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Summary

Large-scale observations of the Cosmic Microwave Background have provided the most
substantial evidence for how the Universe expanded rapidly in the first fraction of a second
after the Big Bang. This phase of rapid expansion known as inflation provided the seeds
for all of the structure that we see in the Universe today, and therefore understanding
its dynamics will provide explanations for why the Universe is the way it is, in both the
visible and dark sectors.

Constraining the dynamics of inflation is best done with the primordial power spec-
trum, which measures the overdensities and underdensities left over at the end of inflation.
This thesis investigates different probes for measuring and constraining the primordial
power spectrum on small scales, where constraints are currently much weaker than those
deduced from large-scale measurements.

The existence or lack of primordial black holes is primarily investigated as a means
for both constraining the primordial power spectrum and hence inflation, as well as due
to their interest as a dark matter candidate. Large-amplitude scalar perturbations are
usually required for the production of primordial black holes, and therefore observational
signatures of such perturbations including spectral distortions, stochastic gravitational
waves, and the 21cm signal will be explored as means of detecting them. Constraints and
signatures from these observations will be compared with classes of inflationary models so
as to understand the inflationary dynamics that would be necessary to produce the results
and predictions of multiple current and future experiments.
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Chapter 1

Introduction

1.1 Reader’s guide

Everything we know about inflation, the phase of rapid expansion immediately after the

Big Bang, is based on evidence from large-scale observations that can only tell us about a

tenth of its total duration. There is a wealth of information hidden on small scales that can

be unlocked by comparing theoretical predictions for various relics of inflation including

primordial black holes, gravitational waves and spectral distortions with observations from

upcoming experiments.

For an introduction to inflationary dynamics and constraining the primordial power

spectrum, see section 1.2 of the introduction. For an overview of primordial black hole

motivations and production, see section 1.3. For brief introductions to spectral distortions

and gravitational waves as probes of the primordial power spectrum see sections 1.4 and

1.5 respectively, and for an introduction to 21cm observations as a probe for primordial

fluctuations, see section 1.6.

Chapter 2 will then make the connection between primordial black holes and the prim-

ordial power spectrum, whilst chapter 3 will make the connection between the primordial

power spectrum required for primordial black hole production and inflationary dynamics.

Constraining the primordial power spectrum with current observations will also be ex-

plored in chapter 3, including via the cosmic microwave background, spectral distortions

and gravitational waves. Finally, chapter 4 will investigate using 21cm measurements as

a probe for the matter power spectrum during the Dark Ages, which is a tracer for the

primordial power spectrum. This will be used to look for signatures of primordial black

holes.
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1.2 Cosmological inflation

1.2.1 Motivation

During the first second after the Big Bang, the Universe underwent a period of rapid

expansion, where it grew by over twenty orders of magnitude in size. This phase is known

as inflation, and it is currently the best explanation we have for the dawn of the Universe’s

existence. Tiny quantum fluctuations present during the expansion were blown up and

stretched out, providing seeds for the growth of all of the structure that we see today. The

need for this rapid period of expansion is due to the fact that the Universe we observe

today is very flat, no exotic relics have yet been observed, and central to this work, is very

homogeneous.

The cosmological principle states that on large enough scales, an observer should view

the Universe to look the same in every direction, no matter their location. This has been

evidenced by the fact that patches of the sky separated by the largest distances that we

are able to probe have been measured to have almost exactly the same temperatures. This

suggests that they were at one point in physical contact, so as to exchange heat energy

and equilibrate. However, if the Universe has expanded according to the Hot Big Bang

model, namely at a rate governed by a radiation-dominated epoch followed by a matter-

dominated one, those regions could never have been causally connected, as there hasn’t

been enough time for them to get so far apart. A period of rapid expansion, therefore,

explains how regions that were initially in causal contact and hence equilibrium, could

have been blown apart and end up seemingly too far away from each other to share the

same properties.

More quantitatively, a photon can travel the distance

dp =

∫ t

0

dt′

a(t′)
(1.1)

in time t, where a(t) is the scale factor which is governed by the Friedmann equation

H2 =

(
ȧ

a

)2

=
8πGρ

3
− K

a2
(1.2)

with the Hubble factor H, G the gravitational constant, ρ the energy density of the

Universe and K the curvature. Throughout this thesis, derivatives with respect to time t

will be denoted with dots. According to the conservation of energy, and assuming adiabatic

expansion, we can write down a relationship between the energy density and the pressure

p:

ρ̇+ 3H(ρ+ p) = 0. (1.3)
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Then for p = ωρ where ω is the equation of state we find

ρ ∝ a−3(1+ω) ∝


a−3 for pressureless matter, ω = 0

a−4 for radiation, ω = 1/3.

(1.4)

Matter dilutes like a3, i.e. the rate at which the Universe is expanding, whilst the wavelength

of the radiation also gets redshifted to lower energies, and therefore dilutes faster like a4.

This means that the early Universe will be radiation-dominated, before becoming matter-

dominated at matter-radiation equality teq when ρr = ρm. By integrating equation (1.2)

(with K = 0), with these relations, we find that the scale factor behaves as a ∝ t1/2 in

radiation-domination and a ∝ t2/3 in matter-domination. Returning to equation (1.1),

we can then see that the maximum comoving distance a photon can have travelled by

recombination trec (more on this later) is

dp =

∫ teq

0

(
t0
t

)1/2

dt+

∫ trec

teq

(
t0
t

)2/3

dt (1.5)

if the Universe was just made up of matter and radiation. Plugging in the values trec ∼

1013 s, teq ∼ 1012 s and t0 ∼ 4 × 1017 s gives a maximum distance of dp ∼ 300 Mpc [19],

meaning that we shouldn’t expect to see correlations in temperature between patches of

the sky larger than this. However, the comoving distance to recombination is 14000 Mpc,

and we indeed observe correlations in the temperature of the sky on these scales. Regions

this large can’t have been in causal contact if the Universe had only experienced periods

of radiation and matter-domination, and instead there needs to have been a phase of

accelerated expansion so that previously causally connected regions can now be much

further apart than causal processes would allow. Such a phase can be realised if the

equation of state is sufficiently negative, and in particular, accelerated expansion occurs

when ω < −1/3. See e.g. [20] for a review. During the rapid expansion, the comoving

Hubble horizon scale, (aH)−1, will decrease, while the comoving scale of perturbations will

remain constant. This means that the largest modes will exit the Hubble horizon, going

out of causal contact, first. After inflation ends, the smallest scale modes will reenter, as

the comoving Hubble horizon scale starts to grow during radiation-domination. This is

illustrated in figure 1.1.

Exactly how this phase of expansion occurred therefore determines the initial condi-

tions for the dark matter distribution, and hence the gravitational potential wells into

which matter eventually collapses, forming stars, galaxies and black holes. There are two

ways of approaching the problem of how exactly this phase of rapid expansion took place.

Either, we can observe structures today that allow us to put constraints on the initial
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overdensities and underdensities left over at the end of inflation and therefore infer how

inflation worked. Conversely, given a model or class of inflationary models we can put

restrictions on the type of objects, structures or signals that should be detectable today.

If those observables are there, then the features of those models become a necessary in-

gredient for inflationary dynamics. If they’re not, we can rule out that model or class of

inflationary models.

Quantifying the dynamics of inflation will require a prescription for tracking the field

that drives the expansion, as well as for measuring the overdensities and underdensities

left over at the end. We will now see how this is most commonly approached, using

cosmological perturbation theory.

1.2.2 The primordial perturbation

In cosmological perturbation theory, overdensities are quantified as a small perturbation

to the background energy density

ρ(x, t) = ρbg(t) + δρ(x, t) (1.6)

and only the lowest-order (linear) terms in δρ are kept1. The background energy density

is assumed to be flat and homogeneous (and hence only a function of time), whilst the

perturbation is a function of time and space. An isotropic and homogeneous universe is

described by the Friedmann-Robertson-Walker (FRW) metric

ds2 =a2(τ)(dτ2 − dx2) (1.7)

=a2(τ)

(
dτ2 − dr2

1−Kr2
− r2dΩ2

)
with conformal time τ defined by dt = adτ , K is the curvature, r is the radial coordinate

and Ω is the angular coordinate. On large scales, the Universe will locally appear smooth

and homogeneous, and such regions can therefore be treated as separate FRW universes

[21]. Due to the initial presence of quantum fluctuations, some of these regions will expand

more or less than others, and we can quantify the difference between regions either by the

relative change in energy density, or instead slice the space-time such that each region

has the same energy density, δρ = 0, and define the different regions by their relative

curvature. This relative curvature can then be used to describe the perturbation to the

background.

1However, note that this linear approximation starts to become far less accurate in the context of

primordial black holes which form from large overdensities, as will be discussed later.
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The simplest scalar quantity that represents the curvature of this metric is the Ricci

scalar of constant-time hypersurfaces, R = 6K/a2. We want to define a scalar to describe

the primordial perturbations which is proportional to this curvature, with a gauge choice

such that δρ = 0. The quantity which satisfies these constraints is the comoving curvature

perturbation:

R =
a2R

4k2
. (1.8)

This definition of the comoving curvature perturbation is just a particularly convenient

way of describing a general scalar perturbation. There are, however, other parametrisation

choices that can be made. Intuitively, we can also think of a perturbation being a difference

in how much the Universe has expanded at a given position relative to the background,

i.e. a change in the scale factor at a given position relative to the background. We could

instead define the primordial perturbation directly as a change in the scale factor, ζ =

δa/a = δ log a, and then under a change of coordinates we can see that [20]

δa

a
→ δa

a
− ȧ

a
δt (1.9)

=⇒ ζ → ζ − ȧ

a
δt = ζ −Hδt.

Parametrising the time step in terms of a change in energy density δρ,

ζ −Hδρ

ρ̇
= ζ +

δρ

3(ρ+ p)
= R (1.10)

where the second equality is due to the conservation of energy given by equation (1.3),

and then it is obvious that this ‘general’ perturbation is equal to the comoving curvature

perturbation R in the uniform density gauge where δρ = 0. In the separate universe

approach, δρ = 0 outside of the horizon, and therefore R = ζ outside of the horizon too.

This means that these two parameters are often used interchangeably in the literature.

However, inside the horizon these two quantities are not equivalent, and in regimes where

the perturbation is not conserved outside of the horizon, these quantities are also distinct

and must not be used interchangeably.

1.2.3 The primordial power spectrum

The distribution of overdensities and underdensities left over at the end of inflation is

quantified by the primordial power spectrum as a function of scale. This is the Fourier

transform of the 2-point correlation function 〈δ(x1)δ(x2)〉 which gives the probability of a

region with physical size r ∝ 1/k having a density δ greater than the average. The power
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Figure 1.1: The comoving scale (wavelength) of the Hubble horizon in black, and of a

perturbation in red, as a function of the scale factor. All modes begin inside the horizon,

and are then blown up larger than the Hubble horizon during inflation. After inflation

they re-enter the Hubble horizon, smallest scale first.

spectrum is then

P(k) =
1

(2π)3/2

∫
〈δ(x1)δ(x2)〉 eik·xd3k (1.11)

and is a measure of how over- or underdense regions of a particular size r ∝ 1/k are on

average.

Throughout this thesis, the primordial power spectrum will represent the density in

terms of the comoving curvature perturbation, R. Using the separate universe approach, it

can be shown that this quantity is conserved on superhorizon scales because each region is

chosen such that it has constant curvature [21]. This means that inflationary dynamics can

be inferred from the primordial power spectrum of the comoving curvature perturbation

measured at the time that the perturbations exit the horizon and freeze-out. However, we

will see in chapter 3 that there are circumstances where the comoving curvature perturb-

ation does not remain constant on superhorizon scales, and instead needs to be tracked

until the end of inflation before the primordial power spectrum can be evaluated. The

primordial power spectrum acts as a bridge between inflationary dynamics and observa-

tions today, and this thesis will focus on comparing predictions of inflationary models with

constraints from various observational probes across a wide range of scales.
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1.2.4 Cosmic Microwave Background

To date, we have obtained precise measurements of the primordial power spectrum on

large comoving scales k ∼ 10−3 − 0.1 Mpc−1 via measurements of the Cosmic Microwave

Background [22]. At early times, the temperature of the Universe was still high enough

that the hydrogen (the predominant constituent of the baryonic matter in the Universe)

was completely ionized. Photons weren’t able to travel great distances, because they were

scattered frequently off the sea of free protons and electrons. However, by around redshift

z = 1100, the Universe had cooled enough so that the protons and electrons could combine

to form neutral hydrogen and the photons were able to decouple from the baryons and

free-stream. This process is known as recombination, and the photons that were released

at that time are known as the Cosmic Microwave Background. This radiation was first

observed in 1965 by Arno Penzias and Robert Wilson at the Bell Telephone Laboratories in

Murray Hill, New Jersey, and since then NASA’s Cosmic Background Explorer (COBE),

the Wilkinson Microwave Anisotropy Probe (WMAP) and the Planck Satellite have zeroed

in on a precise measurement of the average CMB temperature today: TCMB,0 = 2.72548±

0.00057 K [23]. Since the temperature of radiation redshifts as TCMB = TCMB,0 (1 + z),

the CMB temperature is then known at all times, and it was the measurement of this

temperature across large distances that provided one of the main motivations for inflation,

as discussed in section 1.2.1.

The Planck satellite has measured spatial fluctuations in the temperature of the CMB

to deviate from the average by around 1 part in 100,000 across the range of scales k ∼

10−3−0.1 Mpc−1. Since the CMB fluctuations are small, there is a direct link between these

fluctuations in CMB temperature and the initial primordial fluctuations of the comoving

curvature perturbation via linear perturbation theory. This means that constraints on the

primordial power spectrum can be derived from measurements of the CMB temperature

fluctuations with the CMB transfer functions T (k, t). These encode the linear evolution

of various quantities such that PRT 2
x (k, t) = Px,t where x is the quantity of interest,

for example the CMB temperature fluctuations or cold dark matter density fluctuations.

Various codes including CAMB [24] and CLASS [25] are able to compute these transfer

functions by solving the linear Boltzmann equations.

The latest results from the 2018 Planck release parametrise the primordial power spec-

trum with a power law,

PR = As

(
k

k∗

)ns−1

(1.12)

with As = 2 × 10−9, k∗ = 0.05 Mpc−1 and ns = 0.965 ± 0.004 [26]. This shows that
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the primordial power spectrum is nearly scale-invariant over this range, and that the

overdensities and underdensities do not differ from the average by much. Using this tracer

for the initial densities, we can then ask what kind of inflationary models are able to

produce this distribution.

1.2.5 Inflationary model-building

Recalling the equation of state required for accelerated expansion, ω < −1/3, we can see

that a scalar field φ which has density and pressure given by

ρφ =
1

2
φ̇2 + V (φ) (1.13)

pφ =
1

2
φ̇2 − V (φ),

where V (φ) is the potential of the scalar field, will provide a negative equation of state,

and ω < −1/3 given constraints on the potential. Inflation can be driven by one, usually

referred to as the inflaton, or many, scalar fields. These classes of models are known as

single-field and multifield inflation respectively.

The way that these scalar fields spend their potential energy determines the dynamics

of inflation, and hence how much the initial fluctuations are blown up and stretched out.

We track these fluctuations as modes with a given wavenumber k. All modes start off

inside the horizon before exiting, largest first, as the Universe expands. After inflation

ends, these modes reenter the horizon and come back into causal contact, see figure 1.1.

This process is usually modelled as a scalar field rolling down a potential. In single-field

inflation, there is just one degree of freedom for the field to roll, but in multifield inflation,

there could be many.

Slow-roll inflation

Within the class of single-field models of inflation, we can further categorise a subset of

those with the simplest dynamics. If a single scalar field rolls slowly, and at a nearly

constant speed down it’s potential, then it is said to be a slow-roll model of inflation. This

distinction is quantified by the two slow-roll parameters

ε =− Ḣ

H2
=

φ̇2

2M2
pH

2
(1.14)

η =
ε̇

εH
, (1.15)

where φ is the field value and H = ȧ/a is the Hubble parameter. The first slow-roll

parameter, ε, tracks how quickly the scalar field is moving down its potential, whilst the
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second slow-roll parameter, η, tracks the acceleration. This means that if ε is small and

constant, then η ≈ 0, and the model is classed as slow-roll, meaning that the slow-roll

approximation can be applied as follows. Inserting equation (1.13) into equation (1.2), the

Friedmann equation for when the Universe is dominated by a scalar field reads

H2 =
1

3M2
p

(
1

2
φ̇2 + V (φ)

)
, (1.16)

and if ε� 1, then

H2 ≈ V

3M2
p

. (1.17)

This approximation states that ε and η can be recast in terms of the potential and its

derivatives only:

ε ≈
M2
p

2

(
V ′(φ)

V (φ)

)2

(1.18)

η ≈M2
p

V ′′(φ)

V (φ)
, (1.19)

where ′ = d/dφ. The power spectrum can be written in terms of ε as

PR =
H2

8πM2
p ε
, (1.20)

evaluated at the end of inflation, see e.g. [27] for a review of this formalism. And hence,

in the slow-roll approximation, the primordial power spectrum becomes just a function

of the potential V . It is not possible to write the slow-roll parameters, and hence the

power spectrum, as a function of just the potential if η 6≈ 0. To understand the physical

interpretation of being able to use the slow-roll approximation or not, we need to think

about how the perturbations are behaving in each case.

1.2.6 Inflationary perturbation evolution

The joint evolution of the metric and the scalar field driving inflation, which we will assume

is a minimally coupled scalar field φ, is given by the Friedmann equation as in (1.16) for

the background, while the equation of motion for the scalar field perturbations is given by

the Klein-Gordon equation:

φ̈+ 3Hφ̇+
dV

dφ
= 0, (1.21)

which is derived from the action for a minimally coupled scalar field. In the slow-roll

approximation, the first term φ̈ is neglected because η ≈ 0, and hence ε ∝ φ̇2 can be

written in terms of V ′(φ). In the case that η 6≈ 0, then φ̈ is non-negligible in comparison

to V ′(φ).
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If instead we wrote the action in terms of the comoving curvature perturbation R

and then transformed to the canonically-normalised Mukhanov variable υk = zR where

z =
√

2εa we would find the Mukhanov-Sasaki (MS) equation [28, 29]:

υ′′k + (k2 − z′′

z
)υk = 0, (1.22)

where primes denote differentiation with respect to conformal time τ , with dt = adτ . By

directly differentiating z, it can be shown that

z′′

z
= (aH)2

(
2− ε+

3

2
η +

1

4
η2 − 1

2
εη +

1

2

η̇

H

)
. (1.23)

This is exact - no approximations or higher order cut-offs have been introduced here.

To see what is happening to modes deep within the horizon, we can take the limit of

equation (1.22) as τ approaches −∞. In this case the k2 term is dominant and the MS

equation becomes

υ′′k + k2υk = 0, (1.24)

which admits oscillating solutions υk ∝ e±ikτ .

The behaviour of the modes once they’ve left the horizon must be determined including

the z′′/z factor, since the wavenumber k associated with a particular mode is comparable

to 1/τ at the time of horizon crossing. We can’t solve the MS equation easily with the

form of (1.23) as it is, however if we assume that ε� 1, then we can rewrite (1.23) as

z′′

z
= (aH)2

(
2 +

3

2
η +

1

4
η2 +

1

2

η̇

H

)
, (1.25)

where we’ve just dropped all terms that involved ε. In fact, the condition for inflation to

be occurring is only ε < 1, however for inflation to be sustained, ε� 1 is usually required.

If we now define a new parameter ν by

ν2 =
9

4
+

3

2
η +

1

4
η2 +

η̇

2H
, (1.26)

the MS equation can be rewritten as

υ′′k + (k2 −
ν2 − 1

4

τ2
)υk = 0 (1.27)

where again, the only approximation here is that ε is small compared to 1 and η.

It is now clear that the evolution of υ and hence R is very dependent on the value of

η, which tracks the rate of change in ε.
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We will explore this behaviour fully in chapter 3, however for now the important thing

to note is that if we write the equation of motion for R which is found by substituting

υk = zR into equation (1.22)

R′′ +
(

2a′

a
+
ε′

ε

)
R′ + k2R = 0 (1.28)

in the superhorizon limit k → 0, then we have

Rk→0 = Ck +Dk

∫
dt

a3ε
, (1.29)

and we can see that there is always a constant mode Ck (the usual conserved quantity

in single-field slow-roll), but that there is also a time-dependent mode. If ε is small and

constant, as is the case in slow-roll, then the whole second term will be decaying as the

scale factor dominates and there is no additional contribution to R other than the value

that is constant at horizon exit. This means that in the slow-roll approximation, the power

spectrum can be evaluated at horizon exit. However, if ε is not approximately constant,

η 6≈ 0 and the slow-roll approximation is not valid due to the contribution of the second

term in equation (1.29). If the approximation is used to evaluate the primordial power

spectrum, the effect of η which encapsulates the rate of decrease of ε will be disregarded,

and the resulting power spectrum will not be an accurate measure of the perturbations

left over at the end of inflation.

Beyond slow-roll

If η < 0 at some point during inflation, this signifies a decrease in ε caused by the field

slowing down on its potential. Looking again at equation (1.29), we can see that if ε is

decreasing faster than a3 (which is equivalent to η = −3), the second term starts to grow

and there will be an additional contribution to R beyond that of the constant value at

horizon exit. In these cases, it is vital to track both the constant mode and the decaying or

growing mode, depending on the behaviour of ε, throughout inflation and to evaluate the

primordial power spectrum only at the end of inflation, or when both modes have clearly

stopped evolving. These models that do not qualify for the slow-roll approximation are

called ‘beyond slow-roll’ models of inflation. The deceleration of the field is often caused

by a flattening of the potential, and if the potential becomes completely flat, the scalar

field enters a phase known as ultra-slow-roll (see e.g. [30]). See figure 1.2 for an illustration

of an example potential. The value of η which signals ultra-slow-roll can be found from

equation (1.21), where if dV/dφ = 0, we have

− φ̈

φ̇H
= ε− η

2
= 3 (1.30)



12

Figure 1.2: An illustration of an inflationary potential where the inflaton rolls from right

to left in φ-space, down its potential V (φ). The gentle slope of the potential in the

slow-roll phase flattens out to lead into a phase of ultra-slow roll. The inflaton will then

need to speed up again so as to end inflation and for the Universe to reheat.

and hence η = −6.

The resulting power spectra from beyond slow-roll models are expected to deviate

from scale-invariance due to ε not being constant as it is for slow-roll, and the extra

boost in perturbations caused by the superhorizon growth quantified by the second term

in equation (1.29). Instead, the power spectrum usually becomes scale-dependent and

increases (or decreases if η > 0), forming some sort of feature or peak. Various models

have been constructed that aim to produce a period of ultra-slow-roll in order to maximise

the growth of superhorizon perturbations and hence the size of the peak in the power

spectrum. For example, inflection points [11] and local maxima [31] in the potential have

been explored as mechanisms for this to succeed.

Since the Planck measurements have shown that the primordial power spectrum is

almost scale-invariant on large scales, ε must have been nearly constant at the time during

inflation when those modes exited the horizon. This means that the simplest class of infla-

tionary models, namely single-field, slow-roll models, are able to explain the measurements

of the CMB. However, more complicated models could still reproduce these measurements

even on just this range of scales, and narrowing down precisely which model is correct,
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and ruling out others, will require extra constraints from different observables.

1.2.7 Accessing smaller scales

In terms of single-field inflation, distinctions between models can be inferred by looking

at the tensor-to-scalar ratio, r, which quantifies the perturbations to the metric, i.e. the

gravitational degrees of freedom, produced in a given model. These can be generated by

quantum fluctuations of the gravitational field, analogous to the quantum fluctuations that

produce the scalar perturbations, or else via mechanisms including particle production

during inflation [32] or the presence of extra scalar fields [33]. Single-field models are

capable of producing a wide range of values for r on the scales that Planck has explored,

and there is a direct link, in the slow-roll approximation, between r and the energy scale

of inflation at the time that a given mode leaves the horizon [20, 34]:

V =
(
1.88× 1016 GeV

)4 r

0.1
. (1.31)

Currently, CMB polarisation experiments (combined with Planck data and Baryon Acous-

tic Oscillation results) have placed constraints in the range r < 0.07− 0.09 at the Planck

pivot scale k∗ = 0.05 Mpc−1 [35]. Indeed, a combination of the tensor-to-scalar ratio and

the spectral index ns at the scale k∗ is the most common classification of viable inflationary

models, for example see the ‘zoo’ plot in figure 1.3 which shows the Planck constraints in

the blue, red and grey shaded regions overlaid with various models of inflation as functions

of their predicted r and ns. As constraints on r improve with data from upcoming exper-

iments such as the Laser Interferometer Space Antenna (LISA), we should get a handle

on the amount of tensor perturbations produced during inflation, and hence narrow down

the class of models that can be responsible for the inflationary relics we have observed on

large scales.

There is, however, still more that can be done by studying just the density perturb-

ations left over at the end of inflation, if we can access smaller scales. CMB anisotropy

measurements cannot help constrain smaller scales because fluctuations in temperature

are washed out by Silk-damping [36]. As baryons began to fall into gravitational potential

wells on smaller scales after recombination, photons (which are decoupled from the bary-

ons at this point) diffused from hot regions to cold regions, evening out the temperature

of the CMB and erasing perturbations on small scales.

Whilst we know that η can’t deviate far from zero on large scales from CMB tem-

perature anisotropies, there are very few constraints on smaller scales that restrict this

possibility. Such a deviation from η ≈ 0 would produce a feature or peak in the primordial
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Figure 1.3: Planck 2018 constraints on the tensor-to-scalar ratio and the spectral index

ns at a scale of k = 0.002 Mpc−1 are shown in the grey, red and blue contour regions.

Various inflationary models’ predicted range of values for r and ns are overlaid. Figure

credit: [1].

power spectrum, which would not only be very prescriptive for inflationary models, but

would also imply the existence of interesting relics that could be observable today. In fact,

the existence or lack of such observables are the best hope for constraining the primordial

power spectrum, and hence inflationary dynamics, on small scales.

Non-Gaussianity and multifield inflation

Throughout this thesis we will assume that the probability density function of the initial

perturbations can be described by a Gaussian distribution, which is a generic prediction of

canonical slow-roll single-field inflation. Since a Gaussian distribution is entirely charac-

terised by just two quantities, its mean and its variance, the statistics of the initial density

field can be entirely described by a power spectrum. However, if the probability density

function was non-Gaussian, higher-order statistics would be required to describe the initial

density field. The next-simplest statistic to characterise deviations from Gaussianity is the

bispectrum, which is the Fourier transform of the three point function. It is a function

of three wavenumbers k1, k2, k3, and the triangular configuration of these wavenumbers is

known as the ‘shape’ of the bispectrum, whilst the amplitude is denoted by the quantity

fNL. Different early universe scenarios predict different shapes and amplitudes of the

bispectrum, however the two most commonly considered shapes are:
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• Local (also known as squeezed), which is maximised when k1 << k2 ∼ k3

• Equilateral, which is maximised when k1 ∼ k2 ∼ k3.

There are two different amplitudes corresponding to these configurations, f local
NL and f equil

NL .

Of particular relevance for testing single-field inflation is f local
NL , since single-field models

of inflation predict small (<< 1) values for this parameter according to the Maldacena

consistency relation [37–39]. A detection of f local
NL ∼ O(1) would strongly suggest that

there was more than one scalar field present during inflation.

Furthermore, f equil
NL is also usually expected to be small in canonical slow-roll single-

field inflation according to the Maldacena consistency relation. However, beyond slow-roll

and/or ultra-slow-roll regimes break this relation [40].

f equil
NL is also able to test the presence of a non-canonical kinetic field term2 cs in

the description of the inflaton’s dynamics. Such a term can affect the primordial power

spectrum as PR ∝ 1/εcs in single-field inflation, and can also produce a large bispectrum

in the equilateral limit where k1 ∼ k2 ∼ k3, i.e. in the case when all three modes exit the

horizon at a similar time [41].

On large scales, the Planck 2018 analysis has set the most stringent constraints on

these amplitudes: f local
NL = −0.9 ± 5.1 and f equil

NL = −26 ± 47 [42]. As the error bars

are still large with respect to unity, these constraints are unable to confirm or rule out

the simplest single-field models of inflation at this stage, but upcoming experiments such

as improved CMB polarisation data from Simons Observatory [43], as well as large-scale

structure probes including SPHEREX [44], will aim to improve constraints on the shape

and amplitude of the bispectrum, targeting the threshold of f local
NL < 1. If a detection of

f local
NL > 1 is made, this will confirm that multifield models are preferred over single-field

models.

Finally, it is possible that the bispectrum is scale-dependent, and therefore there could

be more information on small scales that is yet to be probed. However, this is even more

experimentally difficult than probing the small-scale power spectrum, due to the non-linear

physics that introduces late-time non-Gaussianities which can be difficult to separate from

those of primordial origin [39].

2A non-canonical kinetic field term usually means that there are higher powers of the kinetic term

(∂µφ)2 in the action for the inflaton which are dominant over the leading term.
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1.3 Primordial black holes

There are multiple possibilities for inflationary relics, including cosmic strings or domain

walls [45], that may be observable today due to, for example, their gravitational wave

signatures or effects on the CMB. However, we will focus on relics that would be produced

by a boost in the power spectrum on small scales. As detailed in the previous subsection,

this could be due to a flattening of the inflationary potential in single-field inflation, or due

to, for example, a second sufficiently light field that produces a blue-tilted power spectrum

on small scales [46].

