University of Sussex

A University of Sussex PhD thesis
Available online via Sussex Research Online:

http://sro.sussex.ac.uk/

This thesis is protected by copyright which belongs to the author.

This thesis cannot be reproduced or quoted extensively from without first
obtaining permission in writing from the Author

The content must not be changed in any way or sold commercially in any
format or medium without the formal permission of the Author

When referring to this work, full bibliographic details including the
author, title, awarding institution and date of the thesis must be given

Please visit Sussex Research Online for more information and further details

US

University of Sussex

ABSTRACTIONS AND OPTIMISATIONS
FOR MODEL-CHECKING
SOFTWARE-DEFINED NETWORKS

by

Vasileios Klimis

Submitted for the degree of Doctor of Philosophy

University of Sussex

(©) 2020 Vasileios Klimis

Declaration

I declare that (1) all the work contained herein is my own and no work is unacknowledged,
and (2) that this work has not been and will not be submitted in whole or in part for the
award of any other degree.

This thesis contains published /accepted work and work prepared for publication.

Signature:

VASILEIOS KLIMIS

iv

Abstract

VASILEIOS KLIMIS, Ph.D.

ABSTRACTIONS AND OPTIMISATIONS FOR MODEL-CHECKING
SOFTWARE-DEFINED NETWORKS

Software-Defined Networking introduces a new programmatic abstraction layer by shifting
the distributed network functions (NFs) from silicon chips (ASICs) to a logically centralized
(controller) program. And yet, controller programs are a common source of bugs that can
cause performance degradation, security exploits and poor reliability in networks. Assuring
that a controller program satisfies the specifications is thus most preferable, yet the size of
the network and the complexity of the controller makes this a challenging effort.

This thesis presents a highly expressive, optimised SDN model, (code-named MoCS),
that can be reasoned about and verified formally in an acceptable timeframe. In it, we
introduce reusable abstractions that (i) come with a rich semantics, for capturing subtle
real-world bugs that are hard to track down, and (ii) which are formally proved correct. In
addition, MoCS deals with timeouts of flow table entries, thus supporting automatic state
refresh (soft state) in the network. The optimisations are achieved by (1) contextually
analysing the model for possible partial order reductions in view of the concrete con-
trol program, network topology and specification property in question, (2) pre-computing
packet equivalence classes and (3) indexing packets and rules that exist in the model and
bit-packing (compressing) them.

Each of these developments is demonstrated by a set of real-world controller programs
that have been implemented in network topologies of varying size, and publicly released
under an open-source license.

To my mother

vi

Acknowledgements

I would like to thank both my supervisors, Bernhard Reus and George Parisis for their
undiminished enthusiasm, encouragement, time and support, and for getting me to accom-
plish more than I ever thought possible.

I would like to thank the School of Engineering and Informatics at the University of
Sussex, for awarding me a full-time 3-year scholarship to fund this PhD project.

My gratitude extends to StudyGroup and especially to Agneau Belanyek for keeping
this PhD financially viable.

Gratitudes go to my lab mate, Mohammed Alasmar, too, for the fun-time we had
together playing table tennis: without him this PhD would have been completed in half
the time.

My big special mentions go to my shadow supervisor, my wife, for her patience: she

motivated me by constantly asking: when will you finish that #&!* PhD?

vil

Contents

List of Chapters Published as Papers in Peer-Reviewed Conferences ix
List of Tables X
List of Figures xi
List of Controller Programs xii
Abbreviations and Acronyms xiii
Nomenclature and Notations Xiv
OpenFlow Messages and the Respective Modelled Actions in MoCS xviii
1 Introduction 1
1.1 Thesis Contributions 2
1.2 Thesis Overview e 3
2 Background: A Survey of Computer Network Verification Approaches 6
3 Towards Model Checking Real-World Software-Defined Networks 30
4 Model Checking Software-Defined Networks with Flow Entries that Time
Out 57
5 Conclusions and Future Work 65
5.1 Future Directions 65
52 Afinal remark L 67
Extended Bibliography 68

viii
A Artifact for Paper: "Towards Model Checking Real-World Software-
Defined Networks" 96

ix

List of Chapters Published as Papers

in Peer-Reviewed Conferences

Chapter 3

Chapter 4

Klimis V., Parisis G., Reus B.: Towards Model Checking Real-World
Software-Defined Networks. In: Computer Aided Verification, CAV 2020.
Lecture Notes in Computer Science, vol 12225, pp 126-148. Springer,
Cham. https://doi.org/10.1007/978-3-030-53291-8_8

Klimis, V., Parisis, G., Reus, B.: Model Checking Software-Defined
Networks with Flow Entries that Time Out. In: Formal Methods in
Computer-Aided Design, FMCAD 2020.

https://doi.org/10.1007/978-3-030-53291-8_8

List of Tables

Chapter 3

1 Safeness Predicates 42
Chapter 4

1 Performance by number of clients and servers 62
A

1 Memory usage and verification runtimes 99

2 Dataplane topologies 106

el

List of Figures

Chapter 1

1

Schematic outline of the thesis

Chapter 2

1

2
3
4

Pictorial representation of the main types of network correctness properties

The queues and connections of the KUAI model
The Inverse Transfer Function

Example of a concolic execution in NICE

Chapter 3

1

2
3
4
5
6
7

A high-level view of MoCS

An example run in MoCS

Packet and rule indices

Performance Comparison — Verification Throughput
Performance Comparison — Visited States
Performance Comparison — Memory Footprint

Two networks

Chapter 4

1

2
3
4

A high-level view of extended MoCS

Four clients and two servers connecting to an OF- switch

The causal enabling relation between actions for an additional packet

Explored States in extended MoCS

10
11
14
18

34
39
44
46
47
47
49

99
60

62

xii

List of Controller Programs

Chapter 3

CP 1: A stateless firewall with control messages reordering bug
CP 2: Stateful inspection firewall

CP 3: MAC learning application: for verifying absence of loops
CP 4: Wrong nesting level bug

CP 5: Consistent updates.

Chapter 4
CP 1: Packet-In Message Handler
CP 2: Naive Flow-removed message handler

CP 3: Correct Flow-removed message handler

54
55
95
56
56

62
62
62

xiii

Abbreviations and Acronyms

MoCS Model Checking for Software-Defined Networks
SDN Software-Defined Networking

MC Model Checking

POR Partial-Order Reduction

LTL Linear-Time Temporal Logic

cp Controller Program

SSH Secure Shell

OF OpenFlow

CTX Context

TCP Transmission Control Protocol

Xiv

Nomenclature and Notations

Hosts the set of all hosts in the network

Switches the set of all switches in the network

N node: a network device (either host or switch): n € (Hosts U Switches)
Ports(n) the set of ports of node n: Ports(n) € N

pto.oo. port in node n: pt € Ports(n)

ports a subset in Ports(n)

loc location: loc = (n, pt)

Loc the set of all locations

A the network topology: a bijection which associates a physical network

interface (a location) with another one. Formally, A : Loc — Loc
Packets the set of all packets in the network

pkt packet: a tuple of (1) a set of abstract (proof-relevant) packet matching

header fields and (2) a location loc

Barriers the set of all barrier IDs: Barriers € N
b barrier: b € Barriers
T rule: a tuple of (priority, pattern, ports, timeout), where priority €

N and pattern is a match condition over the header fields of packets

defining so a set of packets packets = Packets.

Rules denotes the set of all rules (flow entries)
Tevg receive queue
[packet queue

rQ request queue

XV

fo ... forward queue

cq ... control queue

brq barrier-reply queue

frq flow-removed queue

ftooo oo flow table: ft € Rules

head(q) the element with the "longest time" in the queue ¢

T host (client or/and server): h = (ports, rcvq) € Hosts

c, = client: c € Hosts

s, & L. L. server: s € Hosts

sw,@ switch: sw = (ports, ft, pq, cq, fq) € Switches

pktln handler for the OpenFlow Packet-In message

barrierin handler for the OpenFlow Barrier Reply message

flowRmud handler for the OpenFlow Flow-removed message

CP controller program: CP = (pktIn, flowRmuvd, barrierIn)

cs oo the set of all controller program states

€80 ... the initial controller program state (csg € CS)

€S ... the current controller program state (cs € CS)

oo e an assignment to host’s receive queue, i.e., w : Hosts — {rcvq}

O . a function which maps each switch to its buffers. Formally, § : Switches —
{pa, fa, cq, ft}

Yoo the current controller state which consists of the controller program

state and the states of rq, brg, frq, i.e., v = (¢s, rq, brq, frq)

SDN controller: controller = (CS, ¢sg,~y, CP)

S . the state-space of the overall system

S a state in S: s = (m,0,7) € S

SO e e e the initial state of the overall system: sg € .S
alt) .o a parametrised action

Send the set of all send(-) actions

Recv the set of all recv(-) actions

xvi
the set of all match(-) actions
the set of all nomatch(-) actions
the set of all ctri(-) actions
the set of all add(-) actions
the set of all del(-) actions
the set of all fwd(-) actions
the set of all brepl(-) actions
the set of all bsync(-) actions
the set of all frmuvd(-) actions
the set of all fsync(-) actions

the set of all actions: A = Send U Recv v Match v NoMatch v Ctrl U

Add v Del U Fwd v Brepl U Bsync U Frmuvd U Fsync
the set of all enabled actions in state s
the transition relation

we say s enables «(a@), where @ are the arguments the guards which are

satisfied by s are referring to
a context CTX = (CP, A,)
the set of atomic propositions

a labelling function which relates to any state s € S a set L(s) € 247 of

those atomic propositions that are true for s

a model parametrised by (1) the underlying data-plane topology A, and

(2) the controller program CP in use
projects the i-th co-ordinate of the tuple ¢ = (x1,z9,...xy)

refers to the queue ¢ of node n in state s (a dot notation to directly

access nested functions and immutable fields in a tuple).
the set of all LTL formulas without “next-step" operator ()
LTL formulae over AP

satisfaction relation

the set of all paths starting in state s

. .. a1 (o)
an initial path (run) as a transition sequence sy <> s1 < ...

Traces(M)

trace(m) = ¢

Traces(p)

Xvii
trace of a path 7, notated also as L(sg)L(s1)...L(s;) ...
the set of all traces of the initial states of M

state s satisfies the formula ¢, i.e., the evaluation induced by L(s)

makes ¢ true. Formally, s = ¢ iff L(s) = ¢

the trace of path 7 satisfies LTL formula ¢, i.e., for every state s; in m,
the evaluation induced by L(s;) makes ¢ true

2AP

the set of all infinite words (traces) o over the alphabet induced

by an LTL formula ¢, i.e., Traces(¢) = {o € (247)" | o = ¢}

specification property as a set of traces induced by an LTL formula ¢

ie., P = Traces(p)

denotes a predicate on packet pkt encoding a property of pkt based on
its header fields.

model M satisfies ¢, i.e., all its traces (behaviours) are admissible.

Formally, Traces(M) < Traces(p) = P

stutter-trace equivalence: for each path in M there exists a stutter-

trace equivalent path in M’, and vice-versa

a proposition which is evaluated to true iff, after firing action «(a), P
holds with the variables in & bound to the corresponding values in the

actual arguments

OpenFlow Messages and the

Xviil

Respective Modelled Actions in

MoCS

OpenFlow
Message

Packet-In

Flow-removed

Packet-out
Flow Mod
Barrier Request

Barrier Reply

Modelled
Actions

nomatch

frmvd

ctrl
(bsync) x(fwd)
fsync

ctrl add
<bsync) X\ del
fsync mod

ctrl
(bsync) x(b)
fsync

brepl

Description

For packets sent from the switch to the
controller

Sent by the switch to the controller when a

flow entry is removed from the flow table

Used by the controller to send a packet out
of a specified port of the switch

Used to add/delete/modify flow entries

Used to ensure message dependencies

Sent by the switch to the controller after
the switch completes processing for all
operations requested prior to the Barrier
Request message

Asynchronous

Controller-to-Switch

Chapter 1

Introduction

Computer networking is one of the most significant and fastest-growing developments of
our age. At the time of the author’s adolescence, in the late 80’s, the Internet was still
in its infancy: an insider-only academic/military experiment. Three decades later, the
Internet has become almost indispensable.

Networks are of an increasingly disaggregated nature. As they have grown in size,
ubiquity and importance — and our demands upon them are becoming so far-sighted —
their complexity has also grown in line, ratcheting up unforeseen flaws and vulnerabilities.
In order to meet the demands of such transformation, networks must become simpler to
run. Achieving simplicity through software has generally proven to be an effective strategy.

Software-Defined Networking (SDN) enables networks to be managed through soft-
ware. It centralises the programmability and management of the distributed network by
abstracting the network’s control logic away from the underlying physical devices through
a software abstraction layer on a centralized controller. This allows networks to run on
open standards (such as the OpenFlow protocol) and bare-metal hardware. Being free from
proprietary lock-in creates more flexibility, interoperability and automation for networking
devices.

Contradictorily, the advantages of this programmatic framework are the source of ad-
ditional challenges to be mindful of. Decoupling the control plane from the data plane,
introduces new surface areas such as the SDN controller, its protocols and network func-
tion APIs to attack: the more software runs a network, the more vulnerabilities you are
exposed to, and inevitably the more bugs and exploits. Further, using an open source
controller and network function applications can be tricky and dangerous as open source
software is an attractive target for attackers and, to a certain extent, less secure. With all

this challenge, now more than ever we need verification approaches that can (1) truthfully

2

capture and represent the behaviour of interest of the system and (2) automatically analyse
the resulting behaviour model and determine in a reasonable amount of time whether the
behaviour of the system is among the set of behaviours that are allowed by the desired
correctness property.

The usual practice of checking the correctness of networks was largely and for too long
(and still is) based on unsystematic best-effort /best-guess approaches. Formally reasoning
about networks requires constructing models that reflect commonly exhibited behaviour.
However, the state-of-the-art approaches suffer not only from the lack of model generality
in describing faithfully the world, they often lack even a precise and unambiguous specific-
ation language for expressing the intended behaviour. As a result, subtle flaws may go
undiscovered.

The thesis investigated in this work is that scalable formal verification techniques
based on equivalences and abstraction, accustomed to the domain of Software-
Defined Networks, allow properties to be addressed using model checking.

Formal techniques have not seen widespread adoption in Software-Defined Networks’
verification due to the scale of the problems of interest. This thesis takes a pragmatic
turn towards verifying properties of real-world Software-Defined Networks. It does so by
proposing a formal foundation for network reasoning: a highly expressive, yet optimised,
OpenFlow /SDN relational model which can represent network behaviour more realistically

and verify larger deployments using fewer resources.

1.1 Thesis Contributions

The core contributions of this work are in devising domain-specific abstraction techniques
that create smaller, high-level (abstract) models, allowing formal reasoning to scale up to
the problems arising in SDN verification. The novelty comes not from the reductions, but
instead, from their contertual adaptation to the problems at hand.

Properties, in this dissertation, are checked using model checking. Unfortunately, current
model checking engines are unable to scale up to handle problems as large as those arising
in naive formulations of SDN behaviours. In this dissertation, scalable model checking of
Software-Defined Networks is achieved using techniques such as abstraction and optim-
isation, but applied in a way that is well-matched to the problems that arise in SDNs.
Chapters 3 and 4 address the challenge of scalability by employing abstraction mechan-
isms that are based on stutter-trace equivalence for avoiding redundant executions. The

abstractions work in customised ways based on the context of their inputs; this can apply

3

either to a network topology, controller program or property.

Another contribution of this work is the use of model checking with flow entries that dis-
cretely time out (in Chapter 4). This enhancement considers logical timeouts that can
be modelled either as random discrete ones, which means that installed rules which are
flagged as ‘timeout-removable’ can be removed at any time, (as demonstrated in Chapter

4), or as timeouts which are bounded by integers.

1.2 Thesis Overview

The remainder of the thesis is structured as follows; Chapter 2 presents a taxonomic
literature review which critically highlights the state of research on network verification.
We also review previous work upon which our research draws. The survey (prepared as
manuscript) is being planned for publication shortly.

Chapter 3, presents the core work of this thesis. Overall, the approach is based on model
checking selecting representatives per-context from the equivalence classes of behaviours.
In it, we (i) describe a rich interleaving model of concurrency for asynchronous systems
to capture complex interactions between the SDN controller and the underlying network,
(ii) present an expressive and well-defined specification language for specifying the correct
behaviour of SDNs, (iii) propose context-aware (partial order) optimisations exploiting the
commutativity of concurrently executed transitions by relevant contexts in which e the
concrete control program, e the underlying data-plane topology and e the specification in
question appear; the aim is to diminish as far as possible the size of the state space that
needs to be searched, improving thus the performance of model checking, (iv) propose state
representation optimisations, namely = packet and rule indexing, = identification of packet
equivalence classes and = bit packing, to improve performance, (v) establish the soundness
of the proposed optimisations, and (vi) demonstrate the superiority of our model and
specification language compared to the state-of-the-art in terms of model expressivity and
performance/scalability (verification throughput and memory footprint); to demonstrate
the applicability of the proposed approach, we perform extensive experiments on several
popular benchmarks and real-world applications.

Properties To specify properties of packet flow in the network, in Chapter 3 we define
an expressive specification language which provides the semantics necessary to describe
the intended behaviour precisely. We use LTL formulas without “next-step”, which allows
capturing temporal relationships, and define the shape of the atomic state propositions so

that they can be unambiguously interpreted. Using this logic, we can express properties

4

such as connectivity /reachability /isolation between(of) sets of nodes/ports, access control
(black/while listing), in-order delivery, loop-freedom, waypointing, lack of blackholes, non-
bypassability, routing with hops constraints, to name a few.

In Appendix A, we describe in detail a list of artifacts for our model (source code,
topological diagrams, and use cases) and demonstrate how to reproduce the experimental
results from the paper in Chapter 3 using the artifacts.

In Chapter 4 we present an extension of our model to deal with timeouts of flow table

1. By modelling forwarding

entries, and thus complying with the OpenFlow specification
states that expire, it is possible to explore elusive aspects of ‘disconnected’ states between
control and data plane, i.e., stale states in which the controller does not reflect the under-
lying data changes. We also propose optimisations that are customised to this extension
and provably preserve intended correctness properties. We evaluate the performance of the

proposed model in terms of verification performance and scalability using a load balancer

and firewall controller program combo in network topologies of varying size.

"Mttps://www.opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.5.1.pdf

https://www.opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.5.1.pdf

Chapter 1: Introduction

The big picture, motivation and
contributing factors explained

—

Chapter 2: Background

A detailed critical review of the current
knowledge on network verification and
debugging with formal methods from a
taxonomic classification standpoint

Chapter 3: Towards Model Checking
Q Real-World Software-Defined
e"’p Networks
¢

(Q The core formal model and specification
v language are defined; optimisations are
Q) proposed and evaluated; the implementation
details and results are presented.

N

Chapter 4: Model Checking
Software-Defined
Networks with Flow
Entries that Time Out

6‘ The core model is extended to
(:b deal with timeouts of flow
\6\ entries. New optimisations are
proposed and the performance of
the model is evaluated.

—

Chapter 5: Conclusions and
Future Work

Joint final conclusions are
drawn on the effectiveness of

our framework in improving the
performance of model checking.
Directions and questions that
further the thesis are

A Vv
< >

"Towardé

4, .

Ppendix A: Artifact for Paper: ld
Model Checking Real-Wor:'",
Software-pefined Network

) r
For reproducing the results in the gapeu’r
a self-contained virtual instanceé 4 as

X ide
model-checking environment is Prov*
\ an Ubuntu artifact.

Fig. 1: Schematic outline of the thesis

Chapter 2

Background: A Survey of Computer
Network Verification Approaches

This chapter sets the initial groundwork and the context required to situate our research
contributions within the agenda of network verification. Here we begin by introducing a
classification of the network correctness properties. We then provide a taxonomy of network
verification approaches and analyse the literature relevant to the concerns of this thesis
through the prism of this taxonomy. The aim of this comprehensive and critical review is

to draw clear links between different verification approaches for computer networks.

A Survey of Computer Network Verification
Approaches

Vasileios Klimis, George Parisis and Bernhard Reus
University of Sussex, UK
{v.klimis, g.parisis, bernhard} @sussex.ac.uk

Abstract—Computer networks keep growing in size, function-
ality and complexity leading to a need for powerful network
segmentation and abstractions. While Software-Defined Network-
ing brings some order to managing network complexity, its
software stack is complex, highly asynchronous and distributed.
This enormous amount of state yields an additional degree of
complexity that traditional troubleshooting methods have become
inefficient to deal with the entire system spectrum.

In this review we provide a detailed critical overview of
verification approaches that have been used thus far for computer
networks, through the lens of a taxonomic classification.

Index Terms—SDN, Network Verification, Formal Methods,
Model Checking

1. INTRODUCTION

Traditional networks are built on closed systems that sup-
port a mixture of open and proprietary network protocols.
Operating and extending the functionality of such networks
is far from straightforward, as the network’s control and data
planes are intertwined within the devices themselves. Control
and data plane functionality is controlled and can only be ex-
tended/updated by device manufacturers, who are also respon-
sible for verifying the correctness of network hardware and
software. Although this results in well-tested systems (with
the caveat of slow update cycles and reluctance to innovation),
networks are distributed in nature, therefore verifying that they
operate as intended is very challenging. Network testing and
debugging remains largely an unsystematic and error-prone
process that is supported by tools developed decades ago,
such as SNMP, traceroute, tcpdump and net flow [1].
Techniques that rely on collecting and analysing snapshots of
network configuration to diagnose specific types of network
problems have been developed, however debugging modern
complex network deployments remains an open research chal-
lenge.

Software-Defined Networking (SDN)! [3]-[5] has brought
about a paradigm shift in designing and operating computer
networks. The key premise of SDN is the clean separation
between the network control and data planes. With Open-
Flow, a logically centralised controller implements the control
logic, which is responsible for ‘programming’ the data plane.
Communication between the controller and network devices
is supported by Openflow [6], a standardised protocol, which
is accessed through the southbound API [7]. Non-standard

! Although the concept of network programmability has been much debated
for as long as computer networks itself, the term software-define networking
was first coined in [2].

northbound APIs [7] expose higher-level control functional-
ity to network programmers. The data plane is defined by
flow tables that can be manipulated by the SDN controller
through the southbound API. Recently, the P4 language [8]
enabled protocol-independent packet processing that supports
reconfigurability of packet processing at network devices.

The unified vision is one where controllers explicitly pro-
gram network devices rather than assuming fixed switch
designs and static header processing. SDN enables the rapid
development and deployment of advanced and diverse net-
work functionality. It has been employed in designing next-
generation inter-data centre traffic engineering [9]-[15], load
balancing [16]-[22], firewalls [23]-[27], Internet exchange
points (IXPs) [28], optical [29]-[33], and home networks [34],
[35]. Although SDN has been considered predominantly in
wired networks and data centres settings, it has also been
introduced in other environments, though being in the early
stage for real networking, including wireless networks [36]—
[48], wireless sensor networks [49], wireless mesh networks
[50], infrastructure-less networks such as mobile/vehicular
adhoc networks (MANET/VANET) [51], [52]. SDN is a key
driver of network function virtualisation, edge computing and
seamless virtual-machine migration.

SDN has gained noticeable ground in the industry, with
major vendors supporting OpenFlow in their products (e.g.
Hewlett-Packard and NEC were the first to integrate Open-
Flow). SDN has been deployed at scale; e.g. Google’s B4
deployments [53], Microsoft Azure cloud computing plat-
form [54], Nicira’s Network Virtualization Platform [55] and
NTT’s OpenFlow-based Gateway [56]. Large cloud providers,
network operators and vendors have joined SDN industry
consortia, such as the Open Networking Foundation [57] and
the Open Daylight initiative [58]. P4 is also gaining traction;
it has been recently combined with the Open Networking
Foundation (ONF) and the Linux Foundation.

In network verification one distinguishes between data-
plane verification and control-plane verification. Networks
forward packets according to routing tables switches, the
network’s data plane (or forwarding plane). Accordingly, ver-
ification should cover properties regarding packet propagation
and packet integrity. Networks generate those routing tables
through protocols such as BGP (border gateway protocol).
Accordingly, network verification covers properties regarding
the control plane, the correct setup of the routing tables. We
distinguish pre- (and post-) deployment verification as well as
bug detection. Verification of the control plane shares many

issues with traditional program verification while verification
of the data plane shares many traits with reachability analysis
in graphs.

SDN presents a unique opportunity for innovation and rapid
development of complex network services by enabling all
players, not just vendors, to develop and deploy control and
data plane functionality in networks. This comes at a great
risk; deploying buggy code at the control and/or data plane,
and problematic flow entries at the data plane would poten-
tially result in network and service disruption and security
loopholes. Understanding and fixing such bugs is far from
trivial, given the distributed nature of computer networks, the
complexity of the control plane and the concurrency present
in networks.

In this paper we present a comprehensive and critical
review of verification approaches for computer networks. We
(1) describe and classify local and network-wide properties,
the correctness of which is verified by said approaches; (2)
provide a taxonomy of network verification approaches; (3)
analyse the relevant literature through the lens of the proposed
taxonomy; (4) provide a critical analysis of the key research
challenges that require further attention by the community.
To the best of our knowledge, this is the first survey of its
kind. We discuss both SDN- and non-SDN-dependent research
on network verification. We include both formal methods that
rely on well-defined (and commonly abstracted) models of
the network and empirical, system-oriented approaches that
operate on top of actual network. We investigate approaches
that assume either a static network configuration at verification
time or operate under change in the network state, including
the controller, network devices and packet queues. We be-
lieve that a comprehensive and systematic survey of network
verification approaches is timely and necessary; research has
been extensive in the last decade and involves diverse areas
and communities, therefore it is important to consolidate
knowledge within a unified taxonomy. This will allow re-
searchers from both networks/systems and software/hardware
verification communities to understand the existing literature
and, hopefully, enable future transdisciplinary collaborations.

II. CONTROL AND DATA PLANE

In a major move towards softwarisation, software-defined
networking (SDN) [3] introduces pure decision-making logic
abstraction. Whilst, conventionally, packet forwarding and
routing take place in the same network box, software-based
networks outsource intelligence (routing and other network
functions) from the custom ASICs to a domain-specific soft-
ware application, running on a general-purpose server. The
SDN platform consists of three successive layers: an under-
lying network infrastructure layer (forwarding/data plane), a
control layer (control plane) and an application layer. The
control plane? provides a single system-wide access interface
to programmers and operators. The communication between

2Other terms such as SDN-controller, Network Operating System or Net-
work Hypervisor are also used to represent the control plane, all referring to
the same concept.

the control and forwarding layer is achieved through a vendor-
agnostic interface which is referred to as southbound API.
OpenFlow [6], [59] is the most popular actualisation of data-
plane abstraction.

OpenFlow-enabled switches consist of an array of flow
tables, a set of ports and an open-source control protocol
daemon, i.e. OpenFlow. Flow tables consist of flow entries
sorted by priority, and implement two functions: classification
and forwarding; The former is based on match conditions
(patterns) on a set of incoming packets’ header fields. If
a match is found, the matched packets, namely flow, are
forwarded out the egress interface that the action associated
with the highest priority matching entry will return; Else, if the
ingress flow does not hit any entry, the fate of the flow relies
upon the configuration of the table-miss entry, if such entry
exists in the table, which has the lowest priority (0) and defines
how to process unmatched packets (drop, pass to another table
or send flow to the controller). The OpenFlow switch daemon
translates the high level network policies into plain OpenFlow
primitives to set up data paths in the data plane, enabling thus
the controller to manipulate the flow tables of the switches.

Based on these abstractions, SDN provides network be-
haviour programmability, automation, homogeneous visibility
and standardised representation of network configuration. The
traditional network services which are currently deployed
as middleboxes, such as firewalls, Network Address Trans-
lators, WAN Optimisers, Load balancers, etc, can then be
implemented using open APIs on the controller. As an API
driven controlling paradigm, SDN adjusts networking to a
software-oriented culture, free of distributed control protocols,
allowing network administrators to view the network as a
whole. This advancement creates an opportunity to reconsider
the workflow of network monitoring and debugging.

Even with such benefits in place that SDN might provide,
there are equally risks including new challenges for network
operations tools to keep pace with a significant amount of state
with respect to (1) the topology, i.e., switches/routers, clients,
middleboxes, links, flow table entries, queues, packets and
their header fields®, (2) the controller program, and (3) many
events related to highly dynamic network state changes (table
entries installation/removal, packet arrival, flow entry hits,
table-misses, packet injection from controller, controller pro-
gram changes, etc), and the orderings over them. Moreover,
due to the phenomenon of inter-packet interference?, the num-
ber of threads to be explored increases significantly. Similarly,
control messages between the controller and the switches
may be processed in an arbitrary order and this may lead
to potential bugs, such as race conditions. Also, abstraction
breaks traditional networking into dynamic components and

30penFlow v1.5 [59], for e.g, supports 45 header match fields, whereas
v1.0 only 12.

“Inter-packet interference refers to the situation in which the combined
processing of two packets has not the same effect under different orderings.
Processing, for e.g., packet pi firstly, could trigger a tree of events which
induces different outcome (state) of processing packet p2 from the outcome if
p2 was processed first. The more the interferences, the more the interleavings
of events.

layers that have to work in unison adding greater performance
vulnerabilities to the most basic network functions. In addi-
tion, SDN ecosystems consist of highly complicated timing
behaviour and complicated control tasks (functions) that are
challenging to verify. For these reasons, enhanced bug-free and
performance guarantees are required for the SDN architecture
to be assured with. Methods like testing and simulation have
their advantages but none of them is suitable for exhaustive
verification in reasonable time frames. As such, the dynamic
nature of SDNs extends the domain of traditional service
assurance, making traditional approaches obsolete, requiring
so verification techniques that follow dynamic approaches. Yet,
existing network analysis solutions can not scale and adapt
adequately to meet the verification needs of real and synthetic
SDN networks.

III. NETWORK CORRECTNESS PROPERTIES

Provided a model is available, an invariance property is a
predicate on a network system’s set of states, which specifies,
in some temporal logic, the desired behaviour of the system.
With regards to IP networks, the requirement properties can
be classified into:

e Functional requirements. These properties specify the
function that a network or a set of network elements
should perform, or in other words, what a network is sup-
posed to be able to do. For this reason they are also called
behavioural properties. They comprise the main subject
of interest in the various verification and testing research
efforts [60]-[90]. The typical functional requirements
include topology-oriented specifications. The functional
properties of most interest to verification are reachabil-
ity/isolation between/of (all) pairs of nodes/ports, loop-
freedom, packet delivery (no silent packet loss due to
blackholes), complete traffic processing separation be-
tween different tenants, nonexistence of stale ACL rules,
etc. There is another sub-category of more sophisticated
(richer) invariants related to fine-grained packet process-
ing and fine-grained computation offloading for resource
constrained networks. This subclass includes » black-
listing/whitelisting (requiring special action against or in
favour of a traffic class, e.g. rejecting any, or allowing
only, connections - packets to a particular IP address),
» reachability via waypoints (requiring specific traffic to
waypoint through a particular or a chain of network ele-
ments), » non-bypassability’, » routing with path length
(hops) constraints, » special forwarding consistency®, etc.
Non-functional (non-behavioural) requirements are all
the requirements that place constraints on functional
requirements. The key non-functional aspects of network

5Non-bypassability is a basic security property, which means that an
enforcement mechanism should not be bypassed (avoided) without being
applied, for e.g. “a traffic for a VLAN interface should not bypass the
firewall”.

6An example of forwarding consistency property is the multipath consis-
tency that Batfish [88] introduced. This property asserts that, for networks
using multipath routing, it should never be the case that a packet is dropped
along one path but not the other.

behaviours, include: (1) performance: bandwidth (min-
imum throughput offered), end-to-end latency bounds
(delay), maximum jitter’, error rate, congestion, and
other), (2) reliability, i.e. the capability of network to
operate without failure in a specific time window in terms
of consistency, availability, integrity (e.g., packet in-
tegrity, routing/flow table integrity), fault tolerance (e.g.,
mean-time-to-failure), recoverability, responsiveness, etc.
(3) security requirements define permissible traffic, access
lists, authorization, authentication, etc.

Sometimes, it is not enough to know whether something will
or will not happen, one rather needs to have a quantita-
tive estimate, for e.g., of the time when (or the probability
that) some situation will arise. Ergo, another classification
of properties is that into (a) qualitative and (b) quantitative
ones. As depicted in Fig. 1, there is an overlap between the
property classifications. The constrains on how the netfwork
will behave, that the non-functional requirements place, can
be both qualitative and quantitative, whereas the functional
properties are always qualitative. Quality-of-Service (QoS)
metrics, for instance, stretch out on all the categories of
performance, reliability and security guarantees; Quantitative
QoS parameters fall under performance sub-category, while
qualitative QoS metrics are more subjective in nature and
accept only categorical values, and as such are classified as
either reliability or security goals. An example of a quantitative
QoS could be: “70% of traffic delivered at service level X
will experience no more than 100 ms latency”, or a reliability
requirement in quantitative terms is “the network shall have no
more than 30 packet losses/day”. The property: “minimise the
end-to-end delay for delay-sensitive applications (e.g., online
interactive gaming traffic)”®, is an example of a qualitative
QoS. Verifying quantitative properties require reasoning on
time (for e.g., “what is the worst-case time for delivering a
packet?”), stochastic information (“what is the probability of
an acknowledgement within Sms?”’) and resources availability,
and it remains as one of the great unexplored avenues of
research.

So far, there is no general consensus in the network veri-
fication community on neither a precise distinction between
functional and nonfunctional properties, nor sub-classifying
them. Consider, for example, the situation in which we want
to block brute force attacks to an SSH daemon running on a
server accessible to the outside world. This could be expressed
as a security property: “any unauthorized SSH login attempts
shall be denied”, which would be classified as a non-functional
one. But, in order to implement it, it will be needed to block
a specific IP address, or range of addresses, and thus the
requirement will be further specialised into: “any packet form
the offending IP address 1.2.3.4, received via interface ethl of

Tjitter buffer in VoIP (Voice over IP) networking, is a shared data area
where voice packets can be collected, stored, and sent to the voice processor
in evenly spaced intervals. Variations in packet arrival time, called jitter, can
occur because of network congestion, timing drift, or route changes.

8In a conventional network, this specification can be concretised by
computing the best path using, for e.g., EIGRP updates metrics.

the SSH server, should be dropped”. In an SDN setting this
property would be formulated as: “there should exist a flow
entry e in the flow table of the SSH server, which matches
packet p with source IP 1.2.3.4 and TCP port 22, and has
an empty instruction list’, and furthermore, if the packet p
is matched by multiple flow table entries, e should have the
highest priority”. Magically, the latter falls now under the
functional requirement class by simply expressing the initial
security property as a behavioural problem.

Q\)gctiona /

= | — &
Té mr: g ITITTITIYY """'i" g
? >
:ﬂ(
Functional
Non-functional
%H~ﬁ1ncti0ﬂa\ = Qualitative
= Quantitative

Topology-oriented

Fig. 1: Pictorial representation of the main types of network

correctness properties.

Another differentiation, distinct though, is generally made
between safety and liveness (or progress) properties. Infor-
mally speaking, safety properties are usually characterised as
“nothing bad will happen” (J-®), in the sense that a given
set of (bad) states of the model are not ever visited. Liveness
properties can be either (i) guarantee or (ii) response. A guar-
antee property asserts that “something ‘good’ will eventually
happen”, i.e., a requirement of interest, should eventually be
fulfilled (0®). Another variant of progress requirements is
recurrence expressed by the canonical formula of the type
O00®, states that something good happens infinitely often.
A response formula is O(¢ = 1), which asserts that ¢
is guaranteed response to ¢. Safety properties are violated
(falsified) in finite time, i.e., by finite system runs (finite trace
prefixes), whereas liveness properties are violated in infinite
time. Other property types are stability or persistence (OUp),
correlation (O = O1), precedence (@ = 1; U 1;), objective
(¢ = ¥ V 1)), et cetera.

Another class of property specifications for networks in-
volving timing constraints, is that of real-time requirements.

9The packet is implicitly dropped if there are no OUTPUT instructions in
its action_set to be executed.

10

As LTL is a discrete-time logic, a medley range of exten-
sions of it have been proposed for declaring specifications in
real-time settings [91]-[93]. Metric Interval Temporal Logic
MitL) [91], for example, which is the most renowned one,
constraints temporal connectives by intervals. For example, in
an SDN, a classic controller-switch interaction requirement for
bounded response time that "every Packet-In message directed
to the controller must be followed by a response Packet-
Out within 1 time unit” is expressed by the MITL formula:
O(pin = O<1 Pout)- Timed Propositional Temporal Logic
(TPTL) [92] is another timed extension of LTL which employs
clock variables to quantify statements about time progress. For
instance, the above property can be expressed in TPTL by the
formula O(pin, = 2.0(Pout Az < 1)), where “z.9” means
that clock x is reset at the time a Packet—In message is
sent, before evaluating P.

IV. TAXONOMY OF NETWORK VERIFICATION
APPROACHES

This chapter discusses and explains the criteria applied for
comparison of the literature in the following chapter. The
criteria are somewhat ordered by the level of importance to
quickly grasp the approach in question.

Properties This criterion discusses what kind of network
properties are being checked. These can be topological (reach-
ability) or more advanced like blacklisting (see Section III).
More detailed restriction of the properties expressible will
become clear from the criterion expressivity discussed further
below.

Model This criterion concerns the model of the network. We
distinguish formal and non-formal models. The type of model
has huge impact on the techniques available to express and
check its properties. Labelled transition systems (and other
kind of finite state machines) are typical kinds of formal
models. The topology of the data plane of a model is often
represented as a graph.

Specification Language This states what language is used to
express the network properties. This may be a formal logic,
like linear-time temporal logic (LTL) using a certain number
of basic predicates to express features of the network. It can
also be a entirely bespoke language. If the properties are fixed
and built-in there may be actually no need for such a language
altogether.

Type of Check: This criterion is referring to the type of
checks the network properties are subject to. A specification
of a property can be used to find bugs violating the property
or to verify the invariance of the property during the entire
runtime of the network. The latter is of course much stronger
and more complicated and costly. In some cases where a
language abstraction is suggested with a compilation to a low
level network language — in order to improve more reliable
programming — there is no explicit property or check, so the
type of check then refers to the soundness of the compilation
itself.

Checking Phase This criterion addresses the network program
phase at which checks are carried out. This can happen

statically (offline) or dynamically (at runtime) and as such
examines just the execution paths and variable values invoked
during execution, or it is performed offline in a non-runtime
environment (static analysis) allowing even for an exhaustive
checking. It can also be the case that an approach does a
mixture of both.

Layer This criterion details which layer the approach is con-
cerned with: data plane or control plane, or possibly both. For
SDN related approaches, of course the control layer must be
involved. This information is highlighted but will be implicitly
be part of the methodology explained below.

Methodology This aspect concerns the main approach
(methodology) employed for the suggested analysis. Of
course, this will depend on what model is used and how
properties are expressed. It will be explained which estab-
lished techniques are in use. For instance, model checking
or bounded model checking or symbolic execution might
be applied. Graph algorithms may be used for reachability
analysis. Often, a combination of various different techniques
is in use and this needs to be explained.

Expressivity The actual range of network properties that can
be analysed or verified with the given approach is discussed.
On one end of the spectrum, there is no flexibility whatsoever,
and only a few properties are built-in. On the other extreme
end, there is a proper language for the user to define a wide
range of properties. Usually such a language is based on first-
order or temporal logic and uses built-in predicates to specify
properties of the network, e.g. the flow table state in a switch.
The exact nature of those predicates then again limits the
expressivity of network properties.

Experimentation This criterion considers the range of ex-
amples that have been dealt with, and can be dealt with
in principle, according to the authors of the tool. Where
sufficient information is available this may include the size of
the examples. Typically, authors provide a survey about their
experiments and indicate how large the network is (in terms
of number of switches) and what kind of properties have been
analysed.

