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Summary

This thesis contributes to the development of the Bayesian approach to inverse problems for
hyperbolic conservation laws. Inverse problems in the context of hyperbolic conservation
laws are challenging due to the presence of shock waves and their irreversibility. The first
main contribution of this work is the study of the forward problems where we develop
a theory of particle trajectories for scalar conservation laws. Motivated from a model of
traffic flow, we consider some ordinary differential equations with their right-hand side
depending on solutions of scalar conservation laws. Despite the presence of discontinuities
in the entropy solutions, it is showed that the trajectories are well-posed by using Filippov
theory. Moreover, we prove that the approximate trajectory generated by either the front
tracking approximation method or the vanishing viscosity method converges uniformly to
the trajectory corresponding to the entropy solution of the scalar conservation law. For
certain flux functions, illustrated by traffic flow, we are able to obtain the convergence
rate for the approximate trajectory with respect to changes in the initial field or the flux
function by combining the front tracking method with Filippov theory.

As the second main contribution of the thesis, we study some Bayesian inverse prob-
lems for scalar conservation laws and establish several well-posedness and approximation
results. Specifically, we consider two types of inverse problems: the inverse problem of
recovering the upstream field and the inverse problem of finding the flux function, both
from observations of appropriate functions of the entropy solutions of scalar conservation
laws. Based on the theory of trajectories developed in the first part of the thesis and
the Bayesian inversion theory developed by Stuart et.al., we prove that the statistical
solutions to these inverse problems are well-posed and stable with respect to changes in
the forward model. Rates of convergence of the approximate posteriors are also given for
certain inverse problems.
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Chapter 1

Introduction

Many physical phenomena such as traffic flow, wave propagation, gas dynamics and elasto-

dynamics can be modelled via conservation laws. The mathematical description of scalar

conservation laws in one space dimension is given by the first order partial differential

equation (PDE)

∂tv(x, t) + ∂xf(v(x, t)) = 0, x ∈ R, t > 0, (1.1)

where v : R × [0,∞) → R is the conserved quantity (which we often refer to as the flow

field in this thesis), while f : R → R is called the flux function (or flux ). The equation

(1.1) is often coupled with initial data (often termed as upstream field)

v(x, 0) = v0(x), x ∈ R, (1.2)

where v0 : R→ R is some bounded function. It is well known (see, for instance, [Smo83])

that a solution v of the conservation law (1.1)-(1.2) can develop discontinuities, called shock

waves (or shocks), no matter how smooth the flux f and the initial data v0 are. Global

solutions therefore can only be sought in the space of discontinuous functions and one

needs to work with weak solutions. This difficulty is further exacerbated by the fact that

the weak solutions of conservation laws are not unique unless some additional restrictions,

called entropy conditions, are imposed. The resulting solution is then called the entropy

solution. For scalar conservation laws, v is an entropy solution to (1.1) if it satisfies

∂tη(v(x, t)) + ∂xq(v(x, t)) ≤ 0,

in the sense of distribution, for all entropy-entropy flux pairs (η, q) with

η convex, and q′(v) = η′(v)f ′(v).

A large body of works have been carried out regarding the existence, uniqueness and

regularity of entropy solutions (given appropriate flux and initial data) for (1.1)-(1.2).
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We refer to the book by Dafermos [Daf16] for a comprehensive treatise on this profound

subject (see also the monographs by Bressan [Bre00] and Holden-Risebro [HR15]).

In this work, we are interested in the inverse problems of recovering the upstream field

v0 (with f given) or the flux function f (with v0 given) from observations of the solution v

(or a function of the solution v). These kinds of inverse problems have many applications,

depending on how we interpret v in the model (1.1). An outstanding example is the traffic

flow on a highway (the Lighthill-Whitham-Richards (LWR) model, see [LW55]-[Ric56]).

In that model, v(x, t) represents the density of cars, that is, the number of cars per unit

length at some location x and at time t. The quantity f(v(x, t)) is the flux of cars across

the point x on the road at time t. The inverse problems we are considering in this case

correspond to the problems of determining the upstream car density or the car flux given

finite observations of (a function of) car density at later times.

In the language of mathematics, these inverse problems can be written as

y = G(u),

where u denotes the unknown (that is, either v(·, t0) or f), y is the observed data and G is

the parameter-to-observation map (or observation map) which is defined via the solution

of the forward problem. One typical example of the observation map is given by the

pointwise measurements of the solution,

G(u) = {v(xi, tj)}i∈I,j∈J ,

for some (mostly) finite index sets I, J . In the context of conservation laws, due to the

discontinuities in v, this way of making measurements may lead to great fluctuations in

observed data, and hence causing large errors in recovering the unknown of the inverse

problems.

To get round this, we use an alternative way of making observations by tracking the

trajectories of particles moving along the flow. To this end, we need to study a stability

theory of particle trajectories for (1.1)-(1.2). Denote by w the velocity of the flow. In

most cases, w is some smooth function of the conserved quantity, that is, w = w(v) (if v

represents the velocity field in (1.1) then we take w = v). The trajectory z(t) of a particle

starting from an initial position x0 at t0 is then defined by the ordinary differential equation

dz(t)

dt
= w(v(z(t), t)), (1.3)

subject to the initial condition z(t0) = x0. However, since v is typically a discontinuous

function of both z and t, the standard Cauchy-Lipschitz theory is not applicable, and a
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solution z to (1.3) has to be understood in an appropriate way. In this thesis, we employ

the Filippov theory of differential equations [Fil88] and define an absolutely continuous

function z to be a solution to (1.3) if z solves (1.3), viewed as a differential inclusion,

almost everywhere. We need to establish appropriate stability properties of this particle

trajectory z. The existing theory (using Oleinik’s decay estimate, see, for instance, [Leg11])

proves the existence and uniqueness of z, but the method cannot be used to prove the

stability of z with respect to changes in the velocity field. In this work, we are able

to prove the stability and provide suitable rates in particular situations by combining

the Filippov theory and the front tracking method. The idea of front tracking is to

approximate the initial function v0 by a step function vN0 and the flux f by its piecewise

linear interpolation fN . Then the approximate solution vN will be given by solving a

(finite) set of so-called Riemann problems ([HR15]). By using Filippov theory and some

structure of solutions of conservation laws (developed in [Daf77], [BL99]), we prove that

the approximate trajectory zN corresponding to the approximate solution vN given by

the front tracking method converges to z uniformly in time. Given that solutions of scalar

conservation laws generally develop shocks and can only be stable in L1, this may serve

as a different perspective to the well-posedness theory of hyperbolic conservation laws.

We shall see now how this continuity property of z may help to recover the initial field

or flux functions in our inverse problems. We note that, in general, inverse problems are ill-

posed, meaning solutions may not exist, may not be unique or may depend sensitively on

data. In hyperbolic conservation laws, the situation is even more complicated by the fact

that the physically relevant solutions are often irreversible. This irreversibility property,

induced by the entropy condition (see [Daf16]), renders severe difficulties in inversion: if

v(x, t) is an entropy solution, v(−x,−t) is no longer an entropy solution unless v(x, t) is

a classical one (and has in particular no shocks). Finding the right techniques to tackle

inverse problems in hyperbolic conservation laws are therefore challenging.

Nevertheless, by appropriate regularisation one is able to find some estimation of the

missing information. We employ the Bayesian approach as one way of regularising and

provide some sort of “solution” to our inverse problems, given in the form of a probability

distribution, called the posterior. The Bayesian inverse problems for unknown functions

have been studied extensively in the last decade, in particular, for nonlinear models in-

volving PDEs; see [Stu10, DS16], the early paper [Fra70], and for a more applied and

computational overview, [KS05]. In the Bayesian approach, the data and the unknown

are treated as random variables, and the regularisation enters the framework in the form
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of a given prior probability distribution on the unknown. The posterior may then be de-

rived through the Bayes’ theorem, as the updated prior using the data. Interestingly, the

well-posedness of the posterior can be monitored through the properties of the forward

model [Stu10]. Therefore, exploring the regularity (such as continuity and stability) of

solutions of the forward problem is key in this approach.

The convergence results of the particle trajectories mentioned above suggest that if we

consider the observation map as1

G(u) = {z(tj)}j∈J ,

then the collected data are stable in some sense to be made precise later on, giving some

regularity property for the observation map. Thanks to the approximation theory of

Bayesian inverse problems, developed by Stuart and others ([Stu10]), the approximate

posterior is continuous in appropriate metrics, giving the well-posedness for the solutions

of our inverse problems.

We also note that, in many situations, making observations by tracking particle tra-

jectories is probably more practical and more economical than measuring the flow field

itself. Consider for example the traffic flow passing through a tunnel, where measuring

the density of the cars inside the tunnel might not be easy, one may instead track the

position of a marked car over time. In practice, this can be done easily via a GPS device

mounted on the car. If necessary, at the same time one can track more cars to have a

more accurate picture.

We will treat the traffic flow model, an important example that motivates our work, in

great detail. In that model, ρ denotes the car density and w denotes the car speed. The

equation reads

∂tρ+ ∂x(ρw(ρ)) = 0. (1.4)

Some observations regarding shock speed are made (Lemma 5.2.2). We then prove that

the convergence of the particle trajectory given by the front tracking method leads us

to an even stronger result. We provide (in Theorem 5.2.3) a rate for the convergence of

the approximate trajectory in terms of the rate of changes in the initial density for any

1We note that, in a similar context in fluid mechanics, the particle trajectory z is normally termed the

Lagrangian representation – while its counterpart v is called the Eulerian representation – of the solution

(or Lagrangian solution and Eulerian solution for short). For this reason, the terms Lagrangian data and

Eulerian data are occasionally used to denote the different types of data collected. Note also that the term

Lagrangian representation for scalar conservation laws is used in quite a different situation by Bianchini

and others (see, for example, [BM17]).
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decreasing function w. More precisely, we show that if two positive upstream densities (at

some time t0 > 0) are close in L1,

‖ρ(·, t0)− ρ̄(·, t0)‖L1(R) ≤ ε,

then, for every T > 0, the corresponding particle trajectories are close in L∞,

‖z(·)− z̄(·)‖L∞([t0,T ]) ≤ C
√
ε,

for some constant C depending on t0 and T . The main idea of the proof is to first consider

the piecewise constant initial conditions ρN (·, t0) and ρ̄N (·, t0) which are approximating

ρ(·, t0) and ρ̄(·, t0) and construct the corresponding approximate trajectories zN and z̄N ,

defined for some small time, by solving a series of Riemann problems. The nature of the

front tracking method allows this procedure to extend further in time. We prove that

if ρN (·, t0) and ρ̄N (·, t0) are close then the resulting trajectories from the corresponding

Riemann problems remain close. This result together with the uniform convergence result

for general scalar conservation laws (established in Theorem 5.1.6) of each zN and z̄N give

the stability estimate as stated.

These strong stability properties on the trajectory z will be of great value for our

inverse problems since they translate to the rate of convergence for the approximations

of the corresponding posteriors. We note that obtaining such stability estimates for the

forward map in the situation where pointwise measurements are made directly on the

entropy solution itself is not possible, due to shock wave phenomena. See Section 6.3 for

a more detailed discussion.

We will also consider the approximate trajectories arising from the method of vanishing

viscosity. Let vε be the solution of the viscous version of (1.1), that is

∂tv
ε(x, t) + ∂xf(vε(x, t)) = ε∂xxv

ε(x, t).

Consider the particle trajectory zε starting at zε(0) = x0 that solves

żε(t) = w(vε(zε(t), t)).

Then, at the limit when ε goes to 0, the trajectory zε converges in L∞ to the Filippov

solution z of (1.3). To prove this result, we make the assumption that the trajectory z(t),

even though it may cross the shock curves of v, never lies on any shock curve for a positive

period of time (Assumption 5.1.8). We then verify that this assumption is at least satisfied

for the case of traffic flow when there is significant number of cars on the road.
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The notion of Filippov solutions to discontinuous right-hand side differential equations

was employed by Dafermos in [Daf77] to build the theory of generalized characteristics for

hyperbolic conservation laws and has been an efficient method for studying the regularity

of solutions. It is worth noting that the theory of particle trajectories that we consider

here differs from the one of generalized characteristics considered by Dafermos. The speed

of the generalized characteristics is either classical characteristic speed or shock speed,

while the particle speed considered here, given on the right-hand side of (1.3), is the speed

of the flow itself. The approach that we follow here is motivated by the traffic flow model

and addressed, for instance, in [CM03]. However, the framework in this thesis is more

general than the one in [CM03], and we are able to provide strong stability results that

have not been obtained in the literature.

Most of results in the thesis are established for genuinely nonlinear flux functions. The

approximation theory for particle trajectories when the flux function has inflection points

will be considered in our future work.

1.1 Thesis outline

The thesis is organised as follows. In Chapter 2, we give a brief overview of the mathe-

matical theory of scalar conservation laws. After some derivation examples, we introduce

some of the most important concepts of conservation laws, including shock wave phenom-

ena and entropy solutions. Two of the most popular methods in studying conservation

laws, front tracking and vanishing viscosity, are discussed. Chapter 3 presents inverse

problems and their ill-posedness, together with some regularization methods. We also

give a short introduction to the Bayesian approach to inversion. The Filippov theory for

ordinary differential equations with discontinuous right-hand side is introduced in Chapter

4. The most important contributions of the thesis lie in Chapter 5 and Chapter 6. Chap-

ter 5 presents a theory of particle trajectories for scalar conservation laws. The stability

properties via the convergence of various approximations of the particle trajectories are

studied. The Bayesian approach to the inverse problems of recovering the initial field or

flux function is considered in Chapter 6. In the last two sections of Chapter 6, we will

discuss a number of different ways of collecting data, including direct measurements of

the entropy solution itself and some situations where these measurements work. We make

some concluding remarks and present the thesis outlook, including future work, in Chapter

7.
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1.2 Notations and symbols

Throughout the thesis, the letter v will be used to denote the unknown of the forward

problem, which is a scalar conservation law for the majority of the time. The unknown

of the inverse problem will be denoted by u. The letter z is saved to denote the particle

trajectory. The parameter-to-observation map for a general inverse problem is denoted by

G, and by G for the case of scalar conservation laws. Normally G = O◦S where O denotes

the evaluation operator while S is the forward map. Other standard notations are listed

below.