If there is a large peak in the primordial power spectrum at a given scale, perturbations

of that scale will be particularly overdense or underdense. If they’re overdense enough, they

could form structures such as ultra compact mini haloes (UCMHs) [47] or primordial black

holes (PBHs) immediately after inflation. The former are able to probe the primordial

power spectrum and have interesting consequences for structure formation [48] and dark

matter annihilation signals [49], however this thesis will focus on the latter.

1.3.1 Threshold for collapse

PBHs form when a critical threshold for collapse is reached by an overdensity re-entering

the horizon post-inflation. The amplitude of the perturbation, and hence the value of the

critical density threshold for collapse, needs to be defined in terms of the density contrast

δ = δρ/ρbg as opposed to the curvature perturbation defined as either R or ζ, because

the amplitude of a given perturbation around horizon reentry is affected by superhorizon

modes, the effects of which are not captured by R or ζ [50]. Furthermore, there is a

non-linear relationship between δ and ζ which can have an order 1 effect on the threshold

for collapse [50, 51], but we will not consider that here.

In order to consistently measure the scale and amplitude of a perturbation, the com-

paction function is used:

C(r, t) =
2(M(r, t)−Mbg(r, t))

R(r, t)
(1.32)

where M(r, t) is the Misner-Sharp mass [52], i.e. the amount of energy within a sphere of

areal radius R(r, t) = a(t)r, assuming spherical symmetry. Assuming spherical symmetry

in this context is a good approximation because only the rarest peaks will be overdense

enough to collapse, and rare peaks have been shown to be more spherical [53]. Mbg(r, t)

is the Misner-Sharp mass of the flat FRW background.

The maximum of the compaction function represents the scale at which the perturb-
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ation differs most from the background value, and hence the scale rm is defined as the

scale of the perturbation which satisfies C′(rm) = 0. The horizon crossing time for the

perturbation is given by the time at which

rm(tH)a(tH)H(tH) = 1. (1.33)

The physical scale of the perturbation is therefore Rm = rma(t), and the amplitude of the

perturbation is defined as the excess density within the radius Rm at horizon crossing time

tH . This is calculated by finding the amount of excess mass over the spherical volume

Vm = 4πR3
M/3 by integrating the density contrast between 0 and Rm

δ(rm, tH) =
1

Vm

∫ π

0

∫ 2π

0

∫ Rm

0

δρ

ρbg
R2dRdφdθ (1.34)

=
3

R3
m

∫ Rm

0

δρ

ρbg
R2dR.

Simulations of the collapse of perturbations have been conducted to find the value, δc,

which this average mass excess needs to reach in order for the perturbation to collapse

and form a black hole. Therefore it is the averaged value δ(rm, tH) which should be

compared directly with δc to determine whether that particular overdensity will collapse

to form a black hole.

So far, we have discussed the value of the overdensity in terms of a general spherically

symmetric curvature perturbation, however in reality, the perturbations will have distinct

and possibly varying profiles which are related to the curvature perturbation R and can

be characterised by a curvature profile K(r) [54]. It is then not so trivial how to take

the average of the energy density, and the choice of window function can affect the result

[55, 56]. The integral between 0 and Rm in equation (1.34) is equivalent to applying

a real-space top-hat window function to the curvature perturbation profile, since it just

represents a hard cut-off at r = Rm. However, Gaussian window functions have also been

suggested as appropriate, so as not to disregard overdensities just outside of the horizon

which may too fall into the resultant black hole by the time it has actually formed.

The threshold for collapse depends on both the shape of the profile and the window

function used to determine the mass excess associated with a given scale Rm. Latest

results have shown that this value can vary between ∼ 0.45 − 0.65 for collapse during a

radiation-dominated era [57, 58].

If an overdense region meets these criteria, it will collapse within around a Hubble time

to form a PBH. Once formed, PBHs decouple from the Hubble flow and evolve like matter.

For the majority of this thesis, we refer to PBHs forming in a radiation-dominated era,
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however there are other possibilities. In particular, a phase of early matter-domination

will be explored in chapter 2. There are also more exotic PBH formation mechanisms, like

the collapse of cosmic strings or the collision of domain walls, which we will not explore

but have received attention in the literature, e.g. [59, 60] and references within [61].

Given that we don’t know each of the individual profiles of the curvature perturbations,

the power spectrum is usually used to quantify the average amplitude of the perturba-

tions as a function of scale. Whilst the above formalisms inform the value of the critical

threshold, as well as the appropriate window function according to the expected profile

of the perturbations, below we will lay out some simplifications which will suffice given

that we are working with the average value of the perturbations according to a given

power spectrum. Work has been done to connect the form of the power spectrum with the

curvature perturbation profile [62], moving towards a unified approach that takes into ac-

count the curvature profile, the window function, and a critical threshold calculated with

consistent numerical simulations. These considerations in turn should predict an accurate

distribution of PBH masses.

For simplicity, as will be followed in chapter 2, we will assume that the mass, and

hence scale of the PBH formed, is simply related to the mass of the horizon at the time

of reentry, given by [9, 10]

MPBH = γMhor = γ
3c3ti
4G

, (1.35)

where γ is the fraction of the horizon mass that falls into the PBH found numerically

to be ∼ 0.2 and ti is the cosmic time that the mode enters the horizon. i.e. the later

the reentry, the larger the mode reentering, and hence the larger the black hole which is

formed. The comoving scale that corresponds to each black hole mass is then found by

scaling the particle horizon

dp,i =

∫ ti

0

ai
a
dt =

∫ ti

0

(
ti
t

) 1
2

= 2ti (1.36)

at the time of reentry

ti =
4GMPBH

3c3
(1.37)

by the change in the scale factor over the subsequent epochs. If the PBH formed in

radiation-domination, as is the standard case, then the comoving scale today corresponding

to a PBH that formed shortly after a horizon entry time of ti is

ki = π

(
teq

t0

) 2
3
(

3c

4GMPBHteq

) 1
2

(1.38)

where teq is the cosmic time of matter-radiation equality.
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1.3.2 Abundance of PBHs

According to the Press-Schechter formalism3 [64], the number of black holes formed of a

given mass is determined by integrating the distribution of density between δc and 1. If

the overdensities are assumed to follow a Gaussian distribution, then this results in a mass

fraction [9]

β(MPBH) =
2√

2πσ(R)

∫ ∞
δc

exp

(
−δ2(R)

2σ2(R)

)
d(δ(R))

=erfc

(
δc√

2σ(R)

)
, (1.39)

where erfc is the complementary error function, σ(R) is the variance of the density field

at a given scale and we have included the Press-Schechter4 factor of 2. The mass fraction

is the proportion of the Universe that is in regions dense enough to form PBHs, and is

defined at the time of formation. σ(R) is related to the primordial power spectrum via

σ2(R) =

∫ ∞
0

W̃ 2(kR)Pδ(k)
dk

k
, (1.40)

where W̃ is the window function which smooths the perturbations over a given scale R.

We will discuss the consequences of this relationship in chapter one.

1.3.3 Dark matter candidate

PBHs are interesting potential relics of inflation, but they were also first postulated as

a dark matter candidate in the 1970s by George Chapline and Stephen Hawking among

others [65, 66]. There are various motivations for a dark sector, the first evidence of which

came in 1933 when Fritz Zwicky observed that galaxies in the Coma Cluster were moving

too fast to be held together by the gravitational force accounted for by just the visible mass

[67]. Furthermore, the stars and gas towards the outskirts of a disk galaxy should rotate

around the centre at a slower rate than those nearer the centre, because the gravitational

force decreases with distance from the centre. However, observations (notably first by Vera

Rubin [68]) have shown (see [69] for an early review), that the velocity does not decrease

with distance from the centre but instead levels off. This suggests that there must be

more gravitational energy than the visible matter would imply, which in turn points to

3Note that there has been a lot work done on the correct formalism to use for calculating PBH abund-

ance, as the Press-Schechter formalism was developed in the context of galaxy and cluster formation, not

PBH formation. Alternatives include Peaks Theory and modifications thereof, see e.g. [63].
4Since the factor of 2 ends up in the argument of the complementary error function in the expression

for the power spectrum, including it or not only changes the results for the power spectrum by 1-2%.
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the fact that there must be some form of dark matter which only interacts gravitationally

with the visible matter in these galaxies.

Over the last half-decade, this evidence has been corroborated by numerous observa-

tions, and the current observational value for the energy density of dark matter today is

ΩDM = ρDM/ρc = 0.26 [26]. However, whilst the existence of dark matter is widely agreed

upon, its origin and form is yet to be determined.

Largely due to cosmological numerical simulations, ‘cold’ particulate dark matter mod-

els where the particle decouples from thermal equilibrium at a temperature below its mass

(m = kBT/c
2) and is therefore non-relativistic during structure formation have become

favoured over ‘hot’ dark matter models where the particles instead exhibit relativistic velo-

cities. This is because non-relativistic particles have a much shorter free-streaming length,

and therefore structures form on much smaller scales. These can then merge and form

larger structures in a hierarchical way, which matches much more closely sub-cluster struc-

ture and cosmic web formation that has been seen in galaxy surveys [70]. Hot dark matter,

in contrast, has a much larger free-streaming length, and hence small-scale structure is

washed out by the thermal motion of the particles [71].

Direct detection searches have therefore predominantly focused on particulate cold dark

matter candidates. For example firstly, the Weakly Interacting Massive Particle (WIMP),

which self-annihilates and is capable of producing the correct dark matter density today

based on a mass-dependent cross-section of the order 10−26cm3s−1 [72]. Alternatively,

the axion, which was originally motivated by wanting to solve the ‘fine-tuning’ problem

in quantum chromodynamics which describes the strong force that affects quarks and

gluons known as the strong CP problem e.g. [73]. However there have been a multitude

of candidates put forward, such as sterile neutrinos [74], supersymmetric particles [75],

topological defects [76], or even that modified gravity could be responsible [77]. Despite

extensive searches for evidence of dark matter particles, there have been no confirmed

detections as of yet.

PBHs also fulfil all of the necessary properties of dark matter, and unlike all of the

examples just mentioned, require no new physics beyond the standard model. As we will

see, they have had a resurgence in popularity in recent years due to possible signatures

of their existence, but still various observational constraints threaten to rule them out as

making up all of the dark matter. The proportion of the dark matter energy density that

could be accounted for by PBHs today is described by the quantity fPBH = ρPBH/ρDM
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which is related to the abundance at the time of formation β (equation (1.39)) by [9]

fPBH =

(
MPBH

Meq

)− 1
2 β(MPBH)

ΩDM
, (1.41)

assuming they formed during radiation-domination.

1.3.4 Observational direct detection constraints

Due to the fact that PBHs can in theory form with any mass and corresponding scale

there need to be a variety of observational strategies for detecting them. Four of the main

classes of constraints are plotted in figure 1.4 and described below.

They evaporate according to Hawking radiation, for which the timescale of evaporation

depends on the mass [10]

tev ∼
G2M3

~c4
, (1.42)

where G is Newton’s gravitational constant, ~ is the reduced Planck’s constant and c is the

speed of light. Only PBHs lighter than ∼ 1015 g would have totally evaporated by today.

This means that on the low-mass end, tight constraints come from the lack of evidence

for energy injection in the CMB due to their evaporation.

There are various microlensing constraints which are based on searches for cases of

PBHs passing between ground-based telescopes and far-off stars. The PBH should act

as a lens and cause the star to exhibit a distinctive feature in the light-curve. The HSC

Subaru telescope has put constraints on PBH masses between ∼ 10−11 − 10−5M� that

reach fPBH . 2 × 10−3 at their most stringent (for a monochromatic mass function) [2],

whilst the Optical Gravitational Lensing Experiment (OGLE) [78], Expérience pour la

Recherche d’Objets Sombres’ (EROS) [79] and MACHO [80] have put constraints on PBH

masses between ∼ 10−7 − 10−1M� with fPBH . 10−2 for the mass where the constraints

are strongest [81].

There are various constraints for high-mass PBHs, for example via supernovae lensing

[82], heating of the stellar content in ultra-faint dwarf galaxies [83], or disruption of wide

halo binaries [84]. However, the most stringent constraints on high-mass PBHs are due to

accretion effects [85, 86]. PBHs are expected to accrete gas in the early Universe, and when

radiation pressure overcomes gravity, some of the mass will be re-radiated. This radiation

can then heat and ionise the intergalactic medium, which could change the temperature

and the spectrum of the CMB locally. Depending on the number of PBHs, this would

show up in CMB anisotropy and spectral distortion measurements from, for example, the
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Figure 1.4: Direct constraints on fPBH as a function of PBH mass due to the

non-detection of PBHs from four of the main probes. On the low-mass end, evaporation

constraints are shown in orange, the envelope of microlensing constraints from HSC

Subaru as well as EROS/MACHO are in blue, sub-solar mass gravitational wave

constraints from O2 LIGO and O1 LIGO constraints in the 1− 10M� range are in

purple, and constraints from CMB accretion are in pink. There are two different LIGO

constraints due to separate analyses on the different mass ranges - a consistent analysis

over the full range would result in a smooth constraint. Data taken from [2–4].
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Planck Satellite and COBE/FIRAS (see section 1.4). Conservative constraints have been

placed on the fraction of dark matter that could be made up of PBHs, with tighter limits

possible as uncertainties in, for example, the radial profile of the accretion are better

understood. For masses ∼ 1000M�, fPBH ≤ 10−2, and for ∼ 104M�, fPBH ≤ 10−4 [87].

Finally, there has been a resurgence in popularity of PBHs in recent years due to

the detection of gravitational waves. LIGO/Virgo have detected more than 10 black

hole merger events since the detectors came online in 2015 [88]. All of the black holes

detected during the first two observing runs have been constrained to be in the mass-

range ∼ 10 − 50M�. Black holes of these masses can be explained with astrophysical

formation mechanisms, i.e. due to the collapse of stars. However, they could also be

explained by PBH formation mechanisms, due to the fact that they can form at any mass

in principle. Definitively distinguishing between the possible origins of these black holes

will rely on theoretical advances including a better understanding of the mass function of

PBHs [89–91], as well as the expected spins for primordial and astrophysical black holes,

and the effects and/or likelihood of a merger history for primordial and astrophysical black

holes.

Future ‘extreme’ detections will also help to distinguish between explanations for the

black holes’ origins. For example, if a black hole larger than 100M� is observed, it will be

very difficult to explain its origin with stellar collapse mechanisms, and subsequent mergers

would be relied upon to produce a black hole with such a a large mass [92]. Similarly,

black holes of masses below the Chandrasekhar limit of ∼ 1.4 M� are difficult to produce

via astrophysical mechanisms, since this limit represents the maximum mass that a white

dwarf star can have before gravity will overcome pressure and initiate collapse to form a

neutron star or black hole. Conversely this represents the minimum mass that a neutron

star or astrophysical black hole can have. On the other hand, depending on the spread

of the mass-distribution of a larger population of detections, it may become difficult to

account for the mass-distribution through standard PBH formation mechanisms.

1.3.5 PBH mass function

Often PBHs are assumed, as we did above in section 1.3.1 for simplicity, to form with

just a single mass, especially when calculating their constraints as a fraction of the dark

matter budget. However, this is unphysical. As we will show in chapter 3, even for

a monochromatic peak in the power spectrum, a spread of PBH masses are produced
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according to the critical collapse formalism:

MPBH

Mhor
= K (δ − δc)γ (1.43)

where K ≈ 3.3 which encodes the profile of the overdensity and γ ≈ 0.36 are both calcu-

lated with numerical simulations. Note that this γ is not the same as defined in equation

(1.35). If we then calculate the abundance of PBHs at the time of formation, β, for this

distribution of masses, the integral in (1.39) becomes [93, 94]

β(MPBH) =
2√

2πσ(R)

∫ ∞
δc

MPBH

Mhor
exp

(
−δ2(R)

2σ2(R)

)
d(δ(R)) (1.44)

=
2√

2πσ(R)

∫ ∞
δc

K (δ − δc)γ exp

(
−δ2(R)

2σ2(R)

)
d(δ(R)).

Combining this with the definition of fPBH in equation (1.41), we can write the PBH mass

function as

f(MPBH) ≡ 1

ΩCDM

dΩPBH

d lnMPBH

=
1

ΩCDM

∞∫
−∞

2√
2πσ2(Mhor)

exp

[
− (µ1/γ + δc(Mhor))

2

2σ2(Mhor)

]
MPBH

γMhor
µ1/γ

√
Meq

Mhor
d lnMhor,

(1.45)

where µ ≡ MPBH
KMhor

, and σ is the mass variance which is related to the power spectrum

according to equation (1.40), which should be smoothed over the scale Rm, and ΩCDM =

0.26 is the dark matter density today.

Furthermore, the primordial power spectrum itself cannot have a monochromatic peak

[95, 96], and therefore there are observational consequences for both primordial power

spectrum constraints and direct detection constraints on PBHs for the spread of over-

densities at a particular scale. The non-detection constraints are shown in figure 1.4 for

monochromatic mass functions. However these should really be recalculated individually

for a realistic extended mass function [97, 98]. It has been shown that log-normal dis-

tributions fit the predictions of PBH-motivated inflationary models well, but other forms

have also been postulated, including multiple peak forms [99].

Whilst most PBH mass ranges are now ruled out as being able to explain the entire

dark matter budget, there is one remaining low-mass window, 1020 − 1024 g, where this

could still be possible. This window is observationally very difficult to probe due to the

finite source effect and the wave optics effect which are both problematic for microlensing.

The former is a problem when the source star is of a comparable apparent size to the

Einstein radius of the lens, and hence assuming the source is much smaller than the lens

for the point-source approximation is no longer valid. Only a small part of the star will
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be magnified when the finite size of the source is taken into account, and this makes the

constraints weaker [2]. The latter effect is important when the Schwarzschild radius of

the lens (in the case that it’s a PBH) becomes comparable to the wavelength of the light

being observed by the microlensing experiment. The geometric optics approximation is

valid when rs > λ, but otherwise interference and diffraction effects occur due to the fact

that the lens does not ‘see’ the full waveform of the light if it is too small, again resulting

in weaker constraints as the magnification is generally lower [100].

However, indirect constraints due to constraints on the primordial power spectrum

could rule out this window more easily.

If constraints on the primordial power spectrum can be placed such that the critical

density threshold for collapse cannot be reached, then not only will PBHs making up all

of the dark matter at that scale be ruled out, but PBHs of that mass existing at all will

be disfavoured, and a more exotic mechanism for their formation would be required. This

indirect method of constraining PBH abundance is therefore less model-independent than

direct detection, but potentially more powerful.

1.4 Spectral distortions

There are various observational probes able to constrain different scales of the primordial

power spectrum. As already discussed, Planck’s measurements of the temperature (and

polarisation) anistropies in the CMB have already tightly constrained the largest scales.

Spectral distortions of the energy spectrum of the CMB are able to constrain smaller

scales. They quantify deviations from the black-body temperature distribution of the

CMB, caused by energy injection and removal from the plasma in the early Universe.

At high redshift, if some process changes the energy density ργ of the photon-baryon

plasma, the blackbody distribution of the CMB will also change momentarily. This is

because the number density of photons Nγ would need to change according to ∆Nγ/Nγ ≈

(3/4)∆ργ/ργ in order for the relations ργ ∝ T 4 and Nγ ∝ T 3 to hold, and therefore

for the distribution to be a blackbody. In addition, the shift in temperature required to

maintain the shape of the blackbody distribution as well as the amplitude is given by

T ′ ≈ T + (1/4)∆ργ/ργ . This means that unless all three quantities shift simultaneously

to maintain these relations, the blackbody distribution will be distorted [101].

Above redshift z ∼ 2× 106, thermalisation processes were extremely efficient. Double

Compton scattering, where two photons (and an electron) are emitted from an interaction

between one photon and one electron, and Bremsstrahlung processes, caused by decelera-
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tion of electrons, mediate the number of photons Nγ , whilst Compton scattering processes

mediate ργ by enabling the photons to diffuse their energy. Whilst these processes oc-

cur efficiently, any momentary distortion to the CMB blackbody is soon erased, and no

memory of the energy injection or removal process is stored. However, as these processes

becomes less efficient at lower redshifts, the blackbody distribution may not recover and

a distortion could become detectable by experiments today.

There are two types of distortion that could contribute to ∆ργ/ργ . Between redshifts

3× 105 < z < 2× 106, double Compton scattering and Bremsstrahlung processes become

less efficient, whilst Compton scattering remains active. This means that the energy of

the photons is still being redistributed efficiently, and it’s the number density of photons

which can shift from equilibrium. This results in a chemical potential, or pure µ-distortion

(and a temperature shift) of the CMB.

At lower redshifts, z < 104, Compton scattering becomes inefficient too and photons

are unable to diffuse their energy. This causes a shift in the average energy density of the

photons ργ , and a Compton-y distortion. At intermediate redshifts, 104 < z < 3 × 105,

a non-linear combination of the two distortions are produced. A thermalisation Green’s

function, Gν , can be calculated by numerically solving the linear Boltzmann equation

[102, 103]

∂nν
∂t
−Hν∂nν

∂ν
=

dnν
dt

∣∣∣
C

+
dnν
dt

∣∣∣
DC

+
dnν
dt

∣∣∣
BR

+
dnν
dt

∣∣∣
S
, (1.46)

where the left-hand side describes the redshifting of the photons due to the Hubble expan-

sion, and the right-hand side encapsulates the change in photon number due to Compton

scattering, Double Compton scattering, Bremsstrahlung radiation and direct photon pro-

duction (S). Then, given an energy injection history Q(z) for some process of interest, the

change in the intensity of photons Iν = (2hν3/c2)nν is given by [103]

∆Iν(z = 0) =

∫
Gν(ν, z′, 0)

d(Q/ργ)

dz′
dz′. (1.47)

If the transition between producing µ-distortions and y-distortions is treated as instantan-

eous so that mixed distortions are neglected, the shape of the distortion can be estimated

and Iν can be split up as

∆Iν ≈ Yν∆ργ/ργ

∣∣∣
y

+Mν∆ργ/ργ

∣∣∣
µ

+Gν∆ργ/ργ

∣∣∣
T

(1.48)

with Yν and Mν the appropriate Green’s functions for the low and high redshift processes

relevant for y and µ distortions respectively. The total temperature shift, as opposed to
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the distortion of the shape of the blackbody distribution, is accounted for in the last term

of (1.48).

There are various causes of energy injection and/or removal from the plasma, including

particle production or decay and scattering between baryons and dark matter [104, 105].

However, we will focus on spectral distortions caused by large scalar perturbations pro-

duced during inflation. A large boost in the primordial power spectrum at a particular

scale or over a range of scales will lead to fluctuations in the density of the baryons and

photons as a function of scale after reheating. This will mean that the photon distributions

on different scales will be described by different blackbodies, and as those photons mix via

Thomson scattering, a spectral distortion will be induced if Compton scattering, Double

Compton scattering and Bremsstrahlung processes aren’t efficient enough to bring them

into equilibrium. The energy injection history for adiabatic perturbations described by a

smooth power spectrum PR(k) can be approximated by [101]

d(Q/ργ)

dz
≈ A2

aH

32c2

45τ̇

∫
dk

2π2
k4PR(k)e−2k2/k2D , (1.49)

where A ' (1 + (4/15)Rν)−1 ' 0.9, Rν = ρν/(ργ + ρν), τ̇ = σTNec is the rate of Thomson

scattering, and kD is the damping scale at recombination, i.e. the typical distance (k−1
D )

a photon can travel before being scattered. Equation (1.49) can then be inserted into

equation (1.47) and integrated numerically. The final µ and y-distortions induced by the

scalar perturbations can then be approximated by [101]

µ ≈
∫ ∞
kmin

dk

k
PR(k)Wµ(k), (1.50)

y ≈
∫ ∞
kmin

dk

k
PR(k)Wy(k),

with k-space window functions of the form

Wµ(k) ≈ 2.27

exp

−[ k̂

1360

]2/1 +

[
k̂

260

]0.3

+
k̂

340

− exp

−[ k̂
32

]2
 ,
(1.51)

Wy(k) ≈ A
2

2
exp

−[ k̂
32

]2
 ,

where k̂ = k/1 Mpc−1 and kmin ' 1 Mpc−1. These window functions are calculated by

integrating the energy injection history analytically for the y-distortion, and numerically

for the µ-distortion, for details, see [106]. They up- and down-weight contributions at

different wavenumbers according to the denominators in equation (1.51). Given a partic-

ular form for the power spectrum, this can then be used to compute the total induced
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µ or y-distortion. Comparing this with observations then results in constraints on the

primordial power spectrum.

Due to the fact that they are produced at very different times, the µ and y-distortions

probe different k-ranges of the power spectrum. y-distortions place constraints on lar-

ger modes k < 3 Mpc−1, whilst µ-distortions constrain the smaller scales, down to k ∼

104 Mpc−1.

The Far-InfraRed Absolute Spectrophotometer (FIRAS) instrument on board the

COBE satellite measured spectral distortions to be smaller than ∆ργ/ργ < 6 × 10−5

[14], and a proposed future detector such as PIXIE [107], or a more recent proposal [18]

aims for constraints of ∆ργ/ργ < 8× 10−9.

In chapter 3, we will see that these observations place constraints on the primordial

power spectrum amplitude of the order PR . 10−4 − 10−5.

1.5 Gravitational waves

Gravitational waves are tensor perturbations to the background metric, and can therefore

be described by a modification to the Minkowski metric ηµν with the spacetime metric

given by

gµν ≈ ηµν + hµν , (1.52)

and hµν the metric perturbation. They are produced by the mass quadrupole moment

changing in time, and can be sourced by, for example, black hole or neutron star mergers,

supernova explosions, continuous waves from e.g. pulsars, or via early universe processes

[108]. Individual events, such as the black hole and neutron star mergers already detected

by LIGO/Virgo have distinctive signals that can be searched for in the data with templates.

Alternatively, the accumulation of unresolved gravitational waves will contribute to a

stochastic background of gravitational waves. This will include signals from astrophysical

sources that are too faint to be resolved in the data, but it could also include a contribution

from primordial gravitational waves. In this thesis, we will specifically focus on those

induced by second-order scalar perturbations, since the large scalar perturbations required

for primordial black hole production could produce gravitational waves that should be

detectable with current and future experiments.
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1.5.1 Stochastic background

A gravitational wave background could be sourced by large scalar perturbations reenter-

ing the horizon after inflation. Gravitational waves would be necessarily produced as a

second-order effect and these would contribute to the stochastic gravitational wave signal.

Measuring this signal in turn is then able to probe the scalar primordial power spectrum

on very small scales.

Following [109], the equation of motion for the metric perturbation at a given scale k

is

h′′k + 2aHh′k + k2hk = 4Sk (1.53)

where Sk is the source term which is a function of the scalar perturbations. By solving

for hk, the power spectrum of the tensor perturbations can be found;

Ph(τ, k) = 4

∫ ∞
0

dv

∫ 1+v

|1−v|
du

(
4v2 − (1 + v2 − u2)2

4vu

)2

I2(v, u, kτ)PR(kv)PR(ku), (1.54)

where u = |k− k̃|/k, v = k̃/k and k̃ is the wavenumber corresponding to the scalar source.

I(v, u, kτ) is a highly oscillating function which contains the source information and the

Green’s function which solves for hk. The observational quantity related to this power

spectrum is the energy density of gravitational waves given by

ΩGW (τ, k) =
ρGW (τ, k)

ρtot(τ)
=

1

24

(
k

aH

)2

Ph(τ, k). (1.55)

If we assume that the entire contribution to any stochastic background detection is from

the tensor power spectrum in equation (1.54), then constraints on the stochastic back-

ground can be translated to constraints on the scalar power spectrum. This is a con-

servative constraint, as there may be other unresolved astrophysical contributions to the

signal. If a detection is made, as opposed to an upper limit on the amplitude from non-

detection, spectral information of the signal will be required to distinguish between the

possible sources.

1.5.2 Possibilities for detection

The stochastic background could either be detected directly by gravitational wave obser-

vatories, or by the monitoring of stable and rapidly rotating pulsars, namely millisecond

pulsars. See e.g. [110] for a review.

So far, the best constraints on the primordial power spectrum due to secondarily

produced gravitational waves have come from pulsar timing array (PTA) experiments. The
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beams of radio waves given off by pulsars as they spin can be picked up by ground-based

radio telescopes. Averaged over many rotations, beams arrive from individual pulsars

with a very consistent time period. Whilst factors such as changes in the interstellar

medium or orbital motion can cause individual pulsar’s average time periods to vary,

gravitational waves, as well as local gravitational effects from planets in the Solar System,

will affect all pulsars in the same way. These ‘global’ effects are also expected to have a

much longer time period than the time period of beams from millisecond pulsars, meaning

that averaging over many rotations allows precise measurements of the longer time-scale

effects. Signals from multiple pulsars can be cross-correlated so as to subtract astrophysical

effects on individual pulsars and be left with just the effects that are common to all pulsars.

Furthermore, each of the different possible sources affecting all of the pulsars should exhibit

distinct signals in the residuals and can therefore be separated out. However, it was shown

recently [111] that Solar System effects can mimic a gravitational wave background signal

and therefore need to be treated carefully.

The North American Nanohertz Observatory for Gravitational Waves’ (NANOGrav)

11 year observation of 45 pulsars [111], the European Pulsar Timing Array (EPTA) data

from 18 years of observation of 6 pulsars [112], and the Parkes Pulsar Timing Array

(PPTA) observations of 20 pulsars [113] have all put limits on the amplitude of the grav-

itational wave background at frequencies of the order of 10−8 Hz. This corresponds to

probing scales around k ∼ 106 Mpc−1 of the primordial power spectrum. Furthermore,

the upcoming Square Kilometre Array (SKA) radio experiment will monitor up to 100

pulsars [114] and improve constraints on a commensurate frequency range by around an

order of magnitude.

