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SUMMARY

In this thesis we consider approximate schemes and models for hyperbolic conservation laws. Systems

of conservation laws are fundamental mathematical models and have received a lot of attention from the

point of view of analysis, modelling and computations. They include the wave equations in elastic media

and fundamental equations in fluid mechanics. We consider structure preserving schemes and kinetic

models for approximating measure valued solutions of hyperbolic equations. Such solutions are of in-

terest given their application to problems in uncertainty quantification and in statistical inference. This

thesis contains new results on (i) the design of new schemes for the computation of entropy consistent

approximations, with particular emphasis on the consistency of the computational algorithms to entropic

measure valued solutions for HCL, (ii) the introduction of discrete and generalised kinetic models de-

signed to directly approximate measure valued solutions by using a combination of approximate Young

measures and the kinetic formulation of the conservation law and (iii) stability analysis of generalised

viscus kinetic models. We obtain uniqueness within a particular class of vanishing viscosity limits of

these models and of their corresponding measure valued solutions.



Contents

Declaration iii

Dedication v

Acknowledgments vi

1 Introduction 1

2 Hyperbolic conservation laws 7

2.1 Weak and entropy solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Measure valued solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Kinetic Formulation of HCL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Generalised kinetic solutions and Young measures . . . . . . . . . . . . . . . . . . . . . 14

3 A New Class of Entropy Stable Schemes for Hyperbolic Systems 16

3.1 Chapter overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 Motivation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3 Notation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.4 A space-time finite element method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.5 Main results–Remarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.6 Stability-Preliminary results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

viii



3.6.1 Stability Estimate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.7 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.8 Measure-valued solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.8.1 Convergence towards entropy measure-valued solutions . . . . . . . . . . . . . 44

3.9 Lp controlled measure-valued solutions . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.9.1 Stability for p-entropies via relative entropy . . . . . . . . . . . . . . . . . . . . 51

3.9.2 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.10 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4 Approximation of Measure-Valued solutions of HCL 73

4.1 Chapter overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.2 Computation of measure-valued solutions for hyperbolic problems . . . . . . . . . . . . 74

4.3 Approximation theory of Young measures . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.4 Approximate discrete kinetic models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.4.1 A motivation from the kinetic formulation . . . . . . . . . . . . . . . . . . . . . 82

4.4.2 Entropic discrete kinetic models . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.4.3 Viscous discrete kinetic models . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5 Stability of Young measures through generalised kinetic solutions 90

5.1 Chapter overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.2 A stability result for generalised viscous kinetic solutions . . . . . . . . . . . . . . . . . 92

5.3 L1-based analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.4 L2-based analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6 Future work 130

ix



List of Abbrevations

HCL Hyperbolic Conservation Laws

MHD Magnetohydrodynamics

DCT Dominated Convergence Theorem

BGK Bhatnagar-Gross-Krook kinetic model

Notation

Here U is a bounded domain or Rd, S ⊂ Rd where d ∈ N and p ∈ N.

(i) Lp(U) = {u : U 7→ Rd|u, is Lebesque measurable, ∥u∥Lp(U) <∞}

(ii) L∞(U) = {u : U 7→ Rd|u, is Lebesque measurable, ∥u∥L∞(U) <∞}

(iii) Du is the weak derivative of u

(iv) H1(U) = {u : U 7→ Rd|u ∈ L2(U) and Du ∈ L2(U)}

(v) W 1
∞(U) = {u : U 7→ Rd|u ∈ L∞(U) and Du ∈ L∞(U)}

(vi) Cp(U) = {u : U 7→ Rd|u is p many times continuously differentiable}

(vii) C0,γ is the space of Holder continuous functions with expenent γ

(viii) Cpc (U) = {u : U 7→ Rd|u is p times continuously differentiable with compact support}

(ix) C0(Rd) = {u : Rd 7→ Rd|u is a continuous function which vanishes at infinity}

(x) C∞(U) = {u : U 7→ Rd|u is infinitely many times continuously differentiable}

(xi) C∞
c (U) = {u : U 7→ Rd|u is infinitely many times continuously differentiable with compact

support}
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(xii) Lp((0,+∞);Lp(U)) = {u : (0,+∞) 7→ Lp(U)|u(., x) is a measurable function and∫∞
0 ∥u(t)∥Lp(U)dt <∞}

(xiii) L∞((0,+∞);Lp(U)) = {u : (0,+∞) 7→ Lp(U)|u(., x) is a measurable function and

ess supt∈(0,+∞) ∥u(t)∥Lp(U) <∞}

(xiv) L1(U ;Cc(S)) = {u : U 7→ Cc(S)|u(., x) is a measurable function and∫
U

max
y∈S

∥u(y)∥Lp(U)dy <∞}

(xv) Cc((0,+∞);Lp(U)) = {u : (0,+∞) 7→ Lp(U)|u(., x) is continuous function with compact

support and max
t∈(0,+∞)

∥u(t)∥Lp(U) <∞}

(xvi) L∞
w (U ;MP(S)) = {µ : U 7→ MP(S) such that the function x 7→< µ(x), ϕ > is measurable for

all ϕ ∈ C0(S)}

(xvii) L∞((0,+∞);H1(U)) = {u : (0,+∞) 7→ H1(U)|u(., x) is a measurable function and

ess supt∈(0,+∞) ∥u(t)∥Lp(U) <∞}

(xviii) M+(Rd) is the set of all positive Radon measures on Rd

(xix) MP(Rd) = {µ ∈ M+(Rd), µ(Rd) = 1}

(xx) Y(U,Rd) is the set of all Young measures

(xxi) Yh(U,Rd) is the set of all computational Young measures

(xxii) δu is the Dirac measure

(xxiii) D′ is the dual space of distributions

(xxiv) Sh finite dimensional subspace of C(S)

(xxv) Xh is a standard conforming finite element space consisting of continuous piecewise polynomial

functions
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Chapter 1

Introduction

In this thesis we consider approximate schemes and models for hyperbolic conservation laws (HCL)

with emphasis to approximations of measure valued solutions. HCL are partial differential equations of

the form

ut +∇x ·A(u) = 0 (1.1)

where u = u(x, t) : Ω 7→ Rm with Ω = Rd × [0,+∞). Systems of conservation laws are fundamental

mathematical models and have received a lot of attention from the point of view of analysis, mod-

elling and computations. HCL include, for instance, the wave equations in elastic media, fundamental

equations in fluid mechanics (Euler system, shallow water equations), and the magnetohydrodynamics

(MHD) equations of plasma physics.

It is well known that the solutions of system (1.1) may develop discontinuities in finite time even

in the case where the initial condition is smooth-see[15, 39, 34]. Thus weak solutions, i.e., solutions

with lower regularity requirements, are introduced. However, weak solutions are not necessarily unique.

In fact, small perturbations inducing smoothness into (1.1), yield approximating models which capture

possibly, completely different “solutions” at the limit as pertrubations tend to zero. This is one of the

most important and interesting challenges related to such problems. Generally, it is hoped that we can
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possibly distinguish a physically relevant solution out of, in some cases, infinitely many weak solutions,

by enforcing additional eligibility criteria. To this end, it is typical to augment the system (2.1) with

additional conditions. In the scalar case (i.e. when m = 1), additional entropy conditions provide a

complete theory of existence and uniqueness, stability estimates and characterisation of viscosity limits,

see [15]. On the contrary, for systems (m ≥ 2), well-posedness results after the formation of the

singularities, are not yet available with the exception of the one dimensional systems (d = 1). However,

still the notion of entropy solutions remains important, especially in applications where mathematical

justifications are necessary in computational modelling.

In addition to weak solutions, one may consider a more general framework of solutions for (2.2)

based on parametrised measures, with respect to x and t. Measure-valued solutions were introduced

by DiPerna [19] based on the theory of Young measures. Already important in other areas of applied

analysis and notably in the calculus of variations [5], Young measures and compensated compactness

become quite useful tools for the study of HCL, yielding exciting analytical results, mainly by studying

the possibility of the measure µ to collapse to a parametrised Dirac mass of the form µx,t = δu(x,t),

(atomic measure) where in this case one would like to link the function u to an entropy solution of the

conservation law-see [15] for a review.

In addition to their novelty as a mathematical theory, measure valued solutions, play a crucial role in

uncertainty quantification and statistical inference for hyperbolic systems. One of the important aspects

of the computational modelling associated to problems of the form (1.1) originates in the behaviour

of approximations of solutions not always being certain. Uncertainties in the solution can be caused,

for instance, by the initial data, or the parameters appearing in the model. A similar problem from a

mathematical perspective relates to statistical inference on the solutions when we study the behaviour

of an assembly of variable data of the model (e.g. we would like to have a statistical information on

the behavior of the solution with many different initial conditions). Several works have been devoted to

algorithms computing measure valued and statistical solutions, e.g., [38, 24, 18, 21, 2, 3, 1], giving rise
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to new mathematical problems. One of them is related to the fact that the notion of entropic measure-

valued solutions is rather weak when non-atomic measures are considered. In fact, uniqueness is lost

even in the scalar case, when non-atomic measures were allowed in the initial data, [15, 21]. Recent

results suggest the use of a stronger notion of measure valued solutions, namely of statistical solutions,

where one considers solutions which are probability measures on function spaces, such as L2(Ω), [22],

see also [25] for statistical solutions in the Navier-Stokes setting. In [22] was proved that statistical

solutions can be viewed as well as an infinite sequence of correlated parametrised Young measures.

In addition, a uniqueness result for appropriate statistical solutions was established. The numerical

algorithms for the computation of measure valued and statistical solutions for HCL are, to date, mainly

based on Monte Carlo sampling, i.e., on solving several deterministic problems and sampling the results.

For such algorithms, it is croucial to guarantee that the deterministic solvers retain certain stability and

entropy consistency properties.

This thesis contains new results mainly on (i) the design of new schemes for the computation of

entropy consistent approximations, with particular emphasis on the consistency of the computational al-

gorithms to entropic measure valued solutions for HCL, (ii) the introduction of discrete and generalised

kinetic models designed to directly approximate measure valued solutions by using a combination of

approximate Young measures and the kinetic formulation of the conservation law and (iii) stability anal-

ysis of generalised viscus kinetic models. We obtain uniqueness within a particular class of vanishing

viscosity limits of these models and of their corresponding measure valued solutions.

Outline and summary of the results

In Chapter 2 we present key notions and corresponding notation for the study of HCL, including week

and entropy solutions, measure valued solutions, kinetic formulations of the scalar conservation law,

generalised kinetic formulations and connections to measure valued solutions.

Chapter 3 is devoted to the introduction and and analysis of new entropy consistent finite element
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schemes for time dependent systems of hyperbolic conservation laws. Entropy stability is a key property

of the numerical scheme which is the discrete analog of the entropy inequality assumed for the system.

Such schemes developed so far in the classic works of Tadmor [49, 50] (see also the surveys [51, 52]),

Johnson, Hansbo and Szepessy [30, 31, 28], and their collaborators and start from a class of appropriate

entropy conservative schemes. Then entropy diminishing schemes are obtained by adding appropriate

artificial diffusion terms. This program was based on the reformulation of the HCL using the entropy

variables, and this is the approach taken, as well, in modern works on the subject [23, 29, 21]. Our

approach has a starting point a new mixed-type formulation of the hyperbolic system which does not

replace the original variables. This formulation allows direct discretisation of the original variables and

at the same time leads naturally to entropy conservative schemes. Significant flexibility is allowed in the

design of the corresponding entropy stable computational algorithms. New finite element schemes are

introduced and analysed. It is shown that the resulting approximations converge to an entropy week and

when appropriate to an entropy measure valued solution. We consider approximating methods, which

are based on a space-time finite element discretization with piecewise polynomials of degree one and

zero in time. Our schemes and results can be extended to high-order elements as well. They can be also

extended when discretisation in space is done using discontinuous Galerkin methods, e.g., [13, 14, 12].

In Section 3.6 below we show stability estimates yielding the entropy stability of the scheme. In Section

3.6 we derive first the entropy stability estimate for our scheme, Lemma 3.6.1. In Section 3.7, Theorem

3.7.1, we prove that assuming that uh → u then u is an entropy solution of the conservation law. Section

3.8 is devoted to measure valued solutions of HCL. Our focus is the notion of measure valued solution

of Di Perna and we prove that the numerical method is indeed compatible with this notion at the limit. In

fact, Theorem 3.8.2 shows that approximating sequences obtained by our scheme generate an entropic

measure valued solution of HCL. The results in Section 3.8 were obtained under the assumption that

the approximations were uniformly bounded in L∞. A more refined approach is possible for certain

entropies. In fact, for entropies with up growth in Section 3.9 we show that our approximations are
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uniformly bounded in Lp and thus one can apply the Lp− based theory of measure valued solutions,

[4], [17], to show that still the approximating sequences obtained by our scheme generate an entropic

measure valued solution of (3.1). As far as we know, this is the first fully discrete numerical method for

which such properties can be proved.

In Chapter 4, our aim is to develop a new approach to the computation of measure valued solutions

and to quantify uncertainties for nonlinear hyperbolic problems, based on two key ingredients : approx-

imate Young measures and kinetic models. We first present a framework for constructing approximate

Young measures, based on earlier results by [48, 43]. Approximate Young measures were developed

having in mind applications to calculus of variations and to energy minimisation, see [6]. We show in

Section 4.4 that in the framework of conservation laws the approximation of the equation for measure

valued solutions by such approximate measures, gives rise in a natural way to discrete kinetic models.

These models are, however, severely under-determined. We overcome this issue by using tools from the

kinetic formulation of conservation laws, see Chapter 2, [40, 45]. In the scalar case the kinetic formula-

tion of conservation laws, [40, 45], provides an interesting connection to parametrised Young measures

and to compensated compactness. This connection was further developed in [42, 46, 45] for scalar laws

and in [16] where kinetic formulations were the analytical basis to study conservation laws with stochas-

tic forcing. By using viscosity approximations and appropriate discrete defect measures we construct

new discrete kinetic models; their solutions will provide approximations to entropic measure valued

solutions. We further note that this approach can be extended to design a hierarchy of discrete kinetic

models approximating statistical solutions for scalar conservation laws based on correlation measures,

see [27]. Up to our knowledge, this approach provides the first systematic alternative to Monte-Carlo

sampling for approximating measure-valued solutions to conservation laws. The approximate models,

at all cases, rely on solving discretised kinetic models with prescribed defect measures on the right hand

side. There are several emerging questions for future research related to the mathematical analysis of

such problems, such as uniqueness and stability issues mainly for kinetic (and systems thereof) approxi-
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mations to continuum macroscopic models. These models are partial differential equations with discrete

kinetic velocities and their design is based on sharp consistency error bounds. In Section 2.2 we show

that they satisfy a discrete form of entropy inequality.

In Chapter 5 we derive a stability result for viscous generalised kinetic formulations. Although, as

mentioned, entropic measure valued solutions for scalar HCL are not unique, generalised kinetic for-

mulations cary more information due to the explicit presence of the defect measure in the model, which

in the case of viscosity approximation is known explicitly. It is therefore interesting to quest whether

by introducing a form of artificial diffusion at the kinetic level, and considering the defect measure on

the right hand side of the equation as an appropriate nonlinear function of f , it is possible to have some

guarantees that we compute in the limit a unique measure. This chapter is devoted to stability analysis

for generalised kinetic models including small diffusion terms and general initial data not necessarily

restricted to χu0(x), for some function u0 . We consider models associated to the scalar multidimen-

sional conservation law. Generalised kinetic formulations were introduced by Perthame [44, 45] and are

generalisations of kinetic formulations of conservation law [40]. In Chapter 4, we observed that such

models are relevant when one would like to approximate measure valued solutions through approximate

Young measures. However, the study of generalised viscous kinetic formulations is of interest, even

one considers alternative approaches, such as Monte Carlo sampling, based on standard schemes for

approximating the conservation law, when such schemes include a form of artificial diffusion. Our main

result, Theorem 5.2.2, implies uniqueness within a class under structural assumption hypotheses on the

defect measure m′. This result essentially states that all viscous generalised kinetic functions have the

same limit as soon as ∥Bϵ∥W∞
1 (Rd) → 0, ϵ → 0 , where Bϵ is the diffusion tensor and the defect mea-

sures satisfy a dissipative structural assumption. These assumptions are to some extend generalisations

of properties appearing in the analysis of [44, 45] for initial data χu0(x).
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Chapter 2

Hyperbolic conservation laws

Partial differential equations of the form

ut +∇x ·A(u) = 0 (2.1a)

where u = u(x, t) : Ω 7→ Rm with Ω = Rd × [0,+∞), are called a systems of conservation laws.

Such systems are one of the most important class of mathematical models and has received a lot of

attention both from the point of view of analysis and from the point of view of computational modelling.

Formally, assuming for the moment that u is a smooth function, if we integrate (2.1a) over a bounded

domain K ⊂ Rd we get

d

dt

∫
K

u(x, t)dx+

∫
K

∇x ·A(u(x, t))dx = 0,

and therefore using the divergence theorem of vector calculus we obtain

d

dt

∫
K

u(x, t)dx+

∫
∂K

(A(u(x, t)) · n)ds = 0

with n to be the outward pointing unit normal at each point on the boundary ∂K. If u represents a

physical quantity per unit , then the last relation indicates us that the rate of change with respect to time
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of the total amount of the quantity over K is equal and dependent only to the flux on the boundary ∂K.

We call A : Rm 7→ Rm×d the flux of the conservation law. The system (2.1a) is called hyperbolic if also

the flux Jacobian ∇u(A · n) has real eigenvalues for each direction n. In addition we complement the

conservation law with an initial condition of the form

u(x, 0) = u0(x). (2.1b)

In nature there exists a huge variety of physical phenomena that can be modelled and understood com-

pletely or to some extend through systems conservation laws. We mention for instance, the wave equa-

tions in elastic media, the shallow water equations of oceanography, the Euler equations for gas dynam-

ics and the magnetohydrodynamics (MHD) equations of plasma physics. These equations are hyperbolic

systems of the form (2.1), see [15] for a comprehensive exposition of the mathematical theory for such

systems.

2.1 Weak and entropy solutions

It is well known-see[15, 39, 34] that the solutions of system (2.1) can develop discontinuities in finite

time even in the case where the initial condition is smooth. For this reason we need to introduce weak

solutions. This framework equips us with the suitable notions that enable us, at least in some important

cases, to successfully interpret and understand discontinuous solutions of (2.1).

Definition 2.1.1 We call a function u ∈ L∞(Ω) weak solution of the problem (2.1) if it fulfils

∫ +∞

0

∫
Rd

∂tϕ(x, t)u(x, t) +∇xϕ(x, t) ·A(u(x, t))dxdt+
∫
Rd

ϕ(x, 0)u0(x)dx = 0 (2.2)

for all test functions ϕ(x, t) ∈ C∞
c (Ω). Weak solutions are not necessarily unique though. This is

one of the most important and interesting challenges related to such problems. It is hoped that we can
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possibly distinguish a physically relevant solution out of, in some cases, infinitely many weak solutions,

by enforcing additional eligibility criteria. To this end, it is typical to augment the system (2.1) with an

additional condition.

Definition 2.1.2 A pair of functions η − Q with η : Rm 7→ R convex and Q : Rm 7→ Rd is called

entropy pair if the following relation holds

ηu(u)∇uA(u) = ∇uQ(u). (2.3)

Definition 2.1.3 A weak solution of (2.2) is called an entropy solution if in addition satisfies

−
∫
Ω

(
η(u)ϕt +Q(u)∇xϕ

)
dxdt−

∫
Rd

η(u0) · ϕ(0, x)dx ≤ 0, (2.4)

for all ϕ ∈ C∞
0 (Ω) with ϕ ≥ 0.

In the scalar case (i.e. when m = 1) every convex function paired with the entropy flux Q(u) =∫ u
η′(ξ)A′(ξ)dξ can be considered as an admissible entropy pair for the problem (2.2)-(2.4). The fact

that any convex function is an admissible entropy in the scalar case led to a complete theory of existence

and uniqueness, Kružkov L1-stability estimates and characterisation of viscosity limits, see [15]. On

the contrary, in the case of systems this plethora of entropy functions does not exist and thus results

for existence and uniqueness of weak entropy solutions in one dimension have been achieved only for

initial conditions whose total variation is sufficiently small, while in the multi-dimensional case well-

posedness results do not yet exist. However, still the notion of entropy solutions remains important,

especially in applications where mathematical justifications are necessary in computational modelling.

See Chapter 2, for detailed discussion on approximating schemes consistent with entropy inequalities.
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2.2 Measure valued solutions

One may consider a more general framework of solutions for (2.2) based on parametrised, with respect

to x, t,measures. To this end, we consider the notion of measure-valued solutions introduced by DiPerna

[19] based on Young measures. Therefore, [4], let M+(Rm) be the set of all positive Radon measures

on Rm, and MP(Rm) = {µ ∈ M+(Rm), µ(Rm) = 1} the corresponding set of probability measures.

Definition 2.2.1 We call Young measure a weakly* measurable mapping from Ω into MP(Rm).

The set of all Young measures is denoted by Y(Ω,Rm).

Definition 2.2.2 A parametrised measure µ ∈ Y(Ω,Rm) is said to be a measure-valued solution of the

conservation law (4.1) if, [19],

∫
Ω

(
⟨id, µx,t⟩ · ϕt + ⟨A,µx,t⟩ · ∇xϕ

)
dxdt+

∫
R

u0 · ϕ(0, x)dx = 0, (2.5)

for all ϕ ∈ C∞
0 (Ω) where by ⟨A,µx,t⟩ we denote

⟨A,µx,t⟩ =
∫
Rm

A(λ)dµx,t(λ).

In a similar fashion as for weak solutions, an entropy measure-valued solution satisfies the additional

relation ∫
Ω

(
⟨η, µx,t⟩ · ϕt + ⟨Q,µx,t⟩ · ∇xϕ

)
dxdt ≥ 0 (2.6)

for all ϕ ∈ C∞
0 (Ω) with ϕ ≥ 0, where η is convex and (η,Q) an entropy entropy-flux pair, [15].

Already important in other areas of applied analysis and notably in the calculus of variations, see

e.g., [5], Young measures and compensated compactness become quite popular tools, yielding exciting

analytical results, mainly by studying the possibility of the measure µ to collapse to a parametrised Dirac

mass of the form µx,t = δu(x,t), (atomic measure) where in this case one would like to link the function
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u to an entropy solution of the conservation law, see [15] for a review.

Beyond the exciting mathematical theory related to the study of measure valued solutions, such so-

lutions become relevant in uncertainty quantification and statistical inference for hyperbolic systems.

One of the important aspects of the computational modelling associated to problems of the form (2.1a)

is originated by the fact that the behaviour of approximations of solutions is not always certain. Uncer-

tainties in the solution can be caused, for instance, by the initial data, or the parameters appearing in the

model. A similar problem from a mathematical perspective relates to statistical inference on the solu-

tions when we study the behaviour of an assembly of variable data of the model. Several works have been

devoted to algorithms computing measure valued and statistical solutions, e.g., [38, 24, 18, 21, 2, 3, 1],

giving rise to new mathematical problems. One of them is related to the fact that the notion of entropic

measure-valued solutions is rather weak when non-atomic measures are considered. In fact, uniqueness

is lost even in the scalar case, when non-atomic measures were allowed in the initial data, [15, 21]. See

more related details in Chapters 4 and 5.

2.3 Kinetic Formulation of HCL

In this section we summarize the kinetic theory for scalar conservation laws (m = 1), following, [45],

[15]. In the kinetic theory the state at a point x and time t is described by the density function f(ξ, x, t)

of the velocity ξ. Boltzmann equation describes the evolution of f(ξ, x, t) and provides an approximate

model for various macroscopic (continuum) equations, see [9]. Motivated by kinetic models, Perthame

and Tadmor [47], considered an (“artificial”) kinetic equation to be associated to scalar conservation

laws. In the spirit of the kinetic theory one would like to consider a density function f , which, however,

is allowed to take negative values by introducing a scalar-valued artificial ”velocity” ξ and express the
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“macroscopic” variable u as

u(x, t) =

∫ +∞

−∞
f(ξ, x, t)dξ. (2.7)

The function f is determined as the µ→ 0 limit of solutions of the transport equation, [47],

∂

∂t
f(ξ, x, t) +∇uA(ξ) · ∇xf(ξ, x, t) =

1

µ
[χu(x,t)(ξ)− f(ξ, x, t)], (2.8)

where µ is a small positive parameter and we are employing the notation

χω(ξ) =



1 if 0 < ξ ≤ ω

−1 if ω ≤ ξ < 0

0 otherwise.

The model (2.8) is similar to BGK model approximating the classical Boltzmann equation, [45]. For-

mally at least, the µ→ 0 limits of solutions of (2.8) will satisfy

f(ξ, x, t) = χu(x,t)(ξ), ξ ∈ R , t ∈ [0,+∞) , (2.9)

so that f will be uniformly distributed on the interval with end-points 0 and u, with value −1 or +1.

The statement of the following result is from [15]; it was first derived in [47].

Theorem 2.3.1 Assume u0 ∈ L∞(Rd) ∩ L1(Rd). For any µ > 0, there exist bounded measurable

functions (f, u), with

f(·, ·, t) ∈ C0([0,+∞);L1(R× Rd)), u(·, t) ∈ C0([0,+∞);L1(Rd)), (2.10)
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which provide the unique solution of (2.7), (2.8) under the initial condition

f(ξ, x, 0) = χu0(x)(ξ) , ξ ∈ R , x ∈ Rd. (2.11)

Moreover,

0 ≤ f(ξ, x, t) ≤ 1 for ξ ≥ 0, −1 ≤ f(ξ, x, t) ≤ 0 for ξ ≤ 0. (2.12)

If ū0 ∈ L∞(Rd) ∩ L1(Rd) are other initial data inducing the solution (f̄ , ū), then, for any t > 0,

∥f(·, ·, t)− f̄(·, ·, t)∥L1(R×Rd) ≤ ∥f(·, ·, 0)− f̄(·, ·, 0)∥L1(R×Rd), (2.13)

∥u(·, t)− ū(·, t)∥L1(Rd) ≤ ∥u(·, 0)− ū(·, 0)∥L1(Rd). (2.14)

As µ → 0 the family (fµ, uµ) converges in L1
loc to bounded measurable functions (f, u) such that f

satisfies the transport equation

∂

∂t
f(ξ, x, t) +∇uA(ξ) · ∇xf(ξ, x, t) =

∂m

∂ξ
(2.15)

in D′(Rd × R × (0,+∞)) for some nonnegative measure m with (2.11), (2.9) to hold and u is the

admissible weak solution of (2.5) and (2.6). In setting up the transport equation (2.8), the role of the

stiff term µ−1(χu − f) is to enforce, in the limit, (2.9). Other ”collision” terms can lead to solutions of

(2.5) , (2.6) as well. The equivalence of (2.15) to (2.5), (2.6) was studied in detail by Lions, Perthame

and Tadmor, [40], see also [45] for a very detailed account on the theory.

Theorem 2.3.2 (Kinetic formulation of the scalar CL) A bounded measurable function u on Rd ×

[0,+∞) with u(·, t) ∈ C0([0,+∞);L1(Rd), is the admissible weak solution of (2.5) , (2.6) if and

only if the function f defined through (2.9) satisfies the transport equation (2.15), for some nonnegative

measure m, together with the initial condition (2.11).
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2.4 Generalised kinetic solutions and Young measures

The kinetic formulation can be generalised to handle distributional solutions of (2.15). The following

definition from [45] will be very useful.

Definition 2.4.1 A function f(x, t, ξ) ∈ L∞(0,+∞;L1(Rd+1)) is called a generalized kinetic solution

of the scalar conservation law with initial data f0, if the following holds. For all ϕ ∈ D([0,+∞) ×

Rd × R) we have

∫ ∞

0

∫
Rd+1

f(t, x, ξ)

[
∂

∂t
ϕ(x, t, ξ) +∇uA(ξ) · ∇xϕ(x, t, ξ)

]
dxdξdt

=

∫ ∞

0

∫
Rd+1

m(t, x, ξ)
∂ϕ(x, t, ξ)

∂ξ
dxdξdt−

∫
Rd+1

f0(x, ξ)ϕ(0, x, ξ)dxdξ

(2.16)

for some nonnegative measure m, which for a bounded function which vanishes at infinity µ(ξ) satisfies∫
Rd×R m(t, x, ξ)dtdx ≤ µ(ξ) . In addition there exists a nonnegative measure ν such that

|f(x, t, ξ)| = sgn(ξ)f(x, t, ξ) ≤ 1 (2.17a)

∂ξf(t, x, ξ) = δ0(ξ)− ν(t, x, ξ) (2.17b)

where

sgn(ξ) =


1 if 0 < ξ

−1 if ξ < 0.

