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Volatility Study

Summary

We study a nonlinear parabolic stochastic partial di↵erential equation (SPDE) with multiplicat-
ive space–time white noise. The noise coe�cient is the square root of the unknown, with respect
to which such nonlinearity is Hölder but not Lipschitz. The SPDE’s deterministic part includes
also a first order quadratic nonlinearity. Mathematically speaking this space–time SPDE reduces
to one of two stochastic di↵erential equations (SDEs) appearing in the celebrated Heston and
Cox–Ingersoll–Ross models describing the stock price volatility evolution; we therefore propose
and test its use as a possible tool in understanding the so-called “volatility smile” observed in
the implied volatility upon inverting the Black–Scholes–Merton model against option market
data [Rouah, 2013][Gatheral and Taleb, 2011]. Similar equations arise in other fields as well, for
example, in surface growth modelling with or without a random forcing term. A typical example
is the nonlinear stochastic Kardar–Parisi–Zhang equation (KPZ) whose unique solvability re-
quired the establishment of regularity structure methods [Hairer, 2013]. In principle, the model
we herein propose lends itself to analysis via the regularity structures approach, but it exhibits
better stability properties than KPZ thanks to a favourable sign in the first order quadratic
nonlinearity and a resulting crucial energy identity; owing to this we are thus able to take a
more straight-forward approach using energy methods and Galerkin approximations and show
the SPDE is well posed in one spatial dimension, which is the relevant case in financial model-
ling. In line with the Galerkin approximation idea, we introduce an Euler–Maruyama numerical
scheme to approximate the solution [Lord et al., 2014] which we use to close our work by looking
at possible applications of the extended Heston model we propose. This extended Heston model
includes a new independent variable (which acts as “space” in “space–time”) which signifies the
option’s strike price on which the implied volatility depends.
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Chapter 1

Introduction

In this thesis, we propose an extension of the stochastic option price Heston’s model that de-

scribes the evolution of the volatility u of an underlying asset S which is given by the following

equations

dS(t) = µ(t)S(t)dt+
p
u(t)S(t)dW1(t) t � 0, (1.1)

and

du(t) = �(u(t)� �)dt+ ⌘

p
u(t)dW2(t) t � 0, (1.2)

with

hdW1dW2i = ⇢dt,

where , �, ⌘ > 0 are the model parameters, representing speed, long-term mean and the

volatility of u respectively. The parameter ⇢ is the correlation coe�cient between two Wiener

processes W1 and W2 or equivalently, the covariance ⇢dt. Equation (1.1) is known as the

Black–Scholes model, not to be confused with the related Black–Scholes (partial di↵erential)

equations; in fact, the Black–Scholes model underpins the Black–Scholes equation (which we

briefly discuss in Chapter 4). The process u that satisfies (1.2) follows a Cox–Ingersoll–Ross

(CIR) di↵usion (also known as the square root process), and the stochastic di↵erential equation

for the CIR di↵usion satisfies the Yamada-Watanabe condition, so it admits a unique strong

solution [Gatheral and Taleb, 2011], [Rouah, 2013]. Our new extension aims to reveal why

options with the same asset price and time to maturity but di↵erent strike price (exercise

price) have di↵erent implied volatilities. Implied volatility is the volatility input in an option

pricing model (such as Black–Scholes formula and Heston’s model) that generates the actual

market price. It can be recovered from the real-life financial data via an inverse procedure
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involving the Black–Scholes equation. This is explained in detail in Chapter 4, where we use

an algorithm to produce the so-called ”volatility smile”, a known feature in financial modelling,

which means that the implied volatility of a stock price depends on the strike price that an agent

is prepared to pay for a given option on that stock. Based on this data analysis, we propose a

novel mathematical model which describes the volatility as a strike-price and time dependent

quantity. This phenomenon is known as the volatility smile, which means that the smile shape

is a result of the fact that implied volatility can be written as a function of two variables, time

and strike [Gatheral and Taleb, 2011]. Heston’s model is a stochastic volatility model which is

not modelling the volatility
p

u(t) directly but rather through its square, that is the variance

u(t). The Heston variance process arises from the nonlinearly multiplicative Ornstein–Uhlenbeck

process which has Markovian dynamics of the following form:

du(t) = � |{z}
speed

(u(t)� �)| {z }
mean-reverting

dt+ ⌘|{z}
volatility

p
u(t)dW (t). (1.3)

Like all models, Black–Scholes model has its shortcomings, some of which are obviated by the

many alternatives and extensions to it. In all named stochastic volatility models in general,

including Heston’s model, the framework is based on the fact that the volatility of the asset is

randomly fluctuating and driven by its own stochastic process. In some sense, we can consider

Heston’s model as an extension of the Black–Scholes model by taking into account a square-

root di↵usion for the stochastic variance. However, Heston’s model is not always able to fit

the implied volatility smile very well, especially at short maturities [Rouah, 2013]. Therefore,

researchers have contributed to extending Heston’s model in many ways and di↵erent approaches.

For example, one approach is known as the double Heston’s Model proposed by Christo↵ersen

et al. 2009, where the authors introduced a second factor of the variance independent of the

first one. The idea behind this extension is that the additional volatility factor provides a more

flexible approach to model the volatility surface. Another approach is to allow the parameters

to be time-dependent. This latter approach is adopted by Mikhailov and Nogel (2003), Elices

(2009), Benhamou, Gobet, and Miri (2010) and others [Rouah, 2013]. All of these extensions and

others are aiming to provide a better fit to the volatility surface. Yet, none of them has shown

the relationship between option implied volatilities and their strike prices, where the volatility

surface suggests that the smile phenomenon resulting from the fact that implied volatility is a

function of the strike prices [Austing, 2014].

In this thesis, we depart from previous Heston-based models by proposing a mathematical

framework that includes the option’s strike price, denoted by x, as the variable upon which

the volatility depends. As a result, we transform the system of two SDEs forming the Heston

model into a system of SPDE and SDE. We focus especially on the SPDE as it is a nonlinear
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parabolic equation depending on the strike price x and time to maturity t, and a nonlinearity

depending on the square of gradient of the variance with respect to x. The idea is by assuming

that Heston’s variance can be written in the context of the heat equation. Hence, we consider

the transformation of the variance u(t) to be in the following form:

u = log
1

v
, (1.4)

where v solves the homogeneous heat equation which is described by the following linear second

order parabolic partial di↵erential equation: @tv � @xxv = 0, some basic calculations lead to

1

v
= e

u (1.5)

v = e
�u

. (1.6)

Then we have

@tv = e
�u(�@tu) (1.7)

@xxv = e
�u(�@xu)

2
� e

�u
@xxu. (1.8)

plugging into the heat equation, yields

@tu� @xxu+ |@xu|
2 = 0 (1.9)

Now, as assumed by Heston’s model, we take into account a mean reversion term and a multiplic-

ative noise. The obtained model ”strike price dependent” variance process obeys the following

stochastic IVP:

@tu(x, t)�@xxu(x, t) + (u(x, t)� �) + |@xu(x, t)|
2

= ⌘

p
u(x, t)@xtW for t � 0 and x 2 (0, 1), (1.10a)

u(0, t) = �↵0@xu(0, t) for ↵0 � 0, (1.10b)

u(1, t) = ↵1@xu(1, t) for ↵1 � 0, (1.10c)

u(x, 0) = u0. (1.10d)

The spatial domain is the interval (0, 1), with the Robin boundary conditions (1.10b),(1.10c)

and given initial condition u0. The random term @xtW is a space–time white noise (cylindrical

Wiener process) defined on a filtered probability space (⌦,F , {Ft}t�0,P), the parameters , �

and ⌘ are the same as Heston’s model speed, long-term mean and the volatility of u (volatility

of the volatility) respectively. Throughout this work we suppress the dependence on space and

write u(t) for u(·, t) and @xtW for @xtW (x, t) unless otherwise stated.
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We study the stochastic IVP (1.10a)–(1.10d) analytically and numerically, which we apply

to financial models of stochastic volatility. Equation (1.10a) presents specific mathematical

challenges that have notf been addressed in the literature to the best of our knowledge. For

instance, the nontrivial feature of equation (1.10a) appears from the nonlinear first order term

|@xu|
2 and a Hölder, yet not Lipschitz, continuous noise coe�cient. Due to the nonlinear first

order term in the equation (1.10a) with space–time white noise, the solution to the equation is

expected to be too rough to be di↵erentiable in space and time. Indeed, even with dropping the

quadratic nonlinearity, the equation reduces to the a stochastic heat equation with the mean-

reverting term, whose solution is not di↵erentiable. In this sense equation (1.10a) is reminiscent

of the Kardar–Parisi–Zhang (KPZ) equation which is a nonlinear SPDE, introduced by Mehran

Kardar, Giorgio Parisi, and Yi-Cheng Zhang in 1986 in [Kardar et al., 1986]. It describes the

temporal change of a height field h(x, t). In [Hairer, 2013], Hairer made a breakthrough in

solving the KPZ equation by constructing approximations using Feynman diagrams. In 2014

he was awarded the Fields Medal for this work, along with rough paths theory and regularity

structures. Equation (1.10a) fits the regularity structures framework, however in comparison to

the KPZ equation (1.10a) has exhibits waning where KPZ exhibits nonlinearity, which allows

us to show existence of the solution by a more elementary, straightforward approach. The

solution of the KPZ equation is obtained by making use of the theory of regularity structure

introduced in [Hairer, 2013]. The theory of regularity structures includes a renormalisation

procedure, which consists in a way to appropriately modify the enhancement of the noise, in

order for the corresponding modified sequence u
" converges to a limit u. However, due to

the quadratic nonlinearity’s sign, the regularity structures is not required here. Nevertheless,

proving the existence by the usual argument, i.e. contraction mapping and fixed point theorem

is not possible, as the quadratic nonlinearity can not be bounded in an appropriate manner.

One way to establish the existence and regularity of weak solutions of the SPDE is by

the use of the Fourier–Galerkin method. The idea of the existence proof is to approximate

u : [0, T ] ! H
1(0, 1) by functions un : [0, T ] ! En that take values in a finite-dimensional

subspace En ⇢ H
1(0, 1) of dimension n. To obtain the sequence un, we project the SPDE onto

En, meaning that we require that un satisfies the SPDE up to an orthogonal residual. This gives

a system of SODEs for un, which has a solution by standard SODE theory. Each un satisfies

an energy estimate of the same form as a priori estimate for solutions of the SPDE which are

uniform in n and thus we obtain a solution of the SPDE. Of course, what allows us to deal with

the nonlinear term |@xu| and the Hölder, but not Lipschitz noise coe�cient is the sign of the

quadratic nonlinearity.
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Studying the positivity of solutions was not palpable as much as the original Heston’s model

solution. However, using what is known as Feller’s square root condition introduced with some

weak minimum principle theorem inspiration, we managed to obtain the positivity. The idea to

show the positivity is that the noise coe�cient, ⌘
p
v(t), prevents negative solutions for positive

values of  and �. In other words, when the solution is close to zero, the noise coe�cient also

becomes very small, which turns the noise o↵. Consequently, when the solution gets close to

zero, its evolution becomes dominated by the drift factor  and �.

We closed our work by numerical experiments to study the convergence rate of the approx-

imated solutions with the ability of our model to generate a ”smile”. The numerical scheme

of the SPDE is based on the Euler–Maruyama method. A Monte–Carlo simulation is utilised

to understand the mechanism of the volatility as a function of two variables (strike, time) over

time.

Before developing a theory for (1.10a) we briefly compare the KPZ equation as it introduced

in [Hairer, 2013],[Bruned, 2016] with [Funaki and Quastel, 2015], and (1.10a). The KPZ equation

is given by

@th� @xxh� |@xh|
2 = @xtW, (1.11)

the nontrivial features of both equations appearing from the nonlinear term |@xu|
2. The classical

KPZ is solution obtained through the Cole–Hopf transformation which reduces the KPZ equation

to the one dimensional linear stochastic heat equation with multiplicative noise.

@th = @xxh+ h@xtW, (1.12)

having an initial value h(0, x) � 0. The stochastic heat equation is a well-posed SPDE. In fact,

its solution can be defined in a mild sense as follows:

h(t, x) =

Z
1

0

K(t, x, y)h(0, y)dy +

Z
t

0

Z
1

0

K(t� s, x, y)h(s, y)@xtW, (1.13)

where K(t, x, y) is the heat kernel on (0, 1) and it admits a unique positive solution in a suitable

space of adapted processes. The Cole–Hopf solution of the KPZ equation is defined from the

solution of (1.12) as

u(t) := log h(t), (1.14)

which is well-defined since h(t) > 0. In order to link the Cole–Hopf solution to the KPZ equation,

we need to deal with an infinite Itô correction term. In other words, a certain renormalisation

factor which balances with this diverging term (i.e. term that diverges as the mollification

vanishes) should be introduced in the KPZ equation. This is can be seen from the heuristic
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derivation of the KPZ equation from the stochastic heat equation under the Cole-Hopf trans-

formation which goes as follows, recall Itô’s formula for u = f(h):

du = f
0(h)dh+

1

2
f
00(h)(dh)2, (1.15)

and, from (1.12), since @xtW@ytW = �(x� y)dt , we can compute as

(dh(t, x))2 = (h@xtW )2 (1.16)

= h
2
�x(x)dt.

Under the Cole–Hopf transformation, noting that (log h)0 = h
�1 and (log h)00 = �h

�2, Itô’s

formula proves that

@tu = h
�1
@th�

1

2
h
�2(@th)

2 (1.17)

= h
�1(

1

2
@xxh+ h@xtW )�

1

2
�x(x)

=
1

2
h
�1
@xxh+ @xtW �

1

2
�x(x).

However, since u = log h, some computation shows that

h
�1
@xxh = @xxu+ (@xu)

2
. (1.18)

This leads to the KPZ equation with renormalisation factor:

@tu =
1

2
@xxu+

1

2
{(@xu)

2
� �x(x)}+ @xtW. (1.19)

The simplest approximation scheme is to introduce a cuto↵, so that the equation makes usual

sense. Smooth out the noise by a smooth version @xtW ", for instance obtained by a convolution

with a family of mollifiers:

@tu =
1

2
@xxu+

1

2
{(@xu)

2
� �

"

x(x)}+ @xtW
"
. (1.20)

If @xtW " were a smooth function of space and time, we could simply solve the equation for each

realisation of the noise separately then take a limit as "! 0. However, the enhancement @xtW "

is not expected to converge in the same space as "! 0 [Bruned, 2016]. Therefore in general, the

solution u" of the KPZ is not guaranteed to converge either, or may convergence to a di↵erent

answer.

The problem with the Cole–Hopf solution as stated by [Hairer, 2013] is that it does not

provide a satisfactory theory of approximations to the KPZ equation. Indeed, all approxima-

tions to the KPZ equation must first be reinterpreted as approximations to the stochastic heat

equation, which is not always convenient. Therefore, [Hairer, 2013] has extended the Cole–Hopf
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solution to introduce the so-called regularity structure approach, to solve the classical KPZ equa-

tion. Moreover, using Cole–Hopf transform fails in the more general situation (the generalised

KPZ which is similar to equation (1.10a) in some sense ) or in the case of a system of coupled

KPZ equations. Hence, [Bruned, 2016] used the theory of regularity structures inspired from

the rough path and introduced by Martin Hairer to solve the generalised KPZ equation in his

joint work with Harier, M. The generalised KPZ equation given by

@tu(x, t) = @xxu+ g(u)(@xu)
2 + k(u)@xu+ h(u) + f(u)⇠, (1.21)

where ⇠ denotes space-time white noise. This equation is equivalent to equation (1.10a) with

g = �1, h = �(u(x, t) � �), k(u) = 0 and f(u) = ⌘

p
u(x, t). The challenge in (1.21) is not

only the ill-defined nonlinearity but also the term f(u)⇠ is the product of the distribution ⇠ and

the noise coe�cient f(u), which is however not su�ciently regular to give a classical meaning to

this product; therefore this term is as tricky as |@xu|2 to treat. The theory of regularity struc-

tures includes a renormalisation procedure, which consists in a way to appropriately modify the

enhancement of ⇠", in order for the corresponding modified u" to converge. The renormalisation

procedure has an algebraic step, by which the appropriate modification of the enhancement of ⇠"

is constructed, and an analytic step, where the actual convergence of the modified enhancement

is proved.

1.1 Preliminaries and notations

In this section we introduce the definitions, theorems and notations that are consistently using

throughout the thesis.

1.1.1 Functional analysis

The contraction mapping theorem is used to prove the existence and uniqueness of solutions to

initial-value problems.

1.1.2 Theorem (Contraction mapping [Lord et al., 2014]). Let Y be a non-empty closed subset

of the Banach space (X, k · k). Consider a mapping J : Y ! Y such that, for some µ 2 (0, 1),

kJu� Jvk  µku� vk, for all u, v 2 Y. (1.22)

There exists a unique fixed point of J in Y ; that is, there is a unique u 2 Y such that Ju = u.

1.1.3 Theorem (Arzelà–Ascoli theorem [Kelley, 1975]). Let C be the family of all continuous

functions on a regular locally compact topological space to Hausdor↵ uniform space X, and let
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C have the topology of uniform convergence on compact. Then a subfamily F of C is compact

if and only if

1. F is closed in C.

2. F (x) has a compact closure for each member x of X, and the family F is equicontinuous.

1.1.4 Definition (Orthonormal basis [Lord et al., 2014]). Let H be a Hilbert space. A set

{�j : j 2 N} ⇢ H is orthonormal if

h�j ,�ki =

8
><

>:

1 for j = k,

0 for j 6= k.