Finally, looking to the future, the Laser Interferometer Space Antenna (LISA) has

been designed to directly detect high-frequency gravitational wave signals, especially from

the mergers of supermassive black holes. However, scalar perturbations on scales of the

order k ∼ 1012 Mpc−1 would contribute to a secondarily produced gravitational wave

background on the same frequency range, meaning that LISA will be able to constrain

the primordial power spectrum on very small scales. These constraints will be explored in

chapter 3.

1.6 21cm

Finally, 21cm observations may also be able to constrain the primordial power spectrum

on scales down to k ∼ 0.1 Mpc−1 from the ground, or down to k ∼ O(10) Mpc−1 from
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space. After the photons decoupled from the baryons during recombination and were

able to free-stream, the Universe went totally dark in an epoch known as the Dark Ages.

The baryonic matter was made up almost entirely of neutral hydrogen, and therefore the

only observational signature from this epoch is due to the fact that neutral hydrogen

undergoes a spin-flip transition at a characteristic wavelength of λ = 21cm. This occurs

in three circumstances:

• spontaneous emission; a random, quantum effect which causes the bound electron

in a hydrogen atom to drop from its excited state to its lower energy state, emitting

a photon with energy equal to the difference between the two states (in the case

of neutral hydrogen, at a wavelength of 21cm). This process is independent of the

radiation field which is incident upon the hydrogen.

• stimulated emission; when an incoming photon interacts with a hydrogen atom and

causes another photon to be emitted at a wavelength of 21cm, and for the atom to

drop from its excited to its ground state.

• stimulated absorption; when a hydrogen atom absorbs a photon at a wavelength of

21cm and this causes it to jump from its ground to its excited state.

The photons that are incident on the neutral hydrogen during the Dark Ages are the

free-streaming CMB photons, which act as a backlight to the distribution of the hydrogen

during this epoch. The distribution of the neutral hydrogen is in turn a tracer of the

matter distribution, and hence a tracer of the underlying dark matter distribution. Since

the densities remain linear during this epoch (redshift ∼ 50), this distribution can therefore

be related to the primordial density distribution via a linear transfer function. Thus,

a connection is made between the 21cm signal during the Dark Ages and inflationary

dynamics and relics, via the primordial power spectrum.

The distribution of neutral hydrogen is mapped out by measuring the ratio of neutral

hydrogen in its ground versus its excited state. This is defined by

n1

n0
= 3e−

T∗
Ts (1.56)

where n1 and n0 are the number densities of neutral hydrogen in their excited and ground

states respectively, T∗ = 0.068K is the temperature corresponding to the energy difference

between the ground and excited states, and Ts is the spin temperature. See e.g. [115] for

a review of 21cm cosmology.

The number densities of each state are balanced according to

n0(nHκ01 +B01uν) = n1(A10 +B10uν + nHκ10), (1.57)
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where nH = n0 + n1 is the total number density of neutral hydrogen, A10 is the Einstein

coefficient which quantifies the probability of spontaneous emission, B10 is the probability

of stimulated emission and B01 is the probability of stimulated absorption. The CMB

photons are described by the radiation field uν = 2kbTγ/λ
2 which is the blackbody intens-

ity in the Rayleigh-Jeans tail of the CMB with kb the Boltzmann constant and λ = 21 cm

the wavelength of the radiation [116], and κ01, κ10 are the collisional rate coefficients, which

describe the exchange rates between states due to hydrogen-hydrogen collisions. Note that

at lower redshifts, z < 50, hydrogen-electron collisions also become important [117].

Provided that the temperature of the neutral hydrogen, Tgas, and the CMB, TCMB,

are much greater than T∗ such that e−
T∗
Ts ≈ 1 − T∗/Ts, equation (1.57) can be rewritten

in terms of these three temperatures:

Ts = TCMB + (Tgas − TCMB)
nHκ10

nHκ10 +A10
Tgas
T∗

. (1.58)

Putting in the time-dependence of TCMB ∝ (1 + z) and Tgas ∝ (1 + z)2, we can see

that the spin temperature and the gas temperature drop below the CMB temperature

after redshift z ∼ 150, when there are no longer enough free electrons to scatter off

the gas and CMB photons, which was previously keeping them in equilibrium. After

around z ∼ 30, the Hubble expansion becomes dominant over collisions and hence the

spin temperature returns to align with the CMB temperature. This means that there is a

window z ∼ 30− 150 where it is possible for a significant number of CMB photons to be

absorbed by the neutral hydrogen, and hence a 21cm absorption signal should be present.

The spin temperature is not directly observable, but the contrast between it and the

CMB temperature is, which is what we define as the brightness temperature:

T21 = τ
(Ts − TCMB)

1 + z
(1.59)

with τ the optical depth which quantifies how many photons will get scattered by the local

environment and is given by

τ =
3cλ2(z)hA10nH
32πkbTsH(z)

(1.60)

with λ the wavelength of the 21cm radiation. The redshift dependence of T21 is shown in

figure 1.5 for four different models. The absorption signal from the Dark Ages as discussed

above is shown by the trough at high redshift. Then, as the first stars start to form, Lyman-

alpha photons are produced which cause the spin temperature to once again follow the

gas temperature and hence there is another trough in the brightness temperature which

represents the epoch of Cosmic Dawn. As the first sources start to heat up the gas, the
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Figure 1.5: The 21cm brightness temperature as a function of redshift/frequency. The

dashed black line is a standard model that fits with ΛCDM predictions, the high redshift

trough being that of the Dark Ages absorption signal and the low redshift trough being

that of the Cosmic Dawn. The three coloured lines represent different models that would

fit the low redshift EDGES prediction, but could be distinguished by differing Dark Ages

signals at high redshift, detectable from the Moon. Figure credit: [5].

spin temperature follows the gas temperature until it is much larger than TCMB and there

is a 21cm emission signal. As reionization subsequently sets in, the neutral hydrogen is

ionized and the 21cm signal vanishes. The time evolution of the 21cm signal across these

incredibly physics-rich epochs in cosmic history allows for tomographic analysis in order

to learn about either the matter distribution during the Dark Ages, or about the first

sources and epoch of reionization (EoR). Given that the 21cm radiation will simply be

redshifted as (1 + z) as it travels towards us, it is possible to identify the redshift slice

from which the signal originated. Adding up the contributions from 21cm photons with

wavelength λ21(1 + z) from all directions will probe the ‘global’ signal as plotted in figure

1.5. Alternatively, interferometry can be used to also measure the scale-dependence of the

signal and build a 21cm power spectrum for each redshift slice. This is the observable

which will map out the distribution of neutral hydrogen as a function of scale and lead to

constraints on the primordial power spectrum.

The spatial fluctuations in the 21cm signal δ21 are a result of fluctuations in the baryons

δb, the gas temperature δT , the free electron fraction δx (or the neutral hydrogen fraction),

the Lyman-alpha photons δα, as well as the peculiar velocities of the hydrogen clouds δv.
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The isotropic 3d 21cm power spectrum at a particular redshift is then defined by

〈δ21(k1)δ21(k2)〉 = (2π)3δD(k1 − k2)P21(k1). (1.61)

This is the quantity that we will be interested in for tracing the primordial power spectrum

in chapter 4.

1.6.1 Observations

21cm photons emitted during the Dark Ages will reach ground-based detectors in the

radio band, at a frequency of f21 = c/(0.21(1 + z)) Hz. Various radio telescopes have

been constructed in order to detect the 21cm signal, for example EDGES and its reported

detection of the global signal from Cosmic Dawn [118]. In order to measure the spatial

fluctuations however, radio interferometery is required so as to measure the signal at a

given redshift as a function of scale.

In a radio array, each pair of antennae forms a baseline. The interference pattern of the

signal that each pair of antennae detects results in a measurement of the intensity of the

signal for one Fourier mode, corresponding to one baseline, after careful cross-correlation.

The Precision Array for Probing the Epoch of Reionization (PAPER) [119] the Murch-

ison Widefield Array (MWA) [120] and the Low Frequency Array (LOFAR) are radio ar-

rays that have started to place constraints on the 21cm power spectrum at redshifts up to

z ∼ 12 [121]. The Hydrogen Epoch of Reionization Array (HERA) is likely to be the first

radio interferometer that may be able to make a detection of the 21cm power spectrum

during the Epoch of Reionization. It is an array of 350 14m dishes, that will probe down

to scales of ∼ 0.1 Mpc−1. HERA is thought of as a precursor to the Square Kilometer

Array (SKA), which will aim to probe slightly smaller scales and similar redshifts but with

greater sensitivity due to its larger collecting area.

Furthermore, in order to reach the higher redshifts for the Dark Ages cosmological

signal, a space-based radio telescope will be required. This is because the 21cm signal

from the Dark Ages will have been redshifted to frequencies below 50 MHz, and the Earth’s

ionosphere will reflect radio waves of frequencies lower than this back into space, meaning

that the signal can never reach a ground-based detector. Various proposals for space-based

interferometers have been made [122, 123], including a space-based fleet of satellites [124]

or a lunar array on the far-side of the Moon [125]. The Netherlands-China Low-Frequency

Explorer (NCLE) has already landed a probe on the lunar far-side with a prototype radio

antenna on board that will be sensitive to 80 kHz − 80 MHz signals, and will provide
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an excellent proof of concept that these types of observations are possible, and that the

investment in such large-scale missions is worthwhile.

In addition, due to the fact that the smallest scale that an interferometer can be

sensitive to is set by the largest separation between pairs of antennae Rmax,

kmax ∝
2πRmax

λ(z)
Mpc−1, (1.62)

with λ(z) the redshifted wavelength of the 21cm radiation, it will be possible to target much

smaller scales with space-based interferometers, as they can have much longer baselines

due to the lack of restrictions on their footprint which limit ground-based detectors.

However, there are many observational challenges that must be overcome in order for

these detections to be realised. Foreground contamination is the primary obstacle for

21cm observations. The temperature of astrophysical sources including both unresolved

and resolved extragalactic point sources, as well as galactic synchrotron radiation is of

the order 100 K, whereas the 21cm brightness temperature signal is of the order 104 times

smaller, at the mK level. Removing these foregrounds accurately and being sure that the

remainder of the signal is purely the 21cm contribution is a very difficult task, to which

many groups have concentrated a lot of effort [126–128].

It has been noted that the anisotropic power spectrum may enable a circumvention

of foreground cleaning, as most of the foregrounds appear in a ‘wedge’ shape in the line-

of-sight vs perpendicular (k‖ vs k⊥) plane [127]. This means that the foregrounds can

be more simply avoided as opposed to subtracted from the anisotropic power spectrum

signal, given in terms k‖ and k⊥. Whilst the signal-to-noise suffers dramatically at the

loss of so many independent modes, the constraints and/or detection may be more robust

[129].

Instrumental difficulties are hoped to be separate from the issue of foreground removal,

since it should be possible to remove instrumental noise by cross-correlating detections at

different times, whilst the foregrounds are largely time-independent [130].

If PBHs exist, there are observational signatures in the 21cm power spectrum that

should be detectable with future experiments. For example, the accretion of matter onto

PBHs would effect the spin temperature, and the Poisson distribution of the PBHs would

also be present in the 21cm signal. In chapter 4, we will investigate the inclusion of the

primordial fluctuations required to form the PBHs in the first place in the 21cm signal,

and note that due to the small scales at which these signatures show up, a space-based

radio telescope would be required for their detection.
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Chapter 2

Extreme Scenarios: tightest

possible constraint on the power

spectrum due to primordial black

holes

Philippa S. Cole1 and Christian T. Byrnes1

1 Department of Physics and Astronomy, University of Sussex, Brighton BN1 9QH,

United Kingdom

2.1 Introduction

Primordial black holes (PBHs) can form from the collapse of large density fluctuations in

the early Universe. If an overdensity of order unity in a given region reenters the Hubble

sphere1 after inflation, then the region collapses to form a PBH with mass roughly equal

to the mass within the Hubble sphere.

The abundance of PBHs in our observable Universe today can constrain the primordial

power spectrum, and hence models of inflation, on scales much smaller than are access-

ible via observations of the CMB and LSS (which provide the tightest constraints on the

primordial power spectrum for scales between k ∼ 10−3 − 1 Mpc−1). Constraints on the

abundance of PBHs are very tight at the time of their formation, due to their gravitational

effects and the consequences of their evaporation if they were sufficiently light [10]. See

1‘Hubble sphere’ is used interchangeably with ‘horizon’ throughout.
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[131] for some of the most up to date constraints on the abundance of PBHs2. Despite

constraints on PBHs being tight, the fact that PBH abundance and the power spectrum

are related logarithmically during radiation domination means that even massively tight-

ening the PBH abundance constraints does not translate into a great improvement on the

constraints on the primordial power spectrum. Here we derive the tightest constraints

possible on the primordial power spectrum given the most extreme constraints on the

abundance of PBHs, i.e. that there are none.

Apart from providing the tightest possible future constraints on the primordial power

spectrum3, this extreme assumption is motivated by an argument that the decay of a PBH

would destabilise the Higgs vacuum; hence PBHs of masses small enough that they would

have decayed by today can’t ever have formed [6, 7, 132]. If they had they would have

seeded the decay of the metastable Higgs vacuum, the Universe would have tunnelled to

the true vacuum, and hence been destroyed.

Since the logarithmic relation between PBH abundance and the power spectrum is the

main cause of the suppression of the constraint, the most effective way of improving the

constraint is by looking at scenarios where the power spectrum amplitude is more sensitive

to the PBH abundance. This is the case during an early matter-dominated phase (see [133]

and [134] for motivations) where the relation between abundance and power spectrum is

instead given by a power law [135, 136]. This means that for an observed abundance of

a particular PBH mass, the constraint on the primordial power spectrum is tightened by

many orders of magnitude, suggesting that the best constraint possible will come from

such a scenario where the equation of state is at its minimum non-negative value, ω = 0.

Models with −1
3 < ω < 0 are rarely considered, and ω < −1/3 corresponds to inflation.

In terms of the worst constraints, according to [137], the value of ω for which it is most

difficult to produce PBHs is ω = 1/3 due to the value of critical overdensity being at

its maximum. The threshold density then decreases as ω approaches 1. However, this is

different to the results of, for example [10] and [138] whose values of critical overdensity

increase with ω (for 0 < ω < 0.6 in the latter case - other values of ω were not simulated),

suggesting that the larger ω is, the more difficult it is to produce PBHs.

Generally, calculations done in the radiation-dominated scenario assume spherical sym-

metry of the collapsing region (which makes collapse as likely as possible) but those done

in the matter-dominated scenario do not [139]. Full numerical simulations of the collapse

of density fluctuations to form PBHs are required to gain a complete understanding of the

2Presented in the context of whether PBHs can make up all of dark matter.
3Assuming radiation domination and Gaussian initial perturbations.
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process. The critical overdensity required for a region to collapse and form a PBH also

depends on the density profile. Additionally, phenonema such as non-Gaussianity could

have a significant influence on the abundance of PBHs since they are formed from rare,

large overdensities. Such large fluctuations are susceptible to changes in the tail of the

fluctuation distribution caused by the amount of non-Gaussianity present [140]. We will

not show explicitly the effects of non-Gaussianity on our results but its potential effect

should be kept in mind. Furthermore for simplicity, we will assume that all PBHs form

with the same mass for a given time. In reality, PBH constraints depend on the PBH mass

function (see [94] for a recent update) which would affect the scale at which primordial

power spectrum constraints are correlated to.

The paper is laid out as follows: in section 2.2 we will discuss the argument in [6, 7]

for zero PBHs due to the Higgs instability and calculate constraints on the primordial

power spectrum in this case. In section 2.3 we will look at motivations for a matter-

dominated phase and find constraints on the primordial power spectrum for different

durations of matter domination prior to BBN. Finally, in section 2.4 we will combine

these two frameworks and see the result of their co-existence.

2.2 No PBH formation during radiation domination

It is believed that the electroweak vacuum is metastable, depending on the mass of the top

quark, with a lifetime longer than the present age of the Universe [141, 142]. The notion

that impurities initiate phase transitions gives rise to the idea that natural inhomogeneities

such as PBHs may be capable of seeding rapid vacuum decay from the metastable vacuum

to the true vacuum. If this had happened before today, the process would have had

catastrophic consequences for the Universe. This is proposed and explored in [6, 7, 143,

144].

The conclusion drawn from this argument is that since the Universe has not been

destroyed, no PBHs with masses small enough such that they would have already decayed

can ever have formed. Assuming that the PBH mass, MPBH, is of the same order as the

horizon mass, the relationship between PBH mass and horizon entry time, ti, is given by

MPBH = γ1015

(
ti

10−23s

)
g, (2.1)

where γ is the ratio between horizon mass and PBH mass [10]. The mass of a PBH which

would just be decaying today is around 1015g [10] so from equation (2.1) we can say that

PBHs which could have formed at or before ∼ 10−23 seconds would have catalysed the
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rapid vacuum decay, and therefore never existed. We will use this bound on abundance of

PBHs being zero to find the tightest possible constraint on the primordial power spectrum

originating from the non-detection of PBHs.

2.2.1 Constraint relations

The abundance of PBHs is usually described by the PBH mass fraction:

β(MPBH) =
ρPBH(MPBH)

ρtot
, (2.2)

which denotes what fraction of the total energy density of the Universe is contained in

regions overdense enough to generate PBHs, measured at the time of their formation,

where ρPBH is the energy density contained within PBHs, and ρtot is the total energy

density of the Universe. During radiation domination, PBHs form shortly after horizon

entry. As will be seen later, during matter domination PBH formation occurs a significant

time after horizon entry.

Assuming radiation domination, in order for a region of space-time to collapse and form

a PBH, the smoothed density contrast at horizon crossing, δ(R), needs to exceed some

critical level of over-density, δc, which is of order 1. If the initial density perturbations

have a Gaussian distribution then the pdf of the smoothed density contrast is given by:

P (δ(R)) =
1√

2πσ(R)
exp

(
−δ2(R)

2σ2(R)

)
(2.3)

where σ(R) is the mass variance:

σ2(R) =

∫ ∞
0

W̃ 2(kR)Pδ(k)
dk

k
. (2.4)

Pδ(k) is the primordial power spectrum of δ at horizon entry, describing how the overdens-

ities and underdensities are distributed according to scale, δ = (ρ− ρ̄)/ρ̄ is the comoving

density contrast and W̃ is a smoothing function [145].

The PBH mass fraction in equation (2.2) is related to the probability density function

as [9]

β(MPBH) =
2√

2πσ(R)

∫ ∞
δc

exp

(
−δ2(R)

2σ2(R)

)
d(δ(R))

= erfc

(
δc√

2σ(R)

)
, (2.5)

where Erfc is the complementary error function and we have included the Press Schechter

factor of 2. By inverting this expression, it is possible to find constraints on the mass
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variance (and hence power spectrum via σ2 ∼ P) given constraints on β. We will therefore

be using this expression:

Pδ =

(
δc√

2erfc−1(β)

)2

(2.6)

to plot our constraints on the power spectrum4.

In order to construct a constraint on β that represents there being zero PBHs, or more

precisely less than one PBH per current horizon volume, for a certain range of masses, we

can model the observable universe as a cube of volume L3, made up of Nl smaller cubes

each with volume l3. These small cubes represent the size of the patches that may have

collapsed to form black holes in the early Universe. In our observable Universe today, if

there is just one black hole that formed in the early Universe, then a patch of size l will

have been overdense enough to collapse at the time that the patch reentered the horizon.

If less than one out of all of these patches (i.e. none of them) contain a black hole then

β <
1

Nl
=

(
l

L

)3

. (2.7)

Our constraint on the primordial power spectum therefore becomes:

Pδ <

(
δc√

2erfc−1( 1
Nl

)

)2

. (2.8)

2.2.2 Relevant scales for Higgs stability argument

As we saw from equation (2.1), a PBH with mass 1015g formed at 10−23s is the largest

and latest PBH that could have seeded rapid vacuum decay. We want to work out the

physical size of the overdense region that would have needed to collapse to form a black

hole of such mass, how large that region has expanded to today, and how many patches

of that size there are in the Universe today. This will provide the threshold scale for the

range of PBH masses capable of seeding rapid vacuum decay.

Assuming radiation domination, the physical size (length), lphys, of the horizon at

horizon entry time is given by

lphys =

∫ ti

0

ai
a
dt =

∫ ti

0

(
ti
t

) 1
2

dt = 2ti (2.9)

setting the speed of light to c = 1. The scale that this has grown to today, i.e. the comoving

scale, can be found by multiplying the physical scale by the ratio between the scale factor

today (defined as a0 = 1) and the scale factor at the time that the black hole formed, i.e.

a0

ai
=
aeq

ai

a0

aeq
=

(
teq

ti

) 1
2
(
t0
teq

) 2
3

, (2.10)

4In this paper we always plot the constraints assuming a monochromatic mass spectrum of PBHs.
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where aeq is the scale factor at matter-radiation equality5. We therefore have that the size

of the horizon at a given horizon entry time has grown to a size today, li|t0 , and comoving

scale, ki, given by:

li|t0 = 2tic

(
teq

ti

) 1
2
(
t0
teq

) 2
3

=
2π

ki
(2.11)

Inserting values for radiation-matter equality and the age of the Universe (teq ' 1012 s,

t0 ' 4 × 1017 s), and using ti ∼ 10−23s, we find that the physical size converted to Mpc

of the region today is li|t0 ∼ 10−15 Mpc ∼ 3 × 107 m, and the corresponding scale is

ki ∼ 1016 Mpc−1. This represents the largest horizon scale of a PBH which would have

decayed by today.

In order to determine the smallest scale that we can probe with PBHs in this scenario,

we need to find the scale that left the horizon just before inflation ended and reentered

immediately afterwards. If H can be approximated as being constant during inflation,

which is typically the case for small-field inflation, then the number of e-folds that occur

between the time that today’s horizon scale left the Hubble sphere during inflation and

the end of inflation, ∆N is

∆N = ln

(
kend

k0

)
⇒ kend = k0e

∆N . (2.12)

Taking a value of ∆N within the expected range [146], for example 60, and k0 = a0H0 '

2.3×10−4 Mpc−1 with H0 = 68 km s−1 Mpc−1 [147], the smallest scale to leave the horizon

just before the end of inflation is kend ' 2.6× 1022 Mpc−1.

If H cannot be approximated as being constant during inflation, which is the case

for large-field models of inflation, then the above expression becomes less accurate. For

example in quadratic inflation, with V = m2φ2/2, the smallest scale is instead given by

kend =

√
2k0√

2∆N + 1
e∆N . (2.13)

For ∆N = 60, this decreases kend by about a factor of 10.

2.2.3 Results

We can now plot the consequences for the primordial power spectrum of no PBHs forming

on all scales and compare this to the current constraints. For scales smaller than k ∼

1016 Mpc−1, indicated by everything to the right of the vertical red line in figure 2.1, the

5We do not account for any late time dark energy domination in the evolution of scales nor β throughout

our work. The duration of this era is too short to have a dominant effect over some of the other uncertainties

in the calculations.
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constraint plotted is a consequence of the claim in [6, 7]. For wavenumbers larger than

k ∼ 1016 Mpc−1, we do not have any evidence to suggest that no PBHs can have formed,

but the plot demonstrates the effect on the constraints of the power spectrum if this were

to be the case. It therefore also provides the tightest possible future constraint from PBHs,

assuming there are none.

Using (2.7) and k0 = 2π/L, the constraint on β as a function of scale is

β < 1.2× 10−11(kMpc)−3. (2.14)

Then with equation (2.6) we calculate the constraint on the power spectrum Pδ(k) against

scale k, measured in Mpc−1. Converting from the comoving density contrast δ to the

comoving curvature perturbation R with

δ =
2(1 + ω)

5 + 3ω

(
k

aH

)2

R (2.15)

evaluated at horizon crossing so k = aH [148] implies

PR =

(
5 + 3ω

2(1 + ω)

)2

Pδ. (2.16)

During radiation domination (ω = 1/3), PR = (81/16)Pδ. The resulting plot of PR against

k is shown in figure 2.1. Plotting PR instead of Pδ allows a comparison to be made with

Planck’s observed value of the amplitude of the primordial power spectrum on large scales,

As = 2× 10−9 [147]. Figure 2.1 shows that despite the constraints on β being as extreme

as they can be, the constraint on the primordial power spectrum only improves by around

half an order of magnitude in comparison to the current constraints given in [10]. The

value of δc chosen is important since the constraint varies with the square of this value,

and this has much more of an effect than any variation in β. However, the effect of δc is the

same for both the current constraints and our new constraints, so the improvement from

the current constraints to the constraints based on there being no PBHs is the same for

whichever value of δc is chosen. For our choice of δc = 0.42 [149] (see also [150, 151] which

derive a similar value of δc), the tightest constraint PR ' 2.5 × 10−3 is reached at the

scale k ' 2.6×1022 Mpc−1, which is the smallest scale to reenter the horizon post-inflation

(found in section 2.2.2 with ∆N = 60) and the largest value of k plotted in figure 2.1.

This shows that we cannot do any better than PR ' 2.5 × 10−3 from only knowing the

constraint on β and taking the smallest scale to reenter the horizon post-inflation to be the

value found in section 2.2.2 with ∆N = 60. These calculations assume spherical collapse,

and as pointed out by [152], constraints on the power spectrum from non-detection of

PBHs are very uncertain due to effects such as non-spherical collapse and critical collapse.
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Current constraints, δc=0.42

Current constraints, δc=1

No PBHs, δc=1

No PBHs, δc=0.42

1000 107 1011 1015 1019
kMpc-1

10-8

10-6

10-4

10-2
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Figure 2.1: Power spectrum constraints from PBH formation in radiation domination.

The dashed lines represent the current constraints with two different values of critical

level of overdensity. The solid lines represent the constraints if no PBHs form. The red

vertical line represents the scale of a PBH that would just have decayed by today, so

everything to the right of this line is the constraint due to the argument in [6, 7]. The

horizontal red line is drawn at PR(k) = 2× 10−9. The smallest value of k plotted

corresponds to MPBH = 1040g, whilst the largest value of k plotted corresponds to the

smallest scale to reenter the horizon post-inflation as found in section 2.2.2 with

∆N = 60. We used γ = 0.2 to plot these results [8, 9].
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Finally, we note that because PBHs form deep into the tail of the probability distribution,

the effect of non-Gaussianity can have a much larger effect on the constraints, potentially

changing the constraints by two orders of magnitude [145, 153–157].

2.3 Early matter-dominated phase

2.3.1 Motivations

In order to achieve tighter constraints on the primordial power spectrum using PBH

abundance constraints, we require a scenario where the power spectrum depends on β

more sensitively than logarithmically. This is the case during an early matter-dominated

phase which can be caused by a scalar field which dominates the background energy dens-

ity (e.g. the inflaton or curvaton) oscillating in a quadratic potential [133, 134]. PBH

formation in an early matter-dominated phase has been studied in various previous works

[135, 136, 158–163], where it was shown that the relationship is governed by a power law

instead of a logarithmic function. The exponentially enhanced probability of formation is

due to the fact that the Jeans pressure which would normally halt PBHs from forming

on sub-Hubble scales during radiation domination vanishes in matter domination, and so

PBHs are able to form more easily.

2.3.2 PBH formation likelihood and power spectrum constraints

Based on the results of [136], the expression relating PBH abundance and the mass variance

σ (and hence the power spectrum via Pδ ∼ σ2) is

β0 ' 0.056σ5, (2.17)

where β0 is the PBH abundance fraction defined at the time of formation. This expression

does not assume spherical symmetry in the initial density profile. Using data from the

plot of ρPBH/ρDM against MPBH from [163] (which is in turn collated from constraints due

to evaporation [10], femto-lensing of gamma-ray bursts [164], neutron star capture6 [165],

white dwarf explosions [166], microlensing [79, 131, 167], Planck results [87], survival of

stars in Segue I [168] and Eridanus II [169], and distribution of wide binaries [84]), it

is possible to scale the observed constraints on PBH abundance such that they include

a period of evolution in the matter-dominated phase. Taking constraints on ρPBH/ρDM

6Note that since this paper was published, both the neutron star and white dwarf constraints have been

dismissed.
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Figure 2.2: Sketch of how ΩPBH = ρPBH/ρtot scales with time depending on the periods

of matter and radiation-domination, where β is equal to ΩPBH at horizon entry. The

solid black line shows how ΩPBH evolves given an early matter-dominated phase that

lasts until t1, followed by a radiation-dominated phase where ΩPBH grows as a and then

the later matter-dominated phase. The red dashed line shows where β from [10] is

evaluated with no early matter-dominated phase.

from [163], we can relate them to constraints on β(M) via

β(M) =
ρPBH

ρDM
ΩDM

(
Mi

M�

) 1
2
(
M�
Meq

) 1
2

(2.18)

where ΩDM ' 0.26 [147] and the horizon mass at matter-radiation equality will be taken

as 7× 1050g [148].

The values of β found via equation (2.18) are calculated under the assumption that

PBHs were forming in a radiation dominated phase. During radiation domination ρPBH/ρtot

grows like the scale factor a, whereas during matter domination ρPBH/ρtot stays constant.