The relationship between f and ν, [40][Remark, p. 178], establishes a connection between the kinetic

formulation and the entropic measure valued solutions in the scalar case. This relationship was studied

in detail by Perthame and Tzavaras [46]. Notice that (2.17b) can be written for any test function φ as

∫
fφ′(ξ)dξ =

∫
R
φ(ξ)dνx,t(λ)− φ′(0) , (2.18)
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and

f =

∫
R
χλ(ξ)dνx,t(λ). (2.19)

It is quite interesting to note that νx,t being atomic, and in particular νx,t = δu(t,x) corresponds to the

case where f(t, x, ξ) = χu(t,x)(ξ) . Generalised kinetic formulations and relationship (5.6c) will be

instrumental in Chapters 4 and 5.
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Chapter 3

A New Class of Entropy Stable Schemes

for Hyperbolic Systems

3.1 Chapter overview

In this chapter we introduce and analyse new finite element schemes for time dependent systems of

hyperbolic conservation laws (HCL)

∂tu(x, t)+∂xA(u(x, t)) = 0, x ∈ R, t > 0,

u(0, x) = u0(x), x ∈ R,
(3.1)

where the solution u(x, t) = (u1(x, t), . . . , um(x, t)),m ≥ 1 is vector valued, u : R → Rm. The flux

A : Rm → Rm is assumed to belong to C1(Rm) and the initial value u0 ∈ [L2(R)]m is a given function

with compact support. At this point we are not precise regarding the notion of the solution considered

for the system. Our results apply to weak and measure valued solutions. Further, the schemes and most

results can be extended to the multidimensional case as well, however we have restricted our attention

to the one dimensional case for simplicity in the exposition.

Our aim is to propose a new class of entropy stable schemes for the system (3.1). Entropy stability is
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a key property of the numerical scheme which is the discrete analog of the entropy inequality assumed for

the system. Such schemes developed so far in the classic works of Tadmor [49, 50] (see also the surveys

[51, 52]), Johnson, Hansbo and Szepessy [30, 31, 28], and their collaborators and start from a class of

appropriate entropy conservative schemes. Then entropy diminishing schemes are obtained by adding

appropriate artificial diffusion terms. This program is based on the reformulation of the HCL using the

entropy variables, and this is the approach taken, as well, in modern works on the subject [23, 29, 21].

Entropy conservative schemes are quite interesting on their own, since among others, provide physically

relevant approximations to dispersive shocks, nonclassical shocks and other important systems, [37, 10,

35, 36, 20].

Our approach has a starting point a new mixed-type formulation of the hyperbolic system which does

not replace the original variables. This formulation allows direct discretisation of the original variables

and at the same time leads naturally to entropy conservative schemes. Significant flexibility is allowed

in the design of the corresponding entropy stable computational algorithms. New finite element schemes

are introduced and analysed. It is shown that the resulting approximations converge to an entropy weak

and when appropriate to an entropy measure valued solution.

3.2 Motivation.

Consider the scalar conservation law

ut +A(u)x = 0.

Assume for the moment that u is smooth and η,Q is an entropy-entropy flux pair, i.e., Q′ = A′η′ . Then

ut(t)η
′(u) +A′(u)ux η

′(u) = ut(t)η
′(u) + uxQ

′(u) = η(u)t +Q(u)x
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and thus

η(u)t +Q(u)x = 0.

Integrating now with respect to x and t while assuming that Q tents to zero at infinity we have

∫ t

0

∫
R
η(u)t′dxdt

′ +

∫ t

0

∫
R
Q(u)xdxdt

′ = 0

which implies ∫ t

0

∫
R
η(u)t′dxdt

′ = 0.

Hence ∫
R
η(u(x, t)) dx =

∫
R
η(u(x, 0)) dx . (3.2)

Consider a Galerkin scheme (discretisation only in x): Seek uh : [0, T ] → Xh such that

∫
R
(uh,t(x, t), φ(x)) dx+

∫
R
(A(uh(x, t))x, φ(x)) dx = 0 for all φ ∈ Xh. (3.3)

Here Xh is a standard conforming finite element space consisting of continuous piecewise polynomial

functions (for precise definitions see below). A key observation is that this scheme is not entropy conser-

vative, i.e., it does not satisfy the discrete analog of (3.2). The main reason is that η′(uh) is not eligible

test function anymore. Using a projection will inevitably introduce errors, which at the end will destroy

the equality in (3.2).

The reformulation of the conservation law using entropy variables fixes this problem and yields

entropy conservation at the discrete level. In fact, since η is convex, η′ is invertible. Define a new

variable v such that v = η′(u). Then for κ =
[
η′
]−1 we have

u = κ(v), v = η′(u) .
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The formulation of the HCL in entropy variables reads,

κ(v)t +G (v)x = 0 , G(v) = A(κ(v)).

Now it is a simple matter to check that the corresponding Galerkin discretisation : Seek vh : [0, T ] → Xh

such that ∫
R
(κ(vh)t, φ) dx+

∫
R
(G (vh)x, φ) dx = 0 for all φ ∈ Xh,

is entropy conservative. Although simplified, this discussion highlights what one gains using the entropy

variables at the discrete level. As mentioned earlier these variables are used in the classical works both

for finite difference/volume as well as for finite element methods, [49, 50, 30, 31], and it seems that

it is the only viable way to obtain entropy conservative schemes to day. There are some limitations to

this approach. One can mention that although it can be recovered, the original variable does not belong

to the discrete space and it is available only through vh, the convexity of η is absolutely essential and

considering natural viscosity in the schemes is rather involved.

Entropy conservative schemes revised: A mixed formulation. Our approach is to based to a formu-

lation that keep both variables:

ut +G (τ)x =0, G(τ) = A(κ(τ)),

τ = η′(u) .

Of course, this writing is equivalent to HCL, but the corresponding discretisation scheme is new: Seek

uh, τh : [0, T ] → Xh such that

∫
R
(uh,t, φ) dx+

∫
R
(G (τh)x, φ) dx =0 for all φ ∈ Xh,∫

R
(τh, ψ) dx−

∫
R
(η′(uh), ψ) dx =0 for all ψ ∈ Xh.

(3.4)
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One can check that this scheme is entropy conservative (the proof follows by modifying appropriately

the proof of Lemma 3.6.1 below and it is omitted). This scheme an be used as basis for the design of

several “advanced” high-order discretisations.

By keeping both variables we allow for flexible flux-function choices. In certain systems is possible

to rewrite the HCL in a form where the flux depends on both variables,

ũt +H (τ̃ , ũ)x =0,

τ̃ = η′(ũ).

The corresponding Galerkin discretisation is then: Seek uh, τh : [0, T ] → Vh such that

∫
R
(uh,t, φ) dx+

∫
R
(H (τh, uh)x, φ) dx =0 for all φ ∈ Vh,∫

R
(τh, ψ) dx−

∫
R
(η′(uh), ψ) dx =0 for all ψ ∈ Vh.

(3.5)

A key advantage of the later formulation is that the inversion of η′ is not required. Mixed formulations

of the form similar to (3.5) go back to [26] where the first energy consistent numerical methods for the

Navier- Stokes-Korteweg system were introduced. Notably, for this system the energy function is not

convex. In this work we focus on schemes whose design is based on (3.4). It is evident however that our

results can be extended to systems of the form (3.5) under appropriate structural hypotheses.

3.3 Notation.

Going back to the system case we assume that (3.1) is equipped with an entropy-entropy flux pair (η,Q)

where Q : Rm → R, η : Rm → R convex and the following relation holds

ηu(u)∇uA(u) = Qu(u), (3.6)
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where by ∇uA we denote the Jacobian of A. In addition to (3.6) we assume further that ηu(0) = 0 and

Q(0) = 0. A function u ∈ [L∞(Ω)]m, Ω = (0,+∞)× R that fulfils the relation

∫
Ω

(
u · ϕt +A(u) · ϕx

)
dxdt+

∫
R

u0 · ϕ(0, x)dx = 0, (3.7)

for all ϕ ∈ C∞
0 (Ω) is called weak solution of (3.1).

It is well known that weak solutions of (2.1.1) are not generally unique. In the scalar case uniqueness

is established by imposing extra entropy inequalities. Nevertheless, in all cases it is relevant to con-

sider additional criteria which identify physically relevant solutions, [15]. To this end, we call entropy

solutions, weak solutions satisfying in addition

−
∫
Ω

(
η(u)ϕt +Q(u)ϕx

)
dxdt−

∫
R

η(u0) · ϕ(0, x)dx ≤ 0, (3.8)

for all ϕ ∈ C∞
0 (Ω) with ϕ ≥ 0.

A main concern in the numerical analysis of these problems is to construct approximations consistent

with (3.8) in the sense that in the limit converge in a suitable sense towards an entropy solution.

3.4 A space-time finite element method

We consider approximating methods, which are based on a space-time finite element discretization with

piecewise polynomials of degree one and zero in time. Our schemes and results can be extended to

high-order elements without notable technical obstructions.

Let 0 = t0 < t1 < t2 < . . . be a sequence of time levels, define In = (tn, tn+1) and introduce the

’slabs’, Sn = R × In. To simplify matters we shall assume that all solutions and approximations have

compact support. For the space discretisation we shall consider a fixed finite element decomposition of
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a given interval [−B,B]. Let Xh be the spatial finite element space consisting of continuous piecewise

polynomials of degree one extended to zero outside [−B,B]. The solutions and approximations are

implicitly assumed to vanish outside [−B,B]. For n = 0, 1, 2, . . . , let Tnh be a mesh of Sn into space-

time rectangles K and define

V n
h = {v ∈ [H1(Sn)]

m : v|K= v1(x) · v2(t), v1 ∈ Xh, v2 ∈ P1}.

We denote by h̄ = maxK∈Sn, n≥0 diamK , and by h, h > 0 a mesh discretisation parameter propor-

tional to h̄.We shall restrict to quasi-uniform meshes and we shall use the fact h ≤ CminK∈Sn, n≥0 diamK .

We will seek an approximate solution uh in the space Vh = {φ : R×(0,+∞) → R : φ|Sn∈ V n
h , n ≥ 0}

we will have

uh|Sn∈ V n
h .

Further,we consider the finite element space:

Wn
h = {ψ ∈ [H1(Sn)]

m : ψ|K= ψ1(x)ψ2(t), ψ1 ∈ Xh, ψ2 ∈ P0},

and

Wh = {w : R× (0,+∞) → R : w|Sn∈Wn
h , n ≥ 0} .

The space Wh is needed for our mixed formulation given that by construction ∂tv ∈Wn
h for all v ∈ V n

h .

In fact, although both variables in our mixed formulation belong to the same space Vh we shall use two

different test spaces. The method is a discontinuous Galerkin in time-type of method much the spirit of

[30, 31, 28] adapted to our mixed formulation (3.4). It is important to note that we shall require an extra

compatibility condition at the discrete time nodes, see (3.9c) below. We can now define our numerical

22



scheme: Seek uh, τh ∈ Vh such that for n = 0, 1, . . . ,

∫
Sn

(
(uh)t +A

(
κ(τh)

)
x

)
· ϕh dxdt+ γ (h)

∫
Sn

(τh)x · (ϕh)x dxdt

+

∫
R

(u
n+

h − u
n−
h ) · ϕn+

h dx = 0,

(3.9a)

∫
Sn

(
τh − ηu(uh)

)
· ψh dxdt = 0, (3.9b)

∫
R

(
τ
n+

h − ηu(u
n+

h )
)
· ψn+

h dx = 0, (3.9c)

for all ϕh ∈ V n
h (S

n) and ψh ∈Wn
h (S

n), where κ = η−1
u , un±

h = lim
s→0±

uh(t
n+s), ϕn+

h = lim
s→0+

ϕh(t
n+

s), ψn+

h = lim
s→0+

ψh(t
n+ s) and u0−h = u0. Notice that although the dimension of the space Wh is lower

than Vh, the final system (3.9a)-(3.9c) is balanced in terms of degrees of freedom due to the presence of

(3.9c). Here γ = γ(h) > 0, is a positive parameter, used to tune the amount of the artificial diffusion

induced in the scheme with γ(h) → 0 as h→ 0. A few comments are in order. First, the above scheme

is quite simplified and it serves as a model to verify that our approach can indeed be theoretically

justified at the finite element level. One can add various stabilisation terms (shock capturing, diffusion

at combined space-time direction, etc) to it, but these technical additions do not offer much on our

qualitative understanding as far as behaviour of the scheme is concerned. Further, the choice of the

artificial diffusion parameter γ = γ(h) is also subtle. One may include a spatial dependent term within

the integral which can be tuned in an adaptive manner, or/and to include nonlinear dependence on the

approximate solution, in order to ensure consistency and flexibility, but again these technical alterations

which might improve the quality of the approximations, do not add much in our understanding at the

theoretical level. Thus we have decided to retain the scheme in a simple form.
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3.5 Main results–Remarks.

As mentioned, the strategy to design entropy stable schemes for hyperbolic conservation laws, is to

build on entropy conservative discretisation. Our approach is based on a novel entropy conservative

discretisation, (3.4), which was the basis of the fully discrete space-time finite element scheme presented

above. The choice of different test functions provides the right discretisation at the mixed level which

leads to the desired properties. This scheme introduces artificial dissipation both in space and time

(explicitly in the space variable and implicitly in the time variable through the discontinuous Galerkin

time discretisation). In Section 3.6 below we show stability estimates yielding the entropy stability of

the scheme. We have opted for conforming space discretisation, just to make the comparison with the

results of [30, 31, 28] more tractable. We have chosen to include simple artificial diffusion terms, in

order to keep the analysis as simple as possible and thus to highlight the ideas needed to verify the

energy consistency for the scheme. Although the general plan of the proofs follows [30, 31, 28], we had

to overcome several technical obstacles due to the new formulation introduced herein. The results of this

work can be extended when discretisation in space is done using discontinuous Galerkin methods, e.g.,

[13, 14, 12], but the formulation becomes quite technical and special care should be given on the design

of the discrete fluxes, compare to [26, 29]. In Section 3.6 we derive first the entropy stability estimate

for our scheme, Lemma 3.6.1. In Section 3.7, Theorem 3.7.1, we prove that assuming that uh → u then

u is an entropy solution of the conservation law. A crucial result towards this goal is the compatibility

of the mixed variables at the limit proved in Lemma 3.6.4. Section 3.8 is devoted to measure valued

solutions of (3.1). Our focus is the notion of measure valued solution of Di Perna and we prove that

the numerical method is indeed compatible with this notion at the limit. In fact, Theorem 3.8.2 shows

that approximating sequences obtained by our scheme generate an entropic measure valued solution of

(3.1). Towards this goal, an important intermediate step is Lemma 3.8.1 which connects the limiting

behaviour of τh with the limiting measure extracted from the sequence {uh}. The results in Section 3.8
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were obtained under the assumption that the approximations were uniformly bounded in L∞. A more

refined approach is possible for certain entropies. In fact for certain entropies with up growth in Section

3.9 we show that our approximations are uniformly bounded in Lp and thus one can apply the Lp−

based theory of measure valued solutions, [4], to show that still the approximating sequences obtained

by our scheme generate an entropic measure valued solution of (3.1). As far as we know, this is the first

numerical method for which such property can be proved.

3.6 Stability-Preliminary results

3.6.1 Stability Estimate

We shall prove now, a stability estimate on which is essential for the forthcoming results. We shall use

that the convexity of η, implies that there is a compact set D ⊂ Rm and a constant σ > 0 such that the

relation

η(v)− η(w)− ηu(w) · (v − w) ≥ σ|v − w|2 (3.10)

holds for all v, w ∈ D where |.| is the Euclidean norm.

Lemma 3.6.1 Suppose that the ranges of a sequence of finite element solutions of (3.9) lies in the

compact set D i.e.

{uh}h>0 ⊂ D. (3.11)

Then for N = 1, 2, . . . , we have the estimate

γ
N−1∑
n=0

∥(τh)x∥2L2(Sn)
+ σ

N−1∑
n=0

∥un−
h − u

n+

h ∥2L2(R) +

∫
R

η(u
N−
h ) ≤

∫
R

η(u0) (3.12)

Remark 3.6.2 Observe now that having in mind (3.23), assumption (3.11) guarantees that τh is bounded

25



on D, provided that ηu is also a bounded function on D and also τh = 0 when uh = 0.

Proof: We achieve this by setting ϕh = τh in (3.9a). We have

∫
Sn

(
(uh)t +A

(
κ(τh)

)
x

)
· τh dxdt+ γ

∫
Sn

(
(τh)x

)2
dxdt

+

∫
R

(u
n+

h − u
n−
h ) · τn+

h dx = 0

Thus ∫
Sn

(uh)t · τhdxdt+
∫
Sn

∇uA(κ(τh)
)
κ(τh)x · ηu(κ(τh))dxdt+ γ

∫
Sn

(
(τh)x

)2
dxdt

+

∫
R

(u
n+

h − u
n−
h ) · τn+

h dx = 0

and ∫
Sn

(uh)t · τhdxdt+
∫
Sn

ηu(κ(τh))∇uA(κ(τh)
)
· κ(τh)xdxdt+ γ

∫
Sn

(
(τh)x

)2
dxdt

+

∫
R

(u
n+

h − u
n−
h ) · τn+

h dx = 0.

Hence, by (3.6),

∫
Sn

(uh)t · τhdxdt+
∫
Sn

Q
(
κ(τh)

)
x
dxdt+ γ

∫
Sn

(
(τh)x

)2
dxdt

+

∫
R

(u
n+

h − u
n−
h ) · τn+

h dx = 0.

Since κ(0) = 0 we conclude

∫
Sn

(uh)t · τhdxdt+ γ

∫
Sn

(
(τh)x

)2
dxdt+

∫
R

(u
n+

h − u
n−
h ) · τn+

h dx = 0. (3.13)
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Setting ψh = (uh)t in (3.9b) we get,

∫
Sn

τh · ∂tuhdxdt =
∫
Sn

ηu(uh) · ∂tuhdxdt =
∫
Sn

η(uh)tdxdt

Thus, if we substitute the first term of (3.13) with the above we get,

∫
Sn

η(uh)tdxdt+ h

∫
Sn

(
(τh)x

)2
dxdt+

∫
R

(u
n+

h − u
n−
h ) · τn+

h dx = 0

and (3.9c) finally implies

∫
Sn

η(uh)tdxdt+ γ

∫
Sn

(
(τh)x

)2
dxdt+

∫
R

(u
n+

h − u
n−
h ) · ηu(un+

h )dx = 0.

Summation over n implies,

N−1∑
n=0

∫
R

(
η(u

n+1−
h )− η(u

n+

h ) + (u
n+

h − u
n−
h ) ·ηu(un+

h )
)
dx

+ γ
N−1∑
n=0

∥(τh)x∥2L2(Sn)
= 0.

Hence,
N−1∑
n=0

∫
R

(
η(u

n−
h ) −η(un+

h )− (u
n−
h − u

n+

h ) · ηu(un+

h )
)
dx

+ γ

N−1∑
n=0

∥(τh)x∥2L2(Sn)
+

∫
R

η(u
N−
h )dx =

∫
R

η(u0)dx.

(3.14)

Using (3.10) in (3.14) we obtain (3.12).

□

A crucial step forward in order to prove the convergence of (3.9) towards an entropy solution, is to

show that as

uh → u , τh → τ a.e. when h→ 0 (3.15)

27



then the following statement holds,

τ = ηu(u) a.e. (3.16)

in Ω. For this purpose we need also the following estimates for the L2 projections.

Lemma 3.6.3 For S being a discrete space, S = Vh,Wh or Xh let PS the L2−projection onto S. There

exist constants C such that for ω ∈ [H1(Sn) ∩ C(Sn)]m, ϕ ∈ H1(Sn) ∩ C(Sn), u ∈ V n
h (or Wn

h ), n =

0, 1, 2, . . . , and k = 0, 1

hk∥ω − PVhω∥Hk(Sn) +
√
h∥ωn+ − (PVhω)

n+∥L2(R) ≤ Ch2|ω|H2(Sn),

hk∥uϕ− PVh(uϕ)∥Hk(Sn) +
√
h∥(uϕ)n+ − (PVh(uϕ))

n+∥L2(R)

≤ Ch∥u∥L∞(Sn)(|ϕ|H1(Sn) + h|ϕ|H2(Sn)) .

Further, for PWh
there holds

∥ω − PWh
ω∥L2(Sn) ≤ Ch|ω|H2(Sn).

In addition, for a ϕ ∈ C∞
c (Ω) and u ∈ V n

h , there is a constantC = C(ϕ) such that, with n = 0, 1, 2, . . . ,

there holds that

∥(uϕ)n+ − PXh
(uϕ)n+∥L2(R) ≤ Ch∥un+∥L2(R) .

Proof: For the first two estimates see [31]. By the best approximation property of the L2 projection

and the discontinuity of the functions of Wh in time one observes

∥ω − PWh
ω∥L2(Sn) ≤∥ω − P0,tω∥L2(Sn) + ∥P0,t(ω − PXh

ω)∥L2(Sn)

≤∥ω − P0,tω∥L2(Sn) + ∥ω − PXh
ω∥L2(Sn)

≤∥ω − P0,tω∥L2(Sn) + ∥ω − IXh
ω∥L2(Sn)

28



where IXh
the standard interpolation operator onto Xh, and P0,t the L2 projection in time operator onto

the piecewise constant functions. The second relation then follows by standard interpolation estimates

and the Poincaré - Friedrichs inequality. For the last estimate, observe first that for I ′ being a typical

element of the decomposition of the finite element space Xh, there holds,

∥ωn+ − IVhω
n+∥L2(I′) ≤ Ch2|ωn+ |H2(I′)

see [8]. Clearly (uϕ)n+ ∈ H2(I ′). We will denote for the rest of the proof (uϕ)n+ as uϕ. The above

inequality yields

∥(uϕ)− PXh
(uϕ)∥2L2(R) ≤

∑
I′

∥(uϕ)− IXh
(uϕ)∥2L2(I′) ≤ Ch4

∑
I′

|uϕ|2H2(I′). (3.17)

Next, since,

∂2x(uϕ) = 2∂xϕ∂xu+ u∂2xϕ

we have

|uϕ|2H2(I′) =

∫
I′

(2∂xϕ∂xu+ u∂2xϕ)
2dx ≤

∫
I′

6(∂xϕ)
2(∂xu)

2dx+

∫
I′

3u2(∂2xϕ)
2dx.

Therefore

|uϕ|2H2(I′) ≤ 6∥∂xϕ∥2L∞(R)∥∂xu∥
2
L2(I′) + 3∥∂2xϕ∥2L∞(R)∥u∥

2
L2(I′)

≤ C(∥∂xu∥2L2(I′) + ∥u∥2L2(I′))

(3.18)

where C = max{6∥∂xϕ∥2L∞(R), 3∥∂
2
xϕ∥2L∞(R)}. Furthermore, standard inverse inequalities imply, [8],

∥∂xu∥L2(I′) ≤ C2h
−1∥u∥L2(I′). Hence, inequality (3.18) implies

|uϕ|2H2(I′) ≤ C(C2h
−2 + 1)∥u∥2L2(I′) .

29



Substituting this result in (3.17) we get

∥(uϕ)− PXh
(uϕ)∥2L2(R) ≤ C(C2h

2 + h4)
∑
I′

∥u∥2L2(I′) ,

and the proof is complete.

□

Lemma 3.6.4 Under the assumptions (3.11) and (3.15), τ = ηu(u) almost everywhere in Ω.

Proof: We prove (3.16) by employing (3.9b). For a function ϕ ∈ [C∞
c (Ω)]m we have

∫
Sn

(
τh − ηu(uh)

)
· ϕdxdt =

∫
Sn

(
τh − ηu(uh)

)
·
(
ϕ− PWh

ϕ
)
dxdt (3.19)

where by PWh
we denote the L2−projection onto Wh space. Summing over n in (3.19) and considering

that Ω1 is a finite domain such that supp(ϕ) ⊂ Ω1 ,we can see that

∣∣∣∣∑
n

∫
Sn

(
τh − ηu(uh)

)
·
(
ϕ− PWh

ϕ
)
dxdt

∣∣∣∣ = ∣∣∣∣ ∫
Ω

(
τh − ηu(uh)

)
·
(
ϕ− PWh

ϕ
)
dxdt

∣∣∣∣
≤
∫
Ω1

∣∣∣(τh − ηu(uh)
)
·
(
ϕ− PWh

ϕ
)∣∣∣dxdt ≤ ∥τh − ηu(uh)∥L∞(Ω1)

∫
Ω1

∣∣∣(ϕ− PWh
ϕ
)∣∣∣dxdt

≤ ∥τh − ηu(uh)∥L∞(Ω1)∥ϕ− PWh
ϕ∥L2(Ω1)|Ω1|

1
2 .

By Lemma 3.6.3 we infer that ∥ϕ−PWh
ϕ∥L2(Ω1) ≤ Ch∥ϕ∥2 for some constant C. Therefore by (3.19)

we obtain, ∣∣∣∣ ∫
Ω

(τh − ηu(uh)) · ϕdxdt
∣∣∣∣ ≤ C1h∥ϕ∥2. (3.20)
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Here we used ∥τh∥L∞(Ω1), ∥ηu(uh)∥L∞(Ω1) < C, see Remark 3.6.5 below. Moreover, since (τh −

ηu(uh)) · ϕ are uniformly bounded and having in mind

(τh − ηu(uh)) · ϕ→ (τ − ηu(u)) · ϕ a.e.

we obtain, by the dominated convergence theorem that

∫
Ω

(τh − ηu(uh)) · ϕdxdt→
∫
Ω

(τ − ηu(u)) · ϕdxdtx. (3.21)

Letting h→ 0 in (3.20) we see then using (3.21), we conclude

∫
Ω

(τ − ηu(u)) · ϕdxdt = 0 (3.22)

for all ϕ ∈ [C∞
c (Ω)]m and our assertion follows. □

Remark 3.6.5 (Alternative scheme definition) It is interesting to note that the second and third equa-

tion in the definition of the scheme (3.9) can lead to a relationship between τh and uh, and thus to

the possibility of eliminating the extra variable τh . In fact, a simple calculation gives that τh can be

expressed in terms of uh through the relation

τh(x, t)|Sn = PXh
(ηu(u

n+

h ))
tn+1 − t

|In|

+
t− tn

|In|

(
PXh

(∫
In

ηu(uh(x, t))dt

)
2

|In|
− PXh

(ηu(u
n+

h ) )

)
.

(3.23)

The original system form of the scheme is however more convenient in the analysis, and it is used

throughout the paper. One of the consequences of this expression is when uh is uniformly bounded, the

same is true for τh .

Alternatively, one can observe that τh = I1 PXh
ηu(uh(x, t)), where the time interpolant Iq :
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C(In) → Pq(In) is defined as

∫
In

Iqv w dt =

∫
In

v w dt, ∀w ∈ Pq−1(In) , (3.24a)

Iqv
n+ = vn+ . (3.24b)

Notice that such an interpolant preserves the optimal order of convergence of the time-discontinuous

Galerkin method since one can show, ∥Iqv − v∥Lp(In) ≤ kq+1
n ∥v(q+1)∥Lp(In) . Similar bounds, have

been derived in [53, (12.10)].

3.7 Convergence

We can now proceed to the proof of convergence of uh towards an entropy solution.

Theorem 3.7.1 Assume that {uh}h>0 ⊂ D and uh → u , τh → τ a.e. as h → 0. Let further that

γ(h)−1/2 h → 0. Then the limit of the solution uh of the numerical scheme (3.9), u, is an entropy

solution of (3.1).

Proof: First, we show that u is a weak solution of (3.1). Taking ϕh = PVh(ϕ) in (3.9a) with ϕ ∈

[C∞
c (Ω)]m, we will have

∫
Sn

(
(uh)t +A

(
κ(τh)

)
x

)
· ϕ dxdt+

∫
R

(u
n+

h − u
n−
h ) · ϕn+ dx

=

∫
Sn

(
(uh)t +A

(
κ(τh)

)
x

)
·
(
ϕ− PVh(ϕ)

)
dxdt

+

∫
R

(u
n+

h − u
n−
h ) · (ϕn+ − (PVhϕ)

n+)dx− γ

∫
Sn

(τh)x · (PVh(ϕ))x dxdt.

Notice that since ϕ ∈ [C∞
c (Ω)]m there exist n0 such that ϕ(t, ·) = 0, t ≥ tn0 . Therefore summing with

respect to n we obtain
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−
∑
n≥0

∫
Sn

(
(uh) · ϕt +A

(
κ(τh)

)
· ϕx
)
dxdt+

∑
n≥0

∫
R

(u
n+

h − u
n−
h ) · ϕn+ dx

+
∑
n≥0

∫
R

(u
n+1−
h − u

n+

h ) · ϕn+ dx

=
∑
n≥0

∫
Sn

(
(uh)t +A

(
κ(τh)

)
x

)
·
(
ϕ− PVh(ϕ)

)
dxdt

+
∑
n≥0

∫
R

(u
n+

h − u
n−
h ) · (ϕn+ − (PVhϕ)

n+)dx− γ
∑
n≥0

∫
Sn

(τh)x · (PVh(ϕ))x dxdt.

Hence, ∣∣∣∣∣∣
∫
Ω

(
uh · ϕt +A(κ(τh)) · ϕx

)
dxdt+

∫
R

u0 · ϕ(0, x)dx

∣∣∣∣∣∣
≤ max

τh

∣∣∇uA
(
κ(τh)

)∣∣ ∫
Ω

∣∣∣∣(τh)x∣∣∣∣∣∣∣∣ϕ− PVh(ϕ)

∣∣∣∣dxdt
+
∑
n≥0

∫
R

∣∣∣∣un+

h − u
n−
h

∣∣∣∣∣∣∣∣ϕn+ − (PVhϕ)
n+

∣∣∣∣dx+ γ

∫
Ω

∣∣∣∣(τh)x∣∣∣∣∣∣∣∣PVh(ϕ))x∣∣∣∣dxdt
≤ max

τh

∣∣∇uA
(
κ(τh)

)∣∣ ∥(τh)x∥L2(Ω)∥ϕ− PVhϕ∥L2(Ω)

+

( n0∑
n=0

∥un−
h − u

n+

h ∥2L2(R)

) 1
2
( n0∑
n=0

∥ϕn+ − (PVhϕ)
n+∥2L2(R)

) 1
2

+ γ∥(τh)x∥L2(Ω)∥(PVhϕ)x∥L2(Ω).