• X (Banach) space of parameters (where the forward map is mapping from)

• Y (Banach) space of data (finite or infinite)

• ‖ · ‖X norm in X

• | · | Euclidean norm in Rn

• ξ observable noise

• B(X) space of Borel measures on X

• dHell Hellinger distance

• dWass Wasserstein distance

• L1
µ(X;R) Lebesgue space on (X,B(X), µ)

• TV total variation

• BV space of functions of bounded variation

• BVloc space of functions of locally bounded variation

• ∇ differential (del) operator

• ∆ Laplacian operator

• div divergence operator

• grad gradient vector
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Chapter 2

Scalar conservation laws

In this chapter, we give a brief overview of the theory of scalar conservation laws. One

of the fundamental features of scalar conservation laws (and hyperbolic conservation laws

in general) that distinguish them from other types of partial differential equations is the

formation of shocks. Starting with even smooth initial data, the wave-like solutions of

conservation laws will generally get steeper and steeper, and eventually break, leading to

the development of shock waves. These waves then continue to travel at their own speeds.

This striking phenomenon makes the study of conservation laws challenging. Many modern

techniques of functional analysis for partial differential equations are not applicable. The

solutions are only sought in the space of discontinuous functions and therefore, working

with weak solutions is inevitable. The difficulty is exacerbated by the fact that weak

solutions of conservation laws are not unique. To single out the right solution, some

additional restrictions, called entropy conditions, are imposed. These are essentials in the

mathematical theory of hyperbolic conservation laws.

In the first section, we give a derivation for scalar conservation laws and highlight

a few examples of equations of this type. These examples will be considered in later

chapters. Section 2.2 reflects the most significant property of scalar conservation laws, the

formation of shocks, as well as defines the weak formulation of solutions. The Rankine-

Hugoniot condition on jumps is discussed here. Entropy conditions and entropy solutions,

with motivations and related discussions are contents of Section 2.3. In the next section,

Section 2.4, we present the existence and uniqueness of entropy solutions. Two of the

most popular and fundamental methods for constructing solutions of conservation laws,

the front tracking method (Section 2.4.1) and the vanishing viscosity method (Section

2.4.2), are also discussed here. In the last section, Section 2.5, we highlight a few results

regarding fine structures of the entropy solution, which will be useful later on.
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Many results in this chapter do not include proofs. However, we will refer to appro-

priate references where relevant. Throughout this chapter, we assume that v0 : Rn → R

is a measurable bounded function. That is, there exists some constant M such that

‖v0‖L∞(Rn) ≤M.

The function f is assumed to be smooth enough so that all the calculations make sense (for

example, f is differentiable almost everywhere). Some additional conditions on f might

be imposed in specific situations.

For simplicity, some results are stated in one (space) dimension, even though most of

them can be extended to higher dimensions.

2.1 Derivation and examples

Scalar conservation laws take the form as follows

∂v

∂t
(x, t) +∇ · f(v(x, t)) = 0, (2.1)

where v : Rn× [0,∞)→ R is the conserved quantity. The function f = (f1, · · · , fn) : R→

Rn is called flux. The notation ∇ · f stands for the divergence of f with respect to the

spacial variable x, that is ∇·f =
∑n

i=1
∂fi
∂xi

. If we assign an initial condition for v at t = 0,

v(x, 0) = v0(x), (2.2)

then we obtain an initial value problem (or Cauchy problem).

To have an idea where does the name “conservation law” come from, we consider in

one dimension a (sufficiently smooth) quantity v that satisfies (2.1). By integrating (2.1)

in x over [a, b] ones get

d

dt

∫ b

a
v(x, t)dx =

∫ b

a
f ′(v(x, t))dx

= f(v(a, t))− f(v(b, t)).

(2.3)

The term
∫ b
a v(x, t)dx represents the total amount of conserved quantity v inside the

interval [a, b]. The right-hand side of (2.3) describes the quantity flow going in and going

out of the interval [a, b] (which explains the name “flux” for f). The equation (2.3)

therefore presents a law of conservation: the rate of change in the total amount of conserved

quantity over time in a domain equals the amount of quantity flowing in and out through

the boundary of that domain.
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2.1.1 Burgers equation

Consider the Burgers equation

∂tu(x, t) + ∂x

(
1

2
u2(x, t)

)
= 0. (2.4)

This equation was introduced by Bateman [Bat15] and Burgers [Bur48] (in the viscous

form) and studied thoroughly by Hopf [Hop50]. It is normally known as a simplification of

the Navier-Stokes equations and is fundamental in the theory of fluid mechanics. Moreover,

it is also a prototype example of scalar conservation laws due to the fact that it reserves

every typical feature of scalar conservation laws. One way to see the formation of Burgers’

equation is to look at some particle x(t) moving with velocity u(x, t) for which we know

that the following relationship holds

ẋ(t) = u(x(t), t).

Assume that u is smooth enough, we have

ẍ(t) =
d

dt
u(x(t), t) = uxẋ(t) + ut = uux + ut.

NIf there are no external forces then the Newton law of motion ensures that the accelera-

tion a = ẍ(t) equals zero, leading to

ut + uux = 0, (2.5)

which is equivalent to (2.4) since u is smooth. The equation (2.5) is normally termed the

quasilinear Burgers equation.

2.1.2 Traffic flow

Another typical example of scalar conservation laws is the so-called LWR model of traffic

flow on the highway. This model is first described in the seminal paper [LW55] by Lighthill

and Whitham where the authors develop it via the method of kinetic waves. One year

later, Richards [Ric56] independently comes up with a similar model.

The key idea of the LWR model initiates from an observation that the traffic streams

at a macroscopic level behave like fluid streams, where the distribution of cars can be

replaced by a “continuous” function. Let ρ be the density and v be the average velocity of

cars. The LWR assumes that the traffic velocity v depends only on its density, v = v(ρ).

Then ρv(ρ) represents the car flux. Since the change in the total amount of cars in a road
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segment, say [a, b], is given by the flux of cars flowing in at a subtracting the flux of cars

flowing out at b (assuming that there are no entries and exits on this road segment), then∫ b

a
∂tρ(x, t)dx =

d

dt

∫ b

a
ρ(x, t)dx = ρ(a, t)v(ρ(a, t))− ρ(b, t)v(ρ(b, t))

=

∫ b

a
∂x(ρ(x, t)v(ρ(x, t)))dx.

Therefore, since a and b are arbitrary,

ρt + (ρv(ρ))x = 0. (2.6)

The flux function in this case is f(ρ) = ρv(ρ). In the simplest case, the velocity may be

assumed to depend linearly on the density, that is

v(ρ) = vmax

(
1− ρ

ρmax

)
,

where vmax and ρmax denote the maximum velocity and density of cars, respectively. The

flux is then given by

f(ρ) = vmaxρ

(
1− ρ

ρmax

)
,

which is a strictly concave and decreasing function. Moreover, if we make a scaling ρmax =

1, vmax = 1 then f(ρ) = ρ(1− ρ) and we obtain the normalised traffic flow equation

ρt + (ρ(1− ρ))x = 0. (2.7)

This normalised model is often used as a toy model in studying scalar conservation laws.

We note that, in this case, v = 1− ρ satisfies the following extra conservation law

vt + (v(v − 1))x = 0, (2.8)

with a strictly convex flux function f̃(v) = v(v − 1). We note, moreover, that by setting

ρ = 1−u
2 we recover the Burgers equation (2.4).

2.2 Shock wave phenomena and weak solutions

2.2.1 The formation of shocks

To describe shock wave phenomena and how shocks are formed, we consider the quasilinear

Burgers equation

ut + uux = 0, (2.9)

with some smooth initial data

u(x, 0) = u0(x).
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The left hand side of (2.9) can be interpreted as a directional derivative of u in the direction

~ν = (1, u),

ut + uux = 1.ut + u.ux = ∂~ν=(1,u)u(x, t).

Therefore, (2.9) ensures that u is constant in the direction ~ν, or along the characteristic

lines

t 7→ (t, x+ tu0(x)).

Some straightforward calculations lead to

u(x, t) = u0(x− ut).

Differentiation with respect to x and t gives

ux = u′0(1− uxt), ut = u′0(−u− utt).

Thus,

ux =
u′0

1 + tu′0
, ut =

−u′0u
1 + tu′0

.

If u′0(x) < 0 for some x then ux and ut will blow up when t = t0 = − 1
u′0

. Thus, u must

break down in finite time and wave breaking will essentially happen, forming shock waves,

regardless of the smoothness of u0. Therefore, global solutions for (2.9), and hence for

scalar conservation laws, can only be found in the space of discontinuous functions.

2.2.2 Weak solutions

Definition 2.2.1. A function v ∈ L∞(Rn×[0,∞)) is called a weak solution for (2.1)-(2.2)

if the identity∫
Rn

∫ ∞
0

[v(x, t)φt + f(v(x, t)) · ∇φ]dtdx+

∫
Rn
v0(x)φ(x, 0)dx = 0 (2.10)

holds for any test function φ ∈ C∞0 (Rn × [0,∞)).

Note that v is only required to be in L∞(Rn × [0,∞)), which includes discontinuous

functions, for (2.10) to make sense. However, not every discontinuous function is permitted

since (2.10) does impose severe restrictions on the curves of discontinuity as we shall see

from the following result, known as the Rankine–Hugoniot jump condition.

Theorem 2.2.2. Let ϕ = ϕ(t) be a discontinuity curve (shock curve) of the weak solution

v. Then ϕ satisfies the following constraint

ϕ′(t) =
f(v+)− f(v−)

v+ − v−
, (2.11)

where v+ and v− are the right and the left states of v on the shock curve ϕ.
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We shall call s := ϕ′(t) the shock speed . For a proof of this theorem, see [Eva10].

This result has a great impact on gas dynamics and the theory of hyperbolic conservation

laws [Daf16]. The formula (2.11) can be used to find explicitly weak solutions of some

initial value problems that are not classically solvable. The following example is taken

from [Smo83].

Example 2.2.3. Consider the Burgers equation (2.4) with initial data

u0(x) =


1 if x < 0

1− x if 0 ≤ x < 1

0 if x ≥ 1.

(2.12)

A weak solution u for (2.4) can be calculated up to t < 1 by using characteristics (see

Section 2.1.1),

u(x) =


1 if x < t

1−x
1−t if t ≤ x < 1

0 if x ≥ 1.

(2.13)

For t ≥ 1, by applying the Rankine-Hugoniot jump condition for u+ = 1, u− = 0, we have

that s = 1
2 . Thus we can define

u(x) =


1 if x < 1 + 1

2(t− 1)

0 if x ≥ 1 + 1
2(t− 1),

(2.14)

to be a weak solution of (2.4) for t ≥ 1.

A serious problem with weak solutions is that they are not unique as the following

example shows.

Example 2.2.4 (Non-uniqueness of weak solutions, [Daf16]). We consider again the

Burgers equation (2.4) with initial data

u0(x) =


−1 if x < 0

1 if x > 0.

(2.15)
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Then for any α ∈ [0, 1], each uα provides a solution for (2.4) where

uα(x) =



−1 if x < −t

x/t if − t < x ≤ −αt

−α if − αt < x ≤ 0

α if 0 < x ≤ αt

x/t if αt < x ≤ t

1 if t < x.

(2.16)

Hence, there exists a continuum set of weak solutions to (2.4)-(2.15)! It is therefore

required to impose more restrictions on weak solutions to single out the correct one.

2.3 Entropy conditions

One of the criteria for selecting solutions is coming from the fact that the desired solution

should be physically meaningful. In other words, it should be the limit state (in a sense

to be made precisely) of a physical model where one adds an extra diffusion term to the

right-hand side of (2.1),

∂v

∂t
(x, t) +∇ · f(v(x, t)) = ε∆v(x, t), (2.17)

where ∆ is the Laplacian operator with respect to spacial variables, that is, ∆v(x, t) =∑n
i=1

∂2v
∂x2i

. The equation (2.17) may reflect a more physically meaningful model. Let us

consider the traffic flow equation

ρt + (ρv(ρ))x = 0.

One may argue that in reality, the car drivers would naturally reduce their speed as they

are approaching a traffic jam (or as they are seeing a relatively larger density of cars

ahead). In that case, v(ρ) may be replaced by

ṽ(ρ) = v(ρ)− ερx
ρ
,

and hence the equation becomes

ρt + (ρv(ρ))x = ερxx.

This example shows the natural appearance of a diffusion term on the right-hand side of

(2.17). It does not imply however that this should be the case for other situations. In
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general, one may consider (2.17) even without any physical explanations to the diffusive

term on the right-hand side. This may be because its presence could be beneficial for

analytical or computational purposes. Therefore, as mentioned by Dafermos in his famous

book [Daf16], the term ε∆v should be viewed as “artificial viscosity”.

We denote by η some auxiliary function, η : R→ R, and define the associated function

q : R→ Rn by

q(u) =

∫ u

η′(s)f ′(s)ds, (2.18)

that is, q′(u) = η′(u)f ′(u).

Remark 2.3.1. The pair (η, q) satisfying (2.18) will be called an entropy-entropy flux

pair.

Now since (2.17) is parabolic, there exists a unique smooth solution (with f regular

enough, see [Eva10]), denoted by vε, of the initial value problem (2.17)-(2.2). Multiplying

both sides of (2.17) by η′(vε(x, t)) and using (2.18), we get

∂tη(vε) + ∂xq(v
ε) = ε∆η(vε)− εη′′(vε)|∇vε|2. (2.19)

If η is convex, η′′ ≥ 0, then we can deduce from (2.19) that

∂tη(vε) + ∂xq(v
ε) ≤ ε∆η(vε).

Thus if we let ε→ 0 and assume that,

vε → v almost everywhere,

then v satisfies

∂tη(v) + ∂xq(v) ≤ 0. (2.20)

We just arrive at the following definition (where we relax the regularity of η and q a bit

and allow them to be merely Lipschitz continuous).

Definition 2.3.2. A function v ∈ L∞(Rn × [0,∞)) is called an entropy solution for

(2.17)-(2.2) if (2.20) holds in the sense of distributions, that is∫
Rn

∫ ∞
0

η(v(x, t))φt + q(v(x, t))φxdtdx+

∫
Rn
φ(x, 0)η(v0(x))dx ≥ 0 (2.21)

for any convex entropy-entropy flux pair (η, q) and any non-negative test function φ ∈

C∞0 (Rn × [0,∞)).
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This entropy condition is sometimes called Kruzkov’s entropy condition, to recognise

the celebrated work by Kruzkov in [Kru70], where the entropy condition is stated in an

abstract form as above. In that work, Kruzkov shows that we can actually choose the

entropy-entropy flux pair to be very specific, namely

η(v) = |v − k|, q(v) = sign(v − k)(f(v)− f(k)). (2.22)

for any k ∈ R. This will be referred to as the Kruzkov entropy-entropy flux pair .