In order to account for the period of time between formation and the end of the early

matter dominated phase where ρPBH/ρtot will remain constant instead of growing as a

we need to scale the observed value for β by a. Figure 2.2 gives a graphical depiction of

this difference in scaling. The relation between β(M) from equation (2.18) and β0 from

equation (2.17) is then

β0 =
a1

ai
β(M) =

(
t1
ti

) 2
3

β(M), (2.19)

where the subscript ‘1’ refers to the end of the early matter-dominated phase (and hence

the beginning of the radiation dominated phase), and the subscript ‘i’ refers to the time

that the overdensity enters the Hubble sphere. In order to relate the PBH masses to

different scales, we will take γ = 1 to remain agnostic while the precise value is uncertain
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for matter domination and assume that the mass of the resultant black hole is of the order

of the mass of the horizon as the overdensity enters:

MPBH ∼Mhor =
c3

2GH(ti)
=

3c3ti
4G

, (2.20)

where we have used H(ti) = 2/(3ti) during matter domination. Improved simulations of

the collapse of PBHs in matter domination will provide a better estimate for the correct

value of γ. The physical radius of the horizon at the time of horizon crossing is given by

the gravitational radius,

rphys =
2GMhor

c2
=

2GMPBH

c2
, (2.21)

which has expanded to a radius today given by

ri|t0 = rphys

(
a0

ai

)
= rphys

(
t1
ti

) 2
3
(
teq

t1

) 1
2
(
t0
teq

) 2
3

, (2.22)

where t1 is the time that the early matter-dominated phase ends. The scale today of PBHs

with a particular mass at formation is:

ki(MPBH) =
2π

ri|t0
=

2πc2

2GMPBH

(
t1
ti

)− 2
3
(
teq

t1

)− 1
2
(
t0
teq

)− 2
3

. (2.23)

Comparing this to the scale we found for a PBH that would have just decayed by today

with mass 1015g, we find that

ki(1015g) ' (1 s)
1
6

t
1
6
1

× 5× 1012 Mpc−1. (2.24)

Taking the longest possible duration for the matter phase so that it lasts right up until

BBN at t1 = 1 second, we find ki(1015g) ' 5 × 1012 Mpc−1 which is around 4 orders of

magnitude larger than if there was no early matter era. Choosing t1 = 10−23 seconds

instead so that the evolution of the PBH is solely within the radiation dominated phase,

we see that t1 = ti and ki ∼ 1016 Mpc−1 which matches the value found in section 2.2.

This consistency check assumes that the matter phase ends and transitions to a radiation

phase instantaneously, with the PBH forming as this happens - we will discuss the validity

of this assumption as well as the collapse time of the PBHs shortly.

We will plot power spectrum constraint against lengthscale using the inverse of equa-

tion (2.17):

Pδ =

(
β0

0.056

) 2
5

, (2.25)

and (2.23). Both of these quantities depend on the PBH mass so we take data from the

plot in [163] at PBH masses from 1010g to 1040g. Each mass has a corresponding value
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for β which we find from equation (2.18), and then scale to β0 via equation (2.19). This

is the value that is substituted into equation (2.25) to give values of the power spectrum

corresponding to the scale for each PBH mass from equation (2.23).

Since the power spectrum and the scale both depend on when the early matter dom-

inated era ends, each chosen value of t1 will result in a different constraint on the power

spectrum. Additionally, each value of t1 will determine the largest and smallest scales with

observable consequences for PBH masses 1010 − 1040g that can enter the horizon during

the matter-dominated phase. We always assume that the early matter era begins before

the horizon mass has grown to 1010g. There will need to be enough time between horizon

entry and turnaround time for initial overdensities δi to grow to order 1 (or the chosen

δc) if they are to collapse to form PBHs, so the constraints will weaken on larger scales

that enter the horizon close to the end of the matter dominated phase as there won’t be

enough time for small initial density perturbations to grow before the matter-dominated

phase ends.

Looking first at the largest and smallest scales that can enter the horizon before the

end of the matter-dominated phase, we see that the smallest mass we use from [163] is

1010 g, which corresponds to a horizon entry time of ti ' 3 × 10−29 seconds. This means

that the earliest time t1 to the nearest power of 10 that matter domination can end and

there still have been time for PBHs within the mass ranges we have data for to form is

t1 = 10−28 seconds.

The smallest scale that enters the horizon post-inflation will be given by ki(MPBH)

evaluated at MPBH = 1010 g for each value of t1. The largest scale to enter the horizon

before the phase transition from matter domination to radiation domination is determined

by the value of ki(M1) with M1 given by

M1 =
3c3t1
4G

. (2.26)

If the overdensities were to collapse instantaneously after horizon entry then ki(1010 g)

and ki(M1) would determine the range of scales to be plotted for each value of t1. However,

overdensities do not collapse instantaneously to form PBHs after crossing the horizon.

Instead, there needs to be enough time between horizon crossing and the end of the

matter dominated phase for the overdensity to grow to order 1 and begin to collapse at

the time of the ‘turnaround’ [162]. We impose for simplicity the requirement that the

overdensity must reach turnaround before the end of the early matter dominated phase if

it is to collapse, so the scale factor will need to grow by a factor of δ−1
i between ti and t1
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for the density fluctuation entering the horizon at ti to have had time to grow to order 1:

δ(Mi)|t=t1 ' 1 = δ−1
i δi =

(
a1

ai

)
δi. (2.27)

During matter domination k = aH ∝ a−1/2 so the ratio between the scale at horizon entry,

ki, and the scale at the end of matter domination, k1, goes as

ki
k1

=

(
a1

ai

) 1
2

. (2.28)

Therefore, the scale of the horizon needs to grow by at least δ
− 1

2
i if that density fluctuation

is to go on to successfully collapse. Only the most extreme fluctuations need to be given

time to collapse in order to achieve the observed constraint on β for each PBH mass. How

far into the tail of the distribution we must go for each β corresponding to a PBH mass

entering the horizon at ti is given by solving for xtail

β = Erfc

(
xtail√

2

)
. (2.29)

For example, if xtail = 5, then only 5-sigma fluctuations (i.e. those with δi > 5×σ) need to

collapse in order to achieve the observed constraint on β (appropriately scaled via equation

(2.19)). We therefore require

σ >

(
ki
k1

)−2

xtail
. (2.30)

If the value of σ from equation (2.25) satisfies equation (2.30), then there is enough time

for the overdensity corresponding to that σ to grow to order 1 and collapse before the end

of matter domination. If a value of σ does not satisfy equation (2.30), then the constraint

on the power spectrum must weaken to the minimum value of σ that allows enough time

for the growth of the density fluctuation to order 1 from the time of horizon crossing to

the end of matter domination. This minimum value for the power spectrum of δ measured

at k = ki is

σ2
min =


(
ki
k1

)−2

xtail


2

. (2.31)

For each scale, we will choose the maximum of σ and σmin. The results are plotted in

figure 2.3, where we have again converted from Pδ to PR via equation (2.16) with ω = 0,

hence PR = (25/4)Pδ.

For the shortest periods of matter domination, t1 ∼ 10−28 − 10−25 s, the value of σ

found from equation (2.25) is too small for the corresponding overdensity to have time to
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Figure 2.3: Power spectrum constraints from PBH formation in matter domination for

values of t1 from 10−28 seconds, represented by the single rightmost point, to 10−5 s,

represented by the pale blue line that reaches the largest scales. The horizontal red line

is drawn at PR(k) = 2× 10−9. The dashed black line shows the constraints from PBHs

which formed during radiation domination.
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grow to order 1 before radiation domination on any scale that we have an observed value of

β for, and so the constraints are weakened. The rightmost point of each line represents the

smallest PBH mass that we constrain with data from [163], 1010g. For t1 > 10−25 s, there

begins to be sufficient time for the initial density fluctuation corresponding to σ on some

scales to grow to order unity before the end of matter domination. The tightest constraint

is achieved for t1 ∼ 10−19 s at a scale of k ' 5 × 1016 Mpc−1, surpassing PR = 2 × 10−9,

Planck’s measurement of the amplitude of the primordial power spectrum. Constraints on

the power spectrum improve for all values of t1 between 10−28 s and 10−6 s in comparison

to the constraints from PBH formation in radiation domination, with constraints for t1 ∼

10−5 s only just overlapping with the constraint from radiation domination on some scales.

The constraints due to values of σmin join up with those from radiation domination as

expected, since PBHs forming at the end of the early matter era will predominantly feel

the effects of radiation domination if the transition occurs very soon after their formation.

Note that uncertainties are introduced in the comparison between matter domination

constraints and radiation domination constraints because those from radiation domination

assume spherical symmetry, whereas those from matter domination do not. Additionally,

for radiation domination we take γ = 0.2 and δc = 0.42, but for matter domination we

approximate γ = 1. This explains why the radiation constraint is slightly stronger than

the matter constraint on the left-hand end of each line.

We choose the latest termination of matter domination to be t1 ∼ 10−5 s for two

reasons. The expression in equation (2.25) is only valid for σ < 0.05 [136], so we cannot

trust the relation between σ and β for Pδ & 10−3. Secondly, the QCD phase transition

occurs around 10−5 s at an energy scale which can be probed in the laboratory, and it is

generally expected that the hot big bang will be complete by this time, with the Universe

dominated by radiation (although counter examples exist, see e.g. [170]).

We assume an instantaneous phase transition from matter domination to radiation

domination, but of course the true dynamics of this transition would affect the constraints.

A smooth weakening of the constraints from matter domination to match those from

radiation domination is most likely. In addition, when cutting our plots at the end of

matter domination, we require that the overdensities must have reached turnaround by

the time t1. We expect that some overdensities will have grown considerably but not quite

reached order 1, however it is possible that they would still collapse to form PBHs at some

point during or after the transition from matter to radiation domination - these cases have

been disregarded in our constraints. Simulating the growth and subsequent collapse of the
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overdensity during the phase transition, as well as the dynamics of the phase transition

itself, would be necessary to gain a full understanding of the effect of these cases on the

constraints.

2.3.3 Inhomogeneous effects

The relationship (2.17) was derived by considering departures from spherical symmetry

but neglecting potential effects of inhomogeneities in the collapsing region. If these effects

were to be included, they would account for a scenario where a caustic could form in the

centre of the region, and the increase in pressure could prevent a PBH from forming. The

probability of this happening adds an additional factor of σ
3
2 in the relationship between β

and σ, calculated using the Lemaitre-Tolman-Bondi dust solution [135] (see also the more

recent review [171]). With the most conservative reasoning, this effect is considered to be

independent of the probability that the region is spherical enough7 to collapse into a PBH

rather than a pancake or cigar shape, which accounts for the factor of σ5 that we have

been using [135, 172]. Multiplying these gives the minimum probability of PBH formation

to be

β0 ' 2× 10−2σ
13
2 . (2.32)

Using this relationship originally from [135, 172] instead of (2.17), we can plot the power

spectrum vs. scale again, shown in figure 2.4. The strongest constraint on β now produces

a constraint on the power spectrum of order PR ' 10−7, two orders of magnitude weaker

than if the inhomogeneous effects are neglected. Additionally, values of σ become larger

than 0.05 which were considered not valid for the equation (2.17) in [136], however [135]

does not cite this as a limiting factor of the equation that accounts for inhomogeneous

effects given in equation (2.32). We caution against concluding that the constraints in a

matter dominated era may be weaker than those in radiation domination (which would be

very surprising since pressure can only act against gravitational collapse); the radiation

era constraints are derived assuming spherical symmetry which maximises the probability

of PBHs forming.

Arguments for neglecting the effect of inhomogeneities include that they are very de-

pendent on the matter model, and since we have not specified what has caused the early

matter dominated phase, these effects are quite uncertain. Additionally, it was argued

in [136] that pressure arising in the central region could just slow down the collapse as

opposed to halting it completely.

7Note that the more overdense a region is, the more spherical it is according to [172].
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Figure 2.4: Inhomogeneous effects on PBH formation during matter domination

translated to the power spectrum. Constraints are weakened in comparison to figure 2.3

for all values of t1 from 10−28 seconds, represented by the single rightmost point, to

10−5 s, represented by the pale blue line that reaches the largest scales. The horizontal

red line is drawn at PR(k) = 2× 10−9. The dashed black line shows the constraints from

PBHs formed in radiation domination.
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2.4 No PBHs and an early-matter phase

When the two scenarios explored so far in sections 2.2 and 2.3 are combined such that

there is presumed to be a period of early matter domination during which no PBHs of

masses up to 1015 g form, because they would have otherwise seeded rapid vacuum decay,

constraints on the power spectrum tighten by many orders of magnitude. Using the same

argument from equation (2.7) that the Universe can be split up into regions of the scale

of a potential PBH, we can reformulate our expression relating the power spectrum to the

PBH mass fraction so that it reads

Pδ '
(

1

0.056Nl

) 2
5

, (2.33)

using the relationship from [136] that disregards inhomogeneous effects. If we were instead

to account for inhomogeneous effects and use the more conservative expression (2.32) the

constraints would weaken similarly to the case in section 2.3.3.

Figure 2.5 demonstrates how the constraints on the primordial power spectrum tighten

by many orders of magnitude when the two scenarios are combined. The right hand side of

each line is the smallest scale plotted for each value of t1, corresponding to the scale when

the horizon mass is 103g. This is the lightest PBH mass that could form after inflation

assuming that approximately 60 efolds occur between today’s horizon scale exiting the

Hubble sphere during inflation and the end of inflation. Horizon entry time for a PBH

mass of 103g is ti ' 3 × 10−36s, so the earliest value of t1 we use is t1 = 10−35s. Only

constraints due to PBHs of masses small enough that they would have decayed by today

are plotted in figure 2.5, so the left hand side of each line corresponds to the scale when

the horizon mass is 1015g.

For t1 < 10−16s, initial fluctuations corresponding to values of σ from equation (2.33)

are too small on all scales that enter the horizon before the end of the matter phase to grow

to order 1 before radiation domination, so σmin is always chosen. For t1 greater than this,

constraints from equation (2.33) start to become valid. The best constraint is achieved at

a scale of k ' 5×1019 Mpc−1 with t1 ∼ 10−17 s, and reaches PR ' 5×10−27. Models which

generate a nearly scale-invariant spectrum are ruled out for values of t1 between 10−5s

and 10−30 s as constraints on the power spectrum tighten further than an amplitude of

PR = 2× 10−9 (as measured by Planck) on some portion of scales depending on the value

of t1. If constraints were required for the situation where less than one PBH of any mass

formed, the lines plotted in figure 2.5 can be extrapolated from the left-most point of each

line to values of around PR ∼ 10−2, depending on the value of t1. PBHs forming right
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Figure 2.5: The upper bound on the power spectrum assuming that no PBHs have ever

decayed. The horizontal red line is the power spectrum amplitude measured on CMB

scales. For the lines in matter domination, the left hand side of the line corresponds to

the scale when the horizon mass is 1015g (which corresponds to the heaviest PBH which

would have decayed by today) and the right hand side corresponds to the scale when the

horizon mass is 103g (which is the lightest PBH mass that could form after inflation

assuming that approximately 60 efolds occur between today’s horizon scale exiting the

Hubble sphere during inflation and the end of inflation). The nearly horizontal orange

line is the constraint from no PBHs forming in radiation domination for δc = 0.42.

Notice that a much smaller range of scales is being plotted here compared to all previous

plots showing the constraints on the power spectrum.
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at the end of a matter-dominated phase will essentially only be affected by the radiation

dominated phase that begins soon after, so it is unsurprising that the constraints become

similar to those from ‘zero’ PBHs forming in a radiation dominated background (shown by

the nearly horizontal orange line). The constraints from radiation domination are slightly

stronger because they assume spherical collapse, whereas the constraints from matter

domination do not, and similarly we choose δc = 0.42 for radiation domination but only

that the perturbation must grow to order 1 for matter domination.

Such extreme constraints on the power spectrum suggest that an early-matter phase

is incompatible with no light PBHs forming during this phase. If the power spectrum

is quasi-scale invariant over all scales, then only a sufficiently brief matter dominated

period of less than about 7 efoldings is allowed, as the density perturbations would not

have time to collapse into a PBH before radiation domination. As presented recently in

[162], it is possible that the probability of PBHs nucleating rapid vacuum decay has been

overestimated, or otherwise constraints on the energy level at the end of inflation must be

enforced to avoid light PBHs forming if an early matter dominated phase occurred. They

show that if the energy density at the end of inflation is less than (2 × 109GeV)4, then

the first and hence lightest PBHs produced after inflation will be sufficiently massive to

not have decayed. Even more recently, [173] show that a nonminimal, but renormalizable

coupling between the Standard Model Higgs field and gravity can have a large effect on

the decay rate of the vacuum, possibly allowing light PBHs to form without nucleating

decay to the true vacuum.

2.5 Conclusion

PBHs constrain the primordial power spectrum over an extremely broad range of scales,

covering over 20 orders of magnitude. However, the constraints are much weaker than the

observed amplitude on CMB scales, due to the high pressure forces during radiation dom-

ination, which mean only very large amplitude perturbations can collapse. In this paper,

we have considered two possible scenarios to tighten the constraints. Firstly we consider

the ultimate observational constraint that no PBHs formed during a standard radiation

era and secondly the softest possible equation of state - an early matter dominated era

which makes PBH formation much easier. Finally we combine the two scenarios.

Although improving the observational constraints is very important for potentially

ruling out PBHs as a dark matter candidate (see for example [8, 131, 161, 174–177]), we

show in Fig. 2.1 that the consequent improvement in the constraints on the primordial
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power spectrum is modest, being less than an order of magnitude. The only exception is

on very small scales corresponding to PBHs which form with such small masses that they

decay before big bang nucleosynthesis (corresponding to k & 1018/Mpc), on these small

scales there are no standard observational constraints. However, the argument that the

evaporation of any black hole could destroy the stability of the Universe [6, 7] suggests

that arbitrarily small scales (right down to the horizon scale at the end of inflation) can be

constrained. The power spectrum constraints are so insensitive to changes in β of even 50

orders of magnitude, that a better understanding of the formation of PBHs (e.g. simula-

tions of non-spherical initial conditions or reaching a better understanding of the expected

initial density profile of PBHs from inflation) will have a larger effect than improving obser-

vational constraints. Non-Gaussianity of the primordial density perturbation has already

been shown to effect the constraints by up to two orders of magnitude.

However, we have shown that in the matter domination case, due to the enhanced

probability of PBH formation, the constraints on the power spectrum can be improved

by many orders of magnitude and they become much more sensitive to the observational

constraints on β. The constraints also depend on the length of the early matter dominated

phase, as shown in Fig. 2.3. For an early matter dominated phase lasting 10−19 s, the

constraint on the primordial power spectrum surpasses Planck’s measurement of PR =

2 × 10−9 at a scale of k ' 5 × 1016 Mpc−1. We further include full constraints for scales

entering the horizon right up until the end of matter domination, which consistently

match with those from radiation domination to within the uncertainties between the two

calculations. If the constraints were to tighten further than this on a wider range of scales,

models of inflation that generate a quasi scale-invariant spectrum could be ruled out when

combined with an early-matter dominated phase.

In combining these two scenarios, that no PBHs that would have evaporated by today

can ever have formed, and that there was a phase of early-matter domination post infla-

tion, we show that incredibly tight constraints on the power spectrum can be achieved

for some lengths of a matter dominated phase. If both scenarios can be shown to be

realised in nature, then this provides an excellent direction for highlighting the most prob-

able models of inflation, the power spectrum of which would need to decrease by many

orders of magnitude on small scales. This may suggest that one or both of these scen-

arios are not realised, or that the energy scale at the end of inflation must be so low such

that sufficiently light PBHs that would have decayed by today could not have formed [162].
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Note added: Whilst our paper was being written, [163] produced a similar plot

to Fig. 2.3, showing the constraints on PR for a radiation and matter dominated era. Our

constraints are an order of magnitude weaker than theirs, which we believe is primarily

due to a factor of 9 difference in the conversion between δ to R. We use eq. (2.16) eval-

uated at horizon entry, while they relate δ and R on super-horizon scales. They also do

not consider constraints due to σmin (see eq. (2.31)), which was not important for their

purposes. We note that our constraint on scales which enter the horizon during radiation

domination of PR . 10−2 agrees with [178].

Two papers relating the vacuum stability argument that no PBHs may have evaporated

during a matter dominated phase also recently appeared [162, 173], we comment on these

papers in Sec. 2.3.3.
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3.1 Introduction

There has been a recent surge of interest in the possibility that primordial black holes

(PBHs) might constitute a non-negligible fraction of the dark matter in the Universe.

This was largely sparked by the question posed in [179] (see also [180, 181]) – whether

the order ten solar mass black holes observed by LIGO [182] could be primordial1. This

is motivated by the fact that there are several hints for the existence of PBHs [186], for

example the progenitor BH spins of the LIGO detections being consistent with zero in most

cases [187–190], which is expected for PBHs formed during radiation-domination [191] (but

not matter-domination [192]) and arguably unexpected for astrophysical BHs [193, 194].

This begs the follow-up question – if these observed black holes are of primordial origin2,

how were they produced and what are the implications for inflationary model building?

1See however [183–185] for an alternative interpretation of the LIGO data.
2For more about a stellar origin of the detected BHs see e.g. [92, 195, 196].



59

The idea that black holes could be primordial relics (albeit of non-thermal origin)

was first discussed in [158, 197]. Since then, the possibility that they could be produced

through inflationary dynamics has been vigorously investigated, see e.g. [11, 176, 198–

214], and [61] for a recent review of PBHs in the context of the recent observations by

LIGO. In order for primordial black holes to form, the primordial power spectrum has to

grow by about seven orders of magnitude above the amplitude of PR ∼ 2× 10−9 observed

on CMB scales (we discuss the uncertainties in this estimate in Sec. 3.4.3). Growing to

such an amplitude on smaller scales takes time during inflation due to the causality of the

underlying background field dynamics, but to date no one has quantified just how quickly

the power spectrum can grow. We show that at least assuming canonical single-field

inflation, neglecting transients, the power spectrum cannot grow faster than ns − 1 = 4,

even allowing for arbitrary and instantaneous changes in the derivatives of the inflaton

field potential. That is, the (inverse) length-scale k must change by at least an order of

magnitude in order for the power spectrum to grow by four orders of magnitude. This

implies that any observational constraint on the allowed amplitude of the power spectrum

which is tighter than the required amplitude to generate PBHs on a particular scale can

be extended over a broader range of scales than directly implied by the observations, due

to the restriction on how quickly the power spectrum can grow. We also discuss how

observational constraints from the CMB, large-scale structure, spectral distortions and

Pulsar Timing Arrays (PTA) all provide constraints on the allowed masses of PBHs which

could have formed.

In the context of PBHs as dark matter (DM), the PBH mass function is important for

determining the fraction of the energy density in DM that could be made up of PBHs given

current constraints on their detection. We therefore investigate whether restrictions on the

primordial power spectrum growth rate have an effect on the PBH mass function and find

that vastly different power spectra produce very similar mass functions. This means that

if one is interested in producing PBHs within a particular range of masses, observational

constraints on the power spectrum will need to be avoided without the slope increasing

faster than k4, and the resulting mass function - which will be largely independent of the

power spectrum - must then also avoid constraints on the allowed fraction of PBHs in dark

matter. Placing analytic bounds on the steepest growth of the power spectrum defines

the largest windows possible for PBH production, and targets for future experiments to

aim for.

In section 3.2 we define the slow-roll approximation and deviations from it, and use
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analytical approximations to find the steepest growth of the power spectrum, and discuss

its possible physical basis. We also discuss a dip in the power spectrum that is common

to both numerical and analytical results. Fig. 3.2 shows the steepest growth. In section

3.3 we look at the dependence of the mass function on the shape of the power spectrum.

In section 3.4 we review the relevant observational constraints on the power spectrum and

discuss the effect our bound on the power spectrum has for model-building. Fig. 3.8 shows

our “master” plot of the constraints on the power spectrum across a huge range of scales,

and future forecasts are shown in Fig. 3.9. Finally, we present our conclusions in section

3.5 with various details deferred to the appendices.

3.2 The fastest possible growth in power

The simplest models of single-field inflation can be described by the so-called slow-roll

approximation. This assumes that the inflaton field’s kinetic energy is very sub-dominant

compared to the potential as it descends it, and is described by the slow-roll parameters:

ε =− Ḣ

H2
=

φ̇2

2H2M2
pl

, (3.1)

η =
ε̇

εH
. (3.2)

These are the first two terms in the so-called Hubble hierarchy, defined (for i ≥ 1) as

εi+1 :=
ε̇i
Hεi

. (3.3)

For the background to be inflating, ε must be less than unity, and provided it varies

slowly as inflation progresses, the resulting primordial power spectrum is nearly scale-

invariant. The Planck collaboration [22] have measured the amplitude of the primordial

power spectrum at scales sampled by the CMB (k ∼ 10−3 − 10−1 Mpc−1) to be of the

order 10−9 and nearly scale-invariant – consistent with the simplest models of slow-roll

inflation. However, CMB measurements tell us nothing about the power spectrum at

scales k � 1 Mpc−1. The tightest constraints for k & 1 Mpc−1 are disputed, but are

certainly orders of magnitudes weaker than those on CMB scales (however, see [215] for

recent claims to the contrary). For k & 107 Mpc−1, the constraint is PR(k) . 10−2

[10], where we use PR(k) to denote the dimensionless power spectrum of the comoving

curvature perturbation. This means that the power spectrum is free to grow to around

10−2 on small scales, and such growth would indicate strong deviations from the standard

slow-roll regime. Any peak-like features in the power spectrum are of topical interest since

primordial black holes are produced if the power spectrum is of order 10−2 [10]. In what
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follows, we analytically derive a steepest growth index of k4 for the power spectrum in the

context of single-field inflation.

3.2.1 Slow-Roll, Beyond Slow-Roll, Ultra Slow-Roll Inflation

In order for the power spectrum to grow during single-field inflation, the potential must

become very flat, meaning that ε must decrease rapidly. The quantity that governs this is

η, as can be seen from the Klein-Gordon equation for a minimally coupled scalar field:

φ̈+ 3Hφ̇+
dV

dφ
= 0. (3.4)

When the potential is exactly flat, dV/dφ = 0, so that

− φ̈

φ̇H
= ε− η

2
= 3. (3.5)

Hence the smallest value of η attainable for a monotonically decreasing potential is η = −6.

Through the defining equation (3.2), we see that the fastest ε can therefore decrease is

ε ∝ e−6N , (3.6)

where N is the number of e-folds, and we have used d
dt = H d

dN . The limiting case

for a monotonic potential is an inflection point or an extended period of V ′ = 0. As

verified explicitly through a potential reconstruction exercise in App. C, we indeed see

that a phase of Ultra Slow-Roll (USR) inflation [216, 217], defined as a phase of constant

η = −6, is attained as one approaches an inflection point, which can also be reasonably

well approximated by a small enough first derivative [11, 30, 176, 208, 218].

If the potential is non-monotonic and the inflaton field rolls uphill then an arbitrarily

negative value of η is possible, but the potential needs to be extremely tuned and will have

many transients associated with it (which could end up dominating) [40]. For this reason

we will mainly focus on regimes of η ≥ −6, however, we will show that our result for

the steepest growth of the power spectrum also holds for non-monotonic potentials with

η < −6. Any deviation from η ' 0 goes beyond what has typically come to be known as

the standard slow-roll (SR) approximation, which consists of neglecting the acceleration

term in (3.4), a valid approximation only when η ' 0. However, qualitatively different

behaviour for the mode functions can result from different regimes of η < 0 even as the

background remains approximately de Sitter, with a(t) ∼ eHt. We see this by first recalling

the equation of motion for the curvature perturbation in conformal time

R′′k + 2
z′

z
R′k + k2Rk = 0 (3.7)
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Figure 3.1: The behaviour of the backgrounds and perturbations as a function of the

slow-roll parameter η.

where z2 = 2a2M2
plε. In the long wavelength limit we find the general solution

Rk→0 = Ck +Dk

∫ τ dτ ′

a2ε
. (3.8)

The first term is the usual constant super-horizon mode, and the second term ordinarily

decays. However, when ε decays at least as fast as ε ∝ a−3 in cosmological time (i.e. a−2

in conformal time), the second term no longer decays. That is, for η < −3, one has a

growing super-horizon mode in addition to the usual constant mode, whereas for η > −3

one has the customary constant mode and decaying mode of standard slow-roll inflation.

This implies that our inflationary background is not an attractor whenever η ≤ −3,

and we are in the peculiar regime of single-field, but non-single-clock inflation3. This is

because on an attractor, we only have one linearly independent perturbation that can

persist – a local reparameterisation of the background solution, with the other linearly

independent perturbation decaying exponentially. When this is no longer the case, an

arbitrary perturbation can no longer be described as just a local time reparameterisation

of the background – the defining characteristic of the single-clock regime4. For this reason,

we find it useful for the purposes of the following discussion to classify different phases

of η as standard slow-roll approximation (η ≈ 0), beyond the slow-roll approximation

(−3 < η < 0), and non-single-clock inflation (η ≤ −3) with the limiting case of ultra

slow-roll at η = −6. See Fig. 3.1 for a visual representation of these regimes.

Inflationary potentials which have inflection points or sufficiently flat sections have

been studied in e.g. [11, 176, 208, 209, 212, 213], and are generally found to be severely

tuned if one stipulates that a peak be produced in the power spectrum with amplitude

of order 10−2. In what follows, we will show that on the way to such a peak, one cannot

increase primordial power arbitrarily fast in k-space. Were we to consider a phase of

strictly constant η evolution, one can straightforwardly derive a steepest possible growth

3Non-single-clock inflation means that there is more than one mode (usually the constant mode in

slow-roll inflation) that needs to be kept track of in order to understand the evolution of the perturbations.
4See [38] for a detailed discussion of this point.
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of PR ∝ k3 (cf. App. B). However this is too simple an approximation, as any realistic

inflationary background must eventually exit such a phase. A more careful multi-phase

matching calculation demonstrates a steepest growth of PR ∝ k4. This implies that the

generation of primordial black holes due to peaks in the power spectrum is subject to

further model-independent integral constraints from CMB spectral distortions and pulsar-

timing array bounds.