Again, from Lemma 3.6.3 it holds that ∥ϕ − PVhϕ∥L2(Ω) ≤ Ch2∥ϕ∥H2(Ω) and further
∑
n≥0

h∥ϕn+ −

(PVhϕ)
n+∥2L2(R) ≤ Ch4∥ϕ∥2H2(Ω) for some constant C. Thus

∣∣∣∣∣∣
∫
Ω

(
uh · ϕt +A(κ(τh)) · ϕx

)
dxdt+

∫
R

u0 · ϕ(0, x)dx

∣∣∣∣∣∣
≤ max

τh
|∇uA(κ(τh))| γ

1
2 ∥(τh)x∥L2(Ω)Cγ

− 1
2h2∥ϕ∥H2(Ω) + C3h

3
2 ∥ϕ∥H2(Ω)

+ γ∥(τh)x∥L2(Ω)∥(PVhϕ)x∥L2(Ω)

(3.25)

for some constant C3. Recalling now Lemma 3.6.4, we know that A(κ(τh)) → A(u) a.e. Further,

stability properties of the L2−projection stability imply ∥(PVhϕ)x∥L2(Ω) ≤ ∥(ϕ)x∥L2(Ω). Thus, letting
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h→ 0 in (3.25) while choosing a proper γ such that γ−
1
2h2 → 0 and having in mind that (3.12) implies

(γ)
1
2 ∥(τh)x∥L2(Ω) ≤ C we conclude that,

∫
Ω

(
u · ϕt +A(u) · ϕx

)
dxdt+

∫
R

u0 · ϕ(0, x)dx = 0

and thus u is a weak solution for (3.1).

Next, we need to show that u is also an entropy solution. Setting ϕh = PVh(τhϕ) in (3.9a) where

ϕ ∈ C∞
c (Ω), ϕ ≥ 0 we have

∫
Sn

(
(uh)t +A

(
κ(τh)

)
x

)
· τhϕ dxdt+

∫
R

(u
n+

h − u
n−
h ) · τn+

h ϕn+ dx

=

∫
Sn

(
(uh)t +A

(
κ(τh)

)
x

)
·
(
τhϕ− PVh(τhϕ)

)
dx

+

∫
R

(u
n+

h − u
n−
h ) · (τn+

h ϕn+ − (PVh(τhϕ))
n+)dx− γ

∫
Sn

(τh)x · (PVh(τhϕ))x dxdt.

Since

∫
Sn

(
(uh)t +A

(
κ(τh)

)
x

)
· τhϕ dxdt =

∫
Sn

(uh)t · τhϕdxdt+
∫
Sn

∇uA(κ(τh)
)
κ(τh)x · ηu(κ(τh))ϕdxdt

we conclude

∫
Sn

(uh)t · τhϕdxdt+
∫
Sn

Q
(
κ(τh)

)
x
ϕdxdt+

∫
R

(u
n+

h − u
n−
h ) · τn+

h ϕn+ dx

=

∫
Sn

A
(
κ(τh)

)
x
·
(
τhϕ− PVh(τhϕ)

)
dxdt− γ

∫
Sn

(τh)x · (PVh(τhϕ))x dxdt

+

∫
R

(u
n+

h − u
n−
h ) · (τn+

h ϕn+ − (PVh(τhϕ))
n+)dx.

(3.26)

Setting now ψh = PWh
((uh)tϕ) in (3.9b) we have
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∫
Sn

(
τh − ηu(uh)

)
· (uh)tϕdxdt =

∫
Sn

(
τh − ηu(uh)

)
·
(
(uh)tϕ− PWh

((uh)tϕ)
)
dxdt,

or

∫
Sn

τh · (uh)tϕdxdt =
∫
Sn

(
τh − ηu(uh)

)
·
(
(uh)tϕ− PWh

((uh)tϕ)
)
dxdt+

∫
Sn

[η(uh)]tϕdxdt

Substituting this in (3.26) we get

∫
Sn

[η(uh)]tϕdxdt+

∫
Sn

Q
(
κ(τh)

)
x
ϕdxdt+

∫
R

(u
n+

h − u
n−
h ) · τn+

h ϕn+ dx

=

∫
Sn

A
(
κ(τh)

)
x
·
(
τhϕ− PVh(τhϕ)

)
dxdt

+

∫
R

(u
n+

h − u
n−
h ) · (τn+

h ϕn+ − (PVh(τhϕ))
n+)dx− γ

∫
Sn

(τh)x · (PVh(τhϕ))x dxdt

−
∫
Sn

(
τh − ηu(uh)

)
·
(
(uh)tϕ− PWh

((uh)tϕ)
)
dxdt.

Summing over n and integrating by parts on the left hand side of the equation we see that

−
∫
Ω

(
η(uh)ϕt +Q

(
κ(τh)

)
ϕx
)
dxdt

+
∑
n

∫
R

(
η((u

n−
h )− η((u

n+

h ))− (u
n−
h − u

n+

h ) · τn+

h

)
ϕn+ dx

=

∫
Ω

A
(
κ(τh)

)
x
·
(
τhϕ− PVh(τhϕ)

)
dxdt

+
∑
n

∫
R

(u
n+

h − u
n−
h ) · (τn+

h ϕn+ − (PVh(τhϕ))
n+)dx− γ

∫
Ω

(τh)x · (PVh(τhϕ))x dxdt

−
∫
Ω

(
τh − ηu(uh)

)
·
(
(uh)tϕ− PWh

((uh)tϕ)
)
dxdt.

(3.27)
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Since ϕ ≥ 0 we have

−γ
∫
Ω

(τh)x(τhϕ)xdxdt

= −γ
∫
Ω

(τh)x(τh)xϕdxdt− γ

∫
Ω

(τh)xτhϕxdxdt ≤ −γ
∫
Ω

(τh)xτhϕxdxdt.

and thus equality 3.27 becomes

−
∫
Ω

(
η(uh)ϕt +Q

(
κ(τh)

)
ϕx
)
dxdt

+
∑
n

∫
R

(
η((u

n−
h )− η((u

n+

h ))− (u
n−
h − u

n+

h ) · τn+

h

)
ϕn+ dx

≤
∫
Ω

A
(
κ(τh)

)
x
·
(
τhϕ− PVh(τhϕ)

)
dxdt

+
∑
n

∫
R

(u
n+

h − u
n−
h ) · (τn+

h ϕn+ − (PVh(τhϕ))
n+)dx

−
{
γ

∫
Ω

(τh)x · (PVh(τhϕ))x dxdt− γ

∫
Ω

(τh)x(τhϕ)xdxdt+ γ

∫
Ω

(τh)xτhϕxdxdt
}

−
∫
Ω

(
τh − ηu(uh)

)
·
(
(uh)tϕ− PWh

((uh)tϕ)
)
dxdt

=: A1 +A2 +A3 +A4.

(3.28)

We will estimate the right hand side of (3.28). Our aim is to show

−
∫
Ω

(
η(uh)ϕt +Q

(
κ(τh)

)
ϕx
)
dxdt

+
∑
n

∫
R

(
η(u

n−
h )− η(u

n+

h )− (u
n−
h − u

n+

h ) · τn+

h

)
ϕn+ dx

≤ C(h
1
2 + γ

1
2 + hγ

1
2 + γ−

1
2h).

(3.29)
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To this end we first notice that Lemma (3.6.3) implies

∥τhϕ− PVh(τhϕ)∥L2(Ω) ≤ C(h+ h2)∥ϕ∥H2(Ω),∑
n

h∥τn+

h ϕn+ − (PVh(τhϕ))
n+∥2L2(R) ≤ C(h+ h2)2∥ϕ∥2H2(Ω)

(3.30)

hence |A1| ≤ Cγ−
1
2h and |A2| ≤ Ch

1
2 . It remains to estimate the third and the forth terms of the

right-hand side of (3.28).

For the third term we notice that, the stability estimate in Lemma 3.6.1 implies

∣∣∣∣∣∣−γ
∫
Ω

(τh)x · ((PVh(τx))x − (τhϕ)x) dxdt

∣∣∣∣∣∣
≤ γ∥(τh)x∥L2(Ω)∥(PVh(τϕ))x − (τhϕ)x∥L2(Ω)

≤ γ∥(τh)x∥L2(Ω)∥τh∥L∞(Ω)(∥ϕ∥H1(Ω) + h∥ϕ∥H2(Ω))

≤ C(1 + h)γ
1
2

and ∣∣∣∣∣∣γ
∫
Ω

(τh)x · τhϕxdxdt

∣∣∣∣∣∣ ≤ γ∥(τh)x∥L2(Ω)∥τh∥L∞(Ω) ∥ϕ∥H1(Ω)

≤ Cγ
1
2 .

Hence |A3| ≤ C(1+h)γ
1
2 . In order to bound A4 we first need a bound for the term (uh)t in L2(Ω). We

assume ∥(uh)t∥L2(Sn) > 0 since if ∥(uh)t∥L2(Sn1 )
= 0 for some index n1 then it does not contribute to
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∑
n≥0

∥(uh)t∥2L2(Sn)
. Using (3.9a) we have

∥(uh)t∥2L2(Sn)
=

∫
Sn

(uh)t · (uh)tdxdt

= −
∫
Sn

A(κ(τh))x · (uh)tdxdt− γ

∫
Sn

(τh)x · (uh)txdxdt

−
∫
R

(u
n+

h − u
n−
h ) · (uh)n+

t dx

= −
∫
Sn

∇uA(κ (τh)) (κ (τh))x · (uh)tdxdt− γ

∫
Sn

(τh)x · (uh)txdxdt

−
∫
R

(u
n+

h − u
n−
h ) · (uh)n+

t dx

Hence, since τh is uniformly bounded, standard inverse inequalities imply

∥(uh)t∥2L2(Sn)
≤ C

∫
Sn

|(τh)x · (uh)t|dxdt+ γ

∫
Sn

|(τh)x · (uh)tx|dxdt

+

∫
R

|(un+

h − u
n−
h ) · (uh)n+

t |dx

≤ C∥(τh)x∥L2(Sn)∥(uh)t∥L2(Sn) + γ∥(τh)x∥L2(Sn)∥(uh)tx∥L2(Sn)

+ ∥un+

h − u
n−
h ∥L2(R)∥(uh)

n+

t ∥L2(R)

≤ C∥(τh)x∥L2(Sn)∥(uh)t∥L2(Sn) + γh−1∥(τh)x∥L2(Sn)∥(uh)t∥L2(Sn)

+ Ch−
1
2 ∥un+

h − u
n−
h ∥L2(R)∥(uh)t∥L2(Sn)

= Cγ−
1
2γ

1
2 ∥(τh)x∥L2(Sn)∥(uh)t∥L2(Sn) + γ

1
2h−1γ

1
2 ∥(τh)x∥L2(Sn)∥(uh)t∥L2(Sn)

+ Ch−
1
2 ∥un+

h − u
n−
h ∥L2(R)∥(uh)t∥L2(Sn)
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Finally, Lemma 3.6.1 implies

N−1∑
n=0

∥(uh)t∥2L2(Sn)
≤ Cγ−1γ

N−1∑
n=0

∥(τh)x∥2L2(Sn)
+ γh−2γ

N−1∑
n=0

∥(τh)x∥2L2(Sn)
+ h−1

N−1∑
n=0

∥un+

h − u
n−
h ∥2L2(R)

≤ C(γ−1 + γh−2 + h−1).

Therefore (N−1∑
n=0

∥(uh)t∥2L2(Sn)

) 1
2 ≤ C(γ−

1
2 + γ

1
2h−1 + h−

1
2 ). (3.31)

Subsequently we will use the fact that

PWh
υ = P0,tPXh

υ = PXh
P0,tυ (3.32)

for a υ ∈ H1(Sn). This is a simple consequence of the tensor product nature of the elements of Wh at

each Sn . Then (3.32) implies

|A4| ≤

∣∣∣∣∣∣
∑
n≥0

∫
Sn

(
τh − ηu(uh)

)
·
(
(uh)tϕ− (uh)tP0,tϕ

)
dxdt

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∑
n≥0

∫
Sn

(
τh − ηu(uh)

)
·
(
(uh)tP0,tϕ− PXh

(
(uh)tP0,tϕ

))
dxdt

∣∣∣∣∣∣
=: |Ã1|+ |Ã2|

where we used the fact (uh(., x))t ∈ P0(In) and thus P0,t((uh)tϕ) = (uh)tP0,tϕ.
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The first term Ã1 is estimated as

|Ã1| ≤ C
∑
n≥0

(
∥(uh)t∥L2(Sn)

) (
∥ϕ− P0,tϕ∥L2(Sn)

)

≤ C

∑
n≥0

∥(uh)t∥2L2(Sn)

 1
2
∑
n≥0

∥ϕ− P0,tϕ∥2L2(Sn)

 1
2

≤ C
(
γ−

1
2 + γ

1
2h−1 + h−

1
2

)
h∥ϕ∥H1(Ω)

= C
(
γ−

1
2h+ γ

1
2 + h

1
2

)
∥ϕ∥H1(Ω).

Notice that since P0,t commutes with differentiation with respect to x and it is stable in L2(In) and in

L∞(In), one can verify as in Lemma (3.6.3), that

∥(uh)tP0,tϕ− PXh

(
(uh)tP0,tϕ

)
∥L2(Sn) ≤ Ch∥(uh)t∥L2(Sn).

Hence,

|Ã2| ≤ Ch∥(uh)t∥L2(Ω) ≤ C
(
γ−

1
2h+ γ

1
2 + h

1
2

)
.

and combined with the previous bounds yields (3.29) . We conclude therefore,

−
∫
Ω

(
η(uh)ϕt +Q

(
κ(τh)

)
ϕx
)
dxdt

+
∑
n

∫
R

(
η(u

n−
h )− η(u

n+

h )− ηu(u
n+

h ) · (un−
h − u

n+

h )

)
ϕn+dx

≤ C(h
1
2 + γ

1
2 + hγ

1
2 + γ−

1
2h)−

∑
n

∫
R

(
(ηu(u

n+

h )− τ
n+

h ) · (un−
h − u

n+

h )

)
ϕn+ dx.

(3.33)

Notice that (3.9c) implies (see (3.23) )

τ
n+

h = PXh
(ηu(u

n+

h )).
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Therefore ∑
n

∫
R

(
(ηu(u

n+

h )− τ
n+

h ) · (un−
h − u

n+

h )

)
ϕn+dx

=
∑
n

∫
R

(
(ηu(u

n+

h )− PXh
(ηu(u

n+

h )) · (un−
h − u

n+

h )

)
ϕn+dx

=
∑
n

∫
R

ηu(u
n+

h ) ·
(
(u
n−
h − u

n+

h )ϕn+ − PXh

(
(u
n−
h − u

n+

h )ϕn+

))
dx.

Hence,

−
∫
Ω

(
η(uh)ϕt +Q

(
κ(τh)

)
ϕx
)
dxdt

+
∑
n

∫
R

(
η(u

n−
h )− η(u

n+

h )− ηu(u
n+

h ) · (un−
h − u

n+

h )

)
ϕn+dx

≤ (h
1
2 + γ

1
2 + hγ

1
2 + γ−

1
2h) +

∑
n

∫
R

∣∣∣∣ηu(un+

h ) ·
(
(u
n−
h − u

n+

h )ϕn+ − PXh

(
(u
n−
h − u

n+

h )ϕn+

))∣∣∣∣dx.
To conclude the proof, it remains to estimate the last term of the right-hand side. To this end, letDϕ ⊂ R

is a domain such that supp(ϕ(tn)) ⊂ D for all n, and notice that

∑
n

∫
R

∣∣∣∣ηu(un+

h ) ·
(
(u
n−
h − u

n+

h )ϕn+ − PXh

(
(u
n−
h − u

n+

h )ϕn+

))∣∣∣∣dx
≤ max

n
∥ηu(un+

h )∥L∞(R)
∑
n

∫
R

∣∣∣∣(un−
h − u

n+

h )ϕn+ − PXh

(
(u
n−
h − u

n+

h )ϕn+

)∣∣∣∣dx
≤ max

n
∥ηu(un+

h )∥L∞(R)
∑
n

( ∫
Dϕ

∣∣∣∣(un−
h − u

n+

h )ϕn+ − PXh

(
(u
n−
h − u

n+

h )ϕn+

)∣∣∣∣2
R
dx

) 1
2

|Dϕ|
1
2

≤ max
n

∥ηu(un+

h )∥L∞(R)

( ∑
n≤n0

∫
Dϕ

∣∣∣∣(un−
h − u

n+

h )ϕn+ − PXh

(
(u
n−
h − u

n+

h )ϕn+

)∣∣∣∣2
R
dx

) 1
2
( ∑
n≤n0

|Dϕ|
) 1

2

.

Here, Lemma 3.6.3 implies

∑
n≤n0

∥(un−
h − u

n+

h )ϕn
+ − PXh

(
(u
n−
h − u

n+

h )ϕn+

)
∥2L2(R) ≤ Ch2

∑
n≤n0

∥un−
h − u

n+

h ∥2L2(R).
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The last inequality and (3.12) imply

( ∑
n≤n0

∫
Dϕ

∣∣∣∣(un−
h − u

n+

h )ϕn+ − PXh

(
(u
n−
h − u

n+

h )ϕn+

)∣∣∣∣2
R
dx

) 1
2
( ∑
n≤n0

|Dϕ|
) 1

2

≤ |Dϕ|
1
2Chn

1
2
0

( ∑
n≤n0

∥un−
h − u

n+

h ∥2L2(R)

) 1
2 ≤ |Dϕ|

1
2Chh−

1
2

( ∑
n≤n0

∥un−
h − u

n+

h ∥2L2(R)

) 1
2

≤ C6h
1
2

where C6 is an appropriate constant. We conclude therefore that

−
∫
Ω

(
η(uh)ϕt +Q

(
κ(τh)

)
ϕx
)
dxdt

+
∑
n

∫
R

(
η(u

n−
h )− η(u

n+

h )− ηu(u
n+

h ) · (un−
h − u

n+

h )

)
ϕn+dx

≤ C4(h
1
2 + γ

1
2 + hγ

1
2 + γ−

1
2h) + C6h

1
2 .

Finally, letting h→ 0 while using the convexity of η and lemma (3.6.1) we obtain the desired result. □

3.8 Measure-valued solutions

In this section we show that the scheme introduced herein is compatible with the notion of entropic

measure valued solutions. This notion of very weak solutions hinges on the theory of Young measures,

i.e., of parametrised with respect to x and t, appropriate probability measures in the phase space, e.g.,

[4], and was introduced by DiPerna, [19] . Modern uses of this notion relate to uncertainty quantification

and to statistical inference when an assembly of solutions of the conservation law are considered, e.g.,

[2, 21]. Next we shall show that when approximating sequences obtained by our scheme generate a

Young measure, this measure is indeed an entropic measure valued solution of (3.1).
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Young measures

Let M(Rm) be the set of all signed Radon measures on Rm. We denote by M+(Rm) the set of all

positive Radon measures and by MP(Rm) the set of all probability measures over B(Rm) that is,

MP(Rm) = {µ ∈ M+(Rm), µ(Rm) = 1}.

We call Young measure a weakly* measurable mapping from Ω into MP(Rm), [4]. The set of all Young

measures is denoted by Y(Ω,Rm).

Measure-valued solutions

A young measure µ ∈ Y(Ω,Rm) is said to be a measure-valued solution of the conservation law (3.1),

DiPerna [19] , if it satisfies the expression

∫
Ω

(
⟨id, µx,t⟩ · ϕt + ⟨A,µx,t⟩ · ϕx

)
dxdt+

∫
R

u0 · ϕ(0, x)dx = 0, (3.34)

for all ϕ ∈ C∞
0 (Ω) where by ⟨A,µx,t⟩ we mean

⟨A,µx,t⟩ =
∫
Rm

A(λ)dµx,t(λ).

Similarly as in the concept framework of weak solutions, a Young measure µ ∈ Y(Ω,Rm) which fulfils

the additional relation

∫
Ω

(
⟨η, µx,t⟩ · ϕt + ⟨Q,µx,t⟩ · ϕx

)
dxdt+

∫
R

η(u0) · ϕ(0, x)dx ≥ 0, (3.35)

for all ϕ ∈ C∞
0 (Ω) with ϕ ≥ 0 is called an entropy measure-valued solution of the conservation law

(3.1).

43



3.8.1 Convergence towards entropy measure-valued solutions

We turn now our attention to our main task in this section, that is to show convergence of the numerical

scheme (3.9) to an entropy measure-valued solution as h → 0, in the sense that, when approximating

sequences obtained by our scheme generate a Young measure, this measure is indeed an entropic mea-

sure valued solution of the conservation law. In order to do that so, we need first the following lemma

which connects the limiting behaviour of τh with µ.

Lemma 3.8.1 Let g : Rm 7→ R be any continuous function that converges to zero at infinity. Assume

that

∥τh − ηu(uh)∥L2 → 0, h→ 0 . (3.36)

Then if (3.11) holds, then there exist a subsequence of τh (still denoted as τh) for which it holds that

g(τh)
∗
⇀ ⟨g, (ηu)#µ⟩ in L∞(Ω) (3.37)

where µ is a young measure associated with uh.

Proof: Since we assume that (3.11) holds, the fundamental theorem of Young measures(see [4] ),

implies that there a exist a subsequence uhl (which we relabel here uh) and a young measure µ ∈

Y(Ω,Rm) such that

g(ηu(uh))
∗
⇀ ⟨g, (ηu)#µ⟩ in L∞(Ω) (3.38)

as h → 0. And further, on account to the fact that τh is also uniformly bounded (see remark (3.2))

we deduce that there exist a subsequence τhlϵ of the sequence τhl (denoted as τh) and a young measure

µ′ ∈ Y(Ω,Rm) such that

g(τh)
∗
⇀ ⟨g, µ′⟩ in L∞(Ω). (3.39)
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Subsequently, assume for the moment that ḡ ∈ C∞(Rm). Given a function ϕ ∈ C∞
c (Ω) and using the

mean value theorem for the function ḡ we see that

∫
Ω

(
ḡ(τh)− ḡ(ηu(uh))

)
ϕdxdt =

∫
Ω

∫ 1

0
∇ḡ(ξ(x, t, s)) ds ·

(
τh − ηu(uh)

)
ϕdxdt

where for each x and t, the function ξ(x, t, s) is defined as ξ(x, t, s) = τh − s((τh − ηu(uh)). Let now

Ω1 be a finite domain such that supp(ϕ) ⊂ Ω1. In addition, observe that the product of the functions

ϕ(x, t) and ∇ḡ(ξ(x, t, s)) is a smooth enough function in Ω1. Now set G̃(x, t) =
∫ 1
0 ∇ḡ(ξ(x, t, s)) ds.

Then,

∣∣∣∣ ∫
Ω

(
ḡ(τh)− ḡ(ηu(uh))

)
ϕdxdt

∣∣∣∣ = ∣∣∣∣ ∫
Ω

(
τh − ηu(uh)

)
·
(
ϕG̃(x, t)− PWh

(ϕG̃(x, t))
)
dxdt

∣∣∣∣
≤
∫
Ω1

∣∣∣∣(τh − ηu(uh)
)
·
(
ϕG̃(x, t)− PWh

(ϕG̃(x, t))
)∣∣∣∣dxdt

≤ ∥τh − ηu(uh)∥L2(Ω1)∥ϕG̃(x, t)− PWh
(ϕG̃(x, t))∥L2(Ω1) .

Next we show that

∥ϕG̃− PWh
(ϕG̃)∥L2(Ω1) ≤ C, h→ 0. (3.40)

Assuming for a moment the validity of (3.40) we conclude,

∫
Ω1

(
ḡ(τh)− ḡ(ηu(uh))

)
ϕdxdt→ 0

as h → 0. Define now a sequence of functions gk ∈ C∞(Rm) that converges uniformly at g on a

compact domain that contains the ranges of τh and ηu(uh). From the above limit we have that for all k
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given an ϵ > 0, there exist a δ > 0 such that

∣∣∣∣ ∫
Ω1

(
gk(τh)− gk(ηu(uh))

)
ϕdxdt

∣∣∣∣ < ϵ (3.41)

when h < δ. Since,

(
gk(τh)− gk(ηu(uh))

)
ϕ→

(
g(τh)− g(ηu(uh))

)
ϕ

a.e. in Ω1 as k → ∞, we know by the DCT that

∫
Ω1

(
gk(τh)− gk(ηu(uh))

)
ϕdxdt→

∫
Ω1

(
g(τh)− g(ηu(uh))

)
ϕdxdt.

Thus, passing to the limit in (3.41) as k → ∞ we obtain

∫
Ω

(
g(τh)− g(ηu(uh))

)
ϕdxdt =

∫
Ω1

(
g(τh)− g(ηu(uh))

)
ϕdxdt→ 0. (3.42)

On the other hand from (3.38) and (3.39) we also have

∫
Ω

(g(τh)− g(ηu(uh)))ϕdxdt→
∫
Ω

(
⟨g, µ′x,t⟩ − ⟨g, (ηu)#µx,t⟩

)
ϕdxdt. (3.43)

Finally, combining (3.42) and (3.43) we conclude that

∫
Ω

(
⟨g, µ′x,t⟩ − ⟨g, (ηu)#µx,t⟩

)
ϕdxdt = 0, (3.44)

for all ϕ ∈ C∞
c (Ω). Therefore, for almost all x and t in Ω we have

⟨g, µ′x,t⟩ = ⟨g, (ηu)#µx,t⟩.
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Thus,

µ′x,t = (ηu)#µx,t,

in the sense of measures a.e. in Ω and hence (3.37) is proved.

It thus remains to prove (3.40). To this end, we first observe, as in the proof of Lemma 3.6.3 that

∥ϕG̃− PWh
(ϕG̃)∥L2(Sn) ≤∥ϕG̃− P0,t(ϕG̃)∥L2(Sn) + ∥ϕG̃− IXh

(ϕG̃)∥L2(Sn) .

Then, by the uniform boundedness of uh, τh, and the fact that τh is piecewise constant in time, we have

∥ϕG̃− P0,t(ϕG̃)∥L2(Sn) ≤ch∥∂t(ϕG̃)∥L2(Sn)

≤ch∥(∂tϕ)G̃∥L2(Sn) + ch∥ϕ(∂tG̃)∥L2(Sn)

≤Ch∥∂tϕ∥L2(Sn) + Ch∥ϕ∥L∞(Sn)∥∂tuh∥L2(Sn), .

Thus in view of the bound (3.31) we will get that the contribution of this term to (3.40) yields a term

converging to zero. It remains to estimate ∥ϕG̃− IXh
(ϕG̃)∥L2(Sn). By modifying the arguments in the

proof of Lemma 3.6.3 and restricting our attention to a typical spacial element I ′ of the decomposition

of the finite element space Xh, there holds,

∥ϕG̃− IXh
(ϕG̃)∥L2(I′) ≤ Ch2|ϕG̃|H2(I′)

see [8]. Locally, ϕG̃ ∈ H2(I ′). For each fixed t in Sn the spatial estimate holds

∥(ϕG̃)− IXh
(ϕG̃)∥2L2(R) ≤

∑
I′

∥(ϕG̃)− IXh
(ϕG̃)∥2L2(I′) ≤ Ch4

∑
I′

|ϕG̃|2H2(I′). (3.45)
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Next, since,

∂2x(ϕG̃) = 2∂xϕ∂xG̃+ G̃∂2xϕ+ ϕ∂2xG̃ .

Using the definition of G̃ and the fact that piecewise in each element ∂2xτh = ∂2xuh = 0 we observe

|ϕG̃|H2(I′) ≤ C∥∂xϕ∥L∞(R)(∥∂xuh∥L2(I′) + ∥∂xτh∥L2(I′)) + C∥∂2xϕ∥L∞(R)

+ C∥ϕ∥L∞(R)(∥∂xuh∥2L4(I′) + ∥∂xτh∥2L4(I′)) .

Therefore, using the inverse inequalities, ∥∂xχ∥L2(I′) ≤ Ch−1∥χ∥L2(I′), and ∥∂xχ∥L4(I′) ≤ Ch−3/4∥χ∥L∞(I′),

[8, Lemma 4.5.3],

|ϕG̃|H2(I′) ≤ C
(
∥∂xuh∥L2(I′) + ∥∂xτh∥L2(I′) + ∥∂xuh∥2L4(I′) + ∥∂xτh∥2L4(I′) + 1

)
≤ C

(
h−1 + h−3/2 + 1

)
.

(3.46)

In view of (3.76), we conclude therefore that ∥ϕG̃ − IXh
(ϕG̃)∥L2(Sn) ≤ C as h → 0 and the proof is

complete. □
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We can now state the two main theorems of this section.

Theorem 3.8.2 If assumption (3.11) holds then the numerical scheme (3.9) converges towards a measure-

valued solution of (3.1).