Deployability This criterion relates to the resources of the
tool, in particular resource consumption in terms of execution
time and memory. It also comprises potential optimisation
suggested or implemented. If so, those optimisations are
briefly explained and it is stated whether there are proofs to
show the soundness of the optimisation. The minimal objective
here is to not change the semantics, i.e. the behaviour, of
the network, i.e. establish a simulation relation. A simulation
relation might potentially lose some of the possible traces, the
gold standard is to preserve all of the behaviour. The latter is
essential for verification purposes.

Limitations This criterion points out specific restrictions and
shortcomings of the approach and tool in question. For in-
stance, state explosion in model checking based approaches is
a typical candidate and it may limit the size of the network that
can be checked by the tool. The limitations can address the
following criteria from above: performance, experimentation,
expressivity, timing.

11

V. SURVEY OF NETWORK VERIFICATION APPROACHES
A. Kuai [72]

Properties. Kuai [72] is concerned with verifying safety prop-
erties of SDN networks. These properties concern the correct
deployment of all kinds of network policies with the help
of the controller program. The deployment usually involves
installation and removal of forwarding rules in switches.

Model. The network is modelled finite state transition system
based on an interleaving semantics, where concurrency of
actions is reduced to the non-deterministic choice among their
possible sequentialisations. The finite state transition system
then can be analysed using model checking. Some abstractions
and simplifications are required to achieve that. The transitions
system is modelled as interleaving of several smaller finite
transition systems that communicate via queues that are part
of the overall network state: each client (transition subsystem)
has a packet-in queue and can non-deterministically send a
specified packet (to a connected switch) or receive a packet
from its queue (removing it from there) and concurrently
send packets; each switch (transition subsystem) has a set of
ports (for forwarding and receiving packets), a packet in-queue
(»q), a control queue (cq), a forwarding queue (fg), a flow
table (ft) and a wait flag for synchronisation. The forwarding
queue stores the packets forwarded from the controller and the
control queue cq receives any control message from the con-
troller. Switches send packets they don’t know how to handle
to the controller’s request queue (rg). These components are

summarised in Figure 2.
SDN
Controller

ft

Fig. 2: The queues and connections of the KUAI model

A flow table ft is a collection of prioritised forwarding
OpenFlow rules; a rule consists of a Match Set, an Action Set
and Priority. A control queue cq contains control messages (or

barriers) sent from the controller in order to update a switch’s
flow table, i.e. add, delete or modify flow/group entries in the
OpenFlow tables.

A switch can execute a variety of actions (transitions): In its
standard mode of operation, it can match a packet available in
its packet in queue with a rule and forward it along its ports
as described by the rule, or if there is no matching rule for
the packets (and there is no barrier message in the control
queue for the switch) it can be put in the request queue to the
controller (for it to process) and set its wait flag to change
into “waiting mode” for the controller to decide how to deal
with that packet. If there is a control message in its control
queue, and there is no barrier message in its control queue,
then it can execute that command, be it a rule installation or
deletion. In waiting mode it may also receive a forwarding
message from the controller and if there is no barrier in the
control queue then the switch forwards the packet accordingly
and unsets the wait flag. If there is a barrier message in the
control queue the only action for the switch possible is to
dequeue all control messages up to the first barrier and update
itself accordingly to those messages. A barrier message is a
synchronisation mechanism for the controller to force a switch
to update itself before it continues processing any forwarding
actions.

The controller program is modelled as a transition (sub)
system which is basically an automaton. Depending on its
state and the packet found in its request queue (into which
the switches write), it changes into a new state, removes the
packet from the queue and responds by sending two kinds of
messages. A forwarding message instructs the switch how to
process the packet in question. A pair (pkt, ports) will arrive
at the switch’s forward queue through which the controller
orders to forward packet pkt along the ports ports. Optionally,
the controller may also send concurrently any finite number
of control messages to the control queue of any subset of
switches of the network. The controller, after all, is in charge
of maintaining and configuring the network switches.

For the forwarding operations the model uses a function
describing the network topology. A packet contains bits de-
scribing (an abstraction of) the proof-relevant header-field
information only (depending on the example) and its location
which is a port in a switch. So for the purpose of the
verification one abstracts away as much detail as possible and
stores in packets only information relevant to the routing of
the packet.

Queues are modelled as multisets with a nondeterministic
dequeueing action that implicitly models the random arrival
time of packets in the queue. The multiset implementation
means queues are bounded. In order to get a finite system,
there must be only finitely many multisets. Packets are already
finite bit vectors, and also control messages are finite. It
remains to have a bound for the possible number of multisets.
A packet in a multiset is therefore assumed to appear either not
at all or an arbitrary (unbounded) amount of times, i.e. either 0
or oo many times. This is called the (0, c0) abstraction. With
this abstraction all queues are finite state (multisets).

12

Specification Language. Network properties can be expressed
in linear temporal logic, with only the box operator available
(safety properties only!), with built-in base predicates that
are assertion over packet fields and over control states. The
state of the switches or any queues can not be reasoned over,
they are the “internal state” one observes via the behaviour of
packets in the network controlled by the control program. For
packets this means that their bits can be inspected including
source and destination address and any relevant information
like or protocol information stored. The precise form of packet
information depends on the example, of course.

Type of Check.: One can find bugs and traces of execution that
violate the safety property in question. Proving the invariance
of the safety property for all possible execution traces (verifi-
cation of the absence of any bug) is only possible if all traces
are actually checked. It appears that for the examples checked
verification has been achieved. However, this verification is
done for an optimised transition system

Checking Phase. This approach uses a model of the network
and analyses it offline (static). One can do this before switch-
ing it on.

Layer. As one can reason over packets and their position in the
network, one can reason about the data plane. The possibility
of addressing the control state allows one to reason about the
controller program and thus the control plane.

Methodology. The methodology in use is model checking. A
safety property is checked against all (or a subset) of the traces
of the network model. In order to combat the state explosion
problem several optimisations are in place (see below).
Expressivity. Due to the fact that a subset of linear temporal
logic is in use, a wide range of safety properties can be
expressed. Liveness properties cannot be expressed. Change
of topology cannot be expressed.

Experimentation. Various examples have been reported. It has
been checked whether an SSH controller in a network with
2 switches and 2 clients actually blocks SSH packets from
arriving. A MAC learning controller based on a POX imple-
mentation of the standard ethernet discovery protocol has been
checked for forwarding loops. For this experiment, the packets
carry history bit for every switch and store whether they
have already been at said switch. A controller implementing
a single switch firewall, as well as multiple switch replicated
firewall have been tested. The controllers store in their finite
state a configuration file to describe the flow between two
clients that is allowed. The property checked is that packets
are only dropped between clients if the configuration file
of the controller does not contain this pair. A controller
implementing the Resonance [94] algorithm to ensure security
in large networks has been analysed to ensure that packets
from so-called quarantined states cannot be forwarded. An
policy enforcement layer built on top of OpenFlow, ‘Simple’
[95], has been experimented with as well.

Deployability. In order to deal with the examples as mentioned
above, for even small networks one needs optimisations due to
the well known state space explosion problem. Optimisations
include restricting the request queue of the controller to size

one, restricting switches to execute no-match events only if the
request queue is not full, merging control actions and immedi-
ately succeeding barrier actions, etc. Optimisations, which are
stutter bisimulation equivalences, are proved sound. Two of the
reductions, however, the (0, co) and ‘all Packets in One Shot’,
are simulations (stutter trace inclusion) which means that new
behaviour may be added in the abstract transition system. Most
examples above are run with a small number of clients and
switches, usually around 5 to 10. Without optimisations only
the verification of the tiniest network terminates in reasonable
time. For the slightly larger networks the runtime ranges from
a few seconds to a few hundred seconds. The largest number of
states visited was almost 24 million. Runtime is proportional
to the number of states visited.

Kuai is implemented on top of PReach [96], a distributed
enumerative model checker itself built on Murphi [97]. The
different transitions subsystems were modelled as different
implementation used 4TB of RAM and 150 cores.
Limitations. The size of networks that can be checked can’t
be too large (about 10 switches). Only safety properties can
be verified. The network semantics assumes that some actions
concur synchronously that in reality can occur concurrently.
Barriers are always executed first . The topology is fixed.

B. Header Space Analysis

Properties Three main categories of functional, topology-
oriented properties are checked in the Header Space Analysis
(HSA) work [60]: reachability between hosts, lack of for-
warding loops and isolation of network slices. Reachability is
generalised to check also other path predicates such as: black
hole freedom, routing via a waypoint, maximum hop count
(Iength of path never exceeds a threshold), isolation of paths
(for e.g., http and https traffic do not share the same path),
etc.

Model The framework used in this approach is built on a
geometric model. Packet headers and flows are represented
geometrically in a Boolean space of header bits. An L-bit
packet header is modelled as a bit-vector, i.e. a point in
the geometric space {0,1}~, where each bit of the header
corresponds to one dimension of this space. Payload is ab-
stracted away from the packet. Flows are modelled as regions
in this space, representing all the packets in the flow. Net-
work boxes are modelled using a Switch Transfer Function
T, which transforms a header h received on ingress port p
to a set of packet headers on one or more egress ports:
T : (h,p) — {(h1,p1),(he,p2),...}. The Network Space
is the space of all ingress headers in the network. Each
transfer function is given by an ordered set of rules. A rule
typically consists of a set of physical input ports, a match
condition (pattern-proposition), and a set of actions to be
performed on matched packets. Actions can forward out to an
interface, discard, modify the values of specific header fields
(rewriting, encapsulation, decapsulation). In this sense, boxes
are abstracted as set of conditional expressions. The overall
behaviour of the network is represented as a piecewise network
transfer function combining all the switch transfer functions.

13

The network topology is modelled using a Topology Transfer
Function. For instance, if port pg,.. is connected to pys; using a
link, then this function maps (h, psrc) to (h, past), modelling
the fact the header h is transferred from pg.. to pgs:. The
conventional, two-valued Boolean domain {0, 1} is extended
into a ternary one by the addition of a special, “unknown” third
value, denoted by ‘x’. This is a wildcard character which is
treated as (matching) either a “1” or a “0”. As a result, the
regions in the header space (hypercubes) are represented as
sequences (referred to as wildcard expressions) whose domain
is the ternary one. Input test packets may be parametrised
symbolically by Boolean variables (i.e., symbolic simulation).
Combining ternary modelling with symbolic simulation, and
injecting fully wildcarded test packets, enables the exploration
of the entire state space. The overall model can be thought of
as a propagation graph where each vertex represents a tuple of
a packet header set and an ingress port this set has reached to,
and each outgoing edge is labelled with the transfer function
of the box the ingress port belongs to. To work out the header
spaces left on each hop, a set algebra is introduced.

While the headers may have been transformed in the packets
journey, the original headers sent by the sender can be recov-
ered by applying the inverse transfer function. For example,
in Figure 3 an all — x (wildcard) test packet header is injected
into port 1 of router’s miniature model R (i.e., port Ry). To
keep things simple, 3-bit headers are used in this simplistic
scenario. The router R transforms the all — x header space
as a result of flow table rules (Forward & Rewrite: rewrite
bits 1xx with value O0xx) that are filtering out some space of
it. Then, it can trivially be traced the remained header spaces
backwards (using the range inverse) to find the set of packets
host-A can send to reach host-B.

Specification Language Properties are specified implicitly as
code snippets in a library of tools written in Python, called
Hassel. Algorithmically, they all fall into the category of
computing reachability sets of packets.

Type of Check Header space analysis provides the full set
of failed packet headers as counterexample. However, with
regard to the exhaustiveness, in the case of loop detection,
for example, the authors claim that they detect all loops by
injecting an all — test packet header and tracking the packet
until it returns to the port it was injected from.

Checking Phase It is a static checker which can be applied
to snapshots of the network only.

Layer HSA reasons purely on forwarding state.
Methodology As a custom design with its data structures
and algorithms, it computes a reachability tree, i.e., all the
paths along which a nonempty header space is left at each
vertex. By modelling packets as points in an L-dimensional
space, two abstractions are achieved: (1) all protocols/layers
are collapsed into a flat (protocol-agnostic) sequence of bits,
and (2) header bits irrelevant to forwarding are ignored by
the use of wildcards. Three simulation-based algorithms (one
per each main property: reachability, loop detection, slice
isolation) are used to analyse the reaction of the network on
injected test packets, using symbolic representation of their

1 b3 “All-x’ header: the Domain of Trans

b2 Table

Match

1xx +

Set of headers that

Forwarding T (h,p) =

14

fer Function

{

Action
Rewrite with Oxx
Send to port 2

if in.h = 1xx,in_p = Ry : {(h&0xx),R,}
{} otherwise

The Range of Transfer Function

“A” can send to “B”

1 x x

Tz (h,p) ={

if in h=0xx,inp=R;:
{}

{(h&lxx)l Rl}
otherwise

Host B

Fig. 3: The Inverse Transfer Function (T'y 1Y is helpful for detecting reachability failures and loops which require tracing
backwards from a range (0xx) to determine what header set host-A can send to B (1xx).

header fields, instead of testing each concrete example.

Expressivity This framework supports three main categories
of hard coded invariant policies, disallowing the verification
of more expressive network properties that a specification
language would offer.

Experimentation The checking performance for all three
properties was measured in a relatively large production net-
work (Stanford Network). In the loop detection experiment,
test packets were injecting from 30 ports. Slicing, which is a
generalisation of VLANS, is another experimentation subject
regarding spaces overlapping and packet leakages. A network
slice is a logical sub-network which runs on top of a shared
physical network infrastructure combining resource virtuali-
sation with the isolation level demanded. More formally, a
slice is a tuple of network boxes, ports, topology function
and a set of predicates on packet headers. In order to check
whether two slices do not overlap, the intersection of their
header spaces on every port of the slice is computed. The
reachability experiment is run by injecting a symbolic packet
from a router, and as the transfer function rules hack away
at input hypercubes along the path, the left space (if there is
any left) seen at the destination is the range of the reachability
function.

Deployability To gain algorithmic leverage, the domain struc-
ture exploited incorporates small equivalence classes by treat-
ing groups of headers as an equivalence class wherever pos-
sible (for e.g., the union 110 * U 100x simplifies to 1 * 0x).
Another key algorithmic optimisation is the compression via
the difference of hypercubes (lazy subtraction). This optimisa-

tion consists in augmenting the notion of header space objects
by allowing them to be represented as a subtraction of unions
rather than as just a union of wildcard expressions. Then,
there is no need the computations of header set subtractions
to be performed actively in a stepwise manner but can lazily
be postponed until the end of the path. Other algorithmic
optimisations used are lazy evaluation, dead space elimination,
and IP table compression. All optimisations are orthogonal. To
maximize performance, on top of the above, some memory
optimization and parallelism techniques are deployed in the
C version of the algorithms. The python version needs 560
seconds to run the loop detection test for all 30 ports, where 12
loops were found, while the C version only takes 2 seconds.
However, it takes 151 seconds to compress the forwarding
table and to generate the transfer functions on a preliminary
stage. Concerning the reachability test, the verification running
time is O(dR?), where d is the the maximum number of hops
needed for a packet to reach the destination, and R is the
maximum number of rules in a box along the path. In numbers,
the run time of 13 sec is reported for the algorithm to compute
the reachability from a router to another one in the Stanford
backbone network. The time for checking the slice isolation
is quadratic in the number of wildcard expressions per slice
and linear in the number of slices.

Limitations In a static manner, HSA extracts the forwarding
rules from dumps of the switches’ routing tables to analyse
them, and as such it lacks the capability of having a consistent
view of the data plane’s behaviour at small time scales.
Although the entire space is exercised by pushing totally

wildcarded headers through every port, each packet is tracked
until the first loop is found, and the question that arises is what
if there exist multiple loops through which a packet might turn
back to the same injecting port. That might leave deeper poten-
tial loops in the execution paths unexplored. The algorithms
don’t seem to generate iteratively multiple counterexamples
per injection port, and in this sense the exploration seems not
to be exhaustive. With respect to the specification language,
a more abstract formal specification language would allow to
check the network behavioural requirements at a higher level,
rather than directly probing into the code. Than, it would be
enough to prove whether the low-level code is a refinement
of the specification. Last but not least, HSA does not model
stateful functions.'”

C. VeriCon [74]

Properties. VeriCon [74] is concerned with statically verifying
safety properties of SDN networks. The controllers are written
in a proposed language called CSDN (C for core). The
properties concern the correct deployment of all kinds of
network protocols with the help of the controller program.
The deployment usually involves installation and removal of
forwarding rules in switches.

Model. The network is modelled as a set of relations. VeriCon
receives three inputs, the SDN controller program, a first-order
formula describing constraints on the network topology, and
the safety property to be shown for the network. There are
predefined relations describing direct links or paths between
ports of switches or switch port and a host, respectively. These
formulate constraints on the network topology. VeriCon is
quite permissive in the sense that it verifies w.r.t an arbitrary
network topology that meets the given topology constraint,
also called topology invariant, rather than a fixed topology. In
other words, topology changes at runtime are allowed as long
as they satisfy the topology constraint. Typical invariants of
a topology may include absence of self-loops or the fact that
packets can only arrive from reachable hosts.

Packet (headers) are modelled as pairs of host source and
destination address. Additional header fields, when needed,
are modelled as functions on packets. Further built-in relations
involving packets describe a switch’s flow table, the arrival of
a packet at a switch’s ingress port, and the fact that a packet
at a switch has been forwarded from an ingress to an egress
port, the so-called “history relation”. Forwarding events are
recorded in this history relation. Since rules are modelled as
tuples in a relation (describing a flow table) they can contain
information like the rule’s priority.

The controller is modelled as an infinite loop consisting
of guarded commands manipulating the relations. The guards
model switch and controller events like packet forwarding
at switches or incoming packets at the controller. Note that
for the forwarding event the controller’s command is fixed in
the sense that the packet must be forwarded according the
rules in the flow table of the switch in question. As there

10A subset of network functions that require to keep algorithmic state.

15

is no explicit switch semantics, the behaviour of switches is
implicitly modelled by the controller in that way. The user-
defined commands of the controller program can only be
defined as reaction to packet-in events, i.e. when the controller
receives a packet.

The command language is a simple imperative block-
structured language with assignment, sequential composition,
while loop and conditional. It includes commands for adding a
set of tuples to, and removing a set of tuples from a relation.
This, the programming language provides relations as user-
definable data type. One can simply view these relations as
tables of a relational database. These tables will often contain
host addresses, switch names and port numbers, such that the
controller program can memorise relevant facts. Since flow
tables are modelled as relations, this allows the controller
program to install or deinstall a rule at a switch. Forwarding a
packet is modelled by inserting a tuple into the special “sent”
relation described above. Flooding a packet to all switch ports
except the packet’s ingress port is another possible command.
The guards in the conditional and while-loop use boolean
expressions and the check whether a tuple is in a relation
is such a possible expression.

The controller program allows initialisation of user-defined
relations before the event handling loop. Semantically, a
command is a predicate transformer, which given a predicate
(involving relations describing the controller and network)
specifying the post-condition after execution yields the weak-
est liberal precondition that needs to hold to guarantee that the
predicate holds as postcondition. The controller comes with a
user-defined transition invariant that specifies the intended use
of the data (i.e. the user defined relations) manipulated by the
controller.

It is assumed that switch and controller events are executed
atomically.

Specification Language. The invariants, the topology, safety
and transition (controller) invariant are all expressed in first-
order logic.

Type of Check.: The method will prove that the given safety
property (invariant) holds in whatever order the networks
events are processed. In case the property does not halt, bugs
that violate it can be reported.

Checking Phase. This approach uses a model of the network
and analyses it offline (static).

Layer One can reason about the data plane via the built-in
predicates. Since the controller program is the one that is
formally verified, one can also reason about the control plane.
Methodology. Hoare-style reasoning [98] is used to gen-
erate verifications conditions that are handed over to the
SAT solver. Let Inv be the inductive invariant, that is the
conjunction of topology, safety and transition invariants. The
weakest liberal precondition wp [event = cmd] is computed
for every event/command pair in the controller program. If
Inv A—wp [event = ¢md] (Inv) can be shown to hold by the
SAT solver for any event then the invariant is not preserved
by this event and a bug has been discovered. Otherwise, the
controller program is proven to preserve the invariant. First, it

is checked that the invariants are consistent in the initial state.
Moreover, the inductive invariant is automatically obtained
by the initial invariant by iteratively apply ing the weakest
precondition operator until one actually obtains an invariant
for the controller program events. Note that while loops need
to be annotated with a user-defined invariant to start with.
Expressivity Due to the fact that inductive invariants are
proven, only safety properties can be shown. Those range over
first-order logic expressions that can use the relations used to
express network and control state.

Experimentation Various examples have been reported: a
simple stateful and well as stateless firewall, a firewall that
allows for migration of trusted hosts, network authentication
with learning as in Resonance [94], Stratos [99] style traffic
steering, called middlebox composition.

Deployability VeriCon is implemented in Python and uses the
Z3 [100] SAT solver. Examples run reasonably fast, under 0.3
seconds, despite several thousand verification conditions may
be generated for the SAT solver to check. However, the total
number of controller program lines never exceeded 93.
Limitations This approach can only verify safety properties.
All events are assumed to be executed atomically, so bugs
due to race conditions, i.e. installations out of intended order,
cannot be detected. A potential limitation is the power of
the SAT solver to check the verification conditions as they
are first-order in general and contain quantifier nesting like
V3. The authors argue that “by observation” the instantiation
dependencies for existential quantified variables are “shallow”,
i.e. they do not create new instantiation opportunities. It
remains rather vague, however, as this is just an observation
based on a few experiments.

D. NetPlumber

Properties NetPlumber [63] builds on HSA [60], deriving its
property set therefrom.

Model NetPlumber is centred around the idea of modelling
headers as points and packet flows as regions in the so-called
header space [60] ({0, 1}1 where L is the length of the head-
ers). Its internal model is graph-based in which nodes represent
OpenFlow-like forwarding rules in the network (drawn from
the FIBs (Forwarding Information Base)), and directed edges
of the graph represent the next-hop dependencies of the rules.
A rule is said to have a next hop dependency to another rule
if, on the premise that there exists a physical link connecting
the rules’ switches, the range of the sender-switch’s transfer
function intersects (meets) the domain of the receiver. This
intersection represents a possible flow path, and for this reason
the edges are also referred to as pipes, the intersections as pipe
filters, and, by extension, the graph as plumbing graph. The
pipe filter: 111xx010, for example, which is the intersection of
the range 111xxxxx of rule r; with the domain xxxxx010 of
rule ro, represents the packet headers at the output of rule r;
that 7o matches. For pushing flow into the dependency graph,
in addition to the rule-nodes, the so-called source-nodes are
connected to the graph, and their only role is to generate flows.
The generated flows are absorbed by sink-nodes. Another type

16

of node is the probe node. A probe-node is used to monitor
flows received on a set of ports, according to the policy at
hand, evaluating the constraints on flows. These constraints are
of two types: the filter expression, which matches the flows,
and the test constraint, which states conditions imposed on the
matching flows.

Taking full advantage of Software Defined Network (SDN),
an agent sits in-line with the SDN controller tapping into
the communication between the controller and switches. The
plumbing graph state is updated dynamically at each event
occurring in the data plane, such as install/remove flow entries
and link up/down. This way, only the dependency sub-graph
affected by an update has to be traversed.

The flows are augmented by history pointers which correspond
to the rules that have processed this flow.

Specification Language A language of regular expressions,
called FlowExp, is introduced to express conditions on the path
and the header of flows. It is designed to check constraints on
the history of flows received by probe nodes. Predicates on
the path taken by a flow (the test constraint on the history of
flows received by probe nodes), and on the header of flows
received on a probe node (the filter) can be either existentially
or universally quantified. The base predicates can express the
shape of paths and headers and can be composed via the
standard logical connectives.

For example, the fact that there exists a flow f that satisfies
both a filter and test constraint is expressed in FlowExp as:
Hf | filter(f)} : test(f), and the probe-node which is
configured with it will fire if there is no flow f that satisfies
the test flow expression.

Type of Check: Checking is performed by exhaustive and
incremental flow analysis using the dependency graph rep-
resentation of the forwarding plane. Checking iteratively the
graph for acyclicity (or computing all subgraphs that have at
least one cycle in them) remains one of the issues that has not
been dealt with.

Checking Phase NetPlumber is verifying the compliance of
a stream of network state changes in real time.

Layer Data plane state changes (rules installation/removal,
link up/down events) are observed, and any new stream of
updates is applied on the dependency graph.

Methodology A graph-based flow analysis is used. Reachabil-
ity is computed by injecting a header space region, represent-
ing a wildcarded test flow, from the source port, propagating
it along the edges of the plumbing graph, and computing
the subset of flows that reaches the destination rule-node.
To guarantee loop freedom, each rule-node inspects the flow
history. Black holes are discovered when an ingress-flow on a
node which represents a rule with a non-empty set of output
ports, won’t egress this node.

Expressivity Flowexp offers a more flexible way than HSA
to express and check complex policy queries without having
to write ad-hoc code for each case. However, in order to
specify higher level policies, the policy constructs proposed in
the Flow-based Management Language (FML) [101] are used.
FML is a declarative policy language for specifying network-

wide connectivity policies about flows, allowing administrators
to focus on policy decisions rather than on implementation
details.

Experimentation NetPlumber is evaluated on three pro-
duction networks: Google WAN (52 switches, about 143K
OpenFlow rules), Stanford University Backbone Network and
Internet2 nationwide backbone network. Checking all-pair
connectivity policy on Google WAN, 60% of rule updates can
be verified in less than 1ms, while it would take Hassel 100s, at
least. By increasing the number of instances of Google WAN,
the runtime gets better, however, 5 is the optimum number
of instances. The per add-rule run time of NetPlumber for all
networks is well under 1ms, while add-link run time takes a
few seconds.

Deployability By running HSA [60] snapshot-based computa-
tions in an incremental fashion, instead of building the entire
graph, allows NetPlumber to outperform HSA. The depen-
dency graph created consists, in the worst case, of R? edges
where R is the number of rules in the network. Still, dealing
with large amount of information about rules and flows in the
plumbing graph, involves extensive memory access. To address
this issue and scale up to large data planes, the dependency
graph is partitioned into clusters forming a distributed policy
checker. By parallelising instances of NetPlumber, a reduction
in inter-cluster dependencies is achieved.

Limitations As a snapshot-based approach, NetPlumber, like
HSA, is not capable of checking state-dependent policies
over stateful settings. Another drawback is the high run time
for verifying link updates. While network policy violations
are detected, NetPlumber cannot provide an automatic and
effective violation resolution.

E. NICE [71]

Properties Violations of (network-wide) correctness proper-
ties, both safety and liveness, due to bugs in the controller
programs are sought to be discovered. A library of common
properties to be checked is provided (such as no forwarding
loops or no black holes). Optionally, NICE allows program-
mers to write application-specific correctness properties in
Python, both safety and liveness, as assertions over the global
network state.

Model NICE models networks as state machines. The system
state consists of three components: the states of the controller
programs, switches and hosts. Since the OpenFlow protocol
follows the event-driven programming paradigm, the controller
program manipulates the switches’ configuration state. In
response to events (e.g. packet-in) it executes appropriate
callback routines (i.e. event handlers). Each event handler
listens to inputs from the underlying network. When an event
occurs, the appropriate event-handling code is executed, re-
evaluating the corresponding global variables, which gives rise
to a new state. The controller program is accordingly modelled
as a transition system on (pattern of) events, event handlers
and states. The switch state is modelled abstractly as a tuple of
communication channels and a flow table. A communication
channel is a FIFO buffer and can be of one of two types: packet

17

channel and OpenFlow channel. Transitions can likewise be of
two types: process_pkt and process_of. The former
is used for processing data packets (e.g. match or forward
a packet), and the latter for OpenFlow messages (e.g. flow-
mod). The transitions are enabled once an occurrence (packet
or OpenFlow command) appears in the respective channel.
To eliminate repeated computations, the flow table is
modelled such that its entries have a unique representa-
tion by considering only one ordering. Hosts are classified
into clients and servers. The default abstractions of both
have two transitions: send/receive for the client and
receive/send_reply for the server. A counter tracks the
number of sent packets in the client. The mobile host is a
more refined version of the default model the state of which
is augmented with location data (switch, port). The location
is updated upon firing the transition called move. As an open
source framework, other models for the hosts are allowed to
be programmed.
Specification Language A specific symbolic logic for spec-
ifying the properties is not expounded on. The correctness
properties are specified in a general unrestricted logic as
Python code snippets. So anything that can be programmed
is expressible. However, network-wide properties, safety and
liveness, require variable quantification and temporal reason-
ing, so one can probably say that the implemented logic is a
first-order temporal one.
Type of Check It is a model-based approach focusing on
testing rather than verification. It consists of adapting model
checking into a form of systematic testing for finding bugs.
Checking Phase Offline error checking is performed without
reference to the controller code runtime behaviour in real-time.
Layer NICE is designed specifically for OpenFlow controller
programs written for the NOX-platform.
Methodology Since event handlers react to data plane events,
model checking data-dependent apps is tricky; the packet
space is huge and enumerating all possible concrete inputs
is intractable. NICE deals with this issue by using symbolic
execution as a systematic code analysis technique on top of
model-checking to identify representative inputs (i.e., equiv-
alence classes of packets) that exercise code paths in the
handler. The idea is to execute the event handler symbolically,
i.e., with symbolic packets as its argument. A symbolic user
input packet is a logical entity, whose header fields can take
any possible value. Along each path, when a branch that
depends on symbolic input is found, a first-order Boolean sym-
bolic formula (path constraint) that describes the conditions
satisfied by this branch is updated. Hence, the path constraints
abstractly represent all inputs that induces the code execution
to cover the path. The set of all collected symbolic constraints
that gives the path conditions is representative of one class
of packets. Upon completion of the symbolic execution, a
constraint solver is used to solve the constraints and if a
satisfying assignment is found, for each identified class, one
concrete representative packet is extracted which is to be
injected into the event handler covering that path. This way,
by concretising the symbolic input, test cases are generated

for covering the path. The controller program under test, will
then be executed using the concrete input values (Figure 4).

symbolic valued input packet t

\(%

packet in(m)

===

concrete representative test packets
P1, P2, P3

0
D
o
A
3}
©
0,
"
0
>
o
0
0
-
o

S
6/,%/
3,

Fig. 4: Example of a concolic execution tree fragment
in NICE for one client: Filled circles represent con-
crete controller states. The discover_packets calls
the packet_in handler with symbolic input packet
as argument. Each symbolic state (unfilled circles), ob-
tained as a result of taking the symbolic transition
discover_packets, represents a tuple of the sym-
bolic store, and the path constraints. The symbolic store
associates program variables with expressions over con-
crete values. On branches with more than one feasible
resolution, the symbolic state (S , for e.g.) is forked and
all feasible resolutions (three in our example) are explored
switching the graph to three new concrete states Sa, S3
and Sj.

Expressivity Properties are specified using a general-purpose
and highly expressive programming language, Python, which
hardly can be challenged by any symbolic logic with respect
to expressiveness.

Experimentation NICE approach is firstly evaluated in a
two-switches topology, each hosting a client, and a MAC-
learning switch program in the controller. The property to

18

be checked is not mentioned for this case, however it seems
that a property that will allow the transition system to be
fully unfolded is considered. A client sends an ICMP echo
request packet (ping) to the other client, and the learning
switch logic comes into play learning and updating the MAC
table with the locations (i.e., the switch and input switch-
port) of the senders. The setting is scaled up by increasing the
number of concurrent pings. Results show that by employing
the canonical representation of the flow tables on top of model
checking (without symbolic execution), the state space growth
rate slows down two times. In addition, if heuristics are turned
on as well, it results in a 28-fold state space reduction for three
pings.

In comparison to the other off-the-shelf model checkers, NICE
achieves credible results with SPIN [102] performing more
efficiently while Java PathFinder (JPF) [103] five time slower.
Further, NICE tested three applications: a MAC-learning
switch program, a server load-balancer, and energy-aware
traffic engineering. While the first application is run in the
same two switch/client pairs topology, the load balancer is
tested with one client and two servers connected to a single
switch, and the energy-efficient traffic engineering app in a
network topology with three switches in a triangle, one sender
host at one switch and two receivers at another switch. Eleven
bugs are reported to have been found in these applications.
Deployability Combinatorial explosion is the main hindrance
to application of model checking. Even symbolic execution
suffers from limited scalability, particularly with regard to
constraint solving cost and path explosion [104]. As a common
strategy to ensure feasibility of symbolic execution, NICE
introduces search heuristics to prioritise path exploration. The
PKT-SEQ heuristic introduces a schedule-driven concurrency
control into nondeterministic interleaving of enabled send-
transitions. This is achieved by imposing constraints on the
outstanding-packets buffer size, resulting in adjusted inter-
leaved executions and, consequentially, in state space reduc-
tion. NO-DELAY is another heuristic which, again, reduces
the number of thread interleavings of the controller program.
This time, the switch-controller communication actions are
excluded in the order in which non-deterministic choices are
made by the search algorithm (i.e. the total order). The UN-
USUAL heuristic elaborates on the fact that the sequential ex-
ecution (non-interleaved) of switch-controller communication
actions, from NO-DELAY heuristic, may hide bugs (e.g. race
conditions). For this reason, NICE explores other orderings
between those actions in case some unusual and unexpected
delay is observed during the execution of the initial sequential
ordering. NICE also applies a reduction technique (FLOW-
IR) that try to exploit independencies between concurrent
packet processing actions, i.e. actions the effect of which
is independent of their ordering. This is also known as the
commutativity of concurrent transitions feature. The aim is
to reduce the number of possible orderings that need to be
considered.

Limitations The framework is limited to testing controller
applications in Python whose source code is accessible. It

often manoeuvres the model checker in order to control
orderings and reduce non-determinism, which might cause
loss of observable behaviours. However, in a testing context
where any form of guarantee cannot be offered, such manip-
ulations are well suited. Also, a high-level symbolic and non-
procedural language to abstract logic and specify correctness
properties is not included. Such spec lang would be simpler,
smaller, faster and easier to write good compilers for it.

FE. Veriflow [61]

Properties. Veriflow can check network-wide, topological
properties. such as reachability, loop-freeness, absence of
black holes, consistent routing and correctness of access
control policies. More specifically, Veriflow exports a custom
C++ API that allows network programmers to reason about the
behaviour of the data plane; i.e. how packets are forwarded in
the network at any time.

Model Veriflow does not directly model the network. Instead,
the forwarding state is modelled using forwarding graphs.
Packets are modelled as Equivalence Classes (ECs); packets
belonging to the same EC get identical forwarding behaviour
from the network. A forwarding graph is EC-specific; each
vertex in the graph represents an EC at the respective (mod-
elled) network device. Edges between said vertices represent
a forwarding decision for the EC; i.e. any packet belonging
to this EC will be forwarded to the device modelled by the
destination vertex in the forwarding graph.

Specification Language. Veriflow exports a C++ API that
is used to implicitly express network properties and check
respective invariants. The exported API exposes ECs and
respective forwarding graphs as well as the effect of a new
rule to existing ECs. Verifying a network-wide property for
one or more ECs is done by traversing the forwarding graph
using an exported C++ method.

Type of Check. Veriflow operates checks on incoming for-
warding rules by the SDN controller and is agnostic to the
control plane and the respective controller program. For each
incoming rule, Veriflow will only calculate forwarding graphs
for the affected ECs. For each one of these, it will execute
invariant modules (i.e. code that implicitly defines network
properties as described above). If it is found that the new rule
would result in the violation of one or more invariants, an
alarm is raised to the network operator.

Checking Phase. Veriflow checks network-wide invariants at
runtime by intercepting forwarding rules before they reach
their destination network switches.

Layer. Veriflow is a data-plane verification tool that is com-
pletely agnostic to the SDN controller and running program.
Instead of verifying a network invariant for the whole network
state every time a new rule is added, it incrementally verifies
invariants by only examining affected ECs and their respective
forwarding graphs. When a network property is violated,
Veriflow can only raise an alarm for the problematic new
rule; this violation cannot be linked to the underlying SDN
controller program.

19

Methodology. Veriflow calculates a forwarding graph for each
EC. Incoming rules (from the SDN controller intercepted by
Veriflow) may trigger the updating of the set of ECs. A new
rule may result in adding or deleting an EC or splitting one
to multiple ECs. The respective forwarding graph is then
calculated for all updated ECs and invariants are checked
by executing invariant modules (see above) that implicitly
define the network-wide correctness properties. The GetAf-
fectedEquivalenceClasses() method returns the set of ECs
that are affected by the incoming rule. GetForwardingGraph()
returns the forwarding graph for a specific EC. With these
two methods one can write C++ programs that can examine
all forwarding graphs for all affected ECs. By calling the
ProcessCurrentHop() method on a specific forwarding graph,
a program can traverse the graph, examining the forwarding
behaviour for the respective EC and identifying invariant
violations. Veriflow uses tries, ordered trees that store an
associative array, to efficiently store new network rules, find
overlapping rules, and compute affected ECs.

Expressivity. Veriflow supports arbitrary C++ programs
(called invariant modules) that are executed on specific ECs
and forwarding graphs to check the correctness of network-
wide properties. Apart from commonly cited reachability
properties, the authors demonstrate how Veriflow can be used
to check for conflict detection and k-monitoring; i.e. whether
an incoming rule violates isolation of flows between network
slices, and ensuring that all flows in the network traverse one
of many specific monitoring points, respectively.

The expressivity is constrained by the underlying data that is
stored with the forwarding graphs and ECs. For example, the
authors acknowledge that Veriflow cannot check performance
properties that require knowledge on buffer sizes nor proper-
ties that are not implementable in an incremental fashion with
respect to only considering affected ECs.

Experimentation. Veriflow’s key performance indicator is the
verification latency; i.e. the time it takes to verify that an
incoming rule would not result in the violation of (implic-
itly) defined network properties. The authors microbenchmark
Veriflow using a stream of rules coming from a simulated
Rocketfuel [105] topology and BGP traces. BGP traces were
replayed and the resulting updates triggered respective rule
generation within the autonomous system (AS). Given the
nature of the simulated updates, only the destination IP address
is involved in all rules, therefore only this one field contributes
to the generation of ECs. Veriflow verified most of the updates
within 1ms which is acceptable for real-world deployments. As
expected, the verification time heavily depends on the number
of ECs that are affected by the incoming rule. For the described
setup, the largest verification time was 159.2ms due to an
update affecting 511 ECs, although only 5.5% of the rules
affected more than one EC. The authors also experimented
with link failures that inevitably affect a large number of ECs.
In the presence of more fields that affect ECs, Veriflow is
unsurprisingly slower; more fields to classify packets translates
to more unique ECs that are generated upon inserting new
rules. The tested topology consisted of 172 routers. It is not

specified how large the resulting forwarding graphs were, and
there is no discussion on how the size of these graphs would
affect the verification latency. Veriflow verification is done
on forwarding graphs, therefore parallelisation is possible.
The effect of Veriflow on user-perceived performance is also
evaluated using an emulated network with Mininet [106].
More specifically, the authors measured the overhead Veriflow
induces in TCP connections and found that the average time to
establish a TCP connection increases if respective rules must
be checked by Veriflow.

Deployability. Veriflow is directly deployable in an
OpenFlow-based SDN network and operates on the live
network. Conceptually, it sits between the OpenFlow
controller and the network. It can operate as a proxy for
OpenFlow rules or be directly integrated with the controller
(NOX [107] in the version presented in the paper). Veriflow
intercepts all OpenFlow messages that are sent from the
controller to the network and checks whether the insertion
of a rule would violate the pre-specified network properties.
Veriflow’s trie structure is optimised so that header fields that
can only have exact values (no wildcards are allowed) are
represented in a single trie dimension. Problematic rules raise
respective alarms to the network operator.