3.2.2 Regimes of constant η

As noted above, the power spectrum grows quickly if ε decreases quickly – a process tracked

by the second slow-roll parameter η. In order to determine the fastest possible growth,

we consider regimes where η decreases monotonically from 0 to different negative values.

Finding the behaviour of the power spectrum for instant transitions between different

phases is possible analytically via a matching calculation [219], and stitching together

sufficiently many phases of constant η evolution can approximate a smooth transition.

For the purposes of deriving a steepest growth index, we note that the growth produced

by an instant transition between different phases of constant η will be steeper than the

growth produced in a smooth transition.

As elaborated upon in App. A, because there are no jumps in the energy momentum

tensor of the background between phases of different η, the Israel junction conditions (see

(A.10)) require us to match the curvature perturbation and its first derivatives across the

matching surface [220, 221]. All modes begin in the Bunch-Davies vacuum in the initial

phase of η = 0, after which we match to a phase of constant η < 0, and then again to

a terminal phase of η = 0. We derive analytic expressions for the power spectrum for

instant transitions between 0 and the 6 integer values of η up to the ultra slow-roll regime

in (A.26) - (A.28), the results of which are plotted in Fig. 3.2. The duration of each

η < 0 phase is chosen such that the same growth in amplitude is achieved in all six cases,

facilitating a straightforward comparison of the spectral index.

From Fig. 3.2, we see that the slowest growth occurs for the integer values η = −1,

with ns − 1 = 1 once transients have died down (due to the unrealistic instantaneous

transitions5), and for η = −2, where the growth is given by ns − 1 = 2. Since we only

expect the previously decaying mode to start growing once η ≤ −3, the slope of the power

spectrum for η > −3 is determined by the value of η only, and matches the expression

given in (B.2). For η ≤ −3, a qualitatively different behaviour emerges. Since we are no

5Note that even smooth but rapid transitions in the inflationary potential can lead to oscillation in the

power spectrum, see e.g. [222].
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Figure 3.2: Analytical matching from η = 0 to values of constant η between -1 and -6, to

a final phase of η = 0 slow roll. For η ≤ −3 (purple, red, grey and blue lines in

decreasing value of η), the steepest slope of ns − 1 = 4 is achieved after the dip, before

relaxing to a shallower slope decided by the value of η, see (B.2). For η > −3 (green and

orange lines), the slope is constant for the whole range of k that the power spectrum

increases for. See the online version for colour figures.
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Figure 3.3: The blue line is the same power spectrum as plotted in Fig. 3.2 for 2.3 e-folds

of USR (η = −6). The yellow line is a matching from η = 0 to η = −8 for 1.725 e-folds

and back to η = 0. The spectral index of the power spectrum is ns = 4 initially (after

the dip), followed by a brief period of negative spectral index ns ' −2, before

scale-invariance for the final η = 0 phase. The dashed black line has a k4 slope.

longer in the single-clock regime, the previously decaying mode starts to grow, and with

it, superhorizon perturbations. Here, the power spectrum has a pronounced dip occurring

at scales that exit the horizon a few e-folds before the time of the first transition, followed

by an initial growth index proportional to k4, after which it settles to the constant-roll

growth given in (B.2). The initial phase of k4 growth is the steepest possible. In all cases of

η ≤ −3, the power spectrum begins to grow before the transition time, which is evidence

for superhorizon growth6. Providing one adjusts the duration of the η 6= 0 phase such

that the final amplitude of the power spectrum is always the same, the rapid growth lasts

longest for η = −6 before reaching a scale-invariant spectrum. Evidently, the steepest

growth is characteristic of the non-single clock phase. For an inflationary potential where

the inflaton field transiently rolls uphill, η can become arbitrarily negative. However one

finds a steepest growth of k4 in this case as well, demonstrated in Fig. 3.3 with a matching

from η = 0 to η = −8 and back. We offer an analytic understanding of this steepest

growth in the next subsection.

A more realistic treatment would model the evolution of η as a series of non-zero

6In Fig. 3.2 the horizon exit scales at the transition times from η = 0 to constant η are (for decreasing

values of η from -1 to -6) k ∼ 10, 104, 105, 3× 105, 6× 105 and 106 Mpc−1.
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Analytical approximation

Numerical results
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Figure 3.4: Left-hand plot: Numerical results for the potential in [11] are plotted in red

and our analytical approximation is plotted in blue. The analytical approximation

involves 3 constant phases of η from 0 to -6 and back to 0. The right-hand plot shows

the piecewise form for η used for the analytical approximation in blue, with 2.2 e-folds of

η = −6. The full numerical evolution of η for the potential in [11] is shown in red. Note

that the units in e-folds have been defined arbitrarily, and we have chosen to centre the

phase of η = −6 in our analytical approximation at the time N when the numerical η

reaches -6 instantaneously.

constant phases of η, with instant transitions between each phase to approximate a smooth

transition between slow roll and ultra slow roll. As expected, we again find a steepest

growth of k4, illustrated in Fig. A.1. We can test a ‘realistic’ example of a smooth transition

by numerically calculating the final power spectrum for the inflection point model for the

potential given in [11, 176], with the choice of parameters given in section 4 of [11].

We use CPPTransport [223, 224] to perform the numerical calculation. The red line in

Fig. 3.4 is the resulting numerical power spectrum, and the blue line is the analytical

result from approximating the evolution of η in the way shown. As expected, the analytic

approximation following from an instant matching between phases of inflation grows more

steeply than the more realistic (and smooth) potential of [11].

In App. C, we show how these analytical power spectra might be realised by con-

structing an example potential that smoothly traverses between η = 0 and η = −6 and

back.

3.2.3 Steepest growth and the prior dip in the power spectrum

Inflationary models which include a phase of non-single-clock evolution (i.e. with η < −3)

manifest a significant dip in the power spectrum before a steep rise caused by the growth

of the perturbations on super-horizon scales, see Fig. 3.2. This has been observed in many
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recent studies [11, 176, 208, 213, 218, 225] which have numerically computed the primordial

power spectrum for inflationary models with deviations from the slow-roll approximation.

It might be assumed that this is caused solely by an increase in ε before the rapid decrease,

for example see ε plotted in Fig. 2 of [213]. However, on comparing numerical results with

the analytical approximations from section 3.2.2 for which ε never increases, we show

that the dip cannot be caused by this alone, and that it is actually a generic feature of

transitioning from η = 0 to a regime where the decaying mode starts to grow. Perhaps

surprisingly, the dip is located on scales which exit the horizon while normal slow roll is

still taking place. We explain these features for the particular case of a transition from

η = 0 to η = −6 by making an analytical matching between the two periods. We assume

USR lasts for well over an e-folding and neglect the effects of transitioning out of USR,

which is a subdominant effect (see Fig. A.2).

The expansion of the power spectrum in terms of k/ku, where ku is the horizon scale

at the time when USR begins (see eq. (A.26) for the full expression), is

PR(k)

PR(0)
=

[
1− 4

5

(
k

ku

)2

e3NUSR

]2

+ 2

(
k

ku

)2

− 0.10

(
k

ku

)6

e6NUSR (3.9)

+ 0.0075

(
k

ku

)8

e6NUSR + · · ·

where NUSR is the number of e-folds during which η = −6 and we have dropped terms

subleading in eNUSR 7. All higher-order terms, which come in even-powers of k/ku also

come dressed with pre-factors of e6NUSR but with numerical coefficients that are down by

an order of magnitude for each even order. Therefore, for k . ku, terms up to quartic

order are an accurate approximation to the power spectrum. Once k2/k2
u ∼ O(10), all of

the terms in the alternating series are as important as each other and this is when the

series begins to conditionally converge to an oscillating function. Solving for k such that

the term in square brackets is zero gives the position of the dip, kdip, as

kdip

ku
=

√
5

4
e−

3
2
NUSR (3.10)

and hence the dip occurs approximately 3
2NUSR e-folds before USR begins. The amount

by which the power spectrum is suppressed at this point is

PR(kdip)

PR(0)
' 2.5e−3NUSR . (3.11)

7We note that if USR ends in a different way than an instant transition to constant ε then the numerical

coefficients in the equation above change slightly, but the qualitative picture remains the same.
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Finally the rapid k4 growth during the transition to USR will end when the k4 and k6

terms in (3.9) become comparable, which happens when

k ' 2.5ku, (3.12)

and hence occurs about one e-folding after USR has begun, independently of the duration

of USR (provided NUSR & 1).

Thus far, we’ve arrived at an analytic understanding of the shape of the primordial

power spectrum via a matching calculation, and in particular, its steepest possible growth

over an intermediate range of scales. This begs the immediate question – what is the

underlying physical mechanism responsible for this steepest growth? Several independent

arguments demonstrate a steepest growth of PR ∝ k3 under the assumption that the

large scale power spectrum is a strict power law over all relevant scales. Peebles showed

that if the matter power spectrum is to accurately describe particulate matter over scales

of cosmological interest, then the two-point function for the density contrast δ := δρ/ρ

can grow no faster than k4 [226]. This implies that the dimensionless power spectrum

for the curvature perturbations can grow no faster than k3 since ∂2R ∝ δ. As shown in

App. B, one can also derive a similar strongest possible scaling for the two point function

of the curvature perturbation from the asymptotics of the mode functions. However,

none of these arguments apply in the present context, where we do not assume constant

power law behaviour for the primordial power spectrum, and the steepest growth is only

over a limited (and in principle tunable) interval8. Although one might suspect causality

or unitarity arguments to be at play – or perhaps conformal symmetry as the system

tends towards ε → 0 – it seems that the bound may be due to an interplay of causality

arguments and energy-momentum conservation, something we’re currently investigating

with a particular view to generalising to the multi-field context.

3.3 The PBH mass function

Having shown that there are limits to how quickly the power spectrum can grow, one may

expect that this also places a sharp limit on how narrow the mass function of PBHs can

be. In practice this is not the case, for (at least) three reasons: 1) for any given horizon

mass, PBHs form with a spread of comparable masses; 2) the matter power spectrum is

8We also note in App. B that in assuming a (possibly distributional) power spectrum of the form P ∝ kn

at all scales, one can show that it is not possible to regulate the short distance divergence of a spectrum

with index n > 4 in four dimensions.
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less ‘sharp’ than the primordial power spectrum because of the window function relating

the two; and 3) PBH formation is exponentially sensitive to the amplitude of the power

spectrum, so only perturbations comparable to the peak amplitude are important.

The phenomena of critical collapse [93, 227, 228] describes how PBHs of mass M can

form with a variety of masses for any given horizon mass MH according to the relation

M = kMH(δ − δc)γ , (3.13)

where during radiation-domination the constants have been numerically estimated as k =

3.3, γ = 0.36, δc = 0.45 (the exact values depend upon the type of perturbations being

considered but we use the values given here in order to be concrete which are for purely

growing-mode perturbations [150]), see also [138, 229, 230] for details. From the expression

given in [231], the mass function of PBHs, f(M), is

f(M) ≡ 1

ΩCDM

dΩPBH

d lnM

=
1

ΩCDM

∞∫
−∞

2√
2πσ2(MH)

exp

[
− (µ1/γ + δc(MH))2

2σ2(MH)

]
M

γMH
µ1/γ

√
Meq

MH
d lnMH,

(3.14)

where µ ≡ M
kMH

.

Inspired by the observation that we cannot have an arbitrarily rapidly growing power

spectrum, we calculate the resulting mass function f(M) from 4 different power spectra.

The first three grow at different rates towards smaller scales (ns − 1 = 0.1, 0.2 and

4 but then drop to zero), the fourth is a Dirac delta function and we chose an overall

normalisation of As = 0.15

PR(k) = 0.242As(k/k∗)
0.1 for k < 1.5k∗, 0 otherwise; (3.15)

PR(k) = 0.256As(k/k∗)
0.2 for k < 1.35k∗, 0 otherwise; (3.16)

PR(k) = As(k/k∗)
4 for k < k∗, 0 otherwise; (3.17)

PR(k) = 0.182Asδ(k − 0.83k∗). (3.18)

The prefactors to the power spectra and the scale at which they drop to zero has been

tuned in order to make the position and amplitude of the peak of the mass function as

similar as possible, in order to easily compare the width of the mass function. The power

spectrum dropping instantaneously to zero is unrealistic but unlike an increasing power

spectrum, which cannot grow arbitrarily quickly, there is no theoretical limit to how rapidly

the spectrum can decay. If the potential is discontinuous and drops to zero instantaneously,

then once it goes to zero ε becomes 3 instantly, inflation ends and the Universe enters



70

kination-domination. For potentials which rapidly switch to a steep negative gradient an

arbitrarily rapid transition to a rapidly growing ε can be engineered, which can make the

power spectrum as blue as required without ending inflation quickly. For more details, see

App. C.2.
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Figure 3.5: The power spectrum on the left and the smoothed variance of the density

contrast on the right for the four models described in the text (the Dirac delta model is

not plotted on the left plot). The power spectra are zero where no line is shown. The

x–axis units are arbitrary.
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Figure 3.6: The mass function for the 4

power spectra plotted in Fig. 3.5, plotted

using the same colour scheme. The

arbitrary x–axis units are chosen such

that the horizon mass is unity for k = 1

in the units used for Fig. 3.5.

The variance of the comoving density con-

trast at horizon entry (smoothed on a scale

R = 1/k) is related to the power spectrum by

σ2
R =

∫ ∞
0

dq

q

16

81

(
qk−1

)4 PR(q)WR(q)2

(3.19)

and we use a Gaussian9 window function,

WR(q)2 = e−(qR)2 . The results are shown in

Fig. 3.5. Fig. 3.6 demonstrates that the mass

function is not very sensitive to how steep

or spiked the primordial power spectrum

was unless it varied very slowly with

scale. There is almost no visible difference in

f(M) between a spike which is modelled by

a Dirac delta power spectrum or one growing

9The influence of the choice of the window function is discussed in [55]. We neglect a transfer function

which suppresses sub-horizon perturbations, because it has a negligible impact when using a Gaussian

smoothing function.
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like k4. More surprisingly, even a slowly changing power spectrum with spectral index

ns − 1 = 0.1 and a cut off generates a mass function which is not substantially broader

than the tightest possible mass function near the peak; compare the black and red lines

in Fig. 3.6. Note that the mass functions agree extremely well for small masses because

the power spectra all have a cut-off scale which has been chosen to align the peaks of the

mass functions. The insensitivity of the PBH mass function to the shape of the power

spectrum, due to the degeneracies between the effect of the amplitude and shape of the

power spectrum, mean that the PBH mass function would have to be detected with very

high precision in order to reconstruct the shape of the primordial power spectrum near

the corresponding peak.

3.4 Observational constraints

Although the primordial power spectrum is tightly constrained on CMB scales (from

roughly k ∼ 10−4 − 10−1 Mpc−1) to be of the order PR ∼ 10−9, there are upper bounds

on scales far beyond those accessible in the CMB through a variety of tracers and

indirect probes. Of these, the constraints most relevant to the present discussion are

distortions of the CMB spectrum from the dissipation of acoustic modes, and bounds

from gravitational wave backgrounds produced by scalar perturbations at second order.

At the end of this section we produce a “master plot” of the key constraints on the

power spectrum.

In order to quantify the effect of observational constraints on the allowed number of

PBHs generated, which is quantified by β = ρPBH/ρtot at the time of formation, we need

to know the relationship between the amplitude of the power spectrum and β. In this

paper we have neglected the impact of quantum diffusion of the inflaton field and

non-Gaussianity of the primordial perturbations. In the context of PBH formation,

quantum diffusion during inflation has been discussed subject to the slow-roll

approximation by [232] and during USR with conflicting conclusions about its

importance in [218, 233–235].

We have also neglected the impact of any non-Gaussianity of the primordial

perturbations. This is despite the fact that one of the main reasons that USR inflation

was initially considered interesting was that it appeared to generate local

non-Gaussianity of order-unity amplitude [236], providing an exception to the statement

that single-field inflation generates negligible local non-Gaussianity [37, 38, 237].

However, Cai et al. have recently shown that ending USR with a smooth transition tends
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to erase the local non-Gaussianity [238]. If the local non-Gaussianity is not erased or

modified by the way USR ends, it has a value fNL = 5/2 for modes which exited the

horizon long after USR begins (see [239, 240] for coordinate-choice issues). fNL ∼ 1 was

shown to have a significant impact on the power spectrum constraints in [145], while the

higher-order non-linearity parameters and mode coupling are also important

[140, 156, 241]. The impact of non-Gaussianity on PBH formation during inflection point

inflation was recently considered in [242].

Other uncertainties in relating the amplitude of the power spectrum to the number of

black holes include non-sphericity of the initial density profile [152], the window function

used to smooth the density contrast [55], the background equation of state when modes

re-enter the horizon [138] (the QCD transition can motivate a population of solar mass

PBHs [231, 243]) and the shape and sphericity of the initial energy-density profile

[58, 139, 149, 244]. More broadly, the general calculation has been questioned recently in

[57, 245], with particular uncertainty on the critical density threshold δc and more than

an order of magnitude uncertainty in the relation between the horizon and PBH mass.

There is not yet any consensus on how to calculate β(M), given a particular primordial

power spectrum.

Conditional on all of the aforementioned caveats, for a non-negligible number of PBHs to

be generated, the amplitude of the power spectrum needs to be of order 10−2 depending

on the mass of the PBH [246]. We will now see the relevant constraints.

3.4.1 CMB Spectral distortions

What we see in the CMB is a snapshot of acoustic excitations in the primordial plasma

around the time of last scattering. Sound waves dissipate energy as they propagate,

transferring energy into heating the ambient medium. Any heat dissipated into the

primordial plasma has the possibility of showing up in the form of µ and y type

distortions of the CMB [17, 101], provided they occur in the redshift window between

z ∼ 106 and last scattering at z ∼ 103. The reason for this is that at sufficiently early

times, Compton scattering is efficient enough to rapidly restore thermal equilibrium after

any energy injection process. At around z ∼ 106 its efficiency starts to drop, and

distortions of the blackbody spectrum of the CMB can start to persist if they were

initially large enough. The greater the power spectrum is at small scales, the greater the

amount of energy that gets dissipated into the primordial plasma, hence spectral

distortions offer a powerful probe of the power spectrum at scales beyond those accessible
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in CMB anisotropies. Of the two varieties of distortions generated by dissipation, µ-type

distortions are sensitive to power at smaller scales. It corresponds to a distortion of the

black body spectrum mimicked by an effective chemical potential µ, given by [106]

µR ≈
∫ ∞
kmin

dk

k
PR(k)WR,µ(k), (3.20)

where the window function Wµ is given by

WR,µ(k) ≈ 2.27

exp

−[ k̂

1360

]2/1 +

[
k̂

260

]0.3

+
k̂

340

− exp

−[ k̂
32

]2
 ,

(3.21)

with k̂ = k/[1 Mpc−1] and kmin ' 1 Mpc−1, below which the power spectrum is tightly

constrained by large scale observations of the CMB. This window function is calculated

by integrating the spectral distortion visibility function numerically, for details, see [106].

It behaves as a window function because it up- and down-weights contributions at

different wavenumbers according to the numerical factors in equation (3.21).

Measurements from COBE/FIRAS require the µ-distortion to be no greater than

9× 10−5 [14, 15]. For a reasonably broad peak with approximately k4 slope, centred on

k ∼ 105Mpc−1, the resulting µ-distortion is µ ≈ 9× 10−7. This scale corresponds to

larger black hole masses than those detected by LIGO and even then, the constraint is

not under pressure. The largest possible PBH that can be produced and be consistent

with the µ−distortion constraint has mass ∼ 4× 104M� assuming that the PBH mass

equals the horizon mass at the time of horizon entry. This is calculated assuming that the

amplitude of the power spectrum is required to reach the current constraints from PBHs,

shown by the orange line in Fig. 3.8, which already rules out f = ΩPBH/ΩDM = 1 on a

large range of scales. See Fig. 3.8 for a plot of the full µ-distortion constraints. Note that

each point of the blue and purple lines represents the maximum allowed value of As at

the scale of the peak, kp, for a delta function power spectrum PR = Asδ(log(k/kp)) (blue

line) and a k4 power spectrum P = 4As(k/kp)
4 cut off to zero for k > kp (purple line),

after having integrated over each to find the total contribution to the µ-distortion value.

We note that (3.20) captures only the µ-distortion induced by dissipation of scalar

modes. Tensor modes can also produce dissipation distortions, with a resulting

µ-distortion given by µh ≈
∫∞
kmin

dk
k Ph(k)Wh,µ(k), [247]. However the corresponding

window function Wh,µ(k) is such that the overall distortion is some six orders of

magnitude smaller for a nearly scale-invariant spectrum (independent of the amplitude),

although it has much broader support, and is sensitive to power up to scales approaching
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k ∼ 105 Mpc−1. As we review in the next subsection, scalar perturbations can source

tensor perturbations at second order, and any enhancement of the primordial power

spectrum at small scales will source enhanced tensor perturbations at commensurate

scales. Although these offer no meaningful constraints with present day sensitivities, a

PIXIE-like survey [248] (with sensitivity to µ-distortions as small as µ ∼ 10−8) could be

sensitive to primordial power spectrum enhancements of up to PR ∼ 10−2 at

k ∼ 105Mpc−1 due to the dissipation from secondarily produced tensors.

3.4.2 Pulsar Timing Arrays

Although scalar and tensor perturbations decouple at linear order, if the power spectrum

is sufficiently boosted to generate PBHs a potentially observable amplitude of

second-order gravitational waves (GWs) will be generated [109, 209, 249–259]. This can

be intuited as arising from interactions of the form hij∂iR∂jR. Specifically, the

transverse traceless projection of the spatial part of the ‘stress-tensor’10 of the curvature

perturbation can source tensor perturbations at second order, resulting in an induced

contribution to the tensor power of the form

Ph(τ, k) =

∫ ∞
0

dv

∫ 1+v

|1−v|
duK(τ, u, v)PR(ku)PR(kv) (3.22)

where K(τ, u, v) is a rapidly oscillating kernel whose precise form can be found in e.g.

[109, 252]. Given the convoluted nature of the integrand, many papers in the literature

consider PTA constraints arising from a simple (though unphysical) delta function power

spectrum but we also consider a more physical k4 spectrum with a sharp cut-off. In

Fig. 3.7 we plot the GW amplitude for the two power spectra11

PR(k) =Aδ(log(k/kp)), (3.23)

PR(k) = 4A(k/kp)
4 for k < kp, 0 otherwise. (3.24)

The factor of 4 is included in the latter power spectrum in order that both power spectra

are normalised as
∫
PR(k)d ln k = A. We also plot the GW spectrum averaged over an

efolding (the dashed lines), because the gravitational wave energy of the delta function

power spectrum diverges at k = 2kp/
√

3. The smoothed spectrum is defined by

Ωsmooth
GW (k) =

∫ ke1/2

ke−1/2

ΩGW(k)d ln k. (3.25)

10By this, we simply mean the symmetric tensor obtained by varying the cubic interaction terms of the

form RRh in the perturbed action w.r.t. hij .
11We computed this integral in Mathematica using the standard NIntegrate function and converged on

the best error settings we could find. A better-purposed integration method should be used to eradicate

the noise in Fig. 3.7, which we improved upon in future work [260].
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The amplitude of the smoothed spectra is similar near the peaks, and the key difference

is the different scaling behaviour at small k. The delta function scalar power spectrum

produces a gravitational wave spectrum which scales like k2 while the k4 scalar power

spectrum produces a gravitational wave spectrum which scales like k3 at small k. This

means that the constraints for values of kp larger than the scales which PTA best

constrain will differ markedly for the two power spectra. The counterintuitive result that

a delta function power spectrum does not give rise to the narrowest possible GW

spectrum has been observed in numerous papers, e.g. [261, 262]. Since the scalar power

spectrum cannot grow faster than k4, a k2 tail in ΩGW cannot be produced by a narrowly

peaked scalar power spectrum. It has been suggested that including non-Gaussianity in

the calculation can mean that a delta-function or very narrow power spectrum will also

induce a k3 tail in ΩGW [263]. Other effects of including non-Gaussianities are discussed

in [264]. To make Fig. 3.7, we have used Ωrad,0h
2 = 4× 10−5 in order to evolve the GW

amplitude from horizon entry during radiation-domination until today.

There is, however, a discrepancy in the normalisation between various references in the

literature that is most apparent when one tries to calculate the secondary tensor

spectrum produced by a scale-invariant scalar power spectrum. In particular, the results

of [249] (quoted in [258]), [251] and [109] differ, with the latter reference finding a

normalisation that is order 10−2 less than the prior references. The precise source of this

discrepancy is not immediately apparent to us. However, it is apparent that the

numerical integrations necessary to arrive at the final answer are sufficiently involved as

to make any analytic simplifications (such as those provided by [109, 265]) advantageous.

For this reason, we utilise the explicit analytic form of the kernel K(τ, u, v) detailed in

[109] in what follows – for the purposes of placing observational bounds, it is also the

more conservative choice because it leads to a lower normalisation of ΩGW than several

other references. Using the simplifications provided by [109, 265]12, we can also evaluate

the secondary tensor perturbations produced by a k4 steepest growth spectrum.

For each frequency, we use the tightest constraint for a stochastic GW background from

various PTA experiments [112, 266, 267] in order to plot the power spectrum constraint

in Fig. 3.8. We use the unsmoothed GW spectrum induced by the k4 scalar power

spectrum (in order to avoid needing to choose a smoothing scale which depends on the

12These references have resulting analytic forms for the kernel K(τ, u, v) that agree up to having taken

different lower limits in eq. (15) in [109] and the corresponding eq. (33) in [265]. The resulting difference will

be negligible whenever the source scalar modes are sub-Hubble. We thank Davide Racco for correspondence

on this matter.
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experiment) and convert from k to frequency space using f = kcs/(2π) where

cs = 9.7× 10−15Mpc/s. Over the range of almost two orders of magnitude in k (over 3

orders of magnitude in horizon mass from ∼ 0.1M� − 200M�, see equation (3.26)) the

constraint on the power spectrum is stronger than the constraint from the non-detection

of PBHs, meaning that PBHs will not form in significant numbers over this range of

scales. We have discussed the many caveats at the beginning of this section. Notice that

because the delta function power spectrum has a slower decay of ΩGW towards small k,

the constraints on the power spectrum would become stronger than the k4 spectrum

constraints for scales sensitive to the low-frequency tail of ΩGW.

0.001 0.010 0.100 1
k/kp

10-8
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ΩGW,0h
2 /A2

Figure 3.7: The GW amplitude today for a delta function power spectrum and one

growing like k4 in red and black respectively, as described in the main text. The dashed

lines are the values smoothed over 1 efolding. The small ‘teeth’-like features of the black

line are due to numerical noise and they don’t affect the power spectrum constraints

derived from these curves.

3.4.3 Implications for model building

In Fig. 3.8 we produce a new plot of the constraints on the primordial power spectrum

on all scales similar to Bringmann et al. [268], but unlike [268] we do not include

constraints from ultracompact minihalos (UCMHs) since they rely on a WIMP DM

scenario. For a discussion of recent UCMH constraints see [269–272], and mixed

scenarios with both WIMPs and PBHs are discussed in [273–275].

On the largest scales we plot the Planck measurements of the power spectrum [22]. The

next relevant constraints on smaller scales come from µ-distortions. Since the power

spectrum cannot grow arbitrarily quickly, it is clear that the power spectrum cannot



77

become large enough to generate PBHs on scales k < 104Mpc−1, subject to the

aforementioned assumptions, the most relevant being that the perturbations are

Gaussian [276]. Hence there is no need to also show the y-distortion constraints which

affect larger scales. The blue line is the upper bound on the amplitude for a

monochromatic power spectrum, whilst the dashed purple line is the upper bound on the

amplitude for a power spectrum with k4 slope and immediate drop off. For a constraint

on slightly smaller scales than spectral distortions, see [277].

The black line on scales k ∼ 107Mpc−1 represents the upper bound due to the PTA

constraints, while the relatively flat orange line represents the PBH constraint. The PBH

constraints are calculated using values of f = ΩPBH/ΩDM from [278] and [163] for PBH

masses between ∼ 10−24M� and 107M�. These combine various constraints from

e.g. their evaporation, femto-lensing of gamma-ray bursts, neutron-star capture, white

dwarf explosions, and microlensing. We use δc = 0.45 for definiteness, and we effectively

use a delta function for the window function in translating the variance of the

perturbations to the amplitude of the power spectrum (in place of W (q) in equation

(3.19) which we used for studying the mass function). We also use a linear relation

between the density contrast δ and the comoving curvature perturbation R, which is not

realistic. We do not include constraints from microlensing for masses . 10−10M� due to

uncertainties concerning the wave effect [278]. The slight dip at k ∼ 107 is caused by

including the effect of the change in the equation of state around the time of the QCD

transition [231]. Also note that we use

k

3× 1022 Mpc−1
=
π

tic

(
ti
teq

) 1
2
(
teq

t0

) 2
3
(
g∗,i
g∗,0

)− 1
12

, (3.26)

ti =
10−38(M/1g)

γ
s (3.27)

=⇒ k

3× 1022 Mpc−1
=1019π

c
γ

1
2

(
M

1g

)− 1
2
(

1 s

teq

) 1
2
(
teq

t0

) 2
3
(
g∗,i
g∗,0

)− 1
12

(3.28)

to convert between k and PBH mass, where ti is horizon entry time of the overdensity,

M is the PBH mass, γ is the fraction of the horizon mass that will collapse to form the

black hole which we take to be 1 given the uncertainty in the literature, teq ≈ 2× 1012 s

is the cosmic time of matter-radiation equality and t0 ≈ 4× 1017 s is the cosmic time

today. We take the effective degrees of freedom today to be g∗,0 ≈ 3.36 and g∗,i is the

effective degrees of freedom at the time of horizon entry.

