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Summary

The quest for a fundamental quantum theory of gravity compatible with the Standard
Model of particle physics continues to offer challenges. The asymptotic safety conjecture
offers a promising direction, stipulating the non-perturbative renormalisability of gravity
through an interacting ultraviolet fixed point. Strong circumstantial evidence for asymp-
totic safety of gravity has accumulated over the past decades with the help of functional
renormalisation. However, matter quantum fluctuations may destabilise a gravitational
fixed point. Since the observable universe contains matter, it becomes important to un-
derstand whether an asymptotically safe version of gravity is compatible with matter.

This thesis investigates the impact of quantised non-selfinteracting matter fields and
the prospect for a combined fixed point for gravity with matter. The focus is on Standard
Model matter, though asymptotic limits such as matter domination (N → ∞), where N
denotes the number of matter fields, or the absence of matter (N → 0) are also invest-
igated. A novelty of this study is introducing higher order Ricci scalar, Ricci tensor and
Riemann tensor interactions beyond the Einstein-Hilbert action to ensure stability and
convergence of findings.

A bootstrap search strategy is performed to high polynomial order in curvature, along-
side functional renormalisation and high performance computing tools to identify ultra-
violet fixed points. Additionally, heat kernel and spectral sum techniques are compared,
providing improved approximations for the latter. Results include new gravitational fixed
points with matter and higher curvature invariants, tests of stability and convergence, uni-
versal scaling dimensions and eigenperturbations. Notably, matter influences the types of
higher order interactions required for asymptotic safety. Moreover, Standard Model mat-
ter may increase the dimensionality of the UV critical surface. Finally, a new scaling limit
is found in the large-N regime, characterised by an enhancement of fourth-order interac-
tions. Results are established both numerically and analytically in a 1/

√
N expansion.

The relevance of these findings for the asymptotic safety conjecture is discussed.
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Chapter 1

Introduction

The Standard Model of particle physics and General Relativity provide the most advanced

description of the universe up to date. The Electroweak theory [1–3], the Higgs mechanism

[4] and Asymptotic Freedom of the strong force [5, 6] are the cornerstones of our current

understanding of physics at the microscropic scale [7]. On the other hand, gravity is

best described by Einstein’s theory, which inextricably intertwines time and space into a

dynamical spacetime. Both frameworks have passed extensive tests, such as the discovery

of the Higgs boson [8, 9] and the detection of gravitational waves [10]. However, both

still have their shortcomings. Issues such as matter-antimatter asymmetry [11], non-zero

neutrino masses [12, 13] and the apparent meta-stability of the Higgs potential [14, 15]

remain unexplained. On the gravity side, the theory predicts spacetime singularities, plus

there is the cosmological constant problem [16], a.k.a. the worst prediction in the entire

history of physics. Thus, both can be understood to be effective field theories valid up to

a finite energy scale. Moreover, while the former describes quantum matter, a consistent

theory of quantum spacetime is yet to be found. While the effective field theory approach

has been useful in constraining predictions of new physics, the holy grail of physicists since

the advent of modern physics has been finding a unified fundamental theory of everything,

capable of describing all aspect of nature at any scale, and is still the main motivation

for many physicists in present day. Thus, one of the most monumental open questions in

physics nowadays is obtaining a consistent quantum theory of gravity compatible with the

Standard Model and extensions thereof.

The problem starts from the fact that Einstein’s gravity is not perturbatively renorm-

alisable above two dimensions. The latter is the critical dimension of the theory and can

be inferred from counting the superficial degree of divergence in graviton loop integrals.

This failure of perturbative renormalisability can also be understood from the fact that
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Newton’s coupling has a negative canonical mass dimension above two dimensions. This

indicates that the classical power counting argument valid for perturbatively renormalis-

able theories fails. Thus, barring exceptional cancellations at all loop orders, an infinite

number of divergences, and thus free parameters, appears in the theory.

Explicit calculations show that gravity is renormalisable only at one-loop in the absence

of matter [17, 18], however this breaks down at two-loops [19, 20]. The situation is even

worse if matter is included, as already at one-loop the theory is non-renormalisable [17,

21–23]. Matter fields further induce new divergences up to fourth-derivative order that do

not vanish on-shell nor for any physical matter configuration [24–27]. These divergences

of quadratic curvature order naturally lead to extending Einstein’s gravity with higher

derivative terms. Higher derivative interactions become important at high energies and

can play a role in resolving singularities and in inflation, thus they cannot be ignored.

Indeed, the situation improves in quadratic gravity as the theory becomes renormalisable,

although unphysical ghosts appear then [28–31]. Thus, matter introduces a further layer

of complexity and must be considered in a formulation of quantum gravity from the start.

This thesis is concerned with reconciling the matter and metric degrees of freedom

in a single quantum gravitational theory. The central paradigm on which this thesis is

constructed is the asymptotic safety conjecture of gravity. This poses that the theory can

be rendered non-perturbatively renormalisable by an interacting ultraviolet (UV) fixed

point of the renormalisation group (RG) [32]. This idea entails that the running couplings

take a constant finite value at high energies, restoring scale-invariance in the UV and

rendering the theory predictive and fundamental at all energy scales [33,34]. This can be

realised in d = 2 + ε, where a perturbative interacting fixed point arises [35–38]. In four

dimensions, matter could even mediate a fixed point in the large N limit, rendering the

theory weakly coupled [39, 40]. The development of the functional renormalisation group

has allowed this idea to be further explored in a non-perturbative framework, finding

results in support for the existence of such a fixed point [41].

The aim of this thesis is to investigate the impact of matter on gravitational fixed points

with different types of higher order curvature interactions using functional renormalisation

and numerical analysis techniques. In particular, the prospect of fixed points of quantum

gravity compatible with the Standard Model will be the focus of the study. Additionally,

other matter regimes are also investigated to further understand the influence of matter

quantum fluctuations in fixed points of gravity. The investigation is carried out according

to the following outline. Chapter 2 introduces the basic concepts, notation and technical
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tools necessary for the study and offers a literature review of progress in the field. Chapter

3 searches for fixed points of quantum gravity in theories without matter studying different

types of higher curvature interactions. Chapter 4 introduces non-interacting matter fields

and illustrates some technical subtleties involved in the computation of matter quantum

fluctuations. Chapter 5 offers a dedicated analysis of gravitational fixed points compatible

with Standard Model matter to high order in curvature. Critical exponents, tests of

convergence and UV-IR connecting trajectories are discussed. Chapter 6 considers the

impact of matter fields on fixed points of pure gravity and studies how couplings and

scaling dimensions are modified. Chapter 7 then investigates the limit of many matter

fields both numerically and analytically, finding a new scaling regime where fixed points

can appear in an expansion on a small parameter from a competition between metric

and matter fluctuations. Finally, Chapter 8 presents a summary of the findings and the

conclusions of this thesis.
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Chapter 2

Preliminaries

This chapter introduces the concepts, notation and technical tools necessary for the in-

vestigation in this thesis. The paradigm of asymptotic safety is first explained in general

terms. Then, instances of asymptotic safety in particle physics are given, outlining its

relevance for high-energy physics. While the particle physics scenarios discussed here

can be treated perturbatively, gravity, a non-perturbative force, requires different tools.

Thus, the functional renormalisation group is introduced next, which provides a framework

for studying non-perturbative physics. Afterwards, additional technicalities regarding the

functional renormalisation of gravity, its subtleties and approximations are discussed. This

chapter concludes with a literature review outlining the state-of-the-art in research in the

asymptotic safety programme in gravity.

2.1 Basics of asymptotic safety

The concept behind asymptotic safety is simple and elegant. It requires no further tools

than the renormalisation group developed more than 50 years ago and, at the level of the

equations, amounts to a generalisation of asymptotic freedom. The basics of asymptotic

safety are explained in this section.

The paradigm of asymptotic safety traces its roots back to 1974 when Wilson put

forward the block-spin integration technique applied to the Kondo problem and introduced

the concept of a UV fixed point of the action [33,34]. Through his seminal work in critical

phenomena, Wilson offered an intuitive physical interpretation of renormalisation as an

averaging of field fluctuations, beyond it just being an abstract mathematical tool to

remove infinities in loop integrals. At a critical point, where a phase transition occurs, the

correlation lengths and the order parameters of a dynamical system follow a power-law
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scaling characterised by critical exponents. These critical points are fixed points of the

renormalisation group. Different physical systems that exhibit the same scaling behaviour

near a phase transition belong to the same universality class, meaning that they have the

same critical exponents. Thus, fixed points of a system and their critical exponent carry

profound universal information of nature.

Asymptotic safety is the realisation of a non-trivial ultraviolet fixed point of the renor-

malisation group that controls the high-energy behaviour of the theory. The conjecture

of asymptitcally safe gravity states that such a fixed point exists which renders the grav-

itational theory non-perturbatively renormalisable [32]. Thus, divergences are avoided

and the theory is truly fundamental, being able to describe physics at any energy scale.

In quantum field theory, renormalisation reveals that couplings constants characteristing

interactions are actually not constant but running couplings that depend on the scale at

which they are measured. The renormalisation group equations take the form of the beta

functions βgi [42, 43], equations that describe the running of dimensionless couplings gi

with respect to the renormalisation scale k:

k
dgi
dk

= βgi(gn) (2.1)

where the subindex n indicates that the running of gi in general depends on all couplings

gn in the theory.

The beta function for gi consists of a classical part and a quantum part. The former

is given by the canonical mass dimension of the coupling, while the latter is determined

by the quantum fluctuations of the fields in the theory:

βgi = −[ḡi]gi + fi(gn) (2.2)

where [ḡi] is the canonical mass dimension of the dimensionful coupling ḡi. The quantum

contributions to the running of the coupling is given by the function fi(gn). In perturbation

theory, this takes the form of a series expansion in powers of small couplings. In non-

perturbative settings, other techniques are required to compute the quantum corrections.

One of such frameworks, the functional renormalisation group will be introduced in Section

2.3.

The renormalisation group flow vanishes at a fixed point and therefore couplings stop

running with the energy and obtain a constant value:

βgi(g
∗
n) ≡ β∗gi = 0 (2.3)
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where the star notation (*) indicates evaluation at the fixed point. At the fixed point,

there is no notion of scale anymore, the physics becomes scale-invariant and conformal

symmetry is restored.

The evolution of the system is determined by the initial conditions of the parameters

at a given reference scale. Each initial condition defines a renormalisation group flow

trajectory that describes how the couplings run with energy. Ultraviolet trajectories are

those that flow into a fixed point at higher energies. The hypersurface of all UV attractive

directions is known as the UV critical surface of the fixed point. To understand the

relevance of this surface, it is instructive to study the flow around a fixed point.

Very close to a fixed point, the RG flow must be asymptotically vanishing. Demanding

analyticity of the flow, the beta function can be expressed as a power expansion of couplings

shifted from the fixed point by a small amount:

βgi(gn − g∗n) = β∗gi +
∑
i,n

∂βgi
∂gn

∣∣∣∣
∗

(gn − g∗n) +O (gn − g∗n)2 (2.4)

The first term vanishes by definition. Neglecting quadratic and higher order terms, the

solution of this equation is:

gi(k) = g∗i +
∑
n

cnV
n
i

(
k

µ

)ϑn
(2.5)

where µ is a reference energy scale, cn are constants that define the initial conditions, and

ϑn and Vn are the eigenvalues and eigenvectors of the stability matrix, respectively:

Mij ≡
∂βgi
∂gj

∣∣∣∣
∗

(2.6)

These eigenvalues have a classical part given by the canonical mass dimension and a

quantum part given by the anomalous dimensions η:

ϑi = −[ḡi] + η(g∗i ) (2.7)

The quantum corrections are zero at a trivial fixed point where the theory is free, while they

are non-vanishing at a non-trivial fixed point. Each eigenvector represents an orthogonal

direction in the space of operators. If a direction is associated with a positive eigenvalue,

then evolving towards increasing energy k would drive the couplings away from the fixed

point. These are irrelevant directions for which the free parameters must vanish, thus

cn = 0 for ϑn > 0. In the opposite case, if the eigenvalue is negative, then the flow

drives the couplings into the fixed point and the constants cn remain to be determined.
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In summary:

cn =


0, ϑn > 0

free, ϑn < 0

(2.8)

This is where the predictive power of asymptotic safety lies and constitutes one of its

most promising features. Although the symmetries of the theory may allow infinitely

many interactions, in asymptotic safety it is sufficient to measure only a finite number of

couplings to completely determine the rest. The number of free parameters is equal to the

number of relevant directions, this is the dimensionality of the UV critical surface. The

irrelevant directions, in turn, are predictions of the theory.

The phase portrait of a certain type of gauge theory is shown in Figure 2.1 as an illus-

trative example. The arrows points towards the IR. Three fixed points appear in the phase

diagram, from left to right, a Gaussian fixed point, an interacting UV fixed point with one

UV attractive direction and an interacting fixed point which is fully IR attractive. The

latter type of points is also sometimes called an IR sink. The red trajectories emanating

from the UV fixed point define quantum field theories which are both UV and IR finite.

In this diagram, there is only one pair of opposing trajectories leaving the UV fixed point,

thus, the dimensionality of the UV critical surface is one (this plot shows a projection

on a two-parameter space, the full theory has four interactions, however it remains true

that the UV critical surface is one-dimensional for this particular example). Depending on

the initial conditions, the theory ends up being either free (left) or interacting and finite

(right) at low energies.

The scaling dimensions, or critical exponents, encode information about the power-law

behaviour of order parameters close to a critical point. They are given by the eigenvalues

mentioned above with the sign reversed. In this thesis, the terms scaling dimensions,

critical exponents and eigenvalues (of the stability matrix) will be used interchangeably,

where the appropriate sign will be made clear from the context. These quantities are

universal numbers that can in principle be measured by experiment and define universality

classes in critical systems. As universal quantities, they are invariant under redefinitions

of the fields and transformations in the theory space. This can be checked by considering

a general linear transformation of the couplings

Z =
∂λ′n
∂λn

(2.9)

The beta functions transform as a vector under such transformation

βn → β′n = Zβn (2.10)
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leading to the following transformation rule for the stability matrix:

M ′ =
∂ (Zβi)

∂λ′j
=
∂ (Zβi)

∂λj

∂λj
∂λ′j

=
∂Z

∂λj
βiZ

−1 + ZMZ−1
(2.11)

In the last expression, the first term vanishes at the fixed point as per the definition

of the beta functions. The second term is a similarity transformation which leaves the

eigenvalues unchanged. Note, however, that eigenvectors are not universal and do change

under transformations in the theory space.

As a final interesting remark, note that although the scaling dimensions are universal

numbers which in principle could be measured in experiment and therefore should be real-

valued, complex scaling dimensions can also appear, giving rise to interesting behaviour.

In a phase diagram, the real part of these numbers describes the magnitude and direction

of the flows around the fixed point, while the imaginary part gives rise to curved spiral

trajectories around it. An interesting case is that of closed loops known as limit-cycles,

they indicate discrete scale invariance, a weaker form of scale invariance, and are associated

with log-periodic corrections to scaling. This is a feature usually found in fractals [44] but

which is also relevant in condensed matter systems giving rise to Efimov states of bound

bosons [45–48]. Such closed RG trajectories have also been found in a minisuperspace

approximation in gravity [49].

2.2 Asymptotic safety in particle physics

Although the term ‘asymptotic safety’ was coined by Weinberg in 1979 in the context

of gravity [32], the idea behind it is a fundamental concept that is applicable to any

quantum field theory. The notion of a UV fixed point was first introduced by Wilson

in scalar theories [50, 51]. The Wilson-Fisher fixed point is the best-known example,

it is a UV fixed point of the scalar O(N) theory in d = 4 − ε [52], while non-trivial

stationary points can also arise in other types of scalar theories [53–58]. Interacting fixed

points can also be found in fermionic theories as in Gross-Neveu models [59–65]. In gauge

theories, the Banks-Zaks fixed point is an IR non-trivial stationary point bounding the

conformal window of QCD just below a critical number of fermions [66]. The existence of

a conjectured interacting UV fixed point of QCD beyond the Banks-Zaks has also been

put forward [67]. Other solutions can also appear in Yang-Mills theories away from four

dimensions [68,69].

A recent breakthrough was the realisation of asymptotic safety in non-abelian gauge-

Yukawa theories with fermions and complex scalars in four dimensions. The theory put
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Figure 2.1: Phase portrait of an asymptotically safe gauge-Yukawa model with a finite

number of matter fields. Arrows point towards the IR. Black dots indicate, from left

to right, the Gaussian fixed point, the gauge-Yukawa UV fixed point and an interacting

IR sink. The two trajectories emanating from the UV fixed point define quantum field

theories which are either free (left) or interacting (right) at low energies.

forward in ref. [70] is perturbatively renormalisable with a weakly coupled ultraviolet fixed

point under strict perturbative control in a large N limit. It is instructive to understand

the mechanism through which this stationary point arises. A general theory is introduced

next and the conditions under which asymptotic safety appears will be specified. Consider

a four-dimensional gauge theory with a gauge group G with NF Dirac fermions ψ and

complex meson-like scalars H with the following Lagrangian:

L = −1

2
Tr (FµνF

µν)− Tr
(
ψ̄i /Dψ

)
+ Tr

(
∂µH

†∂µH
)

+ yTr
(
ψ̄LHψR + ψ̄RH

†ψL

)
−uTr

(
(H†H)2

)
− v

(
Tr
(
H†H

))2

(2.12)

where Fµν is the field strength of the gauge bosons, ψ = ψL+ψR are chiral fermions which

can be separated in left-handed and right-handed components, and H is a NF ×NF matrix

of complex scalar fields. The trace runs over the colour and flavour indices. The scalars

are uncharged, carry two flavour indices and couple to the fermions through a Yukawa

interaction. The theory has a global SU(NF )L × SU(NF )R flavour symmetry. In the

following, only one gauge interaction is assumed although the formulation can be extended

to semi-simple groups, under which only the fermions are charged [71]. Introducing αg =
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g2/(4π)2 for the gauge coupling and similarly for αy, the beta functions describing the

flow of the gauge and Yukawa couplings to two and one-loop in perturbation theory can

be schematically written as:

βg = −Bα2
g + Cα3

g −Dα2
gαy (2.13)

βy = Eα2
y − Fαgαy (2.14)

In the absence of scalars, i.e. no Yukawa term, the gauge coupling has a non-trivial solution

given by α∗g = B/C, the Banks-Zaks fixed point [66]. Requiring loss of asymptotic freedom

implies that the solution is UV attractive if B < 0 and C < 0. The key observation is that

these coefficients can never have the correct signs simultaneously, i.e. this can only be an

IR fixed point. This has been shown unambiguously for all simple and semi-simple gauge

groups in any fermion representation [72]. It is only through Yukawa interactions that a

UV solution can appear. The flow of the Yukawa interaction defines a nullcline where this

beta function vanishes,

α∗y =
F

E
α∗g (2.15)

Along this nullcline, the two-loop coefficient of the gauge coupling is shifted to

C → C ′ = C −DF
E
αg (2.16)

such that the gauge beta function is also shifted,

βg = −Bα2
g + C ′α3

g (2.17)

This differential equation has the non-trivial solution:

α∗g =
B

C ′
(2.18)

If the fermions transform under the fundamental represention of SU(NC), then both B <

0 and C ′ < 0 can be realised leading to a physical UV fixed point. Conversely, no

interacting fixed point can appear in weakly coupled theories in four dimensions without

gauge interactions [73]. Thus, cooperation between all three types of fields, fermions,

gauge bosons and scalars, is necessary to source a physical UV solution. The fixed point

cascades into the scalar sector, meaning that all couplings remain finite at high energies.

The fixed point is weakly coupled in a particular type of large N limit where it can

be studied within perturbation theory. This can be observed by introducing a control

parameter ε, defined as:

ε =
NF

NC
− 11

2
(2.19)
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This quantity becomes continuous in the Veneziano limit, where both NF and NC are set

to infinity while their ratio is kept fixed. This limit reduces the number of parameters in

the theory from two to one. Having the fermions transforming under the fundamental rep-

resentation of SU(NC), the one-loop coefficient of the gauge beta function is proportional

to this parameter, B ∝ ε and thus, α∗g ∝ ε. Therefore, taking ε to be vanishingly small,

the fixed point can be written in a perturbative expansion around ε whose coefficients

can be systematically computed order by order. Moreover, this stationary point possesses

a single relevant direction flowing to the Gaussian towards the IR. Thus, the theory is

maximally predictive as it has only one free parameter.

This model has been investigated up to next-to-next-to-leading order in perturbation

theory where constraints in the parameter space have been derived, finding that the con-

formal window is bounded by vacuum instability considerations [74, 75]. In ref. [76], the

author and collaborators have further investigated this model in the finite N regime, where

in spite of the lack of a strictly perturbative parameter, the fixed point can remain weakly

coupled for finite values of NF and NC . In this setting, the conformal window is narrowed

towards smaller values of NC but matter configurations still exist which allow for a UV

complete theory. The fixed point retains one relevant direction and renormalisation group

flows connect the interacting theory in the ultraviolet to a free theory in the IR, such that

the physics is well-defined at all energy scales. Moreover, this setting also suggests the

existence of a non-trivial IR sink bounding the phase diagram of the theory beyond the

UV fixed point. Then, all flows terminate in the IR either in a free theory or in a strongly

interacting but finite regime that could describe a confinement phase. The phase portrait

of the αg-αy system at finite ε and NC is shown in Figure 2.1 [76]. The UV fixed point

is shown in the middle with trajectories pointing towards the IR. The flows leaving this

fixed point end at either a free theory (left) or an interacting one (right) in the IR. Note

that an interacting IR sink would render all trajectories IR finite.

A stream of research has followed this discovery expanding this model to other in-

teresting settings. For example, the theory has been investigated away from four dimen-

sions [77], where quantum fluctuations at one-loop can balance with canonical scaling

dimensions to source a fixed point, which is either UV attractive or repulse above or be-

low four dimensions, respectively. The supersymmetric case has been explored where a

partially-interacting fixed point arises with fields charged under two gauge groups [78].

The impact of canonically irrelevant scalar operators has also been studied, finding that

they remain irrelevant and weakly coupled in the UV, indicating that vacuum instabil-
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ity bounds are not further modified by higher order operators [79]. Moreover, the gauge

symmetry can be extended to semi-simple groups finding a variety of non-trivial solutions,

phase diagrams and RG flows [71]. Furthermore, a recent investigation has found that

there are two more asymptotically safe models like this one, both with Majorana fermi-

ons, one with SO(NC) and the other with Sp(NC) gauge groups. All three theories form

a triality as they are in the same universality class and are equivalent even away from the

fixed point due to negative dimensionality theorems and orbifolding [80].

The perturbative realisaton of asymptotic safety in the model described above has also

generated much interest in phenomenology and model-building applications. Formulations

for UV-complete extensions of the Standard Model have been put forward and their phe-

nomenological implications have been explored [81–85]. In addition, recent investigations

have used this mechanism to explain the discrepancies in both the muon and electron an-

omalous magnetic moments [86]. It is highly non-trivial that the same model can explain

both anomalies as they appear with opposite signs.

A similar approach to asymptotic safety has also been pursued in the large NF limit,

where resummation techniques for all-orders beta functions have been put forward (see

e.g. [87–92] and refs. within). In this setting, a fixed point can potentially arise from

poles in the expressions of these beta functions in a large 1/NF expansion. Note that this

is a qualitatively different mechanism from the one in the model previously explained, as

the fixed point arises non-perturbatively. This idea has also been the starting point of

numerous investigations on BSM extensions [93–99], although it has come under closer

scrutiny as of lately [100,101].

Finally, note that quantum gravitational effects will become important at around the

Planck scale and lead to modifications in the beta functions of the matter interactions.

The leading gravitational corrections to the perturbative beta functions are of order α, i.e.,

the same as the canonical mass dimension of the couplings. For canonically marginal inter-

actions, this term takes precedence over the quantum corrections and can be interpreted

as modifying the mass dimension of couplings. For the running of gauge interactions,

this correction is gauge and regularisation dependant but is strictly non-positive for both

abelian and non-Abelian gauge groups, resulting in an effective dimensional reduction and

thus pushing towards Asymptotic Freedom [102–113]. This chould change the current

understanding regarding triviality in the U(1) sector [114–116]. On the other hand, the

contribution to the running of the Yukawa coupling appears with a positive sign [117–121].

The gravitational coupling may also run into a fixed point, as studies in the pure gravity
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theory suggest [41] (see Section 2.5). However, if this occurs at a large value for Newton’s

coupling, this could destabilise the interacting fixed point in the matter sector [122,123].

The paradigm of asymptotic safety is also applicable to the theory of gravity, which is

the main subject of this study. However, as gravity is perturbatively non-renormalisable,

a different toolset is required to study the realisation of asymptotic safety in this theory.

The next section introduces the functional renormalisation group, which will be used

throughout this thesis in the search for gravitational fixed points.

2.3 Functional renormalisation group

This section provides a succinct introduction to the functional renormalisation group and is

based on the following textbooks, to which the reader is referred for a detailed pedagogical

introduction to the framework and its applications in condensed matter and gravity [124–

126].

2.3.1 Wilson renormalisation

The functional renormalisation group, or exact renormalisation group, is a framework

for implementing renormalisation in the sense of Wilson. In Wilsonian renormalisation,

the momentum integration in the path integral is not carried out all at once but in an

iterative manner by performing a coarse-graining over field fluctuations. Conceptually,

the fluctuations of the field are separated into low and high-energy modes according to

their momentum k:

Φ = Φ− + Φ+ (2.20)

The coarse-graining procedure consists of two steps. In the first step, the high-energy

fluctuations are integrated out leaving behind a partially integrated action:

Z =

∫
D[Φ] e−S[Φ;g] =

∫
D[Φ−]

∫
D[Φ+] e−S[Φ−+Φ+;g]

=

∫
D[Φ−] e−S

−
k [Φ−;g′]

(2.21)

with S− defined as:

e−S
−
k [Φ−;g′] =

∫
D[Φ+] e−S[Φ−+Φ+;g] (2.22)

This is now an effective action which describes the theory with the high-energy fluctuations

integrated out. Note that the interactions g′ in S−k are different from the ones in the original

action g. In the second step, the fields and all scale-dependent quantities are rescaled so
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they can be related to the original quantities. These two steps can be repeated until all

fluctuations have been integrated out.

A well-known approach to Wilsonian renormalisation is the Polchinski equation [127],

which is a flow equation for the Wilsonian effective action Sk valid up to a UV cut-off.

The same equation has also been shown to be satisfied by the generators of the connected

amputated Green’s functions with an IR regulator [128, 129]. A different formulation in

terms of the Legendre transform is given in the next section and will prove to be more

convenient to work with.

2.3.2 Effective Average Action

Consider the generator of the connected Green’s functions in a quantum field theory:

W [J ] = logZ[J ] = log

∫
D[Φ] e−(S0[Φ]+SI [Φ]−J,Φ) (2.23)

The action contains a free part S0 and interaction terms SI . The collective field Φ contains

all fields in the theory Φ = {φ1, . . . , φn} and to each of them corresponds a source J =

{J1, . . . , Jn}, with the following notation introduced for convenience:

J,Φ =

∫
ddxΦ J (2.24)

In the first step of Wilson’s renormalisation, the field fluctuations of momentum higher

than an IR scale k must be integrated out. This can be implemented by adding an IR

regulator to this action that plays the role of a mass term for the low momentum modes.

The regulator must be quadratic in the fields and takes the general form:

∆Sk =
1

2

∫
ddxΦRk(q2) Φ (2.25)

This regulator is a function of the momentum of the fields q2 and the integration scale

k so it can distinguish between modes with momentum above and below this scale. Its

main purpose is to modify the propagators acting as a mass term for the low momentum

modes so they are suppressed or weighed down in the path integral, leading to the modified

propagator:

Gk =
1

q2 +Rk
(2.26)

At the same time, the contributions from high-energy fluctuations should remain unaf-

fected by this modification to the action. In addition, the regulator must disappear when

all modes have been integrated out, that is, when the IR scale is set to zero. Thus, the

properties that the regulator must possess to achieve its goal can be summarised as follows:
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1. It vanishes quickly for large momentum, limq2/k2→∞Rk = 0

2. It is positive and large (possibly infinite) for small momentum. In particular,

limq2/k2→0Rk ∝ k2 is convenient

3. It vanishes uniformly in the IR, limk→0Rk = 0

4. It is monotonically decreasing in q at fixed k and increasing in k at fixed q.

The last condition has been included as it is desirable that the regulator acts in a consistent

manner on modes of different momenta and when the integration scale is varied. In the

limit of vanishing momentum, the regulator should induce a mass gap which depends on k2

to suppress these modes in the path integral. The low momentum modes completely drop

out if the regulator diverges at this point, however, this singular behaviour may complicate

working with such an expression. Finally, note that the second condition implies that the

regulator diverges if the IR scale is set to infinity with q2 � k2. Any regulator that

complies with the asymptotic behaviour described by these conditions will work and there

is freedom in choosing how the modes are regulated in between. This is determined by

the dimensionless profile function Rk:

Rk = k2Rk(z) (2.27)

Two examples are the optimised and the exponential profiles [130,131]:

Rk(z) = (1− z)Θ(1− z) (2.28)

Rk(z) =
azb

eazb − 1
(2.29)

with free positive parameters a > 0 and b ≥ 1. These cut-off profiles and the corresponding

modified propagators are shown in the panels of Figure 2.2 in units of k2. As mentioned

above, this leads to a mass gap in the regulated propagators removing any IR divergences.

Note that while the optimised profile treats all momentum modes below the IR scale

equally (with a mass gap of k2), the other choices lead to a different weighting of these

modes. This freedom leads to some regulator dependence on the quantities associated

with the fixed point and is briefly addressed in Section 2.5.

It is convenient to work with dimensionless fields and couplings so that the second

step in the coarse-graining procedure is automatically accounted for. Note that the reg-

ulator has introduced an explicit scale dependence on the action, so the scale-dependent

functional is now:

Wk[J ] = log

∫
D[Φ] e−(S0[Φ]+∆Sk+SI [Φ]−J,Φ) (2.30)
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Figure 2.2: Left: Profile functions Rk plotted in units of k2. The bottom line is the

optimised regulator (2.28) (black), the other three correspond to the exponential one

(2.29) with (a, b) = (2, 1) (blue), (a, b) = (1, 1) (green) and (a, b) = (1, 2) (red) from

bottom to top. Right: Modified propagators Gk in units of k2. The order is inverted from

bottom to top in this plot, the colour coding matches that of the left panel.

The Legendre transform of the generator of connected Green’s functions is the effective

action Γ[Φ̂]. In the scale-dependent functional, this has to be compensated by subtracting

the regulator, leading to the definition of the Effective Average Action Γk:

Γk[Φ̂] = JkΦ̂−Wk[Jk[Φ̂]]− 1

2

∫
ddx Φ̂Rk(∆)Φ̂ (2.31)

where Φ̂ is the expectation value of the fields Φ̂ = δWk/δJ . From now on, the regulator

is written as a function of the coarse-graining operator ∆ that appears in the propagator

of the fields and measures their momentum. This is typically the Laplacian and it may

include additional terms that appear in the potential of the field. This Γk is the scale-

dependent version of the effective action Γ and satisfies the following integro-differential

equation:

exp (−Γk) =

∫
Dφ exp

(
−S +

∫
ddx

(
φ− φ̂

) δΓk
δφ̂

)
× exp

(
−1

2

∫
ddx

(
φ− φ̂

)
Rk(∆)

(
φ− φ̂

)) (2.32)

where the quantum equation of motion for non-zero source δΓk/δΦ̂ = Jk has been used.

This scale-dependent functional is the central object of the functional renormalisation

group and defines an effective action which describes physics at a variable energy scale. In

the IR limit k → 0, the regulator vanishes by construction and the quantum effective action

Γ is recovered, where all field fluctuations have been integrated out. In the UV limit k →

∞, all modes are suppressed as the regulator becomes k2. Then, the second exponential

in eq. (2.32) approaches a delta functional, the integration over the quantum fields can be
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performed trivially and the bare action S is recovered. Thus, the Γk interpolates between

both functionals in the low and high-energy limits, respectively:

Γ
k→0←−−−− Γk

k→∞−−−−→ S (2.33)

2.3.3 Flow equations

The iterative coarse-graining steps can be taken continuously by performing the integration

in infinitesimal thin momentum shells. This amounts to taking the momentum derivat-

ive of Γk. It is convenient to work with dimensionless quantities, so the log-momentum

derivative is employed, ∂t = ∂logk = k∂k, yielding:

∂tΓk =
1

2
STr

[(
Γ

(2)
k +Rk

)−1
∂tRk

]
(2.34)

This is the form of the equation first derived by Wetterich [132] and then by Ellwanger [133]

and Morris [129] independently, while Bonini et al. give an equivalent formula [134]. The

trace stands for integration in spacetime and momentum, and sum over any discrete indices

such as flavour or colour. A negative sign is implied for Grassman fields. The notation

Γ
(2)
k refers to the second variation of Γk with respect to the fields, the Hessian. This is

an exact equation which describes the flow of the scale-dependent effective action with

respect to the renormalisation scale. This equation is free from divergences both in the

IR and in the UV due to the presence of the regulator.

The relation between this flow equation and Polchinski’s equation is a Legendre trans-

form [58, 129, 135]. Polchinski’s equation is formulated in terms of the low energy modes

of the fields, this is an effective theory valid up to a finite energy scale and agnostic to

the physics above that scale, thus, it makes reference to a UV cut-off. The Legendre

transform switches the point of view. The flow equation of Γk is formulated in terms of

the high-energy modes, which are sequentually integrated down to lower scales until the

quantum effective action is recovered. Thus, this equation depends on an IR cut-off.

The structure of this flow equation is similar to the one-loop effective action if the

replacement Γk → S is applied on the right-hand side of the equation. This amounts to

neglecting the running of the couplings and recovers the one-loop effective action supple-

mented by the IR regulator. Looking at it from the other way around, the exact flow

equation represents an improvement from the one-loop effective action as the running of

couplings is correctly accounted for. This is sometimes referred to as the RG improvement

in the literature.
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2.3.4 Approximations

The effective average action Γk describes the physics at some energy scale k and in general,

will contain all the operators allowed by the symmetries of the theory. Even if some of

these operators are turned off at a certain scale, they will generically be generated by the

renormalisation group flow:

Γk[Φ̂] =
∑
n

λn(k)On[Φ̂] (2.35)

It is impossible to keep track of this infinite set of operators, thus, some approximations

are required. Two such approximations are discussed next, the derivative expansion and

the vertex expansion.