Limitations. Veriflow will identify rules that, when applied,
would result in the violation of user-defined, network-wide
properties, however, it cannot link the problematic rule with
the running controller program. It is up to the network op-
erator/programmer to identify the root cause of the problem
(e.g. a bug in the controller program). Veriflow’s verification
latency is evaluated with respect to the number of ECs that
are affected by an incoming rule, but it is unclear how the
size of the network and respective forwarding graphs would
affect Veriflow’s performance. Moreover, although the number
of affected ECs in the presented evaluation scenarios is usually
very small, it is unclear how Veriflow would perform in large-
scale realistic scenarios with complex network applications.
Finally, in many cases, an update would require network-wide
changes that would be carried in a sequence of rules destined
to different switches. By looking at a single such rule, a
topological invariant (e.g. reachability) would be violated; only
when all these rules are established, the invariant would hold
again. Veriflow does not appear to support such bulk updates.

G. Anteater [62]

Properties. The main invariant properties that can be checked
are reachability, loop-freedom, black holes freedom and con-
sistency of forwarding rules between routers. Reachability
algorithm serves as a basis for checking the other properties.
Model. The network is modelled as a directed graph with
vertices corresponding to network boxes or destinations in the
network, and edges representing connections between vertices.
Another component of the graph is the policy function P,
defined on the edges. This function, which is encoded as a
boolean formula over a symbolic packet exercising the edge
in question, can express different policies, like forwarding,
packet filtering, and transformations of the packet. A packet

20

can be forwarded/blocked over an edge only if the overall
policy function over this edge is evaluated to true/false. For
e.g., P(sw;, sw;) = dest_ip € 1.2.3.4/16 A tcp_dest_port #
22 is a packet filtering rule which blocks SSH access to the
IP range 1.2.3.4/16 for packets flowing from switch ¢ to j.
In order to model packet rewrite, each packet is represented
by an array of its lifespan instances, where each element of
this array represents the state of the packet at each transfor-
mation hop. By preserving the history of the packet, each
transformation is expressed as a constraint on its history, rather
than transforming the same original packet. The transformation
constraints are, of course, considered on top of the policy
constraints.
Specification Language. Anteater enables access to its objects
from Ruby and SLang, which allows properties to be expressed
sufficiently via either Ruby scripts or SLang queries.
Type of Check. Anteater verifies whether the network satisfies
the property: in case a bug is found, a counterexample is
returned.
Checking Phase. The diagnosing approach works offline, and
is based on static analysis of built data plane snapshots.
Layer. Anteater checks invariants exclusively in the data plane.
Methodology. In order to capture the data plane state, Anteater
collects, via SNMP, the devices’ forwarding information bases
(FIBs). Then, it combines the invariant and the network de-
scription encoding them into instances of boolean satisfiability
problem (SAT), and resolves them by passing into an off-
the-shelf SAT solver. Reachability, which is the most trivial
invariant property here, is checked in a quite classic way:
node j (network box or specific destination) is reachable from
1, if there exists a packet and a firing sequence 7 ~» j of
edges in the graph such that all the constraints of the policy
function along it hold for this packet. For checking whether
there are forwarding loops, the graph is rebuilt by creating
clone vertices, each of which has the same set of incoming
edges (and policies) as the original. Thus, a forwarding loop
equate to a clone being reachable from its original. The graph
is examined for black holes towards a set of destinations,
by adding a sink-vertex which is reachable from all these
destinations. Then, the problem of checking the property
“no black holes towards a (set of) box(es)/destination(s)”, is
lessened to checking that the sink-vertex is not reachable. The
above invariants can also be used to check for (in)consistencies
between the boxes’ policies which are expected to be identical.
Expressivity. Anteater checks only safety properties that can
be reduced to computing reachability of a remote network box
(or more refined destination), based on reachability algorithms.
Experimentation. The evaluation was done with University of
Ilinois at Urbana-Champaign (UIUC) campus network: 178
routers (supporting predominantly OSPE, but also BGP and
static routing), 70k end-clients and servers. The Anteater’s
performance is also stressed by checking the forwarding loop-
freedom invariant in six autonomous system (AS) networks
from [105].
Deployability. Anteater revealed 23 bugs in 2 hours, 7 runs
in the UIUC network: 9 loops, 13 packet losses and 1

inconsistency. Scaling the number of routers on a campus
network, the forwarding loop-freedom invariant checking time
for a run ranges, in a roughly quadratic trend, from about 6
min, for a subset of 178 routers, to single-digit seconds (subset
of two routers). It took about half an hour to check for the
loop-free forwarding invariant property in a network of 384
nodes from the Rocketfuel project [105], which is the biggest
one experimented in this paper.

Limitations. As the vertices in the graph represent network
boxes (or destinations) and not global states of the network,
the reachability analysis does not capture global behaviours
but is limited to looking for reachable IP network addresses
(routing reachability). Anteater is therefore limited to only
three property categories: loop-free forwarding, connectivity
and policy consistency of replicated boxes. Bugs which have
no effect on the content of the FIBs cannot be caught by
Anteater. Also, it might be the case that an inconsistent or
incomplete view of the network is got by the Anteater, when
the FIBs are updated while being retrieved. There is only one
counterexample returned per verification attempt.

H. NetKAT [82] incomplete still

NetKAT is a domain-specific language and logic for spec-
ifying and verifying network packet-processing functions and
part of the Frenetic [78] suite of languages.

Properties.

NetKAT provides a network programming language using

predicates and policies. Any property that can be expressed
as an equation or inequation can thus be checked. There
is no result which properties can or can not be expressed.
Examples show that reachability and isolation properties can
be expressed.
Model. The main idea is to represent a network as an
automaton to move packets. Kleene algebras describe the
equational theory of regular expressions, whereas boolean
algebras describe predicates, i.e. tests. KAT combines and
unifies both and thus is able to describe network behaviour
via the former concept and switch behaviour via the latter.
The model is thus an extension of Kleene algebras with tests
[108] (KAT).

The equational theory of NetKAT combines the axioms
for KAT and those domain-specific axioms that describe the
manipulation of packets. The equational theory is shown to be
sound and complete wrt. the denotational (algebra) semantics.
Syntactically, predicate expressions include constants true and
false (as the latter predicate retains no packets, one uses
the constant drop), matching a packet field f with value n
(f = n) as well as negation, conjunction and disjunction.
Packets are as usual modelled as records where field names
are assigned values from a finite domain. Policy expressions
include predicates, modifications for fields f < n, sequential
composition of policies p and ¢ (p;q) as well as parallel
composition (p + ¢), a policy of recording the current packet
in the packet history (dup), and of course iteration (p*).
The histories are only used for reasoning purposes (and not
required for computations).

21

For the algebraic equations there exists a denotational model
that has been shown sound and complete. In this denotational
model, every predicate and policy is interpreted as a function
on packet histories, i.e. a function f that maps a given history
h to a (possibly empty) set of histories {h1,...,hy}. Return-
ing the empty set models dropping a packet and its entire
history. Returning a singleton set {h} models modifying and
forwarding a packet to a single location. Returning a set with
more than one history models modifying a packet in several
ways or forwarding it to several locations.

To model a network, one first models its topology, or better
its behaviour, as parallel composition of link policies. Such a
policy is the composition of a test whether a packet has arrived
at the source link (switch and ingress port) and a modification
that updates sw and port fields of the target link (i.e. switch
and egress port). Let us use the letter ¢ to denote topology
policy.

Let p denote the forwarding policy of all the switches
(parallel composition off individual switch policies). Then
the network behaviour can be modelled as follows: packets
are first processed by a switch then forwarded along the
topology and then this process is repeated, so the end-to-end
behaviour of the network is described by (p;t)*; p. Normally,
one identifies also the hosts where packets enter and leave the
network. Writing ¢n for the policy describing where packets
enter the network and out for the policy describing where
packers leave the network, one can describe the network by
the expression in; (p; t)*; p; out. If the history of packets is to
be recorded, which is essential for reachability analysis, then
one needs to model hop-by-hop processing using the following
expression: in; dup; (p; t; dup)*; p; out.

Note that the expressions are in general richer than Open-
Flow tables, so some compilation is necessary to implement
the networks expressed in NetKAT.

Specification Language. The specification language is the
language of algebra, so properties are expressed by equations
or inequations between (network or policy) expressions. Let
us assume network policy p and topology ¢ and also assume
a and b are policy expressions denoting (potentially specific
kinds of) packets at end hosts a and b. Whether b is reachable
from a can be formulated, e.g., as a; dup; (p; t; dup®; b # drop.
The semantics of this expression can be proved to be exactly
reachability. Similarly, one can express waypointing, access
policies, loop freedom, or high-level operations such as net-
work isolation (slicing)

Type of Check. Any property expressed as equation or
inequation is checked by proving or disproving the algebraic
equation in question.

Checking Phase. Checking is done statically by proving al-
gebra equations. Whether the equation represents semantically
the property of choice can be shown by using the denotational
semantics.

Layer. NetKAT works on the network layer using policy
expressions, there is no explicit representation of an SDN
controller. High-level policies for switches can be expressed
however. The flow table content of the switches is obtained

by compiling the (network) policy expression to a format that
corresponds to flow table entries only.

Methodology. The network is modelled as an algebraic ex-
pression that one can reason about equationally. One can also
compile such a NetKAT policy expression into a normal form,
one that does not use the Kleene star (which is something that
a switch cannot express semantically, as it is just a flow table)
and that can be expressed by isolated switch policies that in
turn can be normalised to expressions that basically correspond
to flow table configuration policies (i.e. nested cascades of
conditionals) which correspond to the OpenFlow standard. can
be flow table in OpenFlow standard.

For the verification of properties algebraic equations need
to be solved. It can be shown that the algebraic theory is
decidable and PSPACE-complete. The actual check can be
carried out in any tool that supports Kleene algebras with
test. In [109] a coalgebraic semantics has been defined that
allows for a more efficient verification of equations. It has
been proved that the coalgebraic semantics coincides with the
one described earlier.

Expressivity. NetKAT offers a policy language (like Frenetic
[78]). The language design is guided by Kleene algebras with
tests with basic primitives for networking. It thus comes with
a denotational semantics and an equational theory that is
sound and complete for this semantics. There is no equivalent
of a controller program but the language principles allow
unlimited formation of policies. This allows for reasoning
about the network and particularly properties like reachability
or loop-freedom. General temporal logic properties cannot be
expressed in the original work but extensions are available that
provide this [110].

Experimentation. The original NetKAT paper [82] does not
present any practical experiments. The version with coalge-
braic decision procedure [109] describes, however, a system
that decides NetKAT equivalences. It is an OCaml program
of about 4500 lines of code. This has been integrated into
the Frenetic environment. The decision procedure uses the
Brzozowski derivative of a set of strings S for a particular
string u, defined as u’1S = {v?¥* : wv € S}. A famous
results says that a string w is in a set of strings S denoted
by a regular expressions if, and only if, the empty string
e € u~1S. It is shown that the derivative can be encoded in
matrix form for fast computation of the bisimulation equality
by reducing the state space. Further optimisations using Hash
consing and memoization and sparse multiplication (which
avoids the numerous multiplications with 0 in a sparse matrix).

The following benchmarks have been tested: Topology Zoo
[111], FatTrees that are generated manually, and Stanford
Backbone [60]. Forwarding policies were introduced randomly
between hosts in the first case, fat trees for a given pair of
depth and fanout parameters were generated for the second
case and the last is an explicit real world topology with 16
hosts. The Stanford backbone allows for comparison with HSA
(see § V-B above). The properties checked were: connectivity
between all pairs of hosts, loop-freedom, translation valida-
tion (i.e. does the compiler translate high-level policies into

22

equivalent Open Flow forwarding rules?).

The results show that the given examples for Topology Zoo
run within seconds for smaller examples and scale to hundreds
of switches. The performance of the translation validation
property is an order of magnitude slower (with thens of hours
for topologies with thousands of switches) as it requires the
full coalgebraic bisimulation algorithm to be run.

The FatTree benchmark tests also scalability. The perfor-
mance is similar to the one observed for TopologyZoo where
small networks verify in seconds, while larger ones can take
many hours. On large inputs connectivity is fastest, loop
freedom taking twice as long, and translation validation twice
as long again.

For the last benchmark, the authors programmed a tool that
translates router configurations of the Stanford backbone to
NetKAT policies translating away prefix matching to use only
concrete IP addresses in policies. Furthermore, to reduce the
state space a static analysis was implemented that detects
which packet fields in policies are static and then partial
evaluates such policies to smaller ones before verification.
With those improvements reachability queries run in the
area of half a second which is comparable to the manually
optimised version of HSA (not the original which is an order
of magnitude slower).

Deployability. NetKAT decision procedure is integrated into
the Frenetic toolkit. One can statically verify equivalence of
network policies or translate a network policy into a set of
open flow table descriptions. The performance for reachability
appears to be comparable with optimised HSA and allows also
absence of loops of reasonably large networks.

Limitations. Some limitations have been overcome by exten-
sions: stateful NetKAT [112] to model switches with state, i.e.
registers, Probabilistic NetKAT [113] to model uncertainty and
randomized algorithms. Temporal NetKat [110] extends the
language with linear temporal logic over finite traces.

I NetSAT [114]

Properties. The properties considered in this work are Reach-
ability between two ports, absence of forwarding Loops and
Slice Isolation.

Model. The network topology is represented as a set of
network elements (routers, NATs and firewalls) and links (pairs
of ports). The header fields’ values of a packet located at a
specific port (Rgwitch,port) are abstracted to boolean values
by a bit vector. The header encodes implicitly the switch and
port id it is located at. A Boolean variable valid(hswitch, port)
indicates the presence or absence of a valid packet at the port
at issue. A switch is encoded as a function that relates packet
header field values in the input and output ports. This function
incorporates, as a prioritized list, all the rules extracted from
the data structures of a network box, i.e., routing/forwarding
tables - RIBs/FIBs in routers/switches, Access Control List
(ACL) in firewalls, and Translation Table in NAT. Each rule, in
turn, consist of a matching field and an action to matching one.
A path that a packet takes through the network is represented
as a conjunction of switch formulae, i.e., as assignments to the

header field variables. Thus, a single formula for the network
is built. The network state is a mapping of network elements
to the set of rules extracted from their data structures.
Specification Language. Properties are specified using propo-
sitional logic.

Type of Check. A SAT-based propositional logic verification
approach which verifies static snapshots of data plane with a
SAT solver.

Checking Phase. NetSAT is a static analyser: the network
states are snapshots at a single instant in time which do not
change during verification.

Layer. A framework for network forwarding data plane mod-
eling and property checking.

Methodology. Zhang and Malik [114] use a Boolean Satisfia-
bility Based Approach. They encode the data plane as a SAT
formula and use combinational search to find errors. Using
the single formula A for the network, which represents a
single valid packet path, the satisfiability of A" A =P indicates
contradiction of property P.

Expressivity. The framework is bound to express a set of three
data plane properties.

Experimentation. Experiments are conducted using two sets
of test benchmarks. The Stanford backbone network has 16
routers with VLAN tags, ACLs, etc., 15,000 rules which
gives 6.2 million Conjunctive Normal Form variables and 32
million clauses. The other set of benchmarks are synthetically
generated using the Waxman topology [115]. For the latter
benchmarks, four subsets of experiments were run scaling
the number of network boxes, rules and packet header size.
Minisat [116] is used as the SAT solver for all the experiments.
Deployability. It took about 100 seconds to return satisfiable
for both forwarding loop and reachability checking in Stanford
network, and about 5 seconds for unsatisfiable (disproving)
cases for reachability checking. A 50-switches topology, with
64-bit header length and < 10° rules, completed within
10 minutes, while checking a 190-switches topology with
160-bit headers (106 rules) took 4.5 hours. The size of the
encoding is proportional to the number of routing rules/boxes
which directly affects the execution time. The execution time,
however, is less affected by the packet header length.
Limitations. As a static technique, NetSAT considers a single
snapshot of the network and assumes that the network is
stateless. Only one satisfying assignment is computed each
time.

J. KineticO (early version'') [117]

Properties. The properties of interest in this paper are those
expressible as set of packets and their trajectories, referred to
as trace properties. Such can be access control, connectivity,
routing correctness, loop-freedom, ‘no black holes’, blacklist-
ing, correct VLAN tagging, and waypointing. The substantive
objective of [117], though is an update abstraction which
is guaranteed to preserve these properties when transitioning

UKinetic, which is part of the frenetic [78] family, is also quoted and
exclusively presented in a later paper [81] but positioned there in a more
specific role: that of a domain specific language (DSL).

23

between configurations; or in other words, that every packet
traversing the network is consistently processed by one and
only forwarding policy. It is provided a library of prevalent
network properties, such as loop-freeness, but custom proper-
ties can be added as well.

Model. A so-called located packet Ip is modelled as a bit
vector along with a switch port where it is located. For each
packet, a trajectory ¢ is associated with, which consists of
an array of ports the packet has passed through. A switch
function S maps a located packet to a (set of) located one(s).
The topology function 7" is encoded as a permutation of the
set of ports. The switch and topology functions constitute
the network configuration C. A network state IV is a pair
consisting of: (1) a snapshot, at a particular instance of the
transition relation, of the mapping @) from all the switch ports
to the set of packets (updated with their hops history) enqueued
in the port queue, and (2) the network configuration C. The
network updates are alterations to the switch function. The
update transition is encoded as an overwriting of the switch
function with the new mappings between located packets.
The semantics of the network is a transition system whose
transition relation is an ordered concatenation of all atomic
update-transitions (called update sequence ws). The notation
N 25* N’ is used to denote the switch of the transition
system from N to N’ due to the execution of a list us of
control messages from the SDN controller to the forwarding
plane. ' In order to develop a run-time mechanism, the per-
packet consistency abstraction is presented which specifically
focuses on the network configuration changes. In the per-
packet consistency abstraction, when an update is applied to
network, all packets are processed by either the pre-update
configuration or the post-update one. This “2-phase update”
algorithm is based on a configuration versioning where packets
are tagged with a configuration version id (using the VLAN
field). The idea is as follows: first, the switches in the middle
of the network (i.e., switches that do not provide an entry
point into network) are updated with the new configuration
rules, tagged with the new version so that they can be hit only
by packets tagged with same version. The old configuration
is left in place. Next, the new configuration is installed in the
edge switches. The edge rules stamp all ingress packet with
the new version number. And last, the old configuration rules
are removed from all the switches once all the packets hitting
them are drained out of the network. The per-flow consistency
is another abstraction which is a generalisation of the per-
packet consistency one. In this abstraction, all packets of a
flow are processed by the same configuration version.
Specification Language. Branching time temporal logic
(CTL) is used here to specify behaviours along paths a packet
is allowed to walk on.

Type of Check. The updates proposed in [117] are provably
consistent: guarantees are provided (proofs) that the abstrac-
tions (per-packet/flow consistent updates) preserve all trace

12_4* js the reflexive and transitive closure of the transition relation —.

properties, i.e., if any property holds prior to, as well as after
an update, then the property also holds in-between.
Checking Phase. Since the semantics include updates, a
dynamically evolving network is modelled.

Layer. In order to pre-process the rules (so that they tag all
packets entering the network with a version number), manage
and refine them dynamically over time, [117] is placed on top
of the SDN controller in the capacity of a run-time system.
Methodology. The abstractions proposed here can be (the-
oretically) explored by any static analysis approach to verify
the invariant trace properties as network configurations evolve.
However, model checking is used by the authors to demon-
strate the idea.

Expressivity. Properties can be expressed in terms of the
path(s) traversed by a packet or sets of packets belonging to
the same flow. Branching time temporal logic (CTL) is used
to specify the allowed paths, which has been shown to be
adequate for expressing such properties.

Experimentation. [117] was evaluated through a set of simple
experiments which were developed using Mininet [106]. For
the main abstraction, i.e., per-packet consistency, two network
applications are implemented: routing and multicast. The for-
mer computes the shortest paths between all hosts and updates
routes as hosts get online/offline and switches up/down. The
latter, groups the hosts into two multicast clusters'>. The hosts
in each cluster are connected into a spanning tree. Both appli-
cations are run in three different scenarios: a) adding/removing
randomly 10% — 20% of the hosts, b) re-routing randomly
20% of the routes (simulating switch removals), and c¢) both
at the same time. Three different topologies are used for each
scenario: fat-tree [118], small-world [119] and Waxman [115].
Each topology contains 192 hosts and 48 switches. For the
multicast example, one of the multicast groups is changed each
time. The evaluation of the per-flow updates, is done through a
load-balancer that divides traffic between two server replicas.
The update for this experiment involves bringing new server
replicas online and re-balancing the load.

Deployability. The update abstractions are implemented in a
system called Kinetic, in Python, which sits on top of NOX
controller [107]. Both abstractions are, from implementation
point of view, represented by a function which implements the
update transition for any new configuration. To unroll the tran-
sition system Kinetic uses the NuSMV model checker [120]
as verification engine. For reducing the overhead required to
perform consistent updates and achieve better performance,
several optimisations are introduced. The idea behind the
optimisations is that instead of deploying a full 2-phase update
mechanism that installs the full new policy and then uninstalls
the old policy, only the “delta” between the two configura-
tions is considered. These optimisations (referred to as pure
extensions/retractions) are applicable under certain conditions
— e.g., when the update only affects a subset of switches, rules
or network traffic as hosts come online or go offline — and as

3A multicast cluster is a set of hosts that listen for and receive traffic
addressed to a special, shared multicast IP

24

such, since a complete two-phase update is not required, the
transition to the new configurations is achieved in less time.
The update cost is proportional to the number of rules that
changed between configurations, as opposed to unoptimised
(full 2-phase) update, where the cost is proportional to the size
of the entire new configuration. For the multicast application,
the subset optimisations yield fewer improvements, as almost
all routes change when the spanning tree changes, bringing on
an expensive update. The optimisations are not applied for the
per-flow mechanism, therefore no optimisation evaluation of
the load balancer.

Limitations. The main drawback of [117] is that it requires
that both versions of rule-sets are at the same time represented
on the switches, resulting, in the worst case (when the subset
optimization is not applicable and a full two-phase update
takes place), in double the TCAM storage capacity overhead.
Another factor which increases the rule-space overhead is the
tag-matching. The properties that one can check in [117] are
limited to those expressible as sequence of hops a packet has
traversed.

K. Katta [121]

Properties. Same as [117], the property set consists of traver-
sal path invariants which are checked whether they are obeyed
throughout the execution of an update in the network.
Model. A location is a pair of switch id and an ingress port.
The rules are modelled as 3-tuples, each consisting of: i) a
predicate P on ingress packets, encoded by a pattern for
matching header fields and a location the matched packet
arrived on, ii) an action a on matching, and iii) a priority
z used to pick unambiguously a rule among rules with
overlapping patterns. Hence, a predicate is a symbolic ingress
flow. A global network policy R is a set of rules. The policies
are versioned using the VLAN or MPLS header fields. The
new forwarding policy which is about to be installed, is sliced
into sub-policies (subset of rules) by means of predicates. Each
sub-policy defines a sub-flow. This slicing allows the new
policy to be applied in rounds. Each round is executed pursuant
to the 2-phase paradigm [117]. In a 2-phase update, a policy
acts differently on edge switches than it does on middle ones:
at ingress edge switches, the rules stamp all packets entering
the network with a version number; the newly written version-
field serves as a new matching field for the rules at the middle
switches; and finally the rules at egress switches remove the
version information from the packets.

Specification Language. Same as [117].

Type of Check. Same as [117].

Checking Phase. Same as [117].

Layer. Same as [117].

Methodology. The abstraction in [121], wraps the one in [110]
and, moreover, adjusts it aiming at tackling rising TCAM
space, caused by the coexistence of both new and old policies
at the same switch, when implementing consistent updates. To
achieve this, the 2-phase update protocol [117] is applied in
instalments. This, of course, sacrifices updating time to cut
down space. It, first, divides the global policy into a set of

consistent slices, and next applies the 2-phase update [117]
for all the individual configuration slices one by one. Given a
predicate P;, the first algorithm in [121] computes the slice ¢
as the set of all rules that match the flows asserted by P;.
To determine in each round the new rules that should be
placed in the network, but and the the old rules that can safely
be removed in order to preserve consistency, the algorithm
analyses and keeps track of the dependencies between flows
in the old and new policies. A rule from the old policy
remains active at the switches as long as there is some in-
flight flow which can be matched by it. More formally, if P;
is a predicate which defines a subset of new rules installed up
to a transitioning instance ¢, then any old rule r, falling under
the predicate —P; should not be removed as long as there is an
in-flight flow in the network which can be matched by r,. The
computation of the flows which correspond to a sub policy is
done through a reachability analysis along the lines of [60].
While the first algorithm only generates the slice given a
predicate, another algorithm is presented in [121] in order to
decide: i) how many slices the policy should be split into,
and ii) which predicates are to be used at each round, given
a predefined number K of slices (rounds) for an update. The
latter problem can be reformulated as an optimisation problem
as follows: “Partition the set of all ingress predicates into K
ordered subsets, optimally”, where optimally is quantified by
capping the worst-case rule-space overhead. Reasonably, this
is posed as a mixed-integer linear program (MILP). The MILP
finds the minimum rule-space overhead subject to several
constraints imposed by the semantics of the consistent updates.
The optimisation algorithm evidently aims to minimise the
rule-space overhead.

Expressivity. Same as [117].

Experimentation. The experiments are performed on the three
popular classes of topologies used in [117] (Fattree, Small-
world and Waxman), each with 24 switches and 576 hosts.
The scenario the experiments run, uses two load-balancing
policies, swapping them over. The load-balancing policy allots
randomly a set of server replicas. Then, it intercepts the
ingress flows in the edge switches and, by modifying their
destination IP address, distributes them randomly among the
server replicas. The second load-balancing policy can be
obtained from the first by cutting back the number of replicas.
Deployability. Preliminary empirical results are presented in
[121]. The Gurobi [122] optimiser is used as optimization
solver for the mixed-integer linear programming. It returns
the optimal solution in a range of few seconds for most runs;
finding the exact optimal solution, however, lasts much longer
(hours). In addition to the number of slice capping, the MILP
can also cap the rule-space overhead threshold per switch and
minimise the total time required to complete an update.

In the experiment using load-balancing, about 100 OpenFlow
rules are deployed at each switch. Each rule has exact-
matching on source and destination IP addresses (i.e., covering
the entire input string). A 6-round incremental update can
reduce the space overhead by a factor of ten. When the rule-
space overhead is capped at 5%, then about 20% of flows are

25

left to be processed by the old policy by the end of the 1st
round, and only about 1% by the end of the 3rd round.
Limitations. Bounding the worst-case rule-space overhead
comes at a price of slower update.

L. Minesweeper [90]

Properties. Minesweeper encodes the behaviour of the net-
work and a (negated) property of interest into a system of SMT
constraints. Properties can therefore be about the encoded
behaviour of the network. Additional variables can be added
to routers and their interfaces to reason about more complex
aspects of network operation. Example properties include
reachability, isolation, loop freedom, black holes, waypointing
(i.e. traffic traversing a specific chain of devices), equal path
length, disjoint paths. Minesweeper encodes behaviour of
routing protocols (e.g. BGP, OSPF) into SMT constraints,
therefore properties can be about routing protocol aspects; e.g.
neighbour or path preference, equivalence of configuration of
routers and load balancing.

Model. Minesweeper’s modelling philosophy is based on the
fact that the network plane solves the stable paths problem
[123], and models the network behaviour into SMT constraints
so that satisfiable assignments correspond to stable paths in the
control plane. With this approach, Minesweeper captures all
possible stable paths. Constraints that describe properties of
interest are then added to perform verification. Minesweeper
can reason about data packets in properties using integer
variables for the source and destination IP address and port and
the protocol header. Packet re-writing is not allowed therefore
there is a single global variable in the used formula.

Minesweeper models a router’s behaviour as a set of routing
protocols that operate independently to each other, exchanging
routing information with other protocols internally and with
other routers. The objective of each router is to select a best
route for a specific destination prefix based on the information
it receives from local and remote protocols instances. Protocol
instances exchange protocol messages which are modelled as
records of symbolic values. Minesweeper defines a number of
values (concrete or unconstrained) that can be used to model
messages exchanged by routing protocols (e.g. routing prefix,
prefix length, distance, BGP local preference etc.).

Routing information flow is modelled as a graph (which is
built on top of a given network topology) interconnecting the
various protocols instances within and across routers. Edge
labels e and i indicate a message exported by a routing
protocol instance and the same message after being processed
by an incoming filter at the destination instance, respectively.
Minesweeper verifies a property with respect to a specific
symbolic packet (modelled as discussed above), therefore it
only considers routing prefixes (for all protocol instances) that
are relevant to the symbolic packet. Import filters operate on
incoming protocol messages and can either drop them or alter
any of the protocol fields.

Each protocol instance selects the best route for given
IP prefixes by ordering all available routes in a protocol-
specific fashion (e.g. BGP prefers the route with the highest

administrative distance). Each router will install a single route
in its data plane which is selected to be the best route offered
by each locally running protocol instance. After selecting a
best route, each protocol instance exports messages to all
its peer protocol instances; these can be pre-processed by
an export filter. Finally, Minesweeper encodes access control
lists in the data plane as constraints on routing entries used
to decide on the outgoing interface used to route a symbolic
packet.

Additional variables can be wused to instrument
Minesweeper’s model so that a desired property can be
verified. For example, reachability can be verified by
instrumenting the model with a reach variable at each router
indicating whether the router can reach a specific subnet.
Specification Language. Minesweeper models the control and
data plane as SMT constraints written in first-order logic.
Type of Check. Minesweeper can verify properties for all data
planes (i.e. using symbolic packets) and any routing protocols
that can be modelled as discussed above. Minesweeper can
calculate all stable sets given a specific (distributed) routing
configuration and searches for just one of the stable sets (i.e.
control plane computation) that violates a given property. It
will not find all violations (in different stable sets - control
plane computations) at once; instead one can pinpoint a
bug, fix it and subsequently search for the next one. In the
absence of bugs, Minesweeper can verify the correctness of a
configuration for all control and data planes
Checking Phase. Minesweeper is a static analysis tool that
uses Batfish [88] to parse vendor-specific router configurations
which then translates into the symbolic model discussed above.
Property verification is done by the Z3 SMTP solver.

Layer. Minesweeper models both the data plane (using sym-
bolic packets and data plane filters) and the control plane
(using protocols instances that exchange routing messages
among each other and incoming filters on these messages). As
a result, it can check the correctness of routing configurations
for all modelled control planes and all data planes.
Methodology. Given the employed network model,
Minesweeper relies on an SMT solver to verify the
correctness of given properties or identify a bug for the given
system of SMT constraints (including the property to be
checked).

Expressivity. Minesweeper allows for model instrumentation
using user-defined variables that can be integrated into the
SMT constraints that are passed to the solver. In that sense,
Minesweeper is as expressive as first-order logic allows it
to be. Control plane modelling is extensive and the authors
provide a list of protocols/routing functionality that can be
modelled by Minesweeper out of the box.

Experimentation. The authors evaluated Minesweeper in rela-
tively small real-world topologies with real configurations and
synthetic, but functional, topologies of various sizes. Example
properties they checked include reachability to management
interfaces, local equivalence of routers and absence of black
holes. Minesweeper revealed tens of property violations for
all the aforementioned properties. Minesweeper verified all

26

properties for the small real-world networks (2 to 25 routers
each) in under a second (in the majority of cases). As expected,
verification is slower as the size of the network (and the
respective lines of routing configuration) increases. Scalability
analysis showed that for synthetic network configurations,
Minesweeper’s verification performance is in the order of
minutes or tens of minutes. Finally, the authors assessed the
performance gains from the proposed optimisations; replacing
bit vectors for advertised prefixes speeds up verification by
over 200x on average. The proposed slicing optimizations
result in performance gains of 2.3x on average.
Deployability. Minesweeper is deployable as long as the
deployed routing protocols are part of the modelled control
plane functionality (e.g. BGP, OSPF, static routes etc.). It
parses vendor-specific routing configurations (using Batfish
[88]), which are then transformed to the defined model. The
authors applied Minesweeper on configurations of real-world
networks that have been operational for years. The authors
propose a number of optimisations that make Minesweeper
deployment realistic. Prefix elimination is based on the fact
that prefixes in routing messages do not need to be represented
explicitly because the destination IP address of the symbolic
packet and the prefix length are known, therefore there is
a unique valid corresponding prefix for that destination IP.
With this optimisation there is no need to represent prefixes
with bit vectors which are very expensive for SMT solvers.
Loop detection for routing messages of policy-based routing
protocols is also expensive if state is to be maintained in
routers, therefore the authors propose to use protocol-specific
information (e.g. for BGP) to ensure that loops will never
occur. Finally, the authors propose a number of ‘network
slicing’ optimisations, that remove bits from the encoding that
are unnecessary for the final solution; e.g. if BGP routers never
set a local preference, then the local preference attribute will
never affect the decision and is removed.

Limitations. Minesweeper can only reason about the sta-
ble sets to which the control plane will converge, therefore
it cannot verify properties during the transition of routing
protocols’ state; a simulation tool would be needed for that
purpose but the authors note that this compromise significantly
improves performance. Second, Minesweeper only considers
elements of the control plane that influence the forwarding
decisions pertaining to a single symbolic packet at a time
(through the defined valid field that checks if a message is
advertised from a neighbor and not filtered and the control
plane destination prefix applies to the destination IP of this
symbolic packet). It is therefore expensive to model features
that introduce dependencies among destinations. Minesweeper
is a static analysis tool therefore if the routing configuration
changes, properties must be verified from scratch. Finally,
Minesweeper, cannot reveal all bugs at once; a bug first needs
to be fixed in order to continue with the verification process.

VI. CONCLUSION AND FUTURE DIRECTIONS

In this review, the evidence for the two sides of the SDN
verification coin has been exhibited; that it is reasonably

practicable to enhance network verification taking advantage
of the goodies included in the SDN package, and that the SDN
architecture introduces new vulnerabilities that are not present
in traditional networks.

In summary, the fate of future networks is still unknown.
Programmatic networks are still maturing and largely untested.
Early implementations of every protocol have been buggy —
SDN is no different. Although the work on advancements to
network verification is more mature than ever, so much work
has been purely theoretical, or at best, tested on unrealistically
small and simple problems — let alone battle tested or applied
on a model of the system and not the actual system. Many
research in this area attempt to verify each SDN component
separately or focus on domain specific heuristics, but do not
provide a unified approach to automatically validate the logical
consistency between all the compartments of the ecosystem. A
cross-layer modelling and verification system that can analyse
the configurations and policies across both application and
network components as a single unit is still to come.

REFERENCES

[1] N. McKeown, “Mind the Gap,” in SIGCOMM Keynote, 2014.

[2] K. Greene, “TR10: Software-defined networking,” MIT Technology
Review, 2009. [Online]. Available: http://www2.technologyreview.
com/article/412194/tr10-software-defined-networking/

[3] ONEF, “SDN Architecture Overview,” Technical Report, 2013. [Online].
Available: https://tinyurl.com/kl5gd5Sm

, “Software-defined networking: The new norm for networks,”
White Paper, 2012.

[5] “ITU-T Y.3300:Framework of software-defined networking.”

[6] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “OpenFlow: Enabling Innovation
in Campus Networks,” SIGCOMM Comput. Commun. Rev., 2008.

[7]1 Open Networking Foundation, “SDN Architecture,” Onf, 2014.
[Online]. Available: https://www.opennetworking.org/wp-content/
uploads/2013/02/TR_SDN_ARCH_1.0_06062014.pdf

[8] P. B. N. Bosshart, D. I. Daly et al., “P4: Programming Protocol-
Independent Packet Processors,” ACM SIGCOMM Computer Commu-
nication Review, 2014.

[91 M. Al-Fares, S. Radhakrishnan, and B. Raghavan, “Hedera: Dynamic
Flow Scheduling for Data Center Networks.” in NSDI, 2010.

[10] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma,
and S. Banerjee, “DevoFlow: scaling flow management for high-
performance networks,” SIGCOMM, 2011.

[11] A.R. Curtis, W. Kim, and P. Yalagandula, “Mahout: Low-overhead dat-
acenter traffic management using end-host-based elephant detection,”
in Proceedings - IEEE INFOCOM, 2011.

[12] T. Benson, A. Anand, A. Akella, and M. Zhang, “MicroTE: fine grained
traffic engineering for data centers,” in ACM CoNEXT, 2011.

[13] R. Trestian, “MiceTrap: Scalable traffic engineering of datacenter mice
flows using OpenFlow,” 2013 IFIP/IEEE International Symposium on
Integrated Network Management, 2013.

[14] S.Jouet, C. Perkins, and D. Pezaros, “OTCP: SDN-managed congestion
control for data center networks,” in Proceedings of the NOMS 2016
- 2016 IEEE/IFIP Network Operations and Management Symposium,
2016.

[15] R. Van Der Pol, S. Boele, F. Dijkstra, A. Barczyk, G. Van Malenstein,
J. H. Chen, and J. Mambretti, “Multipathing with MPTCP and open
flow,” in Proceedings - 2012 SC Companion: High Performance
Computing, Networking Storage and Analysis, SCC 2012, 2012.

[16] N. Handigol, S. Seetharaman, M. Flajslik, N. McKeown, and R. Johari,
“Plug-n-Serve: Load-balancing web traffic using OpenFlow,” SIG-
COMM, 2009.

[17] R. Wang, D. Butnariu, and J. Rexford, “OpenFlow-Based Server Load
Balancing Gone Wild Into the Wild : Core Ideas,” Hot-ICE’11 Pro-
ceedings of the 11th USENIX conference on Hot topics in management
of internet, cloud, and enterprise networks and servicesworks and
services, p. 12, 2011.

[4]

27

[18] A. F. Trajano and M. P. Fernandez, “Two-phase load balancing of In-
Memory Key-Value Storages through NFV and SDN,” in Proceedings
- IEEE Symposium on Computers and Communications, 2016.

[19] F. Carpio, A. Engelmann, and A. Jukan, “DiffFlow: Differentiating
short and long flows for load balancing in data center networks,” in
2016 IEEE Global Communications Conference, GLOBECOM 2016 -
Proceedings, 2016.

[20] M. Alizadeh, N. Yadav et al., “CONGA,” in Proceedings of the 2014
ACM conference on SIGCOMM - SIGCOMM ’14, 2014.

[21] N. Katta, M. Hira, C. Kim, A. Sivaraman, and J. Rexford, “HULA:
Scalable Load Balancing Using Programmable Data Planes,” in ACM
Symposium on SDN Research (SOSR), 2016.

[22] Y. Li and D. Pan, “OpenFlow based Load Balancing for Fat-Tree
Networks with Multipath Support,” in Proc. 12th IEEE International
Conference on Communications (ICC’13), 2013.

[23] H. Hu, G.-J. Ahn, W. Han, and Z. Zhao, “Towards a Reliable SDN
Firewall,” in ONS, 2014.

[24] H. Hu, W. Han, G.-J. Ahn, and Z. Zhao, “FlowGuard: Building Robust
Firewalls for Software-Defined Networks,” HotSDN, 2014.

[25] N. P. Katta, J. Rexford, and D. Walker, “Logic Programming for
Software-Defined Networks,” Workshop on Cross-Model Design and
Validation (XLDI), ACM, 2012.

[26] J. Wang, Y. Wang, H. Hu, Q. Sun, H. Shi, and L. Zeng, “Towards
a security-enhanced firewall application for openflow networks,” in
Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics), 2013.

[27] G. Yao, J. Bi, and P. Xiao, “Source address validation solution with
OpenFlow/NOX architecture,” in Proceedings - International Confer-
ence on Network Protocols, ICNP, 2011.

[28] N. Feamster, J. Rexford, S. Shenker, R. Clark, R. Hutchins, D. Levin,
and J. Bailey, “SDX: A software-defined Internet exchange,” Open
Networking Summit, 2013.