In order to reach the current constraint on the number of PBHs (orange line) from the

amplitude of the power spectrum at CMB scales, the growth must begin at

k & 103 Mpc−1 in order to avoid constraints from the µ-distortions, since it can only
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grow as fast as k4. This is shown by the left-most dotted black line in Fig. 3.8. This

implies a maximum PBH mass which can be generated of 4× 104M� corresponding to

k ∼ 7× 104 Mpc−1. This point is where the left dashed black line (with k4 slope) crosses

the PBH constraint line, and it is also where the dashed purple line which marks the

distortion constraints for a k4 growth crosses the PBH constraint line. Notice that the

blue line (for a delta function power spectrum) crosses the PBH constraint line at a

larger scale k ∼ 4× 104 Mpc−1, corresponding to a PBH mass of 2× 105M�. The

difference between these two masses demonstrates the additional restriction on PBHs

caused by the restriction on the steepest possible growth of the power spectrum.

Similarly, in order to avoid PTA constraints, the power spectrum growth must begin at

k . 104 Mpc−1 as shown by the right-most dotted black line in Fig. 3.8. This assumes

that the power spectrum can drop off instantaneously to PR . 10−3 after the peak to

avoid the PTA constraints – see App. C.2 for a discussion on this point. For PBHs with

masses larger than those constrained by PTA experiments, the power spectrum is free to

grow from k & 6× 105 Mpc−1, as a k4 slope will clear the PTA constraints from this

scale, and there are no severe constraints on the power spectrum on smaller scales. In

order to produce PBHs on a scale k ∼ 106 Mpc−1 and avoid the µ-distortion constraint,

the power spectrum needs to grow at least as steeply as k1.2 on the scales between those

two constraints.

Early matter-dominated scenarios are of interest because the lack of pressure means that

PBHs are able to form much more easily and have been considered recently in

e.g. [136, 160, 163, 246]. This means that the amplitude of the power spectrum is related

to the number of PBHs by a power law instead of logarithmically as is the case in

radiation-domination that we have assumed to plot the orange line in Fig. 3.8. One

could then question whether the constraints on the power spectrum change more quickly

than the k4 limit. Using constraints on the power spectrum from [246], we have verified

that they do not change more quickly than k4, and therefore that PBHs of every possible

mass can still be generated while respecting this bound on the power spectrum growth.

3.5 Conclusions

We have shown that the steepest possible growth of the primordial power spectrum is

given by ns − 1 = 4 during canonical single-field inflation, independent of the shape of

the inflaton potential. Such a rapid growth is only possible when the inflaton makes a

rapid transition from “slow-roll” inflation to non-attractor inflation, characterised by an
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Figure 3.8: Observational constraints on the power spectrum. The lines at small k are

the Planck 1σ and 3σ measurements. On much smaller scales there are only upper

bounds; shaded regions are disallowed. The solid blue line shows the upper bound from

µ-distortions for a delta function power spectrum, PR = Asδ(log(k/kp)), as a function of

kp, and the solid orange line shows the PBH upper bounds, subject to the uncertainties

discussed in the main text. The dashed purple line shows the upper bound from

µ-distortions for the steepest growth power spectrum PR = 4As(k/kp)
4 which drops to

zero for k > kp, and the solid black line shows the PTA upper bounds for the same

power spectrum. The factor of 4 is included so that it has the same normalisation as the

delta function power spectrum when integrating with respect to ln k. The dashed black

lines have a k4 slope.
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almost exactly flat potential, and remains true even if the potential is not always

decreasing13. In the standard case of single-clock inflation - implying the curvature

perturbation freezes out shortly after horizon crossing - the power spectrum grows less

steeply, and is bounded by ns − 1 < 3. It would be of great interest to understand

whether our bound can be violated in more complicated models of inflation. For

example, see [55], which in some cases requires an ad hoc power spectrum with steepness

up to k8 in order to evade power spectrum constraints while generating PBHs, which our

bound implies is not possible in the context of single-field inflation.

We have calculated analytic expressions for the most rapid growth of the power

spectrum possible, by matching the curvature perturbation between various phases of

inflation, characterised by different rates at which the slow-roll parameter ε decreases.

The steep k4 growth arises during times when modes exiting the horizon are affected by

both periods of inflation. We have also provided a way to reconstruct the inflaton

potential given an arbitrary time evolution of the expansion rate during inflation

specified by ε(t) in App. C.

Due to the phenomena of critical collapse to form PBHs, the PBH mass spectrum cannot

be arbitrarily close to monochromatic. We have shown that the mass spectrum is

remarkably insensitive to the shape of the power spectrum close to its peak amplitude,

with everything from a gentle growth, ns − 1 = 0.1 to the extreme (and impossible) case

of a delta function power spectrum producing a comparable width for the mass function

of PBHs. This distribution approximately resembles a log-normal distribution and is

often parametrised as such when studying extended mass functions, e.g. [94, 98].

In Fig. 3.8 we have combined the key measurements and constraints on the primordial

power spectrum, showing how on various scales, CMB measurements, CMB spectral

distortion constraints or PTA constraints all force the power spectrum to be too small to

generate PBHs. There does however remain a window between the latter two constraints

which is sufficiently broad such that the power spectrum can grow and produce large

PBHs without conflicting either of those constraints and without requiring the

perturbations to be non-Gaussian.

13Note added: As we were preparing this paper, ref. [279] appeared, aiming to derive a lower bound of

η > −6 from causality arguments. However, the matching calculation on which this is based neglected

to impose both Israel junction conditions (A.10), imposing only the continuity of Rk. Furthermore, the

correct causality criteria one should impose is that the commutator of the curvature perturbation at two

points should vanish at space-like separation, trivially satisfied even when matching with an intermediate

phase of η < −6.
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We plot forecasted constraints on the power spectrum in Fig. 3.9. The sensitivity curves

for SKA and LISA are extracted from [280] and do not include the possible degradation

due to astrophysically generated gravitational waves. LISA covers the scales

corresponding to a possible window where PBHs could consist of all the DM, with

masses in the range Mpbh ∼ 10−13 − 10−7M� [255]. Of particular interest is how the gap

between future µ-distortion constraints assuming a PIXIE-like experiment which can

probe µ = 2× 10−8 and the existing PTA constraints becomes a factor of 2 in k-space,

corresponding to less than an e-folding of inflation, which in practice means constructing

a model which grows at the maximum rate and then decreases again is unrealistic. A

more detailed treatment of the PTA constraint at low frequency would probably

completely close the gap, and the addition of SKA constraints from pulsars does close

the gap. The difference of a factor of 8 in k between where the two different forecasted

µ-distortion lines cross the PBH line show how much more powerful the PIXIE

constraint on PBHs becomes once including the maximum growth rate of the power

spectrum. Therefore, PIXIE combined with PTA constraints and the steepest growth

rate that we have derived would be able to rule out the generation of LIGO mass PBHs,

unless the initial perturbations are sufficiently non-Gaussian on the relevant range of

scales. Finally, the combined constraints from the CMB, a PIXIE-like experiment, SKA

and LISA will almost completely rule out Gaussian perturbations being able to generate

any PBHs with masses greater than 10−15M�.

Note added: after submitting the first version of our paper, [281] appeared which deals

with current and future constraints on induced gravitational waves. We would like to

thank the authors for helpful discussions and comments on both of our papers.
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Figure 3.9: Current and forecasted constraints on the amplitude of the power spectrum.

The solid lines are the same as in Fig. 3.8, apart from the x-axis which is extended to the

smallest scales that PBHs constrain, corresponding to the horizon scale which generates

a PBH that decays during big bang nucleosynthesis. The dashed lines show forecasted

future constraints from a PIXIE-like satellite for µ-distortions (the dashed blue line

assumes a delta function power spectrum while the purple line has a power spectrum

growing at the maximum rate of k4), and the dashed black lines are induced gravitational

wave forecasts for a k4 scalar power spectrum with a cut off, using PTA constraints from

SKA and from the LISA satellite on smaller scales. Shaded regions are disallowed.
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4.1 Introduction

The fluctuations in density left over at the end of inflation are the best probe for how

inflation itself happened. Since these aren’t observable directly, we must rely on mapping

the evolution of these overdensities and underdensities which eventually gravitationally

collapsed to form the structures that we see today. Measuring the late-time matter power

spectrum will enable us to track back and predict how the fluctuations were distributed

immediately after inflation, which is quantified with the primordial power spectrum.

The 21cm power spectrum is a tracer of the underlying matter power spectrum, and

there are two redshift windows where this signal appears in absorption: during the Dark

Ages between redshifts z ∼ 30− 200 and during Cosmic Dawn around z ∼ 15− 20. In

order to capture the matter distribution before it is complicated by the astrophysical
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processes involved in reionization and galaxy formation, it is best to look at redshifts

above ∼ 30. Above redshift 30, the matter in the Universe was predominantly made up

of neutral hydrogen and was therefore totally dark. However, due to neutral hydrogen’s

spin-flip transition, the distribution of hydrogen can be detected with 21cm observations.

After recombination, when the photons decoupled from the newly formed neutral

hydrogen and began free-streaming towards us as the Cosmic Microwave Background

(CMB), the Universe continued to cool, but Compton scattering maintained the

temperature of the CMB and the gas in equilibrium. By around z ∼ 200, the Universe

had cooled enough such that Compton scattering was no longer efficient enough to keep

the gas and the CMB in equilibrium, and so the gas began to cool faster than the CMB.

This meant that most of the neutral hydrogen was in its unexcited state, and therefore

able to absorb CMB photons at the characteristic wavelength of 21cm. It is this

difference in temperature of the CMB that is observable. The absorption line of the

photons is redshifted from the initial wavelength of 21cm, and therefore the frequency of

the radiation that arrives at detectors determines the redshift slice from which the signal

originated.

Current CMB measurements [1] constrain the primordial power spectrum very tightly on

scales k ∼ 10−4 − 0.1 Mpc−1 to be of amplitude 2× 10−9. This means that, while a

detection of the 21cm signal from the Dark Ages on any scale would be a huge

achievement, it is unlikely that anything new will be uncovered about the primordial

power spectrum unless smaller scales are probed. This should in theory be possible with

21cm observations if high enough redshifts can be targeted. For the best hope of a

detection of the Dark Ages 21cm power spectrum, an interferometer on the Moon

[5, 123, 282] (or beyond [122, 283]) would be required to reach the small scales, that

remain linear, at and above redshift 50. The constraining power of 3d 21cm power

spectra measurements are illustrated in figure 4.1. Compared to 2d CMB measurements

on large scales, and 3d large-scale structure probes on intermediate scales, both ground

and space-based 21cm interferometers have the potential to access an unprecedented

number of modes.

If Planck’s measurements of the primordial power spectrum on large scales extrapolate

to smaller scales, then the current most-favoured inflationary models (single-field,

slow-roll) will continue to be preferred. However, any deviation from the low-amplitude,

scale-invariant primordial power spectrum on small scales will point towards a different

inflationary scenario, as well as lead to other potential observables [211]. For example,
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Figure 4.1: An illustration of the scope of different cosmological probes for accessing

large numbers of modes. Note that the y-axes are different for each probe as described

here. In grey is the TT angular power spectrum in units of µK2 as shown on the

right-hand axis, with multipoles roughly mapped to wavenumbers by l ∼ 14000k/Mpc−1

[12]. In green is the dimensionless 3d matter power spectrum PDM computed with

CAMB at redshift 1, which large-scale structure probes such as LSST and EUCLID will

be sensitive to on scales between k ∼ 0.001− 0.1 Mpc−1 [13] up to around redshift 2.5.

In blue is the 3d 21cm power spectrum P21 in units of mK2 at redshift 27, which is the

highest redshift accessible from ground-based experiments such as HERA and SKA. In

red is the 3d 21cm power spectrum in units of mK2 at redshift 50, which would be

accessible from the Moon. Note that the maximum k for 21cm experiments is solely

based on the angular resolution for maximum baselines given in table 4.1.
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an enhancement in small-scale power could lead to the production of primordial black

holes or ultra-compact mini haloes, which could in turn provide the seeds for

supermassive black holes and the most massive galaxies [284–286].

21cm observations can therefore teach us about both inflation and current observables at

the same time. This could be complemented by a measurement of the integrated

small-scale power via spectral distortions of the CMB, or by the detection of second

order gravitational waves which would imply large primordial scalar perturbations, or by

the detection of primordial non-Gaussianity.

This paper is laid out as follows. In section 4.2 we outline the basics of 21cm Cosmology

that will enable us to produce the 21cm power spectra in section 4.3 from

inflation-motivated primordial power spectra. In section 4.4 we demonstrate the play-off

between density fluctuations produced during inflation and Poisson fluctuations in the

21cm power spectrum for different masses and abundances of PBHs and comment on

their relevance with respect to accretion effects. Finally we discuss possibilities for

detection in section 4.5 and then conclude.

4.2 21cm basics

The spin temperature Ts of neutral hydrogen is defined as

n1

n0
= 3e−

T∗
Ts (4.1)

where n1 and n0 are the number densities of neutral hydrogen in excited and ground

states respectively with nH = n0 + n1, and T∗ = 0.068K is the temperature

corresponding to the energy difference between the ground and excited states.

In order to see how the spin temperature evolves in time we can write down the rate

equations for the hydrogen atoms

n0(nHκ01 +B01uν) = n1(A10 +B10uν + nHκ10) (4.2)

where A10 is the probability of spontaneous emission known as the Einstein A coefficient,

B10 is the probability of stimulated emission (when an incoming CMB photon causes

another photon to be emitted and for the atom to drop from its excited to its ground

state), and B01 is the probability of stimulated absorption (when the atom absorbs a

CMB photon and it jumps from its ground to its excited state). The blackbody CMB

photons which mediate this process are described by the radiation field uν . κ10 and κ01

are the collisional rate coefficients for which we use the values tabulated in [287] - these
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Figure 4.2: The evolution of the CMB temperature, gas temperature and spin

temperature as a function of redshift.

describe the rate at which the atoms change states when they collide. In the limit of

T∗ � TCMB, Ts, (4.2) can be solved and the spin temperature can be written in terms of

the gas temperature, the CMB temperature, the collisional rate coefficients and the

Einstein A coefficient:

Ts = TCMB + (Tgas − TCMB)
C10

C10 +A10
Tgas
T∗

(4.3)

with C10 = nHκ10. Figure 4.2 shows the evolution of the gas temperature, CMB

temperature and spin temperature as a function of redshift. All three are in equilibrium

until a redshift of z ∼ 200 due to residual free electrons Thomson scattering off the gas

and the CMB photons. The gas then begins to cool as Tgas ∝ (1 + z)2 while the CMB

cools as TCMB ∝ (1 + z) and the spin temperature therefore deviates from both. By

around z ∼ 30, the collision rate becomes subdominant to the Hubble expansion and the

spin temperature couples to the CMB temperature once more. This redshift window

z ∼ 30− 200 is therefore the window where a 21cm signal could be observable, in

absorption relative to the CMB. The quantities Tgas, nH , x and TCMB are computed

using RECFAST [288]. Note that there is also an absorption signal during Cosmic Dawn

and the Epoch of Reionization at lower redshifts, which result in another more

prominent dip in Ts which we have not shown here.

The observable is not the spin temperature, but the brightness temperature T21 which

describes the contrast between the spin temperature and the CMB

T21 = τ
Ts − TCMB

z + 1
(4.4)

where the optical depth τ � 1 depends on the neutral hydrogen density local to the
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absorption

τ =
3cλ2hA10nH
32πkbTsH(z)

(4.5)

which can be approximated as [289]

τa = 0.025
TCMB

Ts

(
1 + z

51

) 1
2
(

Ωm

0.27

)− 1
2
(

Ωbh

0.035

)
. (4.6)

The sky-averaged brightness temperature can shed light on Cosmic Dawn and the Epoch

of Reionization around redshift 10, but for the purposes of probing the scale-dependence

of the 21cm signal at different redshift slices (and hence the primordial power spectrum),

we will be interested in the 21cm fluctuations which track the matter fluctuations.

We will compute the 3d isotropic 21cm monopole transfer functions numerically using

CAMB [24], which includes fluctuations in the density of the baryons, gas temperature,

ionization fraction, radial peculiar velocities and Lyman-alpha pumping efficiency.

However, fluctuations in the baryons will be largely dominant during the Dark Ages,

before luminous sources have formed. The linear Boltzmann equations used in CAMB to

calculate the 21cm monopole transfer functions are laid out in [290]. The non-linear

effect of the relative velocity between dark matter and baryons is not captured by

CAMB. This would enhance the 21cm power spectrum on large scales k < 1 Mpc−1,

suppress it on small scales k > 200 Mpc−1 and enhance it again on very small scales

k > 2000 Mpc−1 by order unity [291]. Since we are interested in boosts in power beyond

k > 1 Mpc−1, and do not expect to be sensitive to scales smaller than k ∼ O(10) Mpc−1

even with futuristic radio interferometers, we do not include their effects here.

4.3 Predictions for 21cm power spectra given different

primordial models

If the measurement of the primordial power spectrum on large scales by Planck

extrapolates to small scales, it will be of the form

PR = As

(
k

kp

)ns−1

(4.7)

with kp = 0.05 Mpc−1 and ns ≈ 0.965 [1]. However, there may be an increase in power

on small scales, which is theoretically motivated by the potential need to explain the

seeds of supermassive black holes and the most massive galaxies, as well as the possible

existence of primordial black holes or ultra compact minihaloes.
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Figure 4.3: Constraints from COBE/FIRAS [14, 15] on the primordial power spectrum

[16, 17] due to µ-distortions in orange - the shaded region is disallowed. Future

constraints from a PIXIE-like [18] probe in grey. Constraints are calculated with an

input primordial power spectrum that grows as k1.2 with a sharp cut-off. The value of

each point on the constraint curve represents the maximum amplitude that the peak of

such a primordial power spectrum can be without conflicting with the spectral distortion

constraints. The black dashed line grows as k1.2 from k = 1 Mpc−1 and PR = 10−9, i.e.

the steepest that the power spectrum can be if it starts to grow at k = 1 Mpc−1. The

blue dashed line is the canonical CDM parameterisation of the primordial power

spectrum with As = 2.09× 10−9 and ns = 0.965 [1].
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There are various constraints on the primordial power spectrum which must be

respected. The most relevant on the scales that 21cm observations may be able to probe

are those from spectral distortions of the CMB [14, 15], in particular y-distortions

constrain scales up to k ∼ 10 Mpc−1, and µ-distortions constrain scales between

k ∼ 1− 105 Mpc−1 [16, 17]. In order to avoid these, the fastest that the power spectrum

can grow from k = 1 Mpc−1 (where CMB constraints finish) is at a rate of k1.2. See

figure 4.3, where the constraint plotted at a given value of k represents the maximum

amplitude allowed by µ-distortion constraints for a power spectrum that grows like k1.2,

peaks at that value of k, and then falls to 0 for larger k. This sharp cut-off is a

conservative choice [95], however, if the power spectrum can’t decrease that quickly [96]

then the constraints will be tighter. For single-field models of inflation with canonical

kinetic terms, the fastest that the power spectrum can grow is k5 log k2 [96]. However,

when limited observationally by a maximum growth of seven orders of magnitude

between PR ∼ 10−9 and 10−2, the fastest growth can be approximated by k4 [95], which

also requires less restrictions on the evolution of the slow-roll parameters (see also [292]).

The largest scale where such a fast boost can occur whilst still avoiding µ-type spectral

distortion constraints is k ∼ 103 Mpc−1. 21cm observations offer a complimentary probe

of the primordial power spectrum on these scales to spectral distortions, because they

can probe the scale-dependence, whereas spectral distortion constraints are only sensitive

to the integrated contribution of power across the range of scales. If an experiment such

as PIXIE [248] (see [18] for a recent proposal) detected a larger signal than expected

from a Planck extrapolated power spectrum, the 21cm Dark Ages signal could identify

which scales are contributing to the surplus.

We now find the predicted 21cm signal for 4 different primordial power spectra at

redshift 27, the largest redshift accessible from the ground, and at redshift 50 when the

signal is largest and would be accessible by a future lunar array. We compute the 21cm

transfer functions with CAMB [24], which we combine with the four different primordial

power spectra to produce the 3d 21cm power spectra.

The four primordial power spectra chosen are shown in figure 4.4; in black is the

spectrum extrapolated from the CMB measurements of equation (4.7), in orange is the

piecewise primordial power spectrum that matches CMB measurements until

k = 1 Mpc−1 and then grows like k1.2 representing the maximum growth possible whilst

evading spectral distortion constraints, in grey is the primordial power spectrum that

matches CMB measurements until k = 1000 Mpc−1 and then grows like k4 and in purple
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Figure 4.4: The primordial power spectra corresponding to the 21cm power spectra in

figure 4.5.

is the primordial power spectrum produced from a ‘realistic’ inflationary potential [11]

that grows steeply on small scales before flattening off. The corresponding 21cm power

spectra are plotted at redshift 50 in figure 4.5.

An excess in power can be seen for the piecewise k1.2 growth which begins at

k = 1 Mpc−1 because the 21cm signal has a chance to grow before it is damped at large

k. The piecewise k4 growth is just visible in comparison to the Planck-extrapolated

spectrum at a scale of k = 1000 Mpc−1. The realistic and smooth model of [11] shows a

significant decrease in power which is common to inflection-point models of inflation

[95, 293], and the subsequent growth also produces a signal in excess of the Planck model

beyond k ∼ 300 Mpc−1, although note that this could be suppressed by relative velocity

effects [291].

If the primordial power spectrum is boosted on scales beyond k ∼ 0.1 Mpc−1, it is

plausible that 21cm interferometers will be sensitive to the signal (as well as possibly

inferred from detections of the global signal [294, 295]), and be able to distinguish it

from the signal expected from the simplest extrapolation of the Planck measurements to

small scales. This would test whether a more complicated inflationary scenario that goes

beyond the slow-roll approximation is required. We will discuss possibilities for detection

in section 4.5.
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Figure 4.5: 21cm power spectrum predictions at redshift 50 for 4 different primordial

power spectra as described in the text.

4.4 Primordial black hole production

If the primordial power spectrum continues to grow on small scales beyond those plotted

in figure 4.4 until it reaches amplitudes of order 10−3 − 10−2 [50, 56, 57, 62, 296],

primordial black holes would be necessarily formed on that scale (corresponding to a

mass via M/M� ≈ (k/k�)−2 [50]) due to the collapse of large density perturbations

reentering the horizon. The imprint on the 21cm signal of PBHs has been investigated

before by, for example, [285, 297–299], where the effect of accretion onto the PBHs is

taken into account, as well as the Poisson fluctuations sourced by the discrete

distribution of PBHs [300]. However, the primordial fluctuations that are necessary for

the PBHs to form in the first place have been previously neglected. In this work, we

investigate the interplay between the Poisson fluctuations and the initial fluctuations

generated during inflation, as plotted in the previous section, see figure 4.4. We focus on

regimes where accretion effects are likely to be small, and show that the primordial

power spectrum cannot be neglected when calculating the 21cm signal in these cases.

Whilst PBHs will begin accreting matter at the beginning of the matter-dominated

epoch, they only have an effect on the 21cm signal once the temperature of the CMB is

low enough so that deviations to the spin temperature and hence the brightness

temperature are noticeable. Deviations are caused by the heating and ionisation of the
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IGM due to the matter falling onto the PBHs. The energy is radiated by either x-ray

emission or advection-dominated accretion flow and can have both local and global

effects [299].

In this paper, our focus is on the signal at redshift 50, since it is with very low frequency

radio interferometers that the smallest scales will be detectable. At redshift 50, effects of

accretion on the brightness temperature are expected to be small [299], except for in the

case of very large PBH masses and/or abundances. Since a boost in small-scale

primordial power would be necessary for even just one PBH to be formed [246], we

consider small fPBH so as to emphasize the importance of including the primordial power

spectrum contribution, when there would be no PBH signature in the 21cm signal from

accretion effects. In order to explain the seeds of supermassive black holes with PBHs,

only small abundances of PBHs would be required, meaning that quantifying the 21cm

power spectrum in these cases is well-motivated. There may still be small effects on the

21cm power spectrum due to accretion, for example [299] show that the 21cm power

spectrum differs by a factor of ∼ 4 between the cases of no PBHs and fPBH = 10−4 with

MPBH = 100 M� at redshifts between z ∼ 15− 20, i.e. for the Cosmic Dawn absorption

signal. The effect at higher redshifts during the Dark Ages should be even smaller given

that the signal itself is expected to be around five times smaller than during Cosmic

Dawn. Given also the uncertainties in the modelling of the accretion mechanism, for

example the fact that spherical accretion is assumed [299], we will not include them here

and leave a detailed analysis to future work.

If one was instead interested in constraining PBHs as a dark matter candidate with fPBH

as close to 1 as possible, accretion effects would be imperative to understand fully and

include in the calculation. In addition, at redshifts below z ∼ 30, the effects of accretion

are much more pronounced, although still heavily dependent on the mass and abundance

of the PBH population. They may directly compete with the contribution from

primordial fluctuations, and we leave a full investigation to future work. Given that

ground-based interferometers which would be sensitive to redshifts up to z ∼ 27 cannot

reach small enough scales to be sensitive to a boost in the primordial power spectrum,

accretion effects may be the only way of detecting PBH signatures in the 21cm signal, as

has been previously investigated [285, 297–299].

Even if they made up all of the dark matter, the typical separation between PBHs is

much larger than the comoving horizon size at the time of formation, and therefore their

distribution can be described by a Poisson distribution (unlike particulate dark matter).
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The Poisson fluctuations are sourced by the already-formed PBHs, and the power

spectrum of the Poisson fluctuations is [300, 301]

PPoisson(z) =
9

4
(1 + zeq)2D2(z)

f2
PBH

nPBH
(4.8)

where 9
4(1 + zeq)2 is the transfer function for isocurvature perturbations, since they are

only coupled to the dark matter content, and zeq is the redshift of matter-radiation

equality which we take to be 3449. D(z) is the growth factor normalised to unity today,

which we calculate using CAMB to be approximately 0.025 at redshift 50 and

approximately 0.05 at redshift 27. nPBH is the comoving number density of PBHs, and

the factor f2
PBH/nPBH can be rewritten as fPBHMPBH/ΩDMρcrit which will be of

importance later when we discuss the degeneracy of the mass and abundance of PBHs in

the 21cm signal. The combined contribution to the matter power spectrum is then given

by [300]

P21,combined = P21,adiabatic +
T 2

21

T 2
DM

k3

2π2
PPoisson, (4.9)

where P = k3/2π2P for all quantities. The combined 21cm power spectrum is then

calculated by using the 21cm transfer functions, T 2
21, and the CDM transfer functions,

TDM, from CAMB at a given redshift.

We focus on 2 different masses of PBHs, 100M� and 104M�, as these are the largest and

smallest mass PBHs that can be produced without conflicting with either spectral

distortion or pulsar timing array constraints (e.g. [95, 281]), and could be respectively

produced from the primordial power spectra growing like k1.2 and k4 plotted in figure 4.4.

A non-monochromatic PBH mass function is inherent in the non-monochromatic power

spectra, however we assume a monochromatic mass spectrum for the PBH population in

the Poisson contribution. It was shown in [95] that the mass function of PBHs produced

from even very shallow primordial power spectra on the low-mass end drops off quickly.

We therefore expect Poisson contributions due to extended mass functions to affect a

very small range of scales larger than the peak of the PBH distribution and do not

include them here. For a fuller discussion of PBHs with extended mass distributions and

the 21cm signal, see [302]. Note that PBHs with masses < 0.1M� can be readily

produced without conflicting with any additional power spectrum constraints - their

abundance is only limited by various constraints of their ‘direct’ non-detection which

vary between fPBH = 1 and fPBH ∼ 10−5 depending on the mass. PBHs with masses this

low, however, would form on scales too small to be detectable with 21cm experiments.

For MPBH = 100M� the Poisson contribution is by far a sub-dominant effect for all fPBH
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Figure 4.6: The 21cm power spectrum at redshift 50 for the scenario where 100M� PBHs

are produced with abundance fPBH = 10−4. In orange is the 21cm signal prediction

taking into account just the boost in the primordial power spectrum, in green is just the

Poisson contribution, and in purple is the combined result. In black is the 21cm power

spectrum produced by extrapolating the primordial power spectrum measured by Planck

to small scales. This demonstrates that it is important to include the primordial power

spectrum boost, so as not to underestimate the 21cm power spectrum signal.
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in comparison with the primordial power spectrum growing like k1.2 because it occurs on

much smaller scales. This means that neglecting the primordial power spectrum would

predict a 21cm signal that is too small. This is shown in figure 4.6, where the 21cm

power spectrum at redshift 50 is plotted. For 100M� PBHs, the orange line is just the

primordial power spectrum contribution, the green line is just the Poisson contribution,

and the purple line is the combined result. On scales beyond k ∼ 1 Mpc−1, the

primordial signal is much larger than the Poisson contribution, showing that only

including the Poisson fluctuations underestimates the 21cm signal if the primordial

power spectrum is boosted on larger scales than the Poisson fluctuations affect. Any

boost in the primordial power spectrum that occurs in the range k ∼ 0.1− 100 Mpc−1

should therefore be included in 21cm signal predictions.

