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Abstract

This thesis addresses the development of kinematically redundant parallel robots for high

performance applications and methods of kinematic analyses tailored towards them. Paral-

lel robot manipulators are well known to hold various advantages over serial manipulators,

including having better speeds, accuracies, and power-to-weight ratios. However, a major

disadvantage they have is that they suffer from limited workspaces and rotational capab-

ilities; indeed, it can be argued that this is the main reason serial robots are used more

frequently in many industries. This thesis aims to address this major shortcoming of par-

allel robots, whilst maintaining all of their advantages, by concentrating on the solution

of kinematic redundancy.

Firstly, an introduction to the topic of kinematically redundant parallel robots for

high performance applications is presented and a review of the relevant literature is given.

In the second section, a novel kinematically redundant architecture of parallel robot is

presented. The kinematic redundancy of the mechanism allows it to achieve full cycle

rotations of the end-effector without encountering kinematic singularities, a feat that is

not possible for non-redundant systems. The third section addresses the issue with current

methods of singularity analyses of parallel robots when applied to kinematically redundant

architectures. It is shown that conventional Jacobian-based methods of singularity analysis

are unreliable when applied to kinematically redundant architectures. In the fourth section

a novel, more robust, method of singularity analysis is presented, which is then used to

develop a method of singularity avoidance. The fifth section presents a kinematically

redundant architecture that is dynamically balanced, meaning that the shaking forces and

moments imposed on the base by the manipulator are nullified. An issue for manipulators

moving at high speeds is that shaking forces and moments generated can cause vibration

and inhibit the performance of the system. By dynamically balancing the system, the

manipulator is able to move at high speeds without experiencing these drawbacks.

The aim of this PhD thesis is that the work presented here can provide some of the

building blocks for developers of robot manipulators to create high performance parallel
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robots which exhibit high speed, strength, and dexterity, through the use of kinematic

redundancy.
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Chapter 1

Introduction

Robotic manipulation is an important area of robotics which has a large variety of ap-

plications, including manufacturing, packaging, medical, and many others. Most robot

manipulators can be placed into one of two categories; serial robots and parallel robots.

Serial robots are mechanisms for which the end-effector, the tool at the end of the robot,

is connected to the base by a sequence of links connected by actuated joints; for example,

a robotic arm. Serial robots are arguably the most commonly known type of manipu-

lator and are used frequently in many applications. Parallel robots on the other hand are

closed-loop mechanisms where the end-effector is joined to the base via multiple sequences

of links and joints. Due to the nature of their kinematic structure, it is often the case

that each sequence of links, referred to as limbs, only require a single joint to be actuated,

and this is often attached to the base. This provides multiple advantages, for instance,

as the actuators are connected to base, the total mass of the moving parts of the mech-

anism is reduced which enables the robot to achieve faster motions of the end-effector.

Additionally, as no actuators are connected in series, parallel robots do not suffer from

the accumulation of actuator errors along each of their limbs, instead the actuator errors

are averaged. Finally, the load being carried by the robot is distributed over several limbs

instead of a single one, resulting in stronger weight-carrying capabilities.

Despite these multiple advantages, serial robots are still used more frequently than

parallel robots in many applications. The reason for this is that parallel robots have one

major disadvantage, which is that they have considerably smaller workspaces and rota-

tional capabilities of the end-effector. This means that for any task which requires the

end-effector to move over a large distance with respect to the size of the mechanism, or is

required to undergo significant rotations, parallel robots are often unsuitable. Indeed, the

main reason for this shortcoming is the existence of singularities in their workspaces. Sin-
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gularities, which will be explored in greater depth later in this chapter, are configurations

of the mechanism in which control of the robot is lost due to an instantaneous change in

the number of degrees of freedom of the mechanism. Following this, singularities must be

avoided which, in practice, reduces the feasible workspace of the parallel robot. In order

for parallel robots to be used for applications of high performance where larger workspaces

and rotational capabilities are required, this main challenge must be overcome. In this

thesis, this issue is addressed through the solution of kinematic redundancy.

A kinematically redundant parallel robot defines a mechanism for which the total num-

ber of degrees of freedom of the actuated joints exceeds the number of degrees of freedom

of the end-effector, but is equal to the total degrees of freedom of the system; this is

explored in further detail later in this chapter. The advantage of these types of mechan-

isms is that the redundant degrees of freedom can be utilised to avoid singularities, which

helps to significantly increase the robot’s workspace and rotational capabilities. However,

until now kinematic redundancy has received relatively little attention in the literature.

Kinematically redundant robots have a great potential to be used in applications of high

performance, where high speed, strength, accuracy, and dexterity are required, however

there are still some key areas which need to be addressed in order for this potential to be

realised. This thesis aims to address some of these key challenges so that developers of

robot manipulators are able to use kinematically redundant architectures for applications

of high performance. This first challenge is that, currently, there are very few architec-

tures of this type that have been proposed in the literature, which limits the amount of

research that can be conducted on these types of mechanisms. In chapter 2, a novel kin-

ematically redundant architecture is presented which has full rotational capabilities of the

end-effector, a feat that is not possible for non-redundant mechanisms. The second issue,

which is investigated in chapter 3, is that conventional methods of singularity analysis are

unreliable when applied to kinematically redundant architectures. In chapter 4, a method

of singularity analysis which is more reliable than conventional methods is presented and,

additionally, a method of singularity avoidance is proposed which utilises the redundancy

of the robot to move as far away from a singularity as possible. Finally, in chapter 5 a

dynamically balanced architecture of a kinematically redundant parallel robot is presented

which does not exhibit shaking forces or moments onto the base regardless of the speed

at which the mechanism is moving, what increases its accuracy and reliability.

The remainder of the introduction comprises a review of the relevant literature of the

main areas of focus of this thesis. Firstly, a background of high performance parallel
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robots is given. Following this the issue of singularities in parallel robots is explored, and

an overview of the solution of redundancy to this problem is given. Methods of kinematic

analyses for determining how close a parallel robot is to a singularity are then reviewed.

Finally, the topic of dynamic balancing of parallel robots is explored as means of enhancing

the performance of these mechanisms.

1.1 High Performance Parallel Robots

As stated above, a parallel robot is a closed-loop mechanism for which the end-effector

is attached to the base by multiple kinematic chains. Parallel robots have increased in

popularity over the past few decades. An interest in these mechanisms began in the

1960s, firstly with the development of the Stewart-Gough platform for the application of a

tire testing device Gough (1962) and a flight simulating equipment Stewart (1965); Baret

(1978); Watson (1984). A parallel mechanism was used for an assembly system for the first

time in MacCalion and Pham (1979). In the 1980s, the very fast moving DELTA robot

was developed Clavel (1988); the manipulator consists of three arms, each of which takes

advantage of parallelogram structures in order to maintain a constant orientation of the

output link of the mechanism. The delta robot subsequently gained popularity, especially

in the packaging industry. Indeed, the amount of research conducted on parallel robots

increased significantly toward the end of the decade Mohamed and Duffy (1985); Merlet

(1987, 1988).

Parallel robots have many advantages over serial robots, including strong load carrying

capabilities, high speeds, accuracy, and precision Merlet (2006); Briot and Bonev (2008);

Patel et al. (2012); Briot and Bonev (2007). The strong load carrying capabilities stem

from the multiple kinematic chains which share the load of the moving platform, meaning

the load is distributed rather than concentrated along a single chain. Serial robots, on the

other hand, consist of a single chain of links connected by actuated joints, a consequence of

this is that the added mass of the actuators on each of the joints leads to high inertial loads,

whereas for parallel robots the actuated joints are often attached to the base and so the

inertial load of each of the kinematic chains is much lower. The lower inertial properties

of parallel robots compared to serial robots means that they are able to move much faster.

Another issue with having actuated joints connected in series is that the errors of each

of the joints are accumulated along the kinematic chain, magnifying the error in the pose

of the end-effector Guan et al. (2004); Song et al. (1999). Parallel robots, on the other

hand, do not suffer from this issue as the actuated joint errors are averaged rather than
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accumulated, which results in a greater accuracy in the end-effector pose Wavering (1999);

Miller (2004).

Parallel robots are well suited to high performance applications, that where high speed,

accuracy, and precision are required, for the reasons described above. Following this, many

parallel robots have been proposed for use applications of high performance. The most

well known example of this is the delta robot, which is renowned for its ability to move at

very high speeds Pierrot et al. (1991, 1990); Rey and Clavel (1999); Carp-Ciocardia et al.

(2003) and, indeed, this has lead to its popularity in packaging applications where fast

and accurate movement of the end-effector is required. The Stewart platform is a parallel

robot which has gained popularity for its potential to achieve high precision Su et al.

(2004); Van Silfhout (1999) and, resultantly, this mechanism has been proposed for use

in surgical applications Wapler et al. (2003), radio telescope applications Jáuregui et al.

(2013), and for the development of flight simulators Pradipta et al. (2013).

Despite the numerous advantages parallel robots have over serial robots, they have

one main disadvantage, which limits the number of applications they can be used in. This

drawback is that they have limited workspaces and rotational capabilities. The workspace

of a robot manipulator describes the set of possible poses which the end-effector is able

to achieve Gupta (1986); Merlet et al. (1998); Bonev and Ryu (2001). It is clear that a

large workspace is desirable for many applications and vital for others, and unfortunately

parallel robots often are unable to perform these tasks despite their many strengths.

Additionally, parallel robots are not well suited to applications where high dexterity of the

end-effector is required. Indeed, non-redundant parallel robots are incapable of performing

full cycle rotations. This shortcoming limits parallel robots from being used in many high

performance applications in which they are otherwise very well suited to. Parallel robots

suffer in these areas largely due to the existence of singularities in their workspaces.

1.2 Singularities

The term ‘singularity’ is one that is used to describe a range of problematic configurations

of robotic manipulators which result in, generally undesirable, changes in the kinematic

properties of the mechanism Zlatanov (1999); Zlatanov et al. (1994). To be more precise,

singularities are configurations in which the total number of degrees of freedom of the

mechanism instantaneously changes Gosselin and Angeles (1990); Kumar (1992); Park

and Kim (1999). A type of singularity that both serial and parallel robots suffer from

is the inverse kinematic singularity, a configuration where the inverse kinematic Jacobian
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of the mechanism loses rank, which corresponds to a loss in the number of degrees of

freedom of the mechanism; for example, if the manipulator reaches the boundary of its

workspace Gosselin and Angeles (1990); Ebrahimi et al. (2007); Lai and Yang (1986);

Waldron et al. (1985). However, unlike serial robots, parallel robots also suffer from the

existence of forward kinematic singularities and, indeed, it is the existence of these types

of singularities which limits their workspaces and rotational capabilities.

A forward kinematic singularity is a configuration in which the forward kinematic

Jacobian of the mechanism loses rank, which corresponds to an instantaneous increase in

the total number of degrees of freedom of the mechanism Merlet (1989); Zlatanov et al.

(1994); Park and Kim (1999). When in such a configuration, the input joint velocity vector

can be equal to zero and still produce a non-zero end-effector velocity vector; equivalently,

even if the acutated joints are locked, the end-effector is unable to resist forces or moments

in one or more directions Daniali et al. (1995); Wen and O’Brien (2003). Because of this,

direct kinematic singularities result in configurations where control of the robot is lost.

Additionally, the performance of the robot will begin to deteriorate as such a configuration

is approached; for example, the end-effector may experience shaking which becomes more

significant as the singularity is neared. In order to avoid these effects, the workspace of

the mechanism has to be reduced such that no singularities are ever crossed or neared,

which in practice significantly reduces the size of the mechanism’s workspace. This is a

significant issue for parallel robots since many applications require the end-effector to move

over large distances with respect to the size of the manipulator, and many other require

the end-effector to perform large rotations. A solution to this issue is to use redundant

architectures.

1.3 Redundancy in Parallel Robots

Redundancy in parallel robots refers to architectures for which the number of actuated

degrees of freedom of the joints exceeds the number of degrees of freedom of the end-

effector Gosselin and Schreiber (2018); Zanganeh and Angeles (1994a); Lee and Kim

(1993). The benefit of redundant architectures is that the additional degrees of free-

dom enhance the manipulator’s ability to avoid singular configurations in the workspace,

increasing the size of the feasible workspace of the end-effector. There are two classes of

redundancy for parallel robots, actuation redundancy and kinematic redundancy.
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1.3.1 Actuation Redundancy

Redundantly actuated parallel robots refer to those for which the total number of actuated

degrees of freedom of the joints exceed the total number of degrees of freedom of the

mechanism Wu et al. (2009); Chakarov (2004). This results in a mechanism for which a

given operational force does not correspond to a unique set of joint forces Krut et al. (2004).

Such mechanisms can be obtained by taking a non-redundant architecture, where the total

number of degrees of freedom of the mechanism is equal to the number of actuated degrees

of freedom of the joints, and adding additional kinematic chains, also referred to as legs,

between the moving platform and the base or alternatively by replacing passive joints with

actuated joints Gosselin and Schreiber (2018); Luces et al. (2017); Mueller (2013); Garg

et al. (2009); Dasgupta and Mruthyunjaya (1998a); Firmani and Podhorodeski (2004).

Multiple redundantly actuated architectures have been proposed in order to improve

the robot’s ability to avoid singularities. In Kock and Schumacher (1998), a 2-DoF planar

manipulator was proposed which consists of three RRR legs, that is an actuated revol-

ute joint followed by two passive revolute joints, connected to the base which are joined

together at a single point. In Marquet et al. (2001), the ARCHI architecture was pro-

posed, using four PRR legs, that is an actuated prismatic joint followed by two passive

revolute joints, to produce 3-DoF planar motion. A five-bar finger was presented in Lee

et al. (1998) in which the effects of varying the degree of redundancy was investigated.

In Ryu et al. (1999), a 6-DoF parallel mechanism which consisted of eight actuated joints

was proposed to perform rapid machining applications. In Saglia et al. (2009), a 2-DoF

mechanism driven by three linear actuators was used as an ankle rehabilitation device. A

6-DoF mechanism was presented in Abedinnasab and Vossoughi (2009) which consisted of

a moving platform connected to the ground by four legs, and which was driven by eight

actuated joints.

The additional degrees of freedom provided by each of these redundantly actuated

architectures give the robot the potential to avoid singularities and hence increase the

feasible workspace of the end-effector. In Collins (1997), a method of selecting the posi-

tions of the redudnantly actuated joints such that singularity-free motions can be achieved

was proposed. The use of redundancy to avoid singularities was also addressed in Notash

and Podhorodeski (1994). The effect of redundancy on reducing the number of singular-

ities in the workspace of a parallel mechanism used for sprained ankle rehabilitation was

investigated in Saglia et al. (2008). In Kurtz et al. (1992), the design of a redundantly

actuated spherical manipulator was optimised such that the number of singularities in
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its workspace was minimised. However, the drawback of using actuation redundancy as

a means to achieve singularity avoidance is that as the total number of DoF of the ac-

tuated joints is greater than the total number of DoF of the system, the mechanism is

over-constrained, meaning that internal forces and moments are generated on the plat-

form. Resultantly, complex control algorithms need to be employed in order to handle

this redundancy Cheng et al. (2003); Nokleby et al. (2007); Harada and Nagase (2010);

Cheng (2001); Niu et al. (2013). However, there is an alternative solution which enhances

the robot’s ability to avoid singularities and does not exhibit the issues associated with

over-constraining the mechanism; kinematic redundancy.

1.3.2 Kinematic Redundancy

Just like architectures that are redundantly actuated, the total number of DoF of the

actuated joints of kinematically redundant robots is greater than that of the end-effector.

However, the difference between these two classes of redundant robots is that for kinemat-

ically redundant architectures the total number of DoF of the system is equal to the DoF

of the actuated joints; in other words, the mechanism is not over constrained Zanganeh

and Angeles (1994b); Huang and Kong (1995). Not many kinematically redundant ar-

chitectures have been proposed in the literature. In Wang and Gosselin (2004), a planar

mechanism was presented in which the moving platform was connected to the base by two

RPR legs and one RRPR leg. A planar mechanism consisting of three PRRR legs was

presented in Ebrahimi et al. (2007). Other variations of three-legged planar architectures

were presented in Cha et al. (2007), including a 3-RRPR and a 3-RPRPR mechanism.

In Wang and Gosselin (2004), 4-DoF Mechanism in which the end-effector is capable of

spherical motion and a 7-DoF spatial Stewart platform are presented. Although these

kinematically redundant architectures greatly reduce the number of unavoidable singular-

ities in their respective workspaces, and without over constraining the mechanism, they all

consist of actuated joints connected in series. This is problematic as it detracts from some

of the fundamental advantages of parallel robots, e.g. not suffering from the accumulation

of actuator errors along each kinematic chain, or the low amounts of mass and inertia

added along each leg because actuators do not need to be added at each joint.

The shortcomings described above are addressed by developing architectures where

each leg of the mechanism does not exhibit multiple actuators connected in series; here

referred to as those with non-serially connected actuators. Such architectures were first

considered in Mohamed and Gosselin (2005), where the concept of developing reconfigur-
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able platforms was presented. In Gosselin et al. (2015), a planar mechanism was presented

which consists of four PRR legs, two of which are connected directly to the platform, the

others are connected first to a additional link which is in turn connected to the moving

platform via a revolute joint. A family of similar architectures was presented in Schreiber

and Gosselin (2018). In each of these architectures, no more than a single joint is actuated

in each leg, meaning that the key advantages of the parallel architecture are retained. Very

few architectures of this type have been presented in the literature, and the ones that have

all exhibit rigid sub-structures when the actuated joints are locked; e.g. the architectures

consist of triads connected in cascade. Architectures which do not consist of rigid internal

structures when the actuated joints are locked are described as generic architectures Rojas

(2012). The development of generic kinematically redundant architectures of this type is

important as such architectures can be used to develop future mechanisms and conduct

future research upon.

Currently, there remains very few kinematically redundant architectures that have been

proposed in the literature and so the potential of these types of parallel robots to be used

in a large variety of different applications is restricted. In chapter 2, a novel kinematically

redundant architecture of parallel robot is presented. The kinematic redundancy of the

mechanism allows it to achieve full cycle rotations of the end-effector without encountering

kinematic singularities, a feat that is not possible for non-redundant systems. In order

for parallel robots to become a more viable option for a wider range of applications, the

number of kinematically redundant architectures available to be used by developers of

robot manipulators, and for further research to be conducted upon, must be increased.

This thesis aims to address this through proposing a novel architecture of kinematically

redundant robot which has full rotational capabilities of the end-effector.

1.4 Methods of Kinematic Analysis

The development of kinematically redundant architectures enhance the potential for par-

allel robots to be designed which have larger workspaces and rotational capabilities, due

to their ability to avoid singularities. However, an additional, and important, aspect of

developing such robots is being able to identify the configurations of the robot which are

singular, and additionally developing metrics which can be used to determine how far the

robot is from a singularity, as the robot’s performance is likely to deteriorate as one is

approached.

The singularity analysis of parallel mechanisms traditionally is analysed in terms of the
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Jacobian matrices of the manipulator which are used to relate the input velocity vector,

containing the actuated joint velocities, to the velocity of the end-effector. A classifica-

tion of three different singularities of parallel mechanisms was first made in Gosselin and

Angeles (1990). By defining the relationship between the input velocity vector, θ̇, of the

mechanism and the output velocity vector, ẋ, by Jacobian matrices A and B, such that

Aẋ+Bθ̇ = 0, the three types of singularities are defined as the configurations of the mech-

anism when each and both of A and B are singular. A type 1 singularity corresponds

to a configuration where B is singular, this is also referred to as an inverse kinematic

singularity or singularity of redundant input Zlatanov et al. (1994). An example of a type

1 singularity is when the mechanism reaches the boundary of its workspace and so it loses

a degree of freedom; note that this type of singularity exists for serial robots as well as

parallel robots. A type 2 singularity, also referred to as a forward kinematic singularity or

a singularity of redundant output Zlatanov et al. (1994), corresponds to a configuration

of the mechanism in which the mechanism gains one or multiple degrees of freedom in-

stantaneously. A more comprehensive singularity classification was presented in Zlatanov

et al. (1994) where six different types were given.

For redundant parallel mechanisms, the literature is much less comprehensive. Just

as for non-redundant robots, the Jacobian is frequently used to perform the singularity

analysis of redundant parallel mechanisms. For instance, in Merlet (1996), a solution to

finding the singular configurations of redundantly actuated robots, for which the number

of input parameters, n, exceeds the number of degrees of freedom of the platform, m,

was proposed by generating a non-square m × n Jacobian, J, such that ẋ = Jθ̇, where

the configuration is singular if det(JJT ) = 0. A similar analysis was conducted in Liao

et al. (2004), using singular value decomposition of the Jacobian, where three different

singularity conditions were found.

It is commonplace to use Jacobian-based methods for performing the singularity ana-

lysis of redundant robots, however, such methods can be unreliable when applied to kin-

ematically redundant architectures. These limitations of Jacobian-based methods had

previously remained unaddressed in the literature, however in chapter 3 of this thesis

these shortcomings are demonstrated and discussed. Multiple instances are shown of the

Jacobian both failing to identify and incorrectly identifying singular configurations for

several kinematically redundant parallel architectures with non-serially connected actu-

ators. More specifically, it is shown that the inverse of the 2-norm condition number of

the Jacobian, a traditional method of singularity analysis, either fails to identify or incor-
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rectly identifies a singular configuration. Indeed, other measures, such as computing the

determinant of the Jacobian, exhibit the same shortcomings. The failure of the Jacobian

is verified using the principles of rigidity theory; by analysing the underlying graph of the

robot and computing its rigidity matrix.

In addition to understanding the robot manipulator’s proximity to a singularity, it is

also useful to be able to know how to reconfigure the mechanism such that it will move

further away from these troublesome configurations, this is especially important when car-

rying out path-planning algorithms. Indeed, in the early 2000s, many path-planning al-

gorithms that were developed for parallel robots did not take into account the mechanism’s

distance to singularities and therefore are unreliable Porta et al. (2007, 2012); Han (2000);

Berenson et al. (2011); Cortés and Siméon (2004); Yakey et al. (2001). In more recent

years, techniques which take into account the manipulator’s proximity to a singularity have

been proposed. For non-redundant parallel robots, many have formulated path-planning

algorithms using Jacobian-based approaches of singularity analysis. In Bhattacharya et al.

(1998), an online method of singularity avoidance is proposed which aims to keep the actu-

ator forces within their capacities by computing the determinant of the Jacobian. Others

have developed path planning methods between distant configurations Dash et al. (2005);

Dasgupta and Mruthyunjaya (1998b); Sen et al. (2003). In Bohigas et al. (2012) and

Bohigas et al. (2013), a path-planning algorithm was developed for non-redundant robots

which finds a solution to the problem by computing the singularity-free C-space; the region

where the Jacobian is non-singular. Additionally, some path-panning algorithms have been

made for kinematically redundant parallel robots. In Cha et al. (2007), an algorithm was

developed for kinematically redundant variations of the 3-RRR manipulator which used

a local optimisation of the determinant of the Jacobian to plan the trajectory. A point-

to-point motion planning scheme was proposed in Ebrahimi et al. (2008) for a 3-RPRR

manipulator, which utilises an index, the normalised scaled incircle radius, that describes

how far away the geometric conditions in which the Jacobian becomes singular are from

being met. Similarly, in Carretero et al. (2008) and Carretero et al. (2012) an overall

motion planning scheme was developed, which aims to optimise the entire trajectory as a

whole, that uses the same index as the previous reference. A method of minimising the

actuator torques of a kinematically redundant robot was presented in Varalakshmi and

Srinivas (2014) in which the Jacobian was used to compute the joint torques along its

trajectory. These methods are effective when applied to kinematically redundant robots

with serially connected actuators, however they are limited when applied to architectures
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which exhibit no actuators connected in series, as it is for these architecture where the

Jacobian becomes unreliable as a means of singularity analysis. In chapter 4, a method of

singularity avoidance is proposed which is based upon the method of singularity analysis

presented in chapter 3. The algorithm is used to optimise the redundant degree of freedom

of the mechanism such that the robot moves as far away from a singularity as possible for a

given pose of the end-effector. This method is an important tool for helping kinematically

redundant parallel robots exploit their ability to avoid singularities, without succumbing

to the downfalls of traditional Jacobian-based approaches.