[29] L. Liu, T. Tsuritani, I. Morita, H. Guo, and J. Wu, “Experimental
validation and performance evaluation of OpenFlow-based wavelength
path control in transparent optical networks,” Optics Express ’11.

[30] L. Liu, D. Zhang et al., “Field trial of an openflow-based unified con-
trol plane for multilayer multigranularity optical switching networks,”
Journal of Lightwave Technology, 2013.

[31] S. Azodolmolky, R. Nejabati, E. Escalona, R. Jayakumar, N. Efstathiou,
and D. Simeonidou, “Integrated OpenFlow—GMPLS control plane: an
overlay model for software defined packet over optical networks,”
Optics Express, 2011.

[32] M. Channegowda, R. Nejabati et al., “Experimental demonstration
of an OpenFlow based software-defined optical network employing
packet, fixed and flexible DWDM grid technologies on an international
multi-domain testbed,” Optics Express, 2013.

[33] A. Sadasivarao, S. Syed, P. Pan, C. Liou, A. Lake, C. Guok, and
I. Monga, “Open Transport Switch: A Software Defined Networking
Architecture for Transport Networks,” in Proceedings of the second
ACM SIGCOMM workshop on Hot topics in software defined network-
ing - HotSDN 13, 2013.

[34] Y. Yiakoumis, K.-K. Yap, S. Katti, G. Parulkar, and N. McKeown,
“Slicing home networks,” HomeNets ’11.

[35] R. Mortier, T. Rodden, T. Lodge, D. McAuley, C. Rotsos, A. W.
Moore, A. Koliousis, and J. Sventek, “Control and understanding:
Owning your home network,” in 2012 4th International Conference
on Communication Systems and Networks, COMSNETS 2012, 2012.

[36] R. B. Abdallah, T. Risset et al., “SoftRAN: Software defined radio
access network,” IEEE Communications Magazine, 2014.

[37] T. Chen, H. Zhang, X. Chen, and O. Tirkkonen, “SoftMobile: Control
evolution for future heterogeneous mobile networks,” IEEE Wireless
Communications, 2014.

[38] X. Jin, L. E. Li, L. Vanbever, and J. Rexford, “SoftCell: Scalable
and Flexible Cellular Core Network Architecture,” in the ninth ACM
conference on Emerging networking experiments and technologies,
2013.

[39] L.E.Li, Z. M. Mao, and J. Rexford, “Toward software-defined cellular
networks,” in Proceedings - European Workshop on Software Defined
Networks, EWSDN 2012, 2012.

[40] J. Liu, S. Zhang, N. Kato, H. Ujikawa, and K. Suzuki, “Device-to-
device communications for enhancing quality of experience in software
defined multi-tier LTE-A networks,” IEEE Network, 2015.

[41]

(42]

[43]

[44]

[45]

(46]

[47]

(48]

[49]

[50]

[51]

[52]

(53]
[54]

[55]

[56]

[57]

(58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

I. F. Akyildiz, P. Wang, and S. C. Lin, “SoftAir: A software defined
networking architecture for 5G wireless systems,” Computer Networks,
2015.

H. Zhang, S. Vrzic, G. Senarath, N. D. Dao, H. Farmanbar, J. Rao,
C. Peng, and H. Zhuang, “5G wireless network: MyNET and SONAC,”
IEEE Network, 2015.

V. Yazici, U. C. Kozat, and M. O. Sunay, “A new control plane for 5G
network architecture with a case study on unified handoff, mobility,
and routing management,” IEEE Communications Magazine, 2014.
M. Bansal, J. Mehlman, S. Katti, and P. Levis, “OpenRadio: A
Programmable Wireless Dataplane,” in Proceeding HotSDN ’12 Pro-
ceedings of the first workshop on Hot topics in software defined
networks, 2012.

M. Yang, Y. Li, D. Jin, L. Su, S. Ma, and L. Zeng, “OpenRAN: A
Software-defined Ran Architecture via Virtualization,” in Proceedings
of the ACM SIGCOMM 2013 conference on SIGCOMM - SIGCOMM
’13, 2013.

C. J. Bernardos, A. De La Oliva, P. Serrano, A. Banchs, L. M.
Contreras, H. Jin, and J. C. Zdfiga, “An architecture for software
defined wireless networking,” IEEE Wireless Communications, 2014.
H. Ali-Ahmad, C. Cicconetti, A. De La Oliva, V. Mancuso, M. R.
Sama, P. Seite, and S. Shanmugalingam, “An SDN-based network
architecture for extremely dense wireless networks,” in SDN4FNS 2013
- 2013 Workshop on Software Defined Networks for Future Networks
and Services, 2013.

K.-K. Yap, R. Sherwood, M. Kobayashi, T.-Y. Huang, M. Chan,
N. Handigol, N. McKeown, and G. Parulkar, “Blueprint for introducing
innovation into wireless mobile networks,” in Proceedings of the second
ACM SIGCOMM workshop on Virtualized infrastructure systems and
architectures - VISA 10, 2010.

T. Luo, H. P. Tan, and T. Q. S. Quek, “Sensor openflow: Enabling
software-defined wireless sensor networks,” IEEE Communications
Letters, 2012.

P. Dely, A. Kassler, and N. Bayer, “OpenFlow for wireless mesh
networks,” in Proceedings - International Conference on Computer
Communications and Networks, ICCCN, 2011.

I. Ku, Y. Lu, M. Gerla, R. L. Gomes, F. Ongaro, and E. Cerqueira,
“Towards software-defined VANET: Architecture and services,” in 2014
13th Annual Mediterranean Ad Hoc Networking Workshop, MED-
HOC-NET 2014, 2014.

M. A. Salahuddin, A. Al-Fuqaha, and M. Guizani, “Software-defined
networking for rsu clouds in support of the internet of vehicles,” IEEE
Internet of Things Journal, 2015.

S. Jain, M. Zhu et al., “B4: Experience with a Globally-Deployed
Software Defined WAN,” in SIGCOMM, 2013.

P. Patel, D. Bansal et al, “Ananta: Cloud Scale Load Balancing,”
SIGCOMM, 2013.

“Nicira- It’s time to virtualize the net-
work.” [Online]. Available: http://www.netfos.com.tw/PDF/Nicira/
ItisTimeTo VirtualizetheNetwork WhitePaper.pdf

S. Natarajan, A. Ramaiah, and M. Mathen, “A Software defined
Cloud-Gateway automation system using OpenFlow,” in Proceedings
of the 2013 IEEE 2nd International Conference on Cloud Networking,
CloudNet 2013, 2013, pp. 219-226.

“Open Networking Foundation.” [Online]. Available: https://www.
opennetworking.org/

“Open Daylight.” [Online]. Available: http://www.opendaylight.org/
Open Networking Foundation, “OpenFlow Switch Specification 1.5.1,”
Tech. Rep., 2015. [Online]. Available: https://www.opennetworking.
org/images//openflow-switch-v1.5.1.pdf

P. Kazemian, G. Varghese, and N. McKeown, “Header space analysis:
Static checking for networks,” in NSDI, 2012.

A. Khurshid, X. Zou, W. Zhou, M. Caesar, and P. B. Godfrey,
“VeriFlow: Verifying Network-wide Invariants in Real Time,” in NSDI,
2013.

H. Mai, A. Khurshid, R. Agarwal, M. Caesar, P. B. Godfrey, and S. T.
King, “Debugging the data plane with anteater,” in SIGCOMM, 2011.
P. Kazemian, M. Chang, H. Zeng, G. Varghese, N. McKeown, and
S. Whyte, “Real Time Network Policy Checking Using Header Space
Analysis,” in NSDI, 2013.

R. Skowyra, A. Lapets, A. Bestavros, and A. Kfoury, “A verification
platform for SDN-enabled applications,” in IC2E '14.

N. Handigol, B. Heller, V. Jeyakumar, D. Maziéres, and N. McKeown,
“Where is the debugger for my software-defined network?” in Proceed-

[66]

[67]

[68]

[69]

[70]

[71]

[72])

[73]

[74]

[75]

[76]

[771

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

28

ings of the first workshop on Hot topics in software defined networks
- HotSDN ’12, 2012, p. 55.

C. Killian, C. Killian, J. W. Anderson, J. W. Anderson, R. Jhala,
R. Jhala, A. Vahdat, and A. Vahdat, “Life, death, and the critical
transition: Finding liveness bugs in systems code,” in NSDI, 2007.

E. Al-Shaer and S. Al-Haj, “FlowChecker: Configuration analysis
and verification of federated OpenFlow infrastructures,” in SafeConfig,
2010.

H. Zeng, P. Kazemian, G. Varghese, and N. McKeown, “Automatic test
packet generation,” IEEE/ACM Transactions on Networking, vol. 22,
no. 2, pp. 554-566, 2014.

C. Killian, J. W. Anderson, R. Braud, R. Jhala, and A. Vahdat,
“Building distributed systems using Mace,” in IEEE P2P’09 - 9th
International Conference on Peer-to-Peer Computing, 2009, pp. 91—
92.

C. E. Killian, J. W. Anderson, R. Braud, R. Jhala, and A. M. Vahdat,
“Mace,” ACM SIGPLAN Notices, vol. 42, no. 6, p. 179, 2007.

M. Canini, D. Venzano, P. Peresini, D. Kosti¢, and J. Rexford, “A
NICE Way to Test Openflow Applications,” in NSDI, 2012.

R. Majumdar, S. Deep Tetali, and Z. Wang, “Kuai: A model checker
for software-defined networks,” in FMCAD, 2014.

T. Ball, N. Bjgrner, A. Gember, S. Itzhaky, A. Karbyshev, M. Sagiv,
M. Schapira, and A. Valadarsky, “VeriCon,” in Proceedings of the 35th
ACM SIGPLAN Conference on Programming Language Design and
Implementation - PLDI "14, 2013, pp. 282-293.

, “VeriCon: Towards Verifying Controller Programs in Software-
defined Networks,” in PLDI, 2014.

A. El-Hassany, J. Miserez, P. Bielik, L. Vanbever, and M. Vechev, “SD-
NRacer: concurrency analysis for software-defined networks,” ACM
SIGPLAN Notices, vol. 51, no. 6, pp. 402415, 2016.

J. Miserez, P. Bielik, A. El-Hassany, L. Vanbever, and M. Vechev,
“SDNRacer: Detecting Concurrency Violations in Software-defined
Networks,” Sosr, pp. 22:1-22:7, 2015.

T. Nelson, A. Guha, D. J. Dougherty, K. Fisler, and S. Krishnamurthi,
“A balance of power: Expressive, Analyzable Controller Programming
Tim,” Proceedings of the second ACM SIGCOMM workshop on Hot
topics in software defined networking - HotSDN 13, 2013.

N. Foster, R. Harrison, M. J. Freedman, C. Monsanto, J. Rexford,
A. Story, and D. Walker, “Frenetic: A Network Programming Lan-
guage,” in Proceeding of the 16th ACM SIGPLAN international con-
ference on Functional programming - ICFP 11, vol. 46, no. 9, 2011,
p. 279.

“The Frenetic Research Project”” [Online]. Available: http://www.
frenetic-lang.org

C. Monsanto, J. Reich, N. Foster, J. Rexford, and D. Walker, “Com-
posing software-defined networks,” Proceedings of the 10th USENIX
conference on Networked Systems Design and Implementation, pp. 1—
14, 2013.

H. Kim, J. Reich, A. Gupta, M. Shahbaz, N. Feamster, and R. Clark,
“Kinetic: Verifiable Dynamic Network Control,” in [2th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
15), ser. NSDI’15. Berkeley, CA, USA: USENIX Association, 2015,
pp. 59-72.

C. J. Anderson, N. Foster, A. Guha, J. B. Jeannin, D. Kozen,
C. Schlesinger, and D. Walker, “NetkAT: Semantic foundations for
networks,” in POPL, 2014.

A. Guha, M. Reitblatt, and N. Foster, “Machine-verified network
controllers,” ACM SIGPLAN Notices, vol. 48, no. 6, p. 483, 2013.

C. Monsanto, N. Foster, R. Harrison, and D. Walker, “A compiler and
run-time system for network programming languages,” in Proceedings
of the 39th annual ACM SIGPLAN-SIGACT symposium on Principles
of programming languages - POPL ’12, 2012, p. 217.

A. Voellmy, H. Kim, and N. Feamster, “Procera: a language for high-
level reactive network control,” in Proceedings of the first workshop
on Hot topics in software defined networks, 2012, pp. 43-48.

A. Horn, A. Kheradmand, and M. R. Prasad, “Delta-net: Real-time
Network Verification Using Atoms,” in NSDI, 2017.

H. Yang and S. S. Lam, “Real-time verification of network properties
using atomic predicates,” IEEE/ACM Transactions on Networking,
2016.

A. Fogel, S. Fung et al., “A General Approach to Network Configura-
tion Analysis,” NSDI, 2015.

[89]

[90]
[91]
[92]
(93]
[94]

[95]

[96]

[97]

(98]

[99]

[100]

[101]
[102]

[103]

[104]

[105]

[106]

[107]

[108]
[109]

[110]
[111]
[112]
[113]

[114]

[115]

[116]
[117]

[118]

[119]

G. D. Plotkin, N. Bjgrner, N. P. Lopes, A. Rybalchenko, and G. Vargh-
ese, “Scaling network verification using symmetry and surgery,” in
POPL, 2016.

R. Beckett, A. Gupta, R. Mahajan, and D. Walker, “A General
Approach to Network Configuration Verification,” in sigcomm, 2017.

R. Koymans, “Specifying real-time properties with metric temporal
logic,” Real-Time Systems, vol. 2, no. 4, pp. 255-299, 1990.

R. Alur and T. A. Henzinger, “A really temporal logic,” Journal of the
ACM, vol. 41, no. 1, pp. 181-203, 1994.

R. Alur, T. Feder, and T. a. Henzinger, “The benefits of relaxing
punctuality,” Journal of the ACM, vol. 43, no. 1, pp. 116-146, 1996.

A. Nayak and A. Reimers, “Resonance: dynamic access control for
enterprise networks,” Wren, pp. 11-18, 2009.

Z. A. Qazi, C. C. Tu, L. Chiang, R. Miao, V. Sekar, and M. Yu,
“SIMPLE-fying middlebox policy enforcement using SDN,” in SIG-
COMM, 2013.

B. Bingham, J. Bingham, F. M. De Paula, J. Erickson, G. Singh,
and M. Reitblatt, “Industrial strength distributed explicit state model
checking,” in PDMC, 2010.

D. L. Dill, “The Mur¢ verification system,” in CAV, 1996.

C. A. R. Hoare, “An axiomatic basis for computer programming,”
Communications of the ACM, vol. 12, no. 10, pp. 576-580, 1969.

A. Gember, A. Krishnamurthy, S. S. John, R. Grandl, X. Gao,
A. Anand, T. Benson, V. Sekar, and A. Akella, “Stratos: A
Network-Aware Orchestration Layer for Middleboxes in the Cloud,”
2014. [Online]. Available: arxiv:1305.0209[cs.NI]

L. De Moura and N. Bjgrner, “Z3: An efficient SMT Solver,” in
Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics), 2008.

J. C. Mitchell, T. L. Hinrichs, N. S. Gude, M. Casado, and S. Shenker,
“Practical declarative network management,” 2009.

G. J. Holzmann, “The model checker SPIN,” IEEE Transactions on
Software Engineering, 1997.

W. Visser, K. Havelund, G. Brat, S. Park, and F. Lerda, “Model
checking programs,” Automated Software Engineering, vol. 10, no. 2,
pp. 203-232, 2003.

C. Cadar and K. Sen, “Symbolic Execution for Software Testing: Three
Decades Later,” Communications of the ACM, Magazine, 2013.

N. Spring, R. Mahajan, D. Wetherall, and T. Anderson, “Measuring ISP
Topologies With Rocketfuel,” IEEE/ACM Transactions on Networking,
2004.

B. Lantz, B. Heller, and N. McKeown, “A network in a laptop: rapid
prototyping for software-defined networks,” in Proceedings of the Ninth
ACM SIGCOMM Workshop on Hot Topics in Networks - Hotnets 10,
2010, pp. 1-6.

N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown,
and S. Shenker, “NOX: Towards an operating system for networks,”
SIGCOMM Computer Communication Review, vol. 38, no. 3, p. 105,
2008.

D. Kozen, “Kleene Algebra with Tests,” TOPLAS, 1997.

N. Foster, D. Kozen, M. Milano, A. Silva, and L. Thompson, “A
coalgebraic decision procedure for NetKAT,” in POPL, 2015.

R. Beckett, M. Greenberg, and D. Walker, “Temporal NetKAT,” in
PLDI, 2016.

S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan,
“The internet topology zoo,” IEEE, 2011.

J. McClurg, H. Hojjat, N. Foster, and P. Cérny4, “Event-driven network
programming,” in PLDI, 2016.

N. Foster, D. Kozen, K. Mamouras, M. Reitblatt, and A. Silva,
“Probabilistic NetKAT,” in ESOP, 2016.

S. Zhang and S. Malik, “SAT based verification of network data
planes,” in Automated Technology for Verification and Analysis.
Springer, 2013.

B. M. Waxman, “Routing of Multipoint Connections,” IEEE Journal
on Selected Areas in Communications, 1988.

N. Eén and N. Sorensson, “An Extensible SAT-solver,” 2010.

M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and D. Walker,
“Abstractions for network update,” in SIGCOMM, 2012.

C. E. Leiserson, “Fat-trees: universal networks for hardware-efficient
supercomputing,” in /IEEE Transactions on Computers, 1985.

D. J. Watts and S. H. Strogatz, “Collective dynamics of ’small-world’
networks,” in The Structure and Dynamics of Networks, 2011.

[120]

[121]

[122]

[123]

29

A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore,
M. Roveri, R. Sebastiani, and A. Tacchella, “NuSMV 2: An Open-
Source Tool for Symbolic Model Checking,” 2002.

N. P. Katta, J. Rexford, and D. Walker, “Incremental consistent up-
dates,” in HotSDN 2013 - Proceedings of the 2013 ACM SIGCOMM
Workshop on Hot Topics in Software Defined Networking, 2013.
GUROBI Optimization Inc, “Gurobi Optimizer reference manual,”
Tech. Rep., 2018. [Online]. Available: http://www.gurobi.com

T. G. Griffin, F. B. Shepherd, and G. Wilfong, “The stable paths prob-
lem and interdomain routing,” IEEE/ACM Transactions on Networking,
2002.

30

Chapter 3

Towards Model Checking Real-World
Software-Defined Networks

This chapter is an extended version of the author’s paper "Towards Model Checking Real-
World Software-Defined Networks" in Proceedings of the 32nd International Conference on
Computer-Aided Verification (CAV), 2020, and has been reproduced here with the permis-
sion of the copyright holder. The chapter constitutes the core piece of the thesis introducing
a coherent yet optimised and highly expressive computational SDN model (code-named
MoCS). MoCS is based on an interleaving semantics where concurrency of actions is re-
duced to the non-deterministic choice among their possible sequentialisations, allowing for
capturing complex (dependency) patterns among events. To keep the computational cost
manageable, MoCS explores systematically possibilities for optimisation by identifying in-
dependent and invisible for the property actions (also called safe actions) in a context-aware
manner. MoCS’s performance is measured using three examples of network controllers: a
stateless and a stateful firewall, and a MAC learning application. As we scale up the net-
work, we investigate the behaviour of MoCS in terms of verification throughput, number
of visited states and required memory. We show that (1) describing an SDN in a more
complicated semantics, while (2) devising the right optimisations, subtle real-world bugs
can be discovered using model checking without sacrificing performance.

This chapter also sets the baseline for later phases of modelling (Chapter 4).

31

Towards Model Checking Real-World
Software-Defined Networks

(version with appendix)

Vasileios Klimis, George Parisis, and Bernhard Reus

University of Sussex, UK
v.klimis, g.parisis, bernhard}@sussex.ac.uk
g-P

Abstract. In software-defined networks (SDN), a controller program is
in charge of deploying diverse network functionality across a large number
of switches, but this comes at a great risk: deploying buggy controller code
could result in network and service disruption and security loopholes. The
automatic detection of bugs or, even better, verification of their absence
is thus most desirable, yet the size of the network and the complexity
of the controller makes this a challenging undertaking. In this paper, we
propose MOCS, a highly expressive, optimised SDN model that allows
capturing subtle real-world bugs, in a reasonable amount of time. This is
achieved by (1) analysing the model for possible partial order reductions,
(2) statically pre-computing packet equivalence classes and (3) indexing
packets and rules that exist in the model. We demonstrate its superiority
compared to the state of the art in terms of expressivity, by providing
examples of realistic bugs that a prototype implementation of MOCS
in UPPAAL caught, and performance/scalability, by running examples on
various sizes of network topologies, highlighting the importance of our
abstractions and optimisations.

Note: This is an extended version of our paper (with the same name),
which appears in CAV 2020.

1 Introduction

Software-Defined Networking (SDN) [16] has brought about a paradigm shift
in designing and operating computer networks. A logically centralised controller
implements the control logic and ‘programs’ the data plane, which is defined by
flow tables installed in network switches. SDN enables the rapid development
of advanced and diverse network functionality; e.g. in designing next-generation
inter-data centre traffic engineering [10], load balancing [19], firewalls [24], and
Internet exchange points (IXPs) [15]. SDN has gained noticeable ground in the
industry, with major vendors integrating OpenFlow [36], the de-facto SDN stan-
dard maintained by the Open Networking Forum, in their products. Operators
deploy it at scale [27,37]. SDN presents a unique opportunity for innovation and
rapid development of complex network services by enabling all players, not just
vendors, to develop and deploy control and data plane functionality in networks.
This comes at a great risk; deploying buggy code at the controller could result

32

V. Klimis, G. Parisis, and B. Reus

in problematic flow entries at the data plane and, potentially, service disrup-
tion [13,18,48,46] and security loopholes [26,7]. Understanding and fixing such
bugs is far from trivial, given the distributed and concurrent nature of computer
networks and the complexity of the control plane [43].

With the advent of SDN, a large body of research on verifying network prop-
erties has emerged [32]. Static network analysis approaches [33,30,50,2,44,11] can
only verify network properties on a given fixed network configuration but this
may be changing very quickly (e.g. as in [1]). Another key limitation is the fact
that they cannot reason about the controller program, which, itself, is responsi-
ble for the changes in the network configuration. Dynamic approaches, such as
[31,39,49,23,29,47], are able to reason about network properties as changes hap-
pen (i.e. as flow entries in switches’ flow tables are being added and deleted),
but they cannot reason about the controller program either. As a result, when a
property violation is detected, there is no straightforward way to fix the bug in
the controller code, as these systems are oblivious of the running code. Identifying
bugs in large and complex deployments can be extremely challenging.

Formal verification methods that include the controller code in the model of
the network can solve this important problem. Symbolic execution methods, such
as [45,8,11,28,14,5,12], evaluate programs using symbolic variables accumulating
path-conditions along the way that then can be solved logically. However, they
suffer from the path explosion problem caused by loops and function calls which
means verification does not scale to larger controller programs (bug finding still
works but is limited). Model checking SDNs is a promising area even though only
few studies have been undertaken [28,3,8,42,34,35]. Networks and controller can
be naturally modelled as transition systems. State explosion is always a problem
but can be mitigated by using abstraction and optimisation techniques (i.e. par-
tial order reductions). At the same time, modern model checkers [21,6,9,25,20]
are very efficient.

NetSMC [28] uses a bespoke symbolic model checking algorithm for checking
properties given a subset of computation tree logic that allows quantification
only over all paths. As a result, this approach scales relatively well, but the re-
quirement that only one packet can travel through the network at any time is
very restrictive and ignores race conditions. NICE [8] employs model checking
but only looks at a limited amount of input packets that are extracted through
symbolically executing the controller code. As a result, it is a bug-finding tool
only. The authors in [42] propose a model checking approach that can deal with
dynamic controller updates and an arbitrary number of packets but require man-
ually inserted non-interference lemmas that constrain the set of packets that
can appear in the network. This significantly limits its applicability in realistic
network deployments. Kuai [34] overcomes this limitation by introducing model-
specific partial order reductions (PORs) that result in pruning the state space
by avoiding redundant explorations. However, it has limitations explained at the
end of this section.

In this paper, we take a step further towards the full realisation of model
checking real-world SDNs by introducing MOCS (MOdel Checking for Software

33

Towards Model Checking Real-World Software-Defined Networks

defined networks)!, a highly expressive, optimised SDN model which we im-
plemented in UPPAAL? [6]. MOCS, compared to the state of the art in model
checking SDNs, can model network behaviour more realistically and verify larger
deployments using fewer resources. The main contributions of this paper are:
Model Generality. The proposed network model is closer to the OpenFlow
standard than previous models (e.g. [34]) to reflect commonly exhibited behaviour
between the controller and network switches. More specifically, it allows for race
conditions between control messages and includes a significant number of Open-
Flow interactions, including barrier response messages. In our experimentation
section, we present families of elusive bugs that can be efficiently captured by
MOCS.

Model Checking Optimisations. To tackle the state explosion problem we
propose context-dependent partial order reductions by considering the concrete
control program and specification in question. We establish the soundness of the
proposed optimisations. Moreover, we propose state representation optimisations,
namely packet and rule indexing, identification of packet equivalence classes and
bit packing, to improve performance. We evaluate the benefits from all proposed
optimisations in §4.

Our model has been inspired by Kuai [34]. According to the contributions
above, however, we consider MOCS to be a considerable improvement. We model
more OpenFlow messages and interactions, enabling us to check for bugs that
[34] cannot even express (see discussion in §4.2). Our context-dependent PORs
systematically explore possibilities for optimisation. Our optimisation techniques
still allow MOCS to run at least as efficiently as Kuai, often with even better
performance.

2 Software-Defined Network Model

A key objective of our work is to enable the verification of network-wide proper-
ties in real-world SDNs. In order to fulfil this ambition, we present an extended
network model to capture complex interactions between the SDN controller and
the network. Below we describe the adopted network model, its state and tran-
sitions.

2.1 Formal Model Definition

The formal definition of the proposed SDN model is by means of an action-
deterministic transition system. We parameterise the model by the underlying
network topology A and the controller program CP in use, as explained further
below (§2.2).

1 A release of MOCS is publicly available at https://tinyurl.com/y95qtv5k
2 UpPAAL has been chosen as future plans include extending the model to timed actions
like e.g. timeouts. Note that the model can be implemented in any model checker.

34

V. Klimis, G. Parisis, and B. Reus

Definition 1. An SDN model is a 6-tuple My opy = (S, 50, A, —, AP, L), where
S is the set of all states the SDN may enter, so the initial state, A the set of
actions which encode the events the network may engage in, —-< S x A x S
the transition relation describing which execution steps the system undergoes as
it perform actions, AP a set of atomic propositions describing relevant state
properties, and L : S — 24 is a labelling function, which relates to any state s €
S a set L(s) € 247 of those atomic propositions that are true for s. Such an SDN
model is composed of several smaller systems, which model network components
(hosts, switches and the controller) that communicate via queues and, combined,
give rise to the definition of —. The states of an SDN transition system are
3-tuples (m,0,7), where m represents the state of each host, § the state of each
switch, and ~y the controller state. The components are explained in §2.2 and the
transitions — in §2.3.

Figure 1 illustrates a high-level view of OpenFlow interactions (left side),
modelled actions and queues (right side).

A SDN
Controller o)

s, ::)1 ,S'VEGS

o-8—8-0

OpenFlow interactions

s Packet forwarding ({\e&& Trq] "D.)
&
%":{\e&b S S,
& B g %
Qo 2
S°

faée\
5 Al .

A recv-
< E rcvql- 1
M atChsy fwdey

o\] ey \(\/_)
,8&(,

S
——
Pq cen d_/

Fig.1: A high-level view of OpenFlow interactions using OpenFlow specifi-
cation terminology (left half) and the modelled actions (right half). A red
solid-line arrow depicts an action which, when fired, (1) dequeues an item from
the queue the arrow begins at, and (2) adds an item in the queue the arrow-
head points to (or multiple items if the arrow is double-headed). Deleting an
item from the target queue is denoted by a reverse arrowhead. A forked arrow
denotes multiple targeted queues.

35

Towards Model Checking Real-World Software-Defined Networks

2.2 SDN Model Components

of composite gadgets (tuples), e.g. queues of switches, or parts of the state. We
use obvious names for the projections functions like s.5.sw.pq for the packet queue
of the switch sw in state s. At times we will also use t; and t5 for the first and
second projection of tuple .

Network Topology. A location (n,pt) is a pair of a node (host or switch)
n and a port pt. We describe the network topology as a bijective function A :
(Switches U Hosts) x Ports — (Switches U Hosts) x Ports consisting of a set of
directed edges {(n, pt), (n’, pt')), where pt’ is the input port of the switch or host
n’ that is connected to port pt at host or switch n. Hosts, Switches and Ports are
the (finite) sets of all hosts, switches and ports in the network, respectively. The
topology function is used when a packet needs to be forwarded in the network.
The location of the next hop node is decided when a send, match or fwd action
(all defined further below) is fired. Every SDN model is w.r.t. a fixed topology A
that does not change.

Packets. Packets are modelled as finite bit vectors and transferred in the network
by being stored to the queues of the various network components. A packet €
Packets (the set of all packets that can appear in the network) contains bits
describing the proof-relevant header information and its location loc.

Hosts. Each host € Hosts, has a packet queue (rcvg) and a finite set of ports
which are connected to ports of other switches. A host can send a packet to
one or more switches it is connected to (send action in Figure 1) or receive a
packet from its own rcvg (recv action in Figure 1). Sending occurs repeatedly in
a non-deterministic fashion which we model implicitly via the (0, c0) abstraction
at switches’ packet queues, as discussed further below.

Switches. Each switch € Switches, has a flow table (ft), a packet queue (pq),
a control queue (cq), a forwarding queue (fg) and one or more ports, through
which it is connected to other switches and/or hosts. A flow table ft Rules is a
set of forwarding rules (with Rules being the set of all rules). Each one consists
of a tuple (priority, pattern, ports), where priority € N determines the priority of
the rule over others, pattern is a proposition over the proof-relevant header of
a packet, and ports is a subset of the switch’s ports. Switches match packets in
their packet queues against rules (i.e. their respective pattern) in their flow table
(match action in Figure 1) and forward packets to a connected device (or final
destination), accordingly. Packets that cannot be matched to any rule are sent to
the controller’s request queue (rq) (nomatch action in Figure 1); in OpenFlow,
this is done by sending a PacketIn message. The forwarding queue fq stores
packets forwarded by the controller in PacketOut messages. The control queue
stores messages sent by the controller in FlowMod and BarrierReq messages.
FlowMod messages contain instructions to add or delete rules from the flow table
(that trigger add and del actions in Figure 1). BarrierReq messages contain
barriers to synchronise the addition and removal of rules. MOCS conforms to
the OpenFlow specifications and always execute instructions in an interleaved
fashion obeying the ordering constraints imposed by barriers.

Throughout we will use the common ‘dot-notation’ (_._) to refer to components

36

V. Klimis, G. Parisis, and B. Reus

OpenFlow Controller. The controller is modelled as a finite state automaton
embedded into the overall transition system. A controller program CP, as used
to parametrise an SDN model, consists of (CS, pktIn, barrierIn). It uses its own
local state cs € CS, where CS is the finite set of control program states. Incoming
PacketIn and BarrierRes messages from the SDN model are stored in separate
queues (rg and brq, respectively) and trigger ctrl or bsync actions (see Figure 1)
which are then processed by the controller program in its current state. The
controller’s corresponding handler, pktIn for PacketIn messages and barrierIn for
BarrierRes messages, responds by potentially changing its local state and sending
messages to a subset of Switches, as follows. A number of PacketOut messages
— pairs of (pkt, ports) — can be sent to a subset of Switches. Such a message is
stored in a switch’s forward queue and instructs it to forward packet pkt along the
ports ports. The controller may also send any number of FlowMod and BarrierReq
messages to the control queue of any subset of Switches. A FlowMod message may
contain an add or delete rule modification instruction. These are executed in an
arbitrary order by switches, and barriers are used to synchronise their execution.
Barriers are sent by the controller in BarrierReq messages. OpenFlow requires
that a response message (BarrierRes) is sent to the controller by a switch when a
barrier is consumed from its control queue so that the controller can synchronise
subsequent actions. Our model includes a brepl action that models the sending
of a BarrierRes message from a switch to the controller’s barrier reply queue
(brg), and a bsync action that enables the controller program to react to barrier
responses.

Queues. All queues in the network are modelled as finite state. Packet queues pg
for switches are modelled as multisets, and we adopt (0,00) abstraction [40]; i.e.
a packet is assumed to appear either zero or an arbitrary (unbounded) amount
of times in the respective multiset. This means that once a packet has arrived
at a switch or host, (infinitely) many other packets of the same kind repeatedly
arrive at this switch or host. Switches’ forwarding queues fq are, by contrast,
modelled as sets, therefore if multiple identical packets are sent by the controller
to a switch, only one will be stored in the queue and eventually forwarded by
the switch. The controller’s request r¢ and barrier reply queues brq are modelled
as sets as well. Hosts’ receive queues rcvq are also modelled as sets. Controller
queues cq at switches are modelled as a finite sequence of sets of control messages
(representing add and remove rule instructions), interleaved by any number of
barriers. As the number of barriers that can appear at any execution is finite,
this sequence is finite.

2.3 Guarded Transitions

Here we provide a detailed breakdown of the transition relation s @), s’ for
each action a(@) € A(s), where A(s) the set of all enabled actions in s in the
proposed model (see Figure 1). Transitions are labelled by action names « with
arguments @. The transitions are only enabled in state s if s satisfies certain
conditions called guards that can refer to the arguments d@. In guards, we make
use of predicate bestmatch(sw, r, pkt) that expresses that r is the highest priority

37

Towards Model Checking Real-World Software-Defined Networks

rule in sw.ft that matches pkt’s header. Below we list all possible actions with
their respective guards.

send(h, pt, pkt). Guard: true. This transition models packets arriving in the
network in a non-deterministic fashion. When it is executed, pkt is added to
the packet queue of the network switch connected to the port pt of host h (or,
formally, to A(h, pt)1.pg, where A is the topology function described above). As
described in §3.2, only relevant representatives of packets are actually sent by
end-hosts. This transition is unguarded, therefore it is always enabled.

recv(h, pkt). Guard: pkt € h.rcvg. This transition models hosts receiving (and
removing) packets from the network and is enabled if pkt is in h’s receive queue.
match(sw, pkt, r). Guard: pkt € sw.pg A1 € sw.ft A bestmatch(sw, r, pkt). This
transition models matching and forwarding packet pkt to zero or more next hop
nodes (hosts and switches), as a result of highest priority matching of rule r with
pkt. The packet is then copied to the packet queues of the connected hosts and/or
switches, by applying the topology function to the port numbers in the matched
rule; i.e. A(sw, pt)1.pq, Vpt € r.ports. Dropping packets is modelled by having a
special ‘drop’ port that can be included in rules. The location of the forwarded
packet(s) is updated with the respective destination (switch/host, port) pair; i.e.
A(sw, pt). Due to the (0,00) abstraction, the packet is not removed from sw.pq.
nomatch(sw, pkt). Guard: pkt € sw.pq Afr € sw.ft . bestmatch(sw, r, pkt). This
transition models forwarding a packet to the OpenFlow controller when a switch
does not have a rule in its forwarding table that can be matched against the
packet header. In this case, pkt is added to rq for processing. pkt is not removed
from sw.pgq due to the supported (0, c0) abstraction.

ctrl(pkt, cs). Guard: pkt € controller.rg. This transition models the execution
of the packet handler by the controller when packet pkt, that was previously sent
by switch pkt.loc,, is available in rg. The controller’s packet handler function
pktIn(pkt.loc,, pkt, cs) is executed which, in turn (i) reads the current controller
state cs and changes it according to the controller program, (ii) adds a number
of rules, interleaved with any number of barriers, into the ¢q of zero or more
switches, and (iii) adds zero or more forwarding messages, each one including a
packet along with a set of ports, to the fq of zero or more switches.
Sfwd(sw, pkt, ports). Guard: (pkt, ports) € sw.fq. This transition models for-
warding packet pkt that was previously sent by the controller to sw’s forwarding
queue sw.fg. In this case, pkt is removed from sw.fq (which is modelled as a
set), and added to the pg of a number of network nodes (switches and/or hosts),
as defined by the topology function A(sw, pt)1.pg, Vpt € ports. The location of
the forwarded packet(s) is updated with the respective destination (switch/host,
port) pair; i.e. A(n, pt).

FM (sw, r), where FM € {add, del}. Guard: (FM,r) € head(sw.cq). These tran-
sitions model the addition and deletion, respectively, of a rule in the flow table of
switch sw. They are enabled when one or more add and del control messages are
in the set at the head of the switch’s control queue. In this case, r is added to —
or deleted from, respectively — sw.ft and the control message is deleted from the
set at the head of cq. If the set at the head of cqg becomes empty it is removed.

38

V. Klimis, G. Parisis, and B. Reus

If then the next item in cq is a barrier, a brepl transition becomes enabled (see
below).

brepl(sw, xzid). Guard: b(zid) = head(sw.cq). This transition models a switch
sending a barrier response message, upon consuming a barrier from the head of its
control queue; i.e. if b(zid) is the head of sw.cq, where zid € N is an identifier for
the barrier set by the controller, b(zid) is removed and the barrier reply message
br(sw, zid) is added to the controller’s brg.

bsync(sw, xid, cs). Guard: br(sw, zid) € controller.brq. This transition models
the execution of the barrier response handler by the controller when a barrier
response sent by switch sw is available in brq. In this case, br(sw, zid) is removed
from the brg, and the controller’s barrier handler barrierIn(sw, zid, cs) is executed
which, in turn (i) reads the current controller state cs and changes it according to
the controller program, (i) adds a number of rules, interleaved with any number
of barriers, into the c¢g of zero or more switches, and (iii) adds zero or more
forwarding messages, each one including a packet along with a set of ports, to
the fq of zero or more switches.

An example run. In Figure 2, we illustrate a sequence of MOCS transitions
through a simple packet forwarding example. The run starts with a send tran-
sition; packet p is copied to the packet queue of the switch in black. Initially,
switches’ flow tables are empty, therefore p is copied to the controller’s request
queue (nomatch transition); note that p remains in the packet queue of the
switch in black due to the (0, 00) abstraction. The controller’s packet handler is
then called (ctrl transition) and, as a result, (1) p is copied to the forwarding
queue of the switch in black, (2) rule r; is copied to the control queue of the
switch in black, and (3) rule ry is copied to the control queue of the switch in
white. Then, the switch in black forwards p to the packet queue of the switch
in white (fwd transition). The switch in white installs ro in its flow table (add
transition) and then matches p with the newly installed rule and forwards it to
the receive queue of the host in white (match transition), which removes it from
the network (recv transition).

2.4 Specification Language

In order to specify properties of packet flow in the network, we use LTL formulas
without “next-step” operator ()3, where atomic formulae denoting properties of
states of the transition system, i.e. SDN network. In the case of safety properties,
i.e. an invariant w.r.t. states, the LTL\;~; formula is of the form Oy, i.e. has
only an outermost O temporal connective.

Let P denote unary predicates on packets which encode a property of a packet
based on its fields. An atomic state condition (proposition) in AP is either of
the following: (i) existence of a packet pkt located in a packet queue (pq) of a
switch or in a receive queue (rcvg) of a host that satisfies P (we denote this by

3 This is the largest set of formulae supporting the partial order reductions used in §3,
as stutter equivalence does not preserve the truth value of formulae with the O.

Towards Model Checking Real-World Software-Defined Networks

(= (‘)Erq 4 APETLI\
= @/ = PESq
- = 3 €
8 |pep 3 < P 72 € cq
= g =
: : | @
N— \C \§ \C 4
ffwd(@, D, 2)
4 o 4 N
= = nefe| & |pefa
) - pEpq
a < nea | &
Lo ©
= g R
p & rcvq (") p € revg (_) (‘)
—_— \= — \= \= ~)

39

Fig. 2: Forwarding p from B to 0. Non greyed-out icons are the ones whose state
changes in the current transition.