The k4 primordial power spectrum (grey line in figures 4.4 and 4.5) would produce PBHs

with masses around MPBH = 104M�. In this scenario, since the the primordial

fluctuations grow very steeply, the boost only needs to occur on very small scales and the

Poisson fluctuations generally dominate. We show this in figure 4.7. The orange line is

just the primordial power spectrum contribution, whilst the green and purple lines show

the signal including the Poisson fluctuations for the combinations

fPBHMPBH/M� = 100, 1 respectively. Whilst the boosted primordial fluctuations can be

extrapolated to infer a most likely PBH mass produced (up to uncertainties in the mass

function and horizon mass relationship), due to the degeneracy between fPBH and MPBH

in the Poisson power spectrum, if the Poisson fluctuations dominate, the information

about the mass and abundance individually is lost. In this situation, accretion effects

may be able to distinguish between the two, however at redshift 50 they are likely to be

small and therefore need to be accounted for very accurately. We leave an investigation

of the interplay between all three effects at high redshift for future work.

Note again with relevance to all of the plots in this section, that relative velocity effects

may boost the large-scale signal (k < 1 Mpc−1) and suppress the small-scale signal

(k > 200 Mpc−1) [291]. The large-scale signal is unimportant for distinguishing between

the usual Planck-extrapolated power spectrum and a boost in primordial fluctuations,

and as will be shown in section 4.5, despite the small-scale signal being important in the

context of primordial black hole production and the associated primordial fluctuations,

even space-based detectors will not be able to reach small enough scales where this effect

would be important.
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Figure 4.7: The 21cm power spectrum at redshift 50. The orange line only includes the

primordial fluctuations contribution, for the primordial power spectrum that grows like

k4 and would produce 104M� PBHs if extrapolated. The green and purple lines include

the Poisson fluctuations for fPBHMMPBH/M� = 100, 1 respectively. Since the primordial

boost happens on very small scales, the Poisson contribution is dominant.



99

HERA SKA Lunar

Rmax 0.876km 5km 300km

fcov 0.08 0.01 0.75

Bandwidth 100MHz 2GHz 50, 100 MHz

Tsky 2000 K 2000 K 104K

tint 1000 hours 1000 hours 1000 hours

ε 1 1 1

Table 4.1: Parameters describing HERA, SKA and lunar arrays.

4.5 Possibilities for detection

For a rough estimate on the sensitivity of SKA to the Dark Ages 21cm signal, the scaling

relation derived in [303] from the prescription in [304] can be used which gives an

approximation for the 1− σ error on the 21cm power spectrum at a given k and z:

√
k3δP21

2π2
∼ 0.1 mK

ε1/4fcov

(
k

0.04 Mpc−1

)3/4(
Tsky

104K

2 km

Rmax

)(
10 MHz

B

)1/4(
1000 hr

tint

)1/2(
1 + z

50

)
(4.10)

where ε is the frequency in k that the data is binned, fcov is the array covering factor,

Tsky is the temperature of the Galactic synchrotron foreground at the frequency of the

observation, Rmax is the radius of the (circular) array, B is the bandwidth, and tint is the

number of hours of integration. Whilst this scaling relation only gives a rough estimate

on the detectability of the signal, it does capture the sensitivity of the errors to the

various interferometer design parameters. Since SKA-Low is yet to be built, and a lunar

interferometer yet to be funded, this rough estimate suffices in our case to get a guide on

the sensitivity required.

For the best hope of observing low frequencies, i.e. high redshifts and smaller scales, it

will be necessary to go to the Moon. Using the parameters proposed by [285] for a lunar

radio interferometer in table 4.1, according to equation (4.10), the sensitivity is shown by

the red region in figure 4.8.

Assuming perfect foreground removal, the lunar array should be sensitive enough to

measure the 21cm power spectrum at redshift 50 up to k ∼ 12 Mpc−1. This would enable

a clean distinction between the expected matter power spectrum from an extrapolation

of the Planck measurements on large scales, and any deviations. Extra power, or a lack
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Figure 4.8: The same 21cm power spectrum as in figure 4.6 at redshift 50. A rough

estimate of the sensitivity of a possible configuration for a radio interferometer on the far

side of the moon is shown by the red dashed line.

of power, on the as of yet unexplored small scales beyond k ∼ 0.1 Mpc−1 should be

observable. In addition, multiple 3d power spectra at several redshift slices could be

stacked in order to increase the signal-to-noise of the detection. We demonstrate this

below with a Fisher forecast for three parameters that describe a small-scale boost in

power.

We have defined the smallest scale detectable as determined entirely by the angular

resolution of the detector, given by kmax ∼ 2πRmax/14000λ(z) Mpc−1, and we have

focused on the isotropic power spectrum for which the signal should be largest. However,

given that foregrounds are expected to especially dominate the Fourier modes in the

angular direction, k⊥, (see, for example, [128]) it might be possible to reach smaller

scales in the line-of-sight direction k‖. Whilst the non-isotropic power spectrum would

exhibit a smaller signal, better spectral resolution of the detector might be possible and

therefore a larger k‖ could be reached than the kmax defined by the angular resolution. A

signal in the parameter space away from the foreground ‘wedge’ would simplify the

foreground removal task somewhat, however the number of independent modes lost to

the wedge would decrease the signal-to-noise of any detection. See [129] for a recent

investigation of using the anisotropic power spectrum to extract more cosmological

information from line-intensity mapping.
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Figure 4.9: The 21cm power spectrum at redshift 27 for the scenario where 100M� PBHs

are produced with abundance fPBH = 10−4. In orange is the 21cm signal prediction

taking into account just the boost in the primordial power spectrum, in green is just the

Poisson contribution, and in purple is the combined result. In black is the 21cm power

spectrum produced by extrapolating the primordial power spectrum measured by Planck

to small scales. A rough estimate of the sensitivity of HERA and SKA are shown by the

green and blue regions.
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To put into context the foreground removal challenge, the temperature of the galactic

synchrotron foregrounds are of the order Tsync ∼ (1 + z)2.6. During the Cosmic

Dawn/Epoch of Reionization era, the foregrounds therefore have a temperature of

between 500− 1000 K whilst the global 21cm signal is of the order O(100) mK. During

the Dark Ages, the temperature of the foregrounds (not including extragalactic radio

sources) are around an order of magnitude larger, Tsync ∼ 105 K, and the global 21cm

signal is around five times smaller at the T21 ∼ 20 mK level. Whilst this is a big

challenge to remove foregrounds 4-6 orders of magnitude larger than the signal and be

sure that everything left-over is pure signal alone, there is hope in that the foregrounds

are expected to be spectrally smooth, and in foreground avoidance methods as opposed

to subtraction as mentioned above [128, 129].

Using parameters that emulate the HERA configuration and a possible SKA-Low

configuration given in table 4.1, it is possible to put a rough estimate on the sensitivity

to the 21cm signals predicted in the previous section at z ∼ 27. This is shown by the

green and blue regions in figure 4.9. The angular resolution means that neither HERA

nor SKA-Low will be sensitive to small enough scales to go beyond the tightly

constrained Planck measurements of the isotropic power spectrum up to k ∼ 0.1 Mpc−1.

This means that PBH signatures will only be detectable if the PBH masses and

abundances are large so that accretion effects dominate [285, 298, 299, 302]. Note that

the scaling relation (4.10) does not take into account sample variance. This suffices in

our case because we are interested in the sensitivity at small scales where the noise

dominates, however it would be important for an accurate SKA error estimate on large

scales. Furthermore, astrophysical sources would contaminate the signal at these

redshifts [305], and would need to be taken into account for an accurate prediction.

We perform a Fisher forecast for three parameters that describe a boost in the power

spectrum which could be detected in the 21cm signal. We parametrise the 21cm power

spectrum as

P21 = T 2
21

(
As

(
k

k∗

)ns−1
+Bs

(
k

kinc

)nb)
+

T 2
21

T 2
DM

9

4
(1 + zeq)2D2(z)

k3

2π2

fPBHMPBH

ΩDMρc

(4.11)

with T21 the 21cm monopole transfer function and TDM the cold dark matter transfer

function at a given redshift, kinc the scale at which the primordial power spectrum is

boosted from near scale-invariance, nb is the spectral index of the boosted part of the

spectrum, and Bs = As (kinc/k∗)
ns−1. We will use kinc, nb and fPBHMPBH as the three

parameters for our Fisher forecast. The Fisher matrix for the 21cm power spectrum is
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kinc [Mpc−1] nb

Rmax = 300km

1± 0.0037 1.2± 0.0063

5± 0.22 1.2± 0.046

5± 0.18 2± 0.044

Rmax = 500km

1± 0.0022 1.2± 0.0038

5± 0.13 1.2± 0.028

5± 0.11 2± 0.026

Rmax = 500km 1± 0.0017 1.2± 0.0028

fcov = 1 5± 0.098 1.2± 0.021

5± 0.081 2± 0.020

Table 4.2: 1− σ errors on fiducial values of the parameters kinc and nb for the lunar

array as described in table 4.1.

defined as [306]

Fαβ =
∑
k,z

1

ε2(k, z)

∂P21(k, z)

∂θα

∂P21(k, z)

∂θβ
(4.12)

with θ representing the three parameters we have chosen, ε is the error on the 21cm

signal given in equation (4.10) and the 1− σ error bars on a single parameter we

calculate with σ =
√
F−1
αα . We bin the 21cm transfer functions in increments of ∆k = k

to be consistent with ε = 1 in equation (4.10), and we sum over three redshift slices at

z = 49, 50, 51. We assume these slices are independent based on a frequency resolution of

∆ν = 0.1 MHz, whilst the redshifts z = 49, 50, 51 correspond to frequencies of

ν = 28.6, 28.0, 27.5 MHz respectively. A calculation of the correlation length between

redshift slices shows that this is a reasonable assumption in [307]. As HERA and SKA

are only likely to be sensitive to the 21cm power spectrum up to k ∼ 0.07 Mpc−1 and

k ∼ 0.4 Mpc−1 respectively, the lunar array is the only experiment that would be

sensitive to kinc ≥ 1. We find that the proposed specifications for the lunar array will be

very sensitive to kinc and nb but will not be able to constrain the parameter fPBHMPBH

at all, given that it becomes important at much smaller scales. We therefore just report

the resulting 1− σ error bars for fiducial values of kinc and nb in table 4.2, and show the

effect of varying Rmax and fcov.
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4.6 Conclusions

Dark ages exploration has unexcelled reach in probing excess power in the primordial

spectrum on scales far smaller than those probed by the CMB or LSS, see the

illustration in figure 4.1. Not only is this range of parameter space uniquely accessibly

via 21cm spectroscopy at high z ∼ 30− 80, without any contamination from the first

stars, but the huge number of modes available, further boosted by 21cm tomography, in

exploiting power down to k > 10 Mpc−1 makes this potentially the most sensitive

cosmological probe possible. Of course this is a futuristic view as the foregrounds are

many orders of magnitude larger at such low frequencies, ideally ∼ 30 MHz, amounting

to a brightness temperature thousands of times larger than the elusive signal at the tens

of mK level. However, CMB primordial B-mode detection faces a comparable foreground

challenge, where the current CMB-S4 goal of B-mode sensitivity at the few mK level

may not be insurmountable. We hence consider that it is worthwhile to develop

predictions in this paper without entering into the details of the foreground limitations.

Identification of the nature of dark matter remains the highest priority in particle

astrophysics and cosmology. The primordial black hole is the principal weakly interacting

candidate for non-baryonic dark matter that does not require the existence of a new

particle beyond the standard model. The challenge is to develop initial conditions in the

post-inflationary universe that can produce PBHs in the empirically allowed mass range.

Whilst the mass window for all of the non-baryonic dark matter to be made up of PBHs

is limited to the sub-lunar range, bounded by Hawking evaporation limits from the

diffuse gamma ray background at the lower end and gravitational microlensing of M31 at

the upper end, more specifically to the mass range 10−17 - 10−9 M�, a population of

larger PBHs could still be astrophysically significant even with small abundances, which

is what we consider here. This is due to the fact that they could account for the

population of seed black holes required to account for the presence of supermassive black

holes at z >∼ 6, namely fPBH ∼ 10−4. Furthermore they could account for some or all of

the LIGO detections of unexpectedly massive black holes, possible if the PBH mass

fraction satisfies fPBH ∼ 0.01. In addition, standard PBH production scenarios require a

deviance from scale-invariance in the primordial power spectrum, and therefore a

detection of small-scale power would also be informative for understanding inflationary

dynamics.

We have found that PBH production in the observationally motivated range of

10− 104M�, requires the power spectrum to be sufficiently boosted by primordial
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fluctuations. If this boost occurs on larger scales, k ∼ 0.1− 100Mpc−1, this contribution

must be accounted for in the 21cm power spectrum so as not to underestimate the

signal. Depending on the mass and abundance, Poisson fluctuations can also become

important, and in that case accurate modelling of accretion effects at high redshifts will

be vital to identify the underlying PBH population producing the signal. These

signatures could become potentially observable in the 21cm power spectrum with the

new generation of filled low frequency interferometers. Evidently our predictions, which

lack any modelling of foregrounds, are unrealistic, but we hope that they will motivate

improved cleaning algorithms that can enable us to access this intriguing corner of

PBH-motivated parameter space.
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Chapter 5

Conclusions

Deciphering how inflation happened is one of the biggest challenges in cosmology today.

Our best hope for answering this question is by studying the overdensities and

underdensities left over at the end of inflation. Large-scale measurements of the

primordial power spectrum have shown that the simplest models of inflation, namely

single-field slow-roll, are able to produce the almost scale-invariant distribution of

overdensities and underdensities observed today. More complicated models, for example

multifield models or those with non-canonical kinetic terms could also produce this

distribution, and higher-order statistics such as the bispectrum or a detection of

primordial gravitational waves would be required to make the distinction. However, on

smaller scales, there are far fewer constraints on the primordial power spectrum which

means that there could be some sort of feature or peak that can’t be explained by a

single-field slow-roll model of inflation. Just by studying the two-point statistics of the

smaller scales, it is possible to make connections between inflationary models and

observations today.

We have seen that primordial black holes are a probe of primordial fluctuations, because

they should generically form from the collapse of very large overdensities re-entering the

horizon immediately after inflation. This means that if they are observed today, a strong

scale-dependence in the primordial power spectrum would be required for their

production in order to boost the amplitude of the fluctuations from the small value that

has been measured on large scales via anisotropies of the Cosmic Microwave Background

[26].

The investigation of this probe is further motivated by the fact that primordial black

holes are a dark matter candidate that do not require the existence of any new particles

beyond the standard model. Their recent resurgence in popularity is predominantly due
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to the gravitational wave detections of order 10 solar mass black holes by the

LIGO/Virgo collaboration [88]. Even though it is looking unlikely that primordial black

holes of this mass-range can make up all of the dark matter, there is a lower

mass-window of the order 10−13 M� where this could still be possible. Furthermore, even

a very small fraction of the dark matter being accounted for by primordial black holes

would have strong implications for inflationary dynamics, and could also provide the

seeds of supermassive black holes [284, 285].

In chapter 2, we explored the requirements on the primordial power spectrum for even

just one primordial black hole to form. Due to the logarithmic sensitivity of the

primordial power spectrum to the abundance of primordial black holes, assuming

Gaussian initial fluctuations, the requirement on the amplitude of the primordial power

spectrum to form a single primordial black hole versus enough to make up all of the dark

matter only differs by around between a factor of 2 and 5 depending on the scale. Whilst

this means that improving the direct detection constraints on primordial black holes will

not help to constrain the primordial power spectrum considerably more than they

already have, it does mean that the detection of just one primordial black hole would be

extremely prescriptive for inflationary model-building, since it would imply that a very

large peak in the power spectrum at a particular scale must have been present (or else

some other primordial black hole production mechanism would be required).

Non-Gaussian initial conditions may soften this requirement by an order of magnitude or

so, whilst a phase of early matter-domination after inflation could circumvent the need

for a boost in the primordial fluctuations at all in order to produce a considerable

number of primordial black holes. We showed in chapter 2 that for certain durations of

an early matter-dominated phase, even with a scale-invariant power spectrum

extrapolated from the large-scale Planck measurements, PBHs could actually be

overproduced, i.e. this scenario would be in conflict with current observational

constraints on the abundance of primordial black holes.

Having determined that there are tough requirements on the primordial power spectrum

for primordial black hole production in the standard, radiation-dominated scenario, it

then becomes a question of how the large overdensities can be produced from a

single-field inflationary model. It is necessary to go beyond the slow-roll regime in order

to achieve a 7 order of magnitude growth in the power spectrum from single-field

inflation, which is usually realised by slowing down the inflaton as it rolls down its

potential. An inflection point, flat section, or local maximum in the potential is capable
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of doing this, although ‘realistic’ inflationary models with this feature are usually very

delicately designed with fine-tuning of the order 1 part in 107 in order to achieve a large

enough boost in the fluctuations [11, 208, 212].

Not only must the primordial power spectrum’s boost in amplitude be large enough, but

the width of the feature must be able to thread itself through the small-scale constraints,

although they are currently quite weak. In chapter 3, we determined an upper bound on

the spectral index of the power spectrum that can be realised by single-field models of

inflation which exhibit a phase of slow-roll, followed by some beyond slow-roll regime.

By breaking the slow-roll conditions with increasing degrees of severity, we found that

the power spectrum can’t grow faster than k4. This has an effect on power spectrum

constraints from probes such as spectral distortions and primordial gravitational waves

because they should be calculated assuming that, at best, the power spectrum can grow

only as fast as k4, rather than assuming that it can be boosted instantaneously at a

given scale. In terms of implications for primordial black hole production, this means

that the viable mass ranges for primordial black holes to have been produced are

narrower than previously calculated, because the power spectrum can’t always grow fast

enough to avoid constraints at a given scale. We recalculated the current constraints on

the primordial power spectrum from spectral distortions and secondarily produced

primordial gravitational waves assuming a k4 growth for the power spectrum instead of a

monochromatic boost. We found that an extra half an order of magnitude in k can be

constrained, which corresponds to an order of magnitude in primordial black hole mass.

With future observations, it could be possible to entirely close mass-ranges of primordial

black hole production that would naively be expected to still be viable if the constraints

are calculated for monochromatic power spectra. Furthermore, due to the results of

chapter 2, if constraints on the primordial power spectrum rule out amplitudes of

10−2 − 10−3 across a range of scales, not only will primordial black holes be ruled out as

making up the dark matter on those mass-ranges, they will be ruled out as existing at

all, assuming Gaussian initial fluctuations and that they formed in radiation-domination.

After the publication of the work that makes up chapter 3, reference [96] appeared. They

showed that it is in fact possible to obtain a slightly steeper growth of the power

spectrum, if a period of ultra-slow-roll is preceded by a period of gently broken slow-roll

(a phase of η = −1). The slope can reach a limit of k5(log k)2 in this case. However, if

the large-scale measurements from Planck are to be respected, a period of slow-roll is

required to reproduce the scale-invariance. This means that fluctuations over only a
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small range of scales can experience a faster than k4 growth in the power spectrum, and

hence the implications found for the observational constraints in chapter 3 do not differ

significantly. Furthermore, an inflationary potential that can exhibit this evolution of the

second slow-roll parameter has not been found.

In chapter 4, we investigated a ‘late-time’ probe of the primordial fluctuations in the way

of the 21cm Dark Ages signal. Between redshifts z ∼ 30− 150 the distribution of neutral

hydrogen can be mapped out via the power spectrum of the 21cm absorption signal,

which is a consequence of neutral hydrogen’s spin-flip transition. The existence of

primordial black holes may alter the ‘standard’ predicted 21cm signal in three ways: due

to accretion of matter onto the primordial black holes, the Poissonian contribution due

to the discrete nature of the primordial black hole distribution, and due to the fact that

large primordial fluctuations must have been present to produce the primordial black

holes in the first place as demonstrated in chapters 2 and 3. The first two effects have

been studied previously [285, 297, 299, 302], whilst chapter 4 investigates the

contribution of the third effect to the signal, especially in cases where the effects of

accretion are expected to be small, for example if there is only a small population of

primordial black holes.

We found that a boost in small-scale primordial fluctuations would be present in the

21cm power spectrum, but that in order to detect such a signal, a space-based detector

would be required. This is due to the fact that ground-based detectors can’t reach low

enough frequencies because the Earth’s atmosphere reflects radio waves below around

50 MHz, as well as that a very large array is required to reach small scales. We showed

that it is vital to include the contribution from primordial fluctuations so as not to

underestimate the signal, however there is a lot of work to be done in terms of both

modelling and detecting the 21cm signal. Concerning primordial black holes, an accurate

prescription for the accretion effects on the 21cm signal is required, and this should be

included with the contributions from the primordial fluctuations. In general, precise and

reliable foreground modelling is going to be paramount for successfully detecting the

21cm power spectrum at high redshift [128].

5.1 Future outlook

Arguably, the detection of a primordial black hole is the most exciting prospect for the

future of this field. The distinction from those of astrophysical origin would be most

readily provided if its mass was less than the Chandrasekhar limit (. 1.3 M�). Not only
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would this explain at least a (possibly very small) fraction of the dark matter budget,

the required inflationary potential for the production of the overdensities that could

collapse to form the primordial black hole would be very restricted if single-field models

are still preferred. Otherwise, a more complicated production mechanism will need to be

specified.

In terms of direct detection, microlensing experiments have the best sensitivity to

sub-solar mass black holes, although the LIGO/Virgo collaboration does have some

sensitivity and the results from the third observing run will provide more constraints.

Future proposed detectors such as the Einstein Telescope [308] will also improve chances

of a detection and/or constraints. Theoretically, a better understanding of black hole

spins, mass functions and merger rates in both the primordial and astrophysical cases

will facilitate more robust analyses of the observational data.

In terms of indirectly constraining primordial black holes via the primordial power

spectrum, and hence constraining inflation directly at the same time, 21cm experiments,

future spectral distortion probes and gravitational wave searches provide the most likely

chances of success. A space-based radio interferometer will be able to map out the 21cm

power spectrum at redshifts z ∼ 30− 50 down to a scale of k ∼ 12 Mpc−1. A spectral

distortion probe similar to the PIXIE proposal [107] would constrain the primordial

power spectrum to an amplitude of PR ∼ 10−8 − 10−9 across scales down to

k ∼ 105 Mpc−1. Pulsar timing array constraints from SKA will constrain even smaller

scales, k ∼ 106 − 108 Mpc−1, to the level of PR ∼ 10−5, and finally LISA will constrain

the primordial power spectrum via secondarily produced gravitational waves to the

PR ∼ 10−4 level on scales around k ∼ 1012 Mpc−1. This latter constraint will also rule

out primordial black holes as forming from the standard mechanism in the last

remaining window where they could make up all of the dark matter.

There are various theoretical uncertainties on the amplitude of the primordial power

spectrum required for primordial black hole production which need further investigation.

Further to the numerical work in chapter 3, we have begun to investigate the amount of

primordial non-Gaussianity produced from beyond-slow-roll single-field models of

inflation. If it is non-negligible, then the calculation of the abundance of primordial

black holes will need to be revised so as to account for this effect. There is also ongoing

work, see for example [232, 233], on the effect of quantum fluctuations on inflationary

dynamics in beyond-slow-roll models of inflation that could effect primordial black hole

production. Finally, uncertainties on the relationship between the horizon mass and the
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PBH mass produced, and the effect of the window function used to smooth perturbations

in the calculation of the primordial black hole abundance also need to be clarified.

If primordial black holes are ruled out as forming from overdensities collapsing after

inflation via either direct detection constraints1 or indirectly via the primordial power

spectrum, the focus will need to shift to more exotic production mechanisms such as the

collapse of topological defects or considering a different thermal history such as an early

matter-dominated phase for them to survive as either a dark matter candidate or a relic

of inflation.

More broadly, the distinction between single-field and multifield models of inflation will

be probed further with upcoming CMB and large-scale structure experiments such as

Simons Observatory [43], SPHEREX [44] and the proposed PICO mission [309], which

will all improve constraints on primordial non-Gaussianity on large scales to beyond the

threshold of f localNL . 1.

Primordial black holes have the ability to both explain dark matter and provide specific

requirements on the inflationary potential. Confirming or falsifying their existence has

drawn together theorists and observers from many different fields, and as a concept that

has endured since the 1970s, its increased recent interest will hopefully facilitate a

conclusion in the near future. Advances in the understanding of small-scale probes

including spectral distortions, gravitational waves and the Dark Ages 21cm signal will

complement the primordial black hole discussion, as well as concurrently exploring varied

elements of early universe cosmology.

1Note that it will be very difficult to rule them out entirely via direct detection, but constraining them

to make up a negligible fraction of the dark matter budget would be possible.
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Appendix A

The primordial power spectrum

from matching

It is possible to arrive at an analytic understanding of various features of the shape of

the primordial power spectrum generated by transiting into and out of a phase of ultra

slow-roll (USR) inflation by approximating the evolution of η as a series of phases of

constant η, and matching between these phases. In this appendix, we’ll perform a series

of matchings, culminating in a four-stage matching from η ≡ 0→ −2→ −6→ 2→ 0.

We begin by matching from η = 0 to η = −6 (USR) and back to η = 0. For this we need

the mode functions for inflation for each phase, which are obtained from the equation of

motion for the Mukhanov-Sasaki variable, υk = zR, where z2 = 2a2M2
plε and R is the

comoving curvature perturbation:

υ′′k + (k2 − z′′

z
)υk = 0. (A.1)

By directly differentiating z with respect to conformal time, it can be shown that

z′′

z
= (aH)2

(
2− ε+

3

2
η +

1

4
η2 − 1

2
εη +

1

2

η̇

H

)
. (A.2)

Equation (A.2) is exact to all orders. Assuming that ε� 1, we can rewrite equation

(A.1) as

υ′′k + (k2 −
ν2 − 1

4

τ2
)υk = 0, (A.3)

with a new parameter ν defined as

ν2 =
9

4
+

3

2
η +

1

4
η2 +

η̇

2H
. (A.4)

The solutions for the canonically normalised mode function are of the form

vk =

√
π

2
ei(ν+ 1

2)π2
√
−τH(1)

ν (−kτ) (A.5)
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in linear combination with its complex conjugate, where H
(1)
ν (−kτ) is the Hankel

function of the first kind.

For a constant η phase, the last term in (A.4) vanishes, and we find that for η = −6 and

η = 0, ν2 = 9/4, with ν = −3/2 corresponding to USR and ν = 3/2 corresponding to SR.

The curvature perturbation is obtained via Rk = v/z with z2 = 2a2M2
plε, and we now

find the mode equations for each phase. For ν = 3/2 (phase 1, η = 0), the curvature

perturbation is given by

R(1)
k = i

H

Mpl

1√
4ε1k3

[
c(1 + ikτ)e−ikτ − s(1− ikτ)eikτ

]
, (A.6)

where ε(τ) = ε1 is treated as constant and c, s are constant coefficients to be found via

the matching, and they should satisfy the Wronskian condition. This needs to be

matched to the Bunch-Davies vacuum in the limit τ → −∞, so the mode equation

during the first phase of η = 0 reduces to

R(1)
k = i

H

Mpl

e−ikτ√
4ε1k3

(1 + ikτ) (A.7)

i.e. c = 1 and s = 0. Using the relation H
(1)
−3/2 = −iH(1)

3/2, and writing ε(τ) during USR as

ε(τ) = ε1

(
a(τ1)

a(τ)

)6

= ε1

(
τ

τ1

)6

(A.8)

where τ1 is the time of transition between η = 0 and η = −6 and the second equality

comes from aH = −1/τ , we find the canonically normalised mode functions during the

phase of η = −6 (phase 2, USR) to be

R(2)
k = i

H

Mpl

(τ1/τ)3

√
4ε1k3

[
c1(1 + ikτ)e−ikτ − s1(1− ikτ)eikτ

]
, (A.9)

where τ1 and ε1 are fixed, and the coefficients c1 and s1 will be determined by the

matching from the η = 0 phase, and hence will be in terms of k and τ1.

The matching conditions between the two phases are given by the Israel junction

conditions [220, 221]

[Rk]± = 0,
[
z2R′k

]
± = 0. (A.10)

The first of these is determined by requiring that the metric be continuous across the

transition. The second follows from the equation for the mode function Rk:

R′′k +
(z2)′

z2
R′k + k2Rk = 0, (A.11)

which implies that(
z2R′k

)′
= −z2k2Rk. (A.12)
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Integrating the above over an infinitesimal interval around the transition and recalling

the continuity of Rk and z2 results in the second condition in (A.10). So, continuity

between R(1)
k and R(2)

k at τ1 results in the equation

(1 + ikτ1)e−ikτ1 = c1(1 + ikτ1)e−ikτ1 − s1(1− ikτ1)eikτ1 , (A.13)

and continuity of the time derivatives R′(1)
k and R′(2)

k at τ1 requires

k2τ1e
−ikτ1 = c1e

−ikτ1
(
k2τ1 −

3

τ1
(1 + ikτ1)

)
− s1e

ikτ1

(
k2τ1 −

3

τ1
(1− ikτ1)

)
, (A.14)

which together imply that

s1 =
3 i e−2ikτ1

2(kτ1)3
(1 + ikτ1)2 (A.15)

and

c1 = 1 +
3i(1 + k2τ2

1 )

2(kτ1)3
. (A.16)

We see that in the limit τ1k → −∞, that is for modes that are deep within the Hubble

radius at τ1, θk → 0, which means that the corresponding modes are still in the BD

vacuum during USR.