(1.23)

This is also written as h�j ,�ki = �jk, where �jk is known as the Kronecker delta function. If

the span of {�j} is additionally dense in H then we have a complete orthonormal set and {�j}

is said to be an orthonormal basis for H. In that case, u =
P

1

j=1
hu,�ji�j for any u 2 H and

kuk
2 =

1X

j=1

|hu,�ji|
2 =

1X

j=1

|h�j , ui|
2
. (1.24)

A Hilbert space is separable if it contains a countable dense subset and every separable

Hilbert space has an orthonormal basis (as can be proved by applying the Gram–Schmidt or-

thogonalisation procedure to the countable dense subset).

1.1.5 Definition (Sobolev spaces [Lord et al., 2014]). Let D be a domain and Y be a Banach

space. For p � 1, the Sobolev space W
r
p (D,Y ) is the set of functions whose weak derivatives up

to order r 2 N are in L
p(D,Y ). That is,

W
r

p (D,Y ) := {u : D↵
u 2 L

p(D,Y ) if |↵|  r}. (1.25)

equipped with norm

kukW r
p (D,Y ) :=

⇣ X

0|↵|r

kD
↵
uk

p

Lp(D,Y )

⌘
1/p

. (1.26)

When p = 2 and r > 0 we write

H
r(D,Y ) := W

r

2 (D,Y ). (1.27)

1.1.6 Example (Weak derivative in one dimension). Suppose D ✓ R, We can define H
1(D) in

the following way: it is a subspace of L2(D) of functions u for which there exists g 2 L
2(D)

such that
Z

D

u'
0 = �

Z

D

g' for each ' 2 C
1(D). (1.28)

We will denote g by u
0. This definition is equivalent to the definition with distributional deriv-

atives.
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1.1.7 Theorem (Sobolev embedding theorem [Lord et al., 2014]). Let W
k
p (Rn) denote the

Sobolev space consisting of all real-valued functions on Rn whose first k weak derivatives are

functions in L
p. Here k is a non-negative integer and 1  p < 1. The first part of the Sobolev

embedding theorem states that if k > i and 1  p < q < 1 are two real numbers such that

1

p
�

k

n
=

1

q
�

i

n
, (1.29)

then

W
k

p (Rn) ✓ W
i

q(Rn), (1.30)

and the embedding is continuous.

1.1.8 Lemma (Lax–Milgram [Evans, 2013]). Let H be a real Hilbert space with norm k · k and

let l be a bounded linear functional on H. Let a : H ⇥H ! R be a bilinear form that is bounded

and coercive. There exists a unique ul 2 H such that a(ul, x) = l(x) for all x 2 H.

1.1.9 Definition. [Lord et al., 2014] Let H, U be separable Hilbert spaces with norms —–

k · k, k · kU respectively. For an orthonormal basis {�j : j 2 N} of U , define the Hilbert–Schmidt

norm

kLkHS(U,H) :=

 
1X

j=1

kL�jk
2

U

!
1/2

. (1.31)

The set HS (U,H) := {L 2 L(U,H) : kLkHS(U,H) < 1} is a Banach space with the Hilbert–

Schmidt norm and L 2 HS (U,H) is known as a Hilbert–Schmidt operator.

1.1.10 Definition (Positive definite [Lord et al., 2014]). A function G : D⇥D ! R is positive

definite if, for any xj 2 D and aj 2 R for j = 1, · · · , N , we have

NX

j,k=1

ajakG(xj , xk) � 0. (1.32)

A linear operator L 2 L(H) on a Hilbert space H is non-negative definite (sometimes called

positive semi-definite) if hu, Lui � 0 for any u 2 H and positive definite if hu, Lui > 0 for any

u 2 H\{0}.

1.1.11 Definition (Trace class [Lord et al., 2014]). For a separable Hilbert space H, a non-

negative definite operator L 2 L(H) is of trace class if Tr(L) < 1, where the trace is defined

by Tr(L) :=
P

1

j=1
hL�j ,�ji, for an orthonormal basis {�j : j 2 N}.
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1.1.12 Probability Theory

1.1.13 Definition (Stochastic process [Lord et al., 2014]). Given a set T ⇢ R, a measurable

space (H,H), and a probability space (⌦,F ,P), a H-valued stochastic process is a set of H-

valued random variables {X(t) : t 2 T }. We write X(t) to denote the process.

1.1.14 Definition (Filtration [Lord et al., 2014]). Let (⌦,F ,P) be a probability space.

1. A filtration {Ft}t�0 is a family of sub �-algebras of F that are increasing; that is, Fs is

a sub �-algebra of Ft for s  t. Each (⌦,F ,P) is a measure space and we assume it is

complete.

2. A filtered probability space is a quadruple (⌦,F , {Ft}t�0,P), where (⌦,F ,P) is a prob-

ability space and {Ft}t�0 is a filtration of F .

Stochastic processes that conform to the notion of time described by the filtration {Ft}t�0

are known as adapted processes.

1.1.15 Definition (Adapted [Lord et al., 2014]). Let (⌦,F , {Ft}t�0,P) be a filtered probability

space. A stochastic process {X(t) : t 2 [0, T ]} is a Ft-adapted if the random variable X(t) is a

Ft-measurable for all t 2 [0, T ].

To stress the relationship between Brownian motion and a filtration, we give the following

definition.

1.1.16 Definition (Ft-Brownian motion). A real-valued process {W (t) : t � 0} is a Ft-

Brownian motion on a filtered probability space (⌦,F ,Ft,P) if

1. W (0) = 0 a.s.,

2. W (t) is continuous as a function of t,

3. W (t) is Ft-adapted and W (t)�W (s) is independent of Fs, s < t,

4. W (t)�W (s) ⇠ N(0, t�s) for 0  s  t, where N(0, t�s) denotes the normal distribution

with expected value 0 and variance t� s.

1.1.17 Definition (Predictable [Lord et al., 2014]). A stochastic process {X(t) : t 2 [0, T ]}

is predictable if there exists Ft-adapted and left-continuous processes {Xn(t) : t 2 [0, T ]} such

that Xn(t) ! X(t) as n ! 1 for t 2 [0, T ].
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1.1.18 Lemma (Banach space L
2

T
[Lord et al., 2014]). Let L2

T
denote the space of predictable

real-valued processes {X(t) : t 2 [0, T ]} with

kXk
L
2
T

:= E
h Z T

0

|X(s)|2ds
i
1/2

< 1. (1.33)

Then, L2

T
is a Banach space with norm k · k

L
2
T

.

1.1.19 Noise process

Let (⌦, F, {Ft}t�0,P) be a filtered complete probability space and (D,B(D), µ) a measure space

for some domain D = [0, 1] ⇥ R+ and a Lebesgue measure µ. In [Walsh, 1986], Walsh defined

a space–time white noise @xtW on D, based on µ, to be a measurable mapping such that for

A 2 B(D),

W (A) =

Z

A

@xtW, (1.34)

where W (A) is a Gaussian random variable with mean zero and variance µ(A), provided µ(A) <

1. If A and B 2 B(D) are disjoint, then the random variables W (A) and W (B) are independent

and W (A [B) = W (A) +W (B). The covariance structure of W is given by

Cov(W (A),W (B)) = E(W (A)W (B)) = µ(A \B), (1.35)

as a consequence of L2–isometry, which is a fundamental property of the stochastic integral and

holds for the Itô integral, that is

E
"⇣Z

R+

Z
1

0

f(x, t)@xtW
⌘
2

#
= E

"Z

R+

Z
1

0

f(x, t)2dxdt

#
, (1.36)

for any Ft–measurable f 2 L
2([0, 1]⇥ R+), where {Ft}t�0 = �(W (x, s) : x 2 [0, 1], 0  s  t) is

sigma–algebra generated by W up to time t. Consider a right continuous filtration Ft = Ft+ :=
T

s>t
Fs, 8t, for which each Ft contains all the nullsets of F and satisfies:

1. W (A) is Ft–measurable whenever A 2 Bs, where Bs is the set of Borel–subsets of the

domain D.

2. For t � 0, {W (A);A 2 Bs} is independent of the Ft.

According to [Walsh, 1986] the process {W (A, t) := W (A ⇥ [0, t]),Ft; t � 0, A 2 Bs} is a

martingale measure, i.e.

1. W (A, 0) = 0;

2. if t � 0,W (·, t) is �–finite L
2(⌦)–valued measure;
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3. {W (A, t),Ft; t � 0} is a martingale.

Furthermore, the white noise process W (A ⇥ [0, t]) is orthogonal martingale measure, where

for any two disjoint sets A and B 2 Bs the martingales W (A ⇥ [0, t]) and W (B ⇥ [0, t]) are

orthogonal (i.e. the product of W (A) and W (B) is a martingale). In addition, we can say about

the white noise process worthy with µ on D as dominating measure. Moreover, if f is a real

valued predictable function with a norm defined by

||f ||W :=

 
E
(Z

t

0

Z
1

0

f
2(x, t)dxdt

)! 1
2

< +1, (1.37)

we can define a space–time integral of f with respect to W as a worthy martingale measure

*Z Z
f(x, t)@xtW,

Z Z
f(x, t)@xtW

+

t

=

Z Z
f(x, t)dxdt, (1.38)

where h, it stands for the least-squares product over the probability space over Ft, the filtra-

tion’s algebra at time t. Walsh theory, emphasises integration with respect to worthy martingale

measures where the solutions are random fields. However, in this project we address an ana-

logous approach which the Da Prato and Zabczyk theory of stochastic integrals with respect to

Hilbert-space-valued Wiener processes to study the well-posedness of (1.10a)-(1.10d). Accord-

ing to [Dalang and Lluis, 2011], it is well-known that in certain cases, the Hilbert-space-valued

integral is equivalent to a martingale-measure stochastic integral. For instance, it is pointed

out in ([Da Prato and Zabczyk, 2014], Section 4.3) that when the random perturbation is

space-time white noise, then Walsh’s stochastic integral in [Walsh, 1986] is equivalent to an

infinite-dimensional stochastic integral as in [Da Prato and Zabczyk, 2014]. Next we introduce

the Q-Wiener process. Assume that W is a H-valued Wiener process with covariance operator

Q. This process may be defined in terms of its Fourier series provided we build the right func-

tional set-up to make such a series actually converge. Suppose that Q has eigenvalues qi > 0

and corresponding eigenfunctions �i. Then the Q-Wiener process is given by

W (x, t) =
1X

i=0

p
q
i
�i(x)�i(t), (1.39)

where �i, i = 0, 1, . . . are i.i.d. Ft-Brownian motions. If Q is trace class, then W is an L
2-valued

process. However, if Q is not a trace class, for example Q = I then the series which defines W (t)

does not converge in L
2(⌦, H), for a fixed t > 0, since the strong law of large numbers ensures

that when N ! 1

NX

i=1

|�i(t)|
2
⇠ �

2

Nt, (1.40)
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where �2

k
stands for the the chi-square distribution ([Ross, 2009], [Bréhier, 2014]). To overcome

this issue we introduce a larger Hilbert space U such that L2
⇢ U and the embedding is Hilbert-

Schmidt.

1.1.20 Lemma (White noise convergence). Let �j be an orthonormal basis of L2(0, 1) where

�j(x) = {cj ei2⇡jx, j = 1, · · · , cj :
R
1

0
|�j |

2 = 1} then the cylindrical Wiener process given by

(1.39) with Q = I converges in L
2((0, 1), H1(0, 1)0) if the inclusion ◆ : L2

! H
1(0, 1)0 is Hilbert–

Schmidt.

Proof. It is enough to show that the inclusion map is a Hilbert–Schmidt on H
1(0, 1)0 where

according to [Lord et al., 2014] the series (1.39) with Q = I converges in L
2(⌦, U) if the inclusion

◆ : L2
! U is Hilbert–Schmidt.

k�jkH1(0,1)0 = sup
' 6=0

h�j |'i

k'kH1(0,1)

, (1.41)

or equivalently,

= sup
k'k

H1(0,1)=1

h�j |'i. (1.42)

where h | i denote the duality paring between H
1(0, 1) and H

1(0, 1)0. By the Riesz representation

theorem,

h�j |'i =

Z
1

0

�j(x)'(x)dx, 8' 2 H
1(0, 1), (1.43)

applying integration by parts which yields

h Z x

0

�j(⇠)d⇠'(x)
i
1

0

�

Z
1

0

'
0(x)

⇣Z x

0

�j(⇠)d⇠
⌘
dx. (1.44)

Estimating
R
x

0
�j(⇠)d⇠ for �j(x) = cj ei2⇡jx gives

Z
x

0

�j(⇠)d⇠ =

Z
x

0

cj e
i2⇡j⇠ d⇠

=
cj

2⇡ij
(e2⇡ijx�1). (1.45)

Then,

h�j |'i =
���
cj

2⇡ij
(e2⇡ij �1)'(1)�

Z
1

0

'
0(x)(

cj

2⇡ij
(e2⇡ijx�1))dx

��� (1.46)

 c(1.47). (1.47)

Hence,

1X

j=1

k�jk
2

H1(0,1)0 < 1. (1.48)
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1.1.21 Stochastic integral

We want to define the stochastic integral where the noise W (t) is given by a L
2-cylindrical

Wiener process, and taking values in U space. Let B : t 2 [0, T ] ! L(L2
, U), and W be a

cylindrical Wiener process in L
2.

1.1.22 Lemma (Stochastic integral [Bréhier, 2014]). If
R
T

0
kB(t)k2

L2(L
2,U)

dt < 1, then we can

define the stochastic integral as follows

Z
T

0

B(t)@xtW =
X

i,j2I,J

Z
T

0

hB(t)ej , e
⇤

i iUd�j(t)e
⇤

i , (1.49)

where (ej)j2J and (e⇤
i
)i2I are complete orthonormal systems of L2 and U respectively. The result

does not depend on the choice of these systems. Moreover we have the Itô isometry property

E
���
Z

T

0

B(t)@xtW
���
2

U

=

Z
T

0

kB(t)k2
L2(L

2,U)
dt. (1.50)

Proof. Check the Itô isometry property:

E
���
Z

T

0

B(t)@xtW
���
2

U

=
X

i2I

E
���
X

j2J

Z
T

0

hB(t)ej , e
⇤

i id�j(t)
���
2

(1.51)

=
X

i2I

X

j2J

E
���
Z

T

0

hB(t)ej , e
⇤

i id�j(t)
���
2

=
X

i2I

X

j2J

���
Z

T

0

hB(t)ej , e
⇤

i idt
���
2

=
X

j2J

Z
T

0

���B(t)ej
���
2

dt

=

Z
T

0

��B(t)
��2
L2(L

2,U)
dt.
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Chapter 2

Existence and positivity of solutions

We study existence of mild solutions to (1.10a) with cylindrical Wiener process, where the noise

coe�cient is Hölder but not Lipschitz and the nonlinearity is genuinely not linear. In this

chapter, we start by recalling the existence of a positive solution u(t) of the SODE (1.2) which

we will use crucially in the prove of the existence of solution to the SPDE (1.10a) and positivity

of the approximate weak solution. In section 2.2 we show the existence for (1.10a) where the

quadratic nonlinearity term is dropped. We follow [Lord et al., 2014] and [Da Prato and Zabczyk,

2014] to consider the SPDE as a SODE on a Hilbert space. A fixed point argument is used here

to prove the existence and uniqueness of mild solutions for the stochastic equation via a Banach

contraction argument. In section 2.3, we establish the existence and the regularity of the weak

solution of equations (1.10a)-(1.10d) by using energy-based Galerkin approximation methods.

A fixed point argument akin to the one used in section 2.2 is harder to apply here and our

approach is based on defining the solution u as the limit of its Fourier-Galerkin approximation

un. Finally the positivity of the solution is considered in section 2.4.

2.1 CIR process

We review next the properties of the CIR process which is the departure point for our extension.

We start with an short–time existence result in Lemma 2.1.1 and then turn our attention to the

role of the Feller condition and show that it guarantees long time positive solution in Theorem

2.1.3.

2.1.1 Lemma (Existence and uniqueness). For each " > 0 and T > 0 there exists a v"(t) which

satisfies the following stochastic di↵erential equation

dv"(t) = �(v"(t)� �)dt+G"(v")dW (t), v"(0) = v0 > 0, 0  t  T. (2.1)
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where, G"(r) is the square root’s cut o↵ function given by

G"(r) :=

8
><

>:

⌘r/
p
r if r > ",

⌘r/
p
" if r  ".