Ipkten.pq . P(pkt) with n € Switches, and Ipkteh.rcvq . P(pkt) with h € Hosts);
(i) the controller is in a specific controller state ¢ € CS, denoted by a unary
predicate symbol Q(g) which holds in system state s € S if ¢ = s.y.cs. The spec-
ification logic comprises first-order formula with equality on the finite domains
of switches, hosts, rule priorities, and ports which are state-independent (and
decidable).

For example, Ipktesw.pq . P(pkt) represents the fact that the packet predicate
P(.) is true for at least one packet pkt in the pg of switch sw. For every atomic
packet proposition P(pkt), also its negation —P(pkt) is an atomic proposition
for the reason of simplifying syntactic checks of formulae in Table 1 in the next
section. Note that universal quantification over packets in a queue is a derived
notion. For instance, Vpkten.pq . P(pkt) can be expressed as pken.pg . —P(pkt).
Universal and existential quantification over switches or hosts can be expressed
by finite iterations of A and v, respectively.

In order to be able to express that a condition holds when a certain event
happened, we add to our propositions instances of propositional dynamic logic
[41,17]. Given an action a(-) € A and a proposition P that may refer to any
variables in Z, [a(Z)]P is also a proposition and [a(Z)]P is true if, and only if,
after firing transition (@) (to get to the current state), P holds with the variables
in & bound to the corresponding values in the actual arguments @. With the help
of those basic modalities one can then also specify that more complex events
occurred. For instance, dropping of a packet due to a match or fwd action can

4 Note that these are atomic propositions despite the use of the existential quantifier
notation.

40

V. Klimis, G. Parisis, and B. Reus

be expressed by [match(sw, pkt, r)](r.fwd_port = drop) A [fwd(sw, pkt, pt)](pt =
drop). Such predicates derived from modalities are used in §B-CP5.

The meaning of temporal LTL operators is standard depending on the trace
of a transition sequence sy <=5 s; <% The trace L(so)L(s1)...L(s;)... is
defined as usual. For instance, trace L(so)L(s1)L(sz2) ... satisfies invariant Oy if
each L(s;) implies .

3 Model Checking

In order to verify desired properties of an SDN, we use its model as described in
Def. 1 and apply model checking. In the following we propose optimisations that
significantly improve the performance of model checking.

3.1 Contextual Partial-Order Reduction

Partial order reduction (POR) [38] reduces the number of interleavings (traces)
one has to check. Here is a reminder of the main result (see [4]) where we use a
stronger condition than the regular (C4) to deal with cycles:

Theorem 1 (Correctness of POR). Given a finite transition system M =
(S, A, =, s0, AP, L) that is action-deterministic and without terminal states, let
A(s) denote the set of actions in A enabled in state s € S. Let ample(s) € A(s)
be a set of actions for a state s € S that satisfies the following conditions:

C1 (Non)emptiness condition: & # ample(s) S A(s).

C2 Dependency condition: Let s <=5 s1... < s, Lt be a run in M. If B €
A\ample(s) depends on ample(s), then a; € ample(s) for some 0 < i < n,
which means that in every path fragment of M, 8 cannot appear before some
transition from ample(s) is executed.

C38 Invisibility condition: If ample(s) # A(s) (i.e., state s is not fully expanded),
then every a € ample(s) is invisible.

CJ4 Every cycle in M*™P' contains a state s such that ample(s) = A(s).

where MeTPle —
follows: let S, <
—», let Ly(s) =
the rule

(Sq, A, >, 89, AP, L) is the new, optimised, model defined as
S be the set of states reachable from the initial state sy under
L(s) for all s € S, and define — < S, x A x S, inductively by
s S 8

— if ae ample(s)

§ > 8

If ample(s) satisfies conditions (C1)-(C4) as outlined above, then for each path in
M there exists a stutter-trace equivalent path in M and vice-versa, denoted

M = Memele,

The intuitive reason for this theorem to hold is the following: Assume an
action sequence «...ci;1, that reaches the state s, and [is independent of
{aj,...atitn}. Then, one can permute 8 with a4, through «; successively n times.

41

Towards Model Checking Real-World Software-Defined Networks

One can therefore construct the sequence Sa...ci; 1, that also reaches the state s.
If this shift of 8 does not affect the labelling of the states with atomic propositions
(B is called invisible in this case), then it is not detectable by the property to
be shown and the permuted and the original sequence are equivalent w.r.t. the
property and thus don’t have to be checked both. One must, however, ensure,
that in case of loops (infinite execution traces) the ample sets do not preclude
some actions to be fired altogether, which is why one needs (C4).

The more actions that are both stutter and provably independent (also re-
ferred to as safe actions [22]) there are, the smaller the transition system, and the
more efficient the model checking. One of our contributions is that we attempt to
identify as many safe actions as possible to make PORs more widely applicable
to our model.

The PORs in [34] consider only dependency and invisibility of recv and barrier
actions, whereas we explore systematically all possibilities for applications of
Theorem 1 to reduce the search space. When identifying safe actions, we consider
(1) the actual controller program CP, (2) the topology A and (3) the state formula
© to be shown invariant, which we call the context cTX of actions. It turns
out that two actions may be dependent in a given context of abstraction while
independent in another context, and similarly for invisibility, and we exploit this
fact. The argument of the action thus becomes relevant as well.

Definition 2 (Safe Actions). Given a context ¢TX = (CP,\,), and SDN
model My cry = (S, A, =, 50, AP, L), an action o(-) € A(s) is called ‘safe’ if it
is independent of any other action in A and invisible for ¢. We write safe actions
af().

Definition 3 (Order-sensitive Controller Program). A controller program
CP is order-sensitive if there exists a state s € S and two actions «, [in
{ctrl(-), bsync(-)} such that o, € A(s) and s <> s, 2 s2 and s L 53 <5 sy
with so # S4.

Definition 4. Let ¢ be a state formula. An action « € A is called ‘p-invariant’
if s = iff a(s) = forall s€ S with a € A(s).

Lemma 1. For transition system My cpy = (S, A, <>, 80, AP, L) and a formula
@ € LTLy(oy, a € A is safe iff /\g’:1 Safe,;(a), where Safe;, given in Table 1,
are per-row.

Proof. See Appendix A. O

Theorem 2 (POR instance for SDN). Let (CP,\,) be a context such that
Mpnery = (8, A, =, 50, AP, L) is an SDN network model from Def. 1; and let
safe actions be as in Def. 2. Further, let ample(s) be defined by:

€ A(s) | « safe }if {a € A(s) | a safe } # &

s) otherwise

ample(s) — {ff(

ample 5

(Acp)

5 Stutter equivalence here implicitly is defined w.r.t. the atomic propositions appearing
in ¢, but this suffices as we are just interested in the validity of ¢.

Then, ample satisfies the criteria of Theorem 1 and thus M cp) = M

V. Klimis, G. Parisis, and B. Reus

42

Table 1: Safeness Predicates

Independence

Action
Safe, ()

Safeq(a)

Invisibility
Safes ()

a = ctrl(pk, cs) CP is not order-sensitive

if Q(g) occurs in ¢, where g € CS, then
« is p-invariant.

a = bsync(sw, zid, cs) |CP is not order-sensitive

if Q(q) occurs in ¢, where g € CS, then
« is g-invariant.

if dpkeb.q. P(pk) occurs in ¢, for any

a = fwd(sw, pk, ports) T b e {sw}u {\(sw,p)1 | p € ports} and
q € {pq, recvq}, then « is p-invariant.

a = brepl(sw, zid) ‘ T ‘ T

o = recv(h, pk) ‘ T if Ipkeh.rcvg . P(pk) occurs in ¢, then

« is p-invariant.

Proof.

C1

c2

cs

¢4

The (non)emptiness condition is trivial since by definition of ample(s) it
follows that ample(s) = @ iff A(s) = @.

By assumption 8 € A\ample(s) depends on ample(s). But with our definition
of ample(s) this is impossible as all actions in ample(s) are safe and by
definition independent of all other actions.

The validity of the invisibility condition is by definition of ample and safe
actions.

We now show that every cycle in M

ample
(A,cp)
i.e. a state s such that ample(s) = A(s). By definition of ample(s) in Thm. 2
it is equivalent to show that there is no cycle in M?;" fé;
actions only. We show this by contradiction, assuming such a cycle of only
safe actions exists. There are five safe action types to consider: ctrl, fwd, brepl,
bsync and recv. Distinguish two cases.

Case 1. A sequence of safe actions of same type. Let us consider the different

safe actions:

contains a fully expanded state s,

consisting of safe

e Let p an execution of M?/{" 5}5 which consists of only one type of ctri-
actions:
ctri(pkty,cs1) ctrl(pkty,csa) ctri(pkt;_q,csi—1)
p =81 Sil] ——————— > 5

Suppose p is a cycle. According to the ctrl semantics, for each transition

ctrl(pkt, cs
‘—»m‘r (pht,cs) S/, where s = (71',(5, ’Y)a Sl = (7r/76/7’yl)7 it holds that ’Yl‘rq =

~.rq\{pkt} as we use sets to represent rq buffers. Hence, for the execution
p it holds v;.rq = vy1.1¢\{pkty, pkto, ...pkt,_,} which implies that s; # s;.
Contradiction.

e Let p an execution which consists of only one type of fwd-actions: similar
argument as above since fg-s are represented by sets and thus forward
messages are removed from fq.

e Let p an execution which consists of only one type of brepl-actions: similar
argument as above since control messages are removed from cq.

43

Towards Model Checking Real-World Software-Defined Networks

e Let p an execution which consists of only one type of bsync-actions: sim-
ilar argument as above, as barrier reply messages are removed from brg-s
that are represented by sets.

e Let p an execution which consists of only one type of recv-actions: similar
argument as above, as packets are removed from rcvg buffers that are
represented by sets.

Case 2. A sequence of different safe actions. Suppose there exists a cycle with
mixed safe actions starting in s; and ending in s;. Distinguish the following
cases.

i) There exists at least a ctrl and/or a bsync action in the cycle. According
to the effects of safe transitions, the ctrl action will change to a state
with smaller rq and the bsync will always switch to a state with smaller
brq. It is important here that ctrl does not interfere with bsync regarding
rq, brq, and no safe action of other type than ctrl and bsync accesses rq
or brq. This implies that s; # s;. Contradiction.

ii) Neither ctrl, nor bsync actions in the cycle.

a) There is a fwd and/or brepl in the cycle: fwd will always switch to
a state with smaller fg and brepl will always switch to a state with
smaller cq (brepl and recv do not interfere with fwd). This implies
that s; # s;. Contradiction.

b) There is neither fwd nor brepl in the cycle. This means that only recv
is in the cycle which is already covered by the first case.

O

Due to the definition of the transition system via ample sets, each safe action is
immediately executed after its enabling one. Therefore, one can merge every tran-
sition of a safe action with its precursory enabling one. Intuitively, the semantics
of the merged action is defined as the successive execution of its constituent ac-

tions. This process can be repeated if there is a chain of safe actions; for instance,
nomatch(sw,pkt) , ctrli(pkt,cs) , fwd(sw,pkt,ports)
s s

in the case of s s"” where each
transition enables the next and the last two are assumed to be safe. These tran-
sitions can be merged into one, yielding a stutter equivalent trace as the interme-
diate states are invisible (w.r.t. the context and thus the property to be shown)
by definition of safe actions.

3.2 State Representation

Efficient state representation is crucial for minimising MOCS’s memory footprint
and enabling it to scale up to relatively large network setups.

Packet and Rule Indexing. In MOCS, only a single instance of each packet
and rule that can appear in the modelled network is kept in memory. An index
is then used to associate queues and flow tables with packets and rules, with a
single bit indicating their presence (or absence). This data structure is illustrated
in Figure 3. For a data packet, a value of 1 in the pg section of the entry indicates
that infinite copies of it are stored in the packet queue of the respective switch. A
value of 1 in the fq section indicates that a single copy of the packet is stored in

44

V. Klimis, G. Parisis, and B. Reus

the forward queue of the respective switch. A value of 1 in the r¢ section indicates
that a copy of the packet sent by the respective switch (when a nomatch transition
is fired) is stored in the controller’s request queue. For a rule, a value of 1 in the ft
section indicates that the rule is installed in the respective switch’s flow table. A
value of 1 in the cq section indicates that the rule is part of a FlowMod message
in the respective switch’s control queue.

state

match fields state action match fields
fq rq pq (location) dstIP scrIP ft cq prio out_pt ‘in_pt dstIP scrIP
0 0 o0JO0O 1 1If1 01 0 1]0 1 1|0 1|1 1 1 0]0 0|1 11 1|0 1|1 0|0 1

L out_pt | swa| out_pt | swi|swy swi| in_pt ysw| inpt yswi| L L swyp swa|swy swi| L L L L
15 12 10 7 4 2 0 12 10 8 6 4 2 0

Fig. 3: Packet (left) and rule (right) indices

The proposed optimisation enables scaling up the network topology by min-
imising the required memory footprint. For every switch, MOCS only requires a
few bits in each packet and rule entry in the index.

Discovering equivalence classes of packets. Model checking with all possible
packets including all specified fields in the OpenFlow standard would entail a
huge state space that would render any approach unusable. Here, we propose the
discovery of equivalence classes of packets that are then used for model checking.
We first remove all fields that are not referenced in a statement or rule creation
or deletion in the controller program. Then, we identify packet classes that would
result in the same controller behaviour. Currently, as with the rest of literature,
we focus on simple controller programs where such equivalence classes can be
easily identified by analysing static constraints and rule manipulation in the
controller program. We then generate one representative packet from each class
and assign it to all network switches that are directly connected to end-hosts; i.e.
modelling clients that can send an arbitrarily large number of packets in a non-
deterministic fashion. We use the minimum possible number of bits to represent
the identified equivalence classes. For example, if the controller program exerts
different behaviour if the destination TCP port of a packet is 22 (i.e. destined to
an SSH server) or not, we only use a 1-bit field to model this behaviour.

Bit packing. We reduce the size of each recorded state by employing bit pack-
ing using the int32 type supported by UPPAAL, and bit-level operations for
the entries in the packet and rule indices, as well as for the packets and rules
themselves.

4 Experimental Evaluation

In this section, we experimentally evaluate MOCS by comparing it with the
state of the art, in terms of performance (verification throughput and memory
footprint) and model expressivity. We have implemented MOCS in UPPAAL [6]
as a network of parallel automata for the controller and network switches, which
communicate asynchronously by writing/reading packets to/from queues that

45

Towards Model Checking Real-World Software-Defined Networks

are part of the model discussed in §2. As discussed in §3, this is implemented by
directly manipulating the packet and rule indices.

Throughout this section we will be using three examples of network con-
trollers: (1) A stateless firewall (§B-CP1) requires the controller to install rules
to network switches that enable them to decide whether to forward a packet to-
wards its destination or not; this is done in a stateless fashion, i.e. without having
to consider any previously seen packets. For example, a controller could configure
switches to block all packets whose destination TCP port is SsH. (2) A stateful
firewall (§B-CP2) is similar to the stateless one but decisions can take into ac-
count previously seen packets. A classic example of this is to allow bi-directional
communication between two end-hosts, when one host opens a TCP connection
to the other. Then, traffic flowing from the other host back to the connection
initiator should be allowed to go through the switches on the reverse path. (3) A
MAC learning application (§B-CP3) enables the controller and switches to learn
how to forward packets to their destinations (identified with respective MAC ad-
dresses). A switch sends a PacketIn message to the controller when it receives
a packet that it does not know how to forward. By looking at this packet, the
controller learns a mapping of a source switch (or host) to a port of the requesting
switch. It then installs a rule (by sending a FlowMod message) that will allow
that switch to forward packets back to the source switch (or host), and asks the
requesting switch (by sending a PacketOut message) to flood the packet to all its
ports except the one it received the packet from. This way, the controller even-
tually learns all mappings, and network switches receive rules that enable them
to forward traffic to their neighbours for all destinations in the network.

4.1 Performance Comparison

We measure MOCS’s performance, and also compare it against Kuai [34]® using
the examples described above, and we investigate the behaviour of MOCS as we
scale up the network (switches and clients/servers). We report three metrics: (1)
verification throughput in visited states per second, (2) number of visited states,
and (3) required memory. We have run all verification experiments on an 18-Core
iMac pro, 2.3GHz Intel Xeon W with 128GB DDR4 memory.
Verification throughput. We measure the verification throughput when run-
ning a single experiment at a time on one CPU core and report the average and
standard deviation for the first 30 minutes of each run. In order to assess how
MOCS’s different optimisations affect its performance, we report results for the
following system variants: (1) MOCS, (2) MOCS without POR, (3) MOCS with-
out any optimisations (neither POR, state representation), and (4) Kuai. Figure 4
shows the measured throughput (with error bars denoting standard deviation).
For the MAC learning and stateless firewall applications, we observe that
MOCS performs significantly better than Kuai for all different network setups

5 Note that parts of Kuai’s source code are not publicly available, therefore we imple-
mented it’s model in UPPAAL.

46

V. Klimis, G. Parisis, and B. Reus

T T T T T T T T T
mMOCS =MOCS w/o POR =MOCS w/o any optimisations =Kuai

states/sec

sxH’ 5x3 7x2 4x4 6x3 4x5 3x5 8x2 5x4 7x3 3x6 9x2 10x2
(a) MAC Learning Switch

6000

states/sec
n N
o o
o o
o o

SxH” 4x2 5x2 6x2 7x2 8x2 9x2 1x2 2x2 3x2 4x2
(b) Stateless Firewall (c) Stateful Firewall

Fig. 4: Performance Comparison — Verification Throughput

and sizes”, achieving at least double the throughput Kuai does. The throughput
performance is much better for the stateful firewall, too. This is despite the fact
that, for this application, Kuai employs the unrealistic optimisation where the
barrier transition forces the immediate update of the forwarding state. In other
words, MOCS is able to explore significantly more states and identify bugs that
Kuai cannot (see §4.2).

The computational overhead induced by our proposed PORs is minimal. This
overhead occurs when PORs require dynamic checks through the safety predicates
described in Table 1. This is shown in Figure 4a, where, in order to decide about
the (in)visibility of fwd(sw, pk, pt) actions, a lookup is performed in the history-
array of packet pk, checking whether the bit which corresponds to switch sw’,
which is connected with port pt of sw, is set. On the other hand, if a POR does not
require any dynamic checks, no penalty is induced, as shown in Figures 4b and
4c, where the throughput when the PORs are disabled is almost identical to the
case where PORs are enabled. This is because it has been statically established
at a pre-analysis stage that all actions of a particular type are always safe for any
argument /state. It is important to note that even when computational overhead is
induced, PORs enable MOCS to scale up to larger networks because the number
of visited states can be significantly reduced, as discussed below.

In order to assess the contribution of the state representation optimisation in
MOCS'’s performance, we measure the throughput when both PORs and state
representation optimisations are disabled. It is clear that they contribute signifi-
cantly to the overall throughput; without these the measured throughput was at
least less than half the throughput when they were enabled.

Number of visited states and required memory. Minimising the number
of visited states and required memory is crucial for scaling up verification to

7 SxH in Figures 4 to 6 indicates the number of switches S and hosts H.

47

Towards Model Checking Real-World Software-Defined Networks

m\MOCS =mMOCS w/o POR =mMOCS w/o any optimisations = Kuai

LLEhddd,

SxH'3x2 4x2 3x3 5x2 4x3 6x2 3x4 5x3 7x2 4x4 6x3 4x5 3x5 8x2 5x4 7x3 3x6 9x2
(a) MAC Learning Switch

3
§10°
n
SxH' 2x2 3x2 9x2 10x2 1x2 2x2 3x2
(b) Stateless Firewall (c) Stateful Firewall

Fig. 5: Performance Comparison — Visited States (logarithmic scale)

=MOCS =MOCS w/o POR =MOCS w/o any optimisations =Kuai

KiB

SxH'3x2 4x2 3x3 5x2 4x3 6x2 3x4 5x3 7x2 4x4 6x3 4x5 3x5 8x2 5x4 7x3 3x6 9x2
(a) MAC Learning Switch

SxH” 2x2 3x2 9x2 10x2 1x2 2x2 3x2
(b) Stateless Firewall (c) Stateful Firewall

Fig. 6: Performance Comparison — Memory Footprint (logarithmic scale)

larger networks. The proposed partial order reductions (§3.1) and identification
of packet equivalent classes aim at the former, while packet/rule indexing and
bit packing aim at the latter (§3.2). In Figure 5, we present the results for the
various setups and network deployments discussed above. We stopped scaling
up the network deployment for each setup when the verification process required
more than 24 hours or started swapping memory to disk. For these cases we killed
the process and report a topped-up bar in Figures 5 and 6.

For the MAC learning application, MOCS can scale up to larger network
deployments compared to Kuai, which could not verify networks consisting of
more than 2 hosts and 6 switches. For that network deployment, Kuai visited
~Tm states, whereas MOCS visited only ~193k states. At the same time, Kuai
required around 48GBs of memory (7061 bytes/state) whereas MOCS needed
~43MBs (228 bytes/state). Without the partial order reductions, MOCS can
only verify tiny networks. The contribution of the proposed state representation
optimisations is also crucial; in our experiments (results not shown due to lack
of space), for the 6 x 2 network setups (the largest we could do without these

48

V. Klimis, G. Parisis, and B. Reus

optimisations), we observed a reduction in state space (due to the identification
of packet equivalence classes) and memory footprint (due to packet/rule indexing
and bit packing) from ~7m to ~200k states and from ~6KB per state to ~230B
per state. For the stateless and stateful firewall applications, resp., MOCS per-
forms equally well to Kuai with respect to scaling up.

4.2 Model Expressivity

The proposed model is significantly more expressive compared to Kuai as it al-
lows for more asynchronous concurrency. To begin with, in MOCS, controller
messages sent before a barrier request message can be interleaved with all other
enabled actions, other than the control messages sent after the barrier. By con-
trast, Kuai always flushes all control messages until the last barrier in one go,
masking a large number of interleavings and, potentially, buggy behaviour. Next,
in MOCS nomatch, ctrl and fwd can be interleaved with other actions. In Kuai,
it is enforced a mutual exclusion concurrency control policy through the wait-
semaphore: whenever a nomatch occurs the mutex is locked and it is unlocked by
the fwd action of the thread nomatch-ctrl-fwd which refers to the same packet;
all other threads are forced to wait. Moreover, MOCS does not impose any limit
on the size of the rq queue, in contrast to Kuai where only one packet can exist
in it. In addition, Kuai does not support notifications from the data plane to
the controller for completed operations as it does not support reply messages
and as a result any bug related to the fact that the controller is not synced to
data-plane state changes is hidden.® Also, our specification language for states is
more expressive than Kuai’s, as we can use any property in LTL without “next”,
whereas Kuai only uses invariants with a single outermost O.

The MOCS extensions, however, are conservative with respect to Kuai, that is
we have the following theorem (without proof, which is straightforward):

Theorem 3 (MOCS Conservativity). Let My cp) = (5, 4,50, AP, L)
and M&CP) = (Sk,Ak,—K,80,AP,L) the original SDN models of MOCS
and Kuai, respectively, using the same topology and controller. Furthermore, let
Traces(Mx,cpy) and Traces(f/\,cp)) denote the set of all initial traces in these

models, respectively. Then, Tmces(/\/lf/\ycp)) < Traces(M cr))-

For each of the extensions mentioned above, we briefly describe an example (con-
troller program and safety property) that expresses a bug that is impossible to
occur in Kuai.

Control message reordering bug. Let us consider a stateless firewall in Fig-
ure 7a (controller is not shown), which is supposed to block incoming sSH pack-
ets from reaching the server (see §B-CP1). Formally, the safety property to be
checked here is O(Vpkt € S.rcvg . —pkt.ssH). Initially, flow tables are empty. Switch
A sends a PacketIn message to the controller when it receives the first packet
from the client (as a result of a nomatch transition). The controller, in response

8 There are further small extensions; for instance, in MOCS the controller can send
multiple PacketOut messages (as OpenFlow prescribes).

49

Towards Model Checking Real-World Software-Defined Networks

to this request (and as a result of a ctrl transition), sends the following FlowMod
messages to switch A; rule r1 has the highest priority and drops all SSH packets,
rule r2 sends all packets from port 1 to port 2, and rule r3 sends all packets from
port 2 to port 1. If the packet that triggered the transition above is an SSH one,
the controller drops it, otherwise, it instructs (through a PacketOut message) A
to forward the packet to S. A bug-free controller should ensure that ri is in-
stalled before any other rule, therefore it must send a barrier request after the
FlowMod message that contains r1. If, by mistake, the FlowMod message for r2
is sent before the barrier request, A may install r2 before r1, which will result
in violating the given property. MOCS is able to capture this buggy behaviour
as its semantics allows control messages prior to the barrier to be processed in a
interleaved manner.

(a)

Fig. 7: Two networks with (a) two switches, and (b) n stateful firewall replicas

‘Wrong nesting level bug. Consider a correct controller program that enforces
that server S (Figure 7a) is not accessible through SsH. Formally, the safety
property to be checked here is O(Vpkt € S.rcvg . —pkt.ssH). For each incoming
PacketIn message from switch A, it checks if the enclosed packet is an SSH one
and destined to S. If not, it sends a PacketOut message instructing A to forward
the packet to S. It also sends a FlowMod message to A with a rule that allows
packets of the same protocol (not SSH) to reach S. In the opposite case (SSH), it
checks (a Boolean flag) whether it had previously sent drop rules for SsH packets
to the switches. If not, it sets flag to true, sends a FlowMod message with a rule
that drops SSH packets to A and drops the packet. Note that this inner block
does not have an else statement.

A fairly common error is to write a statement at the wrong nesting level (§B-
CP4). Such a mistake can be built into the above program by nesting the outer
else branch in the inner if block, such that it is executed any time an SSH-
packet is encountered but the ssH drop-rule has already been installed (i.e. flag £
is true). Now, the ssH drop rule, once installed in switch A, disables immediately
a potential nomatch(A, p) with p.SSH = true that would have sent packet p to
the controller, but if it has not yet been installed, a second incoming SSH packet
would lead to the execution of the else statement of the inner branch. This
would violate the property defined above, as p will be forwarded to S°.

MOCS can uncover this bug because of the correct modelling of the controller
request queue and the asynchrony between the concurrent executions of control
messages sent before a barrier. Otherwise, the second packet that triggers the
execution of the wrong branch would not have appeared in the buffer before

9 Here, we assume that the controller looks up a static forwarding table before sending
PacketOut messages to switches.

50

V. Klimis, G. Parisis, and B. Reus

the first one had been dealt with by the controller. Furthermore, if all rules in
messages up to a barrier were installed synchronously, the second packet would
be dealt with correctly, so no bug could occur.

Inconsistent update bug. OpenFlow’s barrier and barrier reply mechanisms
allow for updating multiple network switches in a way that enables consistent
packet processing, i.e., a packet cannot see a partially updated network where
only a subset of switches have changed their forwarding policy in response to this
packet (or any other event), while others have not done so. MOCS is expressive
enough to capture this behaviour and related bugs. In the topology shown in
Figure 7a, let us assume that, by default, switch B drops all packets destined to S.
Any attempt to reach S through A are examined separately by the controller and,
when granted access, a relevant rule is installed at both switches (e.g. allowing
all packets from C destined to S for given source and destination ports). Updates
must be consistent, therefore the packet cannot be forwarded by A and dropped
by B. Both switches must have the new rules in place, before the packet is
forwarded. To do so, the controller, (§B-CP5), upon receiving a PacketIn message
from the client’s switch, sends the relevant rule to switch B (FlowMod) along with
respective barrier (BarrierReq) and temporarily stores the packet that triggered
this update. Only after receiving BarrierRes message from B, the controller will
forward the previously stored packet back to A along with the relevant rule. This
update is consistent and the packet is guaranteed to reach S. A (rather common)
bug would be one where the controller installs the rules to both switches and at
the same time forwards the packet to A. In this case, the packet may end up
being dropped by B, if it arrives and gets processed before the relevant rule is
installed, and therefore the invariant O([drop(pkt, sw)] . —(pkt.dest = 5)), where
[drop(pkt, sw)] is a quantifier that binds dropped packets (see definition in §B-
CP5), would be violated. For this example, it is crucial that MOCS supports
barrier response messages.

5 Conclusion

We have shown that an OpenFlow compliant SDN model, with the right optimi-
sations, can be model checked to discover subtle real-world bugs. We proved that
MOCS can capture real-world bugs in a more complicated semantics without
sacrificing performance.

But this is not the end of the line. One could automatically compute equiva-
lence classes of packets that cover all behaviours (where we still computed man-
ually). To what extent the size of the topology can be restricted to find bugs in
a given controller is another interesting research question, as is the analysis of
the number and length of interleavings necessary to detect certain bugs. In our
examples, all bugs were found in less than a second.

51

Towards Model Checking Real-World Software-Defined Networks

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

. Al-Fares, M., Radhakrishnan, S., Raghavan, B.: Hedera: Dynamic Flow Scheduling

for Data Center Networks. In: NSDI (2010).

. Al-Shaer, E., Al-Haj, S.: FlowChecker: Configuration analysis and verification of

federated OpenFlow infrastructures. In: SafeConfig (2010).

. Albert, E., Gémez-Zamalloa, M., Rubio, A., et al.: SDN-Actors: Modeling and

verification of SDN programs. In: FM (2018).

. Baier, C., Katoen, J.P.: Principles Of Model Checking, vol. 950 (2008).
. Ball, T., Bjorner, N., Gember, A., et al.: VeriCon: Towards Verifying Controller

Programs in Software-defined Networks. In: PLDI (2014).

. Behrmann, G., David, A., Larsen, K.G., et al.: Developing UPPAAL over 15 years.

Software: Practice and Experience (2011).

. Braga, R., Mota, E., Passito, A.: Lightweight DDoS flooding attack detection using

NOX/OpenFlow. In: LCN (2010).

. Canini, M., Venzano, D., Peresini, P., et al.: A NICE Way to Test Openflow Appli-

cations. In: NSDI (2012).

. Cimatti, A., Clarke, E., Giunchiglia, E., et al.: NuSMV 2: An OpenSource Tool for

Symbolic Model Checking (2002).

Curtis, A.R., Mogul, J.C., Tourrilhes, J., et al.: DevoFlow: scaling flow management
for high-performance networks. SIGCOMM (2011).

Dobrescu, M., Argyraki, K.: Software dataplane verification. Communications of
the ACM (2015).

El-Hassany, A., Tsankov, P., Vanbever, L., et al.: Network-wide configuration syn-
thesis. In: CAV (2017).

Fayaz, S.K., Sharma, T., Fogel, A., et al.: Efficient Network Reachability Analysis
Using a Succinct Control Plane Representation. In: OSDI (2016).

Fayaz, S.K., Yu, T., Tobioka, Y., et al.: BUZZ: Testing Context-Dependent Policies
in Stateful Networks. In: NSDI (2016).

Feamster, N., Rexford, J., Shenker, S., et al.: SDX: A software-defined Internet
exchange. Open Networking Summit (2013).

Feamster, N., Rexford, J., Zegura, E.: The road to SDN. SIGCOMM Computer
Communication Review (2014).

Fischer, M.J., Ladner, R.E.: Propositional dynamic logic of regular programs. Jour-
nal of Computer and System Sciences (1979).

Fogel, A., Fung, S., Angeles, L., et al.: A General Approach to Network Configura-
tion Analysis. NSDI (2015).

Handigol, N., Seetharaman, S., Flajslik, M., et al.: Plug-n-Serve: Load-balancing
web traffic using OpenFlow. SIGCOMM (2009).

Havelund, K., Pressburger, T.: Model checking JAVA programs using JAVA
PathFinder. STTT (2000).

Holzmann, G.J.: The model checker SPIN. IEEE Transactions on Software Engi-
neering (1997).

Holzmann, G.J., Peled, D.: An Improvement in Formal Verification. In: FORTE
(1994).

Horn, A., Kheradmand, A., Prasad, M.R.: Delta-net: Real-time Network Verifica-
tion Using Atoms. In: NSDI (2017).

Hu, H., Ahn, G.J., Han, W., et al.: Towards a Reliable SDN Firewall. In: ONS
(2014).

Jackson, D.: Alloy: A lightweight object modelling notation. ACM Transactions on
Software Engineering and Methodology (2002).

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.
42.

43.

44.

45.

46.

47.

48.

49.

50.

52

V. Klimis, G. Parisis, and B. Reus

Jafarian, J.H., Al-Shaer, E., Duan, Q.: OpenFlow random host mutation: Transpar-
ent moving target defense using software defined networking. In: HotSDN (2012).
Jain, S., Zhu, M., Zolla, J., et al.: B4: Experience with a Globally-Deployed Software
Defined WAN. In: SIGCOMM (2013).

Jia, Y.: NetSMC : A Symbolic Model Checker for Stateful Network Verification. In:
NSDI (2020).

Kazemian, P., Chang, M., Zeng, H., et al.: Real Time Network Policy Checking
Using Header Space Analysis. In: NSDI (2013).

Kazemian, P., Varghese, G., McKeown, N.: Header space analysis: Static checking
for networks. In: NSDI (2012).

Khurshid, A., Zou, X., Zhou, W., et al.: VeriFlow: Verifying Network-wide Invari-
ants in Real Time. In: NSDI (2013).

Li, Y., Yin, X., Wang, Z., et al.: A survey on network verification and testing with
formal methods: Approaches and challenges. IEEE Surveys & Tutorials (2019).
Mai, H., Khurshid, A., Agarwal, R., et al.: Debugging the data plane with anteater.
In: SIGCOMM (2011).

Majumdar, R., Deep Tetali, S., Wang, Z.: Kuai: A model checker for software-
defined networks. In: FMCAD (2014).

McClurg, J., Hojjat, H., Cerny, P., et al.: Efficient synthesis of network updates.
In: PLDI (2015).

McKeown, N., Anderson, T., Balakrishnan, H., et al.: OpenFlow: Enabling Innova-
tion in Campus Networks. SIGCOMM Comput. Commun. Rev. (2008).

Patel, P., Bansal, D., Yuan, L., et al.: Ananta: Cloud Scale Load Balancing. SIG-
COMM (2013).

Peled, D.: All from one, one for all: on model checking using representatives. In:
CAV (1993).

Plotkin, G.D., Bjgrner, N., Lopes, N.P., et al.: Scaling network verification using
symmetry and surgery. In: POPL (2016).

Pnueli, A., Xu, J., Zuck, L.: Liveness with (0, 1, 00)-counter abstraction. In: CAV
(2002).

Pratt, V.R.: Semantical considerations on Floyd-Hoare logic. In: FOCS (1976).
Sethi, D., Narayana, S., Malik, S.: Abstractions for model checking SDN controllers.
In: FMCAD (2013).

Shenker, S., Casado, M., Koponen, T., et al.: The future of networking, and the
past of protocols. In: ONS (2011), https://tinyurl.com/yxnuxobt.

Son, S., Shin, S., Yegneswaran, V., et al.: Model checking invariant security prop-
erties in OpenFlow. In: IEEE (2013).

Stoenescu, R., Popovici, M., Negreanu, L., et al.: SymNet: Scalable symbolic exe-
cution for modern networks. In: SIGCOMM (2016).

Varghese, G.: Vision for Network Design Automation and Network Verification. In:
NetPL (Talk) (2018), https://tinyurl.com/y2cnhvhf.

Yang, H., Lam, S.S.: Real-time verification of network properties using atomic pred-
icates. IEEE/ACM Transactions on Networking (2016).

Zeng, H., Kazemian, P., Varghese, G., et al.: A Survey on Network Troubleshooting.
Technical Report TR12-HPNG-061012, Stanford University (2012).

Zeng, H., Zhang, S., Ye, F., et al.: Libra: Divide and Conquer to Verify Forwarding
Tables in Huge Networks. In: NSDI (2014).

Zhang, S., Malik, S.: SAT based verification of network data planes. In: Automated
Technology for Verification and Analysis. Springer (2013).

93

Towards Model Checking Real-World Software-Defined Networks

A Safeness

Lemma 1 (Safeness). For an SDN network model My ¢py = (S, A, =, 50, AP, L)
and conlert CTX = (CP, A,) with ¢ € LTL\(xy,

) 3
a € A is safe <= /\i=1 Safe;(a)
where Safe;, given in Table 1, are per-row.

Proof. To show safety we need to show two properties: independence (action is
independent of any other action) and invisibility w.r.t. the context, in particular
controller program, topology function and formula .

Independence: Recall that two actions o and 8 # « are independent iff for any
state s such that o € A(s) and € A(s):

1. a€ A(B(s)) and B € A(a(s))
2. oz(ﬁ(s)) = B(a(s))

(1): It can be easily checked that no safe action disables any other action, nor is
any safe action disabled by any other action, so the first condition of independence
holds.

(2): For any safe action a and any other action 8 we can assume already that
they meet Condition (1). Let us perform a case analysis on «:

» « is either brepl, recv or fwd:
To show that any interleaving with any action § # « leads to the same
state, we observe that the changes of packet queues by these actions do not
interfere with each other. In cases where a packet is removed from a queue
by a (e.g. a = recv(h, pkt) removes from h.rcvg) but then inserted into the
same queue by 3 (e.g. f = fwd(sw, pkt, ports) where h € A(sw, ports),), there
is no conflict either, as both actions must have been enabled in the original
state in the first place. So no conflicts arise for those a.
» ais ctrl(pkt, cs):
e If B is not a ctrl or bsync action, then the same argument as above holds.
e The interesting cases occur when S is in {ctri(-), bsync(-)}. From Safes ()
we know that CP is not order-sensitive, which implies that « and S are
independent. Order-insensitivity is a relatively strong condition but it
ensures correctness of the lemma and thus partial order reduction.!? Thus
any interleaving of o and /3 leads to the same state.
» ais bsync(sw, zid, cs):
The same line of argument applies as for ctrl(pkt, cs), simply exchanging the
roles of o and /3.

10 Generalisations by a more clever analysis of the controller program are a future
research topic.

54

V. Klimis, G. Parisis, and B. Reus

Invisibility : We show this for all safe actions separately:

e «a = ctrl(pk, cs). The only variables « can change are the controller.rq, sw’.fg,
sw'.cq (for some switches sw’), and the control state cs. The first three can
not appear in ¢ due to the definition of the specification language. In case
the control state changes, « is invisible to ¢ because Safes(«) in Table 1.

e a = bsync(sw,zid, cs). This « only affects brg, sw’.fg, sw’.cq (for some
switches sw’), and the control state cs. We know by definition of Specifi-
cation Language (§2.4) that it cannot refer to brg or any sw’.fq, sw’.cq. In
case the control state changes, « is invisible to ¢ because Safes(«) in Table 1.

e a = fwd(sw, pk, ports). Assumption Safes(c) in Table 1 guarantees that the
only variables a can change, i.e. D.pg or D.rcvg for any D in A(sw,p); |p€
ports and sw.pq, actually remain unchanged. Thus it follows by definition
that « is invisible to ¢.

e a = brepl(sw, zid). Since, by definition of Specification Language (§2.4), the
atomic propositions refer neither to any cg nor brgq, it follows from the effect
of « that only affects sw.cq and brq that any brepl(-) is always invisible.

e o = recv(h, pk). Assumption Safes(«) in Table 1 guarantees that ¢ does
not refer to h.rcvq, which is the only variable affected by «, and therefore
recv(h, pk) is invisible to ¢.