1.5 Dynamic Balancing of Parallel Robots

One of the advantages of parallel robot architectures is that they are able to move at very

high speeds, however, as a consequence of this, a major challenge that they face is the

accumulation of shaking forces and moments on their bases. These shaking forces and

moments can be especially problematic as they cause wear and fatigue of the manipulator,

and possibly neighbouring manipulators, in addition to inhibiting its performance Lowen

and Berkof (1968). A well known solution to this issue is to eliminate the shaking forces

and moments imposed on the base by designing the manipulator such that the total linear

and angular momentum of the system is zero for any trajectory of the end-effector; this is

referred to as dynamically balancing the mechanism.

Much research has been carried out on the dynamic balancing of parallel mechanisms

over the previous few decades Arakelian and Smith (2005a,b). In Berkof and Lowen (1969),

a method of force balancing four and six bar linkages was presented, and in Berkof and

Lowen (1971) the moment balancing of four bar linkages was addressed as well. In Bagci

(1982), the dynamic balancing of simple parallel mechanisms was approached through

the use of moment balanced idler loops. In recent years, the dynamic balancing of more

complex mechanisms has been addressed. A method of static balancing 3-DoF planar

parallel mechanisms was presented in Jean and Gosselin (1996) such that the weight of the

manipulator does not produce any force or torque at the actuators for any configuration

of the robot. In Ricard and Gosselin (2000), balanced four bar linkages were used to

synthesise the legs of a dynamically balanced 3-DoF planar parallel mechanism, and a

similar method was used in Gosselin et al. (2004) to balance a 3-DoF spatial mechanism.

In Foucault and Gosselin (2004), a dynamically balanced planar parallel mechanism was

synthesised using balanced five bar linkages. A different approach was proposed in Wu

and Gosselin (2005), where a balanced parallelepiped mechanism was presented which can
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be used to form the legs of balanced 3-DoF and 6-DoF mechanisms. In Van der Wijk

and Herder (2012), a method of making the centre of mass of a linkage to be invariant

at one of its links using pantograph mechanisms is presented. An approach based on the

method of principal vectors was applied to balance a four bar linkage in van der Wijk and

Herder (2012). A method of balancing each link of a double pendulum mechanism was

presented in van der Wijk and Herder (2009), where counter-rotary countermasses were

installed on each link; the countermasses are driven via negative transmission ratios in

the opposite direction to the rotation of the link to which they are attached in order to

moment balance the mechanism. This method was compared with three others in van der

Wijk et al. (2009) in terms of the addition of mass and inertia contributed by each method

when applied to a double pendulum. The counter-rotary countermass approach has been

compared with other balancing methods by others as well Herder and Gosselin (2004);

Van der Wijk et al. (2008). A high amount of mass and inertia added to the system

is undesirable because this generally corresponds to higher actuators torque required to

drive the mechanism Dresig et al. (1992); Kochev (2000). All of the methods of developing

dynamically balanced parallel mechanisms described consist of balancing the legs of the

mechanism and creating a dynamic equivalence between the moving platform and a set

of point masses Wu and Gosselin (2007). This approach greatly simplifies the task of

analysing the dynamics of a closed loop mechanism as it allows the system to be treated

as a set of open loop mechanisms.

As is the case for many aspects of parallel robotics research, the majority of work on

dynamically balanced parallel mechanisms has been focused on non-redundant architec-

tures. In recent years, some have developed dynamically balanced redundantly actuated

architectures, such as in Van Der Wijk et al. (2013) a balanced 4-RRR planar paral-

lel architecture was presented. However, dynamically balanced kinematically redundant

architectures have yet to receive any attention in the literature. In order to create kin-

ematically redundant parallel robots that are capable of high performance, dynamically

balanced architectures need to be developed. In chapter 5, a dynamically balanced archi-

tecture of a kinematically redundant parallel robot is presented. The resulting mechanism

allows fast, dexterous movements of the end-effector without suffering from shaking forces

and moments on being imposed onto the base.
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1.6 Overview of Chapters

The structure of this thesis is a hybrid between a thesis-by-paper and a conventional

thesis, meaning that each chapter is based on the work presented in a journal article that

is published or accepted for publication. The remainder of this thesis is structured as

follows:

• Chapter 2 introduces a novel architecture of a kinematically redundant planar par-

allel robot which is able to complete full cycle rotations of the end-effector without

encountering any singularities. Methods for presenting the inverse and forward kin-

ematics are presented and the singularity analysis is carried out. This work was

published in Baron et al. (2019).

• In chapter 3, the issues associated with using traditional, Jacobian-based methods of

singularity analysis are discussed. This work was published in Baron et al. (2020b).

• In chapter 4, a novel, geometric approach of singularity analysis is introduced which

is shown to be more reliable than conventional approaches. A method of singularity

avoidance based on this approach is also presented, such that the kinematic redund-

ancy of the mechanism is utilised to move as far away from a singularity as possible

for a given pose of the end-effector. This work was published in Baron et al. (2020c).

• Chapter 5 presents a novel architecture of a dynamically balanced kinematically re-

dundant planar parallel robot, which utilises a system of countermasses and counter-

rotary elements to balance the mechanism. The balancing conditions are derived and

an optimisation is performed such that the amount of mass and inertia added to the

system is minimised. This work is under review for publication Baron et al. (2020a).

• In chapter 6, the main contributions are summarised and the prospects for future

work on the topic are discussed.
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Chapter 2

Novel Planar Parallel Architecture

As discussed in chapter 1, the amount of research that has been conducted on kinemat-

ically redundant parallel robots is quite small; furthermore, very few architectures with

non-serially connected actuators have been presented in the literature. In order to in-

crease the potential for these types of robot manipulators to be used for high performance

applications, and to provide a platform for further research on these mechanisms to be

conducted, new architectures must be proposed. In this chapter, a novel kinematically

redundant planar parallel robot with non-serially connected actuators is presented; this

work was published as Baron et al. (2019).

Only a few kinematically redundant architectures with non-serially connected actuators

have been proposed in the literature Gosselin et al. (2015); Schreiber and Gosselin (2018).

The first, presented in Gosselin et al. (2015), is composed of two RPR legs connected to a

common joint on the platform, along with two other similar legs connected to a revolute

joint that is then connected to a second common joint on the platform. A rigid structure

is obtained from this robot manipulator if and only if all four actuators are simultaneously

locked. This resulting structure corresponds to three triads connected in cascade, which

implies that the robot manipulator is not a fundamental truss Rojas (2012). Similarly, the

architectures presented in Schreiber and Gosselin (2018) do not correspond to fundamental

trusses. A parallel robot manipulator architecture corresponds to a fundamental truss if it

does not exhibit internal rigid structures, beyond local elements of single limbs, when the

actuators are locked, such that its rigidity is not inherited from a more general architecture

or resulting from the combination of other fundamental structures. Thus, for instance,

the standard 3-RRR parallel robot manipulator architecture is a fundamental truss, but

the 4-RPR redundant manipulator is not. The underline in this convention means that

the corresponding joint is actuated.
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It has been claimed that generic architectures of kinematically redundant planar paral-

lel robot manipulators—as those corresponding to cases where the robot manipulator’s ar-

chitecture is a fundamental truss—cannot achieve unlimited rotation capability Schreiber

and Gosselin (2018). However, in this chapter, it is shown that this is not the case; a

novel fundamental kinematically redundant architecture with such a characteristic is in-

troduced. The fundamental topology of this robot manipulator implies that, just like

the 3-RPR architecture, it can be used as a basis upon which future mechanisms can be

developed and future research can be conducted. The proposed robot manipulator ar-

chitecture consists of a moving platform connected to the base via four RRR legs and a

ternary link, which is joined to the ground link by a revolute joint, via two other RRR

legs. The robot manipulator is kinematically redundant as its degree of mobility (four) is

the same as the number of actuated joints; and this value exceeds the number of degrees

of freedom required to describe a pose of the end effector (three). The redundancy allows

any pose to be attained within the workspace of the robot manipulator without producing

a singularity and the novel architecture does not present mechanical interferences in full

cycle trajectories; thus resulting in unlimited rotational capabilities of the end-effector.

Although the architecture is similar to that in Schreiber and Gosselin (2018), it is novel as

the two architectures represent different kinematic chains – if the corresponding graphs of

the two mechanisms are compared it can be seen that they are not isomorphic. A method

of identifying singular configurations and reconfiguring the robot manipulator such that

they are avoided is presented in Baron et al. (2018).

In addition to presenting the novel architecture in section 2.1, methods of solving the

inverse and forward kinematics of the mechanism are given in section 2.2 and section 2.3,

respectively. The method of singularity analysis used to determine whether or not a con-

figuration of the mechanism is singular is presented in section 2.4. An example trajectory

is examined in section 2.5 showing that the mechanism is capable of performing full cycle

rotations of the end-effector without encountering singularities.

2.1 Robot Architecture

The robot architecture, as exemplified in the instance shown in Fig. 2.1, consists of a

moving platform (P10P11) that is connected to the base (P1P2P3), and one ternary link

(P3P4P5), via four RRR legs; where R denotes a passive revolute joint and R denotes an

actuated revolute joint. The moving platform is connected to the base, or ground link,

directly via two of the legs, and to the ternary link via the other two legs. The ternary
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Figure 2.1: Kinematic diagram of the proposed robot mechanism. The architecture con-

sists of a moving platform connected directly to the base via two RRR legs and connected

to a ternary link, which is joined to the base by a passive revolute joint, via two other

RRR legs.

link is connected to the base via a passive revolute joint and the legs are attached to the

ternary link and the base via actuated revolute joints. Two of the legs are attached to a

common passive revolute joint on the moving platform and the other two are connected to

another common passive joint on it. The actuators are not serially connected and although

two of them are attached to the ternary link, what increases the inertial properties of this

part, the mechanism does not suffer from the accumulation of actuator errors along the

limbs.

The proposed robot mechanism is, in general, rigid when the four actuators are locked;

meaning that the links are unable to move with respect to the base or each other. This

can be shown, for instance, by calculating its structural mobility, M , via the extended

Chebychev-Kutzbach-Grübler formula Rojas and Dollar (2016). According to this cri-

terion, the structural mobility of a mechanism is

M = F −
λ∑
i=1

ti (2.1)

where λ = J−L+1 is the number of independent closed-loops in the kinematic chain and

ti is the motion type of the ith independent closed-loop (ti = 3 in the planar case), with

J , the total number of joints, L, the number of links, and F , the total number of degrees
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of freedom of the joints. Since the proposed architecture consists of 13 joints (counting

twice the ternary joints of the platform), 11 links (including the base) and 13 degrees

of freedom (as each revolute joint has one degree of freedom), its resulting structural

mobility is 4. This result implies that in order for the mechanism to be rigid (i.e., to have

a mobility of zero), four of the joints need to be actuated. It is known that the structural

mobility, which is a function only of structural parameters, is a lower bound of the total

mobility of a mechanism; however, it has been proven that if M is computed using the

extended Chebychev-Kutzbach-Grübler formula, it is unlikely that the structural mobility

is different to the total mobility when a kinematic chain is selected at random Müller

(2009).

The proposed architecture is fundamental, which implies that the robot manipulator,

once the actuators are locked, does not exhibit rigid sub-structures beyond subcomponents

in a single leg. Thus, the rigidity of a fundamental parallel robot manipulator is not

inherited from a more general architecture or resulting from the combination of other

fundamental structures. For the case of the proposed robot mechanism, this can be proven

by systematically analysing the kinematic chains formed by subsets of the set of joints,

taking into account that rigid elements of an RRR leg do not contribute to general rigidity

since these limbs are equivalent to an RPR leg when the actuators are activated, that is,

they can be modelled as a line segment connecting the centres of the two end revolute

joints. Since the introduced robot mechanism has three independent loops, λ = 3, there

are only two fundamental structures that could be present, namely, a triad (i.e. a one-loop

structure composed of three links connected by revolute joints, λ = 1) or a pentad (i.e.

a two-loop structure composed of two ternary links connected between them by binary

links, all of them jointed by revolute kinematic pairs, λ = 2). Neither triads nor pentads

that contribute to general rigidity are detected in the proposed robot mechanism.

In the instance of the introduced kinematically redundant planar parallel manipulator

that is shown in Fig. 2.1, the robot manipulator is designed such that the end-effector is

able to complete full rotations without encountering mechanical interferences. Moreover,

the link which is the upper component of the left leg connected to the ternary link, the

shortest link, is made to be able to complete a full rotation with respect to the platform;

this characteristic is vital for the process of avoiding singularities as it is further discussed

in section 2.4.
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2.2 Inverse Kinematics

The inverse kinematics problem refers to the determination of the required values of the

actuated joints in order to produce a given pose of the moving platform. Fig. 2.1 shows a

schematic of the proposed architecture where the robot manipulator is depicted in terms of

the centres of rotation of its kinematic pairs (joints) and the line segments connecting them

(links); each centre has been labelled, from P1 to P11, and the sought values of the actuated

joints are θ1 to θ4. Since this mechanism is kinematically redundant with one extra degree

of freedom, there are an infinite number of solutions to the inverse kinematics. However, if

an additional condition is set, such as the orientation of the link defined by P8 and P10, to

name one, then the number of solutions reduces to a finite number. The orientation of this

link is given by α – this angle has been chosen to control the redundancy as opposed to, say,

the orientation of the ternary link because it makes the method of singularity avoidance

more straightforward. With this condition set, the positions of the joints can be found

using, for instance, analytic geometry and trigonometric relations; here the bilateration

method is used instead.

The bilateration method consists of finding the possible positions of an unknown point,

Pk, if the distances between this point and two points whose positions are known, Pi and

Pj , are known. pi,k, which is the vector going from Pi to Pk, is found by taking the

matrix-vector product between the bilateration matrix, Zi,j,k, and pi,j , the vector going

from Pi to Pj Rojas (2012). That is,

pi,k = Zi,j,kpi,j (2.2)

where

Zi,j,k =
1

2si,j

si,j + si,k − sj,k −4Ai,j,k

4Ai,j,k si,j + si,k − sj,k


and

Ai,j,k = ±1

4

√
(si,j + si,k + sj,k)2 − 2(s2i,j + s2i,k + s2j,k),

with si,j = d2i,j denoting the squared distance between the points Pi and Pj and Ai,j,k, the

orientated area of the triangle defined by points Pi, Pj and Pk. The ± sign implies that

pi,k can point in one of two different directions; when positive, pi,k points to the left of

pi,j and, when negative, it points to the right.

According to the notation of Fig. 2.1, the desired position and orientation of the
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platform can be represented by P10 and φ. Then, the vector p10,11 can be computed as

p10,11 = d10,11

cos(φ)

sin(φ)

 , (2.3)

where φ is the angle between the platform and the x-axis. By setting the value of α, the

position of P8 is found using basic trigonometry. The positions of the remaining points

are found by applying the bilateration method, using equation (2.2). The position of P4

is determined using the bilateration matrix Z3,8,4 and selecting an orientation of p3,4 by

choosing the sign of A3,8,4. P5 is obtained from Z3,4,5 and since the orientation of A3,4,5 is

known, P5 has a definite position. P6, P7 and P9 are determined with Z10,1,6, Z11,2,7 and

Z5,11,9, and by selecting the orientations of their respective areas.

The above procedure computes the location of all joint centres. The values of the

actuated joints, that is, the angles θ1, θ2, θ3 and θ4, can then be computed using the

arccosines of
p1,6·[1,0]T

d1,6
,
p2,7·[1,0]T

d2,7
,
p4,8·p4,5

d4,8d4,5
, and −p5,9·p5,4

d5,9d4,5
, respectively.

2.3 Forward Kinematics

The forward kinematics problem consists of finding the feasible Cartesian poses of the

moving platform once the actuators are fixed at particular values. A common method for

solving this problem is to formulate the characteristic polynomial of the mechanism, which

involves manipulating the kinematic equations of the system so that a single equation in

terms of one variable is formed—this is usually called a closed-form solution Rojas and

Thomas (2011). Solving this polynomial gives, or leads to obtain, the feasible poses

of the platform given the known geometric parameters, such as link lengths, and the

actuator values. Additionally, the degree of the polynomial shows the maximum number of

solutions to the forward kinematics. For example, when the actuators of the 3-RPR robot

manipulator are locked a sextic polynomial is obtained, thus implying that up to 6 different

configurations can be calculated; a proof of this feasible number of solutions is given

in Hunt (1983). Here, the bilateration method is used for formulating the characteristic

polynomial of the proposed kinematically redundant planar parallel robot manipulator.

To this end, the equivalent kinematic model shown in Fig. 2.2 is used. This model results

from the fact that once the actuators are fixed at a given value, each of the RRR legs of the

parallel robot manipulator can be represented by a line segment of known distance that

connects the centres of the two end revolute joints. Looking back to the model presented

in Fig. 2.1, once the values of θ1, θ2, θ3 and θ4 are fixed, the distances d3,6, d3,7 and d6,7

can be calculated, as can d3,8, d3,9 and d8,9; resultantly, P3, P6 and P7, and P3, P8 and P9



20

Figure 2.2: Equivalent kinematic model used for solving the forward kinematics; it corres-

ponds to the mechanism obtained when the robot actuators are fixed at particular values.

This model also applies for a robot manipulator with type RPR legs.

form two triads. As these two triads are rigid structures, the robot manipulator can be

modelled, when the actuator values are fixed, by the diagram shown in Fig. 2.2, where the

triads represent the base and the ternary link, respectively, and the lower links of the legs

to which they are attached. The moving platform is joined to these triads via four single

links with passive joints at each end; which represent the upper links of the legs. Note that

this equivalent model is also applicable to a mechanism with type RPR legs. Now, instead

of directly calculating the Cartesian pose of the platform, the bilateration method is used

firstly to determine the set of values of an unknown squared distance of the system, such as

s6,8, according to the notation of Fig. 2.2, that are compatible with the known geometric

parameters of the mechanism. Following this approach, the characteristic polynomial is

obtained as follows. Firstly, using a sequence of bilaterations, an equation is formed which

computes a single vector between two points whose distance is known, in this case p10,11,

in terms of one of the two vectors that result from the unknown squared distance used
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as variable, in this case p6,8. This vector equation has to take into account all distance

constraints in the mechanism. Thus, the following system of equations is obtained.

p6,10 = Z6,8,10p6,8, (2.4)

p6,7 = Z6,3,7Z6,8,3p6,8, (2.5)

p6,9 = (−Z8,3,9Z8,6,3 + I)p6,8, (2.6)

p7,9 = p6,9 − p6,7, (2.7)

p7,11 = Z7,9,11p7,9, (2.8)

p6,11 = p6,7 + p7,11, (2.9)

p10,11 = p6,11 − p6,10, (2.10)

with si,j = ‖pi,j‖2 and I denoting the 2-by-2 identity matrix, and taking into account that

the orientation of the triangles defined by the revolute centres P6, P7, and P3; and P3, P8,

and P9 is known. Rewriting the above system of equations in terms of p6,8 we obtain

p10,11 = Qp6,8, (2.11)

where

Q = (−Z6,8,10 + Z6,3,7Z6,8,3

+ Z7,9,11(−Z6,3,7Z6,8,3 − Z8,3,9Z8,6,3 + I)).

Then, by the scaling property of bilateration matrices, we get that

det(Q) =
s10,11
s6,8

. (2.12)

By eliminating the square roots involved in equation (2.12), a 14th-degree characteristic

polynomial in terms of s6,8 is finally obtained. The real roots of this polynomial correspond

to the compatible values of s6,8 for the geometric parameters and actuator values of the

robot manipulator.

Finally, the feasible assembly modes of the parallel manipulator can be computed,

for instance, by substituting the real values of s6,8 into (2.12) along with each possible

combination of orientations for the orientated areas A6,8,10, A6,8,3, and A7,9,11; if the

equation holds, then the corresponding assembly mode is feasible. Then for each of the

detected assembly modes, a reference frame is introduced and the positions of the base

joints, P6, P7 and P3 are designated. The resulting configuration from the positions of the
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Figure 2.3: Resulting configurations of the example used in the forward kinematic analysis.

remaining joints are then found by computing the following sequence of bilaterations

p6,8 = Z6,3,8p6,3, (2.13)

p3,9 = Z3,8,9p3,8, (2.14)

p6,10 = Z6,8,10p6,8, (2.15)

p7,11 = Z7,9,11p7,9. (2.16)

The sign of A6,3,8 is the opposite of the sign of A6,8,3.

As an example of the method described above; consider the mechanism with link

lengths d6,7 = 2, d3,6 =
√

2, d6,10 =
√

17, d3,7 =
√

2, d7,11 =
√

17, d7,8 =
√

2, d7,9 =
√

5,

d8,9 =
√

5, d8,10 =
√

5, d9,11 =
√

2 and d10,11 = 4, the following base joint positions:

P6 = (2, 0)T , P7 = (4, 0)T and P3 = (3, 1)T , and with the oriented area A3,8,9 being

negative. The following characteristic polynomial is then obtained.

14∑
i=0

kis
i
6,8, (2.17)

where k0 = 6.11× 1017, k1 = −2.39× 1017, k2 = −3.41× 1016, k3 = 3.86× 1016, k4 =

−1.00× 1016, k5 = 5.54× 1014, k6 = 4.42× 1014, k7 = −1.66× 1014, k8 = 3.08× 1013,

k9 = −3.51× 1012, k10 = 2.72× 1011, k11 = −1.59× 1010, k12 = 7.24× 108, k13 =

−2.22× 107 and k14 = 3.20× 105. The real roots of this polynomial are 4 and 5.04.

The values of these roots, and the coefficients in the polynomial, are given to 2 decimal

places. The resulting configurations of this example are depicted in Fig. 2.3.
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2.4 Singularity Analysis

It is well known that the singularities of a standard 3-RPR mechanism can be determined

geometrically by finding the configurations in which the lines that pass through the three

legs of the robot manipulator intersect at a common point. In this section, a similar set

of geometrical conditions are developed in order to determine if the proposed mechanism

is in a singular configuration.

Singular configurations are those in which a mechanism of mobility zero (M = 0),

which is generally rigid, loses its rigidity; this implies multiple problems for parallel robot

manipulators such as loss of controllability and large actuation forces. The most commonly

used method of identifying if a parallel robot manipulator is in a singular configuration is

by formulating the relationship between the Cartesian velocities and the joint velocities of

the robot manipulator in terms of Jacobian matrices; the robot manipulator is considered

to be in a singular configuration when these matrices are not of full rank Gosselin et al.

(2015).

Here, the method used to determine if the robot manipulator is in a singular configur-

ation is based on the properties of instantaneous centres of rotation (ICRs). The benefit

of carrying out the singularity analysis by using this approach is that it gives a geomet-

rical interpretation of the conditions which lead to the the production of a singularity, as

opposed to a purely mathematical description as that obtained from Jacobian matrices.

The ICR between two rigid bodies that are moving relatively to one another is the point at

which the absolute velocities of both bodies are equal Daniali (2005). Using ICRs, it can

be seen that there are certain configurations where an M = 0 mechanism loses its rigidity

when the M = 1 sub-mechanisms whose union composes the system are considered.

For instance, according to the notation of Fig. 2.4, in a 3-RPR parallel manipulator,

which is rigid when the actuators are fixed at particular values, there exist three M = 1

sub-mechanisms whose collection generates the original kinematic chain, namely, the sub-

mechanisms obtained when links 2, 3, and 4 are removed, respectively.

For each of these sub-mechanisms, the platform (link 5) is able to move relative to the

base (link 1); implying that the ICR between the platform and the base can be found,

that is, ICR(1,5). Herein, the notation ICR(i,j) will be used to denote the ICR between

links i and j.

An effective way of determining the position of ICR(1,5) for each of the sub-mechanisms

is through the use of a bookkeeping system for M = 1 mechanisms, first presented

in Hartenberg and Denavit (1964). The system involves constructing what is called a
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Figure 2.4: Kinematic diagram of 3-RPR mechanism with the links numbered and with

the ICRs of the M = 1 sub-mechanisms shown (links 1, 2, 3, and 5; links 1, 2, 4, and 5;

and links 1, 3, 4, and 5).

circle diagram (also known as the auxiliary polygon derived from the Aronhold-Kennedy

theorem on ICRs), shown in Fig. 2.5 for the 3-RPR robot manipulator depicted in Fig. 2.4,

which details all the links in the mechanism by number and a known ICR between two

links is denoted by a solid line drawn between them. An unknown ICR between two links,

denoted by a dotted-line, can be found if this dotted-line is the common side of two tri-

angles otherwise made up of solid lines. The geometrical location of this unknown ICR

is found by drawing two lines, each of which pass through the two known ICRs of each

triangle. The point at which these two lines intersect is the position of the ICR; note that

if the lines are parallel, the ICR is positioned at infinity.

