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Summary 
 

The experiments presented in this thesis are aimed at better understanding the ion and drug 

permeation properties of the mechano-electrical transduction (MET) channels of the hair cells 

responsible for hearing. Aminoglycosides (AGs) are potent antibiotics prescribed worldwide in 

the treatment of gram-negative infections such as sepsis, neonatal infections, and those 

associated with cystic fibrosis. AGs permeate into hair cells of the inner ear via the MET channels, 

which are large, non-selective mechanosensitive cation channels at the tips of the stereocilia. 

Once inside, AGs cause death of hair cells with varying degrees of severity depending on the 

drug family member and location of the cell along the length of the cochlea, with basal outer 

hair cells (OHCs) dying more readily than apical OHCs and inner hair cells (IHCs). By 

experimentally modelling the interaction between the MET channel and drugs that block it, we 

can determine electrical properties of the channel and calculate entry rates of the drugs into the 

cells. I present evidence for a correlation between the toxicity of three AGs (gentamicin, 

kanamycin and amikacin) and their entry rate through the MET channel in OHCs, with 

gentamicin being the most readily permeable and amikacin being the least. Furthermore, I have 

found that all four drugs (including the fluorescently conjugated gentamicin-Texas Red) that I 

have modelled permeate at a higher rate through individual channels in basal OHCs than those 

in apical OHCs.  I have also probed the roles of calcium, maturation, and driving force in drug 

permeation, and addressed aspects of the genetics of the channel and how these may relate to 

our model. Lastly, I present evidence for the existence of volume-regulated anion channels 

(VRACs) in the membranes of OHCs, which could potentially be an alternative route of entry for 

ototoxic compounds. 
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Key abbreviations 
 

ASIC Acid-sensing ion channel 

AG Aminoglycoside antibiotic 

b Relative distance of the binding site 

CDH23 Cadherin 23 

E Difference in energy barriers 

DHS Dihydrostreptomycin 

E1  First energy barrier 

E2  Second energy barrier 

Eb Free energy of the binding site 

GTTR Gentamicin-Texas Red 

k1 Forward rate over the first energy barrier 

KD Half-blocking concentration 

IHC Inner hair cell 

MET Mechano-electrical transducer 

nH Hill coefficient 

OHC Outer hair cell 

P Postnatal day 

PCDH1  Protocadherin 15 

RVD Regulatory volume decrease 

ROI Region of interest 

TMC Transmembrane channel-like 

V0 Voltage of maximum block (calculated) 

Vmax Voltage of maximum block (measured) 

VRAC Volume-regulated anion channel 
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1.1 Hearing 

The peripheral auditory system is an extraordinarily complex and finely tuned apparatus capable 

of detecting signals with impressive fidelity, and it enriches our lives with beautiful sensory 

detail. Our sense of hearing is essential to communication and to the appreciation of music, both 

of which are sources of joy for many. Unfortunately, due to its delicate nature hearing loss can 

easily transpire, and those that experience it often suffer greatly. In fact, hearing loss is 

frequently comorbid with dementia (Uhlmann et al., 1989; Lin and Albert, 2014) indicating an 

essential role in quality of life. Depending on the cause, hearing loss can be irreversible.  

Striving for a better understanding of the synergistic ballet of the peripheral auditory system 

and the mechanisms by which it can be damaged is paramount in the effort to preventing 

hearing loss and deafness in the population.  

 

1.1.1 Transduction of sound to the inner ear 

When something moves (i.e. a car, vocal cords, or the strings on a violin), it generates waves of 

pressure in the atmosphere around it. These waves propagate outward in all directions, and in 

the simplest of terms our ears detect them and relay them to the brain. Sound waves can be 

described in terms of amplitude and frequency, and together these make up a waveform  

(Purves et al., 2018). The simplest waveform is a pure sine wave, which we often use in the lab 

as a stimulus when studying the transduction of sound. Sound waves produced in the 

environment are rarely this simple. Not only do waveforms from different sources add and 

subtract from each other (constructive and destructive interference), but furthermore, what we 

think of as individual notes in a scale are in fact made up of many harmonic overtones—multiples 

of the fundamental tone—characteristic to the instrument that is playing them. These overtones 

sum together to produce distinctive waveforms, and we can use these waveforms to identify 

the sources of sounds—for example, a violin versus a human voice as in figure 1-1. Waveforms 

from multiple sources sum to produce a single, continuous and seemingly random waveform. 

Waveforms can be deconstructed into their composing frequencies by a mathematical process 

called a Fourier transform. Incredibly, the clever arrangement of our peripheral auditory system 

allows it to perform this operation mechanically. The auditory nerve (VIIIth cranial nerve) then 

relays the decomposed signal to the auditory brainstem and cortex for further processing 

(Purves et al., 2018).  
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As a sound wave arrives at the ear, it is gathered by the pinna and concha—the visible parts of 

the auditory system which are commonly referred to as the ear. In fact, these are only the very 

first part of the structure: the outer ear. In humans, the pinna and concha perform an 

equalisation of the soundscape by passively boosting the sound pressure of frequencies 

between 2 to 5 kHz about 30- to 100-fold (Purves et al., 2018). The pinna and concha also 

selectively filter sounds by their angle of arrival, giving a rough indication of the direction of the 

sound source (Purves et al., 2018). The sound is then funnelled down the ear canal and arrives 

at the entrance to the middle ear: the ear drum, or tympanic membrane. The ear drum is a thin 

membrane that collects the vibrations in air pressure and transfers them down the ossicles of 

the middle ear: the hammer, anvil, and stirrup (malleus, incus and stapes). These are among the 

smallest bones in the human body, and they transmit vibrations from the relatively large ear 

drum onto the much smaller entrance to the inner ear, the oval window of the cochlea.  

This process amplifies the pressure of the signal about 200-fold (Purves et al., 2018). Thus, the 

middle ear performs the first transformation of the signal in the pathway to hearing: matching 

the low-impedance vibrations of air pressure to high-impedance vibrations in fluid pressure 

inside the cochlea (Purves et al., 2018).  
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Inside the skull resides the inner ear, comprising the utricle and semi-circular canals (responsible 

for balance and the sensing of movement), and the cochlea. Figure 1-2 details the components 

of the peripheral auditory system. The cochlea is a coiled bony shell, and it decomposes sounds 

by pitch along its length, analogous to a piano inside the head with high pitches sensed at the 

basal end of the coil and low pitches sensed at the apex (figure 1-3). This property is referred to 

as tonotopy. Along its interior run three fluid-filled compartments: the scala vestibuli, scala 

tympani, and the scala media (figure 1-4). The scala vestibuli and the scala media are separated 

by Reissner’s membrane, and the scala media and scala tympani are separated by the basilar 

membrane. The scala vestibuli and tympani contain perilymph, while the scala media contains 

an unusual medium called endolymph which will be further discussed in section 1.1.3.  

The basilar membrane is key to frequency tuning of the cochlea. It moves in the shape of a 

traveling wave from the base to the apex of the coil, resonating at specific locations along its 

length depending on the frequency (or pitch) of the signal. Within the scala media along the top 

of the basilar membrane, lies the organ of Corti: a collection of highly specialised cells including 

the stars of sound transduction, the hair cells (Purves et al., 2018). 
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1.1.2 Sensory hair cells 

There are many interesting components of the organ of Corti, problems in any of which can 

contribute to hearing loss. But few are as complex as the hair cells. Along the length of the organ 

are four rows of sensory hair cells; three rows of outer hair cells (OHCs) and one row of inner 

hair cells (IHCs) as illustrated in figure 1-4. This thesis will focus on the OHCs of the mouse.  

OHCs are long, tubular cells atop which sit a V-shaped bundle of stiff, rod-like stereocilia. These 

stereocilia are arranged into three rows ranging from shortest to tallest and are linked together 

at the top by tip links composed of protocadherin-15 (PCDH15) on the lower third and  

cadherin-23 (CDH23) on the upper two thirds (Kazmierczak et al., 2007). The OHC hair bundles 

are embedded in the tectorial membrane, while the IHC hair bundles are generally less organised 

and are probably not directly attached the tectorial membrane (Engström and Engström, 1978). 

At the top of the shorter stereocilia, the tip links of both OHCs and IHCs are anchored to a large 

proprietary nonselective cation channel called the mechano-electrical transducer (MET) 

channel. Deflection of the bundle by a sound wave produces a shearing motion of the stereocilia 

against the tectorial membrane. This puts tension on the tip links and physically pulls open the 

MET channels allowing influx of ions (mainly potassium and calcium) carrying electrical current 

and causes depolarisation of the cell (figure 1-5). The process of mechanotransduction will be 

reviewed in detail in section 1.2.  

OHCs respond to sound by contracting with impressive fidelity in time with the signal, amplifying 

the movement of the basilar membrane (Ashmore, 2008; Dallos, 2008). The change in voltage 

of the OHCs due to opening of the MET channel causes the membrane to contract much like a 

Hoberman sphere (figure 1-5). This property is known as electromotility and is due to activation 

of voltage-sensitive prestin embedded in the OHC membranes (Ashmore, 2008; Dallos, 2008), 

and it can be observed in excised mouse OHCs from about postnatal day 7 (P7) onwards. The 

amplified movement of the fluid under the tectorial membrane is then sensed by the stationary 

IHCs, which transmit the signal to the auditory nerve and up to the brain. Both OHCs and IHCs 

are innervated, though the ratios of each type of innervation are different. While IHCs are 

innervated by about 95% of the afferent neurons (ascending to the brain), OHCs are only 

innervated by the remaining 5% (Purves et al., 2018). Additionally, efferent neurons (descending 

from the brain) innervate the OHCs but their exact function remains unclear. The movement of 

OHCs produces sound called otoacoustic emissions, so it is thought that efferent innervation 

may tune this movement to regulate the stiffness of the basilar membrane (He, 1997; Wersinger 

and Fuchs, 2011). This may have a role in protecting the cochlea from acoustic trauma.  
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1.1.4 Gradients in the development of hair cells 

During development of the inner ear, a complicated sequence of gene expression produces a 

smooth gradient in the components of the cochlea. Morphogens diffuse away from one end to 

the other and depending on the threshold of the signal cells will differentiate accordingly. In the 

mouse, the cochlea originates from sensory progenitor cells of the ectoderm on either side of 

the hindbrain (Groves and Fekete, 2012). The earliest marker of the developing inner ear is PAX2, 

which also gives rise to the epidermis (Groves and Fekete, 2012). SOX2 is then expressed in 

multiple pro-sensory patches which will give rise to the three cristae of the semi-circular canals, 

the two maculae of the utricle, and the cochlear epithelium (Bok et al., 2007; Groves et al., 2013). 

The anterior-posterior axis of the inner ear is set up by retinoic acid synthesis on the posterior 

side and degradation on the anterior side (Bok et al., 2011).  

The organ of Corti itself grows out from one point in the pro-sensory domain set up by SOX2. 

Notch patterning differentiates cell fates between hair cells and supporting cells (Batts, 2009). 

ATOH1 is the key hair cell specifier, and its expression begins in the basal cells of the mouse 

cochlea on embryonic day (E) 13.5, progressing towards the apex (Chen et al., 2002; Groves et 

al., 2013). Apical OHCs then mature about five days later than basal OHCs (Groves et al., 2013). 

The regulating factor for this wave of maturation is cyclin-dependent kinase inhibitor P27kip1: 

conditional knock-out of P27kip1 leads to supernumerary proliferation and survival of hair cells 

into adulthood (Walters et al., 2014).  

As well as a difference in the timing of maturity, apical and basal OHCs have morphological 

differences in size and function. The smaller size of the basal cells means a smaller membrane 

capacitance, allowing them to respond to the faster signals of the high frequencies (Johnson et 

al., 2011). Bundle morphology of OHCs changes in the base and apex, with basal bundles starting 

out slightly taller than apical but shortening over the first few postnatal days (Lelli et al., 2009). 

The acquisition of mechanotransduction also occurs in a gradient, with transduction beginning 

in the base at P0 and progressing through to the apex to full completion by P7 (Lelli et al., 2009). 

Recent evidence also shows that the tip links of OHCs demonstrate an increased stiffness in basal 

cells compared to apical (Tobin et al., 2019). Gradients that alter the properties of 

mechanotransduction along the cochlea are numerous, and even occur at the level of the 

conductance and genetic composition of the MET channel itself. 
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1.2 The MET channel and its history 

1.2.1 Biokinetics of the mechanotransduction complex in hair cells 

The MET channel is characterised by a large single-channel conductance of approximately  

100 pS (Pan et al., 2013, Kim et al., 2013, Beurg et al., 2018, Beurg et al., 2019) and ultra-fast 

kinetics of up to 100 kHz (Doll et al., 2012). These properties are essential to the precise and 

faithful transduction of the extremely fast stimulus that is sound, and the way in which the MET 

channel achieves this impressive feat will be summarised here.  

The driving force for current flow through the MET channel is set up by the endocochlear 

potential, a large electrochemical gradient in between the scala media and the scala tympani. 

The endolymph in the scala media contains an unusually high extracellular K+ concentration in 

excess of 150 mM, compared to the 5 mM of the perilymph in the scala tympani (Purves et al., 

2018). This high K+ concentration is generated and actively maintained by the stria vascularis, 

which secretes K+ into the scala media (Tasaki and Spyropoulos, 1959; Purves et al., 2018).  

This difference in ionic composition produces an electrical potential difference of approximately 

+80 mV between the endolymph and the perilymph (Purves et al., 2018). The hair bundle sits in 

the endolymph, whereas the cell body is bathed in perilymph. As the interior of the cell sits 

between -40 and -70 mV relative to the perilymph (Mammano and Ashmore, 1996; Marcotti 

and Kros, 1999; Johnson et al., 2011), this means that there is a gradient of up to +150 mV 

between the endolymph and the hair cell; an absolutely massive amount of pressure pushing 

positively charged ions (and other molecules!) into the cell. Figure 1-5 illustrates the 

environment of an OHC. The endocochlear potential is stronger in the base than the apex of the 

cochlea (Konishi and Mendelsohn, 1970; Guo et al., 2012), further tuning the tonotopic function 

of the hair cells. K+ is cleared from the cells by ion channels in the basolateral membrane 

(Fettiplace, 2017).  

At its narrowest point, the pore of the channel is commonly thought to measure approximately 

12.5 Å, with a mouth width of 17 Å and a total length of 31 Å (Farris et al., 2004). Recent 

permeation studies suggest that this could in fact be a drastic underestimation and that the pore 

can fit larger molecules, including the peptide D-JNKi1 of 15 Å (Desmonds, 2015), and even the 

3 kDa dextran-Texas Red (Ballesteros et al., 2018) of 23 Å (Choi et al., 2010). Permeation of 

fluorescent compounds follows the tonotopic gradient, with basal cells showing stronger 

labelling than apical cells (Gale et al., 2001, Lelli et al., 2009; Desmonds, 2015; Ballesteros et al., 

2018). 
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Early extracellular recordings localised the MET channel to the tops of the stereocilia (Hudspeth, 

1982), and fast confocal imaging confirmed their location at the insertion point of the lower end 

of the tip links (Beurg et al., 2009). The tip links are composed of a handshake between 

protocadherin 15 (PCDH15) and cadherin 23 (CDH23) (Kazmierczak et al., 2007; Goodyear et al. 

2010; Sotomayor et al., 2012; Bartsch et al., 2018). CDH23 is bound to a myosin-motor complex 

on the inside of the taller stereocilia, and PCDH15 contacts the MET channel complex on the top 

of the shorter stereocilia (Beurg et al., 2009). The interaction between CDH23 and PCDH15 is 

calcium-dependent and buffering of calcium with BAPTA or EGTA breaks the tip links and 

abolishes mechanotransduction (Assad et al., 1991; Zhao et al., 1996). During daily life, tip links 

can act as a pressure valve to protect the hair cell. They can be broken by excessively high stimuli, 

but amazingly can regenerate over a period of 24 hours (Zhao et al., 1996; Indzhykulian et al., 

2013). This may be partly to blame for that unpleasant sensation of tinnitus and mild hearing 

loss when you go to bed after a loud gig.  

The MET channel exhibits two types of adaptation, slow and fast, both of which are dependent 

on calcium (Ricci and Fettiplace, 1997; Wu et al., 1999; Ricci, 2002; Corns et al., 2014).  

Fast adaptation happens on the order of a millisecond or faster and is likely due to calcium 

binding either directly to the channel or to the gating spring, reducing the open probability.  

Slow adaptation is more complex and is thought to involve calcium diffusion through the 

stereocilia and affecting the myosin-motor of the tip link attached to the next shortest row. This 

motor is thought to involve myosin VIIa (Kros et al., 2002), which interacts with CDH23 through 

calmodulin (Grati and Kachar, 2011). When calcium binds to calmodulin, it releases the 

interaction and the myosin motor slips down, decreasing the tension in the tip link. It then begins 

to crawl back up, retensioning the tip link and resetting the operation point of the channel 

(Gillespie, 2004; Grati and Kachar, 2011).  

In the absence of stimulation, the channel has a resting open probability of 0.1 to 0.5 (Howard 

and Hudspeth, 1988; Farris et al., 2006; Beurg et al., 2010) indicating that a proportion of 

channels are open at rest. This can be observed as a constant membrane current even while 

blocking basolateral ion channels and can be calculated as a proportion of the maximal MET 

current that can be elicited. The resting current is abolished when a negative stimulus is applied 

to the hair bundles—this releases the proportion of tip links that are under tension at rest, 

closing all the remaining channels. It is thought that there are two or possibly more MET 

channels per stereocilium (Beurg et al., 2006; Fettiplace, 2009; Beurg et al., 2018), though the 

implications of this for the joint gating of multiple permeation pathways, while feasible, are still 

unclear (Sul and Iwasa, 2010; Corey et al., 2019). 



26 
 

To achieve its incredibly quick activation time (Doll et al. 2012), the MET channel must be 

physically coupled to the tip link. The gating-spring model was first introduced by Corey and 

Hudspeth in 1983 to account for the observation that activation of MET channels caused a 

reduction in hair bundle stiffness. But experiments using electron microscopy (Kachar et al., 

2000) and molecular dynamics simulations (Sotomayor et al., 2010, Sotomayor et al., 2012, 

Powers et al. 2017) have suggested that the tip links themselves are too stiff to be the gating 

spring, so it is thought there may be another component in the complex that gates the opening 

of the MET channel. Alternatively, the spring could be the membrane itself, as tent-like 

deformations around the insertion point of the tip link have been shown (Powers et al., 2012; 

Reichenbach and Hudsepth, 2014). Either way, differences in adaptation in apex and base (Ricci, 

2002; Ricci et al., 2003) suggest that the stiffness of the gating spring could be dependent on 

intracellular Ca2+ concentration immediately inside the transduction channel (Reichenbach and 

Hudspeth, 2014) and would require a calcium-sensing domain that could bind to and modulate 

the permeation properties of the channel. A recent candidate for this function is CIB2 (Giese et 

al., 2017) which will be discussed in section 1.2.3. 

 

1.2.2 The discovery of the MET channel and its pore-forming subunit 

Mechanically sensitive electrical activity of the hair bundle was first described by Hudspeth and 

Corey in a 1977 publication in PNAS, who subsequently did much early work characterising the 

activity of the MET channel in the bullfrog sacculus (Corey and Hudspeth, 1979; Corey and 

Hudspeth, 1983). MET currents were first recorded in the mouse by Kros et al. in 1992.  

Since, the MET channel has generated huge interest and has been the subject of countless 

publications across the last 3 decades.  

Characterising the channel responsible for these fascinating mechanically-sensitive currents has 

been a challenge to the research community: its study is confounded by the small number of 

channels per hair cell (~100), and the fact that no large-scale hair cell lines exist as of yet. The 

molecular composition of the channel is difficult to tease apart because it is likely a complex of 

several different proteins, and eliminating any single component of the chain can have profound 

effects on its kinetics and even abolish mechanotransduction. Due to the remote location of the 

MET channel relative to the cell body, many proteins are thought to be involved in targeting and 

trafficking of the various MET channel components to the tips of the stereocilia, further 

complicating the issue. It has also been difficult to find high-affinity ligands specific to the 

channel that exist for purification, likely because the channel is assembled at the stereocilia tips 
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(Wu and Muller, 2016). Similarly, it is difficult to image protein localisation at the tips of the 

stereocilia as they are so small, and there is often a build-up of precursor and trafficking proteins 

in the cuticular plate at the insertion point of the stereocilia into the apical surface of the cell 

(Ugawa et al., 2006, Ugawa et al., 2008). 