In order to meaningfully talk about a late time power spectrum, we need to end USR,

otherwise the modes grow unboundedly. To model this, we consider a transition from

USR back to a phase of η = 0. In the final phase, the mode function corresponds to the

usual case (A.6) but with constant ε given by ε2 = ε1(a1/a2)6 = ε1(τ2/τ1)6, where

log(a2/a1) is the total number of e-foldings of USR:

R(3)
k = i

H

Mpl

(τ1/τ2)3

√
4ε1k3

[
c2(1 + ikτ)e−ikτ − s2(1− ikτ)eikτ

]
. (A.17)

We therefore need to compute another matching between the mode functions in (A.9)

and (A.17) at time τ2, which is when USR ends, in order to determine c2 and s2 which

will be functions of k and τ2. From requiring continuity of Rk at τ2, we find that

c2 − s2
1− ikτ2

1 + ikτ2
e2ikτ2 = c1 − s1

1− ikτ2

1 + ikτ2
e2ikτ2 (A.18)

whereas continuity of R′k at τ2 implies

c2k
2τ2 − s2k

2τ2 e
2ikτ2 = c1

[
k2τ2 −

3

τ2
(1 + ikτ2)

]
− s1e

2ikτ2

[
k2τ2 −

3

τ2
(1− ikτ2)

]
,(A.19)

which gives

c2 = − 1

4k6τ3
1 τ

3
2

{
9e2ik(τ2−τ1) (kτ1 − i) 2 (kτ2 + i) 2

−
(
k2τ2

1 (2kτ1 + 3i) + 3i
) (
k2τ2

2 (2kτ2 − 3i)− 3i
)}

(A.20)
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and

s2 =
e−2ik(τ1+τ2)

4k6τ3
1 τ

3
2

{
3e2ikτ2

(
3 + k2τ2

2 (3− 2ikτ2)
)

(kτ1 − i) 2

+ 3ie2ikτ1
(
k2τ2

1 (2kτ1 + 3i) + 3i
)

(kτ2 − i) 2
}
. (A.21)

The power spectrum for the curvature perturbation at late times (during slow roll again)

is

PR = lim
τ→0−

k3

2π2
|R(3)

k |
2 =

H2

8π2M2
plε3

[c∗2c2 + s∗2s2 − s∗2c2 − s2c
∗
2] , (A.22)

where

ε3 := ε1 e
−6NUSR (A.23)

is the fixed, final value of ε during the second phase of η = 0, determined by ε1 during

the initial phase of η = 0, and NUSR which is the total number of e-folds of USR. The

resulting late time spectrum is the black line plotted in Fig. 3.2 with NUSR = 2.3.

We generalise this matching to go from η = 0 to arbitrary constant η < 0 and back to

η = 0 in order to plot the other lines in Fig. 3.2. We do this in the same way as just

described for η = 0 to η = −6 and back to η = 0, but replace the mode equation R(2)
k

with the appropriate solution from equation (A.5) for each value of ν using

ν2 =
9

4
+

3η

2
+
η2

4
=

(
3 + η

2

)2

(A.24)

for constant η. We also note that

ε = ε1

(
a

a1

)η
= ε1

(τ1

τ

)η
(A.25)

during the constant η phase. We then do the matching using exactly the same method as

before, and find that the late time power spectra plotted in Fig. 3.2 are finally given by:

PR = lim
τ→0−

k3

2π2
|R(3)

k |
2 =

H2

8π2M2
plε3

[c∗2c2 + s∗2s2 − s∗2c2 − s2c
∗
2] , (A.26)

with ε3 = ε1e
−ηNη=const , where Nη=const is set by the duration of the constant η phase

and the coefficients c2 and s2 are given in general by:

c2 =
iπe−ik(τ1−τ2)

8k
13
2
√
−τ1
√
−τ2



√
k5(kτ2 + i)


(
k4τ1H

(1)
η+3
2

(−kτ1) + k3(1 + ikτ1)H
(1)
η+1
2

(−kτ1)

)
H

(2)
η+1
2

(−kτ2)

+

(
−k4τ1H(2)

η+3
2

(−kτ1) + k3(−1− ikτ1)H
(2)
η+1
2

(−kτ1)

)
H

(1)
η+1
2

(−kτ2)



+ k
7
2 τ2


(
k3(kτ1 − i)H(2)

η+1
2

(−kτ1)− ik4τ1H(2)
η+3
2

(−kτ1)

)
H

(1)
η+3
2

(−kτ2)

+

(
k3(−kτ1 + i)H

(1)
η+1
2

(−kτ1) + ik4τ1H
(1)
η+3
2

(−kτ1)

)
H

(2)
η+3
2

(−kτ2)




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(A.27)

s2 = − πe−ik(τ1+τ2)

8k
7
2
√
−τ1
√
−τ2



ik
7
2 τ1H

(1)
η+1
2

(−kτ1)H
(2)
η+1
2

(−kτ2) + ik
7
2 τ2H

(1)
η+1
2
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(2)
η+1
2

(−kτ2)

+
√
k5H

(1)
η+1
2

(−kτ1)H
(2)
η+1
2

(−kτ2) + ik
9
2 τ1τ2H

(1)
η+3
2

(−kτ1)H
(2)
η+1
2

(−kτ2)

+ ik
9
2 τ1τ2H

(1)
η+1
2

(−kτ1)H
(2)
η+3
2

(−kτ2)−
√
k5k2τ1τ2H

(1)
η+1
2

(−kτ1)H
(2)
η+1
2

(−kτ2)

+ k
9
2 τ1τ2H

(1)
η+3
2

(−kτ1)H
(2)
η+3
2

(−kτ2) +
√
k3k2τ1H

(1)
η+3
2

(−kτ1)H
(2)
η+1
2

(−kτ2)

+ k
7
2 τ2H

(1)
η+1
2

(−kτ1)H
(2)
η+3
2

(−kτ2)

+ k2τ2

(
−
√
k5τ1H

(2)
η+3
2

(−kτ1) +
√
k3(−1− ikτ1)H

(2)
η+1
2

(−kτ1)

)
H

(1)
η+3
2

(−kτ2)

+H
(1)
η+1
2

(−kτ2)

(√
k5(kτ1 − i)(kτ2 − i)H(2)

η+1
2

(−kτ1)− k
7
2 τ1(1 + ikτ2)H

(2)
η+3
2

(−kτ1)

)



.

(A.28)

We now move on to a more realistic matching, wherein one transitions in and out of

USR with intermediate phases that interpolate between USR and SR.

A.1 SR → η ≡ −2→ USR → η ≡ 2→ SR matching

By now, we see that the matching calculations involve nothing but sequentially solving a

series of linear equations. We now attempt to model two additional intermediate phases

to transition into USR, via a phase of η = −2, and out of USR, via a phase of η = 2.

We match the mode functions given by equation (A.5) for each of the five phases of

constant η, at four successive transition times, and the final power spectrum is given by:

PR = lim
τ→0−

k3

2π2
|R(3)

k |
2 =

H2

8π2M2
plε5

[c∗4c4 + s∗4s4 − s∗4c4 − s4c
∗
4] , (A.29)

with

ε5 = ε1[(a3/a2)3(a3/a4)(a2/a1)]−2 = ε1[(τ2/τ3)3(τ4/τ3)(τ1/τ2)]−2, (A.30)

and the coefficients c4 and s4 given by:

c4 = −
ieikτ4

16k9τ1τ
2
2 τ

4
3 τ

2
4



(2kτ1 − i)(3 + 2ikτ2)
(
2k

4
τ
4
3 + 4k

2
τ
2
3 + 9

)
(kτ4 + 2i)e

−ik(2τ2−τ4)

+ (2kτ2(2 + ikτ2)− 3i)
(
2k

4
τ
4
3 + 4k

2
τ
2
3 + 9

)
(kτ4 + 2i)e

−ik(2τ1−τ4)

+ (2kτ2 + 3i)
(
2k

4
τ
4
3 + 4k

2
τ
2
3 + 9

)
(kτ4(3 + 2ikτ4)− 2i)e

−ik(2τ1−2τ2+τ4)

+ (1 + 2ikτ1)(−3 + 2kτ2(kτ2 + 2i))
(
2k

4
τ
4
3 + 4k

2
τ
2
3 + 9

)
e
−ikτ4 (−2 + kτ4(2kτ4 − 3i))

+ (2kτ2 + 3i)(9 + 2kτ3(kτ3(−7− 2ikτ3) + 9i))(kτ4 + 2i)e
−ik(2(τ1−τ2+τ3)−τ4)
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−ik(2τ3−τ4)

+ (2kτ1 − i)(2kτ2 − 3i)(3− 2ikτ3)(−3 + 2kτ3(kτ3 + 2i))(−2 + kτ4(2kτ4 − 3i))e
−ik(2τ2−2τ3+τ4)

+ (−3 + 2kτ2(kτ2 − 2i))(3− 2ikτ3)(−3 + 2kτ3(kτ3 + 2i))(−2 + kτ4(2kτ4 − 3i))e
−ik(2τ1−2τ3+τ4)


(A.31)
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s4 =
e−2ik(4τ1+τ2+τ3+τ4)
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2 τ
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
(A.32)

The late-time power spectrum is shown in Fig. A.1. The phase of η = +2 causes a

decrease in power for large k, which we have chosen to return to the small-k amplitude of

2× 10−9 for the red, yellow and green lines in Fig. A.1, rather than the scale-invariant

spectrum produced by matching straight back to η = 0 as in previous sections, and

shown by the blue line in Fig. A.1. Also notice that the effect of the η = −2 phase is

only visible if it lasts considerably longer than the phase of η = −6, otherwise the k4

growth is dominant on the scales that the η = −2 phase affects.

A.2 Peak amplitude sensitivity to late times

The amplitude of the peak of the power spectrum depends on how ultra slow roll

finishes. How η transitions back to 0 from a phase of η = −6 can shave off power from

the peak. For example, if we set τ1 = τ2 in the matching calculation from section A.1,

then we can plot the power spectrum for constant phases of η from 0 → -6 → 2 → 0 so

as to focus on the transition out of USR. In Fig. A.2 the power spectrum is plotted for 6

different durations of η = 2 – all other parameters are kept the same – with the different

spectra being normalised such that the large scale amplitude is 2× 10−9. There is almost

a factor of 2 difference in the peak amplitude between no η = 2 phase and 1 e-folding of

η = 2 following ultra slow roll. However, the amplitude of the power spectrum is

unaffected any further by increasing the duration of the η = 2 phase beyond 1 e-folding.

While this is unlikely to have significance in terms of avoiding power spectrum

constraints, it may have a large effect on the predicted number of PBHs produced, since

the mass fraction is exponentially sensitive to the amplitude of the power spectrum.

Note that this is for a sharp transition in η, and the effect may not be present for a

smooth transition. This was investigated for the bispectrum in [238], where it was found

that local non-Gaussianity is erased during a smooth exit from ultra slow roll, but that it

can survive a sharp transition.
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Figure A.1: Four power spectra involving different matchings between constant η phases.

The blue line is the same as the blue line plotted in Fig. 3.2, matching from η = 0 to

η = −6 for 2.3 e-folds and back to η = 0. The yellow line is a matching from η = 0 to

η = −6, then to η = 2 and back to η = 0. Notice that the peak amplitude decreases

slightly when the positive η phase is included - we comment on this further in App. A.2.

The green line is a 5-phase matching from η = 0 to η = −2, then η = −6, then η = 2 and

back to η = 0. The η = −2 phase does not decrease the slope of the power spectrum

because the phase of η = −6 affects the scales that exit before the onset of the η = −2

phase, however it does cause the dip to occur at a larger value of k, and for the peak

amplitude to be reduced. The red line is the same set-up as for the green line, but with a

longer duration of η = −2 and shorter duration of η = −6 so that the k2 growth is visible

before the onset of the k4 spectrum due to USR.
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Figure A.2: Analytical power spectra with 4 phases of constant η: 0, -6, 2, 0. The only

difference between the lines is the duration of the η = 2 phase. The longer the phase of

η = 2, the less power at the very peak of the power spectrum, showing that how ultra

slow roll ends has an effect on the amplitude of the peak. Notice that the spectra quickly

converge to the amplitude for longer than 1 e-fold of η = 2, the blue and yellow lines are

hidden beneath the green line.
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Appendix B

The steepest constant η spectrum

If we consider the toy situation of an epoch of inflation defined by a constant, but

non-zero η < 0 without matching to another epoch of inflation, we can arrive at simple

bounds on how fast the power spectrum can grow given a constant ν and ε� 1. In this

case, the general solution to the mode function corresponding to the Bunch-Davies

vacuum is given by (A.5). If the late-time limit is taken directly without matching to

any other phases, then

PR ∝ k3−2ν , (B.1)

and the spectral index is given by

ns − 1 = 3− |3 + η|, (B.2)

which gives a scale-invariant spectrum for η = 0,−6 and the strongest possible positive

scaling is ns − 1 = 3 for η = −3.

The steepest possible growth follows from setting η = −3⇔ ν = 0 but because both

modes are important in this case, the approximation (B.2) overestimates the actual

slope, with the complete late time solution being

PR ∝ k3

(
1 +

4

π2

(
γ + ln

(
k

2ke

))2
)
, (B.3)

ns − 1 = 3 +
8
(

log
(

k
2ke

)
+ γ
)

π2

(
4
(

log
(

k
2ke

)
+γ

)2

π2 + 1

) , (B.4)

where γ = 0.5772 and ke = (aH)e is the value of k when this period of inflation at the

boundary of USR ends (meaning that the decaying and growing modes are both

important), assuming that the curvature perturbation freezes out afterwards. The
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correction to the k3 scaling in (B.3) comes from the “decaying” mode which scales as

Rdecaying ∼
∫
dN

a3ε
∝
∫
dN ∼ N = log(k/ke). (B.5)

The solution (B.3) agrees with [40] in the limit ln(k/ke)� 1. The potential giving rise

to this growth rate of the power spectrum in the limit ε→ 0, is

V = M4e
3
8
φ2

M2
Pl . (B.6)

which can be calculated by using φ′ ∝
√
ε ∝ e−3N and the equation of motion (3.4).

However, (B.3) implies a weaker bound than the k4 steepest growth index for single-field

inflation shown via a more realistic matching calculation in App. A. A complementary

perspective is obtained by reconsidering the what a power spectrum with a constant

growth index implies in position space. In order to do this, we consider the following

form for the power spectrum

PR ∝ kne−αk, (B.7)

which needs to be regulated for certain values of the index by a non-zero α which we

take to zero at the end of the calculation. We recall that the position space two-point

function of the curvature perturbation at late times is given by Fourier transform∫
d3k

(2π)3 e
i~k·~x|Rk(0)|2 = 〈R(~x, 0)R(0, 0)〉 (B.8)

where

PR = lim
τ→0−

k3

2π2
|Rk(τ)|2, (B.9)

and therefore

〈R(~x, 0)R(0, 0)〉 ∝ lim
α→0

∫
d3k

4π
ei
~k·~x kn−3e−αk. (B.10)

For n = 0 we recover the usual logarithmically divergent position space correlation

function (an artefact of us working in the strict dS limit). For n > 3 we find

〈R(~x, 0)R(0, 0)〉 ∝ lim
α→0

∫
d3k

4π
ei
~k·~x kn−3e−αk ∝ 1

|x|n
. (B.11)

Therefore, asking why a power spectrum with a constant index n can’t have an index

greater than n = 4 is the same as asking why the position space two-point function for

the curvature perturbation can’t diverge in the coincident limit faster than the fourth

power of the distance between the two operators. The reason for this boils down to
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dimensional analysis. In a mass dependent regularisation scheme (i.e. regulating

divergences with a hard cut-off Λ), the more divergent a correlation function is in

position space, the greater the power of divergence in momentum space. Two-point

functions that diverge as the inverse square of the distance require counterterms

proportional to Λ2. Since our theory has no other UV mass scale, one cannot have a

dependence on the r.h.s. of (B.11) where n is greater than 4, since this would require a

counterterm that goes as Λn>4, which is not possible in four dimensions. However, this

does not completely account for the steepest growth shown in App. A, since for any

finite α, the spectrum cuts off and the corresponding divergence is automatically

regulated, invalidating the above argument. Although causality and analyticity

arguments have been invoked in different contexts to argue for a particular bounds on

the growth index of various cosmological perturbations1, none of these appear to apply

to our present context. The physical origin of the steepest growth index over a finite

range of modes that we’ve uncovered is still something we’re investigating.

1In the context of density perturbations produced from a causal collapse process in a non-inflationary

context, Traschen and Abbott have derived a minimum growth index of k4 [310]. For primordial magnetic

fields, Durrer and Caprini have shown that the two-point function must scale at least as k2 at large scales

[311].
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Appendix C

On the background potential

In the first part of this appendix, we show how one can reconstruct a potential having

specified an arbitrary time-dependence for ε. Note that this is a much simpler problem

than reconstructing the inflaton potential (more generally, action) from CMB data, a

process that is necessarily hamstrung by a variety of degeneracies [312–314]. Our goal is

simply to show that one can in principle design a potential assuming a minimally

coupled scalar field with a canonical kinetic term to reproduce an arbitrary

time-dependent profile for ε. In the second part of this appendix, we show how one

cannot engineer an arbitrarily abrupt end to inflation in terms of e-folds without

introducing additional hierarchies that will be radiatively unstable.

C.1 Reconstructing V from ε

We begin with the equation of motion for a minimally coupled scalar φ, switching to

e-folding number N as the time variable

H2 d
2φ

dN 2
+

(
3H2 +H

dH

dN

)
dφ

dN
+
∂V

∂φ
= 0. (C.1)

Given that H dH
dN = Ḣ, one can use the Friedmann equations 3H2 = ρ,

Ḣ = −(ρ+ p)/2M2
pl to obtain

3H2 +H
dH

dN
= 3H2 + Ḣ =

ρ− p
2M2

pl

=
V

M2
pl

. (C.2)

Furthermore the Einstein constraint equation becomes

H2 (3− ε) =
V

M2
pl

. (C.3)

Inserting these relations into (C.1) results in the equation of motion

d2φ

dN 2
+

[
dφ

dN
+
M2

pl

V

∂V

∂φ

]
(3− ε) = 0 (C.4)
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or

dε

dN
= − (3− ε)

[
2ε+

dφ

dN
∂φV

V

]
(C.5)

where we have used ε = (dφ/dN )2

2M2
pl

. So far, the above relations are exact. We now presume

that ε� 3 so that the above can be approximated as1

dε

dN
= −6ε+

d log V −3

dN
. (C.6)

Using the definition of ε and (C.6) we find

φ(N ) = φ∗ ±Mpl

∫ N
N∗

dN ′
√

2ε(N ′), (C.7)

and

V (N ) = V (N∗) exp

[
−1

3

∫ N
N∗

dN ′
(
dε

dN ′
+ 6ε

)]
, (C.8)

giving us φ and V as functions of N determined entirely by the evolution of ε that we

take as an input. It remains to figure out what V is as a function of φ. To do this, we

observe that if

V (N ) =
∑
n=0

cnfn[φ(N )] (C.9)

where the fn are some complete basis of functions2, and if we know V (Ni) and φ(Ni) for

0 ≤ i ≤ m discrete values, then if we demand than V (φ) truncate at some finite order m,

we have a system of m+ 1 linear equations in m+ 1 unknowns which will be possible to

invert given the presumption of monotonicity of φ and linear independence of the basis

functions, allowing us to calculate the coefficients ci for 0 ≤ i ≤ m, thus reconstructing

an approximation to the potential to order m. For a limited enough field excursion it

suffices to truncate to some small finite order e.g. at m = 6 for a monomial basis: the

typical order to which we need to know the potential in order to have a handle on the η

problem (see for instance, the treatment in [208]).

However, for simple enough time dependence for ε one can explicitly perform a direct

reconstruction. We first match a phase of constant ε slow roll to a phase of USR. First,

note that using the definition dε/dN = εη, (C.8) can be recast as

V (N ) = V∗ exp

[
−1

3

∫ N
N∗

dN ′ε (η + 6)

]
. (C.10)

1Note that one can straightforwardly generalise the above derivation to the case of multi-field inflation,

where the final equation (C.6) would also result.
2e.g. fn = φn or fn = enλφ for some fixed λ etc. In general, the convergence of the reconstructed

potential to the true potential will depend greatly on choice of basis functions adopted, and the range in

field space one wants the approximation to be valid.
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Therefore, it is clear that during USR, V (N ) remains constant as inflation progresses.

Furthermore, during constant ε slow roll, ε(N ) ≡ ε0 and η = 0, so that during this phase

V (N ) = V∗e
−2ε0(N−N∗). (C.11)

Picking the + branch of the solution (C.7)

φ(N )− φ∗ = Mpl

√
2ε0(N −N∗) (C.12)

we find that we can straightforwardly invert φ for N , resulting in the potential

V (φ) = V∗e
−
√

2ε0
Mpl

(φ−φ∗)
, (C.13)

which is consistent with the fact that the only constant ε attractors are given by

exponential potentials. Next, we note that during USR, the argument of (C.10) vanishes

identically, so that the potential during this phase has a constant value set by the value

at the end of the constant SR epoch –

V (N ) = V∗e
−2ε0(N1−N∗) = const. N > N1. (C.14)

Similarly, given that ε(N ) = ε0e
−6(N−N1) during USR, we find from (C.7) that

3(φ− φ1)√
2ε0Mpl

= 1− e−3(N−N1) (C.15)

with φ1 given by (C.12) evaluated at N1. The only way some polynomial function of the

above can result in a constant is if it were itself a constant. Hence the reconstructed

potential that transitions from slow roll to USR is a piecewise potential that glues an

exponential potential to a constant. This is not particularly physical, so we can try to

suitably smooth the transition from SR to USR.

We now reproduce a potential that can mimic the matching calculation done in the

previous appendix. Namely, from η = 0 slow roll to η = −2→ η = −6→ η = +2 back to

η = 0 slow roll. When η = 0→ η = −2 at N = N1, we can repeat the steps above for

N > N1 to find

V (N ) = V (N1)e
2ε0
3 [e−2(N−N1)−1] (C.16)

and similarly for the field profile,

φ− φ1

Mpl

√
2ε0

= 1− e−(N−N1). (C.17)

Substituting the above into the exponent of (C.16) results in

V (φ) = V (φ1)e

(φ−φ1)
2

3M2
pl

−
√

2ε0
2(φ−φ1)
3Mpl . (C.18)
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Note that from (C.17) the field can only asymptote to φ− φ1 =
√

2ε0Mpl, in which case

the potential goes to zero smoothly. From the previous discussion, we see that to match

to η = −6 is to splice this potential to a constant piece at N = N2. To subsequently

match from this phase to η = +2 at N3 results in (for N > N3)

V (N ) = V (N3)e−
4ε2
3 [e2(N−N3)−1] (C.19)

during which time the field evolves as

φ− φ3 = Mpl

√
2ε2
[
eN−N3 − 1

]
(C.20)

so that the potential this corresponds to is given by

V (φ) = V (φ3)e

−2(φ−φ3)
2

3M2
pl

−
√

2ε2
4(φ−φ3)
3Mpl (C.21)

with

ε2 = ε0e
−2(N2−N1)e−6(N3−N2). (C.22)

Finally, one would like to match to a slow roll phase again, where

V (φ) = V (φ4)e
−
√

2ε3
Mpl

(φ−φ4)
(C.23)

with

ε3 = ε0e
−2(N2−N1)e−6(N3−N2)e2(N4−N3) (C.24)

Therefore we summarize that the piecewise continuous potential that reproduces the

matching η = 0→ η = −2→ η = −6→ η = +2→ η = 0 is given by

V1(φ) =V∗e
−
√

2ε0
Mpl

(φ−φ∗)
φ < φ1, η = 0 (C.25)

V2(φ) =V1(φ1)e

(φ−φ1)
2

3M2
pl

−
√

2ε0
2(φ−φ1)
3Mpl φ1 < φ < φ2, η = −2

V3(φ) =V2(φ2) = constant φ2 < φ < φ3, η = −6

V4(φ) =V3e

−2(φ−φ3)
2

3M2
pl

−
√

2ε2
4(φ−φ3)
3Mpl φ3 < φ < φ4, η = +2

V5(φ) =V4(φ4)e
−
√

2ε3
Mpl

(φ−φ4)
φ4 < φ, η = 0

with ε2 and ε3 given by (C.22) and (C.24), and where the fixed field intervals in terms of

the number of e-folds of the different phases as

φ2 − φ1 =Mpl

√
2ε0

[
1− e−(N2−N1)

]
(C.26)

φ3 − φ2 =
Mpl

3

√
2ε0e

−(N2−N1)
[
1− e−3(N3−N2)

]
φ4 − φ3 =Mpl

√
2ε0e

−(N2−N1)e−3(N3−N2)
[
e(N4−N3) − 1

]
.
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We plot the reconstructed potential below for specific values of the Ni:

0.1 0.2 0.3 0.4 0.5
ϕ/Mpl

0.96
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0.99

1.00

V/V*

Figure C.1: The reconstructed potential (C.25) for N1,N2,N3,N4 = 10, 14, 18, 34

respectively, with φ∗ = 0 and ε0 = 0.01. Note that the field range over which USR occurs

(φ3 − φ2 ' 0.0009Mpl) is parametrically much smaller than the phases where η = ±2, so

as to effectively appear as an inflection point in the above plot.

C.2 The quickest possible end to inflation

Having demonstrated a steepest possible growth for the primordial power spectrum, one

might wonder about the complementary question – how quickly can it fall off? An

accurate estimate for this can be inferred from rephrasing the question as how quickly

inflation can end, or transition to another phase of inflation. To understand this, we first

recall (C.4), but now generalise to multi-field inflation

d2φa

dN 2
+

[
dφa

dN
+
M2

pl

V

∂V

∂φa

]
(3− ε) = 0 (C.27)

where φa denotes coordinates in some general field space. For simplicity, we assume a flat

field space metric (and so accord no significance to raised or lowered indices) although

this can be straightforwardly generalised. The slow-roll parameter ε is now defined as

ε =
1

2M2
pl

dφa

dN
dφa
dN

. (C.28)

Multiplying (C.27) by dφa/dN results in the analog of (C.5)

dε

dN
= − (3− ε)

[
2ε+

dφa

dN
∂aV

V

]
. (C.29)

We now consider the situation where over some interval, ε increases monotonically from

some initial ε0 � 1 to εf = 1 over an interval ∆Nend. Application of the mean value
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theorem of calculus3 then implies that∣∣∣∣ dεdN
∣∣∣∣
int

&
1− ε0
∆Nend

∼ 1

∆Nend
(C.30)

at some intermediate Nint. Inserting the rhs of (C.29) into the above, assuming

∆Nend � 1 and applying the triangle inequality results, after some manipulation, in the

lower bound

Mpl

∣∣∣∣∇TVV
∣∣∣∣
max

&
1

3
√

2∆Nend

(C.31)

where ∇TV is the tangential derivative of the potential with respect to the trajectory,

defined as ∇TV := T a∂aV and T a := dφa

dN

/(
dφb

dN
dφb
dN

)1/2
. In the single-field case, it

reduces to the more familiar expression

Mpl

∣∣∣∣V,φV
∣∣∣∣
max

&
1

3
√

2∆Nend

. (C.32)

Therefore, if we would like inflation to end in ∆Nend � 1 e-folds or less, we necessarily

require the gradient of the potential along the trajectory as inflation ends to be bounded

from below according to (C.31). Although classically we are entitled to make the

transition out of inflation as sharp as we desire, one cannot make it arbitrarily sharp

without introducing additional hierarchies that will be unstable under quantum

corrections, since these corrections spoil the flatness of the potential away from the

transition, in effect ending inflation earlier and restoring the smoothness of the

transition. Nevertheless, from (C.31) we see that a transition that lasts an order unity

fraction of an e-fold can easily be accommodated without introducing additional

hierarchies, and for the purposes of our discussion, justifies any approximation that cuts

off the primordial power spectrum at some fixed comoving scale.

For completeness, we illustrate the considerations above with a concrete example.

Consider the following prototype potential for a rapid exit from inflation

V (φ) =
V∗
2
e−γφ/Mpl (1− tanh [µ(φ− φ∗)/Mpl]) . (C.33)

When γ � 1, one has power law inflation in the region φ� φ∗. At φ = φ∗, there is a

transition (that can be made arbitrarily abrupt as the dimensionless parameter µ→∞).

3Recalling that if f and f ′ are continuous functions on the interval [a, b], then there exists some point

c ∈ [a, b] such that f ′(c) = f(b)−f(a)
b−a . Since f ′ is also continuous, f ′(c) must lie between the minimum and

maximum of f ′ in the interval [a, b]. That is

min
a≤x≤b

f ′(x) ≤ f(b)− f(a)

b− a = f ′(c) ≤ max
a≤x≤b

f ′(x).
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Requiring the transition to last less than 1/100th of an e-fold requires for example µ to

be at least of order 102 through (C.31), which would imply that the hyperbolic tangent

is an operator expansion in odd powers of effective operators with very large Wilson

coefficients:

L ⊃ µnφn

Mn
pl

; µ ∼ 102, ∆Nend ∼ 10−2. (C.34)

Calculating loop corrections to the potential (C.33) expanded around φ∗ for µ ∼ 102

would result in a deformation of the inflationary part of the potential. If one were to try

and approximate it close enough to φ∗ as an exponential, one would find an effectively

renormalised γ that is no longer � 1. On the other hand, requiring ∆Nint ∼ 10−1 is

possible for values of µ ∼ 1, resulting in a renormalisation group improved potential

where the hierarchy γ � 1 is preserved. We stress however that the bound (C.31) is

completely general and can be applied to multi-field inflation as well.
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