Proof: Using relation (3.25) from the proof of Theorem 3.7.1 we see that

∫
Ω

(
uh · ϕt +A(κ(τh)) · ϕx

)
dxdt+

∫
R

u0 · ϕ(0, x)dx→ 0,

as h → 0. But by combination of the fundamental theorem of Young measures and of Lemma 3.8.1 we

obtain by letting h→ 0

∫
Ω

(
uh · ϕt +A(κ(τh)) · ϕx

)
dxdt+

∫
R

u0 · ϕ(0, x)dx→

∫
Ω

(
⟨id, µx,t⟩ · ϕt + ⟨A,µx,t⟩ · ϕx

)
dxdt+

∫
R

u0 · ϕ(0, x)dx = 0

which proves the theorem. □

Theorem 3.8.3 If assumption (3.11) holds then the approached measure-valued solution of Theorem

3.8.2 is entropy consistent i.e. it fulfils the relation (3.35).

Proof: Picking ϕh = PVh(τhϕ) in (3.9a) where ϕ ∈ C∞
c (Ω), ϕ ≥ 0 and following similar arguments

as in the second part of the proof of Theorem 3.7.1 we conclude that

−
∫
Ω

(
η(uh)ϕt +Q

(
κ(τh)

)
ϕx −

∫
R

η(u0) · ϕ(x, 0)

+
∑
n

∫
R

(
η(u

n−
h )− η(u

n+

h )− ηu(u
n+

h ) · (un−
h − u

n+

h )

)
ϕn+dx

≤ C4(h
1
2 + γ

1
2 + hγ

1
2 + γ−

1
2h) + C6h

1
2 .
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Using the convexity of η we deduce

−
∫
Ω

(
η(uh)ϕt +Q

(
κ(τh)

)
ϕx −

∫
R

η(u0) · ϕ(x, 0)

≤ C4(h
1
2 + γ

1
2 + hγ

1
2 + γ−

1
2h) + C6h

1
2 .

Therefore, letting h→ 0 in the above expression and using Lemma 3.8.1 we conclude that

−
∫
Ω

(
⟨η, µx,t⟩ϕt + ⟨Q,µx,t⟩ϕx −

∫
R

η(u0) · ϕ(x, 0) ≤ 0

and the proof is complete. □

3.9 Lp controlled measure-valued solutions

In this section we show that in certain cases the assumption that the approximating sequences are uni-

formly bounded can be relaxed by employing the Lp theory of Young measures, [4]. In fact, uniform

bounded sequences in Lp still generate Young measures. Roughly speaking, let uj a bounded sequence

of approximations in Lp(Ω,Rm). Then there exists a subsequence and a measure µ ∈ Y(Ω,Rm),

µ = µx,t, (x, t) ∈ Ω, such that for G ∈ Cp(Rm) ,

G(uj)⇀ G, where G(x, t) = ⟨G,µx,t⟩ =
∫
Rm

G(λ)dµx,t(λ), (3.47)

where Cp(Rm) = {g ∈ C(Rm) : lim|ζ|→∞
g(ζ)
|ζ|p = 0} . The requirement that G ∈ Cp(Rm) , in order to

pass to the limit in (3.47) restricts its applicability of the limiting process (3.47) to nonlinear functions

with limited growth at infinity. Typically, in applications to hyperbolic systems, assuming that the

entropy η behaves as |u|p, we can control the Lp norm of the entropy solutions. But then, when we

would like to show that the limiting measure is consistent with the entropy, see e.g. Theorem 3.8.3, we

need to pass to the limit for G = η. Such G just fails to belong to Cp(Rm). This is a quite subtle issue
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which can be bypassed by delicate analysis arguments and an appropriate alteration of the definition of

the measure valued solutions introduced by Demoulini, Stuart and Tzavaras in [17], see also [7, 21, 33].

This approach leads to modifying (3.47) by amending the effect of µx,t at the limit adding an additional

positive measure γ accounting for concentration effects.

Next, we first exploit properties of the relative entropy to show that approximations obtained by our

scheme yield uniformly bounded sequences in Lp. Then under certain assumptions we show the entropy

compatibility at the limit of the measure valued solution as in Theorem 3.8.3. To simplify the exposition

we assume that our sequence does not create concentration effects at the limit, and thus the measure γ

above is zero.

3.9.1 Stability for p-entropies via relative entropy

Our first task is to prove the entropy stability of the scheme. We assume that the entropy η possesses the

following properties: There exist positive constants α0, α1, c0, α̃0, α̃1 such that

(η –1) α0|v|p ≤ |η(v)| ≤ α1|v|p, v ∈ Rm ,

(η –2) D2η(z)ξ · ξ ≥ c0 |z|p−2 |ξ|2, ξ, z ∈ Rm ,

(η –3) α̃0|v|p−1 ≤ |ηu(v)| ≤ α̃1|v|p−1, v ∈ Rm ,

A consequence of (η –2) is that the relative entropy is non-negative:

η(v |w) := η(v)− η(w)− ηu(w) · (v − w) ≥ 0, v, w ∈ Rm . (3.48)

The following lower bound of the relative entropy follows from the above properties, [32],

Lemma 3.9.1 Assume that the convex entropy η satisfies (η –2) with p such that p− 2 ≥ 1. Then there

is a positive constant β such that the relative entropy satisfies:

η(v |w) := η(v)− η(w)− ηu(w) · (v − w) ≥ β
(
|v − w|p − |w|p

)
, v, w ∈ Rm . (3.49)
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Proof: Notice that (η –2) implies

η(v |w) =η(v)− η(w)− ηu(w) · (v − w)

=

∫ 1

0
sD2η(v + s(w − v) ) ds(v − w) · (v − w)

≥c0
∫ 1

0
s | v + s(w − v) |p−2 ds|v − w|2

Since, obviously,

|s(w − v) | = |v + s(w − v)− v| ≤ |v + s(w − v)|+ |v| ,

and | · |p−2 is convex,

|s(w − v) |p−2 ≤
(
|v + s(w − v)|+ |v|

)p−2
≤ c̃

(
|v + s(w − v)|p−2 + |v|p−2

)
,

i.e.,

1

c̃
|s(w − v) |p−2 − |v|p−2 ≤ |v + s(w − v)|p−2 .

Thus, using Young’s inequality ab ≤ ap̃

p̃ + bq̃

q̃ , with p̃ = p/2 and q̃ = p/(p − 2) we finally obtain for

any δ small enough,

η(v |w) =η(v)− η(w)− ηu(w) · (v − w)

≥c
∫ 1

0
s | v + s(w − v) |p−2 ds|v − w|2

≥c
∫ 1

0
s |s(w − v) |p−2 − |v|p−2 ds|v − w|2

=c

∫ 1

0
sp−1 |v − w |p − s|v|p−2|v − w|2 ds

≥c|v − w |p − δ |v − w |p − C(δ)|v|p .

The proof is complete upon selecting δ appropriately small. □

We are ready now to prove the main stability result for our scheme.
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Lemma 3.9.2 Assume that the entropy η satisfies (η –1, 2, 3) with p such that p − 2 ≥ 1. Then for

N = 1, 2, . . . , we have the estimate

γ
N−1∑
n=0

∥(τh)x∥2L2(Sn)
+
N−1∑
n=0

∫
R

η(u
n−
h |un+

h ) +

∫
R

η(u
N−
h ) ≤

∫
R

η(u0) . (3.50)

Furthermore, there exists a constant C independent of h such that

sup
t≥0

∥uh(t, ·)∥Lp(R) ≤ C . (3.51)

If instead of (η –2), the stronger condition

(η –2′) D2η(z)ξ · ξ ≥ c0 (|z|p−2 + 1) |ξ|2, ξ, z ∈ Rm ,

holds, then

γ
N−1∑
n=0

∥(τh)x∥2L2(Sn)
+ c0

N−1∑
n=0

∥un−
h − u

n+

h ∥2L2(R) +

∫
R

η(u
N−
h ) ≤

∫
R

η(u0) . (3.52)

Remark 3.9.3 Notice that (η –2′) is satisfied for entropies behaving as |u|p + |u|2.

Proof: As before we select ϕh = τh in (3.9a). We have

∫
Sn

(
(uh)t +A

(
κ(τh)

)
x

)
· τh dxdt+ γ

∫
Sn

(
(τh)x

)2
dxdt

+

∫
R

(u
n+

h − u
n−
h ) · τn+

h dx = 0

Thus,

∫
Sn

(uh)t · τhdxdt+
∫
Sn

ηu(κ(τh))∇uA(κ(τh)
)
· κ(τh)xdxdt+ γ

∫
Sn

(
(τh)x

)2
dxdt

+

∫
R

(u
n+

h − u
n−
h ) · τn+

h dx = 0.
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As in Lemma 3.6.1 we finally obtain

∫
Sn

η(uh)tdxdt+ γ

∫
Sn

(
(τh)x

)2
dxdt+

∫
R

(u
n+

h − u
n−
h ) · ηu(un+

h )dx = 0.

Summation over n implies,

N−1∑
n=0

∫
R

(
η(u

n+1−
h )− η(u

n+

h ) + (u
n+

h − u
n−
h ) ·ηu(un+

h )
)
dx

+ γ

N−1∑
n=0

∥(τh)x∥2L2(Sn)
= 0.

Hence,
N−1∑
n=0

∫
R

(
η(u

n−
h ) −η(un+

h )− (u
n−
h − u

n+

h ) · ηu(un+

h )
)
dx

+ γ

N−1∑
n=0

∥(τh)x∥2L2(Sn)
+

∫
R

η(u
N−
h )dx

=
N−1∑
n=0

∫
R

η(u
n−
h |un+

h ) dx

+ γ
N−1∑
n=0

∥(τh)x∥2L2(Sn)
+

∫
R

η(u
N−
h )dx =

∫
R

η(u0)dx.

(3.53)

and the first assertion follows. Since
∫
R
η(u0)dx are uniformly bounded and the relative entropy

∫
R
η(u

n−
h |un+

h ) dx

is always nonnegative, the above estimate implies that for all N,
∫
R
η(u

N−
h )dx are uniformly bounded.

Thus ∥uN−
h ∥Lp(R) ≤ C for all N. We conclude therefore that for all N,

N−1∑
n=0

∫
R

η(u
n−
h |un+

h ) dx ≤ C , (3.54)

and in particular, ∫
R

η(u
n−
h |un+

h ) dx ≤ C , (3.55)
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Now Lemma 3.9.1 implies

∥un−
h − u

n+

h ∥pLp(R) ≤ C + c ∥un−
h ∥pLp(R) .

(3.56)

But we have proved that ∥un−
h ∥Lp(R) is uniformly bounded and thus ∥un−

h − u
n+

h ∥Lp(R) is uniformly

bounded as well. By the triangle inequality we obtain that ∥un+

h ∥Lp(R) is uniformly bounded. Since

uh is piecewise linear in time and its end points are uniformly bounded in Lp(R), the second assertion

follows. Finally (η –2′) and (3.9.2) implies (3.52) and the proof is complete. □

Recall now that

τh(x, t)|Sn = PXh
(ηu(u

n+

h ))
tn+1 − t

|In|

+
t− tn

|In|

(
PXh

(∫
In

ηu(uh(x, t))dt

)
2

|In|
− PXh

(ηu(u
n+

h ) )

)
.

Let q > 1 be the conjugate of p. Then (p− 1)q = p. Using the growth of ηu, see (η –3), and the stability

of PXh
in Lq we obtain, for each Sn,

∥τh(·, t)∥qLq(R)|In ≤ C(∥ηu(un+

h )∥qLq(R) + ∥ηu(un−
h )∥qLq(R))

≤ C(∥un+

h ∥pLp(R) + ∥un−
h ∥pLp(R)) ≤ C .

Thus,

sup
t≥0

∥τh(t, ·)∥Lq(R) ≤ C . (3.57)
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3.9.2 Convergence

We can now state the two main theorems of this section.

Theorem 3.9.4 Let η satisfies (η –1), (η –2′), and (η –3). If the flux A satisfies the growth condition

A ∈ Cp and furthermore the following compatibility condition is satisfied

A(κ(τh))
∗
⇀ ⟨A,µ⟩, in L1(Ω) (3.58)

where µ is a Young measure associated to uh, then the numerical scheme (3.9) converges towards a

measure-valued solution of (3.1).

Proof: The uniform bound of uh in Lp, [4], implies that there a exist a subsequence uhl (which we

relabel here uh) and a Young measure µ ∈ Y(Ω,Rm) such that

G((uh))
∗
⇀ ⟨G,µ⟩, in L1(Ω) (3.59)

as h → 0. And further, on account to the fact that τh is also uniformly bounded in Lq we deduce that

there exist a subsequence τhlϵ of the sequence τhl (denoted as τh) and a young measure µ′ ∈ Y(Ω,Rm)

such that

G(κ(τh))
∗
⇀ ⟨G(κ), µ′⟩ in L1(Ω). (3.60)
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The compatibility assumption essentially says that ⟨A(κ), µ′⟩ = ⟨A,µ⟩.On the other hand by modifying

arguments of the previous section, see the proof of Theorem 3.7.1, we notice,

∣∣∣∣∣∣
∫
Ω

(
uh · ϕt +A(κ(τh)) · ϕx

)
dxdt+

∫
R

u0 · ϕ(0, x)dx

∣∣∣∣∣∣
≤
∫
Ω

∣∣∇uA
(
κ(τh)

)∣∣ ∣∣∣∣(τh)x∣∣∣∣∣∣∣∣ϕ− PVh(ϕ)

∣∣∣∣dxdt
+
∑
n≥0

∫
R

∣∣∣∣un+

h − u
n−
h

∣∣∣∣∣∣∣∣ϕn+ − (PVhϕ)
n+

∣∣∣∣dx+ γ

∫
Ω

∣∣∣∣(τh)x∣∣∣∣∣∣∣∣PVh(ϕ))x∣∣∣∣dxdt
≤ ∥∇uA

(
κ(τh)

)
∥L2(Ω)∥(τh)x∥L2(Ω)∥ϕ− PVhϕ∥L∞(Ω)

+

( n0∑
n=0

∥un−
h − u

n+

h ∥2L2(R)

) 1
2
( n0∑
n=0

∥ϕn+ − (PVhϕ)
n+∥2L2(R)

) 1
2

+ γ∥(τh)x∥L2(Ω)∥(PVhϕ)x∥L2(Ω).

Thus, ∣∣∣∣∣∣
∫
Ω

(
uh · ϕt +A(κ(τh)) · ϕx

)
dxdt+

∫
R

u0 · ϕ(0, x)dx

∣∣∣∣∣∣
≤ ∥τh∥L2(Ω)γ

1
2 ∥(τh)x∥L2(Ω)Cγ

− 1
2h2∥ϕ∥W 2,∞(Ω) + Ch

3
2 ∥ϕ∥H2(Ω)

+ γ∥(τh)x∥L2(Ω)∥(PVhϕ)x∥L2(Ω)

(3.61)

Therefore, using the inverse inequality, ∥χ∥L2 ≤ Ch1/2−1/q∥χ∥Lq , [8, Lemma 4.5.3], while choosing a

proper γ such that γ−
1
2h2h1/2−1/q → 0 and having in mind that (3.12) implies (γ)

1
2 ∥(τh)x∥L2(Ω) ≤ C

we conclude that,

∫
Ω

(
uh · ϕt +A(κ(τh)) · ϕx

)
dxdt+

∫
R

u0 · ϕ(0, x)dx→ 0,
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as h→ 0. But by our compatibility assumption on Young measures we obtain by letting h→ 0

∫
Ω

(
uh · ϕt +A(κ(τh)) · ϕx

)
dxdt+

∫
R

u0 · ϕ(0, x)dx→

∫
Ω

(
⟨id, µx,t⟩ · ϕt + ⟨A,µx,t⟩ · ϕx

)
dxdt+

∫
R

u0 · ϕ(0, x)dx = 0

which proves the theorem. □

To show that the limiting measure-valued solution is entropic, we shall neglect the possible concen-

tration effects corresponding to the Young measures generated by uh and τh.We thus have the following

Theorem 3.9.5 Let η satisfies (η –1), (η –2′), and (η –3). Assume that the flux A is such that the

following compatibility condition is satisfied

Q(κ(τh))
∗
⇀ ⟨Q,µ⟩, in L1(Ω) (3.62)

where µ is a Young measure associated to uh, and furthermore

η(uh)
∗
⇀ ⟨η, µ⟩, in L1(Ω) (3.63)

holds. If τh are uniformly bounded in L2 then the measure-valued solution established in Theorem 3.9.4

is entropy consistent i.e. it fulfils the relation (3.35).
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Proof: Selecting ϕh = PVh(τhϕ) in (3.9a) where ϕ ∈ C∞
c (Ω), ϕ ≥ 0 and following similar arguments

as in the second part of the proof of Theorem 3.7.1 we conclude

−
∫
Ω

(
η(uh)ϕt +Q

(
κ(τh)

)
ϕx
)
dxdt−

∫
R

η(u0) · ϕ(x, 0)

+
∑
n

∫
R

(
η((u

n−
h )− η((u

n+

h ))− (u
n−
h − u

n+

h ) · τn+

h

)
ϕn+ dx

≤
∫
Ω

A
(
κ(τh)

)
x
·
(
τhϕ− PVh(τhϕ)

)
dxdt

+
∑
n

∫
R

(u
n+

h − u
n−
h ) · (τn+

h ϕn+ − (PVh(τhϕ))
n+)dx

−
{
γ

∫
Ω

(τh)x · (PVh(τhϕ))x dxdt− γ

∫
Ω

(τh)x(τhϕ)xdxdt+ γ

∫
Ω

(τh)xτhϕxdxdt
}

−
∫
Ω

(
τh − ηu(uh)

)
·
(
(uh)tϕ− PWh

((uh)tϕ)
)
dxdt

=: A1 +A2 +A3 +A4.

(3.64)

We will proceed in a similar fashion as in the proof of Theorem 3.7.1, but using only the available bounds

for uh and τh. We will thus highlight only the points where different treatment is required. We estimate

the terms Ai in the right hand side of (3.64). Notice first

|A1| ≤
∫
Ω

∣∣∇uA
(
κ(τh)

)∣∣ ∣∣(τh)x∣∣∣∣τhϕ− PVh(τhϕ)
∣∣dxdt

≤ ∥∇uA
(
κ(τh)

)
∥L∞(Ω)∥(τh)x∥L2(Ω)∥τhϕ− PVh(τhϕ)∥L2(Ω)

≤ C ∥τh
)
∥L∞(Ω)∥(τh)x∥L2(Ω)(h

2∥τh∥L2(Ω) + h2∥(τh)x∥L2(Ω)) ,

where we used the fact ∥τhϕ − PVh(τhϕ)∥L2(Ω) ≤ C(h2∥τh∥L2(Ω) + h2∥(τh)x∥L2(Ω)) which can

be derived by similar arguments to the proof of Lemma 3.6.3. Further, using the inverse inequality,
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∥χ∥L∞ ≤ Ch−1/2∥χ∥L2 , [8, Lemma 4.5.3], and the stability bound for ∥(τh)x∥L2(Ω) we conclude

|A1| ≤ C (h3/2 γ−1 + h3/2 γ−1/2) . (3.65)

Further, estimate ∥τn+

h ϕn+ − (PVh(τhϕ))
n+∥L2(Ω) ≤ Ch∥τn+

h ∥L2(Ω) and the stability bound for the

jumps in time of uh imply,

|A2| ≤ C h1/2 . (3.66)

Similarly, we observe,

∣∣∣∣∣∣−γ
∫
Ω

(τh)x · ((PVh(τx))x − (τhϕ)x) dxdt

∣∣∣∣∣∣
≤ γ∥(τh)x∥L2(Ω)∥(PVh(τϕ))x − (τhϕ)x∥L2(Ω)

≤ γ∥(τh)x∥L2(Ω)∥τh∥L2(Ω)(∥ϕ∥W 1,∞(Ω) + h∥ϕ∥W 2,∞(Ω))

≤ C(1 + h)γ
1
2 .

Thus,

|A3| ≤ C(1 + h)γ
1
2 . (3.67)

As in the proof of Theorem 3.7.1 one can show, using the stability properties of the scheme,

(N−1∑
n=0

∥(uh)t∥2L2(Sn)

) 1
2 ≤ C(γ−

1
2 + γ

1
2h−1 + h−

1
2 ). (3.68)
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and

|A4| ≤

∣∣∣∣∣∣
∑
n≥0

∫
Sn

(
τh − ηu(uh)

)
·
(
(uh)tϕ− (uh)tP0,tϕ

)
dxdt

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∑
n≥0

∫
Sn

(
τh − ηu(uh)

)
·
(
(uh)tP0,tϕ− PXh

(
(uh)tP0,tϕ

))
dxdt

∣∣∣∣∣∣
=: |Ã1|+ |Ã2|

where we used the fact (uh(., x))t ∈ P0(In) and thus P0,t((uh)tϕ) = (uh)tP0,tϕ.

The term Ã1 is estimated, using the inverse inequality, ∥χ∥Lp ≤ Ch1/p−1/2∥χ∥L2 , as

|Ã1| ≤ C
∑
n≥0

(
(∥τh − ηu(uh)∥Lq(Sn)∥(uh)t∥Lp(Sn)

) (
∥ϕ− P0,tϕ∥L∞(Sn)

)

≤ Ch1/p−1/2

∑
n≥0

∥(uh)t∥2L2(Sn)

 1
2

|ϕ− P0,tϕ∥2L∞(Ω)

≤ C
(
γ−

1
2 + γ

1
2h−1 + h−

1
2

)
hh1/p−1/2 ∥ϕ∥W 1,∞(Ω) .

Notice that since P0,t commutes with differentiation with respect to x and it is stable in Lp(In) and in

L∞(In), one can verify as in Lemma 2.3, that

∥(uh)tP0,tϕ− PXh

(
(uh)tP0,tϕ

)
∥Lp(Sn) ≤ Ch∥(uh)t∥Lp(Sn).

Hence by the same arguments,

|Ã2| ≤ Ch∥(uh)t∥L2(Ω) ≤ C
(
γ−

1
2h+ γ

1
2 + h

1
2

)
h1/p−1/2,

and thus

|A4| ≤ C
(
γ−

1
2h+ γ

1
2 + h

1
2

)
h1/p−1/2. (3.69)
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Summarising,

|A1|+ |A2|+ |A3|+ |A4| ≤ C
(
γ−

1
2h+ γ

1
2 + h

1
2

)
h1/p−1/2 + C(h3/2 γ−1 + h3/2 γ−1/2).

≤ C (γ−1/2h1/p+1/2 + γ1/2h1/p−1/2 + h1/p + h3/2 γ−1 + h3/2 γ−1/2)

=: Θ(h, γ).

(3.70)

Following again Theorem 3.7.1 we conclude,

−
∫
Ω

(
η(uh)ϕt +Q

(
κ(τh)

)
ϕx
)
dxdt−

∫
R

η(u0) · ϕ(x, 0)

+
∑
n

∫
R

(
η(u

n−
h )− η(u

n+

h )− ηu(u
n+

h ) · (un−
h − u

n+

h )

)
ϕn+dx

≤ Θ(h, γ) +
∑
n

∫
R

∣∣∣∣ηu(un+

h ) ·
(
(u
n−
h − u

n+

h )ϕn+ − PXh

(
(u
n−
h − u

n+

h )ϕn+

))∣∣∣∣dx.
Since the relative entropy is always positive, it remains to estimate the last term of the right-hand side.

To this end, let Dϕ ⊂ R is a domain such that supp(ϕ(tn)) ⊂ D for all n, and notice that

∑
n

∫
R

∣∣∣∣ηu(un+

h ) ·
(
(u
n−
h − u

n+

h )ϕn+ − PXh

(
(u
n−
h − u

n+

h )ϕn+

))∣∣∣∣dx
≤ max

n
∥ηu(un+

h )∥Lq(R)
∑
n

∥un−
h − u

n+

h )ϕn+ − PXh

(
(u
n−
h − u

n+

h )ϕn+

)
∥Lp(R)

≤ max
n

∥un+

h ∥Lp(R)
∑
n

∥un−
h − u

n+

h )ϕn+ − PXh

(
(u
n−
h − u

n+

h )ϕn+

)
∥Lp(R)

Using similar arguments as in Lemma 3.6.3 we get

∑
n≤n0

∥(un−
h − u

n+

h )ϕn
+ − PXh

(
(u
n−
h − u

n+

h )ϕn+

)
∥2Lp(R) ≤ Ch2

∑
n≤n0

∥un−
h − u

n+

h ∥2Lp(R).
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Hence, by using inverse inequalities and the stability bound,

∑
n≤n0

∥(un−
h − u

n+

h )ϕn
+ − PXh

(
(u
n−
h − u

n+

h )ϕn+

)
∥2Lp(R)

≤ Chn
1
2
0

( ∑
n≤n0

∥un−
h − u

n+

h ∥2Lp(R)

) 1
2 ≤ Chh−

1
2

( ∑
n≤n0

∥un−
h − u

n+

h ∥2Lp(R)

) 1
2

≤ Ch1/2 h1/p−1/2
( ∑
n≤n0

∥un−
h − u

n+

h ∥2L2(R)

) 1
2 ≤ C h1/p .

We conclude therefore that

−
∫
Ω

(
η(uh)ϕt +Q

(
κ(τh)

)
ϕx −

∫
R

η(u0) · ϕ(x, 0)

≤ Θ(h, γ) + Ch1/p.

Therefore, letting h → 0, by selecting, e.g., γ = ch, in the above expression and using our hypotheses

for the limiting measure we conclude that

−
∫
Ω

(
⟨η, µx,t⟩ϕt + ⟨Q,µx,t⟩ϕx −

∫
R

η(u0) · ϕ(x, 0) ≤ 0

and the proof is complete. □

Remark 3.9.6 Let η satisfies (η –1), (η –2′), and (η –3). In this remark we highlight that if the growth

at infinity of the functions considered is neglected then (3.58), (3.62), (3.63) can be verified with some

additional hypothesis on the approximating sequences. To fix ideas, assume

∥τh − ηu(uh)∥Lq → 0, h→ 0 , (3.71)

and let g : Rm 7→ R be a continuous function that converges to zero at infinity. Then since (3.51), (3.57)
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hold, then there exist a subsequence of τh (still denoted as τh) for which it holds that

g(τh)
∗
⇀ ⟨g, (ηu)#µ⟩ = ⟨g(ηu), µ⟩ in L1(Ω) (3.72)

where µ is a young measure associated with uh. As mentioned in the beginning of this section the

uniform bound of uh in Lp, [4], implies that there a exist a subsequence uhl (which we relabel here uh)

and a young measure µ ∈ Y(Ω,Rm) such that

g(ηu(uh))
∗
⇀ ⟨g, (ηu)#µ⟩ = ⟨g(ηu), µ⟩, in L1(Ω) (3.73)

as h → 0. And further, on account to the fact that τh is also uniformly bounded in Lq we deduce that

there exist a subsequence τhlϵ of the sequence τhl (denoted as τh) and a Young measure µ′ ∈ Y(Ω,Rm)

such that

g(τh)
∗
⇀ ⟨g, µ′⟩ in L1(Ω). (3.74)

As in Lemma 3.8.1, we consider first a smooth ḡ and given a function ϕ ∈ C∞
c (Ω) we have

∫
Ω

(
ḡ(τh)− ḡ(ηu(uh))

)
ϕdxdt =

∫
Ω

∫ 1

0
∇ḡ(ξ(x, t, s)) ds ·

(
τh − ηu(uh)

)
ϕdxdt

where for each x and t, the function ξ(x, t, s) is defined as ξ(x, t, s) = τh − s((τh − ηu(uh)). Let now

Ω1 be a finite domain such that supp(ϕ) ⊂ Ω1. In addition, observe that the product of the functions

ϕ(x, t) and ∇ḡ(ξ(x, t, s)) is a smooth enough function in Ω1. Now set G̃(x, t) =
∫ 1
0 ∇ḡ(ξ(x, t, s)) ds.

Then, as in Lemma 3.8.1, we conclude

∣∣∣∣ ∫
Ω

(
ḡ(τh)− ḡ(ηu(uh))

)
ϕdxdt

∣∣∣∣ = ∣∣∣∣ ∫
Ω

(
τh − ηu(uh)

)
·
(
ϕG̃(x, t)− PWh

(ϕG̃(x, t))
)
dxdt

∣∣∣∣
≤ ∥τh − ηu(uh)∥Lq(Ω1)∥ϕG̃(x, t)− PWh

(ϕG̃(x, t))∥Lp(Ω1) .
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We would like to show that

∥ϕG̃− PWh
(ϕG̃)∥Lp(Ω1) ≤ C, h→ 0. (3.75)

Assuming for a moment the validity of (3.75) we conclude,

∫
Ω1

(
ḡ(τh)− ḡ(ηu(uh))

)
ϕdxdt→ 0

as h → 0. and the proof is concluded by repeating the arguments of Lemma 3.8.1. It thus remains to

prove (3.75). To this end, we first observe, as in the proof of Lemma 3.6.3 that

∥ϕG̃− PWh
(ϕG̃)∥Lp(Sn) ≤c ∥ϕG̃− P0,t(ϕG̃)∥Lp(Sn) + c ∥ϕG̃− IXh

(ϕG̃)∥Lp(Sn) .

Then, by the uniform boundedness of uh, τh, and the fact that τh is piecewise constant in time, we have

∥ϕG̃− P0,t(ϕG̃)∥Lp(Sn) ≤ch∥∂t(ϕG̃)∥Lp(Sn)

≤ch∥(∂tϕ)G̃∥Lp(Sn) + ch∥ϕ(∂tG̃)∥Lp(Sn) .