(2.2)

Proof. We follow an argument found in [Øksendal, 1985] Theorem 5.2.1 to show that there exists

a unique solution of the equation (2.1). Define v
0
"(t) = v0 and v

n
" (t) inductively as follows

v
n+1

" (t) = v0 �

Z
t

0

(vn" (s)� �)ds+

Z
t

0

G"(v
n

" )dW (s), 0  t  T, n � 0. (2.3)

Put a(t) := (vn" (t) � �) � (vn�1
" (t) � �), b(t) := G"(vn" ) � G"(vn�1

" ) and denote v̂0 to be an

initial value of vn" (t). By using the initial condition, Jensen’s inequality and Lipschitz continuity

we have

E
h��vn+1

" (t)� v
n

" (t)
��2
i
 E

h�
v0 � v̂0 +

Z
t

0

a(s)ds+

Z
t

0

b(s)dW (s)
�
2
i

 3E[|v0 � v̂0|
2] + 3E

h� Z t

0

a(s)ds
�
2
i
+ 3E

h� Z t

0

b(s)dW (s)
�
2
i

 3E[|v0 � v̂0|
2] + 3tE

h Z t

0

a(s)2ds
i
+ 3E

h Z t

0

b(s)2ds
i

 3E[|v0 � v̂0|
2] + (1 + T )3c2

(A.1)

Z
t

0

E[|vn" (s)� v
n�1

" (s)|2]ds.

note that v0 = v̂0. Hence,

E
h��vn+1

" (t)� v
n

" (t)
��2
i
 (1 + T )3c2

(A.1)

Z
t

0

E[|vn" (s)� v
n�1

" (s)|2]ds, (2.4)

for n � 1, t  T and by using linear growth condition we obtain

E[|v(1)" (t)� v
(0)

" (t)|2]  2c2
(A.2)

t
2(1 + E[|v0|2]) + 2c2

(A.2)
t(1 + E[|v0|2]) (2.5)

 c(2.6)t, (2.6)

where c(2.6), is constant, depends on c(A.2), T and E[|v0|2]. So by induction on n we obtain

E[|vn+1

" (t)� v
n

" (t)|
2] 

c
n+1

(2.7)
t
n+1

(n+ 1)!
; n � 0, t 2 [0, T ], (2.7)

for some suitable constant c(2.7) depending only on c(A.2), c(A.1), T and E[|v0|2]. Now

sup
0tT

|v
n+1

" (t)� v
n

" (t)| 

Z
T

0

��vn" (s)� v
n�1

" (s)
��ds (2.8)

+ sup
0tT

���
Z

t

0

G"(v
n

" )�G"(v
n�1

" )dW (s)
���.
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By Doob’s martingale inequality we obtain

P
h

sup
0tT

|v
n+1

" (t)� v
n

" (t)| > 2�n

i
 P

h
(

Z
T

0

��vn" (s)� v
n�1

" (s)
��ds)2 > 2�2n�2

i

+
h

sup
0tT

��
Z

t

0

G"(v
n

" )�G"(v
n�1

" )dW (s)
�� > 2�n�1

i

 22n+2
T

Z
T

0

E(
��vn" (s)� v

n�1

" (s)
��2)ds+ 22n+2

Z
T

0

E
⇥
|G"(v

n

" )�G"(v
n�1

" )|2
⇤
ds

 22n+2
c
2

(A.3)
(T + 1)

Z
T

0

c
n

(2.7)
t
n

n!
dt


(4c(2.7)T )

n+1

(n+ 1)!
, if c(2.7) � c(A.1)(T + 1).

Therefore, by the Borel-Cantelli lemma,

P
h

sup
0tT

|v
n+1

" (t)� v
n

" (t)| > 2�n for infinitely many n

i
= 0. (2.9)

Thus, for almost all ! there exists n0 such that

sup
0tT

|v
n+1

" (t)� v
n

" (t)| > 2�n for n � n0. (2.10)

Therefore the sequence

v
k

" (t) = v
(0)

" (t) +
k�1X

n=0

(vn+1

" (t)� v
n

" (t)) (2.11)

is uniformly convergent on [0, T ], for almost all !. Denote the limit by v"(t). Then v"(t) is t-

continuous for almost all ! since vk" (t) is t-continuous for all k. Moreover, v"(t, ·) is Ft-measurable

for all t, since v
k
" (t, ·) has this property for all k.

Next, note that for m > k � 0 we have by (2.7)

E[|vm" (t)� v
k

" (t)|
2]1/2 = kv

m

" (t)� v
k

" (t)kL2(P) =
��
m�1X

n=k

v
n+1

" (t)� v
n

✏ (t)
��
L2(P)



m�1X

n=k

��vn+1

" (t)� v
n

" (t)
��
L2(P)



1X

n=k

h(c(2.7)t)n+1

(n+ 1)!

i
1/2

! 0 as k ! 1. (2.12)

So {v
k
" (t)} converges in L

2(P) to a limit v̂"(t), say. A subsequence of vk" (t,!) will then converge

!-pointwise to v̂"(t,!) and therefore we must have v̂"(t) = v"(t) almost surely. It remains to

show that v(t) satisfies (2.1). For all k we have

v
k+1

" (t) = v0 �

Z
t

0

(vk" (s)� �)ds+

Z
t

0

G"(v
k

" )dW (s). (2.13)

Now v
k+1
" (t) ! v"(t) as k ! 1, uniformly in t 2 [0, T ] for almost all !. By (2.12) and the Fatou

lemma we have

E
h Z T

0

|v"(t)� v
k

" (t)|
2dt
i
 lim

m!1
supE

h Z T

0

|v
m

" (t)� v
k

" (t)|
2dt
i
! 0 (2.14)
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as k ! 1. It follows by Itô isometry that

Z
t

0

G"(v
k

" )dW (s) !

Z
t

0

G"(v")dW (s), (2.15)

and by the Hölder inequality that

Z
t

0

(vk" (t)� �)ds !

Z
t

0

(v✏(t)� �)ds, (2.16)

in L
2(P). Therefore, taking the limit of (2.13) as k ! 1 we obtain (2.1) for v"(t) where

t 2 [0, T ]. This proof works for Lipschitz noise coe�cient.

2.1.2 Lemma. A sequence v"(t) satisfying (2.1) has a subsequence (v"n)n2N converging uni-

formly to a continuous limit function v(t) which takes values in C0([0, T ], L2(⌦ ⇥ [0, 1])). The

limit v is an Itô solution of the following equation

dv(t) = �(v(t)� �)dt+ ⌘

p
v(t)dW (t). (2.17)

Proof. We sketch the proof here (as we are giving a similar proof in section 2.2). First we need to

establish some uniform bounds and continuity properties, in order to apply a weak convergence

theorem, which allows to extract a subsequence. Then we show that the subsequence converges

to a limit which is a solution to the original equation.

2.1.3 Theorem (Feller’s condition [Gikhman, 2011]). Let , �, ⌘ be positive constants and v0 >

0. If Feller’s condition 2� > ⌘
2 is satisfied then there exists a unique solution which is positive

on each finite time interval [0, t] to the following equation

dv(t) = �(v(t)� �)dt+ ⌘

p
v(t)dW (t), (2.18)

where W (t) is a Wiener process on a complete probability space.

Proof. Take " > 0 and denote T" = min{t : v(t)  "}. Then there exists a unique solution of

the equation (2.18) on the interval [0, T" ^ t]. We want to show that P{T" ^ t < t} ! 0 when

"! 0. Define a positive constant

r =
2� � ⌘

2

⌘2
. (2.19)
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Applying Itô formula for g(x) = x
�r we note that

v(T" ^ t)�r =v(0)�r +

Z
T"^t

0

r(v(s)� �)v(s)�(r+1)ds (2.20)

�

Z
T"^t

0

r⌘

p
v(s)v(s)�(r+1)dWs

+
1

2

Z
T"^t

0

r(r + 1)⌘2v(s)v(s)�(r+2)ds

= v
�r(0) + r

Z
T"^s

0

v(s)�rds�

Z
T"^s

0

r⌘v(s)�(r+1/2)dWs (2.21)

+

Z
T"^s

0

[
r(r + 1)

2
⌘
2
� r�]v(s)�(r+1)ds.

Bearing in mind (2.19) and taking expectation of the stochastic integral, we arrive at the estimate

E[v(T" ^ t)�r]  v(0)�r + r

Z
t

0

E[v(T" ^ s)�r]ds. (2.22)

Applying Gronwall’s inequality, we get estimate

E[v(T" ^ t)�r]  v(0)�r ert . (2.23)

Next using Chebyshev’s inequality we note that

P{T"  t} = P{v(T")
r
 "

r
} = P{v(T")

�r
� "

�r
}  "

r
v(0)�r ert . (2.24)

The right hand side tends to zero when " tends to zero for each t 2 [0, t]. Hence we proved

that the probability of v(t) becoming equal or less than an arbitrarily small positive threshold

is correspondingly small.

2.1.4 Remark. The motivation behind Theorem 2.1.3 is that the noise coe�cient, ⌘
p

v(t), pre-

vents negative solutions for a positive values of  and �. In other words, when the solution

is close to zero, the noise coe�cient also becomes very small, which turns the noise o↵. Con-

sequently, when the solution gets close to zero, its evolution becomes dominated by the drift

factor  and �.

2.2 A CIR type equation with di↵usion

Removing the quadratic nonlinearity term from (1.10a) leaves us with the following mean-

reverting heat equation, driven by a multiplicative noise, with Robin boundary conditions

@tu(x, t) +A(u(x, t)) = ⌘

p
u(x, t)@xtW + �, t � 0 x 2 (0, 1), (2.25a)

u(0, t) = �↵0@xu(0, t) for ↵0 � 0, (2.25b)
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u(1, t) = ↵1@xu(1, t) for ↵1 � 0, (2.25c)

u(0) = u0, (2.25d)

where A is linear operator given by

A� = �@xx�+ �. (2.26)

We recall that A : H1(0, 1) ! H
1(0, 1)0 satisfies the assumption in Lemma A.0.6 and hence �A

is the infinitesimal generator of the semigroup e�tA [Lord et al., 2014]. We show existence of a

mild solution of equations (2.25a)-(2.25d) by constructing a sequence of approximate solutions

(u")">0 which are the mild solution by making use of the contraction mapping theory. Then we

establish some uniform bounds and continuity properties, in order to apply a weak convergence

theorem, which allows to extract a subsequence. Finally, we show that the subsequence converges

to a limit which is a solution to the original equation. We suppress the dependence on space

and write u(t) for u(x, t).

2.2.1 Definition (Mild solution [Lord et al., 2014]). A predictable, L
2(0, 1)–valued process

{u"(·, t) : t 2 [0, T ]} is called a mild solution of the following SPDE

@tu"(t) = �A(u"(t)) +G"(u"(t))@xtW + �, (2.27)

if for all t 2 [0, T ]

u"(t) = e�tA
u0 +

Z
t

0

e�(t�s)A
G"(u"(s))@xsW + �

Z
t

0

e�(t�s)A
(0,1)(s)ds, (2.28)

where e�tA denotes the semigroup generated by �A.

To show existence of the mild solution (2.28), we use a contraction mapping theorem on the

following Banach space.

2.2.2 Definition. Let (⌦,F , {Ft}t�0,P) be a filtered probability space. H2,T is the set of

L
2–valued predictable processes u(t), 0  t 2 [0, T ], such that

kukH2,T := sup
0tT

ku(t)kL2(⌦⇥(0,1)) < 1. (2.29)

2.2.3 Theorem (Existence and uniqueness of the approximate mild solution [Lord et al., 2014]).

For each " > 0 and T > 0, there exists a mild solution u" in H2,T to (2.27). Furthermore, there

exists c(2.30) > 0 depending on T , such that

sup
t2[0,T ]

ku"(t)kL2(⌦⇥(0,1))  c(2.30)

⇣
1 + ku0kL2(⌦⇥(0,1))

⌘
. (2.30)
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Proof. For u" 2 H2,T , define the following process,

�(u")(t) := e�tA
u0 +

Z
t

0

e�(t�s)A
G"(u"(s))@xsW + �

Z
t

0

e�(t�s)A
(0,1)(s)ds. (2.31)

A fixed point u" of � is an L
2–valued predictable process and obeys (2.28) and is hence a

mild solution of (2.27). To show existence and uniqueness of the fixed point, we show � is a

contraction by applying the contraction mapping theorem H2,T to itself. First, we show � maps

into H2,T . �(u") is a predictable process because u0 is F0–measurable and the stochastic integral

is a predictable process. It remains to show the H2,T norm of �(u") is finite, let

I(t) = e�tA
u0,

II(t) =

Z
t

0

e�(t�s)A
G"(u"(s))@xsW,

III(t) = �

Z
t

0

e�(t�s)A
(0,1)(s)ds,

so that �(u") = I(t) + II(t) + III(t). Then,

k�(u")kH2,T = sup
0tT

k�(u")kL2(⌦⇥(0,1))

= sup
0tT

kI(t) + II(t) + III(t)kL2(⌦⇥(0,1)). (2.32)

We estimate each term separately,

kI(t)kL2(⌦⇥(0,1)) = k e�tA
u0kL2(⌦⇥(0,1))

 k e�tA
kL(L2(0,1))ku0kL2(⌦⇥(0,1))

 ku0kL2(⌦⇥(0,1))

< 1, (2.33)

where k e�tA
kL(L2(0,1))  1. Next by using a linear growth condition on G" and Itô isometry for

the di↵usion,

��II(t)
��2
L2(⌦⇥(0,1))

=
��
Z

t

0

e�(t�s)A
G"(u"(s))@xsW

��2
L2(⌦⇥(0,1))

=

Z
t

0

E
h�� e�(t�s)A

G"(u")
��2
L2(0,1)

i
ds (2.34)



Z
t

0

k e�(t�s)A
k
2

L(L2(0,1))
ds (2.35)

⇥ c(A.2)
2

⇣
1 + sup

0st

ku"(s)kL2(⌦⇥(0,1))

⌘
2

 c(2.37)
2
tc(A.2)

2

⇣
1 + sup

0sT

ku"(s)kL2(⌦⇥(0,1))

⌘
2

, (2.36)
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where we used a semigroup estimate for some c(2.37) > 0 as follows,

Z
T

0

k e�tA
k
2

L(L2(0,1))
dt  c(2.37)

2
T, (2.37)

where we use Exercise 10.8 in [Lord et al., 2014]. Hence,

��II(t)
��
L2(⌦⇥(0,1))

 c(2.37)t
1/2

c(A.2)

⇣
1 + sup

0sT

ku"(s)kL2(⌦⇥(0,1))

⌘
. (2.38)

Finally we have,

��III(t)
��
L2(⌦⇥(0,1))

=
���

Z
t

0

e�(t�s)A ds
��
L2(⌦⇥(0,1))

 �

Z
t

0

�� e�(t�s)A
��
L2(⌦⇥(0,1))

ds

 c(2.37)�T
1/2

.

(2.39)

Then, for u" 2 H2,T , all I, II and III terms are uniformly bounded over [0, T ] in L
2(⌦ ⇥ (0, 1))

and k�(u")kH2,T < 1. Hence � maps from H2,T into itself. For the contraction property, we

may show, owing to the Lipschitz properties of the mean reverting and the di↵usion terms that

k�(u")� �(v")k
2

L2(⌦⇥(0,1))

 2t

Z
t

0

c(A.1)
2
k(u"(s)� v"(s))k

2

L2(⌦⇥(0,1))
ds (2.40)

+ 2c(2.37)
2
tc(A.1)

2
ku"(s)� v"(s)k

2

H2,T
. (2.41)

Then,

k�(u")� �(v")k
2

H2,T
 2(T 2 + c(2.37)

2
T )c(A.1)

2
ku"(s)� v"(s)k

2

H2,T
. (2.42)

and � is a contraction on H2,T if (T 2 + c(2.37)
2
T ) < 1/2c(A.1)

2, which is satisfied for T small

enough. Repeating the argument on [0, T ], [T, 2T ], . . . , we find a unique mild solution for all

t > 0. Finally, we verify the bound (2.30) by making use of the linear growth condition, the

semigroup estimate (2.37) and Jensen’s inequality,

ku"(t)kL2(⌦⇥(0,1))  3
n
k e�tA

u0kL2(⌦⇥(0,1)) +
���

Z
t

0

e�(t�s)A ds
��
L2(⌦⇥(0,1))

+
��
Z

t

0

e�(t�s)A
G"(u"(s))@xsW

��
L2(⌦⇥(0,1))

o

 3
n
ku0kL2(⌦⇥(0,1)) + c(2.37)�T

1/2

+ c2.37T
1/2

c(A.2)

Z
t

0

(1 + ku"kL2(⌦⇥(0,1)))ds
o

 3
n
c+ c2.37T

1/2
c(A.2)(T +

Z
t

0

ku"kL2(⌦⇥(0,1))ds)
o
,
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which, by Gronwall’s Lemma A.0.4, implies the bound (2.30).

Theorem 2.2.3 shows that for all t > 0 there exists a unique u" satisfying (2.27). The

following theorem establishes regularity of the mild solution to the approximation solution u"

in time.

2.2.4 Theorem (Regularity in time [Lord et al., 2014]). Let u0 2 L
2(⌦,F0, D(A)), for T > 0

and u"(t) satisfy the mild solution (2.28). Then for each � 2 (0, 1
2
), there exists c(2.43) > 0 such

that

ku"(t2)� u"(t1)kL2(⌦⇥[0,1])  c(2.43)(t2 � t1)
�
, 0  t1  t2  T. (2.43)

Proof. Write u(t2)� u(t1) = I + II + III, where

I := (e�t2A� e�t1A)u0, (2.44)

II := �

⇣Z t2

0

e�(t2�s)A ds�

Z
t1

0

e�(t1�s)A ds
⌘
, (2.45)

III :=

Z
t2

0

e�(t2�s)A
G"(u"(s))@xsW �

Z
t1

0

e�(t1�s)A
G"(u"(s))@xsW. (2.46)

We estimate each term separately,

I = e�t1AA
�✏(e�(t2�t1)A�I)A✏

u0, (2.47)

from Lemma A.0.6(i). Using properties of the operator norm in Lemma A.0.5,

kIk  kA
�✏(I � e�(t2�t1)A)kL(L2(⌦⇥(0,1))kA

✏
u0k, (2.48)

and, by Lemma A.0.6(iii), there exists c(A.9) > 0 such that kIk  c(A.9)(t2 � t1)✏ku0k. For the

second term, write II = II1 + II2 for

II1 := �

Z
t1

0

(e�(t2�s)A
�e

�(t1�s)A)ds, II2 := �

Z
t2

t1

e�(t2�s)A ds. (2.49)

We estimate the norms of each term II1 and II2. For II1,

kII1k = k�

Z
t1

0

(e�(t2�s)A
� e�(t1�s)A)dsk (2.50)

 �

Z
t1

0

k e�(t2�s)A
� e�(t1�s)A

kL(L2(⌦⇥(0,1)))ds.