O

B Controller Programs

1 handler pktIn(sw, pkt):

2 if not pkt.SSH then // Otherwise, pkt is dropped silently
3 | send_message(PacketOut (pkt, 2), sw)

4 end

5 | rulel« {{prio« 10}, {SSH « 1 }, {in_port « %}, {fwd_port « drop}}

6 | rule2« {{prio« 1}, {SSH < * }, {in_port « 1}, {fud_port <2 }} // asterisk () matches any value
7 | ruled < {{prio« 1}, {SSH « * }, {in_port < 2}, {fwd_port <1 }}

8 forall s € Switches do // Switches is the set of all switches
o send_nessage (FlowMod (add (rule2)), s)

10 send_message (FlowMod(add(rulel)), s)

11 send_message (BarrierReq(b_id), s) // b_id is a barrier identifier
12 send_message (FlowMod(add(ruled)), s)

13 end

Controller Program CP1: A stateless firewall filter with control messages reordering bug. In a bug-free program
(the one we used to verify in §4), rulel should be sent first and followed by a barrier. Property: “neither host should
be accessed over SsSH”. Formally, O (Vh € Hosts Vpkt € h.rcvg . —pkt.SSH).

95

Towards Model Checking Real-World Software-Defined Networks

1 handler pktIn(sw, pkt):

2 if allowed_conn[pkt.src] [pkt.src_TCP_port] [pkt.dest] [pkt.dest_TCP_port] then /* allowed_conn is a fixed
* whitelist of TCP
* socket connections
* (host, TCP_port) —
* (host, TCP_port)
*/
3 send_message (PacketOut (pkt, 2), sw)
4 rulei.src « pkt.src
5 rulel.src_TCP_port <« pkt.src_TCP_port
6 rulel.dest <« pkt.dest
7 rulel.dest_TCP_port « pkt.dest_TCP_port
s rulel.fwd_port -2
9 rulel.prio —2
10 rule2.src <« pkt.dest
1 rule2.src_TCP_port <« pkt.dest_TCP_port
12 rule2.dest <« pkt.src
13 rule2.dest_TCP_port « pkt.src_TCP_port
14 rule2.fwd_port —1
15 rule2.prio -2
16 forall s € Switches do // access rules are uniform across all switches, any of which acting as firewall replica
17 send_message (Flowlod (add(rulel)), s)
18 send_message (FlowMod (add (rule2)), s)
19 send_message (BarrierReq(b_id), s) // b_id is uniquely associated with an allowed connection
20 end
21 else
22 send_message (PacketOut (pkt, drop), sw)
23 drop_rule.src <« pkt.src
24 drop_rule.src_TCP_port « pkt.src_TCP_port
25 drop_rule.dest « pkt.dest
26 drop_rule.dest_TCP_port « pkt.dest_TCP_port
27 drop_rule.fwd_port <« drop
28 drop_rule.prio —1
29 forall s € Switches do
30 | send_message(FlowMod(add(drop_rule)), s) // access restrictions are uniform across all replicas
31 end
32 end
33
34 handler barrierIn(sw, xid):
35 controller_view[b_id] [sw] « true /* controller_view associates installed rules (through the respective b_id)
* for respective allowed connections with switches
*/

Controller Program CP2: Stateful inspection firewall (Figure 7b). The property we verify is: “a packet is never
dropped by a rule in a switch if the controller is aware of a matching rule being already installed in this switch”.

Formally: O ([d‘ropm (pkt, sw)]—controller _view|pkt.src][pkt.src_TCP_port||pkt.dest|[pkt.dest_TCP_port] [sw])
where [drop,, (pkt, sw)]P is short for [match(sw, pkt, r)|((r.fwd_ports = drop) = P).

1 handler pktIn(sw, pkt):

2 if not MAC_table[sw] [pkt.src] then // MAC_table associates sender with a switch port
3 MAC_table[sw] [pkt.src] « pkt.in_port

1 end

5 if MAC_table[sw] [pkt.dest] then

6 send_message (PacketOut (pkt, MAC_table[sw] [pkt.dest]), sw)

T

8

9

rule.src « pkt.src
rule.dest < pkt.dest
rule.in_port <« pkt.in_port
10 rule.fwd_port « MAC_table[sw] [pkt.dest]
1 rule.prio <1
12 send_message (FlowMod(add(rule)), sw)
13 else
14 | send_message(PacketOut (pkt, flood\{pkt.in_port}), sw) // pkt will be flooded to all ports except incoming one
15 end

Controller Program CP3: MAC learning applicati()n. for verifying absence of loops. In order to keep track of the
network devices the packet passes through (i.e. the packet path history), the packet type is augmented with a history
bit-field reached, where each bit represents a visited/unvisited switch. As packets are being flooded, their history
bit-field is re-written. The loop freedom property asserts that “a packet should not come back to the same switch”.
Formally, O (sz € Switches Vpkt € sw.pq . ﬁpkt,reached[sw]),

" https://github. com/noxrepo/pox/blob/412a6adb3Bcb6A6T4BcBCEbE5T54978Tab6d2e88/pox/ forvarding/12_learning. py

o6

V. Klimis, G. Parisis, and B. Reus

1
2
3
4
5
6
7
8
9

25

handler pktIn(sw, pkt):
if pkt.SSH and pkt.dest == S then
if not £ then
£ < true
drop_rule.prio —1
drop_rule.SSH <« pkt.SSH
drop_rule.dest <« pkt.dest
drop_rule.fwd_port < drop

forall s € Switches do

send_message (FlowMod(add(drop_rule)), s)
send_message (BarrierReq(b_id), s)
end
else
send_message (PacketOut (pkt, 2), sw)
rule.prio —2
rule.SSH <« pkt.SSH
rule.dest < pkt.dest

rule.fwd_port « 2

forall s € Switches do
| send_message(FlowMod(add(rule)), s)
end
end
else
c‘nd

// f is initialised as false.

pkt is dropped silently

// b_id is a barrier identifier

Controller Program CP4: Wrong nesting level bug: Executmg the else-branch - shaded red - would violate the
policy that “server S (Figure 7a) should not be accessed over SSH”, , O(Vpkt € S.rcvg . —pkt.SsH).

1
2

23

handler pktIn(sw, pkt): // Assumption:

packets_held[sw] [pkt] « true
rule_S « {{dest < S}, {fwd_port « 2}, {prio « 2}}
send_message (FlowMod(add(rule_S)), B)
send_message (BarrierReq(b_id), B)
end

else

| send_message(PacketOut (pkt, 2), sw)

end

handler barrierIn(sw, xid):
if xid == b_id then
rule_S « {{dest « S}, {fwd_port « 2}, {prio < 2}}
forall s € Switches\{B} do
| send_message(FlowMod(add(rule_8)), s)
en
while packets_held[swil [p] for some (p, swi) and p.dest
packets_held[swi] [p] < false
send_message (PacketOut (p, 2),

S do
swi)

end
end

a drop-all rule with priority O is installed in swit

ch B (F:

if pkt.dest == S and BarrierRes(b_id) not received then /* b_id is uniquely associated with rule_S
* overrides the drop-all entry at B, and
* allows packets be forwarded to S through
* port 2
*/
if not packets_held[sw] [pkt] then /* pack eld is temporarily storing packets sent by B until consistent
* update is complete
*/

// all switches except B

sent from

// sui

is the switch packet p was

Controller Program CP5: Consistent updates. We verify the property that
never dropped at any switch

”. Formally

O([dropms (pkt, sw)]—(pkt.dest =

“a packet destined to server S is
S5)), where [drop,;(pkt, sw)]P is short for

[match(sw, pkt, r)]((r.fwd_ports = drop) = P) A [fwd(sw, pkt, fud_ports)]((fwd_ports = drop) = P).

o7

Chapter 4

Model Checking Software-Defined
Networks with Flow Entries that
Time Out

This chapter is an extended version of the author’s paper "Model Checking Software-
Defined Networks with Flow Entries that Time Out" in Proceedings of the 20th Confer-
ence on Formal Methods in Computer-Aided Design — FMCAD 2020. The chapter builds
upon the framework model presented in Chapter 3. To comply with OpenFlow protocol,
it extends this model by allowing flow entries installed in flow tables of switches to expire.
This is an essential extension for modelling TCP sockets that can timeout, i.e., modelling
timeouts in which a socket expects to receive an acknowledgement for sent data before it
decides that the connection has failed. To counterbalance the effect of increasing expressiv-
ity, the model is further optimised by identifying new safe actions which do not have to be
interleaved with other ones, pruning thus redundant state-explorations (as in Chapter 3).
We evaluate the performance of the proposed model extensions in a dual-mixed setting

using a load balancer and a firewall in network topologies of varying size.

o8

ModelChecking Software-Defined Networks with
Flow Entries that Time Out

Vasileios Klimis, George Parisis and Bernhard Reus
University of Sussex, UK
{v.klimis, g.parisis, bernhard} @sussex.ac.uk

Abstract—Software-defined networking (SDN) enables ad-
vanced operation and management of network deployments
through (virtually) centralised, programmable controllers, which
deploy network functionality by installing rules in the flow
tables of network switches. Although this is a powerful ab-
straction, buggy controller functionality could lead to severe
service disruption and security loopholes, motivating the need
for (semi-)automated tools to find, or even verify absence of,
bugs. Model checking SDNs has been proposed in the literature,
but none of the existing approaches can support dynamic
network deployments, where flow entries expire due to timeouts.
This is necessary for automatically refreshing (and eliminating
stale) state in the network (termed as soft-state in the network
protocol design nomenclature), which is important for scaling up
applications or recovering from failures. In this paper, we extend
our model (MoCS) to deal with timeouts of flow table entries, thus
supporting soft state in the network. Optimisations are proposed
that are tailored to this extension. We evaluate the performance
of the proposed model in UPPAAL using a load balancer and
firewall in network topologies of varying size.

I. INTRODUCTION

Software-defined networking (SDN) [1] revolutionised net-
work operation and management along with future protocol
design; a virtually centralised and programmable controller
‘programs’ network switches through interactions (standard-
ised in OpenFlow [2]) that alter switches’ flow tables. In turn,
switches push packets to the controller when they do not store
state relevant to forwarding these packets. Such a paradigm
departure from traditional networks enables the rapid develop-
ment of advanced and diverse network functionality; e.g., in
designing next-generation inter-data centre traffic engineering
[3], load balancing [4], firewalls [5] and Internet exchange
points (IXPs) [6]. Although this is a powerful abstraction,
buggy controller functionality could lead to severe service
disruption and security loopholes. This has led to a significant
amount of research on SDN verification and/or bug finding,
including static network analysis [7], [8], [9], dynamic real-
time bug finding [10], [11], [12], [13], and formal verifi-
cation approaches, including symbolic execution [14], [15],
[16] and model checking [17], [10], [16], [18] methods. A
comprehensive review of existing approaches along with their
shortcomings can be found in [19].

Model checking is a renowned automated technique for
hardware and software verification and existing model check-
ing approaches for SDNs have shown promising results with
respect to scalability and model expressivity, in terms of
supporting realistic network deployments and the OpenFlow

standard. However, a key limitation of all existing approaches
is that they cannot model forwarding state (added in network
switches’ flow tables by the controller) that expires and
gets deleted. Without this, one cannot model nor verify the
correctness of SDNs with soft-state which is prominent in the
design of protocols and systems that are resilient to failures
and scalable; e.g., as in [20], where flow scheduling is on
a per-flow basis, and numerous network protocols where in-
network state is not explicitly removed but expires, so that
overhead is minimised [21].

In this paper, we extend our model (MoCS) [17] to support
soft-state, complying with the OpenFlow specification, by
allowing flow entries to time out and be deleted. We propose
relevant optimisations (as in [17]) in order to improve verifica-
tion performance and scalability. We evaluate the performance
of the proposed model extensions in UPPAAL using a load
balancer and firewall in network topologies of varying size.

II. MoCS SDN MODEL

The MoCS model [17] is formally defined by means of
an action-deterministic transition system. We parameterise
the model by the underlying network topology, A, and the
controller program, CP, in use. The model is a 6-tuple
Mery = (5,50, 4,, AP, L), where S is the set of all
states the SDN may enter, sg the initial state, A the set of
actions which encode the events the network may engage in,
—C S x A x S the transition relation describing which exe-
cution steps the system undergoes as it perform actions, AP a
set of atomic propositions describing relevant state properties,
and L : S — 247 is a labelling function, which relates to any
state s € S a set L(s) € 247 of those atomic propositions that
are true for s. Such an SDN model is composed of several
smaller systems, which model network components (hosts',
switches and the controller) that communicate via queues
and, combined, give rise to the definition of <. A detailed
description of MoCS’ components and transitions can be found
in [17]. Due to lack of space, in this paper, we only discuss
aspects of the model that are required to understand and verify
the soundness of the proposed model extensions, and examples
used in the evaluation section. Figure 1 illustrates a high-level
view of OpenFlow interactions, modelled actions and queues,
including the proposed extensions discussed in Section III.

A host can act as a client and/or server.

SDN
Controller

L
O-@==@—0 Data Plane g brq frq o)

A Control Plane
AN

|— recvy
fwd=s

el
—_—f
e scnd_/

Fig. 1: A high-level view of OpenFlow interactions (left half)
and modelled actions (right half). A red solid-line arrow
depicts an action which, when fired, (1) dequeues an item
from the queue the arrow begins at, and (2) (possibly) adds an
item in the queue the arrowhead points to (or multiple items if
the arrow is double-headed). Deleting an item from the target
queue is denoted by a reverse arrowhead; modifying in, by
a hammerhead. A forked arrow denotes (possibly) multiple
targeted queues.

Host Switch

States and queues: A state is a triple (7, 9,), where 7 is a
family of hosts, each consisting of a receive queue (rcvq); J is
a family of switches, consisting of a switch packet queue (pg),
switch forward queue (fg), switch control queue (cg), switch
flow table (ff); v consists of the local controller program state
cs € C9, and a family of controller queues: request queue (rg),
barrier-reply queue (brq) and flow-removed queue (frg). So m
and 0 describe the data-plane, and ~y the control plane. The
network components communicate via the shared queues. Each
transition models a certain network event that will involve
some of the queues, and maybe some other network state.
Concurrency is modelled through interleavings of those events.
Transitions: Each transition is labelled with an action o € A
that indicates the nature of the network event. We write
s <% 5" and (s,q, s') e— interchangeably to denote that the
network moved from state s to s’ by executing transition a.
The parts of the network involved in each individual «, i.e.
packets, rules, barriers, switches, hosts, ports and controller
states, are included in the transition label as parameters; e.g.,
match(sw,pkt,r) € A denotes the action that switch sw
matches packet pkt by rule r and, as a result, forwards it
accordingly, leading to a new state after transition.

Atomic propositions: The propositions in AP are statements
on (1) controller program states, denoted by Q(gq) which
expresses that the controller program is in state ¢ € CS,
allowing one to reason about the controller’s internal data
structures, and (2) packet header fields — those packets may
be in any switch buffer pg or host buffer rcvg (but no other
buffers). For instance, Ipktesw.pq.P(pkt) is a legitimate
atomic proposition that states that there is a packet in sw’s
packet queue that satisfies packet pkt property P.

Topology: A describes the network topology as a bijective map

99

which associates one network interface (a pair of networking
device and physical port) to another.

Specification Logic: The properties of the SDNs to be
checked in this paper are safety properties, expressed in linear-
time temporal logic without ‘next-step’ operator, LTL\ (~;. We
have enriched the logic by modal operators of dynamic logic
[22], allowing formula construct of the form [«(Z)]P stating
that whenever an event (%) happened, P must hold. Note that
P may contain variables from z. This extension is syntax sugar
in the sense that the formulae may be expressed by additional
state; e.g., [match(sw, pkt, r)|(r.fudPort = drop) states
that if match happened, it was via a rule that dropped the
packet. This permits specification formulae to be interpreted
not only over states, but also over actions that have happened.
The model checking problem then, for an SDN model M cp)
with a given topology A, a control program CP and a formula
o of the specification logic as described above, boils down
to checking whether all runs of My cpy satisfy ¢, short
M()\,CP)): .

SDN Operation: End-hosts send and receive packets (send
and recv actions in Figure 1) and switches process incoming
packets by matching them (or failing to) with a flow table
entry (rule). In the former case (match action), the packet
is forwarded as prescribed by the rule. In the opposite case
(nomatch action), the packet is sent to the controller (Pack-
etln message on the left side of Figure 1). The controller’s
packet handler is executed in response to incoming Packetln
messages; as a result of its execution, its local state may
change, a number of packets (PacketOut message) and rule
updates (FlowMod message), interleaved with barriers (Bar-
rierReq message), may be sent to network switches. Network
switches react to incoming controller messages; they forward
packets sent by the controller as specified in the respective
PacketOut message (fwd action), update their own forwarding
tables (add/del actions), respecting set barriers and notifying
the controller (BarrierRes message) when said barriers are
executed (brepl action). Finally, upon receiving a BarrierRes
message, the controller executes the respective handler (bsync
action), which can result in the same effects as the Packetin
message handler.

Abstractions: To obtain finitely representable states, all
queues in the model must be finitely representable. For packet
queues we use multisets, subject to (0,00) abstraction [23];
a packet either does not appear in the queue or appears an
unbounded number of times. The other queues are simply
modelled as finite sets. Modelling queues as sets means that
entries are not processed in the order of arrival. This is
intentional for packet queues but for controller queues this
may limit behaviour unless the controller program is order-
insensitive. We focus on those controller programs in this

paper.
III. MODELLING FLOW ENTRY TIMEOUTS

In order to model soft-state in the network, we enrich our
model with two new actions that model flow entry timeouts
and subsequent handling of these timeouts by the controller

program. Note that in our model, timeouts are not triggered
by any kind of clock; instead, they are modelled through the
interleaving of actions in the underlying transition system that
ensure that flow removal (and subsequent handling by the
controller program) will appear as it would for any possible
value of a timeout in a real system.

The new actions are defined as follows: frmvd(sw,) mod-
els the timeout event, as an action in the transition system that
removes the flow entry (rule) r from switch sw and notifies
the controller by placing a FlowRemoved message (see Figure
1) in the respective queue (frg). The fsync(sw,r, cs) action
models the call to the FlowRemoved message handler. As a
result of the handler execution, the controller’s local state (cs)
may change, a number of packets (PacketOut messages) and
rule updates (FlowMod messages), interleaved with barriers
(BarrierReq message), may be sent to network switches. In
order to model timeouts, rules are augmented with a timeout
bit which, when true, signals that the installed rule can be
removed at any time, i.e., the frmvd-action can be interleaved,
in any order, with any other action that is enabled at any state
later than the installation of this rule.

To support our examples, we add to the set of FlowMod

messages a modify flow entry instruction. In [17] we only
used add(sw,r) and del(sw, r) messages, for installing and
deleting rule r at switch sw, respectively. We now add
mod(sw, f, a) to these messages. This instructs switch sw that
if a rule is found in sw.ft that matches field f, its forwarding
actions are modified by a. If no such rule exists, mod(-) does
not do anything.
Optimisation: To tackle the state-space explosion, we exploit
the fact that some traces are observationally (w.r.t. the property
to be proved) equivalent, so that only one of those needs to be
checked. This technique, referred to as partial-order reduction
(POR) [24], reduces the number of interleavings (traces) one
has to check. To prove equivalence of traces, one needs actions
to be permutable and invisible to the property at hand. This is
the motivation for the following definition:

Definition 1 (SAFE ACTIONS) Given a context CTX =
(cP, A,), and SDN model My cpy = (S, A, =, 50, AP, L),
an action a(-) € A(s) is called safe if it is (1) independent
of any other action in A, i.e. executing « after 3 leads to
the same state as running (3 after «, and (2) unobservable for
¢ (also called p-invariant), i.e., s |= @ iff a(s) = ¢ for all
s € S with a € A(s).

The following property of controller programs is needed to
show safety:

Definition 2 (ORDER-SENSITIVE CONTROLLER PROGRAM)
A controller program CP is order-sensitive if there exists a state
s € S and two actions «, 8 in {ctri(-), bsync(-), fsync(-)} such
that o, B € A(s) and s <> 51 <5 55 and s <> s3 <> 54 with
So # S4.

In [17] we already showed that certain actions are safe and
can be used for PORs. We now show that the new fsync(:)
action is safe on certain conditions.

60

Lemma 1 (SAFENESS PREDICATES FOR fsync) For transition
system My cpy = (S, 4,,50, AP, L) and a formula ¢ €
LTL\{y, a = fsync(sw, 7, cs) is safe iff the following two
conditions are satisfied:

Independence CP is not order-sensitive

Invisibility if Q(q) in AP occurs in ¢, then
« is p-invariant
Proof. See Appendix A. O

Given a context CTX = (CP, A, ¢) and an SDN network
model My cp) = (S, A, >, 50, AP, L), for each state s € S
define ample(s) as follows: if {a € A(s) | « safe } # &,
then ample(s) = {a € A(s) | « safe }; otherwise ample(s) =
A(s). Next, we define M{&CP) = (87, A, >, 80, AP, LT,
where S/ < S the set of states reachable from the initial
state so under <>, L (s) = L(s) for all s € S/ and <,
€ 8" x A x S is defined inductively by the rule:

o /
Sa;S if ae€ ample(s)
5 =g 8
Now we can proceed to extend the POR Theorem of [17]:

Theorem 1 (FLOW-REMOVED EQUIVALENCE) Given a prop-
erty ¢ € LTL\ (), it holds that M{;.CP) satisfies @ iff My cp)
satisfies . '

The proof is a consequence of Lemma 1 applied to the proof
of Theorem 2 in [17]. See Appendix A for a detailed proof.

IV. EXPERIMENTAL EVALUATION

In this section we experimentally evaluate the proposed
extensions in terms of verification performance and scalability.
We use a realistic controller program that enables a network
switch to act both as a load balancer and stateful firewall (see
§V-CP1). The load balancer keeps track of the active sessions
between clients and servers in the cluster (see Figure 2), while,
at the same time, only allowing specific clients to access
the cluster. Soft state is employed here so that flow entries
for completed sessions (that were previously admitted by the
firewall) time out and are deleted by the switch without having
to explicitly monitor the sessions and introduce unnecessary
signalling (and overhead). In the underlying SDN model, the
frmvd action is fired, which, in turn, deletes the flow entry
from the switch’s table and notifies the controller of that. This
enables the fsync action that calls the flow removal handler.

A

server cluster

Fig. 2: Four clients and two servers connecting to an OF-
switch. B is not white-listed.

A session is initiated by a client which sends a packet
(pkt in §V-CP1) to a known cluster address; servers are

not directly visible to the client. Sessions are bi-directional
therefore the controller must install respective rules to the
switch to allow traffic to and from the cluster. The property
that is checked here is that (1) the traffic (i.e. number of
sessions, assuming they all produce similar traffic patterns),
and resulting load, is uniformly distributed to all available
servers, and (2) that traffic from non-whitelisted clients is
blocked. More concretely, “a packet from a ‘dodgy’ address
should never reach the servers, and the difference between the
number of assigned sessions at each server should never be
greater than 17, formally,
O (Vsi, sj € Servers Ypkt € s;.rcvq .

—phkt.src = dodgy A |sLoad|[s;] — sLoad[s;]| < 2)
where sLoad stores the active session count for each server.

In the first (buggy) version of the controller’s packet handler
(shaded grey in §V-CP1) and flow removal handler §V-CP2,
the controller program assigns new sessions to servers in a
round-robin fashion and keeps track of the active sessions
(array deplSessions in the provided pseudocode). When a
session expires, the respective flow table entry is expected
to expire and be deleted by the switch without any signalling
between the controller, clients or servers®. As stated above,
this controller program does not satisfy safety property ¢
because the controller does nothing to rebalance the load when
a session expires. Our model implementation® discovered the
bug in the topology shown in Figure 2 with 3 sessions in 11ms
exploring 202 states.

In the second (still buggy) version of the controller, session
scheduling is more sophisticated (shaded blue in §V-CP1); a
session is assigned to the server with the least number of active
sessions. Although the updated load balancing algorithm does
keep track of the active sessions per server, this controller is
still buggy because no rebalancing takes place when sessions
expire. In a topology of 4 clients and 2 servers, we were able
to discover the bug in 52ms after exploring 714 states.

We fix the bug by allowing the controller program to
rebalance the active sessions, when (1) a session expires and
(2) the load is about to get out of balance, by moving one
session from the most-loaded to the least-loaded server (§V-
CP3). In the same topology as above, we verified the property
in 625ms after exploring 15068 states.*

Next, we evaluate the performance of the proposed model
and extensions for verifying the correctness of the property
in a given SDN. We do that by verifying ¢ with the correct
controller program, discussed above, and scaling up the topol-
ogy in terms of clients, servers and active sessions. Results are
listed in Table I and state exploration is illustrated in Figure 4.

Table I lists performance of the model checker for verifying
the correct controller program with PORs disabled on the

(»)

2It is worth stressing that modelling such functionality is not supported by
existing model checking approaches, such as [17] and [18], where flow table
entries can only be explicitly deleted by the controller.

3UpPPAAL [25] is the back-end verification engine for MoCS and all
experiments were run on an 18-Core iMac pro, 2.3GHz Intel Xeon W with
128GB DDR4 memory.

4Note that the fsync-optimisation was not enabled in the examples above.

61

left and with PORs enabled on the right, respectively. For
each chosen topology we list the number of states explored,
CPU time used, and memory used. The topology is shaped
as in Figure 2, and parametrised by the number of clients
(ranging from 3 to 5) and servers (ranging from 2 to 5),
as indicated in Table I. The number of required packets and
rules, respectively, is shown in grey. These numbers are always
uniquely determined by the choice of topology. Where there
are no entries in the table (indicated by a dash) the verification
did not terminate within 24 hours.

The results clearly show that the verification scales well
with the number of servers but not with the number of clients.
The reason for the latter is that for each additional client an
additional packet is sent, which, according to programs §V-
CP1 and CP3, leads to 7 additional actions without timeouts
and to 12 with timeouts. The causal ordering of these actions is
shown in Fig. 3. The sub-branch in red shows the actions that
appear due to a timeout of the added rule. Thus, the number of
states is exponential in the number of clients: every new action
in Fig. 3 leads to a new change of state, thus doubling the
possible number of states. This exponential blow-up happens
whether we have timeouts or not. With timeouts, however,
we have worse exponential complexity as there are more new
states generated.

send(pkt)

l

nomatch(pkt)

l

ctri(pkt)

add(rule) add(rules) fwd (pkt)

l l l

match(pkt, rule) frmvd(rules) recv(pkt)

l

fsync(rules)

—

mod(r) mod(rs)

Fig. 3: The causal enabling relation between actions for an
additional packet pkt; only the relevant arguments are shown
using the same nomenclature as in the pseudocode.

The results also demonstrate that, for network setups with
three clients, the POR optimisation reduces the state space —
and thus the verification time — by about half. For more clients
the reduction is far more significant, given that the verification
of the unoptimised model did not terminate within 24 hours.
This is not surprising as the number of possible interleavings is
massively increased by the non-deterministic timeout events.

V. CONTROLLER PROGRAMS

CP1 implements the PacketIln message handler that pro-
cesses packets sent by switches when the nomatch action is
fired. The two different versions of functionality discussed
in the paper are defined by the leastConnectionsScheduling

(7} 5
o 10
E = - - py
]
5

] 4
5 4 N) 3 Clients
Servers

Fig. 4: Explored States (logarithmic scale). Wide bars repre-
sent the optimised model and narrow ones (inside) the unop-
timised model. Uncoloured bars represent non-termination.

TABLE I: Performance by number of clients and servers

. without POR with POR

t o % «|States CPU Resident| States CPU Resident
BLT S user memory user memory
SaLE time [KiB] time [KiB]
32 3 13| 15,068 553ms 9,516 8,264 317ms 9,016
3 3 3 19| 15,068 700ms 10,688 8,264 322ms 8,792
34 3 25| 15,068 841ms 11,936 8,264 483ms 10,488
35 3 31| 15,068 987ms 15,280 8,264 563ms 12,844
42 4 17 - - - 13,244,474 13.2m 2,508,528
4 3 4 25 - - - 24,623,435 30.77m 5,432,004
4 4 4 33 - - - 24,623,435 37.23m 13,129,916
45 4 41 - - - 24,623,435 42.64m 15,443,136
52521 - - - - - -

constant. When leastConnectionsScheduling is false, server
selection is done in a round-robin fashion, whereas, in the
opposite case, the controller assigns the new session to the
server with the least number of active sessions.

CP2 implements the naive (and buggy) FlowRemoved mes-
sage handler. When soft state expires in the network, the
handler merely updates its local state to reflect the update in
the load.

CP3 implements a more sophisticated (and correct) FlowRe-
moved message handler. When soft state expires in the net-
work, the handler updates its local state to reflect the update
in the load and re-assigns active sessions from the most to the
least loaded server, by updating the flow table of the switch
accordingly.

VI. CONCLUSION AND FUTURE WORK

We have proposed model checking of SDN networks with
flow entries (rules) that time out. Timeouts pose problems due
to the great number of resulting interleavings to be explored.
Our approach is the first one to deal with timeouts, exploiting
partial-order reductions, and performing reasonably well for
small networks. We demonstrated that bug finding works well
for SDN networks in the presence of flow entry timeouts.
Future work includes exploring flow removals with timeouts
that are constrained by integer to enforce certain orderings of
timeout messages as well as improvements in performance,
for instance, by using bounded model checking tools for
concurrent programs.

62

Controller Program CP 1: Packetln Message Handler

1: handler pktin(pkt, sw)

2 if pkt.srcIP # dodgy_client then

3: if —deplSessions|pkt.srcIP] then

4: if ﬁleastConnectionsSchedulmg then

Round-Robin rotation

5: server < server mod 2 + 1
6: else
Least—-Connections scheduling
7: server < min(sLoad[])
8: end if
Initialisation of flow to server
9: rule.srcIP «— pkt.srclP
10: rule.in_port «— pkt.in_port
11: rule.fwdPort «— server
Initialisation of symmetric ruleg
12: rules.srclP «— server
13: rules.destIP — pkt.srcIP
14: rules.fwdPort — pkt.in_port
15: rules.timeout «— true
Initialisation of drop rule ruleyg
16: ruleq.srcIP — dodgy_client
17: ruleq.fwdPort «— drop
Deployment of rules
18: send_message FlowMod add(rule)),sw)
19: send_message (FlowMod (add(rules)), s’w)
20: send_message (FlowMod (add(ruleq)), sw)
Update firewall state table
21: sLoad|[server]++
22: deplSessions|pkt.srcIP]| « true
23: end if
acketOut: sending pkt out through
24: send message{PacketOut(pkt server) sw)
25: end if

26: end handler

Controller Program CP 2: Naive FlowRemoved message
handler

1: handler flowRmuvd(rules, sw)

2 sLoad[rules.srcIP]--

3: deplSessions|rules.destIP] «— false
4: end handler

Controller Program CP 3: Correct FlowRemoved message
handler

1: handler flowRmuvd(rules, sw)

2 sLoad[rules.srcIP]--

3 deplSessions|rules.destIP] «— false

4 if maz (sLoad[]) — min(sLoad[]) > 1 then
5: r <« the rule in sw.ft with fwdPort = max(sLoad|])
6: rs < symmetric rule of r

7: em «— mod (r, fudPort « min(sLoad([]))

8 ems < mod (rs, srcIP «— min(sLoad([]))

9 send_message (FlowMod(cm, sw))

0
1

10 send_message (FlowMod(cms, sw))

11: sLoad|maz (sLoad[])]--
12: sLoad[min(sLoad[])]++
13: end if

14: end handler

REFERENCES

[1] N. Feamster, J. Rexford, and E. Zegura, “The road to SDN,” SIGCOMM
Computer Communication Review, 2014.

[2] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “OpenFlow: Enabling Innovation
in Campus Networks,” SIGCOMM Comput. Commun. Rev., 2008.

[3] A.R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, and

S. Banerjee, “DevoFlow: scaling flow management for high-performance

networks,” SIGCOMM, 2011.

N. Handigol, S. Seetharaman, M. Flajslik, N. McKeown, and R. Jo-

hari, “Plug-n-Serve: Load-balancing web traffic using OpenFlow,” SIG-

COMM, 2009.

[5] H. Hu, G.-J. Ahn, W. Han, and Z. Zhao, “Towards a Reliable SDN

Firewall,” in ONS, 2014.

N. Feamster, J. Rexford, S. Shenker, R. Clark, R. Hutchins, D. Levin,

and J. Bailey, “SDX: A software-defined Internet exchange,” Open

Networking Summit, 2013.

H. Mai, A. Khurshid, R. Agarwal, M. Caesar, P. B. Godfrey, and S. T.

King, “Debugging the data plane with anteater,” in SIGCOMM, 2011.

[8] P. Kazemian, G. Varghese, and N. McKeown, “Header space analysis:

Static checking for networks,” in NSDI, 2012.

T. Ball, N. Bjgrner, A. Gember, S. Itzhaky, A. Karbyshev, M. Sagiv,

M. Schapira, and A. Valadarsky, “VeriCon: Towards Verifying Controller

Programs in Software-defined Networks,” in PLDI, 2014.

J. McClurg, H. Hojjat, P. Cerny, and N. Foster, “Efficient synthesis of

network updates,” in PLDI, 2015.

G. D. Plotkin, N. Bjgrner, N. P. Lopes, A. Rybalchenko, and G. Vargh-

ese, “Scaling network verification using symmetry and surgery,” in

POPL, 2016.

A. Horn, A. Kheradmand, and M. R. Prasad, “Delta-net: Real-time

Network Verification Using Atoms,” in NSDI, 2017.

P. Kazemian, M. Chang, H. Zeng, G. Varghese, N. McKeown, and

S. Whyte, “Real Time Network Policy Checking Using Header Space

Analysis,” in NSDI, 2013.

R. Stoenescu, M. Popovici, L. Negreanu, and C. Raiciu, “SymNet:

Scalable symbolic execution for modern networks,” in SIGCOMM, 2016.

M. Canini, D. Venzano, P. Peresini, D. Kosti¢, and J. Rexford, “A NICE

Way to Test Openflow Applications,” in NSDI, 2012.

Y. Jia, “NetSMC : A Symbolic Model Checker for Stateful Network

Verification,” in NSDI, 2020.

V. Klimis, G. Parisis, and B. Reus, “Towards Model Checking Real-

World Software-Defined Networks,” in CAV, 2020.

R. Majumdar, S. Deep Tetali, and Z. Wang, “Kuai: A model checker

for software-defined networks,” in FMCAD, 2014.

Y. Li, X. Yin, Z. Wang, J. Yao, X. Shi, J. Wu, H. Zhang, and Q. Wang,

“A survey on network verification and testing with formal methods:

Approaches and challenges,” IEEE Surveys & Tutorials, 2019.

M. Al-Fares, S. Radhakrishnan, and B. Raghavan, “Hedera: Dynamic

Flow Scheduling for Data Center Networks.” in NSDI, 2010.

P. Ji, Z. Ge, J. Kurose, and D. Towsley, “A comparison of hard-state and

soft-state signaling protocols,” IEEE/ACM Transactions on Networking,

2007.

V. R. Pratt, “Semantical considerations on Floyd-Hoare logic,” in FOCS,

1976.

A. Pnueli, J. Xu, and L. Zuck, “Liveness with (0, 1, c0)-counter abstrac-

tion,” in CAV, 2002.

D. Peled, “All from one, one for all: on model checking using repre-

sentatives,” in CAV, 1993.

G. Behrmann, A. David, K. G. Larsen, P. Pettersson, and W. Yi, “De-

veloping UPPAAL over 15 years,” Software: Practice and Experience,

2011.

[4

=

[6

=

[7

[9

[10]

[11]

[12]

[13]

[14]
[15]
[16]
[17]
[18]

[19]

[20]

[21]

[22]
[23]
[24]

[25]

APPENDIX

A Proofs

Lemma 1 (SAFENESS) For transition system My cp)
(S,A,—>,50,AP,L) and a formula ¢ € LTL\(}, a =
fsync(sw,r, cs) is safe iff the following two conditions are
satisfied:

Independence CP is not order-sensitive

63

Invisibility if Q(g) in AP occurs in ¢, then

« is p-invariant

Proof. To show safety we need to show two properties:
independence (action is independent of any other action) and
invisibility w.r.t. the context, in particular controller program,
topology function and formula ¢.

Independence: Recall that two actions o and 5 # « are
independent iff for any state s such that @ € A(s) and
B e A(s):

(1) ave A(B(s)) and € A(a(s))

2) a(B(s)) = Bla(s))

(1) It can be easily checked that no instance of safe actions
fsync(-) disables any other action, nor is any safe
fsync(-) disabled by any other action, so the first
condition of independence holds.

(2) For any safe o = fsync(-) and any other action § we can
assume already that they meet Condition (1). To show
that any interleaving with any action 8 # « leads to the
same state, we observe that
» if 8 is not an fsync, ctrl or bsync action, then the

mutations of queues by these actions do not interfere
with each other.

» The interesting cases occur when [is in
{fsync(-), ctrl(-), bsync(-)}. From the first condition
we know that CP is not order-sensitive, which implies
that « and g are independent. Order-insensitivity is a
relatively strong condition but it ensures correctness
of the lemma and thus partial order reduction.’> Thus
any interleaving of o and 3 leads to the same state.

Invisibility: a = fsync(sw, r, cs) may only affect frg, sw'.fg,
sw’.cq (for some switches sw’), and the control state cs.
We know by definition of our Specification Language that an
atomic proposition cannot refer to frg or any fq, cq. In case
the control state changes, « is invisible to ¢ because of the
second condition (/nvisibility) of Lemma 1.

O

Theorem 1 (FLOW-REMOVED EQUIVALENCE) Given a prop-
erty ¢ € LTL\ (}, it holds that M{g cp) satisfies @ iff My cp)
satisfies (.

Proof. If ample(s) satisfies the following conditions:
C1 (Non)emptiness condition: @ # ample(s) € A(s).

C2 Dependency condition: Let 5 <=5 s1... <<% 5, <> ¢ be a
run in M. If 5 € A\ample(s) depends on ample(s), then
a; € ample(s) for some 0 < i < n, which means that in
every path fragment of M, /3 cannot appear before some

transition from ample(s) is executed.

SGeneralisations by a more clever analysis of the controller program are a
future research topic.

C3

C4

Invisibility condition: If ample(s) # A(s) (i.e., state s is
not fully expanded), then every o € ample(s) is invisible.
Every cycle in M/" contains a fully expanded state s (i.e.
ample(s) = A(s)).

then for each path in M there exists a stutter-trace equivalent
path in M/", and vice-versa, denoted M = MP _ as we now
show.

Cl

c2

C3

C4

The (non)emptiness condition is trivial since by definition
of ample(s) it follows that ample(s) = @ iff A(s) = @.
By assumption 8 € A\ample(s) depends on ample(s).
But with our definition of ample(s) this is impossible
as all actions in ample(s) are safe and by definition
independent of all other actions.

The validity of the invisibility condition is by definition
of ample and safe actions. '
We now show that every cycle in M ')\ op) Contains a fully
expanded state s, i.e. a state s such that ample(s) = A(s).
By definition of ample(s) it is equivalent to show that
there is no cycle in M(K,CP) consisting of safe actions
only. We show this by contradiction, assuming such a
cycle of only safe actions exists.

Distinguish two cases.
Case 1 A sequence of safe actions of same type.
Let p an execution of MJZ\ cP) which con-

sists of only one type of fsync-actions: p =
fsync(swi,m1,¢81) fsync(swa,r2,cs2)
R

S1 > S2 fr
fsync(swi—17ri—1,,¢8i—1)

.S #r S;. Suppose p

is a cycle. According to the fsync seman-

. . fsync(sw,r,cs)
tics, for each transition s ————>. ¢/,

where s = (7,0,7), s’ = (7’,d’,7’), it holds that
~'.frg = v.frg\{r} as we use sets to represent
frq buffers. Hence, for the execution p it holds
~i-frg = v1.frg\{r1,72,...r;i—1} which implies
that s; # s;. Contradiction.

Case 2 A sequence of different safe actions. Suppose
there exists a cycle with mixed safe actions
starting in s; and ending in s;. Distinguish the
following cases.