The derivative expansion consists of making an ansatz for the form of the Γk arranging

the operators in a series in increasing powers of momenta, where the kinetic term is counted

separately:

Γk = ZΦ̂(∇Φ̂)2 + U(Φ̂) + V (Φ̂, p2) + · · · (2.36)

The first term in this expression stands for the kinetic term of the fields, here written

schematically as that of a scalar field. The second term contains all operators in the

theory space that respect the symmetries and involve no derivatives of the fields. The

third one contains interactions with two derivatives, while higher order functions follow

this pattern. Operators of higher-derivative order can be dropped if they are not relevant

for the physics. However, note that it is not a priori known which operators are relevant

at an interacting fixed point, as interactions can turn canonically irrelevant operators into

relevant ones. The local potential approximation consists of truncating this expression

to include only the kinetic and the potential U term and ignoring the running of the

wavefunction renormalisation constant. This approach is commonly used in quantum and

statistical field theory where one is interested in large wavelength phenomena [136–138].

In gravity, this is usually replaced by the operator expansion, where the ordering is made

in powers of curvature invariants [139] (see Section 2.4.9).

The vertex expansion consists instead on writing the generator of the 1PI correlation

functions as a Taylor expansion of the n-vertex functions:

Γk =
∞∑
n=0

1

n!
Γ

(n)
k

n∏
j

Φ̂j (2.37)

where the functional variations are taken with respect to the fields Φ̂j . Taking the log-

momentum derivative leads to a system of integro-differential equations that couple the
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flow of the n-point function to that of other functions up to n + 2. Since the flow of

a given vertex depends on all operators contributing to that interaction, this approach

can in principle retain effects from higher derivative orders. This means that it can track

the momentum dependence of the correlation functions. The vertex expansion has been

commonly employed in condensed matter physics, although it is currently also been used in

gravity, where it has made it possible to disentangle background and dynamical couplings

[129,140–145].

Approximations should be guided by an underlying physical principle that allows them

to be systematic and reliable. In strongly interacting systems, it is not guaranteed that

a certain truncation will leave the qualitative features of the full system unaffected. In

general, a fixed point of the full theory may not be visible in certain projections of the

action on a truncated theory space. The converse is also true, spurious solutions may

arise as artefacts of truncations which do not correspond to a physical solution of the full

theory. This is a point of uncertainty and one should keep in mind that results may reflect

some dependence on the projection and truncation of the Γk.

2.4 Renormalisation group for quantum gravity

This section describes some additional elements required for the formulation of the path

integral of gravity. It introduces some technical developments useful for quantising the

theory and constructs the flow equation of the gravitational theory. The section outlines

some of the additional complications that make gravity such a unique theory. Afterwards,

the following section ends this chapter with a review of the state of the art on the research

of asymptotic safety in gravity.

2.4.1 Metric fluctuations

Calculations in curved spacetime require the use of the background field approach, de-

composing the metric into a background field and a fluctuating field. The reason for this

is that when spacetime is dynamical, there is no preferred definition of coarse-graining

operators, lengths scales are dynamical and thus there is no unique way to measure mo-

mentum. The introduction of a fixed background field helps alleviate this issue as then

differential operators can be defined in the background. There are at least two ways in

which this decomposition can take place.

The first is the linear parametrisation, where the full metric is a superposition of the
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background metric and a fluctuating field,

gµν = ḡµν + hµν (2.38)

where the bar notation denotes the background field and from now on, this notation will be

used to denote operators constructed with the background metric. This split is widely used

in the literature because of its simple interpretation and because it makes computations

manageable. This is the parametrisation that will be used throughout this thesis.

The second is the exponential parametrisation, where the dynamical metric is given

by a background metric weighted by a fluctuation of the form:

gµν = ḡµρ(e
h)ρν = ḡµν + hµν +

1

2
h λ
µ hλν + · · · (2.39)

This split has the advantage of manifestly preserving the signature of the metric, in ad-

dition to making it easy to pick out the conformal mode of the metric. Furthermore, this

choice allows a formulation which leads to an explicit separation between the physical

and gauge degrees of freedom which also works off-shell. [146]. A generalised approach

has also been put forward that interpolates between these two splits, highlighting the

parametrisation dependence of the results and that different families of fixed points may

exist [147–150].

2.4.2 Gauge fixing and ghosts

The symmetry of gravity is diffeomorphism invariance, resulting in the invariance of gen-

eral coordinate transformations of the metric:

δεgµν = Lεgµν = ∇µεν +∇νεµ = ερ∂
ρgµν + ∂ρενgµρ + ∂ρεµgρν (2.40)

In quantum gauge transformations, the fluctuation absorbs all changes while the back-

ground remains unchanged:

δεhµν = Lεgµν , δεḡµν = 0 (2.41)

The metric has ten degrees of freedom in four dimensions, however, the graviton has

only two polarisations, meaning that eight of those are unphysical (in d dimensions, this

is d(d − 3)/2 physical degrees of freedom). Diffeomophism invariance gets rid of these

additional degrees of freedom by imposing constraints on the equations. Just like in gauge

theories, the gauge fixing can be implemented using the Fadeev-Popov procedure, ensuring

that the path integration is performed only over the physical degrees of freedom. A general
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gauge condition is of the form:

Fµ = 0 (2.42)

where Fµ is a differential operator on the fluctuation field to be specified. To embed this

condition in the path integral, the partition function can be multiplied by the following

identity:

1 = Ψ(h; ḡ)

∫
(df)δ(Fµ(hf ; ḡ)) (2.43)

where the integration is over diffeomorphisms f , δ is a functional Dirac delta and a

quantum gauge transformation acting on the field is denoted as hf = h + δfh. Insert-

ing this in the partition function, the integration over the diffeomorphism group can be

factored out and absorbed into an overall normalisation. This is possible because the

action is itself gauge invariant under quantum gauge transformations, such that a shift of

variables in the integration gets rid of the dependence on f . Then, the partition function

reads:

Z =

∫
(dh)Ψ(h; ḡ)δ(Fµ(h; ḡ))eiS(h;ḡ) (2.44)

The overall normalisation factor Ψ and the delta function can be absorbed into the action

in the exponential. Through the usual Fadeev-Popov trick, the normalisation Ψ turns

out to be the determinant of the Fadeev-Popov operator, denoted as ∆FP . This can be

rewritten as a Gaussian integral introducing anti-commuting fields C̄ and C,

Ψ = det ∆FP =

∫
dC̄dCeiSGH(h,C̄,C;ḡ) (2.45)

with ghost action

SGH(h, C̄, C; ḡ) =

∫
dx
√
ḡC̄µ (∆FP )µν C

ν (2.46)

and the Fadeev-Popov operator defined as

(∆FP )µν =
δFµ
δhρσ

(gσν∇ρ + gρν∇σ) (2.47)

The delta function can be implemented by defining

δ(Fµ(h; ḡ)) = lim
α→0

eiSGF (h;ḡ) (2.48)

with gauge fixing action

SGF (h; ḡ) =
1

2α

∫
ddx
√
ḡḡµνFµFν (2.49)
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Putting everything together, the partition function is:

Z =

∫
dhdC̄dCei(S(h;ḡ)+SGF (h;ḡ)+SGH(h,C̄,C;ḡ)) (2.50)

A convenient choice is to let the gauge fixing condition be linear in the fluctuation

F (h; ḡ) = 0:

Fµ(h; ḡ) = ∇̄ρhρµ −
1 + δ

d
∇̄µh = 0 (2.51)

In this expression, δ is a free parameter, not to be confused with a Dirac delta. The

Fadeev-Popov operator corresponding to (2.51) is

(∆FP )µν = ∇̄ρḡµν∇ρ + ∇̄ρḡρν∇µ − 2
1 + δ

d
∇̄µḡρσ ḡρν∇σ (2.52)

The harmonic (de Donder) gauge condition corresponds to δ = d/2− 1, while the geomet-

ric gauge condition is δ = 0. Taking the limit α → 0 not only enforces the gauge fixing

condition but is also a fixed point of the renormalisation group of this gauge fixing para-

meter [151]. Moreover, this limit is convenient as computations greatly simplify. Finally,

note that studies of quadratic gravity usually employ a gauge fixing term which contains

four background derivatives, which proves convenient to cancel nonminimal fourth-order

terms in the kinetic operator of the fluctuation hµν [152–155].

2.4.3 York decomposition

It is advantageous to separate the metric fluctuation into its components disentangling its

degrees of freedom. This is done in curved spacetimes through the York decomposition

[156]:

hµν = hTTµν + ∇̄µξν + ∇̄νξµ + ∇̄µ∇̄νσ −
1

d
ḡµν∇̄2σ +

1

d
ḡµνh (2.53)

The first term is transverse and traceless and carries the physical spin-2 degrees of freedom

of the graviton. The vector ξµ is transverse and carries the spin-1 component, while σ

and h carry the scalar modes, the last one being the trace part of the metric. These fields

obey the conditions:

∇̄µhTTµν = 0, ḡµνhTTµν = 0, ∇̄µξν = 0, h = ḡµνh
µν (2.54)

This decomposition has the further advantage that the propagator turns almost diagonal

when evaluated on a spherical background so that it becomes easier to invert.

It should be noted that some of the eigenmodes of these components may need to

be excluded from the calculations. This is because when the metric is decomposed, the
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components may have eigenmodes which are zeromodes and thus do not give a physical

contribution. For example, on spherical backgrounds, the two lowest modes of a scalar

field do not contribute to the propagation of a rank-2 tensor. Similarly, if the vector field

ξµ contains killing vectors, these should also be removed.

This transformation is, in essence, a change of variables which in Einstein spaces gives

rise to a Jacobian of the form:

J =

(
det(1T)

(
−∇̄2 +

R̄

d

))1/2(
det(0)

(
d− 1

d

)
(−∇̄2)

(
−∇̄2 +

R̄

d− 1

))1/2

(2.55)

The first term arises from identifying the kinetic operator of the spin-1 transverse field ξµ,

while the second one, from that of the scalar σ field. The other components do not induce

any further terms.

There are two non-equivalent ways to treat this Jacobian. First, in all similarity to

the Fadeev-Popov trick, the determinants can be rewritten as Gaussian integrals over new

auxiliary fields. The one arising due to the scalar modes introduces a pair of complex

Grassmann scalars and one real scalar. Similarly, the one appearing due to the vector

mode results in a pair of complex Grassmann transverse vectors and one real transverse

vector field [157]. This is the treatment that will be employed throughout this thesis.

The second method is to note that ξµ and σ do not have the same mass dimension as

the metric from which they originate. In a spherical background, a field redefinition can

be performed to make these fields canonically massless by rescaling them with suitable

differential operators [158]:

ξ̂µ =

√
−∇̄2 − R̄

d
ξµ, σ̂ =

√
(−∇̄2)

(
−∇̄2 − R̄

d− 1

)
σ (2.56)

This change of variables induces a new Jacobian which exactly cancels that from the

York decomposition, such that the transformation hµν → (hTT , ξ̂, σ̂, h) does not induce

any overall factors. It is important to note that such non-local field redefinitions are

only admissible for non-physical fields. In this case, it is understood that ξµ and σ carry

gauge degrees of freedom, while only hTT is physical. Note that this approach may not

work in general spaces, where the Jacobians from the York decomposition would be more

complicated expressions.

It should be noted that these two treatments are not equivalent and can lead to finding

slightly different results. In the case of the linear split, field redefinitions lead to very mild

differences, while in combination with the exponential split, qualitative differences in the

results have been observed [147].
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Similarly, the vector ghosts can be separated into their transverse and longitudinal

parts:

C̄µ = C̄Tµ + ∇̄µη̄, Cµ = CTµ + ∇̄µη (2.57)

This transformation gives rise to a new Jacobian from the longtidunal modes:

JGH =
(
det(−∇̄2)

)−1
(2.58)

As before, this can be either rewritten as additional auxiliary fields, yielding a pair of

complex scalar fields, or it can be cancelled by a redefinition of the longitudinal mode.

2.4.4 Flow equation of gravity

The construction of the effective action for gravity follows that of the Section 2.3 with

the insertion of the gauge fixing and ghost terms, as well as a regulator for the ghosts.

In a slight abuse of notation, from now on the expectation value of the fields hµν , C̄, C

appearing in Γk will be denoted by the same name as the quantum fields.

An important remark is that under the split of the metric in background and fluctu-

ation, the coarse-graining operator of the regulator term must be constructed using the

background metric, i.e. ∆SK(∆)→ ∆SK(∆̄). This is unavoidable as momentum must be

measured with respect to a fixed background for a proper regularisation. Following the

same steps as before, the flow equation for Γk in gravity is:

∂tΓk(h, C̄, C; ḡ) =
1

2
Tr

[(
Γ

(2)
k +Rk

)−1

hh
(∂tRk)hh

]
− Tr

[(
Γ

(2)
k +Rk

)−1

C̄C
(∂tRk)C̄C

]
(2.59)

The h in this equation refers to the full fluctuation field. As before, this equation is finite

both in the UV and the IR due to the regulator which satisfies the requirements previously

listed. Note that this equation depends on two metrics, the full dynamical metric gµν and

the background metric ḡµν . This is because the gauge fixing and regulator terms intro-

duce an additional dependence on the background on top of the one defined by the metric

fluctuation hµν = gµν − ḡµν . This additional background dependence makes it impossible

to write a flow equation in terms of a single metric. Moreover, this seemingly introduces

a non-trivial background dependence on the functional. However, physical observables

must be background-independent. The information on diffeomorphism invariance and

background independence of Γk is carried by the split Ward identities and Nielsen iden-

tities. These identities relate derivatives with respect to the fluctuation field and those

with respect to the background field, and encode the amount of additional background
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dependence of the functional. For a detailed review, the reader is referred to ref. [159] and

references therein.

2.4.5 Background field approximation

A first approximation to treat this problem is offered by noting that Γk can, in general,

be written as:

Γk(g, ḡ, C̄, C) = Γ̄k(g) + Γ̂k(g, ḡ, C̄, C) (2.60)

The first term depends only on the full dynamical metric and is defined by setting all

fluctuations to zero Γ̄k(g) ≡ Γk(g, g, 0, 0). In the absence of fluctuations, gµν = ḡµν and

Γ̄k satisfies diffeomorphism invariance. Then, functional derivatives with respect to ḡµν

and hµν coincide in the linear split and the Ward identity is satisfied to leading order [41],

implying for the second term:

Γ̂k(ḡ, ḡ, 0, 0) = 0 (2.61)

This term contains the gauge fixing, ghosts and possibly auxiliary fields arising from field

redefinitions, as explained in Section 2.4.3. The background field approximation, or single-

metric approximation, consists of approximating the effective action via Γ̄k and neglecting

the running of the gauge fixing and the ghosts’ wavefunction renormalisation constant.

Then, the running of the couplings contained in Γ̄k can be obtained by evaluating the

Hessian at vanishing fluctuation. Note that this approximation is only exact in the case of

scalar fields. The assumption is that Γ̄k carries the physical information of the theory while

Γ̂k includes quantum corrections to the gauge fixing. The background field approximation

will be employed throughout the rest of this study, thus:

Γk = Γ̄k + SGF + SGH + SAUX (2.62)

Note that this also reproduces the one-loop effective action replacing Γk → S on the right

hand side of (2.59).

The flow equation can now be computed setting field fluctuations to zero at the end.

The first term in (2.59) encodes quantum corrections due to metric fluctuations and can be

computed either taking derivatives of hµν as was done originally in ref. [41] or by using the

York decomposition and adding regulators for each mode independently. The advantage

of the latter approach is that this choice helps to disentangle the mixing of physical and

unphysical degrees of freedom leading to a nearly diagonal propagator. If the method of

auxiliary fields is used, additional traces over these fields need to be added to the equation.
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2.4.6 Trace evaluation

Two mathematical techniques are commonly used to evaluate the traces in the right-hand

side of (2.59), the early time heat kernel expansion and the smoothed spectral sum. Both

methods are discussed in detail in Chapter 4 so an explanation is deferred until then. In

that chapter, the calculations are performed explicitly for free matter fields.

It is worth to mention that the result of the computations depend on the profile function

and on the coarse-graining operator used to regulate the field fluctuations. It is only the

traces of canonically marginal couplings that do not depend on the regulator, thus they

are scheme independent [125,160]. This regulator dependence introduces some uncertainty

on the results regarding the flow of canonically dimensionful couplings. For instance,

the contributions to the flow equation from free fermions can appear with different signs

depending on how these fields are regularised [161]. This dependence concerns not only the

choice of the profile function but also the choice of the coarse-graining operator employed

to regularised the fields. Further details are given in the following section.

2.4.7 Types of cut-offs

The coarse-graining operator ∆ of the profile function Rk(∆) is supposed to measure the

momentum of the fields being regularised. A natural choice is to let it be a function of the

Laplacian constructed with the background metric, −∇̄2. In the following, it is understood

that all quantities are constructed with the background metric ḡµν and the bar notation

is dropped for readability. A general form for this operator in spherical backgrounds can

be written as:

∆ = −∇2 +
∑
n

αnfn(R) +
∑
n

gn(k)hn(R,Φ) (2.63)

The first term is the bare Laplacian which appears in the kinetic operator of all the fields.

The second term includes linear curvature scalars encoded by fn(R) with free constant

parameters αn. These curvature terms may appear in the propagator due to the generalised

definition of the Laplacian on curved spacetime acting on tensors of rank-1 and above or

spinors. The third term contains any other interactions with spacetime or other fields

which are accompanied by momentum-dependent couplings gn(k). Three types of cut-offs

can be defined depending on which of these terms are included in the coarse-graining

operator for any given field. These are now listed following the nomenclature introduced

in [160].

The type I cut-off is defined by fixing αn = gn = 0 dropping any k dependence in
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the regulator. This is suitable for free massless scalar fields where the kinetic operator

is just the bare Laplacian but is also commonly used for the components of the metric

in the York decomposition. The type II cut-off is characterised by including potential

terms with constant coefficients, such that αn 6= 0 and gn(k) = gn. This is suitable

for vectors, tensors and spinors, where the kinetic operator can include terms linear in

curvature with constant coefficients. The constant gn can be zero for free fields, or can

be non-zero if there are interactions but their running is neglected. For example, one

may wish to investigate the impact of mass or a non-minimal coupling to curvature in a

simplified approximation where these couplings are taken as free parameters. The type

III cut-off is the most general scenario and is defined by including momentum-dependent

couplings. This implies that the spectrum of the coarse-graining operator also evolves with

the RG flow. For this reason, this is also known as the spectrally adjusted cut-off and

is useful when the momentum-dependence of interactions must be retained, for example,

when computing the running of wavefunction renormalisation constants or investigating

the momentum dependence of correlation functions.

2.4.8 Excluded modes

The decomposition of the spin-1 and spin-2 fields into their irreducible components of the

Lorentz group entails that some unphysical contributions to the eigenspectrum of these

fields must be removed. Consider the decomposition of a vector field into its transverse

and longitudinal parts:

Aµ = ATµ +∇µφ (2.64)

The transverse part contains the physical field while the longitudinal part carries the gauge

degrees of freedom. However, the constant mode of φ is not a physical degree of freedom

of Aµ and thus should be excluded from any computations. This is usually denoted by

using a prime notation (′) to indicate how many of the lowest modes must be removed.

For example:

Tr′φW (−∇2) (2.65)

indicates that the lower eigenmode of the differential operator −∇2 acting on φ is to be

excluded. The same applies in the York decomposition of the metric. The spin-1 compon-

ent ξµ may contain Killing vectors which must be excluded from the traces. This depends

on the choice of metric so it must be checked each time. Likewise, the spin-0 component

σ may carry modes which do not contribute to the metric. All calculations in this thesis
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will take place on a spherical background, where these spurious modes correspond to the

two lowest modes of σ and the lowest mode of ξµ.

2.4.9 Approximations

The effective action generically contains any number of operators allowed by the symmet-

ries of the theory accompanied by a running coupling:

Γk(g, ḡ,Φ) =

∫
ddx
√
ḡ
∑
n

λn(k)On(g, ḡ,Φ) (2.66)

where all the fields in the theory are collected in Φ and it is implied that the operators can

contain any possible combination of these fields that respect diffeomorphism invariance

and any other symmetries of the theory. The beta functions describing the flow of these

couplings are obtained by projecting the right-hand side of the flow equation on each of

the operators and comparing with the left-hand side, thus:∫
ddx
√
g βnOn = POn∂tΓk (2.67)

With POn a projection operator that picks out the terms in the flow equation proportional

to On. As discussed already in Section 2.3, an ansatz for Γk can be chosen by limiting the

set of operators appearing in Γk to a truncated theory space. Then the projection of the

flow equation is made on the basis of operators present in the action.

A simple starting point is the derivative expansion introduced in 2.3. In the following,

the notation Omn indicates an operator with m derivatives and the subindex n is just a

label to distinguish all the possible ones. The zeroth and second derivative-order contain

only one operator each, the vacuum energy and the Einstein-Hilbert term:

O0
1 = I, O2

1 = R, (2.68)

At fourth derivative-order, there are four curvature invariants constructed with the curvature

tensors and covariant derivatives. On a manifold without boundary, total derivatives can

be ignored and this number reduces to three independent terms. They may be written

either on the Ricci basis, in terms of (R2, R2
µν , R

2
µνρσ) or equivalently in the Weyl basis,

(R2, E, C2), where E is the integrand of the Gauss-Bonnet term and C2 is the square of

the Weyl tensor:

O4
1 = R2, O4

2 = CµνρσC
µνρσ, O4

3 = E (2.69)

with:

E = R2 − 4RµνR
µν +RµνρσR

µνρσ,

C2 = RµνρσR
µνρσ − 4

d− 2
RµνR

µν +
2

(d− 1)(d− 2)
R2

(2.70)
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At the sixth order, there are already ten different operators, which reduce to eight inde-

pendent invariants in four dimensions due to geometrical relations between them. However,

this expansion becomes very complicated as the number of curvature invariants blows up

very quickly with increasing derivative-order. Furthermore, computing the Hessians for

each different operator in a general background becomes a very complicated task as the

number of curvature invariants increases. Moreover, constructing suitable projection op-

erators to disentangle the running of all different couplings is a highly non-trivial task. A

simpler alternative is available by truncating to a subspace of operators.

The derivative expansion is usually replaced by the operator expansion in the study of

gravity. This involves truncating the theory space of the derivative expansion to include

only a subset of the possible curvature invariants. The approach is structurally simpler as

it is effectively an expansion in powers of a given basis of operators. Note this is not a true

derivative expansion, as operators outside of the truncated theory space are neglected at

each order in momentum. Nonetheless, it is useful as it permits investigations on the effect

of higher derivative-order operators. These operators can, in principle, become relevant

at an interacting fixed point and cannot be ignored. The predictivity of the theory can be

spoiled if an infinite number of operators become relevant.

An example is given by the f(R) approximation, where the Γk is assumed to be a

general function of the Ricci scalar only.

Γk =

∫
ddx
√
ḡfk(R) (2.71)

In maximally symmetric spaces, this approximation leads to a partial differential equation

which can be solved to find global solutions of the theory. Then, the limits of small and

large curvature, corresponding to the UV and IR, respectively, can both be studied. A

further approximation is given by assuming that the function can be written in polynomial

form, leading to a sum of monomials of increasing power in R:

Γk =

∫
ddx
√
ḡ

N∑
n

λn(k)Rn (2.72)

with N being the order of the approximation. In this case, the basis of the operators is

given solely by the Ricci scalar and results in a system of ordinary differential equations

that can be solved algebraically at the fixed point. This expansion is justified by the

bootstrap hypothesis which is explained next.

The bootstrap hypothesis assumes that operators can be ordered in a power series

according to their canonical mass dimension. Moreover, it states that if higher derivative
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curvature invariants are introduced in the action, the additional RG directions in the ex-

panded theory space are less and less relevant. This implies that there is a finite number

of relevant directions (free parameters) associated with a UV fixed point and thus the

theory is predictive. This is not necessarily true at an interacting fixed point and the

hypothesis must be checked a posteriori. Based on this assumption, the polynomial ap-

proach looks for fixed points by gradually incorporating higher derivative operators. This

bootstrap search strategy will be used throughout this thesis to find gravitational fixed

points including operators up to 100th curvature-order.

Similar polynomial approximations have been explored more recently, e.g. the f(R,Ric2)

and f(R,Riem2) approximations, where the basis of operators is (R,R2
µν) and (R,R2

µνρσ),

respectively. This study will consider a generalised version of these polynomial approxim-

ations where the action will be projected on a subspace spanned by linear combinations of

(R2, Ric2, Riem2). This is discussed first in the theory without matter in Chapter 3 and

then in the presence of Standard Model matter in Chapter 5.

Another approximation is given by the so-called form factors:

Γk = Γ
(EH)
k +

∫
ddx
√
ḡ
(
CµνρσW

C
k (∆)Cµνρσ +RWR

k (∆)R
)

(2.73)

with the first term denoting the Einstein-Hilbert action. This expansion captures terms

which are not included in f(R)-like truncations. Moreover, these form factors are momentum-

dependent and quadratic in the metric fluctuations, thus they include non-trivial contri-

butions to the propagator of the tensor and scalar mode of the graviton. Terms of this

form but of higher curvature order also encode the momentum-dependence of the running

couplings. This approach has been used to compute non-perturbative IR corrections to

the Newtonian potential [162] and to compute graviton mediated scattering amplitudes of

scalar fields [163,164]. For a detailed review of this approach, see ref. [165].

In addition, the vertex expansion already introduced in Section 2.3 carries over to the

gravitational case. This approach recognises the bi-metric structure of Γk, disentangling

background and dynamical fluctuations and allowing to investigate the momentum de-

pendence of correlation functions. This results in a distinction between background and dy-

namical couplings, related to each other by modified Slavnov-Taylor identities. Moreover,

this implies that each n-point vertex carries a different interaction coupling and respective

graviton mass parameters. The next section includes a review of progress in this approach.
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2.5 State-of-the-art in asymptotically safe gravity

Now that the necessary concepts and technical tools have been introduced, a literature

review is presented summarising significant advancements in asymptotic safety in gravity

up to date. Although this section is aimed to provide a broad scope of the advances

in the field and highlight the many difficulties and implications of asymptotically safe

gravity, it is by no means an exhaustive review and some important developments may

have been neglected. References for more complete review papers are provided throughout

as a supplement for the reader.

Einstein-Hilbert gravity. The development of the functional renormalisation group

offered a breakthrough in the asymptotic safety programme by providing a framework to

study non-perturbative physics. The seminal paper that started renewed efforts applied

this framework to the Einstein-Hilbert theory [41]. In this setting, an interacting fixed

point is found with two relevant directions and well-defined RG flows connecting the in-

teracting and finite theory in the UV to a Gaussian regime in the IR [166, 167]. Since

then, this approximation has been extensively studied providing strong support for the

existence of the fixed point in four dimensions [166–170] and above [170–172]. The con-

formally reduced theory has also been explored, finding similar results as the full theory in

the Einstein-Hilbert theory [173–176], while actions with non-local terms have also been

considered finding they decouple from the RG flow [157, 177]. Moreover, the theory re-

mains asymptotically safe upon inclusion of the two-loop Goroff-Sagnotti term [178]. For

a broader review of the progress in the field, the reader is directed to refs. [160,179–181].

Quadratic gravity. The derivative expansion has been consistently explored up to

fourth order in momentum. The quadratic gravity approximation was first studied in

a spherical background with the RG improvement [168, 182] as well as in general back-

grounds at one-loop [152,154]. Later, the use of Einstein backgrounds allowed to identify

the running of two distinct couplings with the RG improvement, finding a non-trivial

fixed point for these couplings [153]. This result has also been reproduced in perturbation

theory [183, 184]. It is only recently that a computation in a general background using

the RG improvement was performed, disentangling the running of all three independent

couplings [155]. All these studies agree on finding three relevant directions. In the general

background, the Gauss-Bonnet integrand remains exactly marginal in the UV. This is

consistent with this term being a total derivative in four dimensions and hence having no
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influence in the physics.

Operator expansion. Meanwhile, the operator expansion has mainly featured f(R)

theories, where necessary conditions for global solutions have been investigated [139,176,

185–189]. The polynomial approximation has similarly been explored putting forward

the bootstrap hypothesis. As previously explained, this conjectures that canonical power

counting remains a valid ordering principle for operators in the UV. The implication is

that a fixed point of the theory has only a finite number of relevant directions, ensuring

that the theory remains predictive [187]. Studies up to high polynomial orders have all

confirmed this notion finding three relevant directions [157, 190–194]. Additionally, the

theory space has been extended to include operators of the form R2
µν finding qualitatively

similar results [195]. Moreover, models including terms R2
µνρσ have found solutions with up

to four relevant directions, indicating that the contributions from other higher derivative

curvature invariants could play an important role in determining the UV critical surface

of the fixed point [196].

Form factors. An approximation in terms of form-factors was recently put forward

within the background field approach, which carry information about the momentum

dependence of propagators and correlation functions [165]. This approach has been used

to compute non-perturbative quantum corrections to the Newtonian potential, which differ

from the perturbative EFT approach [162]. It has also been used to compute finite gravity-

mediated scattering amplitudes of non-minimally coupled scalars [163,164].

Dynamics of the ghost sector. Another direction of research beyond the local poten-

tial approximation has investigated the dynamics of the ghost sector. The backreaction of

these ghosts appears explicitly in the beta functions of the gravitational couplings, thus

modifying the fixed point. Moreover, self-interactions and interactions with matter could

in general lead to additional relevant RG flows. This has been explored in the Einstein-

Hilbert action finding that the fixed point survives without major modification, while the

ghost self-interaction becomes asymptotically free [197–199]. On the other hand, their

interaction with scalars is non-vanishing and could become relevant for large values of the

ghost and scalar anomalous dimensions [200]. Furthermore, the running of the graviton

and ghost anomalous dimensions have also been computed beyond the background field

approximation in the Einstein-Hilbert theory [201].
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Vertex expansion. In parallel to the background field approximation, bi-metric treat-

ments have been put forward where the functional is recognised to depend on two metrics

separately. This makes it possible to keep track of background and fluctuation dependent

quantities and to verify that background independence is restored in the IR as encoded

by split Ward identities [143, 202–204]. This allows for a vertex expansion where dynam-

ical and background running couplings have been extracted from the flow of up to the

4-point correlation functions [144, 145, 205–207]. Each vertex contains a different avatar

of Newton’s coupling and a graviton mass parameter. The dynamical Newton’s couplings

are in agreement with each other leading to a sort of effective universality, providing fur-

ther support for the asymptotic safety conjecture [207, 208]. Minimally coupled matter

has also been studied in this approach, finding that the difference between background

and dynamical fixed points becomes more significant once matter is included, with the

dynamical one showing a weak matter and curvature dependence with near-perturbative

behaviour [209–212]. These computations have included fourth-derivative operators find-

ing that higher derivative operators can source a third relevant RG direction, in agreement

with the findings in the background field approach. Most computations have been per-

formed around a flat background but studies in curved backgrounds have also been under-

taken [213]. Besides from the linear and exponential splits mentioned in Section 2.4.1, the

geometric DeWitt-Vilkovisky parametrisation has also been investigated in these bi-metric

approaches [214,215]. For a more complete review on the vertex expansion, see ref. [159].

Lorentzian gravity. Although most computations in the continuum approach are per-

formed in Euclidean spaces, the causal structure of spacetime can also be reconciled with

the asymptotic safety conjecture. To achieve this, a flow equation using the ADM decom-

position of the metric has been derived, which allows connecting Euclidean with Lorentzian

computations [216–219]. This has been used to explore Horava-Lifshitz gravity with the

functional renormalisation group finding an imprint of the fixed point found in Euclidean

space [220]. These foliated spacetimes exhibit points with the same qualitative features as

the Euclidean computations mentioned above. In the presence of matter, a fixed point with

suitable RG flows compatible with General Relativity in the IR has also been found [221].

Breaking of Lorentz invariance in the UV may be visible in the IR which can be used to

constrain Lorentz invariance violation in gravity and the matter sector [222,223].

Parametrisation dependence. The approximations to the exact flow equation intro-

duce a degree of uncertainty. Lacking a perturbative parameter, it is important to keep
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track of how significant the impact of this freedom in parametrisation can be. Previous

studies have investigated the dependence on gauge fixing parameters, metric fluctuation

and regulator parametrisation [146–150]. The guiding principle of least variation suggests

that choices which lead to large variations in quantities like scaling dimensions under a

small variation of the parameter may lead to unreliable results. This statement should

be taken with caution, however, as choices which are physically motivated should be pre-

ferred. More recently, an approach towards a background independent formalism has been

put forward [224]. In terms of the theory space of truncations, dependence on the projec-

tion of the action can be compared across f(R) [192], f(R,Ric2) [195] and f(R,Riem2)

settings [196]. Chapter 3 of the present study expands the literature by providing an

analysis of the variation of the gravitational fixed point in an interpolation between these

three settings, showing that a fixed point that is considered physical under a certain pro-

jection can appear spurious under a different projection. Moreover, it will be explicitly

shown throughout the different chapters of this thesis that physical solutions need not be

continuously connected in the space of parameters.

Large N matter. The theory of gravity displays a matter-mediated stationary point in

the large N regime with many matter fields. This was first observed in perturbation theory

[30,39] and was later revisited with the RG improvement including higher derivative-order

terms [225, 226]. To leading order, the gravitational quantum corrections are neglected

and a fixed point for the canonically relevant couplings is found, with higher order ones

being asymptotically free. This scenario will be the subject of Chapter 7, where the

computations will be revisited and extended to next-to-leading order. It will be shown

that there exists a scaling regime in which gravitational interactions compete with matter

fluctuations and generate a non-trivial fixed point for the marginal coupling. This, in turn,

cascades into all higher derivative interactions, which at the fixed point can be resummed

into a Coleman-Weinberg type gravitational potential, defining a general solution of the

fixed point functional.