When dealing with discontinuous solutions, it may be convenient (for example in nu-

merical approximations) to test the entropy condition at every discontinuity curve. A

weak solution will be an entropy solution if each of its shock curves satisfies certain ad-

missibility conditions. When f is genuinely nonlinear, meaning f ′′ 6= 0, if a shock curve

ϕ = ϕ(t) (with speed s = ϕ̇(t)) satisfies the following condition

f ′(v−) > s > f ′(v+), (2.23)

then it will be called an admissible shock and (2.23) will be called Lax’s shock admissibility

condition, a criterion introduced in the seminal paper [Lax57]. Equivalently, if f is convex,

then (2.23) reduces to

v− > v+.

In other words, one only accepts a shock curve if the wave from the left moves faster than

the wave from the right of the curve. This admissibility criterion may be illustrated in

the traffic flow model, where shocks are present as traffic jams, the car flow approaching

a traffic jam moves faster than the one after joining in the traffic jam.

With more general f (not necessarily convex), for v to be an entropy solution, one

requires the following condition, known as Oleinik’s shock admissibility condition [Ole59],

along every shock curve,

f(v+)− f(v)

v+ − v
≤ f(v+)− f(v−)

v+ − v−
≤ f(v−)− f(v)

v− − v
, (2.24)

for v in between v− and v+.

It is easy to see that Oleinik’s shock admissibility condition implies Lax’s shock admis-

sibility condition. However, if the flux function is genuinely nonlinear, they are equivalent.

Moreover, we have

Theorem 2.3.3. Assume that f is convex. Then the Kruzkov entropy condition, the Lax

entropy condition and the Oleinik entropy condition are equivalent.
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Discussions leading to a proof of this result can be found, for instance, in Chapter 2

in [HR15] and in Chapter VIII in [Daf16].

Remark 2.3.4. • Even though Lax or Oleinik entropy condition may be easier to

work with, they do not indicate whether or not the considered solution is a weak

solution. The Kruzkov notion of entropy condition is convenient in the sense that

it includes the notion of weak solutions. Indeed, by applying (2.21) with η(v) = ±v

and q(v) = ±f(v) we derive Definition 2.2.1 of weak solutions.

• There are other entropy conditions, such as Liu entropy condition, that are par-

ticularly useful in the case of systems of hyperbolic conservation laws, hence not

discussed here. For an extensive presentation of this topic, see [Daf16].

Remark 2.3.5 (Entropy, irreversibility and entropy production). The entropy condition

(2.20) has some connection to the Second Law of Thermodynamics (which says that the

entropy1 of a system is always increasing in time and the process is irreversible). In fact,

(2.20) induces a time irreversibility condition on solutions. Indeed, assume that v(x, t) is

an entropy solution to (2.1) and denote

ṽ(x, t) := v(−x,−t).

Then it can be easily verified that ṽ still satisfies (2.1) in the weak sense. However, ṽ is

not an entropy solution except when it is a classical solution, since the inequality (2.20)

reverses its sign. When v develops shocks, the left hand side of (2.20) (viewed in the sense

of distributions)

µ := ∂tη(v) + ∂xq(v)

is a strictly negative measure. The measure defined as above is called the entropy produc-

tion measure. An interesting property of this measure is that it concentrates on the set

of points of jump discontinuity2(see, for instance, [DLR03, DLOW03, COW08, BM17]).

We refer to [Daf16, Section 4.5, 3.3] for further discussions on this topic.

2.4 Existence and uniqueness of entropy solutions

We first need some definitions regarding functions of bounded variations which play a

fundamental role in the theory of hyperbolic conservation laws.

1We note that the “entropy” notion η used in the context of hyperbolic conservation laws takes an

opposite sign with the counterpart “entropy” used in physics.
2This is still a conjecture for scalar conservation laws in Rn with n > 1. See recent work [Sil19] for

more information.
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Definition 2.4.1. Let Ω ⊂ Rn be open. The total variation of u ∈ L1(Ω) is given by

TV (u,Ω) := sup

{∫
Ω
u(x)divψ(x)dx : ψ ∈ C∞c (Ω,Rn), ‖ψ‖L∞(Ω) ≤ 1

}
.

(We use the notation TV (u) instead of TV (u,Ω) when Ω is clear from the context.) We

say that u is a function of bounded variation if TV (u) <∞, and we denote

BV (Ω) := {u : Ω→ R, TV (u) <∞}, (2.25)

the space of functions of bounded variation on Ω. If u ∈ BV (Ω′) for all Ω′ ⊂⊂ Ω (i.e.,

Ω′ is compactly contained in Ω), we say that u is of locally bounded variation and use

BVloc(Ω) to denote the space of all these functions.

Remark 2.4.2. • If u ∈ L1(Ω) is a function of bounded variation then its distribu-

tional derivative, denoted by Du or grad u, is a finite (vector-valued) signed measure,

and the total variation of this measure, denoted by |Du|, equals the total variation

of u. We refer to [AFP00] for detailed discussion and treatment of BV functions.

• In one dimension, the above definition of functions of bounded variation agrees with

the classical one, that is, u has bounded variation in an interval I ⊂ R if

TV (u) := sup

{
N−1∑
i=1

|u(xi+1)− u(xi)| : N ≥ 2, x1 < x2 < · · · < xN , xi ∈ I

}
<∞.

(2.26)

We note however that in one dimension one does not normally require u to be in-

tegrable. Nevertheless, if I is bounded then u is automatically integrable since it

musts be bounded thanks to (2.26). Again, we refer to [AFP00, Section 3.2] (see

also [Leo17, Chapter 2 and 7]) for details.

Given the entropy conditions, one recovers the uniqueness.

Theorem 2.4.3 (Kruzkov [Kru70]). For every v0 ∈ L∞(Rn) ∩ L1(Rn), there exists a

unique entropy solution v to (2.1)-(2.2) in C([0,∞);L1
loc(Rn)) that satisfies, for every

t > 0,

‖v(·, t)‖L∞(Rn) ≤ ‖v0(·)‖L∞(Rn).

Moreover, if v̄ is the entropy solution to (2.1) corresponding to the initial data v̄0 with

v̄0 ∈ L1(Rn) ∩ L∞(Rn), then

‖v(·, t)− v̄(·, t)‖L1(Rn) ≤ ‖v0(·)− v̄0(·)‖L1(Rn), (2.27)

for all t > 0.



19

The inequality (2.27), often called L1−contraction property , implies immediately that

the entropy solution is unique3. It also implies another important property of the entropy

solution: if v0 is a function of bounded variation, then v(·, t) is also a function of bounded

variation, for all t > 0. To see this, we consider the total variation of v, regarded as the

total variation of the (Rn−valued) measure gradv and notice that

|gradα(v(·, t))|(Rn) = lim
h→0

1

h

∫
Rn
|v(x+ heα, t)− v(x, t)|dx

≤ lim
h→0

1

h

∫
Rn
|v0(x+ heα)− v0(x)|dx = |gradαv0|(Rn),

for α = 1, . . . , n, thanks to (2.27).

The existence theory for scalar conservation laws is well developed. In the next sections

we outline two of the most used methods to construct an entropy solution for (2.1).

2.4.1 Front tracking method

The front tracking approximation method (also known as Dafermos’s method) was first

studied by Dafermos in [Daf72] to show the existence of solutions for 1D scalar conservation

laws. It was then developed further by Holden, Holden and Hoegh-Krohn in [HHHK88]

as a numerical tool.

The idea is to approximate the initial function by a step function and the flux by a

piecewise linear function. An approximate solution of (2.1)-(2.2) is then given by solving

a finite set of so-called Riemann problems, with each initial data consists of a single

discontinuity wave. More precisely, let v0 be a function of bounded variation and M be

a positive number such that ‖v0‖L∞(R) ≤M . For some natural number N , define the set

AN ⊂ [−M,M ] by

AN := {vj,N = j
M

2N
, j = −2N , . . . , 2N}.

Then define the piecewise linear function fN by

fN (s) = f(vj,N ) +
2N

M
(s− vj,N )(f(vj+1,N )− f(vj,N )),

for s ∈ (vj,N , vj+1,N ], j = −2N , . . . , 2N .

(2.28)

Let v0,N be a step function taking values in the set AN such that

‖v0,N − v0‖L1(R) → 0, as N →∞,

and consider the Cauchy problem

vt + fN (v)x = 0, v(x, 0) = v0,N (x). (2.29)

3The original result of Kruzkov proves the uniqueness for initial data in L∞(Rn) where (2.27) has a

slightly stronger version.
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Since v0,N is a step function with break points at, say {xj}Jj=1, a local solution to (2.29),

defined for sufficiently small t > 0, is given by solving a finite number of Riemann problems,

each of them with initial data of the form

v(x, 0) =


vl if x < xj

vr if x > xj ,

(2.30)

where vl and vr denote the values of v0 at the left and the right limits v0,N (xj−), v0,N (xj+) ∈

AN . One claims that Riemann problems obey a maximum principle, meaning the solution

to (2.29) with initial data (2.30) remains in between vl and vr, and that the solution of

(2.29) will take values in the set {vj,N} ∪ {break points of fN^ or fN_}, where f^ (or f_)

denotes the convex envelope (or concave envelope) of f . This solution is defined up to

some time t = t1 where two or more jump discontinuities (coming from nearby Riemann

problems) collide, forming new Riemann problems. The above procedure continues for new

Riemann problems and the solution is prolonged up to some new collision time t = t2, and

so on. Luckily enough, this process does not go on forever thanks to a fact that the number

of interactions is finite, see for example [Bre00] for a proof. This is understandable because

each time a new collision forms, two or more discontinuities collapse to produce a single

discontinuity. The wave pattern is hence simplified as the number of jump discontinuities

is decreasing over time. In fact, if the initial condition v0 is a non-negative differentiable

function with compact support and the flux function is smooth and uniformly convex,

then after a certain time, all shocks will finally be merged and continue as a single shock

(see [KT05], also [Whi75]).

The method of front tracking approximations provides an effective tool in establishing

the existence of entropy solutions of (1.1)-(1.2). Moreover, one can use this method to

derive the stability property of the entropy solution with respect to the flux function, as

the following result shows. Hereafter we denote

‖f‖Lip := sup
u6=v

∣∣∣∣f(u)− f(v)

u− v

∣∣∣∣ , (2.31)

the Lipschitz constant for f .

Theorem 2.4.4. Let v0 ∈ L1(R)∩BV (R) and v, v̄ be the entropy solutions to (1.1)-(1.2)

with respect to Lipschitz continuous flux functions f, g (respectively), then there exists a

constant C > 0 such that

‖v(·, t)− v̄(·, t)‖L1(R) ≤ Ct‖f − g‖Lip, (2.32)

for every t > 0.
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The constant C in (2.32) depends only on v0 and can be chosen to be TV (v0). This

result was first obtained in [Luc86] (using Kuznetsov’s approximation theory for solutions).

A proof using the front tracking method can be found in [HR15, Chapter 2]. We note

that the assumption v0 ∈ BV (R) is needed in establishing a priori a bound on TV (v(·, t))

which is an essential part in the proof of existence (typically via Helly’s theorem, see

[Bre00]).

The front tracking method is considerably more intricate for higher dimensions, we

refer to the monographs [HR15] and [Bre00] for the detailed treatment.

2.4.2 Vanishing viscosity method

Let ε be a positive number. Consider the “viscous” equation

∂v

∂t
(x, t) +∇ · f(v(x, t)) = ε∆v(x, t), (2.33)

with some initial data

v(x, 0) = v0(x), (2.34)

where v0 ∈ L∞(Rn)∩L1(Rn). The discussions carried in Section 2.3 lead to the following

result.

Theorem 2.4.5. Let vε be the solution of (2.33)-(2.34). Assume that for some sequence

{εk}, with εk → 0 as k →∞,

vεk → v boundedly almost everywhere on Rn × [0,∞).

for some function v. Then v is an entropy solution of (2.1)-(2.2).

Note that since (2.33) is a parabolic equation, the Cauchy problem (2.33)-(2.34) always

has a unique smooth solution (see, for example, [Eva10] or [Smo83]). Moreover, this

solution also enjoys the L1−contraction property.

Theorem 2.4.6. Let vε and v̄ε be solutions of (2.33) with respect to initial data v0 and

v̄0 that are in L1(Rn) and bounded. Then

‖vε(·, t)− v̄ε(·, t)‖L1(Rn) ≤ ‖v0(·)− v̄0(·)‖L1(Rn),

for all t > 0.

The result of Theorem 2.4.5 implies that the definition of entropy solution agrees with

the notion of “viscosity” solution obtained via vanishing viscosity method. Finally, the

following theorem shows that this viscosity solution does exist.
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Theorem 2.4.7. The solution vε of (2.33)-(2.34) converges as ε → 0 boundedly almost

everywhere on Rn × [0,∞) to the unique entropy solution v of (2.1)-(2.2).

The following lemma establishes an equicontinuity in average property (some sort of

“integral” equicontinuity) for {vε} that comes in useful in proving Theorem 2.4.7 where a

compactness argument in Lp is needed.

Lemma 2.4.8. Let vε be the solution of (2.33)-(2.34). Then there exist a constant c,

independent of ε, and a nondecreasing function ω on [0,∞), with ω(r)→ 0 as r → 0, such

that the followings hold for any t > 0,

∫
Rn
|vε(x+ y, t)− vε(x, t)|dx ≤ ω(|y|), y ∈ Rn,

∫
Rn
|vε(x, t+ h)− vε(x, t)|dx ≤ cω(h1/3), h > 0.

Proof of Theorem 2.4.7. The sequence {vε(·, t)} is equicontinuous in average thanks to

Lemma 2.4.8. Hence by the Kolmogorov-Riesz theorem (a version of Arzelà-Ascoli’s the-

orem in Lp, see [Bre10, Theorem 4.26] or [HOH10]), {vε(·, t)} lies in a compact set of

L1
loc(R). Therefore, for every sequence {εk}, εk → 0 as k →∞, there exists a subsequence,

still denoted by {εk}, and a function v ∈ C0([0,∞);L1
loc(Rn)), such that

vεk(·, t)→ v(·, t), in L1
loc(Rn),

uniformly in t ∈ [0, T ] for any T > 0. This implies that, by passing to a further subsequence

if necessary, vεk converges to v boundedly almost everywhere on Rn× [0,∞). By Theorem

2.4.5, v is an entropy solution of (2.1)-(2.2). Due to the uniqueness of entropy solutions,

the whole family {vε} must converge to v as ε→ 0. This completes the proof.

