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Abstract 

This dissertation consists of three chapters investigating the modelling of financial tick-by-

tick data. Financial research using high-frequency data have been very active during the 

last two decades. The financial mathematical modelling of the high frequency price 

dynamics is based on the proper interpretation of the characteristics of the tick-by-tick data.  

The first chapter provides an empirical investigation of the tick-by-tick returns. First, I 

provide a sampling method of returns different from the sampling from identical time 

interval. Second, I compare the returns from the two sampling methods using the Central 

Limit Theorem. The empirical results suggest that sampling returns from identical number 

of tick-by-tick transactions could recover the normality of intraday returns at lower costs 

due to its faster convergent rate.  

The second chapter proposes a multiplicative component intraday volatility model. The 

intraday conditional volatility is expressed as the product of intraday periodic component, 

intraday stochastic volatility component and daily conditional volatility component. I extend 

the multiplicative component intraday volatility model of Engle (2012) and Andersen and 

Bollerslev (1998) by incorporating the durations between consecutive transactions. The 

model can be applied to both regularly and irregularly spaced returns. I also provide a 

nonparametric estimation technique of the intraday volatility periodicity. The empirical 

results suggest the model can successfully capture the interdependency of intraday 

returns.  

The third chapter explores the duration dynamics modelling under the Autoregressive 

Conditional Durations (ACD) framework (Engle and Russell 1998). I test different 

distributions assumptions for the durations. The empirical results suggest unconditional 

durations approach the Gamma distributions. Moreover, compared with exponential 

distributions and Weibull distributions, the ACD model with Gamma distributed innovations 

provide the best fit of SPY durations.   

Key Words: tick-by-tick data, Intraday volatility, Intraday seasonality, marked point process, 

UHF-GARCH models, intraday returns, Autoregressive Conditional Duration models, 

realized volatilities.  
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High frequency returns: The comparison of two sampling 

methods.  

1.1 Introduction 

The availability of large data computing techniques has reached a stage that allows for the 

investigation of a wide range of issues in the empirical high frequency financial research.  

 

According to the work of Goodhart and O’Hara (1997), empirical financial research using 

high frequency return data can be classified into three main categories.  

 

The first group studies the effects of market structure and its relationship with the 

interpretation and availability of high-frequency data. For data recorded at the finest level 

of frequency, it is hoped that the characteristics of trading mechanism and operational 

details and their effects on the market behavior can be revealed. For instance, discussions 

with respect to the minute operational details of the NYSE can be found in Hasbrouck et 

al. (1993) and O’Hara (1995); discussions on the price limits and mandatory trading halts 

in TSE has been presented in Lehmann and Modest (1994). 

 

The second group focuses on the statistical description and dynamic modelling of different 

random variables associated with the high frequency data set such as prices, volumes and 

waiting-time. An important feature of tick-by-tick data is that the distances between 

observations are not equally spaced in time. Thus, the waiting-time that is the time 

differences between two consecutive transactions can also be viewed as a random variable. 

This feature naturally suggests the use of marked point process in the modelling of waiting-

time series since point process could jointly model the arrivals of event and other 

information (marks) associated with events. Engle and Russell (1997) advocated the 

autoregressive duration model for the modelling of waiting-time between transactions. 
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Scalas et al. (2002) discussed the use of continuous time random walk model for the 

description of tick-by-tick dynamics. There are many papers with respect to the discussions 

concerning high frequency volatility: the use of integrated volatility that is defined as the 

sum of high frequency squared returns are suggested by Andersen et al. (1999), Bollerslev 

and Wright (2000) and Barndorff-Nielsen and Shephard (2002); modifications of the 

classic GARCH volatility model for intraday volatility dynamics can be found in Engle 

and Sokalska (2011), Russell (1999) and Bollerslev (1996).  

 

The third group investigates the information content of high frequency data and explores 

the possibility of using high frequency data to analyze the limitation of market efficiency. 

Their focus is on the analysis of the information flows and its relationship with price 

movements. For instance, Barclay and Warner (1993) argued that the medium sized trades 

have the highest possibility of being informed trades. Easley et al. (1996) also used intra-

day data to test the size effects. Jones et al. (1994) and Lyons (1994) argued that the 

transaction intensity carries more information than volume of transactions. Research on 

such effects is commonly known as the market micro-structure studies.  

 

A main issue regarding financial research using high frequency data is the sampling method 

of the returns. The statistical and economic conclusion drawn from high frequency data is 

directly based on the sampling method of returns. Given the nature of tick-by-tick records 

that the occurrence of transactions is irregularly spaced in time, it is of both practical and 

theoretical importance to consider sampling method other than calculating returns from 

fixed time intervals. Moreover, the unconditional return distribution is of both theoretical 

and practical importance in many pricing and risk management related areas.  

 

In this chapter, I focus on the unconditional distributional properties of the tick-by-tick 

returns of SPY. I first discuss the nature of time in sampling high frequency returns and 

explain my sampling methodology. I then compare my sampling method with sampling 

from fixed time interval and discus some stylized facts in empirical research using high 

frequency data. I provide a return sampling method that could reflect the variability of asset 

price in the busy trading hours and show this sampling method could recover the normality 
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to the return series.  I hope the data analysis of an equity with extremely high liquidity 

could contribute to the understanding of ultra-high-frequency financial data and form the 

bases for the next two chapters. Chapter 1 is organized as follows: 

 

Section 1.2 is the introduction of data and our sampling methodology. It also consists of 

analysis of the statistical characteristics of the return series. Section 1.3 analyzes the 

aggregation normality. Section 1.4 exhibits the discussion regarding the tail properties of 

the high frequency returns. Section 1.5 discusses the realized volatility and the standardized 

returns. Section 1.6 is the conclusion.  

1.2 Sampling returns from time and sampling returns from transactions 

In this section, I briefly introduce my data and explain my sampling methodology. 

Section 1.2.1 is the introduction of the tick-by-tick data. Section 1.2.2 presents the 

sampling methodology.  

1.2.1 The tick-by-tick data 

The data set is the tick-by-tick transaction records of SPDR S&P 500 ETF Trust (SPY) 

during 01/02/2014-12/31/2014. The data is collected from the company TICK DATA. SPY 

is chosen since it reflects the overall movement of the market and it is one of the most 

frequently traded equities. The term of “tick-by-tick” means the most detailed display of 

the trading information. Specifically, every trade is contained in the data.  It contains every 

transaction for 252 trading days. The out-of-hour transactions outside the time period 

between 9:30 am and 4:00 pm on each day are removed. There are 79156264 tick-by-tick 

transaction records.  

 

The data set consists of prices 𝑝𝑖,𝑑, volumes 𝑣𝑖,𝑑 and execution time 𝑡𝑖,𝑑. Where 

• 𝑑 is the day index, varying from 1 to the total number of trading days，252. 

• 𝑖 is the trade index, varying from 1 to the total number of trades occurring in day 𝑑.  

I define the waiting-time 𝑤𝑖,𝑑  as 𝑤𝑖,𝑑 = 𝑡𝑖+1,𝑑 − 𝑡𝑖,𝑑 . The tick-by-tick returns 𝑟𝑖,𝑑  is 

defined as 𝑟𝑖,𝑑 = ln⁡(
𝑝𝑖+1,𝑑

𝑝𝑖,𝑑
). 
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Table 1.1 Descriptive statistics of tick-by-tick returns and tick-by-tick durations.                                                       

Table 1.1 gives a brief statistical description of the tick-by-tick return and tick-by-tick 

waiting-time series. With respect to the tick-by-tick return series, the mean value of the 

returns is nearly indistinguishable from zero. In fact, there are many zero returns that result 

in the extremely high kurtosis. The extremely high kurtosis and negative skewness suggest 

that the distribution of the returns is obviously not normal. The absolute values of the 

maximum and minimum of tick-by-tick returns are very close to each other.  

 

With respect to the tick-by-tick waiting-time series, the waiting-time is counted in seconds 

and the mean value of the duration between two consecutive tick-by-tick transactions is 

around 0.07s. The mean indicates that the SPY is very frequently traded. The variance of 

the series is around 0.21 seconds squared. The maximum of the waiting-time is around 

1808s, meanwhile the minimum of the waiting-time series is 0s. The minimum of 0s for 

tick-by-tick waiting-time series represents that there are multiple transactions executed at 

the same time. Detailed analysis regarding the waiting-time series of SPY is presented in 

Chapter 3.  

 

Figure 1.1 SPY tick-by-tick returns 

 
Sample Size Mean Variance Kurtosis Skewness Maximum Minimum 

Tick-by-Tick 

returns 

79156012 3.2285E-10 7.30409E-09 60236.25405 -0.600116 0.0378838 -0.0379332 

Tick-by-Tick 

Waiting-times 

79156012 0.074495162 0.211414975 3407788.065 1085.8828 1808.476 0 
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Figure 1.2 SPY tick-by-tick waiting-time 

I conjecture from Table 1.1 that the operational details and transaction recording 

mechanism play a decisive role in the formation of the data pattern for a symbol like SPY 

with high liquidity. Unfortunately, these knowledges cannot be easily obtained and 

therefore their influences on the data pattern are hard to capture and to exclude. A direct 

use of the tick-by-tick transaction records might suffer from the distortion induced by such 

market microstructural details and further rises many difficulties in the construction of 

price dynamic model. For instance, since the average value of the tick-by-tick waiting-time 

series is around 0.07s, it is very difficult to capture the influence of intraday volatility 

periodicity on the price dynamics during such a short time interval since the estimation 

requires the full historical trading information in that short time interval, which generally 

causes large computation difficulties and is elaborated in Chapter 2. Also, from the 

economic perspective, it is highly unlikely that traders can respond any meaningful 

information in such a short time interval. Although computer trading programs could 

respond in time for market price movement information in time, it is hard to capture the 

trading mechanism behind such programs.  

 

In order to draw meaningful results from both economic and statistical perspective, I need 

to apply some standard for the aggregation of the tick-by-tick data. The question is that 

which standard can be used to aggregate the tick-by-tick records and what can be learned 

from such sampling method. I discuss the issue of sampling methodology in the next 

section.  
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1.2.2 Sampling Methodology 

In the construction of sampling method, I apply the “data-based” approach. One important 

principle is: “let the data speak for themselves”. It is argued by Engle (2006), “in addition 

to a model’s capability of producing statistical property that is observed in high frequency 

time series, the ultimate way to evaluate a model is its usefulness in many relevant areas 

such as option pricing and portfolio construction”. To circumvent the difficulties caused by 

the market microstructure effect and to avoid the unnecessary discard of data, I aggregate 

the tick-by-tick data by random variables associated with the transaction records. The 

natural candidates are volumes, transaction numbers and time since these are available 

random variables in the data. I further discuss those variables and their relations with price 

dynamics in the following literature review.  

 

 Literature Review  

 

The dependence of the price process on volumes has been recognized for a long time. Clark 

(1973) argues that the variation of trading volumes may account for the deviation of returns 

from normal distribution. Karpoff (1987) further suggests that in equity markets, volume 

rises more when prices are rising than when prices are falling. The dependence of the prices 

process on volume implies that volatility will also be affected by volume. Since then, the 

relationship between trading volume and stock prices has been widely investigated 

theoretically and empirically (Gallant et al. 1992, Campbell et al. 1993, Lastrapes and 

Lamoureux 1990). Almost all of these empirical researches suggest that the volume is 

positively correlated with volatilities.  

 

Another interesting empirical finding is, as summarized by Goodhart and O’Hara in 1997, 

that the volume is loosely, negatively correlated with the waiting-time. They further argued 

that where the price process goes will differ depending upon whether volume is high or 

low. Easley et al. (1994) analyzed the effect of the trade size on the price movement. They 

find that it is the occurrence of the transactions, rather than volume that moves the market. 

Jones et al. (1994) also suggested that volume has significantly less explanatory power than 

the number of transactions per second over the price movements. Such results imply that 
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it is the intensity of the occurrence of transactions, rather than the volume of those 

transactions, that moves the market since the number of transactions during fixed time 

interval is a measure of trading intensity. 

 

The intuitive assumption behind the use of market data sampled from fixed time interval 

in both empirical and theoretical financial research is that whatever drives the price process, 

it should be relatively stable during a short time interval. Developments on the research of 

market microstructure that focus on the decision-rules followed by price-setting agents 

clearly challenge this assumption in the context of high frequency financing (Goodhart and 

O’Hara 1997).  

 

A fundamental property of tick-by-tick data is that observations are not equally sampled in 

the time line. The “intra-day seasonal” such as the U shape of volumes and volatilities of 

equities on NYSE market (Lockwood and Linn 1990, Ghysels et al. 1993) makes the choice 

of optimal time interval very difficult. Specifically, if a short interval is chosen, there will 

be many intervals that contain no new information. In contrast, if we select a long interval, 

then information contained in the interval might be lost. Moreover, as argued by Diamond 

and Verrecchia (1987), short-sell constraint could impart information to no-trading 

intervals. Consequently, the waiting-time is not independent of the prices process. The 

result of Jone et al. (1994) further supported this implication by showing that the number 

of transactions is closely related to change of prices since transactions are more likely to 

happen when there is new information. Ane and Geman (2000) argue that the numbers of 

trades have more explanatory power over the price dynamics than the trading volumes. As 

a result, sampling by equal number of transactions should be more appropriate than 

sampling by equal amounts of trading volumes since it captures the volatility more 

accurately.  

 

There are two main advantages of this sampling method. First, it retains the information of 

waiting-time series. Second, since data is sampled by equal number of transactions, it 

reflects the variability of prices during the most frequently traded hours more accurately. 

Based on previous literatures, I sample from the tick-by-tick transaction data by both fixed 



8 

time intervals and fixed number of transactions. I compare the two sampling methods by 

analyzing the statistical characteristics of the aggregated returns series at different 

frequencies and discuss some stylized facts in the next section.  

 

 Time-aggregated returns and transaction-aggregated returns 

 

In this section I present the descriptive statistics of the return series from two different 

sampling methods at different frequencies. Recall that our data set consists of prices 𝑝𝑖,𝑑, 

volumes 𝑣𝑖,𝑑 and execution time 𝑡𝑖,𝑑, where 𝑑 is the day index, varying from 1 to the total 

number of trading days 252 and 𝑖 is the trade index, varying from 1 to the total number of 

trades occurring in day 𝑑. 

 

With respect to the returns sampled from fixed number of transactions, suppose that I use 

every consecutive T tick transaction records to calculate my non-overlap return series, then 

(𝑇)𝑟𝑖,𝑑, the ith return on day d of the aggregated return series, is defined as  

(𝑇)𝑟𝑖,𝑑 = ∑ ln (
𝑝𝑗+1,𝑑

𝑝𝑗,𝑑
)

(𝑇−1)𝑖
𝑗=(𝑇−1)(𝑖−1)+1 = ln⁡(

𝑝(𝑇−1)𝑖+1,𝑑

𝑝(𝑇−1)(𝑖−1)+1,𝑑
), 

where 𝑑 is the day index, varying from 1 to the total number of trading days 252, 𝑖 is the 

trade index, varying from 1 to the nearest integer less than or equal to the total number of 

trades occurring on day 𝑑  divided by T. I use the terminology “transaction-aggregated 

returns’’ to describe the returns calculated from fixed number of transactions. Specifically, 

by “T-1000 return series”, I mean the transaction-aggregated return series with 𝑇 = 1000.  

 

Regarding the returns sampled from fixed time intervals, suppose that I calculate the 

returns from every ∆𝑡 minute, then for the time interval  [𝜏, 𝜏 + ∆𝑡] on day d, I define 𝑠𝜏,𝑑 , 

the price of SPY at 𝜏  on day d, by the average price of the two transactions whose 

occurrence are closest to 𝜏. Specifically, 𝑠𝜏,𝑑 =
𝑝𝑚,𝑑+𝑝𝑛,𝑑

2
, where  

𝑚 = max⁡{𝑖|𝑡𝑖,𝑑 ≤ 𝜏} and⁡𝑛 = min⁡{𝑖|𝑡𝑖,𝑑 ≥ 𝜏}. 

𝑠𝜏+∆𝑡,𝑑 are defined similarly. Then I use ln⁡(
𝑠𝜏+∆𝑡,𝑑

𝑠𝜏,𝑑
）to define the return during the time 

interval [𝜏, 𝜏 + ∆𝑡] on day d. I use the terminology “time-aggregated returns’’ to describe 
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the returns calculated from fixed time intervals. Specifically, by “1-minute return series”, 

I mean the time-aggregated return series with ∆𝑡 = 1 minute.   

 

In order to fully exploit our tick-by-tick transaction data and to compare the return series 

measured at different frequencies, I use ∆𝑡 =30s, 1min, 1.5min, 3min, 5min, 10min, 15min, 

30min, 78min for the time-aggregated return series. The reason for not using tick-by-tick 

returns is presented in section 1.2.1. 

 

I choose the values of 𝑇  for the transaction-aggregated return series according to the 

sample sizes of time-aggregated returns to facilitate the comparison between the two 

sampling methods. For instance, since the 30-second return series has total 195834 

observations, I choose T=400 accordingly to yield the T-400 return series with 198013 

observations. In order to rule out the overnight effect, both time-aggregated and transaction 

aggregated returns are calculated within each trading day. Thus, it is difficult to choose the 

value of T to generate a transaction-aggregated return series with identical size of 

corresponding time-aggregated return series since transactions within a trading day varies. 

 

The average and minimum of SPY tick-by-tick transactions occurred in one trading day 

are 314111 and 121489 respectively. The high liquidity of SPY allows me to use relatively 

large value of T to calculate the intraday transaction-aggregated returns. I use 𝑇 =400, 800, 

1200, 2400, 4000, 8000, 12000, 24000 and 62000 for the transaction-aggregated returns.  

 
 

Sample Size Mean Variance Kurtosis Skewness Maximum Minimum 

30Sec 196560 1.2961E-07 5.30347E-08 264.8727029 -0.173806698 0.01225414 -0.012983101 

1Min 98280 2.5923E-07 9.67974E-08 95.91646403 -0.103161028 0.012458815 -0.012906394 

1.5Min 65520 3.8885E-07 1.39691E-07 80.86530506 -0.005621653 0.012036628 -0.013264313 

3Min 32760 7.7770E-07 2.70802E-07 39.85096976 -0.238157281 0.011012149 -0.014459855 

5Min 19656 1.2961E-06 4.06658E-07 8.436150587 0.075305595 0.006182118 -0.005359357 

10Min 9828 2.5923E-06 8.03275E-07 7.918815602 -0.037720742 0.008269006 -0.006320998 

15Min 6552 3.8885E-06 1.17727E-06 7.388130566 -0.079263515 0.007751481 -0.006653523 

30Min 3276 7.7770E-06 2.34033E-06 6.660810707 -0.095190193 0.011082252 -0.009269532 
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78Min 1260 2.0220E-05 6.20987E-06 6.687141886 -0.195275515 0.014103076 -0.014359004 

Table 1.2 Descriptive statistics of time-aggregated returns    
 

Sample Size Mean Variance Kurtosis Skewness Maximum Minimum 

T=400 198261 1.18123E-07 5.36498E-08 2878.43145 0.235143736 0.02944752 -0.029302461 

T=800 98942 2.24205E-07 9.13855E-08 401.405859 0.053587616 0.01968218 -0.019585466 

T=1200 65893 3.36582E-07 1.50566E-07 1046.22599 0.090477395 0.02954424 -0.029495885 

T=2400 32876 1.6904E-06 2.66206E-07 345.1177319 5.896603684 0.02988284 -0.002934328 

T=4000 19663 1.47527E-06 4.05294E-07 3.62073174 0.015212314 0.00385252 -0.003987089 

T=8000 9763 2.7081E-06 8.23168E-07 3.51020343 0.00229587 0.00562988 -0.003523489 

T=12000 6468 5.59325E-06 1.22472E-06 3.41251923 -0.039828733 0.00639776 -0.004232986 

T=24000 3162 1.30382E-05 2.48051E-06 3.490401133 -0.041531592 0.00904297 -0.005727332 

T=62000 1165 1.45991E-05 6.70171E-06 3.009298811 -0.054308977 0.00828105 -0.008328602 

Table 1.2 Descriptive statistics of transaction-aggregated returns  

With respect to the mean and variance, the sample means of transaction-aggregated return 

series and time-aggregated return series are nearly indistinguishable from zero. The means 

monotonically increase as the sample frequencies decreases. The variances of both 

transaction-aggregated return series and time-aggregated return series also increase 

monotonically as the sample frequencies decrease. The mean and variance of each time-

aggregated returns are very close to the mean and variance of the corresponding 

transaction-aggregated returns.  

 

In terms of the kurtosis, the fourth standardized moment, it decreases sharply with the 

decreasing return frequencies. For the transaction-aggregated returns, it decreases from 

2878.43 of the T-400 return series to 3.01 of the T-62000 return series. For the time-

aggregated returns, it drops from 264.87 of the 30-second return series to 6.69 of the 78-

minute return series. An intriguing result is that transaction-aggregated return series have 

higher values of kurtosis when returns are measured at highest frequencies. E.g. The 

kurtosis of T-400 return series and T-800 return series are 2878.43 and 401.41 respectively. 

In contrast, the kurtosis of the corresponding 30-second and 1-minute return series are 

264.87 and 95.92 respectively. Meanwhile time-aggregated returns exhibit higher kurtosis 

at relatively low frequencies. For instance, the kurtosis of 15-minute, 30-minute and 78-

min return series are 7.39, 6.66 and 6.68 respectively. In comparison, the kurtosis of T-

12000, T-24000 and T-62000 return series are 3.41, 3.49 and 3.01 respectively. Regarding 

this phenomenon, I present a plausible explanation.  
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Since the transaction-aggregated return series are sampled from fixed number of 

transactions, most of the observations in the series are calculated from tick-by-tick 

transactions during the busiest trading hours. As a result, the smaller the fixed number of 

transactions is used for the sampling, the higher the probability of a return observation 

being sampled from the busiest trading hours is. Thus, high frequency transaction-

aggregated return series exhibit larger kurtosis since it mainly describes the highly volatile 

price movement during the trading hours with the highest intensity of transactions. If a 

larger number is used for aggregating the tick-by-tick returns, the Central Limit Theorem 

asserts that the transaction-aggregated returns should be approximately normal since each 

return in a transaction-aggregated return series is the sum of tick-by-tick returns. In contrast, 

returns in a time-aggregated return series are not the sum of an identical number of tick-

by-tick returns. Although the Central Limit Theorem also applies to time-aggregated 

returns, the irregular number of tick-by-tick returns in each time interval might suggest that  

the time-aggregated returns should not be considered to follow some identical normal 

distribution. 

 

With respect to the skewness that is the third standardized moment, transaction-aggregated 

return series and time-aggregated return series exhibit very different features. A distinct 

feature is that time-aggregated return series tend to have negative skewness while the 

transaction-aggregated returns tend to have positive skewness. For instance, almost all the 

time-aggregated returns exhibit negative skewness and the only exception is the 5-minute 

return series with a skewness of 0.075. In contrast, there are only three of the nine 

transaction-aggregated returns with negative skewness. Specifically, the skewness of T-

12000, T-24000 and T-62000 are -0.040, -0.042 and -0.054 respectively.  

 

Although the absolute value of skewness of transaction-aggregated returns tend to decrease 

with the decreasing return frequencies, it does not have such tendency for time-aggregated 

returns. For instance, the skewness of 30-second return series is -0.174 while the skewness 

of 78-minute return series is -0.195. Among time-aggregated returns, the 1.5-minute return 

has the smallest absolute value of skewness 0.006. Among transaction-aggregated returns, 

the T-8000 has the smallest absolute value of skewness 0.002.  
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The absolute values of maximum and minimum of both transaction-aggregated returns and 

time-aggregated returns fluctuate around 0.01. The maximum of transaction-aggregated 

returns generally decreases as the return frequencies decrease. Specifically, it drops from 

0.029 for the T-400 return series to 0.008 for the T-62000 return series. It might be an 

implication that the abnormal returns can only occur in a very short time interval, which is 

in line with the theory of market efficiency since the theory asserts that most abnormal 

returns are associated with new information which will soon be common knowledge.  

 

It is widely identified that price movements in liquid markets do not exhibit any significant 

autocorrelations when returns are measured at relatively low frequency. The absence of 

significant autocorrelations in returns are often considered as a support of the market 

efficiency. Discussions regarding the relationship between the absence of autocorrelations 

in returns and the market efficiency can be found in Fama (1971,1994) and Plerou et al. 

(1999).  

 

However, the significant autocorrelation, usually negative, at very short lags is documented 

for most of the empirical financial research using high frequency data. Market 

microstructure research (Goodhart and O’Hara 1997 and Cambell et al. 1999) explain this 

phenomenon by the bid-ask bounce.  Another explanation is the feedback trading that is 

the trading behavior conducted by investors who extrapolate from historical prices. See e.g.  

Shiller (1984), Culter et al. (1990), Sentana & Wadhwani (1992) and Merton (1980).  

 

The volatility clustering is the phenomena that large price variations are more likely to be 

followed by large price variations. This phenomenon is commonly described by the 

positive autocorrelations of the squared returns. I now present the autocorrelations of the 

transaction-aggregated returns and time-aggregated returns. The significance level for the 

upper and lower bounds is 5%.   

 
 

30S 1Min 1.5Min 3Min 5Min 10Min 15Min 30Min 78Min 

Lag 1 -0.11357 -0.08265 -0.06652 -0.06156 -0.01506 -0.02468 -0.01052 0.018744 0.078542 

Lag 2 -0.00388 0.006217 -0.00964 -0.0166 -0.02727 -0.00717 -0.00204 0.058162 -0.03436 
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Lag 3 -0.00409 -0.01014 0.002306 -0.01246 0.011513 0.025502 0.043361 0.016442 -0.00045 

Lag 4 0.006286 -0.00573 -0.00376 0.002623 -0.00224 -0.01868 0.035667 -0.00274 -0.02225 

Lag 5 -0.00242 0.002863 -0.01425 0.013327 -0.00199 0.038865 -0.00593 0.003051 0.003938 

Lag 6 -0.00057 -0.00204 -0.00986 -0.00241 0.007446 0.029326 0.010969 -0.04483 -0.00908 

Lag 7 -0.00865 -0.00852 0.003313 -0.00739 0.005399 0.009408 0.022917 0.009573 -0.02074 

Lag 8 -0.0007 -0.0142 -0.00011 0.01208 -0.00443 -0.00226 -0.01917 -0.00182 0.067125 

Lag 9 -0.00036 -0.00551 0.009087 -0.00773 0.004174 -0.00252 -0.00845 -0.01438 0.031809 

Lag 10 0.003057 0.005903 0.008632 -0.00018 0.023175 0.02309 0.039042 -0.02076 -0.02454 

Lag 11 0.001128 -0.00305 -0.00708 0.006667 0.022194 0.008302 -0.02248 0.013483 -0.02821 

Lag 12 0.000678 0.003842 -0.00192 0.01046 0.008997 -0.01527 -0.03088 0.01013 0.007252 

Lag 13 -0.00305 0.00428 -0.00589 -0.01207 -0.00525 -0.01152 -0.01314 -0.01928 0.015616 

Lag 14 -0.00631 -0.00137 0.004525 0.003802 0.013263 0.025103 0.014792 -0.0149 -0.01386 

Lag 15 -0.0049 0.010166 -0.00576 0.003795 0.007467 0.009805 0.012154 0.002383 0.042766 

Lag 16 -0.00601 0.002462 0.004921 -0.00159 -0.00964 0.004594 -0.01175 -0.01162 0.008348 

Lag 17 -0.00726 -0.00316 0.004827 0.022055 -0.00405 -0.02713 -0.01802 0.005374 -0.04031 

Lag 18 0.000918 -0.00584 -0.00085 0.010818 0.006474 -0.02924 0.016184 -0.01553 -0.02521 

Lag 19 -0.00085 0.000445 -0.00187 0.00136 0.000358 -0.01727 -0.02304 0.009723 0.017224 

Lag 20 0.004044 -0.00203 0.000765 0.008906 0.009019 0.01095 -0.00304 0.041596 -0.003 

          

Upper Bounds 0.004511 0.00638 0.007813 0.01105 0.014265 0.020174 0.024708 0.034943 0.056344 

Lower Bounds -0.00451 -0.00638 -0.00781 -0.01105 -0.01427 -0.02017 -0.02471 -0.03494 -0.05634 

Table 1.3 Autocorrelation of time-aggregated return series 

According to Table 1.4, the first lag autocorrelations in time-aggregated returns is 

significant for almost all the time-aggregated return series. The two exceptions are 15-

minute return series and 30-minute return series. Nevertheless, unless the returns are 

sampled at highest frequencies, the first-lag autocorrelations are very close to zero. This 

phenomenon is in line with the stylized fact of the absence of linear correlations in return 

series. Besides, although most of the first-lag autocorrelations are negative, the 78-minute 

return series has a significantly positive autocorrelation around 0.078.  

 
 

T=400 T=800 T=1200 T=2400 T=4000 T=8000 T=12000 T=24000 T=62000 

Lag 1 -0.12754 -0.06112 -0.10101 0.005484 0.010487 -0.00232 -0.00546 -0.01872 0.027587 

Lag 2 0.002322 -0.00333 0.004357 0.007805 -0.00046 -0.01032 0.000462 -0.00032 -0.01767 

Lag 3 -0.00109 0.007604 0.002229 -0.00219 -0.00656 0.008421 -0.00591 0.054872 0.046572 

Lag 4 -0.00088 0.002633 0.001115 -0.00251 -0.00617 -0.00937 -0.00105 0.011778 -0.01994 

Lag 5 -0.00343 0.003307 0.003341 -0.00115 -0.00343 -0.00122 0.001642 -0.00843 -0.03589 

Lag 6 0.002837 -0.00219 -0.00072 -0.00348 0.003181 -0.00626 0.031672 0.018822 0.011799 

Lag 7 0.003249 0.001057 -0.0041 -0.00529 0.005893 -0.00176 0.004931 0.01619 -0.00944 

Lag 8 0.004238 -0.0015 0.001358 0.002251 -0.0104 0.010009 0.02126 0.002104 0.001322 

Lag 9 -0.00333 -0.00418 0.003063 -0.0027 -0.00198 0.006049 -0.00781 -0.00746 0.014582 
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Lag 10 0.000159 -0.00195 -0.00408 1.21E-05 0.000255 0.023248 -0.01098 -0.01453 -0.00506 

Lag 11 0.006263 0.002051 0.001855 0.001977 -0.00095 -0.00385 0.00202 -0.01981 -0.00109 

Lag 12 -0.00264 0.000883 0.002637 -0.00164 -0.00241 0.009951 0.015664 -0.00972 0.017795 

Lag 13 0.002065 0.003162 -0.0047 -0.00599 0.003079 0.011366 0.01658 0.012838 0.027761 

Lag 14 -0.0022 0.004046 -0.00562 0.003244 -0.00645 0.000837 0.002507 -0.02633 -0.04923 

Lag 15 0.00328 -0.00585 -0.00197 0.000205 0.003631 -0.00603 0.004895 0.003224 -0.01773 

Lag 16 -0.00067 0.000128 0.004372 0.007037 -0.0043 0.016433 0.011076 -0.01657 0.028164 

Lag 17 -0.00299 -0.00244 -0.00147 -0.00778 0.011854 -0.01736 -0.00331 -0.00547 -0.03656 

Lag 18 -0.00075 0.004705 -0.00096 -0.00153 0.004146 0.015651 -0.01586 0.008453 0.019041 

Lag 19 -1.2E-06 -0.00083 -0.00192 0.002899 0.008427 -0.00475 -0.00504 -0.01921 0.062479 

Lag 20 -0.00224 -0.00407 0.000604 0.000509 0.010229 0.009002 0.001028 -0.03972 0.017136 

          

Upper Bounds 0.004492 0.006358 0.007791 0.01103 0.014263 0.020241 0.024868 0.035567 0.058596 

Lower Bounds -0.00449 -0.00636 -0.00779 -0.01103 -0.01426 -0.02024 -0.02487 -0.03557 -0.0586 

Table 1.4 Autocorrelation of transaction-aggregated return series. 

Table 1.5 presents the autocorrelations of the transaction-aggregated return series. There 

are four return series that do not exhibit significant first lag autocorrelations. Specifically, 

these return series are the T-8000, T-12000, T-24000 and T-62000 return series.  
 

30S 1Min 1.5Min 3Min 5Min 10Min 15Min 30Min 78Min 

Lag 1 0.491988 0.477804 0.449886 0.382291 0.179437 0.169969 0.19106 0.16986 0.209958 

Lag 2 0.006643 0.027125 0.036797 0.042005 0.237255 0.181569 0.2425 0.245731 0.300091 

Lag 3 0.00569 0.028009 0.014855 0.054265 0.183269 0.215181 0.197092 0.186489 0.18471 

Lag 4 0.006257 0.020629 0.018521 0.045887 0.192326 0.272145 0.206693 0.196917 0.116017 

Lag 5 0.007339 0.017769 0.016264 0.040648 0.176035 0.215015 0.158317 0.12894 0.146053 

Lag 6 0.006126 0.014964 0.019175 0.043493 0.200129 0.174359 0.167453 0.189599 0.059737 

Lag 7 0.005678 0.014957 0.019746 0.040234 0.225508 0.208508 0.147395 0.15568 0.071832 

Lag 8 0.004716 0.013338 0.018701 0.046033 0.190529 0.171067 0.134145 0.107617 0.179149 

Lag 9 0.004742 0.019658 0.017874 0.04368 0.186128 0.197095 0.147343 0.136254 0.148762 

Lag 10 0.00469 0.018044 0.019572 0.038323 0.182269 0.145225 0.137545 0.177981 0.212956 

Lag 11 0.003876 0.015657 0.017815 0.055815 0.163151 0.178789 0.13029 0.19438 0.209694 

Lag 12 0.003417 0.0162 0.01644 0.044838 0.156464 0.13976 0.103214 0.124865 0.065994 

Lag 13 0.004616 0.012558 0.019198 0.038612 0.15703 0.156514 0.12698 0.172143 0.126963 

Lag 14 0.004674 0.012609 0.025141 0.036234 0.178204 0.168137 0.142269 0.167073 0.088896 

Lag 15 0.003452 0.013802 0.020011 0.036547 0.188024 0.129442 0.11328 0.130477 0.126448 

Lag 16 0.004047 0.01249 0.018113 0.036811 0.124292 0.142727 0.125913 0.102856 0.165943 

Lag 17 0.004136 0.012437 0.020331 0.037784 0.217291 0.133387 0.121344 0.112751 0.062895 

Lag 18 0.0049 0.013744 0.017288 0.036481 0.145389 0.115057 0.123119 0.114057 0.070222 

Lag 19 0.005677 0.014089 0.015864 0.041073 0.125791 0.11942 0.175337 0.075653 0.074356 

Lag 20 0.004216 0.016683 0.014449 0.0384 0.131843 0.106132 0.124039 0.132469 0.087552 

          

Upper Bounds 0.004511 0.00638 0.007813 0.01105 0.014265 0.020174 0.024708 0.034943 0.056344 

Lower Bounds -0.00451 -0.00638 -0.00781 -0.01105 -0.01427 -0.02017 -0.02471 -0.03494 -0.05634 
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Table 1.5 Autocorrelation of time-aggregated squared return series 

Table 1.6 describes the autocorrelation of time-aggregated squared returns at different 

frequencies. The volatility clustering phenomenon is obvious. All the time-aggregated 

returns exhibit strong first lag autocorrelation. These first lag autocorrelation are highly 

significant and are of unneglectable values. It roughly decays with the decreasing return 

frequencies.  

 
 

T=400 T=800 T=1200 T=2400 T=4000 T=8000 T=12000 T=24000 T=62000 

Lag 1 0.499662 0.497506 0.499421 0.000199 0.098132 0.081313 0.068692 0.101727 0.065849 

Lag 2 3.05E-05 0.000845 0.000485 0.000241 0.133706 0.103381 0.137646 0.113665 0.104162 

Lag 3 3.68E-06 0.00086 0.000298 0.00113 0.096429 0.154742 0.111972 0.123646 0.080449 

Lag 4 3.56E-05 0.000816 7.1E-05 0.000495 0.113843 0.119533 0.108117 0.120692 0.116854 

Lag 5 6.55E-05 0.000611 7.78E-05 0.000228 0.138599 0.09851 0.109702 0.154277 0.074213 

Lag 6 5.99E-05 0.000722 0.000194 0.00031 0.105519 0.098749 0.101987 0.113427 0.051343 

Lag 7 3.09E-05 0.001001 0.000192 0.000293 0.135665 0.136247 0.105315 0.095619 0.09716 

Lag 8 0.000192 0.000585 -9.7E-06 0.000219 0.0904 0.119155 0.087647 0.121837 0.039991 

Lag 9 0.000157 0.000387 -4.2E-05 0.000297 0.085965 0.113032 0.15414 0.121664 -0.01079 

Lag 10 -7.8E-06 0.00043 -9.4E-05 0.000115 0.108049 0.103823 0.101166 0.125147 0.061449 

Lag 11 -2.6E-05 0.000417 -8.7E-05 0.000107 0.099834 0.112571 0.077766 0.079254 0.020576 

Lag 12 -3E-05 0.000309 -6E-05 0.000112 0.094312 0.09446 0.099905 0.042135 0.019021 

Lag 13 -1.7E-05 0.00063 0.000241 0.000128 0.093963 0.087801 0.099941 0.108344 0.05221 

Lag 14 4.25E-05 0.00079 0.000316 0.000338 0.088012 0.15419 0.094019 0.128008 0.069932 

Lag 15 1.89E-05 0.000869 1.62E-05 0.000695 0.103657 0.097573 0.078355 0.093397 0.065214 

Lag 16 1.44E-05 0.000618 -5.7E-05 0.001007 0.110921 0.090875 0.104849 0.110485 0.032774 

Lag 17 4.33E-05 0.000268 -5.5E-05 0.000353 0.086435 0.086018 0.065852 0.080172 0.020441 

Lag 18 2.97E-06 0.000267 0.000161 0.000406 0.108021 0.118912 0.09593 0.103208 -0.00308 

Lag 19 3.57E-05 0.000296 0.00016 0.000328 0.087713 0.098797 0.084226 0.101075 0.047338 

Lag 20 -1.3E-05 0.000477 -0.0001 5.51E-05 0.091522 0.081316 0.06334 0.075544 -0.00127 

          

Upper Bounds 0.004492 0.006358 0.007791 0.01103 0.014263 0.020241 0.024868 0.035567 0.058596 

Lower Bounds -0.00449 -0.00636 -0.00779 -0.01103 -0.01426 -0.02024 -0.02487 -0.03557 -0.0586 

Table 1.6 Autocorrelation of transaction-aggregated squared return series 

Table 1.7 exhibit very similar results to Table 1.6. The main difference is that when 

transaction-aggregated returns are measured at relatively low frequencies the first lag 

autocorrelation is very small and nearly insignificant. Specifically, the first autocorrelation 

of T-62000 return series is 0.066 that is close to the upper bound of 0.059. Moreover, the 

first lag autocorrelation is close to zero.  
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In order to further investigate the difference of the two sampling methods, we discuss and 

compare several statistical characteristics of returns from the two sampling methods such 

as aggregational normality and tail properties.  

 

1.3 Aggregational Normality 

Although the mean of transaction-aggregated returns and time-aggregated returns can be 

plausibly assumed to be zero, the excess kurtosis and non-zero skewness clearly suggests 

that the returns are not normally distributed. Nevertheless, the generally decreasing kurtosis 

of return series implies that the empirical return distributions are more and more close to 

normal distributions as the frequencies of returns decrease. This phenomenon is widely 

identified and discussed as the “aggregational normality” in empirical research using high 

frequency data (Cont 2001).  

 

The assumption of normally distributed asset returns plays a decisive role in almost all 

pricing relevant activities such as option valuation, risk management and portfolio 

construction. Nevertheless, the presence of leptokurtosis and non-zero skewness is a widely 

investigated and accepted stylized fact regarding the distribution of asset returns (Cont 

2001). Fama (1965) showed that the distribution of returns approached the normal 

distribution if the holding period extends from one day to one month. Mandelbrot (1963) 

used a stable process to explain the deviation of equity returns from the normal distribution. 

Ane and Geman (2000) showed that the high frequency returns are conditional on the 

number of transactions. Moreover, they argued that, based on Clark’s work on 1973, the 

valuation of an equity is equivalent to the identification of the time deformation of original 

high frequency return series that could recover the normality of such series.  

 

Motivated by these results and the fact that time-aggregated returns and transaction-

aggregated returns have different statistical characteristics such as kurtosis, I compare the 

two sampling methods in terms of the aggregational normality. I want to address an 

empirical question: “Which sampling method can provide normally distributed return 

series with higher frequency?”. The answer to this question might help us to understand 
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the nature of tick-by-tick returns and further contribute to its dynamic modelling.  

 

I carry out two sets of normality tests. In the first set of normality test, I examine the 

normality of the transaction-aggregated return series and time-aggregated return series 

using the whole sample. In the second set of normality test, I examine the normality of the 

two sets of return series on daily basis. Specifically, I carry out the normality test on each 

day’s transaction-aggregated return series and time-aggregated return series. The statistics 

used in the normality test are EDF statistics D, V,⁡⁡𝑊2,𝑈2 and 𝐴2. The details of these 

statistics and the test procedures are presented in Appendix A (Stephens 1974).  
 

30Sec 1Min 1.5Min 3Min 5Min 10Min 15Min 30Min 78Min 

Sample size 196560 98280 65520 32760 19656 9828 6552 3276 1260 

D 44.38997 28.18536 22.82909 15.0778 10.53782 7.185938 5.868893 4.22834 2.763899 

V 88.36515 55.86088 45.43276 29.79012 20.05774 13.8916 11.09009 7.852333 5.134825 

𝑾𝟐 975.4515 354.4086 237.9483 104.0238 45.52168 21.96869 13.26837 6.698358 2.660654 

𝑼𝟐 975.4213 354.3744 237.9338 103.9936 45.47667 21.92438 13.18956 6.668071 2.635175 

𝑨𝟐 Inf Inf Inf Inf Inf Inf 75.5676 37.0617 14.71987 

Table 1.7 EDF statistics of time-aggregated returns  

 
T=400 T=800 T=1200 T=2400 T=4000 T=8000 T=12000 T=24000 T=62000 

Sample size 198261 98942 65893 32876 19663 9763 6468 3162 1165 

D 31.70505 13.65617 12.30105 5.029308 2.455067 1.334636 1.37649 0.912603 0.666228 

V 62.59288 27.18621 24.54178 9.948603 4.589417 2.466574 2.405428 1.995015 1.296045 

𝑾𝟐 339.6452 59.89948 62.45164 10.39527 1.562107 0.382361 0.334116 0.300721 0.081262 

𝑼𝟐 339.6411 59.89944 62.45128 10.3944 1.562038 0.372619 0.31038 0.275914 0.075185 

𝑨𝟐 Inf Inf Inf Inf 9.000769 2.763163 2.265547 1.75191 0.51716 

Table 1.8 EDF statistics of transaction-aggregated returns  

Statistics Significance level 

 
5% 2.5% 1% 

D 0.895 0.955 1.035 

V 1.489 1.585 1.693 

 𝑾𝟐 0.126 0.148 0.178 

 𝑼𝟐 0.116 0.136 0.163 

 𝑨𝟐 0.787 0.918 1.092 

Table 1.9 Critical values of EDF statistics for the null hypothesis of normal distribution 

I conclude two important results from Table 1.8. First, the values of the EDF statistics 

decrease monotonically as the frequencies of the time-aggregated returns decrease. For 

instance, the values of the Kolmogorov statistics D, Kuiper statistic V and the Cramér–von 
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Mises statistics 𝑊2 drop from 44.390, 88.365 and 975.425 for the 30-second return series 

to 2.764, 5.135 and 2.661 for the 78-minute return series respectively. The phenomena that 

the values of these EDF statistics approach to the critical values in Table 1.10 suggest that 

the distributions of time-aggregated return series approach to the normal distribution as the 

return frequencies decrease. This is in line with the widely identified stylized fact of 

aggregational normality.  