Following the above procedure, the positions of ICR(1,5) for each sub-mechanism of

the 3-RPR robot manipulator can be obtained as shown geometrically in Fig. 2.4. As

long as these points are separate the robot mechanism is rigid; however, if they coincide,

the platform is able to, instantaneously, rotate relative to the base about this point and

hence the mechanism loses its rigidity. This corresponds to a singular configuration. It

is important to highlight that the information provided by the M = 1 sub-mechanism

created by removing link 2 (links 1, 3, 4, and 5) is redundant. The geometric conditions

which cause the ICR(1,5) of this sub-mechanism to coincide with that of the others are,
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Figure 2.5: Circle diagram for M = 1 sub-mechanism with link 4 removed (left) and link

3 removed (right) for the case of the 3-RPR robot manipulator. See text for details.

generally, the same as the conditions which cause the positions of ICR(1,5) for the other

two sub-mechanisms to coincide with each other. The only exception to this, an instance

where two of the ICR(1,5)s are coincident but the third is not, is when one of the sub-

mechanisms is itself in a singular configuration, however under these conditions it can still

be verified that the entire system is in a singularity because the total degrees of freedom of

one of the sub-mechanisms has increased, therefore the mobility of the robot manipulator

also increases.

The same analysis is now carried out on the proposed kinematically redundant architec-

ture using the equivalent mechanism when the actuators are locked; in this case, according

to the notation of Fig. 2.6, four M = 1 sub-mechanisms can be detected, namely, the sub-

mechanisms obtained when we remove (i) link 3, (ii) link 4, (iii) link 5, and (iv) link 6.

Fig. 2.7 shows the circle diagrams used to determine the construction lines needed to find

the ICR between the platform and the base for the M = 1 sub-mechanisms (ii) and (iii);

similar to the case of the 3-RPR robot manipulator, the conditions resulting from the

other sub-mechanisms are redundant.

The position of ICR(1,7) of sub-mechanism (iii), shown in the left hand diagram of

Fig. 2.7, is given by the point of intersection between the lines which pass through links

3 and 4. The case of sub-mechanism (ii), shown in the right hand diagram of Fig. 2.7,

is slightly different. In this case, before the ICR between the platform and the base

can be found, an additional unknown ICR must be determined since the dotted line which

connects links 1 and 7 is not the common side of any two otherwise known triangles. Then,

ICR(2,7) needs to be found first, which is given by the point at which the lines that pass

through links 5 and 6 intersect. ICR(1,7) is then obtained by finding where the line which

passes through ICR(1,2) and ICR(2,7) intersects with the line which passes through link 3.
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Figure 2.6: Kinematic diagram of proposed mechanism with links numbered. ICR(1,7)

for the sub-mechanisms (ii) and (iii) is shown.

A singular configuration in the kinematically redundant robot manipulator occurs either

when the ICR(1,7) of these sub-mechanisms coincide, or when the position of one or more

of these ICRs cannot be calculated. Following this, the distance, d, between the ICR(1,7)

of two sub-mechanisms can be used to determine whether or not the robot manipulator

is in a singularity; the robot manipulator is therefore in a singular configuration when

the value of d is zero or cannot be calculated – coresponding to the instances where the

ICR(1,7)s are coincident and where one (or more) of the sub-mechanisms is itself in a

singularity, respectively. A similar approach is used in Ebrahimi et al. (2008), where the

proximity to a singularity is measured by comparing the incircle radius of the triangle

created by the three construction lines of the mechanism with the maximum possible

incircle radius.

A verification of this method is shown in Fig. 2.8, where the distance, d, between

the ICR(1,7)s of sub-mechanisms (ii) and (iii) is plotted for a full rotation of the moving

platform, along with the inverse of the (2-norm) condition number of the Jacobian matrix,

1/k(J). The Jacobian matrices J and K are used to relate the Cartesian velocities of the

moving platform, denoted by the vector ċ, to the actuated joint velocities, denoted by the
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Figure 2.7: Circle diagram for M = 1 sub-mechanism with link 5 removed (left) and link

4 removed (right) for the case of the introduced kinematically redundant architecture.

vector q̇, such that

Jċ = Kq̇. (2.18)

For the proposed robot architecture it can be shown that

J =


(p10 − p6)

T (p10 − p6)
TEv10

(p11 − p7)
T (p11 − p7)

TEv11

(p9 − p3)
TNG

 ,
where pi denotes the vector from the origin to the point Pi, v10 and v11 denote the vectors

from the centre of the moving platform to points P10 and P11, respectively,

E =

0 −1

1 0

 ,
N =

d3,8
d3,9

(p10 − p8)
TM

(p11 − p9)
T

−1 ,
G =

(p10 − p8)
T (p10 − p8)

TEv10

(p11 − p9)
T (p11 − p9)

TEv11

 , and

M =

cos(δ) −sin(δ)

sin(δ) cos(δ)

 ,
with δ being the angle taken anticlockwise from the vector (p9−p3) to the vector (p8−p3).

The above computation of the the 3×3 Jacobian Matrix, J, can be obtained adapting, for

instance, the method used in Schreiber and Gosselin (2018). It is well known that the robot

manipulator is considered to be in a singular configuration when 1/k(J) is equal to zero;

Fig. 2.8 shows that d and 1/k(J) vanish for the same robot manipulator configurations.

However, it should be noted that there are some inconsistencies with this Jacobian in some

configurations where N is singular, in which the value of 1/k(J) equals zero but the robot
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Figure 2.8: A comparison between d and the inverse of the condition number of the

Jacobian, 1/k(J), of the proposed mechanism with RPR legs.

is not physically in a singular configuration; these cases are explored in chapter 3. In such

circumstances d is calculated to be non-zero. Indeed, it can be verified that the robot is

certainly not in a singularity by computing the rigidity matrix of the corresponding graph

of the mechanism and calculating its rank Hendrickson (1992).

The architecture of the robot manipulator for the results of Fig. 2.8 is that of the robot

manipulator shown in Fig. 2.1, with: base joint positions P1 = (0, 0)T , P2 = (10, 0)T and

P3 = (3, 2)T , and link lengths d1,6 = 5, d2,7 = 5, d3,4 = 6, d3,5 = 7, d4,5 = 11, d4,8 = 5,

d5,9 = 5, d6,10 = 5, d7,11 = 5, d8,10 = 5, d9,11 = 5 and d10,11 = 1; all values are given

in mm. The test trajectory is a full rotation of the moving platform about point (5, 6)T .

The configurations at which d and 1/k(J) equal zero are the points at which the robot

manipulator is in a singularity.
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2.5 Experimental Results

In this section, an example trajectory is tested on an example mechanism both theoretically

through the use of a simulation and experimentally by implementing a physical prototype.

In both cases, the trajectory of the end-effector is predefined and the configuration of the

robot manipulator at each stage along this trajectory is calculated subsequently. A basic

procedure to avoid singularities was implemented.

According to the notation of Fig. 2.1, the value of α is selected such that the robot

manipulator always stays away from a singular configuration for the given pose of the

end-effector. An appropriate value of α is identified by varying it between 0 and 2π

and calculating the positions of all joints via inverse kinematics. The dimensions of the

mechanism were selected carefully such that the link between P8 and P10 is able to rotate

fully around P10 at any point along the end-effector’s trajectory. For each configuration,

the positions of the ICR(1,7) of each sub-mechanism are determined and the distance

between them, d, is calculated. If d = 0 the corresponding configuration is singular.

The test trajectory is a full rotation of the moving platform about the position (100, 200)T ;

by following this trajectory, the robot manipulator demonstrates its rotational capabilit-

ies. For the reported numerical and experimental results, the following numerical values

were used for the geometric parameters of the robot manipulator (all values are given

in mm): the coordinates of the base joints are P1 = (−50, 50)T , P2 = (−100, 325)T and

P3 = (350, 175)T ; the length of the links are d1,6 = 175, d2,7 = 175, d3,4 = 150, d3,5 = 150,

d4,5 = 150, d4,8 = 225, d5,9 = 200, d6,10 = 175, d7,11 = 175, d8,10 = 75, d9,11 = 200, and

d10,11 = 100.

For the physical prototype, shown in Fig. 2.9, four Herkulex drs-0601 servo motors were

used for the actuated joints with centres P1, P2, P4 and P5. Each of the links (including

the ternary link) were 3D-printed from ABS (Acrylonitrile Butadiene Styrene) plastic.

Ball bearings were used for all the passive revolute joints in the robot manipulator; each

passive joint consists of a bolt passing through the ball bearing joint attached to each link.

Wheels were attached to the bottom of the ternary link for support. The passive joint of

the ternary link, at centre P3, consists of a bolt fixed to the base which passes through

a ball bearing fixed to the ternary link. An Arduino Mega 2560 was used to control the

system. The base joint positions, P1, P2, and P3, were chosen such that the workspace of

the mechanism is large enough to perform full rotations of the end-effector.

Fig. 2.10 displays the d value as the robot manipulator completes the full rotation,

both for the numerical simulation and the physical prototype, in which the final con-
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Figure 2.9: Prototype of the novel kinematically redundant planar parallel robot manip-

ulator. An online video of this prototype completing a 2π rotation about a single point,

avoiding singularities, and performing a pick-and-place trajectory of full rotation can be

seen at https://www.youtube.com/watch?v=J_F8eW-K8KI&feature=youtu.be.

figuration of the mechanism is the same as the initial configuration. The experimental

d values were obtained by measuring the positions of the joints using motion tracking

cameras and then calculating the positions of the required ICRs using the method presen-

ted in section 2.4. The graph shows that, since d never goes to zero, the robot ma-

nipulator is able complete the full rotation without encountering a singularity. This is

confirmed numerically, and the experimental validation is provided as well, showing that

the full rotation is achievable without encountering mechanical interferences. An online

video of the prototype of the robot manipulator completing the rotation can be seen

at https://www.youtube.com/watch?v=J_F8eW-K8KI&feature=youtu.be. In the video,

the rigidity of the robot manipulator is physically demonstrated during the rotation to

show that it never moves into a singularity. The video also consists of an example of

singularity avoidance and a pick-and-place trajectory of full rotation to demonstrate the

robot manipulator’s workspace.

https://www.youtube.com/watch?v=J_F8eW-K8KI&feature=youtu.be
https://www.youtube.com/watch?v=J_F8eW-K8KI&feature=youtu.be
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Figure 2.10: Graph displaying d, the distance between the two ICR(1,7)s, against φ, the

angular displacement of the end-effector along the rotation trajectory.
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Chapter 3

On the False Positives and False

Negatives of the Jacobian Matrix

in Kinematically Redundant

Parallel Mechanisms

In chapter 2, a novel architecture of a kinematically redundant parallel mechanism was

presented which is capable of performing full rotations of the end-effector without en-

countering singularities. Developers of robot manipulators could adopt this architecture

for applications where the strengths of parallel robots are needed, e.g. high speed and

strength, but high dexterity is also a requirement. Once the robot is developed, full cycle

rotations can be achieved by employing a method of singularity analysis to identify which

configurations of the mechanism correspond to singularities and to then avoid them by

utilising the redundancy of the mechanism. As discussed in the chapter 1, the conventional

method of performing singularity analysis on parallel mechanisms is to use Jacobian-based

approaches, e.g. by computing the determinant of the Jacobian. In this chapter, it is shown

that such methods are unreliable when applied to kinematically redundant architectures

with non-serially connected actuators. The problems arise from the need to eliminate

redundant variables when forming it, resulting in both situations where the Jacobian in-

correctly identifies singularities (false positive), and where it fails to identify singularities

(false negative). These issues have thus far remained unaddressed in the literature. These

limitations are highlighted here by demonstrating several cases using numerical examples

of both planar and spatial architectures. The work presented in this chapter is based on
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that published in Baron et al. (2020b)

The issues associated with using Jacobian-based methods of singularity analysis mani-

fest when applied to kinematically redundant architectures with non-serially connected

actuators. When conducting the kinematic analysis of these mechanisms, it is common-

place to formulate the so-called forward kinematic Jacobian by eliminating the additional

passive joint velocity which describes the kinematically redundant degree of freedom—see

for instance Gosselin et al. (2015); Schreiber and Gosselin (2018); Gosselin and Schreiber

(2016). However, there are problems associated with this method which, to the authors’

knowledge, have yet to be discussed in the literature. Such problems arise when using

Jacobian-based methods of singularity analysis on these mechanisms. Herein, the term

singularity is used to describe the so-called forward kinematics singularity. In this chapter,

the Jacobians of three kinematically redundant parallel robots with non-serially connec-

ted actuators (two planar and one spatial) are calculated following the standard approach,

and particular instances of each architecture are examined. It is shown that the inverse

of the 2-norm condition number of the Jacobian, a traditional method of singularity ana-

lysis, either fails to identify or incorrectly identifies a singular configuration. Indeed, other

measures, such as computing the determinant of the Jacobian, exhibit the same shortcom-

ings. This phenomenon is distinct from the constraint singularity Zlatanov et al. (2002),

in that the Jacobian is either failing to identify (false negative), or incorrectly identifying

(false positive), direct kinematic singularities. The failure of the Jacobian is verified us-

ing the principles of rigidity theory; by analysing the underlying graph of the robot and

computing its rigidity matrix.

The rest of this chapter is structured as follows. In section 3.1, a summary of the

principles of rigidity theory is given, including how a parallel robot can be analysed in

terms of its underlying graph and how its rigidity, or lack thereof, can be determined

by computing the rank of its rigidity matrix. In section 3.2, a family of kinematically

redundant parallel mechanisms with non-serially connected actuators is presented, and in

section 3.3, the methods used to calculate the Jacobian for these mechanisms are presented.

In section 3.4, three example configurations of these architectures where the Jacobian fails

as a means of singularity analysis are demonstrated. Finally, in section 3.5 the results are

discussed.
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3.1 The Rigidity Matrix of Parallel robots

Rigidity theory provides a useful set of mathematical tools which can be leveraged for the

analysis of parallel robots Hendrickson (1992); Asimow and Roth (1978, 1979). A graph

G = (V,E) is a set of |V | vertices and |E| edges, where each edge joins two vertices and

is associated with a real number. A realisation of a graph is an assignment of coordinates

to each vertex such that the Euclidean distances between any adjacent vertices equals the

number associated with the corresponding edge. A framework, denoted by p(G), is the

combination of a graph and a realisation. A framework that can be continuously deformed

whilst maintaining all of the distance constraints between the vertices is flexible, else it is

rigid Hendrickson (1992). Parallel robots can be analysed using these principles through

modelling the joints of the mechanism as the vertices of a graph and the links that join

them as the edges Merlet (2006). A given configuration of a particular architecture can

then be described as a framework, and the rigidity of the physical mechanism can be

analysed by inspecting this framework.

A finite flexing of a framework p(G) is defined as a family of realisations of G such that

if the position of each vertex is differentiable with respect to time, the distance constraint

(pi(t) − pj(t))2 = constant holds for each vertex pairing (i, j) ∈ E, and differentiating

leads to

(vi − vj) · (pi − pj) = 0 (3.1)

where vi is the instantaneous velocity of vertex i. An infinitesimal motion of a framework

is a set of vertex velocities for which (3.1) holds for every paring of adjacent vertices; for

generic graph realisations, infinitesimal motions correspond to finite flexings Hendrickson

(1992). Finite flexings can be categorised as either trivial or non-trivial. Trivial finite flex-

ings correspond to translations or rotations of the Euclidean space itself, non-trivial finite

flexings are those that do not fit this description. If there exists a non-trivial infinitesimal

motion, the framework is described as flexible, otherwise it is described as rigid.

In d-dimensional Euclidean space, a set of n vertices have nd possible independent

motions. A d-dimensional body has d possible translations and d(d − 1)/2 rotations,

whereas a d′-dimensional body for which d′ < d has d′(2d− d′ − 1)/2 rotations. The total

number of allowed motions, S(n, d), for the framework is given by the total number of

independent motions of the vertices, nd, minus the number of rigid body motions, this is
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Figure 3.1: Mechanism, a), whose graph, b), corresponds to three vertices, positioned at

P1 = (0, 0)T , P2 = (2, 0)T , and P3 = (1, 1)T , and three edges.

formulated by

S(n, d) =


nd− d(d+ 1)/2 if n >= d,

n(n− 1)/2 otherwise.

(3.2)

If each edge adds one independent constraint, then S(n, d) edges are required for the

system to become rigid.

A method of testing the rigidity of a graph is by forming its rigidity matrix, which is

comprised of the set of equations (3.1) for each edge. The matrix has m rows, each of

which corresponds to an edge and nd columns, each of which corresponds to a coordinate

of a vertex. If an element in the matrix is in a row corresponding to an edge and in a

column of a vertex that is part of that edge, then the value of that element is the difference

between that vertex and the other vertex in the edge in terms of the coordinates dictated

by the column. For example, consider the planar case depicted in Fig. 3.1 where two

prismatic actuators are joined together by a revolute joint and also to the ground via two

other revolute joints; assuming the actuators are locked, this mechanism can be modelled

by a graph composed of three vertices, located at the positions of the revolute joints,

joined by three edges, which correspond to the length between each pair of joints. For the

case where the vertices are positioned at P1 = (0, 0)T , P2 = (2, 0)T , and P3 = (1, 1)T , as

displayed in Fig. 3.1, the corresponding rigidity matrix is

M =


x1 y1 x2 y2 x3 y3

e1,2 −2 0 2 0 0 0

e1,3 −1 −1 0 0 1 1

e2,3 0 0 1 −1 −1 1

. (3.3)

The example given above is straightforward since it is a planar linkage where all of

the passive joints are revolute. If the revolute joints of this mechanism were replaced

by spherical joints, such that the corresponding spatial mechanism was formed, the 3-

dimensional graph would again consist of three vertices connected by three edges. The
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Figure 3.2: A family of kinematically redundant parallel robots with non-serially con-

nected actuators proposed in the literature. The architectures, from left to right, were

first presented in Baron et al. (2018), Schreiber and Gosselin (2018), and Gosselin and

Schreiber (2016), respectively.

spatial manipulator examined in this chapter consists of revolute and universal joints in

addition to spherical joints, the corresponding sub-graphs for each of these joints are

addressed here. A revolute joint in a spatial mechanism corresponds to two vertices which

lie along the joint’s axis. If the revolute joint is attached to a spherical joint, each vertex is

connected to the vertex corresponding to the spherical joint in addition to each other Rojas

and Thomas (2018). A universal joint attached to the base corresponds to three adjacent

vertices, two attached to the base, forming the base revolute axis, and the third, able to

move with respect to the base, forming the moving revolute axis with one of the other two

vertices. If the universal joint is connected to a revolute joint, then the vertices that form

the moving axis are each connected to both of the vertices corresponding to the revolute

joint.

A framework is rigid if, and only if, the row rank, herein referred to as rank, of its

corresponding rigidity matrix is equal to S(n, d). This is because as all infinitesimal

motions must be in the null space of M , and S(n, d) represents the size of the rigidity

matrix without any trivial infinitesimal motions, it follows that if there exists any non-

trivial motions within the null space of M , its rank must be less than S(n, d). Therefore

for a parallel robot, which is generally rigid, its corresponding rigidity matrix should be

of full rank except for singular configurations in which it loses its inherent rigidity. In

section 3.4, computing the rank of the rigidity matrix is used as a steadfast method of

determining whether or not a parallel robot has entered a singularity.
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3.2 Kinematic Redundant Parallel Robots with Non-Serially

Connected Actuators

Kinematically redundant architectures can be categorised into two different types: those

which contain serial connected actuators and those which do not. Architectures with

serially connected actuators can be obtained by taking a non-redundant architecture and

adding extra actuated joints to the existing limbs. Architectures which don’t exhibit

actuators connected in series contain at least two limbs that share a kinematic constraint

between the base and the moving platform. Fig. 3.2 displays three instances of non-serially

actuated kinematically redundant parallel architectures that have been proposed in the

literature.

The architecture displayed on the left-hand side of Fig. 3.2 is the equivalent of the

planar mechanism presented in chapter 2, but with RPR legs instead of RRR legs; that is

an actuated prismatic joint with a passive revolute joint at each of its ends, two of which

join the end-effector to the base directly, and the the other two join the end-effector to a

ternary link, which itself is connected to the base via a passive revolute joint. The second

architecture, presented in Schreiber and Gosselin (2018), is also a planar mechanism that

consists of four RPR legs. Two of the legs are connected to the base and the end-effector

at separate points, the other two legs are joined to the end-effector at separate points

and to a binary link at the same point, which in turn is connected to the base via a

passive revolute joint. The third architecture, presented in Gosselin and Schreiber (2016),

consists of a moving platform which is connected to the base by multiple redundant and

non-redundant legs. A non-redundant leg consists of a prismatic joint which is joined

to the platform via a spherical joint and to the base via a universal joint. A redundant

leg consists of two prismatic actuators joined to the base at different points via universal

joints, and to each other via a revolute joint, which in turn is connected to the platform

via a spherical joint. The instance of the manipulator shown in Fig. 3.2 consists of three

pairings of redundant and non-redundant legs, where the universal joints of each pairing

are positioned upon of the same line. The six spherical joints connecting the legs to

platform are located at three different positions; each position shares a joint between a

redundant and non-redundant leg from different pairings.

The kinematically redundant architectures with non-serially connected actuators presen-

ted in Fig. 3.2 benefit from the advantages provided by kinematic redundancy, i.e the

singularity locus in the robot’s workspace is significantly reduced, but additionally they

do not suffer from the accumulation of actuator errors along each of the limbs. In the
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following section, the method of calculating the Jacobian matrices, relating the robot’s

input joint velocity vector to the output velocity vector, is demonstrated for each of these

three architectures.

3.3 Calculation of the Jacobian

The relationship between the input joint velocities and the output velocity of the end-

effector of a parallel robot can be described by the Jacobian matrices, J and K, such

that

Jċ = Kq̇ (3.4)

where ċ and q̇ denote the output and input velocity vectors, respectively. Traditionally,

the robot is determined to be in a type-II singularity if J is singular. In this section, the

method of calculating J for each of the three kinematically redundant parallel robots with

non-serially connected actuators displayed in Fig. 3.2 is demonstrated. Unlike for non-

redundant architectures, the method requires the elimination of at least one redundant

output velocity variable in order to form the row(s) corresponding to the branches of

the mechanism which join between the end-effector and the base; e.g. when two legs are

joined to common link which, in turn, is joined to the base. This process of eliminating

the redundant output variable(s) generates issues when performing singularity analysis,

these problems are discussed in section 3.4.

The methods of calculating the Jacobian for each of these three mechanisms is sum-

marised below. The aim of this section is to highlight the need for the elimination of

redundant joint velocities, the aim is not to give a detailed account of how the Jacobian

is calculated from start to finish. For a more comprehensive detailing of each method, the

reader is referred to the detailed Jacobian calculations in appendix A.

3.3.1 Architecture 1 - 1st Planar Case

Firstly, let’s consider the robot architecture displayed on the left-hand side of Fig. 3.2, the

corresponding kinematic diagram of this architecture is shown in Fig. 3.3. The moving

platform (P6P7) is connected directly to the base via two RPR legs at P1 and P2, namely

legs 1 and 2, and to the ternary link via the two other RPR legs at P4 and P5, namely

legs 3 and 4, which is connected to the base itself via a revolute joint at P3. A fixed

reference frame, Oxy, is attached to the base and a moving frame, Pex
′y′, is attached

to the moving platform. The orientation of the platform, φ, is given by the angle taken
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Figure 3.3: The corresponding Kinematic diagram of the architecture displayed in the

left-hand side of Fig. 3.2, that of the mechanism presented in Baron et al. (2018).

anti-clockwise from the horizontal axis of the fixed frame to that of the moving frame,

centred at Pe(x, y). After forming the vector loop equations along each of the four legs,

and taking the derivative with respect to time for each of them, we obtain

pT1,6(ṗe − ṗ6,e) = ρ1ρ̇1, (3.5)

pT2,7(ṗe − ṗ7,e) = ρ2ρ̇2, (3.6)

pT4,6(ṗe − ṗ3,4 − ṗ6,e) = ρ3ρ̇3, (3.7)

pT5,7(ṗe − ṗ3,5 − ṗ7,e) = ρ4ρ̇4. (3.8)

where pi,j denotes the vector from Pi to Pj , pe denotes the position vector of Pe, ρi denotes

the length of the prismatic actuators of the ith leg of the manipulator, and dot notation

is used to indicate a derivative with respect to time.

