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Abstract 

Cancer and bacterial infection are major killers across the world. Personalised cancer 

therapies are needed that respond to individual mixes of DNA damage, and new antibiotics 

are needed to respond to resistance brought about by genetic mutations in bacteria [1][2]. 

 

In this thesis, I analyse the gene sequence patterns next to small mutations in cancer cells, 

identifying those associated with substitutions and indels. I show that in the exome there is 

an excess of in-frame indels compared to frameshift mutations; evidence of negative 

selection.  

 

Next I analyse the associations between the sequences of driver genes and mutational 

frequency in cancers. I find most driver genes are more frequently mutated in those cancers 

where there is a good match between the mean mutational fingerprint for that cancer and 

the fingerprint formed from the mutations found in the driver gene in question.  

 

I then extend existing work on mutational signatures, to identify novel bacterial mutational 

signatures. By comparing the signatures with those of human cancers and environmental 

mutagens, I identify alkylation as a driver of bacterial mutagenesis. 

 

Next I review translational drug discovery, highlighting the use of bioinformatics to identify 

drug targets and biomarkers, assess protein druggability; and predict opportunities for drug 

repositioning.  
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Finally, I identify therapeutically actionable mutually exclusive gene pairs within human 

cancers. I show that the Poisson binomial distribution is better for identifying mutual 

exclusivity. The predictions are available on the new MexDrugs website, and my python 

implementation of the Poisson binomial test can be installed via pip. 
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1 Introduction  

DNA is constantly under attack. Damage occurs as a result of natural metabolic and 

hydrolytic processes as well as via double strand breaks during replication. If this damage is 

not identified and repaired, or is badly repaired, it can lead to non-replicating cells or 

mutations. In addition, mutations arise from the presence of mutagenic chemical or physical 

agents such as smoke, UV light, and asbestos, as well as the incorporation of foreign DNA 

(most normally viral in human cells) into DNA.  

 

The distribution of nucleotides within the exome is far from random. In fact, it shows 

sufficiently distinctive structure that changes in the nucleotide distribution can be used to 

predict gene boundaries with considerable accuracy[3]. Not all nucleotide motifs are equally 

susceptible to damage so, as a result, the patterns of mutations seen provide a historical 

record of the damage to the DNA[4].  

 

I have chosen to look at cancer cells and bacterial cells because both are under extreme 

evolutionary pressure, and both are major killers. Increasingly, methods of tackling them 

have relied on a more detailed understanding of their evolution.  

 

1.1 Overview of DNA 

Each chromosome comprises of a single deoxyribonucleic acid (DNA) molecule wound 

around histone octamers and supported by scaffolding proteins. The DNA itself consists of 

two paired chains of polynucleotides. Each of the nucleotides has a sugar-phosphate 

backbone, and a base, either: adenine (A), cytosine (C), guanine (G) or thymine (T). The 
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polynucleotide chains are anti-parallel and aligned in the familiar double helix so that bases 

adenine and thymine, and conversely cytosine and guanine, are paired[5]. The sequence of 

nucleotides on one of the strands is complementary to that on the other strand. 

Only a small percentage of DNA is accounted for by protein or RNA coding genes. The 

function of much of the remaining DNA is poorly understood, though the term ͚junk DNA͛ is 

now known to be a misnomer. In particular, each DNA strand includes several specialised 

regions of DNA. These include: 

 

x a centromere allowing for the attachment and subsequent separation of paired 

chromosomes during replication[6];  

x a large number of DNA replication origins allowing for the attachment of DNA 

polymerase[7];  

x promoters, enhancers and insulators - regions of DNA that govern the expression of 

specific genes and are normally found in CG islands, i.e. regions of the DNA that have 

a locally higher proportion of C-G pairs[8].  

x telomeres - repeats of the unit GGGTTA at the end of each linear chromosome. 

These are replenished each time a cell divides thus preventing reduction of the 

length of the chromosome each time the RNA primer reaches the end of the 

chromosome during replication. Telomeres are not found in circular chromosomes. 

 

In any given cell, the specific set of genes which can be expressed is tightly controlled via 

changes to the chromatin packaging of chromosomes and covalent modification of DNA. I 

am particularly concerned here with patterns of methylation. These are methyl groups 

which become attached to the cytosine in a CpG dinucleotide, primarily in the CG islands. 
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Where the CG islands occur in the promoter or enhancer of a gene, large numbers of 

methylated cytosines can indirectly prevent binding of RNA polymerases, thus preventing 

transcription and gene expression.  

 

1.2 DNA damage 

Although DNA is a highly stable molecule, it is subject to attack from chemicals, both from 

essential chemical reactions such as metabolism, and via environmental mutagens. In 

addition, some cells are vulnerable to physical attack and to viral invasion. In addition, the 

very act of DNA winding and unwinding requires purposive damage. 

 

1.2.1 Chemical damage 

Chemical reactions as a result of ordinary cellular processes are the primary causes of DNA 

damage. The most potent of these are oxidation, alkylation, and hydrolysis. These reactions 

are exacerbated by environmental mutagens, and physiological conditions. 

 

The most frequent damage is caused by reactive oxygen species (ROS) such as hydrogen 

peroxide (H2O2). ROS form as a result of metabolism and other biochemical processes and 

can cause several types of DNA damage including oxidised bases as well as both single and 

double strand breaks. ROS can be exacerbated by chronic infections that lead to an 

inflammatory response as well as lifestyle and dietary factors [9]. 

 

DNA is also constantly under attack from alkylating agents that deposit methyl or other 

small alkyl groups on DNA. Endogenous alkylating agents are very common. However, many 

environmental carcinogens also act as alkylating agents. For example, tobacco smoke 
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contains N-nitrosodimethylamine (NDMA), 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone 

(NNK), acrylonitrile and ethylene oxide, all of which are alkylating agents. [9],[10]. Adducts 

can also arise from high concentrations of reactive carbon species (RCS) which can result 

from conditions such as diabetes. These can lead to the creation of abasic sites and it has 

been shown that some bulky adducts can lead to fork stalling [11]. 

 

Finally, hydrolysis can act on DNA either to remove purines and sometimes pyrimidines 

leaving an abasic site. It also acts via hydrolytic deamination particularly of 5-Methylcytosine 

giving rise to uracil. 

 

The most important environmental mutagens are by-products of smoking tobacco [12]. 

However, other carcinogenic chemicals include: some farming products ʹ particularly 

chlorinated, organophosphate, and carbamate insecticides and phenoxy acid and triazine 

herbicides [13]; industrial chemicals such as aromatic amines, vinyl chloride, benzene, and 

chromium compounds; atmospheric pollutants resulting from incomplete combustion of 

fossil fuels; contaminants in drinking water produced during water chlorination; and some 

medications, particularly anticancer drugs, oestrogens, and analgesics [12]. 

 

1.2.2 Physical damage 

In addition to chemical assault, some cells are subjected to physical assault from radiation 

such as sunlight, or from the inhalation of particulates such as dust or asbestos. UV light, 

and particularly UVB light, has the ability to directly attack DNA at two adjacent pyrimidines, 

particularly TT, forming dimers [14]. Therapeutic or nuclear radiation is of higher energy and 

is able to directly induce double strand breaks [15]. Physical damage from dust etc. is less 
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direct. The key importance here is size. Particulate matter which is small enough to enter 

the cell can give rise to inflammation which in turn leads to the generation of elevated levels 

of ROS which damage the DNA [16].   

 

1.2.3 Viral attack 

DNA from some specific viruses persist in the cell by becoming incorporated within the host 

genome. [17]. These include the Epstein-Barr virus [18] and the Karposi sarcoma herpes 

virus[19]. Genetic material from RNA based viruses such as the Rous Sarcoma Virus can also 

become incorporated [20]. 

 

1.2.4 Purposive damage 

All activities that require DNA to be unwound quickly lead to increased tension in the DNA 

known as supercoiling. This includes acts of DNA replication, transcription, recombination, 

and chromatin remodelling. If left unresolved supercoiling would quickly lead to termination 

of the activity. In order to reduce the stress, purposive single strand DNA breaks are induced 

in order to allow the DNA to rotate at the point of the nick. Experiments have also been 

carried out to introduce topologically knotted structures in DNA. The successful resolution 

of these implies that that purposive double-stranded breaks can also be initiated and 

resolved [21][22]. 

 

1.2.5 Relative importance of DNA damage 

The human mutation rate is approximately 1 mutation/1010 nucleotides/cell division. This 

equates to the loss of roughly 18,000 purine base a day as well as deamination of around 

100 cytosine bases (p268) [23]. Three-quarters of lesions in human cells are single-strand 
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DNA breaks, which can be repaired using the complementary strand of the DNA as a 

template. The remaining quarter are double strand DNA breaks. These are more dangerous. 

A cancer cell may acquire over 1000 mutations as a result of an increasingly unstable 

genome, and compromised DNA damage repair system (DDR).  

 

For bacterial cells the levels of change are very variable. However, as an example, 

Escherichia coli is estimated to acquire 8.9 × 10о11 mutations per base-pair per 

generation[24]. Whilst this may seem comparatively slight bacterial generation times can be 

as fast as 10 minutes in some species, so where mutations have no impact on fitness the 

variation due to single nucleotide polymorphisms (SNP)s can quickly mount up[25]. 

 

The pattern of unique mutations left in the DNA record of a cell reflect the mutagens to 

which the cell has been exposed, the efficacy of DNA damage repair pathways, and the cell͛s 

ability to survive any permanent damage[26].  

 

1.3 DNA repair pathways 

In order to maintain the integrity of the genome, all cells are equipped with many different 

pathways that enable the cell to identify and repair damage. Some of these DNA damage 

repair pathways are faithful, whilst others are error-prone, increasing the mutation rate. 

Most DNA repair pathways are available to humans and bacteria alike, though the exact 

genes involved vary. However, bacteria have two DNA repair pathways that are not 

available to animal cells: Direct Reversal and SOS. 

 



 20  

 

1.3.1 Single strand repair 

Damage to a single strand of DNA can be repaired directly using direct reversal or the 

damage can be cut out and repaired using the other DNA strand as a template. Nucleotide 

excision repair, base excision repair and mismatch repair are all variations on that theme. 

Direct reversal (DR) is used to repair damage done by the methylation of guanine bases, as 

well as some types of alkylation of adenine and cytosine bases[27]. A mechanism is also 

available in bacterial cells to enable direct repair of the pyrimidine dimers created in DNA by 

UV light [28]. This last mechanism is not available to humans who use nucleotide excision 

repair instead (see below). 

 

Nucleotide excision repair (NER) is used to repair any bulky lesion affecting one strand of 

the DNA. The DNA is unwound at the site of the damage, a short section of the damaged 

strand is removed and DNA polymerase then replaces the damaged section using the 

opposite DNA strand as a template. This pathway is available to both human cells and to 

bacterial cells and is highly conserved. NER is used to remove a wide range of small lesions 

including those caused by sunlight [29].  

 

Base excision repair (BER) is much more specific than NER, but is available for repairing the 

most common forms of damage including both depurination and depyrimidination. The 

damaged base is cut from DNA strand and then replaced using the opposite DNA strand as a 

template.  

 

Mismatch repair (MMR) is a highly conserved pathway used to repair replication errors. A 

single strand of DNA is excised either side of the mis-match and then a new section of DNA 
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is resynthesized and ligased, using the other strand of DNA as a template. Defects in MMR 

are particularly important in cancer giving rise to substitutions and also to singleton indels 

at the site of mononucleotide repeats [30][31]. 

 

1.3.2 Double strand repair 

Double strand breaks are a potentially lethal form of damage, with one unrepaired break 

sufficient to cause cell death or large scale genomic disruption such as chromosome loss 

[32]. Repairs may be made using homologous recombination or the less faithful non-

homologous end joining or microhomology mediated end joining. Homologous 

recombination (HR) is an accurate double strand break repair mechanism which relies on 

use of the sister chromatid as a template. Following a double strand break, and in the 

presence of a homologous section of DNA, a section of double strand is unwound and 

degraded on either side of the break. The single stranded DNA then invades the sister 

chromatid at a site of shared homology, temporarily displacing one of the DNA strands. 

Polymerase is used to continue formation of the single strand. The two ends of single strand 

then join at a site of good homology, forming a now continuous length of DNA before 

polymerase is once more used to reform a double strand and ligase used to seal the ends. 

HR is available to humans during the S-phase when the sister chromatid is readily available. 

HR is also a highly conserved pathway in bacteria, but in haploid bacterial cells relies on the 

presence of homologous alien DNA[33].  

 

DNA non-homologous end joining (NHEJ) is an error-prone mechanism for mending double 

strand breaks. No template is used, so NHEJ is available to bacterial cells and to human cells 

when no sister chromatid is readily available. The two ends of the break may be directly 
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religated leaving no error, or the ends may be remodelled and then religated, leaving 

insertions or deletions at the breakpoint. The role of NHEJ in preserving genomic integrity is 

two-sided: defects in the pathway lead to genomic instability, but on the other hand 

because of the error-prone nature of the NHEJ repair mechanism, dysregulation of the 

pathway is also associated with genomic instability and carcinogenesis. For example, 

although DSBs are preferentially repaired by HR during the S phase, defects in the HR 

pathway can lead to NHEJ repairing one-ended DSBs with another distal DSB resulting in 

translocations [34]. 

 

Microhomology-mediated end joining (MMEJ) or alternative nonhomologous end-

joining (Alt-NHEJ) is a deletion-inducing mechanism in humans for repairing double-strand 

breaks in DNA. The use of small matching sequences during the alignment of strands results 

in deletions flanking the original break. MMEJ is frequently associated with chromosome 

abnormalities such as deletions, translocations, inversions and other complex 

rearrangements [35]. 

 

1.3.3 Changes to the regulation of DDR pathways 

In addition to the pathways identified above, bacteria have an SOS response which is not 

available to mammals. The SOS response is a DDR pathway in that it regulates the repair of 

DNA damage, but it does so in a way which leads to a highly elevated mutation rate. As a 

result, it generates genetic diversity and enables adaptation to stress, which can provide a 

survival advantage to the bacterial colony. The response is provoked by a wide range of 

exogenous triggers including some antibiotics, physical stress such as pressure or starvation, 

or incorporation of new genetic material, or endogenous triggers such as Reactive Oxygen 

https://en.wikipedia.org/wiki/Double-strand_break
https://en.wikipedia.org/wiki/Double-strand_break
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Species (ROS). These triggers lead to high levels of single strand DNA (ssDNA) that trigger 

the pathway. Critically the SOS pathway makes use of error-prone DNA polymerases which 

lead to the increased mutation rate [36][37]. 

 

Analogies can be drawn with cancer cells which frequently have dysregulated DDR paths. 

Mutations to the DDR paths may be under positive selection pressures to provide cells with 

the ability to tolerate the high levels of double strand breaks during replication that are 

induced by activated oncogenes[38][39]. When the DDR pathways are defective the specific 

patterns of mutations depend on the mutagens to which the cell has been exposed: MMR 

deficiency gives rise to a high number of substitution mutations together with singleton 

insertions and deletions at the site of homopolymer repeats, whereas deficiencies in double 

strand break repairs tend to exhibit a more uniform base substitution spectrum, together 

with small deletions and tandem duplications [40]. Copy number variations can also be 

brought about by erosion of telomeres at the end of the chromosomes. This may lead to 

senescence but can give rise to telomere crisis, during which time DNA damage repairs goes 

wrong. This crisis may lead to cell death but alternatively can lead to gene fusions, 

amplifications, and deletions during inaccurate DNA damage repair [41]. 

 

1.4 Overview of human cancer cells 

In 2018 over 18 million new cases of cancer were diagnosed and this is predicted to rise to 

29 million by 2040 as populations age[42]. As well as surgery and radiation, there are three 

pillars of medicinal cancer therapy: cytotoxic chemotherapy, targeted therapy, and immune 

therapy. The research field is strong in each of these areas. For example, smart drug delivery 

systems are being developed to enable reduced doses and better targeting of cytotoxic 
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drugs, so reducing side-effects and toxicity [43]. There is considerable research into 

inhibitors of known oncoproteins such as tyrosine kinases inhibitors[44][45] and oestrogen 

antagonists[46] and because MYC is both such an important oncogene and yet also 

undruggable there is considerable research into ways of reducing its expression by drugging 

BET bromodomains and CDKs that support MYC in tumour cells [47]. 

In addition, advances have been made in cancer immunotherapy, enabling the body to fight 

the cancer particularly in metastatic melanoma where monoclonal antibodies improve T-cell 

immune function [48]. Yet we are not close to saying that cancer is cured. 

 

Cancer is caused by DNA damage to the cells of the host that is inadequately repaired. The 

damage is not targeted, and generally either tolerated or leads to cell senescence or 

apoptosis. Although childhood cancers exist, most tumours develop over the course of 

many years or decades as a result of successive genetic and epigenetic changes. DNA 

mutations are unfortunately a normal part of cell aging and, by middle-age, even cells that 

do not show signs of cancer may nevertheless have a high burden of mutations [49]. Cancer 

arises much more frequently in some tissue types than in others and the rate has been 

shown to be strongly correlated to the normal replication rate for the cell [50].  

1.4.1 Human DNA 

In each of the typical somatic cells in the human body there are 23 pairs of linear 

chromosomes. 22 non-sex or autosomes present as a matched but not identical pair, and 

the appropriate X and Y chromosomes, generally XX for women or XY for men, though other 

possibilities exist. This is dubbed the euploid karyotypic state [51]. In total the human 

genome has roughly 3.2 billion nucleotide pairs (6.4 billion for a diploid cell)[52].  
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Within this vast amount of information roughly 1% is accounted for by 30,000 regions of 

DNA known as genes which provide the template for the generation of protein (21,000), or 

in 9,000 cases functionally significant RNA molecules.  

 

The chapters of this thesis concerning cancer explore primarily mutations to protein-coding 

genes, changes to copy number of the chromosomes and the methylation of promoter 

regions, as this is strongly associated with somatically heritable repression of gene 

expression[23].  

 

1.4.2 Hallmarks of cancer  

Where DNA damage results in changes to gene and protein expression and/or protein 

function, the DDR pathways can become disrupted and a form of Darwinian evolution can 

become apparent. Populations of clonal cells emerge which are derived from a single cell 

slightly more able to grow, replicate and evade death. Further DNA damage within such a 

population gives rise to new sub-clones which compete for limited nutrients. These sub-

clones may die out, exist side by side, or expand further to become the dominant clone.  

 

As successive generations of sub-clones emerge, the more successful sub-clones bear traits 

that enable them to become tumorigenic, and eventually to spread to other organs. These 

traits have become known as the hallmarks of cancer, and they provide a way for 

understanding the biology of cancer. They are: sustaining proliferative signaling; evading 

growth suppressors; activating invasion and metastasis; enabling replicative immortality; 

inducing angiogenesis; and resisting cell death. These hallmarks were described originally in 

2000 by Hanahan and Weinberg [53] , and were updated in 2011 to include two further 



 26  

 

emerging hallmarks: deregulating cellular energetics, and avoiding immune destruction; and 

two characteristics that enable the development of the other hallmarks: genomic instability 

and inflammation [54]. These are shown in figure 1.1 and described in more detail below. 

 

 

 

 

 

 

Figure 1.1 ʹ The original and emerging hallmarks of cancer, reproduced from ͞Hallmarks of 

Cancer: The Next Generation͟ [54] 

 

1.4.2.1 Sustaining proliferative signaling 

Ordinarily, tissues strictly regulate cell growth and division, using growth factors to enable 

cross talk between cells. By so doing they maintain homeostasis. By contrast, cancer cells 

regrow and proliferate in a way which is largely irresponsive to growth factors. They do this 

through mutations that deregulate the impact of growth factors, for example by enabling 

constitutive signaling of the MAP and P13K signaling pathways [55] and by suppressing 

negative feedback of these pathways for example by mutations to PTEN [56]. 

 

1.4.2.2 Evading growth suppressors 

Before replicating, normal cells require both the positive growth signals mentioned above, 

and the absence of negative signals from tumour suppressors that regulate the cell cycle. 

When tumorigenic cells begin to grow and divide more rapidly the cells become stressed, 
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for example through less access to oxygen and nutrients, and as a result of genomic 

damage. Normally these conditions would be monitored by tumour suppressing pathways 

that bring the cell cycle to a halt. However, mutations to key tumour suppressors allow the 

cell to evade growth suppression. Two key examples of such tumour suppressors are: RB 

which relays and integrates inhibition signals primarily from outside the cell[57] and TP53 

which halts the cell cycle if there are too many signs of stress or abnormality from within 

the cell [58]. There is however considerable redundancy in the gene network enabling mice 

without a functioning copy of RB or TP53 to maintain cell homeostasis[59],[60].  

 

1.4.2.3 Activating invasion and metastasis 

A malignant tumour must be able to move from the primary tissue to alternative tissues 

and, once there, adapt to cope with the different environment growing into a new tumour. 

Three mechanisms are known that enable metastasis. The first is called the epithelial-

mesenchymal transition (EMT). During EMT, individual cells activate processes used during 

formation of embryonic organs and also during wound healing to allow the cell to invade 

the local tissue before entering and moving through blood and lymphatic vessels, exiting 

into new tissues and finally growing into new tumours[61]. Two other forms of metastasis 

are documented. The first is collective invasion, whereby whole cohesive clusters of cancer 

cells advance into adjacent tissues bypassing the need for the major changes during EMT 

[62]. Finally, in amoeboid invasion, individual cancer cells change shape, elongating to move 

through gaps in the extracellular matrix rather than first clearing a path[63]. Each step of 

migration and metastasis puts further evolutionary pressures on the cells. As a result, the 

genetic changes to metastatic cells may be very different to those of the originating 

tumorigenic cells. 



 28  

 

 

1.4.2.4 Enabling replicative immortality 

Normal cell lineages grow and divide a limited number of times before either entering 

senescence (which prevents further division) or undergoing a crisis leading to cell death.  

This crisis is brought about by the erosion of the telomeres during replication. When the 

telomeres reach a critically short length, they can no longer protect the chromosome from 

lethal fusions which generally lead to cell death. In most cancer cells, expression of 

telomerase bypasses cell death by extending the telomeres. However, some cancer cells 

with deficiencies in the apoptosis pathway may experience and survive telomere crisis 

before telomerase activation, resulting in cancer-promoting chromosomal fusions [64].  

 

1.4.2.5 Resisting cell death 

Non-tumorous cells that are suffering from the levels of stress seen in tumours would either 

go into cell cycle arrest and senescence, enter the process of programmed cell death 

(apoptosis), or break down cell organelles (autophagy). Tumour cells resist apoptosis, either 

by avoiding monitoring stress or during execution. The monitoring includes sensing the 

levels of stress (including by TP53), responding to insufficient survival factor signaling (via 

BH3) and responding to high levels of proliferation (via MYC). Tumour cells can resist 

apoptosis in a variety of different ways, for example through TP53 loss[65] [60], 

upregulation of antiapoptotic regulators and survival signals or downregulation of 

proapoptotic factors. Alternatively, they may short-circuit the apoptosis pathway[66]. 

Similarly, tumour cells may resist autophagy. However, autophagy may also be cancer 

enabling by allowing cancer cells to enter a form of dormancy during treatment which can 

later be reversed[67][68]. Necrosis, whereby cells die in a less controlled fashion, is similarly 
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a two-edge sword for cancer cells. The centre of a rapidly growing tumour becomes nutrient 

and oxygen deficient which can lead to necrotic cell death. During necrosis the cell contents 

explode into the surrounding tissue. These contents can then recruit inflammatory cells 

which induce angiogenesis, proliferation, and invasion[69].  

 

1.4.2.6 Inducing angiogenesis 

By the time a human has reached adulthood the blood system is largely complete with new 

blood vessels (angiogenesis) only being formed after wounding and during the menstrual 

cycle and pregnancy. However, new blood vessels are constantly needed for tumour growth 

to prevent death from hypoxia and nutrient deficiency, and the angiogenetic switch is 

typically switched on early in tumour progression, either directly by the upregulation of 

oncogenes such as MYC or indirectly via immune inflammatory cells[70].  

 

1.4.2.7 Deregulating cellular energetics 

Metabolism in cancer cells close to the centre of tumours is dominated by the need to cope 

with the hypoxic conditions found at the centre of tumours. In response, some cancer cells 

largely reprogram their glucose metabolism to glycolysis, even though this is much less 

efficient. However, glycolytic metabolism occurs even in oxygen rich tumours. It is believed 

that this may be because the alternative metabolic route also provides the cell with 

intermediary chemicals in order to biosynthesise new amino acids etc. Both KRAS activation 

and hypoxia lead to more glycolysis [71].  
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1.4.2.8 Tumour-promoting inflammation 

Chronic inflammation enables tumour development through a number of different 

mechanisms. As previously mentioned, inflammatory cells release ROS, thereby accelerating 

mutagenesis of nearby cells, as well as aberrations in methylation. This impact has been 

associated with cancers arising as the result of viral or bacterial infections or other 

inflammatory conditions. Inflammatory immune cells also supply cancer with growth 

factors, survival factors, proangiogenic factors, and enzymes that modify the extracellular 

matrix so facilitating angiogenesis, invasion, and metastasis[72].  

 

1.4.2.9 Genome instability and Mutation 

Mutations to genes responsible for genome surveillance, maintenance and repair, together 

with loss of telomeric DNA, greatly accelerate the rate of DNA evolution. This evolution, 

whilst leading to the death of many tumour cells also enables the tumour to acquire 

mutations that lead to new clones with more of the hallmarks of a fully-fledged cancer[73]. 

 

1.4.2.10 Avoiding immune destruction  

During the tumour͛s early stages, cytotoxic immune cells eliminate many immunogenic 

cancer cells. However, macrophages - innate immune cells- may either eliminate cancer 

cells or be pro-tumorigenic contributing to angiogenesis, remodelling of the extracellular 

matrix, and suppressing anti-tumour effector cells. Cancers can be classified by the 

expression profile of immune pathways in ways that largely cut across traditional cancer 

classifications. Such classifications reflect the different composition of immune cells 

present[74] [53][54]. 
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1.4.3 Types of DNA damage in cancer 

DNA damage results from three main sources: small scale mutations to the DNA, changes to 

the chromosomal copy number and heritable changes to the epigenome. Very few such 

changes have an important impact on carcinogenesis because most affect so-called ͚junk͛ 

DNA or genes which play no direct role in cancer. However, a few hundred genes play a 

pivotal role in protein pathways affecting the cancer hallmarks identified above. These are 

dubbed ͚driver genes͛ because disruption to their function can drive carcinogenesis. Often, 

one of the impacts of early mutations to driver genes is widespread epigenetic 

dysregulation. Heritable changes in the patterns of methylation as well as chromatin 

remodelling and histone modifications lead to stable, pathogenic, alteration in profiles of 

gene expression. A complex interplay between gene expression and both genetic and 

epigenetic damage then ensues, leading to further damage and genetic instability. Most 

cancers share this basic pattern, though some cancers develop much more quickly, either 

because a vital genetic mutation has been inherited and thus occurs in all the cells, or 

because of a single event of huge replicative stress leads to massive chromosomal 

rearrangement and simultaneous inactivation of many separate pathways [75].  

 

In the same way that cancer is an umbrella term covering many different diseases of altered 

cell replication and metastasis, the damage at a genetic and epigenetic level is highly 

heterogenous.  

At a statistical level, cancers at different sites can be classified by characteristic 

combinations of aneuploidy, somatic mutations and methylation patterns. For example, 

clear cell renal cell carcinomas frequently lose chromosome arm 3p and gain a copy of 5q, a 

pattern not seen in other organs [76]. However, two patients presenting with the same 
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pathology are likely to have very different profiles of DNA damage, and these differences 

translate into differences in prognosis and appropriate treatment. For example, breast 

cancer is partially classified by the status of receptors for oestrogen, progesterone, and 

human epidermal growth factor (ER, PR, and HER2). Women suffering from cancers with 

different biomarker status have varying responses to different therapies, and have different 

prognoses. In short, these biomarkers can be used to identify different diseases, not 

apparent from phenomenological symptoms [77].  

 

The biomarkers and indeed driver genes may be either genes that are mutated or 

dysregulated in cancers found throughout the body or, as in the example above, genes 

which are important in only one or a small group of cancers [78][79].  

1.4.3.1 Substitutions 

Most cancers are characterised by many small mutations. The vast majority of these are the 

substitution of a single nucleotide (SNP), while most of the remainder are the insertion or 

deletion of a single nucleotide or a few nucleotides (indels). 

 

Mutations outside the protein-coding region generally have no or little impact on 

phenotypic impact, and some cells are able to withstand many hundreds of mutations 

within the exome without becoming cancerous or dying. The main reasons for this are that: 

many mutations are silent, having no impact on protein production; many areas of the 

protein, particularly the disordered regions, can withstand considerable change without 

impacting on protein function, and within most cells there are considerable numbers of 

genes which are non-essential. This may be because they are not expressed in the tissue of 
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interest [80], or because a cell can continue to grow and reproduce without the protein in 

question ʹ albeit with impaired function[81]. 

 

Silent mutations are nucleotide substitutions that result in no change of amino acid. There is 

considerable redundancy in the code used to translate RNA to amino acids. For example, all 

codons of the form ͚ACN͛ code for threonine, where N is any of A,C,G,T. As a result, many 

mutations are silent, having no impact on the amino acid sequence. At the other end of the 

scale , where a substitution results in the formation of a premature stop codon TAA, TGA, 

TAG the resulting protein is foreshortened or, more usually, does not form at all as a result 

of RNA surveillance mechanisms. This is because exon junction complex (EJC) proteins are 

deposited on the RNA fragments at the site of exon-exon junctions. Where there is a 

premature stop codon ahead of an exon-exon junction, the presence of a subsequent EJC 

protein triggers nonsense mediated decay [82]. Substitutions that are neither silent nor 

nonsense mutations are classified as missense mutations. These substitutions give rise to 

the change of a single amino acid. Generally, the impact of these changes is very low but 

where the missense mutation takes place in a driver gene affecting one of the active 

domains of the resulting protein the impact can be profound. One of the most well studied 

driver genes, BRAF, is strongly selected for mutations at the codon 600 site. The substitution 

of V>E at that site causes the BRAF signalling pathway to become constitutively active, that 

is, it is not sensitive to feedback mechanisms. The modified protein is a strong driver in 

melanomas [83].  
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1.4.3.2 Indels 

Around 4% of all small mutations are either insertions or deletions, collectively known as 

indels. Most of these are the insertion or deletion of a single nucleotide which has the 

impact of changing the codon frame from the point of the indel onwards. As a result, most 

indels lead to a profound change in the amino acids from that point onwards, as well as the 

introduction of a new stop codon which may lead to nonsense mediated decay. Throughout 

this thesis I therefore assume that frameshift indels give rise to loss of function of the 

protein. Inframe indels, consisting of multiples of three nucleotides lead to the addition or 

loss of a number of amino acids and may thus be less pathogenic. 

 

1.4.3.3 Copy Number Variation 

In a typical, non-tumorigenic cell, there are 22 matched pairs of non-sex or autosome 

chromosomes as well as an XX or XY pair. In some cancer types this ordered state is often 

lost, with frequent loss or gain of whole chromosome arms or large chunks of DNA. Analysis 

of the impact of changes in copy number is complicated by gene dosage compensation. That 

is copy number gains do not necessarily lead to increased expression. However, the loss of a 

part of both chromosomes leads to non-expression of any genes contained therein. It is also 

common to have copy neutral areas where DNA damage has nevertheless led to a loss of 

heterozygosity. In such areas mutations on tumour suppressors such as TP53, BRCA1, BRCA2 

and PTEN are often copied over to the sister chromatid during double strand break repairs 

[84]. 
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1.4.3.4 Gene Expression 

At the time of writing the largest databases of cancer ͚omics do not include protein 

expression. The closest, and inadequate, substitute for it is the RNA seq data provided 

either as fragments per kilobase million or as raw counts. Analysis of the RNA seq data can 

be used to compare expression between two groups. However, matched tumour/normal 

pairs of RNA seq data are not available, and moreover the RNA seq provides a single snap-

shot during an ever-moving parade, quite unlike the historical record of DNA mutations and 

copy number and the stable changes to methylation. For many proteins there is a poor link 

between gene expression and protein expression. As a result, I have not included gene 

expression analysis within this thesis. 

 

1.4.3.5 Methylation  

Tumorigenesis progresses not only via permanent changes to the genome, but also through 

interactions between genomic mutations and abnormal gene expression. Whilst gene 

expression is intrinsically reactive, the silencing or activation of specific genes caused by 

epigenetic changes can be very stable as they are linked to mutations in epigenetic writers, 

readers, and erasers, thus offering opportunities for cancer therapies[85]. These epigenetic 

changes include: histone modifications; the reorganisation of chromatin causing heritable 

silencing or activation of particular genes; and methylation of CpG nucleotides. It can be 

extensive [86]. However, as with other modifications, the epigenetic changes are 

remarkably specific to particular cancers. For example there are large differences between 

the methylation patterns found in childhood MLL-r and other common childhood 

leukaemias [87].  
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1.4.4 Driver genes 

At the time of writing around 1% of all genes have been implicated in the development of 

cancer via mutations, most usually in a specific tissue type [88]. These are referred to 

throughout this thesis as either driver genes or cancer-associated genes in contexts where 

the link between the gene and cancer in question has not been established. These driver 

genes are commonly dubbed tumour suppressor genes and proto-oncogenes.  

 

1.4.4.1 Tumour Suppressor Genes 

Typically, tumour suppressor genes are guardians of the normal functioning of cell 

replication, so named because when they function normally, they suppress tumour growth. 

Tumour suppressor genes have a wide range of functions. The first group is involved in the 

DNA damage response pathways identified above and so ensure stability of the genome. For 

example ATM, which is implicated in leukaemia, is a critical component of the DDR signalling 

pathway [89][90]. A second group regulates the cell cycle, preventing excessive growth, and 

initiating senescence or causing apoptosis in cells that have accumulated too much damage. 

For example, RB1 inhibits cell cycle progression until the cell is ready to divide and is 

commonly implicated in cervical tumours [59]. Tumour suppressors and oncogenes can be 

locked in regulatory pathways, whereby the tumour suppressor antagonises the activity of 

the oncogene. For example, PTEN, which is implicated in breast cancer, reduces the activity 

of the oncogenes PIP3 and AKT [91]. 

 

In each case it is normally a loss of function mutation which drives the cancer, and 

commonly the loss of function is recessive: it must occur in both alleles to be effective. This 

is rarely through two separate mutations. Instead the disabling mutation often occurs to a 
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gene before loss of heterozygosity means that the disabling mutation is copied to the sister 

chromatid. Not all mutations will inactivate a tumour suppressor. However, the range of 

effective mutations is quite extensive and includes deletions, frameshift indels, and 

nonsense substitutions as well as some pathogenic missense substitutions[92].  

 

1.4.4.2 Oncogenes 

In contrast to tumour suppressors, proto-oncogenes are genes involved in cell 

differentiation and proliferation of cells that, when overactivated, support tumorigenesis. 

The process of over-activation may happen in a number of different ways. There may be 

overexpression either as a result of amplification of copy number (such as MYC [93]), 

change in methylation (e.g. HOX11 [94]). Occasionally active domains from two separate 

genes become fused, again as a result of chromosomal translocation, giving the new gene a 

distinct function, or enabling the resulting protein to signal in the absence of ligand-binding. 

A common example of this is the BCR-ABL gene which is found in Chronic Myeloid 

Leukaemia. BCR-ABL results from a fusion of BCR on chromosome 22 with ABL on 

chromosome 9 leading to production of a tyrosine kinase which is always on[95]. More 

commonly, a relatively small alteration to the structure of the resulting protein as the result 

of a missense mutation or inframe indel enables the protein to become substantively active. 

One example of this is HER2 which can dimerize with a number of related proteins, and is 

implicated in breast cancers[96]. Such mutations need not affect both alleles, and generally 

they are very specific missense mutations local to a few highly clustered mutation sites 

[51][97]. 
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This distinction between the mutations that affect the two types of driver genes led to the 

20/20 rule ʹ Vogelstein͛s highly effective rule of thumb that any commonly mutated gene 

where more than 20% of mutations were inactivating was a tumour suppressor and 

conversely any commonly mutated gene where more than 20% were recurrent missense 

mutations was a proto-oncogene [98]. A drawback to this approach is that a few genes ʹ 

such as TP53 ʹ display both oncogenic and tumour suppressor like features [99].  

 

1.4.5 Mutational signatures 

One of the most promising avenues for making sense of the array of differences between 

cancers is the work emerging over the last six years on mutational signatures. Statistical 

clustering of mutational frequencies carried out using COSMIC and other large cancer 

mutation data sets [100]ʹ[103] has enabled the identification of specific profiles of patterns 

in substitutions, indels and large scale rearrangements. For single nucleotide substitutions, 

these signatures are derived from the mutational fingerprints of each sample/cell-line. 

These fingerprints are frequency counts of each the twelve possible substitutions, within 

the context of the nearest nucleotide neighbour of either side i͘e͘ AAAхACA ͙TTTхTGT͘ If no 

further assumptions are made this gives rise to a 196-dimensional vector. However, a 

common assumption is that substitutions are equally likely on either DNA strand. Thus, the 

mutation AGT>AAT on the leading strand is treated as the same as the mutation TCA>TTA 

on the lagging strand. Conventionally all mutation frequencies are converted to have the 

wild-type C or T, reducing dimensionality to 96. Mutational signatures are then formed by 

clustering the fingerprints using Non-negative matrix factorisation (see section 1.9.2). A 

typical pictorial representation is shown in figure 1.2 below. 
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Figure 1.2: Mutational cancer signature 1 ʹ The signature shows the relative frequencies of 

the six substitution types that have a C or T wild type, within the context of different 

neighbouring nucleotides. This signature found in most cancers and is associated with aging. 

It was described in ͞Clock-like mutational processes in human somatic cells͟ [104] and 

reproduced from the COSMIC mutational signatures[105].  

  

1.4.6 Genetic Interactions in cancer cells 

Cancer therapies which aim to reduce the impact of oncogene activation typically work by 

using small molecules to directly inhibit the active domains of key oncogenes in signaling 

networks. However, these inhibitors do not provide a sufficient range of therapies. Not all 

oncogenes are druggable (for example, neither RAS nor MYC have so far proved druggable), 

responses are often partial and cancers often acquire resistance to therapies. It is therefore 

important to find alternative therapies that allow the targeting of mutated tumour 

suppressor genes. In order to do this, it is necessary to make use of genetic interactions.  

 

When a double mutation produces a phenotype that is surprising in light of the effect of 

each individual mutation the phenomenon is said to be a genetic interaction. A double 

mutant which results in a more extreme outcome than expected is considered a synthetic 
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interaction, whereas if the impact of the double-mutant phenotype is less severe than 

expected, it may be considered to be an alleviating interaction [106]. 