Note that e�(t2�s)A
� e�(t1�s)A = A

�(1�✏)(e�(t2�t1)A�I)A1�✏ e�(t1�s)A. Then

�

Z
t1

0

k e�(t2�s)A
� e�(t1�s)A

kL(L2(⌦⇥(0,1))ds (2.51)

 �

Z
t1

0

kA
�(1�✏)(e�(t2�t1)A�I)kL(L2(⌦⇥(0,1))

⇥ kA
1�✏ e�(t1�s)A

kL(L2(⌦⇥(0,1))ds

 �c(A.8)(t2 � t1)
1�✏

Z
t1

0

c(A.9)(t1 � s)�(1�✏)ds

 �c(A.8)c(A.9)

t
✏

1

✏
(t2 � t1)

1�✏
,
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where c(A.8), c(A.9) are constants given by Lemma A.0.6(ii)-(iii). Thus, for c(2.52) := �c(A.8)c(A.9)T
✏
/✏,

kII1k  c(2.52)(t2 � t1)
1�✏

. (2.52)

For II2,

kII2k = k�

Z
t2

t1

e�(t2�s)A dsk (2.53)

 �

Z
t2

t1

k e�(t2�s)A
kds

 �(t2 � t1).

Hence,

II  II1 + II2 (2.54)

 (c(2.52) + 1)(t2 � t1)
1�✏

.

Finally, for the stochastic term we write III = III1 + III2, for

III1 :=

Z
t1

0

(e�(t2�s)A
�e

�(t1�s)A)G"(u"(s))@xsW, (2.55)

III2 :=

Z
t2

t1

e�(t2�s)A
G"(u"(s))@xsW.

First, consider III1. By Itô isometry

E[kIII1k2] =
Z

t1

0

E
h
k(e�(t2�s)A

� e�(t1�s)A)G"(u"(s))k
2

L
2
0

i
ds. (2.56)

Using Lipschitz condition assumption on G", we obtain

E[kIII1k2] 
Z

t1

0

k(e�(t2�s)A
� e�(t1�s)A)k2

L(L2(0,1))

i
ds (2.57)

⇥ c
2

(A.2)

⇣
1 + sup

0st1

ku"(s)kL2(⌦⇥(0,1))

⌘
2

.

Note that

Z
t1

0

k(e�(t2�s)A
� e�(t1�s)A)k2

L(L2(0,1))
ds (2.58)

=

Z
t1

0

kA
1/2�✏ e�(t1�s)A

A
�1/2+✏(I � e�(t2�t1)A)k2

L(L2(0,1))
ds



Z
t1

0

kA
1/2�✏ e�(t1�s)A

k
2

L(L2(0,1))
kA

�1/2+✏(I � e�(t2�t1)A)k2
L(L2(0,1))

ds.

By Lemma A.0.6(iii), there exists c(A.9), c(2.37) > 0 such that

Z
t1

0

k(e�(t2�s)A
� e�(t1�s)A)k2

L(L2(0,1))
ds



⇣
c
2

(A.9)

t
2✏

1

✏

⌘
(c2

(2.37)
(t2 � t1)

1�2✏). (2.59)
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Then, with c(2.60) := c(A.9)c(2.37)c(A.2)T
✏
/
p
✏,

kIII1kL2(⌦⇥(0,1)) = E
h
kIII1k

2

i
1/2

(2.60)

 c(2.60)(t2 � t1)
1�2✏

⇣
1 + sup

0sT

ku"(s)kL2(⌦⇥(0,1))

⌘
.

Estimating E[kIII2k2], by Itô isometry and Lipschitz condition assumption on G" yield

E[kIII2k2] =
Z

t2

t1

E
h
k e�(t2�s)A

G"(u"(s))kL2
0

i
ds (2.61)



Z
t2

t1

k e�(t2�s)A
k
2

L(L2(0,1))
ds c

2

(A.2)

⇣
1 + sup

t1st2

ku"(s)kL2(⌦⇥(0,1))

⌘
2

.

By applying the semigroup estimate (2.37), we find c(2.37) > 0 such that for c(2.62) := c(2.37)c(A.2),

kIII2kL2(⌦⇥(0,1))  c(2.62)(t2 � t1)
1/2

⇣
1 + sup

0sT

ku"(s)kL2(⌦⇥(0,1))

⌘
, (2.62)

with c
2

(2.63)
:= (c(2.60) + c(2.62))(1 + c(2.30)), we find, using (2.30), that

kIIIkL2(⌦⇥(0,1))  kIII1kL2(⌦⇥(0,1)) + kIII2kL2(⌦⇥(0,1)) (2.63)

 c(2.63)(t2 � t1)
�

1(1 + ku0kL2(⌦⇥(0,1))).

Now we have,

ku(t2)� u(t1)kL2(⌦⇥(0,1))  kIkL2(⌦⇥(0,1)) + kIIkL2(⌦⇥(0,1)) + kIIIkL2(⌦⇥(0,1)).

Since D(A) is continuously embedded in H
1(0, 1), the estimates on the norms of I, II, and III

complete the time regularity of u✏.

The regularity in time condition given by (2.43) implies the equicontinuity of u" uniformly.

Where, for every ↵ > 0, there exists a ⇣ > 0 such that ku"(t1) � u"(t2)k < ↵ for all ↵ > 0 and

all t1, t2 2 [0, T ] such that |t1� t2| < ⇣. This fact implies the relative compactness of u" in H2,T .

Therefore, by Arzelà–Ascoli theorem, u" has a subsequence (u"n)n2N converging uniformly to a

continuous limit function u which takes values in C0([0, T ], L2(⌦ ⇥ [0, 1])). We claim that u is

a mild solution of the original equation (2.25a). In fact, uniform convergence implies that for

each % > 0 there is "0 such that for all " < "0 we have

ku" � ukL1(0,T,L2(⌦⇥(0,1))) < %. (2.64)

Therefore, taking the limit as " ! 0 over both sides of (2.28) once has, for the stochastic term
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with using Itô isometry

��
Z

t

0

e�(t�s)A(G"(u"(s))�G(u(s)))@xsW
��2
L1(0,T,L2(⌦⇥(0,1)))

(2.65)

=

Z
t

0

E
"
k e�(t�s)A(G"(u"(s))�G(u(s)))k2

L2(0,1)

#
ds



Z
t

0

k e�(t�s)A
k
2

L(L2(0,1))
dskG"(u"(s))�G(u(s))k2

L2(0,1)

 c(2.37)t
2
c(A.3),

which proves that u(t) is indeed a solution to (2.27).

2.3 Existence of solution to nonlinear SPDE

In this section, we establish the existence of solution to the stochastic PDE equation (1.10a)-

(1.10d). Although equation (1.10a) looks similar to the KPZ equation, (1.10a) has better sta-

bility properties thanks to a favourable sign of the gradient’s term (in the KPZ equation this

term drives the solution away from zero, while in our case it brings the solution closer to zero).

Thus we are able to follow a significantly more straightforward approach to obtain the exist-

ence. Nevertheless, proving the existence by the usual argument, i.e., fixed point theorem and

square root cut o↵ approach is not clear here as the quadratic nonlinearity |@xu|
2 term can

not be bounded in an appropriate sense. One way to establish the existence and regularity of

weak solutions of the SPDEs is by the use of Fourier–Galerkin method introduced in [Evans,

2013]. The idea of Fourier–Galerkin method is to build a weak solution of the SPDE (1.10a)

by constructing solutions of finite-dimensional approximations. That means that we approxim-

ate u : [0, T ] ! H
1(0, 1) by functions un : [0, T ] ! En that take values in a finite subspace

En ⇢ H
1(0, 1). To obtain un, we project the SPDE onto En, meaning that we require that un

satisfies the SPDE up to a residual which is orthogonal to En. This gives a system of SODEs

for un, which has a solution by standard SODE theory. Each un satisfies an energy estimate

which is uniform in n, which allows us to pass the limit as n ! 1 and obtain a convergence to

a general solution of the SPDE (1.10a). We start this section by introducing the definition of a

weak solution to SPDE’s.

2.3.1 Definition. (Weak solution) A predictable process {u(t) : t 2 [0, T ]} valued in a separable

Hilbert space (H, h·, ·i) is called a weak solution of the SPDE (1.10a) provided

1. u 2 L
2(0, T ;H) and u(0) = u0.
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2. For every v 2 H and almost every time 0  t  T ,

hu, vi � hu0, vi+

Z
t

0

a(u, v)ds+

Z
t

0

h|@xu|
2
, vids =

Z
t

0

h⌘
p
u@xsW

n
, vi+

Z
t

0

h�, vids,

(2.66)

where a(·, ·) is the bilinear form associated with A given by

a(u, v) =

Z
1

0

@xu@xv �

1X

x=0

1

↵x

u(x)v(x) + 

Z
1

0

uv, (2.67)

and the stochastic integral is given in the notation of (1.39) with q = I as follows

Z
t

0

h
p
u@xsW

n
, vi :=

Z
s

0

nX

i=1

h
p
u�i, vid�i(s). (2.68)

2.3.2 Construction of approximate solutions

We define an approximate solution in the notation of (2.66) by following [Evans, 2013]. Let

En be the k-dimensional subspace of H
1(0, 1) which is spanned by the first n vectors in an

orthonormal basis of L2(0, 1), which we may also assume to be an orthogonal basis of H1(0, 1),

i.e.,

En := h�1,�2 . . . ,�ni. (2.69)

We denote by Pn : L2(0, 1) ! En ⇢ L
2(0, 1) the orthogonal projection onto En defined by

hPn�,�i = h�,�i for all � 2 L
2(0, 1), (2.70)

where �k(x) are representing the eigenfunctions of the elliptic operator A subject to Robin

boundary conditions on (0, 1). We also denote by Pn the orthogonal projections Pn : H1(0, 1) !

En ⇢ H
1(0, 1) or Pn : H1(0, 1)0 ! En ⇢ H

1(0, 1)0, which we obtain by restricting or extending

Pn from L
2(0, 1) to H

1(0, 1) or H1(0, 1)0, respectively. Thus, Pn is defined on H
1(0, 1) by (2.70)

and on H
1(0, 1)0 by

hPnu, vi = hu|Pnvi for all v 2 L
2(0, 1), (2.71)

where h | i denotes the duality paring between H
1(0, 1) and H

1(0, 1)0.

2.3.3 Definition (approximate weak solution). A predictable En-valued process un : [0, T ] !

En is an approximate weak solution of the SPDE (1.10a) provided

1. un 2 L
2(0, T ;En) and un(0) = Pnu0,
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2. For every v 2 En and t almost every where in [0, T ]

hun(t), vi � hu0, vi+

Z
t

0

a(un, v)ds+

Z
t

0

h|@xun|
2
, vids =

Z
t

0

h⌘
p
un@xsW

n
, vi

+

Z
t

0

h�, vids. (2.72)

where the stochastic integral is given in the notation of (2.68). This is equivalent to the

condition that

dun =
⇥
�Anun + Pn(|@xun|

2) + �
⇤
dt+ Pn(⌘

p
undW (t)), un(0) = Pnu0 (2.73)

for almost every where in [0, T ], meaning that un takes values in En and satisfies the

projection of the PDE onto En. In this notation An : En ! En defined by

hAnw, vi = a(w, v), 8w, v 2 En. (2.74)

2.3.4 Existence of the approximate weak solution in a finite dimensional

space

Since every n-dimensional vector space is isomorphic to Rn, we can replicate the weak form

introduced (2.116) in Rn with a slight modifications. As we are seeking to use an energy estimate

in Theorem 2.3.5 by testing with un, we have to think very carefully in the sign of the quadratic

nonlinearity. In other words, if un turns to be negative it will leads to some complications. Thus

in order to apply an energy estimate and reserve the quadratic nonlinearity sign, we have to

slightly modify our model as follows

@tun = �Aun � Pn�"(un)|@xun|
2 + ⌘Pn

p
|un|@xsW

n + �, (2.75)

where n is fixed and �" is the sign function with a truncation at zero namely

�"(�) :=

8
><

>:

�

|�|
if |�| > 1

"
,

�

"
if |�|  1

"
.

(2.76)

The idea to prove the existence of the approximate weak solution in Rn is to expand � as a weak

solution satisfies (2.75) by its coe�cient

�(x, t) :=
nX

i=1

�i(t)�i(x), for all � 2 Rn (2.77)

then we define a truncation for the drift term and the noise coe�cient for each " � 1 such that

F"(�, t) :=

8
><

>:

F (�, t) if |�|  ",

F ("�/|"|, t) if |�| > ",

(2.78)
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and similarly for g"(�, t), where

F (�, t) := �A�� Pn�"(�)|@x�|
2 + � (2.79)

and,

g(�, t) := Pn⌘

p
|�| (2.80)

in addition to the truncation (2.78) on g we have another truncation at zero defined in (2.2).

Then F" and g" satisfy the local Lipschitz condition (A.10). Now we define a stopping time as

follows

⌧" = T ^ inf{t 2 [t0, T ] : |�(t)| � "}. (2.81)

Hence by Theorem A.0.7 there exists a unique solution �(t) to equation (2.75) inH2,T (Rn), where

the local Lipschitz condition guarantees that the solution exists in [0, ⌧ ], where ⌧ = lim"!1 ⌧",

but the monotone condition guarantees that ⌧ = T , i.e., the solution exists on the whole interval

[0, T ].

2.3.5 Theorem (Energy estimates). There exists c(2.82), constant in n, depending on T,#,, �

and c(1.47) where # > 0 such that

kunkL1(0,T ;L2(0,1)) + kunkL2(0,T ;H1(0,1)) + k@tunkL2(0,T ;H1(0,1)0)  c2.82 + ku0kL2(0,1), (2.82)

for n = 1, 2, . . . .

Proof. We multiply the equation (2.114) by a test function v = un, integrating over the domain,

applying the divergence theorem, use the boundary conditions and use the expectation to obtain

the following

E
"Z

1

0

@tunundx+

Z
1

0

Aunundx+

Z
1

0

|@xun|
2
undx

#
(2.83)

= E
"Z

1

0

p
unun@xtW

n +

Z
1

0

�undx

#
.

Integrating with respect to time and using the initial condition, we have

E
"
1

2

Z
1

0

u
2

n(x, t)dx+

Z
t

0

Z
1

0

|@xun|
2dxds+ 

Z
t

0

Z
1

0

u
2

ndxdt (2.84)

+

Z
t

0

Z
1

0

un|@xun|
2dxds

#
= E

"Z
t

0

Z
1

0

�undxds
| {z }

I

+

Z
t

0

Z
1

0

u
3/2

n @xtW
n +

1

2

Z
1

0

u
2

0dx

#
.
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For 0  t  T , we have from Cauchy inequality with # for I that
Z

t

0

Z
1

0

�undxds 
⇣
�

Z
t

0

Z
1

0

u
2

ndxds
⌘
1/2

(2.85)


T

4#

2
�
2 + #

Z
T

0

Z
1

0

u
2

ndxds


T

4#

2
�
2 + #T max

0tT

Z
1

0

u
2

ndx.

Thus, taking the supremum of (2.84) over t 2 [0, T ] and using this inequality with #T = 1/4 in

the result, we have

E
"
1

4
max
0tT

Z
1

0

u
2

n(x, t)dx+

Z
T

0

Z
1

0

|@xun|
2dxdt+ 

Z
T

0

Z
1

0

u
2

ndxdt (2.86)

+

Z
T

0

Z
1

0

un|@xun|
2dxdt

#

= E
"
T

4#

2
�
2 +

Z
T

0

Z
1

0

u
3/2

n @xtW
n

| {z }
II

+
1

2

Z
1

0

u
2

0dx

#
.

Finally, making use of Lemma 1.1.20 we can bound the stochastic term as follows,

II = E
h Z T

0

Z
1

0

u
3/2

n @xtW
n

i

 E
h Z T

0

ku
3/2

n kH1(0,1)k@xtW
n
kH1(0,1)0

i


3#

2
E
Z

T

0

ku
1/2

n |@xunk
2

L2(0,1)
dt+

1

2#
E
Z

T

0

k@xtW
n
k
2

H1(0,1)0 , (2.87)

where
R
T

0

R
1

0
|un||@xun|

2dxdt can be observed in the right hand side for a small #. It follows that

we have an a priori energy estimate of the form

kunk
2

L1(0,T ;L2(0,1))
+ kunk

2

L2(0,T ;H1(0,1))
 c2.82 + ku0k

2

L2(0,1)
, (2.88)

where c(2.82) := T

4#

2
�
2 + 3#

2
+

Tc(1.47)

2#
which is uniform in n, hence we can pass the limit as

k ! 1. To estimate @tun, we note that since @tun(t) 2 En

k@tun(t)kH1(0,1)0 = sup
v2En\0

h@tun(t)|viH1(0,1)0⇥H1(0,1)

kvkH1(0,1)

. (2.89)

From (2.114), (A.32) and Sobolev embedding theorem 1.1.7 we have

h@tun(t), vi  |a(un, v)|+ |h|@xun|
2
, vi|+ |h

p
un@xtW

n
, vi|+ |h�, vi|

 c(2.90)(kun(t)kH1(0,1) + k
p
un@xtW

n
kH1(0,1)0)kvkH1(0,1), (2.90)

for every v 2 H
1(0, 1), where we used Sobolev embedding theorem in one spacial dimension to

obtain a uniform bound in n for the quadratic nonlinearity term of un based on the following

lemma



31

2.3.6 Lemma. For un satisfies the energy estimate (2.82) for each n 2 N we have

Z
1

0

|@xun|
2
v  c(2.91)kvkH1(0,1). (2.91)

Proof. The energy estimate (2.82) implies the fact that

Z
T

0

Z
1

0

|@xun|
2
un  c(2.92), (2.92)

where c(2.92) is uniform in n. Theorem 1.1.7 states thatW 1
p (Rn) is embedded into the Hölder space

C
0

1�n/p
(Rn). In our case n = 1 and p = 2 which implies that H

1(0, 1) is continuously embed-

ded into C
0

1/2
(0, 1), which is turn continuously embedded into L

1(0, 1). Hence there exists a

constant c(2.93) such that

kvkL1(0,1)  c(2.93)kvkH1(0,1). (2.93)

Thus we have

Z
1

0

|@xun|
2
v  c(2.91)kvkH1(0,1), (2.94)

for each v 2 H
1(0, 1), where c(2.91) := c(2.92)c(2.93).

