reaction-

diffusion equation on the surface in [82].



Figure 3.8: Fixed Boundary Motivation. The green line represents Z, in this instance the
line y = z, the black line describes F', in this instance the circle F(p) = \/m —1, the
blue arrows describe VF and the red arrows describe V-F on 052, where here § is the
disk of radius 1. Hence, we can see that the blue arrows on the green line and red arrows

are orthogonal.

3.3 Finite element analysis of Model M;

In this section we look at Model M in more detail. We have supplied Figure 3.8 as
motivation for the condition (3.1.1c). To derive the weak form of Model M; we multiply
(3.1.1a) by |Z,|? and a test function € € [H(Z))?, using integration by parts, we arrive at

the form
— — g — ~ — 2P=
(‘xp|2$t’§> + (xmgp) = |:<$p7 >} .
Since F' € C%1(R?), using a standard basis expansion in R?, we have that

£ = (E V(@) VF(&) + (£, V' F(#)V*F(Z)

and, using (3.1.1c), we have

Z, = (i, VF(Z))VF(i).

Thus, noting (3.1.1b) and (3.3.4d), we obtain the weak form of (3.1.1a)—(3.1.1c)

p=1

(12,2 #.€) + (.§) = [@ VF@NEVF@)]_ ~ vie '@ (331

p=0

Alternatively, one can express the weak form as

(pr!%?t,f) + (f,,fp) =0, VEe[H'TD), (3.3.2)
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—

with the additional property that ({(p), VF(Z(p,t))) = 0 for p € {0,1}. Using (3.1.1b),

we notice that this property is similar to
d . _ - S
0= LF(@(p,) = (@(p0), VE(p,1),  for pe {0,1}, (3.3.3)

We persue the analysis using (3.3.1) since we do not want to restrict the test functions on
the boundary. Before introducing the finite element formulation we detail the assumptions

we need for the analysis.

Assumptions 3.9.
We assume that there is a unique solution ¥ of Model M; on the time interval [0, 7.

Furthermore we assume this unique solution and specified data satisfies

e WHe(0,T; [H*(T)]?) n W2°°(0,T; [L*(T))?), (3.3.4a
m < |Z,| <M on[0,1] x [0,T], for some m, M € R, (
F € C*Y(R?), (3.3.4c

IVF(p)| =1, forpe{peR?: F(p) =0} (3.3.4d

We assign each element Xne [S"]? a piecewise constant discrete unit tangent and nor-
mal, denoted respectively by 7" and V", approximating 7(-,t") and (-, t") respectively,
which take the form

Y0
7-71:: ‘X2|’ Vn = (Tn)L, OHO'j,jzl,...,J.
P

We are now in a position to introduce the fully discrete finite element form. Setting
XO() := I"#°(-) in [0,1] and given X"~ ! € [$7]2, find X" € [S"]? such that for every

£h € [SM2 we have
(lfﬁ‘l\thf”,é")h + ()?g,é;h) = [()?;‘,VF()?”)><Eh,VF(X’”))];, (3.3.5)
as well as the discrete equivalent of (3.1.1Db)
F(X"(p)) =0, for p € {0,1}. (3.3.5b)
A consequence of (3.3.5b) is that, in view of (3.3.4d), we have
IVE(X"(p)) = 1, for p € {0,1}, (3.3.6)
and therefore, by taking £/ = VF(X]”)X]- in (3.3.5a), for j = 0, J, we have

(D; X", VF(X")) =0, for p € {0,1}, (3.3.7)
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which is the discrete equivalent of (3.3.3). Throughout the remainder of Section 3.3 we
make the assumption that a unique solution to (3.3.5a)—(3.3.5b) exists on the bounded

time interval [0, 7).

Remark 3.10. Ezistence of a solution can be proven relatively trivially for (3.3.5a) using
standard techniques but with a harsh constraint of At, < Ch3. To date we are unable to
improve this due to the non-linear boundary conditions; we note this is a similar problem

found in [11, Remark 2.4, p. 9].

Remark 3.11. We remark that the property (3.3.7) is vital for the analysis, specifically
for deriving the bound for Ty in (3.3.49). Indeed we hoped to generalise (3.3.5a) to use the
corresponding a-scheme from the De-Turck trick as in [59]. However this changes (3.3.7)
to

a—1

(D, X", VF(X™)) = (D X" VTl VE(X™M)), for p € {0,1}.

«

In the continuous and semi-discrete setting, the equivalents of (V"1 VF(X™)) are zero
due to (3.1.1¢); however, in the fully discrete setting, (3.1.1¢) is in fact approximated, see
[42, Remark 3.2, p. 642]. In order to bound this new term using the current techniques we
would require a bound of the form \Dt)?”bm < C. A similar problem occurs in the case

of forced curve shortening flow.

3.3.1 Stability bounds for Model M;

In this section we prove stability bounds for Model M;. Indeed, we look to prove the

following lemma.

Lemma 3.12.

Let h € (0,h*]. Assuming h* is chosen appropriately so that 0 < ¢, < |X;L_1\, for all

n—1=0,...,N —1, then we have
N N

s X037 X0 - XM 2 3 A | DX < X0

n=1 n=1

Proof: Setting £" = D, X" in (3.3.5a), and noting (3.3.7), gives

o - S \h o 5 o o o N 1
(€5 PO, DX )+ (X, DiXp) = [(£3, VR(E) (D X", VE(X)]| 0.

Using a simple calculation, we can see that

20t (X0, Dy X7) = [ X"} + X" — X" — | X, (3.3.8)
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and hence, using (3.1.6a), we have
1 |2 1 a0 vn—1|2 2 |2 1 vn—1(2
§|X |1+§|X — X"+ 6 Al | D X |0§§’X 1-

The bound follows by summing fromn=1,..., N. O

3.3.2 H' error bounds for Model M;

In this section we prove optimal H' error bounds for Model M. Indeed, we look to

prove the following theorem.

Theorem 3.13.
Let X0 = 1"z9 € [SM2. There exists h* > 0 and At* > 0 such that for all h € (0, h*]
and At € (0, At*], with At < Ch?, the fully-discrete problem (3.3.5a)—(3.3.5b) has the

following error bound

N
sup |7 — X"+ Atn|@} — DX"[F < Ch?,

n=0,...,N n—1

for some C' > 0 independent of h and At.

The proof of this theorem combines some of the techniques presented in [6] with a fully
discrete version of the analysis presented in [42]. Before we begin the proof of the Theorem
3.13 we introduce some notation and the induction hypothesis that underpins the proof.

We define
i — X" = (- I"7) + ("7 — X") = (I — M7 + E™,

and assume for n —1 € {1,--- , N — 1} that

n—1
sup e M ETE 4 ) Aty | D,E™|G < Cih? for h e (0,h%]. (3.3.9)
m=1,....n—1 m=1

In order for the inductive proof to work the parameters need to be chosen carefully so
that there are no hidden relations. For example, if C; depended on n, then as N became
large, the error bound in (3.3.9) would also become large defeating the point of the actual
bound. First, it is assumed that h* and At* can be chosen appropriately small enough
independently of n, for the bounds in (3.3.10) and (3.3.55) respectively, which put inherent
bounds on h and At. We first choose i independent of n, h and At, which depends only on
At*, bounds on the true solution # and the function F, inverse estimates and interpolation

results, and 7. We then find C; independent of n, h and At, which depends only on pu,
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Gronwall’s inequality, and the aforementioned bounds and results. With the appropriate

bound on h*, this then finishes the proof.

The main part of the proof of Theorem 3.13 is split into the following two lemmas:

Lemma 3.14.
Let h € (0, h*]. Then we have

1 n |2 1 on on—12 m’ |2
1 rn—12 Aty —n —n Ln 2 (a2 pn !
< SIS0y (@, V) (B, DR B

+ CALy (B2 + Aty + [E"71 R 4 | B+ | B+ B+ n B

Lemma 3.15.
Let h € (0, h*] and At € (0, At*]. Then for small enough A* and At*, with

1 14 C,
pAt* < =, and p > max & ,15, (3.3.10)
2 m2

where C, is the constant in (3.3.53), we have

n
sup e M |E™2 4 Z Atpe M | D,E™)2 < C1h?2.

m=1,....n m—1

Before proving Lemmas 3.14 and 3.15 and subsequently Theorem 3.13 we note some

useful results. Using (3.1.5a), (3.1.5d), (3.1.4a), (3.3.4a) and (3.3.9) we have that

@ = XMoo < (1 = 1) 00 + [E" 1 oo
< Ch3[F Yy + ORE |EVY,
1 B m
< Ch2 ( %]l 70,00 (0.7 7t"‘1) <55
< 1Zllwo.e 0,2 ()12) + € =7

provided h* is chosen small enough. Thus we have

-1 -1 on—1 -1 m
Kp <ot - Kl < M+ T <2,

>
and
Xy ziE T -l - X 2w 2
which combine to give
0< % <[ Xrl|<2M. (3.3.11)

From (3.1.5b) and (3.3.4a), we see that

7t = Xy < (- 1 B,
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<ChIE o+ B
< Ch|@wos e + 1B < € [h + !E"‘lh} . (3.3.12)
and, with (3.3.12),
7 — XMy < JF - - X,
< Aty [D@| +C [h +E]
< Aty [@llwroeo o) + C b+ 1E" 1]

<C [h + A, + \E”—lyl} . (3.3.13)

Using (3.3.11), (3.3.4b) and (3.3.12), we see that

(A b v

1 1
0 X, Ifﬁ‘lllfﬁ‘ll
< Sl - X <c [n+ B (3.3.14)
and
- 1 - - 1 1
’7_!”_1 _Tn_l‘o = ‘ —n—1 ('iﬂ;_l - ,zTJL—l) + X;L_l ( m—1| | Pn—1 )
|z | 0 1z X5 0
B Xn 1 Xn 1 _ zn— 1
Si‘fn—l_Xn—lh_'_ _51 ; — lp )
m @ X,
) - _
< St Xy < [h+ |E”_1\1] ,
m
which gives
[t = Ty 4+ [ = Vo < C [ B (3.3.15)

A Taylor’s expansion together with (3.3.4a) yields

‘thn — ‘7_3?’0 < Atn [sup ] \a‘c’tt(-,s)]() < Atn HfHWZoo(O’T;[LQ(I)]Z) S CAtn, (3.3.16)
S€E[tn—1,tn

and, using (3.3.4d), (3.1.11) and (3.3.4a), for p € {0,1}, we have

1

At, / " (wu(p. 8), VE(E(p,5))) (tn 1 — 5) ds

tn—1

<o </ (el ). VE (. s>>>\2ds> ( JNCEEE ds)
( tn [T (p. 8 ds)
tn—1

2
‘xtt )’g,oo dS) S CAtn ”fHW2v°°(07T;[H1(I)]2) § CAtn (3317)

N |=

N

-
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Using B.4.1 and the inductive hypothesis (3.3.9), for u > 0, we have that

n—1
. 4 = 4
|E"Ge i < (u(Atm)Q + u) Atpe M | DE™5 < Oy (M(At)2 + u) h?,

m=1

and so, using (3.1.9b) and choosing € = 1, we see that
BB e ot < 2 |[BH R et 4 O(e) B et

el (1 + u(At)? + i) h2. (3.3.18)

Proof of Lemma 3.14: Taking E = 5_7’ in (3.3.1) and subtracting the resulting equation

from (3.3.5a) we have
(e @) - (%o )]+ [(3.8) - (%.9)]
= [, vr@ )& vEE) - <)?g,VF()?")><§h,VF()Zn)>H. (3.3.19)

First we note that, since fh € [Sh]2, we have that ffj is constant on each interval o;, and

so, by the fundamental theorem of calculus and (3.1.3), we have

(7 —15.6}) Z/U — 175, 65) dp =

Hence, setting £" = At,, D,E™ in (3.3.19), we see that

'M“

[(a: — g, ény)” N 1:0. (3.3.20)

J=1
o N L \h . o
At,, (yxg*ﬁ D.E", DtE”> + Aty (Eg, DtEg)
N S \h
— At [(\X;‘_HQDt[Ihf"],DtE") (\x th,DtE”)}
N N N N N 1
+ Aty (&, VEE)DE", VFE") - (X5, VF(X")DE" VF(XM)|
= Atn(Sl + 52) (3321)
It is easy to see that, using (3.3.11) and (3.1.6a), we have
vn—12 n [n h m2 n |2
<|Xp ‘ DE", D\ E ) > T’DtE ‘0.
Hence, noting (3.3.8), we have
N , L \h . ,
Aty (1X5 712 DB, D) + Aty (B, Doy )
> At m—2|D g4 2 [|E”|2+|E” En 12— |Bnm ﬂ (3.3.22)
el n 4 t 0 92 1 e

We now bound S; and Sy in (3.3.21). We begin with S; in which we closely follow some

of the techniques presented in [6].

_ on—12 h -n n h 2 -n n
Sl_ |:(’Xp | Dt[I X ]7DtE> — (’CL‘ | "L‘t,DtE ):|
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= ([1%5= 2 —1app| a2, Do) + (1K' [Dilrham) - 7|, DE")

3
- o \h - -
+ [(|X;“1|2Dt[lhf”],DtE”) = <|X;}_1|2Dt[l"f”],DtE”)} — 351, (3.3.23)
=1
Using (3.3.11), (3.3.4b), (3.1.11), (3.3.13) and (3.3.4a), we see that
S = ([ - 172] 7, DB
<1&looe || X5+ 125117 — X DE o

< C || wroe oy @) 1" — X" [DE™ o

<C [h AL, + |E"—1\1] 1D, E"o. (3.3.24)
From (3.3.11), (3.1.5b), (3.3.13), (3.3.16) and (3.3.4a), we have
S12= (1% [Dtta) - 7] . DiE")
< AM? |D I3 — @0 |DLE™|o
< 4M? [|(1 — I"YDya"|o + | D" — fgb} 1DE™g
< C[h| D1 + Aty] | DE" |

<C [h Hwal,oo(o’T;[Hl(I)]z) + Atn] |DtEn’0 <C [h + Atn] ‘Dtﬁn‘o. (3.3.25)
Using (3.1.6b), (3.3.11), (3.1.5d) and (3.3.4a), we see that
- - \h - -
Sis= (]Xg_1|2Dt[Ih:E”},DtE”> - (]Xg_1|2Dt[Ihf”],DtE”>

J
< ChY DA o, [1Xp 1P DeE" oo,
j=1

< Ch|DE" |y |DiE™o < C h||Z| oo 0.1 2y [DLE™ o < Ch|DE™ o, (3.3.26)

where |1]1,5, is the seminorm of the space H'(o;). Combining (3.3.23)—(3.3.26) and using
(3.1.8), we have
2
1] < TLADEF + O |12 + (At)? + | B (3.3.27)

To bound Sz we present a fully discrete version of the techniques presented in [42] for a
semi-discrete approximation. To this end we set

b= (F1,VF(@™) and by = (X}, VF(X"). (3.3.28)

Using (3.3.7) and (3.1.7), we have

5 = [(#, VRGO (DE", VE@) — (X3, VE(X")(D,E", V(X))

1 1

= [b”(DtE”, VF(i") — VF(X”)}] + [(b” — bp)(Dy", VF(X™) — VF(JE’”»}

0 0
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1 3

+ (b"—bZ)(Dta‘:'”,VF(f"))} =Y So. (3.3.29)
0 i=1

We now note some not so obvious stability bounds useful for the analysis. Using (3.3.4a)—

(3.3.4d), and noting (3.1.7), for p € {0,1}, we have

b"(p)| < M, (3.3.30a)
IDAVEE(p))]| < Lyr D (p)] < C |Z w1 organ ) < €, (3.3.300)
|DJD*F(&(p))]| < Lp2p |Di(p)| < C HfHWLOO(O,T;[Hl(I)]?) <C. (3.3.30c)

With the addition of (3.1.7) we have

IDUVF(X™(p))]| < Lyr|DiX"(p)]
<C [Hf”WLOO(O,T;[Hl(I)]Q) + |DtEn’0,w}

<c [1 + yDtE"\O,OO] : (3.3.30d)
as well as
IVE(&"(p)) — VF(X"(p))] < Lyr 1" (p) — X™(p)| < C|E"]0,00. (3.3.30e)

Moreover we have

[ D" (p)| =

Altn (@5 (p), VE(@"(p)) = (&~ (p), VF(@ " (p)))]

< [(Dedy (p), VE (@ (0))| + {Z5 (), D[VE(E" (p))])]

< C|&][wree o,y m2@)2) + M | DVEF(Z"(p))]] < C. (3.3.30f)

We now bound Sa;, ¢ = 1,2,3. First, we split up S1 such that

S = [0"(DLE" VFG™) - vp@?n»};

1 1

= [b“(DtE”,VF(f”) - vp(fn—l»] + [b“(DtE”,VF(X’"—l) — VF(X™))

0 0

1 3
+ [b"(DtE",VF(a?“l) - VF(X“»] =Y S (3.3.31)
0 =1
Using (3.3.30a) and (3.3.30b), we have

. 1 .
1S0.1.1] = '[b"thn, VR - vp(fn—l)ﬂo‘ < Ot | DB o e (3.3.32)
Similarly, using (3.3.30d), we have

So10] = ' (DB VPR~ VE(E™)] '

0

< CAt| DB 0,00 [1 n |DtE"|07m} . (3.3.33)



89

Using (3.1.13), (3.1.7), (3.3.4¢c), (3.3.30f), (3.3.30c), (3.1.5a), (3.1.4a) and noting
_
At
= At,b"(D,E", D*F(i" ) D,E™)

D, [b"<E", D2F(£’”)E”)] [b”(ﬁ", D2F(FE™ — oY EL, D2z ErL)

+ 20" (DE™, D*F (2" ) E" 1)
+ V" (E™, Dy D*F (")) E™)

+ Dt[bn] <En_1, DZF(fn_l)E_:n_1>,

we have

. = 1
Sa13 = [bnth", VE@E) - VF(X’H))]

0
= [b”thn, D*F (& HE™)

1 1
+ b”/ (DE", (D*F(sz" ' + (1 — s) X"~ 1) — D?F (& 1) E™ 1) ds}
0 0

. B 1 B .
- [;Dt [b"<E”,D2F(az“)E”> — 5DV DAF () B

1 =, g 1 — —
— 5b”<E”, Dy[D*F(Z™)]E™) — iAtnb"(DtE”, D?F (&Y D,E™)
1 1
+ b”/ (DyE™, (D*F (s '+ (1 — s)X" Y — D*F(z" 1Y) E" 1) ds}
0 0
1

0
C[|B"™ R o + 1B o + Atal DE"E o |

1
+ CIDE ol B [ 15— 11ds
0
1

D, [bNE",DQF(f”)E"ﬁ

1
2 0
_|_

C (14 nEDE ) |E" B o + BB e + Al DE"B ] - (3.3.34)

Combining (3.3.31) with (3.3.32)—(3.3.34), and using (3.1.9b) and (3.1.8), we have

1 . L 11
Saal < 5D [b”(E”,D%(@’”)E")}O

+C (14 R DE) |E" R o + 1B e + At (14 1D E 0.0 ) IDE" 0.0
. L1 1
D [b” En, D2F(i") E" }
LA @IED |+ 1At

C [Atn + B2 o+ [E2 o + ALy DEME + h*lyﬁnfl\gm] . (3.3.35)

|E_’n_E'n712+m72|D E’n|2
Lhgg o

Taking £ = (1 — p)VF(&"(0)) in (3.3.1), and noting (3.3.4d), we see that

(12517 77, (1 = p)VF(&"(0))) — (25, VF(2"(0)))
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Hence,

b"(0) = (5, VF(E"(0))) — (175>, (1 — p)VF(F"(0))) - (3.3.36)
Similarly, taking £" = (1 — p)VF(X™(0)) in (3.3.5a), noting (3.3.6), we have
b (0) = (X’g,VF(X’”(O))) - (|X’g—1|2DtX’”, 1- p)vp()?"(())))h. (3.3.37)
Denoting Z(0) by Z% and X™(0) by = X[, subtracting (3.3.37) from (3.3.36), we have
b"(0) = (0) = | (@, V(@) - (X2, V(X))
+ (1 D (- T ECE) - (i (- V)|
= Ay + Ay. (3.3.38)
We first bound A;. Using (3.3.20), (3.3.4b), (3.3.30¢) and (3.3.6), we have
Ay = (T, VF(@)) - (X5, VF(X; )

= (. VF(@@) - VFED) + (B VRED))
<MLVF|EO‘0+|ETL’1|VF( )|0 < C|E |000—|-|E |1 (3.3.39)

We now bound A,

(1P s 0 - pVEED) - (1R - VEED)
5
=) Ag. (3.3.40)
=1
Using (3.3.4b), (3.3.30e), (3.1.11) and (3.3.4a), we have

Ay = (127 (1 - p) [VF(XR) - VF(#)])

< C & |lwromir2@y 11— plo 1 E™ o0 < C1E™[0,00- (3.3.41)
Using (3.1.11), (3.3.4b), (3.3.11), (3.3.4c) and (3.3.13), we have

Aoz = ([|Zp112 = 17| 7 (1= ) VR(R)
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<& oo |1 X5~ + 11Z] 0.0 IVE(X§)|[1 = plo|2" = X" |y
< C & o e |8 — X" < € [h Al + yE"—lh} . (3.3.42)
Using (3.3.11), (3.3.6), (3.1.5b) and (3.3.4a), we see that
Aga = (1K1 (1" = D)7, (1= p)VE(XY)
<AMP[VF(X5 (1= p)lo (T = 1Mo
< Ch|Z | < Ch||Z|wieo o,y (z)2) < Ch, (3.3.43)
and from (3.1.6a), (3.3.11), (3.3.6), (3.1.5d) and (3.3.16), we have
Aga = (1% P [DXr 1wy YRR
<AMPIVE(XP)| (1= p)|n 11" — D X"

<C [uh(fg — Do + yptmo} <C [Atn + |thznyo] . (3.3.44)
Using the bound on (3.3.26) as well as (3.3.6) yields
Ags = (|X" P (- VR - (1 I (- ) VE(R))
< ChZIIh 1o, [IX) 72 (1= p) V(X0

<Ch ’i‘?h <Ch Hf”wl,oo(07T;[Hl(I)}2) < Ch. (3.3.45)
Combining (3.3.38) with (3.3.39)—(3.3.45), we see that
°(0) = B (0)] < C [+ Aty + B o + [DeB"o + | By + 157 ].