The most extreme case, synthetic lethality, is defined as being where loss of either of two 

genes individually has little effect on cell viability but inactivation of both genes 

simultaneously leads to cell death. This concept is useful therapeutically because it implies 

that if a tumour suppressor is inactivated, then inhibiting the protein products of its 

synthetically lethal partner would lead to death of cancer cells sparing those cells where the 

tumour suppressor is not inactivated [107]. This is shown schematically in figure 1.3. 

 

Figure 1.3 legend ʹ Synthetic Lethality schematic. Two genes, A and B may be considered 

synthetically lethal if a tumour cell where either gene is inactivated remains viable, but 

becomes unviable if both genes are inactivated. 

Application of the concept of synthetic lethality to drug discovery has not progressed far. 

Only one synthetic lethal pair, that between BRCA and PARP, has resulted in the much-

awaited personalised therapies [108]. This is because the gene pairs that appear 

synthetically lethal in model organisms such as yeast and fly, have not translated well to 

Normal cells Viable Tumour Cells

Non-viable Tumour 
Cells

Genes
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human cancers. Moreover, even within cancers, synthetic lethality depends on the specific 

cell under consideration. 

1.5 Overview of bacteria  

As well as mutations in cancer cells this thesis looks at patterns of mutations in bacterial 

strains. Although several thousand bacterial species exist in the human gut alone, and 

bacteria are essential for all animal life, there are around one hundred that are responsible 

for human disease: either through tuberculosis and pneumonia, via food poisoning from 

bacteria such as Salmonella or Listeria or infections. The most deadly, Mycobacterium 

tuberculosis, alone causes some 1.8 million deaths per year [109]. 

 

Antibiotic resistance is a major and growing concern across the globe. In 2017 the World 

Health Organisation (WHO) agreed a priority list of bacteria other than mycobacterium 

species for which new treatments are urgently needed [110]. Eight of the bacteria that I 

include in the analysis are on that list. See table 1.2 below. The bacteria studied also have 

more than 200 published exomes in Ensembl[111]. 
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Phyla Class Species WHO 

Research category 

    

Actinobacteria 

 

Actinobacteria 

 

Mycobacterium 

tuberculosis 

Globally established 

priority 

  Mycobacterium abscessus Globally established 

priority 

Firmicutes Bacilli   

  Bacillus cereus  

  Enterococcus faecalis  

  Enterococcus faecium High 

  Listeria monocytogenes  

  Streptococcus pneumoniae Medium 

 Clostridia   

  Clostridioides difficile  

Proteobacteria Beta 

proteobacteria 

  

  Neisseria meningitidis  

  Neisseria gonorrhoeae High 

  Burkholderia pseudomallei  

 Gamma 

proteobacteria 
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  Acinetobacter baumannii Critical 

  Escherichia coli Critical 

  Klebsiella pneumoniae Critical 

  Pseudomonas aeruginosa Critical 

  Salmonella enterica Critical 

 

Table 1.2. Importance of research into bacterial species to meet World Health Organisation 

goals [110]. 

 

Despite their ability to cause disease, in many cases these bacteria are found in healthy 

human micro-flora, particularly in the lower intestines, the upper airways or skin. I include 

here several bacteria that can be found in varying proportions in the lower intestine, where 

they are frequently asymptomatic. These include Clostridioides difficile, Escherichia coli, 

Listeria monocytogenes, Klebsiella pneumoniae, Salmonella enterica as well as Enterococcus 

faecalis, and Enterococcus faecium. In the case of Streptococcus pneumoniae, and Neisseria 

meningitidis the bacteria can occur without causing disease in the airways. These bacteria 

are opportunistic, becoming pathogenic when the constituent parts of the microflora are 

badly perturbed, in persons with compromised or undeveloped immune systems, or when 

introduced to normally sterile parts of the body [112][113][114][115][116]. I also consider 

two obligate pathogens, Mycobacterium tuberculosis and Neisseria gonorrhoea. These 

normally reside in the human body but must cause symptoms in order to be transmitted 

[117] [118]. 
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In some species, such as Bacillus cereus, Pseudomonas aeruginosa, Burkholderia 

Pseudomallei and Mycobacterium abscessus, the bacteria are primarily found in the 

environment, most particularly in soil and water. These bacteria then become pathogenic 

when introduced to the body in sufficient quantity via ingestion (B. cereus, L. 

monocytogenes) , infection (M. abscessus), inhalation (P. aeruginosa). In some cases more 

than one route is available (e.g. B. pseudomallei) [119]ʹ[123] [124]. However, despite these 

apparently clear distinctions most pathogenic bacterial species, can survive for months on 

dry surfaces [125]. 

1.5.1 Bacterial DNA 

Bacteria generally have a single circular chromosome, though variations on this theme exist. 

Some, such as Burkholderia species, may have up to three or even more chromosomes 

containing essential genes and some, such as Neisseria gonorrhoeae, are polyploidy. 

Bacterial DNA also includes smaller circular sections of DNA known as plasmids. These do 

not contain essential genes and vary from strain to strain. They are readily picked up from 

other bacterial cells or the environment via conjugation, and lost again during replication. 

The plasmids are copied independently of the chromosome and numbers thus vary over the 

life of a single cell [126]. 

 

A typical bacterial genome includes around 5000 protein coding genes from within a 

genome of around 5 mbps (see table 1.1). However, this figure is deceptive as the range is 

considerable, both between bacterial species and within them. For example, a comparison 

of more than 2000 Escherichia coli genomes found that while there were just 3100 genes, or 

slight variants thereof, that were present in all of the strains, in total there were roughly 

89,000 genes that were present in some but not all of the strains. 
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The size of bacterial genomes ranges from around 15 mbp with 12,000 genes (a Sorangium 

cellulosum strain) to 112 kbps with 137 proteins (Nasuia deltocephalinicola strain) with the 

larger genomes tending to be found in bacteria that inhabit more complex environments. 

There tends to be roughly 1 gene per thousand bps. The bacterial species that I study here 

include both bacteria with low genetic variation e.g. Mycobacterium tuberculosis, as well as 

Burkholderia pseudomallei where the variation in genome size can be more than 1 mbps 

[127]. 

 

This variability can mean that determining species can be difficult. A number of different 

approaches has been taken: the sequence identity of conserved RNA gene 16S is used to 

define new species with 97% taken as the cut-off, and phylogenetic profiling is possible 

using groups of conserved genes. The more genes that are considered the less sensitivity to 

horizontal gene transfer (see below) [127][128]. 

 

Bacterial name Genome 

Length [129] 

Protein coding 

Genes [129] 

Chromosomes 

Acinetobacter 

baumannii 

3,844,542 

 

3,475 

 

Single circular 

[130] 

Bacillus cereus 5,462,435 

 

5,283 

 

Single circular 

[131] 

Burkholderia 

pseudomallei 

7,161,665 

 

5,571 

 

Two chromosomes 

[132][133] 
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Clostridioides difficile 4,268,322 

 

3,815 

 

Single circular 

[134] 

Enterococcus faecalis 3,106,425 

 

2,734 

 

Single circular 

[135] 

Enterococcus faecium 2,807,001 

 

2,728 

 

Singular circular 

[136] 

Escherichia coli 5,443,340 

 

5,494 

 

Single circular 

[137] 

Klebsiella pneumoniae 5,781,501 

 

5,514 

 

Single circular 

[138] 

Listeria monocytogenes 2,776,517 

 

3,131 

 

Single circular 

[139] 

Mycobacterium 

abscessus 

 

5,158,669 

 

5,131 

 

Single circular 

[140] 

Mycobacterium 

tuberculosis 

4,327,834 

 

4,040 

 

Single circular 

[141] 

Neisseria gonorrhoeae 2,151,002 

 

2,209 Single circular but 

polyploidy 

[118] 

Neisseria meningitidis 2,188,020 

 

2,461 Single circular 

[142] 
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Pseudomonas 

aeruginosa 

6,341,502 

 

5,718 Single circular  

[143] 

Salmonella enterica 4,786,542 

 

4,471 Single circular 

[144] 

Streptococcus 

pneumoniae 

2,188,259 

 

2,080 Singular circular 

[145] 

 

Table 1.1 Bacterial chromosomal statistics for reference genomes 

 

1.5.2 Overview of mutations within bacteria 

As with human cancer cells, mutations via both indels and point mutations are possible. 

However, there are a couple of important distinctions. Firstly, most bacterial genes are 

haploid and thus, without a second intact copy of the gene, the distinction between 

mutations in dominant and recessive genes is lost. All mutations can have a faster 

phenotypic impact.  

 

Secondly, large chunks of DNA can be taken up into the cell from the environment through 

horizontal gene transfer. Bacterial cells excrete DNA either when they die, or during their 

life and this extracellular DNA may be persistent for minutes or even hours. During this time 

the DNA will come into contact with living cells, some small percentage of which may be 

͚competent͛, i͘e͘ able to take up new DNA, converting it to single stranded DNA as it does 

so. DNA may then reform self-replicating plasmids or, if there is sufficient similarity between 

the host cell and new DNA, be incorporated into the main chromosome through 

homologous recombination. 
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This thesis looks just at DNA substitutions and I have thus looked at the genes shared across 

all the strains within a given cluster, and unique mutations within them. This should avoid 

problems introduced by horizontal gene transfer and the distribution of different alleles 

within strains. 

 

1.6 Sources of data 

Gene essentiality data was downloaded from the Achilles depmap portal [81] at  

https://depmap.org/portal/achilles/. The Achilles depmap project catalogues gene 

essentiality across hundreds of genomically characterized cancer cell lines. Gene essentiality 

is determined using the viral introduction of short hairpin RNA or CRISPR/Cas9 libraries to 

silence or knock out individual genes in hundreds of cells where the other features of the 

cancer cell line are known. By doing so it enables the identification of those genes that 

affect the survival of the cell, and association of them with specific cancers. 

 

Methylation links with gene expression was downloaded from Broad Institute TCGA 

Genome Data Analysis Center [146] at http://firebrowse.org/?cohort=ACC# etc. The Broad 

Institute pipeline provides access to analysis of TCGA data for thirty-eight TCGA projects. 

This analysis spans mutation, copy number analysis, gene expression and methylation and 

includes the Spearman correlations between beta levels of methylation at CpG sites and 

mRNA expression levels. 

 

Cancer mutations, the cancer gene census and probabilities of different mutational 

signatures was downloaded from the Catalogue of somatic mutations in cancer 

https://depmap.org/portal/achilles/
http://firebrowse.org/?cohort=ACC
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(COSMIC)[147] at https://cancer.sanger.ac.uk/cosmic/ . COSMIC enables downloads of 

somatic mutations and larger genetic aberrations such as CNVs and fusion information, 

together with some data on gene expression and methylation levels. COSMIC also curates 

the mutational signatures and the cancer gene census, as well as providing several 

visualisation tools. File transfer using the FTP protocol is possible using a generated 

password.  

 

A database of drugs that target specific genes was downloaded from the Drug gene 

interaction databank DGldb [148] at https://www.dgidb.org/search_interactions 

DGIdb collates information on drug-gene interactions and druggable genes from forty-one 

sources allowing TSV data downloads.  

 

Nucleotide and amino acid sequences, annotation, and gene and protein identification 

information was downloaded from Ensembl including Ensembl bacteria[129] at 

https://bacteria.ensembl.org/index.html and Ensembl Biomart[149] which is available via 

https://www.ensembl.org. Ensembl Bacteria enables the download of genome sequence 

and annotations of protein-coding and non-coding genes from bacterial strains. An ftp site is 

available for bulk download. Biomart provides the gene and protein annotations, including 

alternative names, positions and sequences for 77 animals, and the genome database 

enables the download of the entire genome GRCh38. 

 

TCGA methylation data was downloaded the Genomic Data Commons (GDC)[150] at 

https://portal.gdc.cancer.gov/. The GDC provides sequencing information, gene expression, 

CNV, and methylation data for over 84,000 cancer samples together with some limited 

https://cancer.sanger.ac.uk/cosmic/
https://www.dgidb.org/search_interactions
https://bacteria.ensembl.org/index.html
https://www.ensembl.org/
https://portal.gdc.cancer.gov/
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clinical information about the case, statistics and visualisation tools. Tools are available to 

enable the download of bulk information.  

 

Protein clusters were downloaded from the STRING database [151] at https://string-

db.org/. String-db collates and presents information about physical and functional protein-

protein interactions (PPI), and provides computational predictions about protein clusters, 

together with functional enrichment analysis on the basis of gene ontology. Functional PPIs 

are provided down to roughly the granularity of a KEGG pathway map.  

 

1.7 Machine Learning, statistical and predictive techniques 

Unsupervised machine learning methods are used throughout this work to cluster results to 

provide meaningful insights. The most commonly used examples are explained below. 

 

1.7.1 FATHMM 

The COSMIC database of somatic mutations in human cancer samples is used extensively 

throughout this thesis. Most of these mutations are missense substitutions. The majority of 

these will have little or no impact on the function of the gene͛s protein product͘ However, 

some will be pathogenic. To distinguish between these two fates, I use the FATHMM score 

provided as part of the COSMIC database. 

 

FATHMM is a pathogenicity prediction model. It works by using a Hidden Markov Model to 

identify homologous sequences. Such models assume that there is some hidden stochastic 

process which is not directly observable, but about which inferences can be made on the 

basis of the observations. On the basis of the preceding sequence of amino acids, the HMM 

https://string-db.org/
https://string-db.org/
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predicts the amino acid of interest. If the probability of the mutated amino acid is less than 

the probability of the wild-type amino acid, the substitution is assumed to be deleterious, 

otherwise not. Prediction thresholds in FATHMM were set to maximise sensitivity and 

specificity against a known set of disease associated amino acid substitutions. 

 

1.7.2 Non-negative matrix factorization 

I make use of the work pioneered by Alexandrov et al. to identify mutational signatures 

from missense mutations in cancers and extend this to look at those that occur during 

bacterial evolution[152]. In bioinformatics terms, mutational signatures are clusters of often 

many hundreds of mutational fingerprints. These mutational fingerprints are matrices in S 

by 96 dimensions, where S is the number of samples. Dimensionality reduction is then 

performed by using non-negative matrix factorisation (NMF) which enables the splitting of 

one matrix V of high dimensionality into 2 non-negative matrices W and H of lower 

dimensions plus an error term (see figure 1.4). 

 

 

 

Figure 1.4: Schematic of non-negative matrix factorisation.  
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For mutational signatures the matrix V would be the mutational fingerprint matrix formed 

by S samples, each of 96 mutational frequencies. V is approximated by the multiplication of 

two matrices, W and H, of much smaller dimension. W is an n by 96 -dimensional matrix 

where n is the number of mutational signatures. Each column of mutational frequencies 

describes one of the signatures. H is an S by n -dimensional matrix. Each column provides a 

breakdown of a single mutational fingerprint into its constituent signatures. This has the 

benefit of clear interpretation: each mutational fingerprint can be described as a linear 

superposition of signatures. Thus, mutational signatures form an approximate basis for the 

vector space. The scipy package scipy.decomposition.nmf is used to calculate H and W.  

 

1.7.3 MMseqs2 

In the chapter on ͞Mutational signatures in bacteria͟, I make extensive use of MMseqsϮ to 

find the orthologs of genes across hundreds of bacterial genomes at a time. MMseqs2 is a 

very sensitive and very fast ͚BLAST-style͛ alignment algorithm for aligning large numbers of 

amino acid sequences [153]. The alignment itself is carried out by a Smith-Waterman local 

alignment, but in order to speed things up considerably MMseqs2 has a filtering stage which 

looks at the distribution of similar words each made up of 7 amino-acids (similar-k-mers). It 

finds all the target sequences that have consecutive similar-k-mers on the same diagonal. 

The Smith-Waterman alignment is then carried out on the filtered sequences. The increased 

speed of alignment allowed me to make extensive use of MMseqs2 to identify orthologous 

genes in different bacterial strains, clustering amino acid sequences from the genomes of 

200 bacterial strains at a time. Genes were first translated into amino acids then clustered 

using MMseqs2 before using clustalo to align the orthologous gene families. I also used 

MMseqs2 to identify DDR genes for each of the bacterial species. 
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1.7.4 Clustalo 

In order to identify the missense mutations in orthologous genes I did many thousands of 

global nucleotide alignments on the genes from up to 200 strains at a time. This was 

possible using the stand-alone Clustalo package. Clustal omega aligns sequences in 

progressively larger and larger subalignments, using a guide tree to determine the order. 

The process is accelerated by the use of reference sequences: the guide tree is based on the 

distance from each sequence to each of the reference sequences [154].  

 

1.7.5 Hierarchical clustering 

In the chapter on ͞Using mutational signatures in cancer to explore tissue specificity of 

driver genes͟ tissue-types are clustered according to the prevalence of mutations in cancer-

associated genes, and also according to the mutational signatures present. In chapter 3 

bacterial strains are clustered according to the similarities of sequence identity in 100 

orthologous gene families. In these cases, I use the python scipy package to perform 

hierarchical clustering using the Ward͛s method͘ Ward͛s algorithm minimises the variance 

(i.e. the squared Euclidean distance) between different members of the same cluster. It 

starts with clusters of size 1 and successively joins the two clusters that minimise the 

variance. 

 

1.7.6 Statistical methods 

A number of statistical methods, distributions and tests are used throughout this thesis. A 

few of the most important ones are described here: 
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Cosine similarity- The cosine similarity of two positive vectors gives the cosine of the angle 

between two vectors as a measure of the extent to which two vectors are aligned. The 

measurement is bound between 0 (perpendicular vectors) and 1 (parallel vectors). 

 

Hypergeometric distribution- Given a population of N objects where K have a particular 

feature, the hypergeometric distribution describes the probability that if n objects are 

drawn without replacement, randomly and independently, then k of the objects will have 

the desired feature. This distribution is often used to describe the distribution of mutations 

in pairs of genes where there is no genetic interaction. However, it relies on the assumption 

that a genetic mutation is equally likely in any of the samples. 

 

Binomial distribution - Given a series of N Bernoulli trials where each probability of success 

does not vary from trial to trial then the poisson binomial describes the probability that 

there will be k such successes.  

 

Poisson binomial distribution- Given a series of N Bernoulli trials where each probability of 

success varies then the poisson binomial describes the probability that there will be k such 

successes. This distribution can be used to describe the distribution of mutations in pairs of 

genes where there is no genetic interaction and does not rely on the assumption that a 

genetic mutation is equally likely in any of the samples. 

 

Normal distribution ʹ is the familiar non-skewed bell-shaped distribution. It is primarily of 

interest because of the central limit theorem. The CLT states that where sufficient 
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independent samples are drawn from a large population then the sample mean will 

approximate a normal distribution. 

As such it is a good distribution for describing error terms, where the error terms may be 

assumed to result from a large number of independent errors. 

 

Chi square distribution (and test) ʹ If two or more independent variables 𝑍௜ have a normal 

distribution then the sum of the squares will be distributed according to the chi square 

distribution. Thus, if measurement errors associated with two variables are assumed to be 

normally distributed then the goodness of fit test associated with the chi square distribution 

allows us to test the hypothesis that the two variables are independently distributed. 

 

1.8 Project aims 

In this thesis I explore a range of ways in which patterns of mutations and other genetic and 

epigenetic alterations are shaped by DNA, and by the other alterations taking place within 

the cell. My primary focus is on exploring the patterns that underlie the heterogeneity of 

cancer cells, both at the level of individual indels and in terms of mutual exclusivity and 

cooccurrence of genes. Here I am particularly driven by the need to find new synthetically 

lethal gene pairs that are susceptible to translational drug therapies. I also developed novel 

mutational signatures for bacterial species. All code is written in python and is available via 

bitbucket at https://bitbucket.org/bioinformatics_lab_sussex/workspace/projects/PAT  

  

1.8.1 Chapter Error! Reference source not found. 

DNA mutations in cancer samples occur in a way that is governed both by the need for the 

cell to survive and ultimately become a dominant clone, and also by the different proclivities 

https://bitbucket.org/bioinformatics_lab_sussex/workspace/projects/PAT
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of different nucleotide patterns to mutate. In this chapter, I explore the separate 

contributions that these two pressures put on the distribution of substitutions and indels, in 

the COSMIC database. I analyse the patterns of mutations in the context of the preceding six 

nucleotide, identifying the distribution of indel lengths and exploring reasons for the 

discrepancy between numbers of inframe indels and frameshift indels. I look both at the 

evidence that the discrepancy is caused by availability of homology hooks needed for 

replication slippage and NHEJ. I also explore the possibility that the discrepancy reflects the 

inability of cells to tolerate frameshift indels. To do this, I compare the prevalence of di- and 

tri- nucleotide indels in the coding region, where the indels are subject to evolutionary 

pressure, with those in the non-coding region where they are not. To remove the bias 

introduced by replication slippage I look just at those indels that are not at a mono-

nucleotide repeat.  

 

1.8.2 Chapter 3 

Different tissue types give rise to different numbers and types of mutations and to 

alteration of different driver genes. There is good reason to assume that the two might to 

be connected. The mutations that arise reflect not only DNA damage but also the pathways 

available for repair, so mutations in DDR genes could affect the mutational profile seen. On 

the other hand, not all mutations can make the alterations needed to inactivate tumour 

suppressors or activate pseudo-oncogenes, so the mutational profile could impact on the 

driver genes brought into play. Here, I look at both whether the numbers and types of 

mutations influence the driver genes that are altered, and also at whether the driver genes 

altered change the mutational profile. 
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I find limited evidence that the mutational status of the genes is predictive of mutational 

profiles, but much clearer evidence that around two thirds of the cancer-associated genes 

appear to be partly opportunistic. I also see in TP53 a clear distinction between those sites 

where nonsense mutations are preferred and others where nonsense mutations are under-

represented suggesting potential oncogenic action.  

 

1.8.3 Chapter Error! Reference source not found. 

I then extend the mutational signature techniques used in previous chapters, using them 

not for cancer cells but for SNVs in sixteen bacterial species. I build up mutational 

fingerprints using just those mutations that are both unique to a solitary bacterial strain and 

silent substitutions. I normalise the fingerprints by the expected distribution of mutations 

given the nucleotide make-up of the bacteria. Signatures are found, as before, using NMF. I 

find that there are commonalities between some of the bacterial mutational signatures and 

some of those seen in cancer cells, or as a result of the treatment of stem cells with 

mutagens. In particular, some of the signatures are similar to those caused by incorrectly 

repaired alkylation. 

 

1.8.4 Chapter 5 

Finally, I look for potential ways of using existing drugs by finding mutually exclusive gene 

pairs between genes which are likely to be tumour suppressors and genes where the 

protein products are known to be druggable. I extend the omic data sets commonly used to 

include gene inactivation through methylation. I then simplify use of the Poisson binomial 

statistical test to deal with large data sets. I show that its use is superior to the use of the 

hypergeometric test by simulating realistic gene/sample sets. I then use both the Poisson 
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binomial test and the hypergeometric test to find mutually exclusive or co-occurring gene 

pairs and associate the druggable gene with existing drugs by reference to the Drug Gene 

Interaction databank (DGIdb). I use my new website MexDrugs to display the results and 

allow downloads. 

2 Deciphering the influence of the exome on mutations  

2.1 Abstract 

Improving our understanding of DNA structures and patterns, and their impact on 

mutations, is allowing us to better understand which areas of the genome are most at risk 

from different types of mutations, and the mechanism of damage.  

 

In this chapter, I analyse the small mutations from 27,000 exome-wide sequences in the 

COSMIC database. I show that the nucleotide patterns found at the site of short insertion 

and deletion mutations (indels) have more influence on mutational patterns than those at 

the site of substitution mutations. I find that somatic indels are predominantly single 

nucleotide deletions, and less frequently insertions, arising at the site of mononucleotide 

repeats. The risk of other small indels occurring was also increased when there were 

duplicates of that sequence pattern in the underlying genomic sequence. In order to assess 

the impact of selection pressure on frameshift indels I calculate the number of indels that 

are not next to repeated motifs (and thus cannot be explained by replication slippage) and 

find that there is an excess of trinucleotide indels (i.e. in-frame indels) compared to 

dinucleotide indels (i.e. frameshift indels) in protein coding regions where the DNA 

mutations exert a high selective pressure, compared to non-protein-coding regions where 

selective pressure is largely absent. I believe that this is evidence of the cells͛ reduced ability 
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to tolerate frameshift indels and is evidence of negative selective pressure in cancer 

evolution. Finally, few samples have lots of indels and a predominance of insertions and I 

find evidence that this is associated with the loss of both mismatch repair and homologous 

recombination. 

2.2 Introduction 

DNA is continually subjected to mutations as a result of both exogenous and endogenous 

processes, each process leaving a distinctive pattern of scarring of the DNA [155], [156]. 

Where the cell dies as a result of the mutation, the mutational record is lost, whereas the 

mutations that drive cancer will occur more often than expected by chance. Analyses of 

cancer samples show clear evidence of positive selection for the mutations that drive cancer 

[98]. However, the vast majority of mutations in a cancer confer no selective growth 

advantage to the tumour [157]. The accumulation of many hundreds of passenger 

mutations reduce the fitness of the cell [158], but analysis of the ratio of non-synonymous 

mutations to synonymous mutations suggests that cancer cells are surprisingly good at 

tolerating passenger mutations.  

 

The 2017 Bakhoum and Landau's analysis of substitution mutations showed only limited 

evidence of negative selection within cancer [159]. Thus the totality of the genetic 

mutations within cancer cells provides an accurate record of the most common mutagenic 

processes to which it has been subjected [160]. This means that the frequency and 

distribution of different types of mutations can cast light both on the type of mutational 

processes at play in any individual cancer but also on the DNA features that increase the risk 

of mutation [102], [161]. For example, UV light preferentially induces transition mutations 

at dipyrimidine sequences, whilst many tobacco by-products damage DNA bases by adding 
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alkyl or bulky chemical groups to the DNA molecule [162]. DNA is also under attack from 

endogenous process such as the generation of Reactive Oxygen Species (ROS). These arise 

as part of the normal function of the cell, but cause damage when levels are elevated during 

times of oxidative stress caused by factors such as smoke or inflammation. ROS most 

commonly lead to substitutions of GC base pairs and tandem CC>TT substitutions [92], 

[163]. 

  

The COSMIC database includes exome-wide sequencing from 27,000 tumours of which over 

20,000 include whole genome variants [147]. Previous analysis of these exomes has 

highlighted that several key mutational patterns are observed across all cancers. Single 

point substitutions are the most frequently observed type of mutation, with the most 

common type being C>T, G>A, G>T substitutions [164], [165]. More deletions are observed 

than insertions, and single nucleotides indels are much more common than longer indels 

[164].  

 

Valuable information is also provided by looking at substitutions in the context of the 

nucleotides immediately to either side of the mutation for example G[C>T]G. Different 

mutagens, DNA mutational processes and defects in DNA damage repair processes give rise 

to distinctly different patterns in the frequency of these substitution motifs [101], [166]. 

Patterns derived from the frequencies of these mutations are termed mutational signatures 

and have since been used in a wide range of applications, such as characterising cancer sub-

types in breast cancer [165], [167] and in gastric cancer [168] and identifying signatures 

associated with tobacco smoking [169].  
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A number of different mechanisms evolved to detect and repair damage to the DNA are 

error prone. As a result, the pattern of mutations seen in any one cancer sample depends 

not only on the cell type and initial environmental stresses, but also on the health of the 

DNA replication and repair systems. For example, indels commonly happen as a result of 

DNA strand slippage during replication [170] and the repair of double strand breaks via 

Microhomology Mediated End Joining (MMEJ) [155]. Replication slippage occurs when the 

DNA polymerase disassociates and then re-engages at the wrong nucleotide in the 

sequence, resulting in the addition or deletion of a nucleotide on the newly-synthesized 

strand. The MMEJ mechanism lines up microhomologies between the opposite strands of 

sister chromatids. Where there is no sequence duplication the MMEJ should proceed in a 

trouble-free fashion. However, where a sequence is duplicated it is possible for the 

chromatids to mis-align giving rise to characteristic insertions and deletions [155], [170], 

[171].   

 

The frameshift indels present in the COSMIC database are of particular interest as they shift 

the translational reading frame. Although this means that they have the potential to 

dramatically alter the downstream sequence and alter the position at which the first stop 

codon is encountered, translation is largely prevented if the frameshift indel is encountered 

before the last exon. In such cases mRNA is removed via nonsense-mediated decay [172].  

 

Previous work in Frances Pearl͛s laboratory ;unpublishedͿ as well as work by Helleday et al͘ 

[173] suggested that indels were over-represented at sites of mononucleotide runs. In 

addition, it showed that the nomenclature protocol for indels in COSMIC, is that when an 
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indel is observed in a run of identical bases, the position of the indel is generally assigned to 

the end of that run. 

 

In this chapter, I analysed the relationship between the frequency and distribution of 

different types of mutations, and nucleotide motifs in the DNA background.  In order to 

better understand the extent of different types of DNA damage mechanisms, I started by 

investigating the frequency with which the different sextuplets of nucleotides are found 

before both indels and substitutions in order to improve understanding of how the make-up 

of the DNA changes the risk of particular types of mutations. I then considered the extent to 

which indel frequencies can be explained by recurring repeats of the indel-motif in the DNA 

background. I postulated that the damage caused by frameshift indels is more pronounced 

than that caused by substitution mutations and might therefore be more likely to result in 

cell death, leading to a reduced number of frameshift indels. To test this hypothesis, I 

looked for signs that frameshift indels are negatively selected for in cancers, when 

compared with inframe indels. To do this I focused on just those indels that are not next to 

motif repeats and are therefore not associated with opportunities for replication slippage 

and MMEJ. 

 

2.3 Materials and Methods 

I analysed all the point substitutions and short insertion and deletion mutations from 27,000 

whole exomes from the COSMIC database v88 together with the non-protein-coding 

variants from over 20,000 samples [147].  Table 2.1 shows how many samples were derived 

from each cancer type. To clean the data, duplicate entries were removed.  In addition, 
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when the mutations were mapped to more than one transcript, only mutations on the 

major transcript were included. 

 

Tissue type Sample number 

adrenal gland 350 

autonomic ganglia 530 

biliary tract 472 

bone 406 

breast 2284 

central nervous system 1822 

cervix 185 

endometrium 337 

eye 38 

fallopian tube 2 

gastrointestinal tract  (site indeterminate) 1 

genital tract 67 

haematopoietic and lymphoid tissue 3830 

kidney 1774 

large intestine 2088 

liver 1846 

lung 1629 

meninges 65 

oesophagus 1125 
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ovary 701 

pancreas 1347 

parathyroid 28 

peritoneum 11 

pituitary 55 

pleura 154 

prostate 1630 

salivary gland 78 

skin 1011 

small intestine 50 

soft tissue 245 

stomach 633 

testis 17 

thymus 27 

thyroid 810 

upper aerodigestive tract 668 

urinary tract 645 

 

Table 2.1: samples from each of the primary cancer sites in the COSMIC database. 

 

To identify if there were sequence dependencies in the local environment, I identified the 

sextuplet of nucleotides that occurred before the mutation (on both strands) and then 

analysed the frequency with which each of the sextuplets occurs for each type of mutation. 

For indels I then counted how often the indel motifs of different lengths are repeated at the 
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site of the insertion or deletion and compared the results with the frequency with which 

motifs of different lengths are repeated in the exome, and the non-protein-coding region.   

 

2.3.1 Baseline Frequency of Sextuplets in the Human Exome 

The fasta sequence for every exon in the human genome was downloaded from the 

Ensembl database version GRCh 38.p12 [174] and aggregated to form a baseline human 

exome. This exome was used to calculate the background frequency for every sextuplet of 

nucleotides (e.g. AACTTG).  

 

2.3.2 Analysis of sextuplets next to mutations occurring in the COSMIC database 

Where an indel occurs next to a repeat, the possibility of ambiguity arises. For example 

ACACAC-AC is indistinguishable from ACAC-AC-AC. I found that in COSMIC such indels are 

put at the end of the repeated motif. So, to capture these repeats, for each mutation in 

COSMIC I identified the sextuplet of nucleotides that occurred before the mutation, looking 

at both the forward and reversed strand. For example, the mutation c.22_23delGA in 

transcript ENST00000313386 changes the wild-type sequence TGCGTG-GA-GAGAGA to 

TGCGTG-GAGAGA. The sextuplet before the deletion GA is TGCGTG whilst on the reversed 

strand the complementary sequence is TCTCTC -TC-CACGCA and the sextuplet before the 

mutation is TCTCTC. Mutations were categorised as insertions, deletions and substitutions. 

Indels were then sub-divided into in-frame and frameshift indels, whilst substitutions were 

subdivided into missense, nonsense and silent substitutions. Missense mutations were 

further segregated dependent on the wild type and mutant bases. For each type of 

mutation, the log frequency distribution of the sextuplet immediately preceding the 

mutation was calculated and normalised with respect to our baseline human exome.  
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For the missense mutations, the sextuplets were grouped together by the triplet closest to 

the mutation. So, for example ATAGGG and ATTGGG were grouped together. Box and 

whiskers plots were then created showing the log fold enrichment of each triplet compared 

to the baseline exome frequency. 

 

For each indel I identified how many repeats of the indel motif were present at the 

mutation site. These results were plotted as heatmaps. For each sequence of length L, I also 

identified the frequency with which that sequence motif is repeated N times in the exome. 

By subtracting these two logs I was able to compare log frequency heatmaps, showing the 

fold enrichment for each indel length L found next to N repeats. This analysis was then 

repeated for the non-protein-coding genome in each of the 22 chromosomes, splitting each 

chromosome into 100000 base-pair sections for computational efficiency. 

 

2.3.3 Identification of Mutational Signatures 

To identify the mutational signature associated with specific samples, I identified the 

nucleotides closest to each substitution to associate a quadruplet of nucleotides with each 

substitution e.g. A (C>A) T. I then counted the number of each quadruplet occurring in the 

sample. In common with previously published work on mutational signatures [166], I 

assumed that there was no mutational bias towards the leading or lagging strand and thus 

reduced the  dimensionality of quadruplets from 192 to 96 by enforcing that all the wild 

type of each substitution is either C or T. The published mutational frequencies for each of 

the 30 COSMIC Mutational Signatures (version 2) was then used to disaggregate the main 



 67  

 

mutational signatures present in each of the COSMIC data samples using non-negative 

matrix factorisation [167][161][173][101].  

 

2.3.4 Indel sequences 

To identify the percentage of indels that have a high sequence identity with the nucleotides 

on either side I used Needleman and Wunsch alignments. The Needleman and Wunsch 

algorithm was imported from biopython [175] and used with a global alignment scoring 1 

for each identical nucleotide with no gap penalty. The cut-off for a ͚good͛ alignment score 

was set at 0.8 (that is 80% matching nucleotides). The probability of achieving such a score 

decreases with length of indel. 0.8 was determined ensuring that any insertions longer than 

six nucleotides have a less than 5% probability of being ranked as good by chance. In order 

to determine the probability that our overall results could have been generated by chance, I 

found the percentage of ͚good͛ alignments for ϭϬ,ϬϬϬ strings drawn at random from the 

exome.  

 

2.3.5 Potential pathogenicity of frameshift indels 

Exon positions for each transcript were downloaded from the Ensembl database [174]. For 

each frameshift indel I identified the corresponding gene, all possible transcripts associated 

with that gene, and the exon number associated with the indel for each of the transcripts. 

For each indel I identified whether or not there were any potential transcripts that could be 

generated where the indel was in the last exon and could therefore escape nonsense-

mediated decay.  
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2.3.6 Links between mismatch repair and indel frequency.  

The list of DNA damage repair genes and corresponding pathways was downloaded from 

the supplementary material from Pearl et al. [73]. I then identified all samples within the 

COSMIC database that have colon cancer and split the samples into two groups ʹ those that 

have a damaging mutation in any of the genes associated with mismatch repair and those 

that do not. A damaging mutation was considered to be missense substitution identified by 

FATHMM as pathogenic, and any frameshift or nonsense substitution in tumour 

suppressors. 

 

2.3.7 Statistics 

Statistical tests were generated using python's scipy statistics library [176]. 

 

2.4 Results  

2.4.1 The frequency of sextuplets in protein coding regions of the genome 

In order to calculate the relative frequency of sextuplets before each mutation I first 

calculated the frequency of each of the sextuplets in the human exome. The baseline 

frequency of the 4096 nucleotide sextuplets in the human exome follows a noticeably 

skewed distribution. The sextuplets that were least frequently observed were 

predominantly those with embedded stop codons such as TAACGC, TTAGCG, CGTTAG, 

TAGCGT. It is unclear why there were any such codons, though they could potentially be in 

non-coding transcripts. 

 

A few sextuplets were highly over-represented forming a long tail to the distribution. The 

very highest frequencies include many repeated codon pairs resulting in the amino acid 
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pairs: LL RR GG QQ EE. Whilst codons coding for L R G Q and E are common in the 

background exome this is still unexpected. If 𝐶௔
௝ is the 𝑗𝑡ℎ codon coding for amino acid 𝑎 

then the frequency of sextuplets coding for most amino acid pairs is closely approximated 

by assuming that there is no correlation between occurrence of amino acid:  

 

෍𝑓𝑟𝑒𝑞ሺ𝐶௔ᇲ
௜ 𝐶௔

௝ሻ
௜,௝

 ~෍𝑓𝑟𝑒𝑞ሺ𝐶௔ᇲ
௜ ሻ

௜,௝

ൈ 𝑓𝑟𝑒𝑞ሺ𝐶௔
௝ሻ 

 

However, repeated amino acids are observed more frequently than this formula predicts 

(see figure 2.1). This suggests that evolutionary pressures have led to a disproportionate 

number of repeated amino acids in coding regions of the genome. 

 

 

Figure 2.1: The graphs show the difference between observed frequency % and expected 

frequency % for each of the sextuplets in the exome. The top row shows the difference for 
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sextuplets which would be translated into repeated amino acids; the bottom row shows the 

difference for all sextuplets. 

 

 

2.4.2 Fold enrichment of mutations by sextuplet 

I split the mutational data into the seven major types ʹ substitutions (missense, silent and 

nonsense), deletions (frameshift and in-frame) and insertions (frameshift and in-frame). For 

each mutation type I calculated the log ratio of the frequencies of each of the 4096 possible 

sextuplets before the mutation, in the direction that the gene is read. The frequencies were 

normalised with respect to the background distribution of sextuplets within the exome. 

 

Initial exploration suggested that indels were more likely to occur next to a mono-

nucleotide repeat. There is inherent ambiguity in how such indels are represented, because 

AAA (insert AA) AAA is indistinguishable from AAAAAA (insert AA). In the COSMIC database 

such indels are normally represented as occurring after the mononucleotide run. I therefore 

chose to identify the nucleotide sextuplets that occur before each mutation. These 

frequencies were then normalised by the frequency of the sextuplets in the exome found in 

the section above. The results are shown in Figure 2.2.
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d) Frameshift insertions 

Sample size = 35095 

e) Frameshift deletions 

Sample size = 88640 
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 e) Inframe insertions 

Sample size = 7716 

Sample size = 19015 

f) Inframe deletions 
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Figure 2.2: The graphs show the ratio of the observed frequency of sextuplet to the 

expected frequency for each of a) missense mutations, b) silent mutations, c) nonsense 

mutations, d) frameshift insertions, e) frameshift deletions, f) inframe insertions and g) 

inframe deletions.  