Since the output of the robot is the 3-dimensional velocity vector, ċ = (ẋ, ẏ, φ̇)T , and

the input is the 4-dimensional velocity vector, q̇ = (ρ̇1, ρ̇2, ρ̇3, ρ̇4)
T , the Jacobian matrices,

J and K, are of dimension 3× 3 and 3× 4, respectively. The first two rows are formed by

equations (3.5) and (3.6), whereas the third row is formed by combining equations (3.7)

and (3.8) through the elimination of ṗ3,5; the vector which corresponds to the redundant
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output variable.

Since P3, P4, and P5 are all connected to the same ternary link, the following relation

exists:

p3,4 =
d3,4
d3,5

cos(δ) −sin(δ)

sin(δ) cos(δ)

p3,5 = λMp3,5 (3.9)

where

λ =
d3,4
d3,5

, (3.10)

M =

cos(δ) −sin(δ)

sin(δ) cos(δ)

 , (3.11)

and δ is the angle taken anti-clockwise from p3,5 to p3,4. Using this relation, equations (3.7)

and (3.8) can be combined to produce the following equationpT4,6(ṗe − ṗ6,e)− ρ3ρ̇3

pT5,7(ṗe − ṗ7,e)− ρ4ρ̇4

 =

pT4,6λM
pT5,7

 ṗ3,5, (3.12)

and then ṗ3,5 can be made the subject by

ṗ3,5 = N

pT4,6(ṗe − ṗ6,e)− ρ3ρ̇3

pT5,7(ṗe − ṗ7,e)− ρ4ρ̇4

 , (3.13)

where

N =

pT4,6λM
pT5,7

−1 .
Since the distance between P3 and P5 is constant,

pT3,5ṗ3,5 = 0. (3.14)

The redundant output variable, ṗ3,5, is then eliminated by substituting (3.13) into (3.14).

By expanding the velocity vectors, we obtain

pT3,5N

pT4,6
pT5,7

ẋ
ẏ

− pT3,5N

pT4,6Ep6,e

pT5,7Ep7,e

 φ̇ = pT3,5N

ρ3ρ̇3
ρ4ρ̇4

 , (3.15)

where

E =

0 −1

1 0

 .
By similarly expanding the velocity vectors of equations (3.5) and (3.6), the Jacobian

matrices J and K can be formed, such that J is given by

J =


pT1,6 −pT1,6Ep6,e

pT2,7 −pT2,7Ep7,e

pT3,5N

pT4,6
pT5,7

 −pT3,5N

pT4,6Ep6,e

pT5,7Ep7,e



 . (3.16)
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3.3.2 Architecture 2 - Spatial Case

Here the Jacobian is calculated for the kinematically redundant spatial manipulator dis-

played in the right-hand side of Fig. 3.2, the corresponding kinematic diagram of which is

displayed in Fig. 3.4. As mentioned above, the manipulator consists of a moving platform

attached to the base by three redundant and three non-redundant legs. The non-redundant

legs consist of an actuated prismatic joint which is connect to the base via a universal joint,

at point Ai, and to the moving platform via a spherical joint, at point Bi, where i = 4, 5, 6.

The redundant legs consist of two actuated prismatic joints joined to the base at points

Ai,1 and Ai,2, to each other via a revolute joint at Si, and to the moving platform via a

spherical joint at Bi, where i = 1, 2, 3. The six spherical joints attached to the platform

are positioned in coincident pairs. A fixed reference frame Oxyz is attached to the base

and a moving reference frame Px′y′z′ is attached to the moving platform. In Gosselin and

Schreiber (2016), the Jacobian is calculated for a manipulator with an unspecified num-

ber of redundant legs, here the same method is simplified for a manipulator with three

redundant and three non-redundant legs. The position vectors of the universal joints on

the base, Ai,j and Ai for the redundant and non-redundant legs respectively, are denoted

by ai,j and ai. The position vectors for the spherical joints, Bi, on the platform are given

by bi, and the position vectors of each revolute joint, Si, are denoted by si. The Jacobian,

J, of this robot is a 6 × 6 matrix, where three of the rows correspond to the redundant

legs and three correspond to the non-redundant legs. Here, the steps required to compute

the rows corresponding the redundant legs are shown as this is where the elimination of

the redundant variables occurs.

The position of the ith platform joint in terms of Q, the matrix denoting the orientation

of the platform, and vi,0, the position of the joint in the moving frame,is given by

bi = p + Qvi,0, i = 1, ..., 6. (3.17)

For the ith redundant leg, the following constraint equations are written

(si − ai,j)
T (si − ai,j) = ρ2i,j , (3.18)

(si − bi)
T (si − bi) = l2i , (3.19)

where li denotes the length of the link which joins Si and Bi, and j = 1, 2. Given that

the joints Ai,1, Ai,2, Si, and Bi are coplanar, if we define a unit vector ei which passes

through the base joints of redundant leg i, the following relationship must hold

[(bi − ai,1)× ei]
T (si − ai,1) = 0. (3.20)
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Figure 3.4: The corresponding kinematic diagram of the architecture displayed in the

right-hand side of Fig. 3.2, that of the mechanism presented in Gosselin and Schreiber

(2016).

By differentiating equations (3.18) and (3.20), the following is obtained
(si − ai,1)

T

(si − ai,2)
T

[(bi − ai,1)× ei]
T

 ṡi = Hiṡi =


ρi,1ρ̇i,1

ρi,2ρ̇i,2

[(si − ai,1)× ei]
T ḃi

 . (3.21)

Equation (3.21) is solved for ṡi by taking the matrix inverse of Hi, such that

ṡi = H−1i


ρi,1ρ̇i,1

ρi,2ρ̇i,2

[(si − ai,1)× ei]
T ḃi

 , (3.22)

where H−1i can be expressed as

H−1i =
Adj(Hi)

det(Hi)
, (3.23)

Adj(Hi) is the adjoint of matrix Hi and det(Hi) is the determinant, which herein will be

denoted by µi. These can be expressed algebraically by

det(Hi) = µi = [(si − ai,1)× (si − ai,2)]
T [(bi − ai,1)× ei] (3.24)
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and

Adj(Hi) =
[
hi,1 hi,2 hi,3

]
(3.25)

where

hi,1 = (si − ai,2)× [(bi − ai,1)× ei], (3.26)

hi,2 = [(bi − ai,1)× ei]× (si − ai,1), (3.27)

hi,3 = (si − ai,1)× (si − ai,2). (3.28)

Now equation (3.22) can be rewritten as

ṡi =
1

µi
(hi,1ρi,1ρ̇i,1 + hi,2ρi,2ρ̇i,2 + hi,3[(si − ai,1)× ei]

T ḃi). (3.29)

By taking the derivative of (3.19), one obtains

(si − bi)
T ṡi = (si − bi)

T ḃi, (3.30)

and substituting (3.29) and the derivative of (3.17) into (3.30) gives

(si − bi)
T ṗ + [Qvi,0 × (si − bi)]

Tω = (si − bi)
Tmiρ̇i,1 + (si − bi)

Tniρ̇i,2 (3.31)

where

mi =
ρi,1
µi

[(si − ai,2)× [(bi − ai,1)× ei]], (3.32)

ni =
ρi,2
µi

[[(bi − ai,1)× ei]× (si − ai,1)]. (3.33)

The output velocity vector of the manipulator is given by ċ = (ṗT ,ωT )T and the vec-

tor of actuated joint velocities is given by q̇ = (ρ̇1,1, ρ̇1,2, ρ̇2,1, ρ̇2,2, ρ̇3,1, ρ̇3,2, ρ̇4, ρ̇5, ρ̇6)
T .

Equation (3.31) is used to construct the first three rows of the Jacobian which correspond

to the redundant legs of the manipulator. Then, along with the latter three rows which

correspond to the non-redundant legs, the Jacobian matrices J and K can be computed.

Matrix J is given by

J =



(s1 − b1)
T [Qv1,0 × (s1 − b1)

T ]

(s2 − b2)
T [Qv2,0 × (s2 − b2)

T ]

(s3 − b3)
T [Qv3,0 × (s3 − b3)

T ]

(b4 − a4)
T [Qv4,0 × (b4 − a4)

T ]

(b5 − a5)
T [Qv5,0 × (b5 − a5)

T ]

(b6 − a6)
T [Qv6,0 × (b6 − a6)

T ]


. (3.34)
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Figure 3.5: The corresponding Kinematic diagram of the architecture displayed in the

centre of Fig. 3.2, that of the mechanism presented in Schreiber and Gosselin (2018).

3.3.3 Architecture 3 - 2nd Planar Case

The final mechanism under inspection, displayed in the centre of Fig. 3.2, is the kinematic-

ally redundant planar parallel architecture presented in Schreiber and Gosselin (2018), the

kinematic diagram of which is shown in Fig. 3.5. The architecture consists of four RPR

legs, two which of are joined to the base at points A1 and A2, and to the moving platform

at B1 and B2. The other two are joined to the platform at points B3 and B4, and are

joined to an additional link at the same point, S, which in turn is connected to the base via

a revolute joint centred at A3. A fixed reference frame Oxy is attached to the base, and a

moving reference frame Px′y′ is attached to the platform at point P (x, y); the orientation

of the platform, φ, is defined by the angle taken anti-clockwise from the horizontal axis

of the fixed reference frame to that of the moving reference frame. The position vectors

of points Ai, Bi, S, and P are denoted by ai, bi, s, and p respectively. The Cartesian

coordinates of the platform are given by c = (x, y, φ)T . The distance between joints Ai

and Bi, i = 1, 2, and S and Bi, i = 3, 4, is denoted by ρi, corresponding to the lengths of

the prismatic actuators. The orientation of link A3S relative to the fixed reference frame

is given by γ. Firstly, the constraint equations in terms of the square of the length of each

prismatic actuator, ρ2i , and the square of the length of link A3S, l2i , are formed, and their
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derivatives are obtained as

(bi − ai)
T (ṗ + φ̇Eνi) = ρiρ̇i, i = 1, 2, (3.35)

(bi − s)T (ṗ + φ̇Eνi − ṡ) = ρiρ̇i, i = 3, 4 (3.36)

(s− a3)
T ṡ = 0 (3.37)

where νi = Qν0,i. Equations (3.36) are then combined to form the matrix equation

Gċ− h = Hṡ (3.38)

such that  fT fTEν3

mT mTEν4

 ċ−

ρ3ρ̇3
ρ4ρ̇4

 =

 fT

mT

 ṡ

where fT = (b3 − s)T and mT = (b4 − s)T . Equation (3.38) is then rearranged to make ṡ

the subject by taking the inverse of matrix H, such that

ṡ = N(Gċ− h) (3.39)

where

N = H−1 =
1

fTEm

[
Em −Ef

]
.

The redundant variable, ṡ, is then eliminated by substituting (3.39) into (3.37), such that

(s− a3)
TNGċ = (s− a3)

T
[
Emρ3
fTEm

−Efρ4
fTEm

]ρ̇3
ρ̇4

 (3.40)

where

NG =
E

fTEm

[
(mfT − fmT ) (mfTEν3 − fmTEν4)

]
. (3.41)

This may be further simplified to

NG =
[
I E(s− p)

]
(3.42)

where I denotes the 2×2 identity matrix. The details of this simplification are given in the

detailed Jacobian calculations in appendix A, however this is not the focus; if either (3.41)

or (3.42) are used to form the Jacobian, the same problems still manifest themselves. These

issues are generated through performing the matrix inverse, H−1, and the elimination of

the redundant variable, ṡ. The first two rows of the Jacobian Matrices, J and K, can

then be formed from (3.35), and the third row can be obtained by substituting (3.42)

into (3.40), such that matrix J is given by

J =


(b1 − a1)

T (b1 − a1)
TEν1

(b2 − a2)
T (b2 − a2)

TEν2

(s− a3)
T (s− a3)

TE(s− p)

 . (3.43)
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3.4 Limitations of the Jacobian

In this section, some examples of the problems with using Jacobian-based methods of

singularity analysis for kinematically redundant robots with non-serially connected actu-

ators are demonstrated. The Jacobian is computed for each of the three architectures

presented in Fig. 3.2 whilst in configurations where these problems manifest themselves.

The singularity analysis is conducted using the inverse of the 2-norm condition number

of the Jacobian, and the results are assessed by constructing the rigidity matrix and cal-

culating its rank. The rigidity matrices for each of the three mechanisms are provided in

appendix B.

3.4.1 1st Planar Case - False Positive of the Jacobian

In this first example, we consider a mechanism which has the same architecture as that

presented in the left-hand side of Fig. 3.2. Let’s consider the configuration of this mech-

anism where p1 = (0, 0)T , p2 = (3, 0)T , p3 = (2.5, 1)T , p4 = (1.79, 1.71)T , p5 = (2.5, 2)T ,

p6 = (1.41, 2.63)T , and p7 = (2.88, 2.92)T ; the corresponding kinematic diagram is shown

in Fig. 3.6. The Jacobian, J, is obtained by inputting these values into (3.16). The inverse

of the 2-norm condition number of the obtained Jacobian is zero, suggesting that the robot

is in a singularity. However, the rigidity matrix of the mechanism in this configuration

has full rank, this indicates that the robot is not in a singularity, despite the fact that the

inverse of the condition number of the Jacobian suggests the robot is in a singularity.

3.4.2 Spatial Case - False Negative of the Jacobian

Now we turn our attention to the spatial manipulator. In this case, the issue is that

it is possible to have a configuration where the robot enters a singularity, indicated

by the fact that the rigidity matrix loses rank, but the determinant of the Jacobian

is non-zero. In Gosselin and Schreiber (2016), where the architecture is presented and

the Jacobian is calculated, the authors state that an assumption of this mechanism is

that the legs never lie in the base plane. However, since the inverse of the condition

number of the Jacobian does not approach zero as the robot nears such a configura-

tion, it does not act as a reliable method of analysing how the performance of the robot

deteriorates near all singularities, making it a bad basis for path planning algorithms.

In the following example, the robot is initially in a non-singular pose and the plat-

form follows a trajectory towards the configuration in which the revolute joint of one

of the redundant legs, s3, lies on the line passing through the base joints a3,1 and a3,2.
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Figure 3.6: Configuration of the robot proposed in Baron et al. (2018) where the inverse of

the condition number of the Jacobian is zero, suggesting that the configuration is singular,

but the rigidity matrix is of full rank, indicating that the mechanism is not in a singularity.

A fixed reference frame is attached to the base and the base joints are positioned at:

a1,1 = (−1.4, 0, 0)T , a1,2 = (−1.0,−0.69, 0)T , a2,1 = (0.7, 1.21, 0)T , a2,2 = (−0, 1, 1.21, 0)T ,

a3,1 = (0.7,−1.21, 0)T , a3,2 = (1.1,−0.52, 0)T , a4 = (−1.5, 0.17, 0)T , a5 = (0.9, 1.21, 0)T ,

and a6 = (0.6,−1.39, 0)T . When in the initial pose, the platform joints are positioned

at: b1 = (−1.18,−0.43, 1.68)T , b2 = (−1.18, 0.43, 1.68)T , and b3 = (0.35, 0, 1.15)T , and

the revolute joints on the redundant legs are positioned at: s1 = (−0.23,−0.43, 1.59)T ,

s2 = (−0.15, 0.47, 1.59)T , and s3 = (0.39,−0.06, 1.07)T ; all coordinates are given to two

decimal places.

The platform follows a linear trajectory such that the final pose of the platform is given

by b1 = (0.33,−1.24, 0.60)T , b2 = (0.33,−0.38, 0.60)T , and b3 = (0.86,−0.81, 0.07)T .

The revolute joints of the redundant links are positioned throughout the trajectory such

that the line passing through the link bisi passes through the midpoint of base joints

ai,1 and ai,2; their positions at the end of the trajectory are s1 = (0.25,−1.19, 0.57)T ,

s2 = (0.33,−0.28, 0.57)T , and s3 = (0.90,−0.87, 0)T . Fig. 3.7 shows the initial and final

pose of the manipulator during this trajectory.

The trajectory is discretised into 101 steps, and the value of 1/κ(J) (the inverse of the
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Figure 3.7: The initial and final configurations of the example kinematically redundant

spatial manipulator as it moves from a non-singular pose into a singularity.

2-norm condition number of J), is displayed at each step in Fig. 3.8. The value of 1/κ(J)

does not go to zero as the manipulator reaches the final pose of the trajectory, where

the revolute joint s3 lies directly between a3,1 and a3,2. However, in this configuration

the manipulator is in a type-II singularity, this is determined by formulating the rigidity

matrix of the mechanism and computing its rank at each step. The rank of the rigidity

matrix at each step is 88, except for the last step at which it drops to 87, indicating that

the mechanism has entered a type-II singularity at this point and lost its rigidity.

3.4.3 2nd Planar Case - False Negative of the Jacobian

In this final example, the 2nd planar architecture is examined as it moves from an initial

non-singular configuration through a singularity. The trajectory is depicted in Fig. 3.9,

the transparent instances show the initial and final non-singular configurations of the

mechanism whereas the opaque instance shows the singular configuration. The base joints

are positioned at: a1 = (12, 15)T , a2 = (8, 0)T , and a3 = (−2, 1)T , and joint S is always

positioned at s = (0, 2.5)T throughout the trajectory. In the initial configuration, the

platform joints are positioned at b1 = (−3, 10)T , b2 = (−3, 7)T , b3 = (−6.5, 7)T , and

b4 = (−6.5, 10)T . The platform then moves along a horizontal trajectory to the right,

passing through a configuration where the links SB3 and SB4 become collinear. The value
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Figure 3.8: Inverse of the condition number of the Jacobian, 1/κ(J), for spatial manipu-

lator at each step of the trajectory, showing that the Jacobian does not approach becoming

singular as the robot moves into a type-II singularity.

of the inverse of the 2-norm condition number, 1/κ(J), is plotted against the x coordinate

of platform joint b1 in Fig. 3.10. This case is similar to that reported in example 2, in

that the value of 1/κ(J) does not approach zero as the robot nears a singularity, when

x0 = 3.5.

3.5 Discussion

It is clear that these shortcomings of the Jacobian as a means of singularity detection

have serious implications in terms of path planning algorithms for kinematically redundant

parallel robots with non-serially connected actuators. For cases similar to the first example,

the feasible workspace of the mechanism would needlessly be restricted since the Jacobian

becomes singular in configurations where the robot is not in a singularity. Whereas for

cases similar to the second two examples, any path planning algorithms based on the

Jacobian would run the risk of moving the robot into a configuration where its performance

may deteriorate significantly.

The issues are generated by the need to eliminate a, or multiple, redundant variables.

For the first example, the determinant of the Jacobian becomes singular because the mat-

rix that is inverted to obtain N, in equation (3.13), itself becomes singular due to a linear
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Figure 3.9: Trajectory of the example kinematically redundant planar parallel robot,

passing through a type-II singularity for which the Jacobian stays non-singular.

dependence between its rows. Although this accounts for the singularity from a mathem-

atical perspective, it does not translate into a physical meaning for the singularity. The

geometric conditions for this instance to occur are that if the line which passes through

leg 3 of the manipulator is rotated by δ in the clockwise direction, and the result is a

collinearity with the line which passes through leg 4. In addition to computing the rank

of the corresponding rigidity matrix, it is also possible to verify that this configuration

is non-singular by performing the singularity analysis via instantaneous centres of rota-

tion Baron et al. (2019); Daniali (2005); Di Gregorio (2009), and in chapter 4, such a

method is presented. The result is that, when in the configuration detailed in example

1, the instantaneous centres of rotation between the platform and the base, for each of

the four equivalent mechanisms where all but one of the actuators are locked, are all de-

terminable and do not coincide with one another, indicating that the robot is not in a

singularity.

The failure of the Jacobian in examples 2 and 3 is different to example 1; the inverse

of the condition number of the Jacobian is non-zero, but we know that the robot is in a

singularity as the corresponding rigidity matrix is rank deficient. Although the architec-

tures in examples 2 and 3 correspond to spatial and planar cases respectively, the reasons

which cause the Jacobian to fail in both examples are similar and so we will treat them
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Figure 3.10: Value of 1/κ(J) as the planar parallel robot passes through the singularity;

the configuration where the limbs joined to the platform and the redundant link become

collinear, occurring at x0 = 3.5.

both here. In example 2, the redundant variable si is eliminated by taking the inverse

of matrix Hi so that equation (3.22) can be substituted into (3.30). In order to perform

this matrix inverse, the determinant of Hi, denoted µi, is taken; which equals zero when

the prismatic actuators along Ai,1S and Ai,2S are collinear. It can be seen that (3.31) is

obtained by substituting (3.29), that which contains µi, into (3.30). However, since the

third term of the right-hand side of (3.29) is orthogonal to (si − bi), the product of them

equals zero and hence µi does not feature in the Jacobian matrix, J. Similarly in example

3, the term NG in (3.41) is simplified to (3.42), such that the coefficient 1/fTEm is can-

celled. An alternative is to not perform these simplifications such that the determinants

of of matrices Hi and H, respectively, remain present in the Jacobian; however this means

that although det(J) = 0 when the robot is in this configuration, it does not smoothly

approach zero as the robot approaches the configuration; therefore unless, the robot is

positioned precisely in such a pose, the singularity will not be detected. It is also possible

to detect these singularities by generating the so-called ‘extended Jacobian’, by including

the time derivative of the redundant variable in the cartesian velocity vector Schreiber and

Gosselin (2018, 2019). However, the use of this technique for path planning algorithms is

limited as the time derivative of the redundant variable must also be selected in order to
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solve the inverse kinematics.

The findings presented above are summarised by advising developers of kinematically

redundant parallel robots with non-serially connected actuators to use non-Jacobian based

methods of path planning and singularity analysis. Computing the rank of rigidity matrix

of the underlying graph of the mechanism is a reliable method of determining whether or

not a particular configuration is singular or not, but does not help with informing how

close the robot is to a singularity. It is clear that other methods need to be developed

which do not exhibit the issues detailed above. A video summarising the work presented

in this chapter can be viewed at https://www.youtube.com/watch?v=-fmpNin_Zgs.

https://www.youtube.com/watch?v=-fmpNin_Zgs
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Chapter 4

A Robust Method of Singularity

Avoidance

In the previous chapter, it has been made clear that conventional, Jacobian-based methods

of singularity analysis can be very unreliable when applied to kinematically redundant

architectures with non-serially connected actuators. This has massive implications for

path planning algorithms used on kinematically redundant architectures as this can lead

to algorithms missing some (false negative) singularities, risking the failure of the robot

in some configurations, and also leading to needlessly restricting the size of the workspace

to avoid false positive singularities. In this chapter, a method of singularity analysis is

proposed which does not exhibit the same shortcomings as Jacobian-based methods, as

exemplified in the previous chapter. This approach is then used as a basis upon which a

method of singularity avoidance is developed, such that the redundancy of the mechanism

is optimised for a given pose of the end-effector to move as far away from a singularity as

possible. The work presented in this chapter is based on that published in Baron et al.

(2020c).

The method of singularity avoidance for kinematically redundant parallel robots presen-

ted here is a geometric approach, which firstly determines the manipulator’s proximity to

a singularity and then computes how the kinematically redundant degree(s) of freedom

should be optimised for the given pose of the end-effector. The singularity analysis is

conducted by examining the mechanism in terms of the instantaneous centres of rotation

(ICRs) of its corresponding mobility one sub-mechanisms when all but one of the actu-

ators are locked. The position of the ICR between the platform and the base of each

sub-mechanism is computed and the manipulator is in a type-II singularity when these

ICRs either are indeterminable or coincide with one another. The robot manipulator’s
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proximity to a singularity is measured by computing the in-circle radii of the triangles

formed by these ICRs, and finding the minimum of these radii, rmin. This is different to

the method presented in chapter 2, where the robot manipulator’s proximity to a singu-

larity is given by the minimum distance between two ICRs. The avoidance of singularities

is carried out by determining the configuration of the robot for which rmin is optimised,

and is reachable without crossing a singularity. A predictor-corrector method to compute

the optimum value of the parameter which describes the degree of kinematic redund-

ancy of the robot manipulator such that rmin is maximised without passing through a

singular configuration, that where rmin=0. The method of singularity avoidance is car-

ried out numerically on an example mechanism. Finally, it is shown that the geometric

method of singularity analysis is more reliable than Jacobian-based approaches by ex-

amining two example mechanisms, which are in configurations where the Jacobian both

incorrectly identifies and fails to identify singularities, but the proposed method does not;

this is verified by computing the robots’ corresponding rigidity matrices whilst in these

configurations, as it is known that the rank of the rigidity matrix drops in a singular

configuration Hendrickson (1992); Asimow and Roth (1978, 1979).