Fermions and chiral symmetry breaking. Fermion interactions in curved spacetime

can be affected by the gravitational couplings. Similar to the confinement phenomenon

in QCD, strong gravitational couplings could break chiral symmetry at the Planck scale,

leading to large fermion masses which are not observed. However, studies have found that

chiral symmetry breaking is avoided in the asymptotic safety scenario [227–229]. Moreover,

fermions pose an additional ambiguity as their contribution to the flow can appear with
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different signs depending on the choice of regulator. The case for regularisation with a

type II cut-off has been made for non-interacting fermions [161]. A more recent study

suggests that this may just be an artefact of neglecting fermion interactions, showing that

regulator dependence can be mild for non-minimally coupled fermions [230].

Matter impact on gravity. Matter interactions can influence the gravitational fixed

point and could in principle modify the dimensionality of the UV critical surface. It

then becomes important to understand the impact of self-interactions and gravity-matter

interactions. Plenty of investigations have been made augmenting either the Einstein-

Hilbert theory or the quadratic gravity scenario with interacting scalars [231–240], fermi-

ons [120,230,241], considering the Higgs-Yukawa sector [117,118] and also with Majorana

fermions [242], delimiting restrictions on the matter content of the theory. Minimally

coupled matter is also compatible with the Lorentzian formulation [221]. Qualitatively, a

large number of fermion fields drives the cosmological constant towards negative values

and can annihilate the gravitational fixed point. Meanwhile, gauge bosons tend to stabil-

ise the fixed point and result in more perturbative coupling values [243]. Moreover, the

backreaction of matter could impose further restrictions. This has been explored in an

improved background field setting finding narrow constraints due to large anomalous di-

mensions [244,245] while leading to weaker bounds in the vertex expansion [208–210,212].

In the operator expansion, studies on f(R) with minimally coupled matter have found

that the SM field content is only compatible with a gravitational fixed point to high

derivative order in particular settings showing strong parametrisation and regulator de-

pendence [243,246,247]. This last point will be further discussed in Chapter 4, illustrating

two scenarios in f(R) for which different technical choices lead to either the absence or

presence of a gravitational fixed point. Furthermore, this analysis will be extended to an

expanded theory space in Chapter 5, discussing fixed points compatible with SM matter

under the presence of higher order curvature invariants.

Gravity impact on matter. As already discussed in Section 2.2, quantum gravita-

tional effects will impact the matter sector close to the Planck scale leading to non-trivial

modifications of the running of matter couplings in the UV. This can lead to predictions

for low energy physics, such as the prediction for the Higgs boson mass [248] and es-

timates on the Top and Bottom quark masses [249, 250]. Moreover, gravity induces an

effective dimensional reduction on the gauge couplings which can change the prospect re-

garding triviality in the U(1) sector [110, 113, 114]. For more complete reviews of matter
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UV completions and the impact of gravity in the matter sector, the reader is referred to

refs. [123,251–253]

Observables. An important challenge is accessing observables that can support or falsify

the asymptotic safety conjecture in gravity. The dynamical nature of spacetime makes it

difficult to formulate such observables contrary to conventional flat-space quantum field

theory. Quantum gravitational effects are expected to kick-in close to the Planck scale

and can impact high-energy processes such as black hole physics [254–256]. However,

it is unlikely that experiments will ever be able to access such high energies directly.

Instead, one could consider that UV physics effects can percolate to lower energies and

leave imprints of asymptotic safety in experimentally accessible scales. This could occur

in the matter sector and is closely related to the discussion in the previous paragraph,

leading to predictions of the Higgs [248] and the Top mass [249] and measurements of

gauge couplings [114]. Furthermore, cosmology can offer another window to probe strong

gravitational effects in the early universe, such as inflation [257–259] and provide further

bounds on the matter content [260]. See refs. [261, 262] for reviews on implications of

asymptotic safety for cosmology.
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Chapter 3

Quantum Gravity

3.1 Introduction

The asymptotic safety conjecture for gravity has been extensively investigated with the

functional renormalisation group, as outlined in the previous literature review. Beyond

the Einstein theory, fourth derivative-order curvature invariants induce deviations on the

coupling values and critical exponents. However, higher derivative-order operators are

found to stabilise the fixed point as these variations become smaller. Previous studies

have investigated operator expansions on the Ricci scalar [192,263], Ricci tensor [195] and

Riemann tensor [196] separately. While most studies of pure gravity suggest the existence

of a fixed point with three relevant renormalisation group (RG) directions, solutions with

four can appear if higher order interactions of the Riemann tensor are considered. This

difference on the dimensionality of the UV critical surface suggests that such interactions

can play an important role in quantum gravity. Thus, it becomes important to understand

how fixed points of the theory depend on such higher order terms.

Moreover, numerical convergence of the fixed point seems to be subject to the types

of interactions present in the theory. In the first case of the previously mentioned studies,

convergence is slow and it is necessary to go to high orders in curvature to establish numer-

ical reliability. The second case has a fixed point with faster convergence, while in the last

case, fixed points with either fast or limited convergence appear. Therefore, to properly

assess the numerical reliability and convergence of solutions, it may be necessary to con-

sider very high curvature orders. The present analysis extends the current understanding

of these theories by considering cases where the three independent quadratic curvature

invariants appear simultaneously in the action. Moreover, this study will consider models

up to order N = 101 in a curvature expansion. Fixed points are searched for by performing
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a scan of the theory space where these three operators appear in a linear combination.

The outline of this study is as follows. Section 3.2 introduces the theoretical framework

and explains the methodology employed in the fixed point search. Section 3.3 presents

the results of the search and discusses how the characteristics of the fixed point vary in

different points of the theory space. Finally, Section 3.4 summarises the results and gives

the conclusions.

3.2 Methodology

3.2.1 Gravitational action

The general form of the action for the types of models that will be studied here is

Γgrav =

∫
d4x
√
g
[
F̄k(X̄) + R̄ Z̄k(X̄)

]
(3.1)

The bar notation indicates dimensionful quantities. The functions F̄k and Z̄k contain the

gravitational interactions including the Einstein action,

F̄k(0) =
Λk

8πGk
, Z̄k(0) = − 1

16πGk
(3.2)

as well as higher order interactions. The action should be supplemented by the appropriate

gauge fixing and ghost operators as outlined in Chapter 2. F̄k and Z̄k are functions of X̄,

defined as a linear combination of the three independent quadratic curvature invariants,

X̄ = a R̄2 + b R̄µνR̄
µν + c R̄µνρσR̄

µνρσ (3.3)

The free constant parameters {a, b, c} ∈ R3 determine the projection of the action on the

subspace of linear combinations of these operators. Thus, the theory space is spanned

by the basis operators (R2, Ric2, Riem2), with (a, b, c) defining points in this subspace.

Introducing some notation, the f(R) theory is contained in this approach and corres-

ponds to setting (a, b, c) = (1, 0, 0), f(R,Ric2) corresponds to (a, b, c) = (0, 1, 0), while

f(R,Riem2), to (a, b, c) = (0, 0, 1). Interactions involving the Ricci and Riemann tensors

induce additional quantum corrections to the flow equation which are not present in the

well-studied f(R) theory. The aim of this study is to understand how these interactions

affect the asymptotic safety scenario in pure gravity by scanning for fixed points across

regions of this parameter space.

It is convenient to switch to dimensionless quantities in the following, thus, the dimen-

sionless functions fk and zk are introduced as

f(X) =
F̄k(X̄)

16πkd
, z(X) =

Z̄k(X̄)

16πkd−2
(3.4)
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The k notation has been dropped but it is implied that these functions are scale-dependent

as they include renormalised couplings. The dimensionless X is X = k−2X̄.

This type of theories has been studied in the background field approximation with a

spherical background Sd. Note that in this background, the Ricci and Riemann tensors

are proportional to the Ricci scalar via:

Rµν =
1

d
gµνR, Rµνρσ =

gµρgνσ − gµσgνρ
d(d− 1)

R (3.5)

As a result, it is impossible to distinguish the three operators appearing in X and the

running of the couplings associated to them is conflated into a single coupling per canonical

mass dimension. Nonetheless, this approach is useful for probing the general behaviour

of higher order couplings and understanding if relevant RG directions can arise at higher

curvature-orders.

The quantum corrections for these type of models have been previously computed in the

literature employing the functional renormalisation group. This thesis does not attempt

to reproduce these computations and just borrows the results obtained in refs. [195, 196],

to which the reader is directed for details on the derivation. The flow equation of this

theory takes the general form:

∂tf +R∂tz + 4f + 2Rz − 4X(f ′ +Rz′) = IQ (3.6)

The prime notation indicates derivative with respect to the argument X, which is omitted

in this expression for clarity. The left-hand side is the classical part of the flow driven

by canonical mass dimensions, while the right-hand side encodes the corrections due to

quantum fluctuations of the metric. Explicit expressions for IQ are given in Appendix A

taken from refs. [195,196,263].

This thesis assummes that the UV fixed point of gravity admits a Taylor expansion

in small curvature and makes use of the polynomial approximation, where f and z are

expressed as a power series of X,

f(X) =

bN−1
2
c∑

n=0

λ2nX
n, z(X) =

bN−2
2
c∑

n=0

λ2n+1X
n (3.7)

The parameter N is the order of the approximation and counts the number of curvature

invariants in the action. These models contain the Einstein-Hilbert theory at N = 2, with

the dimensionless cosmological constant λc = k−4ΛK and Newton’s coupling gN = k2Gk

given by:

λc = − λ0

2λ1
, gN = − 1

λ1
(3.8)
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From the relations (3.5), X evaluated on a four-dimensional spherical background

reduces to:

X
∣∣
S4 =

12a+ 3b+ 2c

12
R2 (3.9)

As each type of interaction yields different contributions to the flow equation, (a, b, c)

appear explicitly in the expressions for IQ given in Appendix A.

The full set of points that can be covered within this approximation is given by the

surface:

a+
b

4
+
c

6
= X0 (3.10)

where X0 6= 0 is an arbitrary constant. Points lying in different surfaces intersected

by rays emanating from the origin are equivalent. For example, the point (a, b, c) =

(1, 0, 0) describes the same theory as (a, b, c) = (2, 0, 0) modulo constants multiplying the

couplings. The three theories previously mentioned are identified by the following points:

(a, b, c) =


(1, 0, 0), f(R)

(0, 1, 0), f(R,Ric2)

(0, 0, 1), f(R,Riem2)

(3.11)

These correspond to projections where the action is completely aligned with the direction

of each of the quadratic operators mentioned above. The theory is defined for any real

values of (a, b, c) for which X0 6= 0. In principle this can also include linear combinations

with negative parameters, however, for simplicity, this analysis is limited to positive values

only. Moreover, note that as the Weyl squared tensor vanishes in a spherical background

in four dimensions, it is not possible to study actions in the Weyl basis in the present

approximation.

3.2.2 Vertical and horizontal searches

This section briefly introduces some terminology that is used through the text and explains

the basic idea behind the search strategy employed in this study.

In the present analysis, a vertical search will refer to a fixed point search where the

parameters are kept fixed and the order of the approximationN is systematically increased.

These searches are motivated by the bootstrap hypothesis, which states that higher order

curvature invariants do not induce new relevant RG directions once the fixed point has

stabilised. Separate vertical searches can be performed at different points in the parameter
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Figure 3.1: Map of the theory space of pure gravity showing the paths explored in this

study. The sides of the triangle form a set of orthogonal axes in this projection. The labels

correspond to: a = (1, 0, 0), b = (0, 1, 0), c = (0, 0, 1), m = (1, 1, 1).

space, such as the previously mentioned studies f(R) [191,192,263], f(R,Ric2) [195] and

f(R,Riem2) [196].

A horizontal search will refer to a fixed point search where the parameters are con-

tinuously varied while the approximation order is kept fixed. Horizontal searches can only

be performed if the flow equation is a continuous function of the parameters to invest-

igate. This category of searches includes any analysis that investigates dependence on

the parameters of the theory, such as gauge fixing and metric parametrisation depend-

ence [147–150], as well as matter content and regularisation-dependence [160, 244, 246].

Just as multiple vertical searches can be performed at different points of the parameter

space, multiple horizontal searches can be performed at increasing approximation orders.

This study will perform many horizontal searches in parallel at increasing approximation

order.

3.2.3 Fixed point search

The parameters (a, b, c) are left open and multiple points of the theory space are explored

looking for fixed points. The strategy is to start from a pre-defined point and make a small

variation on (a, b, c). Then, a fixed point of the flow is searched for at the new point in

the vicinity of the original fixed point. If a solution is found, this process can be repeated

many times between any two given points in the theory space.

The first step is to define the starting point and perform a vertical search to high

curvature order. The initial point is chosen to be (0, 1, 0) because of the high level of

convergence, accuracy and stability of the fixed point found in that theory [195]. The

vertical search had been previously performed up to order N = 21 in the literature and
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has been extended to order N = 101 for this analysis.

The second step is to define a path in the theory space specifying the end points and

how they are connected. The number of free parameters is reduced to two by demanding

the normalisation:

a+ b+ c = 1 (3.12)

A further constraint is imposed by setting one of the parameters to either a constant value

or equating it to one of the other two along any path. This uniquely defines a straight line

connecting two points in the R3 theory space. Note that this normalisation cuts through

different surfaces, as defined in (3.10). However this does not matter, as any point in these

lines can always be mapped to a reference surface X0 = 1.

The present analysis consists of four such paths, connecting seven points in the theory

space, the seven 3-tuples that can be formed with 0 and 1, excluding the trivial case

(0, 0, 0). The route chosen to sequentally visit these points is the following:

1. (0, 1, 0) =⇒ (1, 1, 1) =⇒ (1, 0, 1)

2. (1, 0, 1) =⇒ (1, 0, 0)

3. (1, 0, 0) =⇒ (1, 1, 0) =⇒ (0, 1, 0)

4. (0, 1, 0) =⇒ (0, 1, 1) =⇒ (0, 0, 1)

(3.13)

This is illustrated in Figure 3.1 where the circuit is drawn on a two-dimensional repres-

entation of (a, b, c). In this projection of the parameter space, the edges of the triangle

in the plot form a set of orthogonal axes. The vertices labeled as a, b, and c represent

configurations (1, 0, 0), (0, 1, 0) and (0, 0, 1), respectively, while the centre-point (1, 1, 1) is

labelled as m. The point (0, 1, 0) is repeated as the initial trajectory bisects the triangle

in order to visit all seven points. Infinitely many other parametrisations are available

covering the same points and other points that have been neglected in this study.

This variation analysis is performed numerically. A dedicated computational toolkit

has been developed for this purpose using the Wolfram Mathematica software. The paths

are segmented in finite steps with small variations on (a, b, c). At each step, a numerical

root finding algorithm is employed to look for fixed points of the flow equation using as

initial search value the fixed point at the previous step. The horizontal search is performed

at each order from N = 2 to N = 101. As these searches are independent from each other,

they were implemented in parallel and were performed in the high performance computing

cluster Apollo from University of Sussex. Each of the four paths was explored in 201 steps

at each order except at N = 101, where 1001 steps were used to ensure the quality of



43

(0,1,0) (1,1,1)(1,0,1) (1,0,0) (1,1,0) (0,1,0) (0,1,1) (0,0,1)

10-36

10-26

10-16

10-6

104

|λnX0
⌊n/2⌋|@N=101

Figure 3.2: Map of normalised couplings λnX
bn/2c
0 of the fixed point in the theory space

from n = 0 (violet) to n = 100 (red) at approximation order N = 101.

the data. For the same reason, the root search was performed demanding 100 digits of

working accuracy in Mathematica. The critical exponents are found as the eigenvalues of

the stability matrix which is evaluated numerically. As this computation becomes very

demanding at high orders, critical exponents were computed every five steps. A posterior

analysis of the data identified regions of large fluctuations, where critical exponents were

re-calculated at each step to obtain further resolution.

One of the highlights of the present study is that up to now, only a handful of mod-

els had been explored to high orders in the polynomial approximation. The algorithms

developed here allow an efficient parallelisable search of many models. At the highest ap-

proximation order, this effectively corresponds to searching for fixed points of 1001 models

of pure gravity at up to 100th order in curvature.

3.3 Fixed points of quantum gravity

This section presentes the results of the horizontal search starting from the f(R,Ric2)

theory and discusses important characteristics of the fixed point and how they vary along

the chosen paths. A separate analysis starting from the f(R,Riem2) theory is also briefly

explored at the end of this section.

3.3.1 Coupling values

A meaningful comparison between different scenarios can be obtained from the normalised

couplings λnX
bn/2c
0 , which take into account the numerical factors appearing due to pro-

jecting the operators in the sphere. The map of normalised couplings at order N = 101

is shown in Figure 3.2 where the colour coding indicates the index from n = 0 (violet)
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Figure 3.3: Product of the cosmological and Newton’s constant at the fixed point in the

theory space in the Einstein-Hilbert approximation N = 2 (violet) and at order N = 101

(red).

to n = 100 (red). The most important features are discussed now. The circuit can be

roughly divided into three regions according to the behaviour of couplings. The first re-

gion is composed of the first trajectory bisecting the triangular parameter space. It spans

a line which enjoys great stability in the coupling values, as virtually no variation takes

place. The second region encompasses the second and third trajectories, which describe

lines connecting (1,0,1) to f(R) and then to (0,1,0), respectively. These lines see a sharp

increase in values as f(R) is approached from either side. These first three trajectories

form a closed loop, returning to the original point in f(R,Ric2). The fourth and final

trajectory leaves f(R,Ric2) towards f(R,Riem2) and sees relatively little variation in the

magnitude of couplings, although sign changes are present in the higher order ones.

The product of the cosmological and the Newton’s constant is shown in Figure 3.3,

where the colour coding indicates the Einstein-Hilbert theory N = 2 (violet) and approx-

imation order N = 101 (red). The individual behaviour of λc and gN follows the same

trend as their product so they have been omitted. The values are the smallest around

f(R), moderate when Ric2 is the predominant direction and they are the largest project-

ing towards Riem2. The numerical values at specific points in the interpolation are given

in Table 3.1 and are now compared with previous results for these projections. The fixed

point previously identified in f(R) studies appeared with λ∗cg
∗
N ≈ 0.1210(0.1060) with a

type I (II) cut-off [192, 243, 263], while the present study finds λ∗cg
∗
N ≈ 0.1066 using the

type II cut-off. This indicates that the solution found by the horizontal search in f(R) is

not exactly the same as that found by a vertical search. The solutions are continuously

connected only at low orders up to N = 11. Above this number, the couplings approach

different values in f(R), with large differences in the values of higher order couplings.
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Action λ∗c g∗N λ∗c g
∗
N

(1, 0, 0) 0.11460 0.93017 0.10660

(1, 1, 0) 0.12375 0.97125 0.12019

(0, 1, 0) 0.16175 1.1054 0.17880

(0, 1, 1) 0.24275 1.4135 0.34313

(0, 0, 1) 0.29757 1.7111 0.50918

(1, 0, 1) 0.16048 1.1010 0.17669

(1, 1, 1) 0.16089 1.1024 0.17737

Table 3.1: Coupling values of gravitational fixed points at N = 101.

Many solutions may appear at high orders in the polynomial approximation, thus, the

horizontal search, which is based on a numeric root-finding algorithm, is most likely prob-

ing the basin of attraction of other solutions than the vertical search. Similarly, previous

searches found λ∗cg
∗
N ≈ 0.1638 − 0.2228 for f(R,Riem2) [196], while the present study

arrives at λ∗cg
∗
N ≈ 0.5092, a value which is notably higher. The solutions in f(R,Ric2)

and f(R,Riem2) are not connected at any order.

A transposed view is offered in Figure C.1 in Appendix C, where the plots in each panel

show the couplings λn at different points with the index n in the horizontal axis. The

spread of the data points in the plots is a qualitative indicator of the rate of convergence of

the couplings. All points show a relatively small spread, except (1,0,0) and (1,1,0), which

have large couplings and poorer convergence, as do (0,1,1) and (0,0,1). Not visible in the

plots, the values appear with alternating sign for every other coupling, except on (1,0,0)

and (1,1,0), where they show a mix of 6-8-fold sign periodicity. The sign periodicities are

related to the location of poles of the flow equation in the complex plane [186], and could

be understood as a general feature of solutions in f(R) [192].

3.3.2 Critical behaviour

The flow in the neighbourhood of a fixed point can be described to linear order by the

stability matrix evaluated at the fixed point value:

Mij =
∂βi
∂λj

∣∣∣∣
∗

(3.14)

The critical exponents are given by the eigenvalues of this matrix with the opposite sign.

These describe the directions and the magnitude of the RG flows surrounding the fixed
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Figure 3.4: Map of the real part of the scaling dimensions associated with the fixed point

in the pure gravity theory space at N = 101.

point. The predictability of an Asymptotically Safe theory is determined by the number

of attractive UV directions, which correspond to free parameters of the theory.

The map of the eigenvalues in the interpolation is shown in Figure 3.4 at order N =

101, with the numerical values provided in Table 3.2. The eigensprectrum is virtually

unchanged along the first trajectory with little to no variation. Around f(R), in the

second and third trajectories, the spectrum undergoes sudden changes as most complex

irrelevant eigenvalues become real and fluctuate in value. In particular, an irrelevant

eigenvalue becomes relevant and then immediately becomes irrelevant again as f(R) is

approached from either side. This change in sign does not signal a fixed point merger,

as the solution remains real. This erratic behaviour is concerning and may indicate some

issue with the procedure. At order N = 101, the interpolation has been performed in

1001 steps keeping 100 digits of accuracy to ensure appropriate resolution, reducing the

probability of this being a numeric issue. This behaviour could also be attributed to the

paths chosen and may not appear if f(R) is approached from a different direction.

The third trajectory leaves this point towards f(R,Ric2) and sees the eigenspectrum

stabilising again. There is a region where most of the spectrum is real before these values

collapse again into complex pairs. As a representative example, the point (2/5, 3/5, 0) is

identified and is included in the figures in the appendix. This point has only four pairs of

complex eigenvalues, shown in Table 3.3, while the remaining are real.

The relevant eigenvalues do not change much in the fourth trajectory, however the

irrelevant ones undergo substantial variations reaching very large magnitudes (not pic-

tured). These variations are different at every order and do not show a specific pattern.

It would remain to be seen whether other trajectories approaching this point also display

such large fluctuations.
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Action ϑ0 ϑ1 ϑ2 ϑ3 ϑ4 ϑ5 ϑ6 ∆gap

(1, 0, 0) 2.5501 2.5501 1.7107 −3.8316 −8.5647 −9.0935 −9.0935 2.1209

(1, 1, 0) 2.6454 2.6454 1.5731 −2.6639 −2.6639 −5.3385 −7.1712 1.0909

(0, 1, 0) 2.4963 2.4963 1.1244 −4.5080 −4.5080 −9.3085 −9.3085 3.3837

(0, 1, 1) 2.3248 2.3248 0.78993 −5.5375 −5.5375 −10.590 −10.590 4.7476

(0, 0, 1) 2.0883 2.0883 0.89829 −5.0043 −5.0043 −9.4400 −10.175 4.1060

(1, 0, 1) 2.5045 2.5045 1.1261 −4.3630 −4.3630 −9.0984 −9.0984 3.2369

(1, 1, 1) 2.5029 2.5029 1.1259 −4.3886 −4.3886 −9.1354 −9.1354 3.2626

Table 3.2: Eigenvalues of the gravitational fixed points at N = 101.

ϑ0 ϑ1 ϑ2 ϑ3 ϑ4 ϑ5

Re 2.6512 2.6512 1.5115 −3.3389 −3.3389 −6.2289

Im 2.0758 −2.0758 0 5.0900 −5.0900 0

ϑ6 ϑ7 ϑ8 ϑ9 ϑ10 ϑ11

Re −7.8580 −7.8580 −11.887 −12.890 −12.890 −15.765

Im 4.0956 −4.0956 0 1.5521 −1.5521 0

Table 3.3: Scaling dimensions of the fixed point at (a, b, c) = (2/5, 3/5, 0). This fixed point

displays only four pairs of complex values, all others are real.

The transposed view of the eigenspectrum is offered in Figure C.2 where each panel

shows the real part of the eigenvalues for several points at each approximation order.

Apparent convergence is observed for all points with the exception of (1,0,0), (0,1,1) and

(0,0,1) which show large fluctuations. Likewise, Figure C.3 offers a complementary view

where the values are superimposed at each polynomial order. This views confirms, once

more, the bootstrap hypothesis, as each subsequent eigenvalue is less relevant than the

previous one. Moreover, they all also fall close to the classical values, indicating that

anomalous scaling dimensions are small. The gap between adjacent relevant and irrelevant

values is also shown in Table 3.2, where projecting on R2
µνρσ leads to a larger gap on

average, while the projections around (1,0,0) have a smaller one. It is also on (0,1,1) and

(0,0,1) that the smallest relevant scaling dimensions are closer to zero. This indicates

that quantum fluctuations from R2
µνρσ operators shift the eigenspectrum towards more

irrelevant values.
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3.3.3 Convergence

There are two main aspects regarding convergence of the polynomial solutions, the first

being the radius of convergence and the second being the rate of convergence. The first

relates to the maximum value of the scalar curvature R for which the polynomial approx-

imation converges, while the second relates to how fast numeric quantities stabilise. This

section attempts to uncover how these quantities change with respect to the projection of

the action.

The radius of convergence Rc can be computed applying the root test for power series

on the coupling values at the highest order Nmax = 101. This is shown in Figure 3.5

by the violet solid line, measured by the primary axis. Rc has a minimum at f(R) of

Rc ≈ 0.8922 and increases away from this point reaching a global maximum of Rc ≈ 2.1912

achieved at (1/20,19/20,0). This point is of special interest as it also features the fastest

convergence rate, as is shown next, and is included in the figures in the appendix. From this

point, Rc slowly decreases to reach Rc ≈ 2.1379 at f(R,Riem2). This directly establishes

that quantum contributions from R2
µν and R2

µνρσ can expand the radius of convergence

of the polynomial approximation. Note that this radius is saturated away from f(R),

as it extends beyond the singularity of the flow equation found at R = 2.006 which is

independent of the choice of action.

The rate of convergence can be measured by the number of digits in the eigenspectrum

that stabilise at higher orders. Two examples are shown in the panels of Figure 3.6 plotted

on the negative axis taking N = 101 as reference value, where the data points indicate

every other of the first twelve eigenvalues. Note that the behaviour changes above N = 51,

thus, it is necessary to consider high polynomial orders to capture the true asymptotic

behaviour of these solutions. The slope of the linear fit shown in the plot indicates the

number of digits of accuracy gained per order. The inverse of this is the number of orders

required to achieve a further digit of accuracy. The left panel shows (1/20,19/20,0), the

projection with the fastest rate of convergence, gaining a further digit every 8-10 orders.

In contrast, the right panel shows (0,0,1), where the convergence rate stagnates at a

maximum of 3 digits of accuracy.

A global picture can be obtained by repeating this analysis for a sample of points

along the lines of the interpolation. This is shown in Figure 3.5 as the red data points

where the error bars denote the 95% confidence interval and the values are measured by

the secondary axis. Large error bars indicate that the estimate is not significant, while

the absence of data points indicate that no meaningful inference can be made; this occurs
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Figure 3.5: Left axis, violet solid line: radius of convergence Rc from the root test. Right

axis, red data points: Rate of convergence of scaling dimensions in number of orders

required to achieve a further digit of accuracy. Error bars indicate the 95% confidence

interval.

when the rate of convergence is very close to zero or non-existent.

The rate of convergence does not change substantially along the first trajectory. It

decreases around (1,0,1) in the second line but greatly deteriorates as f(R) is approached,

coming to a stop altogether near this point. This indicates that the eigenvalues only

converge to a finite number of digits around f(R) and no further precision is gained by

extending the approximation order. This can be related to the large fluctuations observed

in Figure 3.4, suggesting that the results in those regions of the plot may not be reliable.

As the third trajectory approaches f(R,Ric2), the rate of convergence improves again,

with (1/20,19/20,0) reaching the fastest rate of convergence and the largest radius of

convergence. Towards f(R,Riem2) in the fourth trajectory, the rate quickly deteriorates

and once again comes to a stop. Thus, in these regions, the polynomial solutions may

not really be approaching a true fixed point at infinite order and their validity is not

guaranteed. It is intriguing to find that, although the solutions connecting f(R,Ric2) and

f(R,Riem2) enjoy a large radius of convergence and share similar coupling values and

eigenspectrum, it is only within a small region of the parameter space that they show a

fast convergence rate.

As a final remark, these estimates were generated using vanishing boundary condi-

tions, with higher order couplings set to zero. Optimised boundary conditions, where the

higher order couplings are set to their asymptotic values at each order, may improve the

situation in some cases. However, this amounts to a re-computation of the eigenspectrum

at each order at each point in the interpolation. Due to time-efficiency, this has only
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Figure 3.6: Rate of convergence of scaling dimensions for two configurations. Left:

the point of fastest convergence and largest radius Rc. Right: The solution found at

f(R,Riem2), where convergence has stopped. The black line indicates the linear fit of ϑ0.

The red, the average fit of the data shown for N ≥ 61.

been performed in nine projections and the corresponding plots are shown in Figure C.7

in the appendix. In the case of (0,0,1), the projection shows a small but positive rate of

convergence, while for (1,0,0), the picture is much worse showing no convergence at all.

Thus, it is not clear whether the solutions can be trusted in these regions.

3.3.4 Action and equation of motion

The polynomial action is plotted as a function of the scalar curvature in Figure C.4 in

Appendix C. The solutions take a few orders to stabilise before the lines fall on top of

each other. In the plots, the first two orders have been excluded from the points (0,1,0),

(1,1,1), (1,0,1), (1,1,0), the first three from (1,0,0) and (0,1,1) and the first four from

(0,0,1). Note that the curves in (1,0,0), (1,1,0) and (2/5,3/5,0) show alternating tails for

negative curvature, while in the other projections, the tails consistently point upwards for

negative R. In the latter case, this indicates the existence of a pole for real negative values

of R bounding the radius of convergence of the solution. In the former, the pole lies in

the imaginary plane. All points show qualitatively similar behaviour.

The equation of motion of the action in vacuum is plotted in Figure C.5 for each

projection. A solution appears at R > 1 in (0,1,1) and (0,0,1), while it is located at

R < 1 in the other cases, except (1,0,0), where no solution is visible within the radius

of convergence. Thus, the R2
µν and R2

µνρσ operators can induce a de Sitter solution to

appear, describing a universe with small positive curvature. Some of these solutions lie

close to the radius of convergence and more refined methods can be employed to check
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Figure 3.7: Eigenvalues of the f(R,Riem2) fixed points translated to f(R,Ric2).

whether they can be trusted.

3.3.5 Another family of solutions

The results presented so far concern solutions which are continuously connected to the ori-

ginal point from the f(R,Ric2) theory. The analysis can be repeated starting from other

initial points and can lead to finding different results. A brief example can be considered

starting from the f(R,Riem2) theory instead. Three solutions had been previously iden-

tified in that theory stable to high polynomial order [196]. None of these solutions were

reached in the interpolation starting from f(R,Ric2), indicating that these fixed points

are not continuously connected along the path specified here. A separate interpolation is

performed starting from these solutions, labelled FPRiemann, FP3 and FP4 following the

naming convention of that study. This interpolation is performed only up to order N = 16

and consists of three paths, all starting from (0,0,1) and connecting the theory to (0,1,0),

(1,1,1) and (1,0,0). The results are summarised in Table 3.4 and are explained next.

The analysis finds that the higher order couplings, which are intitially small at (0,0,1),

increase to large magnitudes towards f(R,Ric2) and the fixed points become complex

before arriving at (0,1,0). The two solutions which are closer to each other, FP3 and FP4

merge, while FPRiemann annihilates with a further spurious solution. The merger between

FP3 and FP4 can be seen in Figure 3.7 which shows the eigenvalues along this trajectory.

The merger is signalled by a pair of relevant and irrelevant eigenvalues in the middle and

right panel, respectively, meeting at the zero towards the end of the plots.

Along the second line, going from (0,0,1) to the centre-point (1,1,1), FP3 and FP4

remain real, while FPRiemann becomes complex conjugate. The third trajectory, heading

towards (1,0,0), finds that the higher order couplings increase in magnitude at such an

accelerated rate that the root search method fails to find a solution shortly before arriving
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f(R,Riem2) dUV λ∗c g∗N λ∗cg
∗
N c =⇒ b c =⇒ m c =⇒ a

FPRiemann 4 0.07843 2.840 0.2228 λn ∈ C λn ∈ C accelerated growth

FP3 3 0.1392 1.029 0.1431 λn ∈ C 3 accelerated growth

FP4 4 0.1484 1.103 0.1637 λn ∈ C 3 accelerated growth

Table 3.4: Fixed points of f(R,Riem2) in pure gravity, the dimensionality of their critical

surface, coupling values and their fate when translated to other projections of the action.

The points (a, b, c,m) are as defined in Figure 3.1.

at f(R). If the solution can really be translated to that point, its couplings have a very

large magnitude, ∼ 108, much larger than the those found at the same point in the

original interpolation. This would place harsh constraints on its radius of convergence and

possibly in the numerical stability of the fixed point. A more detailed analysis with higher

resolution or using different methods would be required to further explore approaching

this point.

3.4 Conclusions

This study has performed a numerical search of fixed points of pure gravity. The theory

space has been scanned to understand how small variations in the interactions of Ricci

and Riemann tensors modify the theory. A line of stability has been identified, where the

coupling values and critical exponents of the f(R,Ric2) fixed point show little variation.

In this path, linear combinations of the R2, R2
µν and R2

µνρσ interactions are present in the

action. This finding suggests that the combined effect of the three types of interactions is

to further stabilise the pure gravity fixed points.

Additionaly, lines of instability appear close to the f(R) and f(R,Riem2) models.

Close to these points, scaling dimensions have a limited convergence, stabilising to only

three digits of accuracy. This could be an indication that the polynomial approxima-

tion does not converge to a physical solution of the full theory and could explain large

fluctuations of the critical exponents in the vicinity of these points. Convergence can

be also assessed using optimised boundary conditions finding mixed results. Other tech-

niques, such as expanding around a different field value could shed further light on this

observation.