The vanishing viscosity method in the context of scalar conservation laws is due to

Kruzkov [Kru70]. Proofs of Theorem 2.4.6 and Lemma 2.4.8 can be found in there, or

in [Daf16] (where the proof of Theorem 2.4.7 is adapted from) with somewhat simplified

versions. Also in [Kru70], the ingenious doubling of variables technique was introduced in

order to establish the contraction property (2.27). This technique can also be used, for

instance, in establishing the uniqueness of entropy solutions of Hamilton-Jacobi equations

in [CEL84], see also [Eva10].
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2.5 Some regularity results

We highlight in this section a few fine properties of scalar conservation laws that will be

useful later on. Consider the one-space dimensional conservation law

∂tv(x, t) + ∂xf(v(x, t)) = 0, (x, t) ∈ R× [0,∞). (2.35)

Assume that f is genuinely nonlinear, f ′′(v) > 0, v ∈ R. First of all, v, being the entropy

solution to (2.35), instantaneously becomes a function of locally bounded variation and

enjoys the one-sided Lipschitz property, even if v0 is merely in L∞(R).

Theorem 2.5.1. Let v0 ∈ L∞(R). Then the entropy solution v of (2.35), with initial

data v0, belongs to BVloc(R× (0,∞)). Moreover, for every t > 0 and x > y, we have

v(x, t)− v(y, t)

x− y
≤ 1

κt
, (2.36)

where κ = min{f ′′(v) : |v| ≤ ‖v‖L∞(R)}.

The inequality (2.36) is first established by Oleinik [Ole57] and is known in the litera-

ture as the Oleinik decay estimate. A reverse result of this is also true, if a weak solution

of (2.35) satisfies the one-sided Lipschitz property (2.36) then it is an entropy solution.

Because of this reverse property, the inequality (2.36) is sometimes used as an admissibil-

ity condition to single out or characterise the entropy solution. Some extensions of this

nice result to the case of non-convex flux, multi-dimensional space and convex balance

laws can be found in [Gla08, AGN12, Hof83].

Theorem 2.5.1 records some sort of regularising effect ([COW08]) that is due to the

genuine nonlinearity: entropy solutions generally become more regular than their initial

data4. This regularising phenomenon shows up again in the following result, whose proof

can be found in [Daf16], saying that the continuity is upgraded automatically to Lipschitz

continuity once v becomes an entropy solution.

Theorem 2.5.2. Assume that the set C of continuity points of an entropy solution v has

nonempty interior C0. Then v is locally Lipschitz on C0.

Finally, we mention here a generic property of scalar conservation laws in one space

dimension that features the finiteness of shocks.

4This is only applicable if the initial data is relatively rough (i.e., in L∞), but not anymore when the

initial data is smoother as we have seen previously, smooth initial data may result in discontinuous, hence

less smooth, solutions!
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Theorem 2.5.3. Generically, entropy solutions of (2.35) with smooth initial data are

piecewise smooth. More precisely, there exists a set S ∈ Ck(R), k ≥ 3, of first category

such that for each initial data in v0 ∈ Ck(R) \ S, the solution v of (2.35) has only a finite

number of shock curves and v is Ck in the complementary of the shocks.

It is worth noting that, the interior set of Ck(R) \ S is an open dense set in Ck(R). In

other words, for most initial data, the total number of shocks is finite. This result was first

established, in a weaker version, by Schaeffer in [Sch73] and then improved by Dafermos

in [Daf85] and in [Daf16], to which we refer for the proof. See also Tadmor and Tassa

[TT93, Section 4] for a characterization of the set S. We note however that this generic

property fails to hold for the case of system, see Caravenna and Spinolo [CS17].

2.6 Summary and outlook

The theory of scalar conservation laws, especially in one-space dimension, is well-developed.

This chapter only highlights a few aspects of this rich theory. In particular, we discuss

the entropy conditions and the well-posedness theory of entropy solutions. Two strate-

gies for the existence theory, the front tracking approximation and the vanishing viscosity

method, are presented. Other methods for constructing entropy solutions include the fi-

nite difference scheme [Smo83], the nonlinear contraction semigroup [CL71, Cra72], the

kinetic formulation theory [LPT94, TT07], to name a few. We refer to the monographs

[Daf16, Bre00, LeF02, Ser99] for more information.

For the case of systems, much less is known. Some results in this chapter can be

extended to the case of systems, but mostly not trivial. The first global existence result

was established in the landmark paper by Glimm [Gli65] for initial data with small total

variation, in which the so-called random choice method was introduced. Later on, DiPerna

[DiP76] extended the front tracking method in the scalar case of Dafermos to 2×2 systems.

Based on these works, Bressan [Bre92] and Risebro [Ris93] extended the front tracking

method for systems of any size, providing an alternative existence proof. The construction

of entropy solutions using the vanishing viscosity method (the extension of results in

Section 2.4.2, in particular, Theorem 2.4.7) has been obtained only recently by Bressan

and Bianchini in [BB05].

The general theory of multidimensional systems of conservation laws is terra incognita5,

with several obstacles and open problems. We refer to [BGS07] for some aspects of the

theory, with emphasis on the boundary-valued problems.
5a term used by Dafermos [Daf16].
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Chapter 3

Inverse problems and Bayesian

approach

Inverse problems arise in different fields and have numerous real-world applications. These

can be seen in medical imaging, signal processing, seismology, oil recovery, weather pre-

diction, machine learning, and many other examples in science, engineering and everyday

life. Due to their wide range of applications, the study of inverse problems is an important

task in both pure and applied mathematics. There are several monographs addressing the

study of these problems, see, for example, [Gro93, EHN96, Vog02, Isa06, Tar05, Kir11],

to mention only a few.

This chapter presents the mathematical theory of inverse problems. Section 3.1 gives an

overview to inverse problems and their properties and in particular, introduces the notion

of ill-posedness. We present a mathematical setting with an emphasis on inverse prob-

lems for functions, where the unknown lies in some function spaces. This is in particular

applicable to inverse problems whose underlying physical processes are given by (partial)

differential equations. Classical approaches to inverse problems, including Tikhonov reg-

ularization, are discussed here. Section 3.2 describes the Bayesian approach to inversion,

which we employ to deal with inverse problems considered later in the thesis. Some general

well-posedness and approximation theory will be given.

3.1 Inverse problems

Many problems in science and engineering can be described as follows: given a model and

some causes, find the consequences of these causes over time, through the model. Such

problems are called direct or forward problems.
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On the other hand, in many applications, one is required to solve problems in a “reverse

way”: starting with known consequences (given in some form of measurement data),

one wants to find the causes, the model, or (parts of) both of them. The problems of

determining causes or missing information in these situations are called inverse problems.

An outstanding feature of inverse problems is that they are often not well-posed,

meaning that their solutions may not be unique, may be sensitive with respect to changes

in data, or may not even exist. Dealing with inverse problems hence requires special

techniques, called regularizations.

3.1.1 Mathematical formulation

An inverse problem of finding the unknown u ∈ X from some observation y ∈ Y can be

written in the form

y = G(u), (3.1)

where

• (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) are Banach spaces

• u ∈ X, the unknown parameters (input)

• y ∈ Y , the observation or measurement data (output)

• G : X → Y , the parameter-to-observation map.

The choice of Banach spaces for the input and output is due to the fact that they are

natural spaces for most of problems in mathematical physics. In practice, or for ana-

lytical convenience, one may work only with certain subspaces of Banach spaces where

some desired structures (such as separability) are required. The mapping G is typically a

composition of the evaluation operator O and the forward map S, that is

G(u) = O ◦ S(u).

Considering a model involving some partial differential equation (PDE) for example, the

parameter-to-observation map then evaluates the value of the solution of the PDE, which

is in turn a result of the forward map, defined as the mapping of parameters to the solution

of the PDE.

If one takes into account the effect of noise then the problem can be written as

y = G(u) + ξ, (3.2)
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where ξ denotes the noise. The correct value of noise is typically not known, but some

statistical information may be given. The noise is present in the problem due to various

reasons, but it is mostly contributed from the following three factors.

• Device errors. In practice, the evaluation process is performed using some device.

Therefore, the errors caused by imperfect devices are almost always unavoidable.

These errors contribute to the measurement noise.

• Numerical errors. Most PDEs cannot be solved exactly. If the equations governing

the model can be solved numerically, then the numerical errors can be considered as

the measurement noise.

• Modelling errors. Many physical phenomena are complex. Mathematical modelling

of these phenomena is often simplified or approximated to more simple ones to

make them easier to deal with. Therefore, there are errors caused by the imperfect

modelling of the underlying physical process of mapping u to y.

The presence of noise also motivates the statistical consideration of inverse problems with

a Bayesian perspective. We will discuss this approach in detail in Section 3.2.

3.1.2 Ill-posedness

Mathematical modelling of physical problems sometimes can be a tough task. It is often

desirable for the resulting models to satisfy certain requirements. For instance, one requires

that the model is solvable, if it represents the correct physical phenomenon and if it is

stable with respect to changes in the model parameters. In other words, for any model of

a physical phenomenon, one asks the following questions

• Existence: does there exist at least one solution?

• Uniqueness: is there only one solution?

• Stability: does the solutions depend continuously on the initial data?

If the answers are positive for all three questions, one says that the model is well-posed, a

term coined by Jacques Hadamard [Had02] at the beginning of the last century. According

to Hadamard, a mathematical model of any physically relevant problem should be well-

posed to be considered meaningful. Many forward PDE problems are well-posed1. This

well-posedness concept is also adapted to inverse problems.

1It is also assumed that the counterpart forward problem which the considered inverse problem is based

on is well-posed.
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Definition 3.1.1. The inverse problem (3.2) is said to be well-posed if it satisfies the

following three conditions

• for each y ∈ Y , there exists u ∈ X, called a solution, for which the relation (3.2)

holds;

• there is only one solution; and

• the solution is stable with respect to changes in the data: if yn = G(un) + ξ and

yn → y then un → u (in appropriate topologies).

If at least one of these conditions is not satisfied, the problem is called ill-posed.

In contrast with forward problems, inverse problems are typically ill-posed, as the

following example shows.

Example 3.1.2. Consider a linear inverse problem of finding u from y where

y = Ku (3.3)

for some linear operator K. The solution u may be formally given as

u = K−1y.

This inversion may be infeasible since

• K−1 may be unbounded. This happens for instance, when K is a compact operator

and X is infinite-dimensional (see, e.g, [Bre10]).

• y may not belong to Im(K) when noise is taken into account, that is, when the data

is given as y = Ku+ ξ.

Therefore, this inversion in general fails to produce any sort of reasonable solution of the

parameter u. The situation is even worse in most mathematical physics models, when K is

nonlinear (or highly nonlinear, where K is given implicitly via a forward nonlinear PDE),

this inversion task is simply impossible.

This example, in fact, brings out two types of ill-posedness of inverse problems that

one encounters in practice. The first one is when there is not enough data to reflect all

aspects of the parameters. This is especially the case when the unknown is parameters

of some PDE, hence typically lies in infinite-dimensional spaces, while data obtained by

measurement devices is mostly finite. This leads to the inverse problem being highly

underdetermined.
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The other type of ill-posedness is when the parameter-to-observation map G is not

surjective, and the data is perturbed by noise. Note that specific instances of noise are

largely unknown and one cannot just subtract it.

Several techniques have been developed to overcome difficulties due to ill-posedness

and provide reasonable solutions to inverse problems. In the next section, we review some

of the most used techniques.

3.1.3 Classical regularization approach

Basics of regularizations

By solving an inverse problem, one aims to find u ∈ X such that the forward map given

via the forward problem best fits the observation data, that is, find u such that it solves

the minimization problem

u = arg min
v∈X

J(v), J(v) =
1

2
‖y − G(v)‖2Y . (3.4)

For Y = Rn with Euclidean norm, this is known as the least squares method . However,

if infimizing sequences do not converge in X, then there does not exist a minimizer to

the problem (3.4). Also, there might be more than one minimizers to (3.4), leading to

multiple solutions to the inverse problem. To get round this, one needs some regularization

techniques.

The general idea of regularization is, instead of trying to solve (3.1) exactly, one solves a

“nearby problem” that has more desirable properties. To illustrate this, consider the linear

inverse problem (3.3) where the inverse operator K−1 is unbounded. A regularization

strategy is to introduce an approximation Rα of the inverse operator K−1 where

Rα : Y → X, α > 0,

such that

lim
α→0

RαKu = u, for all u ∈ X. (3.5)

In other words, the operator RαK converges pointwise to the identity operator. Note

however that, we do not expect this convergence to be uniform, since otherwise K−1 will

be a bounded operator.

So far in this strategy, we have not taken into account the influence of noise. When

incorporating noise, the data y is only known up to an error of, say, δ > 0. That is, the

measured data is given as yδ where

‖y − yδ‖Y ≤ δ.
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The approximate solution uδ of u solves the perturbed equation

yδ = Kuδ.

Consider the total error

‖Rαyδ − u‖X ≤ ‖Rαyδ −Rαy‖X + ‖Rαy − u‖X

≤ δ‖Rα‖L(Y,X) + ‖RαKu− u‖X .
(3.6)

As α tends to zero, the second term in (3.6) tends to zero thanks to (3.5). The first term

is, however, not bounded. Indeed, if there exists c > 0 such that ‖Rα‖L(Y,X) ≤ c for all

α > 0, then since Rαy → K−1y for all y ∈ R(K) (the range of K) and ‖Rαy‖X ≤ c‖y‖Y we

conclude that ‖K−1y‖X ≤ c‖y‖Y for every y ∈ R(K), a contradiction to the assumption

that K−1 is unbounded. Therefore, to find a best fit solution to the inverse problem, one

needs to keep both these terms minimal. In other words, one has to minimize the following

sum

δ‖Rα‖L(Y,X) + ‖RαKu− u‖X ,

in terms of α.

For more detailed discussions, in particular, how to carry the minimization procedures

and how to construct regularization operators, we refer to [EHN96, Kir11], see also the

notes [Bal12]. For other considerations and techniques, especially for inverse problems in

PDEs, see [Isa06, FSU19].

Tikhonov regularization

One of the most used regularization techniques is the so-called Tikhonov regularization

where one considers the following minimization problem

uα = arg min
v

Jα(u), Jα(u) = ‖y − G(v)‖Y + α‖v‖X . (3.7)

Compared to the original least squares minimization problem (3.4), there is a newly added

term α‖v‖X , which is called the penalty term. The constant α is referred to as the

regularization parameter .

The penalty term induces some form of prior information to the inverse problem. The

following theorem ensures the well-posedness of the Tikhonov regularization.

Theorem 3.1.3. Let K : X → Y be a linear and bounded operator and α > 0. Then the

Tikhonov functional Jα has a unique minimizer uα ∈ X.