 

My assumption was that the nucleotides closest to the mutation were the most important. 

Therefore, in order to group sextuplets such as TCAAAA and GCAAAA together, for each 

graph the sextuplets were reversed before being ordered alphabetically. The  values for 

each of the 4096 reversed sextuplets from AAAAAA to TTTTTT is shown. The nucleotide 

closest to the mutation is shown in the x axis and preceding nucleotide is given by the 

colour: orange A; blue C; pink G; and green T. Values are shown on a log scale. 

 

2.4.3 Substitution Mutations 

In total, I analysed over 5 million substitution mutations. Of these 70% resulted in missense 

substitutions, 25% silent and 5% in nonsense mutations. The sextuplet fold enrichments are 

seen in figure 2.2. (2.2a -missense substitutions, 2.2b - silent substitutions and 2.2c - 

nonsense substitutions. 

 

For missense substitutions it is known from existing work on mutational signatures [165], 

that different mechanisms of damage give rise to different substitution profiles. These 

mutational signatures look at the nucleotides immediately to either side of substitution 

mutations segregated by their wild and mutant type, e.g. ACT>AGT. No pattern is discernible 

from looking at the sextuplets of all the missense substitutions together (see figure 2.2a). I 

therefore split the substitutions by substitution type (e.g. C>T) and for each group 
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calculated the log ratio of observed frequency/ expected frequency for each sextuplet, as 

before. I found that the three nucleotides closest to the mutation have more impact that 

those more remote, so I grouped together the first three nucleotides, before plotting the 

resulting values. The results are show as boxplots in figure 2.3. There are two distinct 

patterns that are outliers: A>T substitutions showed a fold enrichment of 29 after the 

nucleotide pattern GATTTC. T>G substitutions showed a fold enrichment of 37 after the 

nucleotide pattern GGCGGG. More generally, I see that cytosine substitutions are more 

likely after sextuplets that end in mononucleotide runs of thymine.  
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Figure 2.3: Ratio of observed frequency to expected frequency (shown on a log scale) for the 

each of the 64 triplets that can precede a substitution mutation. Each box plot shows the 

range of fold enrichments for all the relevant sextuplets. As with figure 2.2 the nucleotide 

closest to the substitution is shown in the x axis and preceding nucleotide is given by the 

colour: orange A; blue C; pink G; and green T. 

 

The patterns of fold enrichments observed in the DNA sequence patterns for silent 

mutations in figure 2.2b)  can be largely explained by the redundancy of the amino acid 

code in that there are only a limited number of substitution mutations that can result in a 

silent mutation. For example, there are fifteen amino acids (alanine, valine, serine, 

asparagine, threonine, isoleucine, arginine, histidine, proline, leucine, cysteine, tyrosine, 

phenylalanine, glycine and aspartic acid) whose codons end in either a cytosine or a thymine 

thus allowing the possibility of a silent substitution of C>T in position 3 of a codon. 

 

Similarly, the mutation fold enrichments observed in the sequence patterns observed in 

nonsense mutations are also driven primarily by the makeup of stop codons (See figure 

2.2c). In particular, at the site of nonsense substitutions a disproportionate number of the 

preceding sextuplets end with either AA or AG. Nearly half of all nonsense substitutions 

(43%) involve a C>T substitution resulting in the beginning of TAA, TAG and TGA (created 

roughly in the ratio 3:4:5).  

 

Substitution mutations were most commonly reported in the first nucleotide of a codon 

(37%, 32%, 31% registers 1, 2, and 3 respectively). However, the impact of each substitution 

depends strongly on the register in which it occurs as shown in figure 2.4. C>T changes in 
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the third register are likely to lead to silent mutations whilst stop codons predominantly 

arise from C>T changes in the first register.  
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Figure 2.4: Analysis of the register for each substitution mutation showing whether the 

mutation results in a missense mutation (top), silent mutation (middle), or nonsense 

mutation (bottom). 

 

2.4.4 Indels 

Although the most frequently observed cancer mutation is the single nucleotide 

substitution, approximately half of all cancer samples contain between 1 and 35 indels. A 

further 2% of samples contain between 36 and 1500 indels. In total, there were 50,000 

insertion mutations and 121,000 deletion mutations in our data set where the length of the 

indel was between 1 and 60 bases. 100,000 indels were of a single nucleotide 24,000 indels 

were longer frameshift mutations and 27,000 indels were in-frame. The frequency 

distribution of indels of different lengths is shown in figure 2.5 below. Subfigures 2.5a) and 

2.5b) show the frequencies of deletions and insertions respectively in the protein coding 

region. Subfigure 2.5c) and 2.5d) shows the length distribution of nucleotide motif repeats 

within the exome. 

 

As before, I calculated the sextuplet fold enrichment that occur before frameshift insertions 

and deletions (figures 2.2d and 2.2e), as well as in frameshift insertions and deletions. 

Approximately two thirds of  frameshift indels are singleton indels and there are four peaks 

in the fold enrichments, at the sextuplets ͚AAAAAA͛, ͚CCCCCC͛, ͚GGGGGG͛ and ͚TTTTTT͛ that 

are predominantly caused by the mutations. Frameshift indels were both found on average 

120 times more likely to occur next to a mononucleotide run than would be expected if the 

sextuplets at the site of indels had the same frequency distribution as the rest of the 

genome. 
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Fold enrichment peaks near mononucleotide runs are not apparent for the inframe indels. 

However, as with singleton indels, inframe indels are also more likely to occur at sites where 

an indel motif is repeated. Under a random distribution of fold enrichments, the expected 

number of repeated triplets within the top 64 fold-enrichments would be 1. However, for in-

frame deletions, 17 of the top 20 fold-enrichments of sextuplets are repeated triplets, and 

for in-frame insertions 6 of the top 20 fold-enrichments of sextuplets are repeated triplets. 

 

For indels of lengths greater than one, the frequency of indels of different lengths in the 

COSMIC database can be modelled as a power law. This is true for insertions and deletions 

both in the coding region and the non-protein-coding region. Specifically, using a linear 

regression on the logged insertion frequencies (length 5-30) in the coding region gives: 

𝑓𝑟𝑒𝑞ሺ𝑙𝑒𝑛𝑔𝑡ℎሻ ~ 2206 ൈ 0.87௟௘௡௚௧௛ where the multiplicative standard error of the base is 

1.027. The observed frequency of all of the inframe insertions is higher than predicted by 

this model. using a linear regression on the logged deletion frequencies (length 5-30) in the 

coding region gives  𝑓𝑟𝑒𝑞ሺ𝑙𝑒𝑛𝑔𝑡ℎሻ ~ 3668 ൈ 0.89௟௘௡௚௧௛ where the multiplicative standard 

error of the base is 1.006. The observed frequency of all of the inframe deletions is also 

higher than this model predicts. When the length distribution of indels in the non-coding 

area was found (see subfigures 2.5 c) and 2.5 d)) no frequency preference for inframe indels 

is seen. 
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Figure 2.5: Frequency of indels of different lengths shown on a natural log scale. Subfigures 

2.5 a) and 2.5 b) show the number of deletions and insertions of different lengths in the 

coding region. Subfigures 2.5 c) and 2.5 d) show the number of insertions of different length 

in the non-protein-coding region. Subfigure 2.5 e) shows the number of repeated motifs of 

different lengths found within the exome.  
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2.4.4.1 Reliance of insertions and deleƚiŽŶƐ ŽŶ ͚hŽmŽlŽgǇ hŽŽkƐ͛ 

I have thus far shown that there is an excess of inframe indels in the coding region, and that 

both inframe indels and singleton indels are over-represented at sites where the indel motif 

is repeated. I next calculated the percentage of indels that were next to exact or similar 

motifs for indels with less than 20 bases. To do this I used the Needleman Wunsch 

algorithm. For small indels I used exact matches only but for indels of six base pairs and 

longer, I included in this analysis the percentage of indels that have a close but not perfect 

match with the sequence on one side. The probability that by chance an indel will share a 

given sequence identity with the sequence to either side depends on the length of the indel. 

For motifs longer than 5 base pairs I calculated that the probability of a relative Needleman 

Wunsch alignment score >= 80% sequence identity is less than 5% (and falls rapidly as the 

length increases).  

 

80% of singleton insertions and between 30-60% of slightly longer insertions (2-20 bp) occur 

adjacent to a site where the indel motif is already present (see figure 2.6 a) ). These figures 

increase substantially when close approximations to the indel motif are included. In total, 

approximately 60% of mid-length (4-20 bp) insertions occur at sites that have the indel 

motif or a close copy already. Deletions shows a different pattern. For very short deletions 

(1-3 bp) between 50-80% occur at the site where the deletion motif is repeated (see figure 

2. 6 b) ). However, for longer deletions (4-20 bp) this pattern changes. Only 25% of in-frame 

deletions occur at sites of motif repeat or near repeat, with much lower percentages for 

frameshift deletions. In total, around 80% of these longer (4-20 bp) deletions occur at sites 

which do not have the repeated or near-repeated motif. However, for almost all lengths (1-
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20 bp) far more deletions occur at the site of repeated or near repeated motifs than would 

be expected by chance given the distribution of repeats in the exome.  

 

 

Figure 2.6: Bar charts showing the percentage of indels of length 1-20 base pairs which are 

either an exact repeat or a near repeat of at least one of the neighbouring nucleotide 

motifs. A Needleman-Wunsch score of 0.8 was used as a cut-off point for judging ͚nearness͛ 

as less than 5% of random sequences >5bp exhibit this degree of nearness. 
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2.4.4.2 Mechanisms of acquisition of insertions and deletions  

Indels often occur due to the infidelity of mechanisms for repairing double strand breaks 

(DSBs) [155] . There are several mechanisms for repairing double strand breaks: non-

homologous end joining (NHEJ), homologous recombination (HR), Micro-Homology 

Mediated End Joining (MMEJ), and Single Strand Annealing (SSA) [155]. Of these HR is the 

most faithful. NHEJ often results in small indels ʹ typically less than 5 nucleotides long and 

relies on micro-homologies, whilst MMEJ relies on micro-homologies and results in longer 

deletions (and occasionally insertions) typically of 5-25 nucleotides with some inserted 

nucleotides [155]. Alternatively, a failure to remove intermediates during MMR can result in 

replication slippage at the site of mononucleotide repeats. The distinct difference in 

homology frequency between insertions and deletions suggests that the mix of DDR 

mechanisms causing the two types of indels is quite different and needs further exploration. 

 

2.4.4.3 Sequence repeats in the exome and the risk of insertion and deletion. 

One distinction between replication slippage and DDR mechanisms that require micro-

homology hooks, is that replication slippage is commonly found in micro-satellite sequences 

where a di- or tri-nucleotide is repeated not once but several times. To identify whether 

replication slippage contributes to the frequency distribution of slightly longer indels, I 

calculated the frequency of indels by both indel length and motif repeat, normalising against 

the frequency of the motif repeats in the background. Figure 2.7 and figure 2.8 show log 

indel frequency heatmaps in the coding region and non-protein-coding region.  

 

For indels in both the coding region and non-protein-coding region, the dominance of 

singleton indels after mononucleotide runs of 5-10 can clearly be seen. However, for longer 
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indels the heatmaps representing the exome and those representing non-protein-coding 

regions are different. In the exome, there are excess indels at lengths 3bp, 6bp and 9bp, 

both for indels and these are reflected to some extent by motif repeats in the exome of the 

same length. In the non-protein-coding region this pattern is replaced by excess indels of 

lengths 4bp, 6bp, 8bp. This suggests that replication slippage is a relevant mechanism for 

creating indels longer than the di and tri-nucleotides, but particularly for inframe indels. 
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Figure 2.7: The heatmaps show the log frequency of indels in the exome as a function of 

both the indel length (the x axis) and the number of times the motif is repeated at the site 

of the indel (the y axis). Values with no data are shown white. Subplots a and b show the 

frequencies non-normalised for insertions and deletions whilst c and d show the same data 

normalised against the log frequencies of motif repeats of different lengths in the exome. 

The heatmaps show clearly both the preference for singleton and inframe indels (note in 

particular the comparatively dark stripes, indicating fold enrichment at 1,3,6,9 and 

significant lack of data at 4,5,7,8).  
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Figure 2.8: The heatmaps show the log frequency of indels in the non-protein-coding region 

as a function of both the indel length (the x axis) and the number of times the motif is 

repeated at the site of the indel (the y axis). Subplots a and b show the frequencies non-

normalised for insertions and deletions respectively, whilst c and d show the same data 

normalised against the log frequencies of motif repeats of different lengths in the exome  

(shown in e). The heatmaps show excess of singleton indels and fold enrichment for indels 

of lengths 4,6,8. 

2.4.4.4 Impact of frameshift mutations  

Nonsense-mediated mRNA decay (NMD) selectively degrades mRNAs that have premature 

termination codons. However, frameshift mutations which occur in the last exon of a 

protein may escape NMD [177]. By looking at alternative transcripts for all of the genes with 

indels I found that for both insertions and deletions 24% of the indels are found in at the 

last exon of at least one of the potential transcripts and so could escape nonsense mediated 

decay. Not all of these transcripts are protein coding, so these data suggest that more than 

76% of frameshift mutations cause loss of protein product in the cell. Less than 24% may 

lead to alternative transcripts and protein products. 

 

2.4.4.5 Enrichment of in-frame indels not next to motif repeats 

I have shown that there is an excess of inframe indels in the exome. However, as frameshift 

mutations are normally more damaging that inframe indels I postulated that the excess of 

inframe indels might be caused in part by a reduced number of frameshift indels where the 

more damaging indel had led to cell death.  
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As I have shown that comparatively more inframe indels (particularly inframe deletions) 

occur at the site of a homology hook or repeated motif, and given that repeated codons are 

more common in the exome than expected, it is necessary to remove this source of bias. 

Thus, in order to identify whether or not negative selection has any role to play in the 

number of overall indels, I look now just at those indels that are not next to a motif repeat.  

 

Let 𝐷/𝑇 be the number of dinucleotides divided by number of trinucleotides. If there is no 

negative selection acting on frameshift indels then I would expect the ratio of dinucleotide 

indels to trinucleotide indels to be roughly the same in the exome as in the non-protein-

coding region. That is, 𝐷/𝑇௘௫௢௠௘ ~𝐷/𝑇௡௢௡ ௖௢ௗ௜௡௚ ௥௘௚௜௢௡  . However, if negative selection is 

apparent, I would expect that the impact of selection in the exome would outweigh that in 

the non-protein-coding region. That is 𝐷/𝑇௘௫௢௠௘ ൏ 𝐷/𝑇௡௢௡ ௖௢ௗ௜௡௚ ௥௘௚௜௢௡ .  

 

By looking just at indels not next to a motif repeat I have taken out the bias due to 

replication slippage and forms of repair that rely on a homology hook. See table 2.2 for 

numbers of indels. For insertions I find 𝐷/𝑇௘௫௢௠௘  ൌ  1.07 while 𝐷/𝑇௡௢௡ ௖௢ௗ௜௡௚ ௥௘௚௜௢௡  ൌ  2.20,  

chi statistic = 334,  pvalue = 3 e-71  chi-squared contingency test For deletions I find 

𝐷/𝑇௘௫௢௠௘  ൌ  1.46 while 𝐷/𝑇௡௢௡ ௖௢ௗ௜௡௚ ௥௘௚௜௢௡  ൌ  2.10, chi statistic = 236, pvalue = 3 e-53  chi-

squared contingency test. 

 

This provides evidence that frameshift indels are subject to negative selection pressure. 

 

Insertions: chi-statistic = 334, p-value = 3 e-71   
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  di-nucleotides tri-nucleotides 

Coding 1416 1318 

Non-coding 27691 12608 

 

 

 

Deletions: chi-statistic = 236, p-value = 3 e-53 

  di-nucleotides tri-nucleotides 

Coding 5202 3566 

Non-coding 33967 16189  
 

   

Table 2.2: Numbers of di and tri nucleotide indels in the exome and non-coding regions. This 

includes just those indels that are not next to repeats of the indel motif to remove bias due 

to replication slippage and DDR mechanisms that rely on homology hooks. 

 

2.4.4.6 Frequency of Insertions compared to Deletions 

Analysis by tissue type has not been attempted as the comparatively low number of indels 

reduces statistical significance for individual tissue types. However, in all primary sites, 

tumours typically had between one and four times as many deletions as insertions within 

protein coding regions (mean = 2.7). Almost all tissue types had a broadly similar frequency 

distribution of indel lengths: that is most indels were predominantly of a single nucleotide, 

and the frequency dropped off rapidly with indel length.  
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In a small number of cancers, more insertions than deletions are observed and I identified 

96 samples in COSMIC that had both more than 10 deletions, and more insertions than 

deletions. The majority had a frequency distribution of indel length, similar to the other 

cancers and analysis of their mutational signatures[101][166] suggested that these samples 

were enriched in mutations characteristic of ageing and/or defective mismatch repair.  

 

In 22 of these samples, all taken from a single study of head and neck cell-lines  [178], the 

pattern of observed indels differed dramatically from the norm. These samples also showed 

a remarkably similar distribution of mutations to each other both in the number and type of 

substitutions and the presence of a large numbers of both insertions and deletions greater 

than 3 base pairs (bp) long. Further analysis showed that these samples were all enriched in 

mutational signature 3, which is characteristic of cancers defective in homologous 

recombination (HR) [179]. 18 samples also contained a pathogenic mutation in MSH3 

suggesting they were probably also deficient in mismatch repair (MMR). Our analysis agrees 

with previous studies showing that defective MMR is associated with the presence of more 

indels in general [180]. The existence of a small number of unusual head and neck samples 

suggests that damage to both MMR and HR may be linked in some way to the 

preponderance of longer insertions [181]. 

 

2.5 Discussion 

In this chapter I have analysed the local sequence patterns occurring next to cancer 

mutations to try and evaluate how the local sequence patterns influence mutational risk. I 

found that for substitution mutations there was little influence on the sequence pattern of 

the proceeding sextuplet except in a few cases. For example, an increase of A>T 
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substitutions were observed after the nucleotide pattern GATTTC and an increase in T>G 

substitutions observed after the nucleotide pattern GGCGGG. These sequence patterns 

have not previously been reported in the literature and it is unclear why they would result in 

an increased mutation rate. I speculate that they could potentially be binding sites for 

specific regulatory or DNA damage repair proteins, or that they are preferential binding sites 

for a particular cytotoxic molecule. Substitutions in cytosine are also marginally more likely 

after a run of thymines. Again, a reason for this is not known. 

 

There is a stronger association between nucleotide neighbourhoods and the likelihood of an 

indel. The most frequently observed indel is the addition or deletion of a single base and 

these generally occur in the presence of mono-nucleotide runs in particular of 5-7bp in 

length in the genomic sequence. These indels are thought to be formed by replication 

slippage. I also observed that the risk of other small indels was increased when there were 

duplicates of that sequence pattern in the underlying genomic sequence. I found this in 

both protein coding and non-coding regions, however in non-protein coding regions these 

duplicate patterns tended to be multiples of 2, whereas in protein coding regions, these 

repeating patterns tended to be duplicates of 3. I postulate that these insertions may also 

arise due to replication slippage and the different frequencies may be influenced by the 

underlying genomic sequence patterns; there are far more duplicates of di-nucleotides in 

non-protein-coding regions and more multiples of 3s in coding regions.  

 

I investigated whether there was any evidence of selective pressure on the presence of 

indels in cancer samples. I analysed the frequencies of di-nucleotide indels (frameshift) and 

tri-nucleotide indels (in-frame) not adjacent to a repeat of the indel motif. The results 
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suggested that protein coding regions were less tolerant of frameshift mutations than 

inframe mutations. 

 

Finally, I found that most cancer samples contain more deletion than insertion mutations. 

The few samples with large numbers of insertions (more than 100 indels per sample), and 

more insertions than deletions come predominantly from head and neck cancers that have 

both mutated MSH3, impacting formation of the MutSE and a clear mutational signature 3 

suggesting damage to the homologous recombination (HR) pathway as well as mismatch 

repair (MMR). The heterodimer MutSE comprises MSH2 and MSH3 recognises larger loop 

mis-pairs and is good at mending longer deletions [182][183]. It has been reported that 

mutations in MSH3 normally lead to deletions in repetitive DNA tracts due to damage of the 

functions on MutSE. 

3 Using mutational signatures in cancer to explore tissue specificity 

of driver genes  

3.1 Abstract 

Cancers in different tissue types show remarkable heterogeneity, both in the profile of 

mutations they exhibit and in the driver genes mutated. In this chapter I examine the links 

between the two.  

 

Using mutation data from 6,430 samples in The Cancer Genome Atlas, I assess whether 

mutations in major cancer-associated genes are associated with different mutational 

signatures. Initially I stratify the samples according to their mutational status for each of the 
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major cancer-associated genes, and calculate the mutational signature breakdown for each 

group, identifying those genes associated with statistically significant changes. Mutations in 

fourteen genes are associated with a change in mutational signature breakdown in at least 

one tissue type. In five genes (PIK3CA, CHEK2, IDH1, TP53 and BRAF) mutations at a specific 

site are associated with a change in mutational signature breakdown. 

 

For each cancer-associated gene I then model the comparative frequency of mutated 

samples in each tissue type by aligning the mutational fingerprint of the samples with an 

ideal fingerprint for causing mutations in that gene. I found that around two thirds of the 

cancer-associated genes appear to be partly opportunistic, mutating more frequently in 

those cancers where the mutational profiles align well with the mutations able to cause 

pathogenic mutations.  

 

In the twenty most common cancer missense hotspots, the model can be used to predict a 

frequency distribution of amino acid substitutions. By identifying mutations that occur more 

or less frequently that expected it is possible to identify amino acid residues under selective 

pressure. Interestingly in TP53 there are sites where the nonsense mutations observed are 

less than expected. It is likely that pathogenic mutations at these sites lead to modification 

of function rather than loss of function, fitting with the view that TP53 has a dual nature 

with some oncogenic aspects[99] . 

 

3.2 Introduction 

Over the last ten years great strides have been made in our understanding of the molecular 

basis of cancer [39][184][185]. Vast amounts of multi-omic genetic data have been, and 
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continue to be, generated and deposited in public repositories (e.g. The Cancer Genome 

Atlas [186]) allowing multiple groups to interrogate these data (for example see [187][188]). 

Analyses of these data is making it much clearer which types of genetic and epigenetic 

damage commonly drive tumorigenesis [88]. They have also improved our understanding of 

the classes of drugs that provide effective chemotherapies [189].  

 

Emerging cancer therapies often rely on inhibiting onco-proteins to kill cancer cells while 

leaving surrounding cells undamaged.  So, improving the understanding of genetic 

biomarkers that can be used to stratify patients in particular cancers, and reasons for 

varying numbers of mutations in different tissue types is an important tool in drug 

development [190]. 

 

Almost all cancers have genetic mutations, but the number varies from disease to disease 

and, as the disease progresses [78], more aggressive sub-clones may emerge with different 

characteristic mutations [191]. For example, Acute Myeloid Leukaemia has a mean of just 

0.28 mutations per megabase, whilst at the other end of the spectrum Lung Squamous 

Cell Carcinoma has on average 8.15 mutations per megabase [84]. Most of the genes 

mutated are so called ͚passenger genes͘ Mutations in these genes tend to occur at low 

levels and generally have little impact on the fitness of the cell. However, the Cancer Gene 

Census [105] has annotated 315 tumour suppressor genes and 315 oncogenes. These genes 

are positively selected for mutation and facilitate tumorigenesis in some cancers. Again, 

there is variation. A driver gene in one disease may not drive tumorigenesis in another 

disease [88]. 
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Some genes can be thought of as generic cancer drivers and are mutated in many different 

types of cancer. The most familiar of these is TP53 [192]. On the other hand some genes are 

drivers in a small number of specific cancer types only, for example in VHL somatic 

mutations are predominantly seen in clear cell renal carcinomas [193]. Some genes have 

different profiles of mutations in different cancers. For example, in skin cancers BRAF V600E 

mutations predominate, a form of BRAF in which the monomer is activated. However, in 

lung cancers alternative oncogenic mutations in BRAF are often present whereby the BRAF 

continues to dimerize, and the diseases shows resistance to BRAF inhibitors [194].  

 

The likelihood of seeing a mutation in a particular gene in a particular tissue depends on 

both the probability that the cell will acquire the mutation and the likelihood that the cell 

with the mutation will go on to be present in any future tumour. The probability that a cell 

acquires a mutation in a specific gene depends on a number of factors, including the nature 

of the mutational processes occurring in the cell, the gene length and the position of the 

gene in the genome;  Genes that occur in late replicating regions of heterochromatin are at 

more risk of mutation than those occurring in euchromatin and regions of earlier replication 

[195].  Against this model of background risk, mutations that contribute to tumorigenesis 

are seen at higher frequencies than those that do not [98]. 

 

The distribution of mutations and large DNA arrangements that occur in any particular 

cancer depends strongly on the endogenous and exogenous stresses under which the cells 

are placed. One of the most promising avenues for making sense of the array of differences 

between cancers is the work emerging over the last six years on mutational signatures. 

Statistical clustering of mutational frequencies carried out using COSMIC and other large 
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cancer mutation data sets [103], [104], [179], [185], [196]ʹ[198] has enabled the 

identification of specific profiles of patterns in substitutions, indels and large scale 

rearrangements. These are called mutational signatures. The vast majority of mutations are 

within passenger genes, so it can be assumed that these mutations convey little or no 

benefit for cell survival. In some, but not all cases, there is statistical evidence linking these 

signatures with: age; deficiencies in DNA damage repair and replication; and exposure to 

various genotoxins. More recent work has involved the systematic exposure of a human 

induced pluripotent stem cell to a wide range of environmental mutagens as well as 

radiation under highly controlled conditions, followed by clustering analysis of the resulting 

mutations[197]. 

 

Less research has been done to explain why mutations that occur frequently within one 

tissue type are almost unknown in another. Here, I discuss the concept of tissue specificity 

of genetic alterations in cancer and provide general hypotheses to help explain this 

biological phenomenon. I look at whether the mutational status of cancer-associated genes 

impacts on the overall mutational signatures found in the cell.  

 

For a gene to act as a driver in a particular tissue it must both be subject to mutations, and 

also contribute to the overall survival rate of the cell. The majority of cancer-associated 

driver genes show large variability in the percentage of samples mutated in different tissue 

types[187]. I posited that this could be purely because the survival advantage varies 

between tissue types, but alternatively it could be that there is far more opportunity for 

mutation in some tissue types than in others. In order to explore this second possibility, I 

looked at how well the mutational fingerprints in different tissue types align with the 
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fingerprint formed from pathogenic mutations for a particular gene. For those genes where 

the extent of this alignment correlates well with the percentage of samples mutated, I 

consider that the variation in mutational frequency may be at least in part opportunistic. 

Finally, I analysed whether the different frequencies of mutated amino acids at commonly 

mutated positions reflect the mutational frequencies of the samples with mutations at 

those positions, or are also driven by selective pressure. 

 

3.3 Methods 

3.3.1 Mutational fingerprints  

Mutational data for 6,430 whole exome screens for TCGA patients were downloaded from 

the COSMIC database[147]. The split of samples between the different tissue type studies is 

shown in Table 3.1 below. 

                    

Tissue type Number of Samples Percentage of Cohort   

Breast  960 14.93 

Central nervous system 796 12.38 

Cervix  179 2.78 

Endometrium  248 3.86 

Haematopoietic and lymphoid tissue 188 2.92 

Kidney  601 9.35 

Large intestine 620 9.64 

Liver  188 2.92 

Lung  484 7.53 
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Ovary  474 7.37 

Prostate  256 3.98 

Skin  341 5.3 

Stomach  288 4.48 

Thyroid  403 6.27 

Urinary tract 405 6.3 

 

 

Table 3.1: TCGA samples analysed for the different tissue types 

 

 

Duplicated entries at the same genomic position were removed, retaining the mutation 

were mapped to the lowest transcript number/variant. In common with previously 

published work on mutational signatures[199], I characterised each substitution mutation in 

the TCGA database by a nucleotide quadruplet giving the nucleotides either side of the 

mutation and the substitution itself, using the genome position to identify the flanking 

nucleotides [166].  

 

To reduce dimensionality, and again in common with previous work [166] I assumed no 

transcription bias in mutations. This means that mutations can be read on either DNA strand 

and I can assume the substitution of either a cytosine or thymine. So, for example TP53, 

734G>T is found on the negative strand. The nucleotides at the site on the positive strand 

are GCC. Thus using C>A, the complement of G>T, my quadruplet is G,C,A,C [103]. I then 

calculated the 96-dimensional quadruplet distribution for each sample. I refer to these as 
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mutational fingerprints. This database is available online at 

https://users.sussex.ac.uk/~skw24/TCGA_mutational_fingerprints.csv .  

 

A list of all the genes identified as either tumour suppressor-associated genes or oncogene-

associated genes was downloaded from the Cancer Gene Census [200]. This resulted in a 

data set of 244 tumour suppressor-associated genes, 243 oncogene-associated genes and 

71 genes associated with both tumour suppressor and oncogenic action. Of this gene I 

analysed those genes that had a pathogenic mutation in at least 4% of samples in at least 

one tumour. This resulted in consideration of a set of 160 tumour suppressor-associated 

genes, 129 oncogene-associated genes and 50 genes associated with both tumour 

suppressor and oncogenic action. The genes are set out in Appendix 2. 

 

3.3.2 Assessing the association between strength of cancer-associated genes and 

mutational profiles 

I considered it possible that part of the reason that driver genes are specific to a few tissue 

types is that the mutational stresses within those tissues may be better suited to generating 

pathogenic mutations in the gene in question. To examine this question further I compared 

the driver strength of gene g in particular tissue types t with a measure of the opportunity 

for pathogenic mutation of g in t.  

 

For each driver gene g and tissue type t, I use the percentage of samples with a pathogenic 

mutation in g as a proxy for the driver gene strength. I used this percentage as a proxy for 

driver strength and used the term driver strength(g,t) to describe it in the text. A cut-off of 

4% was used to identify frequently mutated genes. I assume that mutations are pathogenic 

https://users.sussex.ac.uk/~skw24/TCGA_mutational_fingerprints.csv
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if they lead to loss of function for tumour suppressor associated genes or gain of function 

for oncogene associated genes. For the tumour suppressor-associated genes this included 

missense mutations that are identified by the FATHMM program [201] in COSMIC as being 

pathogenic, as well as nonsense mutations and frameshifting indel mutations. For oncogenic 

genes I included missense mutations that are identified by the FATHMM program in COSMIC 

as being pathogenic. For genes which have been classified in the Cancer Gene Census as 

having both tumour suppressor and oncogenic properties the process associated with TSAs 

was followed. 

  

3.3.2.1 Calculating alignment based on an idealised fingerprint 

To approximate mutational opportunity, I calculate an idealised fingerprint and then 

measure the alignment(g,t) between the idealised fingerprint and the observed mutational 

fingerprint.  

The idealised fingerprint is a mutational fingerprint which is optimised for causing the 

pathogenic mutations seen in the gene. For example, in skin cancer, BRAF mutations occur 

at L245F, G469A, N581H, L597Q, V600E, K601E in varying proportions. Each of these 

changes in amino acid is caused by a potentially different nucleotide quadruplet mutation 

(e.g. L245F is caused by T A>C G which is equivalent to C T>G A). By adding the frequencies 

of these quadruplets together for every sample in the tissue with a BRAF mutation I can 

form an idealised mutational fingerprint. The alignment between the idealised and 

observed fingerprint is compared using the cosine similarity test.  

 

Finally, for each gene g I calculated the correlation between driver strength(g) and 

alignment(g) across all the tissue types. The number of tissue types is too low to use the 
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built-in correlation probability so instead I use a permutation test. In order to assess 

whether the correlations are statistically significant I performed 100,000 permutation tests. 

For each test I shuffle the driver strength(g) whilst keeping the values of the vector 

alignment(g) held and then finding the correlation between them. 

 

3.3.2.2 Assessing the impact of driver mutations on mutational signatures 

For each cancer-associated gene I identified the cancer primary sites where the driver gene 

was pathogenically mutated in more than 4% of samples. For each of these site in turn, I 

then identified the relevant TCGA samples and their mutational fingerprints as above.  

 

Fingerprints were clustered using non-negative matrix factorisation (NMF). NMF can be 

used to reduce the dimensionality of a non-negative matrix 𝑉 into two matrices 𝑊 and 𝐻 

such that: 𝑉 ൌ 𝑊𝐻 ൅ 𝑒𝑟𝑟𝑜𝑟. Here 𝐻 is the basis for the decomposition and 𝑊 the basis for 

the weights. NMF has been extensively used on COSMIC data to form a curated census of 

mutational signatures, and I use the probabilities for the COSMIC mutational signatures as 

my basis 𝐻. Version 2 is used as this is the version for which most analysis has been done 

and it is based on predominantly on exomic mutations [166].  

 

The corresponding weights 𝑊 were identified using python͛s sklearn͘decomposition 

package, holding 𝐻 constant. The weights were then were split into two matrices Wmut and 

Wnot_mut corresponding to samples with a pathogenic mutation in the target gene and those 

without.  

For each matrix I identified the median values and then compared these vectors using a 

cosine similarity test. In order to assess the significance of the values. I performed a 
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permutation test 10,000 times, repeatedly shuffling 𝑊 before splitting it into random 

matrices of the same size as Wmut and Wnot_mut and then carrying out the cosine similarity 

test. Finally, results were ranked and evaluated using the Benjamini-Hochberg procedure. 

3.3.2.3 Mutational patterns in hotspots 

I also investigated signature changes at the site of commonly occurring mutational driver 

hotspots where more than one amino acid mutation is observed.  

 

TCGA mutations were filtered for mutational sites occurring in more than 100 samples that 

had available mutational fingerprints. Disease sites were filtered to ensure that each 

mutation considered occurred in at least 5 samples in each of the diseases considered. 

 

For each tissue type and each mutational position, the frequency with which the wild type 

amino acid was mutated to different amino acids was counted (e.g. V600E, V600D etc). This 

gives us the observed frequency for each mutant amino acid. For each hotspot position (e.g. 

BRAF V600) samples containing a mutation were grouped by the tissue type of the cancer 

and the mutational fingerprint determined. 

 

To identify the baseline mutation frequencies I assumed that for all the samples with a 

mutation in gene g, tissue type t, the mutation to the target amino acid could have occurred 

equally at each of the three nucleotide registers in the codon, and that the frequency 

distribution for mutations to A,C,G, or T would be given by the summed mutational 

fingerprints of samples with the mutation in tissue type t and gene g. Silent mutations were 

removed from the vector before normalising, as no selective pressure will be seen for these 

mutations. This gave us a vector of expected values for each tissue type. The mean vector 
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for all the tissue types was then found, weighted by the sample size͘ I used this ͚expectation 

vector͛ in two ways͘ Firstly, I identified how well it matched the observations by comparing 

its cosine similarity with the observation vector against the distribution of random cosine 

similarities. Secondly, I identified which of the preferential selective pressure for specific 

amino acid substitutions were statistically significant. I did this by using the expectation 

vector to generate S random mutations 1,000 times where S is the sample size. I then 

compared the frequency of mutant amino acids with that observed. 

 

3.3.2.4 Correlations between mutational probabilities and mutational load 

For each tissue type I ordered samples by the overall number of genes which were mutated 

in any way. I then calculated the average mutational load, smoothing over the nearest 50 

samples. Likewise, for every frequently mutated gene the probability that it had a 

pathogenic mutation was calculated, smoothing over the nearest ϱϬ samples͘ Python͛s 

scipy.stats.pearsonr was used to calculate the correlation: the pvalue was approximated by 

shuffling the samples 1,000 times and then taking the correlation in the same way. Multiple 

testing is corrected for using the Benjamini-Hochberg procedure [202]. 

 

3.4 Results and Discussion 

3.4.1.1 Mutational processes vary between tissue types 

Mutational fingerprints capture the mutational processes that have occurred in the 

development of a cancer. These vary between cancers within different tissue types due to 

the different exogenous and endogenous pressures within the cell. Considerable work has 

been done to identify signatures within specific samples (see Chapter 1, section 5.9) [100]ʹ

[103].  
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Although, the individual signatures that occur in each cancer has been described it is unclear 

which cancers have the most similar mutational finger prints. Here I cluster the median 

fingerprint for each tissue type to reveal links between the different tissue types. These 

mean mutational fingerprints are shown in figure 3.1 and explored below. 

 

Figure 3.1 - Heatmap showing the median substitution fingerprints for TCGA samples from 

different cancers. It reveals distinctive patterns of mutations reproduces known COSMIC 

signatures 1,2, and 7 associated with ageing, AID/APOBEC and UV damage respectively. It 

also clearly shows the prevalence of GT>AG transversions in thyroid cancer. Clustering 

demonstrates that whilst all cancers have distinctive the patterns of substitutions are often 

similar in related tissue types. 

 

The mean mutational fingerprints cluster into seven distinct cancer clusters.  
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Cancer cluster 1 includes both ovarian and breast cancers. These show slightly elevated 

signs of NC>GT, where N is any one of A,C,G,T. This pattern is the dominant feature of 

Cosmic Signature 1, thought to be caused by the deamination of 5-methylcytosine at CpG 

dinucleotides, and associated with ageing. Ovarian and breast cancers also show slightly 

elevated signals for TC>TN.  Signatures 1, 3, and 5 are found in both ovary and breast 

cancers.  

 

Cancer cluster 2 comprises thyroid cancers alone. It has distinct fingerprints, which shows 

slightly elevated signs of the GT>AG mutations that can result in the BRAF V600E mutation, 

as well as MC>GT where M is either C or G. Signatures 1, 2 ,  5  and 13 are found in thyroid 

cancers. 

 

Cancer cluster 3 includes liver, kidney and lung cancers. These show slightly elevated signs 

of PC>GT, where P is any one of A,C,G. More generally levels of C>T, T>C and C>A are raised 

above the background levels. Signatures 1, 5 and 6 are found in liver, kidney and lung 

cancers.  

 

Cancer cluster 4 includes cervical and urinary tract cancers. These show elevated rates of 

TC>GN mutations where N is either A or T and in TC>TN mutations where N is any one of 

A,C,G,T. This pattern of mutation is characteristic of cytosine deamination caused by action 

of AID/APOBEC enzymes described by Cosmic Signature 2. Elevated levels of mutations of 

NC>TG are also visible where N is A,C,G or T.  
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Cancer cluster 5 includes the cancers of the central nervous system, the large intestine, the 

endometrium and the stomach. These also show the highly elevated levels of mutations of 

NC>TG associated with Cosmic Signature 1.  

 

Cancer cluster 6 comprises cancers of the haematopoietic and lymphoid tissue and  prostate 

cancers. These also show the highly elevated levels of mutations of NC>TG associated with 

Cosmic Signature 1. In this they are similar to the mutational fingerprints of cancer cluster 5, 

but they have slightly less elevated levels of other mutations.  