For many years, the identity of the MET channel was the subject of controversial debate. Several 

candidates have been proposed in the race for the pore-forming subunit, but until recently none 

have been shown to form ion permeation pathways when expressed in cell membrane. Many 

reviews have been published on the subject, including a pair of contrasting articles in 2016 as 

part of the Dual Perspectives series in the Journal of Neuroscience: one by Corey and Holt, and 

the other by Wu and Müller. Until very recently opinions were split over the identity of the pore-

forming subunit, but conclusive evidence was published by Pan et al. in 2018 proving it beyond 

doubt to be the transmembrane channel-like isoforms 1 and 2 (TMC1 and TMC2). The remaining 

subunits of the channel remain inconclusive, however. Other proteins that have been closely 

implicated include LHFPL5, TMIE, CIB2, and ASIC1b (figure 1-7). The evidence for these and their 

possible functions will be reviewed here.  
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1.2.3 Potential MET channel complex candidates (the runners-up for the 
pore) 

LHFPL5 (formerly known as TMHS) causes deafness in mice when mutated and is localised near 

the lower end of the tip links (Xiong et al., 2012). Lhfpl5-/- mutants have up to a 90% reduction 

in mechanotransduction from stepwise deflections of the bundle, and single-channel recordings 

show that the conductance of the MET channel is impaired (Xiong et al., 2012). However, the 

MET channel currents are not fully abolished, which almost definitely excludes LHFPL5 from 

being the pore-forming subunit. LHFPL5 was also shown to regulate the transport of PCDH15 

into stereocilia, thereby potentially controlling the efficiency of tip-link formation (Xiong et al., 

2012). It was later found that LHFPL5 binds to TMC1 and PCDH15, and that TMC1 is no longer 

localised to stereocilia in Lhflp5-/- mutants (Beurg et al., 2015). Structural similarities have been 

shown between LHFPL5 and the TARP subunits of AMPA receptors, which regulate both the 

transport and pore formation of AMPA receptors (Cais et al., 2014). It is possible that LHFPL5 

may be performing a similar role in the MET channel complex (Wu and Müller, 2016).  

Another protein, the aptly named trans-membrane inner ear protein (TMIE) is also linked to 

deafness and localised to the tip links (Gleason et al., 2009, Zhao et al., 2014). Tmie-/- zebrafish 

mutants show degeneration of the hair cells and lack a microphonic response to  

vibration—indicating compromised mechanotransduction (Gleason et al., 2009). In mice,  

Tmie-/- mutants have abnormal mechanotransduction but normal tip link assembly, and acute 

re-expression of TMIE in early postnatal ages can rescue mechanotransduction, indicating that 

it is not solely necessary in development (Zhao et al., 2014). Interestingly, TMIE only binds to 

PCDH15 and not to either TMC1 or TMC2, unlike LHFPL5. In fact, it appears that in the absence 

of TMIE all other known MET channel proteins are correctly targeted, and yet the channel is  

non-functional (Wu and Müller, 2016). TMIE could be supporting another as-yet unknown 

function of the MET channel, or it could potentially bind other channel subunits together.  

The MET channel is permeable to calcium and some of its properties—such as adaptation—are 

modulated by calcium concentrations. It is thought that one or more of the accessory proteins 

of the MET channel may be involved with calcium sensing. The calcium- and integrin-binding 

protein 2 (CIB2) was identified as associated with non-syndromic deafness in humans and was 

recently localised to the tips of the shorter stereocilia (Michel et al., 2017). Cib2 mutation was 

associated with mild disruption of hair bundle formation, followed by profound OHC loss by 

P110 (Giese et al., 2017). This suggests that CIB2 is not essential for the formation of hair bundles 

but does play an essential role in mechanotransduction. In fact, Cib2 mutants showed no uptake 

of FM1-43, a commonly used MET channel-permeable dye (Gale et al., 2001), and whole-cell 
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patch-clamp recordings in the IHCs showed no MET currents. CIB2 was found to form strong 

interactions with both TMC1 and TMC2 (Giese et al., 2017). This places CIB2 quite convincingly 

alongside the MET channel complex, and it is currently suspected that CIB2 may perhaps be a 

calcium sensor for fast adaptation, or even the elusive gating spring (Powers et al., 2012;  

Giese et al., 2017). 

Finally, the acid-sensing ion channel 1b (ASIC1b) has emerged as a potential candidate for an 

accessory to the MET channel complex for several reasons: it has been localised to the stereocilia 

of OHCs (Ugawa et al., 2006); it is likely to be mechanically gated (Ugawa et al., 2008); and it is 

blocked by amiloride (a high blood pressure medication) in the same manner as the MET channel 

complex (Rusch et al., 1994; Ugawa et al., 2008). Though ASIC1b is known to form a mechanically 

sensitive channel (Ugawa et al., 2008), it is unlikely to be the pore-forming subunit of the 

channel complex because Asic1b-/- still elicit a seemingly normal MET current when stimulated. 

A potential role for ASIC1b in the MET channel complex is that it may have a role in proton 

sensing similar to its function in other systems. It could be that ASIC1b is involved with adapting 

the MET channel to changes in extracellular pH during aging (Ugawa et al., 2008). 

Each of these candidates is unlikely the be the pore itself, but they are all clearly intimately 

implicated in the MET channel complex. Their exact contributions to the complex are yet 

unknown. 

 

1.2.4 TMC1 and TMC2 

TMC1 and TMC2 were first identified for their role in hearing loss in a positional cloning study of 

genes involved in deafness (Kurima et al., 2002). More than 35 mutations in Tmc1 cause human 

hearing loss (Kawashima et al., 2011), making it one of the most common deafness genes 

(Fettiplace, 2016). Interestingly, mutations in Tmc2 do not cause deafness (Kurima et al., 2002), 

and the first studies of Tmc1-/- early postnatal mouse mutants were unpromising as they 

exhibited normal MET currents (Marcotti et al., 2006), but it was soon found that these currents 

were abolished from the second postnatal week onward (Kawashima et al., 2011). Furthermore, 

it was found that TMC1 and TMC2 are co-expressed from early development and are functionally 

redundant until TMC2 is downregulated from about P10 (figure 1-4), and that Tmc1-/-/Tmc2-/- 

mutation does in fact completely abolish MET currents (Kawashima et al., 2011; Pan et al., 

2013). It was also found that deletion of Tmc1 and Tmc2 does not alter either the tip links or the 

hair bundle morphology (Kawashima et al., 2011). Fluorescently tagged TMC1 and TMC2 were 
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then successfully localised to the lower end of tip links (Kurima et al., 2015), and it was found 

that both TMC1 and TMC2 form linkages with PCDH15—the lower component of the tip links 

(Maeda et al., 2014, Beurg et al., 2015). A single point mutation called Tmc1Bth/Bth (the Beethoven 

mouse mutant) alters the calcium permeability of the MET channel, as well as the response to 

the aminoglycoside (AG) dihydrostreptomycin (DHS) which is known to bind to the inside of the 

channel pore (Corns et al., 2016).  

One of the major hurdles in concluding the roles of TMC1 and TMC2 in the MET channel 

permeation pathway was that for a long time attempts to show that either of these proteins 

could form an ion-conducting pore in a lipid bilayer failed, bar one report (Chatziegeorgiou et 

al., 2013). Recently however evidence for TMC1 and TMC2 as the pore-forming subunits of the 

MET channel has been mounting. In 2018, Pan et al. used cysteine mutagenesis carried by 

AAV2/1 viral vectors expressing 18 variants of mouse TMC1 and showed that several of these 

sites caused reduction or total abolishment of transduction currents. They further found that 

for 5 of these, treatment with MTSET (which irreversibly binds to cysteine residues) caused 

further non-recoverable reduction of the transduction current, indicating that these sites likely 

line the pore of the channel. Homology modelling of TMC1 with the related TMEM16 proteins 

revealed a wide anionic cavity near the surface of the protein, indicating a potential cation 

permeation pathway (Ballesteros et al., 2018). Intriguingly, these two studies also indicate that 

TMC1 likely assembles as a dimer. Soon after, the same group that created the viral vectors for 

TMC1 showed that gene therapy in mice with deficiencies in Tmc1 restored hearing and balance 

(Nist-Lund, 2019). And finally, a recent study managed to express isolated TMC1 from the green 

sea turtle and TMC2 from the budgerigar in insect cells and showed that these could elicit ion 

channel activity (Jia et al., 2020).  

 

1.2.5 Understanding the tonotopic gradient in OHC MET channel kinetics 

There are many gradients in the cochlea which influence mechanotransduction. In fact, the MET 

channel itself varies in several aspects of its kinetics, following the tonotopic axis. Understanding 

the mechanisms of this gradient is not entirely straightforward and requires some picking apart 

of the evidence presented by the scientific community over the last few years.  

The first evidence for a tonotopic gradient in mechanotransduction of OHCs was the observation 

that twice as much calcium entered basal cells during depolarisation than apical cells (Ricci et 

al., 2000). Then, a gradient was found in the rate of adaptation of the MET channel (Ricci, 2002), 

and it was found to exhibit a gradient in macroscopic, whole-cell conductance, with basal cells 
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eliciting larger currents than apical cells (Ricci et al., 2003; Beurg et al., 2006; Lelli et al., 2009; 

Desmonds, 2015). Furthermore, a visible gradient in the passage of large fluorescently tagged 

molecules has often been reported, for example FM1-43 (Gale et al., 2001), GTTR (Dai et al., 

2005), D-JNKi1 (Desmonds, 2015), and dextran-TR (Ballesteros et al., 2018), with basal cells 

always showing considerably strongly labelling than apical cells. The reason for these 

observations could easily be interpreted as basal cells having more channels than apical cells. 

But there are many reports that measures of single-channel activity by breaking tip links with 

BAPTA show that the gradient in channel conductance persists at the level of individual channels 

(Ricci et al., 2003; Beurg et al., 2006; Kim and Fettiplace, 2014; Beurg et al., 2015; Beurg et al., 

2018).  

The question remains of what is setting up these differences. As mentioned, during development 

there is a gradual change in the expression pattern of TMC1 and TMC2, with TMC2 initially 

dominating the entire coil, and expression of TMC1 starting from the base and moving up to the 

apex so the mature MET channel only contains TMC1 (figure 1-7) (Kawashima et al., 2011; 

Kurima et al, 2015). The function of TMC2 in the cochlea is unclear and has been suggested to 

be an evolutionary remnant (Corns et al., 2017), as its expression persists in vestibular cells 

which are similar to immature apical cells of the cochlea and likely to be evolutionarily related.  

Pan et al. (2013) proposed that the variable dynamics of the MET channel in neonatal OHCs may 

depend on the expression profiles of TMC1 and TMC2 in each cell due to differences in 

conductance between the two isoforms. But subsequent evidence has emerged than TMC1 itself 

has a gradient in single-channel conductance, and TMC2 a similar but much smaller gradient 

(Kim et al., 2013; Beurg et al., 2018). Beurg et al. (2018) go so far as to suggest the existence of 

several variants of TMC1 each with distinctive “levels” of conductances, apparently in multiples 

of approximately 50 pS. They further propose evidence for multiple TMC1 pores at each MET 

channel complex (~8 in the apex and ~20 in the base), beyond the TMC1 dimers that have also 

been recently suggested (Pan et al., 2018, Ballesteros et al., 2018). The molecular correlates of 

this variation in conductance is uncertain, as are the details of how such multiple TMCs would 

be cooperatively gated by the tip link (Sul and Iwasa, 2010). There are also suggestions of 

multiple phosphorylation sites on TMC1 (Pan et al., 2018), implicating the possibility of 

posttranslational modifications in channel configuration (Corey et al., 2019).  

Another interesting avenue is a variation in tip link stiffness and rotation recently reported by 

Tobin et al. (2019), which could impact gating of the MET channel. However, a difference in 

tension should cause a difference in resting open probability which is not seen (Tobin et al., 
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2019). If there were an active gating mechanism in between the tip link and the channel pore 

this could potentially compensate for differences in tension until the channel is opened. Thus, 

differences in channel tensioning could be involved in the conductance levels seen by Beurg et 

al. (2018) through distortion of the channel pore. Tobin et al. found no gradient in the tensioning 

of IHC tip links, which matches the lack of a gradient in IHC single-channel conductance  

(Pan et al., 2013; Pan et al., 2018; Beurg et al., 2018; Corey et al., 2019).  

The current models by which MET channel conductance modulation is achieved are by no means 

complete. Because this thesis addresses questions of differences in channel kinetics between 

the apex and base, I will further discuss the models of graded transduction and how my 

experimental results and my review of recent literature may relate to these in chapter 8.  
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1.3 Hearing loss and ototoxicity 

Due to their incredible complexity, the sensory hair cells of the inner ear can easily be damaged 

by excessive exposure to noise, through genetic mutation, or by a variety of ototoxic compounds 

that make their way into the endolymph of the ear. As mammals we only get one set of sensory 

hair cells in our lifetimes. If they die, this causes permanent hearing loss. As such it is important 

to protect them and doing so requires an understanding of how they function and how they can 

be damaged.  

 

1.3.1 General causes of hearing loss 

Hearing loss and deafness are complex disorders that can manifest from a wide range of issues 

within the auditory system. In the brain, hearing loss is usually due to a lesion in the central 

auditory pathway. Types of central hearing loss includes aphasia, pure word deafness, auditory 

agnosia, and central presbycusis in which speech discrimination in the elderly is worse than 

expected given their hearing thresholds (Willcox and Artz, 2007). The existence of this latter 

condition is debated (Humes et al., 2012). In these conditions, the peripheral auditory apparatus 

is behaving as normal, but the brain is not processing the signal correctly if at all. The more 

common cause of hearing loss is peripheral, of which there are two types: conductive and 

sensorineural. In conductive hearing loss the outer and middle ear do not transmit sound to the 

inner ear properly, due to for example: damage to the ear drum, fixation of the ossicles, or wax 

impaction (Cunningham and Tucci, 2017). Fortunately, these conditions can usually be 

successfully treated to restore hearing.  

Sensorineural is the more alarming type of peripheral hearing loss. Sensorineural hearing loss 

occurs when there is dysfunction within the cochlea. It can arise due to problems with the 

maintenance of the endocochlear potential by the stria vascularis (Wangemann, 2006), or with 

damage to the spiral ganglion neurons in the auditory nerve (Starr and Rance, 2015). But it is 

usually due to loss of sensory hair cells (Cunningham and Tucci, 2017). Unfortunately, mammals 

cannot regenerate hair cells, so this type of hearing loss is often permanent. Furthermore, loss 

of hair cells leads to degeneration of the auditory nerve over a period of several months, 

rendering the use of cochlear implants ineffective if not implemented quickly (Cunningham and 

Tucci, 2017).  
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One common cause of hair cell loss is exposure to excessively loud noise, especially for 

prolonged periods of time—musicians are at high risk of this, as are people who work in 

construction and airports. Moreover, concerts, movie theatres, loud fitness classes, shooting, 

and listening to music through headphones can all be sources of damage. A temporary threshold 

shift refers to short term hearing loss after noise exposure and can be reversed—though it may 

leave a mark on hair cell synapses (Kujawa and Liberman, 2009)—but repeated exposure can 

make it permanent (Cunningham and Tucci, 2017).  

Age-related hearing loss in the elderly population is widespread and is generally due to the 

accumulation of noise exposure and ototoxic factors within the ear, but it can also be hereditary. 

Age-related hearing loss commonly begins at higher frequencies and moves down, making 

speech progressively difficult to understand (Allen and Eddins, 2010; Cunningham and Tucci, 

2017). Hereditary genetic mutations that result in hearing loss affect approximately 1 in 1000 

new-borns, while adult-onset hearing loss affects between 25 and 55% of the population 

(Cunningham and Tucci, 2017). Over 100 genes have been identified that result, when mutated, 

in nonsyndromic hearing loss (i.e. they do not produce any other disorders of the body), with an 

additional 500 genes implicated in syndromes that include hearing loss (Cunningham and Tucci, 

2017). 

 

1.3.2 Aminoglycoside-induced ototoxicity 

Another cause of hearing loss is unfortunately by medically prescribed ototoxic drugs. These 

drugs include the aminoglycoside antibiotics (AGs), and the anti-cancer drug cisplatin. Among 

the most commonly used AGs are gentamicin, kanamycin, tobramycin, neomycin (only used 

topically), and amikacin. In the West, AGs are confined to use in life-saving situations, but in 

developing countries are more commonplace due to their broad spectrum of activity, stability, 

and rapid bactericidal activity (Krause et al., 2016; O’Sullivan et al., 2017). AGs are prescribed in 

the treatment of dangerous gram-negative pathogens such as sepsis, neonatal infections, 

tuberculosis (Krause et al., 2016), endocarditis (O’Sullivan et al., 2017) and are often given 

long-term to cystic fibrosis patients to prevent repeated infections (Krause et al., 2016; 

Cunningham and Tucci, 2017). Unfortunately, AGs cause some degree of irreversible hearing 

loss in 20-30% of patients (Duggal and Sarker, 2007; Schacht et al., 2012) as well as generally 

reversible damage to the kidneys (nephrotoxicity) (Lopez-Novoa et al., 2011).  

It is difficult to relate the dosage of AGs given to patients and the resulting the concentration in 

the endolymph of the cochlea that will cause hair cell death. Furthermore, patients have varying 
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susceptibilities to AG ototoxicity. The closest estimate for the concentration of AG in the 

endolymph that will cause ototoxicity is approximately 1 M (Tran Ba Huy et al., 1981). AGs 

permeate into hair cells primarily via the MET channel due to their polycationic charges 

(Marcotti et al., 2005; van Netten and Kros, 2007; Alharazneh et al., 2011; Corns et al., 2016; 

O’Sullivan et al., 2017). Once inside the cell, build-up of AGs causes ototoxicity and cell death 

mainly through disruption of protein synthesis by binding to the 30s ribosomal subunit (Davies 

and Davis, 1968; Cabañas et al., 1978; Tanaka, 1983) and through inhibition of mitochondrial 

respiration (O’Reilly, 2019).  

In the lab, we use excised mouse cochleae to understand the mechanisms of ototoxicity. 

Organotypic cochlear cultures can be incubated with AGs to look at their deleterious effects 

(figure 1-8) (Russell and Richardson, 1987; Kotecha and Richardson, 1994; Alharazneh et al., 

2011; Kenyon et al., 2017; O’Reilly et al. 2019; Kitcher et al., 2019; Kros and Steyger, 2019; 

Osgood, 2020). Members of the AG family vary in severity of ototoxicity: cultures incubated with 

the same concentration of different AGs will have varying levels of hair cell death, with 

gentamicin being the most toxic (Kotecha and Richardson, 1994). The mechanism for this has 

thus far been unknown. It has been assumed that these differences were related to intracellular 

pathways for activating apoptosis. Patients with AG-induced ototoxicity tend to predominantly 

lose high-frequency hearing (Al-Malky et al., 2011, Garinis et al., 2017). Interestingly, ex vivo 

organotypic cochlear cultures that are incubated with AGs also display a gradient in OHC toxicity 

with basal hair cells dying at lower concentrations of drug than apical cells (Kotecha and 

Richardson, 1994, Wu et al., 2001, Alharazneh et al., 2011; O’Reilly, 2019; Kitcher, 2019) 

following the tonotopic gradient in fluorescent labelling. The reason for this has also thus far 

been unclear and is generally thought to be related to differences in channel number, size, and 

metabolic activity of apical and basal cells. 

 



36 
 

1.3.3 Preventing ototoxicity by targeting the MET channel 

The large size of the MET channel pore leaves the hair cells vulnerable to molecules that would 

not normally permeate into other cells. Some compounds have been found to provide 

protection against gentamicin in culture, though these mainly act through decreasing the 

formation of reactive oxygen species and generally do not confer protection in vivo (Kitcher, 

2019). Perhaps a better strategy towards otoprotection is to prevent the entry of gentamicin 

into hair cells. A recent focus of the Richardson and Kros labs has been to find otoprotectants 

that reversibly block the MET channel and stop AGs from entering the cell through this route 

(Kirkwood et al., 2017; Kenyon et al., 2017; O’Reilly et al. 2019; Kitcher et al., 2019). Ideally, a  

co-administered compound would temporarily and reversibly block the MET channel with no 

other deleterious effects, preventing AG entry into the cell and thus protecting the hair cells 

from death.  