By modifying the arguments in the proof of Lemma 3.6.3 and for a typical spacial element I ′ of the

decomposition of the finite element space Xh, we have,

∥ϕG̃− IXh
(ϕG̃)∥Lp(I′) ≤ Ch2|ϕG̃|W 2,p(I′)

see [8]. For each fixed t in Sn the spatial estimate holds

∥(ϕG̃)− IXh
(ϕG̃)∥2L2(R) ≤

∑
I′

∥(ϕG̃)− IXh
(ϕG̃)∥2L2(I′) ≤ Ch4

∑
I′

|ϕG̃|2H2(I′). (3.76)

Next, one may use, ∂2x(ϕG̃) = 2∂xϕ∂xG̃+ G̃∂2xϕ+ ϕ∂2xG̃ , and the fact that piecewise in each element
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∂2xτh = ∂2xuh = 0 to control |ϕG̃|W 2,p(I′) . To complete the boundedness of (3.75) a combination of

stability bounds, inverse estimates and growth assumptions on G will be required.

3.10 Numerical Results

We will present now some numerical results of an implementation of the numerical scheme (3.9a)-(3.9c).

For the purposes of the experiment we use the finite element spaces

V n
h = {v ∈ H1(Sn) : v|K= v1(x)v2(t), v1(x)|K∈ P1, v2(t)|K∈ P1,K ∈ Tnh }.

and

Wn
h = {ψ ∈ H1(Sn) : ψ|K= ψ1(x)ψ2(t), ψ1(x)|K∈ P1, ψ2(t)|K∈ P0,K ∈ Tnh },

on each Tnh for the following problem

∂tu+∂x(
u2

2
) = 0, x ∈ [0, 1], t > 0,

u(0) = u(1) = 0.

with initial conditions

u(0, x) =



0 for x < 2.05,

1 for 2.05 < x ≤ 5,

(7.9− x)/2.9 for 5 ≤ x ≤ 7.9,

0 for x > 7.9.

In the next result, we pick η(u) = eu to be the entropy function of our problem. Thus the numerical

scheme (3.9a)-(3.9c) takes the form
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∫
Sn

(
(uh)t +

1

2

[(
ln(τh)

)2]
x

)
· ϕh dxdt+ δ

∫
Sn

(τh)x · (ϕh)x dxdt

+

∫
R

(u
n+

h − u
n−
h ) · ϕn+

h dxdt = 0,

∫
Sn

(
τh − (euh)

)
· ψh dxdt = 0,

∫
R

(
τ
n+

h − (eu
n+
h )
)
· ψn+

h dx = 0.

The partitions of both x and t axis in our experiment are consisted of 400 nodes. The following graphs

show the results which have been obtained when taking different values of δ after 1, 100 and 200 time

steps.

(a) t = 0.02 (b) t = 2.50

(c) t = 5.01

Figure 3.1: Numerical experiment showing the solution when δ = h/10
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(a) t = 0.02 (b) t = 2.50

(c) t = 5.01

Figure 3.2: Numerical experiment showing the solution when δ = h/20

(a) t = 0.02 (b) t = 2.50

(c) t = 5.01

Figure 3.3: Numerical experiment showing the solution when δ = 0
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Next we present one more experiment, where we pick η(u) = u2

2 to be the entropy function of our

problem. Thus the numerical scheme (3.9a)-(3.9c) takes the form

∫
Sn

(
(uh)t +

1

2

(
τ2h

)
x

)
· ϕh dxdt+ δ

∫
Sn

(τh)x · (ϕh)x dxdt

+

∫
R

(u
n+

h − u
n−
h ) · ϕn+

h dxdt = 0,

∫
Sn

(
τh − uh

)
· ψh dxdt = 0,

∫
R

(
τ
n+

h − u
n+

h

)
· ψn+

h dx = 0.

The experiment has been implemented three times where at each time we have doubled the number of

the nodes of the previous partition. Thus, the first result includes for both x and t axis 80 nodes , the

partition of the second result consist of 160 nodes and third result of 320 nodes. The graphs following

show the results which have been obtained when taking a constant δ = h
4 .
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(a) t = 0.25 (b) t = 2.50

(c) t = 5.06

Figure 3.4: Results which have been obtained using a partition of 80 nodes

70



(a) t = 0.25 (b) t = 2.50

(c) t = 5.03

Figure 3.5: Results which have been obtained using a partition of 160 nodes
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(a) t = 0.25 (b) t = 2.50

(c) t = 5.01

Figure 3.6: Results which have been obtained using a partition of 320 nodes
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Chapter 4

Approximation of Measure-Valued

solutions of HCL

4.1 Chapter overview

Our aim is to develop a new approach to the computation of measure valued solutions and to quantify

uncertainties for nonlinear hyperbolic problems, based on two key ingredients : approximate Young

measures and kinetic models. We first present a framework for constructing approximate Young mea-

sures, based on earlier results by [48, 43]. Approximate Young measures were developed having in mind

applications to calculus of variations and to energy minimisation, see [6]. We show below that in the

framework of conservation laws the approximation of the equation for measure valued solutions by such

approximate measures, gives rise in a natural way to discrete kinetic models. These models are, how-

ever, severely under-determined. We overcome this issue by using tools from the kinetic formulation of

conservation laws, see Chapter 2, [40, 45]. By using viscosity approximations and appropriate discrete

defect measures we construct new discrete kinetic models; their solutions will provide approximations

to entropic measure valued solutions. We further note, see [27], that this approach can be extended to

design a hierarchy of discrete kinetic models approximating statistical solutions for scalar conservation
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laws based on correlation measures, [22]. Up to our knowledge, this approach provides the first system-

atic alternative to Monte Carlo sampling for approximating measure-valued solutions to conservation

laws. The approximate models, in all cases, rely on solving discretised kinetic equations with prescribed

approximate defect measures on the right hand side.

4.2 Computation of measure-valued solutions for hyperbolic problems

We focus on the scalar conservation law

ut(x, t) + divA(u(x, t)) = 0, x ∈ Rd, t > 0. (4.1)

As mentioned we shall focus on approximating models and schemes for the computation of measure

valued and statistical solutions of this equation. In this problem the behaviour of approximations of

solutions is not always certain. Uncertainties in the solution can be caused, for instance, by the initial

data, or the parameters appearing in the model. One of the reasons is that in practice it is impossible to

obtain exact measurements. Hence, we are interested in studying and computing solutions that deal with

the problem of uncertainty in PDEs. Furthermore, a similar problem from a mathematical perspective

relates to statistical inference on the solutions when we study an assembly of variable data of the model.

Statistics is a discrete endeavour and when it comes to complicated models such as nonlinear PDEs

there are more than one (continuous) mathematical settings to formulate problems. A possible way to

access uncertainty in nonlinear hyperbolic systems is to use the concept of measure-valued or statistical

solutions, [38, 24, 18, 21, 2, 3, 1].

For simplicity of the exposition, we will present our approximate models in the one-dimensional (d = 1)

case. The extension to the multidimensional scalar case is straightforward. For convenience and to fix

the notation for d = 1 we repeat the definitions of measure valued solutions next.

Weakly* measurable functions. Let V be a normed space. A function µ : Ω → V ⋆ is called weakly*
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measurable if for x ∈ Ω the function x 7→ ⟨µ(x), ψ⟩ is measurable for all ψ ∈ V where V ⋆ is the dual

space of V .

Measure valued solutions. Let now M+(Rm) be the set of all positive Radon measures on Rm, and

MP(Rm) = {µ ∈ M+(Rm), µ(Rm) = 1} the corresponding set of probability measures. We call

Young measure a weakly* measurable mapping from Ω into MP(Rm). The set of all Young measures is

denoted by Y(Ω,Rm). A parametrised measure µ ∈ Y(Ω,Rm) is said to be a measure-valued solution

of the conservation law (4.1) if, [19],

∫
Ω

(
⟨id, µx,t⟩ · ϕt + ⟨A,µx,t⟩ · ϕx

)
dxdt+

∫
R

u0 · ϕ(0, x)dx = 0, (4.2)

for all ϕ ∈ C∞
0 (Ω) where by ⟨A,µx,t⟩ and ⟨λ, µx,t⟩ we denote

⟨A,µx,t⟩ =
∫
Rm

A(λ)dµx,t(λ),

⟨id, µx,t⟩ =
∫
Rm

λdµx,t(λ).

In a similar fashion as for weak solutions, an entropy measure-valued solution satisfies the additional

relation ∫
Ω

(
⟨η, µx,t⟩ · ϕt + ⟨Q,µx,t⟩ · ϕx

)
dxdt+

∫
R

η(u0) · ϕ(x, 0) ≥ 0, (4.3)

for all ϕ ∈ C∞
0 (Ω) where η is convex and (η,Q) an entropy entropy-flux pair, [15]. The notion of

entropic measure-valued solutions which was originally proposed by DiPerna [19] is rather weak when

non-atomic measures are considered. A manifestation of this fact is the loss of uniqueness, even in the

scalar case, when non-atomic measures were allowed in the initial data, [15]; an alternative definition

was proposed recently in [22] which leads to a uniqueness result within a certain class of statistical

solutions.

75



4.3 Approximation theory of Young measures

As mentioned, we first present a framework for constructing approximate Young measures, based on ear-

lier results by [48, 43]. To this end, suppose if our solutions take values on a set S (generally S ⊂ Rm

where in the scalar case m = 1 ). For every h > 0, we assume that we are given a finite dimen-

sional space Sh, subspace of C(S). In addition we assume that there exist a continuous linear projector

Ph : L1(Ω;C0(S)) → L1(Ω;Sh) = Ph(L
1(Ω;C0(S))). Let further Yh(Ω, S) be the set of all Young

measures which map Ω into (Sh)
∗.

Lemma 4.3.1 The spaces P ∗
h (L

∞
w (Ω;MP(S)) and L∞

w (Ω; (Sh)
∗) are isomorphic. In particular if

P ∗
h (Y(Ω, S)) ⊂ Y(Ω, S)

then

P ∗
h (Y(Ω, S)) ∼= Yh(Ω, S).

This an important lemma since if we assume informally for a moment that Yh(Ω, S) is a space of com-

putational measures which approximate measures belonging to Y(Ω, S), then given an µ ∈ Y(Ω, S)

there exist only one µ̄ ∈ Yh(Ω, S) such that

∫
Ω
⟨ϕ, µ̄x,t⟩dxdt =

∫
Ω
⟨Phϕ, µx,t⟩dxdt (4.4)

for all ϕ ∈ L1(Ω;C(S)). Property (4.4) leads to consistent and mathematically sound approximations

of measures. In addition allows great flexibility, since different choices for Sh will yield different ap-

proximations to µ , in terms of the order of approximability as was as in terms of the structure of µ̄. We

have the following result, [48],

Theorem 4.3.2 Additionally if the projector has the following properties
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for all h ≥ h′ > 0 : Ph ◦ Ph′ = Ph

and

for all ϕ ∈ L1(Ω;C(S)) : lim
h→0

∥ϕ− Phϕ∥L1(Ω;C(S)) = 0

then it holds that

for all h ≥ h′ > 0 : Yh(Ω, S) ⊂ Yh′(Ω, S) ⊂ Y(Ω, S)

and

µ̄→ µ weakly∗ for the measures in expression (4.4)(
w∗ − cl

∪
h>0

Yh(Ω, S)
)

respectively.

Thus, if a projection meets the properties of Theorem 4.3.2 and Lemma 4.3.1 then we can think

Yh(Ω, S) as a suitable space in which we can seek approximate measures. For instance if Sh is a finite

element subspace of C(S), then the interpolation operator of the form

Ph(ϕ(x, t, ξ)) =
n∑
i=1

ϕ(x, t, ξi)υi(ξ) , (4.5)

where {υi}ni=1 is a basis of Sh and {ξi ∈ S}ni=1 are the mesh points, is such a projection(see [8]). In this

work we will seek approximations of measure-valued solutions based on this operator, see (4.9).

Error Estimation

In order to estimate rate of convergence of computational measures of the form 4.10 we will consider

the space L1(Ω;C0,γ(S)) where C0,γ(S) is the space of Holder continuous functions with exponent γ,

0 < γ ≤ 1.The dual of this space is suitable for computing errors since L∞
w (Ω;MP(S)) constitutes

a subset of it. Furthermore, using L1(Ω;C0,γ(S)) we are able to employ standard error estimates of
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the interpolant 4.9. These estimates will subsequently lead to an error estimation of our approximate

measures. We begin with the following lemma.

Lemma 4.3.3 There exist a constant C such that

∥ϕ− Phϕ∥L1(Ω;C(S)) ≤ Ch∥ϕ∥L1(Ω;C0,1(S)) (4.6)

for all ϕ ∈ L1(Ω;C0,1(S)).

(see [8])

Remark 4.3.4 This can be seen directly from the fact that the spaces C0,1 and W 1
∞ are equivalent.

Theorem 4.3.5 There exist a constant C such that

∥ϕ− Phϕ∥L1(Ω;C(S)) ≤ Chγ∥ϕ∥L1(Ω;C0,γ(S)) (4.7)

for all ϕ ∈ L1(Ω;C0,γ(S)).

Proof: Let Ij be the jth interval of a given uniform partition of S. For a ϕ ∈ L1(Ω;C0,γ(S)) it holds

that

∥ϕ− Phϕ∥L1(Ω;C(S)) =

∫
Ω
∥ϕ(x, t)− Phϕ(x, t)∥L∞(S)dxdt

≤ Ch

∫
Ω
|ϕ(x, t)|W 1

∞
= Ch

∫
Ω

sup
ξ1,ξ2∈S

|ϕ(x, t, ξ1)− ϕ(x, t, ξ2)|
|ξ1 − ξ2|

dxdt

= Ch

∫
Ω
max
j

{ sup
ξ1,ξ2∈Ij

|ϕ(x, t, ξ1)− ϕ(x, t, ξ2)|
|ξ1 − ξ2|

}dxdt

≤ Ch

∫
Ω
max
j

{ sup
ξ1,ξ2∈Ij

|ξ1 − ξ2|γ−1 |ϕ(x, t, ξ1)− ϕ(x, t, ξ2)|
|ξ1 − ξ2|γ

}dxdt

≤ Ch

∫
Ω
max
j

{ sup
ξ1,ξ2∈Ij

|ξ1 − ξ2|γ−1 sup
ξ1,ξ2∈Ij

|ϕ(x, t, ξ1)− ϕ(x, t, ξ2)|
|ξ1 − ξ2|γ

}dxdt

= Chγ
∫
Ω
max
j

{ sup
ξ1,ξ2∈Ij

|ϕ(x, t, ξ1)− ϕ(x, t, ξ2)|
|ξ1 − ξ2|γ

}dxdt

≤ Chγ∥ϕ∥L1(Ω;C0,γ(S)).
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□

Corollary 4.3.6 Given a measure µ ∈ Y(Ω, S) there exist a constant C and only one measure µ̄ ∈

Yh(Ω, S) related to µ through expressions (4.4) and (4.9) , such that

∥µ− µ̄∥L∞
w (Ω;(C0,γ(S))∗) ≤ Chγ∥µ∥L∞

w (Ω;MP(S))

Proof:

∥µ− µ̄∥L∞
w (Ω;(C0,γ(S))∗) ≤

≤ sup
∥ϕ∥L1(Ω;C0,γ (S))≤1

∫
Ω
⟨ϕ, µ− µ̄⟩dxdt

= sup
∥ϕ∥L1(Ω;C0,γ (S))≤1

∫
Ω
⟨ϕ− Phϕ, µ⟩

≤ sup
∥ϕ∥L1(Ω;C0,γ (S))≤1

∥µ∥L∞
w (Ω;MP(S))∥ϕ− Phϕ∥L1(Ω;C(S))

Combining this result with Theorem 4.3.5 the proof is completed. □

4.4 Approximate discrete kinetic models

Suppose that h > 0 is a mesh discretisation parameter, let S ⊂ Rm, and Sh is a finite dimensional

subspace of C(S). We assume that there exist a continuous linear projector Ph : L1(Ω;C0(S)) →

L1(Ω;Sh) = Ph(L
1(Ω;C(S))). Let further Yh(Ω, S) be the set of all Young measures which map Ω

into (Sh)
∗. One can define Yh(Ω, S), the space of approximate Young measures, through the following

procedure, see [48] for details. Given µ ∈ Y(Ω, S), µ is approximated by a µ̄ ∈ Yh(Ω, S) defined as

∫
Ω
⟨ϕ, µ̄x,t⟩dxdt =

∫
Ω
⟨Phϕ, µx,t⟩dxdt, (4.8)
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for all ϕ ∈ L1(Ω;C(S)). To fix ideas, consider m = 1, Sh being the standard finite element space of

continuous piecewise linear functions, and Ph the standard interpolation operator,

Ph(ϕ(t, x, ξ)) =

n∑
i=1

ϕ(x, t, ξi)υi(ξ) . (4.9)

Here, {υi}ni=1 are the hat-basis elements of Sh and {ξi ∈ S}ni=1 are the mesh points. It is essential now

to see the form of the approximate measure:

∫
Ω
⟨ϕ, µ̄x,t⟩dxdt =

∫
Ω
⟨
n∑
i=1

ϕ(x, t, ξi)υi(ξ), µx,t⟩dxdt

=

n∑
i=1

∫
Ω
ϕ(x, t, ξi)⟨υi(ξ), µx,t⟩dxdt =

n∑
i=1

∫
Ω
αi(x, t)

∫
S
ϕ(x, t, λ)dδξi(λ)dxdt

=

∫
Ω

∫
S
ϕ(x, t, λ)d[

n∑
i=1

αi(x, t)δξi(λ)]dxdt =

∫
Ω
⟨ϕ,

n∑
i=1

αi(x, t)δξi⟩dxdt .,

for all ϕ ∈ L1(Ω;C(S)) where αi(x, t) = ⟨υi, µx,t⟩ and δx is the Dirac measure at x.Thus we have

proved,

Lemma 4.4.1 Assume that for a given measure µ ∈ Y(Ω, S), we define µ̄ ∈ Yh(Ω, S) through (4.8)

and (4.9), where {υi}ni=1 are the hat-basis of Sh, consisting of standard piecewise linear finite element

decomposition of S with nodes {ξi ∈ S}ni=1 . Then, for αi(x, t) = ⟨υi, µx,t⟩,

µ̄x,t =
n∑
i=1

αi(x, t)δξi . (4.10)

In other words, expression (4.10) indicates that such approximations of a Young measure µ is reduced

to the evaluation of the action of µ on every basis function υi of the space Sh. As the functions αi

determine µ̄, the approximating schemes defined below will have as unknowns αi, in a form of a PDE

system.

We can now proceed to the computation of approximate measure-valued solutions. Substituting µ in
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expression (4.2) with µ̄ and supposing temporarily that u0 = 0 one leads to the approximating scheme

∫
Ω

(
⟨id, µ̄x,t⟩ · ϕt + ⟨A, µ̄x,t⟩ · ϕx

)
dxdt = 0,

for all ϕ ∈ C∞
0 (Ω) hence,

∫
Ω

(
⟨id,

n∑
i=1

αi(x, t)δξi⟩ · ϕt(x, t) + ⟨A,
n∑
i=1

αi(x, t)δξi⟩ · ϕx(x, t)
)
dxdt = 0

for all ϕ ∈ C∞
0 (Ω). Thus, one may conclude that the evolution of αi is dictated by the partial differential

equation
n∑
i=1

ξiαi(x, t)t +

n∑
i=1

A(ξi)αi(x, t)x = 0. (4.11)

Expression (4.11) now will constitute the cornerstone of our approach for several reasons. However,

some remarks are in order: although (4.11) has to be satisfied, this equation is under-determined since

there are n unknown functions need to be determined but only one equation is in place and thus (4.11)

does not constitute a complete PDE system. We need therefore to quest a system for αi at another level

which will be complete and will imply (4.11). Before proceeding further, at this point, we state the

following consistency result, which justifies the reason of considering discrete equations of the above

form.

Lemma 4.4.2 Assume that for a given measure µ ∈ Y(Ω, S), µ̄ ∈ Yh(Ω, S) is defined through (4.8)

and (4.9). Let that

E(µ, ϕ) :=

∫
Ω

(
⟨η, µx,t⟩ · ϕt + ⟨Q,µx,t⟩ · ϕx

)
dxdt (4.12)

where ϕ ∈ C∞
0 (Ω) is given. Then, for αi(x, t) = ⟨υi, µx,t⟩,

E(µ̄, ϕ) =

∫
Ω

[ n∑
i=1

η(ξi)αi(x, t) · ϕt +Q(ξi)αi(x, t) · ϕx
]
dxdt . (4.13)
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If η,Q, are regular enough such that Corollary 4.3.6 is applicable, for a γ > 0, γ ≤ 1, then for a

constant depending on η,Q, ∣∣∣E(µ̄, ϕ)− E(µ, ϕ)
∣∣∣ ≤ C(ϕ)hγ . (4.14)

4.4.1 A motivation from the kinetic formulation

Next we shall see how one can motivate the design of appropriate discrete (in ξ) models by considering

the kinetic formulation of the conservation law. We first observe that an indicative such n × n system

which can lead to (4.11) can be

∂tαi(x, t)ξi + ∂xαi(x, t)A(ξi) =Mi, i = 1, . . . , n, (4.15)

where the source functions Mi are given and satisfy
∑

i Mi = 0 . Such equations are reminiscent

of discrete kinetic models, though one has to specify appropriately Mi . In a very rough analogy to

Boltzmann equation, one might view (4.11) as the macroscopic expression, thus, we have to define

appropriate microscopic equations in order to compute a meaningful solution o (4.2). This can be re-

alised through the setting of the kinetic formulation of conservation laws, [40, 45]. In fact, to motivate

the design of appropriate discrete kinetic models leading to (4.11) we will seek appropriate discretisa-

tions of functions f(t, x, ξ) of the kinetic formulation: A function f(t, x, ξ) ∈ L∞(0,+∞;L1(R2)) is

called a generalised kinetic solution of the scalar conservation law, [45], with initial data f0, if for all

ϕ ∈ C∞
c ([0,+∞)× R× R) we have

∫ ∞

0

∫
R2

f(t, x, ξ)

[
∂ϕ(t, x, ξ)

∂t
+A′(ξ)

∂ϕ(t, x, ξ)

∂x

]
dxdξdt

=

∫ ∞

0

∫
R2

m(t, x, ξ)
∂ϕ(t, x, ξ)

∂ξ
dxdξdt−

∫
Rm+1

f0(x, ξ)ϕ(0, x, ξ)dxdξ,

(4.16)

where m is a bounded nonnegative measure on ((0,+∞)× R× R) and additionally it holds that
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|f(t, x, ξ)| = sgn(ξ)f(x, t, ξ) ≤ 1, (4.17a)

f =

∫
R
χλ(ξ)dνx,t(λ) (4.17b)

where

sgn(ξ) =


1 if 0 < ξ

−1 if ξ < 0.

Here, νx,t is a Young measure associated to f and χλ is given by

χλ(ξ) =



1 if 0 < ξ ≤ λ

−1 if λ ≤ ξ < 0

0 otherwise.

Kinetic functions and approximate Young measures. At this point, notice that the above formulation

plays a key role. Specifically, the defect measure m might provide the additional information we are

looking for leading to an appropriate measure-valued solution. Suppose now that the approximate Young

measure ν̄x,t =
n∑
i=1

αi(x, t)δξi approximates νx,t. We see then

f(x, t, ξ) ≈ f̄(x, t, ξ) =

∫
R
χλ(ξ)dν̄x,t =

∫
R
χλ(ξ)d[

n∑
i=1

αi(x, t)δξi(λ)]

=

n∑
i=1

αi(x, t)

∫
R
χλ(ξ)dδξi(λ) =

n∑
i=1

αi(x, t)χξi(ξ) =

n∑
i=1

f̄i,

where f̄i = αi(x, t)χξi(ξ). Therefore, one can define the approximate model

n∑
i=1

∂f̄i
∂t

+

n∑
i=1

A′(ξ)
∂f̄i
∂x

=
∂m̄

∂ξ
(4.18)
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where m̄ is an approximation of measure m. We observe now

∫
R

∂f̄i
∂t

+A′(ξ)
∂f̄i
∂x

dξ =∂tαi(x, t)

∫
R
χξi(ξ)dξ + ∂xαi(x, t)

∫
R
A′(ξ)χξi(ξ)dξ

=ξi∂tαi(x, t) +A(ξi)∂xαi(x, t).

(4.19)

Therefore, by integrating (4.18) we conclude that

n∑
i=1

∂tαi(x, t)ξi +
n∑
i=1

∂xαi(x, t)A(ξi) =

∫
R

∂m̄

∂ξ
dξ = 0. (4.20)

Let us now assume temporally and without loss of the generality that the nodes ξ,> 0 and ξ0 = 0. We

use the notation ΦIj = 1Ij , if Ij ⊂ [0,∞) and ΦIj = −1Ij , if Ij ⊂ (−∞, 0], where Ij = (ξj−1, ξj) .

Then,

f̄(x, t, ξ) =

n∑
i=1

f̄i =

n∑
i=1

αi(x, t)χξi(ξ) =

n∑
i

βj(x, t)ΦIj (ξ) , (4.21)

where

β1 =αn + αn−1 + · · ·+ α1

β2 =αn + · · ·+ α2

· · ·

βn =αn ,

i.e.,

βj =αn + · · ·+ αj . (4.22)

Similar relations hold for ξi which are allowed to take negative values. Notice that f̄(x, t, ξ) is piece-

wise constant in the elements of Sh. A natural finite volume discretisation in ξ of (4.18) is obtained by
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integrating over Ii (4.18) for all i. This leads to the discrete kinetic model

hβi(x, t)t+
(
A(ξi)−A(ξi−1)

)
βi(x, t)x =

m̄(x, t, ξi)− m̄(x, t, ξi−1) .

(4.23)

4.4.2 Entropic discrete kinetic models

We have the following

Proposition 4.4.3 Consider approximate Young measures of the form

ν̄x,t =

n∑
i=1

αi(x, t)δξi .

and corresponding kinetic functions

f̄(x, t, ξ) =

∫
R
χλ(ξ)dν̄x,t =

n∑
i=1

αi(x, t)χξi(ξ) .

Assume that we are given a positive measure m̄ with compact support with respect to ξ, and let βi(t, x),

i = 1, . . . , n satisfy the following discrete kinetic equations

hβi(x, t)t+
(
A(ξi)−A(ξi−1)

)
βi(x, t)x =

m̄(x, t, ξi)− m̄(x, t, ξi−1) .

(4.24)

Then, if αi and βi are connected through (4.22) the piecewise constant function f̄(x, t, ξ) satisfies (4.21).

Furthermore for any convex function η the following discrete entropy inequality holds in the sense of

distributions,
n∑
i=1

η(ξi)αi(x, t)t +

n∑
i=1

Qi αi(x, t)x ≤ 0. (4.25)
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Here the discrete entropy flux Qi is defined through,

Qj =
1

h

j∑
k=1

(
η(ξi)− η(ξi−1)

)(
A(ξi)−A(ξi−1)

)
. (4.26)

Proof: It remains to show the discrete entropy inequality (4.25). To this end, we multiply (4.24) by

η(ξi)− η(ξi−1), and sum with respect to i to obtain

h

n∑
i=1

(
η(ξi)− η(ξi−1)

)
βi(x, t)t+

n∑
i=1

(
η(ξi)− η(ξi−1)

)(
A(ξi)−A(ξi−1)

)
βi(x, t)x =

n∑
i=1

(
η(ξi)− η(ξi−1)

)(
m̄(x, t, ξi)− m̄(x, t, ξi−1)

)
.

(4.27)

Now,

n∑
i=1

(
η(ξi)− η(ξi−1)

)
βi(x, t)t =

n∑
i=1

η(ξi)βi(x, t)t −
n∑
i=1

η(ξi−1)βi(x, t)t

=
n∑
i=1

η(ξi)βi(x, t)t −
n−1∑
i=0

η(ξi)βi+1(x, t)t

=

n−1∑
i=1

η(ξi)
(
βi(x, t)t − βi+1(x, t)t

)
+ η(ξn)βn(x, t)t − η(ξ0)β1(x, t)t .

Hence, since η(ξ0) = 0, and using (4.22),

n∑
i=1

(
η(ξi)− η(ξi−1)

)
βi(x, t)t =

n∑
i=1

η(ξi)αi(x, t)t . (4.28)

Next,

n∑
i=1

(
η(ξi)− η(ξi−1)

)(
A(ξi)−A(ξi−1)

)
βi(x, t)x

=h

n∑
i=1

(
Qi −Qi−1

)
βi(x, t)x
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=h
n∑
i=1

Qiβi(x, t)x −
n∑
i=1

Qi−1βi(x, t)x

=h

n∑
i=1

Qiβi(x, t)x −
n−1∑
i=0

Qiβi+1(x, t)x

=h

n−1∑
i=1

Qi

(
βi(x, t)x − βi+1(x, t)x

)
+ hQnβn(x, t)x − hQ0β1(x, t)x .