We refer to [EHN96, Vog02] for a proof of this result and for other discussions.
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3.2 Bayesian approach to inverse problems

Consider the inverse problem of finding u from perturbed noise y, given by the following

relation

y = G(u) + ξ. (3.8)

We assume that the noise ξ is observable, meaning that its probability distribution is

known. The Bayesian approach to inverse problems initiates with the observation that,

since the data y is perturbed by the noise ξ, which is a random variable, it is then natural

to treat the unknown u in (3.8) as a random variable too. In this view, the relation (3.8)

defines a conditioned random variable y|u (y given u). Hence, by this logic, the conditioned

random variable u|y (u given y) should provide some form of a “solution” to the inverse

problem (3.8).

The starting point of the Bayesian approach, in finite dimension, is the following usual

Bayes’ theorem for conditional probability

P(u|y) =
P(y|u)P(u)

P(y)

∝ P(y|u)P(u),

(3.9)

where ∝ denotes the proportionality, if P(y) > 0. In this formula, P(y|u) is the likelihood

of data which indicates the relationship between the data y and the forward model G(u).

The probability P(u) is the prior, it represents the belief of which values that u is more

likely to take (before the data y is taken into account). The formula (3.9) expresses that

the conditional distribution of u given y, usually called the posterior, can be computed if

some knowledge of the prior and the likelihood is known. An equivalent form of (3.9) for

densities reads

ρ(u|y) =
ρ(y|u)ρ(u)

ρ(y)

∝ ρ(y|u)ρ(u).

(3.10)

Note that this formula only makes sense when the normalization constant ρ(y), which may

be expressed as

ρ(y) =

∫
X
ρ(y|u)ρ(u)du,

is positive.

In many inverse problems, in particular the ones involving PDEs, the unknown u

belongs to some function space of infinite dimension. The above formulae then need to

be adapted to an infinite-dimensional setting, where densities in normal sense (i.e., with

respect to the Lebesgue measure) do not exist. We therefore characterise the prior ρ(u) and
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posterior ρ(u|y) as probability measures, µ0 and µy, respectively. And the link between

them may be given via Radon-Nikodym theorem

dµy

dµ0
(u) =

1

Z(y)
exp (−Φ(u; y)) , (3.11)

with some function, so-called potential, Φ and the normalization constant given by

Z(y) =

∫
X

exp
(
− Φ(u; y)

)
µ0(du). (3.12)

To know how the Bayesian approach works in the context of inverse problems, we will

have to answer the following questions

(1) Is the posterior µy well-defined?

(2) Is the posterior µy stable under small changes in data y?

Positive answers to these two questions would give some form of well-posedness for solu-

tions of Bayesian inverse problems. Moreover, since we are interested in inverse problems

involving PDEs, it is natural to ask a third question

(3) Is the posterior µy stable under disturbances in the forward model?

In the next two sections, we will present the ideas of Bayesian inversion rigorously in a

general setting and discuss these questions in detail. Before going forward, we need some

notion of distance on measure spaces.

Definition 3.2.1. Let µ and µ′ be two probability measures on (X,B(X)) that are both

absolutely continuous with respect to µ0. Then

dHell(µ, µ
′) =

√√√√1

2

∫
X

(√
dµ

dµ0
−

√
dµ′

dµ0

)2

dµ0,

defines a distance between two measures µ and µ′ and is called the Hellinger distance.

For the properties of Hellinger distance and its relation to other measures, we refer to

[DS16, PC19, GS02].

3.2.1 Well-posedness

Assume that the unknown u of the inverse problem (3.8) lies in a set X and the data y

is given in Y , with X,Y Banach spaces. We suppose that a prior probability measure

µ0 on (X,B(X)) is given and ξ ∼ Q0 with Q0 known. We assume also that ξ and u are
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independent with y|u ∼ Qu which for some potential Φ : X × Y → R (obtained through

equation (3.8)) satisfies
dQu

dQ0
= exp(−Φ(u; y)).

Let the measure ν be defined by ν(du,dy) := µ0(du)Qu(dy). Then we have the following

version of Bayes’ theorem.

Theorem 3.2.2 ([DS11]). Assume that Φ : X × Y → R is µ0 ⊗Q0 measurable and that,

for y Q0-a.s.,

Z(y) :=

∫
X

exp
(
− Φ(u; y)

)
µ0(du) ∈ (0,∞). (3.13)

Then the conditional distribution of u|y exists under ν, and is denoted by µy. Furthermore

µy � µ0 and, for y ∈ Y , it holds ν-a.s.,

dµy

dµ0
(u) =

1

Z(y)
exp

(
− Φ(u; y)

)
. (3.14)

We refer to [DS16] for a proof of this theorem and related discussions. In the following,

it is showed that the finiteness and positivity condition (3.13) of the normalization constant

Z are satisfied for some general conditions of Φ. Under these conditions, the posterior will

also be stable.

Assumption 3.2.3. The function Φ : X×Y → R, for X,Y are separable Banach spaces,

satisfies the following properties.

(i) For every y ∈ Y , Φ(·, y) is a measurable function with respect to u.

(ii) For every r > 0, there exists a constant M(r) such that

Φ(u; y) ≤M(r), ∀u ∈ BX(0, r), ∀y ∈ BY (0, r).

(iii) For every r > 0, there exists a function M1(r, ·) : R+ → R+ such that

Φ(u; y) ≥ −M1(r, ‖u‖X), ∀u ∈ X, ∀y ∈ BY (0, r).

(iv) For every r > 0, there exists a function M2(r, ·) : R+ → R+ such that

|Φ(u; y1)− Φ(u; y2)| ≤M2(r, ‖u‖X)‖y1 − y2‖Y , ∀u ∈ X, ∀y1, y2 ∈ BY (0, r).

Theorem 3.2.4 (Well-definedness). Let Assumption 3.2.3 holds. Assume that µ0 is a

probability prior measure on (X,B(X)) and for each r > 0,

exp (M1(r, ‖u‖X)) ∈ L1
µ0(X;R). (3.15)

Then, for every y ∈ Y , Z(y) given by (3.12) is positive and finite, and µy given by (3.11)

defines a posterior probability measure on X.
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Proof. For fixed y ∈ Y , we need to show that 0 < Z(y) < ∞. The boundedness from

above is followed from Assumption 3.2.3 (iii) and (3.15),

Z(y) ≤
∫
X

exp (M1(r, ‖u‖X))µ0(du) <∞.

To prove the positivity of Z, let r > 0 and using Assumption 3.2.3 (ii), we see that

Z(y) ≥
∫
BX(0,r)

exp(−Φ(u; y))µ0(du)

≥
∫
BX(0,r)

exp(−M(r))µ0(du)

= exp(−M(r))µ0(BX(0, r)),

which is positive provided that µ0(BX(0, r)) > 0. Since µ0(X) = 1, there must be some

r > 0 large enough such that µ0(BX(0, r)) > 0. This completes the proof.

Theorem 3.2.5 (Stability). Let Assumption 3.2.3 holds. Assume that µ0 is a probability

prior measure on (X,B(X)) and for each r > 0,

exp (M1(r, ‖u‖X))
(
1 +M2(r, ‖u‖X)2

)
∈ L1

µ0(X;R). (3.16)

Then, for all y, y′ ∈ BY (0, r), there exists C = C(r) such that

dHell(µ
y, µy

′
) ≤ C‖y − y′‖Y .

Sketch of Proof. The condition (3.16) implies the condition (3.15), thus implies the well-

definedness of µy and µy
′
. It follows from the local Lipschitz of the exponential function,

Assumption 3.2.3 and (3.16) that

|Z(y)− Z(y′)| ≤
∫
X

exp (M1(r, ‖u‖X)) |Φ(u; y)− Φ(u; y′)|µ0(du)

≤ C‖y − y′‖Y .

Now from the definition of Hellinger distance(
dHell(µ

y, µy
′
)
)2
≤ I1 + I2,

where, by using similar arguments,

I1 =
1

Z(y)

∫
X

(
exp

(
−Φ(u; y)

2

)
− exp

(
−Φ(u; y′)

2

))2

µ0(du)

≤ 1

4Z(y)

∫
X

exp (M1(r, ‖u‖X)) |Φ(u; y)− Φ(u; y′)|2µ0(du)

≤ C‖y − y′‖2Y ,
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and

I2 =
∣∣∣Z(y)−

1
2 − Z(y′)−

1
2

∣∣∣2 ∫
X

exp
(
−Φ(u; y′)

)
µ0(du)

≤ C|Z(y)− Z(y′)|2 ≤ C‖y − y′‖2Y ,

which completes the proof.

The assumption leading to the well-posedness results, Assumption 3.2.3, is proposed in

[CDRS09, Stu10, CDS10] in a weaker version than the one above, where Φ is assumed to

be Lipschitz continuous with respect to u. It is upgraded to continuity in [DS16]. Looking

closely at the proof in [DS16], we can see that only the measurability (of Φ in u) is enough

to derive the same results, as stated and proved above (see also [Sul17]).

When the data space Y is finite-dimensional and the observational noise ξ is non-

degenerate Gaussian, then µy is continuous in y under very mild conditions.

Theorem 3.2.6 ([Lat20]). Let Y := RJ , ξ have Gaussian distribution N (0,Γ) with Γ

symmetric positive definite, and G : X → R be µ0-measurable. Then for any y ∈ Y and

{yk} ⊂ Y with yk → y as k →∞, we have

dHell(µ
y, µy

k
)→ 0 as k →∞.

This result establishes a so-called continuity well-posedness (in contrast to the above

Lipschitz well-posedness) property of the posterior with respect to data.

3.2.2 Approximations

We now investigate the stability property of the posterior with respect to the forward

map. Typically, this forward map is defined as a solution map of a PDE. In practice,

solving a PDE normally carries some sort of approximations. The question of whether the

perturbed posterior arising from the approximation of the forward model converges to the

posterior given by the exact one is then importantly necessary to study. Let µ (we drop

the variable y since it does not have any explicit role in this task) be the solution of the

Bayesian inverse problem (3.8), which is given by

dµ

dµ0
(u) =

1

Z
exp(−Φ(u)), (3.17)

Z =

∫
X

exp(−Φ(u))µ0(du). (3.18)

Let µN be the measure defined by

dµN

dµ0
(u) =

1

ZN
exp(−ΦN (u)), (3.19)
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ZN =

∫
X

exp(−ΦN (u))µ0(du), (3.20)

where ΦN (u) is some approximation of Φ(u). We need some general assumptions on this

approximation.

Assumption 3.2.7. Let Φ and ΦN satisfy Assumption 3.2.3 and assume that there exists

a measurable function M3 : R+ → R+ such that

|Φ(u)− ΦN (u)| ≤M3(‖u‖X)ψ(N),

for some ψ(N)→ 0 as N →∞.

Theorem 3.2.8 (Approximation). Let Assumption 3.2.7 holds. Assume that µ0 is a

probability prior measure on (X,B(X)) and

exp (M1(‖u‖X))
(
1 +M3(‖u‖X)2

)
∈ L1

µ0(X;R). (3.21)

Then there exists C > 0 such that

dHell(µ, µ
N ) ≤ Cψ(N).

The proof of Theorem 3.2.8 is very similar to the one of Theorem 3.2.5 and can be

found in [DS16].

If the data is finite and the noise is Gaussian, ξ ∼ N (0,Γ), then the potential Φ takes

the form

Φ(u) =
1

2
|y − G(u)|2Γ. (3.22)

We define ΦN as

ΦN (u) :=
1

2
|y − GN (u)|2Γ. (3.23)

where GN (u) is some approximation of G(u). Then the approximation GN (u) of G(u) may

translate to the approximation µN of µ, as the following consequence of Theorem 3.2.8

shows.

Corollary 3.2.9. Assume that there exists a measurable function M(·) : R+ → R+ such

that G(u),GN (u) : X → RJ satisfy the following condition for all u ∈ X,

|G(u)− GN (u)| ≤M(‖u‖X)ψ(N), (3.24)

where ψ(N) → 0 as N → ∞. Suppose in addition that µ0 is a probability measure on X

such that

exp (M(‖u‖X)) ∈ L1
µ0(X;R).
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Then, there exists C > 0 such that

dHell(µ, µ
N ) ≤ Cψ(N),

for all N sufficiently large.

3.3 Summary and notes

This chapter introduces some fundamental notions of inverse problems and presents the

basics of regularisation methods in solving inverse problems with the focus on the Bayesian

approach. We outline the main points of the well-posedness and approximation theories for

solutions of the Bayesian approach. See [DLSV13] for the connection between the Bayesian

approach and Tikhonov regularization (in particular, the Maximum A Posteriori (MAP)

of the solution of the Bayesian approach forms a minimization problem). The Bayesian

framework allows us to obtain much more information. However, the computational cost

for the Bayesian approach is more expensive. See [Bal12] for further discussions.

The origin of regularization methods dates back to the forties, starting with the pi-

oneering work of Tikhonov [Tik43]. It was subsequently developed further during the

sixties, mostly by the Soviet community (see, e.g., [Iva62, Tik63, Tik66, Bak67]). These

methods were then described systematically in the book [TA77] and later on in [EHN96].

For a recent review, we refer to [BB18]. The presentation of regularisation methods here

is adapted from [Kir11].

The Bayesian inverse problems for functions was first described for the linear case in

[Fra70], followed by [Man84] and [LPS89]. The approach was developed further by the

Finnish School, see for instance, [LS04], [KS07], [Las07], [LSS09]. In the last ten years, this

approach was developed systematically and studied intensively in the general setting of

Banach spaces, started with [CDRS09], where the authors proposed an infinite-dimensional

framework to Bayesian inverse problems, with applications in fluid mechanics. The well-

posedness theory of Bayesian inverse problems under numerical approximations of the

forward model was studied in [CDS10]. See also [Lat20], [Spr20], [ST18] and [Sul17] for

recent developments in the well-posedness and approximation theory. The applications of

the Bayesian approach to inverse problems are vast, we mention a sample of recent works

[BTGMS13, ILS14, ILS16, DIS17, GTSA17, JYPG18, AN19, SW20].

For more comprehensive details and background information on the Bayesian approach

for inverse problems, we refer to the book by Kaipio and Somersalo [KS05], the survey by

Stuart [Stu10] and the notes by Dashti and Stuart [DS16].
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Chapter 4

Filippov theory for discontinuous

differential equations

In this chapter, we present the fundamentals of differential equations whose right-hand

sides are discontinuous functions. This type of equations arises from a large number of ap-

plications in mechanics, the automatic control theory and dynamical system [AVK66]. We

consider two common scenarios of the discontinuities. The first is for the right-hand side

function that is discontinuous in t but is continuous in x, where the notion of Carathéodory

solutions is introduced. The second allows the function on the right-hand side to be dis-

continuous in both x and t, where we present Filippov theory [Fil88]. Starting in Section

4.1 with a few typical examples, these theories will be described in Section 4.2 and 4.3. We

first provide appropriate definitions of solutions. We then discuss the existence theory and

some sufficient conditions for the uniqueness for both Carathéodory solutions and Filip-

pov solutions. We also mention some classical results in the theory of ordinary differential

equations which still hold true for equations with discontinuous right-hand sides.