The fixed points previously found in separate polynomial studies are not continuously

connected beyond the Einstein theory through the paths explored here. Moreover, models
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where the critical exponents are mostly real have been identified involving either only

R2 and R2
µν , or R2 and R2

µνρσ. Thus, these interactions could play a role in lifting the

degeneracy of scaling dimensions found in current models of pure gravity.

Under the premise that there is a physical fixed point of the full gravitational theory,

the solutions found in approximated theory spaces can be considered as shadows of this

fixed point projected on some subspace of operators. The fact that these shadows do not

appear to be continuously connected is not necessarily a problem, as long as a suitable

fixed point is available in the region of parameter space that can describe our universe.

A suitable solution entails physical coupling values, reasonable (and possibly real) critical

exponents and finite UV-IR RG flows connecting the theory to General Relativity in the

IR. From this perspective, different families of solutions determine the UV-completion of

the theory in different regions of the parameter space. These different families may be

unified in some form in a more complete theory than the approximation considered here.
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Chapter 4

Including Matter

4.1 Introduction

Fixed points of pure gravity have been studied in the Einstein theory and at high curvature

orders. The previous chapter investigated gravitational models which feature fixed points

that are numerically stable and display fast convergence in coupling values and crit-

ical exponents. Equally important is to reconcile a quantum theory of gravity with

the Standard Model (SM). Investigations of the impact of matter on gravity, and vice

versa, find non-trivial dynamics that suggest that the mutual influence of both sec-

tors should be considered when building a UV-complete theory from the ground up

[107,110,111,161,210,221,225,227,244].

Progess towards an asymptotically safe description of gravity has been aided by the

development of the functional renormalisation group [129,132] and its application to grav-

ity [41,153,157,158,160,166,167,169,178,182]. Quantum corrections to the renormalisation

group equations can be computed non-perturbatively under this framework and the calcu-

lations involve evaluating the trace of functionals of differential operators. This formidable

task requires advanced tools such as the heat kernel expansion [264, 265]. Alternatively,

the spectral sum of these operators may also be carried out explicitly under suitable reg-

ularisation schemes that simplify the calculations. However, the latter approach leads to

expressions containing non-analytical terms, which encumbers the analytic treatment of

the equations. Prescriptions for removing these terms are given in the literature and call

for smoothing-out the sums, albeit they introduce some degree of arbitrariness as there is

not a unique way to do this [139,174,246]. While physical observables should be independ-

ent of regularisation details, the results may be obscured if unsuitable choices are made.

It thus becomes important to have an understanding of the parametrisation dependence
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introduced by this smoothing procedure to facilitate further progress towards a consistent

theory of gravity and matter.

The purpose of this study is two-fold. First, to provide a comparative analysis of the

heat kernel and spectral sum methods and disambiguate the freedom in regularisation

in the latter approach. Second, to introduce the quantum effects of matter fields in the

theory of gravity and set the stage for the subsequent chapters of this thesis, where various

matter regimes will be explored. While the technique of smoothed spectral sums has

been investigated in the literature, studies making use of this method have been mainly

restricted to the purely gravitational setting. Namely, this technique has been used to

study conformally reduced Einstein-Hilbert gravity in d = 4 [174], topologically massive

gravity in d = 3 [266], Einstein-Hilbert gravity on-shell [267], global solutions of f(R) in

d = 4 [139] as well as in d = 3, in a conformally reduced setting [176], it has also been

used in conjunction with the exponential parametrisation in f(R) theories [188,189], f(R)

on-shell [268], and in the vertex expansion in the Einstein-Hilbert theory [213]. However,

its use has been largely absent in the matter sector, with limited studies making use of

this technique so far to explore gravity-matter settings [246,247]. This chapter provides a

comparative analysis of the computations in the matter sector finding that the freedom in

the smoothing procedure can result in tangible qualitative changes in the UV behaviour

of the theory. To resolve this, an optimised smoothing procedure is put forward which

reproduces known results from the heat kernel expansion without introducing further

ambiguities.

The present analysis is organised as follows. Section 4.2 introduces the main frame-

work for the computations and the particle content of the theory. Some concepts that

were already explained in previous chapters are re-introduced for completeness. Section

4.3 comprises the bulk of this analysis and is further subdivided into three parts of two sub-

sections each. The first part explains how the heat kernel expansion and the spectral sums

techniques are used to compute the traces of the matter sector. The second part illustrates

the necessity for smoothing out the sums, introduces a generalised averaging procedure

and identifies an optimised average for which the results of both techniques agree. An

alternative derivation of the trace is also offered, where the smoothing is performed before

computing the sum. The third part briefly assesses the impact of the difference in these

results in two interesting simplified settings of the parameter space. Section 4.4 further

showcases the impact of this ambiguity in the smoothing procedure by performing a com-

parative analysis of fixed points in f(R), finding that each method leads to a qualitatively
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different picture of gravity in the UV. Finally, the findings are summarised and conclusions

are given in section 4.5.

4.2 Functional renormalisation group

The functional renormalisation group is a framework for studying quantum field theories

beyond perturbation theory. The central object is the effective average action, a scale-

dependent functional which describes the theory at an integration scale k, where all field

modes with momentum higher than k are integrated out. This scale is varied from the

UV to the IR, resulting in a momentum-shell integration thus incorporating Wilson renor-

malisation. This action interpolates between the bare action S in the UV and the full

quantum effective action Γ in the IR.

The flow equation of the action is an exact equation which describes the flow of all

running couplings [129,132]:

∂tΓk(Φ) =
1

2
STr

∂tRΦΦ
k

Γ
(2)
ΦΦ +R(ΦΦ)

k

(4.1)

The field Φ collectively denotes all the fields in the theory. The derivation is with respect

to the logarithmic energy scale ∂t = ∂ log k. The super trace involves a momentum

integration as well as a sum over all discrete indices, like flavour and gauge indices. A

negative sign is implied for anti-commuting fields. The notation Γ
(2)
ΦΦ stands for the second

variation of the action with respect to the fields Φ, which is the inverse propagator of the

field. This equation is free of divergences both in the UV and in the IR through the use

of a regulator Rk.

A common ansatz for the action is given by f(R) theories. These are gravitational

theories living in a subset of the space of diffeomorphic-invariant operators composed of

curvature invariants that depend only on the scalar curvature.

Γk =

∫
ddx
√
g f̄k(R̄) =

∫
ddx
√
g
∑
n

λ̄nOn(R̄) (4.2)

In this expression, R̄ is the dimensionful Ricci curvature and λ̄n, the dimensionful running

couplings. This action must be supplemented by the usual gauge fixing and ghost terms.

Then, the beta function for the dimensionless running couplings is obtained by identifying

the prefactors of each operator on both sides of (4.1). In a polynomial expansion in a

fixed background, for example, these can be obtained in terms of dimensionless quantities

as:

∂tλn = βn =
1

n!

1

V

δn∂tΓk
δRn

∣∣∣∣
R=0

(4.3)



57

where the dimensionless Ricci scalar is R = k−2R̄, the dimensionless couplings are λn =

kd−2nλ̄n and V is the volume of spacetime. Introducing the dimensionless function f(R) =

k−4f̄(R)/(16π), the flow equation for this theory has the general form:

∂tf + 4f − 2Rf ′ = IQ (4.4)

In this expression, a prime denotes derivative with respect to the argument and IQ con-

tains the quantum corrections due to fluctuations of the metric. The right hand side of

the flow equation involves evaluating traces of differential operators in curved spacetime.

The computations are manageable by embedding the theory in a maximally symmetric

background, like Sd. Then, the traces can be computed and explicit expressions for IQ are

available in the literature (for details on the derivation, see refs. [157,185,189,192,194,263].

Note also that his same flow equation is recovered by setting (a, b, c) = (1, 0, 0) in the equa-

tion introduced in Chapter 3 and found in Appendix A). This class of theories has been

widely studied both in the polynomial approximation, where fixed points are identified to

high approximation order [157, 160, 192, 263], as well as for general f(R) actions, where

searches for global solutions have been performed [139,176,185,186,189].

The present study focuses on the computation of the quantum corrections due to the

presence of matter fields and its introduction into the working framework is explained in

this section. Gaussian matter is easily incorporated by adding the kinetic terms to the

effective action:

Γmatter =

∫
ddx
√
g

(
1

2
gµν

NS∑
i

∂µφ
i∂νφ

i +

ND∑
i

ψ̄i /Dψi +

NM∑
i

1

4
gµνgρσF iµρF

i
νσ

+
1

2

NM∑
i

(
∇µAiµ

)2 − NM∑
i

c̄i�ci

) (4.5)

This action describes NS real scalar fields φ, NM Maxwell vectors Aµ with their cor-

responding ghosts (c̄, c) and ND Dirac spinors (ψ̄, ψ). All fields are massless and their

interactions and wavefunction renormalisation constants are neglected for simplicity. For

the spectral sums, it will be useful to further decompose the vector fields into their trans-

verse and longitudinal parts Aµ = ATµ +∇µϕ (although this is not strictly necessary for the

computation using the heat kernel method, as results for unconstrained fields are known).

The flow equation (4.4) is then modified by adding a term IM on the right hand side which

accounts for fluctuations due to matter fields. This term is then given by the following
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traces:

∂tΓk(matter) =
NS

2
Tr(0)

∂tRSk
Γ

(2)
φφ +RSk

− ND

2
Tr(1/2)

∂tRDk
Γ

(2)

ψ̄ψ
+RDk

+
NM

2

Tr(1)
∂tRMT

k

Γ
(2)

ATµA
T
µ

+RMT
k

+ Tr′(0)

∂tRML
k

Γ
(2)
ϕϕ +RML

k

− 2 Tr(0)
∂tRGHk

Γ
(2)
c̄c +RGHk


(4.6)

The sub-index notation for the traces in this expression denotes the spin of the matter

fields. The prime notation indicates that the constant mode of the longitudinal component

of the vector fields must be excluded as it is not a degree of freedom of Aµ. Note the

negative sign for the ghosts as they are anti-commuting fields. The Hessians for the

matter fields are:

Γ
(2)
φφ = −∇2, Γ

(2)

ψ̄ψ
= −∇2 +

R

4
, Γ

(2)

ATµA
T
µ

= −∇2 +
R

d
, Γ(2)

ϕϕ = −∇2, Γ
(2)
c̄c = −∇2

(4.7)

where the one for the fermions corresponds to the square of the Dirac operator, as implied

by the factor of 1/2 in front of the ND trace. These Hessians are second-order differential

operators known as coarse-graining operators and will also be denoted as ∆ in the present

analysis. At this point, the regulators Rk must be specified to obtain the regulated

propagators. These regulators should be chosen according to the replacement ∆ → ∆ +

Rk(∆) in the traces, where Rk is a profile function specifying how the low momentum

modes are suppressed. It is convenient to use the optimised regulator as computations

greatly simplify [131]:

Rk(∆i) =
(
k2 −∆i

)
Θ
(
k2 −∆i

)
(4.8)

where the index runs over the matter fields and ∆i has the general form:

∆i = −∇2 + αiR̄ (4.9)

with αi being free parameters that should be chosen accordingly for each field. Setting

them all to zero specifies a type I cut-off while giving them some non-zero value defines

a type II cut-off. A third type is available where the potential term is allowed to vary

with the energy scale and is known as spectrally adjusted, or type III, cut-off. The correct

treatment of minimally coupled spinors calls for employing a type II cut-off [161] (this

regulator dependence has been recently discussed in the presence of non-minimal coupling

in ref. [230]). Moreover, choosing values of αi to cancel the potential appearing in the

propagator removes unnecessary poles in the flow equation from the onset. Nonetheless,
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Spin λsn ms
n

0
n(n+ d− 1)

d(d− 1)
R̄

(n+ d− 2)!(2n+ d− 1)

(d− 1)!n!

1T
(n(n+ d− 1)− 1)

d(d− 1)
R̄

(n+ d− 3)!(2n+ d− 1)(n+ d− 1)n

(d− 2)!(n+ 1)!

1/2
(n2 + dn+ d

4)

d(d− 1)
R̄ 2bd/2+1c (n+ d− 1)!

(d− 1)!n!

Table 4.1: The eigenspectrum of the Laplace operator −∇2 acting on scalars, transverse

vectors and spinors in Sd. The first column indicates the spin, λsn indicates the eigenvalues

and ms
n, the multiplicity of eigenvalues.

these coefficients could also be chosen to overcome movable singularities of the flow equa-

tion, so retaining them as free parameters in the equations can be useful in the search of

global solutions [188, 247]. In this study, the values of α are left as open parameters in

the equations but note that the following are preferred values which cancel the potential

term in the propagator:

αS = 0, αD =
1

4
, αMT =

1

d
, αML = 0, αGH = 0 (4.10)

4.3 Operator traces

There are currently two main approaches for evaluating the traces appearing on the right

hand side of the flow equation (4.1). The first one is based on an early time heat kernel ex-

pansion, while the second is based on an explicit sum over the eigenspectrum of differential

operators. The first two subsections in this section introduce both techniques and repro-

duce results known in the literature. The next two put forward a novel parametrisation for

the smoothing procedure in the spectral sums, as well as an alternative formulation where

the smoothing is performed before taking the sum. This section ends with a comparison of

results obtained in both approaches and their impact on the gravitational flow equation.

4.3.1 Heat kernel

The trace over a function of a differential operator can be written as the sum of the

function evaluated on the eigenvalues λn of that operator:

TrW (∆) =
∑
n

W (λn) (4.11)
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where the lower and upper boundaries of the summation are defined by the eigenspectrum

of the operator. Note that if there are negative or zero modes, these should be subtracted

on an ad hoc basis. In the case at hand, it is useful to recall the eigenspectrum of

the Laplace operator in a spherical background Sd, given in Table 4.1. To obtain the

eigenvalues of the coarse-graining operator ∆, it is enough to add the endomorphism term

to the values displayed in the table. Degenerate eigenvalues are counted separately in the

sum (4.11).

It is convenient to introduce the Laplace anti-transform W , so the trace can be written

as:

TrW (∆) =

∫ ∞
0

dt
∑
n

e−tλ
(∆)
n W (t) (4.12)

where λ
(∆)
n are the eigenvalues of the differential operator ∆. The sum over n can be

identified as the trace of the heat kernel of the operator ∆:

TrK∆(t) =
∑
n

e−tλ
(∆)
n (4.13)

The heat kernel satisfies the heat equation, which smooths out the profile of an initial

scalar field distribution over time. In this context, small values of t correspond to high

energies or small curvature. In the early time heat kernel expansion, this trace is:

TrK∆(t) =
1

(4πt)d/2
(
B0(∆) + tB2(∆) + t2B4(∆) + · · ·

)
(4.14)

where B2n(∆) are the heat kernel coefficients. Then, the trace of W is given by the series

expansion:

TrW (∆) =
1

(4π)d/2
(
Qd/2(W )B0(∆) +Qd/2−1(W )B2(∆) + · · ·

)
(4.15)

The heat kernel coefficients depend on the spin on the field that is being acted on by the

differential operator and the background. Computing these coefficients in curved back-

grounds is a complicated task, see refs. [264,265] for computations in general backgrounds

and [269] for the spherical background. Meanwhile, the integration on t is encoded in the

functionals Qn(W ), which carry the dependence on the profile function used to regulate

the traces:

Qn(W ) =
(−1)k

Γ(n+ 1)

∫ ∞
0

dz zn+k−1W (k)(z) (4.16)

with k an arbitrary positive integer such that n + k > 0. Using the optimised regulator

(4.8) results in the particularly simple expression:

Qn(W ) =


2
n!k

2n, n ≥ 0

0, n < 0

(4.17)
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Spin B0 B2 B4

0 1

(
1

6
− αS

)
R̄

(
29

2160
− 1

6
αS +

1

2
α2
S

)
R̄2

1T 3

(
1

4
− 3αM

)
R̄

(
− 7

1400
− 1

4
αM +

3

2
α2
M

)
R̄2

1/2 4

(
2

3
− 4αD

)
R̄

(
101

2160
− 2

3
αD + 2α2

D

)
R̄2

Table 4.2: The first three heat kernel coefficients for the operator ∆i = −∇2 +αiR̄ acting

on the fields i = {φ,ATµ , ψ} in S4. Note the spin-1 field is a transverse vector.

This directly implies that the series expansion is truncated at a finite order, such that

only a finite number of heat kernel coefficients is needed. The coefficients relevant to the

present study are given in Table 4.2.

The matter traces (4.6) in four dimensions and in terms of dimensionless quantities

are then given by:

TrS =
NS

32π2

1

1− αSR

(
1 +

(
1

3
− 2αS

)
R+

(
29

1080
− 1

3
αS + α2

S

)
R2

)
(4.18)

TrM =
NM

32π2

[
1

1 +
(

1
4 − αT

)
R

(
3 +

(
1

2
− 6αT

)
R+

(
− 7

720
− 1

2
αT + 3α2

T

)
R2

)
+

1

1− αLR

(
1 +

(
1

3
− 2αL

)
R+

(
− 61

1080
− 1

3
αL + α2

L

)
R2

)
− 2

1− αGHR

(
1 +

(
1

3
− 2αGH

)
R+

(
29

1080
− 1

3
αGH + α2

GH

)
R2

)] (4.19)

TrD = − ND

32π2

1

1 +
(

1
4 − αD

)
R

(
4 +

(
4

3
− 8αD

)
R+

(
101

1080
− 4

3
αD + 4α2

D

)
R2

)
(4.20)

where the volume element has already been extracted. These coefficients agree with the

one-loop matter divergences computed in the literature [24,27].

4.3.2 Spectral sum

The traces can also be computed by taking a direct sum of the function evaluated at the

operators’ eigenvalues, i.e. computing the spectral sum of the differential operator ∆. In

the general case, this implies an infinite sum over the eigenmodes, the sum can then be

approximated using numerical methods. Using the optimised regulator (4.8), however, the

sum simplifies and can be carried out analytically:

1

2
Tr

∂tRk(∆)

Γ(2) +Rk(∆)
=

∞∑
n=nmin

mnΘ(k2 − λ̄n) =

nmax∑
n=nmin

mn (4.21)
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In this expression, λ̄n refers to the dimensionful eigenvalues of the coarse-graining operator

∆, and mn, to the multiplicities of these eigenvalues. In the last equality, the upper

boundary of the sum is made finite by enforcing the step function. The maximum mode

that contributes to the sum is found by setting λ̄
(s)
nmax = k2 and solving for nmax. Using

the expressions given in Table 4.1, the maximum modes for matter fields of each spin are:

n(0)
max(α) =

d− 1

2

(
−1 +

√
1 +

4d

(d− 1)

(
k2

R̄
− α

))
(4.22)

n(1/2)
max (α) = −d

2
+

√
d (d− 1)

(
k2

R̄
+

1

4
− α

)
(4.23)

n(1)
max(α) =

d− 1

2

(
−1 +

√
1 +

4d

(d− 1)

(
k2

R̄
+

1

d(d− 1)
− α

))
(4.24)

In the sum, one should now replace nmax → bnmaxc, as n is a discrete variable. After

computing the sums, this would give rise to a staircase profile as the sums are a function

of R, which introduces non-analyticities in the flow equation. There are some prescrip-

tions for treating these non-analyticities but before addressing this issue, the sums will be

computed explicitly.

Consider the sum where the Heaviside theta function appears explicitly:

S1 =
∞∑

n=nmin

mnΘ(k2 − λ̄n) (4.25)

This is the form of the sum used in refs. [161, 266]. No closed expression is available

for this infinite sum but it must be finite since the step function will cut off contributions

from eigenmodes above k2. Nonetheless, it can be approximated with the Euler-Maclaurin

approximation of the sum:

b∑
i=a

f(i) =

∫ b

a
dx f(x) +

1

2
(f(a) + f(b)) +

n∑
k=2

Bk
k!

(
f
′(k−1)(x)

)∣∣∣∣b
a

− r (4.26)

This formula consists of an integral, the mean value of the function between the bound-

aries, a sum of derivatives and a remainder r. In this expression, n is the order of the

approximation. Applying this formula to S1 results in the general form:

S1 =

∫ ∞
nmin

dnmnΘ
(
k2 − λ̄n

)
+

1

2

(
mnminΘ

(
k2 − λ̄nmin

)
+m∞Θ

(
k2 − λ̄∞

))
+

j∑
i=2

Bi
i!

(
∂(i−1)

(∂n)(i−1)

(
mnΘ

(
k2 − λ̄n

)))∣∣∣∣∞
nmin

− r

(4.27)

The step function brings down the upper limit of the integration to bnmaxc. The second

term evaluated at λ̄∞ vanishes for λ̄∞ > k2. The only non-zero contributions in the last
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term are those where the derivatives act on mn evaluated at the lower boundary. As

the multiplicities mn are a polynomial of degree d − 1, the sum of derivatives is finite

with upper limit j = d. Replacing bnmaxc for the dummy variable x, the sums in four

dimensions result in:

TrS =
NS R

2

384π2

1

1− αSR

(
1

12
(1 + xS)2(2 + xS)2 − 1

90

)
(4.28)

TrM =
NM R2

384π2

[
1

1 +
(

1
4 − αT

)
R

(
1

4
x2
T (3 + xT )2 − 11

30

)
+

1

1− αLR

(
(1 + xL)2(2 + xL)2 − 91

90

)
− 2

1− αGHR

(
1

12
(1 + xGH)2(2 + xGH)2 − 1

90

)]
(4.29)

TrD =
ND R

2

384π2

1

1 +
(

1
4 − αD

)
R

(
1

3
(1 + xD)2(3 + xD)2 − 19

90

)
(4.30)

where the volume element has also been factored out for comparison. The sub-index in x

indicates which values of bnmaxc and αi should be used, with S denoting the scalars, T and

L the transverse and longitudinal modes of the vectors, respectively, GH the ghosts and

D the Dirac fermions. Working with this expression is still difficult as the discrete nature

of nmax gives rise to a staircase profile in the flow equation. This is just a reflection of

the non-analytic nature of the regulator employed and the fact that the eigenspectrum of

the Laplacian is discrete on spheres, therefore the low energy modes in the integration are

suppressed on a discrete basis. Thus, one may dare to drop the requirement of taking the

floor of nmax. This allows to expand the products of x and, remarkably, the coefficients

turn out just right to cancel the square roots contained in nmax. Moreover, the expressions

exactly coincide with those obtained from the early time heat kernel expansion, given in

(4.18)-(4.20). Note, however, that the sums are only exact for discrete n; relaxing this

restriction is already an approximation.

For comparison, consider now the last equality in (4.21) where the step function is

enforced and the upper limit of the sum is finite:

S2 =

bnmaxc∑
n=nmin

mn (4.31)

This is the form of the sum used in refs. [139,174,176,189,246,267]. Using once more the

Euler-Maclaurin formula, the sum can be approximated as:

S2 =

∫ bnmaxc
nmin

dnmn +
1

2

(
mnmin +mbnmaxc

)
+

d∑
k=2

Bk
k!

(
m
′(k−1)
n

)∣∣∣∣bnmaxc
nmin

− r (4.32)
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While the integration term will yield the same result as in S1, it is clear that the evaluation

at bnmaxc in the other terms does not vanish, resulting in:

TrS =
NS R

2

384π2

1

1− αSR
1

12
(1 + xS)(2 + xS)2(3 + xS) (4.33)

TrM =
NM R2

384π2

[
1

1 +
(

1
4 − αT

)
R

1

4
xT (1 + xT )(3 + xT )(4 + xT )

+
1

1− αLR

(
1

12
(1 + xL)(2 + xL)2(3 + xL)− 1

)
− 2

1− αGHR
1

12
(1 + xGH)(2 + xGH)2(3 + xGH)

] (4.34)

TrD =
ND R

2

384π2

1

1 +
(

1
4 − αD

)
R

1

3
(1 + xD)(2 + xD)(3 + xD)(4 + xD) (4.35)

Comparing this with (4.28)-(4.30) it is evident that the Euler-Maclaurin approximation

returns different results for S1 and S2.

A more straightforward variant to compute (4.31) is to notice that, on Sd, the multipli-

cities of the eigenvalues are relatively simple polynomial expressions, such that the sums

can be performed exactly. Denoting once again the upper limit as x, the exact summed

expressions are:

S
(0)
2 =

(2n+ d)Γ(n+ d)

Γ(d+ 1)Γ(n+ 1)
=

2n+ d

d!

d−2∏
x=0

(n+ d− x− 1) (4.36)

S
(1T )
2 = 1 +

(2n+ d)(n(n+ d)− 1)Γ(n+ d− 1)

dΓ(d− 1)Γ(n+ 2)

= 1 +
(d− 1)(2n+ d)(n(n+ d)− 1)

Γ(d+ 1)

d−4∏
x=1

(n+ d− x− 2)

(4.37)

S
(1/2)
2 =

2b1+d/2cΓ(n+ d+ 1)

Γ(d+ 1)Γ(n+ 1)
=

2b1+d/2c

d!

d−1∏
x=0

(n+ d− x) (4.38)

Evaluating at d = 4 exactly reproduces (4.33)-(4.35). This directly implies that the Euler-

Maclaurin approximation is exact for S2.

4.3.3 Smoothed sums and optimum average

The expressions obtained from S2 are exact, however, they suffer from an important

drawback which makes them somewhat cumbersome to work with. Even if the discreteness

condition on n is dropped, the upper limit nmax contains square roots that give rise to

non-analytic terms in the flow equation. While in S1 the coefficients turn out exactly such

that the square roots cancelled, this is not the case for S2. There are several prescriptions

to treat these terms, which can be generalised to an artificial smoothing of the sum by

taking the mean of two sums with different upper limits.
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Consider shifting the maximum mode of the sum by a constant parameter p, then nmax

is schematically written as:

nmax = a+ p+
√
b (4.39)

where the values of a and b can be read-off from (4.22)-(4.24). Taking the average of two

sums with shift parameters p1 and p2 would result in a trace which, in four dimensions

for scalars and vectors, contains terms of the form:

(4 + 2a+ p1 + p2) c b1/2 + (4 + 2a+ p1 + p2)b3/2 (4.40)

where the overall factor counting the number of fields has been omitted and c is a function

of a, p1 and p2. For the case of fermions, the 4 is replaced by a 5. The prefactor in front

of the non-analytic terms b1/2 and b3/2 defines a condition on the shift parameters such

that these terms vanish. For any type of matter field in four dimensions, this is:

p1 + p2 = −1 (4.41)

This prescription gets rid of the non-analytic terms for any values of p1 and p2 obeying

this relation. For example, the values p1 = 0 and p2 = −1 correspond to the so-called

averaged interpolation, which is the mean of two sums up to the two highest modes allowed.

Similarly, setting p1 = p2 = −1/2 results in the middle of the staircase interpolation. This

is a single sum where the upper limit is set between the two highest modes.

Note, however, that infinitely many other interpolations are available. Moreover, the

terms that remain in the trace depend on the product p1p2, not on their sum. Therefore,

results will not coincide for different choices of these parameters. This means that the

averaged interpolation does not yield the same results as the middle of the staircase one,

as was already pointed out in ref. [246].

Setting p2 = −1− p1, renaming p1 → p, and introducing the auxiliary function:

τ(α, x, y, z) =

(
1−

(
−1

4
+ α

)
R

)(
1−

(
−1

6
+ α

)
R

)
+

(
x

6
+
p(1 + p)

2

)
R

+
1

72

(
y +

(z + 13− 72α+ p(1 + p))p(1 + p)

2

)
R2

(4.42)

the matter traces (4.6) employing this method are:

TrS =
NS

32π2

τ(αS , 0, 0, 0)

1− αSR
(4.43)

TrM =
NM

32π2

[
3 τ (αT ,−1, 2(−1 + 6αT ), 2)

1 +
(

1
4 − αT

)
R

+
τ (αL, 0,−6, 0)

1− αLR
− 2 τ (αGH , 0, 0, 0)

1− αGHR

] (4.44)

TrD = − ND

32π2

4 τ (αD, 0, 0, 3)

1 +
(

1
4 − αD

)
R

(4.45)
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Note that the first term in (4.42) can cancel with the denominator in the trace of the

transverse part of the vectors and the fermions. The averaged interpolation is recovered

by setting p = 0 in these expressions. In that case, all R2 terms vanish for the fermions, so

the trace contains only a constant and a linear term in this interpolation. Furthermore, in

that case, the linear term of the fermions then appears with a factor of one half compared

to the heat kernel result (4.30). This means that the averaged interpolation cuts down

the number of spinors in the system by half. The impact of this effective reduction in the

number of fermionic degrees of freedom is explored in the subsequent sections.

By direct comparison with (4.28)-(4.30), there is a value of p for which the linear term

matches with the results from the heat kernel expansion, which are considered reliable in

the small curvature regime. Denoting this shift as popt.:

popt. = −1/2±
√

1/12 (4.46)

for all three types of matter fields and independent of the endomorphism parameters. If,

instead, it is the quadratic terms that are matched, the corresponding expressions p
(2)
opt.

depend on αi:

(p
(2)
opt.)S =

1

2

−1±

√
−25 + 144αS ± 2

√
2407

15
+ 96αS(−19 + 54αS)

 (4.47)

(p
(2)
opt.)M =

1

2

(
−1±

[
−(31 + 72(2αGH − αL − 3αT ))

± 2
√

2

(
−79

15
+ 4(−3(2αGH − αL − 3αT )

+ 2(4 + 9(2αGH − αL − 3αT ))2)

)1/2]1/2) (4.48)

(p
(2)
opt.)D =

1

2

−1±

√
−31 + 144αD ± 2

√
3682

15
+ 48αD(−47 + 108αD)

 (4.49)

The sign notation implies that all four combinations of positive and negative signs are

allowed in these expressions. However, setting the cut-off parameters to those given in

(4.10), two of these four shifts come out only slightly different to p
(1)
opt.. The differences

between these two matchings are:

(p
(2)
opt.)S − popt. = ±0.00075865 (4.50)

(p
(2)
opt.)M − popt. = ±0.00085026 (4.51)

(p
(2)
opt.)D − popt. = ±0.00414955 (4.52)

This means that matching at order R produces a very close but imperfect match at order

R2 and vice versa. In general, there is no reason why a single parameter would be able
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to match both orders, so it is interesting that these values come out very close. In this

calculation, the same shift was assumed for the transverse, longitudinal and ghost part of

the sum counting NM . Although each sum could in principle be performed with different

shifts, this does not significantly reduce the error.

The dependence of the traces on the shift parameter p is illustrated in Figure 4.1 for

all three types of fields. The plots show the relative deviation of the averaged traces

(4.43)-(4.45) with respect to eqs. (4.28)-(4.30) as a function of p. The short-dashed

vertical lines indicate the optimum interpolation (4.46), the long-dashed lines, the averaged

interpolation and the dot-dashed line, the middle of the staircase one. The range stops

at p = −1 as further values correspond to averages between modes below and above the

IR scale k. The left panel shows the coefficient of the traces linear in R which appears

explicitly in the beta function of Newton’s constant (see eqs. (4.70)-(4.72)). The averaged

interpolation, p = {−1, 0} inflates the number of scalars while underestimating the number

of vectors and fermions, while the opposite is true in the middle of the staircase, p = −1/2.

Two special points can be distinguished where all coefficients match simultaneously, these

correspond to the optimum interpolation (4.46). The middle and the right panels show the

traces for fixed values of dimensionless scalar curvature. The three traces do not match

simultaneously but the error is so small that it is imperceptible in the plots. There is

always at least a pair of points where the traces can be matched for any value of R. For

large R, this point does not differ too much from (4.46), while for vanishing curvature all

expressions automatically agree. Note that at large curvature (right panel), the averaged

interpolation stops seeing fermions compared to the heat kernel. This is because, as was

previously mentioned, the R2 term vanishes in this case.

A third shift parameter could be introduced by averaging over three sums instead

of two. This would naively make it possible to match both linear and quadratic orders

exactly. However, in that case, eq. (4.41) which sets the conditions to remove the squared

root terms gets replaced by two restrictions, thus, there is still only one free parameter.

Finally, it is briefly noted that there is another method to match the averaged inter-

polation with the heat kernel expansion at linear order. However, while the smoothing

procedure outlined in this section amounts to shifting the maximum mode nmax, the

alternative matching procedure corresponds to introducing a shift in the eigenvalues λ̄n

without shifting the eigenfunctions. It’s not immediately clear that such a shift can have a

physical justification. Alternatively, this shift can be absorbed in the value of αi, although

this could introduce artificial poles in the flow equation.
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Figure 4.1: Coefficients of the matter multiplicities appearing in the traces of each field

as a function of p. Left: matter coefficient linear in R only. Middle and right: sum of

coefficients representing the total contribution of each matter field evaluated at R = 1

and R = 106, respectively. Curves are normalised to heat kernel values. For any value

of R, there are always two points where the traces can be matched with the results from

the heat kernel expansion. The endomorphism parameters are fixed to eq. (4.10). The

middle of the staircase interpolation corresponds to p = −1/2, the averaged interpolation

to p = {−1, 0}, the optimised interpolation to p = popt. ≈ {−0.79,−0.21}.