 

Finally, skin cancers have very distinctive mutational fingerprints, and form cancer cluster 7 

showing highly elevated levels of TC>TN and elevated levels of CC>TN. These mutations are 

characteristic of COSMIC signature 7 which is associated with ultra-violet light exposure that 

cause C>T substitutions at dipyrimidines sites [203].  

 

3.4.1.2 Most driver genes are recurrently mutated in one or two tissue types  

The bioinformatic identification of driver genes depends on identifying not only on 

frequency of mutations in specific genes, and probable consequence of those specific 

mutations but also on identifying the expected mutational frequency due to the gene length 

and timing of replication[204][185]. 558 genes have been described as oncogene, tumour 

suppressor or both, in the Cancer Gene Census as of December 2019 [88]. Whilst these 

genes all have some impact on the pathways underpinning carcinogenesis, the extent to 

which they are mutated in different cancers or drive these cancers is very variable. I refer to 

these genes as oncogene-associated or tumour-suppressor associated to emphasise that 
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whilst I am exploring the extent to which they are mutated, I am not assuming that these 

genes drive cancer in all of the tissue types considered.  

 

I defined a gene as frequently mutated if pathogenic mutations were described in 4% or 

more samples in a cancer of a particular tissue type (see methods). Of the cancer-associated 

genes analysed, 105 were frequently mutated in just one primary tissue type with a further 

106 frequently mutated in two or more tissue types. TP53 was unique in that it was 

frequently mutated in almost all (13) of the tissue types. Other driver-associated genes 

frequently mutated in more than half the tissue types were: the tumour suppressors - 

LRP1B (9 tissue types), NF1 (9), KMT2C (9), and CSMD3 (10); the oncogenes - PIK3CA (10), 

and MTOR (8); and genes with both oncogenic and tumour suppressor activity - KMT2D (9). 

The histogram of frequently mutated genes is shown in figure 3.2. 
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Figure 3.2: Histogram showing the number of driver genes that are frequently mutated in 

different numbers of tissue types. Most are never frequently mutated, whilst the remainder 

are generally specific to only one or two tissue types.  

 

Next, I clustered cancers of different tissue types using the ward hierarchical clustering 

method using the frequency of recurrently mutated cancer-associated genes. See figure 3.3 

for the resulting heatmap and cluster. The number of genes recurrently mutated is different 

in the different cancer types and the cancers broadly clustered into six cancer-associated 

gene clusters.  
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Figure 3.3: cancer sites clustered by 

proportion of samples with pathogenic 

mutations in cancer- associated genes.  
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Gene cluster 1 includes the skin and thyroid cancers. Although these cancer arise through 

different mutaional processes with very distinct mutational fingerprints both these cancers 

show markedly elevated levels of mutations in BRAF and elevated levels in NRAS. Overall 

there are many more mutations in skin cancers than thyroid cancers. 

 

Gene cluster 2 just includes cancers of the endometrium. These are characterised by highly 

elevated levels of mutations in PIK3CA and PTEN.  

 

Gene cluster 3 included cancers of the breast, cervix, kidney, liver, haematopoietic and 

lymphoid or prostate show no markedly elevated levels of gene mutation.  

 

Gene cluster 4 included cancers of the urinary tract, lung or stomach and show elevated 

mutation levels in a wide range of genes: 16 genes mutated by at least 4% in all three tissue 

types: TP53, PIK3CA, CSMD3, LRP1B, KRAS, KMT2C, FAT4, ARID1A, PREX2, PTPRT, PTPRD, 

BIRC6, CNTNAP2, CTNNA2, ROBO2, CTNND2. Indeed, TP53 is mutated in at least 39% of 

samples in each of these cancers.  

 

Gene cluster 5 included cancers of the large intestine and were characterised by elevated 

mutation levels in APC with 53% of the samples mutated.  

 

Gene cluster 6 included cancers of the central nervous system or ovary show elevated 

mutation levels in TP53 and NF1. Indeed TP53 mutated by in more than 33% of samples of 

each cancer. 
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Clustering tissues by frequently mutated genes gives clusters are not statistically similar 

(Fowlkes-mallows score see figure 3.4) to those found when clustering them by mutational 

fingerprints. That is tissues which have similar mutational fingerprints may have very 

different highly recurrent genes, and tissues with very different mutational fingerprints can 

result in similar frequently mutated driver genes. 

 

 

 

 

Figure 3.4: Bar chart of the Fowlkes-mallows 

scores between the tissue type dendrogram 

based on mean mutational fingerprints and 

that based on percentage mutations in cancer-

associated genes. In order to compare cluster 

trees, I calculate the square root of the recall 

and precision for clusters formed with 

successively lower cut-offs, and compare with 

those obtained for a random cluster pattern. 

The grey plot shows the expected values for 

independent trees together with 2 standard 

deviation cut-offs (in pink) Statistically similar 

clusters will have bars higher than the 2sd 

marks. 
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3.4.1.2.1 The mutational status of major cancer-associated genes impacts on the signature 

breakdown for some tissue types 

As tumorigenesis progresses the cancer genome becomes increasingly genetically unstable. 

In some cases, this may be due to failure of the DNA damage repair mechanisms in the cell 

caused by the failure or overactivation of the driver genes themselves. As mutational 

fingerprints reflect the mutational processes occurring in a tumour, I investigated the 

association between pathogenic mutations in the frequently mutated cancer-associated 

genes and changes to mutational fingerprints.  

 

I analysed the impact of each frequently mutated cancer-associated genes individually. For 

each gene in each tissue type, I divided the samples into two sets; those with a pathogenic 

mutation and those with no mutation in the gene. I then decomposed each set into the 

COSMIC mutational signatures. [15], [20], [21]. The cosine similarity between paired sets 

was then calculated and the significance calculated using a permutation test. The results 

below are all significant at the 5% level following corrected for multiple testing using the 

Benjamini-Hochberg procedure. Statistically significant changes in patterns in mutational 

signatures were observed for several mutated cancer-associated genes in cancers of the 

breast, endometrium, stomach, lung, central nervous system, and cervix as shown in table 

3.1 and figure 3.5 below. 
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Tissue Type Gene Function Signatures 

elevated in 

mutated 

samples 

Signatures 

lowered in 

mutated 

samples 

P -value 

(permutation 

test) 

Breast CDH1 Regulation of cell-cell 

adhesions 

2,13 1 e-4 

Breast PIK3CA Activation of signaling 

cascades 

2,13 1 e-4 

Breast TP53 Cell-cycle regulation 

and apoptosis 

3,10,13 1,2 < e-4 

Cervix ARID1A Regulation of 

transcription 

6,7 1,2,10,13 2e-3 

Endometrium CAMTA1 Regulation of 

transcription 

2,6,15 1,13 4e-4 

Endometrium KMT2D Regulation of 

transcription 

6,20 1,13 2e-4 

Endometrium KRAS Regulation of cell 

proliferation 

6 1,13 1.2e-3 

Endometrium TRRAP Regulation of 

transcription and 

possibly cell-cycle 

progression 

6,20 1,13 6e-4 
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Stomach CSMD3 None known in 

stomach ʹ potentially 

proliferation.[206][207] 

7,13,15,17 1,6 5e-4 

 

Stomach ERBB4 Cell surface receptor 

for EGF family. 

2,13,17,22 1,6 5e-4 

Stomach LRP1B Potential extracellular 

signal transduction. 

6,13,15,17 1 <e-4 

Stomach PREX2 Cell protection against 

oxidative stress. 

2,6,7,13,15,17 1 3e-4 

Stomach PTPRD Signalling protein 

involved in wide 

variety of cell 

processes. 

2,13,15,17,22 1,6 7e-4 

Central 

nervous 

system 

IDH1 Metabolic enzyme. 15 1 <e-4 

Lung CSMD3 None known in lung ʹ 

potentially 

proliferation.[207] 

4,6,22,24 1,2,3,7,13 e-4 

Lung LRP1B Potential extracellular 

signal transduction. 

4,6,22 1,2,3,7,13,24 6e-4 

 

Table 3.1: Signatures elevated or lowered in samples with mutations in cancer-associated 

genes. 
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Figure 3.5: Changes in mutational signature seen in samples with and without mutations in 

cancer associated genes. The signatures are those set out in COSMIC version 2 and have the 

following associations: 1: spontaneous deamination of 5-methylcytosine ʹ correlated with 

age, 2: activity of the AID/APOBEC family. 3: failure of homologous recombination.  

4: smoking. 6: defective DNA mismatch repair. 7: ultraviolet light exposure. 13: activity of 

the AID/APOBEC family. 15: defective DNA mismatch repair. 17: aetiology unknown. 

22: aristolochic acid. 24: aflatoxin. 

 

In general, the samples that contained mutations in the genes of interest identified above 

show a loss of contribution of signature 1. Signature 1 is a clock-like mutation: spontaneous 

deamination of cytosine gradually giving rise to mutations[104]. This suggests that 
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mutations in the genes of interest are indicative of cancers in younger patients as a result of 

exogenous stresses.  

 

In breast cancer, mutations in CDH1, PIK3CA and TP53 were associated with a statistically 

significant change of mutational fingerprints. CDH1 can act as a tumour-suppressor, PIK3CA 

as an oncogene, and TP53 can acquire mutations to enable it to act as both but is more 

commonly thought of as a major tumour suppressor [208]. Mutated CDH1 and PIK3CA are 

associated with an increase in signature 2 whereas mutations in TP53 are associated with a 

loss in signature 2 and an increase of COSMIC signature 13. COSMIC signature 2 is 

associated with the activity of the AID/APOBEC family. It is known that p53 is a 

transcriptional regulator of genes from the APOBEC family[209], and there is evidence that 

APOBEC activity can lead to mutations in PIK3CA gene in a number of cancers [210]. 

However, it was not possible to disambiguate any impact of CDH1 and PIK3CA mutation 

using this data set; all samples with pathogenic PIK3CA mutations also have a CDH1 

mutation. Mutations in TP53 were also associated with an increase in COSMIC Signature 3 

which is characteristic of patterns observed by the failure of double strand break repairs by 

homologous recombination. p53 has been shown to play a role in the regulation of 

homologous recombination [211] and this mutation may cause this effect. 

 

For cancers of the cervix, mutations in ARID1A (which acts as a tumour suppressor in 

cervical cancer), were associated with the presence of signature 6, characteristic of a defect 

in mismatch repair.  
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In endometrial cancer, mutations in CAMTA1A, KMT2D, KRAS, and TRRAP were associated  

predominantly with an increase in signature 6 and a decrease in signature 13. CAMTA1A can 

act as a tumour-suppressor. KMT2D can act as both a tumour suppressor and an oncogene, 

but tends to be a tumour suppressor in endometrial cancers. KRAS and TRRAP are both 

oncogenes. Signature 6 is associated with defective mismatch repair and signature 13 

attributed to activity of the AID/APOBEC family of cytidine deaminases. Mutations in these 

genes were not found independently of one another. Mutated KRAS was associated with 

mutated CAMTA1 (p-value < e-26, chi-square association test) with KMT2D (pvalue <e-6, 

chi-square test) and with TRRAP (pvalue<e-5, chi-square test). It is therefore possible that 

the signature changes are all caused by activations in KRAS. 

 

 

In stomach cancer, mutations in CSM3, ERBB4, LRP1B, PREX2 and PTPRD were associated 

with change in mutational fingerprints. CSM3, LRP1B and PTPRD can act as tumour 

suppressors, PREX2 can act as an oncogene and ERBB4 can act as both although in stomach 

cancer it usually acts as an oncogene . Mutations in ERBB4 and PREX2 were both associated 

with increases in signature 6. Increases in signature 17 were seen in samples with mutations 

in LRP1B, PTPRD, PREX2, ERBB4. Signature 17 is characterised by NT>GT mutations where N 

in {C,G,T}. However, the aetiology of signature 17 is unknown. Mutations in the four genes 

were not independent: mutations of LRP1B were associated with mutations in PTPRD 

(pvalue =1.3e-6, chi-square test) , PREX2 (4.7e-4, chi-square test) and ERBB4 (pvalue 2.7e-5, 

chi-square test). This suggests that the changes in signature 17 may be primarily associated 

with mutations in LRP1B. 
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In cancers of the central nervous system, mutations in IDH1, an oncogene in glioblastoma, 

were associated with the presence of signature 15 which is characteristic of defective 

mismatch repair.  

 

Finally, in lung cancers, mutations in LRP1B and CSMD3 was associated with change in 

mutational fingerprints. LRPB1 and CSMD3 can both act as oncogenes. The mutational rates 

of the two genes are associated (p-value 9.9e-6, chi-square test). Signature 4 (associated 

with smoking) is stronger in samples with mutations in either LRP1B or CSMD3. The picture 

is complicated because, there is evidence to suggest that LRP1B is more frequently mutated 

in lung cancer patients who have Chronic Obstructive Pulmonary Disorder. Cigarette 

smoking is known to be a principal cause of COPD, which in turn increases the risk of lung 

cancer. However, Xiao et al. found similar signatures in patients with and without COPD. 

This suggests that any link between LRP1B and smoking signature is more direct [212].  

 

As can be seen from table 3.1 and the discussion above, each of the genes associated with 

signature change is specific to a single tissue type. The two exceptions to this are CSMD3 

and LRP1B. These were both associated with signature changes in both stomach cancer and 

lung cancers. However, the genes were associated with differing changes in signature in the 

different tissue types. This specificity points to the varying significance of each of the genes 

in driving cancers in the different sites.  
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3.4.1.2.2 The mutational status of major cancer-associated mutations impact on the 

signature breakdown  

The sites of driver mutations in many oncogenes are highly constrained to just a few 

positions within the protein product that are critical for altering the resulting protein 

function. I therefore repeated the analysis above looking at site-specific mutations where 

specific mutations are observed in at least 4% of samples in one or more cancers. There 

were 23 such mutations in oncogene-associated genes as shown in the heatmap (figure 3.6) 

below.  I have included TP53 mutations within this list as although TP53 is generally thought 

of as a tumour suppressor there is evidence that some common TP53 mutations are 

oncogenic[213]. 
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Figure 3.6: Heatmap showing percentage of samples with specific mutations for those 

mutations with at least 4% samples mutated in at least one tissue type.  

 

Repeating the process of signature comparison using just those specific missense 

substitutions that are repeated in more than 4% samples in any one cancer, identified eight 

mutations that are associated with statistically significant differences in signatures. These 

are shown in figure 3.7 below and summarised in table 3.2. 
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Tissue Type Gene Signatures 

elevated in 

mutated samples 

Signatures 

lowered in 

mutated 

samples 

P-value 

permutation 

test 

    
 

Breast PIK3CA pE545K 2 1,13 0.0024 

Central Nervous 

System 

CHEK2 pY433C 2,21 1 0.0009 

Central Nervous 

System 

IDH1 pR132C 13,15 1 0.0018 

Central Nervous 

System 

IDH1 pR132H 15 1 <0.0001 

Central Nervous 

System  

TP53 pR175H 13,15 1 0.0012 

Central Nervous 

System 

TP53 pR273C 13,15 1 <0.0001 

Stomach TP53 pR273H 3,6,7,10,13,17,22 1,15 0.0021 

Thyroid BRAF pV600E 22 1 0.0025 

     

 

Table 3.2: Signatures elevated or lowered in samples with mutations in oncogenic hotspots. 
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Figure 3.7: Statistically significant changes in mutational signature decomposition for 

samples with and without common substitutions in oncogenic-associated genes. The 

signatures are those set out in COSMIC version 2 and have the following associations: 

1: spontaneous deamination of 5-methylcytosine ʹ correlated with age 

2: activity of the AID/APOBEC family.  

3: failure of homologous recombination. 

6: defective DNA mismatch repair. 

7: ultraviolet light exposure. 

10: altered activity of POLE. 

13: activity of the AID/APOBEC family. 

15: defective DNA mismatch repair. 

17: aetiology unknown. 

22: aristolochic acid.  

 

In breast cancer mutations in PIK3CA E545K were associated with a reduction in signatures 1 

and 13 and an increase in signature 2 which is associated with activity of the APOBEC family. 
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There is evidence that off-target activity by APOBEC proteins are a cause of PIK3CA 

mutations [214]. 

 

Five of the eight statistically significant results were found in cancers of the central nervous 

system. TP53 mutations p.R175H and p.273C were associated with similar changes to IDH1 

p.R132H and IDH1 p.R132C. Mutations in these genes commonly co-occur (pvalue<e-19, 

fisher exact test). This means that it was not possible to identify whether any changes in 

signatures seen are as a result of the TP53 mutations or the IDH1 mutations. There may of 

course be an unseen factor influencing both mutations. It is worth noting that mutations in 

both genes change the extent of DNA damage repair in gliomas [215].  

 

In stomach cancer, mutations in TP53 R273H were associated with reductions in signature 1 

and an increase in signatures 3,6,7,10,13,17,22. Note that although the number of 

signatures showing an increase suggests that it is the reduction in signature 1 that is 

important here and  

although the cohort with R273H mutations were younger, the age difference between 

cohorts is not statistically significant. 

 

In thyroid cancers mutations in BRAF V600E were associated with a reduction in signature 1 

and increase in signature 22, which has previously been associated with aristolochic acid.  
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3.4.1.2.3 The extent of driver mutations in a specific tissue type is associated with the 

nature of the stresses on the cells in question 

It is clear that driver genes are very different in different tissue types but to what extent are 

they associated with the nature of the stresses on the cells in question? To examine this 

question further for each cancer-associated gene, the percentage of samples mutated at 

different cancer sites was calculated and compared the extent to which the mean 

mutational fingerprint at those sites aligns with an idealised fingerprint. The idealised finger 

print is one that would provide the maximum opportunity for pathogenic mutation. See 

methods for information on how they were calculated.  

 

In total 339 cancer-associated genes were tested: 129 genes associated with oncogenesis, 

160 associated with tumour suppression and 50 that were identified in the cancer gene 

census as belonging to both categories. Of these, 226 genes (66%) showed a statistically 

significant (pvalue<0.05 permutation test) positive correlation between the percentage of 

samples mutated and the alignment between the ideal fingerprint and the mean mutational 

fingerprint. This suggests that most mutations in cancer-associated genes are partially 

opportunistic, mutating in those tissues where the endogenous and exogenous pressures on 

the cells are of the right type to create mutations which are pathogenic. Similar percentages 

were found for the tumour suppressor-associated genes and for the oncogene-associated 

genes.  

 

It is expected that passenger genes will show this type of opportunistic behaviour, so it is 

possible that the findings could be the result of passenger mutations being included in with 

genuine driver mutations. However, opportunistic genes include those such as TP53 where 
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the gene is experimentally verified to be a driver for a large number of mutations and in a 

large number of tissues[208] when I changed the cut-off off to look at just those genes 

mutated in at least 10% of samples in at least one tissue type, the number of genes showing 

a statistically significant positive correlation between strength and alignment increased to 

78% leaving just 14 that do not. These were: BRAF, CTCF, CTNNB1, EGFR, ERBB2, FGFR2, 

FGFR3, KRAS, NRAS, PBRM1, PIK3CA, PPP2R1A, PTEN and VHL.  

This suggests that, except in rare cases, including the fourteen genes listed above, even 

when genes are drivers, and thus subject to positive selection pressure, the proportion of 

samples exhibiting mutations often depends on the chance nature of the mutations. 

Example plots of the fourteen genes without statistically significant positive correlations are 

shown in figure 3.8. For comparison plots of fourteen genes with high mutation rates 

demonstrating statistically significant positive correlations are shown in figure 3.9. 

 

 

Figure 3.8: Scatterplots for the fourteen genes with a maximum mutation rate >10% that do 

not have a statistically significant correlation between the percentage of samples mutated 
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(x axis) and the cosine similarity between the ideal and observed mutational fingerprint (y 

axis).  

 

 

 

Figure 3.9 : Scatterplots for the fourteen genes with the maximum mutation rates that do 

have a statistically significant positive correlation between the percentage of samples 

mutated (x axis) and the cosine similarity between the ideal and observed mutational 

fingerprint (y axis). 

 

3.4.1.3 Selective pressure on mutant residue choice in cancer hotspots 

Experimental evidence evaluating the impact of uncommon substitutions at cancer 

missense hotspots is patchy. However, I posited that the mutational profiles of patients with 

a mutation in the gene in question can shed light on the question. For example, if an 

uncommon substitution would be likely to occur by chance given the mutational profiles it is 

less likely to be pathogenic than when the mutational profile allows for few mutations of a 
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type which would drive the substitution in question. I looked at extent to which mutational 

profiles are associated with the distribution of amino acid substitutions found at the most 

common cancer missense hotspots. BRAF, IDH1, KRAS, NRAS, PIK3CA and TP53 each have 

more than 100 TCGA samples mutated at a single position. These are shown in Figure 3.10.

  

 

Most of the missense hotspots have a distribution of mutant amino acids which is more 

closely aligned to that of the mutational fingerprints than would be expected by chance 

using a cosine similarity test. However, in some sites the mutational fingerprint accounts for 

up to 92% of the mutations seen whilst in others that drops to 50%. The clearest contrasts 

are provided by looking at the mutations at TP53 G245 and comparing these with those at 

BRAF pV600: Most of the possible mutations at TP53 G245 are represented at close to the 

rates I would expect from the mutational profile. This suggests that the different mutant 

amino acids are equally effective at changing the action of TP53 and their distribution 

occurs largely by chance. By contrast only BRAF pV600E is seen in my samples. The results 

summarised in table 3.3 are all significant at p-value <0.01. These p-values were generated 

using randomised trials where the expected distribution of mutations was used to generate 

random mutations, see methods for details. 

 

 

Mutation Sample 

size 

Comments  
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BRAF V600 409 Distribution similar to mutational profile (pvalue =0.004). Selective 

pressure for V600E.  

IDH1 R132 283 Distribution similar to mutational profile (pvalue <0.001). Selective 

pressure for R132H. R132C may be less effective. 

KRAS G12 536 Selective pressure for G12A, G12D and G12V. G12S and G12R may 

be less effective. 

KRAS G13 110 Distribution similar to mutational profile (pvalue <0.001). Selective 

pressure for G13D. G13C and G13V may be less effective. 

NRAS Q61 154 Selective pressure for Q61K, Q61R. Q61H may be less effective. 

Absence of nonsense mutations confirms NRAS oncogenic status.  

PIK3CA E542 244 Distribution similar to mutational profile (pvalue <0.001). E542G 

may be as effective as E542K. 

PIK3CA E545 434 Distribution similar to mutational profile (pvalue <0.001). Selective 

pressure for E545K. 

PIK3CA H1047 429 Distribution similar to mutational profile (pvalue =0.001). Selective 

pressure for H1047R. H1047Y may be less effective. 

TP53 C176 115 Distribution similar to mutational profile (pvalue =0.007). Selective 

pressure for C176F. Complete destruction of protein through 

nonsense mutation may be less effective. 

TP53 G245 155 Distribution similar to mutational profile (pvalue <0.001). 

TP53 H179 126 Distribution similar to mutational profile (pvalue =0.002).No 

selective pressure seen. 
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TP53 H193 131 Distribution similar to mutational profile (pvalue <0.001). No 

selective pressure seen. 

TP53 R158 114 Selection pressure for R158L and R158H. R158C and R158S may be 

less effective. 

TP53 R175 327 Distribution similar to mutational profile (pvalue =0.027). Selection 

pressure for R175H. R175C and R175L may be less effective. 

TP53 R196 114 Distribution similar to mutational profile (pvalue =0.002). Selection 

pressure for nonsense mutation. 

TP53 R213 182 Distribution similar to mutational profile (pvalue =0.052). Selection 

pressure for nonsense mutation.  

TP53 R248 455 Distribution similar to mutational profile (pvalue 0.008, cosine 

test). Some selection pressure for R248Q. R248L and R248W may 

be less effective. 

TP53 R273 407 Distribution similar to mutational profile (pvalue <0.001, cosine 

test). Some selection pressure for R273L and R273C. R273H may be 

less effective. 

TP53 R282 141 Distribution similar to mutational profile (pvalue =0.060). Selection 

pressure for R282 W. R282Q may be less effective. 

TP53 Y220 151 Distribution similar to mutational profile (pvalue <0.001).  

There is an interesting lack of nonsense mutations suggesting 

incomplete destruction may be more useful. 

 

Table 3.3 : Selective pressure at the site of most frequent missense mutations. 
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Figure 3.10: Comparison between the observed and expected frequency distribution of 

mutant amino acid in each of the 20 hotspots considered. 

 

3.4.2 BRAF case study 

BRAF was most frequently mutated gene in thyroid (59% of samples) and skin cancers 

(44%). In both cases V600E predominated but in skin cancers a handful of other mutations 

(G469A, K601E, P367S, K183E, N581H, K641E) also occur.  
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The V600E mutation is caused by a G (T>A) G transversion which is common mutation in 

thyroid cancer but not in skin or other cancers (see figure 3.1). Interestingly, there is no 

significant correlation between the percentage of samples mutated and the alignment 

between the observed mutational fingerprint and the idealised mutational fingerprint for 

the gene in either cancer type.    

 

One  possible explanation of the mismatch between that mutational fingerprint and the 

idealised mutational fingerprints may have been the selection of mutations predicted to 

pathogenic. FATHMM[216] is used to predict the pathogenicity of the mutations and  could 

have been misclassified. I therefore reclassified the mutations using Polyphen2[217]. 

Polyphen2 confirmed 55 of the 76 BRAF missense mutations as either possibly or probably 

damaging, and did not give rise to a significant correlation.  

 

An alternative explanation is provided by the experimental classification of BRAF mutations 

based on their mechanisms for activation of the MAPK pathway. These classifications 

separate the impact of the mutations into those which give rise to active BRAF monomers 

(the V600 mutants) from constitutively active dimers (K601E, L597Q, G469A, G469V, or 

G464V) and from those which result in little or no BRAF kinase activity (G466E and D287H) 

[194]. It is thus possible that no correlation can be seen because different interactions are 

selected for in different cancers.   

 

Analysis at the V600 site identifies far more V600E substitutions than expected. If all 

available amino acid substitutions were equally effective as onco-proteins, 20% of the V600 
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substitutions would occur as V600M (see figure 3.10). However, V600M does not occur in 

these samples at all, and it is reported as very rare, around 0.3% in melanomas for example 

[218]. This suggests that there is strong selection for glutamate over the alternative amino 

acids.   

 

3.4.3 Conclusions and discussion 

In this study I have shown that there is an association between patients͛ mutational 

signature profile and their pathogenic mutations in fourteen genes, and with mutations at a 

specific sites in five genes with oncogenic hotspots.   Most of the frequently mutated genes 

are highly specific to particular tissue types. That is, the mutations are very common in just 

one or two tissue types and are otherwise rare. I find that for most such genes the  

mutations most frequently occur in those tissues where the endogenous and exogenous 

pressures on the cells are of the right type to create mutations which are pathogenic. 

However, this is not universally true: in fourteen of the genes (BRAF, CTCF, CTNNB1, EGFR, 

ERBB2, FGFR2, FGFR3, KRAS, NRAS, PBRM1, PIK3CA, PPP2R1A, PTEN and VHL) there is no 

such connection. 

 

Looking specifically at mutation hotspots, I find that the distribution of mutant amino acids 

is more closely aligned to that of the mutational fingerprints than would be expected by 

chance using a cosine similarity test. Nevertheless, there is variation. For mutations at TP53 

G245, where mutations destabilize the protein [219], the sample fingerprints account for 

92% of the distribution. On the other hand, for mutations at TP53 R248, where mutations 

lead to a gain of function [220], greater selectivity is seen and only 48% of the distribution is 

accounted for by the sample fingerprint. 
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After I completed this work Poulos et al. [221] and Temko et al. [222] published analyses  

identifying associations between mutated genes and mutational signatures. Poulos et al  

used logistic regression analysis to test associations between driver mutations and 

mutational signatures and found 39 significant associations. Temko et al. compared the 

levels of signatures in cancers harbouring the mutations to those in cancers that did not 

harbour the mutations. They tested whether observed frequencies of each driver mutation 

differed significantly from those expected based on mutational process activity alone, using 

a Mann-Whitney U test. Using this approach, they identified 43 significant correlations 

between signature activity and driver mutations. Temko et al. also looked for differences 

between the predicted and observed mutational likelihood of mutant amino acids for 9 

genes, disaggregating the data into specific cancer types. They found selection pressure in 

19% of the pairwise comparisons.  

 

As well as the different statistical tests used, there are other differences between the 

approaches. For section 3.4.1.2.1 , this  includes the methods used to identify mutational 

signatures within samples and the tissue types used to disaggregate samples. For section 

3.4.1.3 Temko et al. use sample signatures rather than the sample fingerprint directly and 

aggregate different mutations when looking for selective pressure.  

 

Despite this, the association between mutations in PIK3CA E545K and an increase in 

signature 2 in breast cancer was found in all three studies, and both Poulos and I found an 

association between IDH1 R132C and reduction in  signature 1 in cancer of the central 
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nervous system.  In addition, Temko et al. also found particularly strong selective pressure 

for PIK3CA H1047R, NRAS Q61R and BRAF V600E. 

 

The large differences in the methodologies suggests that the association between PIK3CA 

and signature 2 in breast cancer, and between IDH1 and signature 1 in cancer of the central 

nervous system are particularly robust. Both PIK3CA and IDH1 play a role in DNA damage 

repair which suggests that the mutation may change the profile of further mutations, rather 

than the differences in signature giving rise to an increased frequency in mutations in 

IDH1/PIK3CA [223][224]. It also suggests that there may be substantive differences in the 

mutations found at PIK3CA H1047, NRAS Q61 and BRAF V600 which could potentially 

require different therapies.  

 

In conclusion, there is clear evidence that the physical cause of the cancers, as represented 

by their mutational profiles, is associated with the particular genes that become mutated. 

This suggests that mutations amongst driver genes include an element of opportunism: a 

conclusion which is strengthened when I look at the association between mutational load 

and the probability of a mutation in a frequently mutated cancer-associated gene. 

Nevertheless, selectivity is still evident and some mutations, such as BRAF V600M are much 

less common that the mutational fingerprints would suggest. The results for TP53 are of 

particular interest because the hotspots include some mutations which cause loss of 

function and others which cause gain of function. It is possible that, with sufficient data, the 

method used here could provide a test to distinguish between loss of function and gain of 

function mutations in genes which may possess both. 
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4 Mutational signatures in bacteria  

4.1 Abstract 

Mutational signatures are characteristic combinations of nucleotide substitutions within the 

DNA that result from specific mutagenesis processes. Within the field of cancer, identifying 

mutational signatures has provided considerable insight into the biological mechanisms 

involved in both carcinogenesis and somatic mutagenesis in healthy cells.  

In this paper using a similar technique, I investigate the underlying mutational processes 

involved bacterial evolution. First, I identify mutational fingerprints for 16 bacterial species, 

mostly human pathogens, and then decompose them into mutational signatures using non-

negative factorisation. By comparing the signatures between species, those observed in 

human cancer samples and those observed in cell lines treated with environmental 

mutagens, I identify defective incorrectly-repaired alkylation, use of POLE and defective 

mismatch repair as a potential mechanisms in driving bacterial mutations. 

 

4.2 Introduction 

Work on human cancer samples has demonstrated that different sources of damage to DNA 

give rise to characteristic patterns of substitution mutations [152], [166], [167], [225]. These 

sources of damage may be exogenous or endogenous in nature. Defects in DNA damage 

repair pathways (DDR) are also detectable from sequencing data. In order to uncover these 

patterns, substitution mutations are commonly represented as mutational fingerprints and 

then decomposed to reveal common mutational signatures.  

 

https://en.wikipedia.org/wiki/Mutagenesis
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Mutational fingerprints are vector representations of all the substitution mutations that 

have occurred in a set of genes compared to the consensus genes. Typically, the substitution 

types are classified by considering both the substituted nucleotide and the flanking 

nucleotides and are written as a quadruplet. Thus CCG > CTG is written CCTG. Although 

there are twelve possible ways of substituting a nucleotide and thus 192 potential 

quadruplets, substitutions on the leading or lagging strand of DNA are considered 

equivalent. For example, CGT > CAT is considered equivalent to ACG > ATG and hence CGAT 

~ ACTG. This is used to reduce the number of possible substitution types to 6, namely: C>A, 

C>G, C>T, T>A, T>C, T>G and the overall number of possible substitution types to 96. A 

mutational fingerprint is then formed by counting the number of substitutions in each of 

these 96 categories. 

 

Once several mutational fingerprints have been identified it is possible to decompose them 

into mutational signatures and associate these signatures with different potential causal 

factors. Decomposition is frequently done using non-negative matrix factorisation as this 

allows a simple interpretation of the results as specific fingerprints can be identified as a 

linear sum of different signatures[226]. 

 

Within cancer samples most mutations are passenger mutations, in that they do not have a 

significant impact on the cell viability and are not under great selective pressure. Hence, the 

mutational fingerprint captures the mutational history of the cancer cell, and the 

decomposed mutational signatures can shed light on the action of specific exogenous or 

endogenous genotoxins to which the cell has been exposed. Within the field of cancer 
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genomics, considerable work has been undertaken to identify the cause of particular 

signatures[103], [205] and extensive collections of such signatures have been documented . 

 

Signatures obtained from somatic cancer cells have revealed causal links with a number of 

generic mutational processes . These include the deamination of 5-methylcytosine at CpG 

not repaired prior to DNA replication [227], the C:G > T:A transitions occurring mainly at 

dipyrimidines caused by exposure to UV light [161], defects in DNA damage repair pathways 

and a number of signatures associated with alkylating agents [197]. 

  

In contrast to the chromosomal organisation of human DNA, the DNA in most bacteria is 

contained in a single circular molecule, called the bacterial chromosome together with 

several plasmids ʹ small circular DNA molecules. Acquisition of mutations followed by a 

selective pressure results in most bacterial species having a variety of different sub-species 

comprising different strains, some of which have been fully sequenced[129]. Rapid bacterial 

evolution can take place through the acquisition of novel genetic elements, including new 

genes and fragments of genes, from the accessory gene pool, the transfer of circular DNA 

called plasmids through cell to cell contact known as conjugation, the inclusion of DNA from 

the environment known as transformation and finally transduction, the transfer of DNA 

by bacteria-specific viruses called bacteriophages [228].  

 

However, in addition to these mechanisms, bacteria are also at risk from endogenous and 

exogenous mutational pressures, and have a suite of DNA damage response pathways. For 

example, the Nucleotide Excision Repair (NER) pathway is well conserved across many 

bacterial species [29]. However some of the genes present in Escherichia coli͛s pathways for 
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base excision repair (BER), mismatch repair (MMR), and direct repair (DR) do not have an 

orthologue in other bacterial species [229] suggesting that there may be significant 

differences in these pathways in other bacterial species. 

 

In this chapter I investigate the underlying mutational processes involved bacterial 

evolution. First, I identify mutational fingerprints for 16 bacterial species, mostly human 

pathogens by identifying   unique silent substitutions. Then I decompose these fingerprints 

into mutational signatures using non-negative factorisation. By comparing the signatures 

between species, those observed in human cancer samples and those observed in cell lines 

treated with environmental mutagens, I identify mutational processes that could underly 

bacterial mutations. 

4.3 Methods 

For each bacterial species, the genes from genomes of available strains were downloaded 

from ensemblgenomes.org by downloading the cDNA from the site as follows and 200 

strains selected for analysis[129]. 

 

4.3.1 Clustering bacterial sub-species 

The cDNA of all the bacterial genes were translated to the amino acid sequence and 

clustered using the MMseqs program to find orthologous genes [153]. 100 orthologous gene 

families that were shared by all 200 strains, had no paralogs and were of similar length 

between 900 and 2250 bps [230] were identified. The nucleotides corresponding to these 

orthologs were then clustered using ClustalOmega[154] and the sequence identity found for 

each gene in each bacterial strain. These sequence identities were used as a similarity 
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distance allowing me to hierarchically cluster the strains using Ward͛s method[231], using a 

cophrenetic distance cut-off of 0.7.  

 

To identify the relationships between the sub-species and species I used the twenty-five 

primers from ten genes identified by Santos et al[232]. In the majority of strains these genes 

were labelled within the bacterial genomes, making identification straight forward. 

However, where this was not the case, I used MMseqs to identify the relevant, using a 

sample gene from Escherichia coli as a template. This method successfully retrieved all the 

annotated genes. The genes were then aligned against the primers and a vector built up 

showing for each nucleotide whether or not the primer was conserved. Finally for each of 

the subspecies the mean vector was found and the subspecies clustered again using Ward͛s 

method [231]. 

 

 

4.3.2 Generating mutational fingerprints  

Mutational fingerprint analysis was carried out on the bacterial subspecies identified. For 

each cluster, genes were identified that were shared by all of the strains in the cluster and 

had no paralogues. For each of these genes, a consensus sequence was identified and single 

base substitutions (SBSs) called against the consensus sequence. In order to remove 

selection bias, I accepted only mutations that were silent and only unique silent 

substitutions were accepted, as I consider these more likely to reflect recent mutational 

pressures rather than the historical distribution of established alleles. The substitutions 

were classified according to the wild and mutant nucleotides and the value of flanking 

nucleotides. In common with protocol in cancer mutations I use the quadruplet TCTG to 



 145  

 

indicate the point substitution from TCG to TTG. There are 192 such possibilities. However, 

it is assumed that mutations are equally likely along both DNA strands. To reduce the 

number of possibilities by two to 96, mutations of wild type A,G are read along the opposite 

strand so that all mutations are of the form 𝑁1𝑋 ൐ 𝑁2𝑁3 where 𝑁1𝑁2  and 𝑁3 may be any 

nucleotide but 𝑋 is constrained to be either C or T. So, to give a concrete example AGAC is 

short for AGC>AAC which may be read as GCT>GTT on the opposite strand i.e. GCTT. By 

doing this I built up a distribution of all the SNPs called, and also just those SNPs that are 

unique to a single strain at any one position.  

 

So that I could compare these distributions between different bacterial species I also 

identified the distribution of all the quadruplets within the shared genes that could have 

arisen as a result of a silent substitution. So, for example threonine can be coded by ACA, 

ACC, ACG and ACT. As a result, the trinucleotide ACC followed by T could give rise to any of 

the three quadruplets CCAT, CCGT, CCTT each representing a silent substitution. By dividing 

the SNP distributions by the underlying distribution of possible silent SNPs I end up with a 

frequency distribution of all the silent SNPs. This provided an overall picture of the stable 

variation of the bacterial genome, and also for each strain. The mean mutational fingerprint 

found for each cluster was used as a similarity measure enabling me to cluster the different 

bacterial strain clusters. 