The remainder of this chapter is structured as follows. In section 4.1, the principles

of instantaneous centres of rotation are discussed and the method of determining their

positions is presented. In section 4.2, the singularity analysis is performed, such that the

value of rmin for a given configuration of the robot manipulator can be obtained and a

predictor-corrector algorithm is then employed to increase this value without crossing a

singularity or changing the pose of the end-effector. Section 4.3 gives a numerical example

to demonstrate this process. In section 4.4, the proposed method of singularity analysis

is compared with a conventional Jacobian based method; the advantages the former has

over the latter are shown with the aid of two examples.

4.1 Review of Basic Tools

In this section, the background tools used to conduct the proposed method are briefly re-

viewed. Firstly, as the method is intended to be implemented on kinematically redundant

planar parallel robots with non-serially connected actuators, a set of four example archi-

tectures that have been proposed in recent years are presented in Fig. 4.1. This includes

the two planar architectures presented in chapter 3 and two additional architectures. Ar-

chitecture a) was first presented in Baron et al. (2018), b) and c) in Schreiber and Gosselin

(2018), and d) in Gosselin et al. (2015), although this architecture is less unique than the
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Figure 4.1: A family of kinematically redundant planar parallel robots. All of these

architectures consist of four RPR legs, two of which directly connect the end-effector to

the ground. In architecture a) the remaining two RPR legs join the end-effector to a

ternary link which itself is connected to the base via a revolute joint. In architecture b),

the remaining two RPR legs join the base to a binary link which is joined to the end-effector

via a revolute joint. In architecture c), the remaining two RPR legs join the end-effector

to a binary link which is connected to the ground via a revolute joint. Finally, architecture

d) is a specialised case of b) in which two of the joints attached to the end-effector are

coincident.

others because it can be considered as a specialised case of architecture b). The method

of singularity analysis presented in section 4.2.1 is applicable on all planar parallel robots,

however the method of singularity avoidance, presented in section 4.2.2, is tailored for

redundant robots such as those shown in Fig. 4.1.

The singularity analysis is performed by inspecting the mechanism in terms of its

instantaneous centres of rotation (ICRs), where the manipulator is determined to be in a

singularity if these ICRs coincide or become indeterminable Daniali (2005); Baron et al.

(2018); Di Gregorio (2009). The method of carrying out this analysis is briefly reviewed
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Figure 4.2: Kinematically redundant planar parallel architecture presented in Baron et al.

(2018) with the relevant ICRs displayed.

here, a more comprehensive description is given in chapter 2. Firstly, the mechanism is

treated as the union of its corresponding sub-mechanisms with a mobility of one (M=1)

where all but one of the actuated joints are locked. Then the ICR between the end-effector

and the base of each sub-mechanism can be found by applying the Aronhold-Kennedy

theorem; which states that for any three rigid bodies moving relative to one another in

a plane, the three ICRs between them lie upon the same line. If the positions of two of

the ICRs between three rigid bodies are known, then the third ICR must lie upon the line

which passes through them; following this, the position of an ICR can be determined if it

lies upon two known lines – the ICR between the end-effector and the base for each sub-

mechanism is found using this principle. An effective system for keeping track of which

ICRs between two rigid links of the mechanism are known is to construct Circle Diagrams

(also known as the auxiliary polygon derived from the Aronhold-Kennedy theorem on

ICRs), first presented in Hartenberg and Denavit (1964). For example, Fig. 4.2 displays

the architecture in Fig. 4.1 a) with the relevant ICRs depicted, and the corresponding

Circle Diagrams are given in Fig. 4.3.

The mechanism consists of an end-effector (link 7) which is connected to the base (link

1) directly by two RPR legs (links 3 and 4), and also by two other RPR legs (links 5 and

6) that are connected to a ternary link (link 2) which itself is connected to the base via
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Figure 4.3: Circle Diagrams used to determine the positions of the ICRs for the mechanism

displayed in Fig. 4.2.

a revolute joint. Links 4 and 6 are connected to the end-effector at a single point, as are

links 5 and 7.

The M=1 sub-mechanisms are obtained by removing the constraints imposed by each

of the four legs in turn; it can be verified that each of the following mechanisms have a

mobility of one by using the extended Chebychev-Kutzbach-Grübler formula Rojas and

Dollar (2016), which is given by

M = F −
λ∑
i=1

ti (4.1)

where λ = J −L+ 1 is the number of independent closed-loops in the mechanism, ti is the

motion type of the ith independent closed-loop (ti = 3 in the planar case), J is the total

number of joints, L is the number of links, and F is the total number of degrees of freedom

of the joints. The Circle Diagrams for the sub-mechanisms are given in Fig. 4.3 where all

the links are denoted by number and the black, filled lines denote that the corresponding

links share a physical joint. The circle diagram for the sub-mechanism where link 6 is

removed is not shown because it gives the same result as the sub-mechanism where link

5 is removed. A desired ICR is denoted by a dashed line, and it is possible to find its

position if this line is the common side of two other triangles that are otherwise made up

of lines denoting known ICRs and joints.

The aim is to obtain the position of ICR(1,7) for each sub-mechanism; from herein the

ICR between links i and j will be denoted by ICR(i,j). For sub-mechanism i), it can be

seen that the dashed line on the circle diagram between links 1 and 7 is the common side

of two triangles otherwise made up of filled in lines. The position of ICR(1,7) is therefore

given by the point of intersection between the lines that pass through the joints between

links 1 & 3 and links 3 & 7, and the joints between links 1 & 4 and links 4 & 7; this is

displayed as point S on Fig. 4.2. Sub-mechanisms ii) and iii) follow the same logic, but

since ICR(1,7) is not initially the common side of two triangles, an additional ICR has to
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be calculated beforehand, this is ICR(2,7) and it is shown as point Q in Fig. 4.2. Now

ICR(1,7), for both sub-mechanism ii) and iii), is the common side of two triangles, its

position can be found by finding the point of intersection of the relevant lines.

4.2 Geometric Method of Singularity Avoidance

4.2.1 Proximity to a Singularity

After the ICRs between the base and the platform for each M=1 sub-mechanism have been

determined using the methods detailed in section 4.1, the robot manipulator’s proximity

to a singularity is analysed by determining how close two of these ICRs are to coinciding

or how close one of the sub-mechanisms is to being in a singularity itself. In order to

measure both of these criteria, the method used is to find sets of three ICRs and calculate

the in-circle radius of the triangle whose vertices correspond to the positions of these

points. The computation of the in-circle radius has previously been used for performing a

Jacobian-based method of singularity analysis of the 3-RPRR manipulator Ebrahimi et al.

(2008).

The first objective is to determine the triangles that need to be formed in order to

measure the robot manipulator’s proximity to a singularity. A robot manipulator is in

a singularity if either two or more of the ICRs between the base and the end-effector of

each sub-mechanism coincide, or if one or more of the sub-mechanisms themselves move

into a singularity; a configuration where the ICR between the base and the end-effector

cannot be determined due to the collinearity of construction lines. The former is done

by calculating the number of triangles that can be formed by the total number of ICRs

between the base and the end-effector; e.g. if there are three, one triangle needs to be

formed. The latter is done by making sure that every pair of construction lines used to

compute the position of any virtual ICR is included in a triangle; if there exists a pair

that are not, then a triangle must be formed with one of its vertices corresponding to

the position of the ICR determined by these lines, and the remaining two corresponding

to the centres of the physical joints which lie on each of the lines. The in-circle radius

of each triangle is then calculated, and the obtained value is then normalised using the

maximum possible in-circle radius of that triangle, which is dependent on the pose of the

end-effector.

Two examples are shown in Fig. 4.4 which correspond to each of these situations.

The first example, displayed in Fig. 4.4 a), shows a set of three ICRs whose positions
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Figure 4.4: Different maximum in-circles: Example a) shows the in-circle, C, of the triangle

formed by three ICRs (I1, I2, and I3) and the maximum sized in-circle, Cmax, given by

that which passes through each of the physical joints (P1, P2, and P3), example b) shows

the in-circle of the triangle formed by one ICR and two physical joints, and the maximum

sized in-circle whose radius is given by half the distance between the physical joints.

are determined by the construction lines passing through three links, which are joined

to three revolute joints separated by fixed distances; the positions of the ICRs are given

by the red points. The in-circle of the triangle formed by these points, C, is shown in

blue. The maximum sized circle, Cmax, is the maximum in-circle that can be obtained

by reorienting the three links, corresponding to the circle which passes through the three

physical joints Ebrahimi et al. (2008). Note that this example is not showing how the ICRs

are computed just for the case of the 3-RPRR parallel robot (as computed in Ebrahimi

et al. (2008)), but for any mechanism where three joints are separated by fixed lengths and

whose ICRs are positioned at the intersection points of the three construction lines that

pass through each of the joints. Fig. 4.4 b) shows the in-circle of the triangle formed by

a single virtual ICR and two physical joints separated by a fixed distance. It can be seen

that the maximum value of the radius of this circle is given by half of the fixed distance

between the physical joints.

For the case shown in Fig. 4.4 a), the in-circle radius of the triangle formed by the

the three ICRs, denoted by I1, I2, and I3, is calculated below; the x and y coordinates

of ICR Ii are given by Ii,x and Ii,y respectively. The coordinates of the centre of the

in-circle are calculated by taking the angle bisectors of two of the vertices of the triangle

and calculating the point of intersection of these lines. Firstly, the gradients of the lines

connecting each pair of points are computed as
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mi,j =
Ii,y − Ij,y
Ii,x − Ij,x

(4.2)

where (i, j) is (1, 2), (1, 3), and (2, 3). Two points that lie upon the angle bisectors of

two of the vertices of the triangle, say I1 and I2, are given by

I1,bi = I1 + I1I2 ‖I1I3‖+ I1I3 ‖I1I2‖ (4.3)

I2,bi = I2 + I2I3 ‖I2I1‖+ I2I1 ‖I2I3‖ (4.4)

where IiIj denotes the vector from Ii to Ij . The gradients, m1,bi and m2,bi, of the

lines passing through points I1 and I1,bi, and I2 and I2,bi are calculated using (4.2). The

coordinates of the centre of the in-circle is given by the point of intersection of these two

lines, calculated as

Cx =
I1,y −m1,biI1,x − I2,y +m2,biI2,x

m2,bi −m1,bi
(4.5)

Cy = m2,biCx + I2,y −m2,biI2,x (4.6)

and C = (Cx, Cy)
T . The in-circle radius, r, is then found by

r =
‖I2C× I2I1‖
‖I2I1‖

(4.7)

Equations (4.2)-(4.7) are also used to compute the in-circle radius of the triangle for

the case shown in Fig. 4.4 b), by replacing the set of points (I1, I2, I3), with (I, P1,

P2), as the vertices of the triangle in this case correspond to points I, P1, and P2. The

normalised in-circle radius, rnorm, is then obtained by dividing r by its maximum possible

value, rmax. The value of rmax depends on the physical constraints of the ICRs and the

construction lines. The maximum possible radius of the in-circle displayed in Fig. 4.4 a),

that which passes through all three physical joints, denoted by P1, P2, and P3, is given

by equation (4.8)

ra,max =

√
b2 + c2 − 4ad

4a2
(4.8)

where

a = x1(y2 − y3)− y1(x2 − x3) + x2y3 − x3y2,

b = (x21 + y21)(y3 − y2) + (x22 + y22)(y1 − y3) + (x23 + y23)(y2 − y1),

c = (x21 + y21)(x2 − x3) + (x22 + y22)(x3 − x1) + (x23 + y23)(x1 − x2),

d = (x21 + y21)(x3y2 − x2y3) + (x22 + y22)(x1y3 − x3y1) + (x23 + y23)(x2y1 − x1y2),
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and the x and y coordinates of Pi are given by xi and yi respectively. The maximum

possible radius of the in-circle displayed in Fig. 4.4 b), rb,max, is given by half the distance

between the two fixed points.

The robot manipulator is in a singularity if any of these rnorm values are equal to zero.

In order to analyse how close the entire system is to being in a singularity, fuzzy logic is

applied; such that the proximity to a singularity is given by the minimum rnorm value. In

order for the derivative of this value to be continuous, the minimum rnorm is computed

using the p-norm, where p is a ‘large’ integer, such that

rmin =
1

( 1
r1,norm

p
+ ...+ 1

rn,norm

p
)
1
p

. (4.9)

Throughout this chapter, p is set equal to 20.

4.2.2 Singularity Avoidance

Once the kinematically redundant robot’s proximity to a singularity has been computed,

the next step is to determine how its links can be reconfigured such that the robot moves

further away from a singularity without changing the pose of the end-effector. Since the

robot’s distance from a singularity is given by the minimum normalised radius of these

in-circles, the robot can reliably be moved further away from a singularity by increasing

the value of rmin.

The method of singularity avoidance for kinematically redundant planar parallel robots

is performed in three steps:

1. Identify which ICRs are able to be repositioned without changing the pose of the

end-effector, and determine the triangles necessary to detect all possible singularities.

2. Formulate the value of rmin in terms of the redundant variable.

3. Find a greater value of rmin by using a predictor-corrector method.

This method is demonstrated below using the mechanism displayed in Fig. 4.2. For

this mechanism, the joints whose positions are constant for any given pose of the end-

effector are P1, P2, P3, P6, and P7; which means that the constant ICR is point S since

its position is determined by the orientation of the links that pass through points P1 and

P6, and P2 and P7, respectively. The moveable joints for a given pose of the end-effector

are P4 and P5. ICRs Q, R, and T are identified as the ICRs that can be repositioned;

this is because Q is dependent on the positions of P4 and P5, and both R and T are

dependent on Q.
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To complete step one,the necessary triangles for detecting all possible singularities

must be identified. The robot is in a singularity when two of ICRs R, S, and T become

coincident, or when the construction lines used to determine the position of any ICR

become collinear. Following this, the in-circles of only two triangles are needed; the triangle

made from R, S, and T, and the triangle made from P6, P7, and Q, called triangles 1

and 2, respectively. The in-circle of triangle 1 describes both how close the ICRs are to

coinciding, and also how close any pair of construction lines are to becoming collinear

for these three points. The in-circle of triangle 2 describes how close the construction

lines which determine Q are to becoming collinear, which is the only remaining possible

singularity.

The next step is to formulate the value of rmin in terms of the redundant variable. For

this robot, the redundant variable, denoted by α, is the orientation of the ternary link

P3P4P5 – the anticlockwise angle taken from the horizontal axis to the link that joins P3

and P4. The pose of the end-effector is given by (PT
e , φ)T , where Pe denotes the position

of the end-effector and φ denotes the anticlockwise angle taken from the horizontal axis

to the link joining P6 and P7.

If Pe, φ, and α, are known, along with the position of the base joints P1, P2, and

P3, then the position of every joint of the robot and also every ICR can be determined.

Firstly, P6, P7, and P4 are calculated by

Pj = Pi + pi,j , (4.10)

where (i, j) = (e, 6), (e, 7), and (3, 4), respectively, and pe,6 = −de,6(cos(φ), sin(φ))T ,

pe,7 = de,7(cos(φ), sin(φ))T , and p3,4 = d3,4(cos(α), sin(α))T .

The vector from P3 to P5, denoted by p3,5, is determined by multiplying the vector

from P3 to P4, p3,4, by the bilateration matrix Z3,4,5

p3,5 = Z3,4,5p3,4 (4.11)

where

Z3,4,5 =
1

2s3,4

s3,4 + s3,5 − s4,5 −4A3,4,5

4A3,4,5 s3,4 + s3,5 − s4,5


and

A3,4,5 = ±1

4

√
(s3,4 + s3,5 + s4,5)2 − 2(s23,4 + s23,5 + s24,5),

with si,j = d2i,j denoting the squared distance between the points Pi and Pj and A3,4,5,

the signed area of the triangle defined by points P3, P4 and P5 Rojas and Thomas (2012).
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The positions of the ICRs are found by finding the points of intersection between their

respective construction lines. If the lines pass through points Pi and Pj , and Pk and Pl,

respectively, then the x and y coordinates of the ICR, Im, are given by

Im,x =
yk −mk,lxk − yi +mi,jxi

mi,j −mk,l
, (4.12)

Im,y = mi,jIm,x + yi −mi,jxi, (4.13)

where the gradients mi,j and mk,l are obtained using equation (4.2).

The positions of ICRs Q, R, S, and T are calculated by replacing (Pi, Pj , Pk, and Pl)

with (P4, P6, P5, and P7), (P1, P6, P3, and Q), (P1, P6, P2, and P7), and (P2, P7, P3,

and Q), respectively. The in-circle radii of triangles 1 and 2, r1 and r2, are then obtained

in terms of the redundant parameter, α, by inputting (R, S, and T) and (P6, P7, and Q)

into equations (4.2-4.7). r1,norm is obtained by firstly obtaining r1,max by inputting the

coordinates of the base joints P3, P6, and P7 into (4.8), as the maximum in-circle radius

for any given pose of the end-effector is given by that of the circle which passes through

these joints, and r2,max is given by half the distance between P6 and P7.

The initial rmin value is calculated, using (4.9), given the initial value of α. In order to

move further away from a singularity, the value of α which gives the maximum value of rmin

must be obtained, with the additional condition that a singularity, a point where rmin=0,

cannot be crossed. This is accomplished by using a predictor-corrector method Gomes

et al. (2009), which will be described here continuing with the same example. The first

step is to differentiate both r1,norm and r2,norm with respect to α. Given an initial known

value of α, rmin will either lie on the curve of r1,norm or r2,norm. The tangent vector at

the initial point, xi, on the curve is obtained, and a new point pi, the predicted point, is

determined by translating along this tangent by a small amount, h, such that

pi = xi + hti (4.14)

where

ti =
1√

1 + f ′(αi)2

sign(f ′(αi))

|f ′(αi)|

 ,
f(α) denotes the function of α that provides the value of rmin, and f ′(α) denotes its

derivative with respect to α.

ti is formulated such that the the predicted point moves higher up on the curve than

the initial point. The corrector step of the algorithm then maps pi back onto the curve by
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repeating equation (4.15) until the difference between the α value of the current pi and

the previous one becomes less than a chosen threshold value.

pi+1 = pi −

f ′(αi)
−1

 f(pi,α)− pi,r
f ′(αi)2 + 1

(4.15)

where pi is defined by the coordinates (pi,α, pi,r)
T .

rmin is recalculated with this new α value to see if it is still on the same curve; if not,

the next predicted point is computed using the tangent of the current curve. This process

is repeated until the gradient changes sign; i.e. the local maximum point on the curve has

been reached.

4.3 Numerical Example

In this section, a numerical example is used to demonstrate the method detailed above,

using a mechanism with the same architecture as that used above. The positions of the

base joints and the joints attached to the moving platform are P1 = (0, 0)T , P2 = (4, 0)T ,

P3 = (1, 1)T , P6 = (0.75, 5)T , and P7 = (2, 5.5)T . The dimensions of the ternary link,

that formed by joints P3, P4, and P5, are d3,4 = 2, d3,5 = 2, and d4,5 = 2. The orientation

of the ternary link is described by the angle α, which is the angle taken in the anticlockwise

direction from the horizontal axis which passes through P3, to the vector from P3 to P4;

the initial value of α is 0.3. The vector from P3 to P5 is at an angle pi/3 in the clockwise

direction from the vector from P3 to P4.

The four ICRs are calculated using (4.2) and (4.12-4.13) as Q = (2.22, 2.67)T , R =

(−0.07,−0.46)T , S = (1.17, 7.79)T , and T = (2.76, 3.40)T . The initial in-circle radii

are calculated, using equations (4.2-4.7), and then are normalised to obtain values of

r1,norm = 0.43 and r2,norm = 0.78; hence, initially, rmin = 0.43. The predictor-corrector

method is then used to find the value of α that provides an improved rmin value, and

hence gives a configuration of the mechanism that is further away from a singularity. The

algorithm returns a value of α = 1.19, corresponding to a minimum normalised radius of

rmin = 0.57. Fig. 4.5 shows r1,norm and r2,norm plotted against α between 0 and 2π, along

with the initial and improved values of α found by the predictor-corrector method.



65

Figure 4.5: Normalised in-circle radii r1,norm and r2,norm against α for the example mech-

anism. The initial and final values of α are shown.

4.4 Comparison to the Jacobian

In this section, the geometric method of singularity analysis is compared with the inverse of

the condition number of the Jacobian matrix. Firstly, let’s consider the mechanism presen-

ted in chapter 2 in a configuration which results in its Jacobian being in a false positive

singularity. Let’s consider the configuration of this mechanism where the joints are posi-

tioned at P1 = (2, 0)T , P2 = (8, 0)T , P3 = (6, 2)T , P4 = (3.17, 4.83)T , P5 = (4.96, 5.86)T ,

P6 = (2.60, 8.79)T , and P7 = (6.45, 9.58)T (all values are given to two decimal places);

this is shown in Fig. 4.6. If the Jacobian is calculated using equation (3.16), the inverse

of its 2-norm condition number is equal to zero. The rigidity matrix of the mechanism is

given by the formula in appendix B. By equating the positions of the revolute joints with

those of the corresponding vertices, the rank of the rigidity matrix is computed as eleven,

meaning it is of full rank. This indicates that the robot manipulator is in a non-singular

configuration, meaning that the Jacobian has incorrectly determined that the mechanism

is in a singularity.

The proposed method, on the other hand, is able to successfully determine that the

mechanism is not in a singularity. Firstly, the positions of ICRs Q, R, S, and T are

determined just as in the example given in section 4.3; here they are computed as Q =
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Figure 4.6: Configuration of the robot proposed in chapter 2 where the inverse of the

condition number of the Jacobian is zero, but the mechanism’s corresponding rigidity

matrix is of full rank.

(3.54, 2.29)T , R = (2.17, 2.46)T , S = (3.79, 26.06)T , and T = (7.71, 1.80)T . Following this,

the normalised in-circle radii are calculated as r1,norm = 0.62, and r2,norm = 0.71, hence

rmin = 0.62 which indicates the robot manipulator is not in a singularity, agreeing with

the rank of the rigidity matrix.

In this second example, let’s consider a different robot manipulator, the mechanism

presented in section 3.2 of Schreiber and Gosselin (2018) (displayed in Fig. 4.7). The

mechanism consists of a moving platform connected to two RPR legs via revolute joints,

centred at B1 and B2, which are connected to the base via revolute joints centred at A1

and A2. Two other RPR legs, joined to the platform at B3 and B4, are joined to a common

revolute joint, centred at S, which is in turn connected to the base via a revolute joint at

A1. The Jacobian, J, of this robot manipulator is given by

J =


(b1 − a1)

T (b1 − a1)
TEν1

(b2 − a2)
T (b2 − a2)

TEν2

(s− a3)
T (s− a3)

TE(s− p)

 , (4.16)

where ai, bi, and s, denote the position vectors of Ai, Bi, and S, respectively, p denotes

the position vector of a chosen reference point on the platform, νi denotes the vector
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Figure 4.7: Instance of the kinematically redundant planar parallel architecture proposed

in Schreiber and Gosselin (2018).

bi − p, and

E =

0 −1

1 0

 .
It is noted by the authors that the robot manipulator is in a singularity when joint S

lies upon the line which passes through B3 and B4. However, if the robot manipulator

follows a trajectory such that S approaches such a position, the value of 1/k(J) does not

approach zero, but rather it only becomes zero when S lies directly upon the line. An

example of this is considered below.