4.3.4 Smooth step function

The sums S1 (4.25) and S2 (4.31) should be equivalent, thus there is evidently an incongru-

ence in the results. Direct comparison between (4.28)-(4.30) and (4.33)-(4.35) shows that

this has nothing to do with the smoothing procedure, nor with whether nmax is discrete

or continuous. The difference seems to stem on whether the Heaviside theta function is

evaluated prior to or after using the Euler-Maclaurin formula. Consider, instead, using a

smeared-out version of it:

Θ
(
k2 − λ̄n

)
= lim

c→∞

1

1 + e−c(1−λ̄n/k2)
, for c > 0, λ̄n ≥ 0 (4.53)

where c is a free parameter that controls the sharpness of the function. This can be

understood as performing a smoothing before evaluating the sum, instead of after. In this

case, the sum becomes:

S3 =
∞∑

n=nmin

(
mn lim

c→∞

1

1 + e−c(1−λ̄n/k2)

)
(4.54)

The point of doing this is to first compute the sum to obtain a result for general c and

only take the limit c→∞ at the last step. The infinite sum is itself a limit, so it must be

checked beforehand whether the limits c → ∞ and n → ∞ can be exchanged. Rewriting

nm in terms of the eigenvalues, the argument of the sum is a function of only one variable:

m(n)

1 + e−c(1−λ̄n/k2)
=

(
1 + 6

(
λn
R − α

))√
1 + 16

3

(
λn
R + α

)
1 + e−c(1−λn)

= fc(λn) (4.55)



69

written in terms of the dimensionless eigenvalues λn = k−2λ̄n and dimensionless Ricci

scalar R = k−2R̄. Taking n as a continuous variable, the product vanishes for large n

independent on the order of the limits:

lim
n→∞

lim
c→∞

fc(λn) = lim
c→∞

lim
n→∞

fc(λn) = 0 (4.56)

Since there are no singularities and the functions are continuous in the whole domain,

the limits can be exchanged. The sum can then be computed using the Euler-Maclaurin

formula:

S3 = lim
c→∞

[∫ ∞
nmin

m(n)
1

1 + e−c(1−λ̄(n)/k2)

+
1

2

(
m(nmin)

1

1 + e−c(1−λ̄(nmin)/k2)
+m(∞)

1

1 + e−c(1−λ̄(∞)/k2)

)

+

j∑
i=2

Bi
i!

[(
m(n)

1

1 + e−c(1−λ̄(n)/k2)

)′(i−1)
]∣∣∣∣∞
nmin

]
− r

(4.57)

where λ̄(n) = λ̄n is implied. Note that the sum in the derivatives is unbounded from

above, as the continuous step function is infinitely differentiable. The mean, derivatives

and integral term are computed next, in that order.

The smooth step function vanishes as λ̄n → λ̄∞ in the mean term as long as c > 0.

The evaluation at the lower boundary yields the multiplicity of the lowest mode times

a constant. In the limit c → ∞, this constant weight takes a value of one as long as

λ̄(nmin) < k2 (including any endomorphism). Thus, the mean term yields the same result

as that obtained from S1.

In the third term, the derivatives are acting on a product of functions, so a binomial

series appears:

dn(f · g) =

n∑
k=0

(
n

k

)
· dn−k(f) · dk(g) (4.58)

Consider first the terms where at least one derivative acts on the continuous step function.

By the chain rule, the derivative is:

d

dn

(
1

1 + e−c(1−λ̄(n)/k2)

)
=

∂

∂λ̄

(
1

1 + e−c(1−λ̄(n)/k2)

)
dλ̄

dn
(4.59)

The first derivative of the smeared-out step function with respect to the argument is a

smeared-out delta function centred around the inflection point k2. Further derivatives

result in multiple smeared-out delta functions, each centred around the inflection points

of their antiderivative, and overall centred around k2. Meanwhile, λ̄(n) is a polynomial of

order two, so its derivatives are of linear and constant order. Since the boundary points
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are taken to be far away from k2, the delta functions vanish exponentially and thus the

whole product vanishes at the boundaries. The higher order derivatives decay faster, thus,

the infinitely many derivatives arising from these terms can be neglected. This holds as

long as c > 0 and λ̄(nmin) < k2 for rapidly decaying smooth delta functions. Therefore,

the only terms that can be non-zero are those where the derivative is acting on m(n) only.

This is exactly as with sum S1, so this term matches as well.

The computation of the integral term is more easily performed in the domain of the

eigenvalues λ(n):

Int. = lim
c→∞

∫ λ(∞)

λ(nmin)
dλ
m(n)

λ′(n)

1

1 + e−c(1−λ(n))
(4.60)

For notational simplicity the dimensionless eigenvalues are used in the following calcula-

tions. The Jacobian of this coordinate transformation, m(n)/λ′(n), depends on the specific

trace under consideration. From now on the case of scalar fields is taken as an example

but it is straightforward to reproduce the calculation for all the other fields. For scalar

fields in d dimensions, this is:∫ λ(∞)

λ(nmin)
dλ

d

Γ(d− 1)R

(
d−3∏
x=0

(n+ d− 2− x)

)
1

1 + e−c(1−λ(n))
(4.61)

this expression still depends on n which must be replaced by λ(n). This can be done

by inserting nmax (4.22) with the substitution k2/R̄ → λ/R. Setting d = 4, the integral

simplifies to:

Int. =

∫ λ(∞)

λ(nmin)
dλ

(
4(1− 6α)

R
+

24λ

R2

)
1

1 + e−c(1−λ)

=

[
−4(1− 6α)

log
(
1 + ec(1−λ)

)
c

1

R

+ 24

(
−λ

log
(
1 + ec(1−λ)

)
c

+
Li2
(
−ec(1−λ)

)
c2

)
1

R2

]∣∣∣∣λ(∞)

λ(nmin)

(4.62)

where Lis(z) is the polylogarithm of order s with argument z:

Lis(z) =

∞∑
j=1

zj

js
(4.63)

and can also be defined iteratively as:

Lis+1(z) =

∫ z

0

Lis(t)

t
dt (4.64)

with base value:

Li1(z) = − log(1− z) (4.65)
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Figure 4.2: Coupling values λn for each polynomial approximation of the fixed points in

the averaged interpolation from N = 2 (violet) up to N = 51 (red). Left: Real part of the

couplings. Note that all couplings are positive. Right: Complex phase of couplings. The

imaginary part is non-zero only for even values of N .

Evaluating at the upper and lower boundary points and then applying the limit c → ∞

yields:

Int. =
4 (3 + (1− 3α)R) (1− αR)

R2
(4.66)

for αR̄/k2 < 1. Extracting the volume element, this exactly matches the result obtained

from the infinite sum S1.

Thus, the sum S3 (4.54) which employs a smooth version of the step function matches

term by term with S1 (4.25) and with the results obtained from the heat kernel expansion.

Had any other regulator been employed from the start, the spectral sum would necessarily

be infinite, such that a truncation of the sum would not be possible and a procedure similar

to S3 would have to be adopted, besides from numerical evaluation methods. Thus, any

other regulator profile Rk(z) which vanishes for z/k2 � 1 and tends to a constant for z → 0

should reproduce qualitatively similar results. It would be interesting to verify then, that

both techniques match for an analytic profile, such as the exponential regulator, not only

for matter fields but in the gravitational sector as well. This is left for future work.
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4.3.5 Comparison of matter bounds I. Large N

The coefficient counting the number of matter fields can have a tangible impact in the

search for gravitational fixed points. Given that spin-1/2 fields are the most abundant

of matter fields in the SM, and in virtually all BSM extensions up to date, it becomes

of paramount importance to get the count right or at least get an understanding of the

error in the counting methods. As an example, consider the large N matter limit, where

gravitational quantum corrections can be neglected at leading order and the flow equation

of f(R) in the sphere reduces to [225]:

∂tf + 4f − 2Rf ′ = IM N (4.67)

where all matter field multiplicities are proportional to a large positive number N and the

matter quantum term contains only up to quadratic contributions in curvature with the

optimised regulator:

IM = A+BR+ C R2 (4.68)

This setting supports a matter-generated fixed point, with the value of Newton’s constant

determined as:

g∗N ∝ −
1

BN
(4.69)

In this limit, the sign is directly dictated by the coefficient B which depends on the matter

content. Using a type II cut-off with the values given in (4.10), the B coefficient for each

approximation is:

BHK = 4NS − 16NM + 8ND (4.70)

BAV G = 5NS − 14NM + 4ND (4.71)

BMID =
7

2
NS − 17NM + 10ND (4.72)

The first line is the result of the heat kernel expansion, which coincides with S1 and

S3. The second and third line result from smoothing the spectral sum S2 using the

averaged and the middle of the staircase interpolation, respectively. As explained in

section 4.3.3, the averaged interpolation cuts down the effective number of fermions by half

compared to the heat kernel result. Meanwhile, the middle of the staircase overestimates

this number. In a scenario with N SMs, (4.70) supports only 44 of the 45 Weyl fermions

in the SM, while (4.71) can comfortably account for 74 before gN becomes negative.

Moreover, the destabilising effect of fermions is not limited to the Einstein-Hilbert theory
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Figure 4.3: Eigenspectrum of fixed point in the averaged interpolation with optimised

boundary conditions. All values are real.

and also affects fixed points of models with higher curvature interactions. In Chapter 5,

fixed points with the SM content will be discussed, however, a large number of fermions

may represent a challenge when BSM scenarios are discussed. Thus, the expression for

the matter contributions to the running of Newton’s coupling, B, can qualitatively modify

the behaviour of the gravitational theory in the UV. If the effective number of fermion

degrees of freedom is greatly underestimated, this could lead to finding solutions of the

flow which may not otherwise be physical.

4.3.6 Comparison of matter bounds II. Supersymmetry

As a final remark, note that both expressions agree to quadratic order in supersymmetric

(SUSY) matter configurations. In SUSY, the number of physical fermionic and bosonic

degrees of freedom is the same, thus there is a relation between the matter field multipli-

cities:

2N
(SUSY )
W = N

(SUSY )
S + 2NM (4.73)

Where the total number of fields including superpartners is included in the count. In terms

of the fields present below the SUSY scale (i.e. without superpartners), these counts are:

N
(SUSY )
W = NW +NS +NM , N

(SUSY )
S = 2(NW +NS) (4.74)

where NW are two-component Weyl spinors, NS counts real scalar degrees of freedom and

NM , the number of gauge bosons. This restriction can be used to eliminate the multiplicity
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Trmatter dUV Nmax Bound λc gN λcgN

H.K.
2 17 ϑ0 � 4 −5.6867 4.3739 −24.873

3 15 λn ∈ C −19.365 16.367 −316.96

Avg.Int.
2 13 λn ∈ C −2.9845 2.3607 −7.0455

3 > 51 λn ∈ C for N even −1.5428 1.2607 −1.9450

Table 4.3: Fixed point search in polynomial f(R) with SM matter in two scenarios. The

columns indicate the technique employed to compute the matter quantum corrections, the

dimensionality of the UV critical surface, the maximum approximation order, the nature

of the boundary and the values of couplings.

of the scalar fields from the equations. Thus, in SUSY-like matter configurations (still

neglecting matter interactions), the matter traces expanded around vanishing curvature

are:

Tr
(S1)
matter =

(
6(1 + 4(αD − αS))(NS +NW )

− 3(3− 4(2αD − 3αT + 2αGH − αL))NM

)
R

+
1

12
(7(NS +NW )− 9NM )R2 + · · ·

(4.75)

Tr
(S2)
matter =

(
6(1 + 4(αD − αS))(NS +NW )

− 3(3− 4(2αD − 3αT + 2αGH − αL))NM

)
R

+
1

2
((2 + 5(1 + p)p)(NS +NW )− (2 + 3(1 + p)p)NM )R2 + · · ·

(4.76)

The first expression corresponds to the heat kernel expansion and the second one, to the

averaged spectral sum. The constant term cancels in this setting. The linear term in the

trace using S2 comes out independent of the shift parameter and thus matches with S1 for

any value of p and αi. The quadratic term matches in both sums only for the optimised

average (4.46) and for any αi. The trace finishes at this order if the endomorphism

parameters are set to the values given in eq. (4.10). Otherwise, the higher-order terms

depend on p. Inserting the optimum value yields a near-perfect match between both

expressions at order R3, just as in (4.50)-(4.52). In this setting, the averaged interpolation

maximises the count of all three types of matter fields in the quadratic coefficient, while

the middle of the staircase one minimises it.
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N = 51 N = 50 N = 49 N = 48 N = 47

λ0 −2.4476 −2.4476− 0.0003I −2.4476 −2.4477− 0.0003I −2.4476

λ1 −0.7932 −0.7942− 0.0118I −0.7937 −0.7948− 0.0122I −0.7943

λ2 1.1444 1.1464 + 0.0255I 1.1458 1.1479 + 0.0263I 1.1473

λ3 0.1411 0.1419 + 0.0207I 0.1419 0.1428 + 0.0215I 0.1428

λ4 0.1359 0.1358 + 0.0035I 0.1360 0.1360 + 0.0036I 0.1362

λ5 0.0495 0.0500 + 0.0129I 0.0500 0.0506 + 0.0134I 0.0505

Table 4.4: Coupling values of a fixed point solution in polynomial f(R) with SM matter

using the averaged interpolation of the spectral sum in the matter traces.

4.4 Gravitational fixed points with matter

Results using the explicit spectral sums in the purely gravitational setting are reported to

be qualitatively independent of how the smoothing is performed [139,176,189]. However,

these differences can have a significant influence in the matter sector, particularly due to

the abundance of fermions in the SM. This has been first investigated in [246] making

use of the averaged interpolation. However, the focus of that study was to show that

qualitatively different solutions can appear using a type I or type II cut-off and that these

families of fixed points are not necessarily connected. The present study fixes the cut-off as

a control variable and provides a comparative analysis of fixed points found using different

expressions for the matter traces.

Two scenarios are investigated, taking either the heat kernel results (4.28)-(4.30) or

the spectral sum results with the averaged interpolation (4.43)-(4.45). To isolate the effect

of the matter sector, a mixed approach is adopted, where the traces of the gravitational

sector are obtained from the heat kernel expansion in both scenarios. The results for the

gravitational traces are borrowed from refs. [192,263], where the linear parametrisation of

the metric is employed in a spherical background. Explicit expressions for this equation

are provided in Appendix B. A mix of type I and type II cut-off is employed for the

gravitational sector to remove technical singularities arising from unphysical degrees of

freedom (see ref. [263] for details), while a type II cut-off with the parameters given in eq.

(4.10) is fixed for the matter sector. The polynomial approximation is employed where

the dimensionless action takes the form:

f(R) =

N−1∑
n=0

λnR
n (4.77)
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N = 51 N = 50 N = 49 N = 48 N = 47

ϑ0 4.0261 4.0254− 0.0056I 4.0259 4.0252− 0.0058I 4.0256

ϑ1 2.2770 2.2767 + 0.0013I 2.2771 2.2769 + 0.0014I 2.2773

ϑ2 0.5124 0.5134 + 0.0002I 0.5134 0.5145− 0.0001I 0.5146

ϑ3 −2.4479 −2.4415 + 0.1296I −2.4418 −2.4348 + 0.1345I −2.4350

ϑ4 −4.2739 −4.2685 + 0.0677I −4.2705 −4.2649 + 0.0698I −4.2669

ϑ5 −8.3011 −8.2786 + 0.3104I −8.2849 −8.2609 + 0.3207I −8.2676

Table 4.5: Eigenvalues of a fixed point solution in polynomial f(R) with SM matter using

the averaged interpolation of the spectral sum in the matter traces.

The bootstrap search strategy is adopted where higher derivative operators are gradually

incorporated in a step by step basis. In the following, N refers to the order of the truncation

and denotes the number of operators included in the action, with the initial value N = 2

being the Einstein-Hilbert action. The search finds three spurious solutions and one fixed

point candidate only when the averaged interpolation spectral sum is employed. The

findings are summarised in Table 4.3 and briefly explained next.

The first scenario using the heat kernel expansion yields two solutions at low poly-

nomial order, with a two and three-dimensional UV critical surface each. However, they

disappear when the truncation order is increased. The first one develops very large rel-

evant and irrelevant eigenvalues of order ϑ ∼ 100 at N > 17. These values have large

fluctuations and do not show signs of convergence at higher orders. The second one is

strongly coupled, becomes complex for even-numbered truncations starting at N = 8

and completely disappears into the complex plane, developing large scaling dimensions at

N > 15.

The second scenario using the averaged interpolation of the spectral sum also features

two solutions, with two and three relevant directions each. The first one becomes complex

at N > 13. The second one becomes complex for even-numbered truncations starting at

N = 6 while it remains real for odd-numbered ones. The absolute value of the couplings

and their phase in the complex plane are shown in Figure 4.2. For any single coupling, the

phase becomes smaller at higher-order approximations. All couplings come out positive

in their real values, except λ0 and λ1, yielding the values reported in Tables 4.3 and 4.4.

The scaling dimensions of this solution show relative stability towards higher orders.

The eigenvalues of the stability matrix are all real for odd N and for all N when optimised
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boundary conditions are used. This means that the couplings whose running is neglected

at each order are set to their asymptotic values, instead of vanishing values. This is shown

in Figure 4.3, where the two panels offer transposed views of the eigenspectrum. Notice

the fluctuations in the values towards higher orders, which seem to indicate that even and

odd-numbered truncations converge separately. Numerical values for the most relevant

eigenvalues are reported in Table 4.5 with vanishing boundary conditions.

The rate of convergence can be assessed by measuring how many approximation orders

are necessary to gain a further digit of accuracy in the eigenspectrum. This is shown in the

negative axis in Figure 4.4 with vanishing boundary conditions. In the figure, the black

line indicates the linear fit for data points of the most relevant eigenvalue, while the red

line indicates the mean linear fit of all data points shown for N ≥ 31. The plot shows that

the most relevant eigenvalue has stabilised to four digits of accuracy at order N = 51. Note

that the curves become steeper above N > 40, slightly deviating from the fit. This would

naively suggest a faster rate of convergence, however, this behaviour is expected to change

as values continue adjusting at higher orders. In other words, higher orders would need to

be computed to verify if this is the asymptotic behaviour. For now, ignoring this deviation

provides a more conservative estimate. On average, a further digit of accuracy is gained

every 15.1− 23.3 orders. Convergence is slower with optimised boundary conditions (not

pictured), mostly due to the even and odd orders tending to different asymptotic values.

Keeping only the odd-numbered points, the rate comes out as 19.9 − 34.7 orders for a

further digit.

The ratio test predicts a radius of convergence of RC ≈ 1.0306 for the polynomial

approximation at N = 51. Since all higher-order couplings have a positive sign, conver-

gence is probably bounded by a pole in the real axis, indicating this is most likely not a

global solution. Remembering that the fixed singularity of this flow equation occurs at

R ≈ 2.006 [186], the bound found here must be arising from a movable singularity. The

equation of motion admits no solutions whatsoever within the radius of convergence of

the approximation.

4.5 Conclusions

The freedom in performing the smoothing of the spectral sum through an average has

been parametrised by the introduction of a shift parameter p. This averaging defines

how the modes near the cut-off scale are being regulated and can be understood as an

indirect form of regulator dependence. In other words, this process is a further step of
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Figure 4.4: Rate of convergence of the eigenspectrum with vanishing boundary conditions.

The negative vertical axis indicates the number of digits of accuracy. The black line

indicates the linear fit of the most relevant eigenvalue. The red line, the mean fit of the

curves shown. The fits are performed for N ≥ 31.

regularisation. However, it is not guaranteed that an arbitrary choice of p produces flows

that stem from any suitably-chosen regulator Rk. All the possible choices are depicted in

Figure 4.1 as a function of p, this is one of the main results of this study. The averaged

and the middle of the staircase interpolation can now be recognised as the boundaries of

the allowed region, being the cases that introduce the largest deviation compared to the

heat kernel results. The former minimises the counting of spin-1 and spin-1/2 fields and

maximises that of spin-0 fields, while the latter takes the opposite role. The preferred

optimised average described by popt. is identified as the one inducing the least deviation

in the flows, resulting in a perfect match with the heat kernel expansion at linear order

and a near-perfect match at quadratic order for all matter fields. This is the only choice

which has been proven to date to reproduce known results in the small curvature regime

beyond constant order without introducing further ambiguities. Although the heat kernel

is an asymptotic expansion in even dimensions with unknown radius of convergence, it

is expected to be reliable for small curvature values. Note this is a general argument

that applies beyond the treatment of matter fields, i.e., the optimised average can also be

adopted for the computation of traces in the gravitational sector.

The case study of fixed points in polynomial f(R) with SM matter in section 4.4

makes a further point on the tangible impact of understanding how the matter fields are

counted. This is another main result of the study and provides a prime example of a theory

without stationary solutions which develops a candidate fixed point as the effective number

of fermions is effectively reduced by the averaging procedure. Although the identified
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solution has some non-standard features compared to findings from other polynomial f(R)

studies [157,160,192], a fluctuating behaviour between even and odd approximations is not

unheard of in the literature, see refs. [139, 176]. As previously explained, this numerical

instability may very well be due to using flawed boundary conditions to close the system of

equations and the behaviour can improve using more accurate non-vanishing conditions.

Convergence in the eigenspectrum towards higher truncation orders is favourable up to the

orders checked, although with a limited radius of convergence in the scalar curvature. This

clearly illustrates the parallels between smoothing and regulator dependence as solutions

may appear or disappear depending on these choices.

Replacing the Heaviside theta distribution by a smooth step function sheds some light

on the ambiguity encountered in the computation of the traces. Then, the sum extends

to infinity and the result of the spectral sum ultimately matches with the heat kernel

expansion. In that case, the averaging step is exchanged for the smoothing of the regulator.

This is indeed how the computation would have to be performed for any analytic regulator

that vanishes asymptotically. Then, it is expected that both techniques coincide for small

curvature if any smooth profile function is employed.

This study has aimed to clarify some of the ambiguities around the use of the spectral

sum technique and has taken the matter sector as a simple example. It is left for future

work to verify that the value of the optimum shift popt. remains the same for the traces in

the gravitational sector and to evaluate the impact of other choices in the traces of spin-2

fields. Similarly, this analysis has adopted many simplifications and it would be desirable

to see that results generalise to other settings such as, computations in a general number

of dimensions, in other curved backgrounds or considering matter anomalous dimensions

or non-minimal matter interactions which would explicitly modify the matter traces.



80

Chapter 5

Quantum gravity and the

Standard Model

5.1 Introduction

The previous chapters have established two key aspects of asymptotic safety in quantum

gravity. On the one hand, interactions of the Ricci and Riemann and tensors squared lead

to quantum corrections to the flow equation that can stabilise fixed points to very high

curvature-order. This leads to improved numerical stability and faster convergence where

these operators appear simultaneously. On the other hand, matter quantum fluctuations

can destabilise the gravitational fixed point, with the SM field content potentially annihil-

ating the solution beyond the Einstein theory. Thus, quantum matter fluctuations impose

constraints on the field content for asymptotic safety of a given gravitational theory. How-

ever, the converse point of view is also true. For a given matter content, constraints are

imposed on the type of gravitational models that allow a stable UV fixed point. Then, it

seems conceivable that models which allow for higher order interactions of the aforemen-

tioned tensors could stabilise a fixed point with SM matter at high curvture-order.

This study builds on the results of the previous two chapters and performs a fixed

point search to high curvature-order in the presence of the SM field content. The theory

space is the one introduced in Chapter 3, which incorporates (R2, R2
µν , R

2
µνρσ) operators

to high polynomial order. The quantum matter fluctuations were determined in Chapter

4 and modify the flow equation leading to potentially new families of solutions. The seven

points of the theory space prevously identified are revisited, finding that only three of

them host UV fixed points stable up to 100th curvature-order.

The analysis is organised in the following manner. Section 5.2 introduces the theoretical
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framework combining the results from the previous chapters. The important equations

are re-introduced for completeness and convenience of the reader. The parameter space

is described and the search strategy is explained. Section 5.3 presents the results of the

analysis and discusses characteristics of the fixed points such as coupling values, critical

exponents, relevant directions, convergence and RG flows. Section 5.4 considers some

Beyond the Standard Model scenarios and outlines general properties of solutions found

in those settings. Finally, Section 5.5 summarises the results and gives the conclusions.

5.2 Methodology

5.2.1 Renormalisation Group

The gravitational theory considered in this study is of the same form as that already

introduced in Chapter 3. Additionally, minimally coupled matter is added as in Chapter 4.

The matter action is not repeated in here but it is recalled that NS is the field multiplicity

of the real scalar fields, NM that of the Maxwell bosons and ND, of Dirac spinors. The

flow equation of this theory takes the following form:

∂tf +R∂tz + 4f + 2Rz − 4X(f ′ +Rz′) = IQ + IM (5.1)

Explicit expressions for the metric quantum corrections IQ are given in Appendix A, while

expressions for the matter contributions IM are computed using the heat kernel method

as introduced in Chapter 4. The functions f(X) and z(X) contain the gravitational

interactions including the Einstein theory and higher derivative operators. Their argument

is the linear combination of the three independent quadratic curvature invariants

X = aR2 + bR2
µν + cR2

µνρσ (5.2)

These are the three basis operators which define the theory space in this model. The

coefficients (a, b, c) are free parameters that define the projection of the action on this

subpace of operators. Unlike in the analysis of Chapter 4, the introduction of the Ricci

and Riemann tensors leads to further quantum corrections in the flow equation. Thus, IQ

is a function of (a, b, c), such that different fixed point can be found in different points of

the theory space.

The polynomial approximation is assumed in this analysis, where f and z are written

as a power series of X,

f(X) =

bN−1
2
c∑

n=0

λ2nX
n, z(X) =

bN−2
2
c∑

n=0

λ2n+1X
n (5.3)
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The upper limit of the sums is such that N counts the total number of operators in the

action and is referred to as the approximation order. The approximation of order N

retains the running of the first N couplings while ignoring the rest. The result is a system

of coupled differential-algebraic equations which can be solved to find beta functions and

fixed points. In this analysis, the system is closed by setting the higher order couplings

to a constant vanishing value. The dimensionless cosmological constant λc = k−4Λc and

Newton’s coupling gN = k2GN are related to the leading order couplings at N = 2 via:

λc = − λ0

2λ1
, gN = − 1

λ1
(5.4)

5.2.2 Search strategy

This section outlines the strategy for the fixed point search. First, the free parameters of

the theory are fixed. Then, the methodology of the search is explained.

Besides from the approximation order N , the flow equation has six free parameters,

three describing the projection of the gravitational action (a, b, c) and three specifying

the matter content (NS , NM , ND). The bulk of this analysis considers SM matter only,

i.e. (NS , NM , ND) = (4, 12, 45/2). The methods developed for this study can be used

to explore other matter configurations and Section 5.4 will briefly explore some scenarios

beyond the Standard Model.

The theory space, and hence the interactions present in the action, is defined by (a, b, c).

For simplicitiy, only seven projections are studied in here:

(a, b, c) ∈
{

(1, 0, 0), (0, 1, 0), (0, 0, 1),

(1, 1, 0), (1, 0, 1), (0, 1, 1), (1, 1, 1)
} (5.5)

The first line projects the theory on actions where only one of (R2, R2
µν , R

2
µνρσ) appears,

while the second line, on actions where two or three of these operators appear simultan-

eously. Note that it is not the absolute value of these parameters that is important but

their relative ratios, i.e. (a, b, c) = (x a, x b, x c) with x a real constant. The seven scenarios

chosen here serve only as representative examples, many other points are available as was

already explained in Chapter 3. Lastly, recall that the squared of the Weyl tensor vanishes

on the four-dimensional background. Therefore, it is not possible to study gravitational

actions with curvature invariants on the Weyl basis in this approach.

The fixed point search adopts the bootstrap hypothesis. This assumes that canonical

mass dimension is a valid ordering principle for higher derivative-order operators and

justifies a curvature expansion in the theory space. Moreover, the hypothesis claims that



83

introducing higher order operators in the action induces new RG directions which are

only less and less relevant. Thus, the number of relevant RG directions of a UV fixed

point is finite. This is where the power of asymptotic safety lies, even though the theory

may include infintely many interactions, there is a only finite number of free parameters,

ensuring the theory remains predictive. In general, this hypothesis may not be true as

anomalous scaling dimensions are non-zero at an interacting fixed point and may turn

canonically irrelevant operators into relevant ones in the UV. Thus, this hypothesis must

be confirmed a posteriori.

Under this assumption, the analysis starts at an initial approximation order N and

looks for stationary points of the flow. This results in a system of algebraic equations

coupled at all orders. To close the system of equations within the theory, the higher order

couplings whose running is neglected can be set to an arbitrary constant value, chosen to

be zero in this analysis. The resulting system of equations can then be solved numerically.

5.2.3 Computational algorithms

The fixed point search makes use of further algorithms developed in the computational

toolkit mentioned in Chapter 3. Vertical searches are performed at each of the seven

points. Starting at an initial order Ni, a numeric root finding algorithm solves the flow

equation at each order using 100 digits of working precision in Wolfram Mathematica up to

N = 101. Critical exponents are calculated as the eigenvalues of the stability matrix which

is numerically evaluated. Additional subroutines have been implemented which compare

coupling values and critical exponents, automatically discarding fixed points with large

jumps in these values and unphysically large magnitudes of the critical exponents.

A further technical complication is encountered, as some solutions only show numerical

stability after several orders have been included. This means that starting at Ni = 2 may

result in wrongly discarding some solutions which become well-behaved at higher orders.

This is qualitatively similar to the findings in the f(R,Riem2) theory without matter,

where a fixed point is only stable above N ≥ 9 [196]. To account for this, multiple

vertical searches are performed at each point starting from different initial orders Ni up to

Ni = 20. As the searches are independent of each other, they were implemented in parallel

in the high performance computing cluster Apollo from University of Sussex. However, the

landscape of roots of the flow equation rapidly increases at higher orders. Therefore, each

search is initialised with 500 random points serving as seeds for the root search algorithm.

Suitable solutions with real-valued couplings and reasonable critical exponents have
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FP (a, b, c) dUV g∗N λ∗cg
∗
N ϑ0 ϑ1 ϑ2 rR rN

FPEH
2 (0, 0, 0) 2 4.4290 −25.489 3.9628 1.9043 − − −

FPc
4 (0, 0, 1) 4 3.8849 −19.277 3.9012 2.1771 1.7228 2.0060 14.9

FPc
5 (0, 0, 1) 5 4.1580 −22.152 3.8688 2.7985 2.5150 1.6133 18.6

FPab
4 (1, 1, 0) 4 1.1536 −1.7651 4.2331 3.1531 3.1531 0.43449 9.61

FPab
5 (1, 1, 0) 5 0.92466 −1.0937 4.0632 2.4983 2.4983 0.40101 12.4

FPbc
4 (0, 1, 1) 4 3.9578 −20.122 3.9259 2.0914 1.8218 1.6858 −

FPbc
7 (0, 1, 1) 7 4.2512 −23.319 3.9094 2.7049 2.7049 1.0056 −

Table 5.1: Fixed points of gravity with SM matter indicating: projection of the action,

dimensionality of the UV critical surface, coupling values, scaling dimensions, radius of

convergence rR and rate of convergence rN . The Einstein-Hilbert theory with SM matter

is included in the first row for comparison.

been identified and are discussed in the next section.

5.3 Gravitational fixed points with the Standard Model

Although a wide variety of solutions can be found at low orders, many are not reliable

as they show no or poor convergence towards higher orders. Nonetheless, three of the

seven points of the theory space host six solutions which are candidates for physical fixed

points of the theory. The nomenclature FPyx is introduced for these fixed points, where

the subscript will denote the number of relevant RG directions associated with them and

the superscript, the point in theory space where these solutions are found. There are only

three superscripts, c = (0, 0, 1), ab = (1, 1, 0) and bc = (0, 1, 1), with the letters indicating

which of (a, b, c) are set to a value of one. Thus, FPc4 and FPc5 appear in scenario (0, 0, 1),

FPab4 and FPab5 in (1, 1, 0), and FPbc4 and FPbc7 in scenario (0, 1, 1).

Table 5.1 offers a summary presenting some important features of the solutions and

comparing them to the Einstein-Hilbert theory with SM matter. Each of these aspects

is discussed in detail in the coming sections. In the following, visualisations for only one

solution are presented at a time. The corresponding plots for all six solutions can be

found in Appendix D and they are dicussed whenever relevant in the text. The solutions

fluctuate more strongly at low approximation order and start showing signs of stability

and convergence from order N = 7 onwards. For this reason, approximation orders below

seven are dropped from the analysis.

No stable solution manifests itself in the f(R) theory. This was already observed in
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Figure 5.1: Accuracy of the fixed point FP c4 at increasing polynomial orders as a function

of the curvature R.

the analysis of Chapter 4. It is only when the action acquires a non-trivial projection in

the direction of the other quadratic curvature invariants that stable solutions arise. Thus,

these interactions can play a pivotal role in sourcing a fixed point of gravity with matter.

5.3.1 Accuracy

The solutions are determined to high numerical accuracy employing 100 digits of working

precision in the calculations in Wolfram Mathematica. The residual of the polynomial

solution in the flow equation is shown in Figure 5.1 as a function of the scalar curvature

for FPc4, where the colour-coding indicates the order of the polynomial approximation

from N = 2 (violet) up to N = 101 (red). The flow equation vanishes to order 10−80 for

small curvature values, indicating that the polynomial approximation is a good solution.

The radius of convergence, rR, is estimated by the ratio test of the polynoimal couplings

at N = 101 and is given in Table 5.1. In the figure, this corresponds to the point where

the lines cross. Beyond this point, incrasing N returns less accuracy, indicating that the

polynomial approximation breaks down. Plots relating to the other solutions are given

in Figure D.1 in Appendix D and likewise show high accuracy, with the main difference

being a substantial reduction in the radius of convergence of FPab5 and FPbc4 .
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FP (a, b, c) λ∗c g∗N λ∗2 λ∗3 λ∗4 λ∗5

FPc
4 (0, 0, 1) −4.9620 3.8849 0.10656 −0.0017246 0.072011 −0.056817

FPc
5 (0, 0, 1) −5.3275 4.1580 0.086866 0.030719 0.18870 −0.21747

FPab
4 (1, 1, 0) −1.5301 1.1536 −1.1324 −4.0195 −3.9164 −1.6889

FPab
5 (1, 1, 0) −1.1828 0.92466 −0.65704 −5.6558 −1.3648 −3.8781

FPbc
4 (0, 1, 1) −5.0842 3.9578 0.061175 −0.0068104 0.017822 −0.014004

FPbc
7 (0, 1, 1) −5.4854 4.2512 0.036245 0.023126 0.098100 −0.11644

Table 5.2: Coupling values of gravitational fixed points with SM matter at order N = 101.
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Figure 5.2: Absolute values of couplings λn of FP c4 , with the index n in the horizontal

axis, at each approximation order from N = 2 (violet) to N = 101 (red).