 

4.3.3 Generating mutational signatures  

For each cluster of bacterial strains, the matrix formed from the individual mutational 

fingerprints was decomposed using non-negative matrix factorisation to give five mutational 

signatures per bacterial strain cluster, and a weights matrix. Each signature was normalised 
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to sum to one, and the weights adjusted accordingly. For each signature the weights matrix 

was used to identify the percentage of strains where that signature accounts for more than 

50% of the fingerprint. The mutational signatures were then clustered to identify similar 

signatures in different bacterial strain clusters. A cophrenetic distance of 2 was used as a 

cut-off giving 40 clusters. Of these 24 were shared by 3 or more strain clusters. For these 24 

clusters the median signature of the clustered signatures was found.  

 

4.3.4 Identification of DNA Damage Repair (DDR) genes 

To identify the DDR genes for each of the downloaded bacterial strains I clustered the 

translated nucleotides with the 250 known human DDR genes as well as all the genes which 

have been identified in the reference genome for Escherichia coli as being involved in DNA 

repair pathways. Again this was done using the MMseqs package [73], [149]. I then counted 

the number of strains where an ortholog was identified. The number of strains with a 

specific DDR gene was used as a similarity measure enabling the different bacterial species 

to be clustered by the presence or absence of DDR orthologs. 

 

4.3.5 COSMIC cancer signatures 

To be able to compare the most common bacterial signatures with those found in the 

COSMIC cancer signatures single based substitutions (version 2) [185] normalisation of 

human based signatures were undertaken. The raw COSMIC signatures are derived from 

exomic frequencies and have not been corrected for the trinucleotide distribution in Homo 

Sapiens. The human exome was downloaded from Ensembl Biomart [16]. Using the 

trinucleotide distribution for each frame and the corresponding theoretical quadruplet 

distribution was calculated. Dividing the cancer signatures by this quadruplet distribution 
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allowed direct comparison with signatures derived from human to those derived from the 

bacteria.  

To compare these signatures the cosine similarity between each of the signatures was 

calculated. To provide a random cosine similarity against which to measure statistical 

significant, ten thousand random signatures were generated and the cosine similarities 

calculated. These were compared with the cosine values between 24 bacteria and 30 cancer 

signatures and corrected for multiple testing using the Benjamini Hochberg method [202]. 

 

 

4.3.6 Carcinogen- derived human signatures  

I also compared the bacterial signatures with the signatures derived experimentally by 

Kucab et al. These were derived by exposing human stem cells to environmental 

carcinogens [197]. The probabilities associated with these signatures were downloaded 

from Signal [196]. 

(https://signal.mutationalsignatures.com/explore/mutagens?group&hasSignature=true&na

me=)  

These signatures are derived from human genomic mutation frequencies, rather than 

exomic frequencies, and had not been corrected for the trinucleotide distribution in Homo 

Sapiens. The human genome was downloaded from Ensembl Biomart [16] and the 

trinucleotide distribution in each frame ʹ and hence the quadruplet distribution- was 

identified. The signatures were then converted to substitution frequencies, and the 

comparison with bacterial signatures carried out as before. 
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4.4 Results 

4.4.1 GC content for different bacteria 

In total I considered 16 bacterial species: Acinetobacter baumannii, Bacillus cereus, 

Burkholderia pseudomallei, Clostridioides difficile, Enterococcus faecalis, Enterococcus 

faecium, Escherichia coli, Klebsiella pneumoniae, Listeria monocytogenes, Mycobacterium 

abscessus, Mycobacterium tuberculosis, Neisseria gonorrhoeae, Neisseria meningitidis, 

Pseudomonas aeruginosa, Salmonella enterica, and Streptococcus pneumoniae. 

 

For each of the species I considered 200 different strains. I first identified the GC content for 

each bacterial species as shown in figure 4.1 below. These range from a mean of 30% in 

Clostridium difficile to 68% in Burkholderia pseudomallei. For most of the bacterial species, 

the difference between the maximum and minimum level of GC content was less than 5%. 

However, for Clostridioides difficile there are outlying strains whose GC content varies by 

more than 24%. 

 

Figure 4.1 legend 

Boxplot of the GC content for each of the bacterial species. These range from 30% to 68%. 
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4.4.2 Distribution of genes in strains within a species 

Next, I analysed the conservation of genes within a species by identifying in how many 

strains each gene was observed, see figure 4.2 below. For each of the bacterial species 

considered, genes show a bimodal distribution, with each gene being either part of a very 

small gene family or shared by nearly all the strains. For most of the bacterial species 

around 60% of genes are nearly universal. Bacillus cereus is an exception to this: only 26% of 

genes belong to an orthologous gene cluster shared by nearly all of the strains. A small 

minority of genes belong to between 5 and 95% of the bacterial strains. These genes are 

likely to be adaptations giving strains individual characteristics (see for example [233]ʹ

[235]). 

 

Between 7%-34% of all the genes are belong to a gene cluster shared by less than 5% of the 

strains. This is most pronounced in Bacillus cereus where 34% of the genes are only found in 

an orthologous gene cluster shared by less than 5% of the strains. In Escherichia coli some 

15% of genes are thought to result from horizontal gene transfer, so it is possible that these 

anomalous genes may be candidates for horizontal gene transfer [236]. 
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Figure 4.2: Histogram showing the percentage of total genes that belong to an orthologous 

gene family shared by a given percentage of different strains of the same bacterial species.  

 

4.4.3 Deriving bacterial sub-clusters for each bacterial species 

Previous work has shown that in genetic terms the membership of a bacterial species can be 

quite broad. Membership is often based on having a gene sequence similarity >97% for the 

ubiquitous 16S rRNA gene sequence [237]. However, this measure can be insufficient to 

distinguish between closely related strains [238]. Comparing groups of conserved proteins 

improves sensitivity and nucleotide identity has been shown to be a robust measure of 

evolutionary distance [232], [239]. 
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To ensure that I am finding mutational fingerprints on sub-species that have close 

intraspecific genes I grouped the bacterial species into sub-species using sequence identity 

between 100 conserved gene families; each between 900 and 2250 bps long with no 

paralogs. Each gene family was aligned to form a consensus sequence, and the sequence 

identity found between the consensus sequence and each of the corresponding strain 

sequences. These sequence identities were used to cluster the strains into a phylogenetic 

tree. I used a cophrenetic distance 0.7 as a cut-off to group each of the species into sub-

species for further analyses.  

 

Each bacterial species showed distinctive evolutionary patterns structures with their 

phylogenetic tree branching into between one and four sub-clusters, as well as outlier 

strains that do not belong to any of the clusters. Figure 4.3 below shows the tree derived for 

Bacillus cereus. Each sub-species, shown as cyan, red or green, comprises at least 25 strains 

within a cophrenetic distance of less than 0.7 of one another. The maximum cophrenetic 

distance between bacterial strain clusters is generally between 0.8 and 3, but for 

Enterococcus faecalis the maximum cophrenetic distance is greater than 14 suggesting that 

there is considerably more genetic variation in E. faecalis than the other bacteria 

considered.  
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Figure 4.3: Bacterial strain clusters across conserved genes using sequence identity from the 

consensus gene as a measure of distance. This first example shows Bacillus cereus and is 

fairly typical in showing between 1 and 4 clusters using a cophrenetic distance cut-off of 0.7. 

The second example is Enterococcus faecalis which is not typical. Many of the strains do not 

cluster closely with any other strains and the maximum cophrenetic distance is greater than 

14. Bacterial strain clusters for each of the bacterial species are shown in appendix 2 figures 

4.1a-4.1o. 

 

4.4.4 Mutational frequencies in different bacteria 

All further analysis was done on the basis of the bacterial sub-species identified, which I 

denote red, green and cyan according to the colour of the cluster. For each gene in each 

bacterial sub-species, I constructed an ancestral sequence corresponding to the base 
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occurring most frequently at each position in the sequence. I identified all the observed 

mutations that occurred in each strain against this consensus sequence.  

 

Silent mutations accounted for between 31% of all mutations (Salmonella enterica) and 74% 

of all mutations (Enterococcus faecalis) in the different bacterial sub-species. This is a far 

higher percentage of silent substitutions than might be expected if there was no selective 

pressure. If each substitution took place on each nucleotide with equal probability, I 

calculated that only 19%-25% of the mutations would be silent for the bacterial species 

examined. It is likely I am seeing signs that the silent mutations are much more tolerated 

than missense mutations, as they are unlikely to be under selective pressure as predicted by 

Kimura in 1968 [240].  

 

For each gene I identified the unique silent mutations that occurred in each strain against 

the ancestral sequence. If a mutation occurred in more than one strain it was not included 

further in this analysis. These silent substitutions are unlikely to be under evolutionary 

pressure and so allow me to focus purely on mutational stresses acting on the cells, without 

considering the evolutionary consequences of particular mutations. 

 

On average each of the bacterial strains had 5 unique silent substitutions (USSs). However, 

there was considerable variation: the Clostridioides difficile strains have an interquartile 

range of only 1-3 USSs whereas one of the sub-species of Enterococcus faecalis has an 

interquartile range of 43-170 USSs showing again the pronounced genetic divergence in E. 

faecalis. Full details are set out in table 4.1. 
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Bacterial 

species 

Cluster 

colour 

Number of 

Strains 

Number of 

Mutations 

(Median) 

 

Number of 

Mutations 

(Interquartile range) 

Acinetobacter 

baumannii 

red 63 2 1-10 

Bacillus cereus red 69 5 3-9 

Bacillus cereus cyan 64 27 8-51 

Burkholderia 

pseudomallei 

red 97 65 2-90 

Burkholderia 

pseudomallei 

cyan 93 1 0-2 

Clostridioides 

difficile 

red 33 1 1-3 

Enterococcus 

faecalis  

red 24 39 15-75 

Enterococcus 

faecalis 

cyan 51 12 4-56 

Enterococcus 

faecalis 

green 25 102 43-170 

Enterococcus 

faecium 

red 25 1 1 

Escherichia coli red 152 8 2-18 
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Escherichia coli green 47 25 13-64 

Klebsiella 

pneumoniae 

red 118 1 0-9 

Klebsiella 

pneumoniae 

cyan 50 8 1-97 

Listeria 

monocytogenes 

green 34 2 1-3 

Mycobacterium 

abscessus 

green 54 6 2-8 

Mycobacterium 

abscessus 

red 47 2 1-9 

Mycobacterium 

tuberculosis 

red 83 12 5-21 

Mycobacterium 

tuberculosis 

green  103 7 2-15 

Neisseria 

gonorrhoeae 

red 37 5 2-10 

Neisseria 

gonorrhoeae 

green 62 2 1-11 

Neisseria 

meningitidis 

red 128 2 0-7 

Pseudomonas 

aeruginosa 

cyan 148 5 2-36 
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Salmonella 

enterica 

red 63 3 1-8 

Salmonella 

enterica 

green 28 7 1-48 

Salmonella 

enterica 

cyan 46 8 1-25 

Streptococcus 

Pneumoniae 

cyan 44 19 7-79 

Streptococcus 

Pneumoniae 

red 87 4 2-11 

 

Table 4.1: Range of unique silent substitutions found in samples of different bacterial sub-

species. 

 

 

4.4.5 Mutational fingerprints in bacteria  

For each bacterial sub-species, I generated a raw mutational fingerprint: this was a count of 

all the unique silent substitutions (USSs). In common with the protocol used to describe 

cancer mutations, USSs were classified according to the wild and mutant nucleotides and 

the flanking nucleotides. For example, I used the quadruplet TCTG to describe the point 

substitution TCG > TTG. To compare mutational rates in different species, I then normalised 

the raw mutational fingerprint against the background silent substitution count within the 

bacterial sub-species.  
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4.4.5.1 Distribution of mutations in bacteria 

For each bacterial subspecies I identified the mean of these mutational fingerprints (MMF). 

These are shown in the figure 4.4 below. More detailed figures for each of the six mutation 

types C>A, C>G, C>T, T>A, T>C, T>G, are included in the appendix 2, figures 4.2a-4.2f . 

 

In general, nucleotide transitions were observed much more commonly than nucleotide 

transversions and of these T>C transitions were far more commonly observed than C>T 

transitions.  

 

Transversions from cytosine, i.e. C>A and C>G, were comparatively rare, though elevated 

levels of CC>AC and ACC>AGC mutations were seen in some bacterial sub-species, including 

E. coli and P. aeruginosa respectively. Transitions to thymine were much more common, 

particularly CT>TT substitutions. 

  

Transversions from thymine to adenine, T>A, were also comparatively rare for all bacterial 

species. However, substantially elevated levels of T>G in specific contexts were seen for 

seven bacterial subspecies including B. pseudomallei and P. aeruginosa.  

 

Transitions of the form T>C were the most commonly observed transition, particularly 

GT>GC substitutions. 
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Figure 4.4: Mean mutational fingerprints for each of the bacterial sub-species. Each bar 

represents the relative frequency of unique silent substitutions seen in a particular 

nucleotide type e.g. ACC > ACG. The frequencies are normalised with respect to the number 

of possible silent substitutions across the consensus gene for each orthologous gene family. 

Mutations are generally dominated by T>C mutations. 

 

4.4.6 Comparing mutational fingerprints 

Visual inspection suggests that the fingerprints segregated into two major types: those 

where C>T mutations predominate and those where T>C mutations predominate (see figure 

4).  Subspecies from the same species frequently had similar fingerprints. For example, the 

signatures associated with subspecies of Bacillus cereus are very similar, as are those 

associated with Mycobacterium abscessus and Klebsiella pneumoniae. In some species there 

was more variation ,for example  in both Escherichia coli and Mycobacterium tuberculosis 

one of the subspecies showed distinctive patterns of C>A mutations not present in the other 

subspecies in that bacterium. 

 

The different mean mutational fingerprints shown in figure 4.4  above for each bacterial 

sub-species were clustered by comparing the Euclidean distance between them.  The main 

clusters naturally split into 5 groups, see figure 4.5. Even though the fingerprints have been 

normalised for all the possible silent mutations in the consensus sequences, the sub-species 

within each cluster all share a similar GC content, with more T>C mutations in those 

bacterial sub-species that have balanced CG/AT nucleotides. 
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In fingerprint group 1 there are elevated numbers of CT>TT mutations. The group members 

are: Clostridiodes difficile, Enterococcus faecium, Acinetobacter baumannii, Bacillus cereus. 

All of these are CG poor, with the median number of CG pairs accounting for 30-40% of the 

total nucleotide pairs. 

 

Bacterial sub-species in fingerprint group 2 show elevated levels of T>C mutations. The 

members included  Mycobacterium abscessus and some, but not all, strains of Escherichia 

coli, and Salmonella enterica. These bacteria are relatively CG ric with a median CG content 

52-64%. 

 

Subspecies in fingerprint group 3 have slightly elevated levels of both C>T and T>C 

mutations. The group includes Listeria monocytogenes, Enterococcus faecalis, and 

Streptococcus pneumoniae. These bacteria are slightly CG poor with median CG content 38-

41%. 

 

The largest fingerprint group is group 4 which includes Burkholderia pseudomallei, 

Pseudomonas aeruginosa, Klebsiella pneumoniae, Neisseria gonorrhoeae, Neisseria 

meningitidis and one strain of Mycobacterium tuberculosis. These bacteria show highly 

elevated levels of T>C mutations, as well as some T>G mutations particularly CTC>CGC. 

These bacteria are relatively CG rich: median CG content 53-69%. 

 

Finally the smallest group, fingerprint group 5, shows slightly elevated levels of T>C 

mutations. Members include one strain each of Mycobacterium tuberculosis, Salmonella 

enterica and Escherichia coli. The fingerprints are distinguished from those of fingerprint 
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group 2 by the elevated levels of NCC>NAC mutations where N is either A,C or T. These 

bacteria are slightly CG rich: mean CG content 52-66%. 



 162  

 

  

 

Figure 4.5: Cluster map showing how bacterial subspecies cluster by their mean mutational 

fingerprint. 

 

4.4.7 Comparison between mutational fingerprints and position in phylogenetic tree 

In section 4.4.6 I  show  that bacterial subspecies with similar GC content have similar 

mutational fingerprints. I therefore hypothesised that this could mean that the bacterial 

subspecies with similar mutational fingerprints are closest in the evolutionary tree. In 2004 

Santos et al. identified 25 conserved motifs from 10 conserved proteins : fusA, gyrB, ileS, 

lepA, leuS, pyrG, recA, recG, rplB, rpoB which could be used to identify bacterial phylogeny 

[232]. I used these motifs to determine the phylogeny between the different sub-species 

identified. The phylogeny is shown in figure 4.6 below. 
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Firmicutes Actinobacter Proteobacteria 

 

Fig 4.6: The bacterial phylogeny derived using 25 conserved motifs identified by Santos et al 

[232].  

 

The mutational fingerprints of  the firmicutes fall into groups 1 and 3. That is they tend to 

have fewer T>C mutations. Subspecies from the phylla actinobacter and proteobacteria 

have mutational fingerprints which fall into groups 2, 4, and 5, and have comparatively 

more T>C mutations. However, beyond these categories the link between phylogeny and 

mutational fingerprints breaks down. There is some association between mutational 

fingerprints and GC content, but no further clear association with genome. 
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4.4.8 Decomposition of mutational fingerprints into mutational signatures 

The mean mutational fingerprints provide an aggregated picture of the mutational stresses 

on a particular bacterial sub-species. To understand further the causes that could be 

contributing to this picture, I decomposed the mutational fingerprints for each bacterial 

sub-species into five mutational signatures (giving 145 signatures in total and the 

corresponding weights for each of the bacterial strains). I then clustered these signatures 

together to identify signatures that were seen in more than one bacterial subspecies and 

identified the median signature for each of 40 groups.  

 

These mutational signatures are shown below in figure 4.7, and the heatmap showing in 

which bacterial subspecies they occur is given in figure 4.8. The clustering diagram is shown 

in  appendix 2  as supplementary figure 4.4. The first 24 median signatures shown formed 

the dominant signature in samples from at least 3 bacterial subspecies. More details about 

these more common signatures is given in supplementary figures 4.5.  
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Figure 4.7: Mutational fingerprints from the 29 bacterial strain clusters were decomposed 

into five mutational signatures each (giving 145 signatures). The signatures were then 

grouped into 40 similar signatures. The median of these clustered signatures is shown 

above. 
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Figure 4.8: The 145 signatures cluster to provide 40 signatures. Here I show the breakdown 

of these signatures into the subspecies. 

 

4.4.9 Potential aetiology of bacterial signatures  

4.4.9.1 Comparison with cancer signatures 

At present little is known about the aetiology of different mutational signatures in bacteria. 

However, considerable work has been done to improve understanding of mutational 

signatures in human cancer tissues. The COSMIC signatures version 2 [101], [102], [152], 

[167], [173] shown in figure 4.9 below are based on all somatic base mutations in the 

exome. The signatures published by COSMIC are all for a single species; Homo sapiens, and 
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include both silent substitutions and missense mutations, because the majority of cancer 

mutations are passenger mutations having little impact on the ability of the cell to survive 

and reproduce.  

To enable an appropriate comparison, I normalise these signatures by counting the human 

trinucleotide distribution in the exome and converting this into a vector representing the 

distribution of mutations if each nucleotide substitution had the same probability. I then 

divide the raw signatures by this background count. 
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Figure 4.9 legend: Shows the COSMIC signatures version 2 normalised for the composition 

of the human exome. Version 2 of the COSMIC signatures is used because they are based on 

somatic mutation counts in the exome.  
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To compare the bacteria and cancer signatures I then calculated the cosine similarity 

between them.  To calculate the significance of these similarities I generated ten thousand 

random mutational signatures and found the cosine similarity of each when compared to 

each of the 30 bacterial mutational signatures. The highest cosine similarity score seen 

ranged between 0.29 and 0.65 depending on the signature. 

 

Fifty-three pairs of cancer/bacteria signature pairs have a higher cosine similarity score than 

expected  with a p-value <0.05 after correcting for multiple testing.  The highest cosine 

similarity score between a cancer signature and a bacterial signature was 0.79, with a p-

value < 1e-5. 

 

The ten pairs shown in figure 4.10 have the highest cosine similarity between bacterial 

signatures and those found in cancer. These include signatures relating to failure of DNA 

MMR, action by alkylating agents and the error prone polymerase POLE. All pairs showing 

significant cosine similarity are shown in the  appendix 2 in figures 4.6a-f.  
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Figure 4.10: The ten pairs of bacterial and cancer signatures showing a high cosine similarity.  
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4.4.9.2 Comparison with signatures of known mutagens 

Mutational signatures have also previously been experimentally ascertained for 

environmental agents acting on human pluripotent stem cells [197]. These fingerprints are 

based on the entire human genome so to enable an appropriate comparison, I counted the 

human trinucleotide distribution across the whole genome and convert this into a vector 

representing the distribution of mutations if each nucleotide substitution had the same 

probability. I then divided the raw signatures by this background count. The resulting 

signatures are shown in figure 4.11 below. A description of each environmental mutagen is 

given in table 4.2. 

 

Interestingly, the signatures of alkylating agents MNU and ENU are quite distinct from 

COSMIC signature 11 which has also been attributed to the impact of derived alkylating 

agents. Diverse cellular repair pathways give rise to different patterns of damage from 

alkylation in different cells which may go some way to explaining this phenomena [241].  

 

As before, I calculated the cosine similarity between the environmental agent signatures 

and the bacteria signatures and found the statistical significance using a permutation test. 

The closest match is between the alkylating agent DMH and a common signature found in 

enterococcus faecalis with a cosine similarity score of 0.86. A further 40 out of the 145 

bacterial signatures were more similar to one or more mutagenic signature than would be 

expected by chance, after correcting for multiple testing. In particular, eleven of the sixteen 

bacteria have a signature similar to at least one of the alkylating agents that preferentially 

cause T>C transitions (Temozolomide, MNU). Figure 4.12 shows the most similar bacterial 
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signature to each of the seventeen environmental agents, where these are statistically 

significant.  
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Figure 11: Normalised signatures for the environmental mutagens tested by Kucab et 

al.[197]. The signatures were normalised by the genomic distribution of trinucleotides in 

homo sapiens to enable direct comparison with bacterial signatures. 
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Mutagenic agent Description 

DMH Powerful DNA alkylating agent and carcinogen 

PhIP Food mutagen  - heterocyclic amine found in cooked meat. 

ENU Alkylating agent and carcinogen. 

Propylene Oxide Alkylating agent and expected human carcinogen used primarily as a 

chemical intermediate in the production of polyethers and 

propylene glycol. 

MNU Alkylating agent and carcinogen. No known commercial use. 

Temozolomide Cytotoxic alkylating agent, with chemotherapeutic uses. 

DES Alkylating agent expected to be human carcinogen. Used as 

commercial ethylating agent in organic synthesis. 

Mechlorethamine Metabolised to reactive ethylene immonium derivative, which 

alkylates DNA and inhibits DNA replication, with chemotherapeutic 

uses. 

AAI Carcinogen used in some folk medicines. 

DMS Alkylating agent and an immunosuppressive agent, expected to be 

human carcinogen. Used as methylating agent in organic synthesis. 

MX Strong bacterial mutagen. Disinfectant by-product[242]. 

N-

Nitrosopyrrolidine 

Food and tobacco mutagen. Expected human carcinogen. 

BPDE Carcinogen/mutagen. Component of smoke  

Ellipticine Mutagen, antineoplastic agent and a plant metabolite[243]. 



 175  

 

Benzidine Highly toxic carcinogen, intermediate in chemical synthesis. 

 

Table 4.2 : Mutagens used by Kucab et al.[197] to derive mutagenic signatures [244]. 
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Similar signatures to DMH (11.6mH)+S9 occur in 
E. faecalis, N. gonorrhoeae, B. cereus, S. 
pneumoniae, and S.enterica. The closest match 
is c_enterococcus_faecalis_1 with cosine value = 
0.86 adjusted pvalue <1.00E-04 

Similar signatures to PhIP (3uM)+S9 occur in S. 
enterica, E. coli, M. tuberculosis. The closest 
match is c_mycobacterium_tuberculosis_0 with 
cosine value = 0.79 adjusted pvalue <1.00E-04 

Similar signatures to ENU (400uM)+S9 occur in L. 
monocytogenes, E. faecalis, M. abscessus, E.coli 
and S.enterica. The closest match is 
g_enterococcus_faecalis_0 with cosine value = 
0.77 adjusted pvalue <1.00E-04 

Similar signatures to Propylene Oxide (10mM) 
occur in C.difficile, B.cereus, A. baumannii, and 
E. faecium. The closest match is 
c_bacillus_cereus_3 with cosine value = 0.77 
adjusted pvalue <1.00E-04 

Similar signatures to MNU (350 uM) occur in 
M.tuberculosis, L.monocytogenes, 
N.gonorrhoeae, K. pneumoniae, E.coli, 
P.aeruginosa, S.enterica and B.pseudomallei. The 
closest match is g_escherichia_coli_3 with cosine 
value = 0.76 adjusted pvalue<1.00E-04 

Similar signatures to PhIP (4uM) +S9 occur in 
M.tuberculosis, E.coli, and S.enterica. The closest 
match is c_mycobacterium_tuberculosis_0 with 
cosine value = 0.75 adjusted pvalue<1.00E-04 

Similar signatures to Temozolomide (200uM).1  
occur in M.tuberculosis, L.monocytogenes, 
E.faecalis, M.abscessus, N.gonorrhoeae, 
K.pneumoniae, P aeruginosa and S.enterica. The 
closest match is g_enterococcus_faecalis_0 with 
cosine value = 0.74 adjusted pvalue<1.00E-04 

Similar signatures to Temozolomide (200uM) 
occur in M.tuberculosis, L.monocytogenes, 
E.faecalis, M.abscessus, K.pneumoniae, E.coli, 
S.pneumoniae, P aeruginosa and S.enterica. The 
closest match is g_escherichia_coli_3 with cosine 
value = 0.74 adjusted pvalue<1.00E-04 
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Similar signatures to DES (0.938mM) occur in 
B.cereus. The closest match is 
g_bacillus_cereus_3 with cosine value = 0.73 
adjusted pvalue<1.00E-04 
 

Similar signatures to MX (7uM) +S9 occur in 
M.tuberculosis. The closest match is 
c_mycobacterium_tuberculosis_0 with cosine 
value = 0.57 adjusted pvalue<1.00E-04 
 

Similar signatures to Mechlorethamine (0.3uM) 
occur in B. cereus, C.difficile, E.faecalis, and 
E.faecium. The closest match is 
c_bacillus_cereus_3 with cosine value = 0.73 
adjusted pvalue<1.00E-04 
 

Similar signatures to AAI (1.25 uM) occur in P. 
aeruginosa. The closest match is 
g_pseudomonas_aeruginosa_4 with cosine value 
= 0.64 adjusted pvalue<1.00E-04 
 

Similar signatures to DMS (0.078mM) occur in 
B.cereus. The closest match is 
c_bacillus_cereus_3 with cosine value = 0.60 
adjusted pvalue<1.00E-04 
 

Similar signatures to N-Nitrosopyrrolidine 
(50mM) occur in B.cereus. The closest match is 
c_bacillus_cereus_3 with cosine value = 0.71 
adjusted pvalue< 1.01E-02 
 

Similar signatures to BPDE (0.125uM) occur in 
M.tuberculosis. The closest match is 
c_mycobacterium_tuberculosis_0 with cosine 
value = 0.63 adjusted pvalue<2.20E-02 
 

Similar signatures to Ellipticine (0.375uM) occur 
in M.tuberculosis. The closest match is 
c_mycobacterium_tuberculosis_0 with cosine 
value = 0.62 adjusted pvalue<3.54E-02 
 

Similar signatures to Benzidine (200uM) occur in 
M.tuberculosis. The closest match is 
c_mycobacterium_tuberculosis_0 with cosine 
value = 0.61 adjusted pvalue<3.60E-02 
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Figure 4.12: Plots show comparisons between seventeen bacterial signatures against the 

normalised signatures caused by damage from environmental agents on human pluripotent 

stem cells. In each case there is a statistically significant cosine similarity between the two 

signatures. 

 

4.4.9.3 Conclusion from comparisons 

Finally, I now return to the clustered bacterial signatures identified in  figures 4.7 and 4.8 

and ask whether there is sufficient evidence to propose an aetiology for these signatures. 

The analysis above sheds light on the potential aetiology of 11 of the 40 grouped signatures. 

These split into four categories.  

 

Five bacterial signatures (1, 14, 20, 36 and 39) were similar to the cancer signature 26 which 

is associated with deficient MMR. The relatively high cosine similarity between cancer 

signature 26 and the alkylation signatures of MNU (0.81), Temozolomide (0.80/0.82), ENU 

(0.76), DMH(0.63) means that many of these signatures were statistically similar to both 

cancer signature 26 and the signatures of the alkylation agents MNU and Temozolomide and 

often ENU and DMH as well. These signatures are found in Enterococcus faecalis, Escherichia 

coli, Mycobacterium abscessus, Neisseria gonorrhoeae, Salmonella enterica, and 

Streptococcus pneumoniae. Other bacterial signatures were not similar to the MMR cancer 

signature but were similar to some of the alkylation agents with a similar signature. These 

were: bacterial signature 9 (MNU and Temozolomide) which is found in  

Klebsiella pneumoniae, Mycobacterium abscessus, and Pseudomonas aeruginosa; bacterial 

signature 13 (DMH) which is found in Enterococcus faecalis and Streptococcus pneumoniae, 

and bacterial signature 33 (ENU,MNU, Temozolomide) which is found in Listeria 



 179  

 

monocytogenes and  Mycobacterium tuberculosis. One bacterial signature (signature 5) 

which is found in Acinetobacter baumannii, Bacillus cereus, Clostridioides difficile and 

Enterococcus faecium was similar to the cancer signature for alkylation (cancer signature 11) 

and also similar to the signature for alkylating agents (DES, mechlorethamine, propylene 

oxide). These are very different from the MMR signature having a strong C>T component. 

Bacterial signature 18 which is found in Escherichia coli, Mycobacterium tuberculosis and 

Salmonella enterica was similar to the cancer signature associated with use of PhIP, a 

heterocyclic amine. Finally, bacterial signature 19 which is found in Acinetobacter baumannii  

and Bacillus cereus  was similar to the cancer signature associated with use of the error 

prone polymerase POLE. These results are shown in table 4.3 below:  

 

Bacterial 

Signature 

Similar cancer 

signatures 

with known 

aetiology 

Cos 

similarity 

pvalue Similar mutagenic 

signatures 

Cos 

similarity 

pvalue 

Signature 

1 

Signature 26 

(MMR) 

 

 

0.70  

 

<e-4 DMH 

ENU 

MNU 

Temozolomide, 

0.80 

0.71 

0.66 

0.65/0.71 

<e-4 

<e-4 

<e-4 

<e-4 

Signature 

5 

Signature 

11(alkylation) 

0.71 <e-4 DES, 

Mechlorethamine, 

Propylene oxide 

0.65 

0.66 

0.67 

1e-4 

<e-4 

<e-4 
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Signature 

9 

   MNU 

Temozolomide 

 

0.67 

0.67/0.68 

<e-4 

3e-

4/<e-4 

Signature 

13 

   DMH 

 

0.65 1e-4 

Signature 

14 

Signature 26 

(MMR) 

0.61 3e-4  

 

  

 

 

Signature 

18 

   PhIP 

 

0.67 

0.7 

2e-4 

<e-4 

 

Signature 

19 

Signature 10 

(POLE) 

0.75 4.2e-3  

 

  

 

 

Signature 

20 

Signature 26 

(MMR) 

0.66 <e-4 MNU, 

Temozolomide 

0.69 

0.68/0.70 

<e-4 

<e-4 

 

Signature 

33 

   ENU, 

MNU, 

Temozolomide 

 

0.65 

0.69 

0.70/0.70 

<e-4 

<e-4 

<e-4 

 

Signature 

36 

Signature 26 

(MMR) 

0.73 <e-4 ENU,  0.70 

0.69 

<e-4 

<e-4 
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MNU, 

Temozolomide, 

DMH 

 

0.73/0.69 

0.76 

<e-4 

<e-4 

Signature 

39 

Signature 26 

(MMR) 

0.69 <e-4 ENU, 

MNU, 

Temozolomide 

 

0.70 

0.67 

0.70/0.66 

<e-4 

<e-4 

<e-4 

 

 

Table 4.3: Comparison between bacterial signatures, cancer signatures of known aetiology 

and signatures arising from environmental mutagens, showing cosine similarity and p-values 

where these are statistically significant. All p-values derive from a permutation test on 

10,000 shuffled signatures. Where none of these random signatures provided as high a 

cosine similarity the pvalue is given as <e-4. 

 

4.5 Conclusion and Discussion 

The rate of bacterial substitutions is sufficient to leave a mutational fingerprint. By looking 

at just those substitutions that are unique and silent it is possible to build up a history of 

mutations in each strain which can hint at the underlying causes of DNA damage. On 

average the patterns of mutations reflect the CG content of the bacteria: bacterial species 

with low CG content having higher rates of C>T than those with higher GC content.  

 

Often there is little variation between the mean mutational fingerprint of subspecies within 

the same species (for example Bacillus cereus). However, a richer picture emerges, with 
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some bacterial subspecies (for example in Salmonella enterica) having strikingly diverging 

patterns of mutations.  

 

When human signatures are compared the criteria for similarity is often very stringent. For 

example, the cosine similarity between the COSMIC cancer mutational signature 1 in 

versions 2 and 3 is 0.95. However, here I am comparing signatures between different 

species (bacteria, human) with different DDR mechanisms, and significant methodological 

differences in the way in which the signatures are derived (exome, genome, unique silent 

substitutionsͿ͘ By ͚similar͛ I mean that the cosine similarity is higher than for the signatures 

randomly permuted. Using this method, a cosine similarity between two signatures of 0.7 

would normally be highly statistically significant.    

 

Using this approach, the majority of the bacterial signatures do not have any similar human 

mutational signature. However, eleven of the signatures are statistically significant to those 

found either in cancer cases or as a result of the action of environmental mutagens on 

pluripotent human stem cells. Most of these similarities are to the signatures from 

alkylating agents. These examples that are C>T rich (DES and cancer signature 11) , T>C rich 

(MNU) and with both C>T and T>C peaks (DMH). However, the comparatively high cosine 

similarities between some of the alkylating signatures and cancer signature 26 (which is 

considered to be the result of deficient MMR), mean that deficient MMR could also play a 

role in the creation of bacterial signatures. In addition, I also found signatures that are 

similar to cancer signature 10 which arises from use of the error prone polymerase POLE, 

and from the environmental mutagen PhIP which is a heterocyclic amine.
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5 Using mutual exclusivity to identify therapeutically actionable 

synthetically lethal gene pairs 

5.1 Introduction 

Recent estimates suggest that it takes approximately ϭϯ years and a ͚capitalized͛ cost of 

approximately US$1.8 billion to bring a new drug to the market [245]. Reducing costs and 

amount of time required for each of the different steps in the drug discovery pipeline is the 

key to deliver better drugs to patients in a timely manner. One approach that has been 

utilised to increase the efficiency of the drug discovery process involves drug repositioning, 

whereby treatments for one disease are exploited in treating another. This approach has 

been successfully employed in the development of personalised medicines for a variety of 

different types of cancers[246]. 

 

Personalised cancer therapies offer an opportunity for more effective and less harsh cancer 

treatments[247]. Many of the personalised therapies licensed so far involved the 

development of oncoprotein inhibitors, for example the use of Vemurafenib to treat 

melanomas carrying the BRAF V600E mutation, use of Gefitinib or Erlotinib to treat breast 

cancers with over-expression of the EGFR family, and the use of Imatinib to treat chronic 

myeloid leukaemia [248][249][44]. However, not all cancers are treatable in this way and 

acquired resistance remains a problem [250]. An alternative strategy, exemplified by the use 

of PARP inhibitors in the treatment of BRCA deficient tumours [251] is to selectively kill 

those cells which have lost the function of specific tumour suppressor genes. 
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PARP inhibitors exploit the existence of genetic interactions within a cell. A genetic 

interaction is when a genetic inactivation or activation in one gene in a cell can then be 

accentuated or attenuated by inactivation or activation in a second gene [252][106]. 

 

Synthetic lethality is an example of a genetic interaction. This is when pairs of genes can be 

found such that a cell that can survive the loss of protein product from either one of the 

genes, but not the loss of protein product from both. These interactions can be used as the 

basis for selectively killing cells that have inactivated tumour suppressor genes [253]. 

To illustrate this in more detail, let me assume that I have identified a synthetically lethal 

pair of genes where the first gene, is the tumour suppressor gene that I wish to target, and 

the second gene is a gene whose protein products are druggable, that is they can be 

inhibited using a known drug. The tumour suppressor gene is inactivated predominantly 

within the body of the tumour. When the protein products of the synthetically lethal 

partner are inhibited, non-tumorous cells will generally suffer the loss of protein products 

from just the druggable gene and survive. By contrast, cells within the tumour will not have 

the protein products of either of the synthetic lethal gene pair and should therefore be 

selectively killed [254]. Within each cancer cell numerous genetic interactions exist, and 

some of these may be exploited therapeutically.  

 

A number of experimental approaches have been developed to identify genetic interactions. 

The majority of experiments have been undertaken in model organisms such as 

Saccharomyces cerevisiae or Drosophila melanogaster [255][256][257][258]. However, 

genetic interactions tend not to be highly conserved. For instance, S. cerevisiae and S.pombe 
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share only around 30% of their genetic interactions, suggesting that these model organisms 

may not be the most effective way of predicting synthetic lethality in humans[259].  

 

Experimentally verified synthetic lethal gene pairs based around specific target genes are 

now beginning to emerge for humans based on CRISPR-CAS9 knockouts 

[260][261][262][263]. Even these do not provide a gold standard. Cell lines differ from in 

vivo cells both genetically and epigenetically, but also because they lack an appropriate 

tumour microenvironment [264].  

An alternative approach is to predict synthetic lethality computationally.  

 

Synthetically lethal gene pairs have been successfully predicted using conserved patterns in 

protein interaction networks [265][266][267]. Although genetic interactions are not reliably 

conserved between species, a number of research teams have managed to use orthological 

and evolutionary data to infer synthetically lethal interactions in humans from those from 

model organisms [268][269][270][271], whilst other teams have integrated information 

from GO terms to compare the functionality of genes involved in genetic interactions 

[272][273]. An alternative approach is to analyse patterns of alterations in cancer cell lines 

and samples to identify mutually exclusive interactions .  

 

Different definitions of mutual exclusivity exist͘ A ͞hard͟ definition would be to say that two 

events are mutually exclusive if they never co-occur. However, in practice synthetic lethality 

is never this clear cut, so a correspondingly softer definition of mutual exclusivity can be 

used. Given the number of samples with an alteration in either gene A or gene B, the 

number with alterations in both gene A and gene B is lower than expected i.e. 
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 𝑃𝑟𝑜𝑏 ሺ𝐴 𝑔𝑖𝑣𝑒𝑛 𝐵ሻ ൏ 𝑃𝑟𝑜𝑏 ሺ𝐴ሻ or equivalently 𝑃𝑟𝑜𝑏 ሺ𝐵 𝑔𝑖𝑣𝑒𝑛 𝐴ሻ ൏ 𝑃𝑟𝑜𝑏 ሺ𝐵ሻ.  