We remark that this bound does not depend on p and so also holds for p = 1. Thus we
have

1" (0) = B (o) 1§ < C [+ Aty + 1B 0o + [DE g + By + |E" | (3.3.46)

Hence, using (3.1.11), (3.3.30e), (3.3.46), (3.3.4a), and (3.1.8), we have

221l = | [0 = ) (D VPR - V)],

0
< C & w000,y (2 !E 0,00 [[6™(0) — bR (0)] + [b™(1) — by (1)]]
< C|E™0.0 [h + At, + |E"\0,oo + |DEMo + |E™YL + |E"\1]
2
< SADE R+ C 12 4+ (Atn)? + |E" R o + BV R 4 [BMR] . (33.47)

Using the integral remainder of the Taylor’s expansion, (3.3.3), (3.3.17) and (3.3.46), we

have

= |[(b" — b}) (D", VF(f”)Hé)
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tn 1
- Altn [(bn —52)/ (T (-, 8), VE(E@ () (tn_1 — 5) ds]

tn—1 0
< C Aty [[67(0) = by (0)] + [b™(1) — bR (1)]]
< CAt, [h + Aty + |[EMooo + |DiE™ o + [E" Y1 + |E”|1}

m?2 S ~ . B
< 37|DtE"’g +C {hz + (Atn)Q + ‘En’aoo + ]E"_lﬁ I ’En‘ﬂ . (3.3.48)

Combining (3.3.35), (3.3.47) and (3.3.48), and using (3.1.9b), we see that

1 _, L 11 1 = _, m?, - _
So < =D |:bnEn,D2F_mEn:| En_En—12 7DEn2 AnDEnZ
> < 5D [t @)E") + 1ar] 3+ S DB + CALDEM ]
+C [hZ + Aty + |[EME 4+ [EPG+ |EMTE + BN + h‘1|E"‘1]§700} . (3.3.49)
Combining (3.3.21), (3.3.22), (3.3.27) and (3.3.49) yields the desired result. O

Proof of Lemma 3.15: Multiplying the result in Lemma 3.14 by e #» | for some p > 1,

and summing from 1 to n, noting the fact that ]EO| = 0, gives

1 n . 1 n . . 2 n .
g 2 € BT 4 Y e BT — BT+ <”; - cm) > Atgem |DE™ ]
m=1 m=1

m=1

1 — _, 1 — " Lol
<5 2L e BT R o 03 Atye i Dy (&, VE@)(ET, DPF(EE™)|
m=1 m=1

n
+C Y Atge i [|EmTR 4+ BTG+ | B+ | B
m=1
n
+C D Atpeim [h2 + Aty + h‘l\Em‘llé,w}
m=1

I . 1 _ - ek
< 5 Z e Mtm—1 ’Em lﬁ 4 56 Htn [(fz)VF(jm)><En’D2F(fn)En>}0
m=1

1 _ . 1
-3 At [(5;’2*1, VE@E ) (B D?F(fmfl)Emfﬂo Dyettm

n
+ O Atye bt [|[E"1 4 BT} + BV + | BT
m=1

+C Y Atyetin [hQ + Aty + h—1|Em—lygm} . (3.3.50)

m=1
Using (3.3.30a), (3.3.4c), (3.1.9b), (B.4.1) and the fact that u > 1, we see that
1 t —=n —=n L 2 (7 ! —ptn | 02
Se7 (@ VEE)E", DUF(EE™| < et B

1 o _
< et |E™2 + Ce Mt | E™ 2

IN

1 _ =0 . 4 - [m
B O3 (ot ) At D @

m=1
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Using (3.3.30a), (3.3.4c), (B.4.4), (B.4.2) and (3.1.4b), we have that

1 . —-n—1 —-n—1 ~m—1 2 -m—1\ pom—1 1 —ptm
5> At [<xp VE(@YWE™ ! D2F(" Y E )]ODte

m=1

1 ¢ —n— —n— m— —-m—1\ pm— ! —
< 3 Z At | [(xp LVFE@E YWE™ ! D*F(@™ Y)E 1>}0 pre~Htm—1
m=1
<COpY Aty [|[EmIR 4 B
m=1
n ~ n 4 ~
<Cu Y Atge M [EMF+C Y (u(Atm)Q + M) Atme M | D,E™2. (3.3.52)
m=1 m=1

Hence, combining (3.3.50)—(3.3.52) and using B.4.1, we have that
1 —uty | N2 m2 2 -1 . —ptm ~m |2
1€ IR (- G [At+ (AL + '] ) Y Atype | D E™ 3
m=1

n n
<Cu Y Atye #m |EMF 4+ O Aty tin [hZ + Aty + h—1|Em—1\gm] . (3.3.53)

m=1 m=1

Setting C' = %2 — Cy [At + p(At)* 4+ p~t], whereby C' > 0 by (3.3.10), and using Lemma

3.1, we have

n
E sup e Hm |EM3 4+ C Z Atpe M | D,E™3
4 m=0,...,n m—1
n
<CY Atye i [hQ + Aty + BT Em 3,00]
m=1
n k n
+Y Cp Y Atyeim [h2 + Aty + h*l\Emfl\g,oo] Aty exp (cﬂ > Atm>
k=1 m=1 m=k
n
< C (14 pTeT) 37 Aty (12 4 At + hHE™ S |
m=1
By dividing both sides by min{C, 1}, we have that
n
sup e Htm |E™3 4 Z Atpe M | D,E™)3
m=0,...,n m—1
n
< %fﬂ +CREY Atge i |[EMTHS (3.3.54)

m=1

for C; > 2CT and At < Ch?. Using (3.3.18), for some small h* > 0, we have

n n
Ch™' > " Atgpe =t [E™UG = Ch™' Y Aty (e7Hm=t [EM TG ) 2etim

m=1 m=1

1\? &
< CCy <1 + n(At)? + u) RPN " Aty
m=1

<Ch? < %hQ. (3.3.55)
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Hence, combining (3.3.54) and (3.3.55), we have the desired result. O

Proof of Theorem 3.13: Using (3.1.5b), (3.3.4a), Lemma 3.15 and (3.1.8), simple

calculations give us

sup |7~ X2 <2 sup [|(1 - I)F 2+ B2
n=0,...,N n=0,...,N

[ARS}

S Ch2Hf||[2/v0,oo(07T;[H2(I)}2) + QCthCMT S Ch27

and, in addition with (3.1.5d) and (3.3.16) whilst noting At < Ch?,

N N
D Atp|E - DX <3 Aty [I(I — IMEG+ |TM(E — DG+ |DE"[5
n=1 n=1
< CTR?(|Zfy0.00 (0 1112 (2y2) + CT (AL + 2C 1A% < Ch2.
O

Remark 3.16. We note that if we did not rewrite the term Sz in (3.3.31) into three
parts, So1 would yield a term of the form |E’”\é’oo in (3.3.34), which we could not find
a way to bound. Rewriting So1 as we do results in the time step restriction At < C h?

rather than At < Ch.

Remark 3.17. We note here the unconventional approach we use to obtain the bound,
(3.3.46), on [b™(p) — by (p)|. Indeed, approaching such a bound conventionally, by subtract-
ing b} from b", and noting (3.1.7), would give

" — b = (%, VF(3") — VF(X™)) + (El, VF(X™))
and hence, using (3.3.4b), (3.3.4c), (3.3.6) and (3.3.4a), we would have
- 1 _ _ _
Saz = (" = G (D", VE (@) = VE(X™)| < O |IE 000+ |E" 10| |E™0.xc

This estimate is not desirable as an inverse estimate would be required that would not

result in the desired power of h we require for the result.

3.3.3 L? error bounds for Model M;

In this section we present a fully discrete version of the arguments used in [42] to prove

optimal L? error bounds for the scheme (3.3.5a). We look to prove the following theorem.

Theorem 3.18.
Let X0 = 1"79 € [SM]2. There exists h* > 0 and At* > 0 such that for all h € (0,h*]
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and At € (0, At*], with At < Ch2, the fully-discrete problem (3.3.5a)—(3.3.5b) has the
following error bound

sup |2 — X"|2 < Ch?,
n=0,...,N

for some C > 0 independent of h and At, where " := Z(-,t").

Before proving Theorem 3.18 we note some useful results. Using (3.3.4b), (3.1.5a),
(3.1.4a) and Theorem 3.13, we see that

X000 < 71,00 + & = X100 < M + Ch™2 [ — X"y < M + Ch? <2M

and similarly

X7 0,00 > | 100 — | — X100 > m — Ch 3| — X"y >m—Ch? > %
provided h* is chosen small enough, which combine to give
% <| *;z| < 9M. (3.3.56)

Using (3.3.4a), (3.1.5a), (3.1.4a), and Theorem 3.13, we see that

n n
S At DL <237 (At |73 + Aty |7 — DX
m=1

m=1

< ClE e orgmi gy +Ch 2 Y Aty |7 — DX 5 < C. (3.3.57)

m=1

Recalling the definition of E™, using (3.1.5b) and (3.3.4a), we have

& = X" < (I = T")&|o + |E"o
< CR? |75 + |E"o

< C R ||Flwowe o) + [EMo < C [hQ + \En\o] . (3.3.58)
We restate (3.3.16) for the ease of the reader, namely we have

’thn — J_,‘?|O S Atn [sup ] |ftt(‘, S)|0 S Atn HfHW?"X’(O,T;[LQ(I)]Q) § CAtn (3.3.59)
SE[tn—1,tn

Proof of Theorem 3.18: Noting (3.3.19) and (3.3.20), we have
- - h -
(151 2. 8) + (B3 8)
. h
- (% et )' - (e ar. @)
1

+ [(fg,VF(f"»@,VF(fn» — (X" VF(X")(E" VF(X"™)) ) (3.3.60)
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A simple calculation gives
|2 Tn n h vn|2| om m h vn—12 o m h
D, (|Xp\ B E ) - (Dt [yXp| }E B ) +2(\Xp 2 D,E" E )
vn—1|2 L n h
~ Aty (\Xp 2 D,E", D,E )

and hence, taking &" = At,, E" in (3.3.60), we see that

B[ (g £ 8)| + v (5. )
< Aty [(\X§1|2Dt[lhf”],ﬁn) (|x 2 TE”)] Azt" (Dt [an| }E"E")h
+ Aty [@'g, VE(@)(E", VF(@")) — (X!, VF(X"))(E", VF(X'"»] '

5
=: Aty Y S (3.3.61)

0

We first bound S3
S = At, [(‘X,?ly? Dt[[%:*”]f”) (!:1: A En)]
N (CREETDS

+ (1 [p [Ihf"]—f?},ﬁn)+([u?:|2 #2] Dilra), B")

+ ([|Xg—1|2 - |X;}\2] Dt[Iha?”],E") = ng,i. (3.3.62)
1=1

(1551 il En)}

Using (3.1.6b), (3.3.56), (3.1.5d) and (3.3.4a), we see that

- o \ I - -
Saa = (K72 Difr" 3], B7)" - (15" Dila), E7)
J
<O Y DT |10, | B,
j=1

< C R\ DIz |, |E™

< C B2 @l weo o o2y |E™h < C R2|E™, (3.3.63)

where |n]1,,; is the seminorm of the space H'(c;), and from (3.3.4b), (3.1.5b), (3.3.59)
and (3.3.4a), we have

Sa2 = (|17 [Dilre) - a7 ")
< AM? (1= I")Di@lo + D@ = #lo] 1E"]o
< C [h? |Ded"|s + Aty] |E™|o

< C [W? || @lwroe .12 (2) + Atn] < C [B? + Aty |E™o. (3.3.64)
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Integration by parts and (3.1.10) yield

Sss = (| X012 = 7512] Dolram, £7)
2

- ") +2 (G, — X Dy, B |
vt X - ) (D), Eﬂ; _ f: Sys (3.3.65)
=1

From (3.1.11), (3.3.4a) and Theorem 3.13, we have

Sss1 = (1Xp — @32 D", B
< |DAI"E 0,00 | E" 0,00 |7 — X"}

< C|& w0y @2 1E™ 0,00 [7 = X"} < C B [E™|0,00, (3.3.66)
and using (3.1.5d), (3.3.58) and (3.3.4a), we have

S0z =2 (@, & — X" Di[I"5"]. E} )
< 217100 | DT 0,00 |E™|1 |2 — X™o

< C|&lwo. o/ @2 |1l wro oy @) |E™ 1 17" — X0

< C|E", [h2 v |E"\0] . (3.3.67)

Similarly we have

Sy =2 (@, 7" = X") D13, B") + 2 [(7, 7" — X*) Dy[1"7}], B")
< 2|y (D000 | B o0 [ — X7lo + 2121 00 DL 1,00 [ |77 — X7
< CllZlwo.oo,sim2 (@) 1Z]lwoo (0,712 ()2 [!Enlo,oo + |En\0} 7" = X"[o

<C [[E"bm + |E"|o} [h2 n yﬁ%} . (3.3.68)

Using (3.1.7), (3.3.4b), (3.1.5d), (3.1.11) and (3.3.4a), we see that

- = 1
Saaa =2 [(@, X" =&)D", B)]
< 2M | A1 o 00 | B3 o

< C &l wree o @) [E" 5,00 < CIE™[§ 00 (3.3.69)
Hence, combining (3.3.65)—(3.3.69), we see that

Ss8 < C [|E"lo + B + |E”lo.o] [12 + [E"lo + | E"0.00 (3.3.70)
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Using (3.1.5d), (3.3.56) and (3.3.4a), we see that
Ssa = ([1X5112 = 1X012] Dt )
< DI oo |11+ X5 7H|IE 0" = Xy
< Cll@lwroso a2y [E" o | X" — X" M < C Aty |[E"o | D, X" (3.3.71)

Hence, combining (3.3.62) with (3.3.63), (3.3.64), (3.3.70) and (3.3.71), as well as using
(3.1.8) and (3.1.9b), we have

S5 < éuﬁ”y% rC [h‘* + (At)? + (1 n ]Dt)?"ﬁ) \Enyg} . (3.3.72)
We now bound Sy. Using (3.1.6a), (3.3.56), (3.1.8) and (3.1.9b), we have
o4 (5] 2 5’
< C|IZ51+ 157 1B oo 1D 7
< éu_@"ﬁ +C 1+ DX B, (3.3.73)
Now we bound S5. Denoting
b= (F1,VF(@") and by = (X}, VF(X"),
and using (3.3.4b), (3.3.4d), (3.3.56) and (3.3.6) yields
" (p)| < M, and |bp(p)| <2M, for pe {0,1}. (3.3.74)
Using (3.1.12), (3.1.1b), (3.3.5b) and (3.1.7), we have

Lol - 1
0= |F(@") - F(X”)}D = |, VF(Q?’”»]0
1

+ [/01<VF(333'" +(1—8)X") — VF(@"),E") ds] i

0= [F@") - F(X7) = [(E”,VF(X”)}R
1

1
+ [/ (VF(sX"+(1—s)a") - VF(X"),E") ds] .
0 0
Hence, using (3.3.4c), we have

, 1 , ! 4
‘ [<E”,VF(:E“))]O < LVF\E"]?J,OO/ 11— s|ds < ClE"[f (3.3.75)
0

and

. Lol . 1 .
‘ [<E”,VF(X”)>}O < LVF|J_L7”|?LOO/0 11— sds < C|E"2 . (3.3.76)
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Thus, using (3.3.30a), (3.3.74), (3.3.75), (3.3.76) and (3.1.9b), we have that

1951 = \ [b“<E",VF<f”>> ~ (B, E(ET)).

0

<C ‘En’mo < ‘Enh + C‘En‘o (3.3.77)

Combining (3.3.61) with (3.3.72), (3.3.73) and (3.3.77) gives
At, o B A, - Lo
S | (15 PEn B)'| + S2IER < 0at, [10 4 (A0 + 1+ D RER

Summing from n = 1,..., N, noting the fact that |E°| = 0, and using (3.1.6b) and (3.3.56),

we have

EN| ZAtn|En|1
gCZAtn[h4 + (At,)? —|—CZAtn( +|DtX”])]E”|O.
=1

Next, using Lemma 3.1 and (3.3.57), and noting At < Ch?, we see that

N
sup [E"[5+ ) At, |[E"|F < Ch*. (3.3.78)
n=0,..., n—1

Finally, using (3.1.5b) and (3.3.4a), a simple calculation gives us

as desired. ]

3.4 Finite element analysis of Model M,

In this section we look at Model My in more detail. We first discuss the De-Turck trick.
The author in [108] derives the reparametrised curve shortening flow using an Euler-
Lagrange formulation rather than the use of charts used by [59]; however, as mentioned in
[59], the formulation in [108] falls short to be able to discretise directly in space. We refer
readers to either [108] or [59] for the derivation of the reparametrised curve shortening
flow, and simply state the result they show. Namely, that the reparametrisation of (3.2.5a)

using the De-Turck trick is as follows

. ;
7, = <I+ ( - 1> F®F) Zon (3.4.1)
aQ |Zp|
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Remark 3.19. In [59, 108] the authors consider a closed curve to derive the repara-
metrisation. The objective of this thesis was not to rigorously extend the result to the
orthogonal boundary conditions (3.1.2c) and (3.1.2d), rather just to use it under the as-
sumption that it does extend to this situation and to show analytical and numerical results
using it. Given that the transition from [37] to [42] was a simple change of boundary
conditions, we speculate this would be the same in our case of extending [59] to Model

Mo.

Using Theorem B.4, since det(7 ® 7) = 0 and Tr(7 ® 7) = 1, we have that 7 ® 7 is

idempotent. Hence, using Theorem B.5, taking T'=7® T and § = 1?76”7 we see that

1 -1
(I+<—1>F®F> —I-(1-aQ)f®7
«

and hence, noting that 7@ 7 = I — V® I/, we have (3.2.20a). Simply adding a forcing term
gives us (3.1.2a). We now turn our attention to (3.1.2b). Labelling w(p,t) = w(Z(p,1),1),
we see that
wi(p, t) = wy(T, 1) + (Vw(Z,1), T)
= wy(Z,t) + (Vw(@,t), 7)(7, %) + (Vw(Z,t), V) (V, )
t)

= OPw(Z,t) + Y ws(T, t) = Opw(T, t) + b L~

Noting (3.2.8) and (3.2.2), we have

—

| Zple = (7 (T1)p) = (T, T1)), = (T, Tt) = 1p — |Zp|w0

and hence we can write (3.2.23b) as

gy )~ (i), = d (25 =12l g(w.0)
p

p

which is (3.2.27b) in variational form.

Remark 3.20. In the case of [97], since they are using (3.2.5a), the authors have the
property that 1» = 0, which leads them to the slightly different formulation (3.2.24Db).

We drop the tilde over the w now for ease of notation. We refer the readers to (3.3.1)
for the derivation of the weak formulation of (3.1.2a) and instead look to derive the weak
formulation of (3.1.2b). By multiplying (3.1.2b) by a test function n € H}(Z), using

integration by parts and (3.1.2e), we have

(U whm + @)+ (22.n,) = | (2 +0w) n]l T (17| 9(0,w),m)

|
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= (1Zp] g(v, w), 7).
Thus, we have the following weak form of (3.1.2a)—(3.1.2¢)
(12,2 (0@ + (1= )@, 7 7,€) + (7.

=(|fp|2f<w>ﬁ,£)+[<fp,VF<f>><s,VF<f>>] . VEE[H'DP,  (34.20)

&21
\_/

(W wnm +a (5 |,np) (Ww,np) = (] 9o, w)m), Vne HYT).  (3.4.2b)
We also restate the property derived from (3.1.2¢) for the ease of the reader, that is (3.3.3)
(#(p, ), VF@E(p,t)) =0, for p e {0,1} (3.4.3)

We note that, unlike in the fully discrete case, (3.4.3) is independent of a and f. Before
introducing the finite element formulation we detail the assumptions we will need for the

analysis.

Assumptions 3.21.
We assume that there is a unique solution (#, w) of Model M3 on the time interval [0, T7].

Furthermore we assume this unique solution and specified data satisfies

& e Whee (0, T; [H*(Z))*) nW*°(0,T; [L*(Z)]?), (3.4.4a)
w e C([0,T); HX(T)) nWh>(0,T; H(T)), (3.4.4b)
f e CctY(R), (3.4.4c)
g € CH(R?), (3.4.4d)
m < |Z, <M in[0,1] x [0,T], for some m, M € Ry, (3.4.4€)
F € C*1(R?), (3.4.4f)
IVE(®)| =1, forje {pecR?: F(p)=0}. (3.4.4g)

We assign each element 7" € [S"]? a piecewise constant discrete unit tangent and nor-
mal, denoted respectively by 7 and 7", approximating 7 and 7 respectively, and on each
o; we approximate the tangential velocity and the normal velocity, denoted respectively

by 1" and v", approximating 1 and v respectively, which take the form
=h
x .
7= f—a, 7= (Th)L, wh <.’L‘?, h>, ol = <xi‘, h>, onoj,j=1,...,J.
P
We are now in a position to introduce the semi-discrete finite element form of (3.4.2a)—
(3.4.2b). Find #" : [0,1] x [0, T] — R? and w" : [0, 1] x [0, T] — R such that 2"(-, ) € [S"]?

and wh(-,t) —wy, € S&, for t € [0,T], and

(|a: 2 [aa:? (1 — a)(@h, yh} ,Eh)h + (fg, ;h)
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_ (|fg|2 Fwh) ﬁh,Eh)h + [@’;, V(@) (€N, VF(fh))];, VER € [S")2, (3.4.5)
(281w +d ([j,%nz) it )"
= (\f’;\g(vh,wh),nh>h, vl e St (3.4.5b)
as well as the semi-discrete equivalent of (3.1.2¢)
F(@"(p,t))) =0, for p € {0,1}, t € [0,T]. (3.4.5¢)
Similar to Model M, a consequence of (3.4.5¢) is that, in view of (3.4.4g), we have
IVF(@ (p,t))| =1, for p € {0,1}, t € [0, 7] (3.4.6)
and, by taking the time derivative of (3.4.5c), we have
(T (p,t), VE(i"(p,1))) = 0, for p € {0,1}, t € [0, T] (3.4.7)
which is the semi-discrete equivalent of (3.4.3).

Remark 3.22. Standard ODE theory implies that there exists a unique solution (&, w")
of (3.4.5a)—(3.4.5b) on some time interval [0,T}], T, > 0, [42, 97].

3.4.1 H' error bounds for Model M,

In this section we will prove the H' error bounds for Model Ms. We look to prove the

following theorem.

Theorem 3.23.
Let #(-,0) = I"#°(:) € [S"]? and w"(-,0) = ["uw’(-) € S". There exists h* > 0 such
that for all h € (0,h*] the semi-discrete problem (3.4.5a)—(3.4.5¢) has the following error

bounds

T
sup [|f—fh|§ n |w—wh|g} +/ [yft A2 4w —whE] dt< R, (3.4.8)
te[0,T 0

for some C' > 0 independent of h.

This is work presented in [110], but here we use more detail, if necessary, for the
calculations. The proof of this theorem combines some of the techniques used in [6] and

an extension of the techniques used in [42], as well as ideas from [40, 97]. Before we
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begin with the proof of Theorem 3.23 we introduce some notation and the parameter that

underpins the proof. We define
f-ih=@-I"t)+ " -7 = (I - 1MT+ 6",
w—w" = (w—I"w) + (I"w —w") = (I - IM)w+ ¢,
and we adapt arguments presented in [40] to define

1= sup {t €[0,7] : (2", wh) solves (3.4.5a), (3.4.5¢) and (3.4.5b),

m . .
5 < [Zh| <2M in [0,1] x [0,4],
||wh”0([0,t];L°°(I)) < QCwHw||C([O,T];H1(I))7 and
t
sup ¢ (19" + "B+ [ e [+ 1" ds < 201h2}.
s€[0,t] 0

Moreover, we set

eVT(h*)% < min {22”5} and v > max {1 (3.4.9)
1

In order to prove Theorem 3.23 we prove (3.4.12a)—(3.4.12c) on [0, T}], for C independent

320, }

" mla

of T}, thus enabling us to show that T;' = T" and hence proving the theorem. One can see
this argument as a continuous version of an inductive proof. In order to do this we need to
make sure the parameters are chosen carefully so that there are no hidden relations. First
it is assumed that 2* and 3 can be chosen appropriately small independently of T}, for the
bound in (3.4.9) and (3.4.102), which puts a bound on h. We first define C5 independently
of Ty, h, B, h* and v, as a constant that depends on bounds on the true solutions Z and w
and the function F, inverse estimates and interpolation results, and 7. We use C5 to find
the bound on « in (3.4.9) which is independent T}, h and A*. In a similar way to Cs, we
define (3 as a constant that is independent 77, h, 8 and 7. We use C3 to find a bound on
w independent of T}y, h, 3 and ~y, which enables us to combine the results in Lemmas 3.24
and 3.25. In a similar way to the proof of Theorem 3.13, we find C7 independent of 77, h
and S. Finally, in order to prove that T = T}, we choose 3 appropriately independently
of Ty and h.

The main part of the proof of Theorem 3.23 is split into the following two lemmas:

Lemma 3.24.