 

Second, the null hypothesis is rejected for all time-aggregated return series at significance 

level of 1% using all these five EDF statistics. For instance, the values of the D, V,⁡⁡𝑊2,⁡⁡𝑈2 

and ⁡⁡𝐴2  for the 78-minute return series are 2.764, 5.135, 2.661, 2.634 and 14.720 

respectively and meanwhile the critical values of these statistics are 1.035, 1.683, 0.178, 

0.163 and 1.092 respectively at significance level of 1%. This empirical finding suggests 

that the empirical distributions of time-aggregated returns are not normally distributed 

although they approach to the normal distribution as the return frequencies decrease. 

 

With respect to the results for the transaction-aggregated return series in Table 1.9, the 

situation is very similar. The aggregational normality is identified by the monotonical 

decreasing values of the EDF statistics. Recall that since I set the values of T that is the 

fixed number used to aggregate the tick-by-tick observations according to sample size of 

time-aggregated return series, I can compare their statistics accordingly in this sense. When 

compared with Table 1.8, Table 1.9 shows two interesting findings: 

 

First, the values of the statistics of the transaction-aggregated return series are much 

smaller than the values of these statistics of corresponding time-aggregated return series.  

E.g. The values of statistics D, V,⁡⁡𝑊2 and⁡⁡𝑈2 for the return series aggregated from every 

400 transactions are 31.705, 62.592, 339.645 and 339.641 respectively while the values of 

these statistics for the 30-second return series are 44.390, 88.365, 975.451 and 975.421 

respectively. It implies that the empirical distributions of transaction-aggregated returns are 

more like the normal distribution when compared with the time-aggregated returns of 

similar sample size.  

 



19 

Second, the values of statistics D, V,⁡⁡𝑊2,𝑈2 and 𝐴2 for the T-62000 return series are 0.666, 

1.296, 0.081, 0.075 and 0.517 respectively. The null hypothesis that the sample comes from 

a normal distribution cannot be rejected at significance level of 5% when using any of these 

statistics. I can therefore assume the returns aggregated from every 62000 tick-by-tick 

transactions following the normal distribution. In contrast, the values of statistics D, 

V,⁡⁡𝑊2,⁡⁡𝑈2 and ⁡⁡𝐴2 of the corresponding 78-minute return series all obviously exceed that 

critical values at significance level of 1%. Meanwhile, the value of Kolmogorov statistics 

D of the T-24000 return series is 0.913 that is less than the critical value of D at significance 

level of 2.50%.  

 

These results suggest an important empirical difference between the two sampling methods. 

Compared with returns sampled from fixed time interval, returns sampled from fixed 

number of transactions are more like a population from normal distribution. Moreover, 

when the return frequency decreases, the empirical distribution of transaction-aggregated 

returns approaches the normal distribution faster than the time-aggregated returns.  

 

For a symbol with high liquidity like SPY, there are hundreds of thousands tick-by-tick 

transactions during each day. Thus, I can further investigate this difference by examining 

the aggregation normality of the two sampling methods on daily basis. The second set of 

tests is for the further illustration and completeness. Specifically, I carry out the normality 

test using EDF statistics D, 𝑊2  and ⁡⁡𝐴2  on each day’s time-aggregated and transaction 

aggregated returns. As showed by Stephens (1974), in the case of testing unknown normal 

distributions, 𝑊2 and ⁡⁡𝐴2 are preferred statistics since they have stronger power than D. 

D is chosen for the completeness. Returns within a trading day are considered to follow 

normal distribution if all the three statistics D, 𝑊2 and⁡⁡𝐴2 cannot reject the null hypothesis 

at significance level of 5%.  

 

Rate of normality is defined to be the ratio of the number of days that all three EDF tests 

cannot reject the null hypothesis to 252 that is the total number of the days in our data.  

 

In order to allow for enough observations, I use ∆𝑡 00.5, 1, 1.5, 3, 5 minutes for time-
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aggregated returns within each trading day. The corresponding transaction-aggregated 

returns within each trading day are sampled from T0400, 800, 1200, 2400 and 4000. Note 

that, the sample size of transaction-aggregated transactions on each day varies largely and 

meanwhile the sample size of time-aggregated returns on each day is fixed. The least 

number of transactions occurring in one trading day is 121489. The T-4000 return series 

within that trading day has 30 observations.   
 

30S 1Min 1.5Min 3Min 5Min 

Sample size of each day 780 390 260 130 78 

Rate of normality 1.59% 9.52% 14.29% 36.51% 59.13% 

Table 1.10 Summary of within-day normality test on time-aggregated returns 

 
T=400 T=800 T=1200 T=2400 T=4000 

Average sample size of each day 785 391 261 130 78 

Rate of normality 3.17% 30.56% 84.92% 89.92% 92.21% 

Table 1.11 Summary of within-day normality test on transaction-aggregated returns 

Table 1.11 indicates that the rate of normality increases monotonically as the length of the 

fixed time interval used to sample returns for the time-aggregated return series. This results 

further support the aggregational normality. Specifically, it increases from 1.59% for the 

30-second within-day return series to 59.13% for the 5-minute within-day return series. It 

implies that when the return series during a trading day are sampled from every 5 minute, 

there are more than 40% of them cannot be assumed to follow normal distributions.  

 

Table 1.12 suggests that the rate of normality for transaction-aggregated returns also 

increases monotonically as the number of transactions used to calculate returns increases. 

However, an important difference is that transaction-aggregated returns in each day have 

much higher probability to follow normal distribution when compared with time-

aggregated returns. For instance, when we aggregated every 1200 tick-by-tick transactions 

to generate the return series in each of the 252 trading days, 84.92% of these return series 

can be considered as normally distributed. Meanwhile, the average sample size of the return 

series aggregated from 1200 tick-by-tick transactions in each day is around 260. In contrast, 

only 14.29% of the 1.5-minute return series in each day can be assumed to follow normal 

distribution. More obvious evidence comes from the last column of Table 1.12, when I 

aggregate every 4000 tick-by-tick transactions to generate return series in each day, the 

average sample size of each trading day is around 78 while the normality rate is 92.21%. 
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Meanwhile, the corresponding 5-minute return series within each day have a normality rate 

of 59.13%.  

 

The test of the return series sampled from fixed time interval and fixed number of 

transactions with respect to the aggregational normality suggests that the empirical 

distributions of transaction-aggregated returns are closer to the normal distribution when 

compared with the empirical distribution of time-aggregated returns. Moreover, compared 

with sampling from fixed time interval, sampling from fixed number of transactions can 

recover the normality of return series at lower costs in the sense it can preserve larger 

sample size. 

 

The aggregational normality is not surprising at first glance due to the Central Limit 

Theorem. Recall the standard Central Limit Theorem : Let {𝑋𝑡} be a sequence of identically 

distributed independent random variables with 𝐸(𝑋𝑡) = 𝑢  and 𝑉𝑎𝑟(𝑋𝑡) = 𝜎
2  for all t. 

Then,  

⁡𝑙𝑖𝑚
𝑡→∞

𝑃 (
∑ 𝑋𝑡−𝑛𝑢
𝑛
𝑡=1

√𝑛𝜎
≤ 𝑥) = 𝛷(𝑥) , where 𝛷  is the cumulative distribution function of the 

standard normal distribution.  

 

i.i.d. assumption is not valid for the {𝑋𝑡} of tick-by-tick data. Jirak (2016) and Hormann 

(2009) discuss some generalizations of the standard Central Limit Theorem for economic 

time series. Suppose the tick-by-tick return process ⁡{𝑋𝑡}⁡⁡is modeled by a GARCH(p,q) 

process  

⁡𝑋𝑡 = 𝜀𝑡𝜎𝑡, ε~𝑁(0,1)⁡𝑎𝑛𝑑⁡{𝜀𝑡}⁡𝑖𝑠⁡𝑎𝑛⁡𝑖. 𝑖. 𝑑⁡𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒, 

                          𝜎𝑡
2 = 𝜇 + ∑ 𝛼𝑖

𝑝
𝑖=1 𝜎𝑡−𝑖

2 + ∑ 𝛽𝑗
𝑞
𝑗=1 𝑋𝑡−𝑗 where⁡𝛼𝑖 and 𝛽𝑗 are coefficients. 

A stochastic process is said to be stationary if it has an unconditional joint distribution that 

does not change when shifted in time. For detailed discussion regarding stationarity of 

GARCH process, see e.g., DeGroot and Schervish (2014) and Walter (2010). Suppose that 

the stationarity of {𝑋𝑡}  can be verified under the GARCH(p,q) specification, then the 

Central Limit Theorem still holds for {𝑋𝑡}. The stationarity is determined by the parameters 

𝛼𝑖′𝑠  and 𝛽𝑗′𝑠 . Specifically, the process is said to have weak stationarity if  ∑ 𝛼𝑖
𝑝
𝑖=1 +
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∑ 𝛽𝑗
𝑞
𝑗=1 <1. However, the tick-by-tick return data presents many erratic statistical features 

that cannot be explained by the GARCH models. The GARCH models are also widely 

reported as not suitable for modelling high frequency return series (Engle 2000 and 

Hasbrouck 1996). Moreover, the assumed stationarity for the GARCH process generally is 

not valid when using high frequency data. A more detailed discussion regarding Berry-

Essen bound for GARCH process is presented in Appendix B. 

 

An alternative explanation of the aggregational normality is provided by the mixture of 

distributions model (MODM). It assumes the variability of equity prices are caused by the 

differences in information arrival rates. The standard MODM model assumes traders with 

different expectations, different risk profiles and corresponding reservation prices (Harris 

1986 and Richardson and Smith 1994). Traders adjust their reservation prices as the 

information arrives and the market price is moved consequently. Thus, the daily price 

change is the sum over the within-day price changes. Then Central Limit Theorem shows 

that the daily price changes can be described as the mixtures of independent normal 

distributions.  

 

From the perspective of MODM framework, if we view the transactions are results of new 

information arrival, then returns aggregated from fixed number transactions are proxies of 

the sum of the unseen information flows. Therefore, the Central Limit Theorem can provide 

a plausible explanation of the aggregational normality. However, the effects of information 

on traders and trading are not addressed in this framework. Besides, for my tick-by-tick 

data transaction records, the average waiting-time between two consecutive transactions is 

around 0.07s. It is unplausible to assume that the traders can respond to new information 

arrivals in such a short time interval.  

1.4 Tails of the return distributions 

My empirical analyses suggest that intraday return series, sampled from fixed time 

intervals and fixed number of transactions, both exhibit heavy tails. This non-Gaussian 

character of the high frequency return distribution implies the non-negligible probability 

of occurrence of abnormal market price movement. As a result, an accurate description of 
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the tails of return distribution is desirable. The use of generalized Pareto distribution for 

measuring distribution tails is introduced by DuMouchel (1983). After that, it is widely 

accepted in empirical financial research for the modelling of the tails of return distributions 

(Jasen and de Vires 1991, Loretan and Phillips 1994, and Young and Graff 1995). The 

interpretation of the tail thickness is often related with the tail index 𝛼  of stable 

distributions. In this section, I first discuss literatures of measuring returns tail thickness. 

Then I analyze some basic properties of the stable distributions and generalized Pareto 

distribution. Finally, I present my tail fit using generalized Pareto distribution and compare 

the empirical results from the different sampling methods.  

 

Mantegna and Stanley (1995) argued that the distribution of high-frequency S&P index 

returns can be well described by a truncated Lévy distribution. The density of Lévy 

distribution has an approximately power-law decay in tail. Specifically, 𝑆(𝑟)~𝑟−𝛼,  where 

𝑆(𝑟) = 1 − Pr⁡(𝑅 ≤ 𝑟) and 0 < 𝛼 < 3. Research focusing on the asymptotic behavior of 

the tails of high-frequency returns in the US and the Chinese stock markets suggest that 

the high frequency returns tend to follow an inverse cubic law in the tail where the power-

law exponent⁡𝛼 is found to be close to 3 (Gopikrishman et al. 1998, Gu et al. 2007 and 

Plerou et al. 1999). Empirical research on this topic for other markets can be found in 

Makowiec and Gnaciński (2001), Bertram (2004) and Coronel-Brizio et al. (2005). It is 

also noticed by researchers that the tail distribution of returns evolves from power law to 

Gaussian as the return frequencies decrease (Ghashghaie et al.1996 and Castaing et al. 

1990). 

 

The class of stable distributions is introduced by Paul Lévy in his research regarding the 

sum of independent identically distributed random variables in the 1920’s. According to 

the generalized Central Limit Theorem, if the sum of a sequence of independent identically 

distributed random variables has a limiting distribution, the limiting distribution must 

belong to the class of stable distributions. As a result, it is natural to assume that the asset 

returns should approximately follow a stable distribution. The use of stable distributions to 

describe the heavy tails and skewness of asset returns can be found in Mandelbrot (1963), 

Fama (1965) and Rachev and Mittnik (2000).  
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Generally, a random variable X is said to be stable provided that any positive linear 

combinations of independent copies of X follow distributions that are the same as that of 

X. A rigorous mathematical presentation of the definition of stable distribution can be found 

in Nolan (2018). As argued by DuMouchel (1975), stable distributions can be defined 

concisely by the log characteristic function. Specifically,  

 

log 𝐸(exp(𝑖𝑋𝑡)) = {
𝑖𝛿𝑡 − |𝑐𝑡|𝛼 [1 − 𝑖𝛽𝑠𝑔𝑛(𝑡)𝑡𝑎𝑛

𝜋𝛼

2
] , 𝛼 ≠ 1;

𝑖𝛿𝑡 − |𝑐𝑡| [1 + 𝑖𝛽
2

𝜋
𝑠𝑔𝑛(𝑡)𝑙𝑜𝑔|𝑐𝑡|] , 𝛼 = 1.

 

The shape of the stable distributions is governed by  

• the characteristic exponent 𝛼 ∈ (0,2],  

• the skewness parameter⁡⁡𝛽 ∈ [−1,1],  

• the location parameter 𝛿 ∈ 𝑅 , where 𝑅  is the set of real numbers, shifts the 

distributions along the real line, 

• 𝑐 ∈ (0,∞) is the scale parameter which expands or contracts the distribution 

around 𝛿.  

In the case of⁡𝛼 = 2, the distribution reduces to a normal distribution with variance 2𝑐2⁡and 

mean 𝛿.  

 

A basic property of the stable distributions is, when 𝛼 < 2 the distributions have Pareto 

tails. Suppose that⁡𝑋  is a positive random variable. The survival functions 𝑆(𝑋) = 1 −

Pr⁡(𝑋 ≤ 𝑥)  behave asymptotically like 𝑥−𝛼  for large 𝑥  and yields infinite absolute 

moments of order higher and equal to 𝛼. Thus, the variance is infinite.  

 

In his influential paper in 1983, DuMouchel introduced the use of generalized Pareto 

distribution for modelling distribution tails. The generalized distribution can be 

characterized as: 
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𝑓(𝑥|𝑘, 𝜎, 𝑥0) =

{
 
 
 

 
 
 ⁡⁡⁡

1

𝜎
(1 +

𝑘(𝑥 − 𝑥0)

𝜎
)

−1−1/𝑘

⁡ ; 𝑥 > 𝑥0⁡𝑎𝑛𝑑⁡𝑘 > 0

1

𝜎
exp (−

𝑥 − 𝑥0
𝜎

) ; ⁡𝑥 > 𝑥0⁡𝑎𝑛𝑑⁡𝑘 = 0

1

𝜎
(1 +

𝑘(𝑥 − 𝑥0)

𝜎
)

−1−1/𝑘

; ⁡𝑥0 < 𝑥 < 𝑥0 −
𝜎

𝑘
⁡𝑎𝑛𝑑⁡𝑘 < 0⁡

}
 
 
 

 
 
 

 

where the 𝑘 ∈ 𝑅  is the shape parameter and 𝜎 ∈ (0,∞)  is the scale parameter. 𝑥0  is the 

threshold parameter.  

 

In the case 𝑘 > 0, the upper tail probabilities behave asymptotically like 𝑥−𝛼 where 𝛼 =

1/𝑘. The Pareto distribution with exponent parameter 1/𝑘 can be viewed as a special case 

of the generalized Pareto distribution with 𝑘 > 0  and 𝜎 = 𝑘𝑥0 . The most important 

advantage of the generalized Pareto distribution in the measurement of thickness of tails is 

that it allows a continuous range of possible shapes that include exponential, Pareto and 

normal distributions. As a result, it allows the tails to “speak for themselves” as possibly 

as they can.  

 

A common method of estimating the tail index of the unknown stable distribution of returns 

related with generalized Pareto distribution is organized as follows: First, one can use 

extreme observations to fit the generalized Pareto distribution and estimate 𝑘 by maximum 

likelihood estimation. The maximum likelihood estimators are provided by DuMouchel 

(1983). Second, one can further use 1/𝑘 to estimate the tail index 𝛼.  

 

The generalized Pareto distribution allows the 𝛼 > 2 . In this case, returns are usually 

considered to reassuringly have finite variance. However, as argued by McCulloch (1997), 

there are stable distributions with 𝛼 smaller than 2 for which the tail index estimated from 

the generalized Pareto distribution is larger than 2.  

 

As a result, if the true distribution of returns is stable, measuring tail thickness cannot be a 

reliable method of estimating the stable index 𝛼 . He therefore further argues that it is 

necessary to use the whole sample instead of just tails to estimate the tail index for stable 

distributions.  
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Based on previous discussion, instead of imposing stable assumptions on returns, I use the 

positive and negative extreme observations to study the tail behaviors of the return 

distribution. We use the generalized Pareto distribution to model the tails of transaction-

aggregated returns and time-aggregated returns.  

 
 

Positive Tails Negative Tails 

 
k Standard 

Error 

σ Standard 

Error 

k Standard 

Error 

σ Standard Error 

30S 0.213349 0.010734082 0.00014 2.06738E-06 0.212478942 0.010842113 0.000142 2.0803E-06 

1Min 0.191014 0.015283361 0.00019 4.11984E-06 0.194646812 0.01412995 0.000212 4.23016E-06 

1.5Min 0.189211 0.018536001 0.00024 6.14442E-06 0.18108007 0.018399117 0.000245 6.1647E-06 

3Min 0.128798 0.028409838 0.00033 1.23044E-05 0.209424795 0.023131603 0.000365 1.22908E-05 

5Min 0.143225 0.036490234 0.00043 2.07638E-05 0.008807853 0.031675092 0.000499 2.24379E-05 

10Min 0.105634 0.049591498 0.00061 4.08831E-05 0.071263276 0.050239157 0.000635 4.28631E-05 

15Min 0.154077 0.067075508 0.00069 5.96246E-05 0.02000227 0.060740059 0.000820 6.73529E-05 

30Min 0.073589 0.084268123 0.00099 0.000114679 0.10502430 0.091534969 0.000921 0.000110624 

78Min 0.087694 0.152099476 0.00166 0.000328977 -0.02421194 0.121891616 0.002052 0.000359752 

Table 1.12 The modelling of tails of time-aggregated returns using generalized Pareto distribution 

 
Positive Tails Negative Tails 

 
k Standard Error σ Standard Error k Standard 

Error 

σ Standard 

Error 

T=400 0.110184 0.007648207 9.66E-05 1.21462E-06 0.105233 0.00743404 9.84E-05 1.22563E-06 

T=800 0.104141 0.010710156 0.000134 2.37062E-06 0.109946 0.011215493 0.000132 2.38042E-06 

T=1200 0.111675 0.013679815 0.000163 3.59781E-06 0.099391 0.012689702 0.000161 3.45268E-06 

T=2400 0.107225 0.01876058 0.000216 6.66775E-06 -0.01781 0.022911138 0.000238 8.00696E-06 

T=4000 -0.01577 0.02886951 0.000327 1.40729E-05 -0.02668 0.025747866 0.00031 1.27124E-05 

T=8000 0.023837 0.041332527 0.000431 2.64135E-05 -0.12921 0.044558396 0.000481 3.04163E-05 

T=12000 -0.01089 0.046235937 0.000535 3.86849E-05 -0.16414 0.050360159 0.000602 4.48067E-05 

T=24000 0.097219 0.082951777 0.000639 7.33057E-05 -0.02384 0.093969857 0.000643 7.91183E-05 

T=62000 -0.29957 0.131460548 0.001585 0.000287822 -0.13987 0.123711546 0.001118 0.00020057 

Table 1.13 The modelling of tails of transaction-aggregated returns using generalized Pareto distribution 

I use the lower 5% and upper 5% of each return series to define the negative tails and 

positive tails respectively. Estimation of parameters are based on the maximum likelihood 

estimation.  

 

For the positive tail of time-aggregated returns, the shape parameter k decreases almost 

monotonically with decreasing frequencies of returns. Specifically, it drops from 0.213 for 

the 30-second return series to 0.088 for 78-minute return series. Recall that when k00, the 
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generalized pareto distribution reduces to the exponential distribution. Consequently, 

sample from distributions whose tails decay exponentially or asymptotically exponentially 

should give values of k close to 0 in the estimation. In contrast, positive values of k suggest 

that the tails can be roughly interpreted as the tail of a Pareto distribution with shape 

parameter 𝛼 =
1

𝑘
.  

 

The negative tail of time-aggregated returns behaves differently. The shape parameter k 

bounce erratically between 0.212 for the 30-second return series and 0.105 for 30-minute 

return series across the first eight arrays in Table 1.9. For the negative tails of 30-second 

returns, 1-minute return and 1.5-minute returns, the values of k are 0.212, 0.154 and 0.182 

respectively, which suggests thicker tails compared with normal distribution. The shape 

parameter k of the negative tail of 78-minute return series is negative. It can be interpreted 

as a thinner tail behavior compared with the exponential distribution.  

 

With respect to the positive tail of transaction-aggregated returns, the shape parameter 

varies from -0.300 for returns aggregated by every 62000 tick-by-tick transactions to 0.110 

for returns aggregated by every 400 tick-by-tick transactions. There is no obvious 

monotonicity in the values of k against the frequencies of returns.  

 

The negative tails of transaction-aggregated returns exhibit interesting characteristics. The 

values of shape parameter k decrease almost monotonically as the decreasing frequencies 

of returns. It starts with a value of 0.105 for the T-400 return series, suggesting thicker 

negative tail compared with normal distribution. It approaches 0 for the T-2400 return series 

and T-4000 return series, indicating that the negative tail of the return distributions is 

thinner than the tails of exponential distribution. 

  

The values of σ estimated for both positive and negative tails of time-aggregated returns 

with different frequencies are very close to 0. Besides, the values of 𝑘 for positive tail and 

negative tail of the same return series are obviously different from each other, suggesting 

the return distribution should be asymmetric. In comparison, time-aggregated returns have 

positive tails that approaches the tail of normal distribution as the return frequencies 
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decrease while transaction-aggregated returns have negative tail that approaches the tail of 

normal distribution with the decreasing return frequencies.  

 

Figure 1.3 Positive tail of SPY 5-minute returns 

 

Figure 1.4 Negative tail of SPY 5-minute returns 

 

Figures 1.3 and 1.4 give a graphic illustration for the use of generalized Pareto distribution 

to fit the tails of high frequency SPY returns.  

 

1.5 Realized volatility and standardized returns 

In this section, I compare the variabilities of the time-aggregated returns and transaction-

aggregated returns. Return volatilities plays a decisive role in theoretical development of 

asset pricing, and risk management. Due to the extremely high liquidity of SPY, market 

microstructural issues such as “price discreteness”, “bid-ask” bounces, “split transactions”, 
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recording accuracy and intraday return seasonality have very strong impact on the pattern 

of tick-by-tick returns. A direct parametric modelling such as GARCH-ARCH and 

stochastic volatility models therefore might be hazardous. A widely accepted 

nonparametric volatility measurement of high frequency return is the Realized Volatility 

(RV). RV measures the volatility for a time period by the sum of squared tick-by-tick 

returns during that period. It is based on the following reasonings. 

 

Suppose that the asset prices 𝑆𝑡 follows the continuous time diffusion of  

                        𝑋𝑡 = ln⁡(𝑆𝑡), 

                       𝑑𝑋𝑡 = 𝑢𝑡𝑑𝑡 + 𝜎𝑡𝑑𝑊𝑡,                                                                             (1.1) 

where 𝑊𝑡 is a standard Brownian motion, 𝑢𝑡 is the drift coefficient, 𝜎𝑡
2 is the instantaneous 

variance that should be squared integrable, i.e., 𝐸(∫ 𝜎𝑠
2𝑡

0
𝑑𝑠) < ∞ . In empirical 

applications using high frequency data, the 𝑢𝑡 is commonly assumed to be a constant zero 

and 𝜎𝑡  is modelled by stochastic volatility process such as the Cox-Inger-Ross process 

applied in the Heston model (Heston 1993). Thus, one can immediately infer from the 

stochastic equation (1.1) that  

𝑋𝑡 − 𝑋0 = ∫ 𝜎𝑠
𝑡

0
𝑑𝑊𝑠.                                                    (1.2) 

Integrated variance 𝐼𝑉(𝑡, 0)  that is the diffusive sample path variation is ⁡𝐼𝑉(𝑡, 0) =

∫ 𝜎𝑠
2𝑡

0
𝑑𝑠. For a stochastic real-valued process 𝑋𝑡, 𝑡 ∈ [0,∞), from a probability space of 

(Ω, 𝐹, 𝑃), the quadratic variation of 𝑋𝑡, [𝑋𝑡] is defined as the process,  

[𝑋𝑡] = lim
𝑔𝑎𝑝⁡𝑃→0

∑ (𝑋𝑡𝑖 − 𝑋𝑡𝑖−1)
2𝑛

𝑖=1 ,  

if such limit exists. 𝑃 = {𝑡0, … , 𝑡𝑛} is a partition of the interval [0, 𝑡]. The convergence is 

in the sense of convergence in probability measure. In the case of (1.1), since the standard 

Brownian motion has quadratic variation [𝑊𝑡]0t almost surely for all 𝑡 ∈ [0,∞), [𝑋𝑡] =

∫ 𝜎𝑠
2𝑡

0
𝑑𝑠 = 𝐼𝑉(𝑡, 0). The two coincide. An important implication immediately is that for a 

sequence of regular partitions of [0, 𝑡], {𝑃𝑛} with lim
𝑛→∞

𝑔𝑎𝑝⁡𝑃𝑛 → 0, 

 lim
𝑛⁡→∞

∑ (𝑋𝑡𝑖 − 𝑋𝑡𝑖−1)
2 = ∫ 𝜎𝑠

2𝑡

0
𝑑𝑠𝑛

𝑖=1 ,                                            (1.3) 

where the convergence in (1.3) is in the sense of convergence in probability.  

 



30 

Equation (1.3) justifies the use of sum of squared tick-by-tick log returns to estimate the 

variance. In other words, the estimation error of the realized volatility dies out with the 

increasing number of observations. Consequently, the realized volatility computed from 

the tick-by-tick data should give the most accurate estimation. The realized volatility and 

its estimation accuracy are widely explored by researchers such as Zhang et al. (2005), 

Gallant, Hsu, and Tauchen (1999), Chernov and Ghysels (2000), Andersen et al. (2001), 

Mykland and Zhang (2002) and Barndorff-Nielsen and Shephard (2002). 

 

A main advantage of the realized volatility is that it takes, at the highest frequency, each 

tick-by-tick observation into account. For instance, when estimating the daily volatility, the 

intraday price can fluctuate dramatically over the trading day but ends with a value that is 

very close to the opening price. Thus, volatility measures that are based on daily 

observations cannot accurately capture the variability of intraday prices. In contrast, the 

realized volatility gives a more realistic description.  

 

I now present the realized volatility of time-aggregated returns and transaction-aggregated 

returns. For the transaction-aggregated returns, recall that the ith return on day d of the 

transaction-aggregated return series is defined as  

(𝑇)𝑟𝑖,𝑑 = ∑ ln (
𝑝𝑗+1,𝑑

𝑝𝑗,𝑑
)

(𝑇−1)𝑖
𝑗=(𝑇−1)(𝑖−1)+1 = ln⁡ (

𝑝(𝑇−1)𝑖+1,𝑑

𝑝(𝑇−1)(𝑖−1)+1,𝑑
), 

where T denotes the number of tick-by-tick transactions used to aggregate the returns. 

According to equation (1.3), the realized volatility (𝑇)𝑣𝑖,𝑑 is defined as  

            ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(𝑇)𝑣𝑖,𝑑
2 = 𝑙𝑛2 (

𝑝(𝑇−1)𝑖+1,𝑑

𝑝(𝑇−1)(𝑖−1)+1,𝑑
). 

With respect to the time-aggregated returns, the realized volatility is the sum of squared 

tick-by-tick returns during each time interval. 

 
 

𝑣𝑖,𝑑
2

 𝑙𝑛𝑣𝑖,𝑑 
 

Mean Std Skewness Kurtosis Mean Std Skewness Kurtosis 

30S 2.93E-06 0.00045948 439.3788 193962.296 -7.98032 0.658878 1.499165 9.539247 

1Min 5.88E-06 0.00064967 310.6506 96988.9004 -7.55913 0.671298 1.705153 9.912378 

1.5Min 8.81E-06 0.00079554 253.6311 64666.3046 -7.31379 0.688522 1.714867 9.578119 

3Min 1.76E-05 0.00112542 179.0169 32261.9401 -6.89009 0.72649 1.584125 8.573127 
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5Min 2.94E-05 0.00145411 138.4496 19319.6211 -6.57163 0.752474 1.512823 6.87682 

10Min 5.88E-05 0.00206903 97.41162 9595.46353 -6.12909 0.785616 1.241688 5.544807 

15Min 8.83E-05 0.00255543 79.32401 6373.98438 -5.8684 0.795599 1.127256 4.88841 

30Min 0.000176 0.00368225 55.45966 3136.82158 -5.42233 0.791258 0.955727 4.195112 

78Min 0.000459 0.00604078 33.707 1172.51807 -4.82086 0.755883 0.869512 4.159424 

Table 1.14 The summary of the realized volatilities of time-aggregated returns 

Table 1.15 summaries the descriptive statistics of the realized variance and logarithmic 

realized volatility of time-aggregated returns. It is very clear that the realized volatilities of 

time-aggregated returns are right-skewed and leptokurtic. The kurtosis and skewness 

decrease monotonically with return frequencies.  

 
 

𝑣𝑖,𝑑
2

 𝑙𝑛𝑣𝑖,𝑑 
 

Mean Std Skewness Kurtosis Mean Std Skewness Kurtosis 

T=400 2.92E-06 0.000324 320.7945 105830.5 -7.75039 0.458618 3.772327 26.27352 

T=800 5.84E-06 0.000641 312.2953 97993.27 -7.34845 0.493896 3.717241 22.18606 

T=1200 8.77E-06 0.000657 236.5604 58188.26 -7.10984 0.521005 3.528754 19.19153 

T=2400 1.49E-05 0.000648 177.2084 31878.44 -6.69446 0.570655 3.040223 13.85339 

T=4000 1.9E-05 0.000107 13.50224 276.3899 -6.37836 0.60716 2.61194 10.32108 

T=8000 3.82E-05 0.00017 14.01847 371.3236 -5.93413 0.650256 2.049934 6.891467 

T=12000 5.74E-05 0.000219 10.48758 181.9913 -5.67099 0.664962 1.778826 5.611981 

T=24000 0.000116 0.000389 12.07596 260.4523 -5.21996 0.669629 1.400238 4.237923 

T=62000 0.000305 0.000807 7.198153 81.4959 -4.62929 0.647569 1.126266 3.543235 

Table 1.15 The summary of the realized volatilities of transaction-aggregated returns 

In general, the realized volatilities of transaction-aggregated returns exhibit characteristics 

similar to the time-aggregated returns. There are two interesting empirical findings that can 

be concluded from Tables 1.15 and 1.16. First, compared with the time-aggregated returns, 

the realized variances of transaction-aggregated returns are of much smaller kurtosis and 

skewness. Second, the means of realized variance of transaction-aggregated returns are 

constantly lower than time-aggregated returns (the standard deviations of the realized 

variance of transaction-aggregated returns and time-aggregated returns are equally telling). 

It implies that the variability of intraday returns measured from fixed time interval is higher 

than the variability of intraday returns measured from fixed number of transactions. This 

implication is in line with the microstructural theory of MODM discussed previously in 

section 1.3.  
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I now standardize the time-aggregated returns and transaction-aggregated returns by the 

corresponding realized volatility. The following Tables 1.17 and 1.18 summarize the 

descriptive statistics of the standardized time-aggregated returns and standardized 

transaction-aggregated returns respectively.  
 

𝒓𝒊,𝒅/𝒗𝒊,𝒅 

 
Mean Std Skewness Kurtosis Maximum Minimum 

30S 0.003849 0.57724 13.43105 2209.772 70.71066 -44.7077 

1Min 0.001744 0.721509 -89.9912 19575.73 58.02649 -149.505 

1.5Min 0.005974 0.636411 69.30217 10242.28 99.50478 -22.1161 

3Min 0.007103 0.689116 91.77533 13294.85 99.50478 -12.9074 

5Min 0.004716 0.395679 1.950666 79.13874 13.7076 -6.03503 

10Min 0.006182 0.359443 -0.41667 10.63182 2.18529 -5.85823 

15Min 0.009758 0.339246 -0.05126 3.729002 1.802042 -1.38976 

30Min 0.011492 0.316745 -0.04838 4.039979 1.689292 -1.27714 

78Min 0.018069 0.28456 -0.02162 4.035005 1.049404 -1.12318 

Table 1.16 Descriptive statistics of standardized time-aggregated returns at different frequencies 

 
 

𝒓𝒊,𝒅/𝒗𝒊,𝒅 

 
Mean Std Skewness Kurtosis Maximum Minimum 

T=400 0.000839 0.463358 -0.0016 3.510289 2.494489 -2.51162 

T=800 0.001206 0.446944 0.014925 3.407308 2.133432 -2.24665 

T=1200 0.001459 0.437086 0.008439 3.395956 2.324799 -1.89998 

T=2400 0.00142 0.418892 -0.01437 3.305479 2.22261 -1.85995 

T=4000 0.002394 0.405768 -0.00457 3.397714 1.774267 -1.88395 

T=8000 0.002631 0.38251 -0.01341 3.286298 1.458433 -1.3815 

T=12000 0.003402 0.365811 -0.0599 3.377889 1.456133 -1.36493 

T=24000 0.004396 0.33959 -0.12424 3.558695 1.40428 -1.4491 

T=62000 0.004716 0.31532 -0.00783 3.57636 1.159459 -1.09435 

Table 1.17 Descriptive statistics of standardized transaction-aggregated returns at different frequencies 

  

Compared with the standardized time-aggregated returns, the standardized transaction-

aggregated returns are strikingly much more regular. First, in general the skewness of the 

standardized transaction-aggregated returns is very close to zero. In contrast, the skewness 

of standardized time-aggregated varies dramatically at high frequencies.  

 

Second, the kurtosis of standardized transaction-aggregated returns fluctuates around 3. 

Compared with Table 1.3, it is noticeable that the kurtosis of transaction-aggregated returns 
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at high frequencies significantly reduces. For instance, the kurtosis of raw T-400, T-800 

and T-1200 returns are 2878.43, 401.41 and 1046.23 respectively. Meanwhile, the kurtosis 

of standardized T-400, T-800 and T-1200 returns are 3.51, 3.41 and 3.40 respectively.  

 

These empirical findings suggest that the empirical distributions of standardized 

transaction-aggregated returns are very close to the normal distribution. I now use EDF 

statistics to formally test the unconditional distribution of standardized transaction-

aggregated returns and time-aggregated returns. As in section 1.3, I examine the normality 

of intraday standardized returns within each trading day. Intraday returns within a trading 

day are considered to follow normal distribution if all the three statistics D, 𝑊2 and⁡⁡𝐴2 

cannot reject the null hypothesis at significance level of 5%.  

Standardized Transaction-aggregated returns Standardized Transaction-aggregated returns 

 
𝑵𝟎 𝑵𝟎/252 

 
𝑵𝟎 𝑵𝟎/252 

30S 43 17.06% T=400 93 36.90% 

1Min 137 54.37% T=800 184 73.02% 

1.5Min 165 65.48% T=1200 212 84.13% 
 

3Min 203 80.56% T=2400 222 88.10% 

5Min 207 82.14% T=4000 227 90.08% 

Table 1.18 Summary of within-day normality test on standardized returns 

 

Table 1.19 present the normality rate of standardized transaction-aggregated returns and 

time-aggregated returns. The 𝑁0  denotes the number of days whose intraday returns are 

normally distributed. Compared with Tables 1.11 and 1.12, a salient difference is that when 

measuring at the highest frequencies (like every 30 seconds for time-aggregated returns or 

every 400 tick-by-tick transactions for transaction-aggregated returns), the standardized 

returns are much more higher probabilities of being normally distributed.  

 

Moreover, the standardized transaction-aggregated returns still have higher normality rate 

than the standardized time-aggregated returns. It further confirms my previous empirical 

finding that the transaction-aggregated returns are more likely of being normally 

distributed.  

 

I end this chapter by a brief discussion of the daily SPY returns. The realized variance of a 
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trading day is calculated by the sum of squared tick-by-tick returns.  

 
 

Mean Std Skewness Kurtosis Min Max 𝑨𝟐 Critical values 

Raw daily returns 0.0001 0.006 -0.6354 4.744 0.0172 -0.0215 3.2636 0.7496 

Standardized daily returns 0.0326 0.2152 0.0287 3.2914 0.7575 -0.6726 0.3088 0.7496 

Table 1.19 Summary of SPY daily returns 

 

Table 1.20 suggests that the raw SPY daily returns are left-skewed and leptokurtic. In 

contrast, the standardized daily SPY returns have skewness very close to zero and only are 

slightly leptokurtic. Moreover, as suggested by the last two columns in Table 1.20, the 

Andersen-Darling statistics cannot reject the null of normal distribution at significance 

level of 5% for the standardized daily returns.  
 

𝑣𝑖
2 

 
𝑙𝑛𝑣𝑖 

 
Mean Std Skewness Kurtosis Mean Std Skewness Kurtosis 

30S 2.93E-06 0.00045948 439.3788 193962.296 -7.98032 0.658878 1.499165 9.539247 

Table 1.20 Summary of SPY daily realized variance 

 

Table 1.21 suggests that the SPY realized volatilities are extremely right-skewed and 

leptokurtic. It is very surprising since the daily realized volatilities are calculated by the 

sum of squared tick-by-tick returns. However, as discussed in the section 1.2.2.2, the tick-

by-tick returns are strongly dependent so that the Central Limit Theorem cannot provide 

accurate approximations in the tick-by-tick data context. In order to explore the relationship 

between the intraday and daily return dynamics, one must first clearly model the intraday 

return dynamics. I will further discuss this issue in Chapter 2. 
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1.6 Conclusions  

In this Chapter I explore the unconditional distributions of SPY intraday returns. Two 

different sampling methods are applied to aggregate the tick-by-tick returns. Although the 

tick-by-tick returns are largely affected by market microstructural issues, I show that the 

Central Limit Theorem still can recover the normality to intraday returns. Compared with 

returns sampled from fixed time interval, returns sampled from fixed number of 

transactions approaches the normal distribution much faster. For a symbol with ultra-high 

liquidity like SPY, the intraday returns within each trading day still can be plausibly 

assumed as normally distributed. This empirical finding is in line with the market 

microstructural theory of MODM (Harris 1986 and Richardson and Smith 1994).  

 

Besides, the returns sampled from fixed number of tick-by-tick transactions exhibit lower 

variabilities than the returns sampled from the fixed time interval. This empirical finding 

implies that the trading intensity should have strong explanatory power over the volatilities 

of intraday returns. Finally, I use the realized volatility to standardize the SPY daily returns. 

The standardized SPY daily returns can be well approximated by normal distributions.  

 

These empirical findings might be useful in the field of risk management such as high 

frequency Value at Risk models. They might also provide some insights regarding the 

model tick-by-tick price dynamics. From the theoretical perspective, the aggregational 

normality is closely related the Central Limit Theorem. Nevertheless, due to the large 

dependence in tick-by-tick returns and effect of market operational details, an explicit 

explanation based on the parametric modelling of tick-by-tick returns remains as a 

challenge for the further research. 
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Multiplicative Component GARCH Model of Intraday 

Volatility 

2.1 Introduction 

 

The modelling of return dynamics is of both theoretical and empirical importance for 

financial research. Among the vast literatures on this topic, the ARCH-GARCH models are 

widely developed and are accepted as the standard techniques for the analysis of return 

volatility (Engle 1982 and Bollerslev 1986). The ARCH-GARCH models are developed to 

describe the phenomena of volatility clustering that is the positive autocorrelation in return 

volatility. However, financial research using high frequency data generally suggest the 

inadequacy of this standard time series volatility model for the modelling of intraday return 

dynamics. In general, when applied to high frequency intraday returns, estimations of 

GARCH models are often contradictory and defy theoretical predictions. For instance, 

Andersen and Bollerslev (1997) identified that the estimation using GARCH model for 

returns with different intraday frequencies gave parameters that are inconsistent with the 

theoretical results on time aggregation of GARCH estimation from Dorst and Nijman 

(1993). 

 

It is well known that the return volatility systematically varies over the trading day and are 

highly correlated with the variation of other random variables associated with the 

transaction records such as the volumes and waiting-time over the trading day. In many 

markets, this systematical variation of intraday return volatilities is identified as a U-shape 

pattern in return volatility over the day. Specifically, returns during market opening and 

closing hours are much more volatile. Such intraday periodic pattern in the return volatility 

in equity market has been proven to have strong influence on the dynamics of equity returns 

(Bollerslev 1994, Guillaume et al. 1995). Consequently, in order to carry out meaningful 

analysis about intraday volatility dynamics, it is necessary to consider the intraday periodic 
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volatility pattern as a fundamental determinant of the intraday volatility process.  

 

In this chapter, I investigate the difficulties encountered by GARCH volatility models when 

applied to the high frequency returns. I focus on the strong impact of intraday periodicity 

of return dynamics on the modelling of intraday volatility process using standard GARCH 

models. Besides, I construct our estimation of the intraday periodicity in volatility process 

based on the realized volatility calculated from tick-by-tick transactions. The estimation 

procedure could be applied to both time-aggregated and transaction-aggregated returns. 

Based on the discussion of different sampling method of high frequency returns in Chapter 

1, the periodicity estimation based on tick-by-tick returns provide the most accurate 

description of intraday periodic volatility pattern. I also analyze the different impact of the 

intraday periodic feature of return dynamics on returns sampled from both fixed time 

interval and fixed number of transactions at various frequencies to verify our estimation of 

the intraday periodicity of return dynamics. Moreover, to identify the distinctive 

characteristics of the intraday returns process, the findings are compared with the 

corresponding features of daily returns series. Finally, I generalize the multiplicative 

GARCH model for intraday volatility of Engle (2012).  I modify the intraday volatility 

periodicity component of the model to allow it to be conditional on the varying trading 

period of tick-by-tick transactions.  

 

This chapter is organized as follows. Section 2.2 presents the discussion about literatures 

regarding the intraday volatility modelling. Section 2.3 describes the data set and presents 

the intraday return pattern. Section 2.4 exhibits the multiplicative component intraday 

volatility models. Section 2.5 discusses the specification of the multiplicative volatility 

model using empirical evidences. It also includes my characterization of intraday volatility 

periodicity pattern. A relatively simple model that allows the estimation of intraday 

volatility periodicity to be conditional on the trading period. Section 2.6 contains the 

empirical analysis regarding our multiplicative component volatility models. I also analyze 

the statistical properties of the corresponding filtered returns series generated by 

normalizing the raw return series according to the estimated intraday volatility periodicity 

and the corresponding estimated daily volatility. I employ high frequency time-aggregated 
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returns at different frequencies. Estimates of the degree of volatility persistence at the 

various sampling frequencies are compared with the theoretical aggregation results. 

Section 2.7 presents the conclusion.                        

 

2.2 Literature Review 

Early in 1980s, authors like Wood et al. (1985) and Harris (1986) gave the empirical 

evidence about the distinctive U-shaped pattern in return volatility over the trading day 

using average intraday returns of stock market. After that, the intraday periodic feature of 

asset returns is widely reported and considered as a stylized fact regarding financial return 

series in different markets. For instance, similar evidence for foreign exchange markets can 

be found in Muller et.al (1990) and Baillie and Bollerslev (1991). Meanwhile, a main topic 

of financial research using high frequency data is intraday return volatility modelling based 

on the ARCH-GARCH model of Engle (1982) and Bollerslev (1986). These are partially 

motivated by an attempt to identify the economic origins of the volatility clustering 

phenomenon such as the mixture of distributions hypothesis; see for example Clark (1973), 

Tauchen and Pitts (1983), Harris (1987), Gallant et al. (1991), Ross (1989) and Andersen 

(1994, 1996). 