 

Similarly, co-occurring events are taken to be ones where given the number of samples with 

an alteration in either gene A or gene B, the number with alterations in both gene A and 

gene B is higher than expected. i.e. 

 

 𝑃𝑟𝑜𝑏 ሺ𝐴 𝑔𝑖𝑣𝑒𝑛 𝐵ሻ ൐  𝑃𝑟𝑜𝑏 ሺ𝐴ሻ or equivalently ሺ𝐵 𝑔𝑖𝑣𝑒𝑛 𝐴ሻ ൐  𝑃𝑟𝑜𝑏 ሺ𝐵ሻ.  

 

Where a pair of genes have a synthetically lethal interaction, the alterations that have the 

effect of preventing effective protein production would occur in a way which is mutually 

exclusive. A therapeutically actionable gene pair is where gene A is a known tumour 

suppressor, and gene B gives rise to protein products that can be inhibited with a small 

molecule. If the small molecule is a licensed drug or a compound in late stage clinical trial 

this may point the way to potentially drug repositioning.  

 

By comparison, where a gene pair co-occurs it suggests that they many both belong to a 

genetic pathway with built-in redundancy. In some such cases more than one hit may be 

needed to provide optimal selectivity for the tumour, or co-operative resistance to 

chemotherapies [274][275].  

 

A number of teams have looked for mutually exclusive interactions using different statistical 

tests and different data sets, of which a subset is shown in table 6.1. 

 



 187  

 

Team Statistical test 

  

 

Srihari et al. [276]  

 

The team used the hypergeometric test to identify mutually exclusive 

gene pairs in order to predict synthetically lethal pairs, confirming some 

experimentally. They used The Cancer Genome Atlas (TCGA) copy-

number and gene-expression datasets to identify gene copy-number 

amplifications and deletions, and gene up- and downregulation in four 

cancers. An assumption was made that the changes in gene expression 

would act as a proxy for mutations and for epigenetic changes. 

 

Canisius et al. 

[277] 

 

The Discover algorithm was developed to compare the hypergeometric 

test and Poisson binomial test on simulated data sets. The tests were 

used on both simulated data and TCGA copy number and somatic 

mutation data for 118 genes.  

 

Leiserson et al. 

[278]  

 

Leiserson et al. developed the CoMEt algorithm to look for 

multiple combinations of mutually exclusive alterations, using a Markov 

chain Monte-Carlo algorithm combined with the hypergeometric test. 

They used simulated data as well as somatic mutation data including 

substitutions, indels, gene-fusions, rearrangements and aberrant gene 

splicing as well as copy number variance where this accorded with gene 

expression data from TCGA. 
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Babur et al. [279] 

 

Babur et al. used detailed prior pathway information together with an 

extension of the hypergeometric test to look for groups of mutually 

exclusive genes that have a common downstream target in the 

network. They used TCGA mutation and copy number variance data 

where this accords with gene expression data. 

 

Ciriello et al. 

[280] 

The team developed the MEMo algorithm in order to look for networks 

of oncogenic modules, looking for groups of genes that are frequently 

altered, that are in the same biological pathway; and that have mutually 

exclusive alteration events, using the hypergeometric test. The algorithm 

was tested on TCGA mutation and copy number data, restricting the 

genes to those where gene expression accorded with copy number.  

 

Bradley et al. 

[281] 

The team looked at whether observed levels of overlap were consistent 

with complete mutual exclusivity based on known rates of 

misclassification using a binomial test.  

 

Table 6.1: Approaches used to identify mutual exclusivity 
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Several approaches that have previously identified mutually exclusive relationships have 

done so in order to identify genes, whose protein products may be in the same biological 

pathway [279] [280]. The theory is that inactivating two genes in the same pathway or 

contributing to the same functional process will generally not confer a significant selective 

advantage compared to the single inactivation in that pathway and so alterations will tend 

to be mutually exclusive. The goal here is different. I specifically want to find mutual 

exclusive behaviours that cannot be explained because the associated proteins are in the 

same pathway, as these are more likely to reflect synthetically lethal behaviours. 

 

This raises three interesting questions. The first question is, what base case should be used 

for mutual exclusivity? That is, how many inactivations should be expected in a pair of genes 

if there is no co-occurrence or mutual exclusion between them? The second question is 

what type of experimental evidence is reliable measure for loss of function of the protein 

product? And finally, is the evidence sufficient to predict mutual exclusive pairs? 

 

In this chapter, I have identified mutually exclusive and co-occurring patterns of alterations 

in pairs of genes in cancer samples in seven different cancer types. Research teams have 

previously used mutual exclusivity to predict synthetic lethality. My approach is novel in 

that: In order to identify therapeutically exploitable interactions which may lead to 

repositioning of known drugs for new cancers I focused on identifying mutually exclusive 

patterns of inactivation in gene pairs where one of the pairs is a tumour suppressor, and the 

other a gene where known drugs inactivate the corresponding protein product. I also 

extend the approaches previously used by integrating data on the somatic mutations, copy 
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number variations and methylation status of the gene. Calculations were run using these 

data both independently and then in combination.  

 

Initially,  I used the hypergeometric test to identify significantly mutually exclusive and co-

occurring gene pairs. This is an industry standard test and has been implemented by several 

groups on a variety of other different datasets [276]ʹ[280]. However, next, I modified the 

approach pioneered by Canisius et al. [277] to implement the Poisson binomial test to test 

for significant mutually exclusive and co-occurring gene pairs in a novel way that improves 

the reliability of the results and sensitivity to stratification of the samples.  

 

Finally, I used the STRING network clusters were used to identify which gene pairs were in 

the same or closely connected protein pathways. In order to display the results, I designed 

and implemented a website MexDrugs 

https://users.sussex.ac.uk/~skw24/mexdrugs1/index.html 

where users can browse and search for potential therapeutic gene pairs. 

 

5.2 Methods 

5.2.1 Druggable genes. 

In this analysis I needed a set of proteins with licensed inhibitors. To obtain this, the 

database of druggable genes was downloaded from the Druggable genome databank DGldb 

on 2nd July 2020 and filtered for those genes associated with proteins that can be 

inactivated [148].  

 

 

https://users.sussex.ac.uk/~skw24/mexdrugs1/index.html
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5.2.2 Cancer data. 

Seven cancer types were analysed; breast, kidney, large intestine, liver, lung, ovary and 

prostate. A list of tumour suppressor genes was identified from the Cancer Gene Census 

[88]. I have named these as Tumour Suppressor Associated genes (TSa), because although 

they have been identified as a Tumour Suppressor in at least one sort of cancer, they may 

not be identified as such in the cancer being analysed.  

 

I used The Cancer Genome Atlas (TCGA) data https://www.cancer.gov/tcga [282] to identify 

genomic alteration data because it is data rich, providing data on mutations, RNA seq 

expression, copy number variants (CNV) and methylation data. Somatic mutation and CNV 

data were downloaded from COSMIC, and methylation data were downloaded from the 

Genomic Data Commons [150][147]. The list of methylation probes where methylation is 

negatively correlated with gene activation was downloaded from the Broad Institute TCGA 

Genome Data Analysis Center [146].  

 

None of these ͚omic types provide a straightforward proxy for permanently altered protein 

expression and processing of the data was required. 

 

5.2.3 Identifying inactivated genes  

Genes may not be fully functional for a number of different reasons and separate data types 

were processed individually. 

5.2.3.1 Missense mutations 

 

https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
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The most frequent mutations observed in cancer are missense mutations, capable of 

preventing the formation of active protein, activating a protein but more often entirely 

benign. I use the precomputed FATHMM value included within the COSMIC database to 

predict whether or not a specific mutation would be pathogenic [201].  

The other main problem in using any type of cancer mutation data is that it often provides 

information about only one of the sister chromatids. Tumour suppressor genes may provide 

sufficient active protein from one functional chromatid. In practice mutations in TS genes 

within cancer cells are often mirrored on the other chromatid due to loss of heterozygosity. 

The working assumption throughout this is that one mutation is generally sufficient, but 

that missense mutations dubbed as pathogenic in the TCGA database should be assumed to 

lead to loss of function only if either the gene in question is a known tumour suppressor, or 

has been predicted as a tumour suppressing kinase.  

5.2.3.2 Frameshift mutations 

Frameshift indels not only lead to the alteration of all amino acids past the point of 

mutation followed by premature truncation but they also give rise to nonsense mediated 

decay (NMD) so that in many cases no protein is produced. However, only 4% or so of all 

mutations are indels. For both tumour suppressor genes and druggable genes I treated all 

frameshifting mutations and whole gene deletions as inactivating.  

5.2.4 CNV data 

TCGA Data is also available for copy number variants (CNV). It is well known that copy 

number variants are not an effective proxy for protein abundance, because of possibility of 

gene dosage mitigating aneuploidy. Nevertheless, total absence of the gene will give rise to 

absence of protein, so the data is can be informative for  loss of function alterations. 
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5.2.5 RNA seq data 

It would be possible to use RNA seq expression data. However, gene expression data is a 

snap shot of the cells in time. Although I can expect the expression levels of essential genes 

to remain roughly constant, and thus interpret any reduction in RNA seq expression as 

detrimental, essential genes are of little interest to me precisely because they are essential 

and thus are likely to cause severe side-effects when inhibited. The second caveat is that 

gene expression is not well correlated to protein expression for all genes. As a result, I did 

not use RNA seq data within my analysis. 

 

5.2.6 Methylation data 

I considered that the use of methylation data is more informative than RNA-seq data, as 

cancer- associated genes include a number of epigenetic regulators, and once 

hypermethylated, the changes are stable, being inherited across cellular generations [283]. 

TCGA Firehose data exists identifying those methylation probes that are negatively 

correlated with RNA seq expression data, effectively identifying those probes which turn off 

gene expression in this more permanent fashion.  

 

For methylation data I identified the pairs of methylation probes/genes that were negatively 

correlated with a pvalue <0.05. GDC data provided beta distribution values for 

sample/methylation probes. Methylation data is provided as 𝛽-values, that is the proportion 

of CpG dinucleotides that are methylated. The values of 𝛽 have been shown to be bi-modal 

with peaks between 0-0.2 for hypomethylated sites and between 0.8-1 for hypermethylated 

sites[284]. I therefore use a cut-off of 0.8 to identify hypermethylation at the site of probes 

leading to gene inactivation .  
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5.2.7 Combined data types 

I identified genes that were differentially in-activated within samples of the relevant cancer 

type in 4% of samples. That is, genes which are inactivated in less than 4% of samples or 

more than 96% of samples are removed from the set, as these would be unlikely to provide 

statistically significant findings. 

 

I carried out analyses using somatic mutations, CNV data and methylation data 

independently, as well as using all the data together. In each case, I constructed an 

alteration matrix with 1s for all the sample/gene pairs where the gene is inactivated and 0s 

otherwise. Separately I identified for each type of data, how many genes were inactivated in 

each sample.  

 

5.2.8 Statistical Tests Used 

In order to distinguish mutually exclusive and co-occurring inactivations from independent 

inactivations it is necessary first to establish the most appropriate statistical distribution to 

use as the base case. In this study two different statistical frameworks were used, the 

hypergeometric and the Poisson binomial. 

 

5.2.8.1 Hypergeometric distribution 

If inactivations in gene A and gene B form independent and identically distributed random 

variables then I would expect the number of inactivations to follow a hypergeometric 

distribution. This distribution is most easily described as drawing coloured shapes from a 

bag without replacement. If the bag has 𝑆 shapes of which 𝑛1 are red and 𝑛2 are square 
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then if the two features red and square are independent, then if I draw 𝑥 red squares, the 

probability that 𝑥 ൌ 𝑘 is given by the hypergeometric distribution: 

 

  

𝑃ሺ𝑥 ൌ 𝑘ሻ ൌ  
ቀ𝑛1
𝑘 ቁ൬𝑆 െ 𝑛1

𝑛2 െ 𝑘൰

൬ 𝑆
𝑛2

൰
 

 

If the shapes are analogous to samples, then this looks like a good candidate for the base 

case for assessing mutual exclusivity, and it has been used for that purpose by Leiserson et 

al.  

and Babur et al. [278] [279]. One particularly useful feature of the hypergeometric 

distribution is that it is computationally tractable͘ In this analysis, I used hyp from python͛s 

scipy.stats library to calculate the hypergeometric probability for each gene pair. 

 

5.2.8.2 Poisson binomial distribution 

In cancer it is known that even within the same cancer the distributions of genetic 

alterations differ widely in different samples [78][285] In particular, Canisius et al. [277] 

showed whilst most genes are more likely to be mutated in samples that have many 

mutations, this is not true for many tumour suppressor genes. They proposed that the 

probability of a gene being mutated was a function of the overall number of genes mutated, 

and that the base case should be a Poisson binomial distribution rather than the 

hypergeometric distribution. The Poisson binomial distribution describes the probability of k 

successful outcomes (in this case a sample with gene A and gene B inactivated) from S 
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independent trials (the samples) where the probability of each trial being successful varies. 

This probability is given by: 

 

𝑃ሺ𝑥 ൌ 𝑘ሻ ൌ  ෍ ෑ𝑝௜
௜∈𝐴

ෑሺ1 െ 𝑝௝ሻ
௝∈𝐴೎𝐴∈ிೖ

 

 

Here 𝐹௞  is the set of all subsets of k integers that can be selected from ሼ1,2,… . 𝑠ሽ and 𝐴௖  is 

the complement of 𝐴.  

 

The disadvantages of using the Poisson binomial are that the individual probabilities 𝑝௜ are 

not so straight forward to calculate and the distribution is not computationally tractable in 

its raw form. I took the following approach. 

Let 𝑔1, 𝑔2 …𝑔௞  be k genes, 𝑠1, 𝑠2 … 𝑠௡ be n samples. Using the Poisson binomial distribution, 

there are two steps to calculating the probability of mutually exclusive or co-occurring pairs. 

Firstly, I estimate 𝑃ప ሬሬሬሬ  ; the probability of inactivation of gene 𝑔௜  in all samples. I then calculate 

the Poisson binomial mass function, and use this to find the probability that I would get as 

extreme a number of joint inactivations as I observe by chance, before correcting for 

multiple testing. 

 

Step 1: estimate the probability of each gene being inactivated in each sample.  

Canisius et al. [277] do this by solving a constrained optimization problem to estimate the 

probability of each gene being inactivated in each sample. However, I found that many 

hundreds of the tumour suppressor associated (TSa) genes and druggable genes have 

variable methylation status and are therefore worthy of consideration. As a result, this 
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approach is too slow. I therefore take the simpler approach of estimating the probabilities 

as piecewise linear functions over approximately ten bins.  

 

Let 𝑡1, 𝑡2 … 𝑡ே be the total number of inactivated genes of each sample. Further, let 𝑡௠௔௫ be 

the maximum number of inactivations. For each gene 𝑔௜  I assume that the probability of 

that the gene is inactivated in 𝑠௝ is purely a function of 𝑡௝, i.e. 𝑃௜௝ ൌ 𝑓௜ሺ𝑡௝ሻ. I assume that 

these functions are continuous, that is that samples with similar total numbers of 

inactivated genes should have similar probabilities of each gene being inactivated. I then 

estimate these functions, 𝑓௜ , as a piecewise, linear average of the number of inactivations of 

𝑔௜ in each of roughly 10 bins. I firstly separate the samples into 10 clusters on the basis of 

similar numbers of total gene inactivations. However, the distribution of the total 

inactivations 𝑡௜ typically has 1-3 peaks (see Figure 6.1a) ), and I consider it likely that the 

samples in these groups are biologically distinct, so I ensure that the clusters do not mix 

samples from different groups. For each cluster of samples, I then find the mean probability 

of inactivation for each gene, and the mean total inactivations. For each group, there will be 

two samples with the lowest and highest mean total inactivations. The probability for each 

gene inactivations for these samples is assumed to be the same as for the closest cluster. 

For each gene the piecewise linear functions 𝑓௜ is then constructed from these fixed points. I 

assume that 𝑃పሬሬ  are independent for all 𝑖 , so that the probability of gene 𝑔௜భ  and 𝑔௜మ  being 

inactivated in the same sample is given by 𝑃పభపమ
ሬሬሬሬሬሬሬ ൌ  𝑃పభ

ሬሬሬሬ  𝑥 𝑃పమ
ሬሬሬሬ . 

Thus 𝑃௜భ௜మሺ𝑗ሻ ൌ  𝑓௜భ൫𝑡௝൯. 𝑓௜మ൫𝑡௝൯. I noticed that some of the 𝑓ሺ𝑡ሻ looked like bowls. To 

quantify the number of genes with these characteristic functions, I use the following cut-off 

procedure. I normalise 𝑡 so that 𝑡௠௔௫ ൌ 1 and fit a quadratic curve. my cut-off is then that 

the quadratic portion should be <-1 (upturned bowl) or >1. To ensure that I only pick up the 
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functions with a full bowl shape I further require that the edges should be <2/3 the height of 

the maximum (for the upturned bowl). I consider that the function is strongly correlated if 

Pearson͛s correlation is >0.7 (strongly anti-correlated if Pearson͛s correlation was ф-0.7). 

 

Step 2:  I use Hong͛s algorithm for calculating the probability mass function, using fast 

Fourier transforms[286]. I have the made the distribution available as the python package 

Poisson_binomial. It can be installed using pip install Poisson_binomial. 

 

5.2.9 Simulating Data 

In order to determine how effective, the Poisson binomial test is at identifying co-occurring 

and mutually exclusive gene pairs, I ran a simulation with 500 samples and 100 genes. I 

included within the samples a mutation distribution that roughly mimicked those seen in 

the data. That is, half of the samples had a total of roughly t = 400 mutations (i.e. the 

variable t was normally distributed, mean = 400, standard deviation = 50), and the other half 

had a total of roughly t =3000 mutations (the variable t was normally distributed, mean = 

3000, standard deviation = 50). I designated 50 of the 100 genes as TSa genes and the other 

half I designated as druggable genes. The probability of a mutation in each gene was 

allowed to vary as a function 𝑓ሺ𝑡ሻ of the total number of mutations 𝑡 where: 

 

𝑓ሺ𝑡ሻ ൌ  𝐴௘೟ᇲ+ 𝐵௘ష೟ᇲ 
௘೟ᇲ+ ௘ష೟ᇲ 

  where 𝑡ᇱ ൌ 𝑘ሺ𝑡 െ 𝑎ሻ 

 

These curves have a characteristic logit-shape tending to A for large 𝑡, B for small 𝑡 (i.e. 

highly negative 𝑡ᇱ), and equalling 
𝐴+ 𝐵 

2 
 when t = a. The curves resemble many of the 𝑓ሺ𝑡ሻ 
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seen in our data. The parameter k was set at 0.001, whilst a was allowed to vary randomly 

between 300 and 700, A between 0.5 and 0.9 and B between 0 and 0.1.  

 

I used these probability functions to generate independent alteration matrices, and then 

made 30 gene pairs 𝑔1𝑔2  that co-occurred. To do this I set the probability of joint 

inactivation midway between the independent probability of joint inactivation and the 

minimum probability of inactivation of 𝑔1 or 𝑔2. That is: 

 

𝑃ሺ𝑔1 & 𝑔2ሻ ൌ  ௣భ௣మ+୫୧୬ ሺ௣భ,௣మሻ
2

  

 

where 𝑝௜ ൌ 𝑃ሺ𝑔௜𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒𝑑ሻ. The probabilities 𝑃ሺ𝑔1 & ~𝑔2ሻ, 𝑃ሺ~𝑔1 & 𝑔2ሻ, and 

𝑃ሺ~𝑔1 & ~𝑔2ሻ were adjusted accordingly to hold 𝑃ሺ𝑔1ሻ, and 𝑃ሺ𝑔2ሻ constant.  

Similarly, I made a second alteration matrix where 30 gene pairs were mutually exclusive 

with the probability of joint inactivation 0.75 that of the independent probability of joint 

inactivation.  

 

I then tested both the hypergeometric algorithm and Poisson binomial algorithm on the 

cooccurring and mutually exclusive gene pairs. In order to test the Poisson binomial model, I 

did not allow recourse to the known inactivation probabilities but instead used the inferred 

inactivation probabilities as I had for the genuine data. 
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5.2.10 Cluster Analysis 

I used the protein-protein interaction clusters identified in STRING database [151] as proxy 

for genes whose protein products are in the same pathways. Most of these clusters are very 

small, but some of the STRING clusters include many thousands of genes, that are not in the 

same pathway. The networks were therefore filtered so that only clusters with less than 

1,000 genes included in the analysis. This cut-off was modified to allow clusters with 2,000 

3,000 and 4,000 to test the robustness of the cut-off point. These are very generous cut-off 

points and so should include the largest protein pathways. 

 

5.3 Results 

5.3.1 Results using Simulated Data 

I ran a simulation with 200 alteration matrices for 500 samples with 100 genes. In 100 of 

these matrices I included 30 co-occurring gene pairs whilst in the other 100 I included 30 

mutually exclusive gene pairs (see methods for details). I then used both the 

hypergeometric test and the Poisson-binomial test with inferred inactivation probabilities 

on all of the simulated alteration matrices to identify the genetic interactions. 

 

For the mutually exclusive pairs 𝑔1, 𝑔2 I set the probability of joint inactivation to be 75% 

that of the probability 𝑔1 and 𝑔2 both being inactivated if there was no genetic inactivation.  

The Poisson binomial test found on average 29 of the 30 pairs (17 after correcting for 

multiple testing) whilst the hypergeometric test found on average 15 (10 after correcting for 

multiple testing).  
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For co-occurring pairs 𝑔1, 𝑔2 I set the probability of joint inactivation to be midway between 

that of the probability 𝑔1 and 𝑔2 both being inactivated if there was no genetic inactivation 

and the minimum inactivation probability of 𝑔1 and 𝑔2. The Poisson binomial test found on 

average 29 of these pairs (24 after correcting for multiple testing) whilst the hypergeometric 

test found all the pairs but incorrectly identified an additional 2184 pairs (1088 after 

correcting for multiple testing).  

 

Thus, I found that with no correction for multiple testing, the Poisson binomial test found 

almost all mutual exclusive and co-occurring pairs, with few false positives whilst the 

hypergeometric test found roughly half the mutually exclusive pairs, and correctly identified 

only half the independent pairs in the co-occurring test. Following correction for multiple 

testing the sensitivity of the Poisson binomial test fell to roughly 60% for mutually exclusive 

pairs compared to 35% for the hypergeometric test. For co-occurring tests, inclusion of 

correction for multiple testing made the sensitivity of the Poisson binomial fall to 80%, 

whilst the specificity of the hypergeometric test improved to 70%. I concluded that the 

Poisson binomial test was more accurate and finds significantly more of the mutually 

exclusive pairs and finds significantly fewer false positive co-occurring pairs. 
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The sensitivity, specificity, and accuracy of the two tests is shown in table 6.2 below. 

 

  Poisson Binomial Hypergeometric 

  Sens. Spec. 

 

Accuracy Sens. 

 

Spec. 

 

Accuracy 

        

Mutual 

exclusivity 

Benjamini-

Hochberg 

Correction 

 

58.1% 100% 99.5% 34.7% 100% 99.2% 

No correction for 

multiple testing 

 

96.1% 99.9% 99.9% 52.5% 99.9% 99.4% 

Co-occurrence Benjamini-

Hochberg 

Correction 

 

80% 100% 99.8% 99.9% 69.3% 69.6% 

No correction for 

multiple testing 

97.8% 99.9% 99.9% 100% 53.1% 53.4% 

 

Table 6.2: Sensitivity and specificity of the Poisson binomial and hypergeometric tests in 

finding mutually exclusive gene pairs in simulations. 

 

5.3.2 Data 

On the basis of information from the Druggable genome databank, 1806 genes were 

identified as potential targets for drug inhibition [148]. I refer to these as druggable genes. I 
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also identified 263 tumour suppressor-associated genes (TSa genes) that gave me 2069 

potential genes of interest for my analysis.  

 

I analysed cancer associated alterations to these genes in seven different cancer types 

where data were available for somatic mutations, methylation and CNVs. The cancers 

chosen were cancers of the breast, kidney, large intestine, liver, lung, ovary and prostate, 

and analysed them independently. Table 6.3 shows the number of differentially altered 

genes identified in each cancer type. 

 

  #TSa genes 

    
 

 

#Druggable 

genes 
 

Breast 611 121 
 

Kidney 1419 239 
 

Large intestine 754 145 
 

Liver 471 96 
 

Lung 1323 248 
 

Ovary 150 24 
 

Prostate 525 101 
 

    
Table 6.3: the number of genes of interest (either tumour suppressor associated genes TSas 

or druggable genes) identified in each cancer type. These genes were inactivated in 

between 4 and 96% of samples. 
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5.3.3 Results for individual tissue types 

5.3.3.1 Breast cancer 

In total there were 843 breast cancer samples included in the analysis with mutation, CNV 

and methylation data. I initially calculated mutually exclusive or co-occurring gene pairs for 

the data types individually and then reran the calculations combining the data. 

 

5.3.3.1.1 Calculations using individual data types 

5.3.3.1.1.1 Mutational Data 

Five TSa genes, CDH1, GATA3, KMT2C, MAP3K1 and TP53 had differential somatic mutation 

status none of the druggable genes did. Consequently, mutational data could not be 

analysed independently.  

 

5.3.3.1.1.2 CNV Data 

Nineteen genes had differential CNV status, of which 3 were TSa genes and 16 were 

druggable. This gave 48 gene pairs with CNV data to analyse. Using both the hypergeometric 

test and the Poisson binomial test on the CNV data none of the pairs of genes were found to 

be mutually exclusive. Using either test, the same 28 gene pairs 58% were identified as co-

occurring meaning that they were more likely to be altered together. All co-occurring genes 

were on chromosome eight. 

 

5.3.3.1.1.3 Methylation Data 

Compared to mutation and CNV data, methylation data is a much richer source for 

identifying differentially inactivated genes. Methylation data alone enabled the 

identification of 107 TSa genes and 583 druggable genes with differential methylation status 
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giving rise to 62,381 gene pairs which could be potentially have mutually exclusive or co-

occurring relationships.  

 

5.3.3.1.1.3.1 Analysis of the methylation samples 

The hypergeometric test assumes that the probability that a given gene is mutated is the 

same for each sample, whilst the Poisson binomial test allows me to take variations in these 

probabilities into account. I therefore analysed the methylation samples to see whether or 

not there is much variation in the probability of inactivation across the different samples. 

 

Analysis of the 1,104 breast cancer methylation samples suggested that the samples split 

into two distinct clusters. The first comprises 531 samples each having in total less than 500 

inactivations and the other cluster contains 573 samples each having more than 1400 

inactivations (see figure 6.1a) ).  

 

There were no obvious distinctions between the clusters, for example in terms of days to 

death. However, it is possible that the distinct clusters reflect important differences in 

disease and that each cluster comes with its own different set of gene inactivations. In that 

case a gene pair may appear to have mutually exclusive inactivations because the two genes 

are associated with different clusters, rather than any genetic interaction. The Poisson 

binomial test is more sensitive to such gene pairs of this form. 

 

I am therefore interested both in whether the two tests give broadly similar numbers of 

mutually exclusive pairs, and also whether or not there is much overlap between the set of 

gene pairs found using each algorithm. 
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The hypergeometric test can be used without explicitly estimating the probability of a gene 

being inactivated. However, in order to use the Poisson binomial test, I estimated these 

probabilities as a piecewise linear function of the total number of inactivations 𝑡 in the 

sample, to give me an inactivation function, 𝑓ሺ𝑡ሻ, for each gene (see methods for more 

details). The inactivation functions are normally roughly increasing i.e., the probability of a 

specific gene being inactivated is well correlated with the total number of inactivations in 

almost all genes. However, three distinct inactivation functions emerge, as shown in 

subplots 6.1b), 6.1c) and 6.1d). 52% of genes show a switching behaviour (figure 6.1b) )ʹ the 

gene is predominantly turned on in those samples with few inactivations and off in those 

with many. In a further 30% of genes the probability of the gene being inactivated grows 

steadily as the total number of inactivations grows (figure 6.1c) ). Finally, in 6.1d) ) typically 

some increase in probability is seen as the total number of inactivations grows but the 

relationship is less distinctive. The probability of gene inactivation is anti-correlated with the 

number of total inactivations in only five genes. 

 

5.3.3.1.1.3.2 Calculations using hypermethylation data 

Using methylation data alone, 352 gene pairs (0.56%) were identified as mutually exclusive 

using the hypergeometric test and this rose to 752 pairs (1.2%) using the Poisson binomial 

test. If a hypergeometric test is used, co-occurrence of genes inactivated by methylation is 

the default state with 50,265 of the possible 62,381 gene pairs (80.6% of possible gene 

pairs) being identified as co-occurring even after correcting for multiple testing. Using the 

Poisson binomial test, which accounts for the baseline distributions the number of co-

occurring gene pairs fell dramatically to just 1,037 (1.7% of possible gene pairs) 
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Figure 6.1:  In breast cancer the number of genes inactivated by methylation is highly 

variable. In subplot a) I plotted a histogram of the number of methylated genes in each 

sample. There appear to be two distinct groups of samples, with either a few hundred 

inactivations or between 2000-5000. In subplot b-d I plotted the mean probability of a gene 

being inactivated against the total number of gene inactivations due to methylation. The 

mean probabilities were calculated over the closest 50 samples within the same cluster. 

Three types of behaviours were seen. For many genes, the gene is not inactivated in the first 

group, but is inactivated in the second (shown here by TRAP1 in subplot b), but for around 

one third the probability of inactivation grows steadily with the overall number of 

inactivations (shown by CDK6 in subplot c). Others show more complex behaviours (shown 

by ABAT in subplot d). 
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5.3.3.1.2 Calculations combining data types 

When I included all somatic mutation, CNV and methylation data 462 gene pairs (0.63%) 

were identified as mutually exclusive using the hypergeometric test and this rose slightly to 

492 gene pairs (0.66%) using the Poisson binomial test, shown in Figure 6.2 below. I 

distinguish here between pairs that share one or more clusters in the string database 

(shown in blue) and those that do not (shown in pink).  

 

The hypergeometric test identified 47,762 gene pairs (64.6%) co-occurring of a possible 

73,931. This fell to 854 (1.16%) using the Poisson binomial test. These data suggest that the 

Poisson binomial is more stringent. 

 

I define ͚jointly captured͛ as the percentage of pairs identified by the Poisson binomial that 

are also identified by the hypergeometric test and ͚jointly rejected͛ as the percentage of 

pairs not identified by the Poisson binomial test that were also not identified by the 

hypergeometric test. Note that if the Poisson binomial test were a gold standard these 

would equate to the sensitivity and specificity respectively of the hypergeometric test. Then 

24.7% of mutually exclusive pairs are jointly captured and 99.6% jointly rejected. For co-

occurring pairs, 99.6% are jointly captured and 35.8% jointly rejected.  

 

Using the Poisson binomial test, 452 gene pairs were identified as mutually exclusive using 

both methylation data on its own and all data together. Mutually exclusive pairs were found 

for 36 of the 121 TSa genes, using 114 of the 611 druggable genes. These include 9 hits for 

GATA3 and 20 hits for TP53. All the mutually exclusive pairs are shown in figure 6.2. The 

number of mutually exclusive or co-occurring inactivated gene pairs are also displayed in 
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tables 6.4 and 6.5 in the section on Pan-Cancer Analysis. The gene pairs for each inhibiting 

drug on our website MexDrugs. 

 

Figure 6.2: Using multi-omic data 492 gene pairs are identified as having mutually exclusive 

gene inactivations in samples with breast cancer. The gene pairs are shown above in blue 

for tumour suppressors (36) and green for druggable genes (114). In 16 pairs the genes 
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share one or more clusters in the string database (shown in blue) and in 472 of the pairs, 

TSa and druggable genes belong to different clusters (shown in pink). 

 

5.3.3.1.3 Therapeutic Opportunities 

Demonstrating mutual exclusivity does not demonstrate synthetic lethality. However, it is 

worth noting that only 16 (3%) of mutually exclusive gene pairs were found to belong to the 

same protein-protein interaction network clusters as defined in the STRING database, 

suggesting that most of the mutually exclusive gene pairs are found in different pathways. 

In addition, a number of the druggable targets which are identified as mutually exclusive 

partners to TSas have previously been reported to play a role in breast cancer.  

 

For example, Trastuzumab (Herceptin) is a standard treatment for HER2 positive breast 

cancer either early-stage or advanced-stage/metastatic which works by inhibiting ERBB2 

(HER2). There are ten mutually exclusive partners of ERBB2 (FBLN2, SIRPA, EXT2, BCL11B, 

ATP1A1, SOCS1, B2M, NDRG1, IGF2BP2 and NOTCH1). These genes are inactivated in 528 of 

843 samples (63%).  

 

 

5.3.3.2 Kidney Cancer 

5.3.3.2.1 Calculations using individual data types 

5.3.3.2.1.1 Mutation and CNV data 

Seven TSa genes; BAP1, CSMD3, KDM5C, KMT2C, PBRM1, SETD2 and VHL, had differential 

somatic mutation status, but none of the druggable genes did. By way of contrast, no TSa 



 211  

 

genes had differential CNV status, but thirteen druggable genes did. Consequently, neither 

mutational data and CNV could not be analysed independently.  

 

5.3.3.2.1.2 Methylation data 

Analysis of the 793 kidney samples with methylation data (66 with Kidney Chromophobe - 

KICH, 480 with Kidney renal clear cell carcinoma ʹ KIRC and 247 with Kidney renal papillary 

cell carcinoma- KIRP) suggested that the samples split into three clusters. Around five 

hundred had under 400 inactivations. Around 250 had roughly one to five thousand and 

around forty were hyper-inactivated with roughly 13-15 thousand inactivations. These three 

clusters did not correspond to KICH, KIRC and KIRP classifications of kidney cancer. Whilst 

KICH samples all have low numbers of methylation in its samples, both KIRC and KIRP 

samples are split between the groups see figure 6.3.  
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Figure 6.3: Histograms of the number of methylated genes in each sample. Subplot a) shows 

all kidney cancer types aggregated, whilst subplots b), c) and d) show samples from KICH, 

KIRC and KIRP respectively. Methylation samples from patients with kidney cancers show 

widely differing numbers of inactivated genes. In total 504 of 793 patients had few gene 

inactivations (between 11 and 371 inactivations), whilst 251 had between 1337 and 4893 

and 38 were hyper-inactivated with between 12875 and 15238 inactivations. B) All KICH 

patients fell into the category with few inactivations, no KIRP patients were hyper-

inactivated and KIRC patients fell into all three categories. 

 

To implement the Poisson binomial test, I estimated these probabilities as a piecewise linear 

function of the total number of inactivations 𝑡 in the sample, to give me an inactivation 

function, 𝑓ሺ𝑡ሻ, for each gene. For 35% of genes, 𝑓ሺ𝑡ሻ was strongly correlated to 𝑡. However, 

other common patterns also emerged. In particular: for 11% of the genes 𝑓ሺ𝑡ሻ was strongly 

anti-correlated to 𝑡; for 9% of genes, 𝑓ሺ𝑡ሻ was shaped like an upturned bowl for the central 

group of samples; and in 3% genes 𝑓ሺ𝑡ሻ was shaped like a bowl for the central group of 

samples. See figure 6.4 for representative examples. 

 

TSa genes are slightly over-represented in the group of genes where 𝑓ሺ𝑡ሻ was strongly anti-

correlated to 𝑡 (p = 0.01 Fisher exact test). Genes falling into this category include: 

ARHGEF10L, BCL10, BRCA1, LARP4B, MEN1, PIK3R1, POT1, PTK6, SDHD, SETD2, STK11, TCF3, 

USP44, WIF1 and ZBTB16.  
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Figure 6.4: I plotted the average probability of a gene being methylated against the total 

number of genes methylated in the sample. Average probabilities were calculated across 

the 50 closest samples respecting the three clusters. The average probability of a gene being 

inactivated varies both as a function of the gene and of the total number of inactivations. 

Four common patterns emerge, and examples of these patterns are shown here. The most 

common pattern, illustrated by ABCA1 is that there is a zero probability of inactivation in 

patients with few inactivations, the probability then rises steeply for the group of samples 

with between 1337 and 4893 inactivations and is close to 1 for those samples that are 

hyper-inactivated. For some 9% of genes including ABCB11 shown here, the mid-group of 

samples shows a clear anti-correlation between the number of total inactivations and the 

probability of inactivation. I also found two bowl-shaped patterns. The most common was 

the inverted bowl shown here by ABL1, though V shapes also turned up, shown here by 

ATP1A4. 
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5.3.3.2.1.2.1 Calculations using hypermethylation data 

228 TSa genes and 1373 druggable gene had differential methylation status giving a possible 

313,044 gene pairs. 691 gene pairs (0.2% of possible gene pairs) were identified as mutually 

exclusive using the hypergeometric test and this rose to 2,453 gene pairs (0.8% of possible 

gene pairs) using the Poisson binomial test. If a hypergeometric test is used, co-occurrence 

of genes inactivated by methylation is the default state with 279,727 of the possible 

313,044 gene pairs (89.4% of possible gene pairs) being identified as co-occurring even after 

correcting for multiple testing. Using the Poisson binomial test, which accounts for the 

baseline distributions the number of co-occurring gene pairs fell to 180,681 (57.7% of 

possible gene pairs). 

 

5.3.3.2.2 Calculations combining data types 

When I included all somatic mutation, CNV and methylation data 532 gene pairs (0.15%) 

were identified as mutually exclusive using the hypergeometric test. Using the Poisson 

binomial test this rose to 3,014 gene pairs (0.89%). Mutually exclusive pairs were found for 

61 of the 250 TSa genes, using 239 of the 1419 druggable genes. These include one hit for 

VHL (PSMD9) and 94 hits for BAP1. Results are shown in Figure 6.5 below. I distinguish here 

between pairs that share the one of more PPI network cluster in the STRING database 

(shown in blue) and those that do not (shown in pink).  

 

The hypergeometric test identified 270,134 gene pairs (79.7%) co-occurring of a possible 

339,141. This fell to 5,230 (1.5%) using the Poisson binomial test. 
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In total, 10.4.7% of mutually exclusive pairs are jointly captured and 99.9% jointly rejected. 

For co-occurring pairs, 99.9% are jointly captured and 20.7% jointly rejected.  

 

 

Figure 6.5: Using multi-omic data 3014 gene pairs are identified as having mutually exclusive 

gene inactivations in samples with kidney cancer. The gene pairs are shown above in blue 

for tumour suppressors (61) and green for druggable genes (250). In 2895 of the pairs, TSa 
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and druggable genes belong to different PPI network clusters (shown in pink). In 119 pairs 

the genes share one or more string cluster (shown in blue).  