For ¢t € [0,T}), we have

1 mia [?
6_7'5\571|2+/ e |67 2 ds
4 16 10

t
< 02/ e [h2+ I¢ME + |e‘hy§+h—1|éh\gm] ds. (3.4.10)
0
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Lemma 3.25.
For h € (0,h*] and t € [0,7}), we have
t

1 t
mﬂdﬂ%m i emghﬁdsgcg/o e [h2+|§?\3+|<h13+\9‘hﬁ ds. (3.4.11)

m

4

Before proving Lemmas 3.24 and 3.25 and subsequently Theorem 3.23 we note some

useful results. By the definition of 77" we have the following bounds

m . . .
45§MQS2M in [0,1] x [0,T}), (3.4.12a)
1w lleo,rzyie@) < 2Cwllwllcqorym @) (3.4.12b)
s
sup e [|éh|§+|gh|g} +/ e [ye“?|3+|gh\%] ds < 20112, (3.4.12¢)
s€[0,T}) 0

Using (3.1.5b) and (3.4.4a), we have

17— 2", < |(I — "))y + 10",

< Ch|&Fs+ 6" < Ch|Z|woorme@p) + 1071 < C [h n |971|1] . (3.4.13)
as well as
(& — #tlo < (I = I")&lo + 10710
< ChIFh + 10l < ChlIElwrsrm@p) + 1810 < C [h+ 18] . (3.4.14)
Using (3.1.6a), (3.4.4a), (3.1.5a) and (3.1.4a), we have
|f?|3 < |Ihft|s + |0_Zl‘s
< HJ_’:HWL‘”(O,T;[HS(I)]Z) +Ch™8 |9_ZL|0 < C [1 + h_5|9_zb|0:| s for s = O, 1. (3.4.15)
Using (3.1.5b) and (3.4.4b), we have
w —wlo < (I = I"wlo + [¢"o
< Chlwlh +1¢"o < Chllwleqorym@) +1¢"o < C [h + |Ch|0} . (3.4.16)
Using (3.1.6a), (3.4.4a), (3.1.5a) and (3.1.4a), we have
w1 < [IMwly+ (¢
< lwllogorym @) + Ch ¢ < Ch7 [A+1¢Mo] (3.4.17)
Using (3.4.4e), (3.4.12a) and (3.4.13), we have

1
|z |71

— —h

Tyl — |T 4

1ol = 17y Sgﬂf—ﬂhSCPHﬂﬁM. (3.4.18)
m

0

0

12| |75
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Using (3.4.4e) and (3.4.13), we have

—h N
| — |x 1 2
7oy <o 2 el L | < 2pm g <o fn @]
|:EP| |:Z:p| 0 |l‘p| 0 m
and hence is can be seen that
(7~ 7o + 17— o < C [h+ 18] (3.4.19)

Using (3.4.19), (3.4.14), (3.1.11) and (3.4.4a), we have

W - wh\o = ‘(ft77?> - <f?77?h>‘0

(@2, 7 = 7)o + (@ — 77, 7)o

N

< |Ft]o,007 — 7o + |Z — 210

< C|Zlwr.ee 0,111 (@)12) {hﬂL |9_h|1} +C [h+ |9_175L|0} <C {th 10710 + 671
and hence it can be seen that

1= 9"l + v — "o < C B+ |G + 8"]1] (3.4.20)

Proof of Lemma 3.24: Taking £ = " and subtracting (3.4.5a) from (3.4.2a) we have
{(W @+ (1= a)(@,7) 7],€" ) = (b2 [ad) + (1 - a) (@, 7") 7" ,fh)h}
+[(#08) - (#.8)] = (58 1w 7.8 ) - (18 s #.8)']

+ (@, VRE@NE VR@) — (2, VRN E, T RE)]

Noting (3.3.20), which states that

(7 - 1"7,,8) =0,
by setting & = 67, we have
(14 [l + (=)@, 7] )" + (d,.7)
_ [(\f’;\? [0 1'%, + (L o) (15, 7 ] 67)"
- (1Pl (- )@ 1.0
(8 sy 7d) - (18 s i )|

+ [(fp,vp(f»@,w(f)) - <fg,VF(fh)><@,VF(fh)>}; = ZT (3.4.21)
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It is easy to see that, using (3.4.12a) and (3.1.6a), we have

pit?

(\xy [aé?+(1—a)<5h *’wﬂ e"h) (9‘71 e*h)

m2 .
> T (a0} + (1= @), )] + thw‘%_ |ﬁ|o+2dt|@|1 (3.4.22)

We now proceed to bound Ty, T» and T3 in (3.4.21), beginning with 77.

T1:(|a:| [ 1'%, + (1 — a)(I"z,, ) h] 971) (\:zp|2[aft+(1—a)<ft,ﬁ>ﬁ],é?)

- [([m 2 - y:zp|2] [ + (1 - a)(@, 7) 7], 0F)

+ (175 [ (1" = D@ + (1= a){(1" = D7, ") 7]

! ) =3 T (3.4.23)

=1
Using (3.4.4a), (3.4.4e), (3.4.12a), (3.4.13), (3.1.11) and (3.4.19), we see that
Ty = (1352 = 17,7 la @ + (1 - )@, ) 7,07 )
+(1-a) (|x 12 [(j’t,ﬁh — NG+ (T, (ﬁh - 17)} 97;)
< [l [[18]-+121], 17 = 2+ 83221 - )7 - 7] 6

< Cl#lwrsorgm@p) [+ 18] < € [h+ 18] 187, (3.4.24)
Using (3.1.6b), (3.1.5d), (3.4.12a) and (3.4.4a), we see that

h
Tyz = (1742 |a 1'% + (1 - a) ("7, ") 7 ) )

(|x| [afhft+(1—a)<1hft,ﬁh> h] éh)

<conyo|ta| |i#n? (o @]
= ]z; G Lt Lo, |‘Tp| t+<t v >V

0,0,

< Ch|EN 0o < Ch | Elwreomm @p) 10710 < C R0} o, (3.4.25)

where |71, is the seminorm of the space H'(0;). Using (3.4.12a), (3.1.5b) and (3.4.4a),

we see that
Tis = (|42 [a (1" = D7 + (1 = a)((I" = D, 7") 7] 0 )

< Ch|EN 0o < Ch @ lwreomm @) 10710 < C 16} o- (3.4.26)
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Combining (3.4.23)~(3.4.26) and using (3.1.8) we have
m <™ \éh|0+c[h2 |e‘h|ﬂ. (3.4.27)
We now bound T5.
Ty = (18,1 1) 7,0 ) — (4P sty 7,01 )"
= ({172 = P] fw) 7+ 752 fw) 7= 7] 08) + (175 [Fw) = F@)] 7,07
# | (a8 [ = ] ) + (12 [ - Dseh) )|
# | ey #.8) - (18R ) )| =2;T (3.4.28)
Using (3.4.4¢), (3.4.12a), (3.4.13), (3.4.4¢), (3.4.19) and (3.4.16), we see that
Tox = (||7 = 1Zh2] flw) 7+ |25 f(w) [7 - 7], 6})
< flose |12 + 121, 17— 2" + 402205 — 7l
SCP%H@MM@M, (3.4.29)

and
oz = (1742 [ f(w) - f(™)] 7", 0)

<AM Ly fw = wo |00 < C [+ [¢"]o) 187, (3.4.30)
Using (3.4.12a), (3.1.6a), (3.1.6b), (3.1.5b), (3.4.12b), (3.4.4c), and (3.4.17), we see that
h
Ty = (|42 (1= 1) p@h)] 7,8 ) + (152 (" = 1) fh)] 7, 87)
< ORI [0Fl0 < ChIF (@)oo |1 1810 < € B+ ICMo] 160 (34.31)

and

Ty = (4P I () 7,80 ) — (|42 1) 7,8 )
<C’hZ‘Ih ‘

< Chlf M|} < C [h+ €"lo] 18%]o- (3.4.32)

75140 ")

0,05

Combining (3.4.28)—(3.4.32) and using (3.1.8), we have
T < 2 |éhyo +C R+ |G+ 18] (3.4.33)
We now bound T3, to this end we set

b= (T, VF(D)), b":= (& VF@@"))
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and thus, using (3.4.3), (3.4.7) and (3.1.7), we see that
T = [0, VE@) - o @, VFE))|
= b vE@) - VF(fh»}; + [0 @. VP - V@)
= Ty + Ty, (3.4.34)
Using (3.4.4a), (3.4.4e)—(3.4.4g), and noting (3.1.7), for p € {0,1} and ¢t € [0, T], we obtain

b(p, )] < M, (3.4.35a)

b, 1) < |Zp4(p,t)| + M |D*F(Z(p, 1)) Z4(p,t)| < C | E|wroe o, @2y < € (3.4.35D)
as well as
IVE(#(p,t)) = V(@ (p,1))| < Lyr [#(p,t) = (p,1)] < C|6"(,)|o00-  (3-4.35¢)

We now bound T3 ;. Using (3.1.13), (3.4.35a), (3.4.35b), (3.4.4f), (3.1.5a) and (3.1.4a), we
see that

r 1
Ty, = |b(0}, VF(@) ~ V()|

- 1 1
= |b(6", D*F(Z)6") + b / <§;‘,(D2F(sf+(1—s)f")—D2F(f))§h>ds}

L 0 0
C[Yd o e g\ L g 2y Lo Ao
= 5a (b<e ,D2F(7)0 >) Sbu (6, D*F (@) 8") — Sb (0", Z(D*F (&) 6")

1 1
+b/ <§?,(D2F(sf+(1—s)£h)—D2F(f))§h)ds]
0 0

Ld 1, an p2m g ]t 72 7h
< 2
< 52 (PO D@ 8| +ClE o |1+ 16 oo
<14 [b (@ DQF(E:’)Q_%>T + 2 [1 + h*%\é%} . (3.4.36)
— 2dt ’ 0 0,00 t

Denoting Z(0, ) := Zo(t), taking £ = (1—p)VF () in (3.4.2a) and using (3.4.4g), we have
(12, [a @y + (1 — a)(F, ) 7], (1 — p)VF(Z) ) — (Z,, VF(T0))

= (|1Z,[* f(w) 7,(1 = p)VE(F0) ) + [(1 = p){&p, VF(&))(VF(Z0), VF())],

= (|7, f(w) 7, (1 = p)VF (o) ) — b(0,1),
and hence

b(0,t) = (Z,, VF(Z0)) + (|7,[* f(w) 7, (1 — p)VF (o))
— (12, e @y + (1 — a)(F, ) 7], (1 — p)VF () ) . (3.4.37)

Similarly, denoting @ (0,t) := &(¢) and taking " = (1 — p)VF(Z}) in (3.4.5a), using

(3.4.6), we see that

00.0) = (2, VE@) + (74P 1) 7, (1~ )V E@E) )
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(2 [adt + (- o)) 7] (1—p)vp(f’5))h. (3.4.38)
Hence, we have
b(0, 1) — (0, ) = [(:zp, VE (%)) — (:fh, VF(:Y:{}))}
(7 5) 7,0 = T FG)) = (125 £t 7.1 = V) )|
# (12 [ash+ (- et ) ] - v E) )
— (1E, [a @+ (1 — a) (@, 5) 7], (1 — p) VF () ] ZB (3.4.39)
Starting with By, using (3.3.20), (3.4.4a), (3.4.35¢) and (3.4.6), we have
By = (%,, VF(io)) - (f’;,VF(fg))
= (&, VF(@o) = VF@)) + (6. VF(i))
< C &1 10" o0 + 16”1

< C |@llwoeorgm @ 1Plo.ce + 10 < C 100,00 + 1871 (3.4.40)
We now bound Bs.
= (8 F(w) 7,1~ V() — (1742 fw) 7, (1= )V E () )
= (17,12 f(w) 7, (1 p) [VF(30) - VF(#)] )
(17812 [£(w) = )] 7, (1 = )V F@E) )
([12,2 = 1] f(w) 7+ 1252 flw) [7 = 7], (1= VP )
+ | (12 [ = s h] 7.0 - v )
+ (1t [ = Dt .- pvra)'|
S [CRICTDENEZE)
(\xh\ I(f(wh)) 7", (1 — p)VF(Fh) ) ] ZBQ, (3.4.41)
Using (3.4.4e), (3.4.4c), (3.4.4a) and (3.4.35¢), we have

Baa = (| f(w) 7, (1 p) [ VF (@) - V(&) )

< M2[f(w)]o|1 = plo (VF(fO) - VF(Q?S)‘ < C10"o 0. (3.4.42)

Using similar arguments to prove (3.4.29)—(3.4.32), and using (3.4.6), we have

Bz = (I# [ f(w) = f(w")] 7", (1 = pVF () )
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< C[f(w) = F@Mo]1 = plo < C [+ |"o] (3.4.43)
Bay = ([1812 = |8h12] £w) 7+ |2 f(w) |7 = 7|, (1= p)VE(a) )
<C [|fp — o+ |7 — ﬁh|o} 1—plo<C [h n |e‘h|1] : (3.4.44)

By = (1752 [(1 = 1" f(h)] 7, (1 = p)VF (i)
(1252 [ - D] 0 - v EE)
< CII = 1) f(")o L= plo < C [+ 1¢"o] (3.4.45)
Bos = (I I (fw) 7, (1 = )V F () ) — (142 T (F () 7, (= V() )
< CRIf@M)i 1= plo < C [h+1¢") (3.4.46)
Now we bound Bs.
By = (1 [0} + (1 - )@ o ] .1 - ) VEGE )
- (\92*’p|2 [a Ty + (1 — a)(Z, V) 17] (1= p)VF(fO))
= (1%, (0@ + (1~ a)(@.7) 71, (1 - p) |VF(&) ~ VF(&0)) )
(122 o (# - 1) + (0 - )@} — 1M (- p)VEED)
# (182 18] o+ (1 = @ 71— V) )
(1= a) (17412 @, 7" = )7 + (e, 77) (7 = 7)] (1 - p)vp(:zg))]
+ (\:z’;\z [a (I'" = DZ, + (1 — ) (I" — D, ) ﬁh} (1 p)VF(fg))
+ [(\fﬁﬁ [0 "%, + (1 = a)(I"&, 7) 7" . (1 - ) VF () )h
= (1742 [a 1"7 + (1 = a) (17, ) 7|, (1 = p)VF (i) )]
=Y Bs,. (3.4.47)
Using (3.4.4e), (3.4.4a) and (3.4.35¢), we have

By = (|17, ladi + (1= a)(@,7) 7], (1 - p) [VF(ab) — VF(d)) )

< M2 [0 [1 = plo |VF(#) — VF(@0)| < C 100 (3.4.48)

Using (3.4.12a), (3.4.6) and (3.1.6a), we have

h
Byo = (1&h? [a |2 = I'&] + (1= a) (@l — 15, 77" ], (1 = p) V(&)

< CU671In 11 = plln < C16Fo- (3.4.49)
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Using similar arguments to prove (3.4.24)—(3.4.26), and using (3.4.6), we have
By = ([|#12 = 18,7 o + (1 — @)@ 7) 71, (1 - p)VF(a) )
+ (1= a) (752 (w0, 7 = 97 + (i, ) (7 = 7) |, (1= p)VF(3))
<C [yfp — &l + |7 - ﬁhyo] I1—plo<C [h + ye‘hh] , (3.4.50)
By = (1742 [a (I" = 3 + (1 = a)((I" = D7, 7) 7], (1 - p)VF(F))
<C|I—=1MZ|o|1 - plo < Ch, (3.4.51)
Bys = (141 [0 '35+ (1= o), ") 7] (1~ )V F () )
= (1782 [a 1"+ (1= )15, 7) 7], (1 - p)VF(F) )
< C’h|5c't\1\1—p]0 < Ch. (3.4.52)
Combining (3.4.39) with (3.4.40)—(3.4.52), for ¢t € [0,T}), we have
6(0,2) = 0 (0, )] < C |+ |8 lo,00 + 18710 + ¢"o + 10"

We remark that this bound does not depend on p and so also holds for p = 1 and hence,
for t € [0,T}), we have

16(0, ) — 00, )] + [b(1, ) — b (1,8)] < C [h + 0"

0,00 + \9_?\0 + [¢"o + \0_7’!1} . (3.4.53)
Hence, using (3.1.11), (3.4.35¢), (3.4.53) and (3.4.4a), we have
Tys = [(b— V)@, V(@) - VF(:E’h))];
< C lwllwroeo g ) [P looo [16(0,8) = B1(0,6)] + [b(1, ) = b (1,1)
< C 1Moo [A+ 18000 + 180 + ¢l + 167]1] (3.4.54)

Hence, combining (3.4.34) with (3.4.36) and (3.4.54), and using (3.1.8), we have

1drp, . »
7, < 2 [, VR@) @ D@ P+ i
2dt
+c[ﬁ+¢ﬁﬁ@fwdﬁ+wﬁh+h-\ﬁhm] (3.4.55)

Combining (3.4.22) (3.4.27), (3.4.33) and (3.4.55), we have

Ld znp 2 o 1d7, gt o2y gy
g g < 2 [, VR@E)@, D@ )]

T+ C (B2 |8 o + G+ 1+ 11O ] - (3.4.56)
Multiplying (3.4.56) by e~ 7%, for v > 1 and integrating with respect to s € (0,¢) with

t < Ty, and noting 10"(-,0)| = 0, we have

1 t
Qe—vtye”h|%+;/o e %03 ds +/ e |02 ds
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<5 [ vr@n @ oEe m) v ] | e (@, VP@) @, D2 F(@) ) ds

0o 2 0

L\’)M—t

t
e / e (2 4+ 188 o +1CPE 4 18+ 16 ) s
0
t
= (I + I2) + 0/ e [hQ 10" e + "G+ 1O+ R |e‘hygyoo} ds. (3.4.57)
0
Using (3.4.35a), (3.4.4f) and (3.1.9b), we see that

Lt I = ge (@, VE@)N, D*F@) )]

[e=]

+% /0 " [(f,,,vp(f)><§h,p2p( )e“h>] ds

¢
< Me |D2F|o,oo |0_7“”\(2)Oo + My/ e~ s ‘D2F|07OO\9_7‘|(2)7OO ds
0

t t
<L PR ot PR [P Rds Oy [ e PRds. (3459)
0 0

As\»—‘

Substituting (3.4.58) into (3.4.57), and using (3.1.9b), gives
| A L |2 s | gh 2
—e 76 |1+/ 716" d—l—/ 751012 ds
4 1/,
C
SCe‘”tlﬁ_h%%—;/ e 0" 2 ds
0
t
+02/ e [0 4 (R 18]+ 00 s (3.4.59)
0
Since |6"(-,0)| = 0, we have
t
d
et nh 2 —vs |pgh|2
P = [ 4 (1) as
t t
oy [ s w2 [ oo ds
0 0

ol t 2 t
<3 [eri@iass 2 [ ipas
2 Jo v Jo

IN

and hence the first two terms on the right hand side of (3.4.59) can be bounded as follows

C 2C
Ce (- )2 + = / g2 ds < =2 [ e7% (613 ds. (3.4.60)
0 7 Jo
Combining (3.4.59) and (3.4.60), with  chosen large enough such that y > max {1, 22 32075 21
yields the desired result. O

Proof of Lemma 3.25: In the proof of this lemma we follow the techniques used in [6].
We first start with a useful estimate specifically for the proof of this lemma. Using (3.4.9)
and (3.4.12c), for h € (0,h*] and t € [0,T}), we have

"2 + |¢" 3 < 2C1R%e™ < 201 ()2 hzeT < h (3.4.61)
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while (3.1.11), (3.4.4b) and (3.4.12b) yield

S ’Ih’UJ|()7oo + |wh’07oo § C HwHC([O,T];Hl(I)) S C (3462)
Taking 1 = 7" and subtracting (3.4.5b) from (3.4.2b) we have
wp wh
‘ 777p | —»h| ? np
h h, h _h h = —h h _ h h h
- (ww,np) ~ (v"w ,np) = @] g(v.w),m) = (175 90" w),n") |

Using the identity

+d

1d
2 dt

1df2

2
(fg)+2dt

%(fg)g =

noting (3.3.20), setting n = ¢", we have
S (1t ) +a <,j,1,;,<£,<£>
= (1ahen )"+ [((airto) )" = (Gl ¢t)]
oo )¢ () (o)
+ [(|fp| gv,w).¢") = (12hl 90", w ,ch)h} ~ i:r (3.4.63)
Using (3.4.12a) we see that the left hand side of (3.4.63) is bound;d below by
< izt ¢t)" +d<|ﬂh|<,,,<p> > L (11" ¢h) 4 erlcR (3.4.64)

Now we bound T}, i = 4,...,8. Noting that |:E . = (#",,7") and ¢" € Sk, using integra-

Lp,t>

tion by parts we have
1 h
Ty =~ (17l ¢, ")
1 1
=5 (@ =7 + [2 (¢t 7) ¢ e + (@ 7y ¢t cp)]
1 h 5
+5 [(< T 7 M) = ({7 ¢ M) ] =37 (3.4.65)
=1
Using (3.4.4a), (3.4.15), (3.4.19), (3.4.61) and (3.1.9a), we see that
Ty = % (< T — ) Ch,Ch)
\Chlooo |11 17 = 7o

< C Zlwroo g o) 1€ e [T+ A8 o] |1+ 1871:]

3 _1 3 1
< ChE Moo+ CH77 Mo lIC" 1116710 < C R [C"G o + C B2 [[CM]11 167 Jo- (3.4.66)
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Using (3.4.4a) and (3.4.15), we have
Llioh =\ h b h
Tuz =5 (@7 ¢" ") + (@A ¢t )
SHLN N

< C|Flwossorgm e |1+ 1010 16" o +1¢ 000 1611

<O |1+ 18 o) [I" R oo + 1€ l0o 16" (3.4.67)

while (3.1.6b), (3.4.62) and (3.4.15) yield
2Tu5 = ({7 *.¢Y) - (@ 7 ¢t )
<Ch2’ch|1oj pt’ >C ‘Ocr]
j=1

< CRIC o0 [T IC* < C [A+18710] 1¢" . (3.4.68)

Thus, noting (3.4.62), combining (3.4.65) with (3.4.66)—(3.4.68), and using (3.1.9b), we

have
|Ta| < 16M!Ch|1 +C [hQ + |03+ |3 } (3.4.69)
We prove two useful identities to be able to bound T5. Namely, noting |a:h| = (:Z’Z, T), we
have
(7 = 5 S =0 (3.4.700)
as well as

L= =h Loy
|7 = |2:,|x|

|x <7'—Th 7_"—’7'h>

— (&, ) (1 e *h>) (@ — (@, 7 7Y = (7 — 7, 7). (3.4.70D)

Hence, using (3.4.70a)—(3.4.70b), as well as noting that |Z,| = (Z,, 7), we have

(o 1-15), ) = (o (8 -271) ) (o (20— 7))



—( |25 (7, >,Ch) (3.4.71)

and hence

5= (=1, ) = (07w, . ¢")

(te 1251 - M ")+ (w (1251 151),-¢")
+ [ (12 (1 = 1w, ¢") + (1741 (1" = Tyw, ¢M)]

(a1, ) - ((thh)jgh)}

@Mim ) (o155 0,€%) (2 0.
+ ( Tl 17— 7P )+( b7 — 7, 7><h)—( @1 (7,7, ")

Using (3.1.11), (3.4.4b) and (3.4.13), we have

T, = (we || = 1&]] ")
< Jwilo,co [ = 21 1¢"|o

< Cllwlwrezm) [h+10h] 10 < € [n+18"0] 1¢"o. (3.4.73)

Using integration by parts with (3.1.11), (3.4.4a), (3.4.4b), (3.4.14), (3.4.13), and noting
that ¢ e S(’}, we have

Tsz = (w (@ — 7 7),C") + (w (@ — 7)o, 7). ")
= (w0 (@ = & 70, ¢") + (@ = &), Fw)p) ") + (w{(F = )0, 7).} )

< oo [72lo 17 = 211 [¢*lo,00 + |72 — ZHlo |70t 1¢")o, 7 — 710 ¢
< Cs lwlleqorem @y [h+ 100 +18"1 ] 1Moo + 1"
< C [n+180 + 10 [1¢"o00 + 161 (3.4.74)

where Cf =14+ Hf‘|W1’°°(O,T;[H1(I)]2) + ||ff”W0,oo(07T;[H2(I)]2). From (3111), (344b),
(3.1.5a), (3.1.4a), (3.4.19), (3.4.15) and (3.4.61), we have that

(w7 — 71, ")

[wlo,00 17— 70,00 |71 17 = 7|0 1¢" 0,00

T53 =

»—n[\:\»—l

<3
< Cllwleqomse ) [+ 18] [+ B8] B+ 1811 1¢"o o
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< C [n+1800] 1¢"0.c (3.4.75)

while, with the addition of (3.4.12a),

Tsa = (wlz] (7 = #,7),¢")
< Clwlo,eo |7 = 70 |70 1¢" 0,00
< Cllwlleqo,m;mr @) 1Zllwee 0,15 (2))2) [h + \ghll} 1¢"0,00

<C [h+ ye‘%] 1C"[0.00- (3.4.76)

Setting P" := I — 7" ® 7" and noting

|f,}ol| 7_';:h - fZ,t - <fZ,ta7?h> = th,}ol,t

yields
Tys = — (w|zh| (7,7, ¢")
= - (’LU <7?7 thﬁ,t>7 {h)

= (w7, PO}, ¢") = (w (7, P10, M) = T + T s (3.4.77)

By definition P" is constant each sub-interval 0j, so, using integration by parts over each

sub-interval and noting that ¢" € Sg, we have

T5)571 - <w <7_37 Phe_ﬁ,t>7 Ch)
J
=y / w (7, Pt ) M dp

J

7=1
J .
=Y fuE Py =3 [ (wrd, P

Pj—1 j=1

o=
|
—

=3 [0l t) (Flos 00, (B = PG (3, )) €y )]

Jj+1

(4w ), PP7), ) + (w7 PR, )| = Topan + Topna: (3478)

9j+1 95 j+1 j+1 J J
_ =h h —h —h
=Ty ® Uy = Tlogy) + (o, = T, ) O
and
—h —h
—h _ =h ( P)‘%H (xp)“’j
Togr ™ Ty T (@), | 1@
J J xp ‘f’j+1 acp ‘Uj
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—h
1 ( h h 7o, h h
= = (@, — @1, ) + e (1@, = 1@, ) -
|(x2)‘aj+1| plloji p/lo; |($g)|aj+1| p/lo; p/loji1