1) There exists at least a fsync action in the
cycle. According to the effects of safe tran-
sitions, the fsync action will switch to a state
with smaller frg. It is important here that no
action of other type than fsync accesses frq.
This implies that s; # s;. Contradiction.

ii) No fsync action in the cycle. This is already
established in [17].

O

64

65

Chapter 5

Conclusions and Future Work

Networks are widely acknowledged to be notoriously difficult to verify because of the in-
tricacy involved in reasoning about concurrency. To make significant headway, networking
needs general, lightweight, reusable and robust abstractions that can be reasoned about as
expediently as possible. Having chosen as modelling mechanism for concurrency a commu-
nication which is based on shared-state (through interleavings), we began by developing an
eminently expressive and optimised OpenFlow/SDN model that can be checked efficiently
to find (or verify the absence of) latent real-world bugs. We showed that the abstractions
are provably correct, preserving the initial verification promises, and demonstrated their
prominence as contrasted with the state-of-the-art in terms of expressivity and perform-
ance/scalability. We then presented some enhancements to the baseline model, which, by
embedding richer semantics, allow capturing aspects of flow removals caused by timeouts,
complying, thus, with the OpenFlow specification. Though the final model is moderately
heavyweight, we proposed additional lightweight optimisations in order to offset the ad-
ditional overhead that the complex semantics usually brings along. The optimisations
explore different trade-offs in time and space.

The major upshot of all the aforementioned efforts is a general framework for establish-
ing correctness of OpenFlow-based Software-Defined Networks with mathematical rigour

in a timely manner.

5.1 Future Directions

This section looks at some of the promising future directions.

Automatic discovery of equivalence classes In our ongoing research, we are in-

vestigating new techniques that make model checking SDNs faster and cheaper. A useful

66

direction for future work is to explore automatic computation of equivalence classes of

packets that cover all visible behaviours (where we still computed semi-manually).

Exploring the benefits to using several model checkers Although we demonstrated
our approach concretely using the UPPAAL model checker, it applies quite broadly; our
modular abstractions can be compiled into any other type of static analysis which can also
benefit from them. In this regard, comparing the performance of our abstractions using
them on other state of the art model checkers and choosing the right one for a particular

problem domain, is another interesting research direction that is worth investigating.

Liveness Yet, another thread in our ongoing and future work focuses on extending our
formal model to provide liveness (on top of safety) promises in software-defined networks.
The liveness problem, however, tend to be harder than the reachability-based safety. The
reason for this is fairly straightforward: liveness properties constraint infinite behaviours
and reasoning about all infinite paths to establishing liveness entails proving that there
are no unfair cycles within the runs of the abstract transition system, which is computa-
tionally expensive and, in some cases, undecidable. Thus, unfair situations, like premature
termination (deadlock) and starvation, may jeopardise the liveness of executions. In order
to rule out such unfair situations and verify liveness in SDNs, we are taking account of

fairness assumptions by exploring different traps and patterns.

More expressivity Asnot every OpenFlow message is incorporated in our model, such as
Features Request/Reply, Get Config Request/Reply, Set Config, Stats Request/Reply,

etc, future work could consider modelling new actions, allowing for more expressive models.

Verifying compliance of state changes in real time This work proposed tech-
niques for what one might reasonably call static analysis of a Software-Defined Network.
A promising direction for future work is verifying ‘dynamically’ properties by capturing
likely changes of the forwarding state that may happen over time, either due to targeted
configurations by operators or in-network degradations. This could be achieved through an
incremental model checking by getting the network devices to expose incremental changes

to their state to MoCS either via "pushed" SNMP traps or polling by MoCS.

Higher level specification language While our specification language leaves no space
as to its interpretation, we want to explore injecting assertions (correctness properties)
at higher levels of abstraction with a more intuitive notation, all while maintaining the
uncompromising mathematical rigour. This will allow the intended behaviour of SDNs to

be easily specified even by non-computer scientists.

Automated modelling MoCS is a man-made model from the OpenFlow specifications.

67

As SDN controller programs become increasingly complex, algorithms adept in automat-
ically building more expressive models are needed. Verification of models of ‘real-world’
concurrent behaviour in SDNs which are based on model learning, is another unexplored
and challenging area of research which can be highly effective in subduing complexity and

fostering scalability.

5.2 A final remark

As a final remark, the immense complexity of Software-Defined Networks and Controller
Programs is necessitating ever more elegant and powerful abstractions which will ameliorate
the state space explosion, but at the same time being sufficiently expressive to capture a
wide range of complex problems in a natural way. In exploring this thesis, the aim has
been for the framework to be powerful, yet both simple and intuitive. The hope is that
this work will mark a turning point in reasoning about networks formally and will inspire

further research directed at extending our arguments.

68

Extended Bibliography

Note: Here is a comprehensive list of resources that were consulted during

the writing of the thesis.

Cisco Systems Inc. Spanning tree protocol problems and related design con-

siderations. http://www.cisco.com/c/en/us/support/docs/lan-switching/

spanning-tree-protocol/10556-16.html.

Floodlight OpenFlow Controller. https://floodlight.atlassian.net/wiki/spaces/

floodlightcontroller/.

HASSEL-C: An optimized version of the header space library written in C. https:

//bitbucket.org/peymank/hassel-public/.

ITU-T Y.3300: Framework of software-defined networking. https://www.itu.int/

rec/dologin_pub.asp?lang=e&id=T-REC-Y.3300-201406-I!!PDF-E&type=

items.

Mininet: An Instant Virtual Network on your Laptop (or other PC). http://

mininet.org.

Nicira- It’s time to virtualize the network. http://www.netfos.com.tw/PDF/Nicira/

ItisTimeToVirtualizetheNetworkWhitePaper.pdf.

ns-3: Openflow switch support. https://www.nsnam.org/docs/release/3.13/models/

html/openflow-switch.html.
Open Networking Foundation. https://www.opennetworking.org/.

OpenContrail. https://github.com/tungstenfabric/tf-controller.

OpenDaylight: An open source SDN controller platform. http://

www.opendaylight.org/.

http://www.cisco.com/c/en/us/support/docs/lan-switching/spanning-tree-protocol/10556-16.html
http://www.cisco.com/c/en/us/support/docs/lan-switching/spanning-tree-protocol/10556-16.html
https://floodlight.atlassian.net/wiki/spaces/floodlightcontroller/
https://floodlight.atlassian.net/wiki/spaces/floodlightcontroller/
https://bitbucket.org/peymank/hassel-public/
https://bitbucket.org/peymank/hassel-public/
https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-Y.3300-201406-I!!PDF-E&type=items
https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-Y.3300-201406-I!!PDF-E&type=items
https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-Y.3300-201406-I!!PDF-E&type=items
http://mininet.org
http://mininet.org
http://www.netfos.com.tw/PDF/Nicira/It is Time To Virtualize the Network White Paper.pdf
http://www.netfos.com.tw/PDF/Nicira/It is Time To Virtualize the Network White Paper.pdf
https://www.nsnam.org/docs/release/3.13/models/html/openflow-switch.html
https://www.nsnam.org/docs/release/3.13/models/html/openflow-switch.html
https://www.opennetworking.org/
https://github.com/tungstenfabric/tf-controller
http://www.opendaylight.org/
http://www.opendaylight.org/

69

Opening designs for 6-pack and Wedge 100. https://code.facebook.com/posts/
203733993317833/0opening-designs-for-6-pack-and-wedge-100/.

POX OpenFlow controller. https://github.com/noxrepo/pox.
Ryu Controller. https://ryu-sdn.org/.

The Frenetic Research Project. http://www.frenetic-lang.org.
The LLVM Compiler Infrastructure. http://11lvm.org/.

SDN Migration Considerations and Use Cases, 2014. https://opennetworking.org/

wp-content/uploads/2014/10/sb-sdn-migration-use-cases.pdf.

VMware NSX Customer Story: Colt Decreases Data Center Networking Complex-
ity, 2014. https://blogs.vmware.com/networkvirtualization/2014/08/
vmware-nsx-customer-story-colt-decreases-data-center-networking-

complexity.html/.
Fides Aarts and Frits Vaandrager. Learning I/O automata. In CONCUR, 2010.

Riadh Ben Abdallah, Tanguy Risset, Ian F. Akyildiz, et al. Soft RAN: Software defined

radio access network. IEEE Communications Magazine, 2014.

Ian F. Akyildiz, Pu Wang, and Shih Chun Lin. SoftAir: A software defined networking

architecture for 5G wireless systems. Computer Networks, 2015.

Mohammad Al-Fares, Sivasankar Radhakrishnan, and Barath Raghavan. Hedera:
Dynamic Flow Scheduling for Data Center Networks. In NSDI, 2010.

Ehab Al-Shaer and Saeed Al-Haj. FlowChecker: Configuration analysis and verifica-
tion of federated OpenFlow infrastructures. In SafeConfig, 2010.

Ehab Al-Shaer, Will Marrero, Adel El-Atawy, and Khalid ElBadawi. Network config-
uration in a box: Towards end-to-end verification of network reachability and

security. In ICNP.

Elvira Albert, Miguel Gomez-Zamalloa, Albert Rubio, Matteo Sammartino, and Al-
exandra Silva. SDN-Actors: Modeling and verification of SDN programs. In
FM, 2018.

Hassan Ali-Ahmad, Claudio Cicconetti, Antonio De La Oliva, et al. An SDN-based

network architecture for extremely dense wireless networks. In SDN4FNS

https://code.facebook.com/posts/203733993317833/opening-designs-for-6-pack-and-wedge-100/
https://code.facebook.com/posts/203733993317833/opening-designs-for-6-pack-and-wedge-100/
https://github.com/noxrepo/pox
https://ryu-sdn.org/
http://www.frenetic-lang.org
http://llvm.org/
https://opennetworking.org/wp-content/uploads/2014/10/sb-sdn-migration-use-cases.pdf
https://opennetworking.org/wp-content/uploads/2014/10/sb-sdn-migration-use-cases.pdf
https://blogs.vmware.com/networkvirtualization/2014/08/vmware-nsx-customer-story-colt-decreases-data-center-networking-complexity.html/
https://blogs.vmware.com/networkvirtualization/2014/08/vmware-nsx-customer-story-colt-decreases-data-center-networking-complexity.html/
https://blogs.vmware.com/networkvirtualization/2014/08/vmware-nsx-customer-story-colt-decreases-data-center-networking-complexity.html/

70

Workshop on Software Defined Networks for Future Networks and Services,
2013.

Mohammad Alizadeh, Albert Greenberg, and Da Maltz. DCTCP: Efficient packet
transport for the commoditized data center. SIGCOMM, 2010.

Mohammad Alizadeh, Navindra Yadav, George Varghese, Tom Edsall, Sarang
Dharmapurikar, Ramanan Vaidyanathan, Kevin Chu, Andy Fingerhut,
Vinh The Lam, Francis Matus, and Rong Pan. CONGA. In Proceedings of
ACM SIGCOMM, 2014.

Mohammad Alizadeh, Shuang Yang, Sachin Katti, Nick McKeown, Balaji Prabhakar,
and Scott Shenker. Deconstructing datacenter packet transport. Proceedings
of the 11th ACM Workshop on Hot Topics in Networks - HotNets-XI, pages
133-138, 2012.

Bowen Alpern and Fred B. Schneider. Defining liveness. IPL, 1985.

Rajeev Alur and David Dill. Automata for modeling real-time systems. Automata,

languages and programming, 443(443):322-335, 1990.

Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical Computer
Science, 126(2):183-235, 1994.

Rajeev Alur, Tomas Feder, and Thomas a. Henzinger. The benefits of relaxing punc-

tuality. Journal of the ACM, 43(1):116-146, 1996.

Rajeev Alur and Thomas A. Henzinger. A really temporal logic. Journal of the ACM,
41(1):181-203, 1994.

Carolyn Jane Anderson, Nate Foster, Arjun Guha, Jean Baptiste Jeannin, Dexter
Kozen, Cole Schlesinger, and David Walker. NetkAT: Semantic foundations
for networks. In POPL, 2014.

Dana Angluin. Learning regular sets from queries and counterexamples. Information

and Computation, 1987.

Muhammad Bilal Anwer, Murtaza Motiwala, Muhammad Mukarram Bin Tariq, and
Nick Feamster. Switchblade: a platform for rapid deployment of network proto-
cols on programmable hardware. ACM SIGCOMM Computer, pages 183-194,
2010.

71

Eugene Asarin, Oded Maler, Amir Pnueli, and Joseph Sifakis. Controller Synthesis
For Timed Automata. Proceedings of the IFAC Symposium on System Structure
and Control, pages 469-474, 1998.

Siamak Azodolmolky, Reza Nejabati, Eduard Escalona, Ramanujam Jayakumar,
Nikolaos Efstathiou, and Dimitra Simeonidou. Integrated OpenFlow—GMPLS
control plane: an overlay model for software defined packet over optical net-

works. Optics Ezxpress, 2011.

Yuval Bachar (Facebook) and Adam Simpkins (Facebook). Introducing
“Wedge” and “FBOSS,” the next steps toward a disaggregated net-
work. https://code.facebook.com/posts/681382905244727/introducing-

wedge-and-fboss-the-next-steps-toward-a-disaggregated-network/.
Christel Baier and Joost-Pieter Katoen. Principles Of Model Checking. 2008.

Thomas Ball, Nikolaj Bjgrner, Aaron Gember, Shachar Itzhaky, Aleksandr Karbyshev,
Mooly Sagiv, Michael Schapira, and Asaf Valadarsky. VeriCon. In Proceedings
of the 35th ACM SIGPLAN Conference on Programming Language Design and
Implementation - PLDI, pages 282-293, 2013.

Thomas Ball, Nikolaj Bjgrner, Aaron Gember, Shachar Itzhaky, Aleksandr Karby-
shev, Mooly Sagiv, Michael Schapira, and Asaf Valadarsky. VeriCon: Towards
Verifying Controller Programs in Software-defined Networks. In PLDI, 2014.

Manu Bansal, Jeffrey Mehlman, Sachin Katti, and Philip Levis. OpenRadio: A Pro-
grammable Wireless Dataplane. In Proceedings of the first workshop on Hot
topics in software defined networks - HotSDN, 2012.

Ryan Beckett, Michael Greenberg, and David Walker. Temporal NetKAT. In PLDI,
2016.

Ryan Beckett, Aarti Gupta, Ratul Mahajan, and David Walker. A General Approach
to Network Configuration Verification. In SIGCOMM, 2017.

Gerd Behrmann, Alexandre David, Kim Guldstrand Larsen, Paul Pettersson, and
Wang Yi. Developing UPPAAL over 15 years. Software: Practice and Fxperi-
ence, 2011.

T Benson, A Anand, A Akella, and M Zhang. MicroTE: fine grained traffic engineering
for data centers. In ACM CoNEXT, 2011.

https://code.facebook.com/posts/681382905244727/introducing-wedge-and-fboss-the-next-steps-toward-a-disaggregated-network/
https://code.facebook.com/posts/681382905244727/introducing-wedge-and-fboss-the-next-steps-toward-a-disaggregated-network/

72

Pankaj Berde, Matteo Gerola, Jonathan Hart, Yuta Higuchi, Masayoshi Kobayashi,
Toshio Koide, and Bob Lantz. ONOS: towards an open, distributed SDN OS.

Proceedings of the third workshop on Hot topics in software defined networking
- HotSDN, pages 1-6, 2014.

Carlos J. Bernardos, Antonio De La Oliva, Pablo Serrano, Albert Banchs, Luis M.
Contreras, Hao Jin, and Juan Carlos Zuniga. An architecture for software

defined wireless networking. IEEE Wireless Communications, 2014.

Armin Biere, Alessandro Cimatti, Edmund Clarke, Ofer Strichman, and Yunshan Zhu.

Bounded Model Checking. Advances in Computers, 58(99):117-148, 2003.

Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh. Handbook of Satis-
fiability, volume 185. 2009.

Brad Bingham, Jesse Bingham, Flavio M. De Paula, John Erickson, Gaurav Singh, and
Mark Reitblatt. Industrial strength distributed explicit state model checking.
In PDMC, 2010.

Pat Bosshart (Barefoot Networks), Dan Daly (Intel), Glen Gibb (Barefoot Networks),
Nick McKeown (Stanford University), et al. P4: Programming Protocol-
Independent Packet Processors. ACM SIGCOMM Computer Communication
Review, 2014.

Rodrigo Braga, Edjard Mota, and Alexandre Passito. Lightweight DDoS flooding
attack detection using NOX/OpenFlow. In LCN, 2010.

Sebastian Brandt, Klaus Tycho Foerster, and Roger Wattenhofer. Augmenting flows
for the consistent migration of multi-commodity single-destination flows in

SDNs. Pervasive and Mobile Computing, 2017.

Sebastian Brandt, Klaus Tycho Foérster, and Roger Wattenhofer. On consistent mi-
gration of flows in SDNs. In IEEE INFOCOM, 2016.

M. C. Browne, E. M. Clarke, and O. Griimberg. Characterizing finite Kripke structures
in propositional temporal logic. Theoretical Computer Science, 59(1-2):115—
131, 1988.

Randal E. Bryant. Symbolic Boolean manipulation with ordered binary-decision dia-

grams. ACM Computing Surveys, 24(3):293-318, 1992.

73

Randal E. Bryant and Carl-Johan H. Seger. Formal verification of digital circuits using
symbolic ternary system models. In Computer-Aided Verification (CAV), pages
33-43, 1991.

Cristian Cadar and Koushik Sen. Symbolic Execution for Software Testing: Three

Decades Later. Communications of the ACM, Magazine, 2013.

Zheng Cai, Alan Cox, and Eugene T. S. Ng. Maestro: A System for Scalable OpenFlow
Control. Cs.Rice.Edu, page 10, 2011. https://www.cs.rice.edu/ eugeneng/
papers/TR10-11.pdf.

Marco Canini, Daniele Venzano, Peter Peresini, Dejan Kosti¢, and Jennifer Rexford.

A NICE Way to Test Openflow Applications. In NSDI, 2012.

S.K. Card, G.G. Robertson, and J.D. Mackinlay. The Information Visualizer: An
Information Workspace, 1991.

Francisco Carpio, Anna Engelmann, and Admela Jukan. DiffFlow: Differentiating
short and long flows for load balancing in data center networks. In IEEE

Global Communications Conference, GLOBECOM, 2016.

Martin Casado, Michael J Freedman, Justin Pettit, Jianying Luo, Nick McKeown,
and Scott Shenker. FEthane: taking control of the enterprise. SIGCOMM,
pages 1-12, 2007.

Min Cheng Chan, Chien Chen, Jun Xian Huang, Ted Kuo, Li Hsing Yen, and
Chien Chao Tseng. OpenNet: A simulator for software-defined wireless local

area network. In IEEE Wireless Communications and Networking Conference,

WCNC, pages 3332-3336, 2014.

M. Channegowda, R. Nejabati, M. Rashidi Fard, et al. Experimental demonstra-
tion of an OpenFlow based software-defined optical network employing packet,
fixed and flexible DWDM grid technologies on an international multi-domain

testbed. Optics Express, 2013.

Tao Chen, Honggang Zhang, Xianfu Chen, and Olav Tirkkonen. SoftMobile: Control
evolution for future heterogeneous mobile networks. IEEE Wireless Commu-

nications, 2014.

Stuart Cheshire. Latency and the Quest for Interactivity, 1996.

https://www.cs.rice.edu/~eugeneng/papers/TR10-11.pdf
https://www.cs.rice.edu/~eugeneng/papers/TR10-11.pdf

74

Mosharaf Chowdhury, Matei Zaharia, Justin Ma, Michael I. Jordan, and Ion Stoica.
Managing data transfers in computer clusters with orchestra. ACM SIGCOMM
Computer Communication Review, 41(4):98, 2011.

Alessandro Cimatti, Edmund Clarke, Enrico Giunchiglia, et al. Nusmv 2: An open-
source tool for symbolic model checking. In Computer Aided Verification

(CAV), pages 359-364, 2002.

D. Clark. The design philosophy of the DARPA internet protocols. ACM SIGCOMM

Computer Communication Review, 1988.

E. Clarke, K. McMillan, Sérgio Campos, and V. Hartonas-Garmhausen. Symbolic
model checking. In Computer Aided Verification (CAV), volume 1102, pages
419-422. 1996.

E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-state
concurrent systems using temporal logic specifications. ACM Transactions on

Programming Languages and Systems, 8(2):244-263, 1986.

E M Clarke, J M Wing, R Alur, R Cleaveland, D Dill, A Emerson, S Garland,
and Others. Formal methods: state of the art and future directions. ACM
Computing Surveys, 28(4):626-643, 1996.

Edmund Clarke, Armin Biere, Richard Raimi, and Yunshan Zhu. Bounded model
checking using satisfiability solving. Formal Methods in System Design, 19(1):7—
34, 2001.

Edmund Clarke and Allen Emerson. Design and Synthesis of Synchronization Skelet-

ons Using Branching-Time Temporal Logic. Logic of Programs, 1981.
Edmund M. Clarke. The Birth of Model Checking, pages 1-26. 2008.
Edmund M. Clarke, Orna Grumberg, and Doron A Peled. Model Checking, 1999.
Gerald Combs. Wireshark, 2019. https://www.wireshark.org/.

Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice model
for static analysis of programs by construction or approximation of fixpoints.
In Conference Record of the Annual ACM Symposium on Principles of Pro-

gramming Languages, 1977.

https://www.wireshark.org/

75

Patrick Cousot and Radhia Cousot. Systematic design of program analysis frame-
works. In Proceedings of the 6th ACM SIGACT-SIGPLAN symposium on

Principles of programming languages - POPL, pages 269-282, 1979.

Andrew R. Curtis, Wonho Kim, and Praveen Yalagandula. Mahout: Low-overhead
datacenter traffic management using end-host-based elephant detection. In

IEEE INFOCOM, 2011.

Andrew R Curtis, Jeffrey C Mogul, Jean Tourrilhes, Praveen Yalagandula, Puneet
Sharma, and Sujata Banerjee. DevoFlow: scaling flow management for high-

performance networks. SIGCOMM, 2011.

Huynh Tu Dang, Marco Canini, Fernando Pedone, and Robert Soulé. Paxos Made
Switch-y. ACM SIGCOMM Computer Communication Review, 2016.

Alexandre David, Kim G. Larsen, Axel Legay, et al. Statistical model checking for
networks of priced timed automata. In Formal Modeling and Analysis of Timed

Systems - FORMATS, 2011.

Leonardo De Moura and Nikolaj Bjgrner. Z3: An efficient SMT Solver. In Tools and
Algorithms for the Construction and Analysis of Systems - TACAS, 2008.

Peter Dely, Andreas Kassler, and Nico Bayer. OpenFlow for wireless mesh networks.
In International Conference on Computer Communications and Networks, 1C-

CCN, 2011.

David L. Dill. The Mur¢ verification system. In CAV, 1996.

Mihai Dobrescu and Katerina Argyraki. Software dataplane verification. Communic-

ations of the ACM, 2015.

Mihai Dobrescu, Norbert Egi, Katerina Argyraki, et al. RouteBricks: exploiting par-
allelism to scale software routers. ACM SIGOPS 22nd symposium on Operating
systems principles SE - SOSP, pages 1528, 2009.

Szymon Dudycz, Arne Ludwig, and Stefan Schmid. Can’t touch this: Consistent

network updates for multiple policies. In DSN, 2016.

Niklas Eén and Niklas Sérensson. An Extensible SAT-solver. In Theory and Applica-
tions of Satisfiability Testing - SAT. 2010.

76

Ahmed El-Hassany, Jeremie Miserez, Pavol Bielik, Laurent Vanbever, and Martin Vec-
hev. SDN Racer: Concurrency analysis for software-defined networks. In Pro-
ceedings of the ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI), 2016.

Ahmed El-Hassany, Petar Tsankov, Laurent Vanbever, and Martin Vechev. Network-
Wide configuration synthesis. In Computer Aided Verification (CAV), 2017.

E. Allen Emerson and Joseph Y. Halpern. “Sometimes” and “Not Never” Revisited: On
Branching Versus Linear Time Temporal Logic. Journal of the ACM (JACM),
1986.

D. Erickson. A demonstration of virtual machine mobility in an OpenFlow network.

ACM SIGCOMM, (Best Demo Award), 2008.

David Erickson. The beacon openflow controller. In Proceedings of the second ACM
SIGCOMM workshop on Hot topics in software defined networking - HotSDN,
page 13, 2013.

Nathan Farrington, George Porter, Yeshaiahu Fainman, George Papen, and Amin
Vahdat. Hunting mice with microsecond circuit switches. In Proceedings of the
11th ACM Workshop on Hot Topics in Networks - HotNets-XI, pages 115-120,
2012.

Seyed K. Fayaz, Tushar Sharma, Ari Fogel, Ratul Mahajan, Todd Millstein, Vyas
Sekar, and George Varghese. Efficient Network Reachability Analysis Using a
Succinct Control Plane Representation. In OSDI, 2016.

Seyed K. Fayaz, Tianlong Yu, Yoshiaki Tobioka, Sagar Chaki, and Vyas Sekar. BUZZ:
Testing Context-Dependent Policies in Stateful Networks. In NSDI, 2016.

Nick Feamster, Jennifer Rexford, Scott Shenker, Russ Clark, Ron Hutchins, Dave
Levin, and Josh Bailey. SDX: A software-defined Internet exchange. Open
Networking Summit, 2013.

Nick Feamster, Jennifer Rexford, and Ellen Zegura. The road to SDN. SIGCOMM

Computer Communication Review, 2014.

Michael J. Fischer and Richard E. Ladner. Propositional dynamic logic of regular

programs. Journal of Computer and System Sciences, 1979.

7

Klaus Tycho Foerster, Stefan Schmid, and Stefano Vissicchio. Survey of Consist-
ent Software-Defined Network Updates. IEEE Communications Surveys and
Tutorials, 2019.

Ari Fogel, Stanley Fung, Luis Pedrosa, et al. A general approach to network config-
uration analysis. In 12th USENIX Symposium on Networked Systems Design
and Implementation (NSDI), pages 469483, 2015.

Klaus Tycho Forster, Ratul Mahajan, and Roger Wattenhofer. Consistent updates
in software defined networks: On dependencies, loop freedom, and blackholes.

In IFIP Networking 2016, 2016.

Klaus Tycho Forster and Roger Wattenhofer. The power of two in consistent network

updates: Hard loop freedom, easy flow migration. In ICCCN, 2016.

Nate Foster, Rob Harrison, Michael J. Freedman, Christopher Monsanto, Jennifer
Rexford, Alec Story, and David Walker. Frenetic: A Network Programming
Language. In Proceeding of the 16th ACM SIGPLAN international conference

on Functional programming - (ICFP), volume 46, page 279, 2011.

Nate Foster, Dexter Kozen, Konstantinos Mamouras, Mark Reitblatt, and Alexandra

Silva. Probabilistic NetKAT. In ESOP, 2016.

Nate Foster, Dexter Kozen, Matthew Milano, Alexandra Silva, and Laure Thompson.

A coalgebraic decision procedure for NetKAT. In POPL, 2015.

Aaron Gember, Anand Krishnamurthy, Saul St. John, et al. Stratos: A Network-
Aware Orchestration Layer for Middleboxes in the Cloud, 2014. arxiv:1305.0209
[cs.NTJ.

Glenn Gibb, John W. Lockwood, Jad Naous, Paul Hartke, and Nick McKeown.
NetFPGA - An open platform for teaching how to build gigabit-rate network
switches and routers. IEEE Transactions on Education, 51(3):364-369, 2008.

Nati Shalom (GigaSpaces). Amazon found every 100ms of latency cost them 1% in
sales, 2008. https://blog.gigaspaces.com/amazon-found-every-100ms-of-

latency-cost-them-1-in-sales/.

Global Environment for Network Innovations (GENI). OpenFlow Firewall

Assignment. https://groups.geni.net/geni/wiki/GENIEducation/

https://blog.gigaspaces.com/amazon-found-every-100ms-of-latency-cost-them-1-in-sales/
https://blog.gigaspaces.com/amazon-found-every-100ms-of-latency-cost-them-1-in-sales/
https://groups.geni.net/geni/wiki/GENIEducation/SampleAssignments/OpenFlowFirewallAssignment/ExerciseLayout/Execute
https://groups.geni.net/geni/wiki/GENIEducation/SampleAssignments/OpenFlowFirewallAssignment/ExerciseLayout/Execute
https://groups.geni.net/geni/wiki/GENIEducation/SampleAssignments/OpenFlowFirewallAssignment/ExerciseLayout/Execute

78

SampleAssignments/OpenFlowFirewallAssignment/ExerciseLayout/

Execute.

David P. Gluch, Santiago Comella-Dorda, John Hudak, Grace Lewis, John Walker,
Charles B. Weinstock, and David Zubrow. Model-Based Verification: An En-

gineering Practice. Technical report, Carnegie Mellon University, 2002.

Patrice Godefroid and Didier Pirottin. Refining dependencies improves partial-order
verification methods. In Computer Aided Verification (CAV), pages 438-449,
1993.

Kate Greene. TR10: Software-defined networking. MIT Technology Re-
view, 2009. http://www2.technologyreview.com/article/412194/tr10-

software-defined-networking/.

Timothy G. Griffin, F. Bruce Shepherd, and Gordon Wilfong. The stable paths
problem and interdomain routing. IEEE/ACM Transactions on Networking,
2002.

Jun Gu, P W Purdom, Jhon Franco, and B W Wah. Algorithms for the satisfiability
(sat) problem. In DIMACS Series in Discrete Mathematics and Theoretical

Computer Science, volume 00, pages 19-152, 1996.

Natasha Gude, Teemu Koponen, Justin Pettit, Ben Pfaff, Martin Casado, Nick McK-
eown, and Scott Shenker. NOX: Towards an operating system for networks.

SIGCOMM Computer Communication Review, 38(3):105, 2008.

Arjun Guha, Mark Reitblatt, and Nate Foster. Machine-verified network controllers.
ACM SIGPLAN Notices, 48(6):483, 2013.

GUROBI Optimization Inc. Gurobi Optimizer reference manual. Technical report,

2018. http://www.gurobi.com.

Gustavo J.A.M Carneiro. ns-3:Network Simulator 3 Tutorial. https://

www.nsnam.org/tutorials/NS-3-LABMEETING-1.pdf.

Sangjin Han, Keon Jang, Kyoungsoo Park, and Sue Moon. PacketShader: a GPU-
Accelerated Software Router. In ACM SIGCOMM, 2010.

Nikhil Handigol, Brandon Heller, Vimalkumar Jeyakumar, Bob Lantz, and Nick

McKeown. Reproducible network experiments using container-based emula-

https://groups.geni.net/geni/wiki/GENIEducation/SampleAssignments/OpenFlowFirewallAssignment/ExerciseLayout/Execute
https://groups.geni.net/geni/wiki/GENIEducation/SampleAssignments/OpenFlowFirewallAssignment/ExerciseLayout/Execute
https://groups.geni.net/geni/wiki/GENIEducation/SampleAssignments/OpenFlowFirewallAssignment/ExerciseLayout/Execute
https://groups.geni.net/geni/wiki/GENIEducation/SampleAssignments/OpenFlowFirewallAssignment/ExerciseLayout/Execute
http://www2.technologyreview.com/article/412194/tr10-software-defined-networking/
http://www2.technologyreview.com/article/412194/tr10-software-defined-networking/
http://www.gurobi.com
https://www.nsnam.org/tutorials/NS-3-LABMEETING-1.pdf
https://www.nsnam.org/tutorials/NS-3-LABMEETING-1.pdf

79

tion. In Proceedings of the 8th international conference on Emerging networking

experiments and technologies - CoNEXT, 2012.

Nikhil Handigol, Brandon Heller, Vimalkumar Jeyakumar, David Maziéres, and Nick
McKeown. Where is the debugger for my software-defined network? In Proceed-
ings of the first workshop on Hot topics in software defined networks - HotSDN,
2012.

Nikhil Handigol, Srini Seetharaman, Mario Flajslik, and Aaron Gember. Aster * x
: Load-Balancing Web Traffic over Wide-Area Networks. Deutsche Telekom
RE&D, 2010.

Nikhil Handigol, Srinivasan Seetharaman, Mario Flajslik, Nick McKeown, and
Ramesh Johari. Plug-n-Serve: Load-balancing web traffic using OpenFlow.
SIGCOMM, 2009.

R. Handigol, N., Flajslik, M., Seetharaman, Johari. Aster*x: load-balancing as a net-

work primitive. In Proceedings of Architectural Concerns in Large Datacenters

(ACLD), 2010.

Mark Handley, Costin Raiciu, Alexandru Agache, Andrei Voinescu, Andrew W.
Moore, Gianni Antichi, and Marcin Wéjcik. Re-architecting datacenter net-
works and stacks for low latency and high performance. In Proceedings of
the Conference of the ACM Special Interest Group on Data Communication -
SIGCOMM, 2017.

Soheil Hassas Yeganeh, Yashar Ganjali, Soheil Hassas Yeganeh, and Yashar Ganjali.
Kandoo: a framework for efficient and scalable offloading of control applic-
ations. Proceedings of the first workshop on Hot topics in software defined

networks, pages 19-24, 2012.

Klaus Havelund and Thomas Pressburger. Model checking JAVA programs using
JAVA PathFinder. STTT, 2000.

Brandon Heller, James McCauley, Kyriakos Zarifis, Peyman Kazemian, Colin Scott,
Nick McKeown, Scott Shenker, Andreas Wundsam, Hongyi Zeng, Sam Whit-
lock, Vimalkumar Jeyakumar, and Nikhil Handigol. Leveraging SDN layering
to systematically troubleshoot networks. In Proceedings of the second ACM
SIGCOMM workshop on Hot topics in software defined networking - HotSDN,
page 37, 2013.

80

Brandon Heller, Srini Seetharaman, Priya Mahadevan, Yiannis Yiakoumis, Puneet
Sharma, Sujata Banerjee, and Nick McKeown. ElasticTree : Saving Energy
in Data Center Networks. Proceedings of the 7th USENIX Conference on Net-

worked Systems Design and Implementation, pages 17-17, 2010.

T A Henzinger, X Nicollin, J Sifakis, and S Yovine. Symbolic model checking for
real-time systems. Information and Computation, 111(2):193-244, 1994.

C. A. R. Hoare. An axiomatic basis for computer programming. Communications of

the ACM, 12(10):576-580, 1969.

Gerard J. Holzmann. The model checker SPIN. [EEE Transactions on Software

Engineering, 1997.

Gerard J. Holzmann and Doron Peled. An Improvement in Formal Verification. In

FORTE, 1994.

Chi-Yao Hong, Matthew Caesar, and P. Brighten Godfrey. Finishing flows quickly
with preemptive scheduling. In ACM SIGCOMM, page 127, 2012.

Chi-Yao Hong, Srikanth Kandula, Ratul Mahajan, Ming Zhang, Vijay Gill, Mohan
Nanduri, and Roger Wattenhofer. Achieving high utilization with software-
driven WAN. In SIGCOMM, 2013.

John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to automata

theory, languages, and computation, 2nd edition, 2001.

Alex Horn, Ali Kheradmand, and Mukul R. Prasad. Delta-net: Real-time Network
Verification Using Atoms. In NSDI, 2017.

Hongxin Hu, Gail-Joon Ahn, Wonkyu Han, and Ziming Zhao. Towards a Reliable
SDN Firewall. In ONS, 2014.

Hongxin Hu, Wonkyu Han, Gail-Joon Ahn, and Ziming Zhao. FlowGuard: Building
Robust Firewalls for Software-Defined Networks. HotSDN, 2014.

Michael Huth and Mark Ryan. Logic in Computer Science: Modelling and Reasoning
About Systems, volume 16. 2006.

International Telecommunication Union. ITU-T Recommendation G. 1010: End-user
multimedia QoS categories (Quality of service and performance). International

Telecommunications Union, 1010, 2001.

81

ITU-T. G.114 One-way transmission time. SERIES G: TRANSMISSION SYS-
TEMS AND MEDIA, DIGITAL SYSTEMS AND NETWORKS International
telephone connections and circuits — General Recommendations on the trans-

mission quality for an entire international telephone connection, pages 1-20,

2003.

Daniel Jackson. Alloy: A lightweight object modelling notation. ACM Transactions
on Software Engineering and Methodology, 2002.

Jafar Haadi Jafarian, Ehab Al-Shaer, and Qi Duan. OpenFlow random host muta-
tion: Transparent moving target defense using software defined networking. In

HotSDN, 2012.

Sushant Jain, Min Zhu, Jon Zolla, Urs Holzle, Stephen Stuart, Amin Vahdat, Alok
Kumar, Subhasree Mandal, Joon Ong, Leon Poutievski, Arjun Singh, Subbaiah

Venkata, Jim Wanderer, and Junlan Zhou. B4: Experience with a Globally-
Deployed Software Defined WAN. In SIGCOMM, 2013.

Michael Jarschel, Thomas Zinner, Tobias Hossfeld, Phuoc Tran-Gia, and Wolfgang
Kellerer. Interfaces, attributes, and use cases: A compass for SDN. [EFEE

Communications Magazine, 52(6):210-217, 2014.

Vimalkumar Jeyakumar, David Mazi, and Changhoon Kim. EyeQ : Practical Net-
work Performance Isolation for the Multi-tenant Cloud. Proceedings of the 4th
USENIX conference on Hot Topics in Cloud Computing, page 8, 2012.

Ping Ji, Zihui Ge, Jim Kurose, and Don Towsley. A comparison of hard-state and

soft-state signaling protocols. IEEE/ACM Transactions on Networking, 2007.

Yifei Jia. NetSMC : A Symbolic Model Checker for Stateful Network Verification.
In NSDI, 2020.

Xin Jin, Li Erran Li, Laurent Vanbever, and Jennifer Rexford. SoftCell: Scalable
and Flexible Cellular Core Network Architecture. In the ninth ACM conference

on Emerging networking experiments and technologies, 2013.

Xin Jin, Hongqiang Harry Liu, Rohan Gandhi, Srikanth Kandula, Ratul Mahajan,
Ming Zhang, Jennifer Rexford, and Roger Wattenhofer. Dynamic scheduling
of network updates. ACM SIGCOMM CCR, 2015.

82

Simon Jouet, Colin Perkins, and Dimitrios Pezaros. OTCP: SDN-managed conges-
tion control for data center networks. In IEEE/IFIP Network Operations and
Management Symposium (NOMS), 2016.

Tobias Kappé, Paul Brunet, Alexandra Silva, and Fabio Zanasi. Concurrent kleene

algebra: Free model and completeness. In ESOP, 2018.

Naga Katta, Mukesh Hira, Changhoon Kim, Anirudh Sivaraman, and Jennifer Rex-
ford. HULA: Scalable Load Balancing Using Programmable Data Planes. In
ACM Symposium on SDN Research (SOSR), 2016.

Naga Praveen Katta, Jennifer Rexford, and David Walker. Logic Programming for
Software-Defined Networks. Workshop on Cross-Model Design and Validation
(XLDI), ACM, 2012.

Naga Praveen Katta, Jennifer Rexford, and David Walker. Incremental consistent
updates. In Proceedings of the ACM SIGCOMM Workshop on Hot Topics in
Software Defined Networking - HotSDN, 2013.

Shmuel Katz and Doron Peled. Defining conditional independence using collapses.

Theoretical Computer Science, 1992.

Peyman Kazemian, Michael Chang, Hongyi Zeng, George Varghese, Nick McKeown,
and Scott Whyte. Real Time Network Policy Checking Using Header Space
Analysis. In NSDI, 2013.

Peyman Kazemian, George Varghese, and Nick McKeown. Header space analysis:

Static checking for networks. In NSDI, 2012.

Robert M. Keller. Formal verification of parallel programs. Communications of the

ACM, 19(7):371-384, 1976.