4.1 Equations with discontinuous right-hand sides

Consider the initial value problem

dx

dt
= f(x, t), (4.1)

x(t0) = x0. (4.2)

When f is a Lipschitz continuous function of x uniformly in t, the Cauchy-Lipschitz theory

(see, for instance, [Tes12]) implies the existence and uniqueness of solutions. However,

in applications, there are situations where one encounters differential equations with a
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discontinuous function on the right-hand side. New definitions of solutions are required

and justified for these applications. Below we consider a few examples, the first two are

classical and taken from [Fil88], the third example appears in traffic flow model and will

be studied in great detail later on.

Example 4.1.1. Consider the following equation

ẋ(t) = sgn(t).

The function on the right-hand side f(x, t) = sgn(t) is continuous in x and discontinuous

in t. A resonable solution may be given as x(t) = |t|+ c, however x is not differentiable at

the point t = 0. In the (x, t) plane, the corresponding vector field is joining the line t = 0

from the left and leaving it from the other side.

Example 4.1.2. Consider now the equation

ẋ(t) = 1− 2sgn(x(t)).

The function on the right-hand side f(x, t) = 1 − 2sgn(x) is discontinuous in x. For

x < 0, ẋ = 3 and a solution is given by x(t) = 3t + c. For x > 0, a solution is given by

x(t) = −t+ c. When t increases, each solution reaches the line x = 0. It does not indicate

how the solution will continue however. Indeed, because of the direction field, if x > 0

then ẋ < 0 and the solution tends to go down, but once x < 0, ẋ > 0 and the solution has

to go up. Thus, the solution cannot leave the line x = 0. However, the solution cannot

stay along this line either, since otherwise x(t) = 0 and this solution does not satisfy the

equation. This renders some difficulty in expressing the solution further in time if it is

understood in the classical sense.

Example 4.1.3. Consider a practical example when one wants to observe the trajectory

of a car travelling with speed v on the highway. Its trajectory satisfies the equation

ẋ(t) = v(x(t), t).

The function on the right-hand side is expected to be discontinuous due to shocks (which

may be seen in the presence of traffic jams or traffic lights) as discussed in Chapter 2, in

both x and t. The set of discontinuities consists of (at most countable) shock curves and

(also at most countable) irregular points which are formed by the collision of shock curves.

In the next two sections, we will consider different concepts of “solutions” which cover

the above situations, first when the function f is discontinuous in t (Carathéodory solu-

tion), and then when f is discontinuous in both x and t (Filippov solution), with emphasis

on the latter.
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4.2 Carathéodory differential equations

Definition 4.2.1. The function f is said to satisfy the Carathéodory conditions in the

domain D if in this domain

• f(x, t) is continuous in x for almost all t;

• f(x, t) is measurable in t for every x; and

• |f(x, t)| ≤ m(t) with some locally integrable function m.

The equation ẋ = f(x, t) (where x is a scalar or a vector) is called a Carathéodory equation

if f satisfies the Carathéodory conditions.

Definition 4.2.2 (Carathéodory solution). A function x(t) defined on an (open or closed)

interval I is called a solution of the Carathéodory equation if x(t) is absolutely continuous

on each closed interval in I and satisfies this equation almost everywhere. In other words,

it solves

x(t) = x(t0) +

∫ t

t0

f(x(s), s)ds,

for some t0 ∈ I.

Theorem 4.2.3. Let the function f satisfy the Carathéodory conditions in the domain D

with (x0, t0) ∈ D. Then there exists a Carathéodory solution of the problem (4.1)-(4.2).

Moreover, if there exists an integrable function l(t) such that for any (x, t) and (y, t)

in D,

|f(x, t)− f(y, t)| ≤ l(t)|x− y|, (4.3)

then (4.1)-(4.2) has exactly one solution in the domain D.

Proof. The existence follows from a standard iteration with the help of Arzelà-Ascoli’s

theorem. For details we refer to [Fil88, Theorem 1, §1]. For the uniqueness, since the

technique is quite useful and will be used later we present it here. Assume that x(t) and

y(t) are solutions of the problem (4.1)-(4.2). Let z(t) = x(t)− y(t), then for t ≥ t0,

1

2

d|z(t)|2

dt
= z(t) · dz(t)

dt
= (x− y) · (f(x, t)− f(y, t))

≤ |x− y| · |f(x, t)− f(y, t)|

≤ l(t)|x− y|2,

almost everywhere, thanks to (4.3). This implies that

d

dt

(
|z(t)|2 exp

(
−2

∫ t

t0

l(s)ds

))
≤ 0.
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Together with z(t0) = x(t0)− y(t0) = 0, it follows that z(t) = 0 for t ≥ t0. The case t ≤ t0

is proved by the substitution of −t for t.

Many properties of solutions of equations with continuous right-hand sides continue

to hold for the case of Carathéodory equations. In particular, the existence theorem can

be extended to a maximal interval (up to the boundary of the domain), and the uniform

limit of a sequence of solutions is a solution to the same Carathéodory equation (see [Fil88,

Chapter 1]).

4.3 Filippov solution: Existence and uniqueness

In this section, we consider the differential equation (4.1) where the right-hand side is

allowed to be discontinuous in both t and x. The definition of Carathéodory solution is

no longer applicable for most equations of this type for which the right-hand sides are

discontinuous on a smooth curve or surface (see Example 4.1.2, where the right-hand side

function is discontinuous on the line x(t) = 0). It is then necessary to have a general

notion of solutions that are flexible enough to cover these situations. At the same time

this general notion must also be restrictive enough so that the general solutions coincide

with the usual ones when the equation becomes classical, i.e., when the right-hand side is

Lipschitz continuous.

Definition 4.3.1 (Filippov solution). Let a function f in a domain D be discontinuous

on a set M of measure zero. A solution in the sense of Filippov (or a Filippov solution)

of (4.1) is an absolutely continuous function x(t) defined on an interval I such that the

following differential inclusion

ẋ(t) ∈ F (x, t), (4.4)

holds almost everywhere on I, where F is a set-valued function defined as follows

• if the point (x, t) is a continuity point of the function f , then F (x, t) ≡ {f(x, t)};

• if the point (x, t) is a discontinuity point of the function f , then F (x, t) is the smallest

convex closed set containing all the limit values of the function f(x∗, t) for (x∗, t) /∈

M,x∗ → x, t = const.

It is easy to see that the set F (x, t) defined above is upper semicontinuous in x. The

set of the limit values of f(x∗, t) may be replaced, so that F is also upper semicontinuous

in t, by the set of the limit values of f(x∗, t∗) for (x∗, t∗) /∈ M , x∗ → x, t∗ → t. It turns
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out however that this definition is equivalent to the one in Definition 4.3.1 in a wide class

of equations with piecewise continuous right-hand sides [Fil88, §6].

If the function f is discontinuous on a smooth curve S given by the equation x = χ(t)

such that S separates the domain into two domain D− and D+, then at any point (x, t)

on this curve F (x, t) is simply given as

F (x, t) =


[f(x−, t), f(x+, t)] if f(x−, t) < f(x+, t)

[f(x+, t), f(x−, t)] if f(x−, t) > f(x+, t),

where f(x−, t) = limy∈D−,y→x f(y, t) and f(x+, t) = limy∈D+,y→x f(y, t).

4.3.1 Existence

Definition 4.3.2. We say that F (x, t) satisfies the basic conditions on D if for every

(x, t) in the domain D,

(i) F (x, t) is a nonempty, closed and bounded, convex set; and

(ii) the function F is upper semicontinuous in x, t.

The following existence theory applies to any differential inclusion

ẋ ∈ F (x, t) (4.5)

for some set-valued function F that satisfies the basic conditions and needs not arise from

f (as in Definition 4.3.1).

When dealing with the existence of solutions, one often needs to consider approximate

solutions. For some set K, we denote by Kδ the closed δ-neighbourhood of K, that is,

Kδ :=

{
x : inf

y∈K
|y − x| ≤ δ

}
.

When K reduces to a point k, the set kδ reduces to the set {x : |x − k| ≤ δ}. Following

this notation we define F (xδ, tδ) to be the set of F (x1, t1) for all x1 ∈ xδ, t1 ∈ tδ. We will

use the following notion of approximate solutions.

Definition 4.3.3. We call y(t) a δ-solution of the inclusion (4.4) if y(t) is absolutely

continuous and almost everywhere,

ẏ(t) ∈ Fδ(y(t), t), Fδ(y, t) := [coF (yδ, tδ)]δ, (4.6)

where coA denotes the smallest convex set containing A.
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The following lemma, whose proof can be found in [Fil88], will be useful in proving

the existence of solutions.

Lemma 4.3.4. Assume that F (x, t) satisfies the basic conditions in D. Let xk(t) be

a uniformly convergent sequence of δk−solutions of the inclusion (4.4) with δk → 0 as

k →∞. Then the limit x(t) = limk→∞ xk(t) is a solution of this inclusion.

Theorem 4.3.5. Assume that F satisfies the basic conditions in D. Then for every

(x0, t0) ∈ D there exists a solution of the problem

ẋ ∈ F (x, t), x(t0) = x0.

Proof. We reproduce the constructive proof given in [Fil88] here. Assume that G is a

closed and bounded set in D that contains (x0, t0) and let M = supG |F (x, t)| < ∞. For

k = 1, 2, . . . , define

tk,i = t0 +
ai

k
, i = 0, 1, . . . , k,

for some small number1 a. We construct a sequence xk as follows

xk(tk,0) = x0,

and on each interval [tk,i, tk,i+1], i = 0, 1, . . . , k − 1,

xk(t) = xk(tk,i) + (t− tk,i)ak,i,

for some ak,i ∈ F (tk,i, xk(tk,i)). It follows from this construction that

|xk(t)− x0| ≤M |t− t0|, tk,i < t ≤ tk,i+1. (4.7)

Obviously, xk(t) is absolutely continuous. Moreover,

ẋk(t) = ak,i ∈ F (tk,i, xk(tk,i)), |t− tk,i| ≤
a

k
, |xk(t)− xk,i| ≤M

a

k
,

hence, xk(t) is a δk−solution of the inclusion (4.5), where

δk = max
{a
k
,M

a

k

}
→ 0, as k →∞.

Now thanks to (4.7) and |ẋk(t)| ≤ M , the sequence {xk(t)} is uniformly bounded and

equicontinuous. The Arzelà-Ascoli theorem assures that there exists a subsequence that

converges to some function x(t), which is also a solution of the inclusion (4.5) thanks to

Lemma 4.3.4. The initial condition x(t0) = x0 is implied from (4.7).

Remark 4.3.6. As in the case of solutions for Carathéodory equations, Filippov solutions

can be extended to the boundary of D, see [Fil88, §7, Theorem 2].
1This is to make sure the we do not go out of the (open) domain D!
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4.3.2 Uniqueness

Consider the equation

ẋ = f(x, t) (4.8)

with some discontinuous function f on the domain D.

Definition 4.3.7. We say that the right uniqueness for (4.8) holds on D if at each point

(x0, t0) ∈ D, there exists t1 > t0 (t1 can be ∞) such that each two solutions of (4.8)

satisfying the condition x(t0) = x0 coincide on [t0, t1).

Theorem 4.3.8. Let a function f in a domain D be discontinuous on a set M of measure

zero. Assume that there exists an integrable function l(t) such that for almost all points

(x, t) and (y, t) in D we have |f(x, t)| ≤ l(t) and

(x− y) · (f(x, t)− f(y, t)) ≤ l(t)|x− y|2. (4.9)

Then (4.8) has right uniqueness in the domain D, where solutions are understood in the

sense of Filippov.

Proof. Since (4.9) holds for almost all t, then for those t one has

(x− y) · (v − w) ≤ l(t)|x− y|2,

where v and w are arbitrary values in the sets V and W of the limit values of the function

f(x∗, t) for x∗ → x and of the function f(y∗, t) for y∗ → y, respectively. By taking the

limit it is easy to see that this inequality is also true if one replaces V by coV = F (x, t)

and then W by coW = F (y, t). Now for any two Filippov solutions x(t) and y(t) in the

domain D, for almost all t, one has

1

2

d

dt
|x(t)− y(t)|2 = (x(t)− y(t))(ẋ(t)− ẏ(t)) ≤ l(t)|x(t)− y(t)|2.

This implies that

d

dt

(
|x(t)− y(t)|2 exp

(
−2

∫ t

t0

l(s)ds

))
≤ 0.

Therefore, the right uniqueness follows since x(t0) = y(t0). This completes the proof.

Remark 4.3.9. The sufficient condition for uniqueness (4.9) comes naturally in some

applications. For instance, as we see in Chapter 2, this condition is satisfied for f being

given by the entropy solution of scalar conservation laws, thanks to the famous Oleinik

decay estimate (Theorem 2.5.1).
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We will now see that Filippov solutions of (4.8), whether unique or not, depend contin-

uously not only on initial data but also on the right-hand side of the equation or inclusion

in the sense of the following theorem.

Theorem 4.3.10. Let F (x, t) satisfy the basic conditions on the domain D 3 (x0, t0), t0 ∈

[a, b]. Suppose that for t ≥ t0 all Filippov solutions of the problem

ẋ(t) ∈ F (x, t), x(t0) = x0, (4.10)

are defined on [a, b]. Then for any ε > 0, there exists δ > 0 such that for any t∗0 ∈ [a, b],

x∗0 and F ∗(x, t) satisfying

|t∗0 − t0| ≤ δ, |x∗0 − x0| ≤ δ, F ∗(x, t) ⊂ [coF (xδ, tδ)]δ, (4.11)

and the basic conditions for every (x, t) in D, each solution of the problem

ẋ∗ ∈ F ∗(x∗, t), x∗(t∗0) = x∗0, (4.12)

exists on [a, b] and differs from some certain solution of (4.10) by not more than ε.

It follows from this theorem that if the uniqueness holds for (4.8) then the solution

depends continuously on the initial data and the right-hand side of the inclusion.

Corollary 4.3.11. Let F (x, t) satisfy the basic conditions on the domain D 3 (x0, t0), t0 ∈

[a, b]. Suppose that for t ≥ t0 the problem (4.10) has a unique Filippov solution on [t0, b].

Then for any ε > 0, there exists δ > 0 such that for any t∗0 ∈ [a, b], x∗0 and F ∗(x, t)

satisfying (4.11) and the basic conditions in D each solution of the problem (4.12) on

[t0, b] exists and differs from x(t) by less than ε.