For any p € R2, for j=1,...,J — 1, we set " = X; P in (3.4.5a) to obtain
(@), — @)1, D) = — (hj+1 (@1, [P P B) + by (), P @’f,g,ﬁ)) F(w"(pj,1)
o (R (@), 12+ 0y @), 12) (@ o.1), )
(1= ) [yt (@), 27 (g, 0,7 WA B
R CARCATRONBIC I

j 7j
Combining the three equations above and using (3.4.12a), (3.1.4a), (3.4.12b), (3.4.4c) and
(3.4.4a), we have

| Pl

7j+1

- Pl <Cl@),,, — @),
< ChIf (") oo + 1 (05 )]

< O [If @)oo + T Filoo + 187 (o5, 1)

|"j+1

<Ch [1 + |9_Zl(pj,t)’} . (3.4.79)

Hence, using (3.4.79), (3.1.4a), (3.1.11), (3.4.4b), (3.1.5a) and (3.4.61), we have

J—-1

Tigan ==Y [wlost) (Floy ), (B = Pl )8 (0, 0) (i)
j=1
J-1
< Chlwlose [¢Mlose D [1+ 187 (0 t)I] 187 (o5 )]
j=1

J-1 J-1
< C|lwlleory:m @) 1¢" 0.0 Zhj 162 (pj,t)| + Z hy |00 (pj, 1)
=1 =1

< C1¢Mooe (1010 + 1013]

< C10o 1000 + CHTZ PR ICM0 < C 10710 1¢ 000 + C AR (3.4.80)
Using (3.4.12a), (3.1.11), (3.4.4b) and (3.4.4a), we have

Ts512 = — (<(wF)p7Ph§?>vch) - (w (7 Phé?%Cg)

< [Po,00 [0 711 10710 1¢™ 0,00 + [w]0,00 [P |0,00 16710 [¢™ 1

< Clwlleqor;m @) [T+ 1Zlwose o, m2@)2)] [ICh\o,oo + \Chh] 1670

< C{IcMo.00 +1¢"1 ] 187o- (3.4.81)
To bound T5 5 2, noting (3.4.70b), we utilise the following bound

1 1
Phi =7 (7, =7 - (1 2|th\2) =774 5|Txfh 27h
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as well as noting that P" is symmetric and using (3.1.11), (3.4.4b), (3.1.5d), (3.4.4a),
(3.4.19) and the fact that |7 — 7| < |7] + |7"| = 2 to give
Tyso = — (w (7 P50, C")
= (w(P"7,1"7,0),¢")
= (w <7'h -7 Ih:cpt> Qh> — % (w|f' *h| <T Ihxpt> Ch)

<2wlpeo |T — o [T &)1 |C" 10,00

< Cllwlleqoaym @y 1Elwieorgm @) [ +18"11] 1Sl

<C[n+18"h ] 1Mo (3.4.82)
Thus, combining (3.4.77) with (3.4.80)—(3.4.82), we have
Ts5 < C [l 10 + 10"1] [I" 000 + 1Mo + C"] + C 113, (3.4.83)

Using (3.4.12a), (3.1.11), (3.1.5b), (3.4.4b) and (3.4.15), we have

Tss = (1Z5(1" = Dwi, ¢") + (17511 = Tyw, (")
< C Ry + (T = 1Yl |71 1o
< C [hllwllwre ) + bl [L+ 7180 | 1¢o

<C[n+lwlcqommemy [h+180)] 1¢" < C [h+ 10| 1Mo, (34.84)

Using (3.1.6b), (3.4.12a), (3.1.5d), (3.1.11), (3.4.4b) and (3.4.15), we have

o= (1) )"~ (4410%),)

< Chz ¢ 1o, [(1Z5 T w)elo,o,

j=1
< Ch |[1Mwlo oo |11 + 1Tl 1€
< Ch [lwllogosma) [1+ 718 o] + lwlwroerzamy | 1]

< C [n+1800] 1" (3.4.85)

Combining (3.4.72) with (3.4.73)—(3.4.76) and (3.4.83)—(3.4.85), using (3.1.8) and (3.1.9b),

we have

T5| < —— "+ C [h2+\9’h\0+ych\o+\éhy (3.4.86)

- 16M

Using (3.1.11), (3.4.4b), (3.4.18) and (3.1.8), we have

TG:d(“’P[rxlr =l ¢)
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<"l

< d|w’1,oo

T I*’LI

< Cdlwleqommmy [h+ 0] 1 < (B O [ 187) . (3.487)

=< 16M
We now bound Tx.

7= (vt ) (vw.l)
= ([v" - o] wh + @) [ 1] ,gg)h
+ (P rw.¢) - (P w).e)

+ [( [(Ih - I)¢] "), g‘[j) ¥ (zp [(Ih - I)w} ,g,ﬁb)} — iTm. (3.4.88)
From (3.1.11), (3.4.12b), (3.4.4b), (3.4.4a), (3.1.6a), (3.1.5b) and (31.4.20) we have
toa= (o0 ]t 0 [~ 1] )’
< maix { 10,00, 1" lo0o } [T = Il + 116 = 0"l + 1€ ] 12 1
< € max {||wllcqo rym oy 18wz } [Cah o+ 180 + 1o + 18711 ] 161

<C[n+180+ 1o + 18" | 1", (3.4.89)

where Cz = 14+ V2([|Z] w00 0.1 (2)12) + 1€ woe 0,152 0)12) 1€l wo.oo 0,151m2(2)12)) - Us-
ing (3.1.6b), (3.1.5d), (3.4.4b) and (3.4.4a), we have

Trs = (IW) I'w), c;;)h - (1) ' (w), )

< Chz 1 (¥ ¢ o,0,
< Ch [Czllwllcqorrem) + |1Zllwieeor @ lwloqmmay] 1¢"h
< Chl¢Mh, (3.4.90)

while with the addition of (3.1.5b) we obtain
Trg = (|1 = Do| 1"w), k) + (v [(1" = Dw) . ¢})]
< max { |1 wlo.e, [Ylo. b [I(1 = T)lo + (T = I"Yulo] 1¢"]s
< € max {|[wlloqo e @y, 18w g @ } [+ lwlogorym @] ¢

< Chl|¢M, (3.4.91)

where Cf = ||.’i"”W1,oo(0,T;[H1(I)]2) + Hf”Wl,oo(O’T;[Loo(Z)]Z) HfHWOvOO(O,T;[HQ(I)P)‘ COInbiI’lil’lg
(3.4.88) with (3.4.89)7(3.4.91) and using (3.1.8), we have

ITr| < < CM 3 4 C B2+ 18R + IS + 12 (3.4.92)

- 16M
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We now bound Tg. Using the continuity of g we have
T = (18, 9(0.w).¢") — (4] g0, ). ")
= (1,1 - 171] g(0,w), ") + (141 - Mg, w), ¢")
+ | (18t 0).¢") = (it g(o,0.¢")'|
+ (41 (o, 1'w) — g, ut)] + [g(v,0") — g, wM)]) ")
= iT&i. (3.4.93)
Using (3.4.4d) and (3.4.13), gives
Toy = ([12] = 171] 9(v,w0),¢") < lgloo 7= Z11¢M0 < C [h+ 18] 1P (3.4.94)
Using (3.4.12a), (3.1.5b), (3.4.4d), (3.4.4a) and (3.4.4b), we have
Tyo = (12511 — I")g(v,w).¢")

< Chlgv,w)]11¢Mo < Chlg(v, w)loee [Cz + ]l cqormay] 1€"o
< C R, (3.4.95)

whilst with the addition of (3.1.6b) and (3.1.5d) we obtain

Ty3 = [(|:E'Z|Ihg(v,w),Ch> - (\a‘:’;‘uhg(v,w),ch)h]

J
<ChY lg(v,w)h,

et < enlgl,w)li |t < CRIcMo,  (3.4.96)
=1 ’

0,0

where Cz := HfHWl,oo(O7T;[H1(Z)}2)+HfHWl,oo((LT;[Loo(Z‘)]Z) HfHWOvOO(O,T;[HQ(I)P)- Using (3.4.12a),
(3.4.4d), (3.4.4a), (3.4.12b), (3.1.5b), (3.1.6b), (3.4.20) and (3.4.16), we have

T = (124] ([o("0 ') — g(10,0")] + [o(10, 0") — g, wM)] ) ")
< 2M L [l + 1% = 0" ] 1" 1
< C[I¢Mo + (T = 1"l + o = v"]o] 1o
< C [h+ 180+ 1Mo + 16711 ] 1¢"1o. (3.4.97)
Combining (3.4.93) with (3.4.94)—(3.4.97) and using (3.1.8), we have
Ts] < C [0+ 1013 + I8 + 167 (3.4.98)

We now combine (3.4.63) with (3.4.64), (3.4.69), (3.4.86), (3.4.87), (3.4.92) and (3.4.98)

to obtain

|

S h d
(1281 ¢" ¢") " + o7Ic"} < € 2 +181E + I3 + 167 3] - (3.4.99)

DN =
QU

t
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Multiplying (3.4.99) by e~ 7%, for v > 1 and integrating with respect to s € (0,¢) with

t < Ty, and noting |¢"(-,0)| = 0, we have

1 t d t
P (A N A 2 —s 2h| ~h  ~h @ =S h|2
5¢ (IwIC C) +2/Oe (I:vplé,c) ds+4M ICh 2 ds
t
SCg/O e [h2+|«§?|3+|<h|§+|éh\%] ds. (3.4.100)

From (3.4.12a) and (3.1.6a), we have

1 t m m [t
et () + T e 1zt )" ds = Do PR+ T [T R as,
2° 2 /o 4 4 Jo

which, together with (3.4.100), yields the desired result. O

Proof of Theorem 3.23: Multiplying (3.4.11) by w, where w is chosen such that Csw <

32 , and adding the resulting inequality to (3.4.10), for ¢ € [0,7T}), we have

mw
2 + ef'yt‘ch’2

m2a
ki =5

1
Zet gh
e 32

—YSs d t*S
: [eviigas o [t

t
<C(1 +w)/ e s [hQ +|¢MB + 1673 + h*1|éhyé,oo} ds.
0

An application of Gronwall’s lemma then gives

| mw _ m2a (Th o, dw [T0 _
I R e A e A S
iy

T*
< Cumr / Te (B2 h GG | ds,
0

where C,, v depends on w, v and T" but not on Tjy. Dividing by min{y, 3%, "%, 137

gives

*

Th
sup (e 3 +e 0 (] + [ e (18R +1¢ME] ds
s€[0,T7] 0

*

TL
< C1h? + Chl/ " |0"(8 o ds.  (3.4.101)
0
Using (3.1.9b), (3.4.60) and (3.4.12c), for ¢t € [0,T}), we have
e HIME o < e+ Ce TR < COvR2,

and hence, for t € [0,T}), we have

t t 2

Ch_l/ e ® ]9_7‘|37OO ds < Ch™! e”’T/ (e—vs |9_h|(2)00) ds < C(C)*TeTh3,
0 0

which, together with (3.3.78), and on noting (3.4.9), yields

*

Th
sup [ R+ e O] + [ e (18 + 1] ds
s€[0,T}] 0



122

1
< C1h2 + C(C1)2TeTh3 < C1h% + CC1Th? < Cih? + SC1l* < SO (3.4.102)

[\CR V]

We now follow the argument in [40] to show that 77 = T. If it were not the case that
Ty =T, we would have Ty < T, and using (3.4.4e), (3.1.5¢), (3.1.5a), (3.1.4a), (3.4.4a),
(3.4.102) and (3.4.9), for p € Z, we would have

. T < |2, (0, TE)| + |T0(p, Ty) — &0, 7))
< M+ |(I = IMEC T 100 + 10" T 1o
<M+ Ch2|EC, T + Ch™2 0", Tf)h

S M + Ch% ”fHWO’O"(QT;[Hz(I)]z) + €%T <

=
+
Q
=
IN

provided S is chosen small enough, and similarly

5 ~ S N 3Im
|5 (0, Ti0) | > &, (0, T} = [Z,(p, Tt) — @5 (p, i) | > —

Using (3.1.5d), (3.1.5¢), (3.4.4b), (3.1.5b), (3.1.4a), (3.4.102), (3.1.11) and (3.4.9), we see
that

" (- Ti)lo,oo < 11w (-, T 0,00 + [TMw (-, T) = w" (- T)

0,00
1
< wleqoryz=@) + Ch 21" Tlo
1
< Cullwlleqomm @) + Ch2 e2”
3
< (Cw + CB)[wlleo.rm (@) < ijHwHC([O’T};Hl(I)),

provided S is chosen small enough. Thus we could then extend the discrete solution to an

interval [0, T} 4 6], for some § > 0, with

o 3

<@ <2M in Z x [0, T} + 9]

o™ oo rz +a1 2 (2)) < 2Cwllwleorym @)
Tr+6 -
sup ¢ |+ 1C] [ e (1015 + 1] ds < 200
s€[0,T} 4] 0
which contradicts the definition of Tj. Therefore T} = T and from (3.1.5b), (3.4.4a),

(3.4.4b), (3.4.9) and (3.4.12c), for ¢t € [0, T, we have

sup 17—+l =] <2 sup [I(7= I+ 8" + 17 = 1)l + I6" ]

te[0,T] telo,T
< Ch? [Hf\@vo,w(o,cp;[ma)}z) + HwH?)([O,T};Hl(I))} +4C1h%e""
< COR?,

and

T T
| [1g= B+ b= wtB]ds <2 [ (1= 29303 + GV + 11— 1wl + 1G] ds
0 0
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< CTh? [Hfllivl,oo(o,mm(z)p) + ||w”?:<[o,T1;H2<I)>]
+4C1h%e7T < Oh?.
0

Remark 3.26. We note that the progression from the bound on the sums in (3.4.80)
comes about from utilising the fact that the rectangle rule underestimates the L*(T) integral
because |01 (-,t)| is positive, and also that it underestimates the L2(T) integral because

167(-, 1)[2 is convex.

Remark 3.27. We note here the unconventional approach to splitting (3.4.71) used to
bound Ts, specifically the reason why we split this bound into five parts. Without splitting

the bound this way, the terms needed to be bound would be
(w (1751 =1251) ") = (w @ = e 7)) + (w @y 7 = 70,1

The first term is part of Tsz2; however, using (3.1.11), (3.4.4b), (3.4.15), (3.4.19) and
(3.4.61), the second term would yield

0.00 |24 1117 = 70 1¢" 0,00

(w(@h,, 7 = 7).¢") < Jw

gc[h+@|o+|e‘h|1+h-% 1670 ] [¢"

0,005

which would not result in the desired power of h we require for the result.

3.5 Numerical results for Model M; and Model M,

In this section we look to computationally analyse Model M; and Model M. We first
concentrate on Model M; and compare it to the numerical scheme introduced in [42].
Namely the authors in [42] chose to approximate F'(Z) = 0 by using a slight variant on

(3.3.7). They don’t use F(X"(p)) = 0, for p € {0,1}, but rather assume that
(DX, VE(XI1) =0, forj=0,J

as part of their approximation. This leads to a first order approximation of both (3.3.3)

and F()? ") = 0, such that for their scheme
|F(X™)| < CAt,. (3.5.1)

This means that At, needs to be chosen appropriately small for the approximation Xn

to stay close to the boundary for long time simulations. Although we do not prove fully
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discrete finite element error bounds using the o parameter, see Remark 3.11, we neverthe-
less derive the numerical scheme of Model M; with the o parameter used and a forcing
term on the right hand side. We shall still refer to this as Model M; though. In the
settings of closed curves, typically one chooses 5 h = X;j€r to derive the finite element
numerical scheme, where €}, for k = 0,1, provides the standard basis for R?; however,
due to the boundary conditions, considering the restrictions on (3.3.2), we choose to use
fh VLF(X”)XJ for j =0, J and fh = xj€ for j =1,---,J — 1. Thus, by considering

a uniform spatial mesh, the finite element numerical scheme for Model M is

o _ — - - -
S @+ @) o (B =) + (- + 28y - X))

l-a 1 n vn—1 rrn—1\ rA/n—1 Y20 vn—1 rrn—1\ rA/n—1
tg g (=G st (R = A )

2 At, J
1
=5 (4 (@ N+ ) gy (3.5.22)
a 12 1 v yn—1 ol a0 vn _ vn ol 20
2( ) Atn <XO XO 7V F(X0)>+<XO Xl,v F(X0)>
l—a 1 a0 vn—1 n—1 n—1 1
5 A—tn< b KoL AT (N VERR)
1 n—1 rn / \/n— V20
=5a% ' fo < 5 I,VLF(X0)> (3.5.2b)
@ n— 1 a0 v n— v n n n
5( J_})QE <XJ - X 17VLF(XJ)> + <XJ - X7,V F(X )>
l—a 1 a0 G — \ Fn— n— 1 n
5 E< §-X5TLNTD <NJ—11’V F(X )>
1 n—1 gn [/ \fn— a0
= iqj,% 17 <NJ,117 VJ_F(XJ)> (3.5.2¢)
F(Xp) =0, F(X%) =0, (3.5.2d)

where ¢ = | X7~ X7 |forj = 1,...,J and 7" = (Xjn+1 )Z‘;l)L forj=0,...,J—1. We
use a Newton’s scheme to attend to the non-linear components in the following manner.
By setting Xnitl = Xmi 4 (fi, with X0 .= X"‘l, we replace all occurrences of Xn
with X"+ and rearrange to solve for 5. We neglect terms which have more than one 5

term, hence gaining the name quadratic approximation, and we then iteratively solve until

|F(X™*1)| < 7, for some predetermined tolerance 7. Thus, (3.5.2a)—(3.5.2d) become

(@™ + @) 3 8+ (0 +28 - 5)
1-—

* 5 (B 55 (3, ) 07
= 2 (W gAY g (<R X X))

l-—a 1 n,i vn—1 rrn—1\ xfn—1 T2 vn—1 afn—1\ rrn—1
- (B - B ) A (R - N )

_ % ((qy 24 (qﬁll)Q) Alt (X X" 1) (3.5.3a)
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%(qz;*) AL (8, VEP(X]))

+ % (g™ h)? Alt <X6” _ Xg_l,DiF()zg’i) 5‘6> n <5»6 B _’i,VJ‘F()_()g’i)>
< X?ZvDLF(XS”)50>

e g ) e )
l—-a 1

o AL (Ko - Ky (NG DLR(R ) 6
1 nf n n— o101\ i

—5 Lfi (N DALR(R) 8 )

1 4n < -1 vip(X, )> - <X{; —X?’i,vLF()ngw
)
1

—*<q3 : 2§<X XL VER(E)

—< — X1 - 1> <A7§_1,VLF()Z'§’i)> (3.5.3b)

| o

n— 1 ) AN N} i N0
(%_%)27 J’VLF(Xf )> + <5J - J—lvaF(Xf )>

+ (X5 X}la,DiF@;’i)m
l-—a 1 i Arn—1 n—1 J_
g ag, (AT (L VR >>

g (05 RN (Vi DL )

- %qﬁ:%f (3= DR(E) 5
< J-1 1 VLF )>_<X?l J 1aVLF(X )>
1

g n n,i vn—1 1 n,1
2<qJ> (K3 = = VER(EY)
l—a 1

Aty
T2 A, <X - XN 11> <A7§:37VLF(X}Z’i)> (3.5.3¢)

F(X") = —(VF(X}),8), F(X}')=—(VF(X}"),5)), (3.5.3d)

where D2L = RD?, with R being the anti-clockwise rotation matrix around 5 and D being
the second order differential operator. We state that this is work already conducted in
[109], in which « is set to 1 for easy of presentation. We begin our numerical computations
with two examples, one showing the benefit of the oo parameter and the other showing the

benefit of the Newton’s scheme. In these two examples we monitor the following errors:

N
Er:= sup |I"(@") - X", &= At |I"@") - X", (3.5.4)
TLZO,...,N n=1
N
E:= sup |[IM@F")— X"}, & =) At|D,(I"(E") - X™)[3, (3.5.5)
n=0,...,N

n=1
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and quantify them using

In(&; j11) — In(
In(hij41) — In(

n

jj.) . (3.5.6)
%]

€0C; j =

>

Example 1

For our first example we consider a shrinking sems circle. Indeed setting 2 := R xR
and taking I'(0) to be a semi-circle with radius one centred at 0, with f(p,t) = 0, the
explicit solution to Model M; is given by

Z(p,t) = V1 — 2t (cos(mp), sin(mp)) ", p€[0,1], t €[0,T).

We set T'= 0.4 and consider a uniform time discretisation. The following Tables 3.1-3.6
were produced using MATLAB R2019a [92] installed on a 2015 Apple iMac 21.5” with
an i5-3.1 GHz processor which has 4 cores. Typically MATLAB uses only one core when

executing user developed code.

Tables 3.1-3.4 display the errors for the Newton’s scheme (3.5.3a)—(3.5.3d). The errors
obtaining by taking At = h? and o = 1 are displayed in Table 3.1 while the errors obtained
by taking At = h? and o = 0.5 are displayed in Table 3.2. Tables 3.3 and 3.4 display the
errors obtained by taking At = 0.1h and a = 1 and At = 0.1~ and o = 0.5 respectively.
Tables 3.5 and 3.6 display the errors for the numerical scheme presented in [42], the results
in Table 3.5 were obtained by setting At = h? while the results in Table 3.6 were obtained
by setting At = 0.1h. For & and &; we see a similar experimental order of convergence
for both o = 1 and « < 1, for both cases of At = C'h and At = C h?. Indeed, we see eocs
of close to 4 for both & = 1 and a < 1 with At = C h2, and we see eocs of close to 2 for
both @ =1 and a < 1 with At = C h. Considering At = C'h, all the errors are exhibiting
the eocs expected from [6] however not proven in our setting in which the closed curve
setting of [42] has been replaced by a curve attached orthogonally to a fixed boundary.
Numerically, we see that both attain the desired convergence. We also see that & and &
exhibit eocs of close to 4 for both & = 1 and o < 1 with At = C h?, and exhibit eocs close
to 2 for both o = 1 and o < 1 with At = C h. Considering At = C h2, all of the errors
are exhibiting greater levels of convergence than what Theorems 3.13 and 3.18 predict. As
described in Example 1 in Section 2.4.1, one might expect an eoc of 4 for £ and &, since
they are L? type errors. Similarly, as described in Example 1 in Section 2.4.1 and [6], &2
and &3 are exhibiting superconvergence since they are H' type errors. Interestingly, we
still see superconvergence when using a non-uniform mesh in this example, but we didn’t

investigate this property further.
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Next, we look at how « effects the errors. Comparing Tables 3.1 and 3.2 we can that
the results in Table 3.2 give three to four times the amount of precision opposed to the
results presented in Table 3.1. Another interesting result to note is that the finite element
scheme presented in [42] and (3.5.3a)—(3.5.3d) give identical errors. Indeed we remark that
the Newton’s step only requires one solve and so the schemes are actually identical for this
example. The reason for the one step convergence is because the (important) boundary
term is solved exactly. In particular, noting that in this example VF(p) = (0,1)7, for
7 € R?, equations (3.5.3b) and (3.5.3d) decouple and (3.5.3d) gives

F(Xg") = —(8)o
which, due to the initial condition, will always be 0. Since the stopping criteria for the
Newton’s scheme is |[F(X"#*1)| < 7, and since in this case |F(X™!)| = 0, the iteration
will stop after one step. Thus, since X0 = Xn=1 and F is linear, the schemes are the

same.

Finally, we look at the computational time of some of the results. Considering the
setting of @ = 1, taking J = 10 and M = 40 and using (3.5.3a)—(3.5.3d) results in
approximately 0.011 seconds of execution time whilst using the scheme presented in [42]
results in approximately 0.004 seconds of execution time. Taking J = 160 and M = 10240
and using (3.5.3a)—(3.5.3d) results in approximately 21.4 seconds of execution time whilst
using the scheme presented in [42] results in approximately 23.6 seconds of execution
time. Considering the setting of o = 0.5, taking J = 10 and M = 40 and using (3.5.3a)—
(3.5.3d) results in approximately 0.012 seconds of execution time whilst taking J = 160 and
M = 10240 and using (3.5.3a)—(3.5.3d) results in approximately 25.1 seconds of execution
time. Given what is discussed in the previous paragraph, it makes sense that the execution
time for the scheme presented in [42] and (3.5.3a)—(3.5.3d) with a = 1 solve at almost the
same speed, the slightly greater execution time when considering o < 1 is likely due to

the extra terms which need to be computed for the system matrix.
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J M E1 x10° | eocy | & x10% | eocy | E3 x 10% | eocs | €4 x 10° | eocy
10 40 46.95 - 299.3 - 46.72 - 201.6 -

20 160 4.042 3.54 2.255 3.73 | 3997 | 3.55 18.59 3.44
40 | 640 0.2760 | 3.87 | 0.1481 393 | 2.726 | 3.87 1.298 3.84
80 | 2560 | 0.01765 | 3.97 | 0.009377 | 3.98 | 0.1742 | 3.97 | 0.08347 | 3.96
160 | 10240 | 0.001110 | 3.99 | 0.0005880 | 4.00 | 0.01095 | 3.99 | 0.005254 | 3.99

Table 3.1: Errors for (3.5.3a)—(3.5.3d), with At = h? and a = 1, for Example 1.