Hence, since η(ξ0) = 0, and using (4.22),

n∑
i=1

(
η(ξi)− η(ξi−1)

)(
A(ξi)−A(ξi−1)

)
βi(x, t)x =h

n∑
i=1

Qi αi(x, t)x . (4.29)

For the term involving the measure, and using the fact that m̄ is zero at the endpoints of S,

n∑
i=1

(
η(ξi)−η(ξi−1)

)(
m̄(x, t, ξi)− m̄(x, t, ξi−1)

)
=

n∑
i=1

(
η(ξi)− η(ξi−1)

)
m̄(x, t, ξi)−

n∑
i=1

(
η(ξi)− η(ξi−1)

)
m̄(x, t, ξi−1)

=

n∑
i=1

(
η(ξi)− η(ξi−1)

)
m̄(x, t, ξi)−

n−1∑
i=0

(
η(ξi+1)− η(ξi)

)
m̄(x, t, ξi)

= −
n−1∑
i=1

(
η(ξi+1)− 2η(ξi) + η(ξi−1)

)
m̄(x, t, ξi).

Hence, since η is convex,

n∑
i=1

(
η(ξi)−η(ξi−1)

)(
m̄(x, t, ξi)− m̄(x, t, ξi−1)

)
= −

n−1∑
i=1

(
η(ξi+1)− 2η(ξi) + η(ξi−1)

)
m̄(x, t, ξi) ≤ 0 ,

(4.30)

and the proof is complete. □
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4.4.3 Viscous discrete kinetic models

As it is obvious the implementation of the above system, (4.24), requires that the measure m̄ is known,

as well as discretisation with respect to x and t variables as well. There are many alternative ways

to implement full discretisation and such methods will be subject of further research. As far as the

defect measure is concerned, we claim that its choice plays a crucial role for the model design. We can

observe now that in kinetic models for conservation laws with small diffusion the defect measure can

be explicitly computed, [11]. Typically, it contains a diffusion term of the kinetic function f(t, x, ξ) as

well. In fact, [11, 41], the kinetic formulation of

∂tu+ ∂xA(u) = ϵuxx, x ∈ R, t > 0, (4.31)

is

∂χu(ξ)

∂t
+A′(ξ)

∂χu(ξ)

∂x
− ϵ

∂2χu(ξ)

∂x2
= ϵ

(
∂δ(ξ − u)

∂ξ

(
∂u

∂x

)2
)

=
∂mϵ

∂ξ
(4.32)

where

χu(ξ) =



1 if 0 < ξ ≤ u

−1 if u ≤ ξ < 0

0 otherwise.

Motivated by the above discussion, and the fact that we would like to include in our approximate

scheme artificial diffusion, we are led to the following approximating model: Let first ũ be defined

through

ũ =

∫
R
λdν̄x,t(λ) =

∫
R
λd

n∑
i=1

αi(x, t)δξi =

n∑
i=1

αi(x, t)ξi.

For fixed x0, we consider δ̄(ξ − x0) to be a compactly supported smooth Gaussian-like approximation
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of δ(ξ − x0). As before we consider approximate Young measures of the form

ν̄x,t =
n∑
i=1

αi(x, t)δξi .

and corresponding kinetic functions

f̄(x, t, ξ) =

∫
R
χλ(ξ)dν̄x,t =

n∑
i=1

αi(x, t)χξi(ξ) .

Assume that we are given a positive measure m̄ϵ with compact support with respect to ξ, and let βi(t, x),

be such that αi and βi are connected through (4.22) and the piecewise constant function f̄(x, t, ξ) satis-

fies (4.21). We seek models where βi(t, x), i = 1, . . . , n satisfy the following discrete kinetic equations

hβi(x, t)t+
(
A(ξi)−A(ξi−1)

)
βi(x, t)x = ϵβi(x, t)xx

+ m̄ϵ(x, t, ξi)− m̄ϵ(x, t, ξi−1) .

(4.33)

where m̄ϵ(t, x, ξ) = ϵ
(
δ̄(ξ − ũ) |ũx|2

)
. We observe that at least formally, as ϵ → 0, the model (4.33)

has the right form compatible with the kinetic formulation. The choice of the models is indicative and it

is an open problem to find the schemes which will produce the most efficient approximations. Motivated

by our analysis herein, Chapter 5 is devoted to the stability of viscous generalised kinetic solutions as

ϵ→ 0.
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Chapter 5

Stability of Young measures through

generalised kinetic solutions

5.1 Chapter overview

This chapter is devoted to stability analysis for generalised kinetic models including small diffusion

terms and general initial data not necessarily restricted to χu0(x), for some function u0 . We consider

models associated to the scalar multidimensional conservation law. Generalised kinetic formulations

were introduced by Perthame [44, 45] and are generalisations of kinetic formulations of conservation

law [40]. We consider kinetic models of the form, see next section for precise definitions,

∫ ∞

0

∫
R2

f(t, x, ξ)

[
∂

∂t
ϕ(t, x, ξ) +∇uA(ξ) · ∇xϕ(t, x, ξ)

]
dxdξdt

=−
∫ ∞

0

∫
R2

ϵ∇xf(t, x, ξ) · ∇xϕ(t, x, ξ)dxdξdt

+

∫ ∞

0

∫
R2

m′(t, x, ξ)
∂

∂ξ
ϕ(t, x, ξ)dxdξdt−

∫
R2

f0(x, ξ)ϕ(0, x, ξ)dxdξ .

(5.1)
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These formulations are generalisations of the kinetic formulation of viscous conservation laws, [11],

∂χu(ξ)

∂t
+∇uA(ξ) · ∇xχu(ξ) = ϵ(∇x)

2χu(ξ) +
∂mϵ

∂ξ
. (5.2)

associated to

∂tu+∇xA(u) = ϵ∇2
xu. (5.3)

As we have seen in Chapter 4, such models are relevant when one would like to approximate measure

valued solutions through approximate Young measures. However, the study of generalised viscous ki-

netic formulations is of interest, even one considers alternative sampling approaches, such as Monte

Carlo sampling, based on standard schemes for approximating the conservation law. In fact, since

most of such schemes include a form of artificial diffusion, approximations can be modelled by varia-

tions of (5.3). In order to gain more understanding on the issue, consider different approximations uj ,

j = 1, . . . , J , which correspond to different initial data u0j , j = 1, . . . , J . Assume that all uj satisfy

(5.3), then we would like to study the behaviour of the measure

1

J

J∑
j=1

δuj .

As we have seen to each δuj corresponds the kinetic function χuj and all these functions satisfy (5.2).

Then, to the sample above, we associate the kinetic function,

fJ(t, x, ξ) =
1

J

J∑
j=1

χuj(t,x)(ξ) . (5.4)

Due to the linearity of the principal part of the viscous kinetic formulation, each such fJ satisfies (5.1),

(here Bϵ = I), for an appropriate measure m′ and for f0(x, ξ) = 1
J

∑J
j=1 χu0j (x)

(ξ) .

Next we give a precise definition of generalised viscous kinetic solutions and we consider the mea-

sure m′ to be, in general, a function of f. Our main result, Theorem 5.2.2, implies uniqueness within a
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class under structural assumption hypotheses on the measure m′. This result essentially states that all

viscous generalised kinetic functions have the same limit as soon as ∥Bϵ∥W∞
1 (Rd) → 0, ϵ → 0 , and the

defect measures satisfy a dissipative structural assumption. These assumptions are to some extend gen-

eralisations of properties appearing in the analysis of [44, 45] for initial data χu0(x). When is required,

the analysis adapts arguments from [44, 45] and [11, 41] to our case.

5.2 A stability result for generalised viscous kinetic solutions

Although it is quite natural to design schemes which induce a form of artificial diffusion, a key question

is, if it is possible to have some guarantees that we compute in the limit a unique measure. A partial

result in this direction is stated below. We need first to extend the definition of generalised kinetic

solutions to include small diffusion. To this end, a function f(t, x, ξ) ∈ L∞(0,+∞;L1(Rd+1)) is

called a generalised kinetic solution of the viscous scalar conservation law with initial data f0, if for all

ϕ ∈ C∞
c ([0,+∞)× Rd × R) we have

∫ ∞

0

∫
R2

f(t, x, ξ)

[
∂

∂t
ϕ(t, x, ξ) +∇uA(ξ) · ∇xϕ(t, x, ξ)

]
dxdξdt

=−
∫ ∞

0

∫
R2

Bε(x)∇xf(t, x, ξ) · ∇xϕ(t, x, ξ)dxdξdt

+

∫ ∞

0

∫
R2

m(t, x, ξ)
∂

∂ξ
ϕ(t, x, ξ)dxdξdt−

∫
R2

f0(x, ξ)ϕ(0, x, ξ)dxdξ

(5.5)

where m′ is a given bounded nonnegative measure on ((0,+∞)×Rd×R), Bε(x) is a positive function

belonging to the space W 1
∞(Rd), which is the space of all L∞(Rd) functions with first order weak

derivatives and ∫ +∞

0

∫
Rd

m(x, t, ξ)dxdt ≤ µ(ξ) ∈ L∞
0 (R)1 (5.6a)

|f(t, x, ξ)| = sgn(ξ)f(x, t, ξ) ≤ 1, (5.6b)

1L∞
0 bounded functions that vanish at infinity
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f =

∫
R
χλ(ξ)dνx,t(λ). (5.6c)

Remark 5.2.1 The function f is the distributional function corresponding to the measure νx,t for almost

all x and t i.e.

f(x, t, ξ) =

∫ ξ

−∞
dδ0(λ)−

∫ ξ

−∞
dνx,t(λ). (5.7)

Furthermore, the relation (5.6c) is equivalent to the expression

∂f(x, t, ξ)

∂ξ
= δ0(ξ)− ν(x, t, ξ) (5.8)

in M(R) for almost all t and x. Indeed, From (5.7) it holds that

f(x, t, ξ) =


−
∫ ξ
−∞ dνx,t if ξ < 0

∫ +∞
ξ dνx,t if ξ > 0

while on the other hand we also have

∫
R
χλ(ξ)dνx,t(λ) =


−
∫ ξ
−∞ dνx,t if ξ < 0

∫ +∞
ξ dνx,t if ξ > 0.

To show (5.8), consider a ϕ(ξ) ∈ C∞
c (R). Then we have

∫
R

ϕ(λ)dνx,t(λ)−
∫
R

ϕ(λ)dδ0(λ) =

∫
R

ϕ(λ)− ϕ(0)dνx,t(λ)

=

∫
R

∫
R

χλ(ξ)
∂ϕ(ξ)

∂ξ
dξdνx,t =

∫
R

∫
R

χλ(ξ)dνx,t
∂ϕ(ξ)

∂ξ
dξ =

∫
R

f(x, t, ξ)
∂ϕ(ξ)

∂ξ
dξ

=−
∫
R

∂f(x, t, ξ)

∂ξ
ϕ(ξ)dξ.
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A direct consequence of (5.8) is the fact that the mapping νx,t 7→ f that is defined through (5.6c) is

injective.

The next result essentially states that all viscous generalised kinetic functions have the same limit as soon

as ∥Bϵ∥W∞
1 (Rd) → 0, ϵ→ 0, and the defect measures satisfy a dissipative structural assumption. Note at

this point the conceptual similarity with standard approaches for the scalar conservation law, where the

unique entropy solution is characterised through the vanishing viscosity limit. Atomic measures satisfy

such structural assumptions, however, it remains an open problem to investigate if such assumptions

can be relaxed to a certain extend and in addition to characterise families of approximations which

fulfil them. These are problems for future research. The assumption for the measures stated below

is understood via regularisation, see the next section for details, and we are not precise regarding the

smoothness assumptions on the viscosity coefficients Bϵ which are assumed smooth enough. In Section

5.4 we present a variant of Theorem 5.2.2 with stronger hypotheses but with a simplified proof.

Theorem 5.2.2 Assume that f is a solution of (5.5) and let f̃ a viscous generalised kinetic solution of

(5.5) corresponding to B̃ε(x), m̃, and ν̃. Furthermore, suppose that the initial data and the solutions

have compact support with f̃(0, x, ξ) = f(0, x, ξ). In addition to these hypothesis, assume that the

defect measures m′ and m̃′ satisfy, up to regularisation,

∫ T

0

∫
R

∫
R

m− m̃ d(ν − ν̃)dx dξ dt ≤ 0. (5.9)

Then, as both ∥B∥W∞
1 (Rd), ∥B̃∥W∞

1 (Rd) → 0 we have the limit

∥f − f̃∥L2 → 0 . (5.10)

Note here that by Remark 5.2.1 when the limit (5.39) holds true then (5.8) implies that the measures

νx,t and ν̃x,t become equal at the limit.
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5.3 L1-based analysis

We shall need some preliminary results. First, as it is typical, [45], we need to introduce regularisations

in order to handle operations on distributions. Let

ϕϵ(t, x) =
1

ϵ1
ϕ1

(
t

ϵ1

)
1

ϵd2
ϕ2

(
x

ϵ2

)

where ϕ1 ∈ C∞
c (R), ϕ2 ∈ C∞

c (Rd) and
∫
R
ϕ1(x)dx = 1,

∫
Rd

ϕ2(x)dx = 1. Here, ϵ1, ϵ2 are the parame-

ters for time and space regularization respectively. In addition, we assume supp(ϕ1) ⊂ (−1, 0) for allow

the time regularization. Furthermore for some constant C we assume |∇xiϕj | < C for i = 1, . . . , d. We

now set

fϵ(x, t, ξ) = [f ⋆ ϕϵ](x, t, ξ) =

∫ +∞

0

∫
Rd

f(s, y, ξ)ϕϵ(t− s, x− y)dyds

and

mϵ(x, t, ξ) = [m ⋆ ϕϵ](x, t, ξ) =

∫ +∞

0

∫
Rd

ϕϵ(t− s, x− y)dm(s, y, ξ)dyds.

Accordingly we define the regularization corresponding to f̃ as

fϵ(x, t, ξ) = [f̃ ⋆ ϕϵ](x, t, ξ)

and

m̃ϵ(x, t, ξ) = [m̃ ⋆ ϕϵ](x, t, ξ) =

∫ +∞

0

∫
Rd

ϕϵ(t− s, x− y)dm̃(s, y, ξ)dyds.

We then have.

Lemma 5.3.1 Assume Bϵ(x) = k with k > 0 to be a constant. The functions ξ 7→ mϵ(x, t, ξ) and

ξ 7→ m̃ϵ(x, t, ξ) are Lipschitz continuous and for almost all ξ we have

95



∂

∂t
fϵ(x, t, ξ) +∇uA(ξ) · ∇xfϵ(x, t, ξ) = k∆xfϵ(x, t, ξ) +

∂

∂ξ
mϵ(x, t, ξ) (5.11)

∂

∂t
f̃ϵ(x, t, ξ) +∇uA(ξ) · ∇xf̃ϵ(x, t, ξ) = −∇x[B̃∇f̃ ]ϵ(x, t, ξ) +

∂

∂ξ
m̃ϵ(x, t, ξ) (5.12)

for all (x, t) ∈ [0,+∞)× Rd.

Proof: We first show (5.11). For some fixed parameters x and t we pick ϕ(y, s, ξ) = ψ(ξ)ϕϵ(t −

s, x− y) in (5.5) where ψ(ξ) ∈ C∞
c (R). Thus, we have

∫ +∞

0

∫
Rd+1

ψ(ξ)

(
f(y, s, ξ)

∂

∂s
ϕϵ(t− s, x− y) + f(y, s, ξ)∇uA(ξ) · ∇yϕϵ(t− s, x− y)

)
dξdyds

=

∫ +∞

0

∫
Rd+1

∂

∂ξ
ψ(ξ)ϕϵ(t− s, x− y)dm(s, y, ξ)dydξds−

∫
Rd+1

ψ(ξ)f0(y, ξ)ϕϵ(t, x− y)dξdy

− k

∫ +∞

0

∫
Rd+1

ψ(ξ)∇yf(y, s, ξ)∇yϕϵ(t− s, x− y)dξdyds.

Since ϕϵ(t, x− y) = 0 for t ≥ 0, the second integral of the right-hand side of the above equation equals

to zero and therefore integration by parts in the last integral of the right-hand side yields

∫ +∞

0

∫
Rd+1

ψ(ξ)

(
f(y, s, ξ)

∂

∂s
ϕϵ(t− s, x− y) + f(y, s, ξ)∇uA(ξ) · ∇yϕϵ(t− s, x− y)

)
dξdyds

=

∫ +∞

0

∫
Rd+1

∂

∂ξ
ψ(ξ)ϕϵ(t− s, x− y)dm(s, y, ξ)dydξds

− k

∫ +∞

0

∫
Rd+1

ψ(ξ)f(y, s, ξ)∆yϕϵ(t− s, x− y)dξdyds.

In consideration of

∂

∂s
ϕϵ(t− s, x− y) = − ∂

∂t
ϕϵ(t− s, x− y)
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and

∆yϕϵ(t− s, x− y) = ∆xϕϵ(t− s, x− y)

we obtain

∫ +∞

0

∫
Rd+1

ψ(ξ)

(
f(y, s, ξ)

∂

∂t
ϕϵ(t− s, x− y) + f(y, s, ξ)∇uA(ξ) · ∇xϕϵ(t− s, x− y)

)
dξdyds

=−
∫ +∞

0

∫
Rd+1

∂

∂ξ
ψ(ξ)ϕϵ(t− s, x− y)dm(s, y, ξ)dydξds

+ k

∫ +∞

0

∫
Rd+1

ψ(ξ)f(y, s, ξ)∆xϕϵ(t− s, x− y)dξdyds

and therefore

∫
R

ψ(ξ)

(
∂

∂t
[f ⋆ ϕϵ](x, t, ξ) +∇uA(ξ) · ∇x[f ⋆ ϕϵ](x, t, ξ)

)
dξ

= −
∫
R

∂

∂ξ
ψ(ξ)[m ⋆ ϕϵ](x, t, ξ)dξ + k

∫
R

ψ(ξ)∆x[f ⋆ ϕϵ](x, t, ξ)dξ.

In order to prove (5.12) the same operations in (5.5) with f̃ , B̃(x), m̃, and ν̃x,t yield

∫ +∞

0

∫
Rd+1

ψ(ξ)

(
f̃(y, s, ξ)

∂

∂s
ϕϵ(t− s, x− y) + f̃(y, s, ξ)∇uA(ξ) · ∇yϕϵ(t− s, x− y)

)
dξdyds

=

∫ +∞

0

∫
Rd+1

∂

∂ξ
ψ(ξ)ϕϵ(t− s, x− y)dm̃(s, y, ξ)dydξds−

∫
Rd+1

ψ(ξ)f̃0(y, ξ)ϕϵ(t, x− y)dξdy

−
∫ +∞

0

∫
Rd+1

B̃(y)ψ(ξ)∇yf̃(y, s, ξ) · ∇yϕϵ(t− s, x− y)dξdyds.
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Hence since,

∫ +∞

0

∫
Rd

B̃(y)∇yf(s, y, ξ) · ∇yϕϵ(t− s, x− y)dydt

= −
∫ +∞

0

∫
Rd

B̃(y)∇yf(s, y, ξ) · ∇xϕϵ(t− s, x− y)dydt

we have

∫ +∞

0

∫
Rd+1

ψ(ξ)

(
f̃(y, s, ξ)

∂

∂t
ϕϵ(t− s, x− y) + f̃(y, s, ξ)∇uA(ξ) · ∇xϕϵ(t− s, x− y)

)
dξdyds

=−
∫ +∞

0

∫
Rd+1

∂

∂ξ
ψ(ξ)ϕϵ(t− s, x− y)dm̃(s, y, ξ)dydξds

−
∫ +∞

0

∫
Rd+1

ψ(ξ)B̃(y)∇yf̃(y, s, ξ) · ∇xϕϵ(t− s, x− y)dξdyds.

Therefore

∫
R

ψ(ξ)

(
∂

∂t
[f ⋆ ϕϵ](x, t, ξ) +∇uA(ξ) · ∇x[f ⋆ ϕϵ](x, t, ξ)

)
dξ

= −
∫
R

∂

∂ξ
ψ(ξ)[m ⋆ ϕϵ](x, t, ξ)dξ +

∫
R

∇x · [B̃∇f ⋆ ϕϵ](x, t, ξ)dξ.

□

Lemma 5.3.2 The regularized term fϵ(x, t, ξ) fulfils the relation

sgn(ξ)fϵ(x, t, ξ) = |fϵ(x, t, ξ)|. (5.13)

Proof: Relation (5.13) is a consequence of (5.6b). To this end, we show first that

sgn(ξ)fϵ(x, t, ξ) = [|f |]ϵ (5.14)
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where

[|f |]ϵ =
∫ +∞

0

∫
Rd

|f(s, y, ξ)|ϕϵ(t− s, x− y)dyds.

Indeed,

sgn(ξ)fϵ(x, t, ξ) = sgn(ξ)

∫ +∞

0

∫
Rd

f(s, y, ξ)ϕϵ(t− s, x− y)dsdy

=

∫ +∞

0

∫
Rd

sgn(ξ)f(s, y, ξ)ϕϵ(t− s, x− y)dsdy

=

∫ +∞

0

∫
Rd

|f(s, y, ξ)|ϕϵ(t− s, x− y)dsdy.

On the other hand,

[|f |]ϵ =
∣∣[|f |]ϵ∣∣ = ∣∣∣ ∫ +∞

0

∫
Rd

|f(y, s, ξ)|ϕϵ(t− s, x− y)dyds
∣∣∣

=
∣∣∣ ∫ +∞

0

∫
Rd

sgn(ξ)f(y, s, ξ)ϕϵ(t− s, x− y)dyds
∣∣∣

=
∣∣∣sgn(ξ) ∫ +∞

0

∫
Rd

f(y, s, ξ)ϕϵ(t− s, x− y)dyds
∣∣∣

= |sgn(ξ)|
∣∣∣ ∫ +∞

0

∫
Rd

f(y, s, ξ)ϕϵ(t− s, x− y)dyds
∣∣∣

= |fϵ(x, t, ξ)|.

Hence from (5.14) we deduce that (5.13) holds true. □

Lemma 5.3.3 Let T > 0 and ϕ(t, x) ∈ C∞
c ([0, T ]× Rd). Assume that m satisfies (5.6a), then

∫ T

0

∫
Rd

mϵ(x, t, ξ)ϕ(x, t)dxdt ≤ µ(ξ)∥ϕ(x, t)∥L∞([0,T ]×Rd) (5.15)

for all ϵ > 0.
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Proof: ∫ T

0

∫
Rd

mϵ(x, t, ξ)ϕ(x, t)dxdt ≤ ∥ϕ(x, t)∥L∞

∫ T

0

∫
Rd

mϵ(x, t, ξ)dxdt

= ∥ϕ(x, t)∥L∞

∫ T

0

∫
Rd

∫ +∞

0

∫
Rd

ϕϵ(t− s, x− y)dm(s, y, ξ)dxdt

≤ ∥ϕ(x, t)∥L∞

∫ +∞

0

∫
Rd

∫ +∞

0

∫
Rd

ϕϵ(t− s, x− y)dxdtdm(s, y, ξ)

= ∥ϕ(x, t)∥L∞

∫ +∞

0

∫
Rd

dm(s, y, ξ) ≤ µ(ξ)∥ϕ(x, t)∥L∞

where the last inequality comes from (5.6a). □

Lemma 5.3.4 If f(t, x, ξ) is continuous at t = 0 we have for all T > 0

∫ T

0

∫
Rd+1

|f(x, t, ξ)|dξdxdt ≤ T

∫
Rd+1

|f(x, 0, ξ)|dξdx. (5.16)

Proof: Let ϕ(x) ∈ C∞
c (Rd). In addition consider a family of convex functions Sδ(ξ) ∈ C∞(R) such

that

Sδ(ξ) → |ξ| as δ → 0, S(0) = 0

with suppS′′(ξ) uniformly bounded [44]. Subsequently (5.11) implies

∫
Rd

S′
δ(ξ)

∂fϵ(x, t, ξ)

∂t
ϕ(x)dξdx−

∫
Rd

S′
δ(ξ)fϵ(x, t, ξ)∇uA(ξ) · ∇xϕ(x)dxdξ

= k

∫
Rd

S′
δ(ξ)fϵ(x, t, ξ)∆xϕ(x)dxdξ +

∫
Rd

S′
δ(ξ)

∂

∂ξ
mϵ(x, t, ξ)ϕ(x)dxdξ

At this point we make the choice

ϕ(x) = ϕ̃R(x) (5.17)
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with ϕ̃R(x) = ϕ̃
(
x
R

)
and ϕ̃ ∈ C∞

c (Rd), 0 ≤ ϕ̃ ≤ 1, ϕ̃ ≡ 1 on B(0, 1), supp ϕ̃ ∈ B(0, 2) where by

B(x, r) we denote the closed ball with center x and radius r. In view of

S′
δ(ξ)fϵ(x, t, ξ)∆xϕ̃R(x) → 0

S′
δ(ξ)

∂

∂ξ
mϵ(x, t, ξ)ϕ̃R(x) → S′

δ(ξ)
∂

∂ξ
mϵ(x, t, ξ)

S′
δ(ξ)

∂

∂t
fϵ(x, t, ξ)ϕ̃R(x) → S′

δ(ξ)
∂fϵ(x, t, ξ)

∂t

S′
δ(ξ)fϵ(x, t, ξ)∇uA(ξ) · ∇xϕ̃R(x) → 0

(see [45], [40]) a.e. in x, t and ξ as R→ +∞ we conclude that

∫
Rd+1

S′
δ(ξ)

∂fϵ(x, t, ξ)

∂t
dξdx =

∫
Rd+1

S′
δ(ξ)

∂

∂ξ
mϵ(x, t, ξ)dxdξ

= −
∫
Rd

S′′
δ (ξ)mϵ(x, t, ξ)dxdξ.

(5.18)

We now integrate w.r.t. t and hence

∫
Rd+1

S′
δ(ξ)fϵ(x, t, ξ)dξdx−

∫
Rd+1

S′
δ(ξ)fϵ(x, 0, ξ)dξdx

= −
∫ t

0

∫
Rd+1

S′′
δ (ξ)mϵ(x, t, ξ)dxdξdt ≤ 0.

Subsequently we notice that for all δ > 0 we have

−
∫ t

0

∫
Rd+1

S′′
δ (ξ)mϵ(x, t, ξ)dxdξdt ≤ 0 (5.19)
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since mϵ > 0 and S′′
δ > 0. Passing to the limit as δ → 0 while in addition taking into account the limits

∫
Rd

S′
δ(ξ)fϵ(x, t, ξ)dx→

∫
Rd

sgn(ξ)fϵ(x, t, ξ)dx, δ → 0

∫
Rd

S′
δ(ξ)fϵ(x, 0, ξ)dx→

∫
Rd

sgn(ξ)fϵ(x, 0, ξ)dx, δ → 0

a.e. in ξ we obtain

∫
Rd+1

|fϵ(x, t, ξ)|dξdx−
∫

Rd+1

|fϵ(x, 0, ξ)|dξdx = −
∫ t

0

∫
Rd

mϵ(x, t, 0)dxdt

where we have also used (5.13). The limit in right-hand side is understood in the sense of weak star

convergence in M+(R) i.e.

∫
R

S′′
δ (ξ)

∫ t

0

∫
Rd

mϵ(x, t, ξ)dxdtdξ →
∫
R

2δ0(ξ)

∫ t

0

∫
Rd

mϵ(x, t, ξ)dxdtdξ ≥ 0, δ → 0.

Therefore we conclude from (5.19) that

∫
Rd+1

|fϵ(x, t, ξ)|dξdx−
∫

Rd+1

|fϵ(x, 0, ξ)|dξdx ≤ 0. (5.20)

Now integration w.r.t t from 0 to T in (5.20) yields

∫ T

0

∫
Rd+1

|fϵ(x, t, ξ)|dξdxdt ≤ T

∫
Rd+1

|fϵ(x, 0, ξ)|dξdx. (5.21)

Letting ϵ→ 0 in the above inequality we have

∫ T

0

∫
Rd

|fϵ(x, t, ξ)|dxdt→
∫ T

0

∫
Rd

|f(x, t, ξ)|dxdt

∫
Rd

|fϵ(x, 0, ξ)|dx→
∫
Rd

|f(x, 0, ξ)|dx
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a.e. in ξ. The first limit holds true due to standard Lp approximation theory. To see the second limit we

observe that since f(t, x, ξ) is continuous at t = 0 we have again from well known results that

sgn(ξ)fϵ1,ϵ2(x, 0, ξ) → sgn(ξ)fϵ2(x, 0, ξ)

as ϵ1 → 0 a.e. in ξ and x. Thus, by the D.C.T we have

∫
Rd

|fϵ1,ϵ2(x, 0, ξ)|dx→
∫
Rd

|fϵ2(x, 0, ξ)|dx.

But ∫
Rd

|fϵ2(x, 0, ξ)|dx→
∫
Rd

|f(x, 0, ξ)|dx

a.e. in ξ. Therefore ∫
Rd

|fϵ(x, 0, ξ)|dx→
∫
Rd

|f(x, 0, ξ)|dx.

as ϵ→ 0 a.e. in ξ and thus using again the D.C.T. we pass to the limit in (5.21) and obtain (5.16). □

Next we have also two supplementary results of the previous lemma.

Lemma 5.3.5 If f(t, x, ξ) is continuous at t = 0 we have for all T > 0

∫ T

0

∫
Rd

∫ +∞

ξ
|f(x, t, η)|dηdxdt ≤ T

∫
Rd

∫ +∞

ξ
|f(x, 0, η)|dηdx. (5.22)

for all ξ ≥ 0.