Through a screen of over 10,000 compounds for hair cell protection again neomycin in zebrafish 

(5,000 of which I screened myself during an undergraduate summer project), several 

compounds have been identified with otoprotective potential that are currently undergoing 

further testing in vitro and in vivo. Some of the compounds that our lab has studied have recently 

been published, including a smaller screen of ion channel modulators (Kenyon et al., 2017), and 

a paper on two promising otoprotective compounds, d-turbocurarine and berbamine (Kirkwood 

et al., 2017). Unfortunately, berbamine was found to be highly toxic at higher concentrations 

(>30 µM), so its value as an otoprotectant in vivo may be questionable. Nevertheless, these 

compounds are a promising proof-of-principle for otoprotection by competing for entry into the 

OHCs at the level of the MET channel. Further promising compounds include a derivative of 

carvedilol (O’Reilly et al. 2019) and the novel compound ORC-13661 (Kitcher et al., 2019). All the 

compounds here mentioned have been found to interact with the MET channel, producing 

reversible block of inward MET channel currents, and thus presumably competing for entry with 

ototoxic drugs (Kirkwood et al., 2017; O’Reilly et al., 2019; Kitcher et al., 2019). 

Finding otoprotectants through this pipeline has thus far produced some viable candidates, but 

the process is slow and challenging. Furthermore, there are still no FDA-approved 

otoprotectants, so the search is still on. A deeper understanding of the way in which AGs 

permeate through the channel could help guide and refine the search, and it could eventually 

lead to redesign of AGs that are less permeant and therefore less ototoxic.  
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1.3.4 Modelling the MET channel as a tool to aid in the search for 
otoprotectants 

As drugs permeate through the channel, they leave a signature mark: a reduction in current as 

they transiently bind to the inside of the pore. This block is usually voltage- and concentration-

dependent so that extracellularly applied drugs block the channel at hyperpolarised membrane 

potentials when the channel is opened by excitatory deflections of the hair bundle.  If the drugs 

are permeant, then block of the channel at most negative potentials is relieved, indicating that 

the driving force on the molecules overpowers their binding to the channel pore and forces them 

into the cell. By modelling data from whole-cell patch-clamp electrophysiology, we can measure 

this signature and determine the permeation properties of the drugs.  

We currently employ a two-barrier one-binding site model that describes this entry (figure 1-9) 

(Marcotti et al., 2005; van Netten and Kros, 2007; Corns et al., 2016; Kirkwood et al., 2017) based 

on a model produced by Woodhull in 1973 to describe H+ permeation through a Na+ channel in 

frog nerve cells and more generally adapted for ion channel permeation in Hille, 2001. According 

to this model, as drugs pass through the channel, they encounter a first energy barrier at the 

entrance to the channel pore. Upon overcoming this barrier, they bind to an area of negative 

charge on the inside of the channel pore and block inward current to the cell. Finally, they 

overcome a second barrier at the exit of the pore and permeate into the cell. The profile of this 

interaction between a drug and the MET channel can be obtained by fitting the two-barrier  

one-binding site model to a full complement of fractional block curves measured across a range 

of voltages.  

The Hill coefficient (nH) describes the degree of cooperativity between the blocker and the pore 

(Hille, 2001), and can be obtained by fitting dose response curves of drug block with the  

Hill equation at individual voltages. A neutral Hill coefficient of 1 generally indicates an 

interaction between a single drug molecule and a single binding site. A Hill coefficient above 1 

may indicate cooperativity in which binding of one drug molecule increases the probability of a 

second or more molecule(s) binding to other sites within the permeation pathway, whereas a 

Hill coefficient below one may point to negative cooperativity, where binding of one molecule 

reduces the probability of a another binding to other sites. Examples of each of these types of 

interactions have been demonstrated between various drugs and the MET channel (Gale et al., 

2001; Marcotti et al., 2005; Desmonds, 2015; Corns et al., 2016). 

The full permeation characterisation of only one AG, dihydrostreptomycin (DHS), has thus far 

been published (Marcotti et al., 2005). The half-blocking concentration (KD) of DHS at a 
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membrane voltage of -84 mV was found to be 7 µM, and the block was only seen on inward 

currents (Marcotti et al., 2005). Furthermore, single excitatory force step stimuli at a fixed 

membrane voltage of -84 mV showed a large inward current followed by rapid decline, and a 

slow closure upon stepping to the inhibitory direction (Marcotti et al., 2005). The entry rate for 

DHS into OHCs was calculated at 9000 molecules per second per OHC at therapeutic 

concentrations (Marcotti et al., 2005). The Hill coefficient for DHS was found to be 

approximately 1 across the voltages in which it produced block, indicating a single binding site 

for DHS within the channel pore.  

To date only preliminary data have been acquired with regards to the channel-blocking effects 

of the clinically relevant AG gentamicin and its fluorescent-tagged companion, gentamicin 

Texas-red (GTTR), or any of the other clinically used ototoxic AGs.  Little study has been done on 

the differences in drug permeation between apical and basal OHCs. It is also unknown what the 

effects of maturation would be on AG permeation at the level of the channel, and how these 

might differ from the neonate commonly used to model ototoxicity. Furthermore, the molecular 

correlates inside the TMC1 permeation pathway for the sites of interaction described by our 

model are still unknown.  
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1.4 Thesis aims 

The overarching goal of this thesis is to better understand the mechanism by which ototoxic 

drugs permeate through the very channel that makes the hair cells so special: the MET channel. 

The permeation of these drugs is fascinating both for understanding the physiology of 

mechanotransduction, and for understanding what makes these cells vulnerable and how we 

can help protect them in the fight against hearing loss.  

 

Specifically, I aim to: 

• Investigate the permeation properties of several AGs, how these differ from each other 

and how these are related to their degrees of toxicity in hair cells. 

• Investigate the permeation properties of GTTR, how these may differ from native 

gentamicin and what this could mean for its use as an indicator of gentamicin 

permeation. 

• Investigate tonotopic variation in the permeation of the MET channel by AGs. 

• Investigate how maturation and genetic mutation might affect permeation through the 

MET channel. 

• Identify a potential alternative route of entry for ototoxic drugs into hair cells. 

• Provide insight into the permeation pathway of the MET channel, and how comparative 

modelling can help us understand the structure of the MET channel complex. 
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Chapter 2  

 

 

 

Methods 
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2.1 Acute and cultured tissue preparation 

2.1.1 Use of acute and cultured cochleae 

Acute or cultured preparations were used depending on the experiment. Acute preparations are 

generally favoured for electrophysiology as they are simpler in preparation and do not require 

aseptic technique. There is also a range of ages from which the cochleae can be dissected, 

offering more days of potential testing and the option to examine changes in the 

electrophysiology of hair cells over early postnatal days. Cultured preparations are useful for 

drug screening as they can be incubated with compounds to examine long-term cell toxicity. 

Cultures were used in the portions of this thesis directly comparable to ototoxicity experiments 

to keep conditions consistent with those data.  

MET currents are typically more stable in cultures, except in Tecta/Tectb-/- mutants which have 

exceptionally large and consistent MET currents even in acute preparations. I believe this is 

because the process of dissection (particularly the removal of the tectorial membrane) may 

temporarily damage the tip links, rendering the MET currents recorded from acute preparations 

generally rarer and smaller. This is especially evident in basal OHCs in which recording from 

acute preparations is unreliable, so cultures were used for making apical-basal comparisons as 

this gives time for the tip links to repair (Zhao et al. 1996, Indzhykulian et al., 2013). 

 

2.1.2 Animal husbandry and preparation type 

Animals were bred in the University of Sussex Life Science department facility following UK 

Home Office regulations, and mice of either sex were used. Swiss CD-1 mice were originally 

obtained from Charles River, and were used for making the cochlear cultures in chapters 3 and 

4, parts of chapter 5, and chapter 7. Asic1b-/- mice in chapter 6 were obtained from Professor 

Shinya Ugawa (Nagoya, Japan) and the cochleae were prepared acutely. Tecta/Tectb-/- mice in 

chapter 5 were made in house by Professor Guy Richardson and the cochleae were prepared 

acutely as well.  
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2.2.3 Acute cochlear preparation 

Acutely isolated cochleae were prepared from postnatal day (P) 2-10 mouse pups depending on 

the experiment and the strain of mice. The mice were killed by cervical dislocation in accordance 

with UK Home Office regulations (Schedule 1), and death was confirmed by removal of the head. 

The heads were bisected, brains removed, and the inner ears excised and transferred whole to 

a clean dish of ice-cold extracellular medium (made as described in section 2.2.2). From this 

point the inner ears were kept on ice until just before the start of a recording session, for a 

maximum of 2 h. When the experiments were ready to begin, the cochleae were dissected by 

removal of the cartilaginous or bony (depending on age) shell, the modiolus, and stria vascularis, 

leaving the organ of Corti. The basal turns of the cochleae were cut off to flatten the 

preparations. The apical turns were transferred with a spoon to the recording chamber and 

clamped underneath a nylon grid pulled taught over an aluminium ring in order to expose the 

OHCs of the mid-apex for recording (figure 2-1, panel A). Finally, the tectorial membranes were 

removed with fine forceps to expose the stereocilia.  

 

2.1.4 Cultured cochlear preparation 

Organotypic cochlear cultures were prepared from P2 CD-1 mice (Russell and Richardson, 1987). 

As for acute preparations, the mice were killed by cervical dislocation, and the heads were 

removed. The heads were surface sterilised by three one-minute washes in 80% ethanol, then 

bisected and transferred to dishes containing 10 mM HEPES-buffered Hanks’ Balanced Salt 

Solution (ThermoFisher 14025050). The cochleae were dissected as for acute preparations but 

using aseptic technique under a laminar flow hood and leaving the basal turn and tectorial 

membrane intact. The organs of Corti were plated onto collagen-coated (Corning 354236) 

coverslips (ThermoFisher 10256354) and fed with cochlear culture medium (93% DMEM-F12 

(Sigma-Aldrich; D8062), 7% fetal bovine serum (Thermo Scientific; HyClone SV30180-03) and 

2μg.ml-1 ampicillin). The cultures were wax-sealed in glass Maximow dishes and incubated at 

37C, 5% CO2 for 24-48 hours, allowing time for the tissue to adhere to the collagen and grow 

outward (figure 2-1, panel B).  
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2.2 Electrophysiology 

2.2.1 Experimental equipment 

I spent the first five months of this PhD building my electrophysiology setup. This gave me a 

thorough understanding of the wiring and operation of the system, and the opportunity to tailor 

it specifically to the experiments ahead. A large part of the building process involved 3D printing 

of custom components (for example, the chamber in figure 2-1). I mostly used an Ultimaker 2+ 

3D printer and designed objects using Google Sketchup.  

The cells were viewed on an upright microscope (Zeiss, Germany) using Nomarski Differential 

Interference Contrast optics (63X water immersion objective (Leica, UK), plus 15X eyepieces), 

and monitored with a QICAM Fast 1394 CCD camera (QImaging, BC, Canada) through Manager 

(Edelstein et al., 2014). 

Currents were recorded and amplified by an Axopatch 200b (Axon Instruments, Union City, CA), 

filtered at 10kHz (except where otherwise noted) using an 8-pole Bessel filter, digitised with a 

Cambridge Electronic Devices (CED) Power 1401 and sampled at 20kHz (except where otherwise 

noted) using Signal v6.03 (CED, Cambridge, UK). The CED Power 1401 also sends a signal 

generated by Signal to a piezo driver, which powers the fluid jet stimulator. The setup is shown 

in figure 2-2, panel A. 

The ground signal from the bath was passed through an external calibrator so that cells could 

be clamped at -80 mV constantly even when not running a protocol from the computer, thus 

avoiding accidental stress.  
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2.2.2 Solutions and patch pipettes 

Preparations, either acute or cultured, were placed in the microscope chamber and continually 

perfused with extracellular solution. This contained (in mM):  135 NaCl, 5.8 KCl, 1.3 CaCl2,  

0.9 MgCl2, 0.7 NaH2PO4, 5.6 D-glucose, 10 HEPES-NaOH, 2 sodium pyruvate (pH adjusted to 7.5 

with 1M NaOH, osmolality ~305 mOsmol kg-1). This solution also contained amino acids and 

vitamins for Eagle’s minimum essential medium, without L-glutamine (Invitrogen).  

Additionally, OHCs were superfused with test drugs by a 4-channel gravity-driven manifold 

leading into a 200 m nozzle at a ~100 angle to the hair bundles to minimise effect on the 

stereocilia. This allowed each cell to be tested at up to 3 concentrations of drug, plus control. 

The control superfusion solution contained (in mM): 145 NaCl, 5.8 KCl, 1.3 CaCl2, 0.9 MgCl2, 0.7 

NaH2PO4, 5.6 D-glucose, 10 HEPES-NaOH, 2 sodium pyruvate (pH adjusted to 7.48 with 1M 

NaOH, osmolality ~310 mOsmol kg-1) and into this were diluted stock concentrations of test 

drugs. This solution was modified where indicated in chapters 5, 6, and 7. AGs were purchased 

from Sigma-Aldrich and stored at 4C. Gentamicin-Texas red (GTTR) was obtained from 

Professor Peter Steyger (Creighton University).  

Patch pipettes were pulled from soda glass capillaries (Harvard Apparatus, Edenbridge, UK) using 

a Narishige PC-10 (London, UK) puller and the shank was coated with surf wax (Mr Zogs SexWax, 

Carpinteria, CA, USA) to reduce surface capacitance. Patch pipettes had a resistance of about 

2.6 M and were filled with an intracellular solution containing (in mM): 137 CsCl, 2.5 MgCl2,  

1 EGTA-CsOH, 2.5 Na2ATP, 10 sodium phosphocreatine, 5 HEPES-CsOH (pH adjusted to 7.3 with 

CsOH, osmolality ~295 mOsmol kg-1). Caesium-based solution was used to block voltage-gated 

potassium channels in the basolateral membrane of the OHCs and thus reduce noise and  

series-resistance errors in MET current recordings. The extracellular and intracellular solutions 

were estimated to produce a liquid-junction potential of approximately -4 mV which was 

included in all mentions of cell voltage in this thesis.  

The stage configuration is shown in figure 2-2, panel B.  
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2.2.3 Whole cell recording of MET currents 

Whole-cell patch clamp recordings were made from third-row OHCs in either the apical (9-12 

kHz region) or basal (30-36kHz region) turn of the cochlea. All recordings were performed at 

room temperature (21-23C). The supporting cells directly adjacent to the OHCs were removed 

by suction through a glass micropipette with a 10-12m tip filled with extracellular solution, 

exposing the basolateral membrane. If recording from the basal end of a culture and the 

tectorial membrane was too close to the hair bundles, it was removed by suction with a  

15-20 m pipette.  

Patch pipettes was manoeuvred close to the cell with positive pressure so that a small dimple in 

the cell membrane could be seen. Once positioned, positive pressure was removed, and gentle 

negative pressure applied until a seal of at least 1 GOhm formed with the cell membrane. At this 

point, the calibrator was set to hold the cell at -80 mV. Sharp negative pressure was applied to 

break the cell membrane and gain access to the inside of the cell. Whole-cell capacitance and 

resistance were compensated for, and series resistance compensation was applied up to 80%. 

Hair bundles were mechanically stimulated using a fluid jet driven by a piezoelectric disc  

(Kros et al., 1992) to produce MET channel currents. Stimuli were calibrated at the start and 

throughout experiments to produce saturating excitation of the MET channel, thereby 

minimising adaptation. Gentle negative pressure was kept constant in the fluid jet to allow 

suction of superfused drugs and avoid mixing of solutions. The recording configuration is 

illustrated in figure 2-3. 
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2.3 Recording protocols and primary data analysis 

The procedure described here applies to chapters 3, 4, and parts of chapter 5. Specific recording 

and analysis methods for the remaining experiments are described in those chapters.   

The main recording protocol offered a characterisation of the effects of voltage on drug block 

during a standard sine wave. Sine waves were preferred to ensure saturating stimulation of the 

MET channel, which is evident as a flattening of the current in the range of maximal bundle 

deflection (figure 2-4). The protocol consisted of a 4-cycle sinewave stimulation at 45 Hz, 

combined with 14 voltage steps in 20 mV increments ranging from -164 mV to +96 mV (corrected 

for liquid-junction potential) (figure 2-4). Recordings were repeated 2-3 times per condition.  

At the end of each experiment, recordings were batch exported from Signal native format .cfs 

to .txt using a script graciously provided by a CED employee. Primary off-line analysis of the data 

was done in OriginPro 2019 (OriginLab, Northampton, MA), using custom-written scripts in 

LabTalk for batch processing. Current-voltage (IV) curves were calculated by determining 

maximal MET current size at each voltage and subtracting the current during inhibitory 

stimulation from the current during excitatory stimulation. The maximal current was averaged 

for each phase of the sine wave, omitting the first. The IV curves for multiple repetitions in the 

same cell were averaged. Fractional block curves were obtained by dividing the averaged IV 

curve during superfusion of test drug by the averaged IV curve during superfusion of control 

solution (figure 2-5). The point at -4 mV is omitted due to large errors incurred by dividing small 

values by one another. 

The second main recording protocol was aimed at determining the temporal kinetics of the 

channel. As previously found, AGs act as open-channel blockers of the MET channel (Marcotti et 

al., 2005). Upon deflection of the hair bundle, a large inward current first appears that then 

declines to a steady state. The time course of this decay in current is related to the speed with 

which the molecules overcome the first energy barrier at the entrance of the channel, as 

described in section 2.4.1. Time constants were calculated by fitting an exponential decay 

function to the decay in current at the start of stimulation during excitatory square force steps 

of the hair bundle:  

𝐼 =  𝐼0  +  𝐴 𝑒−(𝑡 − 𝑡0)/𝜏, 

(eq. 1) 

where I is current, t is time, and τ is the time constant of decay. 
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Two protocols were used as shown in figure 2-6. The basic protocol consisted of holding the cell 

at the voltage of maximal block for the drug and stimulating with an excitatory force step (figure 

2-6, panel A). This protocol worked well for gentamicin and GTTR which had a large, relatively 

slow current decay upon channel opening.  

However, because the decay was much faster for kanamycin and amikacin an alternative 

protocol was used as described in Marcotti et al., 2005. This protocol consisted of a depolarising 

voltage step to +96 mV which releases the block, followed immediately by a hyperpolarising step 

to -124 mV for kanamycin, or -144 mV for amikacin, all during excitatory stimulation of the 

bundle (figure 2-6, panel B). This led to block that was purely brought on by voltage of maximal 

block, and therefore not dependent on the kinetics of the fluid jet. For this protocol, the data 

were filtered at 20 kHz and sampled at 100 kHz. Capacitive transients at the start and end of the 

voltage steps as well as linear leak and voltage-dependent membrane currents were removed 

by subtracting recordings from identical voltage steps in the absence of fluid-jet stimulation. 

Because they were so fast, time constants for amikacin and kanamycin especially were 

challenging to obtain and many had to be discarded due to filtering issues.  
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2.4 Channel modelling 

2.4.1 Two-barrier one binding-site model of permeation of the MET 
channel 

To model permeation of drugs through the MET channel, we fit a two-barrier one-binding site 

model to the fractional block and time constant data and extract parameters that describe the 

biokinetics of the interaction between molecules and the channel pore (Marcotti et al., 2005; 

van Netten and Kros, 2007). Calculating these parameters requires a complete dataset with a 

compound tested at multiple concentrations spanning its entire dose response range from no 

block to full block.  

In brief, the model can be described as such:  

𝐶 +  𝐵𝑜 ⇔ 𝐶𝐵
𝑘1

𝑘−1
⇔ 𝐶
𝑘2

𝑘−2
 + 𝐵𝑖 

(eq. 2) 

where C is the channel, B is the blocking agent (Bo, outside and Bi, inside). In this model, k1 and 

k2 are the binding constants, and k-1 and k-2 are the dissociation constants over the first and 

second energy barriers. This model represents a system in which the blocker overcomes the first 

energy barrier to bind to the inside of the open channel, transiently binds to the inside of the 

channel pore, then overcomes a second barrier to permeate into the cell.  

Dose response curves were generated at each of the 7 most negative voltage steps of the 

fractional block curves and were fitted with the Hill equation to calculate the half-blocking 

concentration (KD) and Hill coefficient (nH): 

𝐼𝑑𝑟𝑢𝑔

𝐼𝑐𝑜𝑛𝑡𝑟𝑜𝑙
 =  

1

1 + (
𝐷

𝐾𝐷
)

𝑛𝐻

 

, 

(eq. 3) 

where Icontrol is the control current and D is the concentration of the drug in the extracellular 

solution.  