J M E1 x10° | eocy | E x 100 | eocy | & x 10* | eocs | €4 x 10° | eocy
10 40 15.97 - 79.91 - 15.89 - 88.84 -

20 160 1.405 3.51 6.093 3.71 1.389 3.52 8.302 3.42
40 | 640 0.09635 | 3.87 | 0.4013 | 3.92 | 0.09514 | 3.87 | 0.5798 | 3.84
80 | 2560 | 0.006167 | 3.97 | 0.02542 | 3.98 | 0.006087 | 3.97 | 0.03729 | 3.96
160 | 10240 | 0.0003877 | 3.99 | 0.001594 | 4.00 | 0.0003827 | 3.99 | 0.002348 | 3.99

Table 3.2: Errors for (3.5.3a)—(3.5.3d), with At = h? and a = 0.5, for Example 1.

J M | £ x10° | eocy | E x 100 | eocy | E3 x 10* | eocs | €4 x 10° | eocy
10 | 40 46.95 - 299.3 - 46.72 - 201.6 -

20 | 80 14.51 1.69 | 84.74 | 1.82 14.35 | 1.70 | 65.05 1.63
40 | 160 4.054 1.84 22.58 1.91 4.003 1.84 18.65 1.80
80 [ 320 | 1.073 | 1.92| 5.832 1.95 1.060 | 1.92 | 5.009 | 1.90
160 | 640 | 0.2763 | 1.96 1.482 1.98 | 0.2727 | 1.96 1.299 1.95

Table 3.3: Errors for (3.5.3a)—(3.5.3d), with At = 0.1h and a = 1, for Example 1.

J M | & x10° | eoci | E x 100 | eocy | E3 x 10* | eocs | €4 x 10° | eocy
10 | 40 15.97 - 79.91 - 15.89 - 88.84 -

20 | 80 9.159 | 080 | 4877 |0.71| 9.058 |0.81| 4511 |0.98
40 | 160 | 3.267 | 149 | 1746 | 148 | 3.226 | 149 | 15.66 | 1.53
80 | 320 | 0.9664 | 1.76 | 5.149 | 1.76 | 0.9540 | 1.76 | 4.598 | 1.77
160 | 640 | 0.2624 | 1.88 | 1.394 | 1.89 | 0.2589 | 1.88 | 1.245 | 1.88

Table 3.4: Errors for (3.5.3a)—(3.5.3d), with At = 0.1h and « = 0.5, for Example 1.
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J M E1 x10° | eocy | E x 100 | eocy | €3 x 10% | eocs | €4 x 10° | eocy

10 40 46.95 - 299.3 - 46.72 - 201.6 -
20 160 4.042 3.54 22.55 3.73 3.997 3.55 18.59 3.44

40 640 0.2760 | 3.87 1.481 3.93 | 0.2726 | 3.87 1.298 3.84
80 | 2560 | 0.01765 | 3.97 | 0.09377 | 3.98 | 0.01742 | 3.97 | 0.08347 | 3.96
160 | 10240 | 0.001110 | 3.99 | 0.005880 | 4.00 | 0.001095 | 3.99 | 0.005254 | 3.99

Table 3.5: Errors for the numerical scheme presented in [42], with At = h?, for Example

1.

J M | & x10° | eoc; | E x 100 | eocy | E3 x 10* | eocs | €4 x 10° | eocy

10 | 40 46.95 - 299.3 - 46.72 - 201.6 -
20 | 80 14.51 1.69 84.74 1.82 14.35 1.70 65.05 1.63
40 | 160 4.054 1.84 22.58 1.91 4.003 1.84 18.65 1.80

80 | 320 1.073 1.92 5.832 1.95 1.060 1.92 5.009 1.90
160 | 640 | 0.2763 | 1.96 1.482 1.98 | 0.2727 | 1.96 1.299 1.95

Table 3.6: Errors for the numerical scheme presented in [42], with At = 0.1hA, for Example
1.

Example 2

Considering

Q:={pecR?: p* <1}

and taking I'(0) to be the line p; = pp, such that I'(0) is the diameter of the circle produced

by €2, as well as
A(p - 3)

fp,t) = A—22+ 1

gives rise to the explicit solution of Model M to be

2(p — 3)

T
m“ —2t, )7, pelo,1],te0,T).

T(p,t) =

Given the result of (3.5.1) we also monitor the error

= . 111(55 ‘_:,_1) - 111(55 )
E5:= su sup |F(XM)|, with eocs; = o) XAy
b n:o,,l,),,Nj:oPJ| ( J ) 5 In(Atj1) — In(At;)

(3.5.7)

This example does not automatically satisfy |VF(p)| = 1, for 7 € R?, nor is F linear, and

hence enables the superiority of the Newton’s scheme (3.5.2a)—(3.5.2d) to be observed.
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Similary to Example 1, we produce the results in Tables 3.7-3.14 and Figure 3.9 using
MATLAB on the iMac computer.

We consider T' = 0.5. We see (3.5.3a)—(3.5.3d) is significantly more precise than the nu-
merical scheme presented in [42] regardless of the choice of o. Tables 3.7-3.10 display the
errors for the Newton’s scheme. We note that we don’t demonstrate (3.5.7) for the New-
ton’s scheme (3.5.3a)—(3.5.3d) since the stopping criteria is set to be sup;_ ; \F(X’J”)] < T.
The errors obtained by taking At = h? and a = 1 are displayed in Table 3.7 whilst the
errors obtained by taking At = h? and a = 0.5 are displayed in Table 3.8. Tables 3.9 and
3.10 display the errors obtained by taking At = 0.1h and o« = 1 and At = 0.1h and o = 0.5
respectively. Tables 3.11-3.14 display the errors for the numerical scheme presented in [42],
the results in Tables 3.11 and 3.13 were obtained by setting At = h? while the results in
Tables 3.12 and 3.14 were obtained by setting At = 0.1h. We see practically the same
convergence results for this example as in Example 1. One can easily see the difference in
magnitudes for all the errors comparing (3.5.3a)—(3.5.3d) to the numerical scheme presen-
ted in [42]. Indeed comparing Table 3.7 to Tables 3.11 and 3.13 and comparing Table 3.9
to Tables 3.12 and 3.14 we see that Tables 3.7 and 3.9 are between twenty to thirty times
the precision of the errors in the respective tables for the numerical scheme presented in
[42]. In Figure 3.9 we see the effect that (3.5.1) has on the numerical scheme produced in
[42], in particular there is a noticeable gap between the end points of the curve X" and
the boundary. Considering the setting of a = 1, taking J = 10 and M = 50 and using
(3.5.3a)—(3.5.3d) results in approximately 0.024 seconds of execution time whilst using the
scheme presented in [42] results in approximately 0.005 seconds of execution time. Taking
J =160 and M = 12800 and using (3.5.3a)—(3.5.3d) results in approximately 71.8 seconds
of execution time whilst using the scheme presented in [42] results in approximately 31.5
seconds of execution time. As one can see, the Newton’s scheme takes over twice as long
to complete the computation but gains a significant increase in precision. Similarly to

Example 1, taking o < 1 doesn’t change the computational time much.

Remark 3.28. We note that the choice of F' hardly changes the errors from each scheme,
further highlighting that the choice of linear F' is what resulted in the errors being the same
for each scheme rather than |VF| = 1. Indeed taking

F@G)=lp—1 or F@) =51

had next to no effect on the errors for both schemes considered.
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Figure 3.9: Demonstrating (3.5.1). The black line is the boundary, the red line is the
numerical approximation from the numerical solution presented in [42] and the blue line

is the approximation from (3.5.3a)—(3.5.3d).

J M E1x 107 | eocy | Ea x 100 | eocy | E3x 10° | eocs | &4 x 10% | eocy

10 50 107.9 - 27.70 - 14.40 - 30.40 -

20 200 6.797 3.99 1.796 3.95 0.9198 3.97 1.925 3.98
40 800 0.4256 | 4.00 | 0.1133 | 3.99 | 0.05780 | 3.99 0.1207 4.00
80 | 3200 | 0.02661 | 4.00 | 0.007100 | 4.00 | 0.003617 | 4.00 | 0.007552 | 4.00

160 | 12800 | 0.001664 | 4.00 | 0.000440 | 4.00 | 0.0002262 | 4.00 | 0.0004721 | 4.00

Table 3.7: Errors (3.5.4)(3.5.5) for (3.5.3a)-(3.5.3d), with At = h? and o = 1, for

Example 2.
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J M E1 x 107 | eocy | Eyx10% | eocy | E3x10° | eocs | Ex x 108 | eocy

10 50 95.38 - 23.73 - 11.81 - 27.10 -

20 200 5.997 3.99 1.525 3.96 0.7459 3.98 1.716 3.98

40 800 0.3752 | 4.00 | 0.09596 | 3.99 | 0.04673 | 4.00 0.1076 4.00
80 | 3200 | 0.02346 | 4.00 | 0.006008 | 4.00 | 0.002923 | 4.00 | 0.006727 | 4.00
160 | 12800 | 0.001466 | 4.00 | 0.0003757 | 4.00 | 0.0001827 | 4.00 | 0.0004205 | 4.00

Table 3.8: Errors (3.5.4)—(3.5.5) for (3.5.3a)—(3.5.3d), with At = h? and o = 0.5, for
Example 2.

J M | & x 107 | eocy | E3 x 100 | eocy | E3 x 10° | eocs | E4 x 106 | eocy

10 | 50 107.9 - 27.70 - 14.40 - 30.40 -
20 | 100 27.25 1.99 7.140 1.96 3.680 1.97 7.695 1.98
40 | 200 | 6.823 2.00 1.805 1.98 | 0.9250 | 1.99 1.931 1.99

80 | 400 1.705 | 2.00 | 04532 | 1.99 | 0.2316 | 2.00 | 0.4832 | 2.00
160 | 800 | 0.4261 | 2.00 | 0.1135 | 2.00 | 0.05790 | 2.00 | 0.1208 | 2.00

Table 3.9: Errors (3.5.4)—(3.5.5) for (3.5.3a)—(3.5.3d), with At = 0.1h and o = 1, for

Example 2.

J M | £ %107 | eocy | E x 100 | eocy | E3 x 10° | eocs | €4 x 108 | eocy

10 | 50 95.38 - 23.73 - 11.81 - 27.10 -

20 | 100 24.00 1.99 6.060 1.97 | 2.984 1.98 6.846 1.99

40 | 200 | 6.008 | 2.00 1.528 1.99 | 0.7480 | 2.00 1.718 1.99

80 | 400 1.502 2.00 | 0.3835 | 199 | 0.1871 | 2.00 | 0.4301 | 2.00

160 | 800 | 0.3755 | 2.00 | 0.09603 | 2.00 | 0.04678 | 2.00 | 0.1076 | 2.00

Table 3.10: Errors (3.5.4)—(3.5.5) for (3.5.3a)—(3.5.3d), with At = 0.1h and a = 0.5, for

Example 2.



Table 3.11: Errors (3.5.4) for the numerical scheme presented in [42], with At = h?, for

Example 2.

Table 3.12: Errors (3.5.4) for the numerical scheme presented in [42], with At = 0.1h, for
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J M E x 107 | eocy | € x 108 | eocsy
10 50 2839 - 71.71 -

20 200 203.4 | 3.80 | 51.83 | 3.79
40 | 800 13.24 | 394 | 3379 | 3.94
80 | 3200 | 0.8383 | 3.98 | 0.2140 | 3.98
160 | 12800 | 0.05264 | 3.99 | 0.01343 | 3.99

J M | & x 107 | eoc; | E x 108 | eocs
10 | 50 2839 - 717.1 -

20 | 100 | 7889 | 1.85| 201.7 | 1.83
40 | 200 | 2069 |1.93 | 5294 | 1.93
80 | 400 | 5291 | 1.97 | 13.53 | 1.97
160 | 800 | 13.38 | 1.98 | 3.416 | 1.99

Example 2.
J M E3 x 10° | eocs | E4 x 100 | eocy | E x 10* | eocs
10 50 438.3 - 762.0 - 57.71 -
20 200 31.75 3.79 | 5442 | 3.81 15.63 | 0.94
40 800 2.076 3.93 | 3542 | 394 | 3.989 | 0.99
80 | 3200 0.1317 | 3.98 | 0.2243 | 3.98 1.003 1.00
160 | 12800 | 0.008275 | 3.99 | 0.01409 | 3.99 | 0.2509 | 1.00

Table 3.13: Errors (3.5.5) and (3.5.7) for the numerical scheme presented in [42], with

At = h?, for Example 2.

Now that we have demonstrated the effectiveness of taking o < 1 and using our
Newton’s scheme we show the experimental order of convergence for the coupled system

in Model My. The fully discrete finite element form of the reaction-diffusion equation

takes the form

D, [(X’;ﬂ W",nh>h} + (w W",ng)h +d (

wy "
[ Xn|
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J M | & x10° | eocs | E4 x 10% | eocy | E5 x 10* | eocs

10 | 50 438.3 - 762.0 - 57.71 -
20 | 100 123.4 1.83 211.2 1.85 30.41 0.92

40 | 200 32.49 1.93 55.34 1.93 15.63 0.96

80 | 400 | 8&.319 1.97 14.15 1.97 | 7923 | 0.98

160 | 800 | 2.104 1.98 3.577 1.98 3.989 | 0.99

Table 3.14: Errors (3.5.5) and (3.5.7) for the numerical scheme presented in [42], with
At = 0.1h, for Example 2.

N h
= (IXE\Q(V”,W"*l),nh) ,  Vi'eSh  (3.58a)

Wy = wy, W3 = wy, (3.5.8b)

where U™(-) and V"(-) are the approximations to the tangential velocity (-, ") and the

normal velocity v(-,t") respectively, on each o, which take the form
U= (DX T, V= (DX", V), onoj,j=1,...,J
For this coupled system as well as monitoring the errors in (3.5.5) we also monitor

N
o= sup |I"(w") — WP, &= At I"w") W, (35.9)

n=0,...,N n—1

and quantify them using (3.5.6).
Example 3

Setting Q0 := R x R and taking I'(0) to be a semi-circle with radius one centred

around 0, with

1 w? 1 cos®(mp) 1 w
w)= —= . ) vV, w)=—7
J(w) 2(1-1F 2 Vit gl w) = =57

and d = 1, the explicit solutions to Model My are then given by
f(pat) =Vv1i—-t (COS(T['p), Sin(ﬂ—p»Ta w(ﬂ? t) = (1 - t) Sin(ﬂ-p)a p e [07 1]7 te [07 T]

As in Examples 1 and 2, we produce the results in Tables 3.15 — 3.18 using MATLAB on

the iMac computer.

Table 3.15 displays the errors for At = h? and o = 1 whilst Table 3.16 displays the
errors for At = h? and o = 0.5. Table 3.17 displays the errors for At = 0.1h and a = 1
whilst Table 3.18 displays the errors for At = 0.1h and o = 0.5. We see that & and
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a < 1 with At = C h? and At = C h. We also see that & and &7 exhibit eocs of close to

4 for both o = 1 and a < 1 with At = C h?, and exhibit close to 2 for both o = 1 and

a < 1 with At = C h. Considering At = C h, the errors & and &7 are exhibiting the eocs

expected from [6] but again not proven in our setting. As with &, one expects the eoc

of & to be 4 when At = C h? since it is an L? type error. As with &, & is exhibiting

superconvergence for At = C h? since it is an H' type error. Considering the setting of

«a =1, taking J = 10 and M = 80 results in approximately 0.011 seconds of execution time

whilst taking J = 160 and M = 20480 results in approximately 63.3 seconds of execution

time.
J M E3x 10° | eocs | €4 x 10° | eocy | E x 108 | eocg | E7 x 106 | eocy
10 80 445.4 - 147.0 - 11.23 - 55.22 -
20 | 320 37.90 | 3.55 13.34 | 3.46 | 0.6858 | 4.03 3.491 3.99
40 | 1280 2577 | 3.88 | 0.9244 | 3.85 | 0.04296 | 4.00 | 0.2186 | 4.00
80 | 5120 | 0.1645 | 3.97 | 0.05933 | 3.96 | 0.002686 | 4.00 | 0.01367 | 4.00
160 | 20480 | 0.01034 | 3.99 | 0.003733 | 3.99 | 0.0001679 | 4.00 | 0.0008549 | 4.00

Table 3.15: Errors (3.5.5) and (3.5.9) for (3.5.3a)—(3.5.3d) and (3.5.8a)—(3.5.8b), with
At = h? and o = 1, for Example 3.

J M E3x 10° | eocs | E4x10° | eocy | E x 10° | eocg | E7 x 106 | eocy
10 80 63.93 - 42.01 - 17.13 - 86.67 -

20 | 320 5.587 | 3.52 3.634 3.53 1.088 3.98 | 5478 | 3.98
40 | 1280 | 0.3812 | 3.87 | 0.2478 | 3.87 | 0.06828 | 3.99 | 0.3433 | 4.00
80 | 5120 | 0.02436 | 3.97 | 0.01584 | 3.97 | 0.004272 | 4.00 | 0.02147 | 4.00
160 | 20480 | 0.001531 | 3.99 | 0.0009954 | 3.99 | 0.0002670 | 4.00 | 0.001342 | 4.00

Table 3.16: Errors (3.5.5) and (3.5.9) for (3.5.3a)—(3.5.3d) and (3.5.8a)—(3.5.8b), with
At = h? and o = 0.5, for Example 3.
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J M | E3x10° | eocs | E4 x 10° | eocy | E x 10° | eocs | £ x 106 | eocy

10 80 445.4 - 147.0 - 11.23 - 55.22 -

20 | 160 182.5 1.29 56.70 1.37 1.197 3.23 3.353 4.04
40 | 320 57.53 1.67 17.61 1.69 | 0.1544 | 2.95 | 0.2024 | 4.05
80 | 640 16.11 1.84 4.911 1.84 | 0.02446 | 2.66 | 0.01592 | 3.67

160 | 1280 | 4.259 1.92 1.297 1.92 | 0.004616 | 2.41 | 0.002560 | 2.64

Table 3.17: Errors (3.5.5) and (3.5.9) for (3.5.3a)—(3.5.3d) and (3.5.8a)—(3.5.8b), with
At = 0.1~ and « = 1, for Example 3.

J M | E3x10° | eocs | Ex x 10° | eocy | E x 10° | eocg | E7 x 10° | eocy

10 80 63.93 - 42.01 - 17.13 - 86.67 -
20 | 160 98.45 | -0.63 34.68 0.28 1.141 3.91 5.145 4.07
40 | 320 44.07 1.16 14.08 1.30 | 0.1496 | 2.93 | 0.2967 | 4.12

80 | 640 14.21 1.63 4.411 1.67 | 0.02406 | 2.64 | 0.01948 | 3.93
160 | 1280 | 4.008 1.82 1.231 1.84 | 0.004587 | 2.39 | 0.002489 | 2.97

Table 3.18: Errors (3.5.5) and (3.5.9) for (3.5.3a)—(3.5.3d) and (3.5.8a)—(3.5.8b), with
At = 0.1~ and « = 0.5, for Example 3.
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Chapter 4

Mathematical modelling and
numerical discretisation of models

focused on the rice blast fungus

In this chapter we review the mathematical model of the rice blast fungus derived in [102]
and derive and discretise a diffuse interface approximation to this model. We chose to
derive a diffuse interface approximation to this model purely for mathematical interest.
There are mathematical elements in the sharp interface model described in [102] which
don’t have a clear representation in a phase field setting, such as the repulsion of two
evolving surfaces. We only postulate ways to address the terms which don’t have a clear
representation in the phase field setting, rigorous mathematical proof is still required
to show that the postulated terms do indeed approximate the sharp interface versions
correctly such as by completing asymptotic analysis. First we briefly introduce the life

cycle of the fungus.
The life cycle of the fungus can be broken up into seven stages in a fairly standard
biological way, see [119]. Namely we have
1. Eruption: After consuming the plant, the fungus erupts out of a leaf and grows to
infect more plants;

2. Spore tip mucilage': A spore finds a new plant (via a leaf) and begins the processing

'Mucilage is a thin viscous pool of liquid that binds the tip of a spore, that has erupted from a fungus,

to a surface, [121].
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of infection;

3. Germ tube? formation: A germ tube is released by the spore and covers an area of

the leaf;

4. Melanin-lined appressorium? cell wall: Growth of the fungus puts pressure on the

cell wall of the leaf;

5. Penetration peg: A part of the tumour penetrates the pressured leaf allowing for

infection of the whole plant;

6. Primary invasive hyphae*: Upon puncturing through the cell wall, the fungus injects

hyphae to infect the whole plant;

7. Tissue colonisation®: The fungus spreads around the plant until the majority of the

leaf cells have been consumed.

FEach of these stages matches an equivalent stage in Figure 4.1. The mathematical
model in [102] focuses on stages four and five above. It describes the growth of the fungus

and the penetration of the leaf as the result of the growth of the penetration peg.

The mathematical model presented in [102] comprises of six components. The fungus
and leaf are each modelled as hypersurfaces in R3. The mechanics describing the growth
of the fungus and its peg are dependent on four molecular species living on the fungus
surface. These species are Melanin, F-actin, Septins (a group of different Septin proteins)
and a turgor sensor Slnl (interchangeably referred to as TS). Initially, it is assumed that
the fungus has grown to some given size before recruitment of the species begins. Each of
the species satisfies a reaction-diffusion equation on the surface of the fungus. Moreover,
each of the species is localised to specific parts of the surface of the fungus, detailed in
Assumptions 4.1. The fungus can be split into two parts; the bulk and the appressorium.
The bulk represents the interior of the fungus where the species are recruited from and
the appressorium is the surface of the fungus. We interchangeably use fungus and ap-
pressorium to represent the same object. Furthermore we split the appressorium into two

sections, the appressorium dome and the pore. The pore describes the part of the fungus

2A germ tube is an outgrowth in a spore produced by a fungus, [1].

3 An appressorium is a pressing organ of a fungus from which an infection peg grows and punctures the
host, [76].

4A hypha is a long, branching filamentous structure of a fungus, [90].

5In biology, colonisation is the process by which a species spreads to new areas, [106].
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Figure 4.1: Life cycle of the rice blast fungus. Image created by Dr. George Littlejohn

and Marian Littlejohn, University of Plymouth.

where the penetration peg will form. The assumptions of the model presented in [102] are
defined in Assumptions 4.1.

Assumptions 4.1.

The authors in [102] assume the following when deriving the mathematical model:

1. Each molecular species is recruited to the surface from the bulk which is initially

full; [102]
2. Bulk concentration of each species is taken to be spatially constant; [102]

3. The total amount, surface concentration and bulk concentration combined, of each

species is conserved; [102]
4. Melanin is only recruited away from the pore; [21]

5. Melanin recruitment is positively correlated with increasing turgor pressure and is

inhibited by the presence of Slnl in the bulk; [31]
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Sln1 recruitment to the surface is inhibited by the presence of Melanin in the bulk

and can only be recruited once there is enough Melanin on the surface; [21]

F-actin and SInl are initially recruited to an annular region of the pore and diffuse

into other parts of the pore over time; [35]

Significant recruitment of Septins and F-actin can only happen once there is a pres-

ence of Slnl; [35]

The Septins are recruited to a smaller, but further out from the centre, annular

region of the pore to act as a diffusion barrier for the other species; [35]

The appressorium dome inflates due to turgor pressure, which is assumed to be an

increasing function of the amount of Melanin on the surface; [36]

The interaction of the leaf and the fungus is in an annular region within the pore;

[102]
F-actin is recruited to the pore to magnify turgor pressure; [35]

The Septins and Melanin are positively correlated with the rigidity of the appress-

orium; [35]

Once the leaf has formally been ruptured, it no longer resists penetration and no

longer influences the motion of the fungus. [102]

Mathematical model introduced in [102]

This section will closely follow the supplementary information provided in [102]. The

authors introduce the model with the biological values for parameters and then non-

dimensionalise, here we give the non-dimensionalised values. They also consider two types

of models, a wild type and a mutant type lacking the turgor sensor Slnl. In this setup,

we only consider the wild type.