Ahmed Khurshid, Xuan Zou, Wenxuan Zhou, Matthew Caesar, and P Brighten
Godfrey. VeriFlow: Verifying Network-wide Invariants in Real Time. In NSDI,
2013.

Charles Killian, James W. Anderson, Ryan Braud, Ranjit Jhala, and Amin Vah-
dat. Building distributed systems using Mace. In IEEE - 9th International
Conference on Peer-to-Peer Computing (P2P), pages 91-92, 2009.

83

Charles Killian, Charles Killian, James W Anderson, James W Anderson, Ranjit
Jhala, Ranjit Jhala, Amin Vahdat, and Amin Vahdat. Life, death, and the

critical transition: Finding liveness bugs in systems code. In NSDI, 2007.

Charles Edwin Killian, James W Anderson, Ryan Braud, Ranjit Jhala, and Amin M
Vahdat. Mace. ACM SIGPLAN Notices, 42(6):179, 2007.

Hyojoon Kim, Joshua Reich, Arpit Gupta, Muhammad Shahbaz, Nick Feamster, and
Russ Clark. Kinetic: Verifiable Dynamic Network Control. In 12th USENIX
Symposium on Networked Systems Design and Implementation (NSDI), pages
59-72, 2015.

Vasileios Klimis, George Parisis, and Bernhard Reus. Model Checking Software-
Defined Networks with Flow Entries that Time Out (version with appendix).
arXiv: 2008.06149 [cs.NIJ, 2020.

Vasileios Klimis, George Parisis, and Bernhard Reus. Towards Model Checking Real-
World Software-Defined Networks. In CAV, 2020.

Simon Knight, Hung X. Nguyen, Nickolas Falkner, Rhys Bowden, and Matthew
Roughan. The internet topology zoo. IEEFE, 2011.

Masayoshi Kobayashi, Srini Seetharaman, Guru Parulkar, Guido Appenzeller, Joseph
Little, Johan Van Reijendam, Paul Weissmann, and Nick McKeown. Maturing
of OpenFlow and Software-defined Networking through deployments. Computer
Networks, 2014.

Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti, and M. Frans Kaashoek.
The click modular router. ACM Transactions on Computer Systems, 18(3):263—
297, 2000.

Teemu Koponen, Martin Casado, Natasha Gude, et al. Onix: A Distributed Control
Platform for Large-Scale Production Networks. In 9th USENIX Conference on

Operating Systems Design and Implementation, pages 1-6, 2010.

Ron Koymans. Specifying real-time properties with metric temporal logic. Real-Time

Systems, 2(4):255-299, 1990.

Dexter Kozen. Kleene Algebra with Tests. TOPLAS, 1997.

84

Diego Kreutz, Fernando M V Ramos, Paulo Esteves Verissimo, et al. Software-defined
networking: A comprehensive survey. Proceedings of the IEEE, 103(1):14-76,
2015.

Saul Kripke. Semantical Considerations on Modal Logic, 1963.

Ian Ku, You Lu, Mario Gerla, Rafael L. Gomes, Francesco Ongaro, and Eduardo
Cerqueira. Towards software-defined VANET: Architecture and services. In
18th Annual Mediterranean Ad Hoc Networking Workshop, MED-HOC-NET,
2014.

Rui Kubo, Tomonori Fujita, Yuji Agawa, and Hikaru Suzuki. Ryu SDN framework-
open-source SDN platform software. NT'T Technical Review, 12(8), 2014.

Marta Kwiatkowska. Quantitative verification: Models, Techniques and Tools. In
Proceedings of the the 6th joint meeting of the European Software Engineer-
ing Conference and the ACM SIGSOFT symposium on The Foundations of
Software Engineering - ESEC-FSE, 2007.

Marta Kwiatkowska, Gethin Norman, and David Parker. Stochastic model checking.

Formal methods for performance ..., 2007.

Marta Kwiatkowska, Gethin Norman, and David Parker. PRISM: probabilistic model
checking for performance and reliability analysis. SIGMETRICS Perform.
Eval. Rev., 36(4):40-45, 2009.

Marta Kwiatkowska, Gethin Norman, and David Parker. PRISM 4.0: Verification of
probabilistic real-time systems. In Computer Aided Verification (CAV), pages
585-591, 2011.

Sandor Laki, Daniel Horpéacsi, Péter Voros, Robert Kitlei, Daniel Lesko, and Maté
Tejfel. High speed packet forwarding compiled from protocol independent data
plane specifications. In ACM SIGCOMM, 2016.

T V Lakshman and D Stiliadis. High-speed policy-based packet forwarding using
efficient multi-dimensional range matching. Computer Communication Review,

28(4):203-214, 1998.

Leslie Lamport. Time, Clocks, and the Ordering of Events in a Distributed System.
Communications of the ACM, 1978.

85

Leslie Lamport. What Good is Temporal Logic?, 1983.

Leslie Lamport. The temporal logic of actions. ACM Transactions on Programming

Languages and Systems, 16(3):872-923, 1994.

Bob Lantz, Brandon Heller, and Nick McKeown. A network in a laptop: rapid
prototyping for software-defined networks. In Proceedings of the Ninth ACM
SIGCOMM Workshop on Hot Topics in Networks - Hotnets, pages 1-6, 2010.

Chin Soon Lee, Neil D. Jones, and Amir M. Ben-Amram. The size-change principle

for program termination. In POPL, 2001.

Axel Legay, Benoit Delahaye, and Saddek Bensalem. Statistical Model Checking:

An Overview. In International Conference on Runtime Verification, 2010.

D. Lehmann, A. Pnueli, and J. Stavi. Impartiality, justice and fairness: The ethics

of concurrent termination. In ICALP, 1981.

Charles E. Leiserson. Fat-trees: universal networks for hardware-efficient supercom-

puting. In IEEE Transactions on Computers, 1985.

Li Erran Li, Z. Morley Mao, and Jennifer Rexford. Toward software-defined cellular
networks. In Proceedings - European Workshop on Software Defined Networks

(EWSDN), 2012.

Yahui Li, Xia Yin, Zhiliang Wang, Jiangyuan Yao, Xingang Shi, Jianping Wu, Han
Zhang, and Qing Wang. A survey on network verification and testing with

formal methods: Approaches and challenges. IEEE Surveys & Tutorials, 2019.

Yu Li and Deng Pan. OpenFlow based Load Balancing for Fat-Tree Networks with
Multipath Support. In Proc. 12th IEEE International Conference on Commu-
nications (ICC), 2013.

Greg Linden. Marissa Mayer at Web 2.0, 2006.

Honggiang Harry Liu, Xin Wu, Ming Zhang, Lihua Yuan, Roger Wattenhofer, and
David Maltz. zUpdate: Updating data center networks with zero loss. In
SIGCOMM, 2013.

Jiajia Liu, Shangwei Zhang, Nei Kato, Hirotaka Ujikawa, and Kenichi Suzuki.
Device-to-device communications for enhancing quality of experience in soft-

ware defined multi-tier LTE-A networks. IEEE Network, 2015.

86

Lei Liu, Takehiro Tsuritani, Itsuro Morita, Hongxiang Guo, and Jian Wu. Experi-
mental validation and performance evaluation of OpenFlow-based wavelength

path control in transparent optical networks. Optics Express, 2011.

Lei Liu, Dongxu Zhang, Takehiro Tsuritani, Ricard Vilalta, Ramon Casellas, Linfeng
Hong, Itsuro Morita, Hongxiang Guo, Jian Wu, Ricardo Martinez, and Raiil
Munoz. Field trial of an openflow-based unified control plane for multilayer
multigranularity optical switching networks. Journal of Lightwave Technology,

2013.

Nuno P. Lopes, Nikolaj Bjgrner, Patrice Godefroid, Karthick Jayaraman, and George
Varghese. Checking beliefs in dynamic networks. In NSDI, 2015.

Arne Ludwig, Szymon Dudycz, Matthias Rost, and Stefan Schmid. Transiently secure
network updates. In SIGMETRICS/ Performance, 2016.

Long Luo, Hongfang Yu, Shouxi Luo, and Mingui Zhang. Fast lossless traffic migra-
tion for SDN updates. In IEEE International Conference on Communications,

2015.

Tie Luo, Hwee Pink Tan, and Tony Q S Quek. Sensor openflow: Enabling software-

defined wireless sensor networks. IFEE Communications Letters, 2012.

Haohui Mai, Ahmed Khurshid, Rachit Agarwal, Matthew Caesar, P. Brighten God-
frey, and Samuel Talmadge King. Debugging the data plane with anteater. In
SIGCOMM, 2011.

Rupak Majumdar, Sai Deep Tetali, and Zilong Wang. Kuai: A model checker for
software-defined networks. In FMCAD, 2014.

David Makinson. Sets, logic and maths for computing. 2008.

Zohar Manna and Amir Pnueli. The Temporal Logic of Reactive and Concurrent

Systems. Springer-Verlag, 1992.

Jedidiah McClurg, Hossein Hojjat, Pavol Cerny, and Nate Foster. Efficient synthesis
of network updates. In PLDI, 2015.

Jedidiah McClurg, Hossein Hojjat, Nate Foster, and Pavol Cérnya. Event-driven
network programming. In PLDI, 2016.

Nick McKeown. Mind the Gap. In SIGCOMM Keynote, 2014.

87

Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Peterson,
Jennifer Rexford, Scott Shenker, and Jonathan Turner. OpenFlow: Enabling
Innovation in Campus Networks. SIGCOMM Comput. Commun. Rev., 2008.

Kenneth L. McMillan. Symbolic Model Checking. In Symbolic Model Checking, pages
25-60. 1993.

Jan Medved, Robert Varga, Anton Tkacik, and Ken Gray. OpenDaylight: Towards a
model-driven SDN controller architecture. In Proceeding of IEEFE International
Symposium on a World of Wireless, Mobile and Multimedia Networks 2014,
(WoWMoM), 2014.

Robert B. Miller. Response time in man-computer conversational transactions. In

AFIPS, page 267, 1968.

Jeremie Miserez, Pavol Bielik, Ahmed El-Hassany, Laurent Vanbever, and Martin
Vechev. SDNRacer: Detecting Concurrency Violations in Software-defined

Networks. Sosr, pages 22:1-22:7, 2015.

John C. Mitchell, Timothy L. Hinrichs, Natasha S. Gude, Martin Casado, and Scott

Shenker. Practical declarative network management. 2009.

Christopher Monsanto, Nate Foster, Rob Harrison, and David Walker. A compiler
and run-time system for network programming languages. In Proceedings of the
39th annual ACM SIGPLAN-SIGACT symposium on Principles of program-
ming languages - POPL, page 217, 2012.

Christopher Monsanto, Joshua Reich, Nate Foster, Jennifer Rexford, and David
Walker. Composing software-defined networks. Proceedings of the 10th
USENIX conference on Networked Systems Design and Implementation, pages
1-14, 2013.

R. Mortier, T. Rodden, T. Lodge, D. McAuley, C. Rotsos, A. W. Moore, A. Koliousis,
and J. Sventek. Control and understanding: Owning your home network. In

2012 4th International Conference on Communication Systems and Networks,

COMSNETS 2012, 2012.

P. Godefroid N. Lopes, N. Bjgrner and G. Varghese. Network Verification in the
Light of Program Verification. 2013.

88

Sriram Natarajan, Anantha Ramaiah, and Mayan Mathen. A Software defined
Cloud-Gateway automation system using OpenFlow. In IEEE 2nd Interna-
tional Conference on Cloud Networking (CloudNet), pages 219-226, 2013.

Ak Nayak and Alex Reimers. Resonance: dynamic access control for enterprise

networks. Wren, pages 11-18, 2009.

Tim Nelson, Andrew D Ferguson, Michael J G Scheer, and Shriram Krishnamurthi.
Tierless Programming and Reasoning for Software-defined Networks. In NSDI.

Tim Nelson, Arjun Guha, Daniel J. Dougherty, Kathi Fisler, and Shriram Krish-
namurthi. A balance of power: Expressive, Analyzable Controller Program-
ming Tim. Proceedings of the second ACM SIGCOMM workshop on Hot topics
in software defined networking - HotSDN, 2013.

Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Principles of Program

Analysis. 2013.

Oliver Niese. An integrated approach to testing complex systems. PhD thesis, Uni-
versity of Dortmund, 2003.

Vladimir Olteanu, Alexandru Agache, Andrei Voinescu, and Costin Raiciu. Stateless

Datacenter Load-balancing with Beamer. In NSDI, 2018.
ONF. Software-defined networking: The new norm for networks. White Paper, 2012.
ONF. SDN Architecture Overview. Technical Report, 2013.
Open Networking Foundation. SDN Architecture. Onf, 2014.

Open Networking Foundation. OpenFlow Switch Specification 1.5.1. Technical re-
port, 2015.

Oded Padon, Jochen Hoenicke, Giuliano Losa, Andreas Podelski, Mooly Sagiv, and
Sharon Shoham. Reducing liveness to safety in first-order logic. Proceedings of

the ACM on Programming Languages, 2018.

Parveen Patel, Deepak Bansal, Lihua Yuan, Ashwin Murthy, Albert Greenberg,
David a Maltz, Randy Kern, Hemant Kumar, Marios Zikos, Hongyu Wu,

Changhoon Kim, and Naveen Karri. Ananta: Cloud Scale Load Balancing.

SIGCOMM, 2013.

89

Doron Peled. All from one, one for all: on model checking using representatives. In

CAV, 1993.

Doron Peled. Partial order reduction: Model-checking using representatives. In

Mathematical Foundations of Computer Science 1996, pages 93-112, 1996.

Doron Peled, Moshe Vardi, and Mihalis Yannakakis. Black Box Checking. Journal

of Automata, Languages and Combinatorics, 2002.

Doron Peled and Thomas Wilke. Stutter-invariant temporal properties are express-
ible without the next-time operator. Information Processing Letters, 63(5):243—

246, 1997.

Peter Peresini, Maciej Kuzniar, and Dejan Kostic. Dynamic, Fine-Grained Data
Plane Monitoring with Monocle. [EEE/ACM Transactions on Networking,
2018.

Jonathan Perry, Amy Ousterhout, Hari Balakrishnan, Devarat Shah, and Hans Fugal.
Fastpass: A Centralized "Zero-Queue" Datacenter Network. ACM SIGCOMM,
pages 307-318, 2015.

Gordon D. Plotkin, Nikolaj Bjgrner, Nuno P. Lopes, Andrey Rybalchenko, and
George Varghese. Scaling network verification using symmetry and surgery.

In POPL, 2016.

Amir Pnueli. The temporal logic of programs. In 18th Annual Symposium on Found-

ations of Computer Science (sfcs 1977), pages 46-57, 1977.

Amir Pnueli, Jessie Xu, and Lenore Zuck. Liveness with (0, 1, c0)-counter abstraction.

In CAV, 2002.

Andreas Podelski and Andrey Rybalchenko. Transition predicate abstraction and
fair termination. In POPL, 2005.

Mukul R. Prasad, Armin Biere, and Aarti Gupta. A survey of recent advances in

SAT-based formal verification, 2005.
Vaughan R. Pratt. Semantical considerations on Floyd-Hoare logic. In FOCS, 1976.

Zafar Ayyub Qazi, Cheng Chun Tu, Luis Chiang, Rui Miao, Vyas Sekar, and Minlan
Yu. SIMPLE-fying middlebox policy enforcement using SDN. In SIGCOMM,
2013.

90

Mark Reitblatt, Nate Foster, Jennifer Rexford, Cole Schlesinger, and David Walker.
Abstractions for network update. In SIGCOMM, 2012.

Abhinava Sadasivarao, Sharfuddin Syed, Ping Pan, Chris Liou, Andrew Lake, Chin
Guok, and Inder Monga. Open Transport Switch: A Software Defined Network-
ing Architecture for Transport Networks. In Proceedings of the second ACM
SIGCOMM workshop on Hot topics in software defined networking - HotSDN,
2013.

Mohammad Ali Salahuddin, Ala Al-Fugaha, and Mohsen Guizani. Software-defined
networking for rsu clouds in support of the internet of vehicles. IEEE Internet

of Things Journal, 2015.

Brandon Schlinker, Hongyi Zeng, Hyojeong Kim, Timothy Cui, Ethan Katz-Bassett,
Harsha V. Madhyastha, Italo Cunha, James Quinn, Saif Hasan, and Petr
Lapukhov. Engineering Egress with Edge Fabric. In Proceedings of the Confer-
ence of the ACM Special Interest Group on Data Communication - SIGCOMM,
pages 418-431, 2017.

Dana S. Scott. Outline of a mathematical theory of computation. Technical Mono-

graph PRG-2, Oxford University Computing Laboratory, 1970.

Koushik Sen, Mahesh Viswanathan, and Gul Agha. Statistical model checking of
black-box probabilistic systems. Computer Aided Verification (CAV), 2004.

Divjyot Sethi, Srinivas Narayana, and Sharad Malik. Abstractions for model checking
SDN controllers. In FMCAD, 2013.

Scott Shenker, Martin Casado, Teemu Koponen, and Nick McKeown. The future of
networking, and the past of protocols. In ONS, 2011.

Rob Sherwood, Glen Gibb, Kk Kok-Kiong Kk Yap, Guido Appenzeller, Martin Cas-
ado, Nick McKeown, and Guru M Parulkar. Can the Production Network
Be the Testbed? 9th USENIX Symposium on Operating Systems Design and
Implementation, OSDI, M(1):365-378, 2010.

Alan Shieh, Srikanth Kandula, Albert Greenberg, Changhoon Kim, and Bikas Saha.
Sharing the data center network. Nsdi, pages 23-23, 2011.

91

Seungwon Shin, Yongjoo Song, Taekyung Lee, Sangho Lee, Jaewoong Chung, Phillip
Porras, Vinod Yegneswaran, Jiseong Noh, and Brent Byunghoon Kang. Rose-
mary: A Robust, Secure, and High-Performance Network Operating System.
ACM SIGSAC Conference on Computer and Communications Security - CCS,
pages 78-89, 2014.

Richard Skowyra, Andrei Lapets, Azer Bestavros, and Assaf Kfoury. A verification
platform for SDN-enabled applications. In IC2FE, 2014.

Anthony M. Sloane. Software Abstractions: Logic, Language, and Analysis by Daniel
Jackson, The MIT Press, 2006, 366pp, ISBN 978-0262101141. Journal of Func-

tional Programming, 2009.

Sooel Son, Seungwon Shin, Vinod Yegneswaran, Phillip Porras, and Guofei Gu.

Model checking invariant security properties in OpenFlow. In IEEE, 2013.

Tammo Spalink, Scott Karlin, Larry Peterson, and Yitzchak Gottlieb. Building a ro-
bust software-based router using network processors. ACM SIGOPS Operating
Systems Review, 35(5):216, 2001.

Neil Spring, Ratul Mahajan, David Wetherall, and Thomas Anderson. Measuring
ISP Topologies With Rocketfuel. IEEE/ACM Transactions on Networking,
2004.

Radu Stoenescu, Matei Popovici, Lorina Negreanu, and Costin Raiciu. SymNet:

Scalable symbolic execution for modern networks. In SIGCOMM, 2016.

D. E. Taylor, J. S. Turner, and J. W. Lockwood. Dynamic hardware plugins
(DHP): Exploiting reconfigurable hardware for high-performance program-
mable routers. In IEEE Open Architectures and Network Programming Pro-
ceedings (OPENARCH), pages 25-34, 2001.

Amin Tootoonchian and Y Ganjali. Hyperflow: a distributed control plane for open-
flow. Internet Network Management Workshop / Workshop on Research on
Enterprise Networking (INM/WREN), pages 3-3, 2010.

Alex F.R. Trajano and Marcial P. Fernandez. Two-phase load balancing of In-
Memory Key-Value Storages through NFV and SDN. In Proceedings - IEEE

Symposium on Computers and Communications, 2016.

92

Ramona Trestian. MiceTrap: Scalable traffic engineering of datacenter mice flows
using OpenFlow. IFIP/IEEE International Symposium on Integrated Network
Management, 2013.

Jeffrey D. Ullman. Foundations of Computer Science. 1992.
Frits Vaandrager. Model learning. Communications of the ACM, 2017.

Ronald Van Der Pol, Sander Boele, Freek Dijkstra, Artur Barczyk, Gerben Van
Malenstein, Jim Hao Chen, and Joe Mambretti. Multipathing with MPTCP
and open flow. In High Performance Computing, Networking Storage and Ana-

lysis, SCC, 2012.
Bas C. van Fraassen. Formal Semantics and Logic. 2016.

Moshe Y. Vardi. Automatic Verification of Probabilistic Concurrent Finite-State

Systems. In 26th Annual Symposium on Foundations of Computer Science

(FOCS), 1985.

Moshe Y. Vardi. Verification of concurrent programs: the automata-theoretic frame-

work. Annals of Pure and Applied Logic, 1987.

G. Varghese. Vision for Network Design Automation and Network Verification. In

NetPL (Talk), 2018.
George Varghese. Network Algorithmics. 2005.

Bhanu Chandra Vattikonda, George Porter, Amin Vahdat, and Alex C. Snoeren.
Practical TDMA for datacenter ethernet. In Proceedings of the 7th ACM

european conference on Computer Systems - EuroSys, page 225, 2012.

Willem Visser, Klaus Havelund, Guillaume Brat, Seungjoon Park, and Flavio Lerda.
Model checking programs. Automated Software Engineering, 10(2):203-232,
2003.

Andreas Voellmy, Hyojoon Kim, and Nick Feamster. Procera: a language for high-
level reactive network control. In Proceedings of the first workshop on Hot

topics in software defined networks, pages 43-48, 2012.

Juan Wang, Yong Wang, Hongxin Hu, Qingxin Sun, He Shi, and Longjie Zeng.
Towards a security-enhanced firewall application for openflow networks. In

Cyberspace Safety and Security, 2013.

93

Richard Wang, Dana Butnariu, and Jennifer Rexford. OpenFlow-Based Server Load
Balancing Gone Wild Into the Wild : Core Ideas. Proceedings of the 11th
USENIX conference on Hot topics in management of internet, cloud, and en-

terprise networks (Hot-ICE), page 12, 2011.

Shie Yuan Wang, Chih Liang Chou, and Chun Ming Yang. EstiNet openflow net-
work simulator and emulator. I[EEE Communications Magazine, 51(9):110-117,

2013.

Duncan J. Watts and Steven H. Strogatz. Collective dynamics of ’small-world’ net-

works. In The Structure and Dynamics of Networks. 2011.

Bernard M. Waxman. Routing of Multipoint Connections. IEEE Journal on Selected

Areas in Communications, 1988.

I Widjaja and A Elwalid. MATE: MPLS adaptive traffic engineering. IETF Draft,
pages 1-10, 1999.

Christo Wilson, Hitesh Ballani, Thomas Karagiannis, and Ant Rowstron. Better
Never than Late: Meeting Deadlines in Datacenter Networks. Proc. ACM Con-
ference on Communications Architectures, Protocols and Applications (SIG-

COMM), pages 5061, 2011.

Glynn Winskel and Mogens Nielsen. Models for Concurrency. DAIMI Report Series,
1993.

Xin Wu and Xiaowei Yang. DARD: Distributed adaptive routing for datacenter
networks. In Proceedings - International Conference on Distributed Computing

Systems, pages 32—41, 2012.

Geoffrey G. Xie, Jibin Zhan, David A. Maltz, Hui Zhang, Albert Greenberg, Gisli
Hjalmtysson, and Jennifer Rexford. On static reachability analysis of IP net-

works. In Proceedings - IEEE INFOCOM, volume 3, pages 2170-2183, 2005.

Hongkun Yang and Simon S. Lam. Real-time verification of network properties using

atomic predicates. IEEE/ACM Transactions on Networking, 2016.

Mao Yang, Yong Li, Depeng Jin, Li Su, Shaowu Ma, and Lieguang Zeng. OpenRAN:
A Software-defined Ran Architecture via Virtualization. In Proceedings of the

ACM SIGCOMM, 2013.

94

Guang Yao, Jun Bi, and Peiyao Xiao. Source address validation solution with Open-
Flow /NOX architecture. In Proceedings - International Conference on Network

Protocols, ICNP, 2011.

Kok-Kiong Yap, Rob Sherwood, Masayoshi Kobayashi, Te-Yuan Huang, Michael
Chan, Nikhil Handigol, Nick McKeown, and Guru Parulkar. Blueprint for
introducing innovation into wireless mobile networks. In Proceedings of the
second ACM SIGCOMM workshop on Virtualized infrastructure systems and
architectures - VISA, 2010.

Volkan Yazici, Ulas C. Kozat, and M. Oguz Sunay. A new control plane for 5G
network architecture with a case study on unified handoff, mobility, and routing

management. I[EEE Communications Magazine, 2014.

Yiannis Yiakoumis, Kok-Kiong Yap, Sachin Katti, Guru Parulkar, and Nick McK-
eown. Slicing home networks. In Proceedings of the 2nd ACM SIGCOMM
Workshop on Home Networks (HomeNets), page 1-6, 2011.

Zuoning Yin, Matthew Caesar, and Yuanyuan Zhou. Towards Understanding Bugs
in Open Source Router Software. ACM SIGCOMM Computer Communication
Review, 40(3):35-40, 2010.

Hakan Lorens Samir Younes. Verification and Planning for Stochastic Processes with

Asynchronous Events. PhD thesis, Carnegie Mellon, 2005.

Arseniy Zaostrovnykh, Solal Pirelli, Luis Pedrosa, Katerina Argyraki, and George
Candea. A Formally Verified NAT. In Proceedings of the Conference of the
ACM Special Interest Group on Data Communication - SIGCOMM, 2017.

Hongyi Zeng, Peyman Kazemian, George Varghese, and Nick McKeown. Automatic
test packet generation. IEEE/ACM Transactions on Networking, 22(2):554—
566, 2014.

Hongyi Zeng, Peyman Kazemian, George Varghese, and McKeown Nick. A Survey
on Network Troubleshooting. Technical Report TR12-HPNG-061012, Stanford
University, 2012.

Hongyi Zeng, Shidong Zhang, Fei Ye, Vimalkumar Jeyakumar, Mickey Ju, Junda
Liu, Nick McKeown, and Amin Vahdat. Libra: Divide and Conquer to Verify
Forwarding Tables in Huge Networks. In NSDI, 2014.

95

Hang Zhang, Sophie Vrzic, Gamini Senarath, Hamid Farmanbar, Jaya Rao, Chenghui
Peng, and Hongcheng Zhuang. 5G wireless network: MyNET and SONAC.
IEEE Network, 2015.

Shuyuan Zhang and Sharad Malik. SAT based verification of network data planes.
In Automated Technology for Verification and Analysis. Springer, 2013.

R. ZHANG, S., MALIK, S., AND MCGEER. Verification of computer switching
networks: An overview. In Proceedings of the 10th international conference on

Automated Technology for Verification and Analysis (ATVA), 2012.

Jiaqi Zheng, Hong Xu, Guihai Chen, and Haipeng Dai. Minimizing transient con-
gestion during network update in data centers. In ICNP, 2016.

Wenxuan Zhou, Dong Jin, Jason Croft, Matthew Caesar, and P. Brighten Godfrey.
Enforcing customizable consistency properties in software-defined networks. In

NSDI, 2015.

96

Appendix A

Artifact for Paper: "Towards Model
Checking Real-World
Software-Defined Networks"

97

Artifact for Paper: "Towards Model Checking
Real-World Software-Defined Networks"

Introduction

This artifact provides a self-contained virtual instance of our model-checking environment, code-
named MoCS, for verifying properties of Software-Defined Networks. It contains a user-facing
application, a library of SDN transition system instantiations, i.e. data-plane topologies and
controller programs for all the experiments detailed in the paper (exported by UPPAAL! as xml
files), the respective invariant properties to be checked (exported by UPPAAL as q files), and the
back-end verification engine (http://www.uppaal.org). In the following sections, we (1) discuss the
reproducibility of the experimentation included in our paper with respect to the evaluation criteria,
(2) describe the submitted artifact, (3) explain the command structure and syntax conventions and
(4) provide instructions for re-running the experiments presented in Section 4 of the paper.

Artifact Description

The artifact is a Ubuntu 18.04.4 Virtual Machine (VM), available for download here:
https://tinyurl.com/y95qgtv5k. The VM is in an OVA (Open Virtual Appliance) image format and was
created with VirtualBox (https://www.virtualbox.org) on a MacBook Pro (2.5 GHz Dual-Core Intel
Core i7, with 16 GB 2133 MHz LPDDR3 RAM) host. The image can be imported by most
virtualisation platforms, such as VirtualBox and VMWare Fusion. Please import the boot volume
(guest) into your hosted hypervisor following the vendor's documentation. Upon booting the OS,
you will be logged in automatically, but should you need to perform any adjustment to the system
(install, remove or change any piece of software), if prompted for the user's password when running
a sudo command, enter mocs. Note that no extra software is required for reproducing the results
in the paper. The VM is set to have 1 CPU and 4GB of RAM. As discussed below, you will need
to increase the memory assigned to the virtual machine for verifying the correctness of specific
SDNSs. The experimentation presented in the paper has been conducted on an 18-Core iMac pro,
2.3GHz Intel Xeon W with 128GB DDR4 memory, running OSX.

Reproducibility of Results

MoCS has been experimentally evaluated in terms of (i) performance (states explored, verification
throughput and memory footprint), by scaling the topology of the data-plane up, and (ii) model
expressivity. We have stress-tested MoCS on real-world SDNs, as described in Section 4 of the
paper. All the raw data collected in the experiments reported in the Experimental Evaluation section
of our paper can be found in ~/Logs/.

Completeness. With the submitted artifact one can re-run all experiments included in the paper
(see below for memory-related restrictions). Currently, mocs is just a convenience Python script
that passes to the UPPAAL back-end a specific .xml file and g property, which are determined by
the input arguments (see section below). One needs to pre-generate these files so that verification
can be executed. As a result, currently, we are not able to accept any other input.

Consistency. In Section 4.1 of the paper, we presented performance evaluation and comparison
with Kuai and reported (1) verification throughput in visited states per second, (2) number of visited
states and (3) required memory. The verification throughput depends on the capabilities of the host

1 http://www.uppaal.org

98

onto which experiments are run, therefore the exact numbers cannot be reproduced. However, the
trends reported in Figure 4 can be easily reproduced. The reported results on the number of visited
states (Figures 5 and 6) and required memory can be fully reproduced. In Section 4.2 of the paper,
we evaluated MoCS expressivity in comparison to Kuai, by finding bugs in SDNs that Kuai could
not find. As reported in the paper, bug finding for all studied scenarios was very quick and this can
be reproduced with the submitted artifact. Kuai wouldn't be able to find any of these bugs and this
can be reproduced with the submitted artifact by running our own Kuai implementation. After
removing the bugs from the SDN controller code, the correctness of the SDN with respect to the
given properties can be verified by MoCS and this can be reproduced with our artifact.

Memory Requirements. The appliance comes pre-configured to use 4GB memory. However, in
order to deal with larger verification tasks, it will be needed to increase the memory allocated to it
initially. The VM will reserve all the memory you allocate to it on your host machine, so make sure
there is enough spare physical memory. The table below shows the memory needed for the
verification process for each setting. Memory is classified into ranges that are each assigned a
different colour (see quantitative colour legend).

Expected Runtime. The lower half of the below table details the verification runtimes which are
colour-coded as shown in the legend at the bottom of table. We show runtimes from an iMac pro
machine with 18-Core, 2.3GHz Intel Xeon W with 128GB DDR4 memory, running OSX.

99

MEMORY

Controller
Program

F]

®» ®O T O ~ -

w ~ » 0 T

MOCS

[GB]

MOCS
w/o
POR

[GB]

MAC
learning

MOCS
w/o
any

optim

[GB]

Kuai

[GB]

100

Stateless | ’
Firewall 8

10

11

12

13

Stateful
Firewall

<4GB (4, 8] GB (8, 16] GB (16,64] GB| (64, 128] GB

TIME

101

MAC
learning

102

Stateless | /
Firewall 8

10

11

12

13

Stateful
Firewall

>24h (>128GBs)

<1min EEEESIOIRIlR (10, 60] min

103

Command Structure and Syntax Conventions

To launch a terminal, select either the Activities launcher in the upper-left corner of the desktop or
the Show Applications icon in the lower-left corner: in the search box, enter terminal and select
Terminal to open it and you will see the bash shell. To launch MoCS, type mocs along with any
associated information (arguments), such as SDN controller program (CP), whether the model is
an optimised one or not, and the topology information of the forwarding plane. mocs is a python
front-end-script (located in ~/bin/) which is executable from anywhere on the system by just
typing in its name, without having to include the full path. UPPAAL (located in ~/uppaal64-
4.1.19) is the back-end engine of MoCS.

The general format of the mocs command is:

mocs <cp> <sr> <por> <switches> <hosts>
The table below describes MoCS various command-line arguments.

Argument Description

The SDN controller program that is input to the model, as discussed in

<P Section 2.1 of the paper

sr Whether bitwise state representation is used or not

por Whether partial-order reductions are being applied or not
switches Number of switches in the topology

hosts Number of hosts in the topology

Note that the actual values of these parameters are subject to limitations as discussed in the
section below. Limitations on the number of switches and hosts come from the fact that their
respective underlying network topologies are currently hardcoded. The output returned by
the mocs command includes (1) an affirmative response if the property holds, otherwise negative

(2) the number of the states explored, (3) the CPU user time spent, (4) the memory used, and (5)
the throughput. For example, below is the output for a 1-switch, 2-hosts topology with the stateful
firewall controller program, having both optimisations, sr and por, turned on.

mocs@mocs-VirtualBox:~$ mocs fw wB wP 1 2

-- Formula is satisfied.

-- States explored : 592 states

-- CPU user time used : 120 ms

-- Resident memory used : 8508 KiB

-- Throughput : 4933 states/s

mocs@mocs-VirtualBox:~$

104

Reproducing the Experimental Evaluation

States explored, verification throughput and memory footprint

The values of the arguments used for the experimental evaluation reported in Figures 4-6, are
bound to the ones shown in the table below.

cp sr por switches hosts
mocs fw {wB | woB | 0} {wP | woP | 0} {1..4} 2
mocs ml {wB | woB | 0} {wP | woP | 0} {3..10} {2..6}
mocs ssh {wB | woB | 0} {wP | woP | 0} {2..10} 2

where m1 stands for MAC-learning switch, fw for stateful firewall and ssh for stateless firewall,
the three different SDN controller we experimented with in the paper. The curly braces indicate
that the user must choose one and only one of the items inside the braces. The notation mocs ml
{wB | woB | 0O} {wP | woP | 0} {3..10} {2..6}, for example, says that the
command mocs must be followed by either wB, woB or 0 for state representation, by
either wp, woP or 0 for partial-order reduction, the number of switches (currently between 3 and
10), and the number of hosts (currently between 2 to 6). When the 0 values for state representation
(sr) and partial-order reduction (por) are used, the resulted model is that of the optimised version
of Kuai (https://github.com/t-saideep/kuai).

Each combination of the arguments cp, sr, por, switches and hosts from the table above,
points to one xm1 file in a leaf-subfolder within ~/inputs/Scaling up in the submitted artifact.

Immediate-subfolder naming convention: Each immediate subfolder in:
~/inputs/Scaling up, contains data related to a specific controller program as named, i.e.,
either ssh, ml1, fw.

Leaf-subfolder naming convention: The end-subfolders are named conventionally in order to
provide a preview of the content. They are organised by (1) controller program name
(ssh, m1, fw), and (2) whether the optimisations are on/off: wB/woB/0, wP/woP/0.

File naming convention: The xml input files are also named conventionally and they are
organised by (1) controller program name (same format as their immediate parent directory), and
(2) topology setup (data plane instances), where mn denotes a network of m switches and n hosts
as shown in the ~/inputs/Dataplane topologies files.

Examples

mocs ssh wb wp 3 2 will invoke the file:
~/inputs/Scaling up/SSH/SSH wBwP/SSH32.xml which refers to an optimised model (both
efficient state representation and partial-order reductions are turned on) in a 3-switches, 2-hosts
forwarding network controlled by a stateless firewall.

mocs fw wB wP 1 2 willinvoke ~/inputs/Scaling up/FW/FW_wBwP/FW12.xml, a stateful
firewall with 1 switch and 2 hosts, and optimised semantics.

mocs ml 0 0 3 2 willinvoke ~/inputs/Scaling up/ML/ML_Kuai/ML32.xml which is a Kuai's
model (with all the Kuai's optimisations) in a 3 x 2 topological setting with MAC Learning Switch
controller program.

105

Model Expressivity

For reproducing the paper results regarding the model expressivity, we use mocs_opt and kuai,
which are instances of mocs for specific configurations. mocs opt <cp>is an instance
of mocs for the fully optimised version of MOCS models (i.e., both state representation and partial
order reduction optimisations are turned on). kuai <cp> is an instance of mocs for Kuai-models
(with Kuai's optimisations turned on). Both commands take as an argument the controller program
and embed 2-hosts, 2-switches topologies, apart from the "nesting_level" example which runs on
a 3 x 3 topology.

In the paper, we looked at three different controller programs (described in Appendix B in our
paper), along with respective properties to be checked. In the first two examples, the buggy
versions of said controllers contained a bug that could not be discovered by Kuai due to its
expressivity limitations. MoCS could discover the bug in both examples. The list of commands for
reproducing these findings (i.e. discover the bugs in the buggy versions and verify the correctness
of the SDN with respect to the given property) is shown below. The output of mocs_opt and kuai,
resp., is identical to mocs.

mocs_opt CM ordering buggy // will discover bug (desired outcome)
mocs_opt CM ordering correct // property will be verified (desired outcome)
mocs_opt wrong _nesting level // will discover bug (desired outcome)
mocs_opt correct nesting level // property will be verified (desired outcome)
kuai CM ordering buggy /* property will be verified (bug not

* discovered - wrong outcome)

*/
kuai wrong nesting level /* property will be verified (bug not

* discovered - wrong outcome)

*/

In the third example ((In)consistent updates), the bug can be due to either (1) the inability of the
model to express barrier-response messages (i.e. as in Kuai), or (2) the omission of their usage
when barrier-response messages are supported (i.e. as in MoCS). The bug can only be fixed by
updating the controller program to change its state according to the incoming barrier-response
messages, which, obviously, cannot be done with Kuai. The findings in the paper can be
reproduced with the following commands.

mocs_opt inconsistent updates // will discover bug (desired outcome)

mocs_opt consistent updates // property will be verified (desired outcome)

Note that all the above executions are very quick and do not require any significant memory
resources.

106

Dataplane topologies

All the network setups (data plane topological instances) used to evaluate MoCS for (1) the MAC
learning and stateless firewall applications, and (2) the stateful firewall are depicted in the below
two figures, (*) and (**), respectively.

Number of switches

|6 | 7]8]o]10

Number of hosts

e

(*) Network topologies for verifying absence of loops in the MAC address learning application. The
topology setups for the stateless firewall follow the pattern of those with two switches.

Number of switches

2 3

Number

of
hosts

1
a 6 6P 6 6P
N\ BN

g8

|

|

4
S
\

QQ/

(**) Network topologies for the stateful firewall.

	PhD Coversheet
	PhD Coversheet

	Klimis, Vasileios
	Contents
	List of Chapters Published as Papers in Peer-Reviewed Conferences
	List of Tables
	List of Figures
	List of Controller Programs
	Abbreviations and Acronyms
	Nomenclature and Notations
	OpenFlow Messages and the Respective Modelled Actions in MoCS
	1 Introduction
	1.1 Thesis Contributions
	1.2 Thesis Overview

	2 Background: A Survey of Computer Network Verification Approaches
	3 Towards Model Checking Real-World Software-Defined Networks
	4 Model Checking Software-Defined Networks with Flow Entries that Time Out
	5 Conclusions and Future Work
	5.1 Future Directions
	5.2 A final remark

	Extended Bibliography
	A Artifact for Paper: "Towards Model Checking Real-World Software-Defined Networks"