Fractional block curves were fitted with the two-barrier one-binding site model: 

𝐼𝑑𝑟𝑢𝑔

𝐼𝑐𝑜𝑛𝑡𝑟𝑜𝑙
= (1 + (𝑒 (𝐸𝑏 +

𝛿𝑏 ∗ 𝑧 ∗ 𝑉𝑚

26
))

−1

∗ (1 + 𝑒 (−∆𝐸 −
𝑉𝑚

26
))

−1

𝐷𝑛𝐻)

−1

, 

(eq. 4) 
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where Eb is the free energy of the binding site in the channel pore (expressed in terms of  

kT: 4.1 x 10-21 J), δb is the fractional position, from the outside, of the binding site across the 

electrical field of the membrane, Vm is the membrane potential in mV, 26 is kT/e (the unitary 

charge) in mV, z is effective valence of the drug D; and ΔE is the difference between the two free 

energy barriers: the free energy of the barrier E2 on the intracellular side minute the free energy 

of the barrier E1 on the extracellular side (again in terms of kT). 

The inverse of the time constants as a function of drug concentration were fitted with a linear 

regression line in order to calculate the slope, which in this model equals k1:  

𝜏−1 = 𝑘1[𝐵𝑜]𝑛𝐻 + 𝑘−1 + 𝑘2 

(eq. 5) 

Using these parameters, the values that describe the energy profiles and entry rates of drug 

permeation were calculated as follows: 

𝑉0 = −𝑉𝑠 (Δ𝐸 + 𝑙𝑛 (
𝛿𝑏

1 − 𝛿𝑏
)) 

(eq. 6) 

𝑉𝑠 =
𝑘𝑇

𝑧𝑞𝑒
 

(eq. 7) 

𝐾1 = 𝑒𝐸𝑏+𝛿𝑏(𝑉/𝑉𝑠)(1 + 𝑒−ΔE−(𝑉/𝑉𝑠)) 

(eq. 8) 

𝐾𝐷  =  [𝐾1(𝑉)]
1

𝑛𝐻 

(eq. 9) 

𝐸1 = −𝑙𝑛 (
𝑘1

𝑘0
) 

(eq. 10) 

𝐸2 = 𝐸1 + ΔE 

(eq. 11) 

𝑘−1 = 𝑘0𝑒−(𝐸1−𝐸𝑏)+𝛿𝑏(𝑉/𝑉𝑠) 
(eq. 12) 

𝑘−2 = 𝑘0𝑒−𝐸2 

(eq. 13) 

 

𝑘2 = 𝑘0𝑒−(𝐸2−𝐸𝑏)−(1−𝛿𝑏)(𝑉/𝑉𝑠) 

(eq. 14) 
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𝑁𝑒𝑛𝑡𝑟𝑦 =
𝑁𝑐ℎ𝑝0𝑘2

1 + 𝐾1/((𝐷 ∗ 10−9)𝑛)
 

(eq. 15) 

where V0 is the potential of maximum block, 𝑧 is the valence (apparent charge) of the blocker, 

𝑞𝑒 is the elementary unit of charge (1.6 x 10-21 C), KD is the voltage-dependent half-blocking 

concentration, E1 and E2 are the first and second energy barriers, k-1, k2, and k-2 are the forward 

and reverse rate constants over the two energy barriers, and NE is the entry rate at a given 

concentration, D (in M). 

 

2.4.2 Model automation in Python 3.0 

I automated the process of modelling the drug permeation of the MET channel in Python 3.0 

with the help of Mr. Joshua Porter. This reduced human error when performing calculations 

across multiple datasets and allowed me flexibility in adjusting fitting parameters and to process 

datasets consistently and rapidly. The automated model starts by taking file inputs for mean 

fractional block and for raw time constant data, using the pandas package to load and structure 

the data by index. At the start is the option to specify initiation and fixing of values for certain 

parameters of the global fitting later: for example, binding energy and Hill coefficient. This is 

crucial when swapping between native AGs and GTTR, as they have vastly different fitting 

parameters. There is also the option to set the fixed parameters to calculate the entry rate 

through channel in the final stages, such as number of channels per cell, concentration of drug, 

resting open probability, and temperature.  

Curve fitting of the data is done using the scipy function curve_fit (Virtanen et al., 2020). This 

function performs a least-squares minimisation using the Levenberg-Marquardt algorithm. It 

takes initiation values and bounds for each fitting parameter. When first running a dataset, these 

values are estimated from the literature or from previous datasets and then manually adjusted 

according to the results to produce the best fit. For example, the binding energy for gentamicin 

was originally estimated to be about -10 kT based off previous results for DHS (Marcotti et al., 

2005). This proved very similar to the final result, and further adjustments did not affect the fit. 

By contrast, the initiation value for the binding energy of kanamycin was adjusted to -5 kT to 

produce the best fit. Similarly, the parameter bounds are set to encompass the potential fit 

values by a wide margin. 

The first calculation is fitting the dose response curves (eq. 3). The script loops through each 

voltage in the index of the dataset and fits the Hill equation at each voltage, appending the 
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values for the half-blocking concentration (KD) and the Hill coefficient (nH) each to a list. The 

script then does a global fit of the two barrier-one binding site model to the entire fractional 

block dataset with two dependent variables: voltage and concentration (eq. 4). The next 

calculation is fitting a linear regression through the time constant data (eq. 5). The slope from 

this fit (k1) is returned, as this corresponds to the rate over the first energy barrier later in the 

modelling process.  

The final stage is generating the energy profile and entry rates using the fitting results. First, 

constants are defined such as the Boltzmann constant and the proportionality constant for the 

first order rate constant. Then, the MET channel permeation model is given 13 parameters (the 

values of which are either specified constants or from the fits) and returns the following: entry 

rate, potential of maximum block (V0), first and second energy barriers (E1 and E2), both reverse 

constants (k-1 and k-2), and the time constant over the second energy barrier (k2) (eq. 6-15). These 

values are used to plot the energy profiles and entry rate graphs.  

Sample scripts and datasets are available in GitHub repository 

(https://github.com/Xenothy/METchannelpermeationVM). Figures were made using OriginPro 

2019 or Matplotlib 3.2.1 and edited in Adobe Photoshop CC 2019. All errors quoted and figure 

error bars are 95% confidence intervals. The confidence intervals are reported in the text and 

tables as a point estimate ± the margin of error. 
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Chapter 3 
 
 
 
 
 
Comparing the Permeation Properties 

of Three Clinically Relevant 
Aminoglycosides through the MET 
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3.1 Introduction 

Gentamicin, kanamycin and amikacin (figure 3-1) are used for a wide range of antibacterial 

treatments, and all three of these AGs can cause hearing loss, tinnitus, and/or vestibular 

disfunction. AGs do not take up very well in the GI tract and are generally administered 

systemically or topically (Kushner et al., 2016). It is difficult to determine the dosage of AGs that 

will lead to hearing loss (Kushner et al., 2016), probably due to variation in how effectively they 

will enter the endolymphatic space of the inner ear (Li and Steyger, 2011). It is thought that 

administering AGs in larger doses less frequently may reduce incidence ototoxicity, and this 

dosing does not detrimentally impact treatment effectivity (Kushner et al., 2016; Krause et al., 

2016).  

These three members of the AG family also have vastly different levels of toxicity to hair cells in 

vitro when given at the same concentration (figure 3-10), as has been previously suggested 

(Kotecha and Richardson, 1994). The reason for these differences is at present unclear. AGs 

clearly enter the hair cell primarily through the MET channel as any manipulation that reduces 

or abolishes mechanotransduction prevents AG ototoxicity in vitro (Gale et al., 2001; Marcotti 

et al., 2005; Owens et al., 2009; Kawashima et al., 2011; Alharezneh et al. 2011; Kenyon et al., 

2017; O’Reilly et al., 2019; Kitcher et al., 2019). Entry via endocytosis at the cell membrane is 

also reported but is thought not to overwhelm the cell as entry is slower than via the MET 

channels and the drugs are already within compartments for degradation (Hailey et al., 2017). 

Furthermore, it is widely reported that basal OHCs are more sensitive to AG ototoxicity than 

apical cells even in culture. I have therefore compared the permeation properties of gentamicin, 

kanamycin, and amikacin in both apical and basal OHCs to determine whether differences in 

toxicity may be related to permeation rate through the MET channel.  

Gentamicin is given in clinic as a mix of several isoforms and there is indication that some 

isoforms are more ototoxic than others (O’Sullivan et al., 2020). The gentamicin used in this 

experiment was a mixture of the 3 major C isoforms, C1 (45%), C1a (35%), and C2 (30%) with an 

approximate molecular weight of 463.6 g/mol. The kanamycin was kanamycin A, which is the 

most commonly used variant and has a molecular weight of 484.5 g/mol. Amikacin is a derivative 

of kanamycin A and has a molecular weight of 585.6 g/mol. It is worth noting that the results 

previously published for dihydrostreptomycin (DHS) by Marcotti et al. in 2005 and in Van Netten 

& Kros 2007 were obtained under slightly different conditions (i.e. age and strain of mice, 

location along the coil), and thus may not be directly comparable to the results here. In this 

present study, the conditions were kept constant for every drug to minimise variability in results.  
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3.2 Results 

This chapter includes data recorded from 71 apical OHCs and 72 basal OHCs of P2+1 and P2+2 

cultured CD-1 wild type mouse cochleae. The average MET current size at -164 mV was  

-1.11 ± 0.003 nA in the apex, and -1.56 ± 0.004 nA in the base. The average resting MET current 

at -164 mV was 5.6% of the maximum in both the apex and base. This is smaller than the usually 

reported values of 10 to 50% (Farris et al., 2006; Beurg et al., 2010), possibly due to the negative 

pressure kept in the fluid jet which slightly pulls on the hair bundle, slackening the tip links and 

lowering the open probability. The largest MET current recorded was -2.29 nA in the apex, and 

-2.44 nA in the base. Average cell capacitance was 5.36 ± 0.01 pF in the apex and 5.03 ± 0.01 pF 

in the base, and average access resistance was 6.19 ± 0.02 M. Permeation modelling was done 

at -55 mV and 25C to match the approximate driving force on cells in experimental conditions. 

All modelling results are presented for a single open channel, thus with an open probability  

of 1.  

 

3.2.1 Block of MET current by three aminoglycosides 

All three AGs block MET channel currents in a generally similar manner to that reported for DHS 

by Marcotti et al. in 2005. Figure 3-2 shows examples of MET currents during control superfusion 

and during exposure to 30 M of each AG, recorded as described in sections 2.2.3 and 2.3. The 

outward currents at depolarising voltages are unaffected, but when the cell is hyperpolarised in 

the presence of each AG the large inward MET currents are strongly blocked. AGs could be 

quickly and fully washed out to recover full MET currents, as shown in figure 2-4. A comparison 

of the fractional block curves—calculated as described in section 2.3—at 30 M of each AG is 

shown in figure 3-3. All fractional block curves at each concentration and for each AG and coil 

are shown in figure 3-4. Figure 3-5 shows dose response curves at each voltage fitted with the 

Hill equation as described in section 2.4.1. The results of this fit are shown in figure 3-6.  

At the most negative membrane potentials a relief in block of the MET current was seen for all 

three drugs, indicating permeation of the drugs through the channel. The half-blocking 

concentrations (KD) varied significantly between drugs but were similar between apex and base. 

For all drugs, the KD increased dramatically and became meaningless at potentials above -24 mV 

as the drugs do not bind to the channel. These results are shown in Table 3-1. The Hill coefficient 

for all three drugs was approximately 1 in both apex and base and was therefore set to 1 in the 

two-barrier one-binding site model.  
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3.2.2 Kinetics of aminoglycoside block 

The temporal kinetics of the block by all three AGs was assessed in both apical and basal OHCs 

as described in the section 2.3. These results are shown in figure 3-7. The average time constant 

of full block upon channel opening at 10 µM for gentamicin was 0.50  0.18 ms (n = 6) in basal 

OHCs, which was similar to that previously described for DHS (Marcotti et al., 2005). Amikacin 

was faster but still relatively similar, with a time constant of 0.33  0.19 ms (n = 3). The time 

constant for kanamycin however was much faster than either gentamicin or amikacin, at  

0.03  0.01 ms (n = 9). The slope of each dataset was measured, and this equals k1 in table 3-2.  
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3.2.3 Modelling results 

Fitting the fractional block curves with the two-barrier one-binding site model resulted in good 

fits as shown in figure 3-4. These fits, as well as the fits of the time constant data produced 

values describing the MET channel permeation pathway which are summarised in table 3-2. 95% 

confidence intervals are reported for parameters obtained from fitting the data. The remaining 

parameters are calculated as described in section 2.4.2. Data for the highest concentrations was 

more variable due to difficulties in acquiring stable recordings from such small currents. But 

excluding these points from the modelling only slightly affected the results so they were 

included. The apparent charge of the molecule with respect to the channel was approximately 

1.5-1.6 for gentamicin and kanamycin and was slightly higher for amikacin at 1.7 in the apex and 

1.8 in the base. The confidence intervals on these charges dictate that these differences are not 

significantly different from each other. The relative position and strength of the binding site 

within the pore are given by b and Eb, and the values for the energy barriers at the entrance 

and exit are given by E1 and E2 which are calculated from k1 and E. Using these values, energy 

profiles can be constructed that describe the relative position and strength of interaction of sites 

within the permeation pathway. These are shown comparing apex and base in figure 3-8 and 

comparing drugs in figure 3-11. 

 

3.2.4 Energy profiles and entry rates vary as a function of position along 
the cochlea 

The energy profiles show similar patterns between apex and base. For gentamicin and 

kanamycin, the apex had higher energy barriers at both the entrance and exit. For gentamicin 

and amikacin, the binding site position was shifted slightly towards the extracellular side in the 

apex. These parameters are closely linked to each other in the fitting process. Both the higher 

energy barriers and the shift in binding site will contribute to differences in entry rate, and it 

seems that in the model, each drug has its signature profile of how this difference is achieved. 

The entry rates for all three drugs saturated about 1.5-3 times lower in the apex than in the 

base. Interestingly, the entry rate for kanamycin in both the apex and base ultimately saturated 

at a much higher level than the other two drugs, which is likely due to its higher half-blocking 

concentration and faster time constants. This can be conceptualised as the drug interacting less 

with the channel as it passes through, thus both reducing its affinity at lower concentrations and 

then at higher concentrations making it more susceptible to the chemical driving force pushing 

it into the cell. 
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3.2.5 Entry rates of the three aminoglycosides match their toxicity 

The comparative toxicity of gentamicin, kanamycin and amikacin in the basal turn of the 

neonatal cochlea was assessed. These experiments were performed by Ms. Cynthia Smith, and 

the relevant results shown in figure 3-10 were compiled by Dr. Richard Osgood. P2 cochlear 

cultures were incubated with varying concentrations of each AG for 48 hours, then fixed in 3.7% 

formaldehyde, permeabilised in 0.1% Triton X-100 and stained with Texas Red phalloidin and 

Rabbit -myosin VIIa, with a secondary stain of Alexa Fluor 488 Goat  Rabbit. Panels A-F of 

figure 3-10 show examples of basal OHCs at 30 M of each AG. The remaining hair cells in fixed 

basal regions of interest (ROIs) were counted. These results are quantified in panel G of figure 

3-10. The LD50 (determined by counting the number of OHCs that had both a cell body and a hair 

bundle) for gentamicin was 2 M, 36.1 M for kanamycin, and 167.1 M for amikacin. 

The entry rates (shown in panel B of figure 3-11) of all three drugs matched their relative toxicity 

in basal OHCs, with gentamicin being the most readily permeable, and amikacin the least. The 

LD50 concentrations and their matching entry rate are indicated as lines on panel B. This pattern 

is also reflected in the energy profiles (figure 3-11, panel A), which showed a similar staggering 

of strength at both the binding site and at the second energy barrier. Interestingly, the height of 

the first energy barrier was very similar for all three drugs.  

As mentioned, at high concentrations the relatively weaker affinity of kanamycin for the MET 

channel forces much higher concentrations of it through the pore and into the cell. However, 

over the concentrations that are relevant for the toxicity assays, its entry rate sits in between 

gentamicin and amikacin (figure 3-11). Additionally, the concentration at which the entry rate 

for kanamycin overtakes gentamicin (~5.5 M) is almost three times above the LD50 of 

gentamicin, so OHCs exposed to this concentration of gentamicin would certainly be dead and 

a difference in toxicity would not be evident. 

Entry rate in basal OHCs of gentamicin saturated at 500 molecules per second per channel, 1900 

for kanamycin, and 430 for amikacin. 



76 
 

 



77 
 



78 
 

3.3 Discussion 

3.3.1 What leads to the differences in permeation between apex and 
base? 

As discussed in section 1.2.5, there are many differences in the properties of the MET channel 

between neonatal apical and basal OHCs, the main ones being its number per cell, conductance, 

and genetic composition. The results presented in this study were modelled for entry through 

an individual open MET channel, thus controlling for a difference in channel number. In vitro and 

in vivo, an excess of channels in basal OHCs would further increase the differences in permeation 

between the two locations. But the relationship between channel conductance and drug 

permeation in these data is not immediately obvious.  

Because this experiment was not designed to address questions of TMC1 versus TMC2 but to 

relate AG entry to ototoxicity in cochlear cultures at the same stage of development, these 

results were obtained in wild type mice with uncontrolled levels of TMC1 and TMC2 in each coil.  

Thus, the present study can make no conclusions on the roles of TMC1 and TMC2 in the 

differences found in channel topology and permeation of aminoglycosides in the apex and base. 

However, it is worth noting that a previous study found that apical cells of Tmc2-/- (thus 

expressing TMC1 only) had a reduced permeation of DHS compared to wild types (Corns et al., 

2016). Another study found a higher calcium permeability for TMC2 versus TMC1 (Goldring et 

al., 2019), which is likely to be a closely related mechanism to the permeation of the polycationic 

AGs. According to previously published results, it is expected that at this stage the apex will 

express almost entirely TMC2 and the base will express mostly TMC1 (Beurg et all., 2018). Thus, 

a difference in permeation between TMC1 and TMC2 alone is not sufficient to explain the 

differences in permeation between apex and base for each drug presented here. 

Perhaps these results are indicative of two simultaneous gradients: as TMC1 has a higher 

conductance in the base than the apex (Beurg et al., 2018), TMC1 that is present in the base at 

this age must already have a higher permeability than TMC2 that is present in the apex. This 

suggests that the machinery setting up the gradient in single-channel conductance in OHCs along 

the cochlea is already present in the base in the early stages of TMC1 expression. Furthermore, 

though the energy profile is not a physical map of the channel, it describes its electrical topology 

and could be related to its shape and size. In this case, the differences noted in the height of the 

energy barriers and position and strength of the binding site could be indicative of differences 

between the pore topology of TMC1 and TMC2. This subject will be revisited in chapter 8 

following the presentation of further data. 
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3.3.2 What leads to the differences in permeation between the three 
drugs? 

It is at present unclear what causes these large differences in permeation between AGs. The Hill 

coefficient for each AG was close to 1 in both apex and base, so it can be safely concluded that 

gentamicin, kanamycin, and amikacin all bind non-cooperatively to a single binding site within 

the MET channel pore as was reported for DHS (Marcotti et al, 2005, Corns et al., 2016). 

Therefore, understanding the differences in permeation rates for each drug requires examining 

the factors that contribute to them and how they differ.  

As it is likely that the positive charges on the AGs are what allow them to permeate through the 

channel, a difference in charge interacting with the channel pore could explain differences in 

permeation rate. At a pH of 7.4, the electrical charges of gentamicin, kanamycin, and amikacin 

were measured by NMR spectroscopy to be 3.3, 2.4 and 2.8 respectively (Al Khzem, 2019). These 

do not appear to match the charges fit from the MET channel data here reported (approximately 

1.5 for gentamicin and kanamycin, and 1.75 for amikacin, though confidence intervals suggest 

these differences are non-significant), suggesting that the MET channel is only interacting with 

certain charges (perhaps even the equivalent charge point on each of the molecules), and not in 

a pattern consistent with either their entry rate or their measured charges. Furthermore, the 

charge of the molecules alone is not enough to account for the differences in permeation as 

fixing the charges to either 1.5 or 2 for all drugs did not drastically impact the entry rates.  