The base joints are positioned at a1 = (13, 0)T , a2 = (9, 0)T , and a3 = (0, 1)T . The

revolute joint at S is positioned at s = (2, 2.5)T throughout the trajectory. The platform

joints are initially positioned at b1 = (0, 12)T , b2 = (0, 9)T , b3 = (−3, 9)T , and b4 =

(−3, 12)T , and they follow a horizontal trajectory from left to right. Taking the coordinates

of b1 as the reference point on the platform, p(x, y), the initial point of the trajectory

is x = 0, and the final point is x = 8. In Fig. 4.8, both the inverse of the 2-norm

condition number, 1/κ(J), and the two relevant in-circle radii are plotted throughout the

trajectory; r1 corresponds to the triangle whose vertices are positioned at the intersection

points between the lines through A1B1, A2B2, and A3S, and r2 corresponds to the triangle

whose vertices are positioned at S, B3, and B4. Point S lies upon the line B3B4 when

x = 5. It can be seen that r2 approaches zero as this point is neared, however 1/k(J) does
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Figure 4.8: Plot of the in-circle radii and 1/k(J) for the mechanism presented in Schreiber

and Gosselin (2018) as the mechanism passes through a singular configuration.

not approach zero. It can be verified that this configuration is singular by computing the

rank of the rigidity matrix, the formula for which is given in appendix B, as the platform

moves along the trajectory; the matrix is of full rank, 13, at all points except when x = 5,

where the rank drops to 12. This demonstrates a limitation of using the Jacobian to

detect a mechanism’s proximity to a singularity. If the robot manipulator here follows a

trajectory like the one shown in Fig. 4.8, and 1/k(J) is used as the index for determining

the robot manipulator’s proximity to a singularity, the robot manipulator would run a

risk of failing near this point despite the fact that 1/k(J) is well above zero.
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Chapter 5

A Dynamically Balanced

Kinematically Redundant Planar

Parallel Robot

In chapter 4, a method of singularity avoidance for kinematically redundant robots has

been proposed which is more robust than conventional Jacobian-based methods. This tool

provides the ability for the end-effector to move throughout the workspace without exper-

iencing the consequences of moving into singularities, whilst the kinematically redundant

parallel architecture permits high speed motions with large rotational capabilities. How-

ever, a challenge that fast moving manipulators face is that they generate large shaking

forces and moments on their bases which can lead to a deterioration in the performance of

the robot. A solution to eliminate these shaking forces and moments is to use dynamically

balanced architectures, which are designed such that the total linear and momentum of

the system is zero for any trajectory of the manipulator. Such architectures exist for non-

redundant parallel mechanisms but have yet to be developed for kinematically redundant

parallel robots. In this chapter, a dynamically balanced architecture of a kinematically re-

dundant planar parallel robot is presented. The manipulator is composed of parallelogram

linkages which reduces the number of counter rotary-elements required to moment balance

the mechanism. The balancing conditions are derived, and the balancing parameters are

optimised using Lagrange multipliers, such that the total mass and inertia of the system is

minimised. The elimination of the shaking forces and moments is then verified via a sim-

ulation in the multi-body dynamic simulation software MSC Adams. The work presented

in this chapter is currently under review for publication Baron et al. (2020a).

The rest of the chapter is structured as follows. In section 5.1, the methods used to
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balance the mechanism are described. The architecture is introduced in section 5.2, and

in 5.3 the balancing conditions are derived. The balancing parameters are optimised in

section 5.4 such that the total mass and inertia added to the system is minimised. In

section 5.5, a simulation is run using the multi-body dynamic simulation software MSC

Adams to verify that the shaking forces and moments on the base have been eliminated;

an unbalanced manipulator is also simulated to act as a point of comparison.

5.1 Balancing Methods

There are multiple methods of balancing parallel robotic mechanisms, each of which vary

in terms of total mass addition to the system and complexity. Here, two methods are

reviewed which are used to balance the proposed architecture. The following methods are

used as they require minimal mass and inertia to be added to the system, and do not

significantly complicate the design of the mechanism van der Wijk et al. (2009); van der

Wijk and Herder (2009).

5.1.1 Counter-Rotary Countermasses

This method involves balancing links individually through the use of rotatable counter-

masses which are driven to rotate in the opposite direction to the relative rotation between

the link and the previous link to which it is joined. Assuming each leg of the mechanism

consists of a sequence of links joined by revolute joints, the balancing of each link is ac-

complished by fixing a counter mass to the other side of the revolute joint to which centre

of mass (CoM) of the link is located, such that the CoM of the link and the countermass

coincides with the centre of the joint. Additionally, a transmission system with a negative

transmission ratio is used to drive the mass in the opposite direction to relative rotation

between the link and the previous link. The moment of inertia of the countermass is de-

termined such that the sum of the angular momentum of the link induced by its rotation

relative to the previous link, and the angular momentum of the countermass are equal to

zero. For example, consider a double pendulum moving in a plane balanced using this

method, as shown in Fig. 5.1.

The mechanism consists of two links joined together at P2 and link 1 is joined to the

ground at P1. The CoM of m2 and m3, which represent the mass of link 2 and a mass

fixed to the end to the link, and the countermass, mc,2, coincides with the centre of P2.

Similarly, the CoM of the aforementioned set of three masses, the centre of mass of m1, the

mass of link 1, and the countermass mc,1 coincide with the centre of P1. As the position of
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Figure 5.1: Counter-rotary countermass method used to balance a double pendulum. The

countermasses are positioned such that the centre of mass of the system is constant. The

countermasses are driven by negative transmission ratios such that the sum of their angular

momenta and that of the rest of the system is equal to zero.
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the centre of the system is constant, it is always located at the centre of P1, the total linear

momentum of the system is zero for any motion of the linkage. The linear momentum of

a system of n rigid bodies can be expressed by

p =
n∑
i=1

(miṙi), (5.1)

where mi and ri denote the mass of the ith body and the position of its centre of mass in

the global reference frame, and dot notation is used to denote its derivative with respect

to time. The total angular momentum of the system of n rigid bodies about the z-axis is

computed by

hz =

n∑
i=1

(Iiθ̇i +


0

0

1


T

(ri ×miṙi)) (5.2)

where Ii is the moment of inertia of the ith element and θ̇i is its angular velocity. By

expanding this equation for all rigid bodies in the system, an expression is formed in

terms of the angular velocity of each joint, and it is possible to ensure that this is equal to

zero for any configuration by selecting an appropriate transmission ratio and determining

the required countermass moment of inertia. The conditions for balancing a link using the

counter-rotary countermass method are given in detail in section 5.3.

5.1.2 Balanced Parallelogram Legs

For parallel mechanisms with RRR type legs, that is a leg which consists of three revolute

joints and where the one connected to the base is actuated, a possible method of balancing

is combining pairs of legs such that they form balanced 5-bar linkages Laliberté and

Gosselin (2013); van der Wijk and Herder (2009); an example is shown in Fig. 5.2. The

actuated revolute joints connected to the base at P1 and P2 are coincident; i.e. p1 = p2.

Two links are joined to each of the proximal links via revolute joints at P3 and P4, and

are joined to each other via a revolute joint at P5.

The balancing of the linear momentum of the system is performed similarly to the

counter-rotary countermass method described above, except here each countermass, de-

noted Ci, is rigidly attached to its respective link. The masses and positions of the

countermasses are set such that the centre of mass of a link, any masses joined to the end

of the link, and the countermass is coincident with the revolute joint. However, the ad-

vantage of this method of balancing is that only two counter-rotary elements are required

to moment balance each pair of legs; this is desirable as it reduces the complexity of the
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system. This is due to the fact that opposite links in the parallelogram move with the

same angular velocity as each other, and so only two counter rotary elements are required,

instead of four. For example, in Fig. 5.2, the counter-rotary element CR1 compensates the

angular momentum of the links defined by P1P3 and P4P5, and their associated counter-

masses. Similarly, the counter-rotary element CR2 compensates the angular momentum

of the links defined by P2P4 and P3P5, and their associated countermasses. The detailed

balancing conditions of the parallelogram linkage are given in section 5.3.

5.2 Architecture

In this section the architecture of the dynamically balanced parallel manipulator is presen-

ted. The architecture is based on the kinematically redundant planar parallel mechanism

presented in Gosselin et al. (2015), displayed in Fig. 5.3. The former architecture, consists

of a moving platform connected to the base via four PRR legs, denoting an actuated pris-

matic joint followed by two passive revolute joints, and a redundant link (that defined by

P9P11); as can been in Fig. 5.3. The four proximal joints Pi, i = 1, .., 4, are connected to

Pj , j = 5, ..8, via a prismatic joint of length ρi which are in turn connected to each distal

link via a revolute joint. The distal links connected to P5 and P6 are joined directly to

the moving platform via a revolute joint at P10, whereas those connected at P7 and P8 are

first joined to the redundant link via a revolute joint at P9, which is in turn connected to

the moving platform via a revolute joint at P11.

As stated in previous chapters, the advantage of the kinematcially redundant archi-

tecture is that the moving platform is capable of performing full rotations of the moving

platform without entering singular configurations. The mechanism in Fig. 5.3 is in a singu-

larity if two or more of the distal links in the legs become collinear, or if the links defined

by P10P11 and P9P11 are collinear; therefore, the robot is able to make singularity-free

rotations of the moving platform as long as these conditions are not met.

In the architecture proposed here, shown in Fig. 5.4, the actuation scheme is 4-RRR,

denoting an actuated revolute joint followed by two passive revolute joints. The base

joints at P1 and P2 are made to be coincident, as are those at P3 and P4, such that each

pairing has the parallelogram structure. Each pairing of RRR chains are balanced using

the parallelogram method described in the previous section. Countermasses are attached

to the links on each of the legs, and on the redundant link, in order to balance the linear

momentum of the system. The position of the countermass attached to the link defined by

joints Pi and Pj is located at Ci. Ci for which i = 1, .., 8 is rigidly attached to its respective
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Figure 5.2: Dynamically balanced parallelogram linkage. Countermasses are rigidly at-

tached to the links at Ci, i = 1, .., 4, such that the centre of mass of the linkage is constant.

Two counter-rotary elements, fixed to the base at CR1 and CR2, are driven by the motion

of the proximal links via negative transmission ratios to moment balance the linkage.

link. C9 is attached to the redundant link, but is also driven by a transmission system

which drives it to rotate with an angular velocity opposite to that of the relative rotation

between the links defined by P7P9 and P9P11. Finally, four counter rotary elements are

fixed to the base by revolute joints, at CRi for i = 1, .., 4, and are driven by transmission

systems such that their angular velocities are opposite to that of the four proximal links.
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Figure 5.3: Kinematically redundant planar parallel architecture presented in Gosselin

et al. (2015).

The transmission ratio and the moment of inertia of each of these counter-rotary elements

are determined such that they eliminate the shaking moments transmitted to the base.

The advantage of this architecture is that only five counter-rotary elements are required to

moment balance the entire mechanism, four of which are joined to the base, which makes

the design of the robot much more straightforward. The position of the centre of mass of

the link between joints Pi and Pj is denoted by Mi.

5.3 Derivation of Balancing Conditions

In this section, the conditions required for the entire mechanism to be dynamically bal-

anced, such that both the shaking forces and moment on the base are equal to zero, are

derived. The first step that is made here is to make a dynamic equivalence between the

moving platform and two individual point masses Wu and Gosselin (2007). Deriving the

balancing conditions of a closed mechanism is extremely complex if it is approached by

analysing the mechanism as a whole due to the kinematic coupling between the legs. A

useful simplification is to treat the moving platform as individual point masses positioned

at each of the joints on the platform, as shown in Fig. 5.5. The system of point masses
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Figure 5.4: The proposed dynamically balanced kinematically redundant planar parallel

architecture.

is dynamically equivalent to the moving platform if the sum of their masses are equal to

the platform, if the centre of mass of the system of point masses is equal to that of the

platform, and has the same inertia tensor as the platform with respect to any coordinate

frame. In this case, the platform consists of revolute joints at either end, therefore it is

modelled by two point masses and the above conditions are expressed by

mp = mp,1 +mp,2, (5.3)

0 = mp,1x1 +mp,2x2, (5.4)

mpk
2
p = mp,1x

2
1 +mp,2x

2
2, (5.5)

where mp, mp,1, and mp,2 denote the masses of the platform, and point masses 1 and 2

respectively, xi denotes the signed distance from the centre of mass of the platform to

point mass i, and kp is the radius of gyration of the platform. The most straightforward

solution is for mp,1 = mp,2 = mp/2, x1 = −x2, and kp = x2.

The balancing conditions are derived separately for the two different sides of the robot

which end at each of the joints on the moving platform; the first, termed the ‘left hand

side’, consisting of the legs joined to the base at P1 and P2, and to the first point mass at
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Figure 5.5: The dynamic equivalence made between the moving platform and two point

masses. This equivalence holds if the point masses and the platform have the same total

mass, centre of mass, and moment of inertia about any point.

P10, and the second, ‘the right hand side’, consisting of the legs joined to the base at P3

and P4, to the redundant link at P9, and to the second point mass at P11. Let’s consider

the left hand side of the robot first, shown in Fig. 5.6. The unit vector which lies along

the link between points Pi and Pj is given by v̂i,j . The length of the proximal and distal

links of each leg are given by l; by making the length of each link of each leg equal, the

parallelogram structure of the legs is ensured and additionally the workspace of this pair

of legs is maximised. The distance between the base joint P1 = P2 and the centre of mass

of each proximal link is denoted by s1. Similarly, the distance between points P5 and P6

and the centre of masses of the distal links to which they are attached is given by s2.

Countermasses 1 and 2, whose positions are denoted by c1 and c2 are fixed to the

proximal links, but are positioned on the other side of the revolute joint at a distance of

sc,1, such that

ci = pi − sc,1v̂i,j (5.6)

for (i, j) = (1, 5) and (2, 6), and where pi denotes the position of point Pi. Similarly,

countermasses 5 and 6, whose positions are denoted by c5 and c6 are fixed to the distal

links, but are positioned on the other side of the revolute joint at a distance of sc,2, such
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Figure 5.6: The left hand side of the manipulator, beginning at the base joint pairing of

P1 and P2, and ends at the first point mass mp,1, at P10. Distances between CoMs and

proceeding joints are labelled si and sc,i, link and countermass masses are labelled mi

and mc,i, and their respective radii of gyration ki and kc,i. Counter-rotary elements each

have a mass of mCR,i, radii of gyration kCR,i, and rotate at a velocity of kθ̇i, where k is a

negative transmission ratio.

that

ci = pi − sc,2v̂i,j (5.7)

for (i, j) = (5, 10) and (6, 10). Finally, the point mass is positioned at p10, and its mass is

denoted by mp,1.
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The total linear momentum of the system is computed using equation (5.1). The

parallelogram nature of the leg pairing allows some simplifications to be made. As the

unit vectors v̂1,5 and v̂6,10 are always parallel, they will from herein be defined by the

same unit vector, v̂1, and their corresponding angular velocity is given by θ̇1. Similarly,

v̂2,6 and v̂5,10 from herein are defined by v̂2 and their corresponding angular velocity is

given by θ̇2. Following this, the total linear of the system is given by

p1 = (m1s1 −mc,1sc,1)(Ev̂1θ̇1 + Ev̂2θ̇2)

+m2(lEv̂1θ̇1 + s2Ev̂2θ̇2) +mc,2(lEv̂1θ̇1 − sc,2Ev̂2θ̇2)

+m2(lEv̂2θ̇2 + s2Ev̂1θ̇1) +mc,2(lEv̂2θ̇2 − sc,2Ev̂1θ̇1)

+mp,1(lEv̂1θ̇1 + lEv̂2θ̇2),

(5.8)

where

E =

0 −1

1 0

 ,
In order for this expression to be equal to zero for any orientation or set of joint velocities,

the following condition is set to zero

g1 = m1s1 −mc,1sc,1 +m2(l + s2) +mc,2(l − sc,2) +mp,1l = 0. (5.9)

Now for the computation of the angular momentum of the left side of the mechanism.

Firstly, the moment of inertia about the CoM of mass mi is given by Ii = mik
2
i , and

similarly that of mc,i and mCR,i are given by Ic,i = mc,ik
2
c,i and ICR,i = mCR,ik

2
CR,i,

respectively. If the moment of inertia of the counter-rotary elements 1 and 2, denoted

by ICR,1 and ICR,2, are made to be equal in order to preserve symmetry, the angular

momentum is computed using equation (5.2), as

hz,1 = (I1 + Ic,1 + I2 + Ic,2 + kICR,1)(θ̇1 + θ̇2)

+


0

0

1


T

((s1v̂1 ×m1s1Ev̂1θ̇1) + (s1v̂2 ×m1s1Ev̂2θ̇2)

+(sc,1v̂1 ×mc,1sc,1Ev̂1θ̇1) + (sc,1v̂2 ×mc,1sc,1Ev̂2θ̇2)

+((lv̂1 + s2v̂2)×m2(lEv̂1θ̇1 + s2Ev̂2θ̇2))

+((lv̂2 + s2v̂1)×m2(lEv̂2θ̇2 + s2Ev̂1θ̇1))

+((lv̂1 − sc,2v̂2)×mc,2(lEv̂1θ̇1 − sc,2Ev̂2θ̇2))

+((lv̂2 − sc,2v̂1)×mc,2(lEv̂2θ̇2 − sc,2Ev̂1θ̇1))

+((lv̂1 + lv̂2)×mp,1(lEv̂1θ̇1 + lEv̂2θ̇2))),

(5.10)
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where k is the negative transmission ratio used to drive the counter-rotary elements (this

should not be confused with the radius of gyration of the counter-rotary element).

After expanding this expression, and collecting coefficients in θ̇1, θ̇2, and cos(θ1 −

θ2)(θ̇1 + θ̇2), the following conditions for total angular momentum being equal to zero are

formed

g2 = m1s
2
1 +mc,1s

2
c,1 +m2(l

2 + s22) +mc,2(l
2 + s2c,2)

+mp,1l
2 + I1 + Ic,1 + I2 + Ic,2 + kICR,1 = 0,

(5.11)

g3 = 2m2ls2 − 2mc,2lsc,2 +mp,1l
2 = 0. (5.12)

As long as g1, g2, and g3 are equal to zero, the total linear and angular momenta of the

left side of the mechanism will be zero for any trajectory.

Now the balancing conditions of the right hand side of the mechanism are considered,

which is depicted in Fig. 5.7. As before, the parallelogram nature of the pair of legs

allows some simplifications to be made. The unit vectors from P3 to P7 and from P8 to

P9, denoted by v̂3,7 and v̂8,9, are parallel and hence are both replaced by the same unit

vector, v̂3, and the angular velocities of the corresponding links are both θ̇3. Similarly,

v̂4,8 and v̂7,9 are replaced with v̂4, and the angular velocity of their corresponding links is

θ̇4. The mass of the proximal links and their countermasses are denoted by m3 and mc,3,

respectively, and they are positioned at distances of s3 and sc,3 away from their respective

base joints P3 and P4. The mass of the distal links and their countermasses are denoted

by m4 and mc,4, respectively, and they are positioned at distances of s4 and sc,4 away from

their respective distal joints P7 and P8.

The unit vector from P9 to P11, which defines the orientation of the redundant link,

is denoted by v̂5, and its angular velocity is denoted by θ̇5. The distance between P9 and

P11 is denoted by b. The mass of the redundant link and its countermass are m5 and mc,5,

respectively, and they are positioned at distances of s5 and sc,5 away from P9. Unlike the

other moving countermasses, the countermass of the redundant link also acts as a counter-

rotary element which balances the inertial effects of the relative rotation between it and

the leg to which it is fixed. The transmission mechanism drives the countermass with a

negative transmission ratio, k, in the opposite direction to the relative angular velocity

between the link defined by P7 and P9, and the redundant link, denoted by θ̇5,r = θ̇5− θ̇4.

The total linear momentum of the second side of the robot is computed, using equa-
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Figure 5.7: The right hand side of the manipulator, beginning at the base joint pairing of

P3 and P4, and ends at the second point mass mp,2, at P11. The distances, masses, and

radii of gyration are labelled in the same manner as the left hand side of the robot. The

counter-rotary counter mass attached to the redundant link is driven by relative rotation

between link P7P9 and P9P11, denoted by θ5,r.
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tion (5.1), as

p2 = (m3s3 −mc,3sc,3)(Ev̂3θ̇3 + Ev̂4θ̇4)

+m4(lEv̂3θ̇3 + s4Ev̂4θ̇4) +mc,4(lEv̂3θ̇3 − sc,4Ev̂4θ̇4)

+m4(lEv̂4θ̇4 + s4Ev̂3θ̇3) +mc,4(lEv̂4θ̇4 − sc,4Ev̂3θ̇3)

+m5(lEv̂3θ̇3 + lEv̂4θ̇4 + s5Ev̂5θ̇5)

+mc,5(lEv̂3θ̇3 + lEv̂4θ̇4 − sc,5Ev̂5θ̇5)

+mp,2(lEv̂3θ̇3 + lEv̂4θ̇4 + bEv̂5θ̇5),

(5.13)

where mp,2 is the second point mass on the moving platform, positioned at P11, and θ5

is the angle between the redundant link and the horizontal axis. The conditions for the

linear momentum to equal zero regardless of orientation or joint velocities are

g4 = m3s3 −mc,3sc,3 +m4(l + s4) +mc,4(l − sc,4) (5.14)

+ l(m5 +mc,5 +mp,2) = 0,

g5 = m5s5 −mc,5sc,5 +mp,2b = 0. (5.15)

The angular momentum is computed using equation (5.2) as

hz,2 = (I3 + Ic,3 + I4 + Ic,4)(θ̇3 + θ̇4) + I5θ̇5 + Ic,5(θ̇4

+(1 + k)θ̇5,r) +


0

0

1


T

((s3v̂3 ×m3s3Ev̂3θ̇3)+

(s3v̂4 ×m3s3Ev̂4θ̇4)

+(sc,3v̂3 ×mc,3sc,3Ev̂3θ̇3) + (sc,3v̂4 ×mc,3sc,3Ev̂4θ̇4)

+((lv̂3 + s4v̂4)×m4(lEv̂3θ̇3 + s4Ev̂4θ̇4))

+((lv̂4 + s4v̂3)×m4(lEv̂4θ̇4 + s4Ev̂3θ̇3))

+((lv̂3 − sc,4v̂4)×mc,4(lEv̂3θ̇3 − sc,4Ev̂4θ̇4))

+((lv̂4 − sc,4v̂3)×mc,4(lEv̂4θ̇4 − sc,4Ev̂3θ̇3))

+((lv̂3 + lv̂4 + s5v̂5)×m5(lEv̂3θ̇3 + lEv̂4θ̇4

+s5Ev̂5(θ̇4 + θ̇5,r))) + ((lv̂3 + lv̂4 − sc,5v̂5)×mc,5(lEv̂3θ̇3

+lEv̂4θ̇4 − sc,5Ev̂5(θ̇4 + θ̇5,r))) + ((lv̂3 + lv̂4

+bv̂5)×mp,2(lEv̂3θ̇3 + lEv̂4θ̇4 + bEv̂5(θ̇4 + θ̇5,r)))).

(5.16)

After expanding this expression in θ̇3, θ̇4, θ̇5,r, cos(θ4−θ3)(θ̇3 + θ̇4), cos(θ3−θ5,r+θ4)(θ̇3 +
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θ̇4 + θ̇5,r), and cos(θ5,r)(2θ̇4 + θ̇5,r), the following constraints are formed,

g6 = m3s
2
3 +mc,3s

2
c,3 +m4(l

2 + s24) +mc,4(l
2 + s2c,4)

+ l2(m5 +mc,5 +mp,2) + I3 + Ic,3 + I4 + Ic,4 + kICR,3 = 0,

g7 = m3s
2
3 +mc,3s

2
c,3 +m4(l

2 + s24) +mc,4(l
2 + s2c,4)

+m5(l
2 + s25) +mc,5(l

2 + s2c,5) +mp,2(l
2 + b2)

+ I3 + Ic,3 + I4 + Ic,4 + I5 + Ic,5 + kICR,4 = 0,

g8 = m5ls4 −mc,5lsc,5 +mp,2lb = 0

g9 = I5 + (1 + k)Ic, 5 +m5s
2
5mc,5s

2
c,5 +mp,2b

2 = 0.

(5.17)

As long as gi, i = 4, .., 9, are equal to zero, the total linear and angular momenta of the

right hand side of the mechanism are nullified for any trajectory.

5.4 Mass and Inertia Optimisation

Now that the kinematic and inertial constraints for the mechanism to be dynamically

balanced have been identified; the next step is to find the optimum set of balancing

parameters such that the minimum amount of mass and inertia is added to the system.

One of the key challenges in dynamically balancing robot manipulators is the addition of

mass and inertia to the system, meaning that the actuators have to do more work. In this

section, the total mass and inertia of added to the system during balancing is minimised

through the use of Lagrange multipliers.