 

A direct comparison of these research is difficult because of the different sampling 

frequencies used by these literatures. Nevertheless, as argued by Ghose and Kroner (1984), 

Guillaume (1994), Andersen and Bollerslev (1997) and Engle (2012), most of the results 

regarding degree of volatility persistence and parameter estimation conflicts with the 

theoretical aggregational results for ARCH-GARCH models by Nelson (1992) and Dorst 

and Nijman (1993). A plausible explanation is that the strong intraday volatility periodicity 

cannot be captured by GARCH-ARCH models. Specifically, the intraday volatility 

periodicity causes the contradictory phenomena between estimation of GARCH-ARCH 

parameters for returns at different intraday frequencies and theoretical predictions.  

 

In 1990s, efforts on the modelling of intraday volatility periodicity pattern are given by the 

research group at Olsen and Associates on the foreign exchange market. For instance, 
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Muller et al. (1990,1993) and Dacorogna et al. (1993) use time invariant polynomial 

functions to approximate the trading activities in different FOREX exchange market during 

the 24-hour trading cycle.  

 

Andersen and Bollerslev (1997) gave a more general methodology for the modelling of 

intraday volatility periodicity pattern. They construct a multiplicative model of daily and 

intraday volatility for the 5-minute returns on both Deutschemark-dollar exchange rate and 

US stock market. They express the conditional variance as a product of intraday component 

and daily component. This specification allows the periodic pattern to be conditional on 

the current overall level of return volatility. Other closely related models for intraday 

volatility periodicity can be found in Ghose and Kroner (1996), Andersen and Bollerslev 

(1998), and Giot (2005). For instance, Giot (2005) adds a deterministic intraday periodicity 

pattern to the GARCH (1,1) and the EGARCH (Nelson 1991) models and estimates the 

two model for high frequency return series. Taylor and Xu (1997) provided an alternative 

specification for high frequency return volatility. They construct an hourly volatility model 

using an ARCH specification. The conditional variance specification is modified with two 

elements: the implied volatility and the realized volatility. In 2012, Engle developed a 

multiplicative component GARCH models based on the work of Andersen and Bollerslev 

(1998). Specifically, the conditional variance of 10-minute return series in US stock market 

is expressed as a product of daily, intraday periodicity and stochastic intraday volatility 

components. Compared with the model of Andersen and Bollerselv (1998) that considers 

the intraday volatility pattern as deterministic, Engle used two intraday components for the 

conditional variance model: a deterministic diurnal pattern and stochastic intraday ARCH. 

 

Most of the discussed above use returns sampled from fixed time interval. Consequently, 

the estimation of intraday volatility periodicity is also based on observations that are 

equally spaced in time with the same length of interval. Meanwhile, a fundamental feature 

of tick-by-tick transaction records is that observations are not equally spaced in time. 

Moreover, as discussed in Chapter 1, returns sampled from fixed number transactions 

exhibit different statistical characteristics. For instance, the distribution of transaction-

aggregated returns approaches the normal distribution much faster than the time-
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aggregated returns as the frequencies of returns decrease. Thus, it is interesting to examine 

whether the models based on time-aggregated returns can be extend to the transaction-

aggregated returns, specifically, whether the intraday volatility periodicity estimation based 

on realized volatility from previous literatures such as Anderson and Bollerslev (1997) can 

be extended to the transaction-aggregated returns. Finally, I want to estimate the intraday 

periodicity directly from the tick-by-tick transaction records instead of imposing fixed 

observing time interval.  

 

Based on the work of Anderson and Bollerslev (1997) and Engle (2012), I use the tick-by-

tick transactions to estimate the intraday volatility periodicity component and allow the 

estimation to be conditional on the trading period during the day. Thus, it can be applied to 

transaction-aggregated return series and should capture the intraday volatility periodicity 

more accurately. My estimation method different from the previous research on intraday 

volatility modelling mainly in three perspectives. First, I generalize the multiplicative 

component intraday volatility model of Engle (2012) for tick-by-tick return sample. Second, 

my estimation of intraday periodicity is based on the tick-by-tick transactions, it should 

give more accurate description on the intraday volatility pattern in the specific time 

durations. Finally, I test the specification using both time-aggregated and transaction-

aggregated returns.  

 

2.3 Data  

In this section, I give the data set. In order to comprehensively illustrate the periodic pattern 

of returns during the trading day, I focus on the time-aggregated return series. In Section 

2.3.1, I first exhibit the descriptive statistics about the time-aggregated return series at 

various frequencies. I focus on the 5-minute and 10-minute return series. There are three 

main reasons for choosing the two frequencies. First, since most of the discussed literatures 

used these frequencies, I wish to compare the intraday periodic pattern of my data sample 

with theirs. Second, the preliminary tests show that the intraday pattern is not obvious for 

returns on higher frequency such as 30s, 1 min and 3 min. Third, the estimation of intraday 

periodic pattern during short time interval rises computation difficulties. In Section 2.3.2, 
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I exhibit the intraday periodic pattern of the 5-minute and 10-minute return series. 

2.3.1 Descriptive statistics  

The data set is the tick-by-tick transaction records of symbol SPY during 01/02/2014-

12/31/2014. It contains transactions for 252 trading days. The out-of-hour transactions 

whose occurrence lie outside the time period between 9:30 am and 4:00 pm on each day 

are removed. Details about the data set and definition of time-aggregated returns can be 

found in the section 1.2.2.2 in Chapter 1.  

 
 

Sample Size Mean Variance Kurtosis Skewness Maximum Minimum 

30Sec 196560 1.29618E-07 5.30347E-08 264.8727029 -0.173806698 0.01225414 -0.012983101 

1Min 98280 2.59236E-07 9.67974E-08 95.91646403 -0.103161028 0.012458815 -0.012906394 

1.5Min 65520 3.88855E-07 1.39691E-07 80.86530506 -0.005621653 0.012036628 -0.013264313 

3Min 32760 7.77709E-07 2.70802E-07 39.85096976 -0.238157281 0.011012149 -0.014459855 

5Min 19656 1.29618E-06 4.06658E-07 8.436150587 0.075305595 0.006182118 -0.005359357 

10Min 9828 2.59236E-06 8.03275E-07 7.918815602 -0.037720742 0.008269006 -0.006320998 

15Min 6552 3.88855E-06 1.17727E-06 7.388130566 -0.079263515 0.007751481 -0.006653523 

30Min 3276 7.77709E-06 2.34033E-06 6.660810707 -0.095190193 0.011082252 -0.009269532 

78Min 1260 2.02204E-05 6.20987E-06 6.687141886 -0.195275515 0.014103076 -0.014359004 

Table 2.1 Descriptive statistics of time-aggregated returns 

A detailed discussion of the descriptive statistics of time-aggregated return series at various 

frequencies is provided in Section 1.2.2.2 in Chapter 1. In this section I focus on the 5-

minute and 10-minute return series. It seems natural to choose the time-aggregated return 

to present an illustration of intraday periodic pattern of the returns over the trading day. I 

choose the absolute value of the returns and squared returns as the proxies of the return 

volatility.  
 

Mean Variance Kurtosis Skewness Maximum Minimum First Lag 

autocorrelation 

5-Minute Return 1E-06 4.07E-07 8.4362 0.0753 0.006182 -0.0054 -0.015058796 

Absolute 5-Minute 

Return 

0.0004 2.13E-07 14.733 2.5577 0.006182 0 0.256396005 

Squared 5-Minute 

Return 

4E-07 1.23E-12 237.48 11.289 3.82E-05 0 0.179436501 

Table 2.2 Descriptive statistics of 5-minute return series, absolute 5-minute return series and squared 5-minute 

return series 
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  Mean Variance Kurtosis Skewness Maximum Minimum First Lag 

autocorrelation 

10-Minute Return 2.59E-06 8.03E-07 7.918815602 -0.03772074 0.008269006 -0.006321 -0.02467549 

Absolute 10-Minute 

Return 

0.000621954 4.16E-07 13.50275706 2.470604056 0.008269006 0 0.247384273 

Squared 10-Minute 

Return 

8.03E-07 4.46E-12 197.0880086 10.11289837 6.84E-05 0 0.16996921 

Table 2.3 Descriptive statistics of 10-minute return series, absolute 10-minute return series and squared 10-minute 

return series 

The mean of the 5-minute return series and 10-minute return series are 1E-06 and 2.59E-

06 respectively. Given their variance of 4.07E-07 and 8.03E-07, the mean of 5-minute 

return series and 10-minute return series can safely assumed to be zero. However, as 

suggested by the kurtosis in Tables 2.2 and 2.3, they are clearly not normally distributed. 

An interesting fact is that although the 5-minute return series have a positive skewness of 

0.0753, the 10-minute return series have a negative skewness of -0.0378. Meanwhile, the 

maximum and minimum of the 5-minute returns are 0.0062 and -0.0054 respectively. These 

values do not suggest of sharp discontinuities in the return series. The maximum and 

minimum of 10-minute return series exhibit similar characteristics.  

 

Note that the first lag autocorrelations of the 5-minute and 10-minute returns, -0.0151 and 

-0.0247 respectively, are significant since corresponding lower confidence bounds at the 

significance level of 5% are -0.0143 and -0.0201 respectively. The values of the correlation 

are nearly negligible from the economic perspective. In contrast, the volatilities of the 5-

minute returns and 10-minute returns have highly significant positive autocorrelations. For 

instance, the absolute 5-minute return series has a first lag autocorrelation of 0.2564 and 

the absolute 10-minute return series has a first lag autocorrelation of 0.2474. The upper 

confidence bounds of the 5-minute return series and the 10-minute return series at the 

significance level of 5% are 0.0143 and 0.0201 respectively. The positive correlations of 

return volatility clearly suggest the phenomena of volatility clustering. Detailed discussion 

of time-aggregated returns autocorrelations at different frequencies can be found in Chapter 

1. The squared returns exhibit slightly smaller but also highly significant positive first lag 

autocorrelations.  
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2.3.2 Intraday return periodicity 

 

In order to evaluate the intraday volatility periodicity, I present the plot of average and 

absolute average during the trading day for both 5-minute return series and the 10-minute 

return series first.   

 

 

Figure 2.1 The average SPY 5-minute return over the trading day 

 

The average SPY 5-minute returns are centered around 0 but fluctuate dramatically during 

the trading day. Figure 2.1 suggests that the average 5-minute returns during the opening 

and closing hours of the trading day are much more volatile. For instance, three of the four 

violations of the constant 5% confidence band for the null hypothesis of an iid series occur 

during the first and last ten intervals. Specifically, the first ten interval represents the period 

from 9:30 to 10:20 and last ten interval represents the period from 3:10 to 4:00. The sharp 

drop off during such intervals provide graphic evidence. Also note that, the Andersen-

Darling statistics cannot reject the null hypothesis that the average 5-minute returns come 

from a normal distribution at significance level of 5%.  
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Figure 2.2 The average SPY 10-minute return over a trading day 

Figure 2.2 gives similar but more clear presentation of intraday return periodicity for the 

average 10-minute return series. Three of the four violations of the constant 5% confidence 

band for the null hypothesis of an iid series occur during the first and last five intervals, 

which is consistent with the finding of the average 5-minute return series. As the case of 

average 5-minute returns, the average 10-minute returns also can be safely assumed to be 

normally distributed.  It is worthy to mention that during the end of trading day, the 

dramatic variation of SPY 5-minute returns in Figure 2.1 no longer exist in Figure 2.2. In 

contrast, the 10-minute SPY average returns tend to be more volatile than 5-minute SPY 

average return during the opening hours. 

 

Figure 2.3 exhibits the volatility (measured as the absolute average returns) of SPY average 

5-minute returns during the trading day. It clearly verifies the pronounced U-shape of return 

volatility in financial markets. The volatility ranges from a low of around 0.03% at the 

13:05 to a high of around 0.08% at the 9:35. It starts out at a relatively high level of 0.07% 

at 9:30 and decays slowly to 0.03% at 13:05, and then it again surges to around 0.05% at 

16:00. The highly significant first lag positive autocorrelation of 0.256 in Table 2.2 also 

support the existence of intraday periodic volatility pattern. Figure 2.4 suggests similar 

periodic pattern for 10-minute return volatility. It also can be concluded from Figures 2.3 

and 2.4 that the returns are more volatile during the opening hours than the closing hours, 

which corresponds to the 10am FED news announcements.   
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Figure 2.3 The absolute average SPY 5-minute return over a trading day 

 

 

Figure 2.4 The absolute average SPY 10-minute return over a trading day 

To support my prior investigation of the unconditional intraday volatility periodic pattern, 

I now examine the autocorrelations of the absolute 5-minute and absolute 10-minute return 

series to explore the dynamic feature of those two return series.   
 

5-minute return  absolute 5-minute return 10-minute return absolute 10-minute return 

Lag1 -0.015058796 0.256396005 -0.024675493 0.247384273 

Lag2 -0.02727115 0.27393497 -0.007165027 0.262341418 

Lag3 0.011513466 0.266731377 0.025501631 0.271487025 

Lag4 -0.002240064 0.25614196 -0.018678124 0.256228375 

Lag5 -0.001991967 0.248556941 0.038864765 0.246937983 

Lag6 0.007446405 0.267334076 0.029325701 0.236207573 
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Lag7 0.005399493 0.265061453 0.00940831 0.230465298 

Lag8 -0.004431232 0.230266141 -0.002262395 0.217919076 

Lag9 0.004174203 0.244515482 -0.002524387 0.209070546 

Lag10 0.023174997 0.230559214 0.02308969 0.199440976 

Lag11 0.022193775 0.232530198 0.008302441 0.189182483 

Lag12 0.00899738 0.219332721 -0.015269527 0.188770108 

Lag13 -0.005247707 0.217748927 -0.011524974 0.185738101 

Lag14 0.013262886 0.222211507 0.025102784 0.194993096 

Lag15 0.007466957 0.219513545 0.009805094 0.174629519 

Lag16 -0.009635652 0.199277327 0.004593636 0.175036007 

Lag17 -0.004045313 0.214672245 -0.027126605 0.155205843 

Lag18 0.006474428 0.200850752 -0.029243554 0.152888546 

Lag19 0.00035781 0.184185116 -0.017268827 0.145260443 

Lag20 0.009019369 0.18152872 0.010949894 0.141655001 

Upper Bounds 0.01426535 0.01426535 0.020174251 0.020174251 

Lower Bounds -0.01426535 -0.01426535 -0.020174251 -0.020174251 

Table 2.4 Autocorrelations of average returns and absolute average returns 

As discussed previously, the 5-minute return series and 10-minute return series can be 

plausibly considered as uncorrelated. For instance, although 5-minute return has significant 

first and second lag autocorrelations, the values of the autocorrelations are as small as -

0.015 and -0.027 respectively. In contrast, the absolute return series exhibits highly 

significant strong positive correlations at almost all 20 lags. Observe that the 

autocorrelation of both absolute 5-minute and absolute 10-minute return series decay very 

slowly. If there is a periodic pattern of the volatility during each trading day, the 

correlations should also have a 24-hour cycle pattern.  

 

To further investigate the intraday volatility periodicity pattern, I plot the correlogram for 

both absolute 5-minute return and absolute 10-minute return series for up to five days.   
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Figure 2.5 Five days SPY absolute 5-minute return correlogram 

The Figures 2.5 and 2.6 present autocorrelation pattern of the absolute returns. The intraday 

volatility periodicity is exhibited as the corresponding U-shape in the correlogram. The 

correlations at daily frequency decay very slowly during the five days.  Observe that the 

slowly declining U-shape cycles around every 80 intervals for the 5-minute lag and every 

40 intervals for the 10-minute lag. Since the NYSE operates from 9:30 to 4:00 on each 

trading day, U-shape cycles on daily frequency exactly.  

 

 

Figure 2.6 Five days SPY absolute 10-minute return correlogram 
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2.4 Multiplicative component intraday volatility model 

In this section I present my multiplicative component intraday volatility model. The model 

is based on the work of Andersen and Bollerslev (1997) and Engle (2012). In order to 

illustrate the reasoning behind the model specification, I first discuss the interpretation of 

the intraday volatility periodicity pattern in section 2.4.1. I then present the model and 

discuss the econometric issues in section 2.4.2.  

2.4.1 Interpretation of the intraday return volatility  

The periodic pattern of the intraday volatility discussed in Section 2.3 suggests that a direct 

use of the ARCH-GARCH for modelling of the intraday return volatility could be 

inappropriate. The main reason is that the standard ARCH-GARCH models impose a 

geometric decay for the return autocorrelation structure. It cannot capture the periodic 

pattern of the volatility correlation that are reported in Section 2.3. In order to jointly 

describe the intraday periodicity and daily conditional heteroskedasticity, Andersen and 

Bollerslev (1997) present the following stylized specification of the intraday returns. 

Consider an intraday time-aggregated logarithm return series {𝑟𝑡,𝑛}𝑡,𝑛  , where 𝑟𝑡,𝑛 

represent the nth return at day t. Suppose there are N observation during each trading day. 

Then 

𝑟𝑡,𝑛 = 𝜎𝑡
1

√𝑁
𝑠𝑛𝑧𝑡,𝑛⁡,                                                      (2.1) 

where 𝜎𝑡 is the conditional daily volatility at day 𝑡, 𝑠𝑛 is the intraday volatility periodicity 

during the period of 𝑟𝑡,𝑛  and 𝑧𝑡,𝑛  is an iid series of zero mean and unit variance that is 

independent of the daily volatility 𝜎𝑡  and the intraday periodicity 𝑠𝑛 . The volatility 

components 𝜎𝑡 and 𝑠𝑛 are required to be positive. For instance, 𝜎𝑡 > 0⁡⁡for all t and 𝑠𝑛 > 0 

for all n. The intraday volatility periodicity component 𝑠𝑛 is a periodic function at daily 

frequency. Specifically, 𝑠𝑛+𝑗𝑁 = 𝑠𝑛 for all j and n. Thus, the daily return at day t 𝑅𝑡, is  

𝑅𝑡 = ∑ 𝑟𝑡,𝑛
𝑁
𝑛=1 = 𝜎𝑡

1

√𝑁
∑ 𝑠𝑛𝑧𝑡,𝑛
𝑁
𝑛=1 .                               (2.2) 

With respect to the model estimation, Andersen and Bollerslev (1997,1998) apply a flexible 

Fourier transform to estimate the intraday volatility periodicity component 𝑠𝑛  and use 

standard GARCH volatility model to estimate the conditional daily volatility  𝜎𝑡 . For 
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further details of the Fourier transform, see the appendix of Andersen and Bollerslev (1997). 

 

Under the assumption that the intraday returns are serially uncorrelated, the daily 

conditional variance is the sum of variances from each time interval. Thus, 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝐸 (∑
𝑟𝑡,𝑛

2

𝜎𝑡2
𝑁
𝑛=1 ) = 1.                                                            (2.3) 

(2.3) immediately gives that ∑ 𝑠𝑛
2/𝑁𝑁

𝑛=1 = 1 . This intuitive specification of intraday 

volatility has two important features. First, it extends naturally to standard specifications 

of daily return volatility models with intraday innovations and deterministic daily volatility. 

Specifically, in the case that 𝑠𝑛 = 1  for all n, the 𝑟𝑡,𝑛 = 𝜎𝑡
1

√𝑁
𝑧𝑡,𝑛 . Consequently, 𝑟𝑡 =

𝜎𝑡
1

√𝑁
∑ 𝑧𝑡,𝑛
𝑁
𝑛=1 . Thus, the daily return at day t is the sum of product of independent intraday 

innovations and daily conditional volatility patterns. The innovation component 

1

√𝑁
∑ 𝑧𝑡,𝑛
𝑁
𝑛=1  is clearly an iid series with zero mean and unit variance.  

 

Besides, the model does not affect the autocorrelation structure of the returns measured at 

daily frequency. When returns are measured at daily frequency, 𝑅𝑡 the daily return at day t 

is 𝑅𝑡 = ∑
𝑠𝑛

√𝑁
𝑁
𝑛=1 𝑧𝑡𝜎𝑡 where 𝑧𝑡 is an iid series of zero and unit variance. Thus, the expected 

absolute return 𝐸|𝑅𝑡| is,  

 ⁡𝐸|𝑅𝑡| = ∑
𝑠𝑛

√𝑁
𝐸|𝑧𝑡|𝜎𝑡

𝑁
𝑛=1 .                                                  (2.4) 

Observe that since 𝐸(∑ 𝑠𝑛
2/𝑁𝑁

𝑛=1 ) = 1 , ∑
𝑠𝑛

√𝑁
𝑁
𝑛=1 ≥ 1  since (∑

𝑠𝑛

√𝑁
𝑁
𝑛=1 )

2

= (∑ 𝑠𝑛
𝑁
𝑛=1 )2/

𝑁 ≥ ∑ 𝑠𝑛
2/𝑁𝑁

𝑛=1   . Consequently, the expected daily absolute return is an increasing 

function of the variation of the intraday periodicity pattern. Let 𝑐 = (𝐸|𝑧𝑡|)
−2 − 1 > 0. I 

immediately have,   

 

      ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝐶𝑜𝑟𝑟(|𝑅𝑡|, |𝑅𝜏|) =
𝐶𝑜𝑣(𝜎𝑡,𝜎𝜏)

𝑉𝑎𝑟(𝜎𝑡)+𝑐𝐸(𝜎𝑡2)
.                                         (2.5) 

(2.5) clearly suggests that the model does not impose any structural changes to the 

autocorrelation of the daily returns.  

 

Second, the model gives a qualitative description of the impact of intraday volatility 
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periodicity on the autocorrelation of the absolute intraday returns. Specifically, suppose 

that 𝑛 ≥ 𝑚, then 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝐶𝑜𝑟𝑟(|𝑅𝑡,𝑛|, |𝑅𝜏,𝑚|) =
∑ 𝑠𝑗𝑠𝑗−(𝑛−𝑚)𝐶𝑜𝑣(𝜎𝑡,𝜎𝜏)+𝐶𝑜𝑣((𝑠𝑛,𝑠𝑚)𝐸

2(𝜎𝑡)
𝑁
𝑗=1

𝑉𝑎𝑟(𝜎𝑡)(∑ 𝑠𝑗
𝑁
𝑗=1 )

2

𝑁
+𝑐𝐸(𝜎𝑡2)

(∑ 𝑠𝑗
𝑁
𝑗=1 )

2

𝑁
+𝐸2(𝜎𝑡)𝑉𝑎𝑟(𝑠)

.               (2.6) 

Notice that, when 𝑛 = 𝑚, equation (2.6) reduces to  

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝐶𝑜𝑟𝑟(|𝑅𝑡,𝑛|, |𝑅𝜏,𝑛|) =

𝐶𝑜𝑣(𝜎𝑡,𝜎𝜏)+(
𝑉𝑎𝑟(𝑠)

(∑ 𝑠𝑗
𝑁
𝑗=1 )

2

𝑁

)𝐸2(𝜎𝑡)

𝑉𝑎𝑟(𝜎𝑡)+𝑐𝐸(𝜎𝑡2)+(
𝑉𝑎𝑟(𝑠)

(∑ 𝑠𝑗
𝑁
𝑗=1 )

2

𝑁

)𝐸2(𝜎𝑡)
.                                (2.7) 

 

(2.6) gives a qualitative description between the intraday periodicity and the daily 

heteroskedasticity of the absolute returns. The positive covariance of the daily return 

volatility 𝐶𝑜𝑣(𝜎𝑡 , 𝜎𝜏)  is strong when t and 𝜏  are very close. Consequently, it causes 

positive dependence in the absolute returns, as the distance between t and 𝜏 grows larger 

this effect becomes less significant. This implication is consistent with the slow decay of 

the correlations in Figures 2.5 and 2.6.  

 

At the same time, the strong intraday volatility periodicity also has an impact on the 

correlations of absolute returns. For instance, the autocorrelations of 5-minute return series 

reaches the lowest value generally at the forty lags, which is exactly half of the trading day. 

The covariance of the intraday volatility periodicity 𝐶𝑜𝑣((𝑠𝑛, 𝑠𝑚) is expected to reach the 

minimal at the same time according to the U-shape. Figure 2.6 suggests that the 10-minute 

return series exhibit similar characteristics as well. These findings further confirm the 

correspondence between the qualitative implications of (2.1) and the autocorrelation 

structure of the intraday absolute returns.  

 

Although the model of (2.1) gives a plausible explanation of the autocorrelation structure 

of the absolute intraday returns and might serve as a starting point for the high frequency 

volatility modelling, the simplistic intraday volatility specification 𝜎𝑡
1

√𝑁
𝑠𝑛 implies that the 

only intraday component in the intraday volatility pattern is 𝑠𝑛.  
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Based on the intraday return volatility model of Andersen and Bollerslev (1997,1998), 

Engle (2012) proposed the following multiplicative specification for intraday return 

volatility to provide a more realistic volatility dynamic description, 

                                                     𝑅𝑡,𝑛 = 𝜎𝑡𝜖𝑡,𝑛𝑠𝑛𝑧𝑡,𝑛,                                                   (2.8) 

where 𝜎𝑡  is the conditional volatility at day t, 𝑠𝑛  is the intraday volatility periodicity 

component, 𝜖𝑡,𝑛 is the stochastic intraday volatility component with 𝐸(𝜖𝑡,𝑛
2) = 1  and 𝑧𝑡,𝑛 

is an iid series that follows the normal distribution with zero mean and unit variance. 

Moreover, the normalized return  𝑦𝑡,𝑛 =
𝑟𝑡,𝑛

𝜎𝑡𝑠𝑛
 is assumed to follow a GARCH (1,1) process. 

Specifically, 

𝑦𝑡,𝑛|𝐹𝑡,𝑛−1~⁡𝑁(0, 𝜖𝑡,𝑛), 

𝑦𝑡,𝑛 =
𝑟𝑡,𝑛

𝜎𝑡𝑠𝑛
= 𝜖𝑡,𝑛𝑧𝑡,𝑛, 

𝜖𝑡,𝑛
2 = 𝜔 + 𝛼𝑦𝑡,𝑛−1

2 + 𝛽𝜖𝑡,𝑛−1
2. 

Similarly, given the assumption that the intraday returns are not serially correlated, one 

immediately has ⁡⁡𝐸 (∑
𝑟𝑡,𝑛

2

𝜎𝑡2
𝑁
𝑛=1 ) = 1. Then 𝐸 (∑

𝑟𝑡,𝑛
2

𝜎𝑡2
𝑁
𝑛=1 ) = ∑ 𝑠𝑛

2𝑁
𝑛=1 = 1. Regarding the 

model estimation, for the intraday volatility periodicity pattern 𝑠𝑛 , Engle applies a 

commercially available risk measure to estimate 𝜎𝑡 and further the calculates the 𝑠𝑛 as the 

variance of returns in each time interval after deflating by the conditional daily variance 

𝜎𝑡.  

Specifically,  

                    ⁡⁡⁡⁡⁡𝐸 (
𝑅𝑡,𝑛

2

𝜎𝑡2
) = 𝐸(𝜖𝑡,𝑛

2𝑧𝑡,𝑛
2𝑠𝑛) = 𝑠𝑛.                                                         (2.9) 

Note that the model of both (2.1) and (2.8) are based on the return series that are sampled 

from fixed time interval. In order to study the intraday volatility periodicity for the 

transaction-aggregated return series, I must estimate the intraday volatility periodicity for 

irregular spaced time interval during the trading day.  

2.4.2 Multiplicative component intraday volatility 

In this section I present the multiplicative component intraday volatility model. My model 

is based on the Andersen and Bollerslev (1997, 1998) and Engle (2012). In 1997, Andersen 

and Bollerslev proposed the intraday volatility model of (2.1). They expressed the daily 
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conditional variance as the product of intraday and daily volatility. As discussed in section 

2.4.1, this specification successfully describes the periodic structure of the absolute 

intraday return and can be extended to standard daily volatility model when returns are 

measured at daily frequencies. This prior specification is proved to be very fruitful. In 1998, 

Andersen and Bollerslev further add a component to the multiplicative specification of 

intraday volatility to capture macroeconomic announcements. The model is widely 

accepted for the modelling of intraday volatility in foreign exchange data. Later in 2012, 

Engle propose a multiplicative intraday volatility model that express the intraday 

conditional variance as a product of intraday periodicity, intraday variance and daily 

variance.  

 

When using tick-by-tick data for an equity with high liquidity like SPY, the component that 

accounts for macroeconomic announcements in the volatility model is not very practical. 

E.g., Andersen and Bollerslev (1998) and Rangel (2009). First, most important 

macroeconomic announcements such as the release of new monetary police happen before 

the stock market opens. Second, the timing of announcements that are particularly 

important to equity markets are hard to predict. Third, it is very difficult to capture and 

measure the market response to the macroeconomic announcement in a circumstance that 

the duration between two consecutive transactions is less than 0.1s. Finally, asymmetric 

information and microstructure are generally believed to play a decisive role in the high 

frequency return dynamics. However, macroeconomic or public announcement dummies 

cannot account for information arrival through order flow (Engle 2012).  

 

Besides, the intraday volatility models of (2.1) and (2.8) are based on returns sampled from 

fixed time interval. It cannot be applied directly for the transaction-aggregated return series. 

For instance, consider a tick-by-tick return series 𝑟𝑡,𝑛, where 𝑟𝑡,𝑛 represents the nth tick-

by-tick return at day t. In general, 𝑤𝑡,𝑛 ≠ 𝑤𝜏,𝑛 when 𝑡 ≠ 𝜏 where 𝑤𝑡,𝑛 is the waiting-time 

between transaction n and transaction n+1 at day t. Consequently, the periodic component 

𝑠𝑛 in (2.1) and (2.8) should be conditional on both 𝑡 and n. I therefore generalize the model 

of (2.8) by Engle (2012) to allow the intraday periodicity component to be conditional on 

the corresponding waiting-time of 𝑟𝑡,𝑛. I present our intraday volatility model as the follows.   
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            ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑟𝑡,𝑛/√𝑤𝑡,𝑛 = 𝜎𝑡𝜖𝑡,𝑛𝑠𝑡,𝑛𝑧𝑡,𝑛,                                                        (2.10) 

where 𝜎𝑡  is the conditional volatility at day t, 𝑤𝑡,𝑛  is the duration that corresponds to  

𝑟𝑡,𝑛, 𝑠𝑡,𝑛  is the intraday volatility periodicity component, 𝜖𝑡,𝑛  is the stochastic intraday 

volatility component with 𝐸(𝜖𝑡,𝑛
2) = 1  and 𝑧𝑡,𝑛 is an iid series that follows the normal 

distribution with zero mean and unit variance. 𝜖𝑡,𝑛 and 𝑧𝑡,𝑛 are assumed to be independent 

of each other. 𝜎𝑡, 𝑠𝑡,𝑛 and 𝜖𝑡,𝑛 are strictly positive. That is, 𝜎𝑡 > 0⁡ for all t, 𝑠𝑡,𝑛 > 0 for all 

t, n, 𝜖𝑡,𝑛 > 0 for all t, n.  

 

It is noticeable that in the specification of (2.10), I do not consider the duration 𝑤𝑡,𝑛 as a 

random variable. It is given exogenously. The incorporation of  𝑤𝑡,𝑛 in (2.10) therefore is 

for the normalization of irregularly spaced returns.  

 

There are several reasons behind this consideration. Frist, joint modelling of durations and 

volatilities requires an explicit parametric modelling of the arrivals of transactions that is 

beyond the scope of this chapter. I will elaborate the duration modelling in the ACD 

framework in Chapter 3. Second, the intraday periodic pattern of volatilities and durations 

are quite different. Adding the intraday periodic component into (2.10) would further 

complicate the model specification. Finally, the durations are in general correlated with 

volatilities. The modelling of durations often involves explanatory variables that are 

volatility measures. Hence, a multiplicative specification seems to be over simplistic.  

 

Under (2.10) the daily return 𝑅𝑡 at day t is, 

           ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑅𝑡 = 𝜎𝑡 ∑ √𝑤𝑡,𝑛𝜖𝑡,𝑛𝑠𝑡,𝑛𝑧𝑡,𝑛
𝑁𝑡
𝑛=1 ,⁡⁡⁡⁡⁡                                    (2.11) 

where the 𝑁𝑡 represents the total number of tick-by-tick transaction records at day t. It is 

clear that 𝐸(𝑅𝑡) = 0. Moreover, the expected value of the squared daily return 𝐸(𝑅𝑡
2) is,  

   ⁡𝐸(𝑅𝑡
2) = 𝜎𝑡

2∑ 𝐸(𝑤𝑡,𝑛𝜖𝑡,𝑛
2𝑠𝑡,𝑛

2𝑧𝑡,𝑛
2)

𝑁𝑡
𝑛=1 = 𝜎𝑡

2∑ 𝑤𝑡,𝑛𝑠𝑡,𝑛
2𝑁𝑡

𝑛=1 .                           (2.12) 

Consequently, ∑ 𝑤𝑡,𝑛𝑠𝑡,𝑛
2𝑁𝑡

𝑛=1 = 1 . Without the presence of the intraday periodicity, in 

which case  𝑠𝑡,𝑛 =
1

√𝑁𝑡
  for all n, the daily return 𝑅𝑡 is 

              ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑅𝑡 = 𝜎𝑡 ∑
1

√𝑁𝑡
√𝑤𝑡,𝑛𝜖𝑡,𝑛𝑧𝑡,𝑛

𝑁𝑡
𝑛=1 .                                             (2.13) 
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Observe that ∑
1

√𝑁𝑡
√𝑤𝑡,𝑛𝜖𝑡,𝑛𝑧𝑡,𝑛

𝑁𝑡
𝑛=1   is an independent but not necessarily identical 

distributed sequence of zero mean and unit variance. I further model the 𝜖𝑡,𝑛 by a GARCH 

(1,1) process, that is  

𝑦𝑡,𝑛|𝐹𝑡,𝑛−1~⁡𝑁(0, 𝜖𝑡,𝑛),⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡    

𝑦𝑡,𝑛 =
𝑟𝑡,𝑛

𝜎𝑡𝑠𝑡,𝑛√𝑤𝑡,𝑛
= 𝜖𝑡,𝑛𝑧𝑡,𝑛,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡   

                                  ⁡⁡⁡⁡⁡⁡𝜖𝑡,𝑛
2 = 𝜔 + 𝛼𝑦𝑡,𝑛−1

2 + 𝛽𝜖𝑡,𝑛−1
2                                         (2.14) 

 

In a summary of the extensive ARCH/GARCH literatures, Bollerslev, Chou, and Kroner 

(1992) argued that GARCH (1,1) is the most popular model. Moreover, even if the 

conditional variance specification requires more lag terms, the models are not of a higher 

order than GARCH (1,2) or GARCH (2,1). In 1990, Nelson gave an explanation of this 

empirical result. Specifically, efficiency considerations favor models of a lower order since 

many ARCH/GARCH models could be consistent filters of a particular diffusion process.  

 

With respect to the model estimation, Engle (2012) used a commercially available daily 

volatility measure that is based on the multifactor risk model of Fabozzi, Jones, and 

Vardharaj (2002). The use of a daily variance forecasts from the structural analysis allows 

the intraday volatility model to capture industry factor and common liquidity factors. 

Nevertheless, the market efficiency theory asserts that such information should be included 

in the market price. Moreover, given the strong ARCH effect of our daily return of SPY, a 

GARCH modelling seems to be natural. Thus, I capture the 𝜎𝑡 by a GARCH specification. 

Note that the daily variance component 𝜎𝑡  can be estimated by daily realized volatility 

approaches such as the Engle and Gallo (2006) and Zhang et.al. (2005). 

 

For the intraday periodicity component 𝑠𝑡,𝑛, Andersen and Bollerslev (1997,1998) applied 

a flexible Fourier transform to estimate the intraday volatility periodicity component⁡𝑠𝑡,𝑛. 

Their approach has an important advantage that it allows the 𝑠𝑡,𝑛 to be conditional on t. 

Specifically, the intraday periodic pattern is time varying and is dependent on the 

conditional daily volatility 𝜎𝑡. However, although the periodic pattern of financial returns 

is a well-known empirical stylized fact, there is no widely accepted economic theory that 
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could stipulate the parametric specification of dynamic structure of the intraday periodicity. 

As a result, nonparametric procedure seems natural. Thus, I follow the methodology of 

Engle (2012) and consider 𝑠𝑡,𝑛 as the variance of returns during its corresponding waiting-

time deflated by the daily conditional variance. This specification allows the daily 

conditional variance to be completely free. Specifically, observe that the specification of 

(2.10) implies that 

                          𝐸 (
𝑟𝑡,𝑛

2

𝜎𝑡2
) = 𝐸(𝑤𝑡,𝑛𝜖𝑡,𝑛

2𝑠𝑡,𝑛
2𝑧𝑡,𝑛

2) = 𝑤𝑡,𝑛𝑠𝑡,𝑛
2.                                 (2.15)  

(2.15) establishes the basis of the estimation of intraday periodicity pattern.  

2.5 Intraday volatility components and model estimation 

In this section I further explain the reasoning behind of the specification of (2.10) and 

discuss the econometrics regarding the estimation of the model. In Section 2.5.1 I discuss 

the ARCH effect of the daily returns of SPY and the impact of the ARCH effect on the 

intraday return series. I also present my modelling for the daily conditional variance 𝜎𝑡.  In 

Section 2.5.2 I present my estimation methodology for the intraday volatility periodicity. 

In Section 2.5.3 I discuss the econometrics regarding my estimation.  

2.5.1 ARCH effect of daily returns 

In this section I discuss the ARCH effect of daily returns and estimate the daily conditional 

volatility 𝜎𝑡. I first present the descriptive statistics of the SPY daily returns from January 

3, 2005 to December 31, 2014. There are total 2517 daily observations and overnight effect 

are not included.  
 

Mean Variance Kurtosis Skewness Maximum Minimum First Lag 

autocorrelation 

Daily returns 2.03E-06 0.000104 14.64993 -0.52421 0.076669 -0.09421 -0.08628 

Absolute daily returns 0.006581 6.02E-05 25.97425 3.688621 0.094207 0 0.330214 

Squared daily returns 0.000103 1.46E-07 197.7099 11.9846 0.008875 0 0.227522 

Table 2.5 Descriptive statistics of daily return series, absolute daily return series and squared daily return series 
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Figure 2.7 SPY daily returns from January 3, 2005 to December 31, 2014 

Figure 2.7 suggests that the daily returns between October 2008 and December 2008 are 

extremely volatile, which corresponds to the burst of the subprime mortgage financial crisis 

in 2008. The other busy period following since the end of 2009 corresponds to the European 

debt crisis. In general, the daily returns fluctuate dramatically around zero. This behavior 

gives a graphic illustration of the conditional heteroscedasticity. 

 

Besides, although the mean of the daily SPY returns can be safely assumed to be zero, the 

kurtosis of 14.65 and skewness of -0.52 suggest that the returns are not normally distributed. 

The daily returns have a small but significant negative first lag autocorrelation. Given the 

standard significance level of 5%, the lower bound and the upper bound are -0.03986 and 

0.03986 respectively. As expected, the daily volatility presents strong volatility clustering 

phenomenon. The first lag autocorrelations of the absolute daily and squared daily returns 

are of nonnegligible values and are highly significant. The following correlograms of the 

absolute daily returns and the squared daily returns provide further evidence.  
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Figure 2.8 SPY absolute daily return correlogram 

Figure 2.8 exhibits the slow decay of the correlation in the volatility of SPY daily returns.  

 

Figure 2.9 SPY squared daily return correlogram 

 

To test the ARCH effect statistically, I apply the ARCH test developed by Engle (1988). 

Consider an ARCH (p) process, 

𝑦𝑡
2 = 𝑎0 + 𝑎𝑖 ∑ 𝑦𝑡−𝑖

2𝑝
𝑖=1 + 𝜀𝑡.⁡ 

The alternative hypothesis is that there is at least one 𝑎𝑖  ≠ 0 for i01,2,3…, q. The test 

statistic is the Lagrange multiplier statistic T𝑅2  where T is the sample size and 𝑅2  is 

obtained from fitting the ARCH(p) model via regression. Under the null hypothesis that 

𝑎𝑖  0 0 for all i, the asymptotic distribution of the test statistic 𝑇𝑅2  is Chi-Square with 
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p degrees of freedom. 

 

A commonly accepted procedure for choosing the number of lags in the ARCH modelling 

is that one first estimates different lag structures and chooses the one with the minimal 

Akaike Information Criterion statistics (AIC). However, this procedure in practice usually 

favors a relatively long lag structure. Thus, I test the null hypothesis that there is no ARCH 

effect in the daily series against the alternative hypothesis of an ARCH model with two 

lagged squared innovations that is equivalent to a GARCH (1,1) model locally (Bollerslev 

1986). Although the GARCH (1,1) model is not necessarily the preferred model, it still 

gives a simple and comprehensive approximation to the dependence structure in the 

autocorrelation of squared returns. The result shows that the test rejects the null hypothesis 

at the significance level of 1% with a p value of zero for the test statistics. Specifically, the 

value of the test statistics is 747.5967 and the critical value for the given significance level 

of 1% is 9.2103.  

 

The pronounced ARCH effect in the previous discussion might not be very surprising since 

it is widely documented for financial research. However, the question remains that how 

this ARCH effect observed from daily returns, the aggregation of tick-by-tick returns, 

influences the intraday volatility process. According to my prior investigation of the ARCH 

effect on the daily return series, an intraday volatility process with conditional 

heteroskedasticity seems natural. Nevertheless, the poor performance of ARCH-GARCH 

models for the modelling of intraday volatility also is widely reported. (Cumby et al. 1993, 

West and Cho 1995, Figlewski 1995 and Jorin 1995). In order to explicitly explain the 

intraday volatility process, I first investigate the relation between the daily observed ARCH 

effect and intraday volatility pattern. 

  

To assess the influence of the ARCH effect observed from daily returns on the intraday 

returns, we explore the relation between one-step-ahead volatility estimation provided by 

GARCH models on daily returns and other daily ex post return variability measures 

calculated from intraday returns. I choose the daily returns from January 3, 2005 to 

December 31, 2013 to estimate the GARCH model and further compare the one-step-ahead 
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GARCH estimations with volatility measures calculated from intraday returns using 

sample from January 2, 2014 to December 31, 2014.  

 

For the conditional heteroskedasticity modelling of the daily returns, I choose the MA (1)-

GARCH (1,1) model specification. The moving average term MA (1) is included to explain 

the weak but significant negative first order autocorrelation in Table 2.5. The model is 

specified as, 

 

𝑅𝑡 = 𝑢 + 𝜃𝜀𝑡−1 + 𝜀𝑡, 

𝜀𝑡 = 𝜎𝑡𝑧𝑡, 

𝜎𝑡
2 = 𝜔 + 𝛼𝜀𝑡−1

2 + 𝛽𝜎𝑡−1
2 ,                                                 (2.16) 

where 𝑧𝑡 is an iid sequence and 𝑧𝑡~𝑁⁡(0,1). The ARMA is proposed by the thesis of Peter 

Whittle (1951). The maximum likelihood estimation regarding the ARMA-GARCH 

process can be found in Ling and Li (1997,1998), McAleer (2003) and Franco (2004). Note 

that, the GJR-GARCH could be another natural candidate for modelling  𝜎𝑡
2 since the daily 

return series has a skewness of -0.5241. The leverage effect that is the asymmetric 

contribution of returns with different signs to the variability of the prices is expected to be 

pronounced when returns are measured at daily frequency.  