Proof: We arguing here as in the previous lemma. Take ϕ(x) ∈ C∞
c (Rd) and consider a family of

convex functions Sδ(ξ) ∈ C∞(R) such that

Sδ(ξ) → ξ+ as δ → 0
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where

ξ+ =


ξ, ξ > 0

0, ξ < 0

and suppS′′(ξ) uniformly bounded . Therefore (5.11) implies

∫
Rd

∫ +∞

ξ
S′
δ(η)

∂fϵ(x, t, η)

∂t
ϕ(x)dηdx−

∫
Rd

∫ +∞

ξ
S′
δ(η)fϵ(x, t, η)∇uA(η) · ∇xϕ(x)dηdx

= k

∫
Rd

∫ +∞

ξ
S′
δ(η)fϵ(x, t, η)∆xϕ(x)dηdx+

∫
Rd

∫ +∞

ξ
S′
δ(η)

∂

∂η
mϵ(x, t, η)ϕ(x)dηdx

for all ξ > 0. At this point the choice

ϕ(x) = ϕ̃R(x) (5.23)

as in the previous lemma implies

S′
δ(η)fϵ(x, t, η)∆xϕ̃R(x) → 0

S′
δ(η)

∂

∂ξ
mϵ(x, t, η)ϕ̃R(x) → S′

δ(η)
∂

∂η
mϵ(x, t, η)

S′
δ(η)

∂

∂t
fϵ(x, t, η)ϕ̃R(x) → S′

δ(η)
∂fϵ(x, t, η)

∂t

S′
δ(η)fϵ(x, t, η)∇uA(η) · ∇xϕ̃R(x) → 0

(see [45], [40]) a.e. in x, t and η as R→ +∞ we conclude that

∫
Rd

∫ +∞

ξ
S′
δ(η)

∂fϵ(x, t, η)

∂t
dηdx =

∫
Rd

∫ +∞

ξ
S′
δ(η)

∂

∂η
mϵ(x, t, η)dηdx

= −
∫
Rd

S′
δ(ξ)mϵ(x, t, ξ)dx−

∫
Rd

∫ +∞

ξ
S′′
δ (η)mϵ(x, t, η)dηdx.

(5.24)
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We now integrate w.r.t. t and hence

∫
Rd

∫ +∞

ξ
S′
δ(η)fϵ(x, t, η)dηdx−

∫
Rd

S′
δ(ξ)fϵ(x, 0, η)dηdx

= −
∫ t

0

∫
Rd

S′
δ(ξ)mϵ(x, t, ξ)dxdt−

∫ t

0

∫
Rd

∫ +∞

ξ
S′′
δ (η)mϵ(x, t, η)dxdηdt ≤ 0.

since mϵ, S
′′
δ > 0 and S′

δ > 0. Passing to the limit as δ → 0, since for almost all positive η and ξ we

have ∫
Rd

S′
δ(η)fϵ(x, t, η)dx→

∫
Rd

fϵ(x, t, η)dx, δ → 0

∫
Rd

S′
δ(η)fϵ(x, 0, η)dx→

∫
Rd

fϵ(x, 0, η)dx, δ → 0

∫
Rd

S′
δ(ξ)mϵ(x, t, ξ)dx→

∫
Rd

mϵ(x, t, ξ)dx, δ → 0

we obtain ∫
Rd

∫ +∞

ξ
|fϵ(x, t, η)|dηdx−

∫
Rd

∫ +∞

ξ
|fϵ(x, 0, η)|dηdx

= −
∫ t

0

∫
Rd

mϵ(x, t, ξ)dxdt−
∫ +∞

ξ
δ0(η)

∫ t

0

∫
Rd

mϵ(x, t, η)dxdtdη

where we have also used (5.13). The last limit in right-hand side is understood in the sense of weak star

convergence in M+(R) i.e.

∫ +∞

ξ
S′′
δ (η)

∫ t

0

∫
Rd

mϵ(x, t, η)dxdtdη →
∫ +∞

ξ

∫ t

0

∫
Rd

mϵ(x, t, η)dxdtdδ0(η) ≥ 0, δ → 0.

To show this we first consider ξ > 0. There holds,

∫ +∞

ξ
S′′
δ (η)

∫ t

0

∫
Rd

mϵ(x, t, η)dxdtdη → 0, δ → 0.
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Next if ξ = 0 we have

∫ +∞

0
S′′
δ (η)

∫ t

0

∫
Rd

mϵ(x, t, η)dxdtdη

=

∫ +∞

−∞
S′′
δ (η)

∫ t

0

∫
Rd

mϵ(x, t, η)dxdtdη →
∫ +∞

−∞

∫ t

0

∫
Rd

mϵ(x, t, η)dxdtdδ0(η)

=

∫ +∞

0

∫ t

0

∫
Rd

mϵ(x, t, η)dxdtdδ0(η).

Therefore we conclude that

∫
Rd

∫ +∞

ξ
|fϵ(x, t, η)|dηdx−

∫
Rd

∫ +∞

ξ
|fϵ(x, 0, η)|dηdx ≤ 0. (5.25)

Now integration w.r.t t from 0 to T in (5.25) yields

∫ T

0

∫
Rd

∫ +∞

ξ
|fϵ(x, t, η)|dηdxdt ≤ T

∫
Rd

∫ +∞

ξ
|fϵ(x, 0, η)|dηdx. (5.26)

Letting ϵ→ 0 in the above inequality we have

∫ T

0

∫
Rd

|fϵ(x, t, η)|dxdt→
∫ T

0

∫
Rd

|f(x, t, η)|dxdt

∫
Rd

|fϵ(x, 0, η)|dx→
∫
Rd

|f(x, 0, η)|dx

a.e. in ξ. To see the second limit we observe that since f(t, x, ξ) is continuous at t = 0 we have again

from well known results that

sgn(ξ)fϵ1,ϵ2(x, 0, ξ) → sgn(ξ)fϵ2(x, 0, ξ)
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as ϵ1 → 0 a.e. in ξ and x. Thus, by the D.C.T we have

∫
Rd

|fϵ1,ϵ2(x, 0, ξ)|dx→
∫
Rd

|fϵ2(x, 0, ξ)|dx.

But ∫
Rd

|fϵ2(x, 0, ξ)|dx→
∫
Rd

|f(x, 0, ξ)|dx

a.e. in ξ. Therefore ∫
Rd

|fϵ(x, 0, ξ)|dx→
∫
Rd

|f(x, 0, ξ)|dx.

as ϵ→ 0 a.e. in ξ and thus using again the D.C.T. we pass to the limit in (5.26) and obtain (5.16). □

Lemma 5.3.6 If f(t, x, ξ) is continuous at t = 0 we have for all T > 0

∫ T

0

∫
Rd

∫ ξ

−∞
|f(x, t, η)|dηdxdt ≤ T

∫
Rd

∫ ξ

−∞
|f(x, 0, η)|dηdx. (5.27)

for all ξ ≤ 0.

Proof: We arguing here as in the previous lemma. Take ϕ(x) ∈ C∞
c (Rd) and consider a family of

convex functions Sδ(ξ) ∈ C∞(R) such that

Sδ(ξ) → ξ− as δ → 0

where

ξ− =


0, ξ > 0

−ξ, ξ < 0
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and suppS′′(ξ) uniformly bounded . Therefore (5.11) implies

∫
Rd

∫ ξ

−∞
S′
δ(η)

∂fϵ(x, t, η)

∂t
ϕ(x)dηdx−

∫
Rd

∫ ξ

−∞
S′
δ(η)fϵ(x, t, η)∇uA(η) · ∇xϕ(x)dηdx

= k

∫
Rd

∫ ξ

−∞
S′
δ(η)fϵ(x, t, η)∆xϕ(x)dηdx+

∫
Rd

∫ ξ

−∞
S′
δ(η)

∂

∂η
mϵ(x, t, η)ϕ(x)dηdx

for all ξ < 0. Arguing as before we pick

ϕ(x) = ϕ̃R(x) (5.28)

and thus

S′
δ(η)fϵ(x, t, η)∆xϕ̃R(x) → 0

S′
δ(η)

∂

∂ξ
mϵ(x, t, η)ϕ̃R(x) → S′

δ(η)
∂

∂η
mϵ(x, t, η)

S′
δ(η)

∂

∂t
fϵ(x, t, η)ϕ̃R(x) → S′

δ(η)
∂fϵ(x, t, η)

∂t

S′
δ(η)fϵ(x, t, η)∇uA(η) · ∇xϕ̃R(x) → 0

a.e. in x, t and η as R→ +∞ we conclude that

∫
Rd

∫ ξ

−∞
S′
δ(η)

∂fϵ(x, t, η)

∂t
dηdx =

∫
Rd

∫ ξ

−∞
S′
δ(η)

∂

∂η
mϵ(x, t, η)dηdx

=

∫
Rd

S′
δ(ξ)mϵ(x, t, ξ)dx−

∫
Rd

∫ ξ

−∞
S′′
δ (η)mϵ(x, t, η)dηdx.

(5.29)

We now integrate w.r.t. t and hence

∫
Rd

∫ ξ

−∞
S′
δ(η)fϵ(x, t, η)dηdx−

∫
Rd

S′
δ(ξ)fϵ(x, 0, η)dηdx

=

∫ t

0

∫
Rd

S′
δ(ξ)mϵ(x, t, ξ)dxdt−

∫ t

0

∫
Rd

∫ ξ

−∞
S′′
δ (η)mϵ(x, t, η)dxdηdt ≤ 0.
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since mϵ, S
′′
δ > 0 and S′

δ < 0. Passing to the limit as δ → 0, since for almost all negative η and ξ we

have ∫
Rd

S′
δ(η)fϵ(x, t, η)dx→ −

∫
Rd

fϵ(x, t, η)dx, δ → 0

∫
Rd

S′
δ(η)fϵ(x, 0, η)dx→ −

∫
Rd

fϵ(x, 0, η)dx, δ → 0

∫
Rd

S′
δ(ξ)mϵ(x, t, ξ)dx→ −

∫
Rd

mϵ(x, t, ξ)dx, δ → 0

we obtain ∫
Rd

∫ ξ

−∞
|fϵ(x, t, η)|dηdx−

∫
Rd

∫ ξ

−∞
|fϵ(x, 0, η)|dηdx

= −
∫ t

0

∫
Rd

mϵ(x, t, ξ)dxdt−
∫ ξ

−∞
δ0(η)

∫ t

0

∫
Rd

mϵ(x, t, η)dxdtdη

where we have also used (5.13). The last limit in right-hand side is understood in the sense of weak star

convergence in M+(R) i.e.

∫ ξ

−∞
S′′
δ (η)

∫ t

0

∫
Rd

mϵ(x, t, η)dxdtdη →
∫ ξ

−∞

∫ t

0

∫
Rd

mϵ(x, t, η)dxdtdδ0(η) ≥ 0, δ → 0.

To show this we first consider ξ < 0. There holds,

∫ ξ

−∞
S′′
δ (η)

∫ t

0

∫
Rd

mϵ(x, t, η)dxdtdη → 0, δ → 0.

Next if ξ = 0 we have

∫ 0

−∞
S′′
δ (η)

∫ t

0

∫
Rd

mϵ(x, t, η)dxdtdη

=

∫ +∞

−∞
S′′
δ (η)

∫ t

0

∫
Rd

mϵ(x, t, η)dxdtdη →
∫ +∞

−∞

∫ t

0

∫
Rd

mϵ(x, t, η)dxdtdδ0(η)

=

∫ 0

−∞

∫ t

0

∫
Rd

mϵ(x, t, η)dxdtdδ0(η).
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Therefore we conclude that

∫
Rd

∫ ξ

−∞
|fϵ(x, t, η)|dηdx−

∫
Rd

∫ ξ

−∞
|fϵ(x, 0, η)|dηdx ≤ 0. (5.30)

Now integration w.r.t t from 0 to T in (5.30) yields

∫ T

0

∫
Rd

∫ ξ

−∞
|fϵ(x, t, η)|dηdxdt ≤ T

∫
Rd

∫ ξ

−∞
|fϵ(x, 0, η)|dηdx. (5.31)

Letting ϵ→ 0 in the above inequality we have

∫ T

0

∫
Rd

|fϵ(x, t, η)|dxdt→
∫ T

0

∫
Rd

|f(x, t, η)|dxdt

∫
Rd

|fϵ(x, 0, η)|dx→
∫
Rd

|f(x, 0, η)|dx

a.e. in ξ. To see the second limit we observe that since f(t, x, ξ) is continuous at t = 0 we have again

from well known results that

sgn(ξ)fϵ1,ϵ2(x, 0, ξ) → sgn(ξ)fϵ2(x, 0, ξ)

as ϵ1 → 0 a.e. in ξ and x. Thus, by the D.C.T we have

∫
Rd

|fϵ1,ϵ2(x, 0, ξ)|dx→
∫
Rd

|fϵ2(x, 0, ξ)|dx.

But ∫
Rd

|fϵ2(x, 0, ξ)|dx→
∫
Rd

|f(x, 0, ξ)|dx
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a.e. in ξ. Therefore ∫
Rd

|fϵ(x, 0, ξ)|dx→
∫
Rd

|f(x, 0, ξ)|dx.

as ϵ→ 0 a.e. in ξ and thus using again the D.C.T. we pass to the limit in (5.31) and obtain 5.16. □

Lemma 5.3.7 Suppose that function f̃ is continuous at t = 0. We then have the L1−stability estimate

∫ T

0

∫
Rd+1

|f̃(x, t, ξ)|dξdxdt ≤ T

∫
Rd+1

|f̃(x, 0, ξ)|dξdx. (5.32)

for all T > 0.

Proof: Arguing as in the previous lemma we have

∫
Rd+1

S′
δ(ξ)

∂f̃ϵ(x, t, ξ)

∂t
ϕ(x)dξdx−

∫
Rd+1

S′
δ(ξ)f̃ϵ(x, t, ξ)∇uA(ξ) · ∇xϕ(x)dxdξ

=

∫
Rd+1

S′
δ(ξ)∇x[B̃∇f̃ ]ϵϕ(x)dxdξ +

∫
Rd+1

S′
δ(ξ)

∂

∂ξ
mϵ(x, t, ξ)ϕ(x)dxdξ

=−
∫

Rd+1

S′
δ(ξ)[B̃∇f̃ ]ϵ · ∇xϕ(x)dxdξ +

∫
Rd+1

S′
δ(ξ)

∂

∂ξ
mϵ(x, t, ξ)ϕ(x)dxdξ

=−
∫

Rd+1

S′
δ(ξ)

∫ +∞

0

∫
Rd

B̃(y)∇yf̃(s, y, ξ)ϕϵ(t− s, x− y)dsdy · ∇xϕ(x)dxdξ

+

∫
Rd+1

S′
δ(ξ)

∂

∂ξ
mϵ(x, t, ξ)ϕ(x)dxdξ

=

∫
Rd+1

S′
δ(ξ)

∫ +∞

0

∫
Rd

∇yB̃(y)f̃(s, y, ξ)ϕϵ(t− s, x− y)dsdy · ∇xϕ(x)dxdξ

+

∫
Rd+1

S′
δ(ξ)

∫ +∞

0

∫
Rd

B̃(y)f̃(s, y, ξ)∇yϕϵ(t− s, x− y)dsdy · ∇xϕ(x)dxdξ

+

∫
Rd+1

S′
δ(ξ)

∂

∂ξ
mϵ(x, t, ξ)ϕ(x)dxdξ
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=

∫
Rd+1

S′
δ(ξ)

∫ +∞

0

∫
Rd

∇yB̃(y)f̃(s, y, ξ)ϕϵ(t− s, x− y)dsdy · ∇xϕ(x)dxdξ

−
∫

Rd+1

S′
δ(ξ)

∫ +∞

0

∫
Rd

B̃(y)f̃(s, y, ξ)∇xϕϵ(t− s, x− y)dsdy · ∇xϕ(x)dxdξ

+

∫
Rd+1

S′
δ(ξ)

∂

∂ξ
mϵ(x, t, ξ)ϕ(x)dxdξ

=

∫
Rd+1

S′
δ(ξ)

∫ +∞

0

∫
Rd

∇yB̃(y)f̃(s, y, ξ)ϕϵ(t− s, x− y)dsdy · ∇xϕ(x)dxdξ

+

∫
Rd+1

S′
δ(ξ)

∫ +∞

0

∫
Rd

B̃(y)f̃(s, y, ξ)ϕϵ(t− s, x− y)dsdy∆xϕ(x)dxdξ

+

∫
Rd+1

S′
δ(ξ)∇ξmϵ(x, t, ξ)ϕ(x)dxdξ

As before we are choosing ϕ(x, t) as in (5.17) and taking R → 0, to obtain the analogue of (5.29) for

f̃ϵ. The rest of the proof is the same as in the previous lemma. □

The following lemma is the extension of [45, Lemma 4.2.1] to the diffusion problem and for general

initial data. The proof is similar but we include it below for clarity.

Lemma 5.3.8 For the measure µ(ξ) in (5.15) we can choose the formula

µ(ξ) = X{ξ≥0}T

∫
Rd

∫ +∞

ξ
|f(y, 0, η)|dηdy + X{ξ≤0}T

∫
Rd

∫ ξ

−∞
|f(y, 0, η)|dηdy

Proof: We multiply (5.11) by a test function ϕ(t, x) ∈ C∞
c ([0, T ] × Rd) and integrate w.r.t x and t.

There holds,

∂

∂ξ

∫ T

0

∫
Rd

mϵ(x, t, ξ)ϕ(x, t)dxdt− k

∫ T

0

∫
Rd

∇xfϵ(x, t, ξ) · ∇xϕ(x, t)dxdt

=−
∫ T

0

∫
Rd

fϵ(x, t, ξ)

[
∂ϕ(x, t)

∂t
+∇uA(ξ) · ∇xϕ(x, t)

]
dxdt

+

∫
Rd

fϵ(x, T, ξ)ϕ(T, x)dx−
∫
Rd

fϵ(x, 0, ξ)ϕ(0, x)dx

(5.33)
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At this point we make the choice

ϕ(x, t) = ϕ̃R(x)ψ(t)

with ϕ̃R(x) = ϕ̃
(
x
R

)
as in (5.17) and ψ(t) ∈ C∞

c ([0, T ]). In view of

∇xfϵ(x, t, ξ) · ∇xϕ̃R(x)ψ(t) → 0

mϵ(x, t, ξ)ϕ̃R(x)ψ(t) → mϵ(x, t, ξ)ψ(t)

fϵ(x, t, ξ)
∂ϕ̃R(x)ψ(t)

∂t
→ fϵ(x, t, ξ)

∂ψ(t)

∂t

fϵ(x, t, ξ)∇uA(ξ) · ∇xϕ̃R(x)ψ(t) → 0

fϵ(x, 0, ξ)ϕ̃R(x)ψ(0) → fϵ(x, 0, ξ)ψ(0)

fϵ(x, T, ξ)ϕ̃R(x)ψ(T ) → fϵ(x, T, ξ)ψ(T )

for every x, t and a.e. in ξ as R → +∞, integrating w.r.t. ξ in (5.33) while considering ξ ≥ 0 and

subsequently passing to the limit we get

∫ +∞

ξ

∂

∂η

∫ T

0

∫
Rd

mϵ(x, t, η)ψ(t)dxdtdη = −
∫ +∞

ξ

∫ T

0

∫
Rd

fϵ(x, t, η)
∂ψ(t)

∂t
dxdtdη

−
∫ +∞

ξ

∫
Rd

fϵ(x, 0, η)ψ(0)dxdη +

∫ +∞

ξ

∫
Rd

fϵ(x, T, η)ψ(T )dxdη.

Therefore, ∫ T

0

∫
Rd

mϵ(x, t, ξ)ψ(t)dxdt =

∫ +∞

ξ

∫ T

0

∫
Rd

fϵ(x, t, η)
∂ψ(t)

∂t
dxdtdη

+

∫ +∞

ξ

∫
Rd

fϵ(x, 0, η)ψ(0)dxdη −
∫ +∞

ξ

∫
Rd

fϵ(x, T, η)ψ(T )dxdη.
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We now pick 0 ≤ ψ ≤ 1, ψ(0) = 0, −1 ≤ ∂ψ(t)
∂t ≤ 1. Using the fact that fϵ(x, t, ξ) ≥ 0 for ξ ≥ 0, we

get, ∫ T

0

∫
Rd

mϵ(x, t, ξ)ψ(t)dxdt ≤
∫ +∞

ξ

∫ T

0

∫
Rd

fϵ(x, t, η)dxdtdη

=

∫ +∞

ξ

∫ T

0

∫
R2d

∫ +∞

0
f(y, s, η)ϕ1ϵ1(t− s)ϕ2ϵ2(x− y)dsdydxdtdη

=

∫
R2d

∫ T

0

∫ +∞

0

∫ +∞

ξ
f(y, s, η)dηϕ1ϵ1(t− s)dsdtϕ2ϵ2(x− y)dydx

≤
∫ T

0

∫ +∞

0

∫
Rd

∫ +∞

ξ
f(y, s, η)dηdyϕ1ϵ1(t− s)dsdt

≤
∫ T

0

∫
Rd

∫ +∞

ξ
f(y, s, η)dηdyds ≤ T

∫
Rd

∫ +∞

ξ
f(y, 0, η)dηdy

Similarly we can show for ξ ≤ 0,

∫ T

0

∫
Rd

mϵ(x, t, ξ)ψ(t)dxdt ≤ T

∫
Rd

∫ ξ

−∞
|f(y, 0, η)|dηdy.

Finally the continuity of µ is implied by the continuity of Lebesque integral. □

Lemma 5.3.9 Assume κ = ∥B̃∥W∞
1 (Rd) and fix ϵ2 = O(κ

1
3 ). Then if the conditions of (5.3.4) hold the

regularised viscosity terms satisfy the limit

G :=

∫ T

0

∫
Rd+1

(−∇x[B̃∇f̃ ]ϵ + κ∆xfϵ)(f̃ϵ − fϵ)dxdξdt→ 0 (5.34)

as ϵ vanishes.
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Proof: From (5.6b) it follows that |f̃ϵ − fϵ| ≤ |fϵ|+ |f̃ϵ| ≤ 2. Therefore,

|G| =
∣∣∣∣ ∫ T

0

∫
Rd+1

(−∇x[B̃∇f̃ ]ϵ + κ∆xfϵ)(f̃ϵ − fϵ)dxdξdt

∣∣∣∣
=

∣∣∣∣∫ T

0

∫
Rd+1

(−∇x · [B̃∇f̃ ]ϵ(f̃ϵ − fϵ) + κ∆xfϵ(f̃ϵ − fϵ))dxdξdt

∣∣∣∣
≤
∣∣∣∣∫ T

0

∫
Rd+1

−∇x · [B̃∇f̃ ]ϵ(f̃ϵ − fϵ)dxdξdt

∣∣∣∣+ ∣∣∣∣∫ T

0

∫
Rd+1

κ∆xfϵ(f̃ϵ − fϵ)dxdξdt

∣∣∣∣
≤
∫ T

0

∫
Rd+1

|∇x · [B̃∇f̃ ]ϵ||(f̃ϵ − fϵ)|dxdξdt+
∫ T

0

∫
Rd+1

κ|∆xfϵ||(f̃ϵ − fϵ)|dxdξdt

≤2

∫ T

0

∫
Rd+1

|∇x · [B̃∇f̃ ]ϵ|dxdξdt+ 2

∫ T

0

∫
Rd+1

κ|∆xfϵ|dxdξdt

≤2

∫ T

0

∫
Rd+1

∣∣∣∣∣∣
∫ +∞

0

∫
Rd

B̃(y)∇yf̃(s, y, ξ) · ∇yϕϵ(t− s, x− y)dsdy

∣∣∣∣∣∣ dxdξdt
+2

∫ T

0

∫
Rd+1

∫ +∞

0

∫
Rd

|κf(s, y, ξ)∆yϕϵ(t− s, x− y)| dsdydxdξdt

≤2

∫ T

0

∫
Rd+1

∫ +∞

0

∫
Rd

∣∣∣f̃(s, y, ξ)∇yB̃(y) · ∇yϕϵ(t− s, x− y)
∣∣∣ dsdydxdξdt

+2

∫ T

0

∫
Rd+1

∫ +∞

0

∫
Rd

∣∣∣B̃(y)f̃(s, y, ξ)∆yϕϵ(t− s, x− y)
∣∣∣ dsdydxdξdt

+2

∫ T

0

∫
Rd+1

∫ +∞

0

∫
Rd

|κf(s, y, ξ)∆yϕϵ(t− s, x− y)| dsdydxdξdt.
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Therefore,

|G| ≤4κ

∫ T

0

∫
Rd+1

∫ +∞

0

∫
Rd

∣∣∣f̃(s, y, ξ)∆yϕϵ(t− s, x− y)
∣∣∣ dsdydxdξdt

+2κ

∫ T

0

∫
Rd+1

∫ +∞

0

∫
Rd

|f(s, y, ξ)∇yϕϵ(t− s, x− y)| dsdydxdξdt

≤4κ

∫ T

0

∫
R2d

∫ +∞

0

∫
R

|f̃(s, y, ξ)|dξ|∆yϕϵ(t− s, x− y)|dsdydxdt

+2κ

∫ T

0

∫
R2d

∫ +∞

0

∫
R

|f(s, y, ξ)|dξ|∇yϕϵ(t− s, x− y)|dsdydxdt

=4κ

∫
R2d

∫ T

0

∫ +∞

0

∫
R

|f̃(s, y, ξ)|dξϕ1ϵ1(t− s)dsdt|∆yϕ
2
ϵ2(x− y)|dydx

+2κ

∫
R2d

∫ T

0

∫ +∞

0

∫
R

|f(s, y, ξ)|dξϕ1ϵ1(t− s)dsdt|∇yϕ
2
ϵ2(x− y)|dydx

≤4κ

∫ T

0

∫ +∞

0

∫
Rd+1

|f̃(s, y, ξ)|dξdyϕ1ϵ1(t− s)dsdt

∫
Rd

|∆ỹϕ
2
ϵ2(ỹ)|dỹ

+2κ

∫ T

0

∫ +∞

0

∫
Rd+1

|f(s, y, ξ)|dξdyϕ1ϵ1(t− s)dsdt

∫
Rd

|∇ỹϕ
2
ϵ2(ỹ)|dỹ.

Now, to treat the integrals with respect to t and s we observe that for g ≥ 0 we have

|A| =
∫ T

0

∫ +∞

0
g(s)ϕ1ϵ1(t− s)dsdt =

∫ T

0

∫ +∞

−∞
g(s)ϕ1ϵ1(t− s)dsdt

=

∫ T

0

∫ +∞

−∞
g(t− κ)ϕ1ϵ1(κ)dκdt

where in the inner integral we made a change of variables by setting t− s = κ. Thus,

|A| =
∫ +∞

−∞
ϕ1ϵ1(κ)

∫ T

0
g(t− κ)dtdκ =

∫ 0

−1
ϕ1ϵ1(κ)

∫ T

0
g(t− κ)dtdκ
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and by setting t− κ = t′ in the inner integral we get

|A| =
∫ 0

−1
ϕ1ϵ1(κ)

∫ T−κ

−κ
g(t′)dt′dκ ≤

∫ T+1

0
g(t′)dt′

∫ 0

−1
ϕ1ϵ1(κ)dκ

=

∫ T+1

0
g(t′)dt′.

We now have using Lemma 5.3.4, |∇yϕ
2
ϵ2(y)| ≤

C
ϵd2

and |∆yϕ
2
ϵ2(y)| ≤

C
ϵ2d2

|G| ≤4κ

∫ T+1

0

∫
Rd+1

|f̃(s, y, ξ)|dξdyds
∫
Rd

|∆yϕ
2
ϵ2(x− y)|dy

+ 2κ

∫ T+1

0

∫
Rd+1

|f(s, y, ξ)|dξdyds
∫
Rd

|∇yϕ
2
ϵ2(x− y)|dy

≤ 4κC

ϵ2d2

∫ T+1

0

∫
Rd+1

|f̃(s, y, ξ)|dξdyds+ 2κC

ϵd2

∫ T+1

0

∫
Rd+1

|f(s, y, ξ)|dξdyds

≤ 4κC(T + 1)

ϵ2d2

∫
Rd+1

|f̃(0, y, ξ)|dξdy + 2κC(T + 1)

ϵd2

∫
Rd+1

|f(0, y, ξ)|dξdy.

Hence G → 0 if we take ϵ2 = O(κ
1
3 ) as κ→ 0 and the proof is completed. □

Lemma 5.3.10 Assume that functions f and f̃ are continuous at t = 0 for all κ > 0 and f0(x, ξ) =

f̃0(x, ξ) a.e. in Rd+1. Then the regularisations fϵ and f̃ϵ satisfy the limit

∫
Rd+1

(
f̃ϵ(0, x, ξ)− fϵ(0, x, ξ)

)2
dxdξ → 0 (5.35)

as ϵ approaches to zero.