Let I'(¢) be the evolving surface describing the fungus. The fungus is initially taken

to be dome shaped with radius R = 0.2 that is cut off at a certain depth and made flat

to model the pore area which has a diameter of Ry = 0.176. Let I'1,(¢) be the evolving

surface describing the leaf. The leaf initially is taken to be a planar surface that is a square

with sides of length 1. We first introduce the SRDEs satisfied by the concentrations of
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the molecular species. The concentration of each of the molecular species is assumed to

satisfy a mass conservation law, which is Assumption 3, and takes the following form
1= B;(t)+ Si(t), te][0,T], (4.1.1)

where S;(t) is the concentration of species i on the surface and B;(t) is the concentration
of species i left in the bulk. Using the conservation law, denoting the species vector
U = (U, Uts, Us, Ug) Where Uy, uss, us and u, denote the concentrations of Melanin, TS,
the Septins, and F-Actin, respectively, with the velocity of the evolving fungus surface

denoted by ¥, from [58] each of the species satisfy an SRDE in the form of

Ozuz =+ u; diVF(U) — divF(Di(us) Vrul) = fi — k; u;, on F(t), t e (0, T], (4.1.2&)

ui(-,0) =0, on I'(0), (4.1.2b)

with each species having its own external forcing f; and parameters D;, k; that affect
the recruitment and mechanics of the molecular species. The initial condition for the
molecular species coincide with Assumption 1. Indeed taking ¢ = 0 in (4.1.1), and noting

that B;(0) = 1, we see that S;(0) = 0, with S;(¢) calculated in the following way

S(t) = /m) wi(t)ds, te0,T). (4.1.3)

The first term in the SRDEs is the material derivative dfu; = Ou; + (U, Vu;) of the
species u;. An interpretation of the material derivative is the rate of change of a quantity
as experienced by an observer that is moving along with the flow, [49]. It comprises of
a local rate of change of concentration of a molecular species, represented by du;, and a
non-local transportation of a molecular species from the growth of the fungus, represented
by (¥, Vu;). The second term of the SRDEs is the advection term of the molecular species
u;. An interpretation of the advection term is the flux of the concentration of the molecular
species given the trajectory of the growth. In this model the velocity field ¥ = v/ is the
normal velocity of the surface. The third term of the SRDEs is the diffusion term of the
molecular species u;. An interpretation of the diffusion term is the change in concentration
of the molecular species in comparison to the surrounding concentration of the molecular

species. Here the diffusivity parameter is

Dy dg fori=s
o La(o () primmts
3

where H(-) is the conventional Heaviside function, (dp,, dss, ds,dq) = (0,1073,107°,1073)

and s3 = 0.1. Following Assumption 4, the diffusivity of Melanin is set to zero so that
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it only present in the regions where it is recruited to which, as we will see, is everywhere
except the pore. The diffusivity of Slnl and F-actin are dependent on the concentration
of Septins so that in areas of large amounts of Septins, there is no diffusion through those
regions, per Assumption 9. The diffusivity values are small, but non zero, which follows
Assumption 7. The parameter s3 represents a threshold value for the concentration of
Septins in certain regions. The first term on the right-hand side of the SRDEs is a source
term. An interpretation of the source term is that it provides the system with the creation,
and localisation, of each molecular species. Indeed, since the initial condition is zero, this
term will define where on the surface the recruitment of each species takes place. Before
we show the forms of the source terms we introduce components necessary to describe
them. Firstly we describe the ring structure rs, which is used to represent the geometry of
the pore and provide structure for the localisation of the molecular species. For p € I'(0),
rs initially takes the form

0 if po > 0,

rs(p,0) =14 0 if |(po, p1)| > Lo, (4.1.4)
r1 4+ r2|(Po,p1)| otherwise.

The parameters r| = % and ro = % correspond to initial reference values for the ring

structure, and Ry = 0.176 defines the initial diameter of the pore as above. The ring
structure is assumed to not diffuse and is simply transported by the motion of the surface,

and as such satisfies the following surface advection equation (SAE)
oprs + rsdivp(v) = 0, on I'(t), t € (0,T].
Next we introduce the turgor pressure

p(Sm(t),t) == p1(t) + p S (t). (4.1.5)

In this setting p; is the turgor pressure that increases linearly over time and then becomes

constant. It takes the form

Pt+p; fort<t
pl(t) = _ _
Pt+pr fort<t<T

where P = 5 is the time pressure coupling constant, p; = 1 is the initial pressure and ¢
is time period for turgor generation. Since S, is the surface concentration of Melanin,
p = 2 is the Melanin recruitment coupling constant, and the whole term provides extra
turgor pressure proportional to the concentration of Melanin, which follows Assumption
5. Finally we introduce some sets which are the localisation regions for the recruitment of

the molecular species, namely we have:
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e S,, defines the set of the surface where the pore is not, and hence where Melanin

will be recruited to, and takes the form
Sm(t) :={peTl(t): rs(p,t) =0}
since rs represents the ring structure describing the pore;

e S, defines the set of the surface where the pore is and takes the form
Srs(t) :={pe(t) : rs(p,t) > 0};

o Sis, Sg, S, define the annular sets on the surface where Slnl, the Septins and F-actin

will be recruited to, and take the form
Si(t) :=={pel(t): rs(p,t) > a;}

for i = ts, s, a, where «; defines the inner annulus radius for each species. Here ay =
0.6, ays = 0.3 and «, = 0.3, which follows Assumption 9, since oy > max{aq, s},

and Assumption 7;

e T defines the set whereby enough Melanin has been recruited to the surface to allow

for the turgor sensor to be recruited to the surface, and takes the form
T:={te€[0,T]: Sm(t) > gnBm(t)}

where ¢, = % defines the ratio of concentration of Melanin on the surface to the

concentration in the bulk.

We can now describe the forcing functions of the SRDEs for each of the molecular

species as follows:

e the forcing for Melanin f,, takes the form

Bm(t) —gb
Cm + Bm(t) — G

fm(t) = lmXSm(t) (p(Sm(t)v t) - pl)

where [,,, = 30 represents the coefficient of recruitment of Melanin from the bulk,
gy = 0.55 represents the proportion of Melanin and Slnl that is unavailable for
recruitment, ¢,,, = 10 is the saturation level of Melanin which comes from a Michaelis-
Menten formulation of the forcing, see [34], and x4 is the characteristic function of
the set A. It is noted in [102] that linear recruitment of Melanin was insufficient
to differentiate between differences in behaviour between the wild type and mutant
type, and so the authors chose to use the Michaelis-Menten term. The use of g, acts

per Assumption 5;
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e the forcing for Slnl f;s takes the form

Jes(t) := lisXs, (1) (Bts(t) — qp) X1

where l;s = 1 represents the coefficient of recruitment of the turgor sensor from the

bulk. The use of ¢, and xT acts per Assumption 6;

e the forcing for the Septins fs takes the form for 7 € I'(t)

fs(05) = (LsXs,(0) Xurs (5,)>0 + BsXs,s (1)) Bs (t)

where [; = 1 represents the coefficient of recruitment of the Septins from the bulk,
and s = 0.1 is the uniform recruitment coefficient of the Septins. Since I3 > s,
large amounts of recruitment are only initiated when there is a presence of turgor

sensor, per Assumption &;

e the forcing for F-actin f, takes the form for p'e I'(¢)

fa(D5t) = (laXs,(6) Xues (5:6)>0 T BaXs,. (1)) Ba(t)

where [, = 1 represents the coefficient of recruitment of F-actin from the bulk, and
8o = 0.1 is the uniform recruitment coefficient of F-actin. Since [, > f,, large
amounts of recruitment are only initiated when there is a presence of turgor sensor,

per Assumption 8.

The final term on the right hand side of the SRDE is the degradation (or destruction)
rate of each of the species. An interpretation of the degradation term is that it represents
the re-absorption of each species from the fungus surface to the bulk. We have that

(K, ks, ks, kq) = (0,0.1,0.1,0.1), whereby it is evident that no Melanin is re-absorbed.

We now describe the velocity laws for the motion of the fungus and leaf, both of which
will take the form of forced mean curvature flow. We first introduce the velocity law for
the fungus, namely

wv=0ck+p(l+g¢°)+4", onI'(t), te(0,T]. (4.1.6)

Here the coefficient w on the left-hand side of velocity law models the rigidity of the fungus

and takes the form

W( U, Ug) = wWo(Amy,me (Um) + sy 55 (Us)), (4.1.7)

where wy = 1 is the magnification factor of the rigidity and

Aiyin (ui) =1+ a <1 +H <u2 — 22))
2 19




145

represents the magnification function for both Melanin and Septins, as per Assumption
13. In this setting m; = s; = 1000 are the rigidity magnification factors due to Melanin
and Septins respectively, and mo = 0.25, so = 0.2 are the reference values for the initiation
of the magnification of the rigidity from Melanin and Septins respectively. We now briefly

discuss why this term represents rigidity. Consider
W =K and V=K

then, by fixing k, if w is significantly large, the velocity will be significantly smaller as the
amount of curvature is being divided by this factor. Thus the factor w will be restricting
the movement of the surface. Similarly, we can see this by considering I'(¢) to be a circle,

as each law satisfies

r(t) = /r(0)2 — %t and r(t) = /r(0)2 — 2t,

where r(t) is the radius of I'(t). It can easily be seen that with a large value of w, the
reduction of the radius of the circle is impeded, and thus can be interpreted as rigidity. The
coefficient 0 = 0.1 in (4.1.6) acts as surface tension. This term can be interpreted as the
resistance of the fungus to stretching. Mathematically o is called the kinetic coefficient.
The external forcing on the right-hand side of the velocity law consists of two parts, one
which is a protrusive force p(1 + gP) and the other which is repulsion g. First, we look at

the protrusive force which takes the form

P(Sm (1), £)(1 + " (ua))-

The function p describes the turgor pressure and has already been described in (4.1.5). Its
inclusion into the velocity law for the fungus coincides with Assumption 10. The function

gP describes the magnification of the turgor from the presence of F-actin and takes the

9 (uq) = % <1 +H (““é‘”)) :

Here a; = 5 is the protrusive force magnification factor and as = 0.25 is the reference

form

value for the initiation of magnification due to the F-actin concentration. We notice that
due to the forcing term for F-actin this pressure will be localised on the surface in an
annulus in the pore, as per Assumption 12. For some p € I'(¢), the repulsion force ¢" in

(4.1.6) takes the form

5L (s Ol Loo(rp 1)) > R

(F(p,t),U(p,t)) otherwise,

(4.1.8)
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where k7, = 0.4 is the maximum mean curvature of the leaf before rupturing, 7 defines an
obstacle potential and 7 represents the inward pointing unit normal vector to I'(t). The
presence of Ky provides the maximum threshold of pressure the leaf can withstand and
once it has been breached the repulsion term is set to zero which signals that the leaf has
been punctured, following Assumption 14. Before the threshold is breached an obstacle

potential is considered that takes the form

k
r(pt) ==rok (d(;;)t)) d(;t)Vd(ﬁ, t) (4.1.9)

where ry = 1 is the reference force per unit associated to the potential, k = 12 is a power
factor, dg = 0.05 is the reference distance such that for d(p,t) > dy the force becomes

negligible and d(p,t) defined as

D, t) = 1 D —
d(p,t) i 7' — 4l

is the minimum distance of a fixed point p" on the fungus to a point ¢ on the leaf. We
note that the name obstacle potential is an abuse of notation and is not the same as the
double obstacle potential described for the phase field approach to mean curvature flow.
If d(p,t) > do then the contribution of this repulsive force is incredibly small but once we
have d(p,t) < dy the force quickly becomes large. Although by itself the repulsion term
does not necessarily abide by Assumption 11, the added fact that the turgor pressure, and
more importantly magnification due to F-actin, only happens where the concentration of
F-actin is present and reached a certain threshold, which will be in an annular region in
the pore area, means that with these combined we can say that this term is in accordance

to Assumption 11.

Now that we have introduced the evolution law for the fungus, let us now introduce

the evolution law for leaf, which takes the form
wrvp =op KL+ g;, on I'r(t), t € (0,7). (4.1.10)

In (4.1.10) wy, models the rigidity of the leaf and is taken to be constant with wy = 10°.
Similarly oy, is the resistance to stretching and takes the constant value o7, = 105. These
are both fixed contributions coming from the fact that the leaf is significantly larger than
the fungus and that its material doesn’t change in the life cycle of the fungus. The forcing
term g} is the repulsion term, which is similar to (4.1.8), and, for some ¢ € I'z,(¢), takes

the form

r - 0 5L (Ol Loo(ry 1)) > KL
91(kL, 4, t) = (TL(#)
—(7(q,t),vr(q,t)) otherwise
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where 7 is the same obstacle potential described in (4.1.9), whereby
d(q.t) = Jmin, 7= q

describes the minimum distance from a fixed point ¢ on the leaf to a point ¢ on the fungus,
and 7, is the upward pointing unit normal to I'z. Since the leaf is flat and hence has no
curvature, the only movement will happen from the repulsion term. However the force
from the repulsion has to be of a large magnitude due to the order of the coefficients of
the velocity and curvature terms. This models the fact that the leaf is significantly larger
than the fungus and that it will take a huge protrusive force from the fungus to start to

bend the leaf.

4.2 Parametric formulation of a simplified model for curves

In [102] the authors solve a finite element approximation of the mathematical model that
they derive and they present numerical simulations in which I'(¢) and T'z(¢) are taken to
be hypersurfaces in R3, see [64]. In this section we reduce the spatial dimension of the
problem and model the fungus and leaf as curves in R%2. We consider two setups, the first,
presented in Section 4.2.1, describes the simulation of the full model in [102] reduced in
dimension from surface to curves and the second, presented in Section 4.2.2, describes a
reduction of the model in Section 4.2.1 which ties into the analysis conducted in Chapter

3.

4.2.1 Full model from [102] reduced from surfaces in R? to curves in R?

Here we consider a vertical cross section of the geometry considered in [102] in which the
appressorium from [102] is modelled by a closed curve in R?, with a semi-circular dome
and a flat pore section, and the leaf is modelled as a flat curve. We set I'(¢) to denote the
curve that represents the evolving fungus and initially we take it to be a circle cut off at

a certain depth which we describe as
F(O) =17 UTy, (421)
where I'7 describes the circular part

Iy :={peR®: —0; <tan '(p1/po) < 7+ 0y, || = R}
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Figure 4.2: Initial rice blast schematic. The red line is the initial fungus curve and the

green line is the initial leaf curve.

and I's describes the flat part
IDRES {176 R? : 740 < tan™'(p1/p0) < 21 — 07, 1 = —\/ R% — (R})?, |po| < R6}

where 0 = tan~1(\/R? — (R},)2/R},) is the polar angle where I'y and I's meet, R = 0.2
is the initial radius of the circle, and 2R, = Ry with Ry = 0.176 being the diameter of
the pore, see Figure 4.2. Similarly we set I'(t) to denote the curve that represents the

evolving leaf and initially we take it to be a bounded flat curve
TL(0) ={peR?: py = —/R2— (RL)2 — &4, o € [-L, L]} (4.2.2)

We set 2L = 1 to be the length of the I'z (t) and define £4 to be some threshold that ensures
initially the leaf is sufficiently far away from the fungus, thus not invoking a reaction from

the repulsion terms in the velocity laws immediately.

Let Z denote a parametrisation of I'(t) and ¢ denote a parametrisation of I',(¢). Then

the velocity laws (4.1.6) and (4.1.10) take the form

—

- €T -
(WZ)—o prypz =(p(L+4")+g") v, (p,t) €1x(0,T], (4.2.3a)
p
WL, — or, fip” = gh i, (pt) €T x (0,7, (4.2.3b)
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#0,8) = #(1,4), te (0,T), (4.2.3¢)
F(?j(pat)) =0, <gp(p,t),VJ'F(:lj(p,t))> =0, (P, t) S {07 1} X (07T]7 (4'2'3d)

#(p,0)=2%p), pel Fp,0)=4"p), pel01], (423¢)

where o denotes the outward pointing unit normal to I'(¢), ¥ denotes the downward

pointing unit normal to 'z (¢), and, for some p € R?, F is defined as
F(p) = [po| — L.

In an abuse of notation we define the parametrisation of the arc-length of both curves ¥
and ¢ by p. The parameterisation in (4.2.3a)-(4.2.3¢), noting (1.2.3) and (3.2.23b), leads
to the following SRDEs for each of the species (up,, us, Us, Uq)

(ai)p

Zp

(e - @i, — (D@22~ (- kw), (o0 €Tx O.T) (42.4)
p

4;(0,t) = u;(1,¢t), te (0,7, (4.2.4b)

u;(p,0) =0, pel, (4.2.4¢)

where ;(p,t) = u;(Z(p,t),t) and ¢ = (¥, 7-) denotes the tangential velocity #. For the

remainder of this subsection we drop the tilde on u;, and also rs, for ease of presentation.

Initially we see that the concentration of each molecular species is set to zero, whereby we

calculate the total amount of each species on the surface by

i) = [ 170wt 1) dp, € 0.7).
I
The diffusivity parameters we choose are

d fori=s

% (1 — HS (“S*s3>> for i = m,ts,a

3

V)

Dj(us) :=

S

where, for r € R,

HO(r) = tanh(r6~1)

is a smooth approximation to the Heaviside function H for some positive § > 1, as taken
in [102]. We take (dp, ds,ds,d,) = (0,1072,1075,1072) and s3 = 0.1, which are the same
values as in [102]. Since we consider a curve rather than a surface, we redefine the ring

structure, which initially, for some p € T'(0), is given by
0 if p1 > —/R? — (R})?
rs(p,0) =< 0 if [po| > R},

r1 + 72|po| otherwise,
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where R = 0.2, R{, = 0.088, 1 = % and ro = 23—0 as in [102], and satisfies the following SAE
([Zprs)e = (¥rs)p =0,  (p,t) €1 x(0,T],

rs(0,t) = rs(1,t), t e (0,7].
The turgor pressure takes the form

p(Sm(t)at) = pl(t) +,usm(t)7 (4'2'5)

where p = 0.5 is the Melanin coupling constant which has been reduced from g = 2 in

[102] and p;(t) takes the form

Pt+p; fort<t
pi(t) == B _
Pt+pr fort<t<T

with the time pressure constant P = 1 being reduced from P = 5 in [102], and p; = 1
and ¢ = 0.25 as in [102]. We chose to reduce these parameters as computationally in our
reduced model we found p = 2 caused the appressorium dome to grow too quickly in
comparison to the simulations in [102] and, once the leaf has ruptured, P = 5 caused the
penetration peg to grow too rapidly due to the too large pressure. The activation and

recruitment sets follow the structure set in [102] and take the form

e S,, defines the set of the surface where the pore is not, and takes the form
Sm(t) :={p e T'(t) : rs(p,t) = 0};

e S, defines the set of the surface where the pore is and takes the form
Srs(t) :={peT(t): rs(p,t) > 0};

o Sis, Ss, S, define the annular sets on the surface where Slnl, the Septins and F-actin

will be recruited to, and take the form
Si(t) :=={p e(t): rs(p,t) > a;}
for i = ts,s,a, where as = 0.6, ays = 0.3 and o, = 0.3 as in [102];

e T defines the set whereby enough Melanin has been recruited to the surface to allow

for the turgor sensor to be recruited to the surface, and takes the form
T:={te[0,T]: Spu(t) > gnBmn(t)}

where gn, = {5 as in [102].
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The description of each forcing function f; then follows as:

e the forcing for Melanin f,, takes the form

Bm(t) — @b
Cm + Bm(t) /)

fm(t) = lmXSm(t) (p(sm(t)v t) - pI)

where ¢, = 0.55 and ¢, = 10, as in [102], and l,, = 300 which is increased from
l;, = 30 in [102] to compensate for the reduction of the coupling constant in the

turgor pressure;

e the forcing for Slnl f;s takes the form

Jes(8) := lisXs, (1) (Bts(t) — qp) X1
where ;s = 1 and ¢, = 0.55 as in [102];

e the forcing for the Septins fs takes the form for p € I

Ts(pst) = (LsXs,(6) Xurs (p,t)>0 T BsXs,s(2)) Bs(t)

where [ = 1 as in [102], and S5 = 0.01, which is decreased from (s = 0.1 in [102]
as in our setting the concentration throughout the pore became large enough to

influence the evolution of the fungus in regions where it should not;
e the forcing for F-actin f, takes the form for p € 1
fa(pst) := (laXs, () Xuws (p,t)>0 T BaXs,s(t)) Ba(t)
where [, = 1 as in [102], and, for the same reason as above, §, = 0.01 decreased

from B, = 0.1.

We kept the degradation rate of each species (kp,, kis, ks, ka) = (0,0.1,0.1,0.1) the same
as in [102]. The rigidity, w, takes the form

W(tm, ta) = wWo(Amyms (Tm) + Asy,s (Us)),
where wy = 1 as in [102], and

1 U; — 1
)\il,iz(ui) = 1‘*‘*1 <1+H5 (l. 2))
2 19

with my = s; = 1000 and sy = 0.2 as in [102], and me = 0.15 which is reduced from

me = 0.25 in [102] because in our setup the concentration of Melanin increased much
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faster than it did in to the simulations in [102]. For a similar reason we take A(,,), where
U, is defined as for p € 1
[um ()l peem  if um(p,t) >0,

U (pa t) =
0 otherwise,

rather than A(u,,) as this gave rise to a more uniform distribution of Melanin than using

A(tp). The protrusive force takes the form

p(Sm(t)’ t)(l + gp(ua))

with p defined as in (4.2.5), and the magnification function g” defined as

a Ug — A
¥ (uq) = 51 (1 + H° (a2 2)) ,

where az = 0.25 as in [102] and a; = 1 is reduced from a; = 5 in [102], as when we used
a1 = 5 once the leaf ruptured the penetration peg grew more rapidly than it did in the

simulations in [102]. For some p € I, the repulsion force g" takes the form

0 1L (s )l Loe(z) > RL,
g (kpop,t) = @ (4.2.6)
(—7(p,t),U(p,t)) otherwise,
where k7, = 0.000604 reduced from %j = 0.4, the obstacle potential is defined as
do \" 1
(p,t) :=1ok < ) Vd(p,t 4.2.7
6:1) d(p,t)/) dip,t) (6:1) (2.7

with the distance function defined as

d(p,t) == min [Z(p,t) — §(p,t)|
pel0,1]

to be the minimum distance of a fixed point Z(p,¢) on the fungus to a point g(-,t) on
the leaf. The parameters rg = 1, k = 12 and dy = 0.05 are as in [102], and R; was
chosen experimentally to match the computational time the leaf ruptured in [102]. We
also note that ry, heavily relies on the choice of the surface tension on the leaf o; which
was decreased from o7, = 10 to o, = 10%. Similarly we decreased the rigidity factor of
the leaf from wy = 10% to wy = 10%. Taking o7, = wr, = 10° resulted in no noticeable
penetration peg being formed before the rupture of the leaf. We keep the surface tension
of the fungus to be o = 0.1 as in [102]. The forcing term g7, for some p € [0, 1], takes the
form

0 [5L(, )l Loo(z) > R,

gr(kL, p,t) =
<F(pa t)’ ) (p7 t)> otherwise,
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where 7 is the same obstacle potential described in (4.2.7), whereby

pel
describes the minimum distance of a fixed point #(p, t) on the leaf to a point Z(-,t) on the
fungus. We note the changes of sign in comparison to Section 4.1 are due to the orientation

of the two normal vectors U, U, from the setup.

For a finite element approximation of this model, we used the numerical scheme presen-
ted in [6], with @ = 1, for the finite element approximation of (4.2.3a), (4.2.3c), (4.2.4a)
and (4.2.4b), and we use the Newton’s scheme (3.5.3a)-(3.5.3d) for the finite element ap-
proximation of (4.2.3b) and (4.2.3d). We take T' = 0.4 as opposed to T' = 0.5 in [102],
§ = 10? for the approximation to the Heaviside function and ;4 = 0.1 for the initial sep-
aration of the leaf and fungus curves. As in [102] we use a uniform mesh for the partition
of the leaf Z but a non-uniform mesh for the partition of the fungus I. Indeed we use a
coarser mesh outside of the pore area and refine in the pore area, giving us a higher resol-
ution for the penetration peg formation. This can be seen in Figure 4.3b. The simulations
and visualisations were executed using MATLAB on the iMac computer, see Section 3.5,
with 200 DOFS, hpin = 1073, hmez = 1072, and At = 10~* which resulted 180 seconds of

execution time.