5.3.2 Fixed point coordinates

The solutions feature a negative cosmological constant and positive Newton’s coupling,

with the numerical values given in Table 5.2. In the Einstein-Hilbert theory, a large number

of fermions turns the gravitational coupling negative. Therefore, it may be inferred that

the higher curvature-order interactions are countering this effect. In the Einstein theory,

the universal product of these couplings is λ∗cg
∗
N ≈ 0.10−0.18 without matter [192,195,263]

and λ∗cg
∗
N ≈ −25.5 with SM matter. Meanwhile, the present solutions have λ∗cg

∗
N ≈ −20

(FPc4,FPc5,FPbc4 ,FPbc7 ) and λ∗cg
∗
N ≈ −1 (FPab4 ,FPab5 ). This indicates that while the former

solutions do not deviate much from the Einstein-Hilbert approximation, the latter become

more weakly coupled, although not as much as the theory without matter. In the former

case, this can be attributed to the projection on R2
µνρσ leading to a larger value of Newton’s
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FP (a, b, c) ϑ0 ϑ1 ϑ2 ϑ3 ϑ4 ϑ5 ϑ6 ϑ7

FPc
4 (0, 0, 1) 3.9012 2.1771 1.7228 1.1805 −0.66207 −2.0710 −4.1466 −6.0250

FPc
5 (0, 0, 1) 3.8688 2.7985 2.5150 1.7398 0.45897 −1.4421 −2.9185 −5.1393

FPab
4 (1, 1, 0) 4.2331 3.1531 3.1531 1.9626 −1.8025 −1.8025 −3.9476 −6.3145

FPab
5 (1, 1, 0) 4.0632 2.4983 2.4983 1.3754 1.3754 −2.2270 −2.2270 −5.7377

FPbc
4 (0, 1, 1) 3.9259 2.0914 1.8218 0.39502 −1.6498 −3.2924 −5.4692 −5.4692

FPbc
7 (0, 1, 1) 3.9094 2.7049 2.7049 1.7735 0.98417 0.042973 0.042973 −1.4363

Table 5.3: Real part of the eight most relevant scaling dimensions of fixed points with SM

matter at order N = 101.

coupling, a result which was already observed in the pure gravity analysis of Chapter 3.

On the spherical background, the couplings appearing in the action are weighted by

factors of X. These effective coupling values are given in Figure 5.2 for FPc4 from N = 2

(violet) to N = 101 (red), with the index n of the couplings λn in the horizontal axis.

For all solutions, this is shown in Figure D.2. The trend of the values is to decrease in

magnitude at higher orders for all solutions except FPab4 and FPab5 , where values increase.

This can be directly associated with the smaller radius of convergence of these solutions

as displayed in Table 5.1. The spread of the data points in the plots gives an indication of

how fast couplings approach their asymptotic values. The solutions show good convergence

except for FPbc4 and FPbc7 , where the spread is much wider. A quantitative measure for

this rate of convergence is given subsequently in this section.

5.3.3 Scaling dimensions

The scaling dimensions associated with each solution are given in Table 5.3. Solutions

FPc4, FPab4 and FPbc4 have four relevant RG directions, FPc5 and FPab5 have five, and FPbc7 ,

has seven. Theories of pure gravity without Riemann interactions have fixed points with

three relevant directions. Riemann interactions can induce a further one [196]. As a fifth

relevant value appears in some of the solutions with SM matter, it may be inferred that

quantum matter fluctuations shift the scaling dimensions towards more relevant values,

possibly turning an irrelevant operator into a relevant one. In the case of FPbc7 which has

seven directions, it should be noted that two of them are very close to zero. As these

quantities are bound to have some systematic error due to the approximations employed,

it cannot be taken for granted whether these values are relevant or irrelevant.

The relevant scaling dimensions range from a value of four to near zero, meaning that
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Figure 5.3: First eight eigenvalues of FPc5 at each approximation. Thick red lines indicate

the value at N = 101 while black lines are used for all other orders. All relevant eigenvalues

are real. The gap between the least relevant and the most irrelevant values is ∆gap ≈ 1.90

although the solutions are more strongly coupled compared to the pure gravity theory,

the critical exponents do not show a substantial deviation from canonical scaling among

the relevant values. These values are all real for FPc4, FPc5 and FPbc4 , indicating that

SM matter has lifted the degeneracy of the critical exponents encountered in the theory

without matter. The gap between the adjacent relevant and irrelevant values is show in

Figure 5.3 for FPc5 and is close to two for this and all other solutions, except FPab4 and

FPab5 , where it is closer to four. The larger difference in these cases is mostly due to the

irrelevant values being complex conjugate, increasing the gap with the relevant ones.

An overview of the critical exponents is depicted in Figure 5.4 for FPc4. The left panel

shows the values ϑn as a function of the approximation order N and illustrates that the

scaling dimensions quickly tend to their asymptotic values. The right panel offers the

transposed view, where the data points depict the values from order N = 7 (violet) to

N = 101 (red) with the index n in the horizontal axis. This view directly confirms the

bootstrap hypothesis, as higher order scaling dimensions are increasingly less relevant.

The narrow spread of the data points shows quick convergence once more. Moreover,

the distribution mostly follows a linear trend, fitted by the solid black line in the plot,

indicating that matter quantum effects result in an overall uniform shift of the scaling

dimensions. Reading from higher to lower n, this trend is broken by a pair of irrelevant

complex values at n = {10, 11}.

The eigenspectrum of the other solutions is shown in Figures D.3 and D.4, and show
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Figure 5.4: Eigenvalues of the stability matrix at each order N for FPc4. Negative values

are UV relevant directions. The eigenspectrum shows stability towards higher polynomial

orders.

qualitatively similar results although with three slight differences. First, two pairs of com-

plex values ϑn appear between different positions n = [3− 12] in the solutions, excepting

FPab4 with only one irrelevant complex pair and one relevant complex pair. Second, the

intercept of the fitted linear trend is different between the solutions. This means that

although the overall impact of matter is a pull towards more relevant values, the extent of

this effect depends on the interactions present in the action. Third, the data points show

a larger spread for FPbc7 in Figure D.4, indicating that this solution has a slower rate of

convergence compared to the others.

5.3.4 Relevant directions

The solutions found here have from five to seven relevant scaling dimensions, while the

theory without gravity has been found to have only three. A natural question is then,

what are the new RG directions appearing in the vicinity of the UV fixed point? This

information is encoded in the eigenvectors associated to eigenvalues of the stability matrix.

In the following, a brief technical review of this eigensystem is offered beforing analysing

these vectors to provide an answer.

The eigenvalue equation for the stability matrix is:

M [V ]n = ϑn[V ]n (5.6)
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Figure 5.5: Eigenvectors of the stability matrix for FPc4.

The matrix of eigenvectors V of the stability matrix M contains in its columns the eigen-

vectors [V ]n associated with the eigenvalues ϑn of M . The components [V ]ni are related to

each of the running couplings λi that parametrise the interactions present in the action.

The operators associated to these couplings define the theory space where RG flows live

in. We put forward the interpretation that the components of the eigenvectors are the

projections in the space of operators which the RG trajectories going into and out of the

fixed point are associated with. In other words, the absolute value of the eigenvectors

[|V |2]n define the direction that RG flows point towards, around the fixed point, in the

phase diagram of the theory.

To further disentangle the mixing of components due to large differences in the mag-

nitude of couplings, V is transformed into a doubly-stochastic matrix, effectively projecting

the eigenvectors into the unit sphere SN , such that:

N−1∑
i=0

[
|V |2

]n
i

= 1ᵀ,

N−1∑
n=0

[
|V |2

]n
i

= 1 (5.7)

where 1 is a vector of all ones with N elements, the subscript denotes row and superscript

denotes column, and the convention of taking the initial index as zero is adopted. This is

equivalent to a similarity transformation of the stability matrix, corresponding to a linear

transformation of the couplings, which is always allowed. This double normalisation is

implemented heuristically as a series of iterative rescalings of the matrix of eigenvectors.

The eigenvectors associated with the first twenty-one scaling dimensions, ranked from

relevant to irrelevant, are shown in Figure 5.5 for FPc4 at N = 101. The data points are
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O0 O1 O2 O3 O4 O5 O6

FPc
4 I R X2 X2/R/X RX X RX3

FPc
5 I RX/X2 X2 R RX2 X3/X RX3

FPab
4 I R/X R/X R RX RX X3

FPab
5 I R R X2 X2 RX/RX2 RX/RX2

FPbc
4 I R/X2 R X RX X2 RX4

FPbc
7 I RX RX R X3 X3/RX2 X3/RX2

Table 5.4: Projections of the RG flows around the fixed points in the doubly-normalised

eigenvector matrix ranked from relevant to irrelevant directions.

the i components of each doubly-normalised squared eigenvector [|V |2]ni , with the index n

of the vector in the horizontal axis. The legend on the top associates data markers with

the order in scalar curvature of the operators in the action. The plot reveals that the

most relevant flow points in the direction of the vacuum energy operator (cosmological

constant), the second one in the direction of R, the third in the direction of X2, and the

fourth on a combination of X2, R and X. The eigenvectors show mixed contributions

up to n = 12, while for n ≥ 13, there is a clear dominant direction. Plots for the other

solutions are given in Figure D.5 in Appendix D, showing a similar trend.

The dominant directions are summarised in Table 5.4 ranked from relevant to irrelevant

for each solution. The RG flow associated with the largest eigenvalue is mostly projected

on the direction of the cosmological constant in all cases. The rest of the eigenvectors have

a mix of contributions from different operators and, in some cases, near-equal projections

in different directions, which have been indicated as A/B in the table. The operators R

and X appear interspersed in the table, with contributions of up to RX4, corresponding

to curvature order nine, also appearing.

To conclude, it should be noted that eigenvectors are not universal quantities as they

are not invariant under linear transformations of the couplings. The doubly-stochastic

normalisation is employed as it is the projection that allows the most equitable repres-

entation, balancing the fact that couplings take values separated by many orders of mag-

nitude. However, there is nothing universal about this normalisation. Hence, the mixture

of directions found among the relevant RG directions may be further disentangled using

other methods.
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Figure 5.6: Left: Action of the polynomial solution FPc4 from N = 7 (violet) to N = 101

(red). Right: Number of digits of accuracy in the scaling dimensions of FPc4 taking as

reference value N = 101. The black line is the linear fit of ϑ0, the red line is the averaged

fit for the shown data. The fits are performed for N ≥ 61

5.3.5 Convergence

The polynomial action is plotted in the left panel of Figure 5.6 for FPc4. The lines fall on

top of each other indicating quick convergence, where the curves for N < 7 are dropped

as the solutions are not stable yet at those orders. The tails of the curves consistently

point upwards for negative curvature values and alternate for positive ones. This suggests

that the radius of convergence, rR may be bounded by a pole on the real negative axis.

Noting that the flow equation has a pole at R = 2.006 (independent of (a, b, c)), this plot

suggests that the radius of convergence of FPc4 saturates this bound.

The corresponding plots for the other solutions can be found in Figure D.6. Solutions

FPc4, FPc5 and FPbc4 have a large radius of convergence rR. For the latter two, the tails at

negative curvature values appear to start alternating in sign at high orders. Solution FPab5

has alternating tails for positive curvature and a smaller radius of convergence, suggesting

the presence of a movable singularity at negative curvature values bounding this solution.

Meanwhile, FPab4 and FPbc7 show alternating tails on both sides, meaning that their radius

of convergence, which is also smaller, is bounded by a pole in the complex plane.

The rate of convergence rN , describing how fast the asymptotic behaviour is ap-

proached, can be measured by counting the number of digits that become stable in the
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FP (a, b, c) rR rS

FPc
4 (0, 0, 1) 2.0060 2.0065

FPc
5 (0, 0, 1) 1.6133 1.6932

FPab
4 (1, 1, 0) 0.43449 0.69352

FPab
5 (1, 1, 0) 0.40101 0.40500

FPbc
4 (0, 1, 1) 1.6858 1.7135

FPcb
7 (0, 1, 1) 1.0056 1.2518

Table 5.5: Radius of convergence of the polynomial theory from the ratio test rR, and

value at which the numerical integration encounters a singularity rS .

scaling dimensions as the order N increases. This is shown on the negative axis for FPc4

in the right panel of Figure 5.6. The plot illustrates that at order N = 101, ϑ0 has

stabilised to 13 digits of accuracy. The trend in the curves changes as N increases until

about N = 60, above which the slope remains constant. This is interpreted as the onset

of the asymptotic behaviour and would not have been visible had the analysis stopped at

lower orders, leading to an exaggerated prediction for rN ; this observation highlights the

necessity for pushing the polynomial expansion to such high orders. The linear fit of ϑ0 is

shown as a black line and the averged fit of the data, as a red line. The negative inverse of

the slope of the fit is a quantitative measure of the rate of convergence. For the solution

shown in the plot, a further digit of accuracy is gained every 13.8 orders on average.

The corresponding plots for the other solutions can be found in Figure D.7 in Appendix

D, with the rate of convergence listed in Table 5.1. Solution FPc5 has similar behaviour

as FPc4, while FPab4 and FPab5 display a linear trend for all values of N . In contrast, FPbc4

and FPbc7 show only limited convergence, gaining a maximum of five digits of accuracy in

ϑ0. This would seem to suggest that these polynomial solutions are not converging to a

fixed point of the full theory. This picture could change if other methods are used, such

as expanding around a different field value or using optimised boundary condtions. The

average rate of convergence is summarised in Table 5.1 and is 14.9, 18.6, 9.61 and 12.4 for

FPc4, FPc5, FPab4 and FPab5 , respectively, while no statistically meaningful inference can be

drawn for FPbc4 and FPbc7 . To put these figures into context, the convergence rate in the

f(R) theory without matter was of 1 digit per 20 orders measured on the three leading

coupling values [192], while for f(R,Ric2) without matter, it was of 1 digit per 2-3 orders

measured using the critical exponents [195].
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point FP c4 at order N = 101. The region of integration is bounded by a singularity. No

de Sitter solutions are found in the range of the integration.

5.3.6 Beyond the polynomial approximation

The polynomial solutions are only valid within their radius of convergence rR. To go

beyond, general solutions can be obtained by solving the flow equation for the action

f(X) + Rz(X) at the fixed point. This is a third order differential equation and can

be solved numerically using the polynomial couplings to fix the initial conditions. The

equation is separated into even and odd parts, defining independent equations for f and

z, which can be solved in the domain X > 0:

4
(
f −X f ′

)
= I(even)

qg + I(even)
qm (5.8)

2
(
Rz − 2X Rz′

)
= I(odd)

qg + I(odd)
qm (5.9)

Solutions of these equations can diverge at the poles of the flow equation, found at:

R = −9.99855, R = 0, R = 2.00648 (5.10)

independent of (a, b, c). Additionally, movable singularities can also appear at varying

values of R depending on the initial conditions of the action. A global solution is one

which remains finite at these points and is valid for arbitrary values of R. Whether such

a solution can be obtained depends on the initial conditions and thus on the polynomial

couplings. Using the values of FPc4, the numerical integration is bounded by the pole

of the flow equation at R = 2.006, making it impossible to go beyond with the initial
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conditions provided. As FPc4 saturates the radius of convergence, the action obtained

from this method is identical to the polynomial action of this solution.

For the other fixed points, the action can be extended beyond the radius of convergence

of the polynomial approximations but not by much, as a singularity is shortly encountered,

forcing the numerical integration to end. This is shown in Table 5.5 which compares the

radius rR of the polynomial approximation from the ratio test and the point where the

numerical integration encounters a singularity. Thus, the solutions identified in here do

not lead to global solutions of the action.

Using the result from the numerical integration of the action, one can also look for

solutions to the equation of motion. Taking the variation of the action with respect to the

metric leads to the equation of motion:

1

2
f − 1

4
R∂R(X)f ′ +

1

4
Rz − 1

4
R2 ∂R(X)z′ = 0 (5.11)

This equation is plotted in Figure 5.7 for FPc4, showing that no solution is found within

the domain of integration. This is mainly due to the negative cosmological constant which

shifts the overall curve downwards, while the negative slope at small R is a consequence

of having a positive gN . As a result, the fixed points do not support de Sitter nor anti-de

Sitter spacetime solutions.
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Figure 5.9: Renormalisation group flow of couplings in (0, 0, 1) from the UV (FP c4 ) to the

IR (right to left) at N = 4. Higher order couplings are set to their fixed point values at

N = 101. Along this trajectory, the cosmological constant smoothly crosses the zero and

changes sign at k ≈ 5.973 GeV.

5.3.7 UV-IR connecting trajectories

A fundamental theory should have well-defined RG trajectories connecting the fixed point

in the UV with a Gaussian regime compatible with General Relativity in the IR. Such

trajectories can be found by numerically integrating the running of the couplings down to

low energies. A simple phase portrait is available in the Einstein-Hilbert theory by setting

higher order couplings to their fixed point values and neglecting their running. This is

illustrated in Figure 5.8 for FPc5, showing trajectories emanating from the fixed point with

the arrows pointing towards the IR. The critical exponents are real in this approximation

and this is reflected in the flows around the fixed point which appear as straight lines. The

trajectory highlighted in red runs exactly into the Gaussian in the IR, with λc remaining

negative along the flow. Trajectories where the cosmological constant becomes positive

are also available, with the one highlighted in blue as an example.

Next, the approximation is upgraded to N = 4 where suitable RG trajectories can also

be found. One such trajectory is shown in Figure 5.9 for FPc5, which depicts the value of

the running couplings as a function of the energy scale. A brief explanation of this plot is

given now. At high energies in the rightmost part of the plot, the flow is very slow as this

is the vicinity of the UV fixed point. As the energy decreases towards the left of the plot,

a crosssover region appears where the couplings runs faster. A zoom-in to this region is

shown in the inset on the lower right. Both cosmological constant and Newton’s coupling

decrease in magnitude approaching vanishing values. The cosmological constant smoothly
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crosses the zero and becomes positive at k ≈ 5.973 GeV in the trajectory shown. The inset

on the lower left provides a zoom-in of this region, where the sign change is signalled by

a spike on the logarithmic plot. At the same time, Newton’s coupling continues tending

toward zero asymptotically. In the deep IR in the leftmost part of the plot, the flow

approaches a pole of the flow equation close to λ∗c = 1/2 where the numerical integration

stops. Many other qualitatively similar trajectories are available where the couplings can

flow either faster or slower. Similar trajectories are available for the other solutions and

are depicted in Figure D.8 showing qualitatively the same behaviour.

Reproducing this task at higher orders becomes very challenging very quickly, not only

because the numerical integration is more time-consuming but also because it is more

difficult to find suitable initial conditions leading to UV-IR finite trajectories. As the flow

of λc and gN did not change drastically from N = 2 to N = 4, it may be reasonable to

assume that higher derivative-order operators do not qualitatively modify the behaviour

of these couplings and that finite trajectories may exist to all orders.

5.4 A first peek beyond the Standard Model

The analysis can be extended to matter configurations corresponding to Beyond the Stand-

ard Model (BSM) scenarios. However, such models tend to include more additional fer-

mions and scalars than gauge bosons in the matter content. From the Einstein-Hilbert

case, one can expect that a high number of fermions would lead to negative cosmological

constant and a negative Newton’s coupling. This is indeed what is found for all the cases

explored in here.

A list of interesting BSM models that have been considered in this analysis is given in

Table 5.6 along with their matter content. The first three correspond to well-known BSM

models. The models AS-GY-A/B refer to the asymptotically safe gauge-Yukawa model

proposed in ref. [70]. The next two, AS-SUSY-A/B, are the supersymmetric version,

discussed in [78]. The last three, AS-ST-A/B/C, refer to a type of minimal SM extensions

which are made asymptotically safe via Yukawa couplings to three BSM Dirac spinors and

nine complex scalars [84, 86]. The matter content is determined by the free parameters

of the theories, for which representative examples have been chosen according to the

appropriate constraints in each case.

No stable solutions are found in SO(10) GUT, AS-GY-B and AS-ST-A. In the other

models, solutions are found where the cosmological constant can obtain either a positive

or a negative value, however, Newton’s constant consistently appears with a negative value
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Model NS NM ND FP dUV UV-IR RG

MSSM 98 12 61/2 3 4 7

SU(5) GUT 124 24 24 3 2 7

SO(10) GUT 97 45 24 7 − 7

AS-GY-A 578 8 51 3 6 7

AS-GY-B 1568 24 140 7 − 7

AS-SUSY-A 92 11 57/2 3 4 7

AS-SUSY-B 128 11 75/2 3 4 7

AS-ST-A 22 12 51/2 7 − 7

AS-ST-B 166 12 63/2 3 2 7

AS-ST-C 76 12 57/2 3 4 7

Table 5.6: BSM matter configurations and whether they support gravitational fixed points

or not. All solutions have negative Newton’s constant and therefore, they do not possess

RG flows connecting the theory continuously to General Relativity in the IR.

in all cases. Since the running of Newton’s coupling vanishes for gN = 0 independently of

other interactions, RG trajectories cannot cross this line and thus, no smooth RG flows are

avaialble connecting the theory to General Relativity in the IR. A summary is provided

in Table 5.6 indicating which models admit a numerically stable solution of the flow and

the minimum number of relevant RG directions associated with those solutions. Overall,

no physical fixed points are found for BSM models as all solutions have negative Newton’s

constant, resulting from a large number of fermions and scalars in these models. The

picture may change if non-minimal matter-gravity interactions are allowed. For example,

it has already been noted that certain dimension five interaction terms, such as Rψ̄γ5ψ

can stabilise UV fixed points with fermions [227–230,241].

5.5 Conclusions

New families of gravitational fixed points supporting asymptotic safety with SM matter

have been identified in this study. No such solutions are available in the f(R) theory,

it is only when the R2
µν and R2

µνρσ operators are considered that stable fixed points can

appear. Thus, these higher derivative curvature invariants play a crucial role in mediating

a fixed point of gravity with matter.

The six solutions can be identified up to order N = 101 in the polynomial approx-

imation. The bootstrap hypothesis is confirmed as no additional relevant RG directions
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appear above N = 7. Thus, the theory remains predictive with 4-7 free parameters. The

additional relevant directions can be explained due to interactions of the Riemann tensor

and quantum matter fluctuations. The overall effect of SM matter is to shift the scal-

ing dimensions towards more relevant values, explaining the additional relevant critical

exponents compared to the theory without matter.

The theory remains predictive in the UV and is smoothly connected to a Gaussian

regime compatible with General Relativity in the IR. Explicit RG flows have been identified

up to N = 4 and are conjectured to exist at higher orders. These flows can naturally

explain a vanishingly small and positive cosmological constant, and a small and positive

Newton’s coupling.

Nonetheless, there are some limitations to the results found. For instance, the approx-

imations considered here have not uncovered global solutions of the action, although this

could be further studied with other methods, such as Pade approximants, or could change

due to neglected interactions. Chapter 7 will later show that global solutions can be found

if there are many matter fields. Also, the equation of motion has no solutions within

the radius of convergence for any of the six fixed points. Moreover, two of the solutions

show limited convergence indicating they may not be approaching a fixed point of the

full theory. Lastly, the same analysis has not found physical solutions for some selected

BSM matter configurations as they appear with a negative Newton’s coupling and hence,

cannot be connected to General Relativity at low energies.

Overall, gravitational models which display asymptoic safety and are compatible with

the Standard Model have been found. This represents a further advance towards combining

quantum gravity and matter into a single fundamental theory. Future studies can explore

futher types of higher order interactions with Ricci and Riemann tensors, as they can

become important for the high energy behaviour of the theory.
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Chapter 6

Impact of SM matter on quantum

gravitational fixed points

6.1 Introduction

This thesis has so far explored fixed points of gravity both without matter and with the

SM field content. In the former case, highly stable solutions are found in an operator

expansion with interactions of the Ricci and Riemann tensor present in the action (see

Chapter 3). In the latter case, these higher order interactions counter the destabilising

effect of matter fields and give rise to fixed points in various gravitational models (see

Chapter 5). However, one cannot avoid but notice that three of the models which show

remarkable stability in pure gravity do not admit fixed points in the presence of matter

((0, 1, 0), (1, 1, 1), (1, 0, 1)). It would be interesting to understand why these solutions do

not appear when matter fields are included in the system.

The aim of this study is to explore the fate of fixed points that are stable in pure

gravity when matter is included in the system at high curvature order. In particular, the

objective is to clearly establish whether the solution found in the absence of matter can

be continuously connected to the SM field content beyond the Einstein-Hilbert approx-

imation. To achieve this, a numerical variation analysis is performed in the spirit of the

horizontal search of Chapter 3. The fixed point search takes the f(R,Ric2) theory starting

from the pure gravity case and matter fields are gradually added in small steps, ending at

the SM matter configuration.

The analysis is organised in five sections. Section 6.2 introduces the theoretical tools

and lays out the methodology of the study. Section 6.3 presents the results of the fixed

point search between the pure gravity scenario and the Standard Model case at high deriv-
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ative order. Section 6.4 explains how scaling dimensios are affected by the presence of SM

matter. Section 6.5 concerns relevant directions. Section 6.6 discusses some observations

regarding lack of convergence in the extended solution. Finally, Section 6.7 presents a

discussion of the findings and the conclusions.

6.2 Methodology

This chapter takes place in the same theoretical framework as the previous ones and the

equations are not repeated anymore. Only the relevant notation for the parameter space is

recalled. The flow equation of the models under investigation has six parameters besides

from the approximation order N . Three specify the interactions present in the action,

(a, b, c), according to:

X = aR2 + bRµνR
µν + cRµνρσR

µνρσ (6.1)

The other three are the matter field multiplicities, with NS counting the number of real

scalar fields, NM the number of Maxwell vectors and ND, the number of Dirac fermions.

Additionally, the polynomial approximation is employed, where N specifies the approx-

imation order, having N = 2 corresponding to the Einstein-Hilbert theory.

This analysis reuses the methods introduced in Chapter 3 to perform a horizontal

search in the parameter space. However, this time, the gravitational parameters (a, b, c)

are kept fixed, while the variation is applied in the matter parameter space (NS , NM , ND).

This variation is performed in a linear manner by keeping the matter ratios fixed to that

of the SM field content. Then, the path connecting the two points is characteristed by

one parameter interpolating from zero (no matter) to one (SM matter):

(NS , NM , ND) = Nmat × (4, 12, 45/2), ∀Nmat ∈ [0, 1] (6.2)

The gravitational parameters are fixed next. Chapter 3 found a one-parameter family

of models where fixed points of pure gravity are highly stable to very high curvature

orders and are virtually unchanged under variations of (a, b, c). In particular, these models

contain the points (0, 1, 0), (1, 1, 1) and (1, 0, 1). Nonetheless, none of these three allowed

a stable fixed point to appear when SM matter was introduced in Chapter 5. Since they

all lie in the same line of stability, they are considered to be similar to each other and only

one of them is chosen as a representative example for this analysis. Thus, the gravitational

sector is specified as (a, b, c) = (0, 1, 0).

There are only two free parameters remaining, (N,Nmat), describing the approximation

order and the matter content. Making use once more of the numerical toolkit developed by
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the author, the fixed point search is performed at every order up to N = 101, segmented

into 501 steps at each order. At each step, the flow equation is solved numerically with 100

digits of working precision using the Wolfram Mathematica software. The computations

have been performed in the high performance computing cluster Apollo from University of

Sussex. Scaling dimensions are computed every five steps in the interest of time efficiency.

However, higher resolution has been employed whenever necessary to ensure the quality

of the data. The main results are explained in the following sections.

6.3 Impact of matter on couplings

Starting from the pure gravity theory, a fixed point can be identified at each step in the

numerical variation at every polynomial order. The variation in coupling values between

consecutive steps is relatively small, thus, the solution can be regarded to be continuously

connected between the two endpoints. A snapshot for the coupling values is shown in

Figure 6.1 showing complementary views in terms of N and Nmat which is discussed in

detail next.

The left panel of Figure 6.1 shows the absolute value of couplings from λ0 (violet)

to λ100 (red) at fixed order N = 101 while varying Nmat. Three regimes of different

behaviour are identified in the plot from left to right. Close to the pure gravity scenario,

the solution remains virtually unchanged for a small matter content. A cross-over regime is

identified atNmat ≈ 0.02 ∼ 0.20 where the rate of change with respect toNmat significantly

increases in the higher order couplings. As a result, these couplings switch from taking

vanishingly small values to very large ones with increasing Nmat. Close to the SM matter

configuration, the values seem to scale with powers of Nmat, a feature which will come

up again when the large matter limit is discussed in Chapter 7. At this point, the curves

have a very pronounced slope, indicating that small changes in the matter content, such as

adding one extra BSM fermion or scalar, can lead to very large variations in the fixed point

coordinates. This is summarised in Table 6.1 comparing the three regimes. Moreover, note

that the higher order couplings display many changes in sign at large magnitude orders,

indicated in the logarithmic plot by downward spikes in the curves. Small changes in the

matter content in the cross-over regime push these coupligns to wildly oscillate between

very large positive and negative values. This suggests that the system is not numerically

stable with respect to variations in the matter content. Special care has been taken to use

enough resolution in the number of points and numerical precision in the computations to

rule out the possibility that these fluctuations are due to numeric issues.
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Figure 6.1: Absolute value of couplings λn at the fixed point. Left: Variation with respect

to Nmat from pure gravity (Nmat = 0) to the SM (Nmat = 1) at N = 101 for λ0 (violet) to

λ100 (red). Right: variation with respect to N at the SM (Nmat = 1 fixed). Each vertical

observation is a coupling with data points from N = 2 (violet) to N = 101 (red).

The right panel shows the transposed view, the absolute value of the couplings fixed

at the SM matter configuration (Nmat = 1) at each order N . The horizontal axis indicates

the index n of the couplings and each λn is a vertical observation. The data points in each

column range from N = 2 (blue) to N = 101 (red). The spread for each of the observations

can be used as a proxy to estimate the numerical stability in the value of each coupling

towards higher truncation orders. A smaller spread is a sign of faster convergence towards

their asymptotic value. Under this view, the first ten couplings show fast convergence.

On the other hand, the rest show a larger spread, with fluctuations encompassing large

orders of magnitude. Furthermore, the couplings appear in pairs of similar magnitude with

an alternating sign. The sign cannot be appreciated in the logarithmic plot but can be

read-off from Table E.1 in Appendix E, which presents the numeric values of couplings at

N = 101 and Nmat = 1. The alternating signs are conventionally regarded as an indication

of approaching convergence at high polynomial orders.

These two viewpoints show that although numerical stability in the values of the first

few couplings at the SM matter configuration may be achieved at large N , the fixed point

is highly susceptible to small variations in the matter content. Furthermore, the large

spread in the higher order couplings indicates that it is necessary to retain a large number

of higher derivative order operators in the action before these interactions approach their
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Regime Nmat Couplings

Near pure gravity < 0.02 Constant

Cross-over 0.02− 0.2 Large oscillations

Gravity and matter > 0.2 Exponential increase

Table 6.1: Qualitative behaviour of couplings between the pure gravity and the SM scen-

ario.

asymptotic values. Thus, it may be concluded that the convergence properties of the fixed

point found in the pure gravity regime greatly deteriorate once it is translated to the SM

scenario.

6.4 Impact of matter on scaling dimensions

While in the pure gravity case the fixed point has three relevant directions and the scaling

dimensions are found to follow a near-Gaussian scaling, the situation drastically changes

once matter is included. Moreover, compared to the coupling values, convergence in the

scaling dimensions is much slower. A comprehensive view of these values is shown in Figure

6.2 at the SM matter content for all orders N . The main findings are now discussed in

detail.

The left panel of Figure 6.2 shows a transverse view of the scaling dimensions. The

horizontal axis indicates the truncation order N and the data points at each of order

are the real part of the critical exponents. The negative valued ones indicate relevant

UV directions, while the positive, irrelevant ones. Lines join the data points ranked

from relevant to irrelevant at each order. The first feature to notice is the persistent

numerical variation which does not decrease at higher approximation orders. This aspect

will be discussed in more detail further ahead. Second, the most relevant value is larger

than four and seems to be slowly decreasing in magnitude at higher orders. This results

from irrelevant operators becoming relevant due to matter, thus increasing the number of

relevant RG directions. Furthermore, note that those values that are smallest in magnitude

fluctuate between positive and negative sign, with a sign change appearing even at up to

N = 81.

The right panel shows the transposed view. Similar to the format of the previous

figure, here the vertical observations are the scaling dimensions ϑn with the horizontal
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Figure 6.2: Eigenvalues of the stability matrix at the SM matter content at increasing order

N . The left panel shows the trend of the eigenvalues ranked from relevant to irrelevant

towards higher N . The right panel shows the variation of each eigenvalue at all orders

from N = 2 (violet) to N = 101 (red).

axis giving the index n. Each data point is the value of the nth critical exponent, ranked

from relevant to irrelevant, from N = 2 (violet) to N = 101 (red) at the SM matter

configuration. The most important feature in this view is that at the highest order there are

five relevant scaling dimensions, four of which come in complex conjugate pairs. Secondly,

the difference between subsequent n values at a fixed order N (going from left to right for

any fixed colour in the plot) is not constant, increasing for ϑ20 − ϑ30 and decreasing for

ϑ35−ϑ50. It is only for the higher order values that this difference seems to be constant and

follow Gaussian scaling. However, it is the higher order values that are the least reliable as

they will probably continue adjusting at higher polynomial orders. Although the bootstrap

hypothesis still holds, this entails that matter is modifying the anomalous dimensions of

different higher derivative operators in a non-uniform manner. Third, the spread on the

values of the scaling dimensions across N is much wider than for the couplings values.

Notably, the most relevant values show large fluctuations at lower orders. This is mainly

because, at low orders, irrelevant directions become relevant and result in large scaling

dimensions at the SM matter configuration. This can also be appreciated in the large

fluctuations of the relevant values in the left panel and is further discussed in the next

figure.

To complement the plots, the numeric values of the scaling dimensions at N = 101
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Figure 6.3: Scaling dimensions along the numerical variation at N = 101. The left panel

shows the upper end (most relevant) of the scaling dimensions. The right panel shows the

lower end (most irrelevant) of the scaling dimensions.

and Nmat = 1 are given in Tables E.2 and E.3 in Appendix E, separated by real and

imaginary part, respectively. Note that the imaginary part of the two most relevant

scaling dimensions is five times as large as their real part, indicating a strong spiraling

trajectory in the phase diagram of the theory. The third one is real and close to four,

while the fourth and fifth are close to two with a small complex part. These last three

are similar to the ones found in the pure gravity case and the connection with relevant

operators will be explored in the next subsection.