Firstly, the objective function to be minimised is composed in terms of the total mass

and inertia of the system. The total mass is simply the sum of the mass of all elements

in the system. The inertia is less straightforward to quantify as it is dependent on the

configuration of the mechanism; here, the concept of reduced inertia is used van der Wijk

et al. (2009); Laliberté and Gosselin (2013). The reduced inertia describes the inertia

experienced by an actuator when all the other actuators in the mechanism are fixed. As

the reduced inertia for some of the actuated joints in the mechanism is dependent on the

configuration of the rest of the leg, the reduced inertia is calculated for the case where the

leg is in full extension, as this is the ‘worst case’ scenario in terms of inertia felt by the

joint. The reduced inertia, IR,i, experienced by the ith actuator of the mechanism when

the other actuators’ velocities are equal to zero, can be obtained from the kinetic energy

expression,

TR,i =
1

2
IR,iθ̇

2
i . (5.18)
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The optimisation is carried out for each side of the mechanism separately. For the left

hand side of the mechanism, the objective function to be minimised is given by

f1 =
∑
i

(2(mi +mc,i) +mCR,i) +mp,1 +
∑
i

IR,i, (5.19)

where i = 1, 2, and IR,i denotes the ith reduced inertia of the balanced mechanism and is

computed as

IR,i = m1s
2
1 +mc,1s

2
c,1 +m2(l

2 + s22) +mc,2(l
2 + s2c,2)

+mp,1l
2 + I1 + Ic,1 + I2 + Ic,2 + k2ICR,i.

(5.20)

The Lagrangian is then composed of the objective function, the dynamic constraints, gj ,

and their respective Lagrange multipliers, λj , where j = 1, 2, 3, and is written as

L1(v1) = f1 −
∑
j

λjgj , (5.21)

where v1 = [mc,i, sc,i,mCR,i, λj ]
T for i=1,2, and j=1,2,3, is the vector of balancing para-

meters and Lagrange multipliers to be optimised. The radii of gyration of the coun-

termasses and the counter-rotary elements have not been included in this vector as the

optimisation of these values is straightforward; the radii of gyration of the countermasses

should be as small as possible and that of the counter-rotary elements should be as large

as possible. The aim is to find the set of negative values for the Lagrange multipliers, such

that each element of the partial derivative of the Lagrangian is equal to zero,

∂L1
∂v1

=



λ1sc,1 − λ2(k2c,1 + s2c,1) + 2k2c,1 + 2s2c,1 + 2

2k2c,2 − λ2σ1 − λ1σ2 + 2l2 + 2s2c,2 + lλ3sc,2 + 2

2k2k2c,r + λ2kk
2
c,r + 2

mc,1(λ1 + 4sc,1 − 2λ2sc,1)

mc,2(λ1 + 4sc,2 + lλ3 − 2λ2sc,2)

σ3 − lmc,2 − lmp,1 −m1s1 −m2s2 − lm2

σ4 − l2m2 − l2mc,2 − l2mp,1 + σ5

−(l(2lmp,1 + 4m2s2 − 4mc,2sc,2))/2



= 0 (5.22)

where

σ1 = k2c,2 + l2 + s2c,2,

σ2 = (l − sc,2),

σ3 = mc,1sc,1 +mc,2sc,2,

σ4 = kk2CRmCR − k22m2 − k2c,1mc,1 − k2c,2mc,2,

σ5 = −mc,1s
2
c,1 −mc,2s

2
c,2 − k21m1 −m1s

2
1 −m2s

2
2.
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If (5.22) is satisfied, then it is ensured, for the left hand side of the mechanism, that

the balancing conditions are met such that the mass and inertia added to the system is

minimised.

For the right side of the mechanism, the reduced inertias, IR,3, IR,4, and IR,5 are

computed for the linkage when θ̇4 = θ̇5,r = 0, θ̇3 = θ̇5,r = 0, and θ̇3 = θ̇4 = 0, respectively.

IR,i = m3s
2
3 +mc,3s

2
c,3 +m4(l + s4)

2 +m4s
2
4 +mc,4(l − sc,4)2

+mc,4s
2
c,4 +m5(2l + s5)

2 +mc,5(2l − sc,5)2

+mp,2(2l + b)2 + I3 + Ic,3 + 2(I4 + Ic,4) + I5 + Ic,5 + k2ICR,i

(5.23)

for i = 3, 4, and

IR,5 = I5 + (1 + k)2Ic,5 +m5s
2
5 +mc,5s

2
c,5 +mp,2b

2. (5.24)

It should be noted that the reduced inertia IR,5, in contrast to the definition given earlier,

is not the experienced inertia felt by an actuated joint, however the concept still holds

because it describes the contributed inertia due to the angular velocity θ̇5,r.

The objective function is then formed, like for the left hand side, as the combination

of the total mass and reduced inertia of the system, as

f2 =

4∑
i=3

(2(mi +mc,i) +mCR,i) +m5 +mc,5

+mp,2 +
5∑
j=3

IR,j .

(5.25)

The Lagrangian is then formed as

L2(v2) = f2 −
∑
h

λhgh, (5.26)

where v2 = [mc,i,mCR,j , sc,i, λh]T , and i = 3, 4, 5, j = 3, 4, h = 4, .., 9. The radii of

gyration of the countermasses and counter-rotary elements have not been included for the
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same reasons given before. The derivative of the Lagrangian is computed as

∂L2
∂v2

=



λ1sc,3 − λ3σ6 − λ4σ6 + 2k2c,3 + 2s2c,3 + 2

σ9 − λ3σ7 − λ4σ7 − λ1σ8 + 2σ28

σ10 + σ11 + s2c,5 − λ6((1− k)k2c,5 + s2c,5) + 1

k2k2CR + λ3kk
2
CR + 1

k2k2CR + λ4kk
2
CR + 1

mc,3(λ1 + 4sc,3 − 2λ3sc,3 − 2λ4sc,3)

−mc,4(4l − λ1 − 8sc,4 − 2lλ5 + 2λ3sc,4 + 2λ4sc,4)

−mc,5(8l − λ2 − 6sc,5 + 2λ4sc,5 + 2λ6sc,5)

σ12 − lmp,2 −m3s3 −m4s4 − lm4 +mc,4sc,4

mc,5sc,5 −m5s5 − bmp,2

σ13 + σ14 −mc,3s
2
c,3 −mc,4s

2
c,4 − k23m3

σ15 + σ16 + σ17 + σ18

−lσ19/2

σ20 −m5s
2
5 −mc,5s

2
c,5 − b2mp,2



= 0, (5.27)

where

σ6 = k2c,3 + s2c,3,

σ7 = k2c,4 + l2 + s2c,4,

σ8 = l − sc,4,

σ9 = 4k2c,4 + 2s2c,4 + 2lλ5sc,4 + 2,

σ10 = λ2sc,5 − lλ1 + k2c,5(k − 1)2 + 2(2l − sc,5)2,

σ11 = −λ4(k2c,5 + l2 + s2c,5)− l2λ3 − l2λ5 + 2k2c,5,

σ12 = mc,3sc,3 − lm5 − lmc,4 − lmc,5,

σ13 = kk2CRmCR,3 − k24m4 − k2c,3mc,3 − k2c,4mc,4,

σ14 = −l2m4 − l2m5 − l2mc,4 − l2mc,5 − l2mp,2 −m3s
2
3 −m4s

2
4,

σ15 = kk2CRmCR,4 − k23m3 − k24m4,

σ16 = −k25m5 − k2c,3mc,3 − k2c,4mc,4 − k2c,5mc,5 − l2m4 − l2m5,

σ17 = −l2mc,4 − l2mc,5 − l2mp,2 −m3s
2
3 −m4s

2
4 −m5s

2
5,

σ18 = −mc,3s
2
c,3 −mc,4s

2
c,4 −mc,5s

2
c,5 − b2mp,2,

σ19 = 2lm5 + 2lmc,5 + 2lmp,2 + 4m4s4 − 4mc,4sc,4,

σ20 = −m5k
2
5 +mc,5(k − 1)k2c,5.

The analytical solutions for each of the balancing parameters are not given here for the
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sake of brevity. Instead, let’s consider an example mechanism, and obtain the optimum

set of balancing parameters in order to dynamically balance the robot with minimal added

mass and inertia.

Consider the mechanism with the following kinematic and inertial parameters: l = 0.4,

b = 0.4, si = 0.075, m1 = 0.6, m2 = 0.2, m3 = 0.6, m4 = 0.2, m5 = 0.1, mp,1 = mp,2 =

0.05, k = 16, ki = 0.1, kc,i = 0.1, and kCR,j = 0.2, for i = 1, .., 5, and j = 1, ..4. All

distances and masses are given in m and kg, respectively. Firstly, equation (5.22) is solved

to obtain values of mc,1 = 0.59, mc,2 = 0.038, mCR = 0.19, sc,1 = 0.25, sc,2 = 0.65,

λ1 = −18.77, λ2 = −35.13, and λ3 = −74.25.

Next, equation (5.27) is solve to obtain values of mc,3 = 0.87, mc,4 = 0.11, mc,5 =

0.11, mCR,3 = 0.33, mCR,4 = 0.36, sc,3 = 0.25, sc,4 = 0.64, sc,5 = 0.25, λ4 = −18.77,

λ5 = −59.98, λ6 = −17.56, λ7 = −17.56, λ8 = −36.77, and λ9 = −105.45.

5.5 Simulation

In this section, the dynamic balancing of the robot is verified numerically through the use

of a multi-body dynamic simulation software, MSC ADAMS. The simulation was set up

using the optimised kinematic and inertial parameters computed in section 5.4, and the

base joints of the legs are positioned at p1 = p2 = [−0.5, 0]T and p3 = p4 = [0.3, 0]T .

The trajectory of the moving platform of the robot is a full rotation about a fixed point;

a trajectory that is not possible for non-redundant architectures without encountering

kinematic singularities. The redundant link’s orientation remains fixed with respect to

the moving platform throughout the trajectory. The end-effector is centred at the origin

throughout the trajectory, the moving platform rotates about this point with a constant

angular velocity of φ̇ = 1 and an initial orientation of φ = 0. The orientation of the

redundant link, ψ, is fixed at a perpendicular angle to the moving platform throughout

the trajectory. The described trajectory is written as

ṗe =

0

0

 , φ̇ = 1, ψ̇ = 1, (5.28)

where the initial conditions are given by pe = [0, 0]T , φ = 0, and ψ = −π/2.

The actuated joint velocities, θ̇1, .., θ̇4, for this trajectory are computed using the Jac-

obian matrix of the mechanism. Given that the angular velocity of the redundant link has

been set to be equal to that of the moving platform, the joint velocities are computed as

θ̇ = K−1J

ṗe
φ̇

 , (5.29)
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Figure 5.8: Results of the MSC ADAMS simulation for (a) the unbalanced manipulator,

(b) the balanced manipulator with imposed countermass errors of 2%, and (c) the balanced

manipulator. The left hand graphs show the shaking force imposed by the manipulator

upon the base along the x and y axes, denoted by FX and FY . The right hand graphs

show the shaking torque imposed upon the base by the manipulator.
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where

J =


pT5,10 −pT5,10Ep10,e

pT6,10 −pT6,10Ep10,e

pT7,9 pT7,9E(pe,11 − p9,11)

pT8,9 pT8,9E(pe,11 − p9,11)

 ,

K =


pT5,10Ep1,5 0 0 0

0 pT6,10Ep2,6 0 0

0 0 pT7,9Ep3,7 0

0 0 0 pT8,9Ep4,8

 ,

θ̇ = [θ̇1, θ̇2, θ̇3, θ̇4]
T , and pi,j = pj − pi. To act as a point of comparison, an unbalanced

mechanism is simulated to follow the same trajectory, described by equation (5.28), and

with the same computed joint velocities using equation (5.29). The unbalanced manipu-

lator is identical to the balanced manipulator, except the countermasses and counter-rotary

elements are removed.

The results of the simulation are given in Fig. 5.8; row (a) shows the results of the

unbalanced manipulator and row (c) shows the results of the balanced manipulator. The

left hand graphs show the force imposed on the base by the manipulator throughout the

trajectory, along the x and y axes. The graphs on the right hand side show the torque

imposed on the base by the manipulator throughout the trajectory (measured about P1).

It can be seen that the force and torque exerted on the base for the unbalanced manipulator

are in the order of 10−1 N and Nm, respectively. However, the force and torque exerted on

the base for the balanced manipulator are in the order of 10−10 N and Nm, respectively.

The shaking forces and torques are virtually eliminated for the balanced architecture,

whilst the kinematic redundancy of the system allows full rotations of the end-effector to

take place without encountering any singularities. The small forces and torques imposed

on the base by the balanced manipulator are due to small modelling errors.

Although the simulation reported in Fig.5.8 shows that manipulator imposed no shak-

ing forces or torques on the base when the countermasses are put in place with the correct

balancing parameters, it is important to know what the effects are when a degree of error

is introduced to the system. A challenge when creating a physical prototype is the degree

of precision and accuracy which can be achieved in simulation can not always be achieved

in reality, and so it is important to know how this can effect the outcome of the system.

To explore the effect of this, the balanced manipulator was simulated to follow the same

trajectory as before, however with a small degree of error added to the system. In this
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simulation, the masses of each countermass and counter-rotary element were increased by

2%. The results of this simulation are shown in row (b) of Fig. 5.8. It can be seen that

the shaking forces and torques imposed on the base are reduced by roughly two orders of

magnitude throughout the trajectory. It is concluded that if a physical prototype of the

proposed balanced manipulator were constructed, the shaking forces and torques gener-

ated would be greatly reduced compared to a similar unbalanced manipulator, even if the

level of accuracy in the manufacturing of the balancing components is limited.



91

Chapter 6

Conclusion

The work presented in this thesis addresses some key challenges in order for kinematically

redundant parallel robots to be used more frequently in high performance applications.

The first challenge is that there needs to be a greater number of architectures in or-

der for developers to design kinematically redundant parallel robots for a greater range

of applications. The next challenge is that conventional methods of singularity analysis

for parallel robots are unreliable when applied to kinematically redundant architectures

with non-serially connected actuators, this is a huge issue that needed to be addressed as

Jacobian-based methods of singularity, the most commonly used approaches, would both

fail to detect some singularities and incorrectly identify other configurations as singularities

when they are not. The result of this is that the feasible workspace of the manipulator is

needlessly restricted in order to avoid false positive singularities, whilst still including false

negative singularities in which the performance of the robot can deteriorate significantly.

This issue had previously remained unaddressed in the literature and so the first aim was

to investigate the conditions which lead to the Jacobian failing as a means of singularity

analysis. With this analysis carried out, the next challenge was to develop a more reliable

method of singularity analysis which does not exhibit these shortcomings. Additionally,

using this robust method of singularity analysis, a method of utilising the kinematically

redundant degree of freedom for optimising the mechanism’s proximity from a singularity

for any given pose of the end-effector would allow the potential of kinematically redundant

architectures to be unlocked. Finally, kinematic redundant parallel architectures provide a

solution to develop fast-moving manipulators with large rotational capabilities and work-

spaces. However, a drawback of fast-moving manipulators is that they can accumulate

large shaking forces and moments onto their bases. It is therefore important to develop

architectures which eliminate these effects, such that the high performance of the robot is
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not detracted from by these shaking forces and moments.

6.1 Summary of Main Contributions

In chapter 2, a novel kinematically redundant planar parallel robot manipulator has been

presented whose architecture is a fundamental truss and is able to complete 2π rotations

of the end-effector without producing singularities. Achieving such a combination of char-

acteristics had remained elusive in the literature. Fundamental architectures of parallel

manipulators are important because they constitute the general instance of a family of

robot manipulators. For the proposed parallel manipulator, the bilateration method was

used to solve the inverse kinematics and forward kinematics problems. The singular-

ity analysis was carried out by describing the geometric conditions that lead to the loss

of the rigidity of the robot manipulator by using a method based on the computations

of instantaneous centres of rotations of the sub-mechanisms of mobility 1. An example

trajectory with a full rotation of the moving platform was tested both numerically and

experimentally, these results are reported and a link to an online video recording of the

prototype performing the trajectory is also provided; the actuator values used to complete

the predefined trajectory were calculated by solving the inverse kinematics. This video

also consists of an example of singularity avoidance thanks to redundancy and a potential

application of the full rotation capabilities.

In chapter 3, the shortcomings of using Jacobian-based methods of singularity analysis

on kinematically redundant parlallel robots which exhibit no actuators connected in series

are detailed. Three example mechanisms are examined in particular configurations where

the Jacobian fails as a means of singularity analysis, in one case the determinant of the

Jacobian equals zero when the robot is not in a singularity (false positive), in the other

cases it fails to go to zero as the robot approaches a singularity (false negative). The

robot is determined herein to be in a singularity by computing the rank of the rigidity

matrix of the underlying graph of the mechanism; this matrix becomes rank deficient

if the mechanism enters a type-II singularity and is full rank when in a non-singular

configuration. The problems with the Jacobian for these types of parallel robots arise due

to the need to eliminate a redundant variable(s). The chapter is summarised by instructing

developers of parallel robots with similar architectures to use non-Jacobian based methods

of singularity detection or path planning algorithms.

Chapter 4 presented a geometric method of singularity avoidance for kinematically re-

dundant planar parallel robots which does not exhibit the same limitations that Jacobian-
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based approaches do when applied to these architectures. The singularity analysis is

performed by firstly determining the positions of the relevant instantaneous centres of ro-

tation of the mechanism from the positions and orientations of the links, and secondly by

determining the relevant in-circle radii formed by these ICRs; these radii act as a measure

of how close two ICRs are to coinciding or how close an ICR is to becoming indetermin-

able – both of which indicate that the robot manipulator is in a singularity. The robot

manipulator’s distance from a singularity is given by the minimum normalised value of

these in-circle radii, rmin. A configuration of the kinematically redundant mechanism

that is further away from a singularity is calculated by formulating rmin in terms of the

redundant parameter. A predictor-corrector method is then implemented to find a value

of this parameter which gives an increased value of rmin without crossing a singularity to

get there – a point where rmin = 0.

Finally, the in-circle method is compared with a conventional method of singularity

analysis, the calculation of the inverse of the condition number of the Jacobian, 1/k(J).

The in-circle method is shown to be more robust than using 1/k(J) as a means of measur-

ing proximity to a singularity; two examples are shown to demonstrate these advantages.

Firstly, both methods are used on a non-singular configuration of the mechanism pro-

posed in Baron et al. (2018); the Jacobian matrix is singular however the in-circle method

suggests that the robot manipulator is not in a singularity, and the corresponding rigid-

ity matrix of the mechanism is of full rank which verifies this. In the second example,

the mechanism proposed in Schreiber and Gosselin (2018) is moved toward a singular-

ity, however 1/k(J) does not approach zero as this point is neared, whereas rmin does.

It is concluded that the proposed geometric method is more reliable than conventional

Jacobian-based methods when applied to kinematically redundant architectures for the

reasons described above. Future work may involve geometric methods of singularity ana-

lysis for kinematically redundant spatial manipulators.

Chapter 5 presented a novel, dynamically balanced kinematically redundant planar

parallel robot. Firstly, the method of balancing is presented and is applied on the kin-

ematically redundant architecture of the robot. The balancing conditions are then derived,

such that the shaking forces and moments imposed on the base are zero for any trajectory

of the manipulator. The set of balancing parameters are then optimised such that the

total amount of mass and inertia added to the system is minimised. The performance of

the balanced manipulator is verified numerically via a simulation using the multi-body

dynamic simulation software MSC ADAMS.
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6.1.1 Directions for Future Work

The main aim of this thesis is to address some of the fundamental challenges that kinemat-

ically redundant parallel robots face so that they can be developed for many applications

where high performance is a requirement. Some possible directions for future work are

listed below.

• The Development of Spatial Architectures: The novel architectures presented

in this thesis were both planar ones, which are useful for many applications, however

there are many applications which require that the end-effector is not confined to

move just in a single plane. In order to enhance the potential for kinematically

redundant parallel robots to be used more frequently, e.g. in industry, more spatial

architectures must be developed.

• Singularity Analysis for Spatial Architectures: The issues of conventional,

Jacobian-based methods of singularity analysis were addressed in this thesis, and an

example of the Jacobian failing to detect a singularity was shown in chapter 3. The

robust method of singularity analysis that was presented in chapter 4 is applicable

to planar architectures, however it is not applicable to spatial architectures. Along

with the development of spatial architectures, a method of robust singularity analysis

must be developed which can be applied to spatial kinematically redundant robots.

• Prototype of the Dynamically Balanced Kinematically Redundant Archi-

tecture: The balanced architecture presented in chapter 5 was evaluated using the

multi-body dynamic simulation software MSC Adams. However, before further re-

search on this mechanism can be conducted, a physical mechanism needs to be built

in order to prove the elimination of shaking forces and moments can be achieved in

reality.

• Workspace Optimisation: The development of kinematically redundant parallel

architectures opens a door to parallel robots to be used in many more applications as

it greatly enhances their potential workspaces and rotational capabilities. Following

this, an important next step is to develop algorithms which can be used in the

design process which optimise the workspaces of these mechanisms. This could

include the reachable workspace of the mechanism, i.e. the total area which the

end-effector can reach, or the dexterous workspace, i.e. the total area in which

the end-effector is capable of achieving full cycle rotations. A start on this topic
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was recently made in Cheung et al. (2019), where an algorithm of computing the

‘singularity-safe’ workspace of a kinetically redundant robot was presented.

• Path Planning Algorithms: Multiple path planning algorithms have been de-

veloped for parallel robots; it is common to try and optimise some performance

index, such as the condition number of the Jacobian matrix, along a particular path.

However, as highlighted in this thesis, this is unreliable when applied to kinematically

redundant parallel robots with non-seriall connected actuators. A robust method of

singularity avoidance was presented in this thesis which optimises the robot’s con-

figuration for a given pose of the end-effector. In addition to this, it would be useful

for path planning algorithms to be developed for these types of architectures where

a reliable performance index, such as rmin, can optimised over an entire trajectory.
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Appendix A

Detailed Jacobian Calculations

A.1 1st Planar Case

Firstly, the following vector loop equations are formed:

pe = p1 + p1,6 + p6,e (A.1)

pe = p2 + p2,7 + p7,e (A.2)

pe = p3 + p3,4 + p4,6 + p6,e (A.3)

pe = p3 + p3,5 + p5,7 + p7,e (A.4)

where pi,j denotes the vector from Pi to Pj , pe denotes the position vector of Pe, and pi

denotes the position vector of Pi. Then, as the distance between the end revolute joints

of leg i is given by ρi, the following relation is obtained

ρ2i = (pk − pj)
T (pk − pj) (A.5)

where pj and pk denote the end revolute joints of leg i. Given this, equations (A.1-A.4)

can be transformed into

pT1,6(pe − p1 − p6,e) = ρ21, (A.6)

pT2,7(pe − p2 − p7,e) = ρ22, (A.7)

pT4,6(pe − p3 − p3,4 − p6,e) = ρ23, (A.8)

pT5,7(pe − p3 − p3,5 − p7,e) = ρ24 (A.9)
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and by differentiating, we obtain

pT1,6(ṗe − ṗ6,e) = ρ1ρ̇1, (A.10)

pT2,7(ṗe − ṗ7,e) = ρ2ρ̇2, (A.11)

pT4,6(ṗe − ṗ3,4 − ṗ6,e) = ρ3ρ̇3, (A.12)

pT5,7(ṗe − ṗ3,5 − ṗ7,e) = ρ4ρ̇4. (A.13)

Since the output of the robot is the 3-dimensional velocity vector, ċ = (ẋ, ẏ, φ̇)T , and the

input is the 4-dimensional velocity vector, q̇ = (ρ̇1, ρ̇2, ρ̇3, ρ̇4)
T , the Jacobian matrices, J

and K, are of dimension 3 × 3 and 3 × 4, respectively. The first two rows are formed

by equations (A.10) and (A.11), whereas the third row is formed by combining equa-

tions (A.12) and (A.13) through the elimination of ṗ3,5; the vector which corresponds to

the redundant output variable.

Since P3, P4, and P5 are all connected to the same ternary link, the following relation

exists:

p3,4 = λMp3,5 (A.14)

where

λ =
d3,4
d3,5

,

M =

cos(δ) −sin(δ)

sin(δ) cos(δ)

 ,
and δ is the angle taken anti-clockwise from p3,5 to p3,4. Using this relation, equa-

tions (A.12) and (A.13) can be combined to obtainpT4,6(ṗe − ṗ6,e)− ρ3ρ̇3

pT5,7(ṗe − ṗ7,e)− ρ4ρ̇4

 =

pT4,6λM
pT5,7

 ṗ3,5, (A.15)

and then ṗ3,5 can be made the subject by

ṗ3,5 = N

pT4,6(ṗe − ṗ6,e)− ρ3ρ̇3

pT5,7(ṗe − ṗ7,e)− ρ4ρ̇4

 , (A.16)

where

N =

pT4,6λM
pT5,7

−1 .
Since the distance between P3 and P5 is constant,

pT3,5ṗ3,5 = 0. (A.17)
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Given that

ṗe =

ẋ
ẏ

 , (A.18)

ṗi,e = Epi,eφ̇, i = 6, 7, (A.19)

where

E =

0 −1

1 0

 ,
by substituting (A.16) into (A.17), and expanding the velocity vectors, we obtain

pT3,5N

pT4,6
pT5,7

ẋ
ẏ

− pT3,5N

pT4,6Ep6,e

pT5,7Ep7,e

 φ̇ = pT3,5N

ρ3ρ̇3
ρ4ρ̇4

 . (A.20)

By similarly expanding the velocity vectors of equations (A.6) and (A.7), the Jacobian

matrices J and K are formed.