Figures 4.3-4.6 demonstrate the key parts of the simulation we want to compare to
the simulation in [102]. Figure 4.3 shows the initial rice blast, leaf and ring structure,
as well as the non-uniform mesh for the fungus. Figure 4.4 demonstrates the evolution
of the fungus, Figure 4.5a—4.5d demonstrates the evolution of the Melanin concentration,
Figure 4.5e-4.5h demonstrates the evolution of the Slnl concentration, Figure 4.6a—4.6d
demonstrates the evolution of the Septins concentration, and Figure 4.6e—4.6h demon-
strates the evolution of the F-actin concentration. Figure 4.4a demonstrates the fungus
growing, while Figures 4.4b and 4.5b show the largest the fungus will get as the Melanin
rigidity threshold has been reached, as well as the annulus behaviour of the other three
molecular species in Figures 4.5f, 4.6b and 4.6f. Figures 4.4c and 4.6g show that the
threshold of the magnification of the turgor pressure has been reached and the pore area
starts to push down on the leaf. Figure 4.4d shows the final time step of the simulation,
whereby you can clearly see the peg has formed. Finally we demonstrate in Figure 4.7
that in fact although the fungus grows quite a lot, the ring structure doesn’t move that
much at all, which be important for our derivation of a phase field model in Section 4.3.

An interesting behaviour that occurs here that may not be expected is that once the peg
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starts to form the concentration of the molecular species on the surface of the peg start to
deplete apart from right at the edge of the ring structure. This allows the peg to maintain
its shape whilst not grow exceptionally large as the F-actin driven magnification of the

pressure reduces.
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(a) Initial rice blast and leaf. (b) Initial ring structure demonstrating non-

uniform mesh.

Figure 4.3: Initial conditions for full model simulation in the parametric framework.
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(d) Rice blast and leaf at t = 0.4.

Figure 4.4: Full model simulation for parametric framework. Evolution of the rice blast.
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(a) Concentration of Melanin at ¢t = 0.1.
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(d) Concentration of Melanin at ¢ = 0.45.
(h) Concentration of Slnl at ¢t = 0.35.

Figure 4.5: Full model simulation for parametric framework: Melanin and Slnl.
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(a) Concentration of the Septins at ¢ = 0.1.
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(b) Concentration of the Septins at ¢t = 0.2.
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(c) Concentration of the Septins at ¢t = 0.3.
(g) Concentration of F-actin at ¢ = 0.3.
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(d) Concentration of the Septins at ¢ = 0.35.
(h) Concentration of F-actin at ¢t = 0.35.

Figure 4.6: Full model simulation for parametric framework: Septins and F-actin.
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(a) Initial ring structure. (b) Ring structure once fungus has stopped grow-

ing.

Figure 4.7: Demonstration of the movement of the ring structure in the full model simu-

lation in the parametric framework.

4.2.2 Reduced model of the model presented in Section 4.2.1

2L
(a) Initial rice blast schematic for full curve (b) Initial rice blast schematic for reduced curve

model. model.

Figure 4.8: Reduced model of the rice blast fungus. Here we consider only the pore area,
the grey box in Figure 4.8a, and fix the remaining flat part of the fungus to a boundary

far away from the pore, the grey lines in Figure 4.8b.

In this subsection we further simplify the model introduced in Section 4.2.1 by restrict-
ing I'(t) to the region around the pore area rather than considering the whole fungus in
order to study only the penetration peg, as seen in Figure 4.8. With an abuse of notation,

taking the curve I'(t) to represented the fungus (pore), we set

F(O) = {ﬁERQ : ﬁO € [7L,L]vﬁl :0}5
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where we consider L = 0.5 to be large enough to encompass the pore area. To be more
specific, we assume that the support of the pore area is strictly contained within I'(¢)
throughout the evolution and is some positive distance away from the boundary 9€) during
the evolution. We consider the evolution of I'(t) to be forced curve shortening flow fixed

orthogonally to the boundary 952, where
Q:={peR®: pye(-L, L)},

and let ¥ be a parametrisation of I'(¢). Thus, since we don’t consider the leaf in this

model, the reduced version of the velocity law (4.1.6) is

(WF) — 0 IZTQ =p(1+g") ¥, (pt) €T x (0,T], (4.2.8a)
F(Z(p,t)) =0, <fp(p7 t),VLF(f(p,t)» =0, (p,t) €{0,1} x (0,77, (4.2.8b)
Z(p,0) = 2%p), pelo,1], (4.2.8¢)

where 7/ denotes the downward pointing unit normal to I'(¢), p denotes the parametrisation

of the arc-length associated to I'(¢), and, for some § € R?, F is defined as

F(p) = |pol — L.

By considering only the peg development we do not need to model Melanin or Slnl, since
the primary role of Melanin is to increase the size of the fungus and the primary role
of SInl is to act as a trigger for the Septins and F-actin upon a certain threshold of
Melanin recruitment. Although it is primarily the role of F-actin to magnify the turgor
pressure for the penetration peg, we still consider the Septins since its presence provides
the enhancement of rigidity in the pore area, allowing the shape of the peg to form. This
reduces the system of SRDEs from four to two, and so the parametrisation (4.2.8a)-(4.2.8b)
leads to the following description of the SRDEs for the Septins and F-actin (us, u4)

(|fp\ai)t—<¢ﬂz-)p—<Di<as>(f§3f> Vi (fi— k@), (pf) €T (0.T], (4.2.99)
P

@;(0,t) = @ (1,t) =0,  te (0,7, (4.2.9D)

ai(p,0) =0, pelo0,1], (4.2.9¢)

where ;(p,t) = u;(£(p,t),t) and ¢ = (T}, 7-) denotes the tangential velocity of Z. For
the remainder of this subsection we drop the tilde from u;, and rs, for ease of presentation.
Since we make the assumption that the boundary 02 is far enough away from the pore

area, this leads us to taking (4.2.9b) since F-actin and the Septins are localised to the
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pore. The diffusivity parameters we choose are

102 s—
Dg(ug) := 107°, and D (us) :== 02 (1 —H (u8383’>)

with s3 = 0.1 as in [102]. We redefine the ring structure and initially set it to be, for some
peT(0),
0 if p1 >0
rs(p,0) =4 0 if |go| > fo

r1+ re|po| otherwise,

where Ro = 0.176, r1 = 3 and rp = % as in [102], and it satisfies the following SAE

(17| rs)e = (brs)p =0, (p,t) € T x(0,T],

rs(0,t) = rs(1,t) =0, t € (0,77,

where the boundary condition is derived in a similar manner to (4.2.9b). Since we neglect

Melanin, the turgor pressure p we use takes the form

p(t) = cppi(t), (4.2.10)
where ¢, = 0.05 and p;(t) takes the form

Pt+pr fort<t
pi(t) == B _
Pi+p; forf<t<T

with P =5 and ¢ = 0.25 as in [102], and p; = 0 reduced from p; = 1 in [102] since there is
no initial pressure in the pore area. We added ¢, as a small multiplicative factor to reduce
the turgor pressure generated by p over time. In the full model the repulsion function
stops the peg growing until the magnification is large enough, however since we neglect
repulsion in this reduced model we needed to reduce the magnitude of the pressure to allow
enough recruitment of F-actin for magnification and enough recruitment of the Septins for
the rigidity of the pore. By comparing (4.2.10) to (4.2.5) or (4.1.5), we notice the absence
of the Melanin factor since its primary role in the pressure function is to increase the size
of the appressorium dome. The activation and localisation are as in [102] and take the

form

e S, defines the set of the surface where the pore is and takes the form

Sps(t) :={p e I'(t) : rs(p,t) > O};
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e S, and S, define the annular sets on the surface where the Septins and F-actin will

be recruited to, and take the form
Si(t) = {FeT() : rs(t) > i)

for ¢ = s, a, where agy = 0.6 and a = 0.3.
Then, the description of each forcing function f; follows as:

e the forcing for the Septins fs takes the form

fs(t) == Lsxs, ) Bs(t)
with Is = 1 as in [102] but with the absence of the uniform recruitment rate fs;

e the forcing for F-actin f, takes the form

fa(t) :== laXSa(t)Ba(t)

with [, = 1 as in [102] but with the absence of the uniform recruitment rate 3.

We keep the degradation rate of each species (ks,kq) = (0.1,0.1) the same as in [102].

Considering the rigidity, w takes the form
w(ug) = wo(l + Mus)), (4.2.11)

where wy = 1 as in [102], and

Aug) =1+ %1 (1 + HO <uss_282>>

with s; = 1000 and sy = 0.2 as in [102]. By comparing (4.2.11) to (4.1.7), we notice the
absence of the rigidity caused by Melanin. Since the rigidity function considers the local
concentration of Melanin on the surface rather than the total amount recruited to the
surface of the fungus, it has no effect in the pore area, thus we take the contribution from

Melanin to be the smallest value of A, m,. The protrusive force takes the form
p) (1 + g°(ua))
with p defined in (4.2.10), and the magnification factor g” defined as

by e (14 g ((Ya a2
P (uq) : > + s ,

where a1 = 5 and ag = 0.25 as in [102]. The surface tension of the pore area is taken to

be 0 = 0.1 as in [102].
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For a finite element approximation of this model, we use the Newton’s scheme (3.5.3a)-
(3.5.3d) and (3.5.8a)-(3.5.8b) for the finite element approximation of (4.2.8a)-(4.2.8b),
with a = 1, and (4.2.9a)-(4.2.9b) respectively. We take 7" = 0.3 since the inception of the
Septins and F-actin is not at ¢ = 0 but much later in the simulation in [102], and we take
§ = 10? for the approximation of the Heaviside function. Similar to the full curve model,
we use MATLAB for the simulation and visualisations on the iMac computer with 100

DOFs, h = 1072 and At = 10~* which resulted in 1.5 seconds of execution time.

We demonstrate the progression of the simulation in Figures 4.9 and 4.10. Figure
4.9 displays the evolution of the peg whilst Figure 4.10 displays the evolution of the
concentration of the Septins and of F-actin. In each figure the boundary 0f2 is depicted in
black. We highlight noticeable mechanics. Figure 4.9b demonstrates the time-dependent
forcing pushing down on the pore area. One can see that the whole pore area is moving.
This wouldn’t happen in the original model due to the repulsion term from the presence of
the leaf as well as the rigidity from the concentration of Melanin. Figure 4.9c demonstrates
the penetration peg starting to form due to the concentration of F-actin causing the
magnification of the turgor pressure, see Figure 4.10g. One can see that annulus form of
the Septins in Figure 4.10c and that the threshold for the the influx of rigidity has been

reached. Finally, Figure 4.9d displays the clearly formed peg.
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(a) Rice blast pore at t = 0.

(b) Rice blast pore at ¢t = 0.1.

(c) Rice blast pore at t = 0.2.

(d) Rice blast pore at ¢t = 0.3.

Figure 4.9: Reduced model simulation for parametric framework. Evolution of rice blast

pore.
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(a) Concentration of the Septins at ¢ = 0.
(e) Concentration of the F-actin at ¢t = 0.

(b) Concentration of the Septins at ¢t = 0.1.
(f) Concentration of the F-actin at ¢ = 0.1.

(c) Concentration of the Septins at ¢t = 0.2.
(g) Concentration of the F-actin at ¢ = 0.2.

035

035

(d) Concentration of the Septins at ¢ = 0.3.
(h) Concentration of the F-actin at ¢t = 0.3.

Figure 4.10: Reduced model simulation for parametric framework: Septins and F-actin.
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4.3 The phase field approach to approximating the model

for the rice blast fungus

In this section we present a phase field approximation to the two dimensional model
we developed in Section 4.2.1 as well as develop an approximation to a reduced version
of the full three dimensional model proposed by [102]. We first present the phase field
approximations of the velocity laws (4.1.6) and (4.1.10) as well as the diffuse interface
approximations to the SRDE system (4.1.2a)-(4.1.2b). We continue to describe the fungus
surface as I'(t) and the leaf surface as I'r(¢). For an approximation to the initial curve
in the two dimensional model, we consider I'(0) and I',(0) defined by (4.2.1) and (4.2.2)
respectively. For an approximation to the initial fungus surface in the three dimensional
model, we define I'(0) as
T'(0) =T, U,

where I'7 describes the dome part
ri—{pe® o<t (B2 <o 5 r)

and I'y describes the pore area
r={pe® oy <t (PP <o gy — o o (RO, Yl < 6
p2
where 07 = m—tan"!(R(//R? — (R})?) is the polar angle where I'; and T's meet, R = 0.2
is the initial radius of the dome, and 2R{, = Ry with Ry = 0.176 being the diameter of the
pore. This initial data is shown in Figure 4.11. For the initial data for the leaf surface in

the three dimensional model, we define I'1,(0) as
FL(O) = {}76 Rg : ﬁ? = - R2 - (R6)25 ﬁo € [_LaL]a ﬁl € [_Lv L]}a

where we set L = 0.5. Let Q C R™!, where n = 1,2, is a bounded domain such
that T'(t) UTL(t) C Q, Vt € [0,T]. We denote, for some § € Q, ¢(p,t) := dr(p,t)
and ¢r(p,t) := dr,(p,t), where dp(-,t) and dp,(-,t) are the signed distance functions
corresponding to I'(¢) and I' () respectively. By considering

Lt)={peQ: ¢(pt)=0} and Tp(t)={peQ: ¢r(p,t)=0},

the double obstacle phase field approximations to the velocity laws (4.1.6) and (4.1.10)

satisfy the variational inequalities

(0, &= )

e (W), & — @) +e0 (Vp, VE— V) fg
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> (Zp(l +7) — ol - o), € - s0> . VEeK, (43.1a)

erwr ((pr)e,n —¢r) +eror (Ver, Vi —Veor) — i (oL, m—¢L)
1 2
= (el —¢?)n—er), Vnek, (4.3.1b)
0(,0) =), wr(,0)=¢)(), inQ, (4.3.1c)

where ¢(-,t) and ¢ (-, t) are the phase field approximations to ¢(-,t) and ¢ (-,t) respect-

ively, ¢¥ and ¢9 follow the same structure as (2.4.20), and
K:={¢eH(Q): |¢ <1},

We set
po(t) :i=1—*(,t), and T.(t):={peQ: p,(p,t) >0}, (4.3.2)
to be the diffuse interface function and interfacial regions respectively. We also set the

phase field approximations to the normal velocity v of I'(¢), the outward pointing unit

normal 77 to I'(¢) and the material velocity ¥ of I'(t) to be

vl 1) o= —% Go(t) = m Tp(rt) o= 0p 1) T ).

Then, neglecting the contribution from R, the diffuse interface approximation of the SRDE

system (4.1.2a)-(4.1.2b) satisfies the following weak formulation

d
7 (P [Vl, Q) + di (ppVui V|, VC) — (ppug Uy [V, V()
= (pp(ff — kiuf)|Vel,C), V(€ H'(Q), (4.3.3a)

ué(-,0) =0, in Q. (4.3.3b)

The extensions uf and f¢ we use in (4.3.3a) are a projection of the function values on I'(t)
in the (positive and negative) normal direction to I'(t) by 7. Noting (2.3.7), we calculate

the total surface amount of each species in the following way
and maintain that

4.3.1 Approximation to the curve model in Section 4.2.1

In this subsection we present the parameter choices and assumptions used for the phase

field approximation of the curve model presented in Section 4.2.1.
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Figure 4.11: Initial surface I'(0) describing the rice blast.

In order to simplify the phase field model, noting the investigations in Sections 2.4.2
and 2.4.4, we choose to make the diffusivity constants independent on the concentration
of the Septins and take d; = (1,10,1,10) x 1073. In addition, given the movement of the
ring structure when the fungus is growing in Figure 4.7b, we make rs® constant in time,
so that, for € Q, we have

0 if |7+ VR = (B2 > %
rsf(p) =14 0 if |po] > R

r1+ r2|po| otherwise,

where R = 0.2, R, = 0.088, r; = % and ro = ? as in [102]. These simplifications could be

addressed in subsequent models. We set the turgor pressure to be

P(Sm(t),t) :== p1(t) + pSm(t), (4.3.4)
where 1 = 2 as in [102] and p; () satisfies

Pt+pr fort<t
p(t):=9 _
Pi+p; forf<t<T
with p; = 1 and ¢ = 0.25 as in [102] and the time pressure constant P = 1 which is reduced

from P =5 in [102] since the value 5 caused the penetration peg to grow too rapidly once

the leaf has been punctured. We take the recruitment sets for the molecular species to be:
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e S,,c defines the (time independent) set on the curve where the pore is not:
Sme == {p € Q: rs¢(p) = 0;
e S,s defines the set where the pore is:

Spge = {p € N : rsf(p) > 0};

® Sise, Sge, Sge define the annular sets on the curve where Slnl, the Septins and F-actin
will be recruited to:

Sie :={p € Q: rs(p) > i},
for i = ts, s,a, where ays = 0.3, s = 0.6 and o, = 0.3 as in [102];

e T¢ defines the set whereby enough Melanin has been recruited to the curve to allow

for the turgor sensor to be recruited:
T¢:={t€[0,T]: S;,(t) > quBy,(t)},

where ¢, = {5 as in [102).
The description of each forcing function f then follow as:
o the forcing for Melanin f;, takes the form

By (t) —q
Cm + Bfn(t) —

fr(t) := lmXs,.e (p(Si(t),t) — pr)

where ¢, = 0.55 and ¢,, = 10, as in [102], and [,, = 300 which is increased from
l;, = 30 in [102] in order to compensate for the reduction of the coupling constant

in the turgor pressure;
e the forcing for SInl ff, takes the form
Jis(8) = ltsxs, e (Bis () — ap)xTe
where ;s = 1 and ¢, = 0.55 as in [102];
e the forcing for the Septins f¢ takes the form for p'€ Q
JEB,t) = (IsXs,e Xug, ()50 + BsXs,.e ) BE (1)

where [; = 1 as in [102], and 85 = 0.01 which is decreased from S5 = 0.1 in [102]
since setting 85 = 0.1 brought about a concentration throughout the pore was large

enough to influence the evolution of the fungus in regions where it should not;
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e the forcing for F-actin f¢ takes the form for 7€ Q

Ja(@5t) = (laXSye Xugs (5:4)>0 T BaXs, e ) Ba(t)

where [, = 1 as in [102], and, for the same reason as above, §, = 0.01 decreased

from B, = 0.1.

We keep the degradation rate of each species (kp, kts, ks, ko) = (0,0.1,0.1,0.1) the same

as in [102]. Considering the rigidity, we approximate w in (4.1.6) by

W(P<p ufm Py ui) ‘= wo ()‘ml,mz (ptp ufn) + Asy 50 (pcp u?)) ,

where wp = 1 as in [102], and
] us — 1
&m@wﬂ:r+;Q+H{%%2»,
12
with m; = s; = 1000, mg = 0.25 and s = 0.2 as in [102]. We approximate the protrusive

force with

P(Sn (1), 1)(1 + g"(ppui))

with p defined in (4.3.4), where the approximation to the magnification function ¢g” in

(4.1.6) takes the form
Plopu =y (10 (P02,

a
with aga = 0.25 as in [102] and a; = 1 reduced from a; =5 in [102] due to the penetration

peg growing too rapidly once the leaf had ruptured. We approximate the repulsion of the

leaf from the fungus ¢" in (4.1.8) by using

Roo

21 oh), (43.5)

where

0 if [[kLllp2) > L
Koo 1=
1 otherwise,

with K = 0.004. This is a experimentally led figure to match the dynamics of the
simulation in [102], and we chose to use the L? norm rather than the L* as we found
it produced more reliable readings to match against the model in [102]. From personal
communications with Charles M. Elliott from the University of Warwick, the term in

(4.3.5) comes from the addition of

1

% (1= 0(0))*(1 = 97 (1)) da
€Ja
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into the Ginzburg-Landau—Wilson functional (2.2.1) which heavily penalises having both
lo| < 1 and |pr| < 1 at any given point. Similarly we approximate the repulsion of the

fungus from the leaf by using

%@L(l - 7).
As explained previously, k1 heavily relies on the choice of surface tension o which we
decreased from o7, = 10° in [102] to o, = 103. Similarly we decreased the rigidity factor
of the leaf from wr, = 10° to wy, = 103. We kept the fungus surface tension o = 0.1 the

same as in [102].

To solve the finite element approximation of this model, we use Model: ACFEs
(2.4.17a)—(2.4.17b) with use of the projected SOR technique (2.4.19a)—(2.4.19b) for the
solution to the algebraic system of equations arising from the phase field approximation
to the velocity law as well as GMRES with diagonal preconditioning to solve the algebraic
systems arising from the SRDE system. We set T" = 0.35 and use the refinement procedure
discussed in Section 2.4, whereby we increase refinement in the interfacial regions defined

in a similar way to (2.4.15) with

NP = {i € N : 3j € w; such that pi(p;) >0}, TP :={T"cTh: Npm C N},

Ny ={i € N': 3j € w; such that pf, (7;) > 0}, F’i: ={T" e T": Npw C NEn}

and coarsen everywhere else, where here we have denoted ®" and ®’} to be the finite
element approximations to ¢" and ¢ respectively, and similar to (4.3.2) we denote
pa(:) == 1 — (@"(-))? and P, (1) == 1— (®7(-))?. Further to this, once the leaf has
ruptured, we increase the refinement of the triangles specifically in the pore area and
coarsen the triangles in I’I}JZ We set € = ¢, for ease of mesh parameter choice and take
§ = 10? for the approximation of the Heaviside function. The following simulation was
produced using ALBERTA using one core on the HPC and the visualisations were pro-
duced on MATLAB. Taking ¢ = 8—3, which equates initially to 12275 DOFs and finishes
with 13125 DOFs, hr = % and At = 107°, results in approximately 540 minutes of

execution.

As in the previous section we show figures that include interesting evolution properties
and compare them to the figures produced in Section 4.2.1. Figure 4.12 depicts the ini-
tial fungus and leaf configurations whilst Figure 4.13 depicts the evolution of the fungus
and leaf. Figures 4.14a—4.14d depict the evolution of the Melanin concentration, Figures

4.14e—4.14h depict the evolution of the Slnl concentration, Figures 4.15a—4.15d depict the



171

evolution of the Septins concentrations, and Figures 4.15e—4.15h depict the evolution of
the F-actin. We now compare the two simulations. We first note that there are two main
driving forces of the differences between the simulations; the first is the different forcing
and the second is the approximation to the repulsion term. The most noticeable difference
between the simulations is the difference between the pointwise values of the molecular
species. The different forcing for each species contribute to different pointwise values of
the concentrations on each of the curves, which in turn causes certain fungus behaviour
to occur at slightly different times and therefore a smaller simulation time 7. More expli-
citly, although the notation and values are the same in the forcing functions for the both
approaches, the forcing functions in the phase field approach are an approximation to the
sharp interface approach due to the forcing functions being proportional to the surface
concentration of each species. We believe the approximation to the surface integral using
(2.3.7) is the main element which is contributing to the different recruitment rates and
therefore the difference in pointwise values. More subtly, focusing on Melanin, in the ab-
sence of velocity once the dome has reached maximum size, diffusion and degradation, the
SRDE is only driven by the forcing. Now, notice that the forcing function is monoton-
ically decreasing to 0 as the bulk concentration decreases towards ¢, which means that
the Melanin surface concentration will reach a steady state of 1 — ¢;. We postulate that,
due to the approximation of the surface integral (2.3.7), the pointwise values of ¢, will
be different to u,, in order to satisfy S;,(¢) ~ 1 — ¢, and are causing the overestimation.
Although there is diffusion, degradation and surface movement for the other three species,
we postulate that if we were to run the simulation longer than 7" = 0.35, without the peg
forming mechanism, we would see the same behaviour happen. That is, at the moment
they seem to be underestimated using the phase field approach, and we postulate they will
be overestimated in a similar way to Melanin if the simulation ran for long enough. The
pointwise values also differ due to the simulation time 7', although the recruitment of Sln1,
the Septins and F-actin happens at roughly the same time in both approaches, the shorter
simulation time will have an effect on the recruitment time. Moreover, we also note that,
as shown in Section 2.4.4, the Allen-Cahn equation coupled to the diffuse interface approx-
imation does not react well with a small diffusion coefficient. Even though we increased
the diffusion coefficients significantly for Melanin and the Septins, d = 1072 and d = 1073
still cause reasonably large changes across the interface even with edges-smoothing, as
can be seen in Figure 2.23. We believe these changes also have a knock-on effect to the

interface pointwise values due to the surface integrals being approximated with an integral
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of each of the molecular species over the whole domain €. Another noticeable difference is
the distance between the fungus and the leaf. The repulsion term causes the fungus and

leaf to be significantly closer, and caused the difference in the leaf surface tension.