A third point of view is available by keeping the order N fixed and varying the matter

content Nmat. The scaling dimensions undergo large fluctuations during the numerical

variation. Furthermore, large variations are observed across different truncation orders.

A snapshot is shown at N = 101 in Figure 6.3 (with a relative sign change with respect to

the previous figure). The left panel displays the relevant scaling dimensions, where it can

be clearly appreciated that a pair of complex irrelevant critical exponents become relevant

as matter fields are added. The crossing point, denoted Ñmat varies with N . The mean

values of the crossing point are:
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N Ñmat

≤ 25 0.643

26− 51 0.699

52− 76 0.702

77− 101 0.749

No fixed point merger occurs as the eigenvalues cross the zero.

The right panel in Figure 6.3 shows the irrelevant end of the eigenspectrum, where a

complex pair of scaling dimensions becomes very large for small matter content. This is

consistently found in almost every order occurring at different values of Nmat, often within

the cross over regime that was described in the previous section. Such large deviations

indicate strong non-perturbative behaviour, thus these results should be treated carefully.

This may be an artefact of the numerical variation path, other paths may avoid such large

values. This could be checked in future studies.

Note that some stability is observed close to Nmat = 1 as the values do not change

considerably. However, it has already been established in Figure 6.2 that these values,

while stable in Nmat, fluctuate with N , meaning they stabilise to different values at each

order.

Finally, it should be noted that the lower order approximations see a second complex

pair of scaling dimensions becoming relevant closer towards the SM matter configuration

and taking large values (not pictured). However, this tendency decreases at higher orders

with the values staying irrelevant and close to zero. Nonetheless, this effect can still be

found at up to order N = 81, producing an additional relevant direction, as was noted in

the left panel of Figure 6.2. This explains the relatively large spread of the leading scaling

dimensions in the right panel of the same figure.

6.5 Relevant directions

An additional pair of relevant scaling dimensions appears as matter is introduced in the

system. A natural question is then, what are the RG directions associated to these critical

exponents? This section attempts to shed some light on these question by revisiting the

scaling dimensions and stability matrix. The technical details required to address this

question are briefly explained first.

The eigenvalue equation for the stability matrix is:

M [V ]n = ϑn[V ]n (6.3)
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Figure 6.4: Eigenvectors of the stability matrix at the SM matter configuration and N =

101. The first five are relevant and the rest, irrelevant. The data points in each column

indicate the elements of each eigenvector, associated with operators in the actions. The

index i refers to the Ri operator.

The matrix of eigenvectors V of the stability matrix M contains in its columns the eigen-

vectors [V ]n associated with the eigenvalues ϑn of M . The components [V ]ni are related to

each of the running couplings λi that parametrise the interactions present in the action.

This constitutes a space of running couplings, or space of operators, wherein RG flows

exist. We put forward the interpretation that the components of the eigenvectors are the

projections in the space of operators that the RG trajectories going into and out of the

fixed point are associated with. In other words, the absolute value of the eigenvectors

[|V |2]n define the direction that RG flows point towards, around the fixed point, in the

phase diagram of the theory.

To further disentangle the mixing of components due to large differences in the mag-

nitude of couplings, V is transformed into a doubly-stochastic matrix, effectively projecting

the eigenvectors into the unit sphere SN , such that:

N−1∑
i=0

[
|V |2

]n
i

= 1ᵀ,

N−1∑
n=0

[
|V |2

]n
i

= 1 (6.4)

where 1 is a vector of all ones with N elements, the subscript denotes row and superscript

denotes column, and the convention of taking the initial index as zero is adopted. This is

equivalent to a similarity transformation of the stability matrix, corresponding to a linear

transformation of the couplings, which leave the critical exponents unchanged.

The eigenvectors associated with the eleven most relevant scaling dimensions are shown
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Figure 6.5: Polynomial action as a function of the scalar curvature at approximations

N = 51 (violet) to N = 101 (red). The left panel shows the theory without matter, the

right one, with SM matter.

in Figure 6.4 at the SM matter configuration and N = 101. The data points are the i

components of each doubly-normalised squared eigenvector [|V |2]ni , with the index n of

the vector in the horizontal axis, ranked from relevant to irrelevant. The legend on the

top associates data markers with the order in scalar curvature of the operators in the

action. The plot reveals that the most relevant pair of critical exponents are associated to

RG flows mainly projected on a combination of the (RµνR
µν)4, (RµνR

µν)5 and (RµνR
µν)3

directions. The third exponent clearly corresponds to an RG flow in the direction of the

cosmological constant. The fourth and fifth correspond to flows mostly projected on the

R direction, while the rest show a mixture of directions.

The third through fifth RG trajectories are familiar from the theory without matter.

The first and second are new and appear due to matter. Thus, matter has sourced new

relevant RG flows to appear projected on the ((RµνR
µν)4 , (RµνR

µν)5 , (RµνR
µν)3) direc-

tions. This, in turn, implies large anomalous scaling dimensions at the fixed point turning

canonically irrelevant operators relevant in the UV.

6.6 Convergence

Owing to substantial changes in the coupling values, the domain of convergence of the

polynomial approximation is heavily restricted in the presence of SM matter. Figure 6.5



110

ϑ0 ϑ2 ϑ4 ϑ6 ϑ8

50 60 70 80 90 100

-8

-6

-4

-2

0

2

N

log10 1- 
ϑn (N)

ϑn (Nmax)
@SM

Figure 6.6: Rate of convergence of the scaling dimensions associated with the fixed point

at the SM matter configuration.

shows the polynomial action as a function of R in the pure gravity theory (left panel)

and with SM matter (right panel) for approximations N > 50. The action with SM

matter is shifted down due to the cosmological constant becoming negative. Moreover,

the large values of the higher order couplings lead to a substantial reduction in the radius

of convergence with respect to the scalar curvature. While the pure gravity theory has a

radius of convergence RC ≈ 2, this is narrowed to RC ≈ 0.8 in the theory with matter.

Furthermore, the equation of motion does not admit any solutions within the radius of

convergence (not pictured).

The convergence rate at higher polynomial orderds can be quantitatively measured by

counting the number of digits that stop changing in the scaling dimensions as the order

N is increased. This is shown in Figure 6.6 on the negative axis for the first five scaling

dimensions that differ in their real part (see Table E.2 in Appendix E) for N > 50. The

plot elucidates that convergence is capped for all the values shown, reaching a maximum of

five digits of convergence for ϑ2. The rate of convergence, indicating how many additional

orders are required to achieve a further digit of accuracy, can in principle be extracted

by taking the inverse of the slope of the linear fit of the data. However, no statistically

significant estimate can be drawn from the shown data. Thus, this polynomial solution is

most likely not approximating a physical fixed point of the full theory.

6.7 Conclusions

This study has employed a numerical variation analysis to show that the fixed point

of f(R,Ric2) in pure gravity can be translated to the SM case, albeit at a great cost.
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Numerical convergence towards higher approximation orders is heavily eroded for coupling

values and is limited for scaling dimensions. Thus, critical exponents converge only to finite

accuracy, indicating that the polynomial solution may not be approaching a fixed point of

the full theory. Moreover, close to the SM matter configuration, coupling values are very

senstitive to the matter content. This means that adding a few additional BSM matter

fields can result in large changes of the higher order couplings.

The theory develops two additional relevant scaling dimensions due to quantum matter

effects, resulting in a UV-critical surface that is five-dimensional. However, this is qual-

itatively different from other fixed points with SM matter that also display five relevant

RG directions in two aspects (see Chapter 5). First, there are no Riemann interactions

in this model that can source an additional relevant direction, meaning that both are due

to quantum matter effects. Second, the new relevant RG directions originate from scaling

dimensions which would be highly irrelevant in the pure gravity case. Moreover, these new

values become even more relevant than the three commonly found relevant RG directions

in gravity. The analysis of eigenvectors shows that these two new RG flows are associated

with higher order operators. Thus, matter is inducing large anomalous scaling dimensions

which turn highly irrelevant scaling dimensions into highly relevant ones.

Overall, the solution extrapolated to the SM case is not considered to be reliable. It

would seem that the theories of pure gravity and the SM setting hold different families of

fixed points which control the UV behaviour of each theory but which are not necessarily

continuously connected. This is similar to the findings of Chapter 3 which explored the

theory space of gravitational interactions. Then, fixed points of the theory appearing at

some point in the parameter space may only be reliable within some domain of applicability

close to that point. This is an hypothesis which can be further investigated in future

studies. For example, the variational analysis could be performed in the reverse direction,

translating the fixed points found with SM matter to the pure gravity case. A quick

analysis at low orders finds that it may not be possible to translate these solutions to

the pure gravity case in a simple manner. Further investigation is required and is left for

future work.
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Chapter 7

Gravitational fixed points in the

large N limit

7.1 Introduction

The previous chapters have identified fixed points of pure gravity and of gravity with SM

matter. These solutions have been shown to be stable up to very high orders in curvature,

displaying fast numerical convergence at fixed field content. However, large variations in

the matter field multiplicities can destabilise these solutions beyond the Einstein-Hilbert

theory. Thus, it would seem that multiple families of fixed points can arise to control

the UV behaviour of the theory in different regions of the parameter space. This chapter

examines a further scenario where a new family of solutions appears, the large matter

regime. Building on the results obtained so far, the computational toolbox previously

developed is employed once more to investigate the large matter limit numerically.

The current understanding is that matter quantum fluctuations dominate over metric

fluctuations in the large matter regime and can source a fixed point. The scenario was

first considered perturbatively [39,40] and later non-perturbatively in the framework of the

FRG [225,226]. However, graviton fluctuations were neglected in those studies, amounting

to a semi-classical treatment, where gravity remained classical while matter is treated as a

quantum field. Such an approach does not capture quantum gravitational effects. This has

been improved upon in [210] using flat background approximations. There, it was shown

that the Einstein-Hilbert theory in the large matter limit can have quantum gravity fixed

points that scale with the number of matter fields. The present study accounts for the

gravitational contributions to the flow equation beyond Einstein-Hilbert and looks for

fixed points with many matter fields.
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The investigation is organised in the following manner. Section 7.2 numerically looks

for fixed points of the flow equation at large matter content, fully accounting for non-

perturbative gravitational effects. The data suggests that an scaling limit of the couplings

exists, which is investigated analytically in Section 7.3. Section 7.4 investigates critical

exponents and renormalisation group flows of the theory. Section 7.5 considers scheme and

parametrisation-independence of the results. Finally, Section 7.6 presents the conclusions.

7.2 Conformal window of matter-induced asymptotic safety

The large matter regime is investigated for the polynomial f(R) gravitational theory. The

flow equation of this theory has the general form:

∂tf(R) + 4f(R)− 2Rf ′(R) = IQ + IM (7.1)

The left-hand side is the classical part and the right-hand side arises due to quantum

effects. The term IQ encodes the corrections due to graviton interactions, IM , those due

to the matter fields and the prime notation f ′(R) denotes the derivative of the function

with respect to the argument. Explicit expressions for IQ have been derived in refs.

[192,263] and are reproduced in Appendix B. As before, free matter fields are considered;

their contributions to the flow equation have been derived in Chapter 4. The matter

multiplicities are free parameters of the flow equation and in this section they will be set

to large finite values. It will be useful to fix the ratios of matter fields from the start and

use Nmat to count the overall field multiplicities. Additionally, N (without subscript) is

the order of the polynomial approximation as in previous chapters. Once the proportion of

matter fields is fixed, the theory has only two free parameters, (N,Nmat). The strategy of

this search is to numerically solve the flow equation at a large and finite value of Nmat and

then vary this parameter to understand how the solutions depend on the number of fields

and what is the range where such fixed points are valid. Matter is incorporated in three

steps, first adding only gauge bosons, then adding scalars and lastly, adding fermions.

Consider first a gravitational theory with only gauge bosons and Nmat = 108. The

theory has two interesting fixed points, FP2 and FP3 with two and three relevant RG

directions each and critical exponents being very close to the classical values. These solu-

tions can be found at every approximation order N with virtually no numerical variation.

This observation agrees with the notion that gravitational effects are suppressed in this

scenario.

Once the fixed points are identified at an starting point, Nmat is reduced in finite
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Figure 7.1: Real and imaginary parts of the couplings values of FP2, in a matter config-

uration with only gauge bosons, at N = 11.

steps following the solutions until all matter is removed from the system. This has been

performed at up to order N = 11, using the same numerical variation algorithm employed

in Chapter 6. At the highest order, 805 points where used with variable spacing, as higher

resolution was required in regions of large numerical variations to ensure the quality of

the data. The main results of this section are Figures 7.1 and 7.2, displaying the coupling

values and critical exponents of FP2 as a function of Nmat, respectively. These plots are

discussed in detail now, noting that the results are qualitatively similar for FP3.

From right to left across Nmat, three distinct regimes can be identified in the plots

where the behaviour of the fixed points changes. First, the couplings follow a linear

relation at large Nmat in the logarithmic plot. This indicates a power-law scaling with

Nmat, such that λn ∝ (Nmat)
αn , with α given by the slopes of the lines. The data suggests

the following scaling for the couplings:

λn ∝


Nmat, n = {0, 1}

(Nmat)
3/2, n = 2

(Nmat)
n/2, n ≥ 3

(7.2)

Thus, in this regime, the fixed point is mostly determined by the matter field multiplicities

up to a constant. The eigenvalues fall very close to the canonical dimensions and show

little deviation.

As the number of matter fields is decreased, the solution enters a cross-over regime at
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Figure 7.2: Real and imaginary parts of the eigenvalues of FP2, in a matter configuration

with only gauge bosons, at N = 11.

Nmat ≈ 104, where gravitational effects start to become more important. A fixed point

merger appears, forcing the couplings into the complex plane at NM ≈ 300 for FP2 and

NM = 3850 for FP3 (not pictured). Thus, FP2 and FP3 get annihilated by other, probably

spurious, solutions of the flow equation. This is shown in the right panel of Figure 7.1

where the couplings develop an imaginary part, and is also signalled by the marginally

irrelevant eigenvalue approaching zero in the left panel of Figure 7.2 (third line from top

to bottom on the right).

Following the now complex solution, a third regime is found below NM ≈ 1. Couplings

and critical exponents remain roughly constant until all matter is removed. Fluctuations

from the matter sector are negligible in this region because the number of matter fields

is very small. The solution remains complex until all matter is removed, with eigenvalues

falling away from Gaussian scaling.

Adding a small number of scalar fields into the system does not qualitatively change the

behaviour but it does shift the merger towards higher Nmat, closing the conformal window.

Fixing the ratio of scalars to gauge bosons at 1:3, the merger appears at Nmat = 5900

for FP2 and Nmat ≈ 2.22 × 105 for FP3. This suggests that the spin-0 fields have a

destabilising effect on these solutions.

However, fermions have an even more pronounced negative effect. As fermions are

gradually added into the system, the solutions annihilate each other at a matter ratio

NS :NM :ND of 1:3:2.125. In other words, only up to two fermions are allowed per one
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NS :NM :ND N
(FP2)
crit. N

(FP3)
crit.

0:1:0 299 3,850

1:3:0 5,900 221,780

1:3:2.125 ∞ ∞

Table 7.1: Boundary of the conformal window of the large N fixed point where solutions

annihilate through a fixed point merger. The third row indicates the maximum proportion

of fermions with the given scalar and gauge boson ratios. No real solution is available for

the given ratios even in the formal N → ∞ limit, as indicated by the LO solution, eq.

(7.9).

scalar and three gauge bosons. Above this number, no physical solutions appear in the

numerical search for any larger values of Nmat nor at higher approximation orders N . The

boundary of the conformal window of the theory in these three scenarios is summarised

in Table 7.1, indicating as Ncrit. the value where the merger appears.

7.3 Fixed points of the large matter regime

The power-law scaling observed in the couplings in the large matter regime suggests that

an analytic scaling limit may exist. The different types of matter fields do not modify this

scaling, although fermions do turn the solutions complex. It would be interesting then to

find a physical justification for this scaling and understand if analytical expressions for

these fixed points can be obtained. This section provides further insight into this limit by

undertaking an analytic treatment of the flow equation in the large matter regime.

7.3.1 Enhanced quantum gravity fluctuations

The scaling of the couplings observed in the numerical analysis can be understood by

considering the quantum corrections to the flow equation. The contributions due to the

matter sector in a four dimensional spherical background can be written as

IM = −A−BR− C R2 (7.3)

with

A =
4ND − 2NM −NS

2π
, B =

−2ND + 4NM −NS

6π
, C =

11ND + 62NM − 29NS

2160π

(7.4)
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A minus sign has been extracted from the coefficients for later convenience and the quant-

ities are multiplied by a factor of 16π according to the definition of the action employed

here (see Appendix B). In the large matter limit, these terms are proportional to Nmat

and must be cancelled for a fixed point to appear. Thus, the polynomial couplings λ0, λ1

and λ2 should naively be rescaled with a power of Nmat to participate at the same order

as the matter terms. The beta functions for these rescaled couplings are then

∂tλ0 = −A− 4λ0, ∂tλ1 = −B − 2λ1, ∂tλ2 = −C (7.5)

From now on, a factor of Nmat is extracted from A, B and C, such that these are numbers

of order one. This is the result found in ref. [225], where classical corrections due to

the canonical mass dimension of the couplings balance with A and B. However, λ2 is

canonically marginal and has zero mass dimension. Therefore, it does not appear in the

classical part of the flow equation and cannot cancel CR2.

The only way to achieve a complete cancellation of the matter contributions is if a

term of order NmatR
2 is generated from the quantum gravitational corrections. These

contributions can be written as:

IQ = Va(R) + Sa(R) + Tg(R,F (R)) + Sg(R,F (R)) (7.6)

The first two terms arise due to the gravitational ghosts and auxiliary fields introduced

in the renormalisation process. They are independent of the action and will not play

a meaningful role in this study. The other two, Tg and Sg, arise from the transverse

traceless tensor and scalar modes of the metric fluctuation, respectively. They are non-

linear functions of the action and contain terms that can potentially balance with the

matter contributions. However, these terms are of order one if λ2 is rescaled with Nmat

and thus, cannot compete with NmatR
2.

Consider instead the rescaling λ2 → λ2(Nmat)
a with a > 1 an open real parameter.

The contribution Tg can be expanded in a double series first on small R and then on

small 1/Nmat, finding at order R2 the leading term (Nmat)
2(−1+a). Requiring this to be of

order Nmat uniquely determines a = 3/2. In other words, the rescaling λ2 → λ2(Nmat)
3/2

enhances quantum corrections due to the physical tensor mode of the graviton to compete

with matter terms at order NmatR
2. Moreover, this scaling generates coefficients of order

(Nmat)
n/2Rn for n ≥ 3 in the quantum part of the equation. Therefore, the rescaling of

the higher order couplings is also uniquely fixed such that these terms cancel, leading to



118

the proposed rescaled couplings:

λn →


λn(Nmat) n = {0, 1}

λn(Nmat)
3/2 n = 2

λn(Nmat)
n/2 n ≥ 3

(7.7)

It is now briefly noted that expanding Sg can also source a term that competes with

the matter contribution under a different scaling. However, this is not favoured for three

reasons. First, Sg corresponds to fluctuations of the conformal mode of the graviton which

is an unphysical degree of freedom, and this alternative scaling supresses fluctuations from

the physical transverse traceless mode. Second, the scaling only works if higher order

couplings are present, implying a non-perturbative cancellation between higher curvature-

order terms. Third, this solution can be found numerically but displays extremely large

critical exponents that scale with Nmat and are deemed to be unphysical.

7.3.2 Fixed points in the infinite N limit

Under the new rescaling (7.7), the running of λ2 is

∂tλ2 = −
(
C +

5

3π

(B + 6λ0)λ2
2

(λ0 + λ1)3

)
1√
Nmat

(7.8)

The gravitational quantum correction can now compete with the matter contribution C

and source a non-trivial fixed point for all three couplings. Moreover, the running of this

coupling is now supressed by a factor of 1/
√
Nmat. Thus, a large number of matter fields

has the effect of freezing the running of this coupling. The fixed point coordinates can

now be written explicitly in terms of the matter contributions:

λ∗0 = −A
4
, λ∗1 = −B

2
, λ∗2 = ±

√
3π

160

(A+ 2B)3C

−3A+ 2B
(7.9)

Coefficient B imposes a restriction in the matter configuration to obtain a positive New-

ton’s coupling. Additionally, the squared root imposes a second constraint for the fixed

point to be real-valued. It will be shortly shown that λ2 modifies λ0 and λ1 at subleading

orders, such that these couplings can also acquire a small but non-zero imaginary part if

λ2 becomes complex. The theories with only scalars or only fermions are ruled out by

these constraints. Furthermore, the field content of the SM not only results in a negat-

ive Newton’s constant but also leads to complex values, as was already pointed out in

the numerical analysis. The numerical results are found to be in agreement with these

expressions for large finite Nmat.
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The running of the higher order couplings takes the generic form:

∂tλn = −(4− 2n)λn −
5× 2n−2

3π

(
− λ2

λ0 + λ1

)n(2(3λ0 − λ1)− ∂tλ1

λ0 + λ1

)
(7.10)

for n ≥ 3. The first term is the classical contribution due to the mass dimension of the

couplings while the second term is the leading quantum effect. The beta functions are

decoupled and thus, the fixed point of these couplings is completely determined by the

value of λ0, λ1 and λ2,

λn =
5× 2n−2

3π(n− 2)

(
3λ0 − λ1

λ0 + λ1

)(
− λ2

λ0 + λ1

)n
, for n ≥ 3 (7.11)

where the star * notation is supressed from now on. The two roots of λ2 lead to solutions

which differ in sign for odd index n. Thus, one fixed point has all couplings positive, while

the other has couplings with alternating signs. Moreover, these infinitely many higher

order couplings can be resummed into a compact expression,

∞∑
n=3

λnR
n = − 5

3π

(3λ0 − λ1)λ2
2

(λ0 + λ1)3
R2 log

(
1 +

2λ2

λ0 + λ1
R

)
(7.12)

This amounts to recovering a Coleman-Weinberg gravitational potential where higher

order interactions are encoded in the R2 log(c + R) term, with c some constant. It is

remarkable that although the polynomial approximation was assummed at the start, this

scaling allows all higher derivative interactions to be collected into an expression which is

valid for any curvature value.

7.3.3 Fixed points beyond the infinite N limit

The previous results represent the leading order (LO) in a large Nmat expansion. Now

that the scaling with Nmat has been fixed to LO, subleading corrections can be computed

by writting each coupling as a power series of 1/
√
Nmat,

f(R) =
∑
j=1

λ0,j(Nmat)
(3−j)/2 +

∑
j=1

λ1,j(Nmat)
(3−j)/2R+

∑
j=1

λ2,j(Nmat)
(4−j)/2R2

+
∑
n=3

∑
j=1

λn,j(Nmat)
(1+n−j)/2Rn

(7.13)

Where λn,1 can be identified with the previous expressions for λn at LO. At next-to-

leading order (NLO), contributions from the other terms in the quantum corrections to

the flow equation also come into play. Expanding the flow equation in R and 1/Nmat, the
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non-trivial NLO terms of the first three couplings are:

λ0,3 = − 1

12π

3λ0,1 − 7λ1,1

λ0,1 + λ1,1
(7.14)

λ1,2 =
5

6π

(3λ0,1 − λ1,1)λ2,1

(λ0,1 + λ1,1)2
(7.15)

λ2,2 = −6λ0,1
2 + 19λ0,1λ1,1 − 19λ1,1

2

24(3λ0,1 − λ1,1)
+

λ2,1
2

6π(λ0,1 + λ1,1)2
(7.16)

where λ0,2 has been omitted as it is zero. As mentioned above, λ2 not only influences

the higher order couplings at LO but also impacts λ1 at NLO and it will impact λ0 at

(non-trivial) NNLO.

Writting down the factors of Nmat explicitly, the higher order couplings would lead to

increasing powers of Nmat appearing in the action. These can be absorbed by defining a

rescaled scalar curvature R̂ = (Nmat)
1/2R. A global solution of the action can then be

written to NLO in a 1/Nmat expansion,

f(R̂) = λ0Nmat + λ1(Nmat)
1/2R̂+ λ2(Nmat)

1/2R̂2

− 1

12π

3λ0 − 7λ1

λ0 + λ1
+

5

6π

(3λ0 − λ1)λ2

(λ0 + λ1)2
R̂

+

(
−6λ0

2 + 19λ0λ1 − 19λ1
2

24(3λ0 − λ1)
+

λ2
2

6π(λ0 + λ1)2

)
R̂2

− 5

3π

(3λ0 − λ1)λ2
2

(λ0 + λ1)3
R̂2 log

(
1 +

2λ2

λ0 + λ1
R̂

)
+O

(
N
−1/2
mat

)
(7.17)

The advantage of working with R̂ is that global solutions of the flow equation can be

found order by order in a systematic 1/Nmat expansion by solving a first-order differential

equation at each order. The results of these equations will contain exact resummed ex-

pressions of the higher order couplings. Integration constants proportional to R2 appear

at every order, which can be determined using the polynomial approximation. It should

be noted that both approaches are equivalent and the rest of the study will continue using

the polynomial approximation.

7.4 Critical behaviour

This section examines the scaling behaviour close to the fixed point. Expressions for

the beta functions and critical exponents are derived in the polynomial approximation

revealing near-Gaussian scaling. Renormalisation Group flows are found connecting the

UV-safe theory to a Gaussian regime in the IR.
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7.4.1 Beta functions

The beta functions can be expressed as a 1/Nmat series in the polynomial approximation:

∂tλi = βi =
∑
j=0

bi,jNmat
−j/2 (7.18)

This is similar in spirit to a loop expansion in any ordinary perturbative quantum field

theory, wherein the small parameter is 1/Nmat. The bi,j coefficients are the analogues of

the jth loop order coefficient of the beta function of λi. The leading order coefficients

bi,0 were already determined in the previous section as well as b2,1. The first subleading

corrections to the running of λ0 and λ1 are

b0,2 = −4λ0,3 +
3

2π
− 5

12π

B + 6λ0,1

λ0,1 + λ1,1
(7.19)

b1,1 = −2λ1,2 +
5

6π

(B + 6λ0,1)λ2,1

(λ0,1 + λ1,1)2
(7.20)

The coefficient b0,1 has been omitted as it is zero. These equations together with b2,1

form a closed system as no higher order couplings appear at this order. The form of the

coefficients bn,1 for n ≥ 3 takes a more complicated form but includes a term linear in the

couplings,

bn,1 = −10n

3π

(3λ0,1 − λ1,1 − 1
2b1,0)λ2,1

(λ0,1 + λ1,1)3
λn,1 + ε (7.21)

where ε stands for other terms that have been neglected. This term is shown explicitly

because, as illustrated in the next subsection, it defines the diagonal part of the stability

matrix and determines the critical exponents to NLO.

7.4.2 Scaling dimensions

The RG flow in the neighbourhood of a fixed point can be characterised to linear order

by the stability matrix, defined as:

Mi,j =
∂βi
∂λj

∣∣∣∣
∗

(7.22)

The scaling dimensions are the negative of the eigenvalues of this matrix, which can be

found via the eigenvalue equation:

det(M − ϑnI) = 0 (7.23)

with ϑn being the eigenvalue associated to an eigenvector Vn and I the identity matrix.

Taking the perturbative expansion of the beta functions (7.18), the stability matrix can

be written in a similar manner:

Mi,j = m
(1)
i,j +m

(2)
i,j Nmat

−1/2 +m
(3)
i,j Nmat

−1 +O
(
Nmat

−3/2
)

(7.24)
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Then, the eigenvalue equation immediately implies that the eigenvalues can also be written

in such an expansion:

ϑn = ϑn,1 + ϑn,2Nmat
−1/2 + ϑn,3Nmat

−1 +O
(
Nmat

−3/2
)

(7.25)

where the coefficients in this expression can be consistently computed order by order. A

simple power-counting argument shows that the eigenvalues are completely determined

by the diagonal part of the matrix to NLO. With the beta functions from the previous

subsection, the eigenvalues can be written as:

ϑn = (2n− 4)− n χ√
Nmat

+O
(
N−1
mat

)
(7.26)

for n ≥ 0, with:

χ =
10

3π

(3λ0,1 − λ1,1)λ2,1

(λ0,1 + λ1,1)3
(7.27)

This is the anomalous scaling dimension that shifts the spectrum from Gaussian scaling

due to weak interactions in the UV. The two stationary points have a two and three-

dimensional UV critical surface, respectively. Note that ϑ0,2 is zero since λ0,2 is itself zero.

The leading non-zero anomalous dimension to this exponent appears at the next order.

The coefficients ϑn,3 can be obtained by extending the analysis of the beta functions to

NNLO. At this order, the eigenvalues also depend on the first sub and super-diagonals of

the stability matrix. In general, denoting the index of the diagonal as d, where d = 0 is the

main diagonal, at order NnLO, the expressions depend on the diagonals d = [−n+1, n−1],

for n > 0. For the first six eigenvalues, these coefficients are:

ϑ0,3 = − 10λ1,1

3π(λ0,1 + λ1,1)2
(7.28)

ϑ1,3 = τχ−
(6λ2

0,1 + 31λ0,1λ1,1 − 7λ2
1,1)

24(3λ0,1 − λ1,1)

χ

λ2,1
− (19λ0,1 − 11λ1,1)

10(3λ0,1 − λ1,1)
χ2 (7.29)

ϑ2,3 = 2τχ−
(6λ2

0,1 + 19λ0,1λ1,1 − 19λ2
1,1)

24(3λ0,1 − λ1,1)

2χ

λ2,1
− 2(8λ0,1 − 7λ1,1)

5(3λ0,1 − λ1,1)
χ2 (7.30)

ϑ3,3 = 3τχ−
(6λ2

0,1 + 15λ0,1λ1,1 − 23λ2
1,1)

24(3λ0,1 − λ1,1)

3χ

λ2,1
− 3(8λ0,1 − 7λ1,1)

5(3λ0,1 − λ1,1)
χ2 (7.31)

ϑ4,3 = 4τχ−
(6λ2

0,1 + 13λ0,1λ1,1 − 25λ2
1,1)

24(3λ0,1 − λ1,1)

4χ

λ2,1
− 2(19λ0,1 − 11λ1,1)

5(3λ0,1 − λ1,1)
χ2 (7.32)

ϑ5,3 = 5τχ−
(6λ2

0,1 + 59
5 λ0,1λ1,1 − 131

5 λ2
1,1)

24(3λ0,1 − λ1,1)

5χ

λ2,1
+

(19λ0,1 + 34λ1,1)

(3λ0,1 − λ1,1)
χ2 (7.33)

with the auxiliary variable:

τ =

(
3λ1,2

λ0,1 + λ1,1
− λ2,2

λ2,1

)
(7.34)
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Figure 7.3: RG trajectory connecting the FP2 with a Gaussian regime in the IR with

Nmat = 106 gauge bosons. Only the first seven couplings are shown. The factors of Nmat

have been extracted from the couplings in this plot to aid visualisation.

The subleading corrections to the eigenvalues can induce a sign change at a finite matter

value Ncrit.. This would correspond to the merger found in the numerical analysis. How-

ever, the estimate derived from this expressions is much lower than what was previously

found. In a theory of only gauge bosons, the expressions at NLO predict Ncrit. ≈ 45 for

FP2 and Ncrit. ≈ 403 for FP3. At NNLO, these values shift to Ncrit. ≈ 108 for FP2 and

Ncrit. ≈ 503 for FP3. The bounds are smaller than the result of the numerical analysis

by a factor of 3 and 9, respectively. This suggests that the 1/Nmat expansion is only

applicable at extremely large Nmat and that strong quantum gravity effects are not being

captured at NNLO.

7.4.3 UV-IR connecting trajectories

A fundamental theory can describe physics at all energy scales. Thus, there should exist

RG flows that connect the UV fixed point to a regime compatible with GR in the IR

and end at a finite point at infinite lengths. The flow of λc and gN can be obtained by

integrating their beta functions to leading order in the 1/
√
Nmat expansion:

λc(t) = −
−A

4 + c0e
−4t

2(−B
2 + c1e−2t)

+O
(
Nmat

−1/2
)

(7.35)

gN (t) = − 1

−B
2 + c1e−2t

+O
(
Nmat

−1/2
)

(7.36)
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where c0 and c1 are integration constants setting the measured values of couplings at a

reference energy scale. The couplings flow into the fixed point at high energies, while at low

energies, gN vanishes and λc would apparently diverge. This is because the cosmological

constant is an irrelevant direction of the Gaussian fixed point. However, the constants can

be fixed to lie in the trajectory that flows exactly into the Gaussian.

It is not as straightforward to obtain a general expression for the fourth-derivative

order coupling, as its beta function takes the form of a Ricatti equation:

dλ2

dt
= −

(
C +

5(B + 6λ0(t))

3π(λ0(t) + λ1(t))3
(λ2)2

)
1√
Nmat

+O
(
Nmat

−1
)

(7.37)

One can instead focus on the asymptotic behaviour of the couplings within the interesting

trajectories. In the deep UV, when λ0 and λ1 are at their fixed point values, the dependence

on t drops out from the coefficient in front of (λ2)2 and the equation greatly simplifies,

yielding:

λ2(t)
∣∣
UV

= −λ∗2 tanh

(
Cλ∗2

3

√
Nmat

(t− c2)

)
(7.38)

where c2 is an integration constant setting the value of λ2 at a reference scale. The

hyperbolic tangent behaviour reflects the fact that λ2 can flow from FP2 to FP3. The

signs unambiguously indicate that the negative-valued λ2 is the fully stable UV attractor

(FP3) with the positive-valued one being meta-stable in the UV (FP2).

At low energies, λc and gN approach the Gaussian, thus the equation simplifies to:

dλ2

dt

∣∣∣∣
IR

= − C√
Nmat

(7.39)

This result is similar to the running in the semi-classical approximation (7.5) but with an

additional factor of 1/
√
Nmat, which arises from the rescaling of λ2. This running indicates

logarithmic growth towards lower energies for λ2. Note that in both (7.38) and (7.39),

Nmat effectively rescales the RG time t, such that, as indicated before, matter slows down

the flow of λ2 across all energy scales.