Perhaps a size restriction of the width of the molecules fitting through pore could explain the 

differential permeation. As previously discussed, the diameter of the narrowest part of the 

channel pore was determined to be ~12.5-15 Å (Farris et al., 2004; Alharazneh et al., 2011), but 

has recently been found to be potentially much larger (Desmonds, 2015; Ballesteros et al., 2018). 

Gentamicin, kanamycin, and amikacin are predicted to have maximum widths of approximately 

9.6 Å, 5.0 Å, and 8.0 Å, respectively. The size of the channel pore is therefore comfortably wider 

than even the largest AG studied, gentamicin, so it is unintuitive that differences in permeation 

are due only to a physical constraint. Furthermore, the difference in toxicity does not seem to 

correlate with the maximum width of each molecule, especially given the relatively small width 

of kanamycin. This small width does however possibly reflect the ability of kanamycin to pass 

through the pore with reduced resistance as evidenced by its higher saturation point than the 

other two AGs. The toxicity of the three AGs and their entry rates does match their ranking of 

molecular weights (see section 3.1), so it is therefore likely to be a combination of physical and 

biochemical factors that leads to differential permeation. 
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The energy profiles give an interesting perspective on how the drugs are interacting with the 

channel as they permeate. The k1 (rate over the first energy barrier) and Eb (binding energy) 

decrease and the E increases in accordance with toxicity for the three drugs. The relatively 

small differences in k1 are counterintuitive because of the large differences in temporal kinetics 

between the three AGs (especially for kanamycin, which had much faster kinetics than either 

gentamicin or amikacin as shown in figure 2-6 and figure 3-7). But despite this, k1 varies only 

minimally between the three drugs, thus producing similar values for the first energy barrier 

(E1). While the height of the E1 only changes minimally, the second energy barrier (E2) varies in 

height according to toxicity. E2 is calculated from E1 and E, and it appears that its height is 

reversely proportional to toxicity, perhaps providing more resistance to drugs entering the cell. 

This indicates that the restriction point leading to differential permeation is at the narrowest 

part of the pore, the exit. These findings further support the notion that the intracellular side of 

the pore is the narrowest (figure 1-9) (van Netten and Kros, 2007; Corns et al., 2016) and that 

differences in permeation of AGs could be related to their size and shape. 

 

3.3.3 Implications of variation in permeation for ototoxicity and 
otoprotection 

As the entry rates matched the toxicity differences both between drugs and between the apex 

and base, this indicates that the MET channel serves both as the primary entry route, and in a 

sense as the rate-limiting factor on ototoxicity. This strongly supports the effort to find 

otoprotectants that are reversible, ideally non-permeant, MET channel blockers. 

Of course, these results do not exclude the possibility that once inside the cell the AGs still enact 

varying intracellular pathways to cell death. The fact that the LD50 lines in panel B of figure 3-11 

do not match consistently with entry rate suggests that indeed there could be other additional 

factors contributing to differences in toxicity. It is perfectly reasonable to think that if these 

drugs are permeating differently through the MET channel, they may also for example permeate 

at different rates through mitochondrial membrane channels. Nevertheless, it is only logical that 

such large differences in permeation between AGs will lead to differences in intracellular AG 

concentration and therefore contribute to differences in ototoxicity.  
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3.3.4 Suggestions for future studies 

There are many experiments that could further elucidate the relationship between channel 

permeation and toxicity, and the differences between drug permeation in the apex and the 

base of the cochlea. These include: 

• Using TMC1 and TMC2 knockout mice to tease apart the contributions of each of these 

to AG permeation in apical and basal OHCs.  

• Investigating if the different isoforms of gentamicin, which have varying degrees of 

ototoxicity (O’Sullivan et al., 2020), also permeate differently through the MET channel.  

• As the channel number, temperature, and time in the permeation model can all be 

controlled, this allows the possibility of predicting the entry rate of AGs in vitro over 

time. Future experiments could use pulses of AGs over cultures for specified times to 

produce similar amounts of AG entry and check for their ototoxic effects.  

• Comparing permeation modelling data with newly available structural models of TMC1 

(Pan et al., 2018; Ballesteros et al., 2018) could give insight into the molecular correlates 

of the interaction sites within the channel pore (see chapter 6 for more detail).  
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Chapter 4 
 
 
 
 
 
Permeation of Gentamicin-Texas Red 

through the MET Channel 
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4.1 Introduction 

GTTR is a fluorescently tagged conjugate of gentamicin and Texas Red that is used to visualise 

uptake of gentamicin into hair cells. Its uptake via the MET channel competes with native 

gentamicin, thus reducing ototoxicity in vitro and in vivo (Dai and Steyger, 2008; Wang and 

Steyger, 2009; Wang et al., 2010; Hailey et al., 2017). It is the use of GTTR that proved that hair 

cells required mechanotransduction for ototoxicity (Alharezneh et al., 2011). It has even been 

used to follow intracellular trafficking routes of gentamicin in hair cells (Hailey et al., 2017). 

Furthermore, the application of GTTR leads to a visible tonotopic gradient in fluorescent 

labelling like that found for several other compounds (figure 4-1) (Gale et al., 2001, Desmonds, 

2015), and similar to the toxicity gradient of native AGs (Kotecha and Richardson, 1994; 

Alharezneh et al., 2010; O’Reilly, 2019). Much care has been taken to demonstrate the functional 

use of GTTR as an indicator for gentamicin uptake in hair cells.  

Whilst GTTR certainly does seem to permeate through the MET channel, the question remains 

of how its permeation compares to native gentamicin. The addition of the Texas Red side chain 

makes it a much larger compound than gentamicin, with a maximum width of approximately 

14.7 Å (Alharazneh et al., 2011). According to early estimates of the MET channel pore width it 

would have been too narrow for GTTR to fit (Farris et al., 2004), but recent studies have shown 

compounds up to 23 Å to permeate now making GTTR permeation through the channel perfectly 

feasible (Ballesteros et al., 2018). However, during synthesis the Texas Red molecule binds onto 

and neutralises one of the potential regions of positive charge on gentamicin (figure 4-2). 

Because these positive charges are thought to contribute to binding of AGs to the channel 

binding site, this may impact permeation. Furthermore, it is now believed that the permeation 

pathway is in fact in the shape of a groove that contacts the cell membrane down one side 

(Ballesteros et al., 2018). This exposure to the hydrophobic tails of membrane phospholipids 

could interact with the lipophilic portion of the Texas Red molecule attached to gentamicin and 

affect the permeation profile and entry rate. 

To date only preliminary data have been acquired with regards to the electrophysiological 

interaction of GTTR with the MET channel and its behaviour as a channel blocker. I have 

therefore done a full permeation characterisation of GTTR in both apical and basal neonatal 

OHCs to compare it with gentamicin and to see whether the addition of the large, lipophilic 

Texas Red side chain affects it permeation through the MET channel. GTTR was obtained from 

Professor Peter Steyger (Creighton University) in dehydrated powder form (synthesised from a 

mixture of gentamicin isoforms) and made up into individual aliquots as needed. 
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4.2 Results 

This chapter includes data from 16 apical OHCs and 14 basal OHCs of P2+1 and P2+2 cultured 

CD-1 wild type mouse cochlea. The average MET current size at -164 mV was -1.32 ± 0.005 nA 

in the apex, and -1.77 ± 0.007 nA in the base. The average resting MET current at -164 mV was 

approximately 3% of the maximum in both the apex and base. The largest MET current recorded 

was -1.93 nA in the apex, and -2.44 nA in the base. Average cell capacitance was 6.14 ± 0.02 pF 

in the apex, and 5.76 ± 0.02 pF in the base, and average access resistance was 4.69 ± 0.03 M. 

The data in this chapter were acquired and processed as described in chapters 2 and 3 with key 

differences where indicated. For instance, due to the slower kinetics of GTTR square waves of 

22 Hz (half the usual frequency) were used as a main protocol (figure 4-3). Sine waves were used 

in conjunction to check that stimuli were saturating. As in chapter 3, modelling was done at  

-55 mV to match the approximate driving force on cells in experimental conditions, and all 

results are presented for a single open channel, thus with a channel open probability of 1.  

 

4.2.1 Block of MET current by GTTR 

GTTR is a much more potent blocker than gentamicin, with approximately 10 times stronger 

block of MET currents. Its block is also reversible, like the AGs, but it can take longer to wash out 

and recover full current size. Fractional block curves for apical and basal OHCs are shown in 

figure 4-5, and corresponding dose response curves are shown in figure 4-6. As before,  

voltage-dependence of the KD and Hill coefficient were calculated for GTTR and results are 

shown in figure 4-7, and are summarised in table 4-1. Similar to gentamicin, GTTR also had a 

clear relief of block at strongly hyperpolarised voltages and is therefore certainly permeating 

through the MET channel. However, at depolarised potentials the block was relieved more 

gradually than any of the native AGs, indicating a much higher affinity for the channel and a 

reduced voltage-dependence of the interaction between the drug and the channel.  

Most intriguingly, the Hill coefficient for GTTR had an average of 2.5 at negative potentials, 

increasing slightly as voltage increases towards zero and then sharply dropping towards 1 at 

positive potentials. Because the modelling was done at -55 mV, the Hill coefficient was set to 

2.5. No apical to basal difference in KD or in Hill coefficient is apparent for GTTR, as was found 

for the three native AGs presented in chapter 3.  
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4.2.2 Kinetics of GTTR block 

The time constant of the decay in current is significantly different between gentamicin and 

GTTR, with block by GTTR developing at a much slower rate as shown in figure 4-8. A longer 

force step of 20 ms and occasionally 40 ms for low concentrations was therefore used to ensure 

that the entire decay curve could be accurately fit. The average time constant of full block upon 

channel opening by 1 µM GTTR in basal OHCs was 4.89 ms  1.01 ms (n = 12), approximately  

10 times slower than the 0.5 ms time constant of gentamicin reported in section 3.2.2. The slope 

of time constants in both apical and basal OHCs was measured and its value k1 is reported in 

table 4-2. 

 

 

 

 

 

 

 

 

 



91 
 

 

 

 

 



92 
 

4.2.3 Modelling results 

Fitting of the fractional block curves with the two-barrier one binding-site model matched the 

data well. The results of this fit and the subsequent calculations are summarised in table 4-2.  

As expected, the apparent charge of the molecule was lower than for native gentamicin likely 

due to the Texas-Red side chain taking up one of the charge sites. Unlike any of the native AGs, 

the apparent charge was different in the apex and base at approximately 1.16 and 0.87, 

respectively. According to the confidence intervals on these values these differences in charge 

are statistically significant, but the reason for this is unknown.  

The striking differences in the behaviour of GTTR are evidenced by the energy profiles, shown 

in figure 4-7 (panel A). First, the binding energy for GTTR at the binding site is far stronger than 

it is for native gentamicin, at -34.4 kT compared to approximately -8.4 kT for gentamicin. 

Intriguingly, the binding site is also shifted towards the right in the apex whereas for native 

gentamicin it was shifted to the left. Most interestingly, the energy barriers in both the apex and 

base have negative values. This has never been reported before for any drug that has been 

tested with the MET channel. Mathematically, this result is related to the slow kinetics of block: 

E1 is negative because it is calculated from the log of k1, which is further exaggerated by the high 

Hill coefficient (see figure 4-8). This is interesting to compare with gentamicin and kanamycin, 

in that although kanamycin had about 10 times faster time constants than gentamicin, the slope 

of its time constants (and therefore k1) was still similar.  

The E is also much smaller than native gentamicin in both apex and base, and as for the binding 

site its apical to basal relationship is reversed compared to the native AGs. The significance of 

this is also unclear, but the fact the trend is reversed for several parameters suggests that this 

could be indicative of an altered mechanism of binding between GTTR and the MET channel 

compared to that for native AGs.  

Perhaps unsurprisingly, these differences in kinetics contribute to large differences in entry rate 

(table 4-2 and figure 4-7, panel B). As for the AGs, the apical channel permeates less GTTR 

compared to the basal channel. But unlike native gentamicin, GTTR appears to quickly saturate 

the channel at relatively low concentrations of about 3 M, probably due to its larger size.  
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4.2.3 Entry rate and ototoxicity 

Whilst GTTR has a well-known tonotopic gradient in fluorescence (as shown in figure 4-1) and it 

has been extensively used as an indicator for gentamicin entry intro hair cells, little data has thus 

far been published on the ototoxic effects of GTTR itself. A dose-response curve for the toxicity 

of GTTR compared with gentamicin in basal OHCs was presented by Dr. Richard Osgood in his 

2019 thesis, which has been reproduced here with permission (figure 4-11). The methods for 

this experiment were as described in section 3.2.4, with exception that the quantification of hair 

cell survival was done from a phalloidin stain alone. The experiment was performed by Professor 

Guy Richardson and Ms. Jodi Parslow, and Dr. Richard Osgood quantified the data and created 

the graph.  

Although at first glance GTTR appears to permeate the channel far less than native gentamicin 

(as it certainly does at high concentrations!), at 1 M GTTR was modelled to have a slightly 

higher entry rate of 24.77 molecules per open channel per second, which was 23.38 for 

gentamicin. By 2 M, GTTR entry was 41.29 and gentamicin over-took with 44.68. GTTR entry 

then saturated at about 50 molecules per second around 3 M whilst gentamicin entry 

continued to climb and saturated at about 500 molecules around 100 M. This range of 

crossover between the entry rates of gentamicin and GTTR at low concentrations is shown in 

figure 4-11.  

In fact, in the dose response curve for basal OHCs GTTR was found to be slightly more ototoxic 

with an LD50 of 0.9 M, compared to 2 M for native gentamicin. Given that a margin of error is 

expected in these models of entry rate, and that the GTTR used in these two experiments came 

from different batches that could vary in purity, it is conceivable that at these low concentrations 

GTTR could indeed permeate more readily into the cell than native gentamicin, leading it to be 

more ototoxic in the same way as the native AGs presented in chapter 3. This higher permeation 

could be explained by its greater binding affinity for the MET channel, but further increasing of 

entry rate at higher concentrations is prevented by its large size.  

Once again, if a difference in permeation between gentamicin and GTTR does occur at these low 

concentrations, it is unlikely to fully account for their differences in ototoxicity. As before, if the 

interaction of GTTR with the MET channel is so different from native gentamicin then it is likely 

that its interactions with other intracellular targets will be different as well. For example, GTTR 

was found to induce formation of membranous blebs on the apical surface of cochlear hair cells 

whereas gentamicin did not (Osgood, 2019).  
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4.3 Discussion 

Several things stand out from modelling GTTR permeation. First and foremost is the  

Hill coefficient which increases between 2 and 3 at low potentials, and then drops off sharply at 

high potentials. This Hill coefficient above 1 indicates that the drug may be able to bind to more 

than one site within the channel and that binding of multiple molecules to the channel may be 

cooperative. This cooperative binding appears to be voltage-dependent, as its effect reduces at 

higher potentials. This could be due either to a reduced affinity of the molecule for the channel, 

or perhaps even a voltage-dependent conformational change of the channel itself. A similar 

pattern was described by Gale et al. (2001) for the fluorescent dye FM1-43. The key difference 

is that FM1-43 was found to have an unusual ability to reside inside the closed MET channel, 

which was evidenced in the force steps as a slow development of current upon channel opening 

and slow inactivation of current upon channel closure (this also made it impossible to model 

FM1-43 permeation rate, which is expected to be very high). The observation that the MET 

currents in the presences of GTTR decline exponentially in response to force steps imply that 

GTTR is clearly an open-channel blocker and cannot reside in the closed channel. Additionally, 

FM1-43 was also found to be able to block both inward and outward currents. Extracellular GTTR 

does block some outward currents, but to a lesser degree than inward currents and generally its 

pattern of kinetics is more in line with the AGs than with FM1-43.  

The other striking observation is that the binding energy is approximately three-fold stronger 

for GTTR than for native gentamicin, and the energy barriers are both negative. This result is 

counterintuitive as an energy barrier should by definition be positive. There are several possible 

interpretations of this phenomenon, three of which I will outline here: 

1.) One caveat to the energy profile model is that there is no way to measure the width of 

the electrical field of the interaction sites, meaning that areas of charge within the 

channel pore could overlap. The energy barriers could appear negative in the model of 

GTTR because they are overshadowed by the intense negativity of the binding site. This 

would explain why the apical energy barriers appear “higher”–less negative–than the 

basal energy barriers, as they do for native gentamicin. 

2.) Another explanation is that according to our model, we believe that these energy 

barriers correspond to regions of positive charge at the entrance and exit of the pore. It 

is possible that the Texas Red portion of the molecule has negatively charged residues 

that bind to these two barriers, producing 3 distinct binding sites which are reflected in 

the Hill coefficient. Alternatively, new evidence suggests that there could also be areas 
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of negative charge at these points as well, which GTTR may be interacting with 

(Ballesteros et al., 2018).  

3.) Lastly, it is now believed that the channel pore is shaped like a groove down the side of 

the TMC1 protein, and that one side is in contact with the cell membrane (Ballesteros 

et al., 2018). It could be that the gentamicin portion of the molecule is going head-first 

into the channel pore and binding to the usual AG binding site before permeating into 

the cell, while the Texas Red portion is attracted to the lipophilic regions of cell 

membrane within the pore, effectively being “dragged” through the channel by 

gentamicin. This would cause it to block the channel more strongly than native 

gentamicin and could result in the higher binding energy and negative energy barriers.  

The dynamics of the interaction between GTTR and the MET channel could in fact be a 

combination of these three scenarios or could be due to a currently unknown property of the 

channel. It is at present unclear and warrants further study. Comparison of these modelling 

results with structural models of the TMC1 pore could help to elucidate the intriguing properties 

of the permeation of GTTR through the MET channel (see chapter 6 for more detail).  

The differences between apex and base for GTTR are interesting as well. Unlike the native AGs 

in which parameters were shifted in the apex to indicate a “narrower” pore, the trend is reversed 

in several of the parameters for GTTR. For instance, the apical binding site is further down the 

channel than the basal binding site, and the E is lower. And yet despite these differences the 

permeation is still predicted to be lower, likely due to the k1 which is lower in the apex than in 

the base. The reason why these trends are reversed is uncertain. Considering the three potential 

explanations outlined above, it is possible that a different mode of binding of GTTR to the 

channel pore—in some ways opposite—leads to an opposite trend between apex and base. The 

observation that the apparent charge is higher in the apex than in the base, unlike the native 

AGs, could also be indicative of a different mode of binding, perhaps between TMC1 and TMC2. 

(though as before the contributions of TMC1 and TMC2 to this effect cannot be conclusively 

commented on because wild-type mice were used in this experiment) 

What is most fascinating about these results is that despite the differences in kinetics, at low 

concentrations (1 - 3 M) the entry rates of gentamicin and GTTR are expected to be similar. As 

these are the concentrations that are regularly used in fluorescence uptake experiments and 

over which ototoxicity in culture can be assessed, this indicates that GTTR is a good marker of 

gentamicin entry into hair cells through the MET channel. Nevertheless, GTTR has kinetics 

different to gentamicin and pushing it experimentally beyond its limits may be unadvised.  
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5.1 Introduction 

The permeation profiles for native AGs presented in chapter 3 provide insight into how 

differences in permeation of these drugs may be related to their inherent ototoxicity, but these 

results are difficult to extrapolate to an in vivo situation for several reasons. The aim of this 

chapter is to explore some of the factors that affect AG permeation and how conditions in vivo 

may vary from experimental conditions, with the goal of providing an estimate of permeation 

rate for gentamicin through the MET channel in real adult hair cells. 

First and foremost, the calcium concentration in the endolymph is far lower than the perilymph, 

but for experiments that involve incubating hair cells for long periods of time we use a 

perilymph-like medium to keep cells alive. Thus, the experiments in chapter 3 and 4 were done 

in a “high” (1.3 mM) calcium medium to match the experimental conditions in toxicity assays. 

Calcium itself is a permeant blocker of the MET channel, thus lowering the calcium 

concentration in the superfusion medium produces several interesting effects. 1.) The MET 

currents increase in size, especially in the inward direction. 2.) The resting current as a 

percentage of total MET current increases as adaptation is reduced (Corns et al., 2014). 3.) As a 

blocker, calcium competes with AGs for the pore binding site. Lowering the calcium 

concentration increases the affinity of AGs for the channel, producing more block (Marcotti et 

al., 2005) (figure 5-1). Presumably this would increase the entry rate of gentamicin through the 

channel, as it was found to for DHS. To test this, I characterised the permeation profile for 

gentamicin in 100 M Ca2+ medium, the lowest possible without risking damage to tip links.  