 

5.3.3.2.3 Therapeutic Opportunities 

Renal cell carcinomas are often chemotherapy-resistant tumours, so whilst mutually 

exclusivity can occur for a number of reasons as well as synthetic lethality the large number 

of mutually exclusive gene pairs is encouraging. Of the pairs identified here, it is worth 

noting that a number of the druggable genes are inhibited by drugs which are known to 

have links with cancer. A recent study [287] indicates that Genistein induces cell apoptosis 

and inhibits cell proliferation of kidney cancer cells. Genistein is an inhibitor for ABL1, BIRC5, 

ESRRA, IL1R1, RET and TGFB1, which together form part of 86 mutually exclusive pairs.  

 

The isoflavonoid me-344, mitochondrial inhibitor is in clinical trials OXPHOS complex 1 

PMC4706149[288]. Me-344 has been shown to have anti-cancer properties, activating cell 

death pathways. It is an inhibitor for NDUFA13, NDUFAB1, NDUFAF1, NDUFB3, NDUFS4, 

NDUFS7 and NDUFV1, which together form part of 140 mutually exclusive pairs [289]. The 

list of partnered TSa genes for this and other drugs can be found in MexDrugs. 

 

A wide range of potential uses for the senolytic, Dasatinib have been put forward, including 

anti-cancer treatments. Dasatinib is an inhibitor for ABL1, BLK, FGR, and KIT, which together 

form part of 97 mutually exclusive pairs [290].  

 

The drug Cabazitaxel is being investigated for its role in renal cell carcinoma chemotherapy. 

It inhibits TUBA1A, TUBA3D, TUBA3E,and TUBB2A which together form part of 74 mutually 
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exclusive pairs in kidney cancer[291]. In addition, analysis of clinical trial suggests that 

Atezolizumab plus Bevacizumab can increase longevity by a mean of 3 months for patients 

with untreated metastatic renal cell carcinoma and sarcomatoid features. Bevacizumab is an 

inhibitor for HRAS, IDH1, KIT and VEGFC, which together form part of 56 mutually exclusive 

pairs [292]. 

 

5.3.3.3 Cancer of the large intestine 

In total there were 488 cancer of the large intestine samples with mutation, CNV and 

methylation data.  

 

5.3.3.3.1 Calculations using individual data types 

5.3.3.3.1.1 Mutation and CNV data 

Seven TSa genes; APC, FBXW7, KMT2D, ROBO2, RUNX1T1, SMAD4, and TP53 had 

differential somatic mutation status, but none of the druggable genes did so the mutational 

data could not be analysed independently. Four genes had differential CNV status, of which 

MMP26, RHD were TSa genes and FHIT, SMAD4 were druggable. This gave 4 gene pairs with 

CNV data to analyse. Using both the hypergeometric test and the Poisson binomial test on 

the CNV data none of the pairs of genes were found to be mutually exclusive. Using either 

test, SMAD4 and RHD were identified as co-occurring meaning that they were more likely to 

be altered together. Surprisingly, SMAD4 and RHD are found on different chromosomes 

(SMAD4 chromosome is found on 18 and RHD is found on chromosome 1). 
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5.3.3.3.1.2 Methylation data 

Analysis of the 601 samples with methylation data suggested that they split into three 

distinct clusters. The first comprises just over 400 samples with less than about 400 

inactivations, the second cluster roughly is 150 samples with between roughly 1000 and 

4500 inactivations and roughly 50 samples with between 11,000 and 14,500 inactivations 

(see figure 6.6a).  

 

 

Figure 6.6: In cancer of the large intestine the number of genes inactivated by methylation is 

highly variable. In subplot a) I plotted a histogram of the number of methylated genes in 

each sample. There appear to be three distinct groups of samples, with 416 samples having 

less than 365, 158 samples having between 1,016 and 3,866 inactivations and 25 samples 

having between 11,340 and 14,411 inactivations. In subplot b-d I plotted the mean 

probability of a gene being inactivated against the total number of gene inactivations due to 

methylation. Three types of behaviours were seen. In many genes exemplified here by HTT 

in subplot b, the gene is not inactivated in the first cluster, probability grows in the second 
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cluster and the gene is normally inactivated in the third cluster. In a minority exemplified 

here by in MYLK2 in subplot c) for the middle cluster the probability of inactivation 

decreases with the overall number of inactivations . A switching behaviour is also seen in 

around 30% of genes shown here by P2RY11 in subplot d). 

 

For 39% of genes the inactivation function, 𝑓ሺ𝑡ሻ, was strongly correlated to 𝑡 (see HTT, 

figure 6.7b) ). However, other common patterns also emerged. In particular: for 15% of the 

genes 𝑓ሺ𝑡ሻ was strongly anti-correlated to 𝑡 (see MYLK2, fig 6.6c) ) ; and for 30% of genes, 

𝑓ሺ𝑡ሻ was 0 except for the hyper-activated samples (see P2RY11 figure 6.6d) ). The 

pronounced bowl shapes seen in kidney cancer were absent.  

 

5.3.3.3.1.2.1 Calculations using hypermethylation data 

There were 191 TSa genes and 1150 druggable genes with differential methylation status. 

90 gene pairs of the possible 219650 gene pairs (0.04%) were identified as mutually 

exclusive using the hypergeometric test and this rose to 3,007 pairs (1%) using the Poisson 

binomial test. If a hypergeometric test is used, co-occurrence of genes inactivated by 

methylation is the default state with 201,371 gene pairs (92% of possible gene pairs) being 

identified as co-occurring even after correcting for multiple testing. Using the Poisson 

binomial test, which accounts for the baseline distributions the number of co-occurring 

gene pairs fell dramatically to just 2,369 (1% of possible gene pairs). 

 

5.3.3.3.2 Calculations combining data types. 

When I included all somatic mutation, CNV and methylation data only 147 gene pairs of a 

possible 109,330 pairs (0.134%) were identified as mutually exclusive using the 
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hypergeometric test. Using the Poisson binomial test this rose tenfold to 1847 gene pairs 

(1.69%). Mutually exclusive pairs were found for 35 of the 145 TSa genes, using 196 of the 

754 druggable genes. Results are shown in Figure 6.7 below. I distinguish here between 

pairs that share the one of more PPI network clusters in the string database (shown in blue) 

and those that do not (shown in pink). The hypergeometric test identified 73,754 gene pairs 

(67.5%) co-occurring. This fell to 2116 (1.9%) using the Poisson binomial test. 

 

For mutually exclusive pairs, 4.7 % of pairs found using the Poisson binomial test were 

jointly captured by the hypergeometric test as well, whilst 99.9% of pairs were jointly 

rejected. For co-occurring pairs, 99.9% of pairs found by the Poisson binomial test were 

jointly captured by the hypergeometric test and 33.1% were jointly rejected.  
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Figure 6.7: Using multi-omic data 1,847 gene pairs are identified as having mutually 

exclusive gene inactivations in samples with cancer of the large intestine. The gene pairs are 

shown above in blue for tumour suppressors (35) and green for druggable genes (196). In 

1787 of the pairs, TSa and druggable genes belong to different PPI network clusters (shown 

in pink). In 60 pairs the genes share one or more pathway (shown in blue).  
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5.3.3.3.3 Therapeutic opportunities 

70% of the samples included had inactivated genes which showed mutual exclusivity with 

one or more genes that can be inhibited by Indibulin. Indibulin is a synthetic small molecule 

which destabilizes tubulin polymerization thus inducing tumour cell cycle arrest and 

apoptosis. Indibulin has been found to have a potent activity in a number of cancer cell lines 

including colon cancer cell lines[293][294]. 

 

5.3.3.4 Lung Cancer 

5.3.3.4.1.1 Mutation and CNV data 

Differential somatic mutation status was found for 34 TSa genes and one druggable gene 

(NTRK3). However, no mutually exclusive or co-occurring pairs were found. Differential CNV 

status was found for four TSa genes (CDKN2A, FHIT, LRP1B, PTPRD) as well as 49 druggable 

genes, giving rise to 196 gene pairs that could be either mutually exclusive or co-occurring. 

One pair, CDKN2A, TRDV1 were mutually exclusive using the Poisson binomial test.  

 

5.3.3.4.1.2 Methylation data 

As before, I analysed the methylation samples to see whether or not there is much variation 

in the probability of inactivation across the different samples, necessitating the use of the 

Poisson binomial test. 

 

Analysis of the 729 lung cancer methylation samples suggested that the samples split into 

two distinct clusters, but that there is less inactivation via methylation than in most cancers. 

Roughly 650 samples had less than 250 genes inactivated. However, around 30 samples 
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have between roughly 650 and 2900 inactivations and the remainder had more than 9,000 

inactivations as shown in figure 6.8a) below. 

 

I estimated these probabilities as a piecewise linear function of the total number of 

inactivations 𝑡 in the sample, to give me an inactivation function, 𝑓ሺ𝑡ሻ, for each gene (see 

methods for more details). The inactivation functions for each gene take two main shapes. 

For almost all genes the inactivation function is low for all of the first cluster, then climbing 

or is flat for the second cluster see figure 6.8b) However, for 36 genes it climbs rapidly for 

the first cluster of samples (to at least 0.1), and shows distinctly different behaviour for the 

second cluster of samples, in three cases then falling see figure 6.8c). 

 

5.3.3.4.1.2.1 Calculations using hypermethylation data 

In total, there were 197 TSa genes and 1,157 druggable genes with differential methylation 

status giving rise to 227,929 gene pairs to analyse. 26 gene pairs (0.01%) were identified as 

mutually exclusive using the hypergeometric test and this rose marginally to 35 pairs 

(0.02%) using the Poisson binomial test. If a hypergeometric test is used, co-occurrence of 

genes inactivated by methylation is the default state with 223,814 gene pairs (98.2%) being 

identified as co-occurring. Using the Poisson binomial test, which accounts for the baseline 

distributions the number of co-occurring gene pairs fell dramatically to just 1,389 (0.61% of 

possible gene pairs). 
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Figure 6.8: In lung cancer the number of genes inactivated by methylation is less variable 

than in many other cancers. In subplot a) I plotted a histogram of the number of methylated 

genes in each sample. There appear to be three distinct groups of samples,  

Generally, patients with lung cancers have less than 250 genes inactivated. However, 

roughly 30 have a few thousands and roughly 50 have more than 9,000. The mean 

probabilities were calculated over the closest 50 samples within the same cluster. Two 

behaviours were seen. For most genes the probability of gene inactivation is zero for most 

samples (illustrated here in figure 6.8b) for PTGIS), and rises consistently for those samples 

with more gene inactivations. However , 36 genes stand out and the probability of 

inactivation in these genes (illustrated by AQP1 in figure 6.8c) grows strongly as a function 

of total inactivations. Samples with many inactivations show very different behaviours. 
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5.3.3.4.2 Calculations combining data types 

When I included all somatic mutation, CNV and methylation data, 20 gene pairs of a possible 

328,104 pairs (0.006%) were identified as mutually exclusive using the hypergeometric test. 

This rose to 96 gene pairs (0.29%) using the Poisson binomial test. Mutually exclusive pairs 

were found for 91 of the 248 TSa genes, using just 5 of the 1323 druggable genes with 

differential inactivation. See figure 6.9. The hypergeometric test identified 279,943 gene 

pairs (85.3%) as co-occurring. This fell to 814 (0.25%) using the Poisson binomial test. 

For mutually exclusive pairs, 3.1 % were jointly accepted and 100% jointly rejected. For co-

occurring pairs 100% were jointly accepted and 14.7% jointly rejected.  
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Figure 6.9: Using multi-omic data 96 gene pairs are identified as having mutually exclusive 

gene inactivations in samples with lung cancer. The gene pairs are shown above in blue for 

tumour suppressors (91) and green for druggable genes (5). In each of the pairs, TSa and 

druggable genes belong to different string clusters.  
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5.3.3.4.2.1 Therapeutic Opportunities 

The druggable gene PARP3 forms part of 89 of the 96 mutually exclusive pairs suggesting 

that a PARP3 inhibitor maybe of utility in the treatment of lung cancer.  PARP3 inhibitors 

include rucaparib, olaparib and niraparib [295]. A number of trials have been undertaken or 

are underway to look at the impact of parp inhibitors in lung cancer, with some, albeit 

limited, signs of promise. Overall response rate for participants in a part II lung cancer trial 

were higher for those who took veliparib alongside temozolomide compared with those 

taking temozolomide and a placebo. 

 

Olaparib is currently being used in combination with cediranib in stage II trials for patients 

with advanced or metastatic solid lung tumours (NCT02498613). Rucaparib is currently in 

stage II trials for patients with Recurrent Non-small Cell Lung Cancer (NCT03845296).  

 

5.3.3.5 Liver Cancer 

5.3.3.5.1 Calculations using individual data types 

5.3.3.5.1.1 Mutation and CNV data 

Eight TSa genes; ARID1A, CSMD3, KMT2C, LRP1B, PTPN13, SETD2, SMARCA4, and TP53 had 

differential somatic mutation status, but none of the druggable genes did. By way of 

contrast, no TSa genes had differential CNV status, but three druggable genes have 

differential CNV loss, namely; DDC, MMP26, RHD. Consequently, mutational data and CNV 

could not be analysed independently.  
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5.3.3.5.1.2 Methylation data 

5.3.3.5.1.2.1 Analysis of the methylation samples 

I found that methylation samples appear to cluster into two groups with around 200 

samples having less than 300 inactivations, whilst the remaining 100 had between roughly 

900 and 4300 inactivations. See figure 6.10a). For 83% of genes the inactivation function, 

𝑓ሺ𝑡ሻ, was strongly correlated to 𝑡 see figure 6.10b). For 10% of the genes 𝑓ሺ𝑡ሻ was a switch 

the gene was not inactivated for samples with fewer inactivations, but then inactivated 

amongst those with more inactivations see figure 6.10c). Just 3 genes showed a strong anti-

correlation. 

 

Figure 6.10: In subplot a) I plotted a histogram of the number of methylated genes in each 

sample. Samples generally had either less than 300 inactivations or between 1000 and 3000 

inactivations as shown in a). In subplots b) and c) I plotted the mean probability of a gene 

being inactivated against the total number of gene inactivations due to methylation. The 

mean probabilities were calculated over the closest 50 samples within the same cluster. 

Two types of behaviours were seen. Most genes showed a strong correlation between the 
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probability of inactivation and the total number of inactivations as shown here by b) PTPN1, 

though a minority showed switching behaviour as shown by c) DICER1 

 

There were 75 TSa genes and 410 druggable genes which had differential methylation 

status, giving a possible 30,750 gene pairs to analyse. 11 gene pairs (0.036%) were identified 

as mutually exclusive using the hypergeometric test, falling to 4 gene pairs (0.013%) using 

the Poisson binomial test. 21,429 gene pairs (70%) were identified as mutually exclusive 

using the hypergeometric test, falling to 7 gene pairs (0.023%) using the Poisson binomial 

test.  

 

5.3.3.5.2 Calculations combining data types. 

When I included all somatic mutation, CNV and methylation only 10 gene pairs of the 

possible 45,216 gene pairs (0.02%) were identified as mutually exclusive using the 

hypergeometric test. Using the Poisson binomial test, surprisingly, this fell further to just 6 

gene pairs (0.01%) involving three of the 96 TSa genes and six of the 471 druggable genes. 

These are shown in figure 6.11 below. The hypergeometric test identified 17,850 gene pairs 

(39%) as co-occurring. This fell to 17 (0.4%) using the Poisson binomial test.  

A large majority of the gene pairs predicted as co-occurring by the Poisson binomial test are 

also predicted as co-occurring by the hypergeometric test (85.7%). However, there is no 

overlap between the gene pairs predicted as mutually exclusive by the hypergeometric test 

and those predicted as mutually exclusive by the Poisson binomial test.  
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Figure 6.11: Using multi-omic data 6 gene pairs are identified as having mutually exclusive 

gene inactivations in samples with liver cancer. The gene pairs are shown above in blue for 

tumour suppressors (3) and green for druggable genes (6). In each of the pairs, TSa and 

druggable genes belong to different pathways. 
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5.3.3.5.2.1 Therapeutic Opportunities 

Despite the overall small numbers of mutually exclusive pairs found, there are signs of a 

synthetic lethality relationship that could be exploited therapeutically. In particular, a recent 

study found that inhibition of AKT signalling by AKT inhibitor viii in hepatoma cells induced 

apoptotic cell death[296]͘ AKTϮ͛s mutually exclusive partner TBLϭXRϭ was inactivated in 

16% of the samples suggesting that AKT2 could be a therapeutic strategy. 

 

5.3.3.6 Ovarian Cancer 

5.3.3.6.1 Calculations using individual data types 

5.3.3.6.1.1 Mutation and CNV data 

I found three TSa genes; CSMD3, NF1 and TP53, with differential somatic mutation status 

but no druggable genes. On the other hand, I found fifty-one druggable genes with 

differential CNV status, but no TSa genes. Consequently, mutational data and CNV data 

could not be analysed independently.  

 

5.3.3.6.1.2 Methylation data 

Methylation data alone enabled the identification of 140 genes that were differentially 

inactivated. Of these, 12 were target genes and 128 were druggable genes. Whilst this is less 

than for other cancers it still gives 1,536 gene pairs which could potentially have mutually 

exclusive or co-occurring interactions.  

 

5.3.3.6.1.2.1 Analysis of the methylation samples 

 



 232  

 

Compared to other cancers, the methylation samples had fewer inactivations. Analysis of 

the 512 ovarian cancer methylation samples suggested that the samples split into two 

distinct clusters with either fewer than 130 inactivations (roughly 200 samples) or between 

170 and 820 inactivations (roughly 300 samples) See figure 6.12a).  

 

To use the Poisson binomial test, I estimated the probability of each gene being inactivated 

in each sample as a piecewise linear function of the total number of inactivations 𝑡 in the 

sample, to give me an inactivation function, 𝑓ሺ𝑡ሻ, for each gene (see methods for more 

details). In roughly 5% of genes a switching inactivation function was seen the gene is 

predominantly turned on in those samples with few inactivations and off in those with many 

(see figure 6.12 b). For 85% of genes there was a strong positive correlation between the 

probability of inactivation and the total number of inactivations (see figure 6.12c). 

 

 

Figure 6.12:  In ovarian cancer there are comparatively few genes inactivated by 

methylation. In subplot a) I plotted a histogram of the number of methylated genes in each 
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sample. There are two distinct groups of samples, generally with less than 100 or between 

200-800. In subplot b-c I plotted the mean probability of a gene being inactivated against 

the total number of gene inactivations due to methylation. The mean probabilities were 

calculated over the closest 50 samples within the same cluster. Two behaviours were seen. 

For many genes, the gene is not inactivated in the first group, but is inactivated in the 

second (shown here by SLC12A1 in subplot b), but for around one third the probability of 

inactivation is positively correlated with the number of inactivations in both clusters (shown 

by CD28 in subplot c).  

 

Most genetic inactivations occurred independently of one another. Only 4 gene pairs of the 

possible 1536 possible pairs (0.3%) were identified as mutually exclusive using the 

hypergeometric test and this rose only marginally to 5 gene pairs (0.3%) using the Poisson 

binomial test. These were (MGMT/AOAH, MGMT/CXCR2, RUNX1/HDC, RUNX1/MYLK2 and 

SOCS1/CD80) Co-occurrence of genes inactivated by methylation is reasonably common 

with 696 of the possible 1,526 gene pairs (45%) being identified as co-occurring using the 

hypergeometric test. This fell to just 14 (0.9%) using the Poisson binomial test.  

 

5.3.3.6.2 Calculations combining data types. 

When I included all somatic mutation, CNV and methylation data, I identified 4 pairs of a 

possible 3,600 gene pairs (0.1%) as mutually exclusive, using either the hypergeometric test 

or Poisson binomial test. This included 4 TSas and 3 druggable genes. ARHGEF10 was 

mutually exclusive with both DYRK2 and ITGB2 whilst MGMT was mutually exclusive with 

AOAH and RUNX1 was mutually exclusive with HDC. See figure 14. In addition, I found that 



 234  

 

690 (19%) of a possible 3600 gene pairs co-occurred using the hypergeometric test. This 

dropped to 48 (1.3%) using the Poisson binomial test.  

 

For mutually exclusive pairs, 75% were jointly captured whilst 99.9% of pairs were jointly 

rejected. For co-occurring pairs 100% of pairs were jointly captured by the hypergeometric 

test and 81.91% were jointly rejected. 

 

5.3.3.6.2.1 Therapeutic Opportunities 

Although the number of mutually exclusive gene pairs found was limited, they include the 

pair ARHGEF10/ IGTB2. ARHGEF10 is inactivated in 6% of the ovarian cancer samples. IGTB2 

is also known as CD18 which has been shown to be inhibited in rats by methotrexate[297]. 

Low doses of methotrexate have been successfully trialled alongside cyclophosphamide in 

women with recurrent ovarian cancer[298] . 
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Figure 6.13: Using multi-omic data 4 gene pairs are identified as having mutually exclusive 

gene inactivations in samples with ovarian cancer. The gene pairs are shown above in blue 

for TSas (3) and green for druggable genes (4). In each of the pairs, target and druggable 

genes belong to different string clusters.  
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5.3.3.7 Prostate Cancer 

5.3.3.7.1 Calculations using individual data types 

5.3.3.7.1.1 Mutation and CNV data 

Four TSa genes; KMT2C, LRP1B, SPOP, TP53, had differential somatic mutation status, but 

none of the druggable genes did, so mutational data could not be analysed independently.  

Forty genes had differential CNV status; the TSa gene PTEN and 39 druggable genes. No 

mutually exclusive gene pairs were found. Using the hypergeometric test but not the 

Poisson binomial test, PTEN and LIPF were found to co-occur. 

 

5.3.3.7.1.2 Methylation 

I found 97 TSa genes and 535 druggable gene with differential methylation status giving a 

possible 51,895 gene pairs which could be potentially mutually exclusive or have co-

occurring relationships.  

 

5.3.3.7.1.2.1 Analysis of the methylation samples 

Over 95% of samples had between 2000 and 4000 genes inactivated via methylation while 

the remainder had just a few hundred. To use the Poisson binomial test, I estimated the 

probability of each gene being inactivated in each sample as a piecewise linear function of 

the total number of inactivations 𝑡 in the sample, to give me an inactivation function, 𝑓ሺ𝑡ሻ, 

for each gene (see methods for more details). As for other cancers most genes showed 

either strong correlation or switching behaviour, however for around 4% of genes there is a 

strong anticorrelation between probability of inactivation and the total number of 

inactivations, see figure 6.14. 
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Figure 6.14: In prostate cancer most samples had around 3000 genes inactivated by 

methylation. In subplot a) I plotted a histogram of the number of methylated genes in each 

sample. There appear to be two distinct groups of samples, 5% had less than two hundred 

whilst the remainder had between 2000-5000. In subplot b-d I plotted the mean probability 

of a gene being inactivated against the total number of gene inactivations due to 

methylation. The mean probabilities were calculated over the closest 50 samples within the 

same cluster. Three main patterns of 𝑓ሺ𝑡ሻ emerged: b) For 4% of the genes 𝑓ሺ𝑡ሻ was highly 

anti-correlated with t shown here by NDUFB6; c) for most genes (66%) 𝑓ሺ𝑡ሻ was highly 

correlated, shown here by AOAH, and d) in 10% of genes 𝑓ሺ𝑡ሻ was a switch, shown here by 

IKBKB. 

 

Using the hypergeometric test 234 gene pairs (0.4%) were identified as mutually exclusive. 

Unusually, using the Poisson binomial test this figure fell further to just 23 pairs (0.04%).  
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Using the hypergeometric test, co-occurrence of genes inactivated by methylation is only 

26% (13,726 of the possible 51,895 gene pairs). This fell to 121 (0.2%) using the Poisson 

binomial test.  

 

5.3.3.7.2 Calculations combining data types. 

When I included all methylation, CNV and somatic mutation data and used the 

hypergeometric test 224 gene pairs (0.42%) were identified as mutually. However, this fell 

to just 17 pairs (0.03%) using the Poisson binomial test. 11,142 gene pairs (21.0%) co-

occurred of a possible 53,025. This fell to 81 (0.15%) using the Poisson binomial test.  

 

For mutually exclusive pairs, 76.5% of pairs found using the Poisson binomial test were 

jointly captured by the hypergeometric test as well, whilst 99.6% of pairs reject by the 

Poisson binomial test were jointly rejected by the hypergeometric test. For co-occurring 

pairs, 98.8% were jointly and 79.1% jointly rejected.  

 

Nine target genes had mutually exclusive pairs from a possible 101, using fourteen of a 

possible 525 druggable genes (see figure 6.15). 
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Figure 6.15: Using multi-omic data 17 gene pairs are identified as having mutually exclusive 

gene inactivations in samples with prostate cancer. The gene pairs are shown above in blue 

for tumour suppressors (9) and green for druggable genes (14). In 15 of the pairs, target and 

druggable genes belong to different pathways. In two pairs the genes share one or more 

pathway (shown in blue).  
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5.3.3.7.2.1 Therapeutic Opportunities 

Despite the relatively small number of mutually exclusive gene pairs found, it is possible 

that some may be synthetically lethal. Inactivation of TP63, found in 74% of the prostate 

cancer samples, is mutually exclusive with the inactivation of FOLH1, also known as PSMA. 

PSMA is a known target and expression is a biomarker for prostate cancer, currently treated 

with Docetaxel [299][300]. 

 

5.3.4 Pan-Cancer Analysis 

In most of the cancer types analysed, between 3-8 genes were differentially inactivated 

through somatic mutation, although 35 met this criteria for lung cancer. Similarly, the 

number of genes differentially inactivated in the CNV data tended to be modest, ranging 

from 4 genes in samples from the large intestine to 51 in samples from the ovaries. This 

means that I most tissues there was not enough data to identify large numbers of mutual 

exclusive gene pairs using mutational data and CNV alone.  

 

Almost all of the differentially mutated genes were TSa genes rather than drug targets. This 

is not surprising as the druggable genes tend not to be cancer driver gene hence inactivating 

mutations in them are rare. On the other hand, in the large majority of cases genes 

inactivated through CNV were druggable genes rather than TSa genes. This suggests that the 

impact of copy number changes from the direct deletion of tumour suppressors is limited.  

 

In contrast, methylation data was rich in differentially inactivated genes, with all of the 

cancers under consideration having several hundred differentially inactivated genes. 

However, even within the same cancer the extent of genes inactivated through methylation 
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varied considerably by sample. Within each cancer there appeared to be either two or three 

distinct clusters of samples. Clusters had either a few hundred, a few thousand or more 

than 10,000 inactivations. 

 

In total I found 5403 distinct mutually exclusive pairs and 8471 co-occurring pairs. The 

numbers of mutually exclusive or co-occurring gene pairs are shown in tables 6.4 and 6.5 

below. A full list of all the mutually exclusive gene pairs found using the Poisson binomial 

test is available on MexDrugs at https://users.sussex.ac.uk/~skw24/mexdrugs1/index.html . 

 

 

Site Statistical 
method Data type # ME pairs 

found 
# target 
genes 

# 
druggable 
genes 

Breast hypergeometric 
Combined omic 

data 
462 71 120 

Breast 
Poisson 

binomial 

Combined omic 

data 
492 36 114 

Breast hypergeometric 
Just methylation 

data 
352 74 86 

Breast 
Poisson 

binomial 

Just methylation 

data 
752 40 160 

Kidney hypergeometric 
Combined omic 

data 
532 44 229 

Kidney 
Poisson 

binomial 

Combined omic 

data 
3014 61 250 

Kidney hypergeometric 
Just methylation 

data 
691 77 245 

https://users.sussex.ac.uk/~skw24/mexdrugs1/index.html
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Kidney 
Poisson 

binomial 

Just methylation 

data 
2453 60 463 

Large 

intestine 
hypergeometric 

Combined omic 

data 
147 11 88 

Large 

intestine 

Poisson 

binomial 

Combined omic 

data 
1847 35 196 

Large 

intestine 
hypergeometric 

Just methylation 

data 
90 8 37 

Large 

intestine 

Poisson 

binomial 

Just methylation 

data 
3007 41 246 

Liver hypergeometric 
Combined omic 

data 
10 5 8 

Liver 
Poisson 

binomial 

Combined omic 

data 
6 3 6 

Liver hypergeometric 
Just methylation 

data 
11 6 9 

Liver 
Poisson 

binomial 

Just methylation 

data 
4 1 4 

Lung hypergeometric 
Combined omic 

data 
20 4 16 

Lung 
Poisson 

binomial 

Combined omic 

data 
96 91 5 

Lung hypergeometric 
Just methylation 

data 
26 6 15 

Lung 
Poisson 

binomial 

Just methylation 

data 
35 6 14 

Ovary hypergeometric 
Combined omic 

data 
4 3 4 
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Ovary 
Poisson 

binomial 

Combined omic 

data 
4 3 4 

Ovary hypergeometric 
Just methylation 

data 
4 2 4 

Ovary 
Poisson 

binomial 

Just methylation 

data 
5 3 5 

Prostate hypergeometric 
Combined omic 

data 
224 39 128 

Prostate 
Poisson 

binomial 

Combined omic 

data 
17 9 14 

Prostate hypergeometric 
Just methylation 

data 
234 35 129 

Prostate 
Poisson 

binomial 

Just methylation 

data 
23 12 20 

 

 

Table 6.4. Numbers of mutually exclusive inactivated gene pairs identified using combined 

CNV, somatic mutation and methylation data, or just methylation data, using either the 

hypergeometric test or Poisson binomial test. 

 

Site Statistical 
method Data type 

#co-
occurring 
pairs 
found 

# Tumour 
suppressor 
genes 

# 
druggable 
genes 

Breast hypergeometric 
Combined omic 

data 
47762 114 606 

Breast 
Poisson 

binomial 

Combined omic 

data 
854 57 180 
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Breast hypergeometric 
Just methylation 

data 
50265 107 581 

Breast 
Poisson 

binomial 

Just methylation 

data 
1037 61 224 

Kidney hypergeometric 
Combined omic 

data 
270134 235 1418 

Kidney 
Poisson 

binomial 

Combined omic 

data 
5230 76 401 

Kidney hypergeometric 
Just methylation 

data 
279727 228 1373 

Kidney 
Poisson 

binomial 

Just methylation 

data 
180681 218 1278 

Large 

intestine 
hypergeometric 

Combined omic 

data 
73754 141 753 

Large 

intestine 

Poisson 

binomial 

Combined omic 

data 
2116 37 196 

Large 

intestine 
hypergeometric 

Just methylation 

data 
201371 191 1150 

Large 

intestine 

Poisson 

binomial 

Just methylation 

data 
2369 43 221 

Liver hypergeometric 
Combined omic 

data 
17850 94 459 

Liver 
Poisson 

binomial 

Combined omic 

data 
17 9 13 

Liver hypergeometric 
Just methylation 

data 
21429 75 404 

Liver 
Poisson 

binomial 

Just methylation 

data 
7 3 7 
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Lung hypergeometric 
Combined omic 

data 
279943 229 1322 

Lung 
Poisson 

binomial 

Combined omic 

data 
814 59 286 

Lung hypergeometric 
Just methylation 

data 
223814 197 1157 

Lung 
Poisson 

binomial 

Just methylation 

data 
1389 50 287 

Ovary hypergeometric 
Combined omic 

data 
690 17 140 

Ovary 
Poisson 

binomial 

Combined omic 

data 
48 10 22 

Ovary hypergeometric 
Just methylation 

data 
696 12 122 

Ovary 
Poisson 

binomial 

Just methylation 

data 
14 7 12 

Prostate hypergeometric 
Combined omic 

data 
11142 101 515 

Prostate 
Poisson 

binomial 

Combined omic 

data 
81 18 49 

Prostate hypergeometric 
Just methylation 

data 
13726 97 532 

Prostate 
Poisson 

binomial 

Just methylation 

data 
121 22 61 

 

Table 6.5. Numbers of co-occurring inactivated gene pairs identified using combined CNV, 

somatic mutation and methylation data, or just methylation data, using either the 

hypergeometric test or Poisson binomial test. 
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5.3.4.1.1 Tissue specificity 

The gene dependency projects from both the Broad Institute and Sanger labs found that cell 

dependency and synthetic lethal pairs are highly tissue specific [301][302]. My results here 

confirm that finding. In fact, no mutually exclusive pairs found between tissue types with 

the exception of cancers of the breast, kidney and large intestine. Kidney and large intestine 

tumours share 69 mutually exclusive gene pairs, with kidney and breast sharing 4 mutually 

exclusive gene pairs. Although this may sound like a low number, it is in fact higher than 

expected by chance. The p-value is outside the limits of the statistical test used. I therefore 

show the shared pairs for kidney and large intestine below in figure 6.16. The numbers of  

mutually exclusive gene pairs that are shared between tissue types is shown in figure 6.17. 

 

Cooccurring gene pairs were also generally tissue specific, but with some shared between at 

least two of breast, kidney, lung, and large intestine. One pair PTPRC/IL10 is of particular 

interest because it co-occurs in five different tissue types. Both of these genes are 

connected with B cell proliferation. These are shown in figure 6.19 below. 
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Figure 6.16: Using multi-omic data 69 gene pairs are identified as having mutually exclusive 

gene inactivations in samples with either cancer of the kidney or large intestine. The gene 

pairs are shown above in blue for tumour suppressors and green for druggable genes. The 

three gene pairs where both genes are in the same pathway are shown in blue. 
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Kidney  
2914 

Large intestine  
1778 

Breast 
488 

Lung 
96 

Prostate 
17 Ovary 

4 

Liver 
6 

69 

4 

Figure 6.17: Numbers of mutually exclusive gene pairs in each of the tissue types, showing  

the number of mutually exclusive gene pairs that occur in more than one tissue type. 
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Figure 6.18: Number of co-occurring gene pairs in different tissue types. Just one gene pair is shared 

between five tissue types; PTPRC / IL10. Both of these genes are connected with B cell proliferation. 
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5.3.4.1.2 Mutually exclusive pairs tend to occur different pathways. 

One possible explanation for mutual exclusivity is that the genes come from the same 

pathway: one of the genes being inactivates is sufficient to enable a tumorigenic phenotype, 

reducing or removing the selective pressure to inactivate the other gene. To test this theory, 

I looked at how many of the gene pairs shared at least one PPI interaction cluster. These 

clusters are predominantly median 12 genes. However, some of the clusters include almost 

all of the genes and are of no interest for pathway analysis. I therefore removed all the 

clusters above a 1000 threshold. Of the 5,403 gene pairs that were mutually exclusive in at 

least one tissue type, 5210 did not share a PPI interaction cluster pathway. Moreover, the 

cluster threshold was very robust. The number of gene pairs without a common PPI 

interaction cluster fell only to 4,495 if cluster sizes up to 4000 were included. This suggests 

that the mutually exclusivity seen does not generally come lack of pressure on genes in the 

same pathway.  

 

By way of contrast, the 8,471 co-occurring gene pairs were all in clusters  containing less 

than 134 genes, and the median size for the cluster was 5. This suggests that co-occurring 

gene pairs are generally in the same pathway. 

 

5.4 MexDrugs 

Mutual exclusivity cannot be taken as implying that two genes are synthetically lethal. 

However, sets of mutually exclusive gene pairs will be enriched in synthetically lethal pairs 

so it indicates that further investigation is of interest. I have therefore included information 

about the complete set of drugs associated with these mutually exclusive gene pairs in my 

website MexDrugs.  
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MexDrugs is an online database of the mutually exclusive interactions that were found using 

the methods in this chapter and the Poisson binomial test. Screen shots are shown in figure 

6.19 below. It can be accessed at https://users.sussex.ac.uk/~skw24/mexdrugs1. The 

website is organised by cancer. For each cancer it lists the drugs that are identified in the 

Druggable genome databank [148] as inhibiting a gene which has mutually exclusive TSa 

partners where these are inactivated in more than 5% of samples. The mutually exclusive 

relationships are portrayed as a network and a list of the relevant mutually exclusive pairs, 

together with the percentage of samples affected can be downloaded for each drug. In 

addition, all the mutually exclusive results found using the Poisson binomial test can be 

downloaded from the title page. 

https://users.sussex.ac.uk/~skw24/mexdrugs1
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Figure 6.19: Screenshots of the website MexDrugs available at  

https://users.sussex.ac.uk/~skw24/mexdrugs1. 

https://users.sussex.ac.uk/~skw24/mexdrugs1
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5.5 Conclusion and discussion 

Mutual exclusivity between inactivations in a pair of genes may indicate either: that any 

selective advantage resulting from the inactivation of one gene is not increased by 

inactivating both the genes, or alternatively that inactivating both the genes confers a 

distinct disadvantage to the tumour. That is, the combination is synthetically lethal. 

 

Many of the existing approaches to find mutually exclusive pairs or groups of genes are 

hoping that by doing so they can find genes within the same protein pathway, as mutations 

that damage an already defunct pathway are considered unlikely to confer additional 

selective advantage to the tumour [278][280]. In contrast, in this work, I looked specifically 

at genes that were unlikely to be part of the same pathway, as these are more likely to 

reveal genuinely synthetically lethal genetic interactions.  

 

Using the hypergeometric test, most gene pairs co-occurred in almost all cancers, and there 

were very few mutually exclusive pairs. However, I showed that the probability of a specific 

gene being inactivated has a strong dependency on the total number of inactivations. Since 

gene inactivations are not independently and identically distributed, the hypergeometric 

distribution is not the appropriate statistical distribution to use as a baseline against which 

to measure co-occurrence and mutual exclusivity. I turned instead to the Poisson binomial 

distribution which enabled me to use the approximate probabilities of each gene being 

inactivated in each sample, when forming a baseline.  
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By simulating data sets I showed that the Poisson binomial test improved the overall 

accuracy of prediction finding more of the mutually exclusive pairs and fewer false positive 

co-occurring pairs. For most cancers, this is also the case. The Poisson binomial test gives a 

fairly dramatic reduction in the number of co-occurring pairs and a substantial increase in 

the number of mutually exclusive gene pairs 

 

In order to assess the probability of mutual exclusion or co-occurrence using the Poisson 

binomial distribution I had first to identify the probability of a specific gene 𝑔௜  being is 

inactivated in a specific sample 𝑠௝ (that is 𝑃௜௝) as a function of the total number of 

inactivations in that sample 𝑡௝, i.e. 𝑃௜௝ ൌ 𝑓௜ሺ𝑡௝ሻ. I estimated these inactivation function, 𝑓௜ , 

as a piecewise, linear average of the number of inactivations of 𝑔௜ in each of roughly 10 bins 

with samples of similar 𝑡௝ in them. In most cases, 𝑓ሺ𝑡ሻ was either a stepwise function, that is 

the probability of inactivation of a gene is almost zero for one cluster of samples and almost 

one for another, or it increased sharply as 𝑡 increases. In either case 𝑓ሺ𝑡ሻ normally shows 

distinct differences between the different sample clusters. It is worth noting two other 

features of 𝑓ሺ𝑡ሻ; firstly, that on occasion 𝑓ሺ𝑡ሻ decreases as t increases and that secondly, 

other functions are possible, including intriguingly two bowl shaped functions. These are 

reasonably inactivation functions for genes in kidney cancers. The biological significance of 

these functions is not currently known.  