J =


pT1,6 −pT1,6Ep6,e

pT2,7 −pT2,7Ep7,e

pT3,5N

pT4,6
pT5,7

 −pT3,5N

pT4,6Ep6,e

pT5,7Ep7,e



 (A.21)

and

K =


ρ1 0 0 0

0 ρ2 0 0

0 0 pT3,5N

ρ3 0

0 ρ4



 (A.22)

A.2 Spatial Case

A unit vector, ei, is defined along the axis which passes through the base joints of redund-

ant leg i, such that

ei =
ai,2 − ai,1
‖ai,2 − ai,1‖

. (A.23)

The positions of the joints on the platform in the base frame are described by the position

of the origin of the moving frame, pi, the orientation of the platform, given by the rotation

matrix Q, and the positions of the platform joints in the moving frame, vi,0, such that

bi = p + Qvi,0 (A.24)

where i = 1, ..., 6. The length between the end joints of the ith non-redundant leg, ρi, is

described by the relation

(bi − ai)
T (bi − ai) = ρ2i , i = 4, 5, 6 (A.25)
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and by differentiating this equation, one obtains

(bi − ai)
T ḃi = ρiρ̇i. (A.26)

Taking the derivative of (A.24) and substituting the result into (A.26), the following is

obtained;

(bi − ai)
T ṗ + [Qvi,0 × (bi − ai)]

Tω = ρiρ̇i. (A.27)

Equation (A.27) is used to construct the rows of the Jacobian which correspond to the

non-redundant legs of the manipulator. In this case, the output and input velocity vectors

of Jċ = Kq̇ are given by ċ = (ṗT ,ωT )T , describing the linear and angular velocity of the

platform, and q̇ = (ρ̇1,1, ρ̇1,2, ρ̇2,1, ρ̇2,2, ρ̇3,1, ρ̇3,2, ρ̇4, ρ̇5, ρ̇6)
T , describing the vector of active

joint velocities.

For the ith redundant leg, the following constraint equations are written

(si − ai,j)
T (si − ai,j) = ρ2i,j , i = 1, 2, 3, (A.28)

(si − bi)
T (si − bi) = l2i , i = 1, 2, 3, (A.29)

where li denotes the length of the link which joins Si and Bi, and j = 1, 2. Given that the

joints Ai,1, Ai,2, Si, and Bi are coplanar, the following relationship must hold

[(bi − ai,1)× ei]
T (si − ai,1) = 0. (A.30)

By differentiating equations (A.28) and (A.30), the following is obtained

Hiṡi = wi, (A.31)

where

Hi =


(si − ai,1)

T

(si − ai,2)
T

[(bi − ai,1)× ei]
T

 , (A.32)

and

wi =


ρi,1ρ̇i,1

ρi,2ρ̇i,2

[(si − ai,1)× ei]
T ḃi

 . (A.33)

Equation (A.31) is solved for ṡi by taking the matrix inverse of Hi, such that

ṡi = H−1i wi, (A.34)

where H−1i can be expressed as

H−1i =
Adj(Hi)

det(Hi)
, (A.35)
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Adj(Hi) is the adjoint of matrix Hi and det(Hi) is the determinant, which herein will be

denoted by µi. These can be expressed algebraically by

det(Hi) = µi = [(si − ai,1)× (si − ai,2)]
T [(bi − ai,1)× ei] (A.36)

and

Adj(Hi) =
[
hi,1 hi,2 hi,3

]
(A.37)

where

hi,1 = (si − ai,2)× [(bi − ai,1)× ei], (A.38)

hi,2 = [(bi − ai,1)× ei]× (si − ai,1), (A.39)

hi,3 = (si − ai,1)× (si − ai,2). (A.40)

Now equation (A.34) can be rewritten as

ṡi =
1

µi
(hi,1ρi,1ρ̇i,1 + hi,2ρi,2ρ̇i,2 + hi,3[(si − ai,1)× ei]

T ḃi). (A.41)

By taking the derivative of (A.29), one obtains

(si − bi)
T ṡi = (si − bi)

T ḃi, (A.42)

and substituting (A.41) and the derivative of (A.24) into (A.42) gives

(si − bi)
T ṗ + [Qvi,0 × (si − bi)]

Tω =

(si − bi)
Tmiρ̇i,1 + (si − bi)

Tniρ̇i,2 (A.43)

where

mi =
ρi,1
µi

[(si − ai,2)× [(bi − ai,1)× ei]], (A.44)

ni =
ρi,2
µi

[[(bi − ai,1)× ei]× (si − ai,1)]. (A.45)

Equation (A.43) is used to construct the first three rows of the Jacobian which correspond

to the redundant legs, and equation (A.27) makes up the latter three rows, corresponding

to the non-redundant legs, such that the resulting Jacobian matrices J and K, which are

of dimension 6× 6 and 6× 9, are given by

J =



(s1 − b1)
T [Qv1,0 × (s1 − b1)

T ]

(s2 − b2)
T [Qv2,0 × (s2 − b2)

T ]

(s3 − b3)
T [Qv3,0 × (s3 − b3)

T ]

(b4 − a4)
T [Qv4,0 × (b4 − a4)

T ]

(b5 − a5)
T [Qv5,0 × (b5 − a5)

T ]

(b6 − a6)
T [Qv6,0 × (b6 − a6)

T ]


(A.46)
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and

K =

K1 0

0 K2

 (A.47)

where

K1 =


rT1 m1 rT1 n1 0 0

0 rT2 m2 rT2 n2 0

0 0 rT3 m3 rT3 n3

 , (A.48)

ri = (si − bi), and K2 = diag[ρ4, ρ5, ρ6].

A.3 2nd Planar Case

Rotation matrices Q and R are formed to define the orientation of the platform and link

A3S,

Q =

cos(φ) −sin(φ)

sin(φ) cos(φ)

 , (A.49)

R =

cos(γ) −sin(γ)

sin(γ) cos(γ)

 . (A.50)

The positions of the platform joints and point S are given by

bi = p + Qν0,i, (A.51)

s = a3 + Rs0, (A.52)

where ν0,i and s0 are the positions of joints Bi in the moving frame and joint S in the

fixed frame, respectively. The following constraint equations are then formed

(bi − ai)
T (bi − ai) = ρ2i , i = 1, 2 (A.53)

(bi − s)T (bi − s) = ρ2i , i = 3, 4 (A.54)

(s− a3)
T (s− a3) = l2. (A.55)

Then by differentiating (A.51)-(A.55) with respect to time, the following are obtained

(bi − ai)
T (ṗ + φ̇Eνi) = ρiρ̇i, i = 1, 2 (A.56)

fT (ṗ + φ̇Eν3 − ṡ) = ρ3ρ̇3, (A.57)

mT (ṗ + φ̇Eν4 − ṡ) = ρ4ρ̇4, (A.58)

(s− a3)
T ṡ = 0, (A.59)
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where

f = b3 − s,

m = b4 − s,

νi = Qν0,i.

Equations (A.57) and (A.58) are then combined to form the matrix equation

Gċ− h = Hṡ (A.60)

where

H =

 fT

mT

 ,
h =

ρ3ρ̇3
ρ4ρ̇4

 ,
G =

 fT fTEν3

mT mTEν4

 .
Equation (A.60) is then rearranged to make ṡ the subject by taking the inverse of matrix

H, such that

ṡ = N(Gċ− h) (A.61)

where

N = H−1 =
1

fTEm

[
Em −Ef

]
.

Substituting (A.61) into (A.59) then gives

(s− a3)
TNGċ = (s− a3)

T
[
Emρ3
fTEm

−Efρ4
fTEm

]ρ̇3
ρ̇4

 (A.62)

where

NG =
E

fTEm

[
(mfT − fmT ) (mfTEν3 − fmTEν4)

]
. (A.63)

Since

mfT − fmT = −(fTEm)E, (A.64)

ν3 = s− p + f , (A.65)

ν4 = s− p + m, (A.66)
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one may obtain

mfTEν3 − fmTEν4 =

(mfTE(s− p + f)− fmTE(s− p + m))
(A.67)

= (fTEm)(s− p) (A.68)

which means that (A.63) becomes

NG =
[
1 E(s− p)

]
(A.69)

where 1 denotes the 2× 2 identity matrix. The first two rows of the Jacobian Matrices, J

and K, are then formed from (A.56), and the third row is obtained by substituting (A.69)

into (A.62), such that

J =


(b1 − a1)

T (b1 − a1)
TEν1

(b2 − a2)
T (b2 − a2)

TEν2

(s− a3)
T (s− a3)

TE(s− p)

 (A.70)

and

K =


ρ1 0 0 0

0 ρ2 0 0

0 0 k33 k34

 (A.71)

where

k33 =
(s− a3)

TEmρ3
fTEm

(A.72)

and

k34 =
−(s− a3)

TEfρ4
fTEm

. (A.73)
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Appendix B

Rigidity Matrices

B.1 1st Planar Case

The columns correspond to the coordinates of the vertices v1 to v7, which correspond to

the joints P1 to P7 of the mechanism. Each row corresponds to the an edge, where the

term ei,j denotes the transpose of the two-dimensional position vector from vi to vj , such

that ei,j = (vj,x − vi,x, vj,y − vi,y), and 0 denotes the two-dimensional row vector of zeros.

M =



v1 v2 v3 v4 v5 v6 v7

e1,2 −e1,2 0 0 0 0 0

e1,3 0 −e1,3 0 0 0 0

e1,6 0 0 0 0 −e1,6 0

0 e2,3 −e2,3 0 0 0 0

0 e2,7 0 0 0 0 −e2,7

0 0 e3,4 −e3,4 0 0 0

0 0 e3,5 0 −e3,5 0 0

0 0 0 e4,5 −e4,5 0 0

0 0 0 e4,6 0 −e4,6 0

0 0 0 0 e5,7 0 −e5,7

0 0 0 0 0 e6,7 −e6,7



.

B.2 Spatial Case

The rigidity matrix of the spatial case is slightly more complex. Unlike the planar cases,

there is not a straight one-to-one mapping between the joints and the vertices, as discussed

in section 2 of chapter 3. When the prismatic actuators are locked, the manipulator
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consists of 15 joints (counting coincident joints only once), whereas the corresponding

graph is made up of 36 vertices (labelled v1 to v36). This is because only the spherical

joints correspond to single vertices, the revolute joints on the other hand correspond to

two vertices and the universal joints correspond to three vertices, as discussed in section

2 of chapter 3.

Each universal joint corresponds to the vertex triple (vi,vj ,vk), where the axis attached

to the base is defined by (vi,vj) and the other axis is defined by (vj ,vk). Vertex triples

(v1,v2,v19), (v3,v4,v20), (v5,v6,v21), (v7,v8,v22), (v9,v10,v23), (v11,v12,v24), (v13,v14,v25), (v15,v16,v26),

and (v17,v18,v27) denote A1,1, A1,2, A2,1, A2,2, A3,1, A3,2, A4, A5, and A6, respectively.

The revolute joints at S1, S2, and S3 are defined by the vertex pairings (v28,v29), (v30,v31),

and (v32,v33), and the spherical joints on the platform, B1, B2, and B3, are defined by v34,

v35, and v36.

The columns correspond to the coordinates of the vertices, and each row corresponds

to an edge, where the term ei,j denotes the transpose of the three-dimensional position

vector from vi to vj , such that ei,j = (vj,x − vi,x, vj,y − vi,y, vj,z − vi,z), and 0 denotes the

three-dimensional row vector of zeros.

Firstly, we compose the rigidity matrix of the graph corresponding to the base joints,

M1.
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M1 =



v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15 v16 v17 v18

e1,2 −e1,2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

e1,12 0 0 0 0 0 0 0 0 0 0 −e1,12 0 0 0 0 0 0

e1,14 0 0 0 0 0 0 0 0 0 0 0 0 −e1,14 0 0 0 0

e1,18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −e1,18

0 e2,7 0 0 0 0 −e2,7 0 0 0 0 0 0 0 0 0 0 0

0 e2,8 0 0 0 0 0 −e2,8 0 0 0 0 0 0 0 0 0 0

0 e2,11 0 0 0 0 0 0 0 0 −e2,11 0 0 0 0 0 0 0

0 e2,13 0 0 0 0 0 0 0 0 0 0 −e2,13 0 0 0 0 0

0 e2,16 0 0 0 0 0 0 0 0 0 0 0 0 0 −e2,16 0 0

0 e2,17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −e2,17 0

0 0 e3,4 −e3,4 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 e3,10 0 0 0 0 0 0 −e3,10 0 0 0 0 0 0 0 0

0 0 e3,11 0 0 0 0 0 0 0 −e3,11 0 0 0 0 0 0 0

0 0 e3,15 0 0 0 0 0 0 0 0 0 0 0 −e3,15 0 0 0

0 0 e3,16 0 0 0 0 0 0 0 0 0 0 0 0 −e3,16 0 0

0 0 0 e4,8 0 0 0 −e4,8 0 0 0 0 0 0 0 0 0 0

0 0 0 e4,9 0 0 0 0 −e4,9 0 0 0 0 0 0 0 0 0

0 0 0 e4,10 0 0 0 0 0 −e4,10 0 0 0 0 0 0 0 0

0 0 0 e4,15 0 0 0 0 0 0 0 0 0 0 −e4,15 0 0 0

0 0 0 0 e5,6 −e5,6 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 e5,11 0 0 0 0 0 −e5,11 0 0 0 0 0 0 0

0 0 0 0 e5,12 0 0 0 0 0 0 −e5,12 0 0 0 0 0 0

0 0 0 0 e5,14 0 0 0 0 0 0 0 0 −e5,14 0 0 0 0

0 0 0 0 e5,15 0 0 0 0 0 0 0 0 0 −e5,15 0 0 0

0 0 0 0 e5,17 0 0 0 0 0 0 0 0 0 0 0 −e5,17 0

0 0 0 0 0 e6,7 −e6,7 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 e6,12 0 0 0 0 0 −e6,12 0 0 0 0 0 0

0 0 0 0 0 e6,13 0 0 0 0 0 0 −e6,13 0 0 0 0 0

0 0 0 0 0 e6,17 0 0 0 0 0 0 0 0 0 0 −e6,17 0

0 0 0 0 0 0 e7,8 −e7,8 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 e7,18 0 0 0 0 0 0 0 0 0 0 −e7,18

0 0 0 0 0 0 0 e8,13 0 0 0 0 −e8,13 0 0 0 0 0

0 0 0 0 0 0 0 e8,14 0 0 0 0 0 −e8,14 0 0 0 0

0 0 0 0 0 0 0 e8,17 0 0 0 0 0 0 0 0 −e8,17 0

0 0 0 0 0 0 0 0 e9,10 −e9,10 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 e9,16 0 0 0 0 0 0 −e9,16 0 0

0 0 0 0 0 0 0 0 e9,17 0 0 0 0 0 0 0 −e9,17 0

0 0 0 0 0 0 0 0 0 e10,14 0 0 0 −e10,14 0 0 0 0

0 0 0 0 0 0 0 0 0 e10,15 0 0 0 0 −e10,15 0 0 0

0 0 0 0 0 0 0 0 0 e10,16 0 0 0 0 0 −e10,16 0 0

0 0 0 0 0 0 0 0 0 0 e11,12 −e11,12 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 e11,17 0 0 0 0 0 −e11,17 0

0 0 0 0 0 0 0 0 0 0 e11,18 0 0 0 0 0 0 −e11,18

0 0 0 0 0 0 0 0 0 0 0 e12,13 −e12,13 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 e12,18 0 0 0 0 0 −e12,18

0 0 0 0 0 0 0 0 0 0 0 0 e13,14 −e13,14 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 e15,16 −e15,16 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 e17,18 −e17,18



.

The rigidity matrix corresponding to the remaining links in the mechanism has been

divided into matrices M2 and M3, such that
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M2 =



v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15 v16 v17 v18

e1,19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 e2,19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 e3,20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 e4,20 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 e5,21 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 e6,21 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 e7,22 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 e8,22 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 e9,23 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 e10,23 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 e11,24 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 e12,24 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 e13,25 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 e14,25 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 e15,26 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 e16,26 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 e17,27 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 e18,27

0 e2,28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 e2,29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 e4,28 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 e4,29 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 e8,30 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 e8,31 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 e10,30 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 e10,31 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 e14,32 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 e14,33 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 e16,32 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 e16,33 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 e18,34

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 e6,35 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 e12,36 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0



,
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M3 =



v19 v20 v21 v22 v23 v24 v25 v26 v27 v28 v29 v30 v31 v32 v33 v34 v35 v36

−e1,19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−e2,19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 −e3,20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 −e4,20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 −e5,21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 −e6,21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 −e7,22 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 −e8,22 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 −e9,23 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 −e10,23 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 −e11,24 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 −e12,24 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 −e13,25 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 −e14,25 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 −e15,26 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 −e16,26 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 −e17,27 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 −e18,27 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 −e2,28 0 0 0 0 0 0 0 0

e19,28 0 0 0 0 0 0 0 0 −e19,28 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 −e2,29 0 0 0 0 0 0 0

e19,29 0 0 0 0 0 0 0 0 0 −e19,29 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 −e4,28 0 0 0 0 0 0 0 0

0 e20,28 0 0 0 0 0 0 0 −e20,28 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 −e4,29 0 0 0 0 0 0 0

0 e20,29 0 0 0 0 0 0 0 0 −e20,29 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 e28,29 −e28,29 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 −e8,30 0 0 0 0 0 0

0 0 0 e22,30 0 0 0 0 0 0 0 −e22,30 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 −e8,31 0 0 0 0 0

0 0 0 e22,31 0 0 0 0 0 0 0 0 −e22,31 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 e30,31 −e30,31 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 −e10,30 0 0 0 0 0 0

0 0 0 0 e23,30 0 0 0 0 0 0 −e23,30 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 −e10,31 0 0 0 0 0

0 0 0 0 e23,31 0 0 0 0 0 0 0 −e23,31 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 −e14,32 0 0 0 0

0 0 0 0 0 0 e25,32 0 0 0 0 0 0 −e25,32 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 −e14,33 0 0 0

0 0 0 0 0 0 e25,33 0 0 0 0 0 0 0 −e25,33 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 −e16,32 0 0 0 0

0 0 0 0 0 0 0 e26,32 0 0 0 0 0 −e26,32 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 −e16,33 0 0 0

0 0 0 0 0 0 0 e26,33 0 0 0 0 0 0 −e26,33 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 e32,33 −e32,33 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −e18,34 0 0

0 0 0 0 0 0 0 0 e27,34 0 0 0 0 0 0 −e27,34 0 0

0 0 0 0 0 0 0 0 0 e28,34 0 0 0 0 0 −e28,34 0 0

0 0 0 0 0 0 0 0 0 0 e29,34 0 0 0 0 −e29,34 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −e6,35 0

0 0 e21,35 0 0 0 0 0 0 0 0 0 0 0 0 0 −e21,35 0

0 0 0 0 0 0 0 0 0 0 0 e30,35 0 0 0 0 −e30,35 0

0 0 0 0 0 0 0 0 0 0 0 0 e31,35 0 0 0 −e31,35 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −e12,36

0 0 0 0 0 e24,36 0 0 0 0 0 0 0 0 0 0 0 −e24,36

0 0 0 0 0 0 0 0 0 0 0 0 0 e32,36 0 0 0 −e32,36

0 0 0 0 0 0 0 0 0 0 0 0 0 0 e33,36 0 0 −e33,36

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 e34,35 −e34,35 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 e34,36 0 −e34,36

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 e35,36 −e35,36



.

The rigidity matrix of the entire mechanism is then constructed by

M =

M1 0

M2 M3


where 0 denotes the 48× 54 matrix of zeros.

The rigidity matrix M1, describing the graph corresponding to the base joints, has a

maximum rank of 48, which is equal to the number of edges required for the structure to

be rigid (see equation 2 of chapter 3). For the mechanism used in example 2, all of the

base joints are coplanar and so the rank of M1 in this example is 34, 14 below full rank.

The base is rigid by definition, so the drop in rank of this matrix is irrelevant. In example

2, the rank of the rigidity matrix M is 88 at all points during the trajectory, which is 14

less than the minimum number of edges required for this graph to be rigid, except when

in the last pose, the singularity, when the rank drops to 87.
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B.3 2nd Planar Case

The columns correspond to the coordinates of the vertices v1 to v8; where vertices v1 to

v3 correspond to the base joints A1 to A3, vertices v4 to v7 correspond to the platform

joints B1 to B4, and vertex v8 corresponds to joint S. Just like in the first planar example,

each row corresponds to the an edge, ei,j , denoting the transpose of the two-dimensional

position vector from vi to vj , and 0 denotes the two-dimensional row vector of zeros.

M =



v1 v2 v3 v4 v5 v6 v7 v8

e1,2 −e1,2 0 0 0 0 0 0

e1,3 0 −e1,3 0 0 0 0 0

e1,4 0 0 −e1,4 0 0 0 0

0 e2,3 −e2,3 0 0 0 0 0

0 e2,5 0 0 −e2,5 0 0 0

0 0 e3,8 0 0 0 0 −e3,8

0 0 0 e4,5 −e4,5 0 0 0

0 0 0 e4,7 0 0 −e4,7 0

0 0 0 0 e5,6 −e5,6 0 0

0 0 0 0 e5,7 0 −e5,7 0

0 0 0 0 0 e6,7 −e6,7 0

0 0 0 0 0 e6,8 0 −e6,8

0 0 0 0 0 0 e7,8 −e7,8



.


	PhD Coversheet
	PhD Coversheet

	Baron, Nicholas
	Contents
	List of Tables
	List of Figures
	1 Introduction
	1.1 High Performance Parallel Robots
	1.2 Singularities
	1.3 Redundancy in Parallel Robots
	1.3.1 Actuation Redundancy
	1.3.2 Kinematic Redundancy

	1.4 Methods of Kinematic Analysis
	1.5 Dynamic Balancing of Parallel Robots
	1.6 Overview of Chapters

	2 Novel Planar Parallel Architecture
	2.1 Robot Architecture
	2.2 Inverse Kinematics
	2.3 Forward Kinematics
	2.4 Singularity Analysis
	2.5 Experimental Results

	3 On the False Positives and False Negatives of the Jacobian Matrix in Kinematically Redundant Parallel Mechanisms
	3.1 The Rigidity Matrix of Parallel robots
	3.2 Kinematic Redundant Parallel Robots with Non-Serially Connected Actuators
	3.3 Calculation of the Jacobian
	3.3.1 Architecture 1 - 1st Planar Case
	3.3.2 Architecture 2 - Spatial Case
	3.3.3 Architecture 3 - 2nd Planar Case

	3.4 Limitations of the Jacobian
	3.4.1 1st Planar Case - False Positive of the Jacobian
	3.4.2 Spatial Case - False Negative of the Jacobian
	3.4.3 2nd Planar Case - False Negative of the Jacobian

	3.5 Discussion

	4 A Robust Method of Singularity Avoidance
	4.1 Review of Basic Tools
	4.2 Geometric Method of Singularity Avoidance
	4.2.1 Proximity to a Singularity
	4.2.2 Singularity Avoidance

	4.3 Numerical Example
	4.4 Comparison to the Jacobian

	5 A Dynamically Balanced Kinematically Redundant Planar Parallel Robot
	5.1 Balancing Methods
	5.1.1 Counter-Rotary Countermasses
	5.1.2 Balanced Parallelogram Legs

	5.2 Architecture
	5.3 Derivation of Balancing Conditions
	5.4 Mass and Inertia Optimisation
	5.5 Simulation

	6 Conclusion
	6.1 Summary of Main Contributions
	6.1.1 Directions for Future Work


	Bibliography
	A Detailed Jacobian Calculations
	A.1 1st Planar Case
	A.2 Spatial Case
	A.3 2nd Planar Case

	B Rigidity Matrices
	B.1 1st Planar Case
	B.2 Spatial Case
	B.3 2nd Planar Case