Second, little is known about how AG permeation may change as hair cells mature, and the 

kinetics of the MET channel over the course of development are heavily debated. As previously 

discussed, there is a change in the profiles of TMC1 and TMC2 expression during the first 

postnatal week. In the apex at P2 it is expected that the MET channel is composed entirely of 

TMC2, and by P10 it should be entirely TMC1. A previous study by Corns et al. (2017) found that 

Tmc2-/- mice had a lower permeation of DHS through apical OHC MET channels compared to 

wild type. Furthermore, TMC1 is capable of faster calcium adaptation than TMC2 (Goldring et 

al., 2019), and TMC2 has a larger calcium permeability than TMC1 (Pan et al., 2013; Beurg et al., 

2015). Given that these properties are closely related, it would be interesting to see how 

maturation, which should produce a similar shift in expression profile from TMC2 to TMC1, 

might affect permeation of drugs through the channel. This could, moreover, elucidate 

differences in permeation between TMC2 and TMC1 and how these may impact the results 

presented in chapters 3 and 4. 
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However, recording MET currents is challenging to begin with and ordinarily recording MET 

currents from OHCs beyond the first postnatal week is almost impossible. In the neonates the 

OHCs stick together well and the flexibility of the organ of Corti allows it to maintain its shape 

during dissection. But as the mice mature, the organ of Corti becomes more rigid and less  

well-adhered and is therefore more easily breakable during dissection. The hair bundles 

especially become increasingly delicate as they anchor to the cuticular plate and the tectorial 

membrane. Removal of the tectorial membrane in older preparations is almost guaranteed to 

destroy the hair bundles.  

In order to study the effect of maturation on MET channel permeation, I used Tecta/Tectb-/- 

mutant mice to record from P9-P10 OHCs. These mutants completely lack a tectorial membrane, 

making recording MET currents possible at later ages. Even so, only apical OHCs could be 

recorded from as the basal part of the coil was too brittle to withstand dissection. I also recorded 

a new dataset for gentamicin in apical OHCs from P2 mice of the same strain to control for any 

inherent differences in permeation due to the Tecta/Tectb-/- mutation. Further adaptations to 

the experimental process were also made and will be described in section 5.3.1. 

Third, the permeation rate of molecules through the MET channel is dependent both on the 

extracellular concentration of drug and the voltage of the cell, which is different in culture than 

it is in vivo due to the endocochlear potential. In culture, the resting potential of OHCs is thought 

to range from -55 to -60 mV (Marcotti and Kros, 1999, Kirkwood et al. 2017), so the entry rates 

I have presented thus far were all modelled at -55 mV to allow for comparison with in vitro 

toxicity assays. In vivo, the resting potential of the OHCs is likely to be closer to -150 mV 

compared to the endolymph with the addition of the endocochlear potential (Mammano and 

Ashmore, 1996; Marcotti and Kros, 1999; Johnson et al., 2011). This large voltage difference will 

increase driving force on positively charged ions and molecules flowing into the cell and may 

also affect the binding properties of drugs with any voltage-dependent kinetics. Therefore, in 

section 5.4 of this chapter I will show each of the permeation datasets presented thus far in this 

thesis, but now modelled as a function of both concentration and voltage. This will demonstrate 

the cooperative effects of voltage and concentration on permeation through the MET channel 

and how the topology of permeation changes with driving force for each drug and condition.   

Finally, I will discuss the interplaying effects of the results of these experiments, and what these 

results may indicate for permeation in an in vivo adult OHC. It should be noted that the 

completion of these experiments was cut short by the COVID-19 crisis, and therefore some data 

are missing where indicated and errors may be larger than usual.  
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5.2 Effect of calcium on gentamicin permeation 

This section includes data from 12 basal OHCs of P2+1 and P2+2 cultured CD-1 wild type mouse 

cochleae. The data in this section were acquired and processed as described in chapters 2 and 

3, with the exception that recordings were made in superfusion medium containing 100 M Ca2+ 

instead of the regular 1.3 mM Ca2+. Because of this, some differences are apparent in MET 

current characteristics as previously discussed. The average MET current size at -164 mV was  

-1.71 ± 0.007 nA, and the average resting MET current at -164 mV was 15 ± 0.2% of the maximum 

in both apex and base. The largest MET current recorded was -2.05 nA. The average cell 

capacitance was 5.5 ± 0.02 pF, and average access resistance was 8 ± 0.10 M. As in chapter 3, 

entry rate modelling was done at -55 mV to match the approximate driving force on cells in 

experimental conditions, and all results are presented for a single open channel, thus with a 

channel open probability of 1. The solution in the fluid jet was set to low calcium to further avoid 

mixing of low and high calcium in the immediate extracellular environment.  

 

5.2.1 Block of MET currents by gentamicin in low calcium medium 

As expected, lowering the calcium concentration of the superfusion medium increased the size 

of the MET currents, increased the fraction of the MET current activated at rest, and increased 

the strength of gentamicin block on the MET currents. These properties are all illustrated in 

figure 5-1.  

Quantification of the block (shown in figure 5-2 and summarised in table 5-1) by fitting dose 

response curves showed that the Hill coefficient remained the same as in regular calcium, at 

about 1 across voltages. A large shift in KD was apparent so that gentamicin blocked MET 

currents by half at a much lower concentration when less calcium was present (table 5-1). 

Voltage-dependent relief of the block upon depolarisation was more acute in low calcium 

medium, so that by -24 mV there was almost no block of MET current (for this reason this voltage 

is not plotted in figure 5-3).  
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5.2.2 Kinetics of gentamicin block in low calcium medium 

The temporal kinetics of the block by gentamicin in 100 M Ca2+ medium closely resembled 

those in 1.3 mM Ca2+ medium but were slightly faster, and the slope (equal to the rate constant 

k1), was steeper as well. These results are shown in figure 5-4.  
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5.2.3 Modelling results 

The differences in KD and k1 between gentamicin in regular medium and in low calcium medium 

led to differences in the energy profile and permeation rate through the channel (shown in 

table 5-2, figure 5-5). As was found for DHS, the first energy barrier was lower in low calcium 

medium, but the second energy barrier was unaffected due to a complementary lower E 

(Marcotti et al., 2005). This makes sense as the extracellular calcium concentration would affect 

the rate over the first energy barrier but would not affect the second energy barrier which is 

closer to the intracellular side of the pore.  

Intriguingly, the apparent charge was higher for gentamicin in low calcium medium. The binding 

site was also shifted towards the intracellular side of the pore compared to in regular calcium 

medium, which is unlike previous results found for DHS. This is likely because in the 2005 study 

the authors fixed the charge of DHS to 2 for all conditions, whereas I left it as a free parameter 

in the two-barrier one-binding site fit. Fixing the charge to 2 for gentamicin in both conditions 

produced a similar shift so that the binding site in regular calcium became 0.86 ± 0.07, and it 

became 0.88 ± 0.1 in low calcium. The apparent charge therefore has a strong impact on the 

position of the binding site in the energy profile, which is why I left it free for all of my energy 

profile comparisons.  

According to my modelling results, the entry rate through the MET channel for gentamicin in 

low calcium medium was over twice as high as it was in regular calcium, saturating at almost 

1200 molecules per second per channel compared to 500 in regular calcium (figure 5-5,  

panel B). 
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5.3 Effect of maturation on gentamicin permeation 

This section includes data from 10 apical OHCs of P2 and 12 apical OHCs of P9-P10 acutely 

dissected Tecta/Tectb-/- mutant mouse cochleae. The average MET current size at -164 mV in  

P2 OHCs was -0.98 ± 0.01 nA and was -1.90 ± 0.006 nA in P9-P10 OHCs. The average resting MET 

current at -164 mV was 2.6 ± 0.03% in P2 and was larger at 9.4 ± 0.001% in P9-P10 OHCs.  

The largest MET current recorded was -1.72 nA in P2 OHCs and -2.49 nA in P9-10 OHCs.  

The average cell capacitance was 6 ± 0.02 pF in P2 OHCs and increased to 6.73 ± 0.01 pF in  

P9-P10 OHCs, and average access resistance was 5.32 ± 0.04 M. Aside from the specific 

adaptations mentioned in the following section, the data in this section were acquired and 

processed as described in chapters 2 and 3. As in chapter 3, modelling was done at -55 mV to 

match the approximate driving force on cells in experimental conditions, and all results are 

presented for a single open channel, thus with a channel open probability of 1.  

 

5.3.1 Adaptations to methods for P9-P10 recordings 

Adaptations to the dissection and recording procedure were made in order to record from P9-

P10 OHCs. Only the very most apical part of the apical coil (~5-8 kHz) could be recorded from 

due to instability of the basal turn. Great care was taken during dissection to avoid stretching of 

the coil as this would distort and break the organ of Corti (which was far more rigid and delicate 

than in the neonates). The superfusion flow pressure was reduced by lowering the level of the 

syringes by about 1 cm, which was necessary as the cells were less adherent to one another and 

risked being blown away or disrupting the patch pipette seal while changing superfusion lines. 

The amplitude of the fluid jet stimulus was reduced by half, as the hair bundles were more 

delicate and needed far less stimulation to produce saturating MET currents—in fact, the usual 

fluid jet amplitude tended to immediately destroy the hair bundles. No surface cleaning of the 

cells was necessary as the basolateral membranes of the OHCs were already exposed 

immediately after dissection.  

Data collection for this experiment was cut short due to the COVID-19 crisis. As such data for 

the lowest and highest concentrations of the dose response curve for the P9-P10 dataset could 

not be collected in time for submission of this thesis (figure 5-8, panel B). Whilst not ideal, this 

should not drastically affect the fit of the curve as the upper and lower bounds of the Hill 

equation fit are routinely fixed to 1 and 0 respectively, and the Hill coefficient is fixed to 1 for all 

native AG datasets.  
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5.3.2 Block of MET current by gentamicin in P9-P10 OHCs 

Following adaptations to the dissection and recording procedure as described, large MET 

currents could be elicited from P9-P10 apical OHCs of Tecta/Tectb-/- mutants with relative ease. 

An example of these is shown in figure 5-6 (panels C and D). Membrane seals on OHCs were 

easy to form and stable, though MET currents tended to deteriorate relatively quickly during 

experiments probably due to the increased fragility of the hair bundles compared to neonatal 

OHCs.  

The block of MET currents was quantified by fitting the dose response curves (figure 5-8) as 

before and was found to be different in the P9-P10 OHCs compared to P2 (figure 5-9). The Hill 

coefficient for gentamicin was again close to 1 across voltages at both ages, but unlike in any of 

the previous datasets the KD was higher in P9-P10 OHCs. This is also unlike the difference in 

results found previously for immature Tmc2-/- OHCs, which showed an increased block by DHS 

(Corns et al., 2017). Interestingly, voltage-dependence of the block was again much steeper in 

P9-P10 OHCs compared to P2 OHCs, this time no longer blocking by -44 mV.  
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5.3.4 Kinetics of gentamicin block in P9-P10 OHCs 

The time constants for gentamicin in P9-P10 OHCs were much faster (as is often observed for 

weaker blockers) than the ones for P2 OHCs (figure 5-10) and the forward rate k1 had a lower 

value.  
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5.3.4 Modelling results 

Comparing the acute apical P2 dataset in Tecta/Tectb-/- mutants to previous results for acute 

apical OHCs in wild type CD1 mice shows that the Tecta/Tectb-/- mutation does not drastically 

impact the permeation rate of gentamicin through the MET channel. Minor differences can be 

accounted for by smaller N numbers due to cut-off of the experiment by COVID-19. As such 

these datasets can be safely compared.  

The energy profile of the MET channel had some interesting differences between P2 and P9-P10 

OHCs, as shown in table 5-4 and figure 5-11 (panel A). The first energy barrier was higher in  

P9-P10 OHCs due to the lower k1, but the second energy barrier was almost identical at both 

ages due to a difference in E. In P9-P10 OHCs the apparent charge was lower, and the binding 

site was shifted to the left. This shift is in the opposite direction to what would be expected if 

the results in permeation between apex and base presented in chapter 3 were representative 

purely of a difference in permeation between TMC1 and TMC2.  

The entry rate for gentamicin in P9-P10 OHCs was lower than it was for P2 OHCs (figure 5-11, 

panel B). This agrees with previous results found in Tmc2-/- OHCs in which a lower entry rate per 

channel was found than in wild type OHCs (Corns et al., 2017). This difference in permeation is 

likely to be due to TMC2 having a slightly larger N-terminal domain which could affect the 

entrance energy barrier and calcium selectivity (Goldring et al., 2019). Furthermore, this again 

supports the results from chapter 3 for which I suggested that a difference in TMC2 and TMC1 

alone was not enough to account for the difference in permeation found between apex and base 

in neonates. There must therefore be an additional gradient in permeation of TMC1 of apical 

and basal MET channels, in accordance with its gradient in single channel conductance 

(Ricci et al., 2003; Beurg et al., 2006; Fettiplace and Kim, 2014; Beurg et al., 2015; Beurg et al., 

2018). Given that TMC2 is thought to have little to no gradient in conductance along the 

neonatal cochlea (Beurg et al., 2018), it is therefore likely that TMC2 would have a similar lack 

of a gradient in permeation. This hypothesis remains to be tested. 
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5.4 3-dimensional entry rate modelling 

For simplicity, the models of permeation rate shown thus far have all been represented as a 

function of concentration at a fixed voltage of -55 mV. This allows for comparison with toxicity 

assays in which the cells rest in culture at approximately -55 mV and the concentration of drug 

they are incubated in is experimentally varied. It is important to bear in mind that in a hair cell 

in situ in the cochlea, the cooperative effects of both voltage and concentration on driving force 

will affect permeation of drugs through the MET channel. The addition of the endocochlear 

potential will increase the driving force at rest to approximately -150 mV, and as the cells are 

active their electrical potential will constantly change. Therefore, in order to gain a broader 

understanding of permeation as it may occur in vivo, figures 5-12 through 5-17 show each 

dataset thus far presented in this thesis modelled as a function of both voltage and 

concentration. These reveal similarities and differences between the permeation profiles of 

different drugs and conditions.  

For example, the 3 native AGs look similar except for differences in the scale of the Y axis. 

Kanamycin (figure 5-13) is “pointier”, so even though it can reach entry rates much greater than 

gentamicin (figure 5-12), it is more susceptible to driving force and only does so at the lowest 

voltages and highest concentrations. Kanamycin and amikacin (figure 5-14) look particularly 

alike except that the scale of the Y axis is much larger for kanamycin. Comparing these molecules 

this way highlights that the modification made to kanamycin to produce amikacin makes it less 

permeant through the MET channel. This could guide the future redesign of AGs that permeate 

less and are therefore less ototoxic.   

As expected, the topology of GTTR permeation is very different to that of the native AGs  

(figure 5-15). In fact, in this figure the voltage is represented on a different scale, from -200 to 

200 mV. The saturation of the block is clear at relatively low concentrations but lowering the 

voltage can continue to increase permeation.  

The permeation profile of gentamicin in low calcium medium (figure 5-16) is uneven at high 

voltages and low concentrations, reflecting the sharper voltage-dependent relief in block. 

Permeation is consistently higher than in regular medium, but interestingly at the lowest voltage 

and highest concentration modelled (-200 mV and 1000 M), the entry rate is very similar. The 

reason for this is unknown. The permeation profile of gentamicin in P9-P10 OHCs (figure 5-17) 

looks almost identical to that of P2 OHCs but a little lower, indicating that permeation of TMC1 

and TMC2 is likely to be very similar just reduced in TMC1 compared to TMC2.  
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5.5 Discussion 

With the results of these and my previous experiments I can make a prediction for the entry rate 

of gentamicin in apical and basal cells of a mature mouse cochlea. To summarise, the main 

factors that will influence entry rate of drugs into hair cells through the MET channels are: the 

concentration of drug, the membrane potential, the temperature, the resting open probability, 

the number of channels per cell, the location along the coil (as evidenced by the results in 

chapters 3 and 4), and the concentration of calcium. These first five parameters can be taken 

from the literature and the final two conditions can be extrapolated from my data.  

The best estimate of a physiologically relevant concentration for AGs in the endolymphatic space 

that will cause ototoxicity is approximately 1 M (Tran Ba Huy et al., 1981; Marcotti et al., 2005). 

Furthermore, according to toxicity dose response data this is slightly below the LD50 in the basal 

turn, so should cause a low level of toxicity to basal OHCs probably similar to that seen in 

patients. In a mature animal, the endocochlear potential is expected to produce a driving force 

of approximately -150 mV into the hair cells (Mammano and Ashmore, 1996; Marcotti and Kros, 

1999; Johnson et al., 2011), and the body temperature of a mouse would be approximately 36C. 

Given that my measurement of resting open probability of 0.15 in low calcium may be slightly 

low due to the negative pressure of the fluid jet, I will set it to 0.3, at the point of maximum 

sensitivity of the MET channel and to allow for comparison with results for DHS from Marcotti 

et al., 2005.  

The number of channels per hair cell is a question fraught with controversy. The main issue lies 

with the definition of a single channel, as recent evidence suggests that each MET channel 

complex may contain a variable number of TMC1 dimers, each with their own permeation pore 

(Beurg et al., 2018). Given that these multiples of TMC1 (if they do exist) are likely to be closely 

cooperatively gated, disentangling what is a single channel from a single pore becomes 

complicated. Additionally, it has long been thought that there are two MET channels per tip link 

(each anchored to the two bottom strands of PCDH15) (Beurg et al., 2006). If, for simplicity, in 

our model we consider a single channel to be equivalent to a channel complex including its 

potential multiple TMC1 pores, we can estimate the number of channels as twice the number 

of tip links per hair cell, which is different between the apex and base. There are about 50 tip 

links per apical cell and 60 tip links per basal cell, meaning that there are likely to be 

approximately 100 channel complexes per apical cell and 120 per basal cell (Beurg et al., 2006). 
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The controversy surrounding single MET channels and how this relates to our model will be 

discussed again in chapter 8.  

Using these factors, I can extrapolate an entry rate in vivo from my mature and low calcium 

datasets. As the Tecta/Tectb-/- mutation does not appear to change MET channel permeation 

and the drop in permeability of gentamicin at P9-P10 agrees with what was previously found for 

DHS in Tmc2-/- mutants (Corns et al., 2017),  I can use the P9-P10 dataset as an indication of 

permeation in mature apical wild type OHCs. The basal OHCs are expected to have fully matured 

by the age in which my basal experiments were conducted (Lelli et al., 2009), so I can therefore 

use the low calcium dataset as an indicator of entry rate in mature basal OHCs in the presence 

of the endolymph. I can calculate a scaling factor of how low calcium will affect permeation by 

dividing the entry rate in low calcium by that in regular calcium of basal OHCs and apply this 

factor to the P9-P10 dataset to predict the entry rate in endolymph. Finally, I can multiply these 

predicted entry rates by the number of channels to get an estimate of entry rate per cell per 

second in both mature apical and basal OHCs in vivo.  

First, I calculated an entry rate for gentamicin in low calcium at 1 M, -150 mV, and 36C, with 

a resting open probability of 0.3. This produced an entry rate of 210.2 molecules per second per 

channel. Comparing this with entry rate for the same parameters in the regular calcium dataset 

(47.7) shows that the low calcium medium scales the entry rate at 1 M by a factor of 4.40. 

Multiplying the entry rate for the P9-P10 dataset, which is 9.6 molecules per second, by this 

scaling factor gives 42.4. Multiplying each of these two values by the number of channels in each 

location (100 and 120, respectively) gives 4245 molecules per second in an apical cell and 25227 

in a basal cell.  

This entry rate of 4245 in mature apical hair cells is a little lower than the 9000 molecules that 

were predicted for DHS in neonatal apical cells (Marcotti et al., 2005). For direct comparison, 

the same prediction for gentamicin in my neonatal apical wild type OHC dataset produces an 

entry rate of 8140 molecules per second, almost identical to DHS.  