 
 

Values Standard Error T statistics P values 

𝒖 0.000272 0.000137 1.988748 0.046729 

𝜽 -0.06674 0.024112 -2.76797 0.005641 

𝝎 1.69E-06 5.11E-07 3.311307 0.000929 

𝜷 0.873353 0.010796 80.89544 0 

𝜶 0.104926 0.009394 11.16934 5.76E-29 

Table 2.6 Parameter estimation of the MA (1)-GARCH (1,1) model 

Table 2.6 presents the estimated MA (1)-GARCH (1,1) model. Observe that 𝛼 is relatively 

large and 𝛽 is relatively small. The sum of 𝛽 and 𝛼 is around 0.978 that represents a high 

level of volatility persistence. The following Figure 2.10 exhibits the plot of standardized 

residuals and conditional daily variances. Observe the sudden surge of the conditional 

variance between the interval between 900 to 1000 that corresponds to the dramatic 

variation of daily returns during the same period in Figure 2.7.  
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Figure 2.10 The conditional variance and standardized residuals of MA (1)-GARCH (1,1) fitting 

 

Figure 2.11 The correlogram of squared standardized residuals of MA (1)-GARCH (1,1) fitting 

Figure 2.11 exhibits the autocorrelation function of the squared standardized residuals. The 

autocorrelations are eliminated as expected. Although the MA (1)-GARCH (1,1) captures 

the conditional heteroskedasticity successfully as suggested by Figures 2.10, 2.11, Figure 

2.12 suggests the standardized residuals still presents fat tails.  Another interesting finding 

is that, compared with Figure 2.7, the volatility of SPY daily returns in Figure 2.10 is much 

regular. Specifically, the effect of financial crisis in 2008 still stays but other noisy periods 

start to drop. It might suggest the different effect of intraday events such as mini flash crash 

and events lasting over days such as the financial crisis in 2008 over the daily volatility 

pattern of SPY.  
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Figure 2.12 The Quantile-Quantile Plot of the standardized residuals 

I now turn to the ex post return variability measure that are calculated from intraday returns. 

The two measures that we choose are the realized variance and the cumulative absolute 

returns. Specifically, ∑ |𝑟𝑡,𝑛|
𝑁𝑡
𝑛=1  and ∑ 𝑟𝑡,𝑛

2𝑁𝑡
𝑛=1 . 

 

As discussed in Chapter 1, compared with volatility measures that are based on daily 

returns that cannot capture the variability of intraday prices movement, the realized 

volatility gives a more realistic estimation since it takes, at the highest frequency, each tick-

by-tick observation into account. For instance, the intraday price can fluctuate dramatically 

over the trading day but ends with a value that is very close to the opening price.  

 

We present the comparison of the one-step-ahead MA (1)-GARCH (1,1) daily forecasts 

with the absolute daily return |𝑅𝑡| = ⌈∑ 𝑟𝑡,𝑛
𝑁𝑡
𝑛=1 ⌉ , realized variance ∑ 𝑟𝑡,𝑛

2𝑁𝑡
𝑛=1   and 

cumulative absolute returns ∑ |𝑟𝑡,𝑛|
𝑁𝑡
𝑛=1  . Daily returns of SPY from January 3, 2005 to 

December 31, 2013 are employed to estimate the MA (1)-GARCH (1,1) model. Tick-by-

tick transactions from January 2, 2014 to December 31, 2014 are used to calculate the 

realized volatility and cumulative absolute returns and are aggregated to daily frequency 

to serve as the out-sample for the GARCH forecasts. All series are normalized to have an 

average of one. 
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The following Figure 2.13 presents the one-step-ahead GARCH (1,1) forecasts and the 

daily absolute returns |𝑅𝑡| . The daily absolute returns fluctuate arbitrarily arounds the 

GARCH predictions. It seems intuitively that the GARCH forecasts should have weak 

explanatory power of the observed daily variability of returns that is measured by, |𝑅𝑡| =

⌈∑ 𝑟𝑡,𝑛
𝑁𝑡
𝑛=1 ⌉. Further, it might also implicitly suggest that the ARCH effects of the daily 

returns have negligible impact on the intraday volatility. However, the suggestion is 

misleading, since 

 |𝑅𝑡| = ⌈∑ 𝑟𝑡,𝑛
𝑁𝑡
𝑛=1 ⌉ = |∑ ln⁡(

𝑃𝑡,𝑛+1

𝑃𝑡,𝑛

𝑁𝑡
𝑛=1 )| = |𝑙𝑛𝑃𝑡,𝑁𝑡+1 − 𝑙𝑛𝑃𝑡,1|.                     (2.17) 

 

(2.17) suggests that under the assumption that there is no over night effect |𝑅𝑡| =

⌈∑ 𝑟𝑡,𝑛
𝑁𝑡
𝑛=1 ⌉ should coincide with the daily absolute returns. In real world, the two concepts 

are not equivalent for sure. Thus, |𝑅𝑡| = ⌈∑ 𝑟𝑡,𝑛
𝑁𝑡
𝑛=1 ⌉  only catupres the variablility for 

aggregated tick-by-tick prices. It actully just takes the first and last tick-by-tick prices into 

account.  

  

Figure 2.13 The absolute daily returns and GARCH (1,1) volatility forecasts 

In contrast, Figure 2.14 suggests the daily GARCH forecasts are much more in line with 

the ex post daily return variability measure √∑ 𝑟𝑡,𝑛2
𝑁𝑡
𝑛=1 ⁡  and ∑ |𝑟𝑡,𝑛|

𝑁𝑡
𝑛=1  . These two 

measures are calculated by tick-by-tick returns and account for the variability of every tick-

by-tick return.  



63 

 

Figure 2.14 The cumulative absolute returns, realized volatility and GARCH (1,1) forecasts 

To further illustrate this issue, I examine the correlations between the daily GARCH 

forecasts and the other three series. The results are reported in Table 2.7. 

 
 

∑ |𝒓𝒕,𝒏|
𝑵𝒕

𝒏=𝟏
 

P value 
|𝑹𝒕| = ⌈∑ 𝒓𝒕,𝒏

𝑵𝒕

𝒏=𝟏
⌉ 

P value 

√∑ 𝒓𝒕,𝒏
𝟐

𝑵𝒕

𝒏=𝟏
⁡ 

P value 

𝝈𝒕 0.553814319 1.17E-21 0.236701 1.49E-04 0.559359 3.80E-22 

       

 

[∑ |𝒓𝒕,𝒏|
𝑵𝒕

𝒏=𝟏
]𝟐 

P value 𝑹𝒕
𝟐 P value 

∑ 𝒓𝒕,𝒏
𝟐

𝑵𝒕

𝒏=𝟏
 

P value 

𝝈𝒕
𝟐 0.54229162 1.14E-20 0.230797 2.19E-04 0.548984 3.08E-21 

Table 2.7 Correlations between GARCH forecasts and other ex post daily variability measures 

Table 2.7 confirms the finding from Figures 2.13 and 2.14. The correlation between the 

GARCH forecasts and the realized volatility is around 0.559. That is, 31.25 percent of the 

variation in the realized volatility can be explained by the MA (1)-GARCH (1,1) model. 

Besides, the correlation between the GARCH forecast and cumulative absolute returns is 

also as high as 0.5538. In contrast, the correlation between the GARCH forecast and 

absolute daily returns is only 0.2367. Thus, only about 6 percent of the variation of the 

daily absolute returns can be captured by the MA (1)-GARCH (1,1) forecasts.  

 

Moreover, since the GARCH forecasts are based on daily observations, the strong 

correlation between GARCH forecasts and realized variance cannot be explained by only 

intraday volatility pattern. No matter what the intraday volatility pattern is, it should be 

annihilated when returns are measured at daily frequency. Consequently, it suggests that 
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the ARCH effects observed at daily frequency have strong impact on the intraday volatility 

pattern. As a result, ignoring the pronounced ARCH effect at daily frequency and the 

corresponding GARCH-ARCH forecasts in intraday volatility modelling inevitably results 

in the loss of a large percentage of predictable intraday return variability.  

 

According to the analysis and discussion in this section, a misspecification of the intraday 

volatility process might emerge if we cannot capture the daily ARCH effect. The empirical 

results of Figures 13, 14 and Table 2.7 justify the daily conditional component  𝜎𝑡 in (2.10) 

and support the use of the GARCH prediction to estimate the 𝜎𝑡.  

2.5.2 Intraday volatility periodicity 

In this section, I present our estimation of the intraday volatility periodicity component 𝑠𝑡,𝑛. 

In Andersen and Bollerslev (1998), the intraday returns are modelled by the following 

equation.  

𝑟𝑡,𝑛 = 𝐸(𝑟𝑡,𝑛) + 𝜎𝑡,𝑛𝑠𝑡,𝑛𝑧𝑡,𝑛,⁡                                       (2.18) 

where the conditional volatility component is 𝜎𝑡,𝑛 , 𝑠𝑡,𝑛  is the intraday periodicity 

component and 𝑧𝑡,𝑛 is an iid sequence with zero mean and unit variance. For the estimation 

of 𝜎𝑡,𝑛, they use the estimator 𝜎𝑡/√𝑁 where 𝜎𝑡 is the daily GARCH estimation. Therefore, 

the intraday periodicity component 𝑠𝑡,𝑛 is considered as a stochastic process evolving with 

time and is estimated by flexible Fourier transform. Regarding the functional data analysis 

of intraday volatility periodicity are in Muller et al. (2007) and Andersen and Bollerslev 

(1998). Alternatively, Engle (2012) considers the 𝑠𝑡,𝑛  as constants and grants complete 

freedom to the daily volatility component 𝜎𝑡. Specifically, 𝑠𝑡,𝑛 = 𝑠𝜏,𝑛 = 𝑠𝑛 for all 𝜏 and 𝑡.  

 

Here, I follow the methodology of Engle (2012) for the estimation of 𝑠𝑡,𝑛  based on 

following considerations. First, if I assume that the 𝐸(𝑟𝑡,𝑛) in (2.18) to be zero and replace 

the intraday volatility component 𝜎𝑡,𝑛 with its estimator 𝜎𝑡/√𝑁. The equation now reduces 

to (2.1), which is  

𝑟𝑡,𝑛 = 1/√𝑁𝜎𝑡𝑠𝑡,𝑛𝑧𝑡,𝑛. 
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The intraday component in (2.18) is now 𝑠𝑡,𝑛 . It evidently should be assumed as a 

stochastic process. In contrast, recall the specification of intraday returns in (2.10),  

𝑟𝑡,𝑛/√𝑤𝑡,𝑛 = 𝜎𝑡𝜖𝑡,𝑛𝑠𝑡,𝑛𝑧𝑡,𝑛, 

where 𝜖𝑡,𝑛  is the intraday volatility component and is stochastic. If I consider 𝑠𝑡,𝑛  as a 

stochastic process, it is hard to assume that it should be independent of 𝜖𝑡,𝑛 and further 

complicate the picture. In order to explicitly exhibit the intraday return dynamics, it seems 

natural to assume the periodicity component to be unconditional. Secondly, based on our 

discussion of realized variance in Chapter 1, I should have, 

𝐸(𝜎𝑡
2) = 𝐸(∑𝑟𝑡,𝑛

2) = ∑𝐸(𝑤𝑡,𝑛𝜎𝑡
2𝑠𝑡,𝑛

2)

𝑁𝑡

𝑛=1

.

𝑁𝑡

𝑛=1

 

It intuitively suggests that 𝑠𝑡,𝑛
2 should be considered as time invariant as well.  

 

I now present the estimation of intraday periodicity component 𝑠𝑡,𝑛. Since that 𝐸 (
𝑟𝑡,𝑛

2

𝜎𝑡2
) =

𝐸(𝑤𝑡,𝑛𝜖𝑡,𝑛
2𝑠𝑡,𝑛

2𝑧𝑡,𝑛
2) = 𝑤𝑡,𝑛𝑠𝑡,𝑛

2 , under the assumption that 𝑤𝑡,𝑛 = 𝑤𝜏,𝑛  for all 𝑡  and 𝜏 

(time-aggregated returns), a natural way to estimate the 𝑠𝑡,𝑛
2 is 

 𝑠𝑡,𝑛2̂ =
1

𝑇
∑

𝑟𝑡,𝑛
2

𝑤𝑡,𝑛𝜎𝑡2
𝑇
𝑡=1 .                                                  (2.19) 

This is reasonable for intraday return series formed from identical time interval (time-

aggregated returns). Since my tick-by-tick and transaction-aggregated are not equally 

spaced in time, in general the nth return of day t, 𝑟𝑡,𝑛 and nth return of day⁡𝜏, 𝑟𝜏,𝑛 are not 

sampled from the same time interval if t⁡≠ 𝜏. I circumvent the difficulty by followings.  

 

Let 𝑥𝑡,𝑛 represent the time of the nth transaction at day 𝑡. Since 𝑟𝑡,𝑛 = ln⁡(
𝑃𝑡,,𝑛+1

𝑃𝑡,𝑛
), it can be 

viewed as the return of day 𝑡 on period from 𝑥𝑡,𝑛 to 𝑥𝑡,𝑛+1. I now consider the intraday 

volatility pattern during the period 𝑥𝑡,𝑛 to 𝑥𝑡,𝑛+1 on each trading day. For another day k,  

let 𝑘(𝑥𝑡,𝑛+1) = max⁡{𝑠|𝑥𝑘,𝑠 ≤ 𝑥𝑡,𝑛+1, 𝑠 = 1,2,3… , } ,  𝑘(𝑥𝑡,𝑛) = min{𝑠|𝑥𝑘,𝑠 ≥ 𝑥𝑡,𝑛, 𝑠 =

1,2,3… , } . Let 𝑆𝑘(𝑡, 𝑛) = {𝑠|𝑘(𝑥𝑡,𝑛) ≤ 𝑠 ≤ 𝑘(𝑥𝑡,𝑛+1)  . The prices at 𝑥𝑡,𝑛  and 𝑥𝑡,𝑛+1  on 

day k are conjectured by taking the average of adjacent two transactions in case that  

𝑆𝑘(𝑡, 𝑛) = ∅. 
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I then define 𝑉𝑘(𝑡, 𝑛) = 
1

𝑆[𝑆𝑘(𝑡,𝑛)]
∑ 𝑟𝑘,𝑠

2 /𝑤𝑘,𝑠𝜎𝑘
2

𝑠∈𝑆𝑘(𝑡,𝑛) where 𝑆[𝑆𝑘(𝑡, 𝑛)] is the number of 

elements in [𝑆𝑘(𝑡, 𝑛)] .Further, 𝑠𝑡,𝑛
2̂ =

1

𝑁
∑ 𝑉𝑘(𝑡, 𝑛)
𝑁
𝑘=1   is applied to estimate the intraday 

volatility periodicity pattern during that period. The Matlab code for the estimation is given 

in Appendix C.  

 

My intraday periodicity estimation procedure allows the shape of the periodic pattern 

depend on the estimated trading period. It turns out to be important for the tick-by-tick 

return series and transaction-aggregated return series for which the observations are not 

equally spaced in time. Besides, my approach uses the full tick-by-tick return series to 

accurately capture the periodicity.  

 

However, due to the extremely large tick-by-tick sample size, the searching algorithm used 

to find out 𝑆𝑘(𝑡, 𝑛) = {𝑠|𝑘(𝑥𝑡,𝑛) ≤ 𝑠 ≤ 𝑘(𝑥𝑡,𝑛+1)   requires very long execution time. 

Moreover, the random-access memory requirement for the computation is beyond the 

capacity of my equipment. However, it is possible for traders with high technique capacity 

to use the tick-by-tick based algorithm to estimate the intraday periodic volatility pattern. 

Thus, I choose the time-aggregated returns to examine our specification since searching a 

regular partition of time massively reduce the computational difficulties.  

 

2.5.3 Econometrics regarding estimation 

In this section, I discuss statistical properties regarding my model estimation. I estimate 

the daily conditional volatility component 𝜎𝑡 use the MA (1)-GARCH (1,1) model first. 

Although in principle the parameters of the model in (2.10) should be estimated 

simultaneously, I do not adapt this standard procedure according to the following 

considerations. First, the daily GARCH model estimation generally requires a relatively 

large sample. However, the corresponding tick-by-tick high frequency data are not 

available. Second, a tick-by-tick transaction records of several years will have huge number 

of observations. E.g. My tick-by-tick transaction records of symbol SPY during 

01/02/2014-12/31/2014 has 79156264 observations. Consequently, it rises the practical 
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difficulty of storing and computing data of such magnitude in a joint estimation. Finally, 

since 𝜎𝑡 is estimated by MA (1)-GARCH (1,1) without a clear specification in (2.10), it 

gives the flexibility to use other daily volatility measures.  

 

Thus, the estimation now is a two-step procedure. The first step I estimate the intraday 

volatility periodicity component as discussed in Section 2.5.2. The second step I estimate 

the GARCH (1,1) model for the stochastic intraday volatility component ⁡𝜖𝑡,𝑛. In general, 

results from a multi-step estimation procedure can be flawed by the errors that are induced 

by errors in the previous estimation steps. In order to show the estimation are consistent, I 

apply the generalized methods of moments methodology (GMM).  

 

Let 𝜓 be the 𝑘1 parameters estimated at the first step and 𝜃 be the 𝑘2 parameters estimated 

at the second step. Besides, suppose 𝑔1 (𝜓)  and 𝑔2(𝜓, 𝜃)  are the 𝑘1  and 𝑘2  moments 

conditions which specify the parameters by true moments. Denote the corresponding 

sample sum as 𝑔1,𝑀  and ⁡𝑔2,𝑀 . Let 𝑔𝑀 = (𝑔1,𝑀
′ , 𝑔2,𝑀

′ )′ , 𝛿 = (𝜓
𝜃
)  and 𝑔(𝛿) = ( 𝑔1(𝜓)

𝑔2(𝜓,𝜃)
) . 

The GMM estimator of the parameter can be presented as  

(
𝜓̂

𝜃
) = arg𝑚𝑖𝑛 𝑔𝑀𝐼𝑔𝑀 = argmin 𝑔𝑀 𝑔𝑀⁡ 

𝐼 is the diagonal matrix. In order to solve the above equation, 𝜓 must solve the equation in 

first row and 𝜃 should solve the equation in the second row given 𝜓̂. According to Newey 

and McFadden (1994), if 𝜓̂  and 𝜃  are consistent estimators of the 𝜓  and 𝜃 , under quite 

general conditions (Newey and McFadden 1994) of 𝑔𝑀 , the following estimator 

√𝑀 (
𝜓̂ 𝜓

𝜃 𝜃
) is consistent and asymptotically normal. Specifically, it converges in 

distribution to the normal distribution 𝑁(0, 𝐺−1Λ𝐺−1
′
)  where 𝐺 = 𝐸(𝜕𝑔(𝛿)/𝜕𝛿)  and 

Λ = E(g(𝛿)𝑔(𝛿)′).  

 

As showed by Hansen (1982) and Engle (2012), the matrix √𝑀(
𝜓̂ 𝜓

𝜃 𝜃
)  can be 

consistently estimated by using sample averages to replace expectations and using 

estimation of parameters to replace parameters. 
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In the context of my estimation, let 𝑟𝑡,𝑛, 𝜖𝑡,𝑛, 𝜎𝑡 and 𝑠𝑡,𝑛 be defined as in equation 2.10. I 

have 

𝑔1,𝑀(𝜓) = 𝑔1,𝑀 = (
1/𝑇∑

𝑟𝑡,1
2

𝜎𝑡
2 −𝑠𝑡,1

2𝑇
𝑡,1

⋮

1/𝑇∑
𝑟𝑡,𝑁𝑡

2

𝜎𝑡
2 −𝑠𝑡,𝑁𝑡

2𝑇
𝑡,𝑁𝑡

), 

𝑔2,𝑀(𝜓̂, 𝜃) = 𝑔2,𝑀 = 1/𝑇∑∑ ∑ ∇𝜃(log(𝜖𝑡,𝑛
2) + (

𝑟𝑡,1
2

𝜎𝑡2𝑠𝑡,𝑛2̂𝜖𝑡,𝑛2
))

𝑁𝑡
𝑛=1

𝑇
𝑡=1 , 

𝐺 =
1

𝑀
∑(

∇𝜓𝑔1 0

∇𝜓𝑔2 ∇𝜃𝑔2
), 

                                                  
1

𝑀
∑(

𝑔1,𝑡
2 𝑔1,𝑡𝑔2,𝑡

𝑔1,𝑡𝑔2,𝑡 𝑔2,𝑡
2 ) → Λ.                                    (2.20) 

The convergence is in the sense of convergence in probability measure. Moreover, the 𝜓̂ 

and 𝜃 estimated at the first and second stage are consistent estimator for 𝜓 and 𝜃 clearly. 

Under the assumption of stationarity and ergodicity, Large Number Theorem verifies the 

consistency of  𝜓̂. Consistency of the GARCH parameters can be found in Lee and Hansen 

(1994) and Bollerslev (1992).  

2.6 Empirical results 

In this section I present the empirical results of my intraday volatility specification of (2.10). 

I evaluate the specification from mainly two perspectives. First, I analyze the intraday 

returns normalized by one-day-ahead GARCH forecasts, the intraday returns normalized 

by one-day-ahead GARCH forecasts and intraday volatility periodicity pattern. 

 

I use the terminology “normalized returns” to refer to the intraday returns normalized by 

one-day-ahead GARCH forecasts. Specifically, 𝑟𝑡,𝑛̃ =  𝑟𝑡,𝑛/𝜎𝑡̂ . The terminology “filtered 

returns’’ are used to describe intraday returns normalized by one-day-ahead GARCH 

forecasts and intraday volatility periodicity pattern. Specifically,𝑟𝑡,𝑛̂ = 𝑟𝑡,𝑛/𝑤𝑡,𝑛𝜎𝑡̂𝑠𝑡,𝑛̂. As 

explained in previous section 2.5.2, the de-seasonal technique requires large amount of 

computation for the transaction-aggregated returns since it is based on searching tick-by-

tick transactions records. Thus, I only exhibit the filtered returns for time-aggregated 

returns. Since those returns are sampled from identical time intervals, the duration 𝑤𝑡,𝑛 in 
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(2.10) can be defined as unit. 

 

Second, I present the model estimation for time-aggregated returns at various frequencies. 

I compare the estimated parameters with the theoretical aggregational prediction of 

GARCH (1,1) from Nelson (1992) and analyze the model residuals.  

 

2.6.1 Normalized intraday returns and filtered intraday returns  

In this section I present the analysis regarding normalized intraday returns and filtered 

intraday returns. I divide the analysis into two sections. Section 2.6.1.1 discusses the 

analysis of the normalized intraday returns. Section 2.6.1.2 represents the analysis of the 

filtered intraday returns.  

 

   Normalized intraday returns 

Figure 2.15 presents the one-day-ahead MA (1)-GARCH (1,1) estimates for the period 

during 01/02/2014-12/31/2014. The details of the estimation are presented in section 

2.5.1. I now present a summary of descriptive statistics for the normalized intraday 

returns 𝑟𝑡,𝑛/𝜎𝑡̂.  

 

 

Figure 2.15 One-day-ahead MA (1) -GARCH (1,1) estimation 
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Sample 

Size 

 Mean Variance Kurtosis Skewness Max Min 𝒑𝟏 (𝒂)𝒑𝟏 
 

(𝒔)𝒑𝟏 

30Second 196560 1.25E-07 0.001204 167.665 -0.13508 1.385718 -1.46815 -0.10463 0.312765 0.489134 

1Minute 98280 2.51E-07 0.002231 64.42646 -0.1912 1.408863 -1.45948 -0.08058 0.282229 0.467608 

1.5Minute 65520 3.76E-07 0.00321 48.6927 -0.16571 1.361122 -1.49995 -0.06177 0.268761 0.453377 

3Minute 32760 7.52E-07 0.006195 20.9807 -0.26811 1.245272 -1.63514 -0.04921 0.240136 0.378386 

5Minute 19656 1.25E-06 0.0095 6.321807 -0.14592 0.731673 -0.83181 -0.01585 0.19892 0.15415 

10Minute 9828 2.51E-06 0.018818 5.993268 -0.22319 0.814763 -0.98106 -0.01946 0.190533 0.125991 

15Minute 6552 3.76E-06 0.027404 5.769621 -0.23229 0.945254 -1.09734 0.003031 0.181626 0.105811 

30Minute 3276 7.52E-06 0.055366 5.137176 -0.25934 1.091958 -1.15388 0.008075 0.152081 0.107696 

78Minute 1260 1.96E-05 0.146711 4.904028 -0.39886 1.448271 -1.88065 0.068372 0.167124 0.112384 

Table 2.8 The normalized time-aggregated returns 

 
 

Sample 

Size 

 Mean Variance Kurtosis Skewness Max Min 𝒑𝟏 (𝒂)𝒑𝟏 
 

(𝒔)𝒑𝟏 

T=400 198261 -1.9E-06 0.001155 1308.24 0.189044 3.307417 -3.29112 -0.0962854 0.253815 0.499309 

T=800 98942 -6.1E-06 0.002064 210.4466 0.008546 2.210617 -2.19975 -0.047105 0.182147 0.495312 

T=1200 65893 -9.5E-06 0.003171 372.8296 0.021205 3.31828 -3.31285 -0.0569775 0.194002 0.497701 

T=2400 32876 0.000106 0.005926 113.042 2.467613 3.35631 -0.55958 0.00530582 0.064171 0.001178 

T=4000 19663 1.99E-05 0.009473 3.529551 -0.04754 0.557197 -0.58379 0.00794604 0.07018 0.088125 

T=8000 9763 -2.2E-05 0.019155 3.4 -0.05032 0.755934 -0.53138 -0.0011895 0.052102 0.050723 

T=12000 6468 0.000195 0.028742 3.314235 -0.15596 0.696386 -0.64206 -0.0049805 0.059878 0.055918 

T=24000 3162 0.000689 0.057648 3.233583 -0.15545 0.891024 -0.91855 -0.0108197 0.032436 0.032172 

T=62000 1165 -0.00216 0.161005 3.056574 -0.13479 1.343841 -1.22803 0.01098296 0.082668 0.060503 

Table 2.9 The normalized transaction-aggregated returns 

Tables 2.8 and 2.9 give the descriptive statistics of the time-aggregated returns and 

transaction-aggregated at various frequencies, where 𝑝1, (𝑎)𝑝1 and (𝑠)𝑝1 are the first lag 

autocorrelations of the normalized returns, absolute normalized returns and squared 

normalized returns respectively. 

 

Although I again detect little interests in the sample mean, the skewness and kurtosis have 

intriguing features. Regarding the kurtosis, it turns out that when returns are measured at 

the highest frequencies, the normalized time-aggregated returns have much smaller 

kurtosis compared with the transaction-aggregated returns. For instance, the kurtosis of the 

normalized 30-second, 1-minute, 1.5-minute and 3-minute returns series are 167.67, 
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64.43,48.69 and 20.9807 respectively. Meanwhile, the kurtosis of the corresponding 

normalized T-400, T-800, T-1200 and T-2400 transaction aggregated returns series are 

1308.24, 210.45, 372.83 and 113.04 respectively. In other words, transaction-aggregated 

returns are more fat-tailed compared with time-aggregated returns at the highest 

frequencies. However, when returns are measured at relatively low level of intraday 

frequency, the normalized transaction-aggregated returns exhibit much regular kurtosis 

compared with corresponding normalized time-aggregated returns. For example, the 

kurtosis of the corresponding normalized T-4000, T-8000, T-12000 and T-24000 

transaction aggregated returns series are 3.53, 3.4, 3.33 and 3.23 respectively. However, 

the corresponding normalized 5-minute, 10-minute, 15-minute and 30-minute return series 

have kurtosis of 6.32, 5.99, 5.77 and 5.13 respectively. This finding is consistent with our 

discussion regarding the two different sampling methods in Chapter 1. Observe the sharp 

drop of kurtosis between the T-2400 and T-4000 normalized transaction aggregated returns.  

 

Regarding the skewness, note that the normalized T-4000 and T-8000 return series have 

skewness that are very close to 0. In contrast, the skewness of normalized time-aggregated 

returns varies and present no obvious dependence on the return frequencies.  

 

Another important empirical finding comes from the last three columns in Tables 2.8 and 

2.9. First, both normalized intraday time-aggregated and transaction-aggregated returns are 

approximately uncorrelated, although there is a small, but significant, negative first order 

autocorrelations at the highest frequencies. This is explained the bid-ask bounce as 

mentioned previously.  

 

Second, in general the normalized intraday returns still exhibit significant volatility 

clustering feature. For instance, the normalized 1-minute, 1.5-minute and 3-minute squared 

returns have the first lag autocorrelations of 0.4676, 0.4533 and 0.3784 respectively. 

Meanwhile, the first lag autocorrelations of these three normalized time-aggregated returns 

are -0.0806, -0.0618 and -0.0492 that are neglectable from the economic perspective. The 

normalized transaction-aggregated returns exhibit similar characteristics. For example, the 

normalized T-800 and T-1200 squared returns have very strong positive first lag 
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autocorrelations of 0.4953 and 0.4978 and meanwhile the first lag autocorrelation of the 

normalized T-800 and T-1200 return series are –0.0481 and -0.0570. This finding suggests 

the intraday returns exhibit strong ARCH effect even after normalizing by ARCH-GARCH 

daily volatility forecasts. This implicitly supports our specification of (2.10). However, this 

intraday ARCH effect generally dies out when return frequencies decrease as suggested by 

the monotonically decreasing values of the last two columns in Tables 2.8 and 2.9.  

 

Third, compared with the normalized time-aggregated return series for which the intraday 

ARCH effect is significant even at very low intraday frequency, the ARCH effect of 

normalized transaction-aggregated return series vanishes very quickly. For instance, when 

the number used to aggregate the tick-by-tick transactions exceeds 2400, the first lag 

autocorrelation of normalized squared transaction-aggregated returns and normalized 

absolute transaction-aggregated are of very small values that can be assumed zero plausibly.  

 

Under (2.10), The normalized time-aggregated intraday returns 
𝑟𝑡,𝑛

𝜎𝑡
= 𝜖𝑡,𝑛𝑠𝑡,𝑛𝑧𝑡,𝑛. Thus, in 

addition to the discussed conditional heteroskedasticity, it should present the intraday 

periodicity pattern as well. I here present the correlogram of the normalized 5-minute 

absolute return series and the normalized 10-minute absolute return series for up to five 

trading days.  

 

Figure 2.16  The correlogram of normalized 5-minute absolute returns 
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Figure 2.17 The correlogram of normalized 10-minute absolute returns 

Figures 2.16 and 2.17 exhibit strong periodic pattern as expected. Compared with the 

Figures 2.5 and 2.6 in section 2.3, a salient feature is that the normalized intraday returns 

now no longer constantly possess significant autocorrelations for the lags up to five trading 

days.  

 

  The filtered intraday returns 

In this section, I discuss the filtered intraday returns 𝑟𝑡,𝑛̂ = 𝑟𝑡,𝑛/𝜎𝑡̂𝑠𝑡,𝑛̂ . I first present a 

graphic illustration of our estimation of 𝑠𝑡,𝑛. To be consistent with the previous description, 

I use the 5-minute time intervals to present the intraday periodicity.  

 

Figure 2.18 presents the expected U-shape of intraday periodicity. It starts at the highest 

level when market opens and then gradually decreases with time. It reaches the lowest 

value at the forty 5-minute trading interval that is around 12:50. After that, it increases with 

time until the market is closed.  
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Figure 2.18 The estimated intraday periodicity for each 5-minute time interval 

 
 

Sample 

Size 

 Mean Variance Kurtosis Skewness Max Min 𝒑𝟏 (𝒂)𝒑𝟏 
 

(𝒔)𝒑𝟏 

30Second 196560 -0.00037 1.000005 16.04269 -0.04466 15.14489 -15.1776 -0.04421 0.237787 0.39142 

1Minute 98280 -0.00047 1.00001 12.22964 -0.08725 14.24929 -14.3882 -0.05103 0.228836 0.346531 

1.5Minute 65520 -0.00073 1.000015 12.90129 -0.08684 13.81001 -13.7784 -0.0321 0.217655 0.354665 

3Minute 32760 -0.00078 1.00003 10.25224 -0.09803 12.36469 -12.5788 -0.03602 0.205242 0.321281 

5Minute 19656 -0.00078 1.00005 5.63634 -0.13308 6.100498 -8.11604 -0.02155 0.171075 0.145198 

10Minute 9828 -0.00118 1.0001 5.424702 -0.18769 5.90282 -6.74803 -0.02201 0.169528 0.125574 

15Minute 6552 -0.00212 1.000148 5.408844 -0.24594 5.388117 -7.40249 0.009641 0.160309 0.099098 

30Minute 3276 -0.00411 1.000288 4.959931 -0.27933 4.463494 -5.19666 0.012625 0.143373 0.108887 

78Minute 1260 -0.00165 1.000792 4.869385 -0.34463 4.633105 -4.41664 0.069233 0.181823 0.128609 

Table 2.10 The filtered time-aggregated returns 

Table 2.10 summaries the descriptive statistics regarding the filtered time-aggregated 

returns at different frequencies. Observe the variance now is almost unity for filtered time-

aggregated returns as specified under (2.10). The filtered time-aggregated returns still 

present excessive high kurtosis and negative skewness, suggesting that the unconditional 

distribution is not normal. An interesting finding is that the filtered time-aggregated returns 
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now present little evidence for autocorrelations. Specifically, the first lag autocorrelation 

for the 30-second, 1-minute, 1.5-minute, 3-minute and 5-minute return series are now -

0.044, -0.051, -0.032, -0.036 and -0.022 respectively. These values are still significant but 

of small magnitude. In contrast, the squared filtered time-aggregated return series still 

present strong autocorrelations as suggested by the last column of Table 2.10. This implies 

the existence of conditional heteroskedasticity.  

 

I carry out the ARCH test (Engle 1988) to verify the conditional heteroskedasticity as in 

Section 2.5.1. Specifically, we test the null hypothesis that there is no ARCH effect in the 

filtered time-aggregated return series against the alternative hypothesis of an ARCH model 

with two lagged squared innovations that is equivalent to a GARCH (1,1) model locally. 

 
P values Value of T𝑹𝟐 

 
Critical value of T𝑹𝟐  

30Second 0 32328.71024 9.210340372 

1Minute 0 12087.05103 9.210340372 

1.5Minute 0 8450.709077 9.210340372 

3Minute 0 3402.702996 9.210340372 

5Minute 0 728.5254549 9.210340372 

10Minute 0 303.1955374 9.210340372 

15Minute 0 123.6137445 9.210340372 

30Minute 0 113.2577976 9.210340372 

78Minute 0 86.10606377 9.210340372 

Table 2.11 ARCH test of filtered time-aggregated returns 

As the suggested by Table 2.11, the null hypothesis of no ARCH effect is rejected at all 

frequencies. The significance level is 0.01. In other words, the time-aggregated returns 

after normalization by daily conditional variance and intraday periodicity still present 

strong conditional heteroskedasticity. Finally, I present the correlogram of the absolute 

filtered 5-minute and 10-minute time-aggregated return series for up to five days.  



76 

 

Figure 2.19 The correlogram of filtered 5-minute absolute returns 

The autocorrelations of filtered 5-minute absolute returns decreases now very slowly 

through the lags since the intraday periodic pattern has been excluded by 𝑟𝑡,𝑛̂ = 𝑟𝑡,𝑛/𝜎𝑡̂𝑠𝑡,𝑛̂ . 

This is in line with autocorrelation structure of GARCH model. The U-shape in the Figures 

2.15 and 2.16 now no longer exists. It suggests that my estimation of the intraday volatility 

periodicity is effective. The following Figure 2.20 is equally telling.  

 

Figure 2.20 The correlogram of filtered 10-minute absolute returns 
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2.6.2 Results of GARCH estimation and volatility persistence  

In this section I present the results of the GARCH estimation. I first exhibit the inadequacy 

of the standard GARCH modelling for describing intraday volatility process. I then present 

our GARCH estimation of the filtered time-aggregated return volatility. I focus on the 

comparison between the estimates and the theoretical aggregation results from Nelson 

(1990,1992). Finally, I present the model residuals using the example of 5-minute and 10-

minute filtered returns.  

There are vast literatures regarding the modelling of high frequency return dynamics using 

GARCH (1,1) model. Thus, I first examine the effectiveness of the GARCH (1,1) in 

modelling raw intraday time-aggregated returns. In order to capture the significant first 

order autocorrelation, I choose the MA (1)-GARCH (1,1) specification.  

𝑅𝑡,𝑛 = 𝑢 + 𝜃𝜀𝑡,𝑛−1 + 𝜀𝑡,𝑛, 

𝜀𝑡.𝑛 = 𝜎𝑡.𝑛𝑧𝑡.𝑛, 

                                                          ⁡⁡𝜎𝑡.𝑛
2 = 𝜔 + 𝛼𝜀𝑡,𝑛−1

2 + 𝛽𝜎𝑡,𝑛−1
2 ,                         (2.21) 

where 𝐸𝑡,𝑛−1[(𝜀𝑡,𝑛
2 )] = 𝜎𝑡.𝑛

2  is the conditional variance and 𝑧𝑡.𝑛~𝑁(0,1) and is iid. 

The estimation is based on the quasi-maximum likelihood methods. Given the intraday 

conditional heteroskedasticity discussed previous, it seems natural to choose the GARCH 

(1,1) specification for the intraday variance modelling since it usually represents a 

reasonable approximation. Besides, estimating the GARCH (1,1) model across all time-

aggregated return frequencies yields meaningful comparisons between estimated 

parameters. In order to describe the volatility persistence implied by the GARCH (1,1) 

parameters, I use the “half-life” that is the number of periods the process takes for half of 

the expected reversion backs to the unconditional variance. Specifically, -𝑙𝑛2/𝑙𝑛(𝛼 + 𝛽). 

The “mean lag” is also supplied as an additional measure of the volatility persistence. i.e. 

𝛼(1 − ⁡𝛼 − 𝛽 + ⁡𝛼𝛽)−1.  

Nelson (1990,1992) and Drost and Nijman (1993) provide a framework to assess the 

GARCH parameter estimates at various sampling frequencies. Specifically, consider the 

GARCH (1,1) at the daily frequency. Let 𝛼(1) and 𝛽(1) be the parameters for the GARCH 
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(1,1) daily return model, then the 𝛼(𝑡) and 𝛽(𝑡) that are parameters for the GARCH model 

for the 𝑡-day returns should suffice the equation, 

                    ⁡⁡𝛼(𝑡) + 𝛽(𝑡) = (𝛼(1) + 𝛽(1))𝑡.                                                               (2.22) 

Equation (2.22) immediately implies that the estimated t-day GARCH half-life should be 

related with daily GARCH half-life as the following equation,  

-𝑙𝑛2/ln⁡(𝛽(𝑡) + 𝛼(𝑡)) = −𝑙𝑛2
1

ln(𝛼(1)+𝛽(1))
𝑡 = −

1

𝑡

𝑙𝑛2

𝑙𝑛(𝛼(1)+𝛽(1))
.                               (2.23) 

As a result, the estimated half-life of GARCH models of return series with different 

sampling frequencies should be stable if they are normalized by corresponding frequencies. 

Besides, as showed by Nelson (1990, 1992), the relations hold under general conditions of 

GARCH (1,1), no matter whether the model is mis-specified at some frequencies or not. 

Empirical evidence for the relations between daily and lower frequency GARCH 

estimation can be found in Drost and Nijman (1993), Drost and Werker (1996) and 

Bollerslev (1997).  

 
𝜶 Standard 

error 

𝜷 Standard 

error 

𝜶 + 𝜷 Half-life Median lag 

30-Second 0.157 0.0065542 0.918 0.0022418 1.075 ∞ ∞ 

1-Minute 0.139047 0.0015039 0.681 0.0051612 0.820047 3.493795158 0.506280349 

1.5-Minute 0.114605 0.0011804 0.434 0.0053909 0.548605 1.73177985 0.343036541 

3-Minute 0.290064 0.0067264 0.195893 0.0029211 0.485957 2.881572988 1.524343333 

5-Minute 0.335584 0.0106232 0.250198 0.0068206 0.585782 6.480334013 3.368093719 

10-Minute 0.318509 0.0143567 0.472546 0.0092005 0.791055 29.57271835 8.860894976 

15-Minute 0.278234 0.0100601 0.575654 0.014528 0.853889 65.82402449 13.62654377 

30-Minute 0.160019 0.0110557 0.7568 0.0083571 0.916819 239.4433497 23.49961427 

78-Minute 0.148918 0.0177689 0.791006 0.0153911 0.939924 872.6371124 65.30338637 

Table 2.12 GARCH estimation of intraday time-aggregated returns 

The half-life and median-lag in Table 2.12 are converted into unit minute. Consider the 

daily MA (1)-GARCH (1,1) estimation that gives the 𝛼 = 0.104⁡𝑎𝑛𝑑⁡𝛽 = 0.873 , the 

results of Drost and Nijman (1993) now suggest that the intraday returns should follow 

weak GARCH (1, 1) processes with 𝛼 + 𝛽  approaching 1 and 𝛼  approaching 0 as the 

frequencies increase. However, the 𝛼 and 𝛽 in Table 2.12 behave erratically since the sum 

of the two parameters does not exhibit such tendency clearly. Moreover, the half-life and 

median-lag present dramatic variations along with the sample frequencies. It is very clear 
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that a direct use of GARCH (1,1) specification of intraday return volatility is seriously in 

doubt. I now present the results of GARCH modelling of the filtered time-aggregated return 

𝑅𝑡,𝑛/𝜎𝑡̂𝑠𝑡,𝑛̂ in further details.   

 

𝝎 
Stand 

error 

T statistics 𝜶 Standard 

error 

T statistics 𝜷 Standard 

error 

T 

statistics 

𝜶 + 𝜷 Half-

life 

Median 

lag 

30second 0.00471 6.04E-05 77.95481167 0.04074 0.000236967 171.939 0.95588 0.000240364 3976.801 0.9966 102.422 0.4813303 

1minute 0.00575 0.000113 50.86504525 0.04562 0.000533077 85.58773 0.94968 0.00054553 1740.836 0.9953 147.25 0.9500191 

1.5minute 0.00592 0.0001692 34.97214726 0.05346 0.000738496 70.29338 0.94265 0.000760529 1276.446 0.9961 266.826 1.4772541 

3minute 0.0087 0.0003331 26.11107358 0.05715 0.001174732 48.64809 0.93564 0.001247306 750.1245 0.9928 287.116 2.8251007 

5minute 0.00936 0.0005619 16.65479684 0.06235 0.002083684 29.92373 0.9295 0.002230022 416.8098 0.9918 423.339 4.7158355 

10minute 0.01609 0.0013179 12.20932696 0.08228 0.003900577 21.09331 0.90385 0.00415363 217.6043 0.9861 496.054 9.3240088 

15minute 0.02301 0.002541 9.05468895 0.111 0.006779362 16.37279 0.87125 0.007439406 117.1129 0.9822 580.461 14.546339 

30minute 0.03857 0.0043299 11.19373674 0.10985 0.009813608 11.19374 0.85459 0.01109267 77.04099 0.9644 574.33 25.46061 

78minute 0.11523 0.0195757 5.886293674 0.18905 0.028076156 6.733532 0.70614 0.033930637 20.81114 0.8952 488.296 61.877751 

Table 2.13 GARCH estimation of filtered intraday time-aggregated returns 

Table 2.13 suggests that the estimation now is much more in line with theoretical 

predictions. First, the half-life estimated from various frequencies are relatively stable now. 

For instance, the half-life estimated from the filtered 5-minute, 10-minute, 30-minute and 

78-minute return series are 423.34, 496.05, 580.46, 574.33 and 488.30 respectively. 

Second, the parameters 𝛼⁡and⁡𝛽  are strikingly regular as the theoretical prediction. 

Observe now 𝛼 monotonically decreases and meanwhile 𝛽 monotonically increases as the 

sample frequencies increase. Since the daily MA (1)-GARCH (1,1) estimation that gives 

the 𝛼 = 0.104⁡𝑎𝑛𝑑⁡𝛽 = 0.873 , according to (2.22), I should observe that 𝛼 + 𝛽 

approaches one and⁡𝛼 approaches zero as the frequencies increases, which is perfectly 

matched by the empirical results. 

I now present the residual correlogram of the filtered 5-minute return series and filtered 

10-minute return series.  
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Figure 2.21 Residuals correlogram of the filtered 5-minute returns 

 

 

Figure 2.22 Residuals correlogram of the filtered 10-minute returns 

Figures 2.21 and 2.22 suggest that the intraday conditional heteroskedasticity in Figures 

2.19, 2.20 and Table 2.11 is successfully captured by the GARCH (1,1) model. Figure 2.23 
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gives the residual Q-Q plot of the filtered 5-minute returns, the residuals still present the 

fat-tailed property that is widely identified by high frequency financial research. 