Sketch of Proof of Theorem 4.3.10. By contradiction arguments. Assume that for some

relatively small ε > 0 there exists a sequence of solutions {xi(t)}i of (4.12) for which the

condition (4.11) is satisfied for any sequence δi → 0, and the solution xi(t), defined on

[ai, bi], either does not extend to the whole [a, b] or

max
a≤t≤b

|xi(t)− x(t)| > ε, (4.13)

for each solution x(t) of (4.10). Now choose an appropriate subsequence {xik} defined on

[aik , bik ] such that (aik , xi(aik))→ (ā1, x̄1), (bik , xi(bik))→ (b̄2, x̄2). Then it can be shown

that, up to a subsequence, xik(t) converges uniformly to x(t) defined on [ā1, b̄2] ⊃ [a, b],

where again x(t) can be shown to be the solution of the problem (4.10). But this is not

possible because of (4.13).



46

4.4 Summary and notes

This chapter briefly introduces two notions of solutions for ordinary differential equations

with discontinuous right-hand sides and their well-posedness in different settings. Our

presentation here is adapted from [Fil88]. We somewhat simplified the theory and repro-

duced some key proofs, which are either important on their own or will be useful later on

in the thesis.

The theory of Carathéodory solutions is also treated thoroughly in the classical book

[CL55]. Note that Filippov’s theory only allows discontinuities in the derivatives but not

in the state itself. When discontinuities are allowed in the state, the notion of differential

inclusion is extended to the so-called measure differential inclusion, see [Ste11] and recent

review [BT20].
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Chapter 5

Particle trajectories for scalar

conservation laws

Let v be the unique entropy solution of the scalar conservation law

∂tv + ∂xf(v) = 0, (5.1)

with initial data v0(·) = v(·, 0) ∈ [−M,M ]. We assume that the flux function f is Lips-

chitz continuous and is genuinely nonlinear , that is, f is either strictly convex or strictly

concave1, on [−M,M ].

In the equation (5.1), the variable of interest v, given as a function of position x and

time t, represents the conserved quantity such as density field, velocity field, pressure,

temperature and energy, or a combination of these quantities.

In this chapter, we study the conservation law (5.1) from a different point of view. We

assume that the physical system that equation (5.1) describes is comprised of particles

moving with the flow field. Now instead of looking at v, we study the trajectories of these

particles2. Let us consider a single particle starting at t0 from a point x0. Denote by z(t)

its position at time t (and, by abuse of language, we will also denote the particle itself by

z). In the general model, the velocity field of the flow is not necessarily v but a function

w(v) of v. Then z satisfies the following equation

ż(t) = w(v(z(t), t)), (5.2)

since both sides refer to the velocity of the particle at time t. We will assume the that the

function w satisfies the following assumption.

1f ′′ 6= 0 if f is differentiable.
2In a similar context in fluid mechanics, this is often called the Lagrangian representation of the flow

field.
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Assumption 5.0.1. The velocity field w is a bounded and continuous function of v which

is non-increasing if f is strictly concave, and non-decreasing if f is strictly convex.

This assumption is satisfied, in particular, for the traffic flow model (see Section 2.1.2)

which will be studied in great detail later on. In that model v represents the density

of cars, where a typical example of the velocity of the car flow w is given by w(v) =

wmax(1− v/vmax) where wmax and vmax denote the maximum value of car speed and car

density, respectively (see the discussions in Section 5.2.1).

The equation (5.2) can be viewed as an ODE of z(t). If we take the initial position x0

of the particle into account then we have the following Cauchy initial data to (5.2),

z(t0) = x0. (5.3)

We note however that, since v is a solution of the conservation law (5.1), the function

α(x, t) := w(v(x, t)) on the right-hand side of the ODE (5.2) might be discontinuous in

both x and t, hence the Cauchy–Lipschitz theory for ODEs does not apply. Therefore more

attention should be paid to define the trajectory z as a solution of (5.2) in an appropriate

way. Here we use the definition of solution in the sense of Filippov [Fil88], detailed in

Chapter 4.

It is worth noting that, the particle trajectories theory that we consider in this work

differs from the theory of generalized characteristics developed by Dafermos [Daf77], even

though both approaches use Filippov theory to deal with discontinuous right-hand side

differential equations. In particular, there is a fundamental difference in the use of the

term speed (that is, the direction field in classical ODEs). The speed in the generalized

characteristics is either the classical characteristic speed or shock speed, while the speed

in our approach is the speed of the flow itself. See Section 5.3 for more information and

bibliographical notes.

Throughout this chapter, we assume that the flux function f is genuinely nonlinear.

The approximation theory for the particle trajectories when the flux has inflection points

will be considered in our future work.

5.1 Definition and Well-posedness

Definition 5.1.1. A function z : [t0, T ] → R is called a solution to (5.2) in the sense of

Filippov if it is absolutely continuous on [t0, T ] and it satisfies the differential inclusion

ż(t) ∈ [w(v(z(t)±, t)), w(v(z(t)∓, t))], for almost every t ∈ [t0, T ], (5.4)
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for strictly convex and strictly concave flux function f respectively, where v(x±, t) denote

the one-sided limits of v at x.

The traces v(x±, t) exist thanks to a classical result that v(·, t) ∈ BVloc(R) for all t > 0

(even if v0 is merely in L∞, see Theorem 2.5.1). Moreover, it follows from the Lax entropy

condition that

v(x+, t) ≤ v(x−, t),

for almost all t > 0 and all x ∈ R, when f is strictly convex and with the reverse inequality

when f is strictly concave. Hence, bear Assumption 5.0.1 in mind, the right-hand side

of (5.4) makes sense. The following theorem is an easy application of Filippov theory

and ensures the existence and uniqueness of z(t). Similar results were already obtained in

[CM03] and, in a slightly different setting, in [Leg11].

Theorem 5.1.2. Let v be a unique entropy solution of (1.1)-(1.2) with f being strictly

convex or strictly concave. Then for (x0, t0) ∈ R× (0,∞), there exists a unique absolutely

continuous function z : [t0,∞)→ R satisfying (5.2)-(5.3) in the sense of Filippov.

Proof. First consider the convex flux f . Denote

V (z, t) := [w(v(z+, t)), w(v(z−, t))]. (5.5)

The existence of z follows from the Filippov existence theory (see Chapter 4, Theorem

4.3.5).

For the uniqueness, in view of Theorem 4.3.8 and thanks to the Lipschitz property of

w we aim at the following estimate

(x− y)(v(x, t)− v(y, t)) ≤ l(t)(x− y)2, (5.6)

for some l ∈ L1([t0, T ]). But this follows from Oleinik’s decay estimate (see Theorem

2.5.1), that is, there exists C > 0 such that

v(x, t)− v(y, t) ≤ x− y
Ct

, for x > y, t > 0. (5.7)

Indeed, if x > y, the condition (5.6) is satisfied by multiplying both sides of (5.7) by

x − y > 0, with l(t) = 1/(Ct) ∈ L1([t0, T ]) since t0 > 0. The case x < y is easily implied

from (5.7) by swapping the role of x and y. Now if f is concave, by sending x 7→ −x we

obtain a conservation law with convex flux −f , the result then follows.

Remark 5.1.3. By using the technique in the proof of Theorem 5.1.2, one can prove the

following stability-like estimate

|x(t)− y(t)|2 ≤ |x0 − y0|2
(
t

t0

)C
, (5.8)
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for x, y being the Filippov solution of (5.2) with respect to initial positions x0, y0, respec-

tively, where C depends only on f and the Lipschitz constant of w. However, this proof

cannot be used to derive the continuity or stability of the particle trajectories with respect

to changes in the velocity field v itself as a result of the changes in the initial field which we

study here. This is because now the two trajectories do not solve the same ODE anymore.

In the rest of this section, for convenience, we will assume that f is strictly convex and

notice that the analysis applies to the case of concave flux functions as well. The velocity

field w(v) is then, by Assumption 5.0.1, a non-decreasing function of v.

We now turn to investigate the continuity properties of the particle trajectories with

respect to changes in the solution field v. These changes may be a result of perturbations

in the initial field or from any kind of approximations of the forward model incurred in

a computational process. In particular, we consider two of the most popular approxima-

tions used in scalar conservation laws, the front tracking approximation and the vanishing

viscosity approximation. We prove that an approximate particle trajectory arising from

a small perturbation of the initial field (including the front tracking method) converges

to the unique particle trajectory of the original equation. We prove a similar stability

property when the approximation is a result of the vanishing viscosity method, however,

with some restriction on the shock speed.

In this context, it is natural to consider some appropriate notion of approximate solu-

tions. Following Filippov, for some set K, we denote by Kδ the following set

Kδ :=

{
x : inf

y∈K
|y − x| ≤ δ

}
,

that is, a closed δ-neighbourhood of K. For the convenience, we recall the following

definition of δ-solution which has already been introduced in Chapter 4 (Definition 4.3.3)

with now a specific term on the right-hand side.

Definition 5.1.4. We call y(t) a δ-solution of the inclusion (5.4) if y(t) is absolutely

continuous and we have, almost everywhere,

ẏ(t) ∈ V (y(t)δ, t)δ, (5.9)

where V (y, t) := [w(v(y+, t)), w(v(y−, t))].

The following lemma is an immediate consequence of Lemma 4.3.4, and will be of later

use.

Lemma 5.1.5. Let xk(t) be a uniformly convergent sequence of δk−solutions of the in-

clusion (5.4) with δk → 0 as k →∞. Then the limit x(t) = limk→∞ xk(t) is a solution of

this inclusion.



51

We now consider a sequence of exact solutions3 (or front tracking approximations) vN

that converges to the solution v in L1. The Filippov solution to (5.2) with v replaced by

vN is denoted by zN , that is, zN satisfies

żN (t) ∈ [w(vN (zN (t)+, t)), w(vN (zN (t)−, t))], (5.10)

for almost every t. We assign zN (t0) = z(t0) = x0 and study the behavior of zN when N

is large. The following result establishes the uniform convergence for zN .

Theorem 5.1.6. Let vN be a sequence of exact solutions (or front tracking approxima-

tions) of bounded variation converging in L1 to the entropy solution v of (5.1). Let zN be

defined as (5.10). Then zN converges to z uniformly on [t0, T ] for every T > t0 > 0, as

N →∞, where z is the Filippov solution of (5.2).

The proof of this theorem, which can be found below, uses structural stability proper-

ties of the entropy solution established by Bressan-LeFloch [BL99]. Some of the proof tech-

niques are based on [DMG14]. However, in [DMG14] the authors studied Caratheodory

solutions. We adapt the argument to obtain convergence results for Filippov solutions.

The following corollary is an immediate consequence of the above theorem.

Corollary 5.1.7. The particle trajectory z defines a map from the space of initial fields

into C0,

L1 3 v0 7→ z ∈ C0,

which is a continuous map.

Proof of Theorem 5.1.6. We first consider the case where {vN} is a front tracking approx-

imation of v. Fix T > 0. According to (5.2) and the boundedness of vN , and since w

is bounded and continuous by Assumption 5.0.1, there exists a constant C such that, for

any t ∈ [t0, T ],

|żN (t)| ≤ C.

This implies that {zN} is uniformly bounded and also

|zN (t)− zN (s)| ≤ C|t− s|,

which means {zN} is an equicontinuous sequence. By Arzelà-Ascoli theorem, there exists

a subsequence, still denoted by zN , such that

zN (·)→ z(·) in C0([t0, T ]), (5.11)

3i.e., solutions obtained from a sequence of initial data.
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for some Lipschitz continuous function z. We claim that z solves (5.2)-(5.3) in the sense

of Filippov, that is, for a.e.-t,

ż(t) ∈ V (z(t), t) = [w(v(z(t)+, t)), w(v(z(t)−, t))].

Indeed, from the definition of zN we have, for a.e.-t,

żN (t) ∈ V N (zN (t), t) := [w(vN (zN (t)+, t)), w(vN (zN (t)−, t))].

We prove that, for a.e. t ∈ [t0, T ],

vN (zN (t)+, t)→ v+(t) := v(z(t)+, t), as N →∞. (5.12)

Indeed, by extracting a further subsequence if needed, vN converges a.e. to v, there exists

a sequence z̄N ≥ zN (t)+ such that z̄N → z(t)+ and vN (z̄N , t)→ v+(t).

For a.e. t, the point (z(t), t) is either a point of continuity of v or it belongs to a

discontinuity curve (represented by z(t)). For any fixed ε0 > 0, assume that TV (v(·, t) :

(z(t)− δ, z(t) + δ)) ≤ ε0, for some δ > 0. We will show that

TV (vN (·, t) : (z(t)− δ, z(t) + δ)) ≤ 2ε0, (5.13)

for large enough N . Indeed, it is obvious if (z(t), t) is a continuity point of v. If (z(t), t)

belongs to a discontinuity curve of v with strength |v(z(t)+, t) − v(z(t)−, t)| small but

positive, [BL99, Lemma 15. (2)] implies that the shock strength of vN converges to the

shock strength of v, leading to (5.13). Therefore

|vN (zN (t)+, t)− v+(t)| ≤ |vN (zN (t)+, t)− vN (z̄N , t)|+ |vN (z̄N , t)− v+(t)| ≤ 3ε0,

for large enough N . Since ε0 can be chosen to be arbitrary small, it implies (5.12).

If (z(t), t) belongs to a discontinuity curve of v with strenth |v(z(t)+, t)−v(z(t)−, t)| ≥ ε0,

then again, since the shock strength of vN converges to the shock strength of v,

|vN (zN (t)+, t)− vN (zN (t)−, t)| ≥ ε0

2
,

for N large enough. We now proceed as in [BL99, Proof of Lemma 15]) to prove that, for

each ε > 0, there exists δ > 0 such that for all n large enough we get

|vN (x, s)− vN (zN (t)+, t)| < ε, for |s− t| ≤ δ, |x− z(t)| ≤ δ, x > zN (s). (5.14)

Indeed, if (5.14) does not hold, there will be ε > 0 and sequences tN → t, δN → 0 such

that

TV (vN (·, tN ) : (zN (tN ), zN (tN ) + δN )) ≥ ε.
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By the genuine nonlinearity of f , this would generate a uniformly positive amount of

interactions in an arbitrarily small neighbourhood of (z(t), t), against the assumption.

Hence (5.14) holds and therefore, for N large enough,

|vN (zN (t)+, t)− v+(t)| ≤ |vN (zN (t)+, t)− vN (z̄N , t)|+ |vN (z̄N , t)− v+(t)| ≤ 2ε,

which proves (5.12).