To conclude, these calculations predict that over 6 times more gentamicin will permeate into 

high frequency cells than low frequency cells of the adult cochlea. This shows that basal cells 

will be flooded with gentamicin compared to apical cells and leaves little room for doubt that it 

is primarily permeation through the MET channel that makes the hair cells more susceptible to 

ototoxic drugs than any other route of uptake. This also explains why patients who experience 

drug-induced ototoxicity selectively lose their high frequency hearing. 
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6.1 Introduction 

Despite extensive characterisation of the kinetics of the MET channel and its permeation profile, 

we still are unsure of the molecular correlates for the interaction sites of drugs permeating 

through the channel. In fact, at the start of this thesis the identity of the MET channel was still 

unknown, and only very recently has its main pore-forming subunit been identified as TMC1 

(Ballesteros et al., 2018; Pan et al., 2018). This identification presents new opportunities to 

further probe the permeation pathway and to potentially pinpoint residues within the protein 

that correspond to the interaction sites predicted by our model. Furthermore, the MET channel 

is a large complex with multiple subunits, others of which might interact with TMC1 and affect 

its permeation kinetics. The goal of this chapter is therefore to address how certain genetic 

aspects of the channel may affect our permeation model. Sections 6.2 and 6.3 of this chapter 

include data from collaboration with the two groups responsible for proving the MET channel 

pore identity. Section 6.2 will discuss how structural modelling of the channel can inform and 

complement biophysical modelling, and section 6.3 will describe a project designed to probe the 

role of the residues lining the pore in channel permeation, including one which could potentially 

be our predicted binding site—D569. Section 6.4 will present the results of an experiment 

assessing the influence of ASIC1b, a potential MET channel complex candidate, on the calcium 

permeability of the pore.  

 

6.2 Structural modelling of the TMC1 pore  

In 2018, Ballesteros et al. produced a model of the structure of TMC1 based on homology 

modelling with TMEM16, which revealed the presence of a large anionic cavity built by 

transmembrane helices 4-7 that could serve as a permeation pore. Following a discussion at the 

Association for Research in Otolaryngology MidWinter meeting in January 2020, I contacted  

Dr. Ballesteros to ask if she could provide insight into how her structural data might correspond 

with our experimental permeation data. She responded by very kindly offering to produce a 

series of customised figures that would highlight the areas within the TMC1 protein of particular 

interest to our model. These are shown in figure 6-1.  
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6.2.1 Discussion 

This structural model reveals some fascinating aspects of the MET channel permeation pathway. 

Panel A shows the TMC1 dimer as it is thought to assemble, with the two TMC1 chains coloured 

in purple and blue, respectively. Panel B focuses on chain A looking through the side of the 

molecule and into the pore. This shows the areas of negative and positive charge lining the 

channel pore, with negatively charged residues coloured in light blue and positively charged 

residues in red. This pore structure can be compared with panel B of figure 1-9 showing our 

schematic model based on the energy profile of the interaction with DHS (Corns et al. 2016), 

which my results in chapters 3 and 5 further corroborate. Comparison of these models reveals 

that the area of negative charge near the bottom end of the pore corresponds to the predicted 

location of our AG binding site (though this prediction was made from the energy profiles of AG 

interaction which represent electrical distance and may not map directly onto physical distance). 

The negative residue D569 is highlighted in green and will be discussed in further detail in section 

6.3. There are also areas of positive charge near the entrance and exit of the pore which 

correlate well with our two predicted energy barriers. The shape of the pore fits with our 

expectation, i.e. a narrow entrance with a large cavity in the bottom region, and an even 

narrower exit. This demonstrates how differential permeation of AGs may be due to size 

restriction at the exit—our second energy barrier—of the pore.  

Most intriguingly, there are additional areas of negative charge around the entrance and exit.  

In fact, this results in 3 distinct areas of negative charge, which could be related to the Hill 

coefficient of almost 3 calculated for GTTR permeating through the channel. This raises the 

possibility that if GTTR could in fact bind to these areas, then potentially so could other 

molecules. So, although our model appears to neatly describe the method of binding of the 

native AGs, it could be incomplete and other molecules could have modes of binding that we 

are not yet aware of. For example, this could explain the mechanism by which FM1-43 

permeates (Gale et al., 2001), which is clearly very different to the AGs. Given the shape of the 

pore it is evident how FM1-43 might be able to reside inside the closed channel: the cavity is 

quite large, and FM1-43 is a long and thin molecule. 

Finally, panel C shows a cross-sectional view of the channel at the level of the D569 residue, 

revealing a C-shape of the pore with cell membrane contacting one side (as described in 

Ballesteros et al., 2018). This suggests further possibilities for why GTTR may saturate the 

channel so readily and exhibit an unusual binding profile, as the Texas Red side chain may be 

“dragging” through the side of the membrane.  
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6.3 TMC1 pore mutation D569C 

6.3.1 Introduction 

The Holt group, jointly based at Boston Children’s Hospital and Harvard Medical School, have 

developed a series of viral vectors that contain point mutations of 17 residues of TMC1 to 

cysteine. These vectors can be injected into Tmc1-/-/Tmc2-/- early neonatal mice, leading to 

expression of selectively mutated TMC1 within the first few days of development. It was by using 

this method that the Holt lab was able to prove that TMC1 is the pore-forming subunit of the 

MET channel, and the results were published Cell in 2018 (Pan et al., 2018). As these TMC1 point 

mutations would be ideal for teasing out the contributions of charged residues to the 

biochemical interaction between the channel and the ototoxic drugs that permeate it, we 

contacted the Holt lab to ask if they would be interested in a collaboration, to which they agreed.  

I went to visit the Holt lab in Boston for two weeks in March 2019 to acquire preliminary data 

towards developing the project. For the scope of the trip we decided to focus on just one pore 

mutation, D569C. There were several reasons for this choice, primarily that aspartic acid (D) is 

negatively charged making it a candidate for the AG binding site in our model. According to the 

electrophysiology data in Pan et al. (2018), full-sized MET currents can still be elicited from 

D569C mutants in IHCs, but the currents are reduced by application of MTSET (which binds 

irreversibly to cysteine) indicating that the residue faces the interior of the pore. In the 

supplementary data, they found that D569C in the utricular MET channels reduced the potency 

of the block by DHS. Furthermore, recent evidence by the Fettiplace group shows that D569N 

mouse mutants have a reduced calcium permeability compared to wild type (Beurg et al., 2019). 

At the time the exact location of the residue within the pore was uncertain, but it was thought 

to be at the lower end of the cavity, further supporting it as a prime candidate for the AG  

binding site. 

I originally aimed to do both electrophysiology in IHCs (as the uptake of the viral vectors is better 

than in OHCs) and immunolabelling experiments. I wanted to probe the affinity of gentamicin 

for the D569C MET channel in IHCs (and ideally calculate an entry rate!), but two weeks proved 

too little time to acquire enough viable physiology data on an unfamiliar setup. The other 

experiment aimed to see whether the D569C mutation would protect hair cells from ototoxicity 

of gentamicin over a 48 h period. This did yield some results, though at present the results are 

inconclusive due to a lack of confirmation of mutated TMC1 expression.  
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6.3.2 Methods 

In preparation for the trip, we determined that a concentration of 30 M gentamicin for 48 h 

would be the minimum required to produce full ototoxicity of IHCs (which are less sensitive than 

OHCs), making any protection conferred to IHCs by reduced uptake of gentamicin evident. Prior 

to my arrival, a litter of Tmc1-/-/Tmc2-/- mouse pups were injected at P1 with the  

AAV2/1-CMV-Tmc1ex1-D569C viral vector via the round window membrane (left side only) 

(Askew et al., 2015; Pan et al., 2018). Three Tmc1D569C-injected pups and two wild type pups 

were dissected at P5 and the apical and basal turns of the cochleae were cultured separately for 

24 hours through a similar process to that described in chapter 2 (fully described in Pan et al., 

2018). 3 wild type and 3 Tmc1D569C cultures were incubated in 30 M gentamicin for 48 h.  

FM1-43FX, a fixable analogue of the fluorescent dye FM1-43 was briefly applied (~10 sec) to the 

cultures and washed out. FM1-43 rapidly enters the hair cells through the MET channel (Gale et 

al. 2001) and is often used as an indicator of functional mechanotransduction. The cultures were 

then fixed in 3.7% formaldehyde for 1 h, permeabilised in 0.1% Triton X-100, and stained with 

Rabbit  myosin VIIA overnight. A secondary stain of phalloidin 647 and Goat  Rabbit 555 was 

applied for 1 h, and the cultures were then mounted and imaged by confocal microscopy. 

 

6.3.3 Results 

The results of this experiment are shown in figure 6-2. It is clear that 30 M gentamicin is 

sufficient for destroying the majority of hair cells in the wild type culture (panel B). It appeared 

that the Tmc1D569C cultures incubated with gentamicin suffered no hair cell lost at all, in any of 

the 3 cultures tested and in either the apical or basal turn. However, though great care was 

taken (and the same batch had been successfully tested by a lab member earlier in the week), 

the FM1-43FX did not produce any signal under confocal microscopy. Without this signal it was 

not possible to conclusively determine whether the Tmc1-/-/Tmc2-/- cultures were expressing the 

injected Tmc1D569C, thus the protection observed could be due to a lack of functioning 

mechanotransduction and not protection conferred by the D569C mutation. However, to follow 

up on this an acute dissection of a mouse from the same litter (now P11) that had also been 

injected with Tmc1D569C was made and native FM1-43 was applied to test whether this littermate 

had functional MET channels. FM1-43 labelling after 30 seconds could be strongly viewed under 

upright dissection microscope, indicating that the MET channels were in fact functional in this 

littermate and were likely to also be functional in the cultures presented in figure 6-2. 

Unfortunately, no images were taken of this.  
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6.3.4 Discussion 

Based on the reduced sensitivity to DHS of utricular MET currents (Pan et al., 2018, 

supplementary figure S13), we estimated that the D569C mutation should halve the toxicity of 

30 M gentamicin applied for 48 hrs in IHCs. In fact, the protection observed was stronger than 

anticipated, so that no gentamicin damage was seen in any Tmc1D569C cultures. Thus, without 

the FM1-43 signal to prove expression of Tmc1D569C it is difficult to say whether the cells were 

protected by the mutation or whether they were protected due to their lack of functional MET 

channels. Subsequent application of native FM1-43 to an acute cochlea taken from a co-injected 

littermate provided anecdotal indication that the results were genuine.  

The preliminary data acquired during my trip to Boston are promising, but they are only a scratch 

on the surface of the experiments that would be made possible by this project. Repetition of 

this experiment as well as electrophysiological characterisations of TmcD569C cells could reveal 

the exact role of the D569 residue in AG binding and permeation through the MET channel. 

Furthermore, in their study, Pan et al., (2018) describe several other residue mutations that 

were found to have profound impacts on transduction and were likely to line the pore of the 

MET channel, and many of these are charged. For example, another aspartic acid-to-cysteine 

mutation, D528C, had a massive reduction in steady-state MET currents even before the 

addition of MTSET. The structural model in panel B of figure 1-9 suggests that the D528 residue 

is located near the entrance of the pore and could be part of the region of negative charge seen 

in this region in figure 6-1. The reason for its drastic effect on MET currents upon mutation would 

be very interesting to investigate, especially given that our model does not predict a negative 

charge at this location. It could be playing a crucial role of balancing charge in that region, 

without which the first energy barrier could be too strong to let anything through, even cations. 

Other mutations with a strong impact on channel currents include G411C, T532C, N447C, and 

M412C (Pan et al., 2018). This final mutation is on the same residue as the Beethoven mutation, 

which was also previously found to have a reduced sensitivity to DHS when mutated to lysine 

(Corns et al., 2016). The contribution of each of these pore-lining residues could be assessed for 

their impact on the permeation profile of AGs, and by this method we could determine exactly 

how drugs are moving through the channel and what biokinetic property of the channel makes 

gentamicin more permeant than amikacin, for example. Furthermore, we could assess whether 

the channel might have voltage-dependent changes in configuration suggested by drugs with a 

changing Hill coefficient such as GTTR and FM1-43.  
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6.4 The role of ASIC1b in calcium permeability 

6.4.1 Introduction 

Expression of the acid-sensing ion channel 1b (ASIC1b) has been discovered in hair cells (Ugawa 

et al., 2006; Ugawa et al., 2008) but its function is uncertain. A previous lab member discovered 

the presence of a current in the IHC membrane that could be elicited by drops in extracellular 

pH (Roberts, 2013). As their name implies, ASICs conduct cations in response to increases in 

proton concentration. ASIC1b was therefore considered to potentially be responsible for this 

acid-sensitive current, but the same current could be elicited in Asic1b-/- IHCs (Roberts, 2013). It 

is possible that other ASIC variants may also be expressed in hair cells and could be functionally 

redundant, thereby compensating for lack of ASIC1b. However, so far there has been no 

evidence for this. 

Furthermore, ASIC1b has been localised to several parts of the hair cell body, and in the 

stereocilia. Its presence near the ankle links led to a hypothesis that it could be part of the 

unconventional MET channel (responsible for reverse-polarity currents observed during 

mechanical stimulation of the OHC membrane following deterioration of the tip links) (Ugawa 

et al., 2006), but the identification of PIEZO2 as responsible for these currents renders this 

unlikely (Beurg and Fettiplace, 2017). More recently it was found at the tips of the stereocilia, 

suggesting involvement in mechanotransduction (Ugawa et al., 2008). If it is a part of the MET 

channel complex, its role remains unknown. Like the MET channel, it forms a potentially 

mechanosensitive pore that is permeable to K+ and blocked by amiloride (Rüsch et al., 1994; 

Ugawa et al., 2008). It was therefore considered a potential candidate for the pore of the MET 

channel, but subsequent confirmation of this role by the TMCs renders this hypothesis doubtful.  

To determine whether ASIC1b is involved in MET channel permeation and to further our 

understanding of its role in hair cells, I investigated whether the Asic1b-/- mutation affects the 

instantaneous calcium permeability of the MET channel. This experiment involved recording 

MET currents under superfusion of a high calcium solution with no other free cations present 

either extra- or intra-cellularly and determining the membrane potential at which the flow of 

current carried by calcium reverses. If the permeability of calcium has been affected by the 

removal of ASIC1b, then the reversal potential should be shifted as was found for the TmcBth/Bth 

mutation (Corns et al., 2016). A negative result for this experiment would almost definitely 

exclude ASIC1b from having a direct influence on the MET channel permeation pathway.  
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6.4.2 Methods 

The data in this section were acquired and processed as described in chapter 2, with some slight 

differences. In this experiment, a modified superfusion solution was used containing (in mM): 

100 CaCl2, 20 N-methylglucamine, 6 Tris, 10 D-glucose (adjusted to pH 7.4 with HCl, osmolality 

~300 mOsmol kg-1). A modified intracellular solution was also used, containing (in mM): 135 CsCl, 

3 MgATP, 10 Tris phosphocreatine, 1 EGTA-CsOH, 10 HEPES-CsOH (adjusted to pH 7.2 with CsOH, 

osmolality ~295 mOsmol kg-1). These solutions were designed to restrict the passage of cations 

through the MET channel to calcium only (as in Corns et al., 2016). Voltage-step protocols from 

both -164 mV to +96 mV in 20 mV steps, and from -84 to +76 mV in 10 mV steps were used, with 

a sine wave stimulation of 45 Hz in both. The first protocol was used to allow comparison with 

other experiments and to show maximal current sizes (as in figure 6-3). The latter protocol was 

used to obtain a more precise resolution of the currents around the point of reversal.  

 

6.4.3 Results 

This section includes data from apical OHCs of P4-P7 C57b mouse cochleae, 7 of which were wild 

type and 9 were Asic1b-/-. Because of the higher calcium medium, some differences are apparent 

in MET current characteristics opposite to the differences found in low calcium medium in 

chapter 5. The average MET current size was smaller than usual: at -84 mV it was -0.309 ± 0.004 

nA in wild type and -0.307 ± 0.002 nA in Asic1b-/-, and the average resting MET current at -84 mV 

was 9.19 ± 0.04% of the maximum in wild type and 9.06 ± 0.11% in Asic1b-/-. These values of 

resting current are counterintuitively higher than in regular medium due to the smaller MET 

currents overall, but the smaller absolute resting current is evident in figure 6-3. The largest MET 

current recorded at -84 mV was -0.459 nA in wild type and -0.556 nA in Asic1b-/-. Average cell 

capacitance and access resistance data are only available for a select few recordings in  

Asic1b-/-. These values were 4.75 ± 0.047 pF capacitance (n = 2), and 4.75 ± 0.03 M access 

resistance (n = 2), well within the range of other values reported in this thesis. The solution in 

the fluid jet was set to high calcium to further avoid mixing of low and high calcium in the 

immediate extracellular environment.  
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MET currents under superfusion of 100 mM Ca2+ solution from a total of 7 cells were recorded 

for the wild type mice, and 9 for the Asic1b-/- mice. An example MET current trace from each is 

shown in figure 6-3. MET current traces were averaged for each cell, and IV curves and their 

corresponding reversal potentials were calculated from the averaged traces (shown in  

figure 6-4). IV curves were analysed three ways to look for any sign of voltage-dependent effect: 

averaged, normalised to most depolarised current, and normalised to most hyperpolarised 

current.  In each case no obvious difference can be seen. The reversal potential under control 

solution is normally about -5 to +5 mV and is shifted upwards by about +20 mV in high calcium 

medium. Reversal potentials under high calcium in wild-type and knockout were statistically 

tested with an independent-samples t-test and were found to have p < 0.94, indicating that it is 

highly unlikely that there is a significant difference between the two samples. Genotyping was 

confirmed for all cells included in the data by Professor Shinya Ugawa. From these results it does 

not seem that ASIC1b directly influences the calcium kinetics of the channel.  
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6.4.4 Discussion 

These results indicate that ASIC1b does not modulate calcium sensitivity of the MET channel, 

and therefore further support the role of the TMCs as the pore-forming subunit. Nevertheless, 

even though ASIC1b does not appear to directly impact permeation, its location at the tips of 

the stereocilia suggests that it could still have some other role in the MET channel complex. 

Furthermore, as with the acid-sensitive currents, if other ASIC subunits are indeed present in 

hair cells then we cannot exclude that they could be functionally redundant and compensating 

for the lack of ASIC1b.  
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7.1 Introduction 

Volume-regulated anion channels (VRACs) allow cells to respond to osmotic changes in their 

environment. They play an essential role in several fundamental cellular functions (König and 

Stauber, 2019), and are seemingly ubiquitous in mammalian cells (Stauber, 2015). VRACs are 

activated in response to swelling of the cell and allow efflux/influx of ions followed by water to 

produce a phenomenon called regulatory volume decrease (RVD) (Stauber, 2015). Like the MET 

channel, their unitary conductance is large (10-20 pS inward and 40-80 pS outward) (Hoffman 

et al., 2015; König and Stauber, 2019), and they can be permeated and blocked by a variety of 

molecules (Friard et al., 2017). Though intuitively they should be mechanically gated, it is 

presently unclear how VRACs are activated. Reports of VRAC-mediated RVD current through 

stimulation by cellular injection without changes in osmotic pressure are mixed (König and 

Stauber, 2019), and there are multiple reports of activation through various intracellular 

signalling pathways (Best and Brown, 2009; König and Stauber, 2019). Their molecular identity 

was proven just 6 six years ago and was found to be a complex of multiple subunits of the LRRC8 

family, most prominently LRRC8A (Voss et al., 2014).  

The role (or even existence!) of VRACs in hair cells has, to my knowledge, never been 

investigated. According to RNA-sequencing data made available through the gEAR portal 

(https://umgear.org/), both of the main VRAC subunits, LRRC8A and LRRC8D, are expressed 

throughout the organ of Corti, including by the hair cells. If VRACs are indeed active in OHCs, 

their non-selective permeability raises the possibility of VRAC-mediated ototoxin entry and may 

be relevant for some compounds that demonstrate behaviours in hair cells that are currently 

unexplained, like cisplatin. 

A potential avenue of interest in hair cells is that VRACs could be interacting with AGs. When 

AGs are first applied to OHCs numerous large membranous blebs appear on the apical surface 

of the cells (Goodyear et al., 2008; Osgood, 2020). These blebs can be fully endocytosed by the 

cell so long as AGs are soon washed out. This process can be blocked by the co-application of 

niflumic acid, which inhibits VRACs (Osgood, 2020). This suggests that VRACs are involved with 

cellular membrane repair following insult, and that AGs block this repair process leading to 

increased damage of the cells. Furthermore, AG loading is potentiated by inflammation (Koo et 

al., 2015) and osmotic stress (Osgood, 2020), further suggesting the possibility of AG permeation 

through activated VRAC channels.  