We first compare the evolution of the fungus by comparing Figure 4.13 with Figure 4.4.
We see that the fungus has reached maximum size by ¢t = 0.2, demonstrated by Figures
4.4a and 4.13a, but the fungus in the phase field simulation is slightly larger and, as alluded
to already, the fungus and leaf are closer. We also see that the peg is quite a bit larger in
the phase field simulation by comparing Figures 4.13d, where ¢t = 0.35, and 4.4d, where
t = 0.4. Next we compare the evolution of the Melanin concentration by comparing Figure
4.14a-4.14d with Figure 4.5a-4.5d. We see that the Melanin is mostly localised in the same
area of the fungus, whereby the Melanin has diffused slightly into the pore area in the
phase field setting since the diffusion constant is non-zero. Next we compare the evolution
of the Slnl concentration by comparing Figure 4.14e—4.14h to Figure 4.5e—4.5h. We see
that the Slnl is localised to the pore area and that, once the peg grows, the concentration
depletes on the peg’s surface. We notice that the increased diffusion in the phase field
setting doesn’t visually effect the location of the presence of the Slnl concentration on the
fungus surface. Next we compare the evolution of the Septins concentration by comparing
Figure 4.15a-4.15d to Figure 4.6a-4.6d. The Septins are localised in the same annular
region of the pore however we can see that the Septins concentration in the phase field
setting has diffused further. Moreover, by comparing Figure 4.6d with Figure 4.15d we
can see that in the sharp interface simulation there is a large concentration of Septins
still in the annular region whilst in the phase field simulation this doesn’t feature. We
speculate that this is one of the main causes for the peg to grow faster in the phase field
setting. We also speculate that this issue may be rectified by allowing the ring structure
to move with the fungus. Finally, we compare the evolution of the F-actin concentrations
by comparing Figure 4.15e—4.15h to Figure 4.6e—4.6h. Again, we see the concentration is
localised to the pore area however, in Figure 4.15h, we see a large concentration of F-actin
at the front of the peg in the phase field setting whilst in the sharp interface approach we
see the concentration has depleted. We believe that this increase in concentration is the

other main factor causing the peg to increase in size rapidly.

A more detailed investigation is needed to match the forcing terms in the phase field
scenario to the sharp interface model, and to show that the repulsion term in the phase field

setting does asymptotically match the repulsion term in the sharp interface setting. Doing
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this analysis will also show the correct scaling needed. It is also evident that the diffusion
constants do influence the fungus evolution, and some further work is needed to allow for
smaller diffusion constants in the numerical schemes. This could be managed if the edge
smoothing technique introduced in Section 2.4.3 could be applied to the finite volume
approximation of the diffuse interface approach, or alternatively to use a discontinuous

Galerkin approach [33, 79].
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Figure 4.12: Initial rice blast and leaf on the ®° = 0 and ®9 = 0 level sets for the phase

field curve approximation.
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(a) Rice blast and leaf at ¢t = 0.1.
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(b) Rice blast and leaf at ¢t = 0.2.
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(d) Rice blast and leaf at ¢t = 0.35.

Figure 4.13: Curve simulation for phase field framework. Rice blast and leaf on the ®" =0

and @} = 0 level sets respectively at different times.
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(d) Concentration of Melanin at t = 0.35.
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(h) Concentration of Slnl at t = 0.35.

Figure 4.14: Curve simulation for phase field framework: Melanin and SIn1.
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(d) Concentration of the Septins at t = 0.35.
(h) Concentration of F-actin at t = 0.35.

Figure 4.15: Curve simulation for phase field framework: Septins and F-actin.
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4.3.2 Approximation to the three dimensional surface model in [102]

The phase field versions of all the components that are derived in Section 4.3.1 naturally
extend to three space dimensions and so can be used to approximate the three dimensional
model in Section 4.1. We present simulations of this three dimensional setup using all the
same parameters as the ones defined in Section 4.3.1, where we note that we redefine the

initial ring structure rs® to mirror the dimension of the model, so that, for p’ € Q, we have

0 if (ﬁg+ VR = (36)2] > I
rs“(P) =4 0 if [ (o, p1)| > Ry

1+ r2|(Po,p1)| otherwise,

where R = 0.2, R, = 0.088, r; = } and r = 2 as in [102].

Using the same numerical procedure for the solution to the resulting systems of al-
gebraic equations and the same refinement procedure we present the following figures of
the three dimensional phase field approximation to the model in [102]. The following sim-
ulation was executed using ALBERTA using one core on the HPC, the visualisations in
Figures 4.16 and 4.17 were produced in MATLAB, and the visualisations in Figures 4.18
to 4.21 were produced in ParaView [73]. Taking ¢ = 8—027 which equates initially to 251611

DOFs and finishes with 259804 DOFs, h+ = 276 and At = 1074, results in approximately

6240 minutes (4 days, 8 hours) of execution.

Figures 4.16-4.21 demonstrate the three dimensional simulation. Figure 4.16 depicts
the initial fungus and leaf configuration, while Figure 4.17 depicts the evolution of the
two surfaces, in both figures © — z cross sections are displayed. In Figures 4.18 and 4.19
we display the pore area of the fungus by presented the results from the view point below
the fungus. Figure 4.18a-4.18d depicts the evolution of the concentration of Melanin,
while Figure 4.18e—4.18h depicts the evolution of the concentration of Slnl, Figure 4.19a—
4.19d depicts the evolution of the concentration of the Septins, while Figure 4.19e—4.19h
depicts the evolution of the concentration of the F-actin. Figure Figure 4.20 depicts the
evolution of the peg from initial formation to full growth, while Figure 4.21 depicts all the
molecular species at the final time from a side point of view. First we will compare the
curve simulation to the surface simulation, and then compare the surface simulation to
the figures in [102]. We begin by comparing the evolution of the fungus in Figure 4.17 to
Figure 4.13. We see that the fungus is slightly bigger in the curve simulation in comparison

to the surface simulation. We also see the leaf breaks early in the surface simulation, seen
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by a peg form at ¢ = 0.3 in Figure 4.17c whilst not appearing in Figure 4.13c at t = 0.3.
Interestingly, we also see that the peg grows slower in the surface simulation in comparison
to the curve simulation since the pegs are roughly similar sizes at ¢ = 0.35 in Figures 4.17d
and 4.13d. We speculate that this has something to do with the increase in dimension and
thus the increase in surface area. We quite clearly see the localisation of all the molecular
species are similar, and see the depletion of each of the species clearer in the surface
simulation compared to the curve simulation. This is emphasised by Figure 4.21, where
we can also see the diffusion of the Melanin into the seeded pore area in Figure 4.21a and
the diffusion of the Septins into the peg in Figure 4.21c. Now we compare our results to the
results in [102]. We first note that our peg is much larger that the one presented in Figure
2a in [102]. We believe this is due to the difference in concentration of the recruitment of
the Septins to the surface. We see that the molecular species concentrations are mostly
constant throughout their recruitment regions, with the exception of the turgor sensor, in
[102] whilst in our simulations, since we have higher diffusion constants, we see it happen

until we get close to the boundaries of the localisation regions.

0.5

0.4

0.3

0.2

0.1

-0.1 1

-0.2

-03

-0.4

205 L . L . L L L L .
-05 -04 -03 -02 -01 0 0.1 02 03 04 05

Figure 4.16: Initial rice blast and leaf on the ®° = 0 and ®9 = 0 level sets for the phase

field surface approximation, x — z cross section.
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(a) Rice blast and leaf at ¢t = 0.1.

5 .
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(b) Rice blast and leaf at ¢t = 0.2.

05 04 03 -02 -01 0 01 02 03 04 05

(d) Rice blast and leaf at ¢t = 0.35.

Figure 4.17: Surface simulation for phase field framework, x — z cross section. Rice blast

and leaf on the ®" = 0 and ®7 = 0 level sets respectively at different times.
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Figure 4.18: Surface simulation for phase
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(h) Concentration of Slnl at t = 0.35.

field framework, pore area: Melanin and Slnl.
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(d) Concentration of the Septins at t = 0.35.

) Concentration of F-actin at t = 0.35.

Figure 4.19: Surface simulation for phase field framework, pore area: Septins and F-actin.
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(a) Fungus at ¢t = 0.25.

(b) Fungus at ¢ = 0.275.

(¢) Fungus at ¢t = 0.3.

(d) Fungus at t = 0.35.

Figure 4.20: Surface simulation for phase field framework. Fungus peg formation ®" = 0

level set surface at times around the leaf breaking and peg forming.
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(d) Concentration of F-actin at t = 0.35.

Figure 4.21: Full simulation for phase field framework,  — z cross section. Concentrations

of the molecular species on the ®" = 0 level set at t = 0.35.
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Chapter 5

Conclusion

5.1 Summary

In this thesis we began by introducing topics on the mean curvature flow of hypersurfaces
and partial differential equations defined on hypersurfaces. In Chapter 2 we introduced
the phase field approximation to mean curvature flow, specifically the introduction of the
double obstacle potential, and the finite element discretisation of the phase field approach.
We then followed [44, 63] and state a diffuse interface approximation to SADEs together
with a finite element approximation. We showed experimental order of convergence for
a diffusion-dominated example and then explored an advection-dominated example. In
doing this we saw that, as the diffusion constant became smaller, instabilities occurred
across the profile of the finite element diffuse interface numerical solution. This motivated
us to introduce and derive a finite volume approximation to the diffuse interface approach
with upwinding and we demonstrated that, for advection-dominated equations, the finite
volume approximation errors were an improvement on the equivalent errors resulting from
the finite element approximation. As the diffusion constant became smaller both approx-
imations suffered from profile spiking near the edge of the interfacial region, and so we
followed the authors in [63] and introduced edge smoothing in the form of streamline dif-
fusion for the finite element approximation. This solved the profile spiking problem for
the finite element approximation but did not solve the appearance of instabilities, and,
although the profile looks better, the errors were worse. As in [63] we then considered
an application where the velocity law of the surface satisfied mean curvature flow and

so coupled the diffuse interface approximation to SADEs to the double obstacle phase
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field approximation to mean curvature flow. We again considered a advection-dominant
example to demonstrate that even when the surface is a finite element approximation, the
finite element approximation to the SADE still has bad instabilities and the finite volume

approximation performed much better but also still has large profile spiking.

In Chapter 3 we introduced curve shortening flow for closed curves and for curves at-
tached to some fixed boundary orthogonally. We extended the semi-discrete finite element
bounds for curve shortening flow attached to some fixed boundary orthogonally in [42] to

the fully discrete setting in Theorems 3.13 and 3.18.

Theorem.
Let X0 = "9 € [S")2. There exists h* > 0 and At* > 0 such that for all h € (0,h*]
and At € (0, At*], with At < Ch?, the fully-discrete problem (3.3.5a)-(3.3.5b) has the

following error bounds

N
sup |7 — X"+ Atn|@} — D X"[F < Ch?,

n=0,...,N n—1

sup |7 — X"[§ < C'h,
n=0,...,N

for some C > 0 independent of h and At.

We also extended the same semi-discrete finite element bounds in [42] for curve shortening
flow attached to some fixed boundary orthogonally to be coupled to a reaction-diffusion

equation on the curve in Theorem 3.23.

Theorem.

Let #(-,0) = I"#°(:) € [S"]? and w"(-,0) = I"w’(-) € S". There exists h* > 0 such
that for all h € (0, h*], the semi-discrete problem (3.4.5a)-(3.4.5¢) has the following error
bounds

sup |17, 1) = @ (. + Jw(,8) — w(, D)}
t€[0,T]

T
+/ [Ze(-, ) = TP O+ w(,t) —wh (- 1)[F dt < Ch?,
0

for some C' > 0 independent of h.

We closed this chapter by deriving a Newton’s scheme for the non-linear implicit bound-
ary conditions and demonstrated its superiority compared to the scheme introduced in [42]

for a similar problem.

In Chapter 4 we introduced the rice blast model as presented in [102]. We simplified the

model from an evolving surface to an evolving curve and used the parametric framework to
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produce a simulation matching [102]. We made further simplifications to only consider the

pore area of the fungus and used the Newton’s scheme derived in the Chapter 3. We then

derived a diffuse interface approximation of the SRDEs the molecular species satisfied

for a curve approximation and the surface approximation and showed two dimensional

simulations which matched our parametric model for curves as well as three dimensional

simulations that matched the surface model in [102].

5.2

Future work

We finalise this thesis with possible directions for future research. This list is by no means

exhaustive of the possibilities arising from the research conducted, but rather those that

follow as a simple continuation.

Investigate the edge smoothing analysis for the finite volume approximation of the

diffuse interface approach;

Prove stability results and error bounds for the finite volume approximation of the

diffuse interface approach;

Extend the finite volume approximation of the diffuse interface approximation of

SPDESs on evolving curves to evolving surfaces;

Investigate other numerical tools for advection-dominated PDEs, like the discontinu-

ous Galerkin method, in the diffuse interface approximation setting;

Extend the finite element error analysis used to prove Theorem 3.13 and Theorem
3.23 to prove fully discrete finite element error bounds for Model Mo, similar to

those obtained in [6];
Generalise the fixed boundary conditions to hold on surfaces;

Generalise the fixed boundary conditions so that one can consider an evolving curve

attached orthogonally to an evolving boundary;

Retract the assumption that the diffusion constants in the diffuse interface approx-
imation to the rice blast model in Section 4.3 are independent of the Septins and

reduce their values closer to the values set in [102];
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e Retract the assumption that the ring structure in the diffuse interface approximation

to the rice blast model in Section 4.3 is stationary.

This work has been difficult but very rewarding. I look forward to continuing to do
research for as long as is admissable. I gratefully acknowledge the support of the EPSRC
grant 1805391. This concludes the thesis.
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Appendix A

Geometric definitions and

operators

We follow the definitions introduced in [14, 41].

Definition A.1 (C?!-family of hypersurfaces).

A family (T'())¢e(o,7) is called a C?*Y-family of hypersurfaces if, for each (p,t) € R** x
(0,T) with p € T'(t), there exists an open set U C R § > 0 and a function u €
C2YU x (t — §,t+ 6)) such that

UNT@) ={FeU: u@@t)=0} and Vu(@t)£0 YyeUNnT(t).

Note. C*'-family of hypersurfaces will be referred to as a family of hypersurfaces or simply

hypersurface, depending on the context.

Definition A.2 (Tangent space).
The tangent space to a hypersurface I' is the n-dimensional linear subspace of R**! that

is orthogonal to Vu(p), denoted T,I".

Definition A.3 (Orientable hypersurface).
A hyperspace I' C R™*! is called orientable if there exists a vector field 7 € CH(R"1)
such that
v(p) L T, and |P(p)|=1, VpeTl.
Definition A.4 (Tangential derivative).
Let f be a function that is differentiable in an open neighbourhood of a hypersurface I'.

Then, for p'€ T, the tangential derivative of f is characterised as

Vrf(p) =V I®) = (Vi) 7(p))v(p)
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where V is the standard derivative in R™*!, (- .) is the standard scalar product in R"*!
and 7 is the outward pointing unit normal to I'.

Note. If n. = 1 then this can also be written as Vrf(p) = (Vf(p),7) 7, if 7 := 7t

Definition A.5 (Tangential divergence).
Let ¥ be a vector function whereby it’s components ¥; are differentiable in an open neigh-
bourhood of a hypersurface I'. Then, for p' € I', the tangential divergence of ¥ is charac-

terised as

divp 7(p) = divd(p) — (V{@(p), 7()), 7(P)) -
Note. If n = 1 then this can also be written as divpd(p) = ((7(p) @ 7(p))V, 9(p)).

Definition A.6 (Mean curvature).
Let I' be a hypersurface with outward pointing unit normal . Then, for p € I', the mean

curvature of I' at a point p'is defined as

H(m = —diVF ﬁ(m

Definition A.7 (Laplace-Beltrami operator).
Let f be a function that is twice differentiable in an open neighbourhood of a hypersurface

I'. Then, for p € I', the Laplace-Beltrami of f is characterised as

Arf(p) = divp(Vr f(p)).

Note. It is easy to show that Ar can also computed by Arf(p) = div(Vrf(p)).
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Appendix B

Notable analysis results

B.1 Informal derivation of (2.2.9)

In this section we look to derive the weak form of (2.2.2a) with (2.2.7) in an informal

manner using the subdifferential

(_0070] s=—1,
B(s) :== 0 ls| <1,
[0, 00) s=1.

First we prove the formula for the subdifferential is indeed the one above, and then we

proceed with the informal derivation of the weak form of (2.2.2a) with (2.2.7).

B.1.1 Derivation of subdifferential B

We first begin with the definition of a subdifferential of a function and a useful property
[68].

Definition B.1 (Subdifferential).
A subgradient of a function f: R — (—o00,00], f # oo, at the point g € R is a value
& € R such that

f(z) > f(zo) + &(z — o), Vr € R. (B.1.1)

The set df(xp) of all such values is called the subdifferential of f at the point xg.

Proposition B.2.

Let f: R — (—o0,00] be a convex function that is differentiable at the point xy €
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int dom(f). Then 9f(x0) = {f'(z0)}-

‘We now look to derive the subdifferential B. Consider

fla) = 50 =) + Ty (@)

where

0 lz| <1,
Io1(2) ==
00 |z| > 1.

We see that dom(f) = [—1,1] and int dom(f) = (—1,1). We split the calculation of the

subdifferential into three cases:

Case 1: Consider xg € (—1,1). Since f is convex and differentiable, using Proposition

B.2 we see that 0f(zo) = {—z0}.

Case 2: Consider zo = 1, then for x € [—1, 1], using (B.1.1), we have

2
%(1_932)25(95—1) o gz;(lx_"“"l):—;(um) Vo e[-1,1]

This implies that 0f(1) = [—1, c0).

Case 3: Consider zy = —1, then for x € [—1,1], using (B.1.1), we have

1 11-2%) 1

~(1—2% > 1 < = =—(1-2) V —1,1].

-2+ e e ot o S vee 1)

This implies that 0f(—1) = (—o0, 1].
Hence, Vg € R we have that
—Xq ’330| < 1,
[—1,00) g = 1,
of (xo) =

[—00,1] o = —1,
%) lz| > 1,

\

and so it not hard to deduce, with df(x¢) := W'(xg) = —zo + B(z0), the definition of B

from here.

B.1.2 Derivation of variational inequality (2.2.9)

Now that we have derived B, we can continue with the informal derivation of (2.2.9).

Indeed, multiplying (2.2.2a) by £ — ¢, where £ € K, and using integration by parts as well
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as (2.2.2b), noting informally that W'(s) = —s + B(s), we have

1 1
e(pt,§ —¢) +e(Vp,VE= Vo) (0,6 —¢) = —g(B(w),ﬁ—sO% VEe k.

€
We can split the integral on the right-hand side into three cases:

Case 1: Set ¢ = 1.

(a) Set & = 1. Then £ — ¢ = 0 and therefore B(¢)(§ — ¢) = 0.

(b) Set —1 < ¢ < 1. Since £ — ¢ < 0 and B(p) > 0 then B(¢)(£ — ¢) < 0.
Case 2: Set ¢ = —1.

(a) Set £ = —1. Then £ — ¢ = 0 and therefore B(¢)(£ — ¢) = 0.

(b) Set —1 < &€ < 1. Since & — ¢ > 0 and B(y) < 0 then B(p)(¢ — @) < 0.

Case 3: set |p| < 1. Then B(y) = 0 and therefore B(¢)(§ — ¢) = 0.

Thus, since B(p)(§ —¢) <0, V& € K, we arrive at (2.2.9).

B.2 Proof of coarea approximation (2.3.7)
In this section we look to derive the approximation (2.3.7). We first begin with the

definition of the coarea from [68].

Definition B.3 (Coarea formula).

Let u : R™ — R be Lipschitz continuous and assume that for a.e. » € R the level set
{z eR" : u(z) =r}

is a smooth, (n — 1) dimensional hypersurface in R™. Suppose also that f: R"™ — R is

continuous and f € L'(R™). Then,

/Rn fIVulde = /Z (/{u:r} de) dr. (B.2.1)

From the definition, we set f := &p. and u := ¢, where & € L(Q), ¢ € C>1(Q x [0,T])
and p. € CH1(Q x [0, T]). Noting that p(-,¢) = 0 in R™ \ Q and (2.3.3), we have

/Qé(') pe(-1) V(- 1) d = o §C) p= (- 1) V(- )| da



where

Using a standard trapezium quadrature rule

b 1
[ t@ydo 56- 0 f),

for some = € (a,b), we conclude that

1 <e7r em em

Je0ecomsti g (T ) e010)=F [ eas

B.3 Useful theorems

Theorem B.4 (Cayley-Hamilton Theorem in R?*2, [16]).
Given M € R**? and let I € R?>*? be the identity matriz. Given X\ that satisfies

det(M — XI) = A% — Tr(M)\ + det(M) = 0,
then M satisfies
M? — Tr(M)M + det(M)I = 0,
where 0 = 01.

Theorem B.5.
Let T € R?*2 be idempotent and let M € R?*? satisfy I + BT = M, for B € R\ {—1}.
Then the inverse of M 1is

Proof: Utilising the fact that T is idempotent, we see that
1
B

Rearranging we see that

;(M —1)?= i(M2 —2M + 1)

M-1)=T=T%= 7

1
I'= M@+ AT = M),
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Hence, due to the definition of an inverse, we see that

41 IV L . B
M7= (2 AT = M) = 5 (T + BT =T = BT) =T = T,

Theorem B.6 (Sobolev Embedding, [68]).
Let U C R™ be bounded and open, with a C' boundary. Assume u € W*P(U).

1. Ifk < %, then u € LYU) where % = % — & In addition we have the estimate

ulla@y < Cllullwrrwy
where C' depends only on k, p, n and U, i.e. WFP(U) — L4(U).

2. if k> 7, then u € Cki[%]fl”y(ﬁ), where

[ﬁ} +1-12 zf% is not an integer

P T p

any positive number < 1 if% s an integer

and
x|  if the decimal digit is <5

[x]  if the decimal digit is > 5.
In addition we have the estimate
< Cllullywrr s

Hu”ck—[%]fl,v((])

where C depends only on k, p, n, v and U, i.e. WFP(U) — Ck_[%]_l’v(lj).

B.4 Fully discrete results

Lemma B.1.

For some for u > 0, we have

n
et | B4+ 5N Ate i B

m=1

n
4 .
<y (M(Atm)z + M) Atpettm | Dy E™2,
m=1

Furthermore, if pAt < %, we have

n n
. 4 .
g E AtpeHtm=1 |Fm—112 < 9 § (u(Atm)Q + u) Atpe”Hm | D E™ 2.

(B.4.1)

(B.4.2)
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Proof: Firstly, we note that for p >0
At, Die Hin = e7Hin _ g=Hln-1 — o=Hin (1 - e“At") < —plt,eHin (B.4.3)

and

— Aty Dye Hhm = e7Hm=1 — gmhtm — g=Hbm—1 (1 — e*“mm) < pAtgpeHm=t o (B.4.4)
Consequently, using (B.4.3), since |EY| = 0, we have

eHin B2 = ZAtth e | B3]

m=1

n
-y [Atme_“tm Dy E™ + Atm|ﬁm—1|the—#tm}

m=1
n
<y [Atme_“tm Dy E™2 — pultypettm | Em—l g} . (B.4.5)
=1
Using (3.1.10) we have
B - B = [ (1B P - 1B dp
T
< [ 2ABm1E - ") ap
A
4 m |2 2 m |2
T

2 _
At |DiE™E (B.4.6)

5 B
< iAtm|Em|ﬁ +3

Setting § = ﬁm in (B.4.6) we see that
(B3 < 2/ B3 + 4(Atw)? DB, (BAT)
while setting 6 = § in (B.4.6) and using (B.4.7) we have
Aty D™ < Bty B + iAtm\DtEmlg. (B.4.8)
Thus, from (B.4.5) and (B.4.8), we have that
et |Er2 4+ K ZAt e Htm | Eml2 Z ( (Aty,)? i) At e Hm | D E™)2.
Furthermore, using (B.4.4) and (B.4.1), we see that

n
K —ptm—1 | pm—1 2 M —,u,tm m— 1
5 mz_:l Atpe LE Z Aty, |E

ml
n
'u “Htm— —Htm m—
5D Atyletnt — et B

n 4 .
< <,u(Atm)2 - > At e ™ | D E™ |2
o

m=1



+ 53 (At 2 | B,
Thus, provided pAt < %, we have

n n
. 4 .
g > Atge Pt | EIE <2 (u(Atm)Q + u) Atye | DE™)|3.
m=1 m=1
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