 

Figure 2.23 The Q-Q plot of filtered 5-minute residuals 

2.7 Conclusion 

In this chapter I analyze the intraday volatility pattern of the SPY on NYSE. I show that 

standard time series modelling techniques might draw erroneous conclusions due to the 

distortion induced by strong intraday volatility periodicity. In order to draw meaningful 

results from the high frequency intraday data, the modelling of the intraday periodicity 

pattern is necessary. Based on the tick-by-tick transaction records, I develop a non-

parametric intraday periodicity modelling methodology that can be used in the data set 

where observations are not equally spaced in time. However, the estimation procedure for 

intraday volatility periodicity requires large computation capacities and durations are given 

exogenously. Further research could be carried out to jointly model the durations and 

intraday volatility. I also examine the relation between the daily and intraday conditional 

heteroskedasticity. I find out the intraday conditional heteroskedasticity cannot be fully 

explained by the long-memory characteristics of daily observations. I prove that the 

combination of intraday volatility periodicity and intraday conditional heteroskedasticity 

helps to explain the intraday volatility pattern.  
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In the analysis of the intraday return dynamics, I find out that a key element that relates 

closely to the estimation of periodicity and the modelling of instantaneous volatility is the 

duration between consecutive transactions that I will elaborate in the Chapter 3. 
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Autoregressive Conditional Duration modelling of durations 

3.1 Introduction 

 

The rising availability of tick-by-tick transaction data in financial markets provides the 

possibility to directly investigate the characteristics associated with each tick transaction 

record. There are three main characteristics of each tick transaction record: execution price, 

trading volumes and execution time. A distinctive feature of the tick-by-tick transaction 

data is that the observations are no longer equally spaced in time. This feature challenges 

standard time series models such as the ARCH-GARCH family since such models are 

based on observations equally spaced in time. Early high frequency research applied the 

time-aggregated return series to circumvent this challenge (Hafner 1996, Guillaume, Pictet 

and Dacorogna 1995 and Olsen and Pictet 1997).  

 

However, this procedure faces two main difficulties in practice. First, it inevitably causes 

the loss of the information contained in the order of the transaction flows. As argued by 

market microstructure research, timing of the transactions could be vital to the 

understanding of economics behind the price behavior. For instance, the duration between 

transactions could be viewed as a signal of asymmetric information among traders (Easley 

and O’Hara 1992, 1995 Diamond and Verrecchia 1987,1991 and Goodhart and O’Hara 

1997). Thus, a coherent description of the tick-by-tick prices dynamics should base on the 

modelling of durations. Second, the intraday volatility periodicity discussed in Chapter 2 

makes the choice of the optimal time interval used to aggregate tick-by-tick transactions 

very difficult. Specifically, if a short interval is chosen, there could be many intervals that 

contain no new information. Consequently, a specific form of heteroskedasticity 

corresponding to this short interval will be induced into the time-aggregated return sample. 

In contrast, the use of a long interval will reduce the sample size significantly. The 

discussion of the characteristics of time-aggregated returns can be found in Chapter 1. 
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In order to give an explicit parametric description of the “waiting-time” that is the duration 

between consecutive transactions, Engle and Russell (1998) proposed the Autoregressive 

Conditional Duration (ACD) model based on the point process. A detailed introduction of 

the point process is presented in Daley and Vere-Jones (2006). The ACD model can be 

viewed as an analogy of the GARCH model for the duration modelling. Since its 

introduction, the ACD model has been widely developed and accepted as a tool in the 

modelling of financial data that are irregularly spaced in time. Many theoretical efforts 

have been made on the extension of the standard ACD model. See, e.g., Lunde (1996), 

Bauwens and Giot (2000), Engle (2000) and Zhang et al. (2001). Meanwhile, empirical 

research focused on the performance of the predictability of ACD models (Dufour and 

Engle 2000, Hautsch 2000 and Pacurar 2007).  

 

There are two main questions related with the ACD models. The first one is: what is the 

theoretical relation among the various extensions of the ACD models and which one 

provides the most accurate modelling of the durations? The second one is: how can the 

ACD model be used to describe the prices dynamics?  

 

In this chapter, I address the first question by testing different specifications of the ACD 

model. I focus on the comparison of different distributional assumptions. I use transaction-

aggregated return series at various frequencies to examine different distributions. I also 

provide a review of both theoretical and empirical research with respect to the ACD models. 

I discuss the statistical properties of several ACD specifications along with some practical 

issues in applications. I find out that, compared with other distributions, Gamma 

distribution gives the best ACD modelling results for transaction-aggregated durations. 

Besides, the comprehensive introduction of ACD models could contribute to the 

understanding of the scope of research regarding durations modelling.  

 

This chapter is organized as follows. Section 3.2 presents the discussion with respect to the 

ACD models. I analyze the theoretical framework of the ACD models and discuss 

application issues. Section 3.3 describes the data and some preliminary results with respect 

to the durations. I focus on the unconditional distributional properties of the tick-by-tick 
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durations. Section 3.4 presents the empirical result of the ACD modelling of duration 

dynamics. Section 3.5 is the conclusions.  

 

3.2 ACD framework 

In this section I analyze and present the framework of the ACD models. In order to present 

an exhaustive discussion, I first discuss the theoretical background of the ACD models in 

Section 3.2.1. Section 3.2.2 gives a discussion of the applications of ACD models.   

3.2.1 Theoretical background of ACD  

In this section I present the theoretical framework of the ACD models. Section 3.2.1.1 

exhibits the point process that is the statistical background of the ACD models. I then 

discuss the ACD specification in Section 3.2.1.2 and analyze the relations between 

durations and other characteristics associated with each transaction such as volume and 

prices in Section 3.2.1.3.  

 

  Point Processes 

Each tick-by-tick transaction record are associated with three basic characteristics: prices 

𝑝𝜏,𝑖, volumes 𝑣𝜏,𝑖 and execution time 𝑡𝜏,𝑖, where the index 𝜏 labels the trading day of the 

transaction and the index 𝑖 indicates the order of the transaction during trading day 𝜏. In 

order to explicitly present the point process, I now remove the day index 𝜏 and view the 

whole data set as a time series labeled just by the order index 𝑖. 

  

As discussed previously, a salient feature of the tick-by-tick transaction records is that the 

durations between consecutive transactions are not equally spaced in time. However, they 

are ordered in time and therefore can be naturally considered as a point process. In 

probability theory, the point process is a collection of random variables that are randomly 

spaced in time. It is widely developed and applied in queueing theory and neuroscience. In 

1998, Engle and Russell extended it to the high-frequency finance to model the trading 

process. 
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Specifically, consider the sequence of random variables {𝑡0, 𝑡1, … , 𝑡𝑛, … } , where 𝑡𝑛 

represent the arrival time and 𝑡0 ≤ 𝑡1… ≤ 𝑡𝑛… . In general, simultaneous occurrence of 

the events are allowed. In practice, “thinning” procedures usually are used to eliminate this 

possibility. Let the counting function N (𝜏) represents the total number of events that occur 

by time 𝜏. N (𝜏) is a step function that has right limit and is left continuous at each point. 

The characteristics associated with each arrival time are considered as “marks”. In the 

context of high frequency financing, the trading volume and execution price of each 

transactions can be viewed as marks associated with the arrival time of transactions.  

 

An important tool for the analysis of point process is the intensity function. With respect 

to the definition and detailed discussion of point process and intensity function, Daley and 

Vere-Jones (2006) and Cox and Isham (1980) present very comprehensive and exhaustive 

introductions. In this chapter, I focus on the point process in the context of high frequency 

financing. Specifically, the following specification of conditional intensity process is used 

to describe the point process, 

𝜆(𝜏|𝑁(𝜏), 𝑡0, … , 𝑡𝑁(𝜏)) = lim
ℎ→0

Pr⁡(𝑁(𝜏+ℎ)>𝑁(𝜏)|𝑁(𝜏),𝑡0,…,𝑡𝑁(𝜏))

ℎ
.   (3.1) 

(3.1) implies that the current intensity is conditional the on past information of arrival time 

and the fact that there is no event since time⁡𝑡𝑁(𝜏). The conditional intensity process defined 

by (3.1) is also called the hazard function. The hazard function generally is defined as the 

ratio of the probability density function and survival function. It measures the instantaneous 

rate of the occurrence of events given that there are no events since the last previous event. 

Under (3.1), suppose 𝑓𝑖 is the conditional probability density function for arrival time 𝑡𝑖. 

The log likelihood, 𝐿, of the whole sample is  

𝐿 = ∑ log⁡𝑓𝑖(𝑡𝑖|
𝑁(𝑇)
𝑖=1 𝑡0, … , 𝑡𝑖−1).               (3.2) 

Observe that (3.2) can be rewritten in terms of the conditional intensity as   

 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝐿 = ∑ log⁡𝜆(𝑡𝑖|𝑖 − 1,
𝑁(𝑇)
𝑖=1 𝑡0, … , 𝑡𝑖−1) − ∫ 𝜆(𝑠|𝑁(𝑠), 𝑡0, … , 𝑡𝑁(𝑠))𝑑𝑠

𝑇

𝑡0
.         (3.3) 

The equation (3.2) and equation (3.3) are used to for the maximum likelihood estimation 

of the model. It is very clear that the parametric specification of the conditional intensity 

process in (3.1) is critical to a successful point process modelling of high frequency trading 

pattern. Haustch (2000) provided a thorough review of the specifications of intensity 
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functions used in point process for financial modelling. From the perspective of probability 

theory, the conditional intensity fully describes the corresponding point process. E.g., 

Daley and Vere-Jones (2006) and Lancaster (1990). In this Chapter, I focus on the 

parameterization of (3.1) by Engle and Russell (1998) in the ACD framework.  

 

 ACD models 

The ACD model parameterizes the point process by specifying the process of durations 

between consecutive events. Specifically, denote the ith duration between two events that 

occur at 𝑡𝑖−1  and 𝑡𝑖  as 𝑤𝑖 = 𝑡𝑖 − 𝑡𝑖−1 . Thus, the sequence of durations now is  

{𝑤0, 𝑤1, … , 𝑤𝑛, … } and is nonnegative obviously. Let 𝑧𝑖 be the marks such as volume and 

prices associated with the ith event. The durations and marks can be jointly presented as 

the sequence {(𝑤𝑖, 𝑧𝑖)}𝑖=1,2,…,𝑛,… . Thus, the joint conditional density of the ith element 

(𝑤𝑖, 𝑧𝑖) can be presented as   

 

           ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(𝑤𝑖, 𝑧𝑖)|𝐹𝑖−1~𝑓(𝑤𝑖, 𝑧𝑖|𝑤1, 𝑤2, … , 𝑤𝑖−1, 𝑧1, 𝑧2, … , 𝑧𝑖−1; 𝜃),                (3.4) 

 

where 𝐹𝑖−1  denotes the information set available at time 𝑡𝑖−1  and 𝜃 ∈ Θ  is the set of 

parameters.  Under the assumption of conditional independence, (3.4) can also be 

expressed as the product of marginal conditional density of the durations and the 

conditional density of the marks. Thus, 

 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑓(𝑤𝑖, 𝑧𝑖|𝑤̅𝑖−1, 𝑧𝑖̅−1; 𝜃) = 𝑓𝑤(𝑤𝑖|𝑤̅𝑖−1, 𝑧𝑖̅−1; 𝜃𝑤)𝑔(𝑧𝑖|𝑤̅𝑖, 𝑧𝑖̅−1; 𝜃𝑧),      (3.5) 

 

where 𝑤̅𝑖−1 =  ( 𝑤1, 𝑤2, … , 𝑤𝑖−1)  and 𝑧𝑖̅−1 = (𝑧1, 𝑧2, … , 𝑧𝑖−1)  are the sets of past 

information of the variables 𝑊 and Z and 𝑓𝑤 is the marginal conditional density function 

of the duration 𝑤𝑖 with parameters 𝜃𝑤 and 𝑔 is the conditional density function of the mark 

𝑧𝑖 with parameters 𝜃𝑧. (3.5) describes the relation between durations and marks associated 

with events. It forms the theoretical foundation of modelling tick-by-tick prices dynamics 

under the ACD framework. For instance, Engle (2000) built the Ultra-High-Frequency 

GARCH model based on the ACD modelling of durations.  
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From (3.4) and (3.5), one can immediately write the log likelihood as  

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝐿(𝜃𝑤, 𝜃𝑧) = ∑ [𝑙𝑛𝑓𝑤(𝑤𝑖|𝑤̅𝑖−1, 𝑧𝑖̅−1; 𝜃𝑤) + 𝑔(𝑧𝑖|𝑤̅𝑖, 𝑧𝑖̅−1; 𝜃𝑧)
𝑁(𝑇)
𝑖=1 ].             (3.6) 

 

Weak exogeneity refers to the case where the statistical estimation can be obtained by 

considering the conditional model (Engle, Hendry and Richard 1983 and Johansen 1991). 

Under the assumption that the durations are weakly exogenous to the marks, the right part 

and left part of (3.6) are usually maximized separately (Engle 2000). This property 

effectively simplifies the model estimation procedures. However, the weak exogeneity is 

usually imposed as an assumption since there is no widely accepted statistical test for it in 

the context of ACD. 

  

With respect to the specification of conditional marginal density of the durations, Engle 

and Russell (1998) suggested the following specification. Denote the conditional 

expectation of the ith duration 𝑤𝑖 as  

 

                         ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝐸(𝑤𝑖|𝑤̅𝑖−1, 𝑧𝑖̅−1) ≡ 𝜓𝑖 .⁡⁡                                         (3.7)                                                  

The ACD model assumes that   

                                ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝜓𝑖 = 𝜓(𝑤̅𝑖−1; 𝜃𝜓)⁡⁡⁡                            (3.8) 

                                   ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑤𝑖 = 𝜓𝑖𝜖𝑖,⁡                                          (3.9) 

where 𝜖𝑖 is an iid sequence with density 𝑝(𝜖; 𝜙)⁡and 𝜓 is function of 𝜓𝑖 with parameters 

𝜃𝜓.Observe that (3.9) implicitly requires that 𝐸(𝜖𝑖) = 1. This assumption is without loss 

of generality since one can use 𝑤𝑖 = 𝜓𝑖𝜖𝑖/𝐸(𝜖𝑖) equivalently. In estimation of the model, 

this assumption is usually released to allow for flexibility.  

 

The specification of (3.8) requires the density function 𝑝(𝜖; 𝜙)  to have a nonnegative 

support since the durations are nonnegative in nature. Besides, (3.8) suggests that 

𝑓𝑤(𝑤𝑖|𝑤̅𝑖−1, 𝑧𝑖̅−1; 𝜃𝑤) = 𝑓𝑤(𝑤𝑖|𝑤̅𝑖−1; 𝜃𝑤). In other words, the conditional expectation of 

durations depends upon only the past durations. Consequently, the conditional density of 

the durations can be expressed as      

   𝑓𝑤(𝑤𝑖|𝑤̅𝑖−1; 𝜃𝑤) = 𝑓𝑤(𝑤𝑖|𝑤̅𝑖−1; 𝜃𝜓, 𝜙), 
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⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑓𝑤(𝑤𝑖|𝑤̅𝑖−1; 𝜃𝜓 , 𝜙) =
1

𝜓𝑖
𝑝 (

𝑤𝑖

𝜓𝑖
; 𝜙).                                       （3.10）           

Thus, the log likelihood function is,  

 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝐿(𝜃𝜓, 𝜙) =∑ 𝑙𝑛 𝑓𝑤(𝑤𝑖|𝑤̅𝑖−1; 𝜃𝜓, 𝜙) ,⁡
𝑁(𝑇)

𝑖=1
 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡∑ 𝑙𝑛 𝑓𝑤(𝑤𝑖|𝑤̅𝑖−1; 𝜃𝜓, 𝜙) = ∑ [𝑙𝑛 𝑝 (
𝑤𝑖

𝜓𝑖
; 𝜙) − 𝑙𝑛𝜓𝑖]. ⁡

𝑁(𝑇)
𝑖=1 ⁡

𝑁(𝑇)
𝑖=1               (3.11) 

 

Once the innovation term 𝜖𝑖  and the conditional expectation 𝜓𝑖  are specified, then 

maximum likelihood estimates of 𝜃𝜓  and 𝜙  can be obtained by general numerical 

optimization procedures. Finally, denote the survival function associated with the density 

𝑝(𝜖; 𝜙) of 𝜖 as S, the conditional intensity of the ACD model can be deduced from (3.1),   

 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝜆(𝑡|𝑁(𝜏), 𝑡0, … , 𝑡𝑁(𝜏)) =
𝑝(𝜏)

𝑆(𝜏)
(
𝜏−𝑡𝑁(𝜏)

𝜓𝑁(𝜏)+1
)

1

𝜓𝑁(𝜏)+1
.                  (3.12)     

The deduction details of equation (3.12) could be found in Engle and Russell (1998). The 

setup from (3.7) to (3.9) are very general and therefore allows a flexible structure of the 

ACD models. Specifically, a variety of ACD models can be obtained by combining 

different specifications for the conditional expectation 𝜓𝑖 and the conditional density of 𝜖𝑖.  

 

3.2.1.2.1 Duration specification  

In this section I discuss the specification of the conditional expectation 𝜓𝑖. As mentioned 

in the previous section, the range of potential ACD specifications is so wide that a complete 

review of those specifications is beyond the scope of this Chapter. The book of Haustch 

(2004) provides a very exhaustive survey of existing ACD specifications. In Chapter 3 I 

focus on the standard ACD specification (Engle and Russell 1998) and the log-ACD of 

Bauwens and Giot (2000).  

 

The conditional expectation of the duration 𝜓𝑖 in a standard ACD (m,q) model is specified 

as follows, 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝜓𝑖 = 𝜔 + ∑ 𝛼𝑗
𝑚
𝑗=1 𝑤𝑖−𝑗 + ∑ 𝛽𝑗

𝑞
𝑗=1 𝜓𝑖−𝑗 .                             (3.13) 
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(3.13) is a linear parameterization of (3.8). Specifically, the conditional expectation 

depends linearly upon the past durations and the past expected durations. In order to ensure 

that the conditional expectations to be nonnegative, parameters 𝜔，𝛼 and 𝛽 are required 

to have, 𝜔 > 0, 𝛼 ≥ 0 and 𝛽 ≥ 0. Obviously, the ACD model can be viewed as an analog 

of the GARCH (Bollerslev 1986) of the durations. The weak (covariance) stationarity 

conditions for the ACD model are just similar to those of the GARCH model. Specifically, 

∑ 𝛼𝑗
𝑚
𝑗=1 + ∑ 𝛽𝑗

𝑞
𝑗=1 < 1. A detailed discussion regarding the stationarity of ACD model can 

be found in Engle and Russell (1995). Under the assumption of weak stationarity, the 

unconditional mean and the conditional variance can be deduced from (3.9) and (3.13) 

straightforwardly,  

 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝐸(𝑤𝑖) = 𝐸(𝜓𝑖)𝐸(𝜖𝑖) =
𝜔

1−∑ 𝛼𝑗
𝑚
𝑗=1 −∑ 𝛽𝑗

𝑞
𝑗=1

                                     (3.14) 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑉𝑎𝑟(𝑤𝑖|𝑤̅𝑖−1) = 𝜓𝑖
2𝑉𝑎𝑟(𝜖𝑖)⁡.⁡⁡⁡⁡⁡                                      (3.15) 

 

The unconditional variance of durations 𝑉𝑎𝑟(𝑤𝑖
2)  can also be deduced from (3.9) and 

(3.13). However, the general expression needs a direct computation of 𝐸(𝜓𝑖
2) that is rather 

cumbersome for a general ACD (m,q). For the ACD (1,1) model, the unconditional 

variance of durations can be derived as follows,  

 

⁡⁡⁡⁡⁡⁡𝐸(𝑤𝑖
2) = 𝐸(𝜓𝑖

2)𝐸(𝜖𝑖
2) =

𝜔2𝐸(𝜖𝑖
2)

1−𝛽2−2𝛼𝛽−𝛼2𝐸(𝜖𝑖
2)
+

(𝛼+𝛽)2𝜔2𝐸(𝜖𝑖
2)

（1−𝛽2−2𝛼𝛽−𝛼2𝐸(𝜖𝑖2)）（1−𝛼−𝛽）
, (3.16) 

⁡⁡⁡⁡⁡⁡⁡⁡𝐸(𝑤𝑖
2) − 𝐸2(𝑤𝑖) = 𝐸2(𝑤𝑖)[

𝐸(𝜖𝑖
2)(1−𝛽2−2𝛼𝛽−𝛼2)−(1−𝛽2−2𝛼𝛽−𝛼2𝐸(𝜖𝑖

2))

1−𝛽2−2𝛼𝛽−𝛼2𝐸(𝜖𝑖
2)

].             (3.17) 

 

If 𝜖𝑖 is assumed to follow the exponential distribution, then 𝐸(𝜖𝑖
2) = 2. Consequently, the 

unconditional variance in (3.17) can be simplified as  

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝐸(𝑤𝑖
2) − 𝐸2(𝑤𝑖) = 𝑉𝑎𝑟(𝑤𝑖) = 𝐸

2(𝑤𝑖) (
1−𝛽2−2𝛼𝛽

1−𝛽2−2𝛼𝛽−2𝛼2
).⁡             (3.18) 

(3.18) has an important implication that if 𝛼 > 0 the unconditional standard deviation of 

durations will be larger than the unconditional mean of durations. This phenomenon is 

usually referred to as “excessive dispersion”. For discussion and analysis regarding the 
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existence of higher moments of the ACD (m,q) model, see e.g., Carrasco and Chen (2002).  

 

A useful feature of the ACD model is that it can also be formulated as the familiar form of 

an ARMA (max(m,q),q) model. Specifically, denote the martingale difference 𝜂𝑖 as  𝜂𝑖 =

𝑤𝑖 − 𝜓𝑖, then the ACD (m,q) model can be written as  

𝑤𝑖 = 𝜔 + ∑ (𝛼𝑗 + 𝛽𝑗)
max⁡(𝑚,𝑞)
𝑗=1 𝑤𝑖−𝑗 − ∑ 𝛽𝑗

𝑞
𝑗=1 𝜂𝑗 + 𝜂𝑖 .                             (3.20) 

The ARMA-presentation in (3.20) can be used to derive the conditions for the stationarity 

and invertibility of the ACD model. The derivations and results are almost the same as 

work for GARCH models (Nelson 1992). The stationarity and invertibility requires that all 

roots of 1−⁡𝛼(L)−⁡𝛽(L) and 1−⁡𝛽(L) lie outside the unit circle respectively, where 𝛼(L) and 

𝛽(L) are the polynomials in terms of the lag operator L. 

 

The ARMA-presentation of the ACD model in (3.20) also can be used to derive the 

autocorrelation function of ACD models. For instance, the first order autocorrelation is 

now 

           ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝜌1 = 𝐶𝑜𝑣⁡(𝑤𝑖, 𝑤𝑖−1) =
𝛼1(1−𝛽1

2−𝛼1𝛽1)

1−𝛽1
2−2𝛼1𝛽1

.                                          (3.21) 

For more general description of the autocorrelation structure of the ACD model such as the 

Yule-Walker equations, Bauwens and Giot (2000) provided a detailed discussion.  

 

As discussed previously, there are many other possible specifications for the conditional 

expectation of the duration 𝜓𝑖 . Another important specification of the durations is the 

logarithmic-ACD model of Bauwens and Giot (2000). They argued that the imposed 

nonnegativity of parameters in (3.13) are too restrictive. For instance, if one wants to 

incorporate other economic explanatory variables into (3.13) with coefficients expected to 

be negative, the resulting conditional expectation of the duration might be negative. In a 

log-ACD (m,q) model, the autoregressive equation is specified using the logarithm of the 

conditional expectations of durations. Specifically, 

                                                              𝑤𝑖 = 𝑒
𝜓𝑖𝜖𝑖,              

  ⁡𝑙𝑛𝜓𝑖 = 𝜔 + ∑ 𝛼𝑗𝑙𝑛
𝑚
𝑗=1 𝑤𝑖−𝑗 + ∑ 𝛽𝑗

𝑞
𝑗=1 𝑙𝑛𝜓𝑖−𝑗.⁡⁡               (3.22) 

Another logarithmic form of the conditional expectation of durations 𝜓𝑖 is  
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𝑙𝑛𝜓𝑖 = 𝜔 + ∑ 𝛼𝑗
𝑚
𝑗=1

𝑤𝑖−𝑗

𝜓𝑖−𝑗
+ ∑ 𝛽𝑗

𝑞
𝑗=1 𝑙𝑛𝜓𝑖−𝑗.                （3.23） 

The logarithmic form of the conditional expectations of durations 𝜓𝑖 in (3.22) and (3.23) 

releases the nonnegative constraints of parameters⁡𝛼 and 𝛽  in the standard ACD model. In 

order to ensure the weak stationarity, (3.22) requires that |𝛼 + 𝛽| < 1 while (3.23) requires 

that |⁡𝛽| < 1. Empirical evidence in general favors the specification of (3.23). See, e.g., 

Bauwens and Giot (2000) and Dufour and Engle (2000). 

 

It is possible to derive the unconditional moments and the autocorrelation function of the 

log-ACD model from (3.22) and (3.23). However, the expression is rather cumbersome 

and therefore will not be presented here. Bauwens, Galli, and Giot (2003) presented a 

detailed derivation. Compared with the standard ACD model that has an autocorrelation 

function decreasing geometrically at the rate 𝛼 + 𝛽 (see (3.20)), the log-ACD model has 

an autocorrelation function that decreases at a rate less than 𝛽 for small lags (Bauwens, 

Galli and Giot, 2003). As for the specification of 𝜖𝑖, Bauwens and Giot (2000) assumed 

that it follows the Weibull distribution. In general, many other candidates of the density 

𝑝(𝜖; 𝜙)  can be chosen for 𝜖𝑖  as in the standard ACD model. The maximum likelihood 

estimation of the log-ACD is an analog of the maximum likelihood estimation of the 

standard ACD models.  

 

I will elaborate the possible candidates of the distributional assumption of 𝜖𝑖 and present 

the maximum likelihood estimation of the ACD model in the next section.  

 

3.2.1.2.2  Distributional assumption and maximum likelihood estimation 

As discussed in the previous section, an important feature of the ACD model is that the 

specification in (3.9) allows for flexibility in the selection of the standardized duration 𝜖𝑖. 

In general, any distribution with nonnegative supports could be used in the modelling of 

durations. Among the vast possible candidates, I focus on the following three distributions 

that are commonly applied in practice: exponential distribution, Weibull distribution and 

generalized gamma distribution.  
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It seems natural to start with the exponential distribution since it is widely used in the 

modelling for the “waiting-time” in many fields. Although the assumption of exponentially 

distributed standardized durations seems restrictive in many circumstances, it still serves 

as a good starting point since it can provide quasi-maximum likelihood estimators for the 

ACD parameters.  

 

Under the assumption that the standardized durations are exponentially distributed, the log-

likelihood function can be derived from (3.11) and can be presented as  

⁡𝐿(𝜃𝜓, 𝜙) = −∑ [
𝑤𝑖

𝜓𝑖
+𝑙𝑛𝜓𝑖]. ⁡

𝑁(𝑇)
𝑖=1                                           (3.24) 

I use the terminology “Exponential-ACD” (EACD) to refer to the standard ACD model 

with exponentially distributed standardized durations 𝜖𝑖. The strong analogy between the 

EACD and the GARCH model can be further verified by the similar quasi-maximum 

likelihood estimation (QMLE) properties of the two models. Specifically, the QMLE 

properties of the GARCH (1,1) model derived by Lee and Hansen (1994) and Lumsdaine 

(1996) also holds for the EACD (1,1) model. Engle and Russell (1998) and Haustch (2004) 

provided detailed proof for the equivalence of QMLE property of the two models. 

Specifically, Theorem 1 and Theorem 3 in Lee and Hansen (1994) can be rewritten in the 

ACD form as: 

 

Assume the following conditions: 

(i) Θ is a compact parameter space and 𝑖𝑛𝑡⁡Θ ≠ ∅. 

(ii) 𝜃0 = (𝜔0, 𝛼0, 𝛽0) ∈ 𝑖𝑛𝑡⁡Θ. 

(iii) 𝐸(𝑤𝑖|𝐹𝑖−1; 𝜃0) ≡ 𝜓𝑖(𝜃0) ≡ 𝜓𝑖,0 = 𝜔0 + 𝛼0𝑤𝑖−1 + 𝛽0𝜓𝑖−1.   

(iv) 𝜖𝑖 =
𝑤𝑖

𝜓𝑖
 is strictly stationary, ergodic and nondegenerate. 

(v) 𝐸(𝜖𝑖
2|𝐹𝑖−1) < ∞ almost surely.  

(vi) 𝑠𝑢𝑝𝑖𝐸[𝑙𝑛𝛽0 + 𝛼0𝜖𝑖|𝐹𝑖−1] < 0 almost surely.  

(vii) 𝐿(𝜃) = ∑ 𝑙𝑖(𝜃) = −∑ [
𝑤𝑖

𝜓𝑖
+𝑙𝑛𝜓𝑖]

𝑁
𝑖=1

𝑛
𝑖=1 , where 𝜓𝑖 = 𝜔 + 𝛼𝑤𝑖−1 + 𝛽𝜓𝑖−1. 

Then the maximizer of 𝐿  is consistent and asymptotically normal. The associated 

covariance matrix is given by the robust standard errors by Lee and Hansen (1994).  
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The above corollary of the Theorem 1 and Theorem 3 in Lee and Hansen (1994) has several 

important implications. First, it illustrates that the maximization of the log likelihood 

function in (3.24) yields a consistent estimate of 𝜃  without a clear specification of the 

standardized duration 𝜖𝑖. In other words, the estimates of parameters of the EACD (1,1) is 

consistent and asymptotically normal even under misspecification of 𝜖𝑖. Consequently, the 

EACD (1,1) can be directly estimated by GARCH software. The procedure is 

straightforward: use √𝑤𝑖 as the dependent variable in the GARCH regression equation and 

set the conditional mean as zero. 

 

Second, when 𝛼 + 𝛽 < 1, the condition (vi) is satisfied, but this inequality is a sufficient 

but not necessary condition for the Theorem to hold. Thus, it may hold for integrated 

duration process in which 𝛼 + 𝛽 = 1. Third, although it requires the strict stationarity and 

ergodicity of 𝜖𝑖, it does not require 𝜖𝑖 to follow an iid process. Hence, it establishes the 

QMLE properties for many other ACD specifications such as the semiparametric ACD 

model of Drost and Werker (2001).  

 

Nevertheless, it is noticeable that the results are based on the EACD (1,1) model and cannot 

be extended necessarily to the general EACD (m,q) model. Besides, as suggested by the 

condition (iii), the QMLE property of the EACD (1,1) model depends largely on the correct 

specification of the conditional expectation 𝜓𝑖. Moreover, empirical research in general are 

against the assumption of exponentially distributed standardized duration 𝜖𝑖 (Gramming 

and Maurer 2000, Feng et al. 2004, Lin and Tamvakis 2004 and Dufour and Engle 2000). 

Thus, if the data set is relatively small, the quasi-maximum likelihood estimates of the 

parameters of the EACD (1,1) model might be seriously biased. Finally, the hazard function 

of the exponential distribution is a constant and therefore is clearly independent of the time 

passed since the last trade. This characteristic is undesirable in the modelling of ultra-high-

frequency transactions for obvious reasons. In order to resolve these issues, it seems natural 

to choose a more general distribution of the standardized durations 𝜖𝑖 and to replace the 

quasi-maximum likelihood estimation by standard maximum likelihood estimation. This 

procedure is similar to the case of ARCH-GARCH model where the normal assumption of 

returns is often replaced by some leptokurtic distributions. 
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A popular alternative of the exponential distribution is the Weibull distribution. (Engle and 

Russell 1998 and Bauwens and Giot 2000). Consider a Weibull density 𝑝(𝜖; 𝜆, 𝑘) for the 

standardized duration 𝜖𝑖 where 𝜆 is the scale parameter and 𝑘 is the shape parameter. This 

assumption is equivalent to assuming that 𝜖𝑖
𝑘  is exponentially distributed. I use the 

terminology “Weibull-ACD” (WACD) to refer to this class of ACD models. The Weibull 

distribution reduces to the exponential distribution when 𝑘 = 1. The probability density of 

the Weibull distribution can be presented as  

                     𝑝(𝜖; 𝜆, 𝑘) =
𝑘

𝜆
(
𝜖

𝜆
)
𝑘−1

exp (−
𝜖

𝜆
)
𝑘

,                                        (3.25)        

where 𝜖 > 0, 𝜆 > 0  and ⁡𝑘 > 0 . The hazard function of the Weibull distribution can be 

presented as 

  ℎ(𝜖) = (
1

𝜆
)
𝑘

𝜖𝑘−1𝑘.                                                     (3.26) 

Under the ACD framework, the conditional intensity of Equation (3.12) can be presented 

as  

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝜆(𝜏|𝑁(𝜏), 𝑡0, … , 𝑡𝑁(𝜏)) = [
Γ(1+

1

𝑘
)

𝜓𝑁(𝜏)+1
]

𝑘

(𝜏 − 𝑡𝑁(𝜏))
𝑘−1𝑘,                                  (3.27)                                                                    

where Γ(⋅) is the gamma function and 𝑘 is the shape parameter of the Weibull distribution. 

Observe that the conditional intensity function in (3.27) is monotonic with respect to⁡𝜏 as 

the hazard function in (3.26). It is increasing if 𝑘 > 1 and is decreasing if 𝑘 < 1. As a result, 

this monotonic property of the Weibull hazard function makes the occurrence of long 

durations, compared with exponential distributions, more or less likely dependent on 

whether 𝑘 < 1 or 𝑘 > 1. The log-likelihood function under the Weibull distribution can be 

derived from (3.11) and (3.13). Specifically, assume the scale parameter 𝜆 to be unit for the 

simplicity of presentation, then   

 𝐿(𝜃𝜓, 𝑘) = ∑ [ln (
𝑘

𝑤𝑖
) + 𝑘𝑙𝑛 (

Γ(1+
1

𝑘
)𝑤𝑖

𝜓𝑖
) −

𝑁(𝑇)
𝑖=1 (

Γ(1+
1

𝑘
)𝑤𝑖

𝜓𝑖
)

𝑘

− lnΓ (1 +
1

𝑘
)].              (3.28)  

When 𝑘 = 1, (3.28) reduces to the (3.24).   

 

The last family of distributions that I consider in this chapter is the generalized gamma 

distribution. The generalized gamma distribution nests the Weibull distribution, the 

Exponential distribution and the Gamma distribution and therefore provides greater 
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flexibility in the modelling of standardized duration 𝜖𝑖. In 1996, Lunde introduced the use 

of generalized gamma distribution in the modelling of durations. The density of the 

generalized gamma distribution is  

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑝(𝜖; 𝑎, 𝑑,𝑚) =
𝑚𝜖𝑑−1

𝑎𝑑Γ(𝑑/𝑚)
exp⁡(−

𝜖

𝑎
)𝑚.                                                (3.29) 

where Γ(⋅) is the gamma function and 𝑎 > 0,⁡𝑑 > 0, 𝑚 > 0 and 𝜖 > 0. 

 

One can immediately infer from the density of generalized gamma distribution in (3.29) 

that when 𝑑 = 𝑚 the density reduces to the density of the Weibull distribution. Further 

assume that 𝑑 = 𝑚 = 1 , the density now is the density of the exponential distribution. 

Besides, if 𝑚 = 1, the density reduces to the density of the Gamma distribution. Glaser 

(1980) provided a discussion of the relations between the parameters and the shape of 

hazard function for the generalized gamma distribution. The concrete presentation of the 

hazard function of the generalized gamma distribution is complicated since it involves an 

incomplete gamma integral and therefore has no closed form. Numerical techniques are 

usually applied to depict the pattern of the hazard functions. For further details regarding 

the hazard function of the generalized gamma distribution, see e.g., Glaser (1980). An 

important property of the hazard function of the generalized gamma distribution is that it 

is not monotonic. For instance, given that 𝑑𝑚 < 1, if 𝑚 > 1 the hazard function has a U-

shape and elseif 𝑚 ≤ 1 the hazard function is decreasing. Given that 𝑑𝑚 > 1, if 𝑚 > 1 

the hazard function is increasing and elseif 𝑚 ≤ 1 the hazard function has an inverted U-

shape. This property of the hazard function of generalized gamma distributions allows for 

more flexibility in the modelling of the instantaneous rate of occurrence of transactions.  

 

The derivation of the log-likelihood function of “Generalized Gamma-ACD” (GG-ACD) 

from (3.11) is straightforward, substituting the density function in (3.11) with (3.29),  

⁡⁡⁡⁡⁡⁡⁡⁡⁡𝐿(𝜃𝜓, 𝑎, 𝑑,𝑚) = ∑ [𝑙𝑛
𝑚

𝑎𝑤𝑖
+ 𝑑𝑙𝑛

𝑤𝑖

𝜓𝑖

Γ(
𝑑+1

𝑚
)

Γ(
𝑑

𝑚
)
+ (−

𝑤𝑖

𝜓𝑖

Γ(
𝑑+1

𝑚
)

Γ(
𝑑

𝑚
)
)

𝑚

− 𝑙𝑛Γ (
𝑑+1

𝑚
)].

𝑁(𝑇)
𝑖=1    (3.30) 

The detailed derivation could be found in Lunde (1996). Observe that (3.30) reduces to 

(3.29) if 𝑎 = 1⁡𝑎𝑛𝑑⁡𝑑 = 𝑚. It further reduces to equation (3.24) if 𝑎 = 𝑚 = 𝑑 = 1. 
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To conclude this section, I present the conditional density of 𝑤𝑖  dependent on past 

information 𝑤̅𝑖−1  with respect to the generalized gamma distribution under the general 

ACD framework of (3.7) - (3.9) for the completeness of the introduction.  

 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑓(𝑤𝑖|𝑤̅𝑖−1; 𝑎, 𝑑,𝑚, 𝜃𝜓) =
𝑚

𝑎𝑤𝑖Γ(
𝑑+1

𝑚
)
[
𝑤𝑖

𝜓𝑖

Γ(
𝑑+1

𝑚
)

Γ(
𝑑

𝑚
)
]𝑑exp⁡(− [

𝑤𝑖

𝜓𝑖

Γ(
𝑑+1

𝑚
)

Γ(
𝑑

𝑚
)
])𝑚.        （3.31） 

 

  Durations and marks 

 

It is often the case that we are not only interested in the durations between transactions but 

also the marks associated with the transactions. The ACD models discussed previously are 

proposed for describing the dynamics of durations given past information. As suggested by 

(3.5), they describe the marginal density of the duration 𝑤𝑖. Thus, it remains to present a 

framework that could jointly describe the durations and marks. Especially, it is often the 

case that given the durations and the past information, one wants to test some market 

microstructure hypothesis.  

 

In the Section 3.2.1.3.1, I present and discuss a framework of modelling tick-by-tick 

transaction dynamics based on the point process. Section 3.2.1.3.2 focus on the volatility 

modelling with in the ACD framework. Section 3.2.1.3.3 discusses the incorporation of 

possible explanatory economic variables.  

 

3.2.1.3.1  General setup  

 

As discussed previously, I view the arrival of transactions as a point process. Specifically, 

denote the timing of transactions as {𝑡0, 𝑡1, … , 𝑡𝑖 , … 𝑡𝑁} and denote the ith duration between 

two transactions that occur at 𝑡𝑖−1  and 𝑡𝑖  as 𝑤𝑖 = 𝑡𝑖 − 𝑡𝑖−1 . Let 𝑧𝑖  be the marks such as 

volume and prices associated with the ith transaction. The durations and marks can be 

jointly presented as the sequence {(𝑤𝑖, 𝑧𝑖)}𝑖=1,2,…,𝑁. Thus, the joint conditional density of 

the ith element (𝑤𝑖, 𝑧𝑖) can be presented as   
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           (𝑤𝑖, 𝑧𝑖)|𝐹𝑖−1~𝑓(𝑤𝑖, 𝑧𝑖|𝑤1, 𝑤2, … , 𝑤𝑖−1, 𝑧1, 𝑧2, … , 𝑧𝑖−1; 𝜃𝑖).                               (3.32) 

(3.32) is a slight modification of the (3.4). The main difference is that the parameters 𝜃𝑖’s 

are now conditional on the past information and therefore can be potentially different for 

different transaction observations. The conditional density can be rewritten as the product 

of marginal conditional density of the durations and the conditional density of the marks 

as in (5).  

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑓(𝑤𝑖, 𝑧𝑖|𝑤̅𝑖−1, 𝑧𝑖̅−1; 𝜃𝑖) = 𝑓𝑤(𝑤𝑖|𝑤̅𝑖−1, 𝑧𝑖̅−1; 𝜃𝑤,𝑖)𝑔(𝑧𝑖|𝑤̅𝑖, 𝑧𝑖̅−1; 𝜃𝑧,𝑖),        (3.33)   

where 𝑤̅𝑖−1 =  (𝑤1, 𝑤2, … , 𝑤𝑖−1)  and 𝑧𝑖̅−1 = (𝑧1, 𝑧2, … , 𝑧𝑖−1)  denote the past information 

of 𝑤𝑖 and 𝑧𝑖. In the real world, the realized transactions are nearly zero at every point in 

the time. Therefore, it is natural to measure the probability of the occurrence of transactions 

at specific time in terms of the limit. The conditional intensity function of (3.1) are usually 

applied to describe such probabilities. Under the specification of (3.32) and (3.33), then 

conditional intensity of (3.1) can be rewritten as  

 

                       𝜆𝑖(𝑡|𝑤̅𝑖−1, 𝑧𝑖̅−1) = lim
⁡⁡ℎ→0+

Pr⁡(𝑁(𝑡+ℎ)>𝑁(𝑡)|𝑤̅𝑖−1,𝑧̅𝑖−1)

ℎ
, 𝑡 ∈ [𝑡𝑖−1,𝑡𝑖⁡].         (3.34) 

𝑁(𝑡)  is the function of the number of transactions that occur by time 𝑡 . Another 

presentation of (3.34) can be obtained by using (3.33). For 𝑡 ∈ [𝑡𝑖−1,𝑡𝑖⁡], the probability of 

a transaction should be conditional to both past information such as 𝑤̅𝑖−1⁡𝑎𝑛𝑑⁡𝑧𝑖̅−1 and the 

information that there has been no transaction since 𝑡𝑖−1. This is usually expressed as the 

ratio of probability density function and survival function. By (3.33) and (3.34), one can 

have   

                  𝜆𝑖(𝑡|𝑤̅𝑖−1, 𝑧𝑖̅−1) =
𝑓𝑤(𝑡 − 𝑡𝑖−1,|𝑤̅𝑖−1, 𝑧𝑖̅−1; 𝜃𝑤,𝑖)

∫ 𝑓𝑤(𝜏 − 𝑡𝑖−1,|𝑤̅𝑖−1, 𝑧𝑖̅−1; 𝜃𝑤,𝑖)𝑑𝑠𝜏≥𝑡

, 𝑡 ∈ [𝑡𝑖−1,𝑡𝑖⁡].          (3.35) 

Many questions of economic interests can be explored in the setup of (3.32) - (3.35). For 

instance, the conditional marginal density of the next mark 𝑧𝑖 given 𝑧𝑖̅−1 is  

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑓𝑧(𝑧𝑖|𝑤̅𝑖−1, 𝑧𝑖̅−1; 𝜃𝑖) = ∫ ⁡𝑓(𝑤𝑖, 𝑧𝑖|𝑤̅𝑖−1, 𝑧𝑖̅−1; 𝜃𝑖)𝑑𝜏.𝜏
                                  (3.36) 

Once the 𝑓𝑤  and g in (3.33) are specified, the log-likelihood function can be obtained 

immediately, 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝐿(𝜃) ⁡⁡= ∑ ln 𝑓(𝑤𝑖, 𝑧𝑖|𝑤̅𝑖−1, 𝑧𝑖̅−1; 𝜃𝑖)
𝑁
𝑖=1                        
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⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡= ∑ [ln 𝑓𝑤(𝑤𝑖|𝑤̅𝑖−1, 𝑧𝑖̅−1; 𝜃𝑤,𝑖) + ln⁡g(𝑧𝑖|𝑤̅𝑖, 𝑧𝑖̅−1; 𝜃𝑧,𝑖)].
𝑁
𝑖=1           (3.37) 

The log-likelihood function in (3.37) should be maximized jointly by the sum of the first 

term of ln 𝑓𝑤(𝑤𝑖|𝑤̅𝑖−1, 𝑧𝑖̅−1; 𝜃𝑤,𝑖) and the second term of ln⁡g(𝑧𝑖|𝑤̅𝑖, 𝑧𝑖̅−1; 𝜃𝑧,𝑖). Separating 

the maximization of the first term and the second term comes at the cost of the efficiency 

of the MLE. In practice, a two-step procedure is usually adopted for a large sample. 