Now we integrate equation (2.90) with respect to time and using (2.82) in the result, we

obtain

k@tunk
2

L2(0,T ;H1(0,1)0)  c(2.90)(ku0k
2

L2(0,1)
+ k

p
un@xtW

n
kL2(0,T ;H1(0,1)0)). (2.95)

Equations (2.82) and (2.95) complete the proof of Theorem 2.3.5.

2.3.7 Convergence of the approximate solution

We obtain compactness from the Aubin–Lions theorem becauseH1(0, 1) ,! L
2(0, 1) ,! H

1(0, 1)0,

with the functions un : (0, T ) ! H
1(0, 1) such that {un} is uniformly bounded in L

2(0, T ;H1(0, 1))

and {@tun} is uniformly bounded in L
2(0, T ;H1(0, 1)0), then there is a subsequence which we

call again, without loss of generality, un that converges strongly in L
2(0, T ;L2(0, 1)). Moreover,

un converges weakly in L
2(0, T ;H1(0, 1)) and @tun converges weakly in L

2(0, T ;H1(0, 1)0). We

define the limit function as a generalised solution of the original equation. Like any other prop-

erty of equation (1.10a), showing that the limit function is a mild solution is not straight-forward.

Let us “claim” that the limit function is a mild solution in the following notation

un(t) = e�tA
Pnu0 +

Z
t

0

e�(t�s)A
Pn|@xun|

2ds+

Z
t

0

e�(t�s)A
Pn

p
un@xsW

n (2.96)

+ �

Z
t

0

e�(t�s)A
Pn (0,1)ds.
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In this section we are pointing out the di�culty behind this claim. The uniform convergence

that we obtained form Aubin–Lions theorem implies that for each ✏ > 0 we have

kun � ukL2(⌦,T ;H1(0,1)) < ✏. (2.97)

Then we can take the limit as n goes to zero over the sides of (2.96). However, this is NOT the

case, where the quadratic nonlinearity term is not easy to bound in the given norm i.e.

���
Z

T

0

Z
t

0

e�(t�s)A(Pn|@xun|
2
� |@xu|

2)dsdt
���
L2(⌦,T ;H1(0,1))

⌅ 1. (2.98)

Therefore we introduce the equivalence of weak and mild solutions in the Fourier–Galerkin space

En in the next remark.

2.3.8 Remark (Equivalence of weak and mild solutions in the Fourier–Galerkin space En).

For v 2 En ⇢ L
2(0, 1) we have hv|�ji = hv,�ji = 0 for v 6= 0 and j > n, where En =

span{�0, . . . ,�n}. Then we can redefine the semigroup operator that generated by �A to be in

the following form

e�At
v =

nX

j=0

e�jthv|�ji�j 2 En, (2.99)

Thus if un 2 En we have

hun(t), vi � hu0, vi+

Z
t

0

a(un, v)ds+

Z
t

0

h|@xun|
2
, vids =

Z
t

0

h
p
un@xsW

n
, vi (2.100)

+

Z
t

0

h�, vids,

for each n 2 N and v 2 En if and only if un satisfies the mild form

un(t) = e�tA
Pnu0 +

Z
t

0

e�(t�s)A
Pn|@xun|

2ds+

Z
t

0

e�(t�s)A
Pn

p
un@xsW

n (2.101)

+ �

Z
t

0

e�(t�s)A
Pn (0,1)ds.

2.4 Positivity of the approximate solution

In this section we show that the solution is positive by using a comparison-principle, where we

build a subsolution. The subsolution we build is positive thanks to Feller’s condition which

prevents the solution to be negative. Simply if two solutions one above the other, then they can

not a cross hence the solution stays positive.

2.4.1 Lemma (Comparison). Suppose three functions �, , f : [0, T ] ! R, satisfy �0 �  0 > 0

where,

�
0(t) + (�(t)� �)� ⌘

p
�(t)Ẇ (t) = f(t), (2.102a)
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and

 
0(t) + ( (t)� �)� ⌘

p
 (t)Ẇ (t) = 0, (2.102b)

it follows that �(t) �  (t) > 0 for all t.

Proof. The proof of the existence to (2.102a) in [0, T ] is similar to the existence proof for  (t)

in Lemma 2.1.1. We want to show that �(t) �  (t) holds where

�(t) = �0 �

Z
t

0

(�(s)� �)ds+

Z
t

0

⌘

p
�(s)dW (s) +

Z
t

0

f(s)ds, (2.103)

and

 (t) =  0 �

Z
t

0

( (s)� �)ds+

Z
t

0

⌘

p
 (s)dW (s). (2.104)

by the assumption we have �0 �  0 and let w(t) :=  (t)� �(t). Then

w(t) = w0 �

Z
t

0

w(s)ds+

Z
t

0

⌘(
p
 (s)�

p
�(s))dW (s)�

Z
t

0

f(s)ds, (2.105)

with initial value w0 =  0 � �0. We recall the Yamada–Watanabe result [Karatzas and Shreve,

1988], [Mytnik et al., 2006]. Taking h :=
p
x we know this

Z

(0,")

h
�2(x)dx = 1, 8" > 0. (2.106)

Then we have

��p(x, t)�
p
(y, t)

��  h(|x� y|), for every 0  t < 1. (2.107)

Because of the conditions imposed on the function h (i.e. h : [0,1) ! [0,1) strictly increasing

function with h(0) = 0 and (2.106)), there exists a strictly decreasing sequence {an}
1

n=0
✓ (0, 1]

with a0 = 1, limn!1 an = 0 and
R
an�1

an
h
�2(x)dx = n, for every n � 1. For each n � 1, there

exists a continuous function ⇢n on R with support in (an, an�1) so that 0  ⇢n(x)  (2/nh2(x))

holds for every x > 0, and
R
an�1

an
⇢n(x)dx = 1. Then the function

Mn(x) =

Z
[x]+

0

Z
y

0

⇢n(⇠)d⇠dy (0,1)(x), for x 2 R, n � 1. (2.108)

is even and twice continuously di↵erentiable, with |M
0
n(x)|  1 and limn!1Mn(x) = [x]+.

Furthermore, the sequence {Mn}
1

n=1
is nondecreasing. Then we apply by Itô lemma for w(t)

under the fact

E
Z

t

0

|

p
 (s)�

p
�(s)|2ds < 1, 0  t < 1. (2.109)
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as follows

Mn(w(t)) =

Z
t

0

M
0

n(w(s))
�
w(s)� f(s)

�
ds (2.110)

+
1

2

Z
t

0

M
00

n(w(s))
⇣p

 (s)�
p
�(s)

⌘
2

ds

+

Z
t

0

M
0

n(w(s))
⇣p

 (s)�
p
�(s)

⌘
dW (s).

The expectation of the stochastic integral in (2.110) is zero thanks to (2.109) we know it is a

martingale, i.e., E
h R

g(s)dW (s)
i
= 0, whereas the expectation of the second integral in (2.110)

is bounded above by

E
Z

t

0

M
00

n(w(s))|w(s)|ds 
2t

n
. (2.111)

Owing to the positivity of f ,we have E
⇥ R

f(s)ds
⇤
� 0. Thus we conclude that

EMn(w(t))  E
Z

t

0

M
0

n(w(s))
�
w(s)

�
ds+

t

n
(2.112)

 

Z
t

0

E[w(s)+]ds+
t

n
, t � 0, n � 1.

Now we can let n ! 1 to obtain E[w(s)+]  
R
t

0
E[w(s)+]ds, for 0  t < 1 and by the

Gronwall inequality, we have E[w(s)+] = 0 namely �(t) �  (t) a.s.

2.4.2 Theorem (Positivity of the solution). The limit function u defined as the limit of the

approximate solution un in section 2.3.7 L
2(0, T ;L2(0, 1)) is positive.

Since the L2 convergence of a positive sequence implies the positivity of the limit, it is enough

to show that the sequence of approximate solution un is positive.

2.4.3 Lemma (Positivity of solution). A function un that satisfies equation (2.116) for a fixed

n in the finite element space En defined in (2.69) is strictly positive.

Proof. Let ⇠(t) be a global minimum of un(·, t) which means �@xxun(⇠(t), t)  0, and define

⇢(t) := un(⇠(t), t), (2.113)

where un solves,

hun(t), vi � hu0, vi+

Z
t

0

a(un, v) +

Z
t

0

h|@xun|
2
, vi =

Z
t

0

h⌘
p
undW

n
, vi

+

Z
t

0

h�, vi for every v 2 En. (2.114)
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where W
n defined as a finite space–time white noise as follows

W
n(·, t) =

nX

i=1

�i(·)�i(t). (2.115)

Rewriting (2.114) in pointwise form we get

dun =
⇥
�Anun + Pn(|@xun|

2) + �
⇤
dt+ Pn(⌘

p
undW

n), un(0) = Pnu0 (2.116)

almost everywhere in [0, T ]. In this notation An : En ! En defined by

hAnw, vi = a(w, v), 8w, v 2 En, (2.117)

and Pn given in the notation of (2.71). Assume the process ⇠(t) defined above is an Itô drift-

di↵usion process that satisfies the stochastic di↵erential equation

d⇠(t) = µ(t)dt+ �(t)dB(t), (2.118)

where B(t) stands for Brownian motion and hence form Itô lemma we have

d

dt
⇢(t) = @tun(⇠(t), t) + µ(t)@xun(⇠(t), t) +

�
2(t)

2
@xxun(⇠(t), t) (2.119)

+ �(t)@xun(⇠(t), t)dB(t),

since ⇠(t) minimises un(·, t), @xun(⇠(t), t) = 0 thus

d

dt
⇢(t) = @tun(⇠(t), t) +

�
2(t)

2
@xxun(⇠(t), t), (2.120)

which implies

d

dt
⇢(t) = @xxun(⇠(t), t) (1 +

�
2(t)

2
)

| {z }
>0

�Pn(⇢(t)� �)� Pn |@xun(⇠(t), t)|
2

| {z }
=0

+Q(un)d eBn
, (2.121)

where Q(un) := ⌘Pn

p
un(⇠(t), t), and eBn is the linear combination given by

eBn(t) :=
nX

i=1

�i(⇠(t), t)d�i(t), (2.122)

note that eB is a Brownian motion because by Lévy’s Characterization Theorem [Mao, 2008], it

is a continuous local martingale. Thus,

@xxun(⇠(t), t) = d⇢(t) + (⇢(t)� �)�Q(un)d eBn
, (2.123)

d⇢(t) + (⇢(t)� �)�Q(un)d eBn
� 0, (2.124)

which implies that ⇢(t) is positive thanks to Theorem 2.4.1.

To conclude, as the Yamada andWatanabe theorem allows to considerably relax the Lipschitz

condition on the dispersion coe�cient in the one-dimensional case. We managed to show the

positivity of solution by comparison lemma with some weak minimum principle theorem inspir-

ation, thanks to Feller’s condition.
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Chapter 3

Numerical experiments

In this chapter we numerically approximate the weak solution to equations (1.10a)-(1.10d) with a

finite element method in space and Euler–Maruyama method in time. We start by approximating

the linear deterministic version of (1.10a), then we follow that by approximating the non-linear

deterministic version of (1.10a). We then add time dependent white noise and then close the

chapter by adding a space–time white noise.

3.1 Numerical approximation of the heat equation with a mean

reverting term

Considering the deterministic version of (1.10a) without the quadratic nonlinearity term

@tu(x, t) = �(u(x, t)� �) + @xxu(x, t) + f(x, t), on (0, 1)⇥ R+
, (3.1a)

@xu(0, t) = �u(0, t) + g, t � 0, (3.1b)

@xu(1, t) = u(1, t) + g, t � 0, (3.1c)

u(0) = u0, (3.1d)

where f(x, t) is a source function. We start by finding the weak form of (3.1a)-(3.1d). To do this

we multiply (3.1a) by a test function ' 2 H
1(0, 1), use integration by parts and the boundary

conditions (3.1b)-(3.1c) to obtain the weak form

h@tu,'i+ h@xu, @x'i+ hu� �,'i = hf,'i+
h
@xu(x)'(x)

i
1

0

for all ' 2 H
1(0, 1), (3.2)

A straightforward approach to solve a time-dependent PDEs is to first discretise the time deriv-

ative by a finite di↵erence approximation, which yields a sequence of stationary problems, and

then apply the finite element method to each. For a uniform time-step ⌧ := t
n+1

� t
n
> 0, for

all n � 0 and initial condition u0 2 R, the one-step-theta finite di↵erence scheme is defined by
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hu
n+1

,'i � hu
n
,'i

⌧
=
h
✓

⇣
� h@xu

n+1
, @x'i � hu

n+1
� �,'i+ hf

n+1
,'i (3.3)

+
h
@xu

n+1(x)'(x)
i
1

0

⌘

+
⇣
1� ✓

⌘⇣
� h@xu

n
, @x'i � hu

n
� �,'i+ hf

n
,'i

+
h
@xu

n(x)'(x)
i
1

0

⌘i
for all ' 2 H

1(0, 1), (3.4)

where ✓ 2 [0, 1] is implicitness parameters. Some typical choices of ✓ from the literature define

the following methods

✓ = 0 Forward Euler scheme explicit,

✓ = 1

2
Crank-Nicolson scheme implicit,

✓ = 1 Backward Euler scheme implicit.

In the heat equation case we know that the scheme is stable if ✓ � 1/2, for ✓ < 1/2, it is

conditionally stable, requiring a condition on the length of the time step [Thomée, 2006]. Hence,

for stability purposes, we take ✓ = 1 and use the implicit backward Euler scheme. The result is

a sequence of spatial (stationary) problems for u
n+1, assuming u

n is known from the previous

time step:

hu
n+1

,'i � hu
n
,'i =� ⌧h@xu

n+1
, @x'i � ⌧hu

n+1
� �,'i

+ ⌧hf
n+1

,'i+ ⌧

h
@xu

n+1(x)'(x)
i
1

0

, for all ' 2 H
1(0, 1). (3.5)

u
0 = u0, (3.6)

for n = 0, 1, 2, . . . . Given u
0, we can recursively solve for un. The resulting weak form arising

from formulation (3.5) can be conveniently written in the standard notation:

a(un+1
,') = Ln('), (3.7)

where,

a(un+1
,') =

Z
1

0

h
u
n+1 + ⌧(un+1

� �)
i
'dx+ ⌧

Z
1

0

@xu
n+1

· @x'dx, (3.8)

Ln(') =

Z
1

0

h
u
n + ⌧f

n+1

i
'dx+ ⌧

h
@xu

n+1(x)'(x)
i
1

0

. (3.9)

In addition to the variational problem to be solved in each time step, we also need to approximate

the initial condition (3.6). This equation can also be turned into a variational problem:

a0(u,') =

Z
1

0

u'dx, (3.10)

L0(') =

Z
1

0

u0'dx. (3.11)
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When solving this variational problem, u0 becomes the L
2 projection of the given initial value

u0 into the finite element space. The alternative is to construct u0 by just interpolating the

initial value u0; that is, if u0 =
P

n

j=1
U

0

j
�j , we simply set Uj = u0(xj , yj), where (xj , yj) are the

coordinates of node number j [Langtangen and Logg, 2017].

In summary, we need to finding u0 2 H
1(0, 1) such that a0(u0,') = L0(') holds for all

' 2 H
1(0, 1), and then find u

n+1
2 H

1(0, 1) such that a(un+1
,') = L

n+1(') for all ' 2 H
1(0, 1),

for n = 0, 1, 2, . . .

Finally, we discretise space so to have finitely many disjoint points and solve the approxim-

ation over the mesh that is created from the discretisation. Since we have one space dimension,

the idea is to partition [0, 1] into subintervals or elements and choose the finite element spaces

to be a set of piecewise linear functions that are defined on the elements. Let I = [0, 1], the

sequence of nodes of h such that

0 = x0 < x1 < · · · < xJ = 1. (3.12)

Define the partitions of I as &j = [xj�1, xj ], for j = 1, . . . , J . We set h := maxj=1,...,J |&j |. We

perform experiments with decreasing value of the mesh size h0 > h1 > h2 > . . . and monitor

the following error norms

EL2 := kEkL2(0,1), EL1 := kEkL1(0,1), (3.13)

where E stands for the error function given by E := I
h
u � u

h and I
h
u is the piecewise linear

interpolant of u. We quantify the error norms using the estimated order of convergence (eoc)

eocj :=
ln(Ei,j/Ei,j�1)

ln(hj/hj�1)
, (3.14)

where i corresponds to the error norm, j corresponds to the relative mesh size hj and Ei,j

corresponds to the error of the error norm i at the level j.

3.1.1 Test problem

Considering the initial data u0(x) = sin(⇡x) and the forcing f(x, t) = (e�⇡
2
t sin(⇡x)� �) then

we see that the solution to (3.1a)-(3.1d) is given by

u = e�⇡
2
t sin(⇡x), (3.15)

with u(x, t) = �⇡
2 e�⇡

2
t sin(⇡x) on the boundaries. Comparing the exact and numeric solutions

for di↵erent levels of mesh sizes namely h0 = 1/32, h1 = 1/64, h2 = 1/128, and h3 = 1/256

suggests some type of convergence at the final time in the following figure
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x

u

Tables 3.1-3.2 below are showing the error norms for (3.1a)-(3.1d) and (3.15). The error

obtained by taking the uniform time-step ⌧ to be equal to h
2,  = 0.25 and � = 0.25 on time

interval [0, 0.5] for 1024 time steps is shown in Table 3.1. The error obtained by taking ⌧ = h
2,

 = 1.0 and � = 0.5 on the time interval [0, 0.5] for 1024 time steps is shown in Table 3.2.