Proof: It is enough to prove that

∫
Rd+1

(
f̃ϵ(0, x, ξ)− f̃(0, x, ξ)

)2
dxdξ → 0
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or equivalently ∫
Rd+1

(fϵ(0, x, ξ)− f(0, x, ξ))2 dxdξ → 0 (5.36)

since ∫
Rd+1

(
f̃ϵ(0, x, ξ)− fϵ(0, x, ξ)

)2
dxdξ

=

∫
Rd+1

(
f̃ϵ(0, x, ξ)− fϵ(0, x, ξ)− f̃(0, x, ξ) + f̃(0, x, ξ)

)2
dxdξ

≤2

∫
Rd+1

(
f̃ϵ(0, x, ξ)− f̃(0, x, ξ)

)2
dxdξ + 2

∫
Rd+1

(
f̃(0, x, ξ)− fϵ(0, x, ξ)

)2
dxdξ

≤2

∫
Rd+1

(
f̃ϵ(0, x, ξ)− f̃(0, x, ξ)

)2
dxdξ + 4

∫
Rd+1

(
f̃(0, x, ξ)− f(0, x, ξ)

)2
dxdξ

+ 4

∫
Rd+1

(f(0, x, ξ)− fϵ(0, x, ξ))
2 dxdξ

=2

∫
Rd+1

(
f̃ϵ(0, x, ξ)− f̃(0, x, ξ)

)2
dxdξ + 4

∫
Rd+1

(f(0, x, ξ)− fϵ(0, x, ξ))
2 dxdξ.

We now claim that a.e. in x and ξ as ϵ1 → 0 we have the following limit

∫ +∞

0

∫
Rd

f(s, y, ξ)ϕϵ(−s, x− y)dyds→
∫
Rd

f(0, y, ξ)ϕ2ϵ2(x− y)dy.

We conclude this by the following calculations.

∣∣∣∣∣∣
∫ +∞

0

∫
Rd

f(s, y, ξ)ϕϵ(−s, x− y)dyds−
∫
Rd

f(0, y, ξ)ϕ2ϵ2(x− y)dy

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∫ +∞

0

∫
Rd

f(s, y, ξ)ϕϵ(−s, x− y)dyds−
∫ +∞

0

∫
Rd

f(0, y, ξ)ϕ2ϵ2(x− y)dyϕ1ϵ1(−s)ds

∣∣∣∣∣∣
≤
∫ +∞

0

∫
Rd

|f(s, y, ξ)− f(0, y, ξ)|ϕ2ϵ2(x− y)dyϕ1ϵ1(−s)ds.
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Recall at this point that f is continuous at s = 0 so given δ > 0 there exist an η such that for |s| < δ

|f(s, y, ξ)− f(0, y, ξ)| < η

and hence

∣∣∣∣∣∣
∫ +∞

0

∫
Rd

f(s, y, ξ)ϕϵ(−s, x− y)dyds−
∫
Rd

f(0, y, ξ)ϕ2ϵ2(x− y)dy

∣∣∣∣∣∣
≤
∫
s<δ

∫
Rd

ηϕ2ϵ2(x− y)dyϕ1ϵ1(−s)ds+ 2∥f∥L∞

∫
s>δ

ϕ1ϵ1(−s)ds
∫
Rd

ϕ2ϵ2(x− y)dy

≤η + 2∥f∥L∞

∫
s>δ

ϕ1ϵ1(−s)ds.

Thus for a given δ > 0 there exist η such that letting ϵ1 → 0 it holds that

∣∣∣∣∣∣
∫ +∞

0

∫
Rd

f(s, y, ξ)ϕϵ(−s, x− y)dyds−
∫
Rd

f(0, y, ξ)ϕ2ϵ2(x− y)dy

∣∣∣∣∣∣ < η

for s < 0. Subsequently notice that

∣∣∣∣∣∣
∫ +∞

0

∫
Rd

f(s, y, ξ)ϕϵ(−s, x− y)dyds− f(0, x, ξ)

∣∣∣∣∣∣ <
≤
∫ +∞

0

∫
Rd

|f(s, y, ξ)|ϕϵ(−s, x− y)dyds+ |f(0, x, ξ)| < 2.
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Therefore,

∫
Rd+1

(
1

2
(fϵ(0, x, ξ)− f(0, x, ξ))

)2

dxdξ

=

∫
Rd+1

1

2

∫ +∞

0

∫
Rd

f(s, y, ξ)ϕϵ(−s, x− y)dyds− f(0, x, ξ)

2

dxdξ

≤
∫

Rd+1

1

2

∣∣∣∣∣∣
∫ +∞

0

∫
Rd

f(s, y, ξ)ϕϵ(−s, x− y)dyds− f(0, x, ξ)

∣∣∣∣∣∣ dxdξ.

In view of

fϵ(0, x, ξ)− f(0, x, ξ) →
∫
Rd

f(0, y, ξ)ϕ2ϵ2(x− y)dydξ − f(0, x, ξ)

as ϵ1 → 0. a.e. in x and ξ we obtain by the D.C.T.

∫
Rd+1

1

2

∣∣∣∣∣∣
∫ +∞

0

∫
Rd

f(s, y, ξ)ϕϵ(−s, x− y)dyds− f(0, x, ξ)

∣∣∣∣∣∣ dxdξ
→

∫
Rd+1

1

2

∣∣∣∣∣∣
∫
Rd

f(0, y, ξ)ϕ2ϵ2(x− y)dy − f(0, x, ξ)

∣∣∣∣∣∣ dxdξ.
But ∫

Rd+1

1

2

∣∣∣∣∣∣
∫
Rd

f(0, y, ξ)ϕ2ϵ2(x− y)dy − f(0, x, ξ)

∣∣∣∣∣∣ dxdξ
≤
∫

Rd+1

1

2

∫
Rd

|f(0, y, ξ)− f(0, x, ξ)|ϕ2ϵ2(x− y)dydxdξ

=

∫
Rd+1

1

2

∫
Rd

|f(0, x− y, ξ)− f(0, x, ξ)|ϕ2ϵ2(y)dydxdξ

=

∫
Rd

1

2

∫
Rd+1

|f(0, x− y, ξ)− f(0, x, ξ)|dξdxϕ2ϵ2(y)dy.
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Thus given a δ > 0 by L1 continuity there exist an η such that

∫
Rd+1

1

2

∣∣∣∣∣∣
∫
Rd

f(0, y, ξ)ϕ2ϵ2(x− y)dy − f(0, x, ξ)

∣∣∣∣∣∣ dxdξ
≤
∫
Rd

1

2

∫
Rd+1

|f(0, x− y, ξ)− f(0, x, ξ)|dξdxϕ2ϵ2(y)dy

≤1

2
η

∫
y<δ

ϕ2ϵ2(y)dy +

∫
Rd+1

|f(0, x, ξ)|dxdξ
∫
y>δ

ϕ2ϵ2(y)dy

and therefore 5.36 is proved. □

We have the following

Lemma 5.3.11 The quantity
∫ T
0

∫
Rd+1 mϵ(x, t, λ)− m̃ϵ(x, t, λ)d(ν

ϵ
x,t − ν̃ϵx,t)(λ)dxdt satisfies

Jϵ(T ) :=
∫ T

0

∫
Rd+1

mϵ(x, t, λ)−m̃ϵ(x, t, λ)d(ν
ϵ
x,t−ν̃ϵx,t)(λ)dxd =

∫ T

0

∫
Rd+1

(f̃ϵ−fϵ)
∂

∂ξ
(m̃ϵ −mϵ) dxdξdt.

Proof:

∫ T

0

∫
Rd+1

(f̃ϵ − fϵ)
∂

∂ξ
(m̃ϵ −mϵ) dxdξdt

=

∫ T

0

∫
Rd+2

χλ(ξ)d(ν
ϵ
x,t − ν̃ϵx,t)(λ)

∂

∂ξ
(mϵ(x, t, ξ)− m̃ϵ(x, t, ξ)) dξdxdt

=

∫ T

0

∫
Rd+2

χλ(ξ)
∂

∂ξ
(mϵ(x, t, ξ)− m̃ϵ(x, t, ξ)) d(ν

ϵ
x,t − ν̃ϵx,t)(λ)dξdxdt

=

∫ T

0

∫
Rd+2

χλ(ξ)
∂

∂ξ
(mϵ(x, t, ξ)− m̃ϵ(x, t, ξ)) dξd(ν

ϵ
x,t − ν̃ϵx,t)(λ)dxdt

=

∫ T

0

∫
Rd+1

(mϵ(x, t, λ)− m̃ϵ(x, t, λ) + m̃ϵ(x, t, 0)−mϵ(x, t, 0)) d(ν
ϵ
x,t − ν̃ϵx,t)(λ)dxdt

=

∫ T

0

∫
Rd+1

(mϵ(x, t, λ)− m̃ϵ(x, t, λ)) d(ν
ϵ
x,t − ν̃ϵx,t)(λ)dxdt

+

∫ T

0

∫
Rd

(m̃ϵ(x, t, 0)−mϵ(x, t, 0))

∫
R

d(νϵx,t − ν̃ϵx,t)(λ)dxdt

=

∫ T

0

∫
Rd+1

(mϵ(x, t, λ)− m̃ϵ(x, t, λ)) d(ν
ϵ
x,t − ν̃ϵx,t)(λ)dxdt.
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□

Proof of Theorem 5.2.2

Using the estimates established earlier, we conclude this section by completing the proof of Theorem

5.2.2:

Proof: By subtracting (5.11) from (5.12) and multiplying by 2(f̃ϵ − fϵ) we have for almost all ξ

∂t(f̃ϵ − fϵ)
2 +∇uA(ξ) · ∇x(f̃ϵ − fϵ)

2 + 2[−∇x[B̃∇f̃ ]ϵ + κ∆xfϵ](f̃ϵ − fϵ)

= 2(f̃ϵ − fϵ)
∂

∂ξ
(m̃ϵ −mϵ)

Integration with respect to x, t, ξ now gives

∫ T

0

∫
Rd+1

∂t(f̃ϵ − fϵ)
2 +∇uA(ξ) · ∇x(f̃ϵ − fϵ)

2dxdtdξ + 2G

=

∫ T

0

∫
Rd+1

2(f̃ϵ − fϵ)
∂

∂ξ
(m̃ϵ −mϵ) dxdtdξ

and hence,

∫
Rd+1

((
f̃ϵ(T )− fϵ(T )

)2
−
(
f̃ϵ(0)− fϵ(0)

)2)
dxdξ + 2G

=

∫ T

0

∫
Rd+1

2(f̃ϵ − fϵ)
∂

∂ξ
(m̃ϵ −mϵ) dxdtdξ

or ∫
Rd+1

(
f̃ϵ(T )− fϵ(T )

)2
dxdξ −

∫ T

0

∫
Rd+1

2(f̃ϵ − fϵ)
∂

∂ξ
(m̃ϵ −mϵ) dxdtdξ

=

∫
Rd+1

(
f̃ϵ(0)− fϵ(0)

)2
dxdξ − 2G.

(5.37)
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From Lemmata 5.3.10, and 5.3.9 the right-hand side of (5.37) tends to zero as ϵ → 0. Therefore, the

left-hand side also approaches zero. But from assumption (5.9) the limit of the term

−
∫ T

0

∫
Rd+1

2(f̃ϵ − fϵ)
∂

∂ξ
(m̃ϵ −mϵ) dxdtdξ

is greater than or equal to zero. Hence, as ϵ→ 0 we have

∫
Rd+1

(
f̃ϵ(T )− fϵ(T )

)2
dxdξ → 0

for almost all T > 0. Therefore,

∥f̃ − f∥2L2((0,T )×R2) =

∫ T1

0

∫
Rd+1

(
f̃(t, x, ξ)− f(t, x, ξ)

)2
dxdξdt

≤4

∫ T1

0

∫
Rd+1

(
f̃ϵ(t, x, ξ)− f̃(t, x, ξ)

)2
dxdξdt+ 4

∫ T1

0

∫
Rd+1

(
f̃ϵ(t, x, ξ)− fϵ(t, x, ξ)

)2
dxdξdt

+ 2

∫ T1

0

∫
Rd+1

(f(t, x, ξ)− fϵ(t, x, ξ))
2 dxdξdt

From the D.C.T. letting ϵ→ 0 we have that

∫ T1

0

∫
Rd+1

(
f̃ϵ(t, x, ξ)− fϵ(t, x, ξ)

)2
dxdξdt→ 0.

Thus, since both limits

∫ T1

0

∫
Rd+1

(f(t, x, ξ)− fϵ(t, x, ξ))
2 dxdξdt→ 0

∫ T1

0

∫
Rd+1

(
f̃ϵ(t, x, ξ)− f̃(t, x, ξ)

)2
dxdξdt→ 0

we see that the assertion is proved. □
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5.4 L2-based analysis

In this section we briefly discuss how one can use an L2− based argument and simplify the proof con-

siderably. However, this approach will require stronger assumptions, i.e., we need to assume f(x, t, ξ) ∈

L∞(0,+∞;H1(Rd+1)) with compact support with respect to x and ξ. In practice, when considering

computational methods, it is reasonable to expect that our approximations will satisfy such restrictions,

and thus the proof below might be useful (with appropriate modifications) in applications to numerical

methods. The plan of the analysis follows[41]. We present the main steps of the proof.

Theorem 5.4.1 Assume that f ∈ L∞(0,+∞;H1(Rd+1)) is a solution of (5.5) with Bϵ(x) = κ and let

f̃ ∈ L∞(0,+∞;H1(Rd+1)) a viscous generalised kinetic solution of (5.5) corresponding to ã(x), m̃,

and ν̃ with κ = ∥ã(x)∥L∞(R). Furthermore, suppose that the initial data are continuous at t = 0, for

almost all x and ξ, f̃(0, x, ξ) = f(0, x, ξ), and the solutions are supported in compact set D ⊂ Rd+1.

In addition to these hypothesis, assume that the defect measures m and m̃ satisfy, up to regularisation

and as the regularisation parameter tends to zero,

∫ T

0

∫
R

∫
R

m− m̃ d(ν − ν̃)dx dξ dt ≤ 0, (5.38)

and m = 0 (m̃ = 0) if f = 0 (f̃ = 0). Then, as κ→ 0 we have the limit

∥f − f̃∥L2 → 0. (5.39)

Proof: We write again the regularized equations

∂fϵ(x, t, ξ)

∂t
+∇uA(ξ) · ∇xfϵ(x, t, ξ) = κ∆xfϵ(x, t, ξ) +

∂

∂ξ
mϵ(x, t, ξ) (5.40)

∂f̃ϵ(x, t, ξ)

∂t
+∇uA(ξ) · ∇xf̃ϵ(x, t, ξ) = ∇x · (ã(x)∇xf̃ϵ(x, t, ξ)) +

∂

∂ξ
m̃ϵ(x, t, ξ) (5.41)
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where fϵ = f(x, t, ξ)⋆ϕϵ,mϵ(x, t, ξ) = [m⋆ϕϵ](x, t, ξ) with ϕϵ = 1
ϵ1
ϕ1(

t
ϵ1
) 1
ϵd2
ϕ2(

x
ϵ2
) as in the previous

section. We also consider κ = ∥ã(x)∥L∞(R). Define

Q(t) :=

∫
Rd+1

(f̃ϵ(x, t, ξ)− fϵ(x, t, ξ))
2dxdξ.

It will be sufficient to prove that Q(t) → 0 as ϵ → 0 in order to show limit (5.39) as we have already

seen in the previous section. The derivative of Q(t) w.r.t. t is

d

dt
Q(t) =

∫
Rd+1

∂

∂t
(f̃ϵ − fϵ)

2dxdξ =

∫
Rd+1

2(f̃ϵ − fϵ)(
∂f̃ϵ
∂t

− ∂fϵ
∂t

)dxdξ .

Using (5.40), (5.41) we have

d

dt
Q(t) =

∫
Rd+1

2[(∇x · (ã(x)∇xf̃ϵ)−∇uA(ξ) · ∇xf̃ϵ)− (κ∆xfϵ −∇uA(ξ) · ∇xfϵ)](f̃ϵ − fϵ)dxdξ

+

∫
Rd+1

(f̃ϵ − fϵ)
∂

∂ξ
(m̃ϵ −mϵ) dxdξ

=

∫
Rd+1

2(f̃ϵ − fϵ)[∇x · (ã(x)∇xf̃ϵ)−∇uA(ξ) · ∇xf̃ϵ − κ∆xfϵ +∇uA(ξ) · ∇xfϵ]dxdξ

+

∫
Rd+1

(f̃ϵ − fϵ)
∂

∂ξ
(m̃ϵ −mϵ) dxdξ

=

∫
Rd+1

2(f̃ϵ − fϵ)[∇x · (ã(x)∇xf̃ϵ) +∇uA(ξ) · ∇x[fϵ − f̃ϵ]− κ∆xfϵ]dxdξ

+

∫
Rd+1

(f̃ϵ − fϵ)
∂

∂ξ
(m̃ϵ −mϵ) dxdξ

=

∫
Rd+1

∇uA(ξ) · ∇x[fϵ − f̃ϵ]
2 + 2(f̃ϵ − fϵ)∇x · (ã(x)∇xf̃ϵ − κ∇xfϵ)dxdξ

+

∫
Rd+1

(f̃ϵ − fϵ)
∂

∂ξ
(m̃ϵ −mϵ) dxdξ

=

∫
Rd+1

2(f̃ϵ − fϵ)∇x · (ã(x)∇xf̃ϵ − κ∇xfϵ)dxdξ +

∫
Rd+1

(f̃ϵ − fϵ)
∂

∂ξ
(m̃ϵ −mϵ) dxdξ
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By integrating by parts we have,

d

dt
Q(t) =

∫
Rd+1

2κ∇xf̃ϵ · ∇xfϵ − 2ã(x)(∇xf̃ϵ)
2 − 2κ(∇xfϵ)

2 + 2ã(x)∇xfϵ · ∇xf̃ϵdxdξ

+

∫
Rd+1

(f̃ϵ − fϵ)
∂

∂ξ
(m̃ϵ −mϵ) dxdξ.

(5.42)

Since ã(x) > 0 and |ã(x)| ≤ κ, a.e. in Rd, we get

d

dt
Q(t) ≤

≤
∫

Rd+1

2κ∇xf̃ϵ · ∇xfϵdxdξ −
∫

Rd+1

2ã(x)(∇xf̃ϵ)
2dxdξ

−
∫

Rd+1

2κ(∇xfϵ)
2dxdξ +

∫
Rd+1

|2ã(x)∇xfϵ · ∇xf̃ϵ|dxdξ

+

∫
Rd+1

(f̃ϵ − fϵ)
∂

∂ξ
(m̃ϵ −mϵ) dxdξ

≤
∫

Rd+1

2κ∇xf̃ϵ · ∇xfϵdxdξ −
∫

Rd+1

2ã(x)(∇xf̃ϵ)
2dxdξ −

∫
Rd+1

2κ(∇xfϵ)
2dxdξ

+ 2

 ∫
Rd+1

ã(x)(∇xfϵ)
2dxdξ

1/2 ∫
Rd+1

ã(x)(∇xf̃ϵ)
2dxdξ

1/2

+

∫
Rd+1

(f̃ϵ − fϵ)
∂

∂ξ
(m̃ϵ −mϵ) dxdξ

≤
∫

Rd+1

2κ∇xf̃ϵ · ∇xfϵdxdξ −
∫

Rd+1

2ã(x)(∇xf̃ϵ)
2dxdξ −

∫
Rd+1

2κ(∇xfϵ)
2dxdξ+

+

∫
Rd+1

ã(x)(∇xfϵ)
2dxdξ +

∫
Rd+1

ã(x)(∇xf̃ϵ)
2dxdξ +

∫
Rd+1

(f̃ϵ − fϵ)
∂

∂ξ
(m̃ϵ −mϵ) dxdξ

≤
∫

Rd+1

2κ∇xf̃ϵ · ∇xfϵdxdξ −
∫

Rd+1

ã(x)(∇xf̃ϵ)
2dxdξ −

∫
Rd+1

κ(∇xfϵ)
2dxdξ

+

∫
Rd+1

(f̃ϵ − fϵ)
∂

∂ξ
(m̃ϵ −mϵ) dxdξ.
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Hence, using the fact |f̃ϵ| ≤ 1, we conclude that

d

dt
Q(t) +

∫
Rd+1

ã(x)(∇xf̃ϵ)
2dxdξ +

∫
Rd+1

κ(∇xfϵ)
2dxdξ

≤
∫

Rd+1

2κ∇xf̃ϵ · ∇xfϵdxdξ +

∫
Rd+1

(f̃ϵ − fϵ)
∂

∂ξ
(m̃ϵ −mϵ) dxdξ

= −2κ

∫
Rd+1

f̃ϵ∆xfϵdxdξ +

∫
Rd+1

(f̃ϵ − fϵ)
∂

∂ξ
(m̃ϵ −mϵ) dxdξ

≤ 2κ

∫
Rd+1

|∆xfϵ|dxdξ +
∫

Rd+1

(f̃ϵ − fϵ)
∂

∂ξ
(m̃ϵ −mϵ) dxdξ .

(5.43)

But,

|∆fϵ| = |
∫

Rd+1

∆f(s, y, ξ)ϕϵ(t− s, x− y)dyds| = |
∫

Rd+1

∇f(s, y, ξ) · ∇ϕϵ(t− s, x− y)dyds|

≤
∫

Rd+1

|∇f(s, y, ξ)||∇ϕϵ(t− s, x− y)|dyds.

(5.44)

Therefore
d

dt
Q(t) +

∫
Rd+1

ã(x)(∇xf̃ϵ)
2dxdξ +

∫
Rd+1

κ(∇xfϵ)
2dxdξ

≤ 2κ

∫
Rd+1

∫
Rd+1

|∇f(s, y, ξ)||∇ϕϵ(t− s, x− y)|dydsdxdξ

+

∫
Rd+1

(f̃ϵ − fϵ)
∂

∂ξ
(m̃ϵ −mϵ) dxdξ

= 2κ

∫ t

0

∫
R2d

∫
R

|∇f(s, y, ξ)|dξ |∇ϕϵ(t− s, x− y)|dxdyds

+

∫
Rd+1

(f̃ϵ − fϵ)
∂

∂ξ
(m̃ϵ −mϵ) dxdξ
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= 2κ

∫
R2d

∫ t

0

∫
R

|∇f(s, y, ξ)|dξ|ϕ1ϵ (t− s)|ds|∇ϕ2ϵ (x− y)|dydx

+

∫
Rd+1

(f̃ϵ − fϵ)
∂

∂ξ
(m̃ϵ −mϵ) dxdξ

≤

∫ t

0

∫
Rd

∫
R

|∇f(s, y, ξ)|dξdy

2

ds


1
2 (∫ t

0
|ϕ1ϵ (t− s)|ds

) 1
2 1

ϵd2

∫
Rd

|∇xϕ
2

(
x− y

ϵ2

)
|dy

+

∫
Rd+1

(f̃ϵ − fϵ)
∂

∂ξ
(m̃ϵ −mϵ) dxdξ

Moreover since we have assumed here that ∇f has compact support w.r.t. ξ and y, and using the change

of variables, z = x−y
ϵ2
, we have

d

dt
Q(t) +

∫
Rd+1

ã(x)(∇xf̃ϵ)
2dxdξ +

∫
Rd+1

κ(∇xfϵ)
2dxdξ

≤ 2κ

suppξ,y(∇f) ∫ t

0

∫
Rd

∫
R

|∇f(s, y, ξ)|2dξdyds

1/2

1

ϵd2

∫
Rd

|∇xϕ
2

(
x− y

ϵ2

)
|dy

+

∫
Rd+1

(f̃ϵ − fϵ)
∂

∂ξ
(m̃ϵ −mϵ) dxdξ

≤ 2κt1/2|D|1/2
∫ t

0

∫
Rd+1

|∇f(s, y, ξ)|2dξdyds

1/2

1

ϵ2

∫
Rd

|∇zϕ
2 (z) |dz

+

∫
Rd+1

(f̃ϵ − fϵ)
∂

∂ξ
(m̃ϵ −mϵ) dxdξ

In order to find a bound for the first term on the right hand side, we observe that multiplying (5.40) by

fϵ and assuming that f has the required regularity and we can show that

1

2

∫
Rd+1

(f(x, t, ξ))2dξdx+ κ

∫ t

0

∫
Rd

(∇f(x, t, ξ))2dξdx ≤ C

∫
Rd+1

(f(x, 0, ξ))2dξdx+ Zϵ(t)
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where Zϵ → 0 as ϵ→ 0 , by our hypothesis on the measures. We conclude therefore that

d

dt
Q(t) ≤ Cκ1/2

ϵ2
∥f(0)∥L2(Rd+1) +

∫
Rd+1

(f̃ϵ − fϵ)
∂

∂ξ
(m̃ϵ −mϵ) dxdξ

and

Q(t) ≤ Q(0) +
Cκ1/2

ϵ2
∥f(0)∥L2(Rd+1) +

∫ t

0

∫
Rd+1

(f̃ϵ − fϵ)
∂

∂ξ
(m̃ϵ −mϵ) dxdξ

From Lemma 5.3.10 we have already seen that as ϵ → 0 then Q(0) → 0. Therefore as ϵ → 0 with

κ = o(ϵ22), then Q(t) → 0. This completes the proof. □
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Chapter 6

Future work

In this chapter we briefly discuss how the research outlined in this thesis could be further developed. A

potential future work could be devoted to the further development of the research in Chapter 3, where

we introduced a new approach for computing entropy solutions of HCL which has as a starting point a

new mixed reformulation of the hyperbolic system which retains the original variables but still allows

for conservative discretisation. For instance, we can extend our study to discontinuous Galerkin spatial

discretisations, to finite difference-finite volume methods, in the spirit of [49, 50], and also to important

systems, such as quasiconvex elastodynamics, where schemes based on entropy variables cannot be used.

Furthermore, as we have mentioned in Section 3.4, the scheme (3.9) is quite simplified. Thus, one could

try to add more refined stabilisation terms, such as shock capturing, aiming at improved computational

results. Also another possible extension, could be the addition of nonlinear artificial viscosity terms. In

this way we may be able to ensure Lp boundness of the approximate solution under weaker assumptions

on the entropy function η(u) apart from convexity.

There are several open questions relater to Chapter 4 and the numerical computation of measure-

valued solutions of HCL. As far as the mathematical theory is concerned, there are many emerging

questions for future research related to the analysis of such problems, such as uniqueness and stabil-

ity issues mainly for kinetic (and systems thereof) approximations to continuum macroscopic models
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considered. Also, it is interesting to investigate the preservation of qualitative properties of the models,

such as positivity and compatibility with the measure structure of approximations. As a first step in

this direction, in Chapter 5 we have studied stability issues of generalised viscus kinetic formulations

of conservation laws. There are open issues, as well, related to the efficiency and the computational

justification of our approach. The choice of the numerical model in addition to its implementation,

can be a really challenging task. In Section 4.4.3 we have described possible choices of numerical

schemes that may be successful in capturing meaningful measures. Nevertheless, it is to be noted, that

specific approximate defect measures may affect also the computational results drastically. The nu-

merical/computational investigation of such issues is quite interesting. Furthermore, interesting future

research could be to further study the problem of the stability of the computational measure with respect

to the choice of the numerical model. A source of interesting questions is the investigation of possi-

ble connections of discrete kinetic models to the study and computation of statistical solutions, and the

corresponding probability measures on function spaces, [22]. Most of the numerical algorithms for the

computation of measure valued and statistical solutions for HCL are, to date, mainly based on Monte

Carlo sampling, i.e., on solving several deterministic problems and sampling the results. In Section

5.1 we have underlined the compatibility relation between the Monte Carlo sampling method based on

viscosity approximating models and the generalised viscous kinetic formulation. This observation gives

rise to the question whether is possible to show uniqueness for the computational measure obtained by

this method in the scalar case. Finally, it could be very interesting to make a systematic comparison on a

variety of problems between the approximate measure-valued solutions of HCL which potentially can be

computed through the approach presented in this thesis and the approximate measure-valued solutions

which are obtained by the Monte Carlo approach.
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[12] B. COCKBURN, S. Y. LIN, AND C.-W. SHU, TVB Runge-Kutta local projection discontinuous

Galerkin finite element method for conservation laws. III. One-dimensional systems, J. Comput.

Phys., 84 (1989), pp. 90–113.

[13] B. COCKBURN AND C.-W. SHU, TVB Runge-Kutta local projection discontinuous Galerkin finite

element method for conservation laws. II. General framework, Math. Comp., 52 (1989), pp. 411–

435.

[14] , Nonlinearly stable compact schemes for shock calculations, SIAM J. Numer. Anal., 31

(1994), pp. 607–627.

[15] C. M. DAFERMOS, Hyperbolic conservation laws in continuum physics, vol. 325 of Grundlehren

der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences],

Springer-Verlag, Berlin, fourth ed., 2016.

[16] A. DEBUSSCHE AND J. VOVELLE, Scalar conservation laws with stochastic forcing, J. Funct.

Anal., 259 (2010), pp. 1014–1042.

133



[17] S. DEMOULINI, D. M. A. STUART, AND A. E. TZAVARAS, Weak-strong uniqueness of dissipative

measure-valued solutions for polyconvex elastodynamics, Arch. Ration. Mech. Anal., 205 (2012),

pp. 927–961.

[18] B. DESPRES AND B. PERTHAME, Uncertainty propagation; intrusive kinetic formulations of

scalar conservation laws, SIAM/ASA J. Uncertain. Quantif., 4 (2016), pp. 980–1013.

[19] R. J. DIPERNA, Measure-valued solutions to conservation laws, Arch. Rational Mech. Anal., 88

(1985), pp. 223–270.

[20] J. ERNEST, P. G. LEFLOCH, AND S. MISHRA, Schemes with well-controlled dissipation, SIAM

J. Numer. Anal., 53 (2015), pp. 674–699.
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