Specifically, one first takes the estimates of 𝜃𝑤 by maximizing the first term in (3.37) and 

further gives the 𝜃𝑤 into the maximization of second term in (3.37) to obtain the estimates 

of 𝜃𝑧. The estimates in the two-step estimation are consistent but inefficient. The main 

reasoning behind this procedure is that, given a large sample, the loss of efficiency might 

be acceptable (Engle 2000).   

 

3.2.1.3.2  Durations and Volatility  

Among the marks contained in 𝑧𝑖, the most important information is the execution price 

𝑝𝑖associated with the transaction. The price reflects the volatility of the underlying asset 

and the market. In this section we first discuss the relations between durations and volatility. 

I review the market microstructure theory that outlines the possible explanation of the 

relation between durations and volatility such as Diamond and Verrecchia (1987), Easley 

and O’Hara (1992), and Admati and Pfleiderer (1988).  

 

Further, I analyze the GARCH volatility modelling under the ACD framework. The Ultra-

High-Frequency (UHF) GARCH volatility model of Engle (2000) will be presented as an 

example. The joint modelling of durations and marks can also be obtained by exploiting 

the conditional intensity function of (3.35). A detailed introduction can be found in Hautsch 

(2004).   

 

In 1987, Diamond and Verrecchia argued that “no trade means bad news”. The theory can 

be briefly explained by the following scenario. Suppose there are some informed traders 

who currently do not own any stock and are prevented from short selling. Thus, they cannot 

profit from the asymmetric information and will refuse to trade at the current market prices. 

The specialist whose role is to facilitate trading for certain stocks for some stock exchanges 

such as NYSE learns from the durations and further lower their prices. Consequently, the 
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existence of no transactions can be viewed as a signal of bad news.  

 

Easley and O’Hara (1992) provided another economic interpretation of the durations 

between transactions. They focused on the arrival of new information. Suppose there are 

some informed traders who know whether there is new information or not. They will buy 

or sell depending on whether the information is good or bad respectively. Thus, long 

durations between transactions can be interpreted as the evidence of no news. Their theory 

therefore can be briefly described as “no trade means no news”. Thus, under the framework 

of their theory the durations should be negatively correlated with volatilities.  

 

Admati and Pfleiderer (1988) gave a very interesting alternative point of view. They argued 

that the short durations between transactions are the result of some liquidity traders. The 

trading behavior of these liquidity traders is not based on asymmetric information. As a 

result, the volatility should be low when durations are short. In contrast, relatively long 

durations could be interpreted as a sign of the leaving of these liquidity traders. 

Consequently, there will be a high proportion of informed traders. The volatility should be 

high since these transactions reflect the arrival of new information. Their theory suggests 

that the durations should be positively correlated with volatilities.   

 

It is worthy to mention that the literatures of Easley and O’Hara (1992) and Admati and 

Pfleiderer (1988) are more relevant to the liquidity rather than volatility. The discussion 

above is an attempt to connect their microstructure theories with the ACD modelling of 

durations and volatility.  

 

Given the theoretical background provided by above market microstructure literatures, it 

remains to present a parametric framework to jointly describe prices volatility and 

durations. For a tick-by-tick transaction data set, let the sequence of execution prices 

associated with each transaction be  {𝑝0, 𝑝1, … , 𝑝𝑖, … 𝑝𝑁}. The corresponding transaction 

time is {𝑡0, 𝑡1, … , 𝑡𝑖, … 𝑡𝑁} . The ith return⁡⁡𝑟𝑖  and the ith duration 𝑤𝑖  are defined as 𝑟𝑖 =

𝑙𝑛
𝑝𝑖

𝑝𝑖−1
  and 𝑤𝑖 = 𝑡𝑖 − 𝑡𝑖−1 . Thus, the tick-by-tick return series and its corresponding 

duration series are {𝑟1, … , 𝑟𝑖, … , 𝑟𝑁} and {𝑤1, … , 𝑤𝑖, … , 𝑤𝑁} respectively.  
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With respect to the volatility modelling, since the return series are defined as  

{𝑟1, … , 𝑟𝑖, … , 𝑟𝑁}，one can therefore define the conditional variance for return  𝑟𝑖  as  

                    𝑣𝑖−1(𝑟𝑖|𝑤̅𝑖, 𝑟̅𝑖−1) = 𝑞𝑖.⁡⁡⁡⁡⁡                                  (3.38) 

The definition of the conditional variance 𝑞𝑖 in (3.38) suggests that the conditional variance 

for the ith return depends on not only the past information of returns 𝑟̅𝑖−1 but also on the 

current and past information of durations 𝑤̅𝑖 . Besides, (3.38) defines the conditional 

variance associated with return 𝑟𝑖 from 𝑡𝑖−1⁡to⁡𝑡𝑖. This definition is associated with each 

transaction rather than fixed time interval. Specifically, note that 𝑞𝑖 and 𝑞𝑗 now represent 

the conditional variance measured from durations with different length if 𝑖 ≠ 𝑗. In practice, 

it is often the case that the tick-by-tick durations are multiples of the minimum unit of time 

measurement. Consequently, the durations present a salient feature of discreteness. It seems 

convenient to transform the conditional variance for each return into the conditional 

volatility per unit of time. By (3.38), the transformation can be presented as  

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑣𝑖−1 (
𝑟𝑖

√𝑤𝑖
|𝑤̅𝑖, 𝑟̅𝑖−1) = 𝜎𝑖

2.                                        (3.39) 

Under the definition of (3.38) and (3.39), the relation between 𝑞𝑖 and 𝜎𝑖 can be presented 

as  

                   𝑞𝑖 = 𝑤𝑖𝜎𝑖
2.⁡                                           (3.40) 

Thus, given past information of 𝑤̅𝑖−1⁡and⁡𝑟̅𝑖−1, the predicted expectation of 𝑞𝑖 is  

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝐸𝑖−1(𝑞𝑖|𝑤̅𝑖−1, 𝑟̅𝑖−1) = 𝐸𝑖−1(𝑤𝑖𝜎𝑖
2|𝑤̅𝑖−1, 𝑟̅𝑖−1).                    (3.41) 

(3.40) and (3.41) suggest a simple methodology of incorporating durations into standard 

techniques of volatility modelling. Since 𝜎𝑖
2 now is the conditional variance per unit time, 

standard time series techniques based on fixed time interval such as GARCH volatility 

model can be applied to describe its dynamics. Specifically,  

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡
𝑟𝑖

√𝑤𝑖
= 𝜎𝑖𝑧𝑖 ,                              

 𝜎𝑖
2 = 𝜔 + 𝛼

𝑟𝑖−1
2

𝑤𝑖−1
+ 𝛽𝜎𝑖−1

2 ,⁡                                    (3.42) 

where 𝑧𝑖 is an iid sequence with zero mean and unit variance. (3.42) is the simplest form 

of the UHF-GARCH of Engle (2000). It can be viewed as a modification of the standard 

GARCH (1,1) model that is adjusted to account for the irregularly spaced transactions. 

Recall the ACD specification of 𝑤𝑖 in (3.9),  
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𝑤𝑖 = 𝜓𝑖𝜖𝑖, 

where 𝜓𝑖 is the conditional expectation of 𝑤𝑖 dependent on past information of durations 

𝑤̅𝑖−1. A substitution of (3.9) into the (3.42) gives  

𝑟𝑖 = 𝜎𝑖𝑧𝑖√𝜓𝑖𝜖𝑖.                                             (3.43) 

Observe that under (3.42), the current duration is not informative since 𝜎𝑖
2 depends on only 

past information of durations and returns. The implicit assumption behind this specification 

is that the news carried by the last return 𝑟𝑖−1 is fully captured by the square of the last 

return innovations 𝜎𝑖−1 per unit of time and is independent of current durations. However, 

as suggested by the market microstructure papers, the variation of durations and variation 

of return volatilities might be related. In order to incorporate the information of current 

duration, the volatility specification of (3.42) can be modified to account for current 

durations. For instance, Engle (2000) proposed the following specification of 𝜎𝑖
2. 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝜎𝑖
2 = 𝜔 + 𝛼

𝑟𝑖−1
2

𝑤𝑖−1
+ 𝛽𝜎𝑖−1

2 + 𝛾
1

𝑤𝑖
.                       (3.44)     

(3.44) corresponds to the theory of Easley and O’Hara (1992). The reciprocal of the 

durations in (3.44) suggests that long durations contribute less to the variance. This 

implication is in line with the argument of “no trade means no news”. Observe that under 

(3.44), the current return 𝑟𝑖 now depends on current durations and past durations and prices 

as in (3.33). The joint conditional density 𝑓(𝑤𝑖, 𝑧𝑖|𝑤̅𝑖−1, 𝑧𝑖̅−1; 𝜃𝑖) in (3.33) therefore can be 

determined.  

 

Another model that describes the price dynamics based on ACD modelling of durations is 

the Autoregressive Conditional Multinomial (ACM) model of Russell and Engle (2005). 

Building on (3.5), they applied an ACD specification for durations and a dynamic 

multinomial model for distribution of price changes conditional on past information and 

the current duration. Nevertheless, the original ACM model (Engle and Russell 2005) 

depends on a relatively large number of states that characterize different regimes of 

durations dynamics for different price changes. Consequently, many parameters are needed, 

which inevitably complicates the estimation. For a two-state ACM model, see Prigent et al. 

(2001).  
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Finally, other economic explanatory variables can be introduced into the conditional 

volatility specification in (3.42) such as the bid-ask spread and volumes to provide a more 

realistic modelling of the conditional volatility. For instance, Engle (2000) included the 

trading intensity and volume in (3.42) and found that compared with the trading intensity, 

volume has very little explanatory power over the conditional variance 𝜎𝑖
2.  

 

3.2.1.3.3  Durations and other explanatory variables  

In this section I discuss the relation between durations and other microstructure variables. 

I first present the incorporation of explanatory variables into the ACD model. Then, we 

discuss the market microstructure variables of interests by reviewing the market 

microstructure literatures with respect to the timing of transactions.  

 

Due to the flexibility of the ACD specification, economic explanatory variables also can 

be introduced into the modelling of durations. In general, there are two different ways to 

incorporate the possible explanatory variables. 

 

First, one can add the random variable of interests directly into the specification of 

conditional expectation 𝜓𝑖. Specifically, recall (3.13) that gives the conditional expectation 

of the duration 𝜓𝑖 for a standard ACD (m,q) model,  

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝜓𝑖 = 𝜔 + ∑ 𝛼𝑗
𝑚
𝑗=1 𝑤𝑖−𝑗 + ∑ 𝛽𝑗

𝑞
𝑗=1 𝜓𝑖−𝑗 .   

Suppose the explanatory variables that we are interested in is 𝜉𝑖. Include this variable in 

(3.13), then  

𝜓𝑖 = 𝜔 + ∑ 𝛼𝑗
𝑚
𝑗=1 𝑤𝑖−𝑗 + ∑ 𝛽𝑗

𝑞
𝑗=1 𝜓𝑖−𝑗 + 𝛾𝜉𝑖−1.                       (3.45) 

An alternative form of incorporating  𝜉𝑖 into (3.13) is,  

    𝜓𝑖 − 𝛾𝜉𝑖−1 = 𝜔 + ∑ 𝛼𝑗
𝑚
𝑗=1 𝑤𝑖−𝑗 + ∑ 𝛽𝑗

𝑞
𝑗=1 (𝜓𝑖−𝑗 − 𝛾𝜉𝑖−1 − 𝑗).           (3.46) 

As discussed previously, (3.45) and (3.46) cannot necessarily guarantee the nonnegativity 

of the conditional expectation of durations 𝜓𝑖 if 𝜉𝑖 can take negative values. There are two 

common solutions to this issue. First, one can consider presenting 𝜉𝑖  in some function 

forms that are nonnegative in nature such as the exponential function. Second, one can use 

the Log-ACD of Bauwens and Giot (2000). The Log-ACD (m,q) specification is given by 



104 

(3.22),  

                                                                𝑤𝑖 = 𝑒
𝜓𝑖𝜖𝑖,              

  𝑙𝑛𝜓𝑖 = 𝜔 + ∑ 𝛼𝑗𝑙𝑛
𝑚
𝑗=1 𝑤𝑖−𝑗 + ∑ 𝛽𝑗

𝑞
𝑗=1 𝑙𝑛𝜓𝑖−𝑗.              

or 

𝑙𝑛𝜓𝑖 = 𝜔 + ∑ 𝛼𝑗
𝑚
𝑗=1

𝑤𝑖−𝑗

𝜓𝑖−𝑗
+ ∑ 𝛽𝑗

𝑞
𝑗=1 𝑙𝑛𝜓𝑖−𝑗.                 

Observe that the use of logarithmic form of the conditional expectations of durations 𝜓𝑖 

releases the nonnegative constraints of parameters⁡𝛼 and 𝛽  in the standard ACD model. 

Similarly, incorporating explanatory variables into the Log-ACD model now will not suffer 

from the possibly negative conditional expectations of durations.  

 

The second way of including explanatory variables is to consider the explanatory variable 

as a scaling function of the durations 𝑤𝑖. For instance, denote the explanatory variable of 

interest as 𝜉𝑖. Let ℎ be some nonnegative function. Then  

𝑤𝑖 = ℎ(𝜉𝑖−1)𝜓𝑖𝜖𝑖.                                                 (3.47) 

Observe that the variable 𝜉 in (3.47) is indexed by i-1. It is due to the definition that 𝑤𝑖 =

𝑡𝑖 − 𝑡𝑖−1. Thus, 𝑤𝑖 are subject to information until 𝑡𝑖−1. Thus, the index is labeled with one 

lag in order to corresponds to sequence of transaction timing {𝑡1, 𝑡2, … , 𝑡𝑖 , … }.⁡⁡One can of 

course use 𝜉𝑖  if the indexes are given corresponding to the sequence of durations 

{𝑤1, 𝑤2, … , 𝑤𝑖, … }⁡.  

 

A simple and illustrative example is the inclusion of intraday periodicity. Denote the 

intraday periodicity of the durations as 𝑠𝑖 . Then it can be incorporated into the ACD 

modelling of durations by  

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑤𝑖 = 𝑠𝑖−1𝜓𝑖𝜖𝑖.                                                      (3.48) 

I now discuss the possible economic variables that can be introduced into the ACD 

modelling. A natural candidate is the volume associated with each transaction, the 

relationship between volume and price dynamics is widely identified by both theoretical 

and empirical research such as Easley and O’Hara (1992), Easley et al. (1997) and Blume 

et al. (1994). These papers suggest that, in general, volumes convey information which are 

not fully captured by price dynamics. For instance, according to Easley and O’Hara (1992), 
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the abnormally large volume might be viewed as the signal of the arrival of informed 

traders. In general, empirical evidence (Engle 2000, Engle and Russell 1998 and Dufour 

and Engle 2000) found that the volume is negatively correlated with the conditional 

expectation of duration 𝜓𝑖.  

 

Another market microstructure variable of particular interests is the bid-ask spread. Easley 

and O’Hara (1992) argued that a high spread might be an indication of informed trading. 

Consequently, it should be related with the short durations. The reasoning is that under the 

framework of Easley and O’Hara (1992), the volatility of prices will increase if the 

proportion of informed traders increases. Consequently, the bid-ask spread will be widened. 

Thus, the wide bid-ask spread could be informative of information arrivals. For a theory of 

“no trade means no news”, the wide spread therefore indicates the new information and 

should be related with short durations. In order to analyze this effect, the spread for each 

transaction can be considered as a random variable and can be incorporated into the 

duration modelling. The empirical evidence of Bauwens and Giot (2000) and Engle (2000) 

suggest that the bid-ask spread is negatively correlated to the durations.  

 

As discussed in Chapter 1, compared with volumes, the number of transactions that occur 

during a specific time interval has significantly higher explanatory powerful over the price 

volatility during the time interval (Ane and Geman 2000, Easley et al. 1995 and Jones et 

al. 1994). Jone et al. (1994) provided a market microstructure theory for this phenomenon. 

They argued that the number of transactions is closely related to the change of prices since 

transactions are more likely to happen when there is new information. In contrast, the 

framework of Admati and Pfleiderer (1988) suggests that the intensity of transaction should 

be negatively correlated with volatility.  

 

The duration itself, of course, is a measure of trading intensity since it measures how 

frequently an equity is traded. For a tick-by-tick transaction record, the corresponding 

duration series directly reflect the transaction intensity. To analyze the effect of the trading 

intensity, it is necessary to conduct a deformation of the original durations. Besides, it has 

been reported that a large percentage of the tick-by-tick transactions has no price changes 
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(Tsay 2002, Bertram 2005 and Dionne et al., 2005).  

 

Intraday transaction prices often can take only finite values due to some institutional 

features regarding the price restrictions. For instance, financial markets like NYSE usually 

specifies a minimum unit of price measurement, called a tick. In other words, transaction 

prices must fall on a grid. Given such a grid, the durations (Engle and Russell 1998 and 

Giot 1999) can be defined by filtering the tick-by-tick transactions and retaining those 

leading to a significant change of prices. The durations defined in this sense are called the 

price durations. Observe that the price durations are of different length and may contain 

different number of tick-by-tick transactions. Thus, for example, a large number of tick-

by-tick transactions over a short duration represents a high trading intensity. Clearly, 

volume durations can be defined in a similar way. For a price duration, trading intensity 

can be defined as ratio of the number of transactions contained in the duration to the length 

of the durations. (3.45) and (3.46) now can be applied to analyze the effect of the trading 

intensity. Giot and Bauwens (2000) argued that there is a highly significant negative 

correlation between trading intensity and the expectation of conditional durations. 

 

Given the vast existing market microstructure literatures with respect to the relation 

between durations and associated market microstructure variables such as volume and 

prices, it is widely accepted that time is not exogenous to the price process. Nevertheless, 

the interdependence of those variables is still open to question. Under the framework of 

marked point process, such interdependence can be studied through the decomposition of 

(3.33). For instance, one can add volumes and bid-ask spread to the conditional volatility 

specification of the UHF-GARCH model to examine their explanatory power over price 

dynamics. A wide range of closely related model following this framework can be found 

in Gramming and Wellner (2002), Ghysels and Jasiak (1998), Bauwens and Giot (2003) 

and Russell and Engle (2005).  

 

An alternative approach for studying the interdependence between durations and other 

microstructure variables is provided by Hasbrouck (1991). He applied the vector 

autoregressive (VAR) system to analyzes the impact of current execution prices on the 



107 

future prices and presented a bivariate model for the relation between price changes and 

trade dynamics such as the sign of price movement. The timing of transactions is not 

considered as informative. Thus, the conditional density of the marks, 𝑔(𝑧𝑖|𝑤̅𝑖, 𝑧𝑖̅−1; 𝜃𝑧,𝑖) 

in (3.33) depends on past information of 𝑧𝑖, which is 𝑔(𝑧𝑖|𝑤̅𝑖, 𝑧𝑖̅−1; 𝜃𝑧,𝑖) = 𝑔(𝑧𝑖|⁡𝑧𝑖̅−1; 𝜃𝑧,𝑖).  

 

Dufour and Engle (2000) extended the model of Hasbrouck (1991) to account for the 

influence of durations on the price dynamics. They first applied an ACD model to describe 

the duration dynamics. Further, the duration is considered as a predetermined variable and 

therefore the coefficients for price changes and trade dynamics are allowed to be time 

varying. The model can be extended to incorporate marks of interest such as volume and 

spread easily. See e.g., Spierdijk (2004) and Manganelli (2005).  

 

In order to capture the complicated interdependence between durations and marks, most of 

the joint models of durations and marks discussed above require a relatively large number 

of parameters. Thus, the maximization of the log-likelihood function of (3.37) faces the 

computation difficulties. In order to simplify the estimation procedures, it is usually 

assumed that durations have some form of exogeneity (Engle et al. 1983).  

 

3.2.2 ACD in applications 

 

In this section I present a discussion of the ACD models in application. As discussed 

previously, the ACD models are based on the point process modelling of transaction 

arrivals and can be applied to test many market microstructure hypotheses. It could be also 

used for the modelling of arrivals of a variety of financial events. In Section 3.2.2.1 I 

present the discussion of intraday periodicity of the intraday durations. As discussed in 

Chapter 2, like volatility and volume, the durations also present a seasonal pattern during 

the trading day. Section 3.2.2.2 include the test procedures of the ACD modellings. Section 

3.2.2.3 reviews the literatures of the ACD models. I categorize the literatures according to 

the different definitions of durations.  
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  Intraday Periodicity 

As discussed in Chapter 2, the intraday transactions during the trading day are 

characterized by a strong periodicity. Early research using intraday data sampled from fixed 

time interval (the time-aggregated returns) focused on the intraday periodicity pattern in 

the price dynamics (Bollerslev and Andersen 1997,1998 and Beltratti and Morana 1998 

and Engle 2000). In Chapter 2, I present an estimation of the intraday volatility periodicity 

that can be extended to returns that are irregularly spaced in time (the transaction-

aggregated returns). The intraday volatility periodicity is found to have strong impact on 

the GARCH modelling of price dynamics.  

 

With respect to the durations, Engle and Russell (1998) found that in general the 

transactions occurring at the beginning and closing hours of the trading day are associated 

with short durations. In contrast, the transactions that occur in the middle of the day are 

with relatively long durations. This finding might not be very surprising since it is well-

known that compared with the middle day, the opening and closing trading hours are with 

much higher trading intensity. Consequently, the durations of transactions occurring in the 

opening and closing hours are expected to have shorter durations. These intraday periodic 

patterns of durations are often explained by the institutional features and trading habits. 

For instance, traders are highly active during the opening hours because they want to adjust 

their position according to the overnight news. Similarly, at the closing, traders want to 

close their position based on the information during the trading day. Lunchtime are related 

with less trading intensity due to its nature.  

 

The findings of Engle and Russell (1998) provide direct evidence of the existence of the 

intraday duration periodicity. Thus, when modelling the durations dynamics under the ACD 

framework, the effect of such intraday duration periodicity should be included and 

analyzed since ignoring these intraday patterns might distort the estimation seriously. 

According to the results that I obtain in Chapter 2, the intraday volatility periodicity induces 

a very strong U-shape pattern into the autocorrelation of intraday volatilities. Standard 

GARCH volatility models cannot capture this effect and therefore often give estimations 

contradictory to the temporal aggregation predictions. Given the resemblance between the 
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ACD model and the GARCH model, it seems natural to exclude the intraday pattern of 

durations before applying the ACD model as in the case of GARCH intraday volatility 

modelling.   

 

The fundamental technique to capture the effect of intraday pattern is very similar to the 

one that I use in the Chapter 2. This technique is proposed by Andersen and Bollerslev 

(1997,1998) for incorporating the intraday pattern into the intraday volatility modelling. 

Engle and Russell (1998) extended it to the duration modelling. Specifically, one can 

decompose the intraday durations as the product of a deterministic component that 

accounts for the intraday periodicity pattern and a stochastic component that models the 

duration dynamics. Let 𝑠(𝑡𝑖)  be the intraday periodicity component at 𝑡𝑖  and let 𝑤𝑖 =

𝑡𝑖 − 𝑡𝑖−1 be the ith duration. Then,  

𝑤𝑖 = 𝑤̃𝑖⁡𝑠(𝑡𝑖−1).                                                             (3.49) 

The 𝑤̃𝑖  in (3.49) can be interpreted as the seasonal normalized durations. Now the 

conditional expectation 𝜓𝑖 of 𝑤𝑖 in (3.7) can be written as  

𝜓𝑖 = 𝐸(𝑤𝑖|𝑤̅𝑖−1, 𝑧𝑖̅−1)𝑠(𝑡𝑖−1).⁡                                         (3.50) 

 

There are two approaches that are commonly used to specify the deterministic intraday 

periodicity component 𝑠(𝑡𝑖)  (Andersen and Bollerslev 1997, Engle and Russell 1998, 

Bauwens and Giot 2000 and Engle 2000). The first one is to use a piecewise linear or cubic 

spline function to describe the intraday periodicity of durations. Further, the seasonal 

normalized durations 𝑤̃𝑖 can be obtained by taking the ratio between the raw durations and 

the corresponding function values. For instance, one can first average the durations over 

ten minutes intervals for each trading day. Further, the mean of durations for each ten 

minutes interval can be estimated with the whole sample. Cubic splines are then applied 

on these intervals to smooth the intraday periodicity function.  

 

The second approach involves the use of flexible Fourier series approximation. See, e.g., 

Andersen and Bollerslev (1998). This approach is based on the work of Gallant (1981). 

Specifically, the intraday periodic trend 𝑠(𝑡) is specified to follow the form of  

𝑠(𝑡) = 𝑠(𝛿𝑠, 𝑡̅, 𝑞) = 𝑡̅𝛿𝑠 + ∑ [𝛿𝑐,𝑗
𝑠𝑞

𝑗=1 cos(𝑡2̅𝜋𝑗) + 𝛿𝑠,𝑗
𝑠 𝑠𝑖𝑛(𝑡2̅𝜋𝑗)],        (3.51) 
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where 𝛿𝑠, 𝛿𝑐,𝑗
𝑠 ⁡and⁡𝛿𝑠,𝑗

𝑠  are the intraday seasonal coefficients that need to be estimated. 𝑠(𝑡) 

is the intraday periodic trend at time 𝑡 of the trading day and 𝑡̅ is the normalized intraday 

time trend which is defined as the ratio of the number of seconds from opening until t to 

the length of the trading day in seconds. By this definition, 𝑡̅ ∈ [0,1]. The Appendix B of 

Andersen and Bollerslev (1997) presents a detailed discussion with respect to the 

estimation of (3.51).  

 

In principle, the conditional expectation 𝜓𝑖  and intraday periodicity component 𝑠(𝑡𝑖)  in 

(3.49) and (3.50) are estimated jointly by maximum likelihood estimation. Nevertheless, 

when studying intraday data with ultra-high frequency (e.g., tick-by-tick transaction data), 

numerical difficulty rises inevitably. In order to achieve convergence for a joint estimation 

of 𝜓𝑖 and 𝑠(𝑡𝑖), it is often the case that the algorithm costs a relatively long time. Due to 

this reason, a two-step procedure is commonly applied to simplify the estimation. That is, 

one first estimates the intraday periodicity component 𝑠(𝑡𝑖)  and use the seasonal 

normalized 𝑤̃𝑖 durations to estimate the ACD models. As discussed previously, the two-

step estimates are consistent but not efficient. The asymptotic property of the two-step 

estimator can be found in Engle (2000) and Engle (2002). The derivation of the asymptotic 

property is based on the results of Newey and McFadden (1994) for the GMM (generalized 

methods of moments) estimation. For a large sample, the joint estimation and two-step 

estimation usually give very similar results (Engle and Russell 1998 and Bauwens and Giot 

2000) as expected.  

 

Veredas et al (2001) applied a different strategy to estimate the intraday pattern. They 

proposed a semiparametric estimator where the intraday periodicity is jointly estimated 

nonparametrically with ACD specifications for the duration dynamics. Specifically, they 

introduced a joint estimation of 𝑤̃𝑖 and 𝑠(𝑡𝑖) in Equation (3.49) where 𝑤̃𝑖 is modelled by 

the ACD specification and meanwhile 𝑠(𝑡𝑖)  is unspecified and therefore is estimated 

nonparametrically. 

 

There are also many alternative techniques used to capture the intraday pattern. Tsay (2002) 

applied quadratic functions with indicator variables that identify the timing of the durations. 
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Drost and Werker (2004) chose only one indicator variable that identifies the lunchtime for 

the model of Tsay (2002). The main reason is that, for their data, trading intensity are almost 

constant except for the durations near the lunchtime.  

 

Dufour and Engle (2000) introduced dummy variables for the intraday pattern into their 

vector autoregressive (VAR) system. Interestingly, they found little evidence for the 

intraday pattern except that the first thirty minutes of the trading day have significantly 

different dynamics from the rest trading hours.  

 

It is noticeable that, although the practice of filtering raw durations by intraday pattern is 

widely accepted, the effectiveness of these techniques can only be roughly examined by 

some stylized facts such as the U-shape trading pattern. Moreover, it also complicates the 

diagnostic of the ACD specifications. Concerns regarding this issue can be found in 

Bauwens et al. (2004) and Meitz and Terasvirta (2006). Indeed, as argued by Bollerslev 

(1997), given the lack of economic theory that could guide a plausible parametric form of 

the intraday periodicity patterns, it seems natural to estimate them by nonparametric 

methods. 

 

  Testing the ACD 

 

In this section, I briefly discuss the procedures to test the ACD models. Given the vast 

different tests that have been developed since the introduction of ACD models by Engle 

and Russell (1998), an exhaustive review is beyond the scope of this Chapter. Therefore, I 

focus on three different categories of these tests: residual diagnostics, density forecast 

evaluations and Lagrange multiplier tests.  

 

The simplest and most direct way to evaluate the goodness of fit for the ACD models is to 

analyze the distributional and dynamic property of the residuals. Recall the standard 

specification of the ACD model from (3.7) to (3.9), 

   ⁡⁡⁡𝐸(𝑤𝑖|𝑤̅𝑖−1, 𝑧𝑖̅−1) ≡ 𝜓𝑖 ,                                                                

                                                                                 𝜓𝑖 = 𝜓(𝑤̅𝑖−1; 𝜃𝜓),                 
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                                                                                 𝑤𝑖 = 𝜓𝑖𝜖𝑖.⁡                    

Thus, the residuals are given by 

                                                        𝜖𝑖̂ =
𝑤𝑖

𝜓̂𝑖
, 𝑖 = 1,2,3, … ,𝑁,                                       (3.52) 

where 𝜓̂𝑖 ’s are the estimates for the conditional expectations 𝜓𝑖 ’s under the ACD 

specification. Suppose the specification is correct, the series {𝜖𝑖̂} should be iid clearly. 

Thus, one can use Ljung-Box statistics based on the centered residuals to examine whether 

the specification can fully capture the intertemporal dependence in the duration process.  

 

Moreover, if the distributional assumption for 𝜖𝑖 under the ACD specification is correct, 

the residuals {𝜖𝑖̂} should follow the distribution that corresponds to the assumption with 

unit mean. Thus, graphic checks such as the Quantile-Quantile plot and general goodness 

of fit statistics such as the EDF statistics discussed in Chapter 1 can be applied to examine 

the residuals. 

 

Alternatively, one can also use moment conditions corresponding to the specified 

distribution to evaluate the goodness of fit. For instance, if 𝜖𝑖 is assumed to follow the 

standard exponential distribution, then the variance and mean of {𝜖𝑖̂}  should be nearly 

equivalent to each other. Engle and Russell (1998) proposed the statistics √𝑛(𝜎̂𝜖̂
2 − 1)/𝜎𝜖, 

where 𝜎̂𝜖̂
2
 is the sample variance of the residuals and 𝜎𝜖 is the standard deviation of the 

random variable (𝜖𝑖
2 − 1). For an exponentially distributed 𝜖𝑖, 𝜎̂𝜖̂

2
 should be very close to 

1 and the value of 𝜎𝜖  is 2√2 . They also provided the asymptotic property of this test 

statistics.  

 

Although the residuals check provides very illustrative evidence of the goodness of fit, it 

is also possible to examine the ACD specification by evaluating the in-sample density 

forecasts. Diebold et al. (1998) provided a framework of evaluating the goodness of fit 

based on the probability integral transform  

                                                           𝑞𝑖 = ∫ 𝑓𝑖(𝑢)𝑑𝑢
𝑥𝑖
−∞

,                                        (3.53) 

where 𝑓𝑖(𝑥𝑖) is the sequence of one-step ahead probability density forecasts and 𝑥𝑖 is the 

corresponding random process.  
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They showed that, if the model specification is correct, then 𝑞𝑖  should be uniformly 

distributed and should be iid. Therefore, one can test the series of 𝑞𝑖 against the uniform 

distribution to evaluate the in-sample density forecasts. Specifically, a goodness of fit test 

can be conducted by categorizing the probability integral transform 𝑞𝑖 and calculating a 

chi-squared statistic that is based on the frequencies of the different categories. The chi-

squared statistic can be presented as following, 

                                      𝜒2 = ∑
(𝑛𝑖−𝑛𝑝𝑖)

2

𝑛𝑝𝑖

𝑇
𝑖=1 ,                                                             (3.54) 

where T is the total number of categories, 𝑛𝑖 is the number of observations in category i 

and 𝑝̂𝑖 is the estimated probability to observe a realization of 𝑞𝑖 in the category i. Further 

details can be found in Bauwens et al. (2000) and Dufour and Engle (2000).  

 

It is often the case that one not only is interested in testing whether the model specification 

is correct or not but also is interested in, when rejected, identifying the source of 

misspecification. In the case of testing ACD specifications, there are two main sources of 

possible misspecifications. The first one is the distributional assumption and the second 

one is the conditional expectation specification. Moreover, as discussed previously, the 

quasi-maximum likelihood estimation of the ACD model relies heavily on correct 

specification of the conditional expectation. For research that focus on the comparison of 

different specifications of the conditional expectation 𝜓𝑖, the validity of the conditional 

expectation specification might be more important than the correctness of the complete 

density.  

 

A common procedure in econometric literatures for detecting the model misspecification 

is the Lagrange multiplier (LM) tests. A detailed discussion regarding the LM tests can be 

found in Engle (1984). I now present a brief discussion of the LM test for the ACD 

specifications. In order to conduct the LM test, one need to specify a more general model 

that can nest the specification of the null hypothesis. Assume that the ACD specification of 

the null hypothesis 𝐻0 is a special case of the following general specification,                                                               

                                                           𝑤𝑖 = 𝜓𝑖𝜖𝑖,⁡    

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝜓𝑖 = 𝜓0,𝑖 + 𝜃𝑎
′𝑧𝑎𝑖,                                           (3.55) 
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where 𝜓0,𝑖  denotes the conditional expectation function under the null hypothesis 𝐻0 

depending on the parameter vector 𝜃0, 𝑧𝑎𝑖 is the vector of missing variables and 𝜃𝑎 is the 

vector of additional parameters. The prime indicates inner product. Now, the null 

hypothesis 𝐻0 that the specification is correct can be presented as 𝐻0: 𝜃𝑎 = 0. Consider the 

quasi-maximum likelihood estimation of the ACD model given by (3.24), 

 𝐿(𝜃) = ∑ 𝑙𝑖(𝜃) = −∑ [
𝑤𝑖

𝜓𝑖
+𝑙𝑛𝜓𝑖]

𝑛
𝑖=1 .𝑛

𝑖=1                                  

Let 𝜃0  be the quasi-maximum likelihood estimate under 𝐻0 . Then, the LM test can be 

obtained (Engle 1984) by 

                                                𝛾𝐿𝑀 = 𝑙
′𝑠(𝜃0)𝐼(𝜃0)

−1𝑠(𝜃0)
′
𝑙~𝜒2(𝑀𝑎),                        (3.56) 

where 𝑙 is a vector of unit with length n, 𝑠(𝜃0) is the matrix of size 𝑛 × (𝑀0 +𝑀𝑎), and 

𝐼(𝜃0) is the information matrix evaluated at 𝜃0. With respect to the matrix 𝑠(𝜃0), 𝑀0 and 

𝑀𝑎  denote the number of parameters in 𝜃0  and 𝜃𝑎  respectively. Moreover, 𝑠𝑖,𝑗(𝜃0) =

𝜕𝑙𝑖(𝜃̂0)

𝜕𝜃𝑗
 where 𝜃𝑗>0 is the jth element in 𝜃 = (𝜃0, 𝜃𝑎). In other words, the element 𝑠𝑖,𝑗(𝜃0) 

in the matrix 𝑠(𝜃0) is the contribution of 
𝜕𝑙𝑖(𝜃̂0)

𝜕𝜃𝑗
 to the score function evaluated under 𝐻0. 

The information matrix 𝐼(𝜃0) can be estimated according to outer product of gradients. 

Hautsch (2004) and Pacurar (2006) provided detailed discussion regarding the LM tests.  

 

Along with the introduction of ACD models, Engle and Russell (1998) also proposed a 

method to investigate the nonlinear dependencies between residuals and the past 

information set. The residuals are divided into bins ranging from zero to infinity. Then, 

they regress the residuals on indicators showing whether the previous duration has been in 

one of those bins. If the residuals are iid as expected, then the regression should present no 

predictability and therefore the coefficients of each indicator should be zero. When rejected, 

the bins corresponding to indicators with significant coefficients now provide information 

regarding the source of misspecification.  

 

As discussed previously, there are many literatures regarding the test of ACD models. 

Many of the ACD tests are developed to test specific market microstructure hypotheses. 

The selection of those tests depends largely on the specific question that one wants to study. 
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For instance, the residual diagnostics can provide valuable information for choosing the 

appropriate distribution assumption of 𝜖𝑖. Meanwhile, if one wants to test the correctness 

of the specification of the conditional expectation 𝜓𝑖, then LM tests might be needed to 

give a complete picture of the goodness of fit.  

 

 

 ACD Papers  

As discussed previously, in order to test different market microstructure hypotheses, the 

definition of durations is often adjusted. Thus, I categorize the empirical results of ACD 

literatures with respect to the definition of durations. I discuss some stylized facts that are 

widely identified for the durations and review the microstructure hypotheses that are often 

tested using ACD specifications. In general, there are two main topics that most of the 

researchers focus on: the model specification that can fit the dynamics of durations and the 

hypothesis test of different microstructure theories.  

 

3.2.2.3.1  Trade durations 

The durations can be naturally defined as the time difference between consecutive 

transactions as in the point process modelling of arrivals of transactions. I now call 

durations defined in this sense as the “trade duration”. There is, of course, a wide range of 

trade durations literatures. See., e.g., Engle and Russell (1998), Engle (2000), Zhang et al. 

(2001), Bauwens and Veredas (2004), Bauwens (2006) and Manganelli (2005). 

 

Several stylized facts of trade durations are widely identified using different trade duration 

data from different markets. First, the trade durations, from different markets, are found to 

exhibit the phenomenon of “duration clustering” which can be viewed an analog of the 

“volatility clustering” for the duration series. For example, the durations have significant 

positive autocorrelations. In other words, long (short) durations tend to be followed by long 

(short) durations. Besides, the autocorrelation function decays very slowly, which in turn 

suggests that the persistence should be considered when modelling the trade duration 

dynamics. In general, the effect of the duration clustering is analyzed by the correlogram 

of the duration series and the LjungBox statistics. A very slowly decaying autocorrelation 
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functions might be indicative of the existence of long-memory characteristics of the 

duration process. Empirical evidence for the long memory characteristics of duration series 

can be found in Engle and Russell (1998), Jasiak (1998) and Bauwens et al. (2004). In fact, 

Jasiak (1998) developed the Fractional Integrated ACD (FIACD) model to capture this 

effect.  

 

Second, most of the trade durations identify the phenomenon of “overdispersion”. That is, 

the standard deviation of the trade duration exceeds the mean of trade durations. The 

dispersion test of Engle and Russell (1998) can be applied to test this effect formally. Or 

simply, Dufour and Engle (2000) used a Wald test to examine the equality between the 

standard deviation of the trade duration and the mean of trade durations. In general, the 

empirical distribution of the trade durations has a hump at very short durations and long 

right tail (see, e.g., Bauwens et al. 2004, Giot 2001 and Engle and Russell 1998). This 

feature usually is interpreted as the evidence that the exponential distribution is not 

appropriate for the unconditional modelling of trade durations (for the standard exponential 

distribution, the first and second moments are equal to unit). Nevertheless, it does not 

necessarily mean that the conditional trade durations are not exponentially distributed.  

 

Third, a large proportion of the trade durations sample has a value of zero or nearly 

indistinguishable from zero. This phenomenon suggests that there are many transactions 

occurring simultaneously. Moreover, the prices associated with simultaneous transactions 

are nearly unchanged. As discussed in Chapter 1, the raw tick-by-tick trade durations are 

subject to institutional features such as the data recording mechanism. Unfortunately, those 

are of no common knowledge.  

 

A common approach that is used to eliminate the zeros in the trade duration series is to 

aggregate these simultaneous transactions. Price are averaged according to volumes. The 

market microstructure theory behind the procedure is split-transaction strategy of the 

specialists. That is, large orders are carried out by splitting into small orders. When 

transactions in the data do not occur simultaneously but are spaced in time with varying 

short intervals, the identification of split-transactions might be very difficult. Besides, 
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multiple transactions occurring simultaneously might be informative since it reflects a 

rapid pace of the market. This is line with the findings of empirical researches that the 

trading intensity have very strong explanatory power over the price dynamics (Ane and 

Geman 2000, Easley et al. 1995 and Jones et al. 1994).  

 

Interestingly, Zhang et al. (2001) found that the exact number of the transactions occurring 

simultaneously has very limited explanatory power over future transactions rate, and 

meanwhile the existence of such multiple transactions does have significant explanatory 

power over future transaction dynamics. They further incorporated this effect into their 

TACD model by introducing a lagged indicator representing the existence of simultaneous 

transactions into the specification of conditional expectation of trade durations. Another 

explanation for zero trade durations is provided by Veredes et al. (2001). They argued that 

simultaneous transactions are possibly caused by the efforts of traders to trade at the round 

prices. Specifically, traders tend to post limit orders to be executed at the round prices. 

Their theory is based on the fact that the prices of simultaneous transactions are clustered 

around round prices.  

 

With respect to the modelling of trade durations, the most frequently used model is the 

standard ACD and the log-ACD with low orders of the lagged term such as the ACD (1,1) 

or log-ACD (1,1) (Engle and Russell 1998, Engle 2000, Zhang et al. 2000 and Fernandes 

and Gramming 2006). Interestingly, most of the authors found that the residuals still exhibit 

significant autocorrelations. This phenomenon is viewed as a signal of the nonlinear 

dependence in the duration series because the standard ACD models are linear. Bauwens 

et al. (2004) provided an exhaustive review and reported that almost all existing ACD 

models (standard ACD, log-ACD, TACD, EACD among the others with various 

distributional assumptions) cannot provide a satisfied modelling of the conditional 

expectation of durations. Besides, Dufour and Engle (2000), Engle and Russell (1998) 

noticed that the ACD specification with the best in-sample test results generally does not 

provide the best out-sample forecasts. The persistence of the ACD specification are found 

to be very high (Engle and Russel1 1998, Engle 2000 and Dufour and Engle 2000). For 

example, for a standard ACD model the sum of the two parameters 𝛼 and 𝛽 is very close 
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to one. 

 

Regarding testing market microstructure hypothesis using trade durations, Engle (2000) 

used UHF-GARCH model to investigate the relationship between volatilities and trade 

durations. He found a significant negative correlation between conditional expectation of 

trade durations and volatility, which is in line with the theory of Easley and O’Hara (1992) 

where “no trade means no news”. Besides, they found that, when adding the lagged bid-

ask spread as an explanatory variable into the conditional volatility specification, the 

coefficient of the spread is positive. In other words, a high spread is sign of rising volatility. 

Similar results can also be found in Feng et al. (2004), where they also found a negative 

correlation between the trade durations and realized volatility. 

 

In contrast, Gramming and Wellner (2002) studied the interdependence between trading 

intensity and volatility. They found that the trading intensity are negatively correlated with 

lagged volatility, which is consistent with the Admati and Pfleiderer (1988). According to 

their results, the trade durations are positively correlated with lagged volatility. Engle and 

Russell (2005) applied an ACM-ACD model on the tick-by-tick data of Airgas on NYSE 

and found that the long durations are associated with declining prices. This finding is in 

line with the theory of Diamond and Verrechia (1987), where “no news is the bad news”. 