 

https://umgear.org/
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Cisplatin is a platinum-based anticancer drug that is also, unfortunately, ototoxic. At low doses 

it causes selective OHC death in a tonotopic gradient like that of the AGs. Abolishing 

mechanotransduction protects from cisplatin toxicity (Thomas et al., 2013), and several 

compounds that protect against AG-induced ototoxicity also protect against cisplatin, including 

ORC-13661, berbamine and d-turbocurarine (Kitcher, 2019). But the similarities between 

cisplatin and the AGs end here. In high doses, cisplatin produces damage to other cells of the 

organ of Corti, and its tonotopic gradient in ototoxicity is less pronounced than it is for 

gentamicin (Kitcher, 2019). The entry mechanism of cisplatin into hair cells has not yet been 

proven as it does not seem to block the MET channel, even in low calcium medium (figure 7-1). 

VRAC downregulation is connected to halting of apoptosis and is thought to be a mechanism for 

cisplatin resistance in tumour cells (Planells-Cases et al., 2015), indicating that cisplatin may 

enter cells through VRACs. Additionally, one study found that about 50% of cisplatin uptake in 

HEK cells depended on expression of the main LRRC8 subunits, and that uptake was increased 

by activation of VRACs (Planells-Cases et al., 2015). A later study found that overnight incubation 

with cisplatin profoundly potentiated the RVD current in HEK cells expressing VRACs, and this 

did not happen in cells without VRACs (Gradogna et al., 2017). 

There are other channels present in hair cell membranes that are permeable to AGs and possibly 

to cisplatin. For example, TRPA1 channels are permeable to GTTR when activated with an agonist 

that is present in the cochlea during oxidative stress (Stepanyan et al., 2011). Mechanically 

activated Piezo2 channels in the membrane have also been shown to interact with DHS, but with 

a lesser affinity than with the MET channel suggesting less permeation of AGs (Marcotti et al., 

2014; Beurg and Fettiplace, 2017). But research into the contributions of these channels to AG 

toxicity in hair cells has been relatively quiet recently due to the discovery that permeation 

through the MET channel was the primary route of AG entry (Marcotti et al., 2005).  

The recent observation regarding the effect of neomycin on membrane bleb endocytosis during 

hair cell repair (Osgood, 2020) brings VRACs into focus as a new avenue of research to potentially 

prevent ototoxicity. VRACs, if they are indeed present in OHCs, could be an alternative route of 

entry into hair cells for ototoxic drugs and could present a novel therapeutic target for 

otoprotection. To test whether VRACs are active in hair cells, I measured the macroscopic 

voltage-dependent current and resting current before and during osmotic stress on cultured 

OHCs via whole-cell patch-clamp. As a preliminary experiment, I then co-applied three 

compounds of potential interest (niflumic acid, neomycin, cisplatin) during osmotic stress to 

determine if these interact with the VRAC current and potentially permeate through the 

channel.  



145 
 

 



146 
 

7.2 Methods and results 

The data in this section were acquired as described in chapter 2 except for a few differences that 

will be described here. No fluid jet was used as no MET currents were elicited. Two modified 

superfusion solutions were used. The base low osmolality solution contained (in mM): 88 NaCl, 

5.33 KCl, 5.55 Glucose, 0.33 NaH2PO4, 0.44 KH2PO4, 4.17 NaHCO3, 0.41 MgSO4, 0.49 MgCl2, 10 

HEPES, 1.2 CaCl2, and had an osmolality of 204 mOsmol kg-1. Into this was added 100 mM 

mannitol to bring the osmolality to 312 mOsmol kg-1. The first solution was used in the hypotonic 

condition and the second was used in the isotonic condition. The intracellular solution was the 

standard caesium-based solution described in chapter 2 to block most of the voltage-dependent 

basolateral K+ current of the OHCs. The recording protocol consisted of ten repeats of a 500 ms 

voltage ramp from -104 mV to +96 mV followed by a rest period of a further 500 ms at -84 mV. 

Recordings were digitally time-stamped, and repeats were averaged post-hoc. The resting 

current was calculated as the average of the final 250 ms of each averaged recording.  

Patched OHCs were locally perfused with control isotonic 100 mM mannitol solution for 1 to 5 

minutes. Voltage ramps were applied every 10-30 seconds for the duration of the experiment. 

During this time no changes in cell morphology, resting current, or voltage-dependent current 

were observed. The solution was then switched to the hypotonic solution of 0 mM mannitol. All 

cells in the field of view visibly swelled in size within approximately 1 minute (figure 7-2). The 

resting membrane current dropped significantly, and a rectifying current with a reversal 

potential of approximately -5 to -10 mV was observed during voltage ramps (examples shown 

in figure 7-3, figure 7-4). These changes were usually followed shortly by cell death; all but one 

patched cell exploded after less than 2 minutes in hypotonic solution. This cell was recovered by 

switching back to isotonic solution. The resting membrane current following recovery returned 

halfway to the level of the control current, and the currents during voltage ramps decreased 

back to control. The currents from this cell are shown in figure 7-4. Due to the close match of 

the behaviour of these currents with the descriptions in published literature, we concluded that 

these were indeed VRAC-mediated RVD currents in OHCs. 

VRAC currents were elicited from a total of 5 apical OHCs of P2+1 and P2+2 cultured CD-1 mouse 

cochleae. The average peak VRAC current size (with current at rest subtracted) at -104 mV was 

–158.15 ± 88.08 pA and at +96 mv was 149.79 ± 88.98 pA. The average resting current before 

osmotic stress was -25.09 ± 9.85 mV and during osmotic stress the resting current peaked on 

average at -133.15 ± 62.34 mV. The largest VRAC current recorded at -104 mV was -285.16 pA 

and at +96 mV was 267.64 pA. The average cell capacitance was 5.6 ± 0.03 pF and access 
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resistance was 5.6 ± 0.09 M. Currents from an additional 2 cells were recorded but these were 

likely patched too quickly after return to superfusion of isotonic solution from the previous cells 

as on analysis they appeared to already have large rectifying VRAC currents that did not further 

increase when changing to hypotonic solution. A comparison with isotonic currents could 

therefore not be made and these cells were excluded from analysis. Some of this effect to a 

lesser extreme is visible in panel A of figure 7-4. 

Further to this, three compounds were each co-applied to wild type cells during osmotic stress: 

niflumic acid, neomycin, and cisplatin. The results are shown in figure 7-5. Each graph includes 

the same five control cells as previously described, and three cells with drugs applied. Though 

the results are preliminary, all three compounds exhibited some degree of block of the VRAC 

current. The strongest block was seen by neomycin, bearing mind that a relatively high 

concentration was used. Intriguingly, some degree of block by cisplatin can be seen in panel C, 

though only one cell lasted for long enough to be able to see this effect and it was not as strong 

as either niflumic acid or neomycin. This delay in activation of VRAC currents measured at -100 

mV indicates that all three compounds may block inward VRAC currents. No block or delay in 

activation was seen in currents at +100 mV measured over the same time period (data not 

shown), so it is possible that these compounds act as extracellular pore blockers of inward 

currents.  
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7.3 Discussion 

These data show that VRAC currents do indeed exist in OHCs as they match every published 

description of the VRAC-mediated RVD current, including the characteristic outward 

rectification at positive potentials evident in panel B of figure 7-3 and more prominently in  

panel A of figure 7-4 (Planells-Cases et al., 2015; Hoffman et al., 2015; Friard et al., 2017). 

Additionally, my results with neomycin and cisplatin presented in figure 7-5 show that these 

compounds may interact with VRACs and may permeate through them.  

It should be noted that in these experiments I did not control for the potential contribution of 

other mechanically sensitive channels in the hair cell membrane such as Piezo2 (Marcotti et al., 

2014; Beurg and Fettiplace, 2017). Though the effect of Piezo2 activity on these currents cannot 

be excluded, the block of the VRAC current by niflumic acid (a Cl- channel blocker which should 

not interact with Piezo2) shown in panel A of figure 7-5 indicates that these currents are mostly 

due to VRAC activity. Future experiments could determine whether application of a Piezo 

channel blocker such as GsMTx4 affects the characteristics of the VRAC currents I have 

presented, and therefore whether Piezo2 is activated by osmotic membrane stretch in OHCs. 

The block by neomycin evident in panel B of figure 7-5 is strongly indicative of an interaction 

between neomycin and the VRACs. The biophysical mechanism of this block is yet to be 

determined: whether it is like the MET channel block by AGs (pore block of the permeation 

path), or whether it is intracellularly blocking activation of the VRACs. Either way, relieving this 

block could prevent the disruption of the RVD process and therefore protect hair cells from some 

of the ototoxic effects of neomycin. This presents a novel potential therapeutic target for 

research in otoprotection.  

Cisplatin has long been a mysterious compound due its unusual behaviour in hair cells which at 

times mimics that of the behaviour of AGs and at times does not (Thomas et al., 2013; Kitcher, 

2019). Given the lack of block of the MET current by cisplatin (figure 7-1), my preliminary data 

showing block of the VRAC current by cisplatin (figure 7-5, panel C) raises the possibility that 

cisplatin may interact with the MET channel through a different mechanism than with the 

VRACs. If cisplatin were to permeate through both the MET channels and the VRACs, this would 

account for many aspects of its behaviour: the reduced gradient in ototoxicity, the protection 

by MET channel blockers (Kitcher, 2019) and loss of mechanotransduction (Thomas et al., 2013), 

and the potentiation of uptake following VRAC activation (Planells-Cases et al., 2015). Further 

experiments to conclusively determine whether cisplatin does indeed block VRAC currents in 

OHCs may offer insight into the kinetics of this elusive compound.  
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8.1 Differential permeation of ototoxic drugs 

In this thesis, I investigated the permeation characteristics of five ototoxic compounds in several 

different conditions through the MET channel of mouse OHCs. These included: gentamicin, 

kanamycin, amikacin, GTTR, and cisplatin. In chapter 3, I found that in conditions relevant to 

ototoxicity in vitro, the entry rate of the native AGs correlated with their respective degree of 

toxicity. In chapter 4, I found that GTTR, though it saturates the channel at a far lower rate than 

native gentamicin, permeates at a similar rate at low concentrations commonly used for in vitro 

uptake experiments, and is therefore a suitable indicator of gentamicin entry into hair cells. In 

chapter 5, I investigated the effects of driving force on gentamicin permeation and found that 

the differences set up by the endolymphatic medium and the endocochlear potential will 

summate to an increased permeation rate in vivo compared to in vitro. I also predicted that 

mature basal cells would have a 6-fold higher rate of gentamicin permeation than mature apical 

cells in a live cochlea, likely contributing to the frequently reported loss of high frequency 

hearing by patients receiving AG treatment. Additionally, I found that the entry rates of all drugs 

were lower in apical cells than in basal cells, which corresponds to their gradient in sensitivity 

and further supports the idea of the degree of toxicity being related to entry rate through the 

MET channel. Finally, in chapter 7 I found that cisplatin does not block the MET channel even 

with the removal of calcium competition for the binding site, and I discussed alternative 

methods by which it (and potentially the AGs) may be entering into hair cells, for example 

through VRACs.  

These results demonstrate the relationship between permeation rate and ototoxicity of AGs and 

strongly support the notion of targeting entry of drugs into hair cells through the MET channel 

as a main priority for preventing ototoxicity in patients receiving acute and chronic AG 

treatment. A deeper understanding of the factors that lead to differential permeation of AGs 

through the MET channel, perhaps through dynamic molecular simulations using recent 

structural data of the permeation pore, could lead to design of novel AGs that are less permeant 

and therefore less ototoxic. Alternatively, understanding what makes molecules permeant or 

not could guide the search for selective non-permeant competitive channel blockers that will 

have no other deleterious effects on hair cells. 
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8.1.1 Observation on half-block and entry rate  

An interesting observation throughout these experiments is that the relationship between 

permeation rate and half blocking concentration (KD) was not always straightforward. For 

gentamicin, generally conditions that caused stronger block of the channel corresponded to a 

higher entry rate and vice versa. For example, the KD of gentamicin in low calcium medium was 

lower than in regular medium and its entry rate higher, whereas the KD in mature cells was 

higher than in neonatal cells and the entry rate lower. This trend did not hold across different 

drugs however, as the KD of amikacin was in between that of gentamicin and kanamycin, and 

yet at certain concentrations the entry rate of kanamycin was between that of gentamicin and 

amikacin. Furthermore, the KD of GTTR was far lower than native gentamicin, but its entry rate 

at high concentrations was much lower due to saturation of the channel by the large size of the 

molecule. Finally, for every drug tested no difference was evident in between the KD of apical 

and basal channels and yet large differences in permeation were found in every case.  

Though the KD is not always a predictor of the entry rate, the span of the lower and upper bounds 

of the dose response curves does seem to relate to the spread of the entry rates over voltage 

and concentration, in other words the steepness of the saturation of permeation.  

 

8.2 Tonotopic gradient in permeation of neonatal 
OHCs 

All together the data for the three AGs and GTTR suggest that the cause of the well-reported 

tonotopic gradients in ototoxicity and in fluorescence uptake observed in neonatal cochlear 

cultures is rooted in differences in permeation of the drugs through the apical and basal MET 

channels. The reason for this differential permeation is not straightforward and is related to 

significant controversy in the literature of the last few years surrounding the expression profile 

of the MET channel and its single channel conductance. It may be tempting to simply take the 

larger total current size and channel number of basal cells compared to apical cells as an 

indication of higher permeation, but all results are normalised for current size and presented for 

a single open channel. Furthermore, the larger size of currents in mature OHCs and their lower 

entry rate show this not to be the case. There are currently two main models by which graded 

permeation might be achieved by the channel. Simply put, the first is a gradient in pore 

diameter, and the second is a gradient in pore number per cell. 
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The situation is further complicated by a gradient in the expression of TMC1 and TMC2 in the 

neonatal cochlea. Because my results were obtained in wild type mice with uncontrolled 

expression of the two TMC isoforms, I cannot directly comment on the role of these two proteins 

in permeation. However, I can provide some speculative insight based on evidence in the 

literature and the resulting predictions for what the behaviour of these two isoforms would be 

and compare this with my results. Furthermore, the question of single channel conductance in 

our model of permeation becomes complicated by the implications of recent evidence showing 

that TMC1 assembles as a dimer (Pan et al., 2018; Ballesteros et al., 2018), and that the MET 

channel complex may contain multiple TMC dimers per complex (Beurg et al., 2018). I will 

address both questions as they relate to my results and our model of MET channel permeation.  

 

8.2.1 Permeation of TMC1 versus TMC2 

At the age in which my cultures are made (P2) it is thought that the basal cells will express mostly 

TMC1 while the apical cells will only express TMC2 (Kurima et al., 2015). However, viewing my 

results in the context of previous experiments comparing the permeation of DHS through the 

MET channel in Tmc2-/- mice suggests that my results are not indicative of a shift simply in the 

expression levels of the TMCs. These previous results found a lower entry rate in apical OHCs of 

Tmc2-/- (TMC1 only) mice (Corns et al., 2017) whereas according to my results the basal OHCs 

(which express more TMC1) had a higher entry rate. Furthermore, this previous study found a 

difference in the KD between Tmc2-/- and wild type cells, but I did not observe this between apical 

and basal cells of neonatal cultures for any drug. I did however see a difference in KD between 

neonatal apical cells and mature apical cells which should reflect the same shift in TMC 

expression as the Tmc2-/- mice, though the shift I saw was in the opposite direction—the reason 

for this is unclear. The reason for the lack of a shift in KD between apical and basal neonatal cells 

is also unclear. Taken together, these results indicate that the differences in permeation I have 

presented probably reflect a gradient in the permeation of TMC1 which corresponds to its 

gradient in single channel conductance, and not simply to a difference in between TMC1 and 

TMC2. In other words, the mechanism setting up the gradient in TMC1 conductance is already 

present at the early stages of TMC1 expression in the neonatal cochlea. In fact, the observation 

that apical and basal MET channels of the neonatal cochlea had the same KD for all drugs tested 

suggests an intentional developmental balance in between TMC1 and TMC2, though evidence 

for this is currently lacking as Tmc2-/- mutants show no deleterious effects during development 

(Kawashima et al., 2011; Corns et al., 2017).  
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8.2.2 The definition of a single MET channel 

Understanding the difference in permeation between apical and basal cells in my results 

requires probing the definition of a single channel in our model, which has become fraught with 

controversy. Ordinarily a single channel would be taken as a single pore through which ions flow. 

However, the unique properties of the MET channel, specifically its tight mechanical gating, 

render the story more complicated. It has long been thought that multiple channels may be 

cooperatively gated by the tip link (Beurg et al., 2006; Gianoli et al., 2017), making recording 

true single channel activity difficult. Furthermore, recent evidence by the Fettiplace group 

suggests that the MET channel complex may comprise multiple TMC1 inserts with what they 

term variable conductance states, which they observe in discrete multiples of approximately  

50 pS (Beurg et al., 2018). This is based on measures of single channel conductance using BAPTA 

to break tip links and recording rare instances in which they observe discrete single channel-like 

currents. While interesting, these methods are questionable, and there could be alternative 

explanations such as residual cooperative gating of channels that are intricately linked together. 

They also further suggest that the number of TMC1 pore insertions varies from apex to base 

with ~20 per basal channel and 8 per apical channel, citing observation of multiple fluorescently 

tagged TMC molecules per tip link insertion (Beurg et al., 2018).  

Our two-barrier one-binding site model suggests that the differences in permeation between 

the apex and the base are due to differences in the height of the energy barriers and position of 

the binding site within the channel pore. The simplest interpretation of these results is that basal 

channels have a larger pore diameter than apical channels. This variation in shape could be due 

to posttranslational phosphorylation (Pan et al., 2018; Corey et al., 2019) or perhaps variable tip 

link tensioning deforming the membrane or channel itself (Powers et al., 2012; Reichenbach and 

Hudsepth, 2014; Tobin et al., 2019). However, given the recent evidence from the Fettiplace 

group our pore diameter hypothesis must be called into question. While discrete levels of  

single-channel conductance could perfectly agree with our model, the idea that the number of 

TMC1 insertion sites changes per single channel complex does not. Though our model is certainly 

capable of detecting differences in permeation, how it would account for multiple cooperatively 

gated pores is uncertain. The model has a finite number of parameters and varies these to fit 

the data that it is given. It is possible that in our model multiple distinct permeation pores per 

“single channel complex” could appear as an individual channel which the model interprets as 

having a larger conductance. However, I would not exclude the possibility that a variable number 

of TMC1 molecules around a central attachment point could also alter their conformation. There 

could be multiple factors influencing the gradient in conductance.   
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8.3 MET channel pore modelling and its future 

The future of this field is without doubt in combining multiple modelling approaches, including 

structural homology modelling of the pore-forming subunit with experimental modelling of 

molecule permeation, particularly using genetically modified TMCs. Together these approaches 

can further elucidate the biokinetics of the MET channel, which in turn can help us to understand 

how to prevent ototoxicity.   

Specifically, it would be interesting to determine the exact roles of each of the charged pore-

lining residues in the permeation of the channel. By selectively modifying each of these residues 

we could determine the identity of the interaction sites and build a dynamic molecular 

simulation of how drugs permeate through the MET channel pore. This approach could aid in 

preventing drug permeation either by refining the search for non-permeant channel blockers, 

or by redesigning AGs so they are still as bactericidal but less permeant through the MET 

channel. It could also help elucidate whether the TMC1 pore can distort in shape between the 

apex and base either through differences in gating, in assembly around a central unit, or in 

phosphorylation. Conversely, it could determine whether the differences in single channel 

conductance are in fact due to cooperatively-gated multiples of the same pore with no 

additional conformational changes. Furthermore, it would be interesting to discover the exact 

roles of the other potential members of the MET channel complex: CIB2, ASIC1b, LHFPL5, and 

TMIE.  

These could clarify how the MET channel complex is assembled, whether it is indeed comprised 

of multiple discrete pores beyond the dimer that is expected, and how it is gated so precisely.  

A new structural model that includes each of these accessories to the MET channel complex 

could very well be essential to understanding the graded permeation of the TMC1 pore.  

 

8.5 Final remarks 

In this thesis I hope to have contributed to the understanding of the complicated but beautiful 

permeation path of the MET channel, how it is related to ototoxicity, and what future 

experiments could be done to further address these questions. I hope to have provided a 

roadmap for approaches to preventing the permeation of essential life-saving drugs into 

auditory hair cells in the interest of protecting patients from hearing loss. 
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