Finally in Table 3.3 we obtain the error norms for (3.1a)-(3.1d) and (3.15) by taking ⌧ = h,

 = 1.0 and � = 0.5 on the time interval [0, 0.5] for 1024 time steps. All the results exhibit the

order of convergence expected from the theory for parabolic-type partial di↵erential equations.

J EL2 eoc1 EL1 eoc2

32 2.359⇥ 10�3 - 2.797⇥ 10�3 -

64 5.897⇥ 10�4 2.000 514 29 1.735⇥ 10�3 2.001 834 65

128 1.474⇥ 10�4 2.000 128 75 4.337⇥ 10�4 2.000 458 76

256 3.685⇥ 10�5 2.000 032 61 1.084⇥ 10�4 2.000 114 86

512 9.213⇥ 10�6 2.000 008 16 2.710⇥ 10�5 2.000 027 92

Table 3.1: Error norms for ⌧ = h
2,  = 0.25 and � = 0.25.
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J EL2 eoc1 EL1 eoc2

32 1.791⇥ 10�3 - 2.123⇥ 10�3 -

64 4.479⇥ 10�4 1.999 608 83 5.310⇥ 10�4 1.999 401 61

128 1.119⇥ 10�4 1.999 902 52 1.327⇥ 10�4 1.999 850 71

256 2.799⇥ 10�5 1.999 975 62 3.319⇥ 10�5 1.999 962 67

512 6.999⇥ 10�6 2.000 000 31 8.298⇥ 10�6 1.999 997 07

Table 3.2: Error norms for ⌧ = h
2,  = 1.0 and � = 0.5.

J EL2 eoc1 EL1 eoc2

32 1.791⇥ 10�3 - 2.123⇥ 10�3 -

64 1.087⇥ 10�3 7.198⇥ 10�1 1.289⇥ 10�3 7.196⇥ 10�1

128 5.917⇥ 10�4 8.781⇥ 10�1 7.015⇥ 10�4 8.781⇥ 10�1

256 3.078⇥ 10�4 9.427⇥ 10�1 3.649⇥ 10�4 9.427⇥ 10�1

512 1.569⇥ 10�4 9.722⇥ 10�1 1.860⇥ 10�4 9.722⇥ 10�1

Table 3.3: Error norms for ⌧ = h,  = 1.0 and � = 0.5.

3.1.2 Numerical approximation of PDE with quadratic nonlinearity

In this section we find the numerical solution of the deterministic part of (1.10a) with quadratic

nonlinearity i.e.

@tu(x, t) = �(u(x, t)� �) + @xxu(x, t)� |@xu(x, t)|
2 + f(x, t), on (0, 1)⇥ R+

, (3.16a)

@xu(0, t) = �u(0, t) + g, t � 0, (3.16b)

@xu(1, t) = u(1, t) + g, t � 0, (3.16c)

u(0) = u0. (3.16d)

Using the discretisation process outlined in the previous section, noting the introduction of the

non-linear gradient term, we use the following Implicit-Explicit scheme

a(un+1
,') =

Z
1

0

h
u
n+1 + ⌧(un+1

� �)
i
'dx+ ⌧

Z
1

0

@xu
n+1

· @x'dx, (3.17)

Ln(') =

Z
1

0

h
u
n + ⌧(@xu

n
· @xu

n) + ⌧f
n+1

i
'dx+ ⌧

h
@xu

n+1(x)'(x)
i
1

0

, (3.18)
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where we deal with the quadratic nonlinearity by using the known solution u
n from the previous

time step , i.e., (@xun · @xu
n). Using the same exact solution (3.15) with righthand side given

by:

f(x, t) = (e�⇡
2
t sin(⇡x)� �) + |⇡e

�⇡
2
t cos(⇡x)|2, (3.19)

and Robin boundary with g(t) = ⇡e
�⇡

2
t to calculate the error norms in the following tables.

yields the following graph of the exact and the numeric solutions for di↵erent levels of mesh

sizes namely h0 = 1/32, h1 = 1/64, h2 = 1/128, h3 = 1/256, h4 = 1/512 and h5 = 1024

x

u

As we can see from the figure above our scheme is generating negative values for the solution

even if the Feller condition 2� > 0 is met 1. This is because the Feller condition alone is not

enough to guarantee positivity of the discrete time processes [Rouah, 2013]. For our purpose

the negative values are floored at zero i.e. we replace u(t) by u+(t) = max(0, u(t)) everywhere

in the discretisation.

Tables 3.4-3.5 below are showing the error norms for (3.16a)-(3.16d) and (3.15). The error

obtained by taking ⌧ = h
2,  = 0.25 and � = 0.25 on time interval [0, 0.5] for 1024 time steps

is shown in Table 3.4. The error obtained by taking ⌧ = h
2,  = 1.0 and � = 0.5 on the time

interval [0, 0.5] for 1024 time steps is shown in Table 3.5. Finally in Table 3.6 we obtain the

error norms for (3.16a)-(3.16d) and (3.15) by taking ⌧ = h,  = 1.0 and � = 0.5 on the time

interval [0, 0.5] for 1024 time steps. All the results exhibit the order of convergence expected

from the theory for parabolic-type partial di↵erential equations.

1Note that Feller’s condition is given by 2� > ⌘, however as we are working in a deterministic case we are

taking ⌘ = 0
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J EL2 eoc1 EL1 eoc2

32 1.358⇥ 10�2 - 1.613⇥ 10�2 -

64 3.383⇥ 10�3 2.005 201 57 4.020⇥ 10�3 2.005 154 37

128 8.451⇥ 10�4 2.001 308 17 1.00⇥ 10�3 2.001 296 55

256 2.112⇥ 10�4 2.000 327 46 2.509⇥ 10�4 2.000 324 57

512 5.280⇥ 10�5 2.000 082 24 6.274⇥ 10�5 2.000 081 51

Table 3.4: Error norms for ⌧ = h
2,  = 0.25 and � = 0.25.

J EL2 eoc1 EL1 eoc2

32 4.622⇥ 10�3 - 5.491⇥ 10�3 -

64 1.154⇥ 10�3 2.001 071 28 1.372⇥ 10�3 2.000 915 75

128 2.886⇥ 10�4 2.000 271 08 3.429⇥ 10�4 2.000 232 27

256 7.215⇥ 10�5 2.000 067 98 8.573⇥ 10�5 2.000 058 29

512 1.803⇥ 10�5 2.000 014 55 2.143⇥ 10�5 2.000 012 13

Table 3.5: Error norms for ⌧ = h
2,  = 1.0 and � = 0.5.

J EL2 eoc1 EL1 eoc2

32 5.491⇥ 10�3 - 4.622⇥ 10�3 -

64 2.788⇥ 10�3 9.779⇥ 10�1 2.346⇥ 10�3 9.782⇥ 10�1

128 1.404⇥ 10�3 9.893⇥ 10�1 1.181⇥ 10�3 9.894⇥ 10�1

256 7.047⇥ 10�4 9.948⇥ 10�1 5.930⇥ 10�4 9.948⇥ 10�1

512 3.529⇥ 10�4 9.974⇥ 10�1 2.970⇥ 10�4 9.974⇥ 10�1

Table 3.6: Error norms for ⌧ = h,  = 1.0 and � = 0.5.

3.2 Numerical approximation of SPDE driven by time white

noise

In this section we examine the numerical approximation of the following equation:

@tu(x, t) = �(u(x, t)��)+@xxu(x, t)� |@xu(x, t)|
2+⌘

p
u(x, t)dW (t), on (0, 1)⇥R+

, (3.20a)

@xu(0, t) = �u(0, t), t � 0, (3.20b)
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@xu(1, t) = u(1, t), t � 0, (3.20c)

u(0) = u0, (3.20d)

where dW (t) is Wiener process depend on time with zero initial value. We use the Implicit-

Explicit scheme method to discretise in time as follows:

u
n+1

� u
n = �⌧(un+1

� �) + ⌧@xxu
n+1

� ⌧(@xu
n
· @xu

n) + ⌧⌘

p

un�W
n
, (3.21)

where �W
n := W (tn+1)�W (tn) (see [Lord et al., 2014] for SDEs Euler–Maruyama). The result

is a sequence of spatial (stationary) problems for un+1, assuming u
n is known from the previous

time step:

u
0 = u0, (3.22)

u
n+1 = u

n
� ⌧(un+1

� �) + ⌧@xxu
n+1

� ⌧(@xu
n
· @xu

n) + ⌘

p

un�W
n
, (3.23)

for n = 0, 1, 2, . . . . Given u
0, we can solve for u

0
, u

1
, u

2
, and so on. We use a finite element

method to solve (3.22) and (3.23). This requires turning the equations into weak forms. We

multiply by a test function ' 2 H
1(0, 1) and integrate,

Z
1

0

u
n+1

'dx =

Z
1

0

⇣
u
n
� ⌧(un+1

� �) + ⌧@xxu
n+1

� ⌧(@xu
n
· @xu

n) + ⌘

p

un�W
n

⌘
'dx.

(3.24)

The resulting weak form arising from formulation (3.23) can be conveniently written in the

standard notation

a(un+1
,') = Ln('), (3.25)

where,

a(un+1
,') =

Z
1

0

h
u
n+1 + ⌧(un+1

� �)
i
'dx+ ⌧

Z
1

0

@xu
n+1

· @x'dx (3.26)

Ln(') =

Z
1

0

(un � ⌧(@xu
n
· @xu

n) + ⌘

p

un�W
n)'dx+ ⌧

h
@xu

n+1(x)'(x)
i
1

0

. (3.27)

In addition to the variational problem to be solved in each time step, we also need to approximate

the initial condition (3.22). This equation can also be turned into a variational problem:

a0(u,') =

Z
1

0

u'dx, (3.28)

L0(') =

Z
1

0

u0'dx, (3.29)

we need to solve the following sequence of variational problems, to compute the finite element

solution to our equation: find u0 2 H
1(0, 1) such that a0(u0,') = L0(') holds for all ' 2
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H
1(0, 1), and then find u

n+1
2 H

1(0, 1) such that a(un+1
,') = Ln(') for all ' 2 H

1(0, 1),

n = 0, 1, 2, . . . .

Finally, we discretise space so to have finitely many disjoint points and solve the approxim-

ation over the mesh that is created from the discretisation. Since we have one space dimension,

the idea is to partition [0, 1] into subintervals or elements and choose the finite element spaces

to be a set of piecewise linear functions that are defined on the elements. Let I = [0, 1], the

sequence of nodes of h such that

0 = x0 < x1 < · · · < xJ = 1. (3.30)

Define the partitions of I as &j = [xj�1, xj ], for j = 1, . . . , J . We set h := maxj=1,...,J |&j |. We

perform experiments with decreasing value of the mesh size h0 > h1 > h2 > . . . . We apply

Monte Carlo simulations to capture the expectation of the stochastic process u, we have to

repeat the algorithm as many times as necessary.

We run a Monte Carlo simulation with number of samples N = 0, 50 and 1000 with the

equation parameters given by  = 1.0, � = 0.5, ⌘ = 0.05 and mesh refinement level J = 512 on

time interval [0, 0.5].
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(a) One realisation (b) Average of 50 realisations

(c) Average of 1000 realisations

Figure 3.1: Di↵erent realisations of an approximated solution to the nonlinear SPDE driven by

time white noise

We can see from the graphs above how almost each path of the solution u represent a convex

shape or in other word a ‘smile‘. The solution start from the initial value zero, going up very fast

as the long term mean controls overall level of skew. As we increase the Monte Carlo simulation

numbers the noise smoothing out.

Repeating the same experiment for a higher mesh refinement level we see that from Figure

3.2 the noise becomes more rough, however the convex shape for almost each path still present.
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(a) mesh refinement level J = 2048 (b) mesh refinement level J = 8192

Figure 3.2: Di↵erent mesh refinement levels of an approximated solution to the nonlinear SPDE

driven by time white noise

In order to see how big is influence of the equation parameters , � and ⌘, we run a new

simulation of one sample with  = 10, � = 1 and ⌘ = 4 for the same time interval t 2 [0, 0.5]

and mesh refinement level J = 512. We can see from Figure 3.3 that the volatility ⌘ controls

convexity of the skew , i.e., high volatility generates more convexity.

Figure 3.3: Equation parameters  = 10, � = 1 and ⌘ = 4.

3.3 Numerical approximation of SPDE driven by space–time

white noise

Repeating the previous stochastic experiment for space–time white noise

@tu(x, t) = �(u(x, t)��)+@xxu(x, t)�|@xu(x, t)|
2+⌘

p
u(x, t)@x,tW (t), on (0, 1)⇥R+

, (3.31a)
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@xu(0, t) = �u(0, t), t � 0, (3.31b)

@xu(1, t) = u(1, t), t � 0, (3.31c)

u(0) = u0, (3.31d)

We use the Implicit-Explicit scheme method to discretise in time as follows:

u
n+1

� u
n = �⌧(un+1

� �) + ⌧@xxu
n+1

� ⌧(@xu
n
· @xu

n) + ⌘

p

un�W
n
, (3.32)

where �Wn ⇠ N(0, (⌧/h)I) i.i.d. The result is a sequence of spatial (stationary) problems for

u
n+1, assuming u

n is known from the previous time step:

u
0 = u0, (3.33)

u
n+1 = u

n
� ⌧(un+1

� �) + ⌧@xxu
n+1

� ⌧(@xu
n
· @xu

n) + ⌘

p

un�W
n
, (3.34)

for n = 0, 1, 2, . . . . Given u
0, we can solve for u

0
, u

1
, u

2
, and so on. We use a finite element

method to solve (3.33) and (3.34). This requires turning the equations into weak forms. We

multiply by a test function ' 2 H
1(0, 1) and integrate,

Z
1

0

u
n+1

'dx =

Z
1

0

⇣
u
n
� ⌧(un+1

� �) + ⌧@xxu
n+1

� ⌧(@xu
n
· @xu

n) + ⌘

p

un�W
n

⌘
'dx.

(3.35)

The resulting weak form arising from formulation (3.34) can be conveniently written in the

standard notation

a(un+1
,') = Ln('), (3.36)

where,

a(un+1
,') =

Z
1

0

h
u
n+1 + ⌧(un+1

� �)
i
'dx+ ⌧

Z
1

0

@xu
n+1

· @x'dx (3.37)

Ln(') =

Z
1

0

(un � ⌧(@xu
n
· @xu

n) + ⌘

p

un�W
n)'dx+ ⌧

h
@xu

n+1(x)'(x)
i
1

0

. (3.38)

We run a Monte Carlo simulation with number of samples N = 0, 10, 1000 with the equation

parameters given by  = 1.0, � = 0.5, ⌘ = 0.05 and mesh refinement level J = 512 on time

interval [0, 0.5].
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(a) One realisation (b) Average of 10 realisations

(c) Average of 1000 realisations

Figure 3.4: Di↵erent realisations of an approximated solution to the nonlinear SPDE driven by

space–time white noise

3.4 Conclusions

In this chapter we introduced a numerical approximations based on finite element method in

space and Euler–Maruyama in time. We obtained order of convergence expected from the theory

for parabolic-type partial di↵erential equations for the deterministic cases. One obstacle we faced

in this chapter is the fact that our scheme may break down due to negative values being supplied

to the square root function even if the Feller condition is met. This would be come a complex

number and this would not make sense in modelling an asset price. A natural fix, is to take the

absolute value however this reflects a large negative variance to a large positive variance which

it its turn transforms realisations of low volatility into high volatility. Therefore using a full

truncation scheme, where the negative values are floored at zero is more safer. In the further

research we would like to understand how we can show convergence to the exact solution in the
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stochastic cases.
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Chapter 4

Applications to financial options

4.1 Option contracts

A financial options contract is an agreement between a buyer and seller, written on underlying

asset. The contract gives the purchaser of the option the right to buy or sell the asset on a

specified price (exercise or strike price) on or before specified date (expiration date). Options

contracts are often used in securities, commodities, and real estate transactions. A call option

gives the holder the right to buy an asset at a specified strike price on or before the option’s

expiration date. The seller of the call, called the writer, is obligated to deliver the assets at the

strike price if the option is exercised. A put option gives the holder the right to sell an asset at

a specified strike price on or before the option’s expiration date. The writer of a put option is

obligated to receive those assets and to deliver the required cash. An option is said to be in, at

or out of-the-money according to the following table.

Options Classifica-

tions

Call Options Put Options

At-the-money Asset price equal to Strike

price

Asset price equal to Strike

price

In-the-money Asset price greater than

Strike price

Asset price less than Strike

price

Out-of-the-money Asset price less than Strike

price

Asset price greater than

Strike price

Table 4.1: Option Classifications

An option is European if it can be exercised only on the expiration date. It is American if it

can be exercised at any time on or before the expiration date.
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4.1.1 Option price models

“If options are correctly priced in the market, it should not be possible to make sure profits by

creating portfolios of long and short positions in options and their underlying stocks. Using this

principle, a theoretical valuation formula for options is derived“ as stated by [Black and Scholes,

1973]. Based on this principle, academic researchers used several models to calculate the option

prices theoretically such as the binomial options pricing model (BOPM) which was developed

by Cox, Ross and Rubinstein in 1979 and the continuous PDE Black–Scholes pricing model.