 

There are several remarks that be summarized by the above discussion with respect to the 

trade duration modelling.  

 

First, the empirical results suggest that, while there are a wide range of ACD specifications, 

their performance in the modelling of conditional expectation of trade durations are far 

away from satisfactory. The uncertainty of misspecification further complicates this issue. 

It naturally rises the question to select the most appropriate distributional assumptions.  

 

Second, most of the researches using data from NYSE, usually blue chips with very high 

liquid. The transaction record is subject to institutional features that are hard to analyze and 

eliminate.  
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Finally, while in general the empirical results regarding the interdependence of volatility 

and durations support the theory of Easley and O’Hara (1992), partially contradictory 

empirical evidence can be found in a way similar to the theoretical microstructural models.  

 

3.2.2.3.2  Price durations 

As discussed in Section 3.2.1.3.2 with respect to the relationship between duration and 

volatility, sometimes selecting procedures are applied to the raw tick-by-tick duration 

series to test some market microstructure hypotheses.  

 

In general, a large proportion of the tick-by-tick trade durations are associated with 

unchanged prices. Thus, sometimes special attentions are paid to transactions that are 

associated with certain change in the prices. That is, given the raw tick-by-tick transaction 

data, one keeps the transactions with certain price movements, the time difference between 

those transactions are defined correspondingly as the durations.  

 

Specifically, consider certain amount of price movement, C. Suppose the sequence of tick-

by-tick transaction arrival time is {𝑡0, 𝑡1, … , 𝑡𝑛}  and the associated price series is 

{𝑝𝑡0 , 𝑝𝑡1 , … , 𝑝𝑡𝑛}. Let 𝜏0 = 𝑡0, the series {𝜏0, 𝜏1, … , 𝜏𝑚  are defined inductively by 𝜏𝑖 = 𝑡𝑠 

where 𝑠 = min{𝑗| |𝑝𝑡𝑗 − 𝑝𝜏𝑖| ≥ 𝐶, 𝑡𝑗 > 𝜏𝑖, 𝑗 = 1,2,3, … , 𝑛}  for i>0. For instance, since  

𝜏0 = 𝑡0，𝜏1 would be the first  𝑡𝑗  such that |𝑝𝑡𝑗 − 𝑝𝑡0| ≥ 𝐶 and 𝜏2 would be the first  𝑡𝑗 

such that |𝑝𝑡𝑗 − 𝑝𝜏1| ≥ 𝐶, 𝑡𝑗 > 𝜏1. I will call the duration series in which each duration is 

associated with certain price changes as the “price durations”. One can immediately infer 

from the definition that the price duration is closely related with the volatility since each 

duration is associated with a price movement that is equal to or larger than C. The 

conditional expectation 𝜓𝑖  of price durations then can be roughly understood as an 

indicator of the time needed to expect a price movement larger than C.  

 

Engle and Russell (1998) presented a clear parametric relation between the price duration 

and the condition instantaneous volatility. Specifically, let the information set until ith 

transaction be 𝐹𝑖. Then the conditional instantaneous intraday volatility is related with the 
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conditional hazard of the price durations by 

 

⁡𝜎2(𝑡|𝐹𝑖−1) = (
𝐶

𝑝(𝑡)
)
2

ℎ(𝑤𝑖|𝐹𝑖−1),                                   (3.57) 

where 𝜎(𝑡|𝐹𝑖−1)  is the conditional instantaneous volatility, 𝑝(𝑡)  is the price and 

ℎ(𝑤𝑖|𝐹𝑖−1) is the conditional hazard function.  

 

In general, empirical research finds that the price durations share many similar 

characteristics with the trade durations such as “duration clustering”, overdispersion, right-

skewed empirical distribution (Engle and Russell 1998, Bauwens and Giot 2000, Bauwens 

et al. 2004 and Fernandes and Gramming 2006). Interestingly, under the ACD 

specifications, compared with trade durations, the residuals of price durations are much 

more regular with respect to the serial dependence. Empirical evidence regarding this 

phenomenon can be found in Bauwens et al. (2004) and Fernandes and Gramming (2006).  

 

With respect to the model specification, Bauwens et al. (2004) argued that the simple ACD 

model such as the standard ACD and log-ACD outperforms the complicated models such 

as the TACD and SVD. They also suggested that, compared with the model specification, 

the distributional assumption seems to have stronger influence on the forecast performance 

of the ACD models.  

 

As discussed previously, the definition of price durations itself can be viewed as a 

measurement of the volatility. Therefore, the ACD modelling for price durations can be 

viewed as a volatility modelling method. 

 

Papers with respect to this consideration can be found in Giot (2000), Gerhard and Hautsch 

(2002) and Giot (2002). For instance, Giot (2000) applied an ACD specification to the price 

durations of IBM and directly used the estimated ACD conditional expectation function to 

compute the intraday volatility by (3.57). Giot (2002) further built an Intraday value at risk 

model where the volatilities are computed according to the price durations modelled by 

log-ACD specifications. However, empirical results suggest that the price duration based 

model fails most of the time for all stocks under consideration. Giot (2002) argued that the 
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unsatisfactory results might be due to the normal assumption imposed on intraday returns.  

 

With respect to the market microstructural hypothesis tests, the empirical results from price 

durations are in general very similar to the results from trade durations. For instance, Engle 

and Russell (1998) and Bauwens and Giot (2000) found out that the price durations are 

negatively correlated with volatility, trading intensity and volumes. 

 

3.2.2.3.3  Volume durations and others 

It is clear that the tick-by-tick trade durations can be thinning by volumes in the same way 

as by prices. It was first introduced by Jasiak et al. (1999) as a measure of liquidity since it 

measures the time needed for given amount of volume to be traded. In this sense, it could 

be understood as the time cost of liquidity.  

 

Compared with the trade durations and price durations, there are much fewer research 

applying ACD models to volume durations (Bauwens et al. 2004, Bauwens and Veredas 

2004 and Fernandes and Gramming 2006). The empirical results suggest that the volume 

durations have statistical characteristics different from the price durations and trade 

durations. The standard deviation of volume durations tends to be smaller than the mean, 

suggesting the “under-dispersion”. Meanwhile, as discussed previously, the trade durations 

and price durations exhibit overdispersion.  

 

Regarding the ACD specification, Bauwens et al. (2004) suggested the use of standard 

ACD and log-ACD with Burr innovations, which means that the 𝜖𝑖 in (3.9) is assumed to 

have a Burr density. He also argued that, as in the case of price duration and trade duration, 

sophisticated ACD model cannot outperform the simple ACD models with respect to the 

predictability.  

 

The ACD modelling of irregularly spaced financial data is not limited to the intraday 

trading process. Interesting applications of ACD models to the risk management can be 

found in Christoffersen and Pelletier (2004) and Focardi and Fabozzi (2005). For instance, 

Christoffersen and Pelletier (2004) used it to back test the Value at Risk models. 



122 

Specifically, they applied ACD specifications to model the time difference between 

violations of some VaR models. If the VaR is correctly specified, then the conditional 

expectation of durations for the violations should be a constant that is decided by the 

significance level of the VaR model.  

3.3 Data and some empirical results 

In this section I present the statistical description of the data base. In Section 3.3.1 I present 

a discussion of the market microstructural issue of “split-transactions” associated with the 

tick-by-tick trade durations of SPY on NYSE. I further introduce the durations associated 

with the transaction-aggregated returns that is introduced in Chapter 1 and Chapter 2. In 

Section 3.3.2 I present the statistical descriptions of the transaction-aggregated durations. 

Section 3.3.3 includes the analysis of the intraday periodicity of durations. Section 3.3.4 

presents the unconditional distributional properties of the durations.  

3.3.1 Market microstructural issues and transaction-aggregated durations 

As introduced in Chapter 1 and Chapter 2, my data is the tick-by-tick transaction records 

of the symbol SPY on NYSE. The data ranges from 01/02/2014 to 12/31/2014. There are 

252 trading days during this period. The out-of-hour transactions whose occurrence lie 

outside the time period between 9:30 am and 4:00 pm on each day are removed. There are 

79156264 tick-by-tick observations in the sample. Three random variables are associated 

with each observation in the tick-by-tick transaction records: timing of transaction, 

execution price of transaction and trading volumes.  

 

Before my presentation of the tick-by-tick durations, there are several market 

microstructural issues that I will discuss. These issues might be considered as irrelevant for 

studies using sample from fixed time interval. However, for a tick-by-tick transaction data 

of a symbol with ultra-high liquidity like SPY, the interpretation of the data with respect to 

transaction arrivals depends largely on the understanding of those issues.  

 

The first issue that may arise when using tick-by-tick transaction data is the difficulty of 



123 

matching trades and quotes. This problem occurs if the trades and quotes are separately 

recorded and stored like the Trade and Quote (TAQ) database released by NYSE. 

Fortunately, my data is not directly quoted from the TAQ. The tick-by-tick transaction 

record is obtained from the commercially available data company of Tick Data and the 

trades and quotes are matched automatically. Nevertheless, this convenience comes at the 

cost of the information of bid and ask prices.  

 

The second issue is the so called “split-transactions” effect. This phenomenon has been 

mentioned in the previous discussion regarding price durations. I now elaborate it and 

explain my methodology of dealing with this issue. Split-transaction occurs when an order 

(usually of large size) on one side is matched with several smaller orders on the opposite 

side. An immediate result is that the time difference between these transactions is extremely 

small. Correspondingly, the execution prices of these transactions are equal or are 

monotonic (increasing or decreasing, depending on how the large order is matched). For 

an electronic trading system, the time difference between these transactions is usually 

determined by the measurement accuracy. Such recording mechanism also decides whether 

those transactions will be considered as simultaneously occurring. In most of the research, 

this issue is solved by aggregating transactions occurring at the same time. However, if 

these transactions are carried out with extremely small time differences as in my data, the 

identification of split-transactions will be very difficult. Moreover, since the bid-ask quotes 

are not available for our data, I cannot identify the possible split-transactions according to 

bid-ask information.  

 

In Chapter 1 and Chapter 2, I introduced the concept of transaction-aggregated returns. 

Compared with time-aggregated returns, the transaction-aggregated returns exhibit 

stronger aggregational normality. Detailed discussion is presented in section 1.3. More 

importantly, it preserves the information contained in the time of transactions. Moreover, 

the durations between each of observation in the transaction-aggregated returns contain 

equal number of transactions. Thus, those durations can be considered as a direct measure 

of trading intensity. Given the widely recognized relation between trading intensity and 

volatility dynamics, it seems valuable to investigate the durations defined in this sense. I 
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will use the terminology “transaction-aggregated durations” to refer to the durations that 

correspond to the transaction-aggregated returns defined in Chapter 1. 

 

Specifically, let 𝑝𝑑,𝑛 be the execution price of the nth transaction at day d and let 𝑡𝑑,𝑛 be 

the associated time of transaction. Therefore, the tick-by-tick trade duration is 𝑤𝑑,𝑛, where 

𝑤𝑑,𝑛 = 𝑡𝑑,𝑛 − 𝑡𝑑,𝑛−1 (denote the time of the first transaction at day d as 𝑡𝑑,0). 

The nth tick-by-tick return at day d is,⁡𝑟𝑑,𝑛 = ln⁡(
𝑝𝑑,𝑛

𝑝𝑑,𝑛−1
). Suppose we use every consecutive 

T tick transactions to calculate our non-overlap transaction-aggregated return series. Then 

(𝑇)𝑟𝑑,𝑖, the ith transaction-aggregated return on day d, is defined as  

                                                       (𝑇)𝑟𝑑,𝑖 = ln⁡(
𝑝𝑑,(𝑇−1)𝑖

𝑝𝑑,(𝑇−1)(𝑖−1)
).  

Correspondingly,  

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(𝑇)𝑤𝑑,𝑖 = 𝑡𝑑,(𝑇−1)𝑖 − 𝑡𝑑,(𝑇−1)(𝑖−1) . 

Thus, the tick-by-tick trade duration can be viewed as the special case where 𝑇 02. 

Moreover, although the duration between consecutive transactions has been widely 

considered as a random variable, its distributional property is insufficiently explored. This 

might be caused by the difficulty arising with the previously discussed market 

microstructural issues. The definition of transaction-aggregated duration is based on the 

sum of tick-by-tick durations. Therefore, study with respect to the aggregational property 

of tick-by-tick durations can provide valuable knowledge regarding the nature of the tick-

by-tick durations. This is very similar to the case of intraday returns where the 

aggregational normality of intraday returns in turn provides support for the stable 

assumption on returns.  

 

In fact, given a tick-by-tick transaction records, the sequence of tick-by-tick transaction 

time naturally forms a partition for the time interval between the first and last tick-

transaction. Once a definition of duration is chosen, it actually just retains some of the tick-

by-tick transactions and therefore a new partition of the time interval between the first and 

last transaction is formed. The tick-by-tick trade durations is a refinement of the new 

duration sequences. In this sense, the traditional use of fixed time interval in the analysis 

of a financial time series is equivalent to imposing a regular partition of the time.  
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3.3.2 The descriptive statistics of transaction-aggregated durations 

I first present the descriptive statistics of the transaction-aggregated durations. As in 

Chapter 1 and Chapter 2, let T represent the number of tick-by-tick transactions that are 

used to calculate the transaction-aggregated durations. For instance, T=400 indicates that 

the durations are now the time difference between every four hundred tick-by-tick 

transactions. The values of T are determined by the sample size of time-aggregated 

transaction series based on some fixed time interval. Specifically, suppose I measure the 

return per one second from the tick-by-tick transaction data. There will be 

390 × 60 × 252 = 5896800⁡ ⁡observations in the 1-second intraday return series. 

Correspondingly, it means in average each 1-second return is generated by 
79156264

5896800
≈

13.42 tick-by-tick transactions.  In order to explore the transaction-aggregated returns at 

high frequency level, T is chosen to be 13 and 67 to correspond to 1s and 5s time intervals. 

 
 

Sample 

size 

Mean Standard 

Deviation 

q (0.05) q (0.25) q (0.5) q (0.75) q (0.95) Ljung-Box 

statistics  

Tick 

durations 

79156012 0.074495162 0.459798842 0 0 0 0.005 0.423 1974424 

T-13 

durations 

6596215 0.893933316 2.601303677 0.001 0.006 0.196 1.014 4.035 342587 

T-67 

durations 

1199206 4.914029642 9.170544074 0.047 1.17 3.018 6.432 16.187 85805 

T-134 

durations 

595032 9.900267661 14.67155606 0.693 3.252 6.757 12.985 29.676 73310 

T-400 

durations 

198261 29.7117307 34.47228761 4.579 12.164 21.995 39.197 80.22945 42351 

T-800 

durations 

98942 59.33634262 47.88790054 11.046 26.195 45.426 78.793 153.4252 71763 

T-1200 

durations 

65893 89.08588393 69.41574311 17.73315 40.68475 69.259 118.2125 225.13925 48350 

T-2400 

durations 

32876 178.4973975 131.302421 39.4892 85.379 141.88 237.111 435.7287 20892 

Table 3.1 Descriptive statistics of transaction-aggregated durations 

 

The q (p) in Table 3.1 represents the quantile of the sample corresponding to the probability 

p, Ljung-Box Q statistics is calculated for the first 20 lags of the sample autocorrelation 

function. I keep durations with length of zero to give a complete picture of the raw tick-

by-tick data.  
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There are several distinctive characteristics of the tick-by-tick durations of SPY that can 

be concluded from Table 3.1. First, the SPY has high liquidity. The mean of the tick-by-

tick durations is around 0.0745s. Further evidence can be found in the quantiles. The 0.5-

quantile of the tick-by-tick durations is zero and the 0.95-quantile is only 0.423s. The 

quantiles are directly calculated from the empirical distribution. For instance, the 0.95-

quantile is solved from the equation 𝐹(𝑥) = Pr(𝑋 ≤ 𝑥) = 0.95 , where 𝐹(𝑥)  is the 

empirical distribution function. In this case, the microstructure issues discussed previously 

have very strong impact on the pattern of tick-by-tick durations since the tick-by-tick 

durations have very small average that is very close to zero. The split-transaction effect is 

strong. 

 

Second, the tick-by-tick durations exhibit strong overdispersion since the standard 

deviation exceeds the mean significantly. Given a mean of 0.0745 the standard deviation 

of the tick-by-tick standard deviation is 0.4598. This can be viewed as an evidence against 

the exponential distribution since the exponential distribution has a mean equal to its 

standard deviation.  

 

Finally, as suggested by the Ljung-Box statistics, the null hypothesis that the first 20 lags 

in the autocorrelation functions have coefficients zero is clearly rejected. In contrast, the 

tick-by-tick durations have very strong autocorrelation, suggesting “duration clustering” 

effect.  

 

In general, the transaction-aggregated durations exhibit characteristics similar to the tick-

by-tick durations. For instance, the Ljung-Box statistics are of large values and the standard 

deviations exceed the mean in general. Nevertheless, it is noticeable that, as the number 

used to aggregate the tick-by-tick duration increases, the phenomenon of overdispersion 

gradually dies out. Specifically, the standard deviation of the T-800 durations is 47.89, and 

the mean is 59.34.  

 

Figure 3.1 presents the autocorrelation function of the tick-by-tick durations. As expected, 

I observe highly significant autocorrelations. The first lag autocorrelation is around 0.2 and 
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the autocorrelations decay with the lags slowly for the first 50 lags. It then almost remains 

stable for the rest of the lags. It suggests the tick-by-tick duration process is very persistent. 

In order to explicitly present the decaying autocorrelation structure of the transaction-

aggregated durations, I exhibit the correlogram of T-13 and T-67 durations for up to 500 

lags. Note that since these two duration series are aggregated from the tick-by-tick duration 

series, now each lag represents longer time interval.  

 

Figure 3.1 Correlogram of tick-by-tick durations 

 

Figure 3.2 Correlogram of T-13 durations 
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Figure 3.3 Correlogram of T-67 durations 

Figures 3.2 and 3.3 present the correlogram of the T-13 and T-67 durations. The findings 

are in line with Figure 3.1. Observe the autocorrelations now decay with the lags at a slow, 

almost hyperbolic rate that is typical for long memory process. Besides, the T-13 durations 

have a very strong first lag autocorrelation around 0.39.  

 

 

Figure 3.4 The tick-by-tick duration of SPY 

Figure 3.4 presents the tick-by-tick duration of SPY for the whole sample. The y-axis is 

limited to 50s. Although the tick-by-tick durations range from zero to almost 1800 (in 

seconds), most of the tick durations are shorter than 1s. Besides, as suggested by figure 3.4, 

the tick durations exhibit high variability.  

3.3.3 Intraday seasonality of durations  

It is widely assumed that intraday transactions present very strong periodic pattern over the 



129 

trading day. The discussion with respect to the intraday volatility periodicity of SPY can 

be found in Chapter 2. Consequently, before applying the ACD model to the durations of 

SPY, it is necessary to investigate the intraday seasonality of durations first.  

 

In order to illustrate the intraday pattern of tick-by-tick durations, I first present the plot of 

average durations for 1-minute intervals over the trading day. Specifically, given a specific 

trading day, I count the number of tick-by-tick transactions falling in each of the 1-minute 

intervals and use the averages of tick durations in the 1-minute intervals to represent the 

tick duration dynamics over the trading day. Based on the empirical literatures and results 

from Chapter 2, I should expect an inverted U-shape pattern of the tick durations over the 

trading day since the opening and closing trading hours are associated with high trading 

intensity. Moreover, as suggesting by Table 3.1 and Figure 3.4, the durations should be 

small (very close to zero) except for the “lunch time”.  

 

 

Figure 3.5 The average tick-by-tick duration of SPY over the trading day 

Figure 3.5 presents an inverted U-shape of the tick-by-tick durations over the trading day. 

The average tick duration ranges from a low of 0.025s at the opening and closing of market 

to a high of around 0.35s at the middle day. Specifically, the tick-by-tick duration starts 

around 0.025s and gradually increases with the 1-minute lags. It reaches the peak around 

the 250th 1-minute lag which corresponds to the calendar time of 13:40. Then it decays 

slowly to 0.025 at the closing of the market. An interesting finding is that, compared with 

the tick durations in the morning, the tick durations in the afternoon exhibit much higher 
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variability (observe the dramatic fluctuation of tick durations after the 200th 1-minute lag). 

As expected, the tick durations are of very small values even in the middle day.  

 

Figure 3.6 The correlogram of SPY average tick-by-tick durations 

In order to investigate the dynamic feature of the average tick-by-tick durations, I further 

plot the correlogram of the average tick-by-tick durations for up to five days. The plot is 

exhibited in Figure 3.6. The question that I want to address is, whether the pattern depicted 

in Figure 3.5 cycles at daily basis.   

 

Figure 3.6 gives a very surprising answer with respect to the intraday periodicity of 

durations. If the pattern depicted in Figure 3.5 is periodic at daily frequency, we should 

observe a corresponding U-shape in the correlogram as in the case of intraday periodicity 

of volatility (Figures 2.5 and 2.6 of Chapter 2). In contrast, Figure 3.6 suggests the 

autocorrelations of average tick-by-tick durations per minute decays monotonically with 

the 1-minute lags. The autocorrelations become insignificant for lags of order higher than 

180. In other words, the average tick duration in the current minute is uncorrelated with 

the average tick duration three hours later.  

 

This result is not necessarily contradictory to Figures 3.1, 3.2 and 3.3. Indeed, as suggested 

by those three figures, the autocorrelations of the transaction-aggregated durations 

(including the tick-by-tick durations where T02) decay very slowly with lags. However, 

their autocorrelations do not necessarily decay slowly with time. Due to the different time 

interval that each duration represents, I cannot directly identify how the autocorrelation of 

the transaction-aggregated durations decay with time. But we can gauge this dependence 
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by the mean of the transaction-aggregated durations. For instance, the mean of the tick-by-

tick duration series is around 0.0745s. Then the time interval between the 1st and 500th lag 

in Figure 3.1 can be very roughly interpreted as 0.0745s×500037.245s. Meanwhile, the 

average tick-by-tick durations in Figure 3.6 represents the average value of tick-by-tick 

durations in each 1-minute interval. Thus, the time difference between two consecutive 

lags is one minute.  

 

The characteristics of the average tick-by-tick duration per minute can be very different 

from the tick-by-tick durations. In order to explicitly explore the dynamic feature of the 

tick-by-tick durations, one might be interested in the correlogram of the raw tick-by-tick 

durations for lags of higher orders. However, given the extremely small mean of tick 

durations (0.0745s), if I want to explore the autocorrelation structure of tick-by-tick 

durations for detecting some daily effect, e.g., whether the intraday pattern of Figure 3.5 is 

periodic on daily basis, an extremely large number of lags will be required. Given the tick-

by-tick sample size of 79156012, the computational difficulty arises due to the high 

requirement of random-access memory.  

 

Moreover, the pattern of tick-by-tick durations of SPY depends largely on the recording 

mechanism as discussed previously. Unfortunately, those are not common knowledge and 

therefore I cannot exclude their influence using my data. Thus, I exploit the 

autocorrelations of the transaction-aggregated durations to circumvent those difficulties. 

 

Figure 3.7 The correlogram of T-800 transaction-aggregated durations 

Figure 3.7 presents the correlogram of the T-800 durations for up to 1500 lags. Given the 
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mean of 59.34s for the T-800 transaction-aggregated durations, Figure 3.7 can be roughly 

interpreted as the correlogram of T-800 durations for up to four trading days. Figure 3.7 

suggests that there is a U-shape pattern in the autocorrelations of the T-800 durations. 

Although the U-shape pattern gradually dies out with the lags, it is still strikingly regular 

for the first 300 lags. Specifically, the distance between the first peak and the second peak 

of the autocorrelations is around 300 lags. Since the mean of the T-800 transaction-

aggregated durations is around one minute, 300 lags represent roughly one trading day. 

Figure 3.7 implies that, although the intraday seasonality of SPY durations is not as regular 

as the intraday seasonality of SPY volatilities, it still has unneglectable influence on the 

autocorrelation structure of the durations.  

 

Figure 3.8 The correlogram of T-400 transaction-aggregated durations 

Figure 3.8 gives the correlogram of the T-400 transaction-aggregated durations for up to 

3000 lags. The pattern of autocorrelations in Figure 3.8 is very similar to Figure 3.7.  

 

Figures 3.7 and 3.8 suggest that a direct ACD modelling of the transaction-aggregated 

durations might be inappropriate since the ACD models impose a geometric decay on the 

duration autocorrelations. It cannot capture the autocorrelation pattern in Figures 3.7 and 

3.8. Thus, it is necessary that I exclude the intraday seasonality of durations before applying 

ACD specification to model the transaction-aggregated durations.  

 

As discussed in the Section 3.2.2.1, a widely accepted method that is used to exclude the 

intraday seasonality from the raw durations is to consider following decomposition of 

durations 𝑤𝑖 , ⁡⁡𝑤𝑖 = 𝑤̃𝑖⁡𝑠(𝑡𝑖).  𝑠(𝑡𝑖)  is considered as the deterministic “time-of-day” 
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component (Engle and Russell 1998). With respect to the estimation of 𝑠(𝑡𝑖), the most used 

procedures are as follows. First, one takes averages of durations over fixed time intervals 

of the trading day. Second, cubic spline functions are applied to smooth the averages.  

 

The following Figure 3.9 exhibits the cubic spline function with 15-minute nodes of SPY 

tick-by-tick durations.  

 

 

Figure 3.9 Cubic spline function with 15-minute nodes of SPY tick-by-tick duration 

Once the tick-by-tick durations are adjusted according to the cubic spline function in Figure 

3.9. I can easily calculate the seasonal adjusted transaction-aggregated durations by the 

sums of corresponding seasonal adjusted tick-by-tick durations.  

 

Given the complicated intraday seasonality of tick-by-tick durations, this de-seasonal 

procedure might be too simple. I choose this commonly accepted procedure for the 

following reasons. First, as suggested by Figures 3.7 and 3.8, the autocorrelations of 

transaction-aggregated durations indeed present some periodic feature at daily frequencies. 

Second, due to the lack of economic theory that could facilitate a parametric specification 

of the modelling of intraday seasonality of durations, it seems plausible to choose a 

relatively simple nonparametric method. Third, the intraday dynamics of tick-by-tick 

durations are subject to strong influences of the market microstructural issues such as the 

“split-transactions” effect that we unfortunately are unable to identify. Therefore, it is 

difficult to provide an accurate modelling of the intraday seasonality.  
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3.3.4 Unconditional distributional properties of the durations 

In this section, I provide an investigation with respect to the unconditional distributional 

properties of the transaction-aggregated durations. I use the raw durations instead of the 

de-seasonalized durations in this section since the analysis mainly serves as a guidance in 

the selection of distribution assumptions for ACD models. Besides, the raw durations give 

a complete description of the sample that I am interested in.   

 

 

Figure 3.10 The kernel density function of tick-by-tick durations 

 

Figure 3.10 exhibits the kernel density function of the tick-by-tick durations of SPY. Let  

{𝑥0, 𝑥1, … , 𝑥𝑛}  be an iid sample following the unknown density f, the kernel density 

estimator of f at x is 
1

𝑛ℎ
∑ 𝐾(

𝑥−𝑥𝑖

ℎ

𝑛
𝑖=1 ), where 𝐾 is the non-negative kernel function and h>0 

is the smoothing parameter. I use the normal kernel 𝐾(𝑥) = 𝜙(𝑥)  where 𝜙(𝑥)  is the 

standard normal density function. Due to the large quantity of computation required to fully 

exhibit the kernel density function (the maximum of tick-by-tick durations is around 1800s), 

I only plot the function for tick-by-tick durations less than 10s (the 0.95 quantile of the 

tick-by-tick sample is around 0.42s).   

 

The kernel density function for T-134 durations, T-400 durations and T-800 durations are 

presented in the following Figures 3.11, 3.12 and 3.13 respectively. The range of x-axis is 

from 0 to 360. The kernel density functions of the transaction-aggregated durations have 

humps on the short durations and have relatively long right tails. Besides, the aggregational 
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characteristics is obvious. The kernel density function of tick-by-tick durations in Figure 

3.10 has a roughly inverted S-shape and meanwhile the kernel density functions in Figures 

3.11, 3.12 and 3.13 are much regular and are similar to Weibull or Gamma densities. 

Figures 3.11, 3.12 and 3.13 intuitively suggest that an exponential assumption on the 

standardized duration 𝜖𝑖  might be wrong. Weibull distribution and generalized gamma 

distribution seems to be more appropriate for describing transaction-aggregated durations. 

 

Figure 3.11 The kernel density function of T-134 durations 

 

Figure 3.12 The kernel density function of T-400 durations 

 

Figure 3.13 The kernel density function of T-800 durations 
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Given the characteristics of the tick-by-tick trade duration presented in Table 3.1 and Figure 

3.10, continuous distributions that are widely used in ACD duration modelling such as 

Weibull distributions and exponential distributions cannot provide satisfactory description 

of the unconditional tick-by-tick durations.  

 

Based on the empirical evidences from Table 3.1 and Figure 3.10 - 3.13, I focus on the 

following two issues. First, I want to analyze the effect of the market second-by-second 

operational details on the tick-by-tick durations. Although I cannot directly identify the 

effect by our data, we can gauge it by the following method. I divide the tick-by-tick 

durations into different categories according to their length. Then, I study the distributional 

properties of durations in different categories. According to market microstructure 

literatures, short durations are often the results of liquidity trading and meanwhile long 

durations are more likely to be related with informed trading (Admati and Pfleiderer 1988). 

Consequently, tick-by-tick durations in different categories should have very different 

distributional properties.  

 

Second, I want to explore the aggregational characteristics of the tick-by-tick durations.  

 

With respect to the first issue, I categorize the tick-by-tick durations into the followings 

three categories. The first category contains tick-by-tick durations with length less than 1s. 

Since the tick-by-tick durations have a 0.95 quantile of 0.43s, it contains most of the tick-

by-tick duration data. According to Admati and Pfleiderer (1998), tick-by-tick duration in 

this category should be the results of liquidity transaction and therefore the market 

operational details play a decisive role in determining their dynamics.  

 

It is interesting to explore the unconditional distribution of the tick-by-tick duration under 

such circumstances. I remove all the zero observations in this category. The second 

category contains tick-by-tick durations with length between 1s and 60s and the third 

category contains tick-by-tick durations with length larger than 60s. The following Table 

3.2 summaries the descriptive statistics of the three subsamples.  
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Sample size Mean Standard 

Deviation 

q (0.05) q (0.25) q (0.5) q (0.75) q (0.95) 

𝒘 ∈ (𝟎, 𝟏] 31929162 0.099620631 0.191059825 0.001 0.001 0.009 0.095 0.559 

𝒘 ∈ (𝟏, 𝟔𝟎] 1418818 1.899863586 1.164725964 1.02 1.197 1.535 2.163 4.008 

𝒘 ∈ (𝟔𝟎,∞] 110 185.2366909 211.4020134 63.521 85.811 117.219 194.309 567.133 

Table 3.2 Descriptive statistics of tick-by-tick durations with different length 

Table 3.2 indicates some characteristics of the SPY tick-by-tick durations that are certainly 

determined by market operational details. First, the smallest unit of time that can be 

recorded by the market is 0.001s. This can be easily verified by the quantiles of durations 

less than 1s. As a result, for durations with extremely small values, the empirical 

distribution presents strong discreteness. For instance, the 0.5 quantile of the first 

subsample is 0.09 but the smallest difference between two observations is 0.001.  

 

Second, a large proportion of the SPY tick-by-tick durations are less than 0.1s. The sample 

sizes of the durations in the three subsamples are 31929162, 1418818 and 110 respectively. 

Moreover, the 0.75 quantile of the durations that are less than 1s is 0.095.  

 

Third, although the durations less than 1s and durations longer than 60s both exhibit 

“overdispersion” (sample mean less than sample standard deviation), the durations with 

length between 1s and 60s do not have this characteristic. Specifically, the durations in the 

second subsample have a sample mean of 1.899 and a standard deviation of 1.165.  

 

Based on these empirical findings, I can conclude that the tick-by-tick duration of SPY is 

heavily influenced by the market microstructural effects such as the accuracy of recording 

systems and the “split-transactions”. I now further investigate the distributional properties 

of the tick-by-tick trade durations. I fit the exponential distribution, Weibull distribution, 

the gamma distribution and the generalized pareto distribution to the first two subsamples 

of the tick-by-tick durations. Specifically, the four continuous distributions are estimated 

by MLE using the tick-by-tick durations in each subsample normalized by corresponding 

sample mean.  
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Figure 3.14 The ECDF of tick-by-tick durations less than 1s 

Figure 3.14 presents the plot of the empirical cumulative distribution function of durations 

in the first subsample and the cumulative distribution functions of the four continuous 

distributions estimated from the subsample. The results regarding the estimation are 

provided in Table 3.3. The details regarding the maximum likelihood estimation are 

presented in Appendix D. 

 

Exponential Distribution 

Parameter Standard Error Log likelihood 

mu=1 0.000176973 -3.19E+07 

  

Weibull Distribution 

Parameter Standard Error Log likelihood 

(scale) a=0.4069 0.000165374 -8.18E+06 

(shape) b=0.4623 6.20E-05 

Gamma Distribution 

Parameter Standard Error Log likelihood 

(scale) a=0.3316 6.61E-05 -1.03E+07 

(shape) b=3.0153 1.10E-03 

Generalized Pareto Distribution 

Parameter Standard Error Log likelihood 

(scale) sigma=0.0571 2.51E-05 -6.50E+06 

(shape) k=2.0664 5.44E-04 

(location) theta=0 0 
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Table 3.3 The fitting of Exponential, Weibull, Gamma and Generalized Pareto distribution using durations less 

than 1s 

None of the four distributions can provide a satisfactory modelling of the unconditional 

distribution of tick-by-tick durations in the first subsample. The discreteness reported 

previously cannot be easily captured by the four continuous distributions that are widely 

used in duration modellings. Thus, ignoring such effects might be wrong for ACD duration 

dynamics modellings.   

 

Figure 3.15 The ECDF of tick-by-tick durations with length between 1s and 60s 

Exponential Distribution 

Parameter Standard Error Log likelihood 

Mu=1.89986 0.00159499 -2.32 E+06 

  

Weibull Distribution 

Parameter Standard Error Log likelihood 

(scale) a=2.14715 0.00106326 -1.94E+06 

(shape) b= 1.80038 9.36E-04 

Gamma Distribution 

Parameter Standard Error Log likelihood 

(scale) a= 0.41307 0.00527462 -1.73274E+06 

(shape) b=4.59937  0.000500552 

Generalized Pareto Distribution 

Parameter Standard Error Log likelihood 

(scale) sigma=0.709601 0.00096356 -1.23614E+06 

(shape) k=0.214296 0.00108232 

(location) theta=1 0 
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Table 3.4 The fitting of Exponential, Weibull, Gamma and Generalized Pareto distribution using durations with 

length between 1s and 60s 

Figure 3.15 and Table 3.4 summarize the fitting regarding durations in the second 

subsample where observations vary from 1s to 60s. For clearer presentation, the x-axis is 

limited to 10. It can be concluded from Figure 3.15 and Table 3.4 that the four continuous 

distributions provide much closer approximations for the durations in the second 

subsample than for the durations in the first subsample. Specifically, the fit of Gamma 

distribution and generalized Pareto distribution seem to be promising. Although the fitting 

cannot be considered as statistically successful, it still implies that the characteristics of 

durations depends largely on the length of durations. Consequently, it intuitively suggests 

the use of a regime switching ACD specification for modelling tick-by-tick duration 

dynamics.  

 

For the durations longer than 60s, I present the histogram to describe its distributional 

characteristics since there are only 110 observations. The histogram is presented in Figure 

3.16. These durations are highly likely to be associated with some market events. 

 

Based on the empirical results of the three subsamples, I can conclude several important 

remarks. First, for a symbol with high liquidity like SPY, the tick-by-tick durations are 

often with very small values (the limit of recording accuracy is often reached) that are 

results of the market microstructural effects. Second, durations with different length have 

very different characteristics. As suggested by microstructure literatures, the long durations 

might convey information very different from the information carried by short durations. 

Consequently, when modelling tick-by-tick durations in the ACD framework, a regime-

switching specification such as the model of Hujer and Vuleti (2005) might be more 

realistic. Finally, given the dominating rules of market operational details in determining 

the pattern of tick-by-tick durations, ACD models might not be very suitable for describing 

the arrivals of transactions if one cannot explicitly exclude the effects of these details. For 

instance, the raw tick-by-tick duration sample of SPY contains 79156012 observations. 

Meanwhile, the number of observations equal to 0, 0.001 and 0.002 are 45807922, 8597959 

and 2302916 respectively. It is highly unlikely that such discreteness can be captured by 

ACD specifications based on continuous distributional assumptions since there will be 
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many jumps in the empirical distribution of durations.  

 

Figure 3.16 The histogram of tick-by-tick durations longer than 60s  

I now use Kolmogorov statistics D, the Cramér–von Mises statistics 𝑊2 and the Andersen-

Darling statistics ⁡𝐴𝟐 , to formally test the unconditional distribution of transaction-

aggregated durations. The procedures of applying EDF statistics can be in found in the 

Appendix A of Chapter 1. In order to investigate the aggregational distributional property 

of tick-by-tick durations, I fit the exponential distribution, Weibull distribution, the Gamma 

distribution and the generalized Pareto distribution to transaction-aggregated durations. 

The first three distributions are nested in the generalized Gamma distribution and 

meanwhile the Weibull distribution is the limiting distribution of the Burr distribution. All 

zeros are removed from the sample.  

 

Table 3.5 reports the EDF statistics for the goodness of fit for the transaction-aggregated 

durations whose descriptive statistics are given in Table 3.1. The distributions are estimated 

by MLE and Monte-Carlo simulations are applied to give critical values. Specifically, 

parameters of each distribution are estimated by corresponding transaction-aggregated 

durations and then random numbers are generated by the estimated distribution for the 

calculation of critical values. Details are presented in Appendix D. I do not include the 

critical values in Table 3.5 since the EDF statistics exceed the critical values significantly.   

 

As suggested by the extremely high values of the three EDF statistics (the EDF statistics 

are upper tail tests), none of the four distributions can provide a satisfactory modelling of 
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the unconditional transaction-aggregated durations. However, the generally decreasing 

EDF statistics (especially for Gamma distributions) imply that there is some aggregational 

characteristics of the transaction-aggregated durations. Given the large sample of tick-by-

tick durations, we can further investigate this aggregational characteristic by increasing T 

that is the fixed number used to aggregate the tick-by-tick durations (the trading day with 

least tick-by-tick durations still have 1214888 observations).  

 

Table 3.5 The fitting of Exponential, Weibull, Gamma and generalized Pareto distribution to transaction-

aggregated durations 

 

  
Exponential Weibull Gamma Generalized Pareto 

 
Sample 

size 

D 𝑾𝟐 ⁡⁡𝑨𝟐 D 𝑾𝟐 ⁡⁡𝑨𝟐 D 𝑾𝟐 ⁡⁡𝑨𝟐 D 𝑾𝟐 ⁡⁡𝑨𝟐 

T=13 6596215 0.311 2211.59 Inf 0.0812 12430 Inf 0.088 7669 Inf 0.168 57340 4E+05 

T=67 1199206 0.048 1305.789 Inf 0.0367 514 Inf 0.039 498.2 Inf 0.036 500.2 Inf 

T=134 595032 0.037 229.8506 Inf 0.0316 185.4 Inf 0.026 148.4 Inf 0.020 60.83 Inf 

T=400 198261 0.105 630.4093 Inf 0.0421 127.9 Inf 0.033 73.5 Inf 0.0167 19.64 Inf 

T=800 98942 0.131 504.7833 3183.103 0.0435 72.28 Inf 0.035 39.1 Inf 0.021 14.88 98.15 

T=1200 65893 0.143 404.4711 2496.856 0.0446 51.16 Inf 0.036 26.7 Inf 0.022 11.24 73.21 

T=2400 32876 0.159 254.6905 1537.22 0.0471 26.82 Inf 0.037 13.5 Inf 0.025 6.788 44.59 

  Exponential Weibull Gamma Generalized Pareto 

 Sample 

size 

D 𝑾𝟐 ⁡⁡𝐴2 D 𝑾𝟐 ⁡⁡𝐴2 D 𝑾𝟐 ⁡⁡𝐴2 D 𝑾𝟐 ⁡⁡𝐴2 

T=4000 19663 0.171 175.61 1043.05 0.048 17.07 110.84 0.037 8.416 46.632 0.028 4.693 30.58 

  [0.014] [0.586] [2.862] [0.009] [0.439] [2.421] [0.008] [0.439] [2.258] [0.011] [0.571] [3.033] 

T=8000 9763 0.187 103 600.063 0.04991 8.855 57.609 0.041 4.256 23.748 0.033 2.76 17.73 

  [0.014] [0.496] [2.704] [0.014] [0.401] [2.195] [0.012] [0.409] [2.249] [0.0148] [0.593] [3.032] 

T=12000 6468 0.194 74.206 427.937 0.05004 6.007 38.879 0.039 2.822 15.851 0.033 1.927 12.59 

  [0.016] [0.421] [2.371] [0.015] [0.391] [2.091] [0.015] [0.438] [2.237] [0.015] [0.348] [2.061] 

T=24000 3162 0.205 41.168 233.888 0.05101 2.634 17.323 0.038 1.154 6.5967 0.035 1.025 6.639 

  [0.024] [0.461] [2.449] [0.023] [0.482] [2.347] [0.022] [0.431] [2.355] [0.022] [0.353] [2.001] 

T=40000 1854 0.217 26.504 149.038 0.05693 1.599 10.046 0.04 0.734 4.0912 0.04 0.782 4.904 

  [0.032] [0.507] [2.535] [0.032] [0.539] [2.791] [0.033] [0.631] [3.423] [0.031] [0.401] [2.129] 

T=60000 1193 0.226 19.095 106.202 0.04383 0.807 5.3345 0.035 0.354 2.2714 0.039 0.497 3.409 

  [0.041] [0.625] [3.192] [0.035] [0.352] [2.003] [0.041] [0.555] [2.849] [0.037] [0.371] [2.105] 
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Table 3.6 The fitting of Exponential, Weibull, Gamma and generalized Pareto distribution to transaction-

aggregated durations 

Table 3.6 summarizes the goodness of fit for the T-4000, T-8000, T-12000, T-24000, T-4000 

and T-60000 transaction-aggregated durations. The critical values are reported in the 

brackets and the significance level is 5%. The EDF statistics are very sensitive even when 

the sample is relatively small. The details of the power studies with respect to EDF statistics 

can be found in the classic paper of Stephens (1974). There are two interesting findings 

that can be concluded from Table 3.6. First, compared with other distributions under 

consideration, the Gamma distributions fit the transaction-aggregated duration much better 

in the sense that the corresponding EDF statistics are closer to the critical values. 

 

Second, the distributions of transaction-aggregated durations approach the Gamma 

distribution as the number used to aggregate to tick-by-tick durations, T, increases. For 

instance, for T-40000 transaction-aggregated durations, the EDF statistics are 0.04, 0.734 

and 4.0912 for D, 𝑊2and A respectively that are very close to the corresponding critical 

values of 0.033, 0.631 and 3.423. Meanwhile, for T-60000 transaction-aggregated 

durations, the three EDF statistics are 0.035, 0.354 and 2.2714. The corresponding critical 

values are 0.041, 0.555 and 2.849 respectively. Thus, the null hypothesis of a Gamma 

distributed sample cannot be rejected at the significance level of 5%. The following Figure 

3.17 and Figure 3.18 present respectively the empirical cumulative distribution functions 

of T-24000 and T-40000 durations together with corresponding estimated CDF of Gamma 

distributions.  

 

 

Figure 3.17 The empirical cumulative distribution functions of T-24000 transaction-aggregated durations 
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Figure 3.18 The empirical cumulative distribution functions of T-40000 transaction-aggregated durations 

The above empirical results suggest the existence of the aggregational characteristics of 

tick-by-tick durations. It is well-known that the intraday financial transactions are not only 

subject to “time-of-day” effect but also “day-of-week” effect. Therefore, I further 

investigate the aggregational characteristics for tick-by-tick durations within each trading 

day. The procedures are similar to the one that I apply for studying aggregational normality 

of intraday returns in Chapter 1. The purpose is to explore whether the intraday durations 

exhibit aggregational characteristics. 