Similarly, the beta functions of the higher order couplings simplify in these two regimes,

leading to:

λj(t)

∣∣∣∣
IR

= cje
(−4+2j)t +O

(
Nmat

−1/2
)

(7.40)

λj(t)

∣∣∣∣
UV

= λ∗j + cje
(−4+2j)t +O

(
Nmat

−1/2
)

(7.41)

valid for j ≥ 3. As indicated by the critical exponents in the previous section, these

are irrelevant couplings and their integration constants cj must be set to zero to lie in
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the trajectory that flows exactly into the fixed point in the UV. Their behaviour in the

neighbourhood of the fixed point is dominated by the classical scaling dimensions.

The gap between the UV and IR expressions obtained above can be bridged by per-

forming a numerical integration, producing the diagram of the running couplings shown

in Figure 7.3 to LO. Starting at the UV FP in the right side of the plot, the couplings

decrease in magnitude towards the IR to the left, with a short crossover regime in the

middle. This cross-over regime was neglected by the previous expressions but does not

display any behaviour out of the ordinary. The coupling λ2 does not appear to move in

the plot, however, this is due to the large number of matter fields in the system, with the

plot showing the running with NM = 106 gauge bosons and no scalars nor fermions. In

fact, the coupling is running but its flow is bogged down by matter, with β2

∣∣
IR

of order

10−9. This is as indicated before, a large amount of matter has the effect of freezing the

marginal coupling.

7.5 Scheme and parametrisation independence

This section briefly explores how the fixed point is modified by a change of regularisation

scheme and fluctuation metric parametrisation. The effect of these changes amounts to

subleading corrections and dooes not lead to qualitative modifications to the fixed point.

7.5.1 Higher order matter contributions

Matter corrections up to order R2 have been considered so far. Nonetheless, there are

other regularisation schemes where higher order corrections can appear. This can occur,

for example, if an exponential regulator is used instead of the optimised profile function.

Thus, it would be useful to understand the extent to which the obtained results are affected

by scheme-dependence.

Consider a flow equation where matter quantum fluctuations of order Nmat contribute

at every order in R. The rescaling (7.7) indicates that the higher order quantum gravity

terms scale as (Nmat)
n/2Rn, meanwhile, the matter terms scale only as NmatR

n. Thus, the

new matter contributions are increasingly subleading at each order and amount to only

subleading corrections of the coupling values, with the largest correction being to λ3 at

NLO. Note, however, that λ3 appears in the expression of the other couplings at NNLO.

Therefore, couplings are implicitly modified at NNLO due to λ3. This is summarised in

Table 7.2 which schematically denotes how matter terms of order R3 and higher induce

both explicit (E) and implicit (I) corrections to the couplings.
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LO NLO NNLO NNNLO N4LO N5LO

λ0 - - - - - I

λ1 - - - I I I

λ2 - - I I I I

λ3 - E I I I I

λ4 - - E I I I

λ5 - - I E I I

λ6 - - I I E I

λ7 - - I I I E

Table 7.2: Schematic impact on the fixed point due to matter terms of order R3 and

higher. E indicates that matter explicitly appears in the equation of the corresponding

term. I indicates that matter corrections appear implicitly through other couplings.

7.5.2 Parametrisation of graviton fluctuations

The expressions for the quantum corrections employed in this study have been derived

using the linear parametrisation of the metric fluctuations. Another possible choice is the

exponential parametrisation, where background and fluctuations are separated according

to:

gµν = ḡµρ(e
h)ρν (7.42)

This has the advantage of preserving the sign of the metric for large fluctuations and allows

to directly identify the conformal mode. The quantum corrections of the gravitational

sector in this parametrisation have been computed in ref. [189] and result in only slight

changes in the expressions compared to the linear parametrisation. The most significant

difference for this analysis is that λ0 drops out from the tensor mode of the graviton

fluctuation and thus, is completely decoupled from the equations. Therefore, the value of

λ2 can be obtained by simply setting λ0 → 0 (or A→ 0) at LO:

λ
(exp)
2 = ±

√
3π

10

(
−B

2

)2

C (7.43)

This modifies the constraint on the matter configurations by dropping A from this ex-

pression. The only qualitative difference is that the exponential split leads to complex

solutions for the scalar-only theory, which was already excluded in the linear parametrisa-

tion because gN < 0. The same replacement can be applied in (7.11) for the higher order
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couplings at LO:

λ
(exp)
n,1 = − 5× 2n−2

3π(n− 2)

(
−
λ

(exp)
2,1

λ1,1

)n
, for n ≥ 3 (7.44)

The fluctuations due to the scalar mode of the trace and auxiliary fields come into

play at NLO resulting in further modifications to the expressions. Defining ∆λn,j =

λ
(exp)
n,j − λ

(lin)
n,j , the remainder for λ0 at NLO is:

∆λ0,3 =
5λ0,1

6π(λ0,1 + λ1,1)
(7.45)

As for the other couplings, setting λ0 → 0 leaves:

∆λ1,2 = 0 (7.46)

∆λ2,2 =
5

8
λ1,1 +

1

2π

(
λ

(exp)
2,1

λ1,1

)2

(7.47)

For the higher order interactions, the remainder after setting λ0 → 0 has the general form:

∆λn,2 = u(1)
n

(
λ

(exp)
2,1

λ1,1

)n−1

+
u

(2)
n

λ1,1

(
λ

(exp)
2,1

λ1,1

)n+1

(7.48)

with u
(1)
n and u

(2)
n constants.

The beta functions only differ by a term proportional to λ0 at LO, while further

differences appear at NLO that do not vanish when λ0 is set to zero. However, the

diagonal part of the stability matrix remains structurally unchanged. The eq. (7.26) for

the eigenvalues only gets modified by setting λ0 → 0 and replacing λ
(lin)
2 → λ

(exp)
2 in the

exponential parametrisation. Thus, the expression for the eigenvalues remains structurally

unchanged up to NLO.

7.6 Conclusions

This study has performed a systematic investigation of fixed points in the large matter

regime in the f(R) theory. A numerical analysis finds two fixed points with coupling values

mostly determined by the number of matter fields in this setting. The crtical exponents

show only small deviations from classical scaling, with the marginal direction becoming

either relevant or irrelevant. Moreover, couplings seem to follow a power-law scaling with

the field multiplicities, suggesting the existence of an analytical scaling limit. Thus, a new

scaling regime has been put forward based on this numerical observation.

An analytic treatment has found that quantum corrections arising from the tensor

mode of the metric are enhanced under this rescaling in the large matter limit. This
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enhancement allows metric fluctuations to balance with quantum matter corrections at

leading order in a 1/Nmat expansion, leading to a non-trivial fixed point for the canonic-

ally marginal coupling. This coupling, in turn, sources a fixed point for all higher order

interactions. Therefore, the numerical results can be understood to arise from a 1/Nmat

expansion in this scaling limit. Analytic expressions for fixed point values can be systemat-

ically determined order by order in this expansion. Remarkably, higher order interactions

can be resummed into a closed expression of the form of a Coleman-Weinberg potential.

The result is valid for any value of the scalar curvature, defining a general solution of the

action.

The new scaling limit also imposes restrictions on the matter content for the fixed

point to be physical. The overall effect of scalar and fermion fields is to destabilise the

solutions, bounding the conformal window at a finite value Ncrit.. With sufficiently many

fermions, the fixed points annhiliate for any arbitrarily large Nmat. The bound on the

conformal window can also be estimated from sign changes in the analytic expressions

for critical exponents. However, the estimates for Ncrit. from these expressions are much

smaller than the values observed in the numerical analysis. This suggests that the scaling

limit has a limited domain of applicability and is only valid for very large Nmat.

Renormalisation group flows are available connecting the fixed points to a Gaussian

regime in the IR. It is interesting to note that the running of the fourth derivative-order

coupling is supressed by a factor of 1/
√
Nmat, meaning that its flow is parametrically slower

than that of the other interactions. Finally, it’s been shown that the solutions are largely

insensitive to changes in the regularisation scheme and metric parametrisation. This is

consistent with the notion that the fixed points are mostly driven by the physical metric

fluctuations and quantum matter corrections, as these should be largely independendent

of details of the regularisation procedure.



129

Chapter 8

Conclusions

Formulating a consistent quantum theory of gravity compatible with the Standard Model

faces many challenges. This thesis has studied the prospect for asymptotically safe ex-

tensions of gravity in the presence of matter fields and also exploring the role played by

higher curvature invariants. Thereby, a number of new results have been achieved and are

summarised now. A systematic search of fixed points in pure quantum gravity has been

performed, including a scan over higher curvature interactions (Chapter 3). Notably, the

Einstein-Hilbert fixed point becomes modified, often mildly, but sometimes more strongly,

leading to a consistent higher curvature extension of the theory.

The focus has then been extended to the inclusion of matter, where technical aspects

regarding their implementation have been clarified (Chapter 4). This has been followed by

a comprehensive study of fixed points of quantum gravity with higher curvature invariants

and Standard Model matter (Chapter 5). Several aspects are worth highlighting. Grav-

itational fixed points compatible with the Standard Model only arise if higher derivative

curvature invariants involving Ricci and Riemann tensor interactions also appear in the

action. The role of these operators is crucial and their importance cannot be stressed

enough, as no physical solution with the Standard Model field content is available without

them (within the approximations of this study). The result does depend on the type of

matter fields, however, with free fermions tending to destabilise gravitational fixed points

in the framework adopted here. Another noteworthy aspect is that scaling dimensions

come out mostly real, unlike in the purely gravitational settings. Shifts in scaling dimen-

sions are of the order of a few, in agreement with expectations and previous findings. In

some settings, the presence of matter fields leads to new relevant eigenperturbations. This

aspect is intriguing and would benefit from further scrutiny in the future. Theories admit

well-defined UV-IR connecting trajectories, showing that these models can be viewed as
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viable UV completions of the Standard Model with gravity.

The question of whether gravitational fixed points with and without Standard Model

matter are connected has also been investigated, using the number of matter fields as

interpolation parameters (Chapter 6). Perhaps surprisingly, the answer turns out to be

negative. Moving away from pure gravity or gravity with SM matter rapidly makes either

the fixed point disappear in the complex plane or generate unphysically large scaling di-

mensions which cannot be trusted. Moreover, limited convergence is observed in the scaling

dimensions, casting doubt on the reliability of the fixed point. Therefore, it may be con-

cluded that SM matter cannot be viewed as a small perturbation to a purely gravitational

fixed point. In this light, pure quantum gravity and quantum gravity with SM matter

are rather different theories and should be viewed as belonging to different universality

classes.

Furthermore, the asymptotic limit of many matter fields (N →∞) coupled to higher

curvature quantum gravity has been investigated (Chapter 7). Two key results are worth

highlighting. First, a new scaling limit is found with near-Gaussian scaling exponents,

both numerically and analytically. This scaling allows a systematic 1/
√
N expansion, es-

tablishing for the first time that large-N matter fluctuations can compete with fluctuations

of the metric field to generate an asymptotically safe UV fixed point to all orders in Ricci

curvature, including a global, closed expression for the UV fixed functional to the leading

order in 1/N . The UV conformal window of this new matter-gravity fixed point has been

determined within an f(R) approximation, as well as constraints on the matter content.

This result opens a door for systematic fixed point searches in gravity-matter theories.

A new toolkit for numerical computations, developed by the author during the invest-

igations performed in this thesis, allowed to investigate gravitational theories up to 100th

curvature-order. Achieving such high polynomial order was important for two reasons.

First, some solutions may seem reliable at low orders but destabilise later. Thus, more

than a handful of spurious fixed points were discarded in the analysis of Chapter 6 nar-

rowing the solutions to the ones presented there. Second, exploring high orders allowed to

capture the asymptotic behaviour of the polynomial solutions. In some of the examples

discussed here, this only sets in above the 60th polynomial order. Moreover, previous in-

vestigations were able to investigate only a few select models. The parallelisable nature of

the algorithms employed allowed the author to explore hundreds of models with different

gravitational interactions and matter content to very high polynomial order.

This thesis has argued that higher order interactions of curvature tensors can be key
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elements to reconciling a fixed point of gravity with the Standard Model. Future invest-

igations could consider other curvature invariants that have been left out from this study,

as they may also become important at high energies. Other parametrisation choices can

be explored to better understand the behaviour of the new solutions found in this in-

vestigation. Similarly, matter self-interactions and interactions with curvature can modify

the constraints on the field content in the Einstein theory. It would thus be interesting

to understand how such interactions could affect the dynamics when higher curvature

interactions are included as well. Moreover, the new scaling limit uncovered here offers

new settings where gravity can be renormalisable in four dimensions in a controlled ex-

pansion with a small parameter. A natural extension of this investigation would be to

study the theory in a general background where the running of the three independent

fourth-derivative order couplings can be untangled. Finally, many other models and gen-

eralisations can be considered to assess the reliability of the results. To conclude, the road

to formulating a fundamental theory of quantum gravity with matter is long and tortuous.

This thesis has aimed to bring the scientific effort a step closer towards achieving this goal.
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R. Grimm. Observation of an Efimov-like trimer resonance in ultracold atom–dimer

scattering. Nature Physics, 5, 2009. 8

[48] Scott E. Pollack, Daniel Dries, and Randall G. Hulet. Universality in three- and

four-body bound states of ultracold atoms. Science, 326(5960):1683–1685, 2009. 8

[49] Daniel Litim and Alejandro Satz. Limit cycles and quantum gravity. 5 2012. 8

[50] Kenneth G. Wilson. Renormalization group and critical phenomena. 1. Renormal-

ization group and the Kadanoff scaling picture. Phys. Rev. B, 4:3174–3183, 1971.

8



136

[51] Kenneth G. Wilson. Renormalization group and critical phenomena. 2. Phase space

cell analysis of critical behavior. Phys. Rev. B, 4:3184–3205, 1971. 8

[52] Kenneth G. Wilson and Michael E. Fisher. Critical exponents in 3.99 dimensions.

Phys. Rev. Lett., 28:240–243, 1972. 8

[53] N. Tetradis and D.F. Litim. Analytical solutions of exact renormalization group

equations. Nucl. Phys. B, 464:492–511, 1996. 8
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Appendix A

Flow equation of f(X) + R z(X)

The flow equation of f(X) +Rz(X) theories with minimally coupled matter and in terms

of the dimensionless functions f(X) = k−dF̄ (X)/(16π), z(X) = k−d+2Z̄(X)/(16π) has

the general form:

∂tf +R∂tz + 4f + 2z − 4X(f ′ +Rz′) = IQ + IM (A.1)

The prime notation indicates the derivative with respect to the argument, IQ contains the

contributions due to metric field quantum fluctuations and IM , that from matter fields.

Expressions for the matter terms are given explicitly in (4.28)-(4.30) and (4.33)-(4.35).

The quantum gravitational corrections have been computed in refs. [195, 196] and are

written down explicitly next. The reader is directed to these references for details on the

computation. The quantum gravity part can be written in the general form:

IQ =
1

24π

(
I0 + ∂tz I1 + ∂tf

′ I2 + ∂tz
′ I3 + ∂tf

′′ I4 + ∂tz
′′ I5

)
(A.2)

Each of these terms can be further decomposed as follows:

I0 =
P Vc
DV
c

+
PSc
DS
c

+
P Tz00 z + P Tf1

0 f ′ + P Tz10 z′ + P T2
0 (f ′′ +Rz′′)

DT

+
PSz00 z + PSf1

0 f ′ + PSz10 z′ + PSf2
0 f ′′ + PSz20 z′′ + PS3

0

(
f (3) +Rz(3)

)
DS

(A.3)

I1 =
P T1
DT

+
PS1
DS

(A.4)

I2 =
P T2
DT

+
PS2
DS

(A.5)

I3 =
P T3
DT

+
PS3
DS

(A.6)

I4 =
PS4
DS

(A.7)

I5 =
PS5
DS

(A.8)
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The superscripts indicate whether each term arises from fluctuations of the the tensor

(T), vector (V) or scalar (S) mode of the metric in the York decomposition. They also

include the vector and scalar parts of auxiliary fields arising from the Jacobian of this

decomposition. Using the treatment from ref. [263], the parts that are independent of the

action are:

PSc = −12− 12R+
271

90
R2 (A.9)

P Vc = −36− 24R+
191

30
R2 (A.10)

DS
c = 1 (A.11)

DV
c = 1 (A.12)

The other coefficients are:

DT = −12 (3f + (3 + 2R) z)

+
(
36(b+ 4c)− 6(12a+ b− 8c)R+ (24a+ 7b+ 10c)R2

) (
f ′ +Rz′

) (A.13)

DS = 36 (2f + 3z) + 6

[
−12(3a+ b+ c)(−3 +R) + (12a+ 3b+ 2c)R2f ′

+
(
18(18a+ 5b+ 4c)− 12(15a+ 4b+ 3c)R+ (12a+ 3b+ 2c)R2

)
Rz′

]
+ (12a+ 3b+ 2c)2 (−3 +R)2R2

(
f ′′ +Rz′′

)
(A.14)

P Tz00 = −2880 + 1080R+ 4R2 − 311

63
R3 (A.15)

P Tf1
0 = (−12(b+ 4c) + (12a+ b− 8c)R)

(
−360 + 120R+

1

3
R2

)
(A.16)

P Tz10 = 3240(b+ 4c)R− 120(12a+ 7b+ 14c)R2 − 2(61b+ 304c)R3 (A.17)

− (12a+ 3b+ 2c)

3
R4 +

(14928a+ 2597b− 3296c)

756
R5 (A.18)

P T2
0 = (12a+ 3b+ 2c)R2

[
−180(b+ 4c) + 20(12a+ 5b+ 8c)R

− (360a+ 29b− 244c)

3
R2 − (12a+ b− 8c)

18
R3

+
(7464a+ 731b− 4540c)

4536
R4

] (A.19)

PSz00 = 1728 + 648R+
348

5
R2 +

37

21
R3 (A.20)

PSf1
0 = −4(3a+ b+ c) (−6 +R)

(
216 + 72R+

29

5
R2

)
(A.21)
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1944(18a+ 5b+ 4c) + 72(12a+ 5b+ 6c)R

− 6

5
(1638a+ 425b+ 304c)R2 − 29(12a+ 3b+ 2c)

5
R3

+
(20442a+ 5555b+ 4296c)

1260
R4

] (A.22)

PSf2
0 = (12a+ 3b+ 2c)R2

[
108(6a,+b)− 48(3a+ b+ c)R+

62(3a+ b+ c)

5
R2

+
29(18a+ 5b+ 4c)

15
R3 +

(24882a+ 6665b+ 5036c)

7560
R4
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PSz20 = (12a+ 3b+ 2c)R3
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−54(24a+ 7b+ 6c)− 48(3a+ b+ c)R

+
(3648a+ 943b+ 670c)
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58(27a+ 7b+ 5c)
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R3

+
(108408a+ 27991b+ 19846c)

15120
R4

] (A.24)

PS3
0 = (12a+ 3b+ 2c)3R4

(
−9 +

91

60
R2 +

29

90
R3 +

181

10080
R4

)
(A.25)

P T1 = −360 + 180R+R2 − 311

126
R3 (A.26)

PS1 = 216 + 108R+
87

5
R2 +

36

42
R3 (A.27)

P T2 = − 3

(12a+ 3b+ 2c)R2
P T2

0 (A.28)

P T3
3 = RP T2 (A.29)

PS2 = (3a+ b+ c)

(
648 + 144R− 186

5
R2 − 58

5
R3 − 127

180
R4

)
(A.30)

PS3 = R

[
324(18a+ 5b+ 4c) + 144(3a+ b+ c)R− 3(1278a+ 335b+ 244c)

5
R2

− 58(15a+ 4b+ 3c)

5
R3 − (24882a+ 6665b+ 5036c)

2520
R4

] (A.31)

PS4 = − 3

(12a+ 3b+ 2c)R2
PS3

0 (A.32)

PS5 = RPS4 (A.33)
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Appendix B

Flow equation of f(R)

The flow equation of f(R) theories in four dimensions with minimally coupled matter and

in terms of the dimensionless action f(R) = k−4f̄(R)/(16π) has the general form:

∂tf(R) + 4f(R)− 2Rf ′(R) = IQ + IM (B.1)

The prime notation indicates the derivative with respect to the argument, IQ contains the

contributions due to metric field quantum fluctuations and IM , that from matter fields.

Expressions for the matter terms are given explicitly in (4.28)-(4.30) and (4.33)-(4.35).

The contributions due to the gravitational sector can be divided into three pieces (for

details on the derivation, see refs. [192,263]):

IQ =
1

24π
(I0 + ∂tf

′I1 + ∂tf
′′I2) (B.2)

where the argument of the functions has been suppressed and the factor of 24π is conven-

tional, arising from the 16π introduced in the definition of the dimensionless action. The

first piece can be further subdivided into four contributions:

I0 = Va + Sa + Tg + Sg (B.3)

The first two terms arise from the vector and scalar modes of the ghosts and auxiliary

fields arising from the Jacobians of field decompositions. These contributions are:

Va =
P VC
DV
C

(B.4)

Sa =
PSC
DS
C

(B.5)
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and using the regularisation outlined in ref. [263]:

P VC = −36− 24R+
191

30
R2 (B.6)

PSC = −12− 12R+
271

90
R2 (B.7)

DV
C = DS

C = 1 (B.8)

The last two terms in I0 represent the contributions due to the tensor and scalar modes

of the graviton. These can be written schematically as:

Tg =
P T1

0 f ′ + P T2
0 Rf ′′

DT
(B.9)

Sg =
PS1

0 f ′ + PS2
0 f ′′ + PS3

0 Rf ′′′

DS
(B.10)

The other terms appearing in IQ are similarly written as:

I1 =
P T1
DT

+
PS1
DS

(B.11)

I2 =
PS2
DS

(B.12)

The denominators appearing in these terms depend on the action and its derivatives:

DT = 3f − (R− 3)f ′ (B.13)

DS = 2f + (3− 2R)f ′ + (3−R)2f ′′ (B.14)

while the coefficients in the numerators are independent of the action and arise from Heat

Kernel coefficients:

P T1
0 = 240− 90R− 1

3
R2 +

311

756
R3 (B.15)

P T2
0 = −60 + 30R+

1

6
R2 − 311

756
R3 (B.16)

PS1
0 = 48 + 18R+

29

15
R2 +

37

756
R3 (B.17)

PS2
0 = 216− 12R− 121

5
R2 − 29

10
R3 − 37

756
R4 (B.18)

PS3
0 = −54 +

91

10
R2 +

29

15
R3 +

181

1680
R4 (B.19)

P T1 = 30− 15R− 1

12
R2 +

311

1512
R3 (B.20)

PS1 = 6 + 3R+
29

60
R2 +

37

1512
R3 (B.21)

PS2 = 27− 91

20
R2 − 29

30
R3 − 181

3360
R4 (B.22)
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Appendix C

Additional figures for Chapter 3
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Figure C.1: Fixed points of pure gravity in various projections of the action.
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Figure C.2: Real part of scaling dimensions of gravitational fixed points in various pro-

jections of the action (view 1).
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Figure C.3: Real part of scaling dimensions of gravitational fixed points in various pro-

jections of the action (view 2).
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Figure C.4: Polynomial action as a function of R for various projections of the action in

pure gravity.
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Figure C.5: Polynomial equation of motion as a function of R for various projections of

the action in pure gravity.
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Figure C.6: Rate of convergence of scaling dimensions in various projections of the action

in pure gravity with vanishing boundary conditions. The black line is the linear fit of ϑ0.

The red line is the mean fit of the data shown for N > 60.
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Figure C.7: Rate of convergence of scaling dimensions in various projections of the action

in pure gravity with optimised boundary conditions. The black line is the linear fit of ϑ0.

The red line is the mean fit of the data shown for N > 60.
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Appendix D

Additional figures for Chapter 5
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Figure D.1: Residuals of the polynomial solutions as a function of R with SM matter.
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Figure D.3: Eigenvalues of the stability matrix for fixed points with SM matter. Negative

values indicate relevant RG directions.
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Figure D.4: Eigenvalues of the stability matrix superimposed at increasing N for fixed

points with SM matter.



170

0 2 4 6 8 10 12 14 16 18 20 22
i

0 5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

n

[V2]i
n@FP4

c

0 2 4 6 8 10 12 14 16 18 20 22
i

0 5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

n

[V2]i
n@FP5

c

0 2 4 6 8 10 12 14 16 18 20 22
i

0 5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

n

[V2]i
n@FP4

ab

0 2 4 6 8 10 12 14 16 18 20 22
i

0 5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

n

[V2]i
n@FP5

ab

0 2 4 6 8 10 12 14 16 18 20 22
i

0 5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

n

[V2]i
n@FP4

bc

0 2 4 6 8 10 12 14 16 18 20 22
i

0 5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

n

[V2]i
n@FP7

bc

Figure D.5: Elements of the doubly-normalised eigenvectors of the stability matrix for

fixed points with SM matter.
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Figure D.6: Polynomial action for fixed points with SM matter.
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Figure D.7: Rate of convergence of scaling dimensions for fixed points with SM matter.

The black line is the linear fit of ϑ0. The red line is the mean fit of the data shown for

N > 50.
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Figure D.8: RG flows connecting UV fixed points with SM matter to a Gaussian IR regime.
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Appendix E

Tables for Chapter 6
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Coupling values at the SM matter configuration and N = 101.

λ0 −2.6919

λ1 −1.0956

λ2 −1.4175

λ3 −3.3816

λ4 3.9746

λ5 −6.5484

λ6 23.747

λ7 −29.160

λ8 129.34

λ9 −159.05

λ10 737.45

λ11 −905.52

λ12 4.9217× 103

λ13 −5.5730× 103

λ14 2.6405× 104

λ15 −3.9614× 104

λ16 2.0346× 105

λ17 −1.9175× 105

λ18 1.3284× 106

λ19 −1.7423× 106

λ20 7.1215× 106

λ21 −1.0777× 107

λ22 6.1305× 107

λ23 −6.4386× 107

λ24 3.9302× 108

λ25 −5.0787× 108

λ26 2.4220× 109

λ27 −3.6116× 109

λ28 1.8536× 1010

λ29 −2.0899× 1010

λ30 1.3504× 1011

λ31 −1.7606× 1011

λ32 7.4951× 1011

λ33 −1.2052× 1012

λ34 6.8927× 1012

λ35 −6.9885× 1012

λ36 4.3393× 1013

λ37 −6.4451× 1013

λ38 2.7265× 1014

λ39 −4.0845× 1014

λ40 2.3777× 1015

λ41 −2.5519× 1015

λ42 1.6086× 1016

λ43 −2.2433× 1016

λ44 9.2385× 1016

λ45 −1.5590× 1017

λ46 8.9439× 1017

λ47 −8.3610× 1017

λ48 5.8054× 1018

λ49 −8.9528× 1018

λ50 3.2321× 1019

λ51 −5.3330× 1019

λ52 3.4963× 1020

λ53 −3.1862× 1020

λ54 2.0443× 1021

λ55 −3.3330× 1021

λ56 1.2161× 1022

λ57 −2.0410× 1022

λ58 1.3096× 1023

λ59 −1.0868× 1023

λ60 8.0403× 1023

λ61 −1.3417× 1024

λ62 3.9062× 1024

λ63 −7.5335× 1024

λ64 5.5621× 1025

λ65 −3.7300× 1025

λ66 2.7605× 1026

λ67 −5.5844× 1026

λ68 1.4894× 1027

λ69 −2.6376× 1027

λ70 2.2045× 1028

λ71 −1.3967× 1028

λ72 1.0544× 1029

λ73 −2.2310× 1029

λ74 4.8005× 1029

λ75 −1.0335× 1030

λ76 9.4616× 1030

λ77 −4.0027× 1030

λ78 3.7584× 1031

λ79 −1.0111× 1032

λ80 1.4799× 1032

λ81 −3.2760× 1032

λ82 4.2112× 1033

λ83 −1.4421× 1033

λ84 1.1849× 1034

λ85 −4.3078× 1034

λ86 5.1103× 1034

λ87 −1.1420× 1035

λ88 1.8093× 1036

λ89 −3.5390× 1035

λ90 4.1681× 1036

λ91 −1.9785× 1037

λ92 8.0244× 1036

λ93 −3.2020× 1037

λ94 8.7375× 1038

λ95 −4.8706× 1037

λ96 7.5277× 1038

λ97 −9.4242× 1039

λ98 1.5643× 1039

λ99 −3.2952× 1039

λ100 4.0116× 1041

Table E.1: Couplings values of the non-Gaussian fixed point interpolated from pure gravity

to the SM matter configuration at N = 101.
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Real part of the scaling dimensions at the SM matter configuration and N = 101.

ϑ0 4.6299

ϑ1 4.6299

ϑ2 3.8994

ϑ3 2.0826

ϑ4 2.0826

ϑ5 −0.78005

ϑ6 −0.78005

ϑ7 −3.4032

ϑ8 −3.4032

ϑ9 −6.4214

ϑ10 −6.4214

ϑ11 −10.087

ϑ12 −10.087

ϑ13 −16.343

ϑ14 −16.343

ϑ15 −18.970

ϑ16 −18.970

ϑ17 −22.029

ϑ18 −24.225

ϑ19 −29.175

ϑ20 −30.922

ϑ21 −36.525

ϑ22 −37.779

ϑ23 −44.126

ϑ24 −44.126

ϑ25 −50.401

ϑ26 −50.401

ϑ27 −56.439

ϑ28 −56.439

ϑ29 −63.161

ϑ30 −63.161

ϑ31 −67.185

ϑ32 −69.409

ϑ33 −69.409

ϑ34 −75.308

ϑ35 −75.308

ϑ36 −81.631

ϑ37 −81.631

ϑ38 −82.195

ϑ39 −86.140

ϑ40 −86.140

ϑ41 −86.651

ϑ42 −86.651

ϑ43 −87.211

ϑ44 −87.211

ϑ45 −91.123

ϑ46 −93.396

ϑ47 −93.863

ϑ48 −93.863

ϑ49 −98.491

ϑ50 −99.738

ϑ51 −99.738

ϑ52 −105.76

ϑ53 −105.76

ϑ54 −106.26

ϑ55 −106.26

ϑ56 −109.10

ϑ57 −112.68

ϑ58 −112.68

ϑ59 −114.93

ϑ60 −118.71

ϑ61 −118.71

ϑ62 −122.41

ϑ63 −124.35

ϑ64 −124.35

ϑ65 −127.75

ϑ66 −130.55

ϑ67 −130.55

ϑ68 −133.16

ϑ69 −137.04

ϑ70 −137.04

ϑ71 −137.94

ϑ72 −143.45

ϑ73 −143.45

ϑ74 −143.76

ϑ75 −149.49

ϑ76 −149.49

ϑ77 −149.53

ϑ78 −155.01

ϑ79 −155.01

ϑ80 −155.55

ϑ81 −160.45

ϑ82 −161.09

ϑ83 −161.09

ϑ84 −166.56

ϑ85 −167.54

ϑ86 −167.54

ϑ87 −172.08

ϑ88 −174.11

ϑ89 −174.11

ϑ90 −178.76

ϑ91 −180.25

ϑ92 −180.25

ϑ93 −185.59

ϑ94 −185.80

ϑ95 −185.80

ϑ96 −191.45

ϑ97 −191.45

ϑ98 −191.51

ϑ99 −196.99

ϑ100 −196.99

Table E.2: Real part of the scaling dimensions of the non-Gaussian fixed point interpolated

from pure gravity to the SM matter configuration at N = 101.
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Imaginary part of the scaling dimensions at the SM matter configuration and N = 101.

ϑ0 28.391

ϑ1 −28.391

ϑ2 0

ϑ3 −0.72510

ϑ4 0.72510

ϑ5 6.2211

ϑ6 −6.2211

ϑ7 4.5090

ϑ8 −4.5090

ϑ9 −9.1075

ϑ10 9.1075

ϑ11 2.7396

ϑ12 −2.7396

ϑ13 −1.0346

ϑ14 1.0346

ϑ15 −59.822

ϑ16 59.822

ϑ17 0

ϑ18 0

ϑ19 0

ϑ20 0

ϑ21 0

ϑ22 0

ϑ23 1.5587

ϑ24 −1.5587

ϑ25 −2.2389

ϑ26 2.2389

ϑ27 −2.4632

ϑ28 2.4632

ϑ29 −1.9980

ϑ30 1.9980

ϑ31 0

ϑ32 3.1326

ϑ33 −3.1326

ϑ34 −2.7126

ϑ35 2.7126

ϑ36 2.3902

ϑ37 −2.3902

ϑ38 0

ϑ39 −23.000

ϑ40 23.000

ϑ41 25.698

ϑ42 −25.698

ϑ43 −3.4045

ϑ44 3.4045

ϑ45 0

ϑ46 0

ϑ47 −3.9184

ϑ48 3.9184

ϑ49 0

ϑ50 2.7854

ϑ51 −2.7854

ϑ52 −10.609

ϑ53 10.609

ϑ54 3.4668

ϑ55 −3.4668

ϑ56 0

ϑ57 −3.7048

ϑ58 3.7048

ϑ59 0

ϑ60 −4.2334

ϑ61 4.2334

ϑ62 0

ϑ63 −4.0630

ϑ64 4.0630

ϑ65 0

ϑ66 3.6686

ϑ67 −3.6686

ϑ68 0

ϑ69 3.5877

ϑ70 −3.5877

ϑ71 0

ϑ72 −3.8641

ϑ73 3.8641

ϑ74 0

ϑ75 4.4246

ϑ76 −4.4246

ϑ77 0

ϑ78 4.4419

ϑ79 −4.4419

ϑ80 0

ϑ81 0

ϑ82 −4.0156

ϑ83 4.0156

ϑ84 0

ϑ85 −3.7826

ϑ86 3.7826

ϑ87 0

ϑ88 −4.0273

ϑ89 4.0273

ϑ90 0

ϑ91 −4.5362

ϑ92 4.5362

ϑ93 0

ϑ94 −4.7098

ϑ95 4.7098

ϑ96 3.9309

ϑ97 −3.9309

ϑ98 0

ϑ99 7.0694

ϑ100 −7.0694

Table E.3: Imaginary part of the scaling dimensions of the non-Gaussian fixed point

interpolated from pure gravity to the SM matter configuration at N = 101.
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