Where these models are dependent on certain values specified and assumed to be known at the

present. Most of these values represent the option contract terms like underlying price, strike

price and time to maturity along with quantities derived from the price movement themselves

such as volatility. Among these, the Black–Scholes pricing model is considered as the most

widely used model for option pricing because of its simplicity and explicitly calculable formulas.

It is used to calculate the theoretical value of European options. This raises the next question,

in the real financial world: do people rely on Black–Scholes formula for pricing options and; if

so, how do they adjust parameters involved in the calculation [Wilmott et al., 2010], [Capiński

and Zastawniak, 2011].

4.1.2 Black–Scholes pricing model

To derive Black–Scholes PDE for option values on a non-dividend paying assets we assume that:

1. The asset price has a log–normal dynamics (its log is Gaussian). Denote the asset price

process by S(t). The proportional change of the asset over small amount of time dt has a

drift µ and stochastic component satisfying the following stochastic di↵erential equation

dS(t) = µS(t)dt+ �S(t)dW (t), (4.1)

where,

• W (t) is a Wiener process.

• µ is the constant drift of the asset returns.

• � is the constant volatility of the asset price.

2. The interest rate r is known as a constant over time.

3. The option is European style, that is it can only be exercised at the expiration date.

4. Trading the asset can be in continuous portions and short selling is permitted.
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Under these conditions with the absence of taxes and the transaction fees, the value of the

European option depends only on the stock price S(t) and time t. Suppose V (S, t) the option

value at time t. By Itô ’s Lemma we obtain:

dV (S, t) =
⇣
µS

@V

@S
+
@V

@t
+

1

2
�
2
S
2
@
2
V

@S2

⌘
dt+ �S

@V

@S
dWt, where, 0 < S < 1, 0 < t < T.

(4.2)

considering a self-financing trading strategy where at each time t we hold xt units of the cash

account and yt units of the stock. Then Pt, the time t value of this strategy satisfies

Pt = xtBt + ytSt (4.3)

We choose xt and yt in such a way that the strategy replicates the value of the option. The

self-financing assumption implies that

dPt = xtdBt + ytdSt

= rxtBtdt+ yt(µStdt+ �StdBt)

= (rxtBt + ytµSt)dt+ yt�StdWt (4.4)

any gains or losses on the portfolio are due entirely to gains or losses in the underlying securities,

i.e. the cash-account and stock, and not due to changes in the holdings xt and yt. Returning to

our derivation, we can equate terms in (4.2) with the corresponding terms in (4.4) to obtain

yt =
@V

@S
(4.5)

rxtBt =
@V

@t
+

1

2
�
2
S
2
@
2
V

S2
(4.6)

If we set V0 = P0, the initial value of our self-financing strategy, then it must be the case that

Vt = Pt for all t since V and P have the same dynamics. This is true by construction after we

equated terms in (4.2) with the corresponding terms in (4.4). Substituting (4.5) and (4.6) into

(4.3) we obtain

@V (S, t)

@t
+ rS

@V

@S
+

1

2
�
2
S
2
@
2
V

@S2
� rV = 0. (4.7)

The partial di↵erential equation (4.7) is known as the Black–Scholes PDE. Notice that Black–

Scholes PDE does not contain the growth rate µ of the underlying share. Hence the price of

the options will be independent of how rapidly or slowly an asset grows. Solving the Black–

Scholes PDE (4.7) for V with final and boundary conditions we obtain the Black–Scholes formula

for call or put European options:

C(S(t), t) = SN(d1)�K e�r(T�t)
N(d2), (4.8)

P (S(t), t) = K e�r(T�t)
N(d2)� SN(d1), (4.9)
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where

d1 =
log(S/K) + (r + �

2
/2)(T � t)

�
p
T � t

,

d2 =
log(S/K) + (r � �

2
/2)(T � t)

�
p
T � t

.

In this formula N(d) is the probability that a standard normal random variable is less than

d. N(d1) and N(d2), both positive but less than one, represent the number of shares and the

amount of debt in a portfolio that exactly replicate the price of the option. the Black?Scholes

call option price is denoted by C and the put option price by P , K stands for the option’s strike

price and T stands for the option’s time to maturity.

4.1.3 Data analysis

In order to study options volatility from real world data, we started by creating a MySQL

database Option_Historical_Data. It contains all the options information that we need to

compute the Black–Scholes implied volatility (the volatility input to the Black–Scholes formula

that generates the market price) and examine the volatility surface that is the collection of all

such implied volatilities (UnderlyingSymbol, Underlying Price, Type , Expiration, DataDate,

Strike, Last, Bid, Ask, Volume, OpenInterest, IV, Delta, Gamma, Theta, Vega, ..etc) from 2002

until 2016. These financial informations were collected from trusted sources as CSV files and

have been converted to tables into MySQL database using Python scripts. In this project S&P

500 (The Standard & Poor’s 500) has been selected as the object of study for several reasons.

Firstly, S&P 500 is the most important indicators of US stock market performance measurement.

It is based on the market capitalisation and share prices of 500 large companies. Moreover, the

S&P 500 (SPY) exchange-traded fund’s contracts are the most widely traded, seeing more than

1.2 million shares change hands each session. In addition, S&P 500 index SPX can be traded

likewise SPY as the underlying asset for financial options. SPX options trade in a very active

market while options on some other indices are much less traded. The following table and figure

show the trading volume (number of shares that traded during a given day) comparison between

SPY and SPX.
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Period SPX trading

volume

SPY trading

volume

volume

ratio

SPY/SPX

Pre-Crisis (2005 - Bear Ste-

arns Feb 2008)

330,932,748 282,248,736 0.85

During Crisis (Bear Stearns

march 2008 - 2009)

313,390,032 618,345,723 1.97

After Crisis 2010-2015 1,148,879,589 3,431,624,193 2.98

Overall 1,793,202,369 4,332,218,652 2.41

Table 4.2: Volume comparison between SPY and SPX

Figure 4.1: Trading volume of SPX, SPY

As shown in Table 4.2 numbers are impressive where the SPY contracts are traded far more

than the SPX’s. This is evident in the after Bear Stearns period 2010-2015. Thus we are going

to choose SPY and its derived options for our investigation.

4.1.4 Black–Scholes implied volatility

The Black–Scholes formulas given by (4.8) are used to determine the option call and put prices

for known asset price, strike price, option time to maturity, risk-free rate and some value of �,

where � is the volatility (the degree of variation of a trading price series over time as measured by

the standard deviation of logarithmic returns). The value of � that makes the price, determined

by the Black–Scholes formula, equal to the current market price is called the implied volatility.

In other words, � is the volatility that, when substituted into the Black-Scholes formula with
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the other parameters held fixed, gives the market price C as a function of �.

V (S,K, T ) = VBS(S,K,�BS(S,K, T ), T ), (4.10)

where, V (S,K, T ) represents the current market price and VBS is the corresponding Black–

Scholes pricing model for call or put options. In order to determine the implied volatility, we

can use interpolation to invert the Black–Scholes formula to obtain � as a function of the market

price. Quite simply, we set the Black–Scholes pricing formulas equal to the market observed price

and we use a root finding algorithm to find the volatility parameter which sets the di↵erence

(between model and market price) to zero. In our data, C, P , S, K, T represents a list of

the Black–Scholes parameters as we have amount of options traded every day. We computed

the implied volatility by applying Brent’s algorithm1 in order to find the roots of the Black–

Scholes model. Next, we give an example on the fact that di↵erent strike prices can generate

di↵erent implied volatility when the asset price and time to maturity are the same. In this

example the market price is given by the Mid price which is the average between the demand

and o↵er prices

Strike price Mid price Implied

volatility

150.0 51.29 1.4461199

160.0 41.3 1.1764081

182.0 19.335 0.6079909

184.0 17.33 0.5524254

186.0 15.34 0.5024264

193.0 8.49 0.3454955

194.0 7.5500 0.3272877

195.0 6.635 0.3113043

Table 4.3: Computing the Black–Scholes implied volatility on the 4th of January 2016

As we can see from the table above although the asset price is the same for all options S =

201.01992 and same time to maturity 4 days to expiration with constant rate r = 0.0034 we

obtain a di↵erent implied volatilities

1root-finding algorithm combining the bisection method, the secant method and inverse quadratic interpolation
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4.1.5 Uniqueness of the implied volatility

One may ask, is there always a unique solution �(K,T ) satisfies equation (4.10)? To answer

this question we would like to look at the behaviour of F (�), where

F (�) = VBS(S,K,�BS(S,K, T ), T )� V (S,K, T ). (4.11)

As volatility represents the price movements, it can reach values from 0 to 1 only. In

particular, if an option has a constant price, then its volatility would be zero, where the lowest

possible volatility option is zero volatility. Hence, the volatility domain can be given from 0

to 1. Taking for example, a call option with underlying asset price S = 201.0192, strike price

K = 150, interest rate r = 0.0034, time to maturity T = 0.01095, C = 51.29 and plot its F (�)

when the volatility is changing from 0 to 100.

Figure 4.2: Relationship between volatility and option price

Moreover, we know that the option price is going to increase because its derivative with

respect to � given by @V

@�
= SN(d1)

p
T � t is strictly positive so, V is an increasing function of

�. Since the Black–Scholes formula is continuous and increasing in �, there will a be a unique

solution of �.

4.1.6 Negative implied volatility

Using real world data calculations of the Black–Scholes implied volatility for call and put options

we observed, some undefined values of implied volatility (NaN)2 or what we call during this

2We get NaN when the results of implied volatilities become less than Brent’s method chosen tolerance, , i.e.,

positive values smaller than 1.0e�6
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project the negative volatilities. This happens for options with a wide spread between bid and

ask prices, in other words, this happens for underpriced options. For example, on 24 June 2016

which is the day that the vote of the referendum on Britain exiting from the European Union was

announced, we get a negative Black–Scholes implied volatility for 251 out of 1385 call options.

Underlying

price

Strike price Mid price Days to ex-

piration

Interest

Rate

Type Implied

volatility

203.2425 130.0 72.95 6 0.0038 call NAN

203.2425 150.0 52.95 7 0.0038 call NAN

203.2425 130.0 73.2 98 0.0038 call NAN

203.2425 120.0 83.15 119 0.0038 call NAN

203.2425 105.0 98.0500 175 0.0038 call NAN
...

...
...

...
...

...
...

203.2425 130.0 73.9 539 0.0038 call NAN

Table 4.4: Undefined implied volatilities phenomenon

Since the European call option can not exceed the stock price and no options can have a

negative price, we have an upper and lower bound of European call option prices given by:

max(S(t)�Ke
�r(T�t)

, 0)  C(S, t)  S(t), (4.12)

Let us now discuss these bounds on both call and put option classifications (in/out of the money).

For in-the-money call options, when the asset price is greater than strike price, the lower bound

of the call option price is greater than zero. For example, taking in-the-money call option with

underlying asset price S = 100, strike price K = 90, interest rate r = 0.2, time to maturity

T = 0.2, and computeing its Black–Scholes call price when the volatility is changing from 0 to

10, we obtain the following graph:
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Figure 4.3: Relationship between volatility and in-the-money call options

As we can observe, the Black–Scholes option price is bounded from below by the zero volat-

ility price, which is a positive number and bounded from above by the asset price. However, if

we use real world data, it is often observed that the prices will fall below the theoretical ’zero

volatility value’. In this case, we cannot define the volatility, where the volatility is a monoton-

ically increasing function of option price. Therefore, we have to use a formula to estimate the

volatility for contracts, whose option price is less than the theoretical ’zero volatility value’.

Let us denote V as the Black–Scholes option price, V0 as the ’zero volatility’ Black–Scholes op-

tion price, VC as the real world recorded option price, �V as the implied volatility of the option

when the price is V and �N as the negative implied volatility. Then we can define a formula to

obtain the negative implied volatilities for the undervalued options as follows:

V = V0 + |VC � V0|,

�N = ��V . (4.13)

However, for out-of-the-money call options where the strike price is greater than the asset

price, this implies that max(St �Ke
�r(T )

, 0) = 0. That means the range of option price is from

zero to the asset price, so there is no possible negative implied volatility for out-of-the-money

call options. We can clarify this by the out-of-the-money option with underlying asset price

S = 100, strike price K = 110, interest rate r = 0.2, time to maturity T = 0.2. We compute its

Black–Scholes call price when the volatility is changing from 0 to 10:
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Figure 4.4: Relationship between volatility and out-of-the-money call options

Hence, we can use the formula that is represented by (4.13) to redefine the implied volatilities

of Table 4.4 to become:

Asset

price

Strike Time Rate V0 V �v �N

203.2425 130.0 6 0.0038 73.2506 73.5512 1.7372781 -1.7372781

203.2425 150.0 7 0.0038 53.2534 53.5568 1.15191658 - 1.15191658

203.2425 165.0 14 0.0038 38.2665 38.4830 0.55825998 - 0.55825998

203.2425 105.0 21 0.0038 98.2654 98.5309 1.29197354 -1.29197354

203.2425 150.0 28 0.0038 53.2862 53.4724 0.53317069 -0.53317069

203.2425 150.0 35 0.0038 53.2971 53.4942 0.48113754 -0.48113754

203.2425 105.0 56 0.0038 98.303 98.6073 0.80731072 -0.80731072

203.2425 105.0 84 0.0038 98.3342 98.6185 0.65304074 -0.65304074

203.2425 130.0 98 0.0038 73.3750 73.5501 0.39751150 -0.39751150

203.2425 120.0 119 0.0038 83.3910 83.6321 0.437532761 -0.437532761

203.2425 105.0 175 0.0038 98.4336 98.8172 0.473997975 -0.473997975
...

...
...

...
...

...
...

...

203.2425 130.0 539 0.0038 73.9699 74.0399 0.15203624 -0.15203624

Table 4.5: Negative implied volatilities phenomenon
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The amount of underpriced options which generate a negative implied volatilities is exhibit in

the following figures

Figure 4.5: Black–Scholes implied volatility of call options on 24th-28th June 2016

The following figures exhibit that the majority of underpriced options are in In-the-money

side (i.e. asset price greater than Strike price).
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Figure 4.6: Contours of Black–Scholes implied volatility of call options on 24th-28th June 2016

On the other hand, the European put options can not exceed the present value of the strike

price K and cannot be higher than discounted value of the strike price. We can give, the upper

and lower bounds of European put option prices as,

max(Ke
�r(T�t)

� St, 0)  P (S, t)  Ke
�r(T�t)

. (4.14)

For out-of-the-money put options, when the asset price is greater than strike price, this implies

that max(Ke
�r(T�t)

�St, 0) = 0. That means the range of put option prices is from zero to the

asset price, so there is no possible negative implied volatility for out-of-the-money put options.

We can give an example by taking the same values of Black–Scholes variables given previously,

and computing its Black–Scholes put price when the volatility is changing from 0 to 10.
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Figure 4.7: Relationship between volatility and out-of-the-money put options

In contrast, for in-the-money put options where the asset prices is less than the strike price

we have the following figure:

Figure 4.8: R elationship between volatility and in-the-money put options

As we can observe, the Black–Scholes option price is bounded from below by the zero volat-

ility price which is a positive number and bounded from above by the asset price. However, if

we use real world data, it is often observed that the prices will fall below the theoretical ‘zero

volatility value‘. In this case, we need to use the same argument of undervalued call options

to define the implied volatility of undervalued put options. The amount of underpriced options

which generate a negative implied volatilities is exhibit in the following figures
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Figure 4.9: Black–Scholes implied volatility of put options on 22th-29th June 2016

The following figures exhibit that the majority of underpriced options are in out-of-the-money

side (i.e. asset price less than Strike price).
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Figure 4.10: Contours of Black–Scholes implied volatility of put options on 22th-29th June 2016

To sum up, from the Black–Scholes implied volatility calculation using a real world data, we

notice that the Black–Scholes formula tends to undervalue in-the-money call and put options

which gives us a negative implied volatility. The negative implied volatility phenomena has

also been observed and commented by [Gatheral and Taleb, 2011] as well as a number of other

authors.

4.1.7 The volatility surface

The fundamental concept of the Black–Scholes pricing model is the assumption that the volatility

is known and the option’s implied volatility should di↵er from the true volatility, only because

the random events. In other words, for given time to maturity T , the volatility is constant

with respect to the strike price, which leads to a flat volatility surface with �(K,T ) = � for

all K. In practice, however, not only is the volatility surface not flat but it actually varies,

often significantly, across various variables such as time [Haugh, 2009]. Meanwhile examining

the volatility surface for call options, we observed that:

• options with lower strikes and shorter time to maturity tend to have higher implied volat-
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ilities.

• options with lowest and highest strike prices have the highest implied volatility with time

to maturity held fixed. This phenomenon is known as the volatility smile.

• For a given strike K, the implied volatility can be either increasing or decreasing with

time-to-maturity. In general, however, � tends to converge to a constant as T increses.

4.1.8 Volatility smile in real world data

A volatility smile is a common phenomena that results from plotting Black–Scholes implied

volatility for a series of options with the same expiration date against their strike prices. The

shape of the curve is symmetrical around the asset price. However, in real world data, the curve

is really more a skew or a smirk. The next figures illustrate the implied volatility surface for

the SPY as it was around December 2016. Smiles for call options with various expiry dates are

shown below.

Figure 4.11: Volatility smile

Figure 4.11 shows that, in addition to expiration time T dependence, the implied volatility
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also depends on its strike prices x. Hence, the smile shape is generated from the fact that implied

volatility can be written as a function of two variables, time and strike �imp(x, T ).