 

Specifically, I carry out the test for the null hypothesis of Gamma distribution using EDF 

statistics D, 𝑊2  and ⁡⁡𝐴2  on each day’s transaction-aggregated durations. Transaction-

aggregated durations within a trading day are considered to follow Gamma distributions if 

all the three statistics D, 𝑊2 and⁡⁡𝐴2 cannot reject the null hypothesis at significance level 

of 5%. As suggested by the simple size in Table 3.7, the choices of T generate enough data 

for intraday durations. 

 
  

Exponential Weibull Gamma 
 

Average daily sample size 𝑵𝟎 𝑵𝟎/N 𝑵𝟎 𝑵𝟎/N 𝑵𝟎 𝑵𝟎/N 

T=13 26175 0 0% 0 0% 0 0% 

T=67 4758 0 0% 0 0% 0 0% 

T=134 2361 2 0.79% 21 8.33% 16 6.35% 

T=400 786 0 0% 48 19.04% 133 52.78% 

T=800 392 0 0% 81 32.14% 162 64.29% 

T=1200 261 0 0% 112 44.44% 175 69.44% 

T=2400 130 0 0% 160 63.49% 199 78.97% 

Table 3.7 The fitting of Exponential, Weibull and Gamma distributions to within-day transaction-aggregated 

duration 
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The 𝑁0 in Table 3.7 represents the number of days for which the EDF statistics cannot 

reject the null hypothesis that the within-day transaction-aggregated durations come from 

the family of corresponding distribution and N is the total number of trading days in our 

sample. Table 3.7 have several important implications. 

 

First, the tick-by-tick duration presents aggregational characteristics regarding its empirical 

unconditional distributions. Although it cannot be described effectively by the distributions 

commonly used in duration modellings such as exponential, Weibull and Gamma 

distributions, when aggregated by tick-by-tick durations, the distribution of transaction-

aggregated durations approaches a shape similar to Gamma and Weibull distributions.  

 

Second, compared with exponential distributions, Weibull and Gamma distributions seem 

to be more suitable for modelling transaction-aggregated durations. Table 3.7 gives very 

clear evidence against the use of exponential distributions in modelling transaction-

aggregated durations. In contrast, the Gamma distribution seems to be promising in the 

modelling of the unconditional transaction-aggregated durations. For instance, there are 

162 trading days (64.29% of the whole sample of 252 trading days) for which the EDF 

statistics cannot reject the null hypothesis that the T-800 (each T-800 duration is aggregated 

from 800 tick-by-tick durations) durations within the trading day follow Gamma 

distributions. In other words, the probability of the T-800 durations within a trading day to 

follow a Gamma distribution is 62.29%. With respect to the T-2400 transaction-aggregated 

durations within a trading day, the probability of them to follow a Gamma distribution is 

78.97%. 

 

Finally, as reported previously, since tick-by-tick durations present characteristics that are 

directly determined by market operational details, when measured at the highest frequency 

(T-13, T-67 and T-134 durations), the transaction-aggregated durations cannot be 

effectively described by the continuous distributions that are commonly applied in duration 

modellings.  

 

In conclusion, in this section I provide an investigation with respect to the unconditional 
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distributional properties with respect to tick-by-tick durations. I show that the pattern of 

tick-by-tick durations of SPY are largely influenced by market microstructural issues 

discussed in section 3.3.1. Besides, I identify that the tick-by-tick durations present 

aggregational characteristics and Gamma distributions seem to serve as a good candidate 

for modelling unconditional transaction-aggregated durations.  

 

3.4 ACD modelling of durations  

In this section I present the empirical results with respect to the ACD duration modelling. 

I use the transaction-aggregated durations instead of the tick-by-tick durations since that, 

as discussed in Section 3.3.4, the SPY tick-by-tick durations are largely influenced by 

market microstructural issues. Unfortunately, I cannot explicitly exclude the effect of such 

issues using my data. Thus, a direct use of ACD models on the tick-by-tick duration of SPY 

might provide misleading results.  

3.4.1 Data preparation: Intraday seasonality and re-initialization 

Studies regarding intraday financial data have widely documented the strong intraday 

pattern over the trading day (Jain and John 1988, Andersen and Bollerslev 1997 and 

Bollerslev and Domowitz 1993). Before applying ACD models to describe the transaction-

aggregated duration dynamics, it is necessary to exclude this intraday periodic pattern from 

the raw transaction-aggregated durations. Since the transaction-aggregated durations are 

calculated by the sum of tick-by-tick durations, excluding the intraday seasonality from the 

raw transaction-aggregated duration is equivalent to excluding the intraday seasonality 

from the raw tick-by-tick durations. In other words, I can first de-seasonalize the raw tick-

by-tick durations and further build the corresponding transaction-aggregated durations by 

taking the sum of seasonal adjusted tick-by-tick durations.  

 

In Section 3.3.3, I investigate the intraday pattern of tick-by-tick durations of SPY and 

briefly introduce the method that I use to exclude the “time-of-day” effect from the raw 

tick-by-tick intraday durations. I now elaborate the procedures.  
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I first remove all tick-by-tick durations that exceed 3s or equal to zero from the sample (the 

0.99 quantile of the tick-by-tick sample without zeros is 2.226 second). Recall the 

assumption of (3.49),  

𝑤𝑖 = 𝑤̃𝑖⁡𝑠(𝑡𝑖−1),                                           

where 𝑠(𝑡𝑖) is the intraday periodicity component at 𝑡𝑖 and 𝑤𝑖 = 𝑡𝑖 − 𝑡𝑖−1 is the ith tick-

by-tick duration. The intraday periodic component 𝑠(𝑡𝑖) is commonly modelled by cubic 

splines with nodes set on some fixed interval over the trading day. The constant on each 

node is given by the observed sample mean over the corresponding time interval. A clear 

example is presented by Figure 3.9 in Section 3.3.3.  

 

However, as one might have noticed, the intraday tick-by-tick duration pattern in Figure 

3.9 is very different from the one in Figure 3.3. This contradiction is mainly caused by the 

extremely high liquidity of SPY. Generally, the nodes of the cubic splines are setting on 

relatively long intervals over the trading day to make sure the spline is smooth. For instance, 

in Engle and Russell (1998), the nodes are setting on each hour of the trading day. Bauwens 

and Giot (2000) applied thirty minutes intervals. For tick-by-tick durations of SPY without 

zeros, the 0.99 quantile of the sample is only 2.226 second (the 0.99 quantile of the raw 

tick-by-tick sample with zeros is only 1.441s). Consequently, if a long interval is used, the 

long tick-by-tick durations that usually occur after middle day might bias the sample mean 

to a large extent. This is exactly the case of Figure 3.9 that is plotted using whole tick-by-

tick sample.  

 

I further notice that there is a dilemma when using ACD models to describe tick-by-tick 

duration dynamics of stocks with high liquidity like SPY. From economic point of view, 

the long durations are generally believed to convey important information as discussed in 

section 3.2.2.3. Nevertheless, for a symbol like SPY, most of the transactions are liquidity 

transactions that refer to the buy or sell for liquidity and therefore most of the tick-by-tick 

durations are of extremely small values. Consequently, there will be some “jumps” in the 

duration series. Thus, if one wants to retain as many observations as possible in the sample 

for ACD modellings of duration dynamics, the ACD specifications are challenged to 
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capture these “jumps”. 

 

Besides, the characteristic of tick-by-tick durations for stocks with extremely high liquidity 

also suggest that the commonly used de-seasonal technique of cubic splines might need a 

careful review. In addition to the technique difficulty of choosing proper time intervals, a 

more serious issue is that the averages over time intervals of trading days might not be 

periodic. For instance, as discussed in Section 3.3.3, the averages of tick-by-tick durations 

over 1-minute intervals of different trading days seem to have little periodic pattern in the 

correlogram.  

 

Although I believe that studies in the above two directions can yield valuable knowledge 

on the modelling of duration dynamics, it unfortunately is beyond the scope of this chapter. 

In this chapter, I simply rule out the durations that exceeds 3s as mentioned previously so 

that I can focus on the comparison of different distribution assumptions.  

 

 

Figure 3.19 Cubic spline function with 15-minute nodes of SPY tick-by-tick durations 

Figure 3.19 presents the cubic spline function with 15-minute nodes. The constant on each 

node is given by the observed sample mean of tick-by-tick durations over the 

corresponding 15-minute interval. Now the spline line is much more in line with the 
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intraday tick-by-tick pattern in Figure 3.3. The market opening is very active as expected 

with transactions occurring, on average, every 0.1s. In contrast, the middle of day, around 

13:00, has the longest averaged tick-by-tick durations around 0.27s. The trading intensity 

rises again until the closing of the market. Specifically, near 16:00, the transactions occur 

again almost every 0.08s.  

 

I now exhibit the descriptive statistics of the raw transaction-aggregated durations and the 

seasonal filtered transaction-aggregated durations respectively.  

 

Raw 

durations 

Sample 

size 

Mean Standard 

Deviation 

q (0.05) q (0.25) q (0.5) q (0.75) q (0.95) Ljung-Box 

statistics  

Tick 

durations 

30542307 0.162  0.363  0.001  0.001  0.011  0.129  0.897  7891637 

T-13 

durations 

2349290 2.104  2.162  0.069  0.533  1.391  2.977  6.567  4607113 

T-67 

durations 

455735 10.847  7.910  1.675  4.772  8.898  15.136  26.474  2456680 

T-134 

durations 

227801 21.699  14.405  4.150  10.443  18.482  30.140  49.768  1558918 

T-400 

durations 

76233 64.831  38.589  14.885  34.290  57.538  89.434  137.979  629368 

T-800 

durations 

38054 129.839  73.257  32.307  71.638  117.021  177.719  266.746  295839 

T-1200 

durations 

25327 195.026  106.965  50.971  109.960  177.542  266.873  394.675  169913  

T-2400 

durations 

12608 391.299  205.066  110.154  228.128  361.458  531.184  769.135  89904 

Table 3.8 Descriptive statistics of the raw transaction-aggregated durations 

Filtered 

durations 

Sample 

size 

Mean Standard 

Deviation 

q(0.05) q (0.25) q (0.5) q (0.75) q (0.95) Ljung-Box 

statistics  

Tick 

durations 

30542307 0.817  1.790  0.004  0.008  0.059  0.697  4.387  6053335 

T-13 

durations 

2349290 10.620  10.265  0.373  2.955  7.524  15.218  31.411  3350750 

T-67 

durations 

455735 54.744  36.298  9.633  26.622  47.395  75.783  124.091  1808628 

T-134 

durations 

227801 109.511  65.120  24.356  58.369  98.637  149.743  230.738  1142505 

T-400 

durations 

76233 327.132  170.805  89.073  191.315  307.626  440.641  634.629  479633 

T-800 

durations 

38054 654.958  320.347  194.702  400.873  626.931  873.049  1217.990  258894 

T-1200 

durations 

25327 983.445  464.559  306.379  615.816  947.819  1303.624  1796.435  169913 

T-2400 

durations 

12608 1971.052 881.642  650.639  1277.236  1927.322  2589.364  3490.888  55324 

Table 3.9  Descriptive statistics of the filtered transaction-aggregated durations 
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As suggested by the Ljung-Box statistics in Table 3.9, the seasonal filtered transaction-

aggregated durations still present strong autocorrelations. It suggests the periodic pattern 

of Figure 3.18 is not the only reason behind the strong autocorrelations of the raw 

transaction-aggregated durations. In general, compared with Table 3.8, the LB statistics in 

Table 3.9 decrease as expected, which suggests the cubic spline function indeed removes 

some trend pattern from the raw durations.  

 

Another important issues that I address here is the re-initialization of tick-by-tick durations 

in each trading day. Clearly, durations are calculated consecutively from day to day. For 

instance, the first tick-by-tick duration of a specific trading day will always be the time 

difference between the first and second transactions in that trading day. Hence, I re-

initialize for tick-by-tick durations within each trading day. Specifically, when applying 

ACD models, the conditional expectation of the first transaction-aggregated durations of 

each trading day will be the average of the transaction-aggregated durations over the first 

15 minutes of the trading day. Consequently, the ACD process of each trading day starts at 

9:45 that is in line with the cubic spline function in Figure 3.19.  

 

3.4.2 ACD modelling of transaction-aggregated duration dynamics  

In this section I present the empirical results of ACD modelling on transaction-aggregated 

durations. With respect to the conditional expectation mean specifications, I realize that 

there is a wide range of possibilities as discussed in Section 3.2. However, due to the 

computational difficulties arising with the complexity of those ACD models, I focus on the 

comparison of different distributional assumptions based on our prior findings regarding 

the unconditional distributional properties of tick-by-tick durations.  

Thus, I choose the standard ACD (m,q) of (3.13),  

𝜓𝑖 = 𝜔 +∑𝛼𝑗

𝑚

𝑗=1

𝑤𝑖−𝑗 +∑𝛽𝑗

𝑞

𝑗=1

𝜓𝑖−𝑗. 

I select the following two specifications with different orders of lags: ACD (1,1) and ACD 



151 

(2,1). Regarding the distributional assumptions of the errors, the three distributions that I 

consider are the exponential distribution, Weibull distribution and Gamma distributions. 

Thus, there are six ACD specifications in total.  

The diagnostics are: Log-likelihood (LL), Bayes Information Criterion (BIC) and Ljung-

Box statistics (LB) with respect to 20 lags of model residuals. LL and BIC are applied to 

compare the different specifications and meanwhile LB is used to test the autocorrelations 

of residuals.  

 

I use the T-13, T-67 T-134 and T-400 transaction-aggregated durations to fit the selected 

ACD specifications. Each transaction-aggregated duration series is normalized by sample 

means before the estimation. Given the extremely high value of LB statistics in Tables 3.8 

and 3.9, it is interesting to see whether the ACD models can meet this challenge.  

 

T-13 Exponential Weibull Gamma 

 
EACD (1,1) EACD (2,1) WACD (1,1) WACD (2,1) GACD (1,1) GACD (2,1) 

𝝎 0.0013 

(0.0002) 

0.0036 

(0.0002) 

0.0093 

(0.0002) 

0.0029 

(0.0001) 

0.0014 

（0.0002） 

0.0091

（0.0004） 

𝜶𝟏 0.0183 

(0.0012) 

-0.0013 

(0.0006) 

0.0557 

(0.0011) 

0.0531 

(0.0009) 

0.0132   

（0.0008） 

0.0172  

(0.0007） 

𝜷𝟏 0.9445 

(0.0007) 

0.9501 

(0.0005) 

0.9379 

(0.0011) 

0.9212 

(0.0012) 

0.9762 

（0.0003） 

0.9622 

(0.0003） 

𝜶𝟐 
 

0.0087 

(0.0011) 

 
0.0427 

(0.0011) 

 
0.0105  

(0.0013) 
       

Diagnostics 
      

Sample size 2349290 2349290 2349290 2349290 2349290 2349290 

LL -2011007 -1993041 -1966524 -1947097 -1773042 -1723578 

BIC 4022058 3986126 3933092 3894238 3546128 3447221 

LB 51102 50502 48324 47032 43402 42456 

Table 3.10 ACD estimation of T-13 transaction-aggregated durations 
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T-67 Exponential Weibull Gamma 

 
EACD (1,1) EACD (2,1) WACD (1,1) WACD (2,2) GACD (1,1) GACD (2,1) 

𝝎 0.0319 

(0.0008) 

0.0075 

(0.0002) 

0.0186 

(0.0008) 

0.0056 

(0.0003) 

0.0173 

（0.0004） 

0.0063

（0.0002） 

𝜶𝟏 0.2094 

(0.0031) 

0.1214 

(0.0018) 

0.1497 

(0.0031) 

0.1112 

(0.0022) 

0.2032   

（0.0026） 

0.1672  

(0.0026） 

𝜷𝟏  0.7593 

(0.0036) 

0.8765 

(0.0024) 

0.8320 

(0.0026) 

0.8718 

(0.0031) 

0.7762 

(0.0035) 

0.7822 

(0.0034） 

𝜶𝟐 
 

-0.0088 

(0.0030) 

 
-0.0928 

(0.0038) 

 
0.0345  

(0.0009) 
       

Diagnostics 
      

Sample size 455735 455735 455735 455735 455735 455735 

LL -398949 -397742 -239314 -233694 -167542 -155358 

BIC 797937 795536 478667 467440 335123 310768 

LB 10773 9856 8883 8241 7734 7413 

Table 3.11 ACD estimation of T-67 transaction-aggregated durations 

 

T-134 Exponential Weibull Gamma 

 
EACD (1,1) EACD (2,1) WACD (1,1) WACD (2,1) GACD (1,1) GACD (2,1) 

𝝎 0.0203 

(0.0007) 

0.0045 

(0.0003) 

0.0303 

(0.0019) 

0.0035 

(0.0005) 

0.0224 

（0.0008） 

0.009

（0.0005） 

𝜶𝟏 0.3767 

(0.0038) 

0.4655 

(0.0026) 

0.3029 

(0.0058) 

0.4084 

(0.0034) 

0.2152   

（0.0019） 

0.1856 

(0.0012） 

𝜷𝟏 0.6078 

(0.0042) 

0.8341 

(0.0045) 

0.6641 

(0.0069) 

0.9103 

(0.0076) 

0.7362 

（0.0046） 

0.8122 

(0.0049) 

𝜶𝟐 
 

-0.3026 

(0.0049) 

 
-0.3226 

(0.0086) 

 
-0.0305  

(0.0068) 
       

Diagnostics 
      

Sample size 227801 227801 227801 227801 227801 227801 

LL -201301 -200758 -90405 -88477 -67304 -64311 

BIC 402639 401565 180847 177003   134645 128671 

LB 5728 5523 3628 3356 2785 2556 
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Table 3.12 ACD estimation of T-134 transaction-aggregated durations 

 

 

T-400 Exponential Weibull Gamma 
 

EACD (1,1) EACD (2,1) WACD (1,1) WACD (2,1) GACD (1,1) GACD (2,1) 

𝜔 0.0266 

(0.0014) 

0.0030 

(0.0003) 

0.0210 

(0.0035) 

0.0018 

(0.0003) 

0.0286 

（0.0015） 

0.0173

（0.0028） 

𝛼1 0.4500 

(0.0081) 

0.5393 

(0.0043) 

0.2187 

(0.0205) 

0.4299 

(0.0064) 

0.2232   

（0.0224） 

0.2172 

(0.0194） 

𝛽1 0.5275 

(0.0088) 

0.8624 

(0.0066) 

0.7565 

(0.0242) 

0.9390 

(0.0041) 

0.7282 

（0.0271） 

0.8522  

(0.0069） 

𝛼2 
 

-0.4038 

(0.0076) 

 
-0.3715 

(0.0070) 

 
-0.1105 

(0.0048) 
       

Diagnostics 
      

Sample size  76233  76233  76233  76233  76233  76233 

LL -68454 -68259 -20289 -16527 -12733 -11457 

BIC 136941 136562  40611 33098 25499 22958 

LB 2382 2134 1678 1622 1328 1246 

Table 3.13 ACD estimation of T-400 transaction-aggregated durations 

  

Tables 3.10 – 3.13 summarize the ACD estimation of the four transaction-aggregated 

durations. The estimation is based on MLE. Standard errors are calculated by the method 

of White and are given in parentheses. I do not impose any nonnegative constraints on the 

parameters in the estimation. For this exact reason, there are negative parameters for  𝛼2 

when the ACD (2,1) model is estimated. Nevertheless, in these cases, they are compensated 

by rising value of 𝛼1 and we do not observe any negative 𝜓𝑖 in the estimation. It is very 

intriguing since such 𝛼2’s is of non-trivial values. I now summaries the findings from the 

four tables.  

 

With respect to the specifications, I first notice that ACD (2,1) models outperform the ACD 

(1,1) models dominantly. The BIC and LL of ACD (2,1) models are constantly better than 

ACD (1,1) models (higher LL and lower BIC). It implies that the ACD (1,1) models might 

be over simplistic for modelling SPY durations. Further evidences can be found in the LB 

statistics. Compared with LB statistics of the seasonal filtered transaction-aggregated 
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durations in Table 3.9, the LB statistics of residuals of ACD models are reduced massively. 

Nevertheless, the LB statistics still clearly exceed the critical values of 31.41. In other 

words, the residuals still exhibit significant autocorrelations. This might not be very 

surprising since, as I mentioned previously, the SPY seasonal filtered transaction-

aggregated durations exhibit very strong autocorrelations (Table 3.9) that imply the 

existence of a trend. In this case, an ARMA-GARCH specification for the logarithm of 

durations might provide better description of the autocorrelations. Consequently, higher 

orders of the lags in ACD models are preferred to give more explanatory powers over the 

duration dynamics. For the compactness of the Tables, I do not include the T statistics into 

the table (the T statistics of 𝑤2 in the ACD (2,1) exceed 2 for most of the cases). 

 

Second, the parameter 𝛼 in general are of very small values and the 𝛽 are close to unit. For 

instance, for the T-13 durations, the 𝛼1 of EACD (1,1), WACD (1,1) and GACD (1,1) are 

0.0013, 0.0093 and 0.0014 respectively and the 𝛽 of the three models are 0.9445, 0.9379 

and 0.9762. It suggests that the persistence of the transaction-aggregated duration process 

is very strong (which is in line with the previous empirical findings in Section 3.3.2). Also, 

in general the 𝛼 gradually increase and 𝛽 decreases with the frequencies of transaction-

aggregated durations. Consequently, recent observations now contribute more to the 

conditional expectations 𝜓𝑖. 

 

Finally, based on the LL and BIC statistics, the ACD models with Gamma innovations 

outperform the ACD models with other two innovations very obviously. For each series of 

transaction-aggregated durations, the GACD models always have the highest LL and the 

lowest BIC, suggesting that they fit the data best. It further confirms the previous empirical 

finding with respect to the unconditional distributional properties of transaction-aggregated 

durations.  

 

The following Figures 3.20 and 3.21 exhibit the correlogram and histogram of the residuals 

of GACD (1,1) models for T-400 durations. Figure 3.20 clearly suggests that the residuals 

present significant autocorrelations at the first several lags. It should be mentioned that I 

select only the simplest linear ACD models. The possible nonlinear dependence cannot be 
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captured by the linear ACD (m,q) model. Besides, adding explanatory variables into the 

conditional expectation specification might be able to improve the fit as well.  

 

 

Figure 3.20 The correlogram of T-400 GACD (1,1) residuals 

 

Figure 3.21The histogram of T-400 GACD (1,1) residuals 
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3.5 Conclusions 

In this chapter I study the modelling of durations between transactions. I start by discussing 

and analyzing both theoretical and empirical works on the ACD modelling of duration 

dynamics. I further conduct a data analysis with respect to the tick-by-tick durations of 

SPY. Based on the empirical evidence, we show that the tick-by-tick transactions for stocks 

with ultra-high liquidity like SPY are largely affected by market microstructural issues such 

as the market’s second-by-second operational details. Thus, studies using such data should 

be very careful when trying to invoke a parametric specification for modelling duration 

dynamics. Besides, I showed that the tick-by-tick durations have aggregational 

characteristics with respect to its unconditional distribution. Specifically, the empirical 

distributions of sums of tick-by-tick durations approximate a shape similar to the Gamma 

family. Standard ACD models with different distribution assumptions are applied to model 

the transaction-aggregated durations. The empirical results suggest that the standard ACD 

models cannot fully capture the interdependence structure of SPY durations. Nevertheless, 

the ACD specifications with Gamma distributed innovations outperforms the ACD 

specifications with other innovations significantly. Thus, Gamma distributions may serve 

as a good starting point in duration modellings. Besides, the future research direction could 

be the “day of week” seasonality in durations.  
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Appendix A.   

The classic paper of Stephens in 1974 presents a detailed discussion with respect to the 

empirical distribution function statistics such as the statistics D (derived from 𝐷+ and 𝐷−), 

𝑊2, V, 𝑈2 and 𝐴2. Given some random sample 𝑥1, 𝑥2, 𝑥3,…, 𝑥𝑛 and the null hypothesis 

𝐻0 that the random sample comes from a distribution with distribution function 𝐹(𝑥), the 

EDF statistics compare the 𝐹(𝑥) with the empirical distribution function 𝐹𝑛(𝑥). In our case, 

we estimate the 𝑢⁡and 𝜎2 by the average of the sample 𝑥̂ and 𝜎̂2 = ∑ (𝑥𝑖 − 𝑥̂𝑖 )/(𝑛 − 1).  

 

The sample are supposed to be indexed by values in ascending order, 𝑥1 ≤ 𝑥2 ≤ 𝑥3 ≤. . . ≤

𝑥𝑛. The test procedures are organized as follows.  

(a) Estimate parameters 𝑢 and 𝜎2 as discussed previously. 

(b) Calculate 𝑧𝑖 ’s as 𝑧𝑖 = 𝐹(𝑥𝑖) , where ⁡𝐹(𝑥)  is the distribution function of normal 

distribution with 𝑢 and 𝜎2 estimated in (a).  

(c) Calculate D, 𝑊2, V, 𝑈2 and 𝐴2 as follows: 

1. The Kolmogorov statistics D, D+ and D-: 

⁡⁡⁡⁡⁡⁡⁡𝐷+ = 𝑚𝑎𝑥1≤𝑖≤𝑛 [(
𝑖

𝑛
) − 𝑧𝑖] ; 

𝐷− = 𝑚𝑎𝑥1≤𝑖≤𝑛 [− (
𝑖−1

𝑛
) + 𝑧𝑖]; 

D⁡⁡⁡= max⁡(𝐷+, 𝐷−). 

 

2. The Cramér–von Mises statistics 𝑊2: 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑊2 = ∑ [𝑧𝑖 −
(2𝑖−1)

2𝑛
]2 + 1/12𝑛𝑛

𝑖=1 . 

 

3. The Kuiper statistic V: 

V0⁡𝐷+ + 𝐷−. 

 

4. The Waston statistics 𝑈2:  

𝑈2 = ⁡𝑊2 − 𝑛(∑
𝑧𝑖
𝑛

𝑛

𝑖=1

−
1

2
)

2

. 
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5. The Andersen-Darling statistics 𝐴2: 

  ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝐴2 = −
{∑ (2𝑖−1𝑛
𝑖=1 )[𝑙𝑛𝑧𝑖+ln(1−𝑧𝑛+1−𝑖)]}

𝑛
− 𝑛. 

  

I produce my table of critical values by Monte-Carol simulation. The null hypothesis 𝐻0 

that the sample comes from a normal distribution is rejected if the values of the statistics 

are larger than the critical values given corresponding significance levels. The test is the 

traditional upper-tail test.   

 
Statistics Significance level 

 
5% 2.5% 1% 

D 0.895 0.955 1.035 

V 1.489 1.585 1.693 

𝑾𝟐 0.126 0.148 0.178 

𝑼𝟐 0.116 0.136 0.163 

𝑨𝟐 0.787 0.918 1.092 

Table 1.10(a) Critical values of EDF statistics for the null hypothesis of normal 

distribution.  
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Appendix B.   

The standard Central Limit Theory is the cornerstone of probability theory and statistics. 

It asserts that: 

 

If {𝑋𝑡}  be a sequence of identically distributed independent random variables with 

𝐸(𝑋𝑡) = 𝑢 and 𝑉𝑎𝑟(𝑋𝑡) = 𝜎2 for all t. Then,  

⁡𝑙𝑖𝑚
𝑡→∞

𝑃 (
∑ 𝑋𝑡−𝑛𝑢
𝑛
𝑡=1

√𝑛𝜎
≤ 𝑥) = 𝛷(𝑥) , where 𝛷  is the cumulative distribution function of the 

standard normal distribution.  

 

In many economic circumstances, the i.i.d assumption cannot be assumed to hold easily. 

Thus, an issue of both practical and theoretical importance is that: 

 

Assume that {𝑋𝑡}𝑡∈𝑍  is a process with zero mean 𝐸(𝑋𝑡) = 0  and finite second moment 

𝐸(𝑋𝑡
2) < ∞ . Define the partial sum 𝑆𝑛 = ∑ 𝑋𝑡

𝑛
𝑡=1   and its normalized variance 𝑠𝑛

2 =

𝑉𝑎𝑟(𝑆𝑛)

𝑛
.  Whether or not we can apply the Central Limit Theorem to have 𝑙𝑖𝑚

𝑛→∞
𝑃(𝑆𝑛 ≤

𝑥√𝑛𝑠𝑛2) = 𝛷(𝑥) where 𝛷 is the cumulative distribution function of the standard normal 

distribution. Moreover, if the central limit theorem holds, what is the possible convergence 

rate. Most of the literatures regarding the convergence rate use the Kolmogorov metric as 

the metric of underlying {𝑋𝑡}.  Define∆𝑛(𝑥) = | 𝑃(𝑆𝑛 ≤ 𝑥√𝑛𝑠𝑛2) − 𝛷(𝑥) |  and further 

∆𝑛= sup⁡{∆𝑛(𝑥)|𝑥 ∈ 𝑅}. Hörmann (2009) provides the bounds for normal approximation 

error ∆𝑛 for dependent {𝑋𝑡}. An important class of dependent {𝑋𝑡} is the ARCH/GARCH 

process.  

 

In the last decades, the ARCH/GARCH model are widely applied for the modelling of 

time-varying volatility. In 1997, Duan introduces a general functional form of GARCH 

model, the so-called augmented GARCH (1,1) process, that contains many existing 

GARCH models as special cases. The augmented GARCH (1,1) process is given by:                                      

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑦𝑡 = 𝜎𝑡𝜀𝑡,  

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⋀(𝜎𝑡
2) = 𝑐(𝜀𝑡−1)⋀(𝜎𝑡−1

2) + 𝑔(𝜀𝑡−1),      



160 

where ⋀, 𝑐 and 𝑔 are real-valued measurable functions and {𝑦𝑡}𝑡∈𝑍 is a random variable 

and {𝜀𝑡}𝑡∈𝑍 is an i.i.d sequence. In order to solve 𝜎𝑡
2, the definition requires the existence 

of ⋀−1. Aue et al. (2006) discuss the necessary and sufficient conditions for the augmented 

GARCH (1,1) model to have a strictly stationary and non-negative solution for 𝜎𝑡
2. For the 

special case of GARCH (1,1),  

 

𝜎𝑡
2 = 𝜔 + 𝛽𝜎𝑡−1

2 + 𝛼𝑦𝑡−1
2 = 𝜔 + [𝛽 + 𝛼𝜀𝑡−1

2]𝜎𝑡−1
2 . 

 

It requires that E(𝑙𝑜𝑔|𝛽 + 𝛼𝜀0
2|) < 0. Hörmann (2008) analyzes the dependence structure 

and asymptotical properties of the augmented GARCH process and shows that m-

dependent approximations {𝑌𝑡𝑚}  to the original sequence of { 𝑌𝑡}  can be obtained. 

Specifically, ||𝑌𝑡𝑚 − 𝑌𝑡||2 < 𝑐𝑜𝑛𝑠𝑡 ∙ 𝜌𝑚⁡(𝜌 < 1), where||∙||2 is the 𝐿
2 norm. He then uses 

the m-dependent approximations to construct the proof of convergence to normal 

distribution and corresponding convergence rate. Details of the proof can be found in 

Hörmann (2008).  

 

Based on this result, consider the ARMA (p,q)-GARCH (1,1) model: 

𝑥𝑡 = 𝜙1𝑥𝑡−1 +⋯+ 𝜙𝑝𝑥𝑡−𝑝 + 𝜃1𝑦𝑡−1 +⋯+ 𝜃𝑞𝑦𝑡−𝑞, 

𝑦𝑡 = 𝜎𝑡𝜀𝑡, 

𝜎𝑡
2 = 𝜔 + 𝛽𝜎𝑡−1

2 + 𝛼𝑦𝑡−1
2. 

 

If a strictly stationary and casual solution of the equation 𝑥𝑡 = 𝜙1𝑥𝑡−1 +⋯+ 𝜙𝑝𝑥𝑡−𝑝 +

𝜃1𝑦𝑡−1 +⋯+ 𝜃𝑞𝑦𝑡−𝑞 exists, Brockwell and Davis (1991) show that the solution can be 

presented as a linear process ∑ 𝜓𝑖𝑦𝑡−𝑖𝑖  where the coefficients 𝜓𝑖 exponentially decay as 

the lags. Then the convergence of the distribution of normalized sums of 𝑥𝑡′𝑠 to the normal 

distribution can be verified. According to Hörmann (2009), if 𝑝 ∈ (2,3]⁡moments exist for 

𝑥𝑡, ∆𝑛= 𝑂((𝑙𝑜𝑔𝑛)𝑝−1𝑛1−⁡
𝑝

2).  

 

However, our tick-by-tick return data presents many erratic statistical features that cannot 

be explained by the ARMA-GARCH models. The fit of ARMA-GARCH models using 

tick-by-tick returns gives poor results. The required stationarity is violated since the fit 
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gives the value of 𝛼 + 𝛽 that exceeds 1. More importantly, the raw tick-by-tick returns 

are seriously affected by the market microstructural issues such as “split-transactions” 

which we cannot analyze since the bid and ask prices are not included in the dataset. 

Thus, a theoretical modelling of the tick-by-tick price dynamics seem to be impractical. 
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Appendix C 

The following Matlab program “tickstnadardize” estimates the periodicity pattern for given 

trading interval. In practice, it is used with other programs jointly. For instance, if I want 

to filter the transaction-aggregated returns T-400, I will use the T-400 return series and 

corresponding tick-by-tick table in a for-loop to find out its periodicity pattern. The for-

loop will search the whole tick-table. For time-aggregated return series, the computation is 

much simpler since the for-loop will be executed for fixed time interval.  

function [r1] 0tickstandardize(Ticktable,tradetimes,r) 

%  tradetimes and r are one day's data for a specific day, Ticktable is 

%  252*4 cell table for tick transactions 

 

n0length(r); % number of returns in r series 

  

for i01:n 

s20tradetimes(i+1);  

s10tradetimes(i); % trade interval is [s1 s2] for return r(i) 

v0[]; 

  

for j01:252 

  

 tickprices0Ticktable{1 {j ; 

 ticktimes0Ticktable{2 {j ; 

 transactions0[]; % This variable is for the transactions that occurs between s1 and s2 on 

day j 

  

 for k01:length(ticktimes) 

      

     if ticktimes(k)>0s1 && ticktimes(k)<0s2 

     transactions0[transactions;tickprices(k)]; 
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     elseif ticktimes(k)>s2 

     break  

     end 

 end 

 standardizer0log(transactions(2:end))-log(transactions(1:end-1)); 

 v(j)0sum(standardizer.^2);   % use realized variance to estimate the periodicity  

end 

sv0(sum(v)/252)^(1/2); 

r1(i)0r(i)/sv;  

end 

end 
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The following Matlab program “tfiteration” uses the conditional daily variance and 

intraday periodicity to normalize the intraday transaction-aggregated returns.  

 

function [p,t,r,adjustr,ar] 0 tfiteration(data,tickt,tickp,T,v) 

% This function uses the conditional daily variance and intraday 

% periodicity to normalize the returns.  

% data is the spyfiltered data,tickt,tickp are the corresppongding 

% ticktable, T is the frequency index 

  

dayindex0datasort(data{2 ); 

  

for i01:length(dayindex)-1 

  

dayprices0data{4 (dayindex(i)+1:dayindex(i+1)); 

daytradetimes0data{3 (dayindex(i)+1:dayindex(i+1)); % extract the day data 

  

  

[p{i ,t{i ,r{i ,~]0tsprices(dayprices,daytradetimes,T);  % get the intraday transaction-

aggregated returns.  

s0[]; 

for j01:length(r{i ) 

t10t{i (j); 

t20t{i (j+1); % [t1,t2] is the timeinterval of jth intraday return  

prices10pricelock(t1,tickp,tickt); 

prices20pricelock(t2,tickp,tickt); 

ticksquare0log(prices2./prices1).^2; 

s(j)0mean(ticksquare./v); %s(j) is actually s^2(j) 

end 
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adjustr{i 0(r{i /sqrt(v(i)))./sqrt(s); 

end 

ar0[];  

for i01:length(dayindex)-1 

ar0[ar, adjustr{i ]; 

end 

end 
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This Matlab program “pricelock” searches the tick-by-tick transaction records for 

transactions occurring in specific time interval.   

function [prices] 0 pricelock(timing,tickp,tickt) 

for i01:length(tickp) 

     

t0tickt{i ;    %get the ith day tick time table  

n0length(t);   %n is the length of transactions 

  

right0t(t>0timing); 

left0t(t<0timing); 

     

if isempty(right) 

    pright0tickp{i (end); 

else 

   pright0tickp{i (n-length(right)+1); 

end 

  

if isempty(left) 

    pleft0tickp{i (1); 

else 

   pleft0tickp{i (length(left)); 

end 

  

prices(i)0(pright+pleft)/2; 

end 

 

 

 



167 

Appendix D 

This appendix includes the introduction of the MLE estimation for the exponential 

distribution, the Weibull distribution, the Gamma distribution and the generalized Pareto 

distribution. The optimization of the loglikelihood functions is conducted by Matlab solver 

based on iteration. It also includes the Matlab code for Monte-Carlo simulations that is 

used to produce the table of critical values for EDF statistics. The procedure is similar to 

the one in Appendix A.  

 

Let {𝑥1, … , 𝑥𝑛} be the random sample from some distribution. The exponential distribution 

has the probability density function  

𝑓(𝑥; 𝜆) = {𝜆𝑒
−𝜆𝑥⁡𝑥 ≥ 0,

0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑥 < ⁡0.
  

The loglikelihood function therefore is 𝑙(𝜆; 𝑥0, 𝑥1, … , 𝑥𝑛) = 𝑛𝑙𝑛(𝜆) − 𝜆∑ 𝑥𝑖
𝑛
𝑖=1 .  

 

With respect to the Weibull distribution, it has the probability density function  

 𝑓(𝑥; 𝜆, 𝑘) = {
𝑘

𝜆
(
𝑥

𝜆
)
𝑘−1

exp (−
𝜖

𝜆
)
𝑘

⁡𝑥 ≥ 0,

0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑥 < ⁡0⁡.
  

The corresponding loglikelihood function is 

 

 𝑙(𝜆, 𝑘; 𝑥0, 𝑥1, … , 𝑥𝑛) = ∑ ln⁡[𝑛
𝑖=1

𝑘

𝜆
(
𝑥𝑖

𝜆
)
𝑘−1

exp (−
𝑥𝑖

𝜆
)
𝑘

] 

⁡⁡⁡⁡⁡= 𝑛(𝑙𝑛𝑘 − 𝑘𝑙𝑛𝜆) + (𝑘 − 1)∑𝑙𝑛𝑥𝑖

𝑛

𝑖=1

−∑(
𝑥𝑖
𝜆
)
𝑘

𝑛

𝑖=1

. 

                                    

Regarding the Gamma distribution, its probability density function is  

𝑓(𝑥; 𝛼, 𝛽) = {

𝑥𝛼−1exp⁡(−
𝑥
𝛽
)

𝛽𝛼Γ(𝛼)
⁡⁡⁡⁡⁡⁡𝑥 > 0,

0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑥 ≤ ⁡0,

 

where Γ is the gamma function. Its loglikelihood function is  
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𝑙(𝛼, 𝛽; 𝑥0, 𝑥1, … , 𝑥𝑛) = ln(∏
𝑥𝑖
𝛼−1 exp (−

𝑥𝑖
𝛽
)

𝛽𝛼Γ(𝛼)

𝑛

𝑖=1

) 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡= (𝑎 − 1)∑𝑙𝑛𝑥𝑖

𝑛

𝑖=1

−
1

𝛽
∑𝑥𝑖

𝑛

𝑖=1

− 𝑛(𝛼𝑙𝑛𝛽 + 𝑙𝑛Γ(𝛼)). 

 

For the generalized Pareto distribution, it has the probability density function  

𝑓(𝑥|𝑘, 𝜎, 𝑥0) =

{
 
 
 

 
 
 ⁡⁡

1

𝜎
(1 +

𝑘(𝑥 − 𝑥0)

𝜎
)

−1−1/𝑘

⁡ ; 𝑥 > 𝑥0⁡𝑎𝑛𝑑⁡𝑘 > 0

1

𝜎
exp (−

𝑥 − 𝑥0
𝜎

) ; ⁡𝑥 > 𝑥0⁡𝑎𝑛𝑑⁡𝑘 = 0

1

𝜎
(1 +

𝑘(𝑥 − 𝑥0)

𝜎
)

−1−1/𝑘

; ⁡𝑥0 < 𝑥 < 𝑥0 −
𝜎

𝑘
⁡𝑎𝑛𝑑⁡𝑘 < 0.

 

For the simplicity, assume that 𝑥0 = 0⁡and let 𝑥∗ = max{𝑥0, 𝑥1, … , 𝑥𝑛}. The loglikelihood 

function is  

𝑙(𝜎, 𝑘; 𝑥1, … , 𝑥𝑛) =

{
 
 

 
 −𝑛𝑙𝑛𝜎 + (

1

𝑘
− 1)∑ln⁡(1 −

𝑘𝑥𝑖
𝜎

𝑛

𝑖=1

), 𝑘 ≠ 0⁡⁡⁡

−𝑛𝑙𝑛𝜎 −
1

𝜎
∑𝑥𝑖 ,

𝑛

𝑖=1

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑘 = 0,

 

where 𝜎 > 0⁡ for 𝑘 ≤ 0  and 𝜎 > 𝑘⁡𝑥∗  for 𝑘 > 0 . The derivation of 𝑙(𝜎, 𝑘; 𝑥1, … , 𝑥𝑛)  can 

be found in DuMouchel (1984) and Joe (1987). The optimization algorithm of 

𝑙(𝜎, 𝑘; 𝑥1, … , 𝑥𝑛) can be found in D.Grimshaw (1993).  
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The following Matlab function carries out the Monte-Carlo simulation for giving critical 

values for EDF statistics. It is used to test the fit of duration distribution using exponential 

distributions and Weibull distributions.  The code for Gamma distributions and generalized 

Pareto distribution is basically the same. The differences are the random number generating 

function and format of inputs. It consists of two subfunctions: stacal and critical that are 

presented later.  

 

function [ exptable,wbltable ] 0 staMC(para,N,M,alpha ) 

% this function executes the mc  

%   para is the parameters, N is the length of data(without zeros),M is the 

%   size of simulation,alpha is the significance 

format long 

for i01:M 

exp0exprnd(para(1),para(2),1,N); % The random numbers for exp distribution 

expx0sort(exp); 

expz0cdf('exp',expx,para(1),para(2)); 

expresult(i,:)0stacal(expz); 

  

wbl0wblrnd(para(3),para(4),1,N); % The random number matrix for wbl distribution 

wblx0sort(wbl); 

wblz0cdf('wbl',wblx,para(3),para(4)); 

wblresult(i,:)0stacal(wblz); 

end 

  

exptable0critical(expresult,alpha); 

wbltable0critical(wblresult,alpha); 

end 
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The Matlab function stacal is used to calculate the EDF statistics.  

 

function [ result ] 0stacal(z) 

%   since log, values in z must be positive 

n0length(z); 

for i01:n 

Dp(i)0(i/n-z(i));  

Dm(i)0(z(i)-(i-1)/n); 

v1(i)0(z(i)-(2*i-1)/(2*n))^2; 

v2(i)0(2*i-1)*(log(z(i))+log(1-z(n+1-i))); 

end 

D10max(Dp); 

  

D20max(Dm); 

  

D0max(D1,D2); 

  

W0sum(v1)+1/(12*n); 

  

  

V0max(Dp)+max(Dm); 

  

  

  

U0W-n*(sum(z)/n-1/2)^2; 

A0-sum(v2)/n-n; 

  

result0[D,V,W,U,A]; 

end 
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The Matlab function critical is used to give critical values.  

 

function [ cvalue ] 0 critical(stat,alpha) 

%  stats is the statistics and alpha is the significance 

[m,n]0size(stat); 

k0length(alpha);  

for i01:n 

x0sort(stat(:,i)); 

for j01:k 

index0round(m*(1-alpha(j)));  

cvalue(i,j)0x(index); 

end 

end 

end 
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