 

In breast cancers and cancer of the large intestine the methylation data alone provided an 

excellent approximation of the mutually exclusive gene pairs found using all the data, with 

agreement on over 90% of the gene pairs found. However, in others, the CNV and mutation 

data was sufficient to substantially change the mutually exclusive pairs predicted.  
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Personalised therapies for cancers provide a way of identifying the people who are most 

likely to benefit from a given drug, and exclude those for whom the therapy is unlikely to 

hold much promise. In view of the severe side-effects associated with many of current 

cancer drugs this is an important consideration. However, a personalised medicine has by 

definition a reduced target audience which can mean that the research needed to bring a 

new drug onto the market is not considered cost-effective. By focusing on drug repurposing, 

these costs, and the associated time needed to bring them to market is considerably 

reduced.  

 

Demonstrating mutual exclusivity is just one of the steps on the way to showing that two 

genes are synthetically lethal. There is no substitute for experimental evidence. However, 

the many hundreds of mutually exclusive inactivations found in breast, kidney and 

colorectal cancers suggests that these are rich avenues to explore further.  

 

Moreover, if the TCGA sample set is typical, then a high percentage of samples could stand 

to benefit. For example, 22 of the drugs considered inhibit genes where the mutually 

exclusive gene partner is inactivated in over 70% of the kidney samples considered. 

Unfortunately, I cannot conclude that 70% of patients could benefit: the mutually exclusive 

tests that I use are soft tests. They demonstrate only that less joint inactivations took place 

than expected. Some cells were able to carry inactivations in both genes at the same time, 

and more work is needed to understand what characterises these samples. 
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Finally, Canisius et al. found that there is hardly any co-occurrence in somatic mutations not 

explained by chance  alone[277]. This is not true with multi-omic data. Although the 

reduction in co-occurrences is dramatic, many still remain. This suggests that groups of 

genes may be sometimes switched off together by hyper-methylated during tumorigenesis, 

as my findings are dominated by methylation data.   
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6 Discussion 

6.1 Overview of major findings 

Mutations and other genetic and epigenetic changes occur as a result of stochastic 

processes. The ones that survive in the genetic record reflect not only the endogenous and 

exogenous processes that cause the damage and the cells ability to repair the damage done, 

but also by the nucleotides in the neighbourhood of the damage and by the evolutionary 

advantage or disadvantage conferred by the changes. That is, we see only those changes 

that do not kill the cell, and we see a higher proportion of the changes that enable some 

form of advantage. These changes are not independent of one another: there are large 

numbers of genetic interactions that alter the impact of individual changes leading to 

synthetically lethal and co-occurring genetic inactivations. 

 

In this thesis, I have sought to identify the contribution that each of these factors makes to 

the overall picture of mutations and other forms of genetic inactivations. 

 

In chapter 2 I look at the impact that neighbouring nucleotides have on the patterns of 

mutations and in particular the pattern of indels. I find that that for medium length indels 

the frequency of indel is well described by a power law. However, I find an excess of inframe 

indels. Inframe indels occur disproportionately at the site of a repeat of the indel in the 

DNA. Whilst this suggests that replication slippage is the cause of the excess of inframe 

indels, this explanation is not sufficient to account for the excess. Looking just at those 

indels which are not next to a repeat, I show that the proportion of di-nucleotide indels to 

tri-nucleotide indels is less in the exome than in the non-protein-coding region. Since there 
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is far stronger selective pressure in the exome than else-where this surfeit of inframe indels  

suggests evidence of negative selection against frameshift indels.   

 

In chapter 3 I use two different methods to look at associations between the processes that 

cause DNA damage (and the resulting mutational fingerprints/signatures) and the 

prevalence of mutations in cancer-associated genes. I find sixteen examples of genes in 

specific tissue types where the samples with a pathogenic mutation in the gene have a 

statistically significantly different mutational signature to those that do not.  The mutational 

signatures provide a record of the mutational damage that is replicated in cancer cells and 

as such reflects both the damage done, and the cell͛s ability to repair the damage͘ It may be 

that the genes identified impact of the DDR pathways in some way. However, it is also 

possible the changes in the mutational signatures predispose the cell to gain mutations in 

the identified genes, or that the genetic mutations co-occur with other types of unidentified 

genetic changes such as hyper-methylation.  

 

I find that the majority of cancer associated genes are mutated more frequently in those 

tissue types where the mutational fingerprints are conducive to creating the pathogenic 

mutations seen. There are some interesting exceptions to this, including BRAF V600E which 

occurs far more frequently in skin cancers than is expected from the makeup of the gene 

and mutational fingerprints of mutated samples. 

 

Whilst chapter 3 makes extensive use of existing mutational signatures in cancer, in chapter 

4 I apply this technique to identify novel bacterial signatures. In order to ensure that I use 

recent evolutionary mutations rather than historical fixed mutations to generate the 
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signatures I first clustered the strains using the sequence identity of genes that are shared 

by all the bacterial strains. I then identified unique substitutions, which are silent and thus 

not selected for. By normalising the signatures using the distribution of codons that could 

give rise to silent mutations in the bacterial subspecies, I am able to provide a cross-species 

comparison between different bacteria. Encouragingly I found that many of these signatures 

are very similar for different clusters of the same bacterial species. I also found that some of 

the signatures are statistically significantly similar to signatures derived from human cells . 

In some cases, there is a known aetiology for the human mutational signatures. This leads 

me to propose that some of the bacterial signatures could also have been created as a result 

of action by alkylating agents, failure of DNA MMR, and /or the error prone polymerase 

POLE.  

 

In chapter 5 I present our published review of bioinformatics in translational drug discovery. 

This looks at the use of bioinformatics in analysing cancer data to enable a more 

personalized approach to cancer therapy, but also at the use of bioinformatics to identify 

how our genetic makeup affects our likelihood of developing a wide range of diseases, our 

responses to a variety of drug treatments and the progression of many infectious diseases. 

It then goes on to look at whether a particular target gene is likely to be druggable; how well 

the corresponding protein will bind small drug-like molecules, as well as whether the drug-

like molecules have the right chemical properties to be successful as drugs, and whether we 

can predict translational properties of drugs by looking at protein-protein interaction data. 

This chapter touches on the nature of synthetic lethal genetic interactions, which I go on to 

explore in the next chapter. 

 



 260  

 

Finally, in chapter 6, I look for mutually exclusive and co-occurring gene inactivations in 

cancer samples: bringing together data on mutations, on copy number variance and also on 

inactivations as a result of hypermethylation. Given the cost of bringing new drugs to 

market, and the potentially small markets for personalised therapies, I am particularly 

interested in translational drug repurposing. I therefore look at whether it might be possible 

to use existing drugs that have already been licensed for different purposes to target 

cancers that are driven by inactive tumour suppressors. To do this I look for mutually 

exclusive gene pairs where one of the genes is a tumour suppressor and the other is a gene 

whose protein product can be inhibited via a known drug. Using the hypergeometric 

distribution to test for such pairs leads to disappointingly few such predictions. However, I 

find that using the Poisson binomial distribution instead of the hypergeometric distribution 

improves the accuracy of results, and also has the effect of reducing the number of co-

occurring gene inactivations and increasing the number of mutually exclusive ones.  

 

6.2 Limitations  

 

Data for this thesis is derived from the COSMIC data bank, from other Genomic Data 

Commons data on TCGA patients and from ensembl. These sources act as repositories for 

data from many different studies, often employing different standards and conventions. 

Improvements continue to be made to the standard of most of the data used within this 

thesis. For example, although the first human genome was completed in 2000, the genomic 

coordinate system GRCh37/Hg19 was significantly improved in 2013 using data from the 

1000 Genome Project to provide GRCh38/Hg38. Data derived before that data, including the 

TCGA data has been converted to the later genomic coordinate system to improve both 
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methylation and mutation data. However, GRCh38/Hg38 will not be the final coordinate 

system. A further human reference assembly is in development, and new models are being 

evaluated[303].  

 

I also rely heavily on information from the cancer gene census to identify candidate genes 

for tumour suppression [105]. This is a work in progress, and is updated as new evidence 

comes to light.  

 

Annotation techniques are also improving greatly, but are still not ideal. In particular, 

COSMIC͛s mutation database vϵϬ was introduced in September ϮϬϭϵ͘ The new version 

reannotates the cosmic data introducing new mutation identifiers and a more standardised 

representation of the variants. This helps reduce problems with multiple copies of the same 

mutation. However, many still remain. A particular problem is that many mutations are 

mapped to multiple transcripts. For example, sample PD4107a in breast cancer has 174 

entries at the same genomic location, mapped to 87 different transcripts. The TCGA data 

also has some accompanying basic medical data, but much of it is not complete, and this too 

is an area where standardisation would be very helpful.  

 

This thesis relies heavily on a number of other statistical methods, sometimes explicit, such 

as non-negative matrix factorisation and at other times embedded within experimental 

methods such as mutation calling. These are not perfect. For example, the methods for 

calling indels are not always reliable, particularly next to poly-nucleotide repeats. This raises 

the possibility that some of the excess of inframe indels next to poly-nucleotide repeats may 

be an artefact of indel-calling[304]. However, this should not affect the evidence of selective 
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pressure against frame-shift indels as this work specifically looked at those indels not next 

to repeats. More importantly, multi-nucleotide indels are a relatively uncommon form of 

mutation. As the number of cancer samples grows so it should be possible to repeat this 

analysis on the different tissue types.  

 

I have used the FATHMM column in order to assess which mutations are damaging. 

Mutations are classified as Pathogenic in COSMIC if the FATHMM score is 0.7 or over. 

However, FATHMM is itself a predictive tool and scores over 0.5 may be deleterious. Calling 

deleterious mutations is an unsolved problem, with many alternative options available 

including SIFT[305], PolyPhen[217], MutationAssessor[306], MutationTaster2[307] and 

Provean[308]. Although the methods vary they all depend on the ground truth of variants 

explored by experimental methods, included in collections such as 1000 Genomes[309], 

ClinVar[307], and  Humsavar[310]. These databases are a really useful resource draw 

together many different experimental methods but can be assumed to be better at 

identifying seriously deleterious variants than at identifying those that are marginal. It is 

disappointing that there is no equivalent to the Protein Data Bank for providing such 

information. 

  

Similarly, I have used the Broad Institute͛s analysis of correlations between methylation 

levels and gene expression to predict which genes are switched off. Again, this is an indirect 

method of predicting gene inactivation. This work would be much improved by data that 

more directly enabled identification of stable reductions in protein expression levels. Finally, 

there is a lack of experimental evidence associating changes in bacterial DNA with specific 

agents.  
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6.3 Future work  

In chapter 4, I identified potential bacterial signatures on the basis of variations in the genes 

seen in multiple bacterial strains  and proposed potential aetiologies derived by  comparison 

with existing mutational signatures  from cancer samples or samples that have been derived 

from exposure to known environmental mutagens. However, no experimental work has 

been done to confirm these signatures. I would like to collaborate with experimentalists to 

take the same approach to  the bacterial signatures, systematically exposing bacteria to 

known mutagenic stimuli and then identifying the mutagenic signatures. Doing this, 

together with an analysis of the DNA damage repair genes present in different bacteria, 

would enable comparisons of the impact of  the same environmental mutagens in both 

human and bacterial cells providing an insight into the impact of the different DNA damage 

repair systems at work. 

 

I  would also like to follow up work in chapter 6 to identify potential therapeutic drugs 

whose use could potentially be extended to provide therapies for patients with inactive 

tumour suppressor genes. The three main bioinformatic areas to this work I see as being: 

limiting the consideration of drugs to those with highly specific gene targets in order to 

reduce predictable side-effects; further analysis of the likely impact of missense mutations 

in order to distinguish between those that might cause  loss of function or gain of function, 

and  refinement of methylation correlations with gene expression in order to ignore those 

where correlations are likely to be spurious. With sufficient data is should also be able to 

look at the potential impact of drug combinations, by looking for groups of 3 genes that 

together have mutually exclusive inactivations. 
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Appendix 1 – Contribution to other work 

During my studies I have also contributed to other work as set out below. 

 

A draft proteomics identification database for Lymnaea stagnalis  

This work is a collaboration between Murat Eravci, Sarah K. Wooller, Aikaterini 

Anagnostopoulou, Michael Crossley, Paul Benjamin, Frances Pearl, Ildiko Kemenes and 

George Kemenes. The work is in progress. 

 

Contribution 

I provided bioinformatics support in order to help build a draft proteomics identification 

database for the snail, Lymnaea stagnalis from amino acid fastas provided by the 

experimental team. To do this I used the program MMSeqs[153] to ͚blast͛ the sequences 

against genomes from all molluscs available via Uniprot[311], in order to identify the closest 

protein which is currently annotated, and suggest a draft annotation. The work has not yet 

been published. 

 

Biological network topology features predict gene dependencies in cancer cell lines 

This work is a collaboration between Graeme Benstead-Hume, Sarah 

K. Wooller, Samantha Dias, Lisa Woodbine, Anthony M. Carr, and Frances M. G. Pearl. 

The paper is currently available on bioxiv at doi: https://doi.org/10.1101.751776 

Abstract 

In this paper we explore computational approaches that enable us to identify genes that 

have become essential in individual cancer cell lines. Using recently published experimental 
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cancer cell line gene essentiality data, human protein-protein interaction (PPI) network data 

and individual cell-line genomic alteration data we have built a range of machine learning 

classification models to predict cell line specific acquired essential genes. Genetic alterations 

found in each individual cell line were modelled by removing protein nodes to reflect loss of 

function mutations and changing the weights of edges in each PPI to reflect gain of function 

mutations and gene expression changes. We found that PPI networks can be used to 

successfully classify human cell line specific acquired essential genes within individual cell 

lines and between cell lines, even across tissue types with AUC ROC scores of between 0.75 

and 0.85. Our novel perturbed PPI network models further improved prediction power 

compared to the base PPI model and are shown to be more sensitive to genes on which the 

cell becomes dependent as a result of other changes. These improvements offer 

opportunities for personalised therapy with each individual’s cancer cell dependencies 

presenting a potential tailored drug target. The overriding motivation for predicting cancer 

cell line specific acquired essential genes is to provide a low-cost approach to identifying 

personalised cancer drug targets without the cost of exhaustive loss of function screening. 

 

Contribution 

I contributed to the main idea behind the paper and provided bioinformatics as well as 

editing. Specifically, using mutation and gene expression data from COSMIC[105] and 

DepMap[81], I calculated the weights of the PPI network edges.  
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Defining Signatures of Arm-Wise Copy Number Change and Their Associated Drivers in 

Kidney Cancers 

This work is a contribution between Graeme Benstead-Hume, Sarah K. Wooller, Jessica A 

Downs, and Frances M. G. Pearl. It was published in Nov 2019 and is available at 

doi: 10.3390/ijms20225762. 

 

Abstract 

Using pan-cancer data from The Cancer Genome Atlas (TCGA), we investigated how patterns 

in copy number alterations in cancer cells vary both by tissue type and as a function of 

genetic alteration. We find that patterns in both chromosomal ploidy and individual arm 

copy number are dependent on tumour type. We highlight for example, the significant 

losses in chromosome arm 3p and the gain of ploidy in 5q in kidney clear cell renal cell 

carcinoma tissue samples. We find that specific gene mutations are associated with 

genome-wide copy number changes. Using signatures derived from non-negative matrix 

factorisation (NMF), we also find gene mutations that are associated with particular 

patterns of ploidy change. Finally, utilising a set of machine learning classifiers, we 

successfully predicted the presence of mutated genes in a sample using arm-wise copy 

number patterns as features. This demonstrates that mutations in specific genes are 

correlated and may lead to specific patterns of ploidy loss and gain across chromosome 

arms. Using these same classifiers, we highlight which arms are most predictive of 

commonly mutated genes in kidney renal clear cell carcinoma (KIRC). 

 

Contribution 

I provided analysis and statistical support and helped edit the paper. 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Benstead-Hume%20G%5BAuthor%5D&cauthor=true&cauthor_uid=31744086
https://www.ncbi.nlm.nih.gov/pubmed/?term=Wooller%20SK%5BAuthor%5D&cauthor=true&cauthor_uid=31744086
https://www.ncbi.nlm.nih.gov/pubmed/?term=Downs%20JA%5BAuthor%5D&cauthor=true&cauthor_uid=31744086
https://www.ncbi.nlm.nih.gov/pubmed/?term=Downs%20JA%5BAuthor%5D&cauthor=true&cauthor_uid=31744086
https://www.ncbi.nlm.nih.gov/pubmed/?term=Pearl%20FM%5BAuthor%5D&cauthor=true&cauthor_uid=31744086
https://dx.doi.org/10.3390/ijms20225762
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Repression of Transcription at DNA Breaks Requires Cohesin throughout Interphase 

and Prevents Genome Instability 

This work is a collaboration between Cornelia Meisenberg, Sarah I Pinder, Suzanna R 

Hopkins, Sarah K Wooller, Graeme Benstead-Hume, Frances M G Pearl, Penny A Jeggo, and 

Jessica A Downs. It was published in November 2018 and is available at 

DOI: 10.1016/j.molcel.2018.11.001. 

 

Abstract 

Cohesin subunits are frequently mutated in cancer, but how they function as tumour 

suppressors is unknown. Cohesin mediates sister chromatid cohesion, but this is not always 

perturbed in cancer cells. Here, we identify a previously unknown role for cohesin. We find 

that cohesin is required to repress transcription at DNA double-strand breaks (DSBs). 

Notably, cohesin represses transcription at DSBs throughout interphase, indicating that this 

is distinct from its known role in mediating DNA repair through sister chromatid cohesion. 

We identified a cancer-associated SA2 mutation that supports sister chromatid cohesion but 

is unable to repress transcription at DSBs. We further show that failure to repress 

transcription at DSBs leads to large-scale genome rearrangements. Cancer samples lacking 

SA2 display mutational patterns consistent with loss of this pathway. These findings uncover 

a new function for cohesin that provides insights into its frequent loss in cancer. 

 

Contribution 

I provided statistical and bioinformatics support for this paper. Specifically, I demonstrated 

that there is a link between large-scale chromosomal alterations and changes in CNV using 

https://pubmed.ncbi.nlm.nih.gov/?term=Meisenberg+C&cauthor_id=30554942
https://pubmed.ncbi.nlm.nih.gov/?term=Pinder+SI&cauthor_id=30554942
https://pubmed.ncbi.nlm.nih.gov/?term=Hopkins+SR&cauthor_id=30554942
https://pubmed.ncbi.nlm.nih.gov/?term=Hopkins+SR&cauthor_id=30554942
https://pubmed.ncbi.nlm.nih.gov/?term=Wooller+SK&cauthor_id=30554942
https://pubmed.ncbi.nlm.nih.gov/?term=Benstead-Hume+G&cauthor_id=30554942
https://pubmed.ncbi.nlm.nih.gov/?term=Pearl+FMG&cauthor_id=30554942
https://pubmed.ncbi.nlm.nih.gov/?term=Jeggo+PA&cauthor_id=30554942
https://pubmed.ncbi.nlm.nih.gov/?term=Downs+JA&cauthor_id=30554942
https://doi.org/10.1016/j.molcel.2018.11.001
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COSMIC CNA data for an exome screen on breast cancers where information on large 

structural changes were available. I then used COSMIC copy number variance data and 

matching mutation data to demonstrate that samples with STAG2 mutations had 

statistically significantly more genes exhibiting either a loss or gain due to copy number 

variation than those without a STAG2 mutation. 

 

'Big data' approaches for novel anti-cancer drug discovery 

This work is a collaboration between Graeme Benstead-Hume, Sarah K Wooller, Frances M 

G Pearl . It was published in June 2017 and is available at 

DOI: 10.1080/17460441.2017.1319356. 

 

Abstract 

The development of improved cancer therapies is frequently cited as an urgent unmet 

medical need. Recent advances in platform technologies and the increasing availability of 

biological 'big data' are providing an unparalleled opportunity to systematically identify the 

key genes and pathways involved in tumorigenesis. The discoveries made using these new 

technologies may lead to novel therapeutic interventions. Areas covered: The authors 

discuss the current approaches that use 'big data' to identify cancer drivers. These 

approaches include the analysis of genomic sequencing data, pathway data, multi-platform 

data, identifying genetic interactions such as synthetic lethality and using cell line data. They 

review how big data is being used to identify novel drug targets. The authors then provide 

an overview of the available data repositories and tools being used at the forefront of 

cancer drug discovery. Expert opinion: Targeted therapies based on the genomic events 

driving the tumour will eventually inform treatment protocols. However, using a tailored 

https://pubmed.ncbi.nlm.nih.gov/?term=Benstead-Hume+G&cauthor_id=28462602
https://pubmed.ncbi.nlm.nih.gov/?term=Wooller+SK&cauthor_id=28462602
https://pubmed.ncbi.nlm.nih.gov/?term=Pearl+FMG&cauthor_id=28462602
https://pubmed.ncbi.nlm.nih.gov/?term=Pearl+FMG&cauthor_id=28462602
https://doi.org/10.1080/17460441.2017.1319356
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approach to treat all tumour patients may require developing a large repertoire of targeted 

drugs. 

 

Contribution 

I helped research and write the paper.
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Appendix 2 – Chapter 3 Supplementary information 

The tumour suppressor associated genes with a pathogenic mutation in at least 4% of 

samples in at least one tumour were:  

 

PTEN, APC, CSMD3, LRP1B, FAT4, ARID1A, PTPRT, GRIN2A, VHL, PTPRD, CNTNAP2, PIK3R1, 

KMT2C, CTCF, PTPRB, PTPRK, PBRM1, FAT1, DNMT3A, RB1, FBXW7, NF1, ZFHX3, ARID2, 

CDH10, KEAP1, EP300, ROBO2, STAG2, MED12, BCOR, ATR, NCOR2, ATM, SPEN, CAMTA1, 

DICER1, MYH9, NCOR1, PPP2R1A, POLE, ELF3, CDH1, CDKN2A, GPC5, RANBP2, KAT6B, 

SMAD4, SPOP, ERCC2, PTCH1, SETD2, NRG1, TSC2, SMARCA4, CDH11, CHEK2, PTPN13, 

CHD2, STAG1, PTPRC, ATRX, CBLB, BRCA2, PRDM1, WNK2, IKZF1, AMER1, TSC1, ARID1B, 

ARHGEF12, ZBTB16, CLTC, ZMYM3, TET2, TRIM33, STK11, DDX3X, CDK12, KDM5C, EBF1, 

PPP6C, DROSHA, RNF43, CASP8, ATP2B3, MSH6, SMC1A, ARHGEF10, CLTCL1, DNM2, 

ARHGEF10L, POLG, ASXL2, BAZ1A, LZTR1, LATS2, BAP1, CYLD, MRTFA, ERCC5, PRDM2, EXT1, 

SLC34A2, PER1, CNOT3, SETD1B, ERCC4, CDC73, LRIG3, EXT2, PMS2, CARS, BRIP1, ASXL1, 

CUL3, LATS1, N4BP2, AXIN1, ARHGAP26, FANCD2, HNF1A, LARP4B, ACVR2A, TENT5C, WRN, 

FBLN2, ZNRF3, MAX, RBM10, USP44, PTPN6, CEBPA, AXIN2, KNL1, SMAD2, PHF6, FH, 

PPARG, TRAF7, ETV6, ERCC3, MSH2, MLH1, EED, SDHA, POLD1, TPM3, CCDC6, RSPO2, 

CPEB3, FANCA, TGFBR2, DDX10, EIF3E, ABI1, IGF2BP2, BLM, SMARCD1 and NF2. 

 

The oncogene associated genes with a pathogenic mutation in at least 4% of samples in at 

least one tumour were: 
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 BRAF, PIK3CA, KRAS, CTNNB1, IDH1, NRAS, PREX2, MECOM, BIRC6, TRRAP, KMT2A, GRM3, 

CTNND2, ROS1, MTOR, KDR, CHD4, FGFR2, EGFR, SETBP1, NTRK3, ALK, TNC, FGFR3, 

CACNA1D, CARD11, ZEB1, CTNNA2, BCL11A, A1CF, FLT4, PRDM16, ERBB2, ERBB3, ZNF521, 

KAT6A, BCL9, FLT3, IDH2, AFF3, NUP98, MET, NCOA2, SF3B1, PDGFRA, KDM5A, USP6, 

ARHGAP5, PLCG1, FGFR1, TCF7L2, FOXP1, AFF4, PDGFRB, KIT, ABL2, HIP1, SALL4, RET, BRD4, 

RAC1, ABL1, MYB, MACC1, GATA2, DDR2, FGFR4, XPO1, PIK3CB, NFATC2, RAF1, STAT3, 

KCNJ5, PLAG1, LCK, BCL6, GLI1, IKBKB, SND1, PTPN11, MAPK1, HIF1A, TSHR, STIL, ERG, 

EWSR1, MN1, BRD3, GNAS, IL7R, TEC, JAK2, MLLT10, ETV1, MAP2K1, MAML2, PBX1, 

RAP1GDS1, AR, CCND1, PSIP1, DGCR8, KAT7, ARAF, CDH17, SYK, SMO, POU2AF1, AKT3, 

SGK1, SIX2, ACVR1, IL6ST, NUTM1, FLI1, HRAS, PAX3, USP8, WAS, TAL1, FUBP1, CREB3L2, 

MYC, STAT6, MUC16, H3F3A, PPM1D, SIX1 and MITF. 

 

The genes that were identified in the Cancer Gene Census as having both tumour 

suppressor and oncogenic activity, and have a pathogenic mutation in at least 4% of 

samples in at least one tumour were: 

 

TP53, KMT2D, KDM6A, TP63, ERBB4, NOTCH1, CREBBP, RUNX1T1, CUX1, MAP3K1, BCL9L, 

BCL11B, RUNX1, GATA3, CIC, JAK1, POLQ, BTK, CDKN1A, BCORL1, NTRK1, WT1, MAP3K13, 

NOTCH2, IRS4, NFE2L2, ARNT, EZH2, CBL, QKI, TET1, EPAS1, STAT5B, SUZ12, TBL1XR1, 

PABPC1, ATP1A1, RHOA, TRIM24, PRKAR1A, LEF1, MAP2K4, RAD21, NFKB2, FOXO1, FES, 

PAX5, ESR1, TCF3 and GPC3. 



 

 

 

Appendix 3 – Chapter 4 supplementary figures 

6.3.1 Supplementary figure 4.1 

Supplementary figure 1a legend. Bacterial strain clusters across conserved genes using 

sequence identity from the consensus gene as a measure of distance and using a 

cophrenetic distance of 0.7 to distinguish sub-species. This example shows Acinetobacter 

baumannii. 

 

 



 

 

 

Supplementary figure 1b legend. Bacterial strain clusters across conserved genes using 

sequence identity from the consensus gene as a measure of distance and using a 

cophrenetic distance of 0.7 to distinguish sub-species. This example shows Bacillus cereus. 

 

 



 

 

 

Supplementary figure 1c legend. Bacterial strain clusters across conserved genes using 

sequence identity from the consensus gene as a measure of distance and using a 

cophrenetic distance of 0.7 to distinguish sub-species. This example shows Burkholderia 

pseudomallei. 

 



 

 

 

Supplementary figure 1d legend. Bacterial strain clusters across conserved genes using 

sequence identity from the consensus gene as a measure of distance and using a 

cophrenetic distance of 0.7 to distinguish sub-species. This example shows Clostridioides 

difficile. 

 

 



 

 

 

Supplementary figure 1e legend. Bacterial strain clusters across conserved genes using 

sequence identity from the consensus gene as a measure of distance and using a 

cophrenetic distance of 0.7 to distinguish sub-species. This example shows Enterococcus 

faecalis . Two versions are presented: the first shows the raw data with many outlying strains that 

have large differences from each other. The second figure shows those subspecies that lie within the 

0.7 cut-off. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Supplementary figure 1f legend. Bacterial strain clusters across conserved genes using 

sequence identity from the consensus gene as a measure of distance and using a 

cophrenetic distance of 0.7 to distinguish sub-species. This example shows Enterococcus 

faecium 

 

 



 

 

 

Supplementary figure 1g legend. Bacterial strain clusters across conserved genes using 

sequence identity from the consensus gene as a measure of distance and using a 

cophrenetic distance of 0.7 to distinguish sub-species. This example shows Escherichia coli. 

 



 

 

 

Supplementary figure 1h legend. Bacterial strain clusters across conserved genes using 

sequence identity from the consensus gene as a measure of distance and using a 

cophrenetic distance of 0.7 to distinguish sub-species. This example shows Klebsiella 

pneumoniae. 

 

 



 

 

 

Supplementary figure 1g legend. Bacterial strain clusters across conserved genes using 

sequence identity from the consensus gene as a measure of distance and using a 

cophrenetic distance of 0.7 to distinguish sub-species. This example shows Listeria 

monocytogenes 

 



 

 

 

Supplementary figure 1i legend. Bacterial strain clusters across conserved genes using 

sequence identity from the consensus gene as a measure of distance and using a 

cophrenetic distance of 0.7 to distinguish sub-species. This example shows Mycobacterium 

abscessus. 

 

 

 

 

 

 

 

 

 

 



 

 

 

Supplementary figure 1j legend. Bacterial strain clusters across conserved genes using 

sequence identity from the consensus gene as a measure of distance and using a 

cophrenetic distance of 0.7 to distinguish sub-species. This example shows Mycobacterium 

tuberculosis. 

 

 

 

 



 

 

 

Supplementary figure 1k legend. Bacterial strain clusters across conserved genes using 

sequence identity from the consensus gene as a measure of distance and using a 

cophrenetic distance of 0.7 to distinguish sub-species. This example shows Neisseria 

gonorrhoeae. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 



 

 

 

Supplementary figure 1l legend. Bacterial strain clusters across conserved genes using 

sequence identity from the consensus gene as a measure of distance and using a 

cophrenetic distance of 0.7 to distinguish sub-species. This example shows Neisseria 

meningitidis. 

 

 



 

 

 

Supplementary figure 1m legend. Bacterial strain clusters across conserved genes using 

sequence identity from the consensus gene as a measure of distance and using a 

cophrenetic distance of 0.7 to distinguish sub-species. This example shows Pseudomonas 

aeruginosa. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 



 

 

 

Supplementary figure 1n legend. Bacterial strain clusters across conserved genes using 

sequence identity from the consensus gene as a measure of distance and using a 

cophrenetic distance of 0.7 to distinguish sub-species. This example shows Salmonella 

enterica.  

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 



 

 

 

Supplementary figure 1o legend. Bacterial strain clusters across conserved genes using 

sequence identity from the consensus gene as a measure of distance and using a 

cophrenetic distance of 0.7 to distinguish sub-species. This example shows Streptococcus 

pneumoniae. 

 

 



 

 

 

 

6.3.2 Supplementary figure 4.2 

 

 

Supplementary Figure 2a: Relative frequency of unique silent C>A mutations 



 

 

 

 

Supplementary Figure 2b: Relative frequency of unique silent C>G mutations 



 

 

 

 

 

Supplementary Figure 2c: Relative frequency of unique silent C>T mutations 



 

 

 

 

 

Supplementary Figure 2d: Relative frequency of unique silent T>A mutations 



 

 

 

 

 

Supplementary Figure 2e: Relative frequency of unique silent T>C mutations 



 

 

 

 

Supplementary Figure 2f: Relative frequency of unique silent T>G mutations 



 

 

 

  

 

6.3.3 Supplementary figure 4.3  

Percentage of unique silent T>C mutations that are preceded by A,C,G,T nucleotides 

respectively for different bacterial strain clusters. Suffixes _r, _g, _c refer to the colours (red, 

green, cyan) of the bacterial strain cluster in supplementary figures X. Most bacterial strain 

clusters are dominated by T>C mutations. For most bacterial species these are 

disproportionately found after a G nucleotide, i.e. they take the form GT>GC. 

 

 

 

 



 

 

 

6.3.4 Supplementary figure 4.4 



 

 

 

 

The mutational signatures formed from the mean mutational fingerprints can be clustered 

into 40 distinct clusters, 24 of which are shared between 3 or more bacterial subspecies.
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6.3.5 Supplementary figure 4.5 

 

In total 24 signatures were found that were shared by 3 or more bacterial subspecies. These 

are shown below. The prefix r_, g_, c_ refers to the colour of the corresponding cluster of 

bacterial strains in Supplementary figure 4.1. 

 

 

Signature 1 was the dominant signature in: 

 

56% of r_enterococcus_faecalis strains 

48% of g_enterococcus_faecalis strains 

44% of c_enterococcus_faecalis strains 

27% of g_neisseria_gonorrhoeae strains 

15% of r_salmonella_enterica strains 

6% of g_salmonella_enterica strains 

2% of g_escherichia_coli strains 
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Signature 2 was the dominant signature in: 

 

8% of c_salmonella_enterica strains 

4% of r_bacillus_cereus strains 

4% of c_streptococcus_pneumoniae strains 

3% of r_neisseria_meningitidis strains 

2% of r_escherichia_coli strains 

1% of r_acinetobacter_baumannii strains 
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Signature 3 was the dominant signature in: 

 

52% of c_burkholderia_pseudomallei strains 

46% of g_pseudomonas_aeruginosa strains 

40% of c_mycobacterium_tuberculosis strains 

27% of r_mycobacterium_tuberculosis strains 

27% of r_burkholderia_pseudomallei strains 

26% of r_salmonella_enterica strains 
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Signature 4 was the dominant signature in: 

 

17% of c_mycobacterium_abscessus strains 

12% of g_enterococcus_faecalis strains 

9% of r_streptococcus_pneumoniae strains 

9% of c_streptococcus_pneumoniae strains 

6% of r_klebsiella_pneumoniae strains 

5% of r_escherichia_coli strains 
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Signature 5 was the dominant signature in: 

 

79% of r_bacillus_cereus strains 

75% of c_bacillus_cereus strains 

57% of r_clostridioides_difficile strains 

48% of r_enterococcus_faecium strains 

40% of r_acinetobacter_baumannii strains 
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Signature 6 was the dominant signature in: 

 

18% of r_clostridioides_difficile strains 

4% of r_enterococcus_faecium strains 

4% of g_pseudomonas_aeruginosa strains 

2% of r_streptococcus_pneumoniae strains 

2% of r_bacillus_cereus strains 

 

 

 

Signature 7 was the dominant signature in: 

 

6% of r_mycobacterium_tuberculosis strains 

6% of g_mycobacterium_abscessus strains 

3% of c_mycobacterium_tuberculosis strains 

1% of r_burkholderia_pseudomallei strains 
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1% of g_pseudomonas_aeruginosa strains 

 

 

 

Signature 8 was the dominant signature in: 

 

34% of r_burkholderia_pseudomallei strains 

17% of g_salmonella_enterica strains 

16% of c_burkholderia_pseudomallei strains 

12% of c_klebsiella_pneumoniae strains 

10% of r_klebsiella_pneumoniae strains 
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Signature 9 was the dominant signature in: 

 

28% of c_klebsiella_pneumoniae strains 

27% of g_pseudomonas_aeruginosa strains 

19% of c_mycobacterium_abscessus strains 

16% of g_mycobacterium_abscessus strains 

12% of r_klebsiella_pneumoniae strains 
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Signature 10 was the dominant signature in: 

 

30% of c_klebsiella_pneumoniae strains 

10% of g_escherichia_coli strains 

6% of g_mycobacterium_abscessus strains 

6% of c_salmonella_enterica strains 

 

 

 

Signature 11 was the dominant signature in: 

 

72% of r_mycobacterium_abscessus strains 

8% of g_enterococcus_faecalis strains 

7% of c_bacillus_cereus strains 

5% of c_enterococcus_faecalis strains 
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Signature 12 was the dominant signature in: 

 

33% of r_mycobacterium_tuberculosis strains 

25% of c_burkholderia_pseudomallei strains 

14% of c_klebsiella_pneumoniae strains 

6% of r_burkholderia_pseudomallei strains 
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Signature 13 was the dominant signature in: 

 

27% of c_streptococcus_pneumoniae strains 

17% of r_streptococcus_pneumoniae strains 

15% of c_enterococcus_faecalis strains 

8% of r_enterococcus_faecalis strains 

 

 

 

Signature 14 was the dominant signature in: 

 

56% of g_mycobacterium_abscessus strains 

46% of g_escherichia_coli strains 

39% of c_salmonella_enterica strains 

37% of g_salmonella_enterica strains 
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Signature 15 was the dominant signature in: 

 

4% of r_enterococcus_faecium strains 

4% of c_klebsiella_pneumoniae strains 

3% of r_klebsiella_pneumoniae strains 

2% of r_neisseria_gonorrhoeae strains 
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Signature 16 was the dominant signature in: 

 

17% of g_salmonella_enterica strains 

8% of g_pseudomonas_aeruginosa strains 

6% of g_neisseria_gonorrhoeae strains 

3% of r_neisseria_meningitidis strains 

 

 

 

Signature 17 was the dominant signature in: 

 

71% of r_neisseria_meningitidis strains 

48% of r_neisseria_gonorrhoeae strains 

32% of g_neisseria_gonorrhoeae strains 

14% of r_salmonella_enterica strains 
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Signature 18 was the dominant signature in: 

 

25% of c_mycobacterium_tuberculosis strains 

17% of c_salmonella_enterica strains 

7% of r_escherichia_coli strains 

 

 

Signature 19 was the dominant signature in: 
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4% of c_bacillus_cereus strains 

2% of r_bacillus_cereus strains 

2% of r_acinetobacter_baumannii strains 

 

 

 

Signature 20 was the dominant signature in: 

 

80% of r_escherichia_coli strains 

18% of r_mycobacterium_abscessus strains 

17% of g_escherichia_coli strains 
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Signature 21 was the dominant signature in: 

 

13% of r_neisseria_gonorrhoeae strains 

12% of r_neisseria_meningitidis strains 

6% of g_neisseria_gonorrhoeae strains 

 

 

 

Signature 22 was the dominant signature in: 
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15% of c_salmonella_enterica strains 

13% of g_salmonella_enterica strains 

7% of r_klebsiella_pneumoniae strains 

 

 

 

Signature 23 was the dominant signature in: 

 

5% of g_listeria_monocytogenes strains 

4% of r_bacillus_cereus strains 

4% of c_bacillus_cereus strains 
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Signature 24 was the dominant signature in: 

 

12% of g_neisseria_gonorrhoeae strains 

9% of r_salmonella_enterica strains 

4% of r_neisseria_meningitidis strains 
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6.3.6 Supplementary figure 4.6 

Supplementary figure 6a. Pairs of bacterial and 

cancer signatures showing a high cosine similarity.  
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Supplementary figure 6b. Pairs of bacterial and 

cancer signatures showing a high cosine 

similarity.  
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Supplementary figure 6c. Pairs of bacterial and 

cancer signatures showing a high cosine similarity.  
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Supplementary figure 6d. Pairs of bacterial and 

cancer signatures showing a high cosine 

similarity.  
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Supplementary figure 6e. Pairs of bacterial and 

cancer signatures showing a high cosine 

similarity.  
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Supplementary figure 6f. Pairs of bacterial and cancer signatures showing a high cosine 

similarity.  
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