4.1.9 Heston’s model

Heston’s model assumes that the interest rate is constant, there is no dividend payment and the

stock price S(t) and its variance u(t) at (the real) time t � 0 satisfys the following SDEs:

dS(t) = µ(t)S(t)dt+
p
u(t)S(t)dW1(t), (4.15)

du(t) = �(u(t)� �)dt+ ⌘

p
u(t)dW2(t) (4.16)

with

hdW1dW2i = ⇢dt

where , �, ⌘ > 0 and |⇢| < 1 are the model parameters, with 2� > ⌘
2, which ensures that zero

is an unattainable boundary for the process u.

• µ(t): is the (deterministic) instantaneous drift of stock price returns.

• : is the speed of reversion of u(t) to its long-term mean �, as t tends to infinity, the

expected value of u(t) tends to �.

• ⌘: is the volatility of variance.

• ⇢: is the correlation’s coe�cient between random stock price returns and changes in u(t).

• dW1 and dW2: are Wiener processes.

The stochastic di↵erential equation (4.15) models the behaviour of the asset price S(t) as a

stochastic process driven by the Wiener process W1, as it is assumed in the Black–Scholes model.

However, the volatility �, is the square root of the variance u(t) which in turn, described as a

stochastic process driven by a second Wiener process W2. The first part of the right hand side

in equation (4.16) models a mean-reverting, with reversion speed  and mean �. Note that the

initial variance u(t) > 0 is assumed to be non-random at time zero. If the stochastic variance

u moves far from the reversion level � during strophic events in the financial market, it will

be pulled back towards a central location � by the mean-reverting term �(u(t) � �)dt. The

parameter ⌘ is known as the volatility of the volatility as it directly a↵ects the stock price

volatility. Increasing ⌘ increases the convexity of the smile generated by the model. There is

a correlation between the asset and variance processes, represented by the coe�cient ⇢, that
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can be used to generate a skewed volatility smile. The process u is a Cox–Ingersoll–Ross (CIR)

di↵usion (also known as the square root process), and the stochastic di↵erential equation for the

CIR di↵usion satisfies the Yamada-Watanabe condition, so it admits a unique strong solution.

To sum up we introduced this chapter to explain the financial concepts and to show the short-

comes of Black–Scholes model and the stochastic volatility models such as Heston’s model. This

is what motivate us to suggests a new model which give a better explanation of the volatility

smile. although our model is driven by a space time white noise while Heston’s model presumed

that the asset price (4.15) and the variance (4.16) are driven by time only dependent noises, with

correlation coe�cient. Therefore, in order to restrict the forcing term in (1.10a), to consider

stochasticity in time only, we project the noise’s space factor. Of course time noise is a special

case of space–time white noise. As the theory of space–time white noise in stochastic PDE’s is

more general than noises with respect to time, we can project the space variable

4.1.10 Example. Space–time white noise process W defined by

W (t) =
1X

i=0

�i(x)�i(t), (4.17)

where �i is any an orthonormal basis of L2 and �i, i = 0, 1, . . . are iid Ft-Brownian motions.

For our purpose, we will rewrite the space-time white noise with respect to a sequence of real

coe�cients ↵i as follows;

W
↵(t) =

1X

i=0

↵i�i(x)�i(t), (4.18)

assuming ↵ = (1, 0, 0, . . . ) and �i(x) = ci cos(2i⇡x) as the orthonormal basis of L2(0, 1). This

implies

W
↵(t) = �0(t), for �0(x) = 1, (4.19)

which shows that, time noise dW (t) is the first component of space–time white noise dW (x, t)

with orthonormal basis being one, which is what we need.

Then, we are able to define the projection operator P acting on the orthonormal basis �i

such that

�i ! P�i =

8
><

>:

�0 if i = 0,

0 otherwise .

(4.20)
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Conclusion

We propose an extension to the Heston and CIR models that model the implied volatility with

an extra independent variable representing the “current strike price“ as a more accurate model.

The model consists of an SPDE which is semilinear in both the deterministic part and the

noise coe�cient. Furthermore, the deterministic nonlinearity involves the unknown’s gradient

squared, reminiscent of the KPZ equation but with an opposite sign. Thanks to this feature we

can have a more “concrete“ approach avoiding “infinite constants“ introduced by [Hairer, 2014]

to study similar equations via regularity structures.

We have shown that there exists a subsequence of approximate solution of the nonlinear

SPDE in finite dimensional subspace by applying Fourier–Galerkin approximations. The non-

linear first order negative sign makes it possible to show that the approximate solution satisfies

an energy estimate which is uniform and thus provides us convergence to a limit. We define the

limit u to be a generalised solution of (1.10a). The nonlinear first order negative sign appears

as an obstacle but turns out to be the crucial tool to solve the problem. We have good reasons

to believe and gained good intuition on how to show that the limit is a mild solution.

A challenge encountered in proved is establishing the positivity of solution analytically and

the related issue of how to preserve such positivity in the computations. Our proving to show

the solution positive is based on a comparison-principle, where we build a subsolution which is

positive by Feller’s condition that prevents the solution to be negative. Simply if two solutions

one above the other then they can not cross hence the solution stays positive. A numerical

method such as the Euler–Maruyama applied to (1.10a) may break down due to negative values

being supplied to the square root function even if the Feller condition is met. A natural fix, is

to take the absolute value or by using a full truncation scheme, where the negative values are

floored at zero.

In Chapter 4 we analysed the financial data that we selected form the real world life in

order to study options volatility. By using S&P500 (SPY) data as an example to chapter

the volatility surface implied by Black–Scholes model. We observed, some undefined values of

implied volatility or what we called during this project the negative volatilities. This happens
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for options with a wide spread between bid and ask prices, in other words, this happens for

underpriced options. The mean feature that we capture is options with lowest and highest

strike prices have the highest implied volatility with time to maturity held fixed, which is known

as volatility smile. We also noted that none of the Black–Scholes model assumptions satisfied

perfectly in real world observed data.

Studying (1.10a)-(1.10d) raised other questions I wish to consider for further research. For

instance form the analytic point of view, in finance, according to [Capiński and Zastawniak,

2011] and [Neftci and Hirsa, 2000] Girsanov theorem is used to derive an asset’s or rate’s dy-

namics under a new probability measure. In the Black–Scholes model the probability measure

is moves from the historic measure P to the risk neutral measure Q. This makes us curious to

investigate what happen the SPDE (1.10a) if we apply Girsanov’s theorem to meet the financial

requirements.

Moreover from financial point of view, the financial applications of the model (1.10a)–(1.10d)

have the potential to be explored. One very important question is how to apply (1.10a) in the

financial field. If the volatility really depends on the strike price as the graphs show, does it

mean the asset price depend -in one way or another- on the strike price as well. It is known from

the logic in options trading the strike price is the set price at which a derivative contract can be

bought or sold when it is exercised, which mean it determines after writing the option. Hence,

it is not possible for the asset price to depend on the strike price. However, it might depend on

the average of all the strike prices. Another interesting approach for abetter fit of the volatility

smile is to consider the fractional di↵usion. As it appears from the volatility surface, the smile

not always smiling (convex) but it can be more pointy in some cases. Tracking the ‘turning

point‘ which is the lowest implied volatility value that a set of implied volatilities with the same

time to maturity and asset price can take is also motivating. Real world data are showing that

the volume of options trading around the turning point the very higher than any other spots.
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Appendix A

Useful lemmas and inequalities

Here we collect some lemmas and inequalities that we have used during the project

A.0.1 Definition (Lipschitz continuity). A real-valued function f : R ! R is a Lipschitz

continuous if there exists a positive real constant c(A.1) such that, for all real x and y we have,

|f(x)� f(y)|  c(A.1)|x� y|, 8x, y,2 R. (A.1)

A.0.2 Definition (Linear growth). A real-valued function f : R ! R has a linear growth

condition if there exists a positive real constant c(A.2) such that

|f(x)|  c(A.2)(1 + |x|), 8x 2 R. (A.2)

A.0.3 Lemma. For a, b 2 R we can bound the di↵erence between
p
a and

p
b by the following

inequality;

|
p
a�

p

b|  c(A.3)|a� b|, (A.3)

where c(A.3) :=
1

2

p

a^b
_ 1.

A.0.4 Lemma. (Gronwall) Suppose that z(t) satisfies

0  z(t)  a+

Z
t

0

b(s)z(s)ds, t � 0, (A.4)

for a � 0 and a non-negative and integrable function b(s). Then,

z(t)  a eB(t)
, where B(t) :=

Z
t

0

b(s)ds. (A.5)

A.0.5 Lemma. [Operator norm property] The set L(X,Y ) is a Banach space with the operator

norm

kLkL(X,Y ) := sup
u 6=0

kLukY

kukX
. (A.6)
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If L 2 L(X,Y ), then

kLukY  kLkL(X,Y )kukX , (A.7)

for any u 2 X.

A.0.6 Lemma. For a Hilbert space H with inner product h·, ·i and that the linear operator �A :

D(A) ⇢ H ! H has a complete orthonormal set of eigenfunctions �j : j 2 N and eigenvalues

�j > 0, ordered so that �j+1 � �j. Then

i. For u 2 D(A↵) and ↵ 2 R, we have A
↵ e�tA

u = e�tA
A

↵
u for t � 0.

ii. For each ↵ � 0, there exists a constant cA.8 such that

kA
↵ e�tA

kL(H)  c(A.8)t
�↵

, t > 0. (A.8)

iii. For ↵ 2 [0, 1], there is a constant cA.9 such that

kA
�↵(I � e�tA)kL(H)  c(A.9)t

↵
, t � 0. (A.9)

Proof. See [Kruse, 2014].

A.0.7 Theorem. [Existence and uniqueness [Mao, 2008]] Assume that for every real number

T > 0 and integer n > 1, there exists a positive constant c(A.10) such that for all t 2 [0, T ] and

all �, 2 Rd with |�| _ | |  n,

|f(�, t)� f( , t)|2 _ |g(�, t)� g( , t)|2  c(A.10)|��  |
2
. (A.10)

Assume also that for every T > 0, there exists a positive constant c(A.11) such that for all

(�, t) 2 Rd
⇥ [0, T ],

�
T
f(�, t) +

1

2
|g(�, t)|2  c(A.11)(1 + |�|

2). (A.11)

Then there exists a unique global solution �(t) to equation (2.75).

A.0.8 The Robin Laplacian

Consider the linear operator Au := �@xxu(x) + u(x). We study the ecliptic equation Au = f

subject to Robin boundary conditions as follows:

Au = f(x), (A.12)

�↵0@xu(0) = u(0) (A.13)

↵1@xu(1) = u(1) (A.14)
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where  > 0. Multiply the equation by a test function v 2 H
1(0, 1) in order to obtain the

variational formulation of the equation as follows:

�

Z
1

0

@xxuv + 

Z
1

0

uv =

Z
1

0

fv, (A.15)

perform integration by parts:

Z
1

0

@xu@xv �

h 1

↵1

u(1)v(1) +
1

↵0

u(0)v(0)
i
+ 

Z
1

0

uv =

Z
1

0

fv, (A.16)

rearrange

Z
1

0

@xu@xv �

X

x=0,1

1

↵x

u(x)v(x) + 

Z
1

0

uv

| {z }
a[u,v]

=

Z
1

0

fv. (A.17)

The first term of the left hand side can be bounded by using Cauchy–Schwarz and Young

inequalities,

Z
1

0

@xu@xv + 

Z
1

0

uv 
1

2
k@xukL2(0,1)k@xvkL2(0,1) +


2

2
kukL2(0,1)kvkL2(0,1), (A.18)

 kukH1(0,1)kvkH1(0,1), (A.19)

and the trace inequality for the second term,

X

x=0,1

�
1

↵x

u(x)v(x)  ckukL2(@D)kvkL2(@D). (A.20)

Hence,

a[u, v]  kukH1(0,1)kvkH1(0,1) + ckukL2(@D)kvkL2(@D). (A.21)

In order to satisfy the coercivity we have

a[u, u] =

Z
1

0

@xu@xu�

1X

x=0

1

↵x

u
2(x) + 

Z
1

0

u
2
, (A.22)

for x⇤ 2 (0, 1), where x⇤ = argmin(0,1) |u|
2 and 0  u 2 C

1,

u(0) =

Z
x⇤

0

@xu+ u(x⇤), (A.23)

u(1) =

Z
1

x⇤

@xu+ u(x⇤). (A.24)

Considering the L
2 norm, yields

|u(0)|2  2
⇣Z x⇤

0

|@xu|
2

⌘
x⇤ + 2|u(x⇤)|

2
, (A.25)

|u(1)|2  2
⇣Z 1

x⇤

|@xu|
2

⌘
(1� x⇤) + 2|u(x⇤)|

2
. (A.26)
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Since x⇤ = argmin(0,1) |u|
2 then we can say that |u(x⇤)|  |u(x)|, hence

Z
1

0

|u(x⇤)|
2dx 

Z
1

0

|u(x)|2dx, (A.27)

yields

|u(x⇤)|
2
 kuk

2

L2(0,1)
. (A.28)

Plugging in (A.25) and (A.26) respectively,

|u(0)|2  2x⇤
⇣Z x⇤

0

|@xu|
2

⌘
+ 2kuk2

L2(0,1)
, (A.29)

|u(1)|2  2(1� x⇤)
⇣Z 1

x⇤

|@xu|
2

⌘
+ 2kuk2

L2(0,1)
. (A.30)

We can conclude that for ↵̄ = minx=0,1 ↵x,

1

↵̄

⇣
|u(0)|2 + |u(1)|2

⌘
 4

Z
1

0

|@xu|
2 + 4kuk2

L2(0,1)
. (A.31)

Thus, for ↵̄ big enough (� 1

↵̄
small enough), we have

a[u, u] � ckuk
2

H1(0,1)
. (A.32)

Then by the Lax–Milgram theorem, there is a unique solution u 2 H
1(0, 1) to the equation

a(u, v) = f(v).

A.0.9 Heat kernel estimates

Here we collect all estimates on heat kernel that we use. Consider the following basis

�n(x) = an(�
p
�n cos (

p
�nx) + sin (

p
�nx)), (A.33)

where an and n 2 N. Then the heat kernel for the Laplace operator on (0, 1) with separated

boundary conditions is given by

Kt(x, y) =
1X

n=0

�n(x)�n(y) e
��

2
nt, (A.34)

where, �n solves the following

tan
p
�n =

2
p
�n

1� �n
. (A.35)

A.0.10 Lemma. (Heat kernel estimates). There are constant cA.36, cA.37, cA.38, cA.39 > 0 such

that for every x, x1, x2 2 (0, 1) and t, t1, t2 � 0,

kKt(x, ·)kL2(0,1)  cA.36(1 + t
�1/4), (A.36)
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kKt(x1, ·)�Kt(x2, ·)kL2(0,1)  cA.37t
�1/4(1 ^ |x1 � x2|t

�1/2), (A.37)

k@Kt(x, ·)kL2(0,1)  cA.38t
�3/4

, (A.38)

k@tKt(x, y)u(y)kH�1(0,1)  cA.39t
�5/4

. (A.39)

Proof. First we show inequality (A.36). Since (§h)n>0 is an orthonormal basis in L
2(0, 1),

kKt(x, y)kL2(0,1) =

 Z
1

0

|Kt(x, y)|
2dy

!
1/2

(A.40)

=

 Z
1

0

|

1X

n=0

�n(x)�n(y) e
��

2
nt |

2dy

!
1/2

=

 
|

1X

n=0

�n(x) e
��

2
nt |

2

!
1/2

=
⇣ 1X

n=0

e�2�
2
nt

⌘
1/2

 (1 + ct
�1/2)1/2

 c(1 + t
�1/4).

Inequality (A.37) can be proved as follows,

kKt(x1, ·)�Kt(x2, ·)kL2(0,1) (A.41)

For (A.38)

k@yKt(x, y)kL2(0,1) =
⇣ 1X

n=0

n
2
⇡
2
�n(x)

2 e�2�
2
nt

⌘
1/2

(A.42)

=
⇣ 1X

n=0

n
2
⇡
2 e�2�

2
nt

⌘
1/2

 ct
�3/4

.

Estimating (A.39)

k@tKt(x, y)u(y)kH�1(0,1) = sup
k'k

H
1
0(0,1)=1

Z
1

0

Z
1

0

@tKt(x, y)u0(y)'(x)dydx
| {z }

i

(A.43)

i =

Z
1

0

Z
1

0

@tKt(x, y)u0(y)'(x)dydx (A.44)

=
���
Z

1

0

Z
1

0

1X

n=0

�
2

n�n(x)�n(y) e
��

2
nt u0(y)'(x)dydx

���

=
���

1X

n=0

�
2

n e
��

2
nt

Z
1

0

�n(x)'(x)dx
| {z }

ia

Z
1

0

�n(y)u(y)dy
| {z }

ûn

���
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ia =

Z
1

0

�n(x)'(x)dx (A.45)

=

Z
1

0

@xSh(x)'(x)dx

=
h
'(x)Sh(x)

i
1

0| {z }
=0

�

Z
1

0

Sh(x)@x'(x)dx

= �

Z
1

0

Sh(x)@x'(x)dx,

where Sh(x) =
R
x

0
�n(&)d& and ûn are Fourier coe�cient of u. Hence,

���
1X

n=0

�
2

n e
��

2
nt ûn

Z
1

0

Z
x

0

�n(&)d&@x'(x)dx
��� (A.46)



⇣ 1X

n=0

�
4

n e
�2�

2
nt(ûn)

2

⌘
1/2
⇣ 1X

n=0

� Z 1

0

Z
x

0

Sh(&)d&@x'(x)dx
�
2

| {z }
c

⌘
1/2


p
c

⇣ 1X

n=0

�
4

n e
�2�

2
nt

| {z }
3

p
⇡/211/2t5/2

(ûn)
2

⌘
1/2

ct
�5/4
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