Similarly, we will have, for a.e. t ∈ [t0, T ],

vN (zN (t)−, t)→ v(z(t)−, t) as N →∞. (5.15)

From (5.12) and (5.15), for N big enough, there exists a sequence δN → 0 as N →∞ such

that a.e. t ∈ [t0, T ],

żN ∈ [V ((z(t)), t)]δN ,

In other words, zN is a δN -solution of

ż(t) ∈ V (z(t), t). (5.16)

Hence, thanks to (5.11), we have a uniformly convergent sequence of δN -solution zN (t) of

the inclusion (5.16). As a result, z(t) is also a solution of this inclusion, thanks to Lemma

5.1.5.

Finally, since the particle trajectory is unique (Theorem 5.1.2), the whole sequence zN

must converge to z. Indeed, if there exists a subsequence zNl of zN such that

zNl → y 6= z, (strongly) uniformly in [t0, T ],

then, by extracting further subsequences if needed, the same argument as above shows

that y also satisfies (5.2)-(5.3) in the sense of Filippov. This contradicts the conclusion of

Theorem 5.1.2.

The proof is complete for the case of front tracking approximations. For the case where

{vN} is a sequence of exact solutions, one can first approximate each vN with a sequence

of front tracking approximations vN,n, and then use diagonalisation arguments by working

with a suitable subsequence vN,n(N).

We now move on to investigate the approximate particle trajectory arising from the

vanishing viscosity approximation. Consider the parabolic equation

vt + f(v)x = εvxx, (5.17)
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where ε is some small positive number. In many cases, the “artificial” diffusive term added

on the right-hand side may be devoid of any physical reasoning but just for the sake of

analytical or computational convenience.

Since (5.17) is a parabolic equation, the Cauchy problem (5.17) coupled with some

bounded initial value v0 always provides a unique smooth solution vε. Now consider the

trajectory zε of a particle starting from x0 and moving along the flow. Assume that the

speed of the flow w is a smooth function (of vε). Then it follows that

żε(t) = w(vε(zε(t), t)), zε(t0) = x0. (5.18)

We investigate the behaviour of zε when ε is small and compare it with the trajectory z,

given by (in the sense of Filippov)

ż(t) = w(v(z(t), t)), z(t0) = x0, (5.19)

which has been studied in the previous chapter. Our aim is to establish a convergence

result of zε to z as ε goes to 0. We make the following assumption on the shock speed of

the original equation (5.1).

Assumption 5.1.8. The shock speed is always smaller or greater than the speeds of the

left and right flows, that is

s < min{w(vl), w(vr)} or s > max{w(vl), w(vr)},

where s is the shock speed,

s =
f(vl)− f(vr)

vl − vr
,

with vl and vr the left and right limits of v at the shock, and the flow velocity w satisfy

Assumption 5.0.1.

The restriction on the shock speed is fulfilled in some applications such as traffic flow,

see Lemma 5.2.2 and later sections for more information.

The following theorem provides a convergence result for zε.

Theorem 5.1.9. Assume that Assumption 5.1.8 holds at every shock curve of the entropy

solution v to (5.1) with initial data v0 ∈ L1(R) ∩ L∞(R). For each ε > 0, let zε be the

solution of (5.18) where vε is the solution of the viscous scalar conservation law (5.17)

with vε(·, 0) = v0. Then zε(·) converges strongly to the Filippov solution z(·) of (5.19).

Proof. We first observe that, since |żε| ≤ C for some C > 0 due to the smoothness of w

and the boundedness of vε, the Arzelà-Ascoli theorem will ensure that there exists some
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absolutely continuous function z : [t0,∞)→ R such that, up to a subsequence,

zε(·)→ z(·), uniformly in L∞[t0, T ], (5.20)

for every T > t0.

We prove that z is a Filippov solution to (5.19). By Theorem 2.4.7, as ε→ 0, we have

that

vε(x, t)→ v(x, t) boundedly almost everywhere on R× [t0,∞). (5.21)

Now thanks to Assumption 5.1.8, for almost every t ∈ [t0,∞), the point (z(t), t) is a

continuity point of v. This, together with (5.21), ensures that

vε(z(t), t)→ v(z(t), t) boundedly almost everywhere on [t0,∞). (5.22)

Thanks to Lemma 2.4.8,∫
R
|vε(x+ yε, t)− vε(x, t)|dx ≤ w(|yε|)→ 0,

as ε→ 0, uniformly for t ∈ [t0, T ]. Then up to a subsequence

|vε(x+ yε, t)− vε(x, t)| → 0,

as ε → 0, almost everywhere on R × [t0, T ]. Letting x = z(t) where (z(t), t) is a point of

continuity of v and

yε = zε(t)− z(t),

we have, as ε→ 0,

|vε(zε(t), t)− vε(z(t), t)| → 0. (5.23)

Finally by writing

|vε(zε(t), t)− v(z(t), t)| ≤ |vε(zε(t), t)− vε(z(t), t)|+ |vε(z(t), t)− v(z(t), t)|, (5.24)

and using the estimates (5.22) and (5.23), we conclude that

vε(zε(t), t)→ v(z(t), t), almost everywhere in [t0, T ], (5.25)

for every T > t0. This ensures that, for every ε > 0 there exists δε > 0, such that δε → 0

as ε→ 0, and

żε(t) ∈ [v(z(t), t)− δε, v(z(t), t) + δε], (5.26)

almost everywhere. Thanks to (5.21) and Lemma 4.3.4, z is a Filippov solution to (5.19).

Due to the uniqueness of z, the convergence (5.20) applies to the whole sequence. This

completes the proof.
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Remark 5.1.10. We will see in the next section that for the traffic flow described by

equation (5.27), Assumption 5.1.8 is fulfilled for instance if the road is significantly crowded

(see Lemma 5.2.2). When the speed of particles α(z(t), t) := w(v(z(t), t)) has such a

property, then α(x, t) for x ∈ R and t > t0 satisfies the Carathéodory conditions.

5.2 Stability properties of the particle trajectories

5.2.1 The case of traffic flow

We shall focus our attention in this section on the traffic flow. This is one of the most

popular applications of the scalar conservation law in one dimension. We switch to the

traditional notation, ρ, to denote the quantity of interest in this case, which is the density

of cars at given space and time. The velocity of the flow is still denoted by w. The LWR

model for traffic flow is derived under the general assumptions that the vehicle length is

negligible, the road is flat and has only one lane and overtaking is not allowed (see Section

2.1.2). The Cauchy problem now reads

∂tρ+ ∂x(ρw(ρ)) = 0, (5.27)

ρ(x, 0) = ρ0(x). (5.28)

Denote by ρmax and wmax the maximum density and maximum speed of the traffic. We

make the following assumption on the car speed and the flux.

Assumption 5.2.1. The car speed w : [0, ρmax]→ [0, wmax] is a Lipschitz continuous and

strictly decreasing function of ρ with w(ρmax) = 0. The flux f(ρ) = ρw(ρ) is a strictly

concave function.

This assumption is reasonable as we expect the car to go at its maximum speed when

there are only a few cars on the road, and to slow down when the car density increases.

A typical example for w is that w depends linearly on ρ,

w(ρ) = wmax

(
1− ρ

ρmax

)
. (5.29)

By scaling we can assume that wmax = 1, ρmax = 1. Note that if we replace ρ by 1−w(ρ)

in (5.27) and denote v(x, t) := w(ρ(x, t)) then v follows the following conservation law

vt + [v(v − 1)]x = 0, (5.30)

with now a strictly convex flux f̃(v) = v(v − 1). We can see that working with (5.30) is

not less general than working with (5.27) when the car speed is given as (5.29). Note also
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that, by setting

ρ = 1− v =
1− ṽ

2
, (5.31)

we obtain the familiar Burgers equation

ṽt +

(
ṽ2

2

)
x

= 0, (5.32)

for ṽ, which is not the velocity here but a function of it as described in (5.31).

For traffic flow where trapping in the queue is not allowed, then shock speed satisfies

Assumption 5.1.8, as showed by the following lemma. It follows easily from the Rank-

ine–Hugoniot jump condition, yet will be useful in establishing the stability estimates.

Lemma 5.2.2. Assume that the car density before each time a shock happens is always

positive, then shocks travel more slowly than the flows right before and after the shocks.

Consequently, trajectories do not lie on shock curves except at countably many points.

Proof. From the Rankine–Hugoniot condition, the speed of a shock curve at the point

with left limit ρl and right limit ρr is given as

s =
ρlw(ρl)− ρrw(ρr)

ρl − ρr

= ρl.
w(ρl)− w(ρr)

ρl − ρr
+ w(ρr)

= ρr.
w(ρl)− w(ρr)

ρl − ρr
+ w(ρl)

< min{w(ρl), w(ρr)},

since ρl, ρr > 0, and w is a strictly decreasing function of ρ.

This property applies, in particularly, for traffic flow with significant cars present at

any point on the road. Whenever this is the case, a given car generally interacts with

(countably many) shocks that are coming from the opposite direction toward the car.

After hitting a shock, the car continues to travel with its own speed that is different with

the shock speed, hence, never lies on any shock curve for a positive period of time.

We now consider the trajectory z of a car passing through some point x0 at t = t0 > 0

and travelling at speed w. From the previous section, z is the unique Filippov solution to

ż(t) = w(ρ(z(t), t)), z(t0) = x0. (5.33)

The aim is to obtain a suitable convergence rate for some approximation of z with respect

to changes in upstream density ρ0, for fixed flux f . In the following the Lipschitz constant

of w is denoted by

Lw := sup
u6=v

∣∣∣∣w(u)− w(v)

u− v

∣∣∣∣ .
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Theorem 5.2.3. Let 0 < mρ < 1 and T > 0 be given. Suppose that ρ and ρ̄ are solutions

of (5.27)-(5.28) with initial data ρ0, ρ̄0 ∈ L1 ∩BV (R; [mρ, 1]) respectively, satisfying

‖ρ0 − ρ̄0‖L1∩L∞([−2LwT,3LwT ]) ≤ ε. (5.34)

Let z and z̄ be the corresponding particle trajectories with the same initial position x0 (so

they solve (5.33) in the sense Filippov, for ρ and ρ̄, respectively). Then

‖z − z̄‖L∞([t0,T ]) ≤ Cρ ε1/2,

with the constant Cρ is defined as

Cρ = 1 + (T − t0)(1 +
2

mρ
)Lw +

1

mρ
(‖ρ0‖BV + ‖ρ̄0‖BV ).

This result is, although not surprising, the first stability result for the particle trajec-

tory with a specific rate of convergence given in the context of scalar conservation laws,

even in traffic flow. Note that no L∞ stabilities (in fact, no Lp stabilities with p 6= 1) are

expected for the entropy solution ρ itself, except when it is classical.

Our strategy is to use the front tracking method to discretise the initial fields and

construct the approximate trajectories, then use the convergence theorem, Theorem 5.1.6,

as a glueing tool to connect separate paths together. Thanks to the nature of the front

tracking method, the proof is constructive and may be used as a numerical tool. In the

following, we define

Λ := {w : [0, 1]→ R, w is strictly decreasing, w(1) = 0, and ‖w‖Lip <∞} , (5.35)

where ‖ · ‖Lip is defined as (2.31). We will also refer to “cars” as “particles”.

Proof of Theorem 5.2.3. For a given N ∈ N, we start with constructing two simple func-

tions ρN0 and ρ̄N0 approximating ρ0 and ρ̄0 as follows. We let

AN,j :=
{
x ∈ R : ρ0(x) ∈ [

j − 1

2N
,
j

2N
)
}

and

ĀN,j :=
{
x ∈ R : ρ̄0(x) ∈ [

j − 1

2N
,
j

2N
)
}

for j = 1, . . . , 2N and define

ρN0 =

2N∑
j=1

j − 1

2N
1AN,j and ρ̄N0 =

2N∑
j=1

j − 1

2N
1ĀN,j

.

We choose N > N̂ with N̂ large enough so that 1/2N < ε < 1 and

‖ρN0 − ρ̄N0 ‖L1∩L∞(−2LwT,3LwT ) ≤ 2ε.
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We use the front tracking method to construct approximations of ρ, denoted by ρN and

ρ̄N corresponding to ρN0 and ρ̄N0 . That is, we consider f(ρ) = ρw(ρ) to be approximated

by a piecewise linear function fN whose graph is inscribed by graph of f and f(j/2N ) =

fN (j/2N ) for all j ∈ {1, . . . , 2N}. Then, ρN and ρ̄N are solutions of

ζt + (fN (ζ))x = 0 (5.36)

with ζ(x, 0) = ρN0 (x) and ζ(x, 0) = ρ̄N0 (x) respectively. We then define zN and z̄N as

żN = w(ρN (zN , t)) and ˙̄zN = w(ρ̄n(z̄N , t)),

with zN (t0) = z̄N (t0) = x0. We first find an upper bound for ‖zN − z̄N‖L∞(t0,T ).

Step 1 (Convergence rate for front tracking approximations). In this part for notational

convenience we drop the superscript N in ρN , ρ̄N , zN and z̄N . Consider 0 < β < 1 and

t1 > t0 to be the smallest time at which

lim
t→t+1

|ρ(z(t), t)− ρ̄(z̄(t), t)| > εβ.

This implies that at t1, one of the particles, which without loss of generality we assume to

be z, coincides with a shock point. We call this a1 and denote the closest next shock point

at this instance to z̄ by ā1. We then let the time instance where z̄ hits ā1 to be τ1 > t1.

Define

ι1 = lim
t→t+1

ρ(z(t), t)− lim
t→t−1

ρ(z(t), t), and

ῑ1 = lim
t→t+1

ρ̄(z̄(t), t)− lim
t→t−1

ρ̄(z̄(t), t).

i) Let ι1 > 0 (that is when we have an up-jump at the shock). We consider the

Riemann problem around a1 and ā1 over the time interval (t1, t) with t > τ1 and less than

the instant when the next shock is hit by one of the particles. By Lemma 5.2.4, noting

that a1 = z(t1) and w̄ = w, we have

|z̄(t)− z(t)| ≤ |w(ρ̄(z̄(t), t))− w(ρ(z(t), t)|(t− t1)

+
ι1
mρ
|ā1 − a1|+

limt→t−1
ρ(z(t), t)

limt→t+1
ρ(z(t), t)

|z̄(t1)− z(t1)|. (5.37)

We then note that limt→t−1
ρ(z(t), t) < limt→t+1

ρ(z(t), t) (in the up-jump case), and since

sup
t0<t<t1

|ρ̄(z̄(t), t)− ρ(z(t), t)| ≤ εβ

we have

|z̄(t1)− z(t1)| ≤ (t1 − t0)Lwε
β.
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Furthermore by [Daf16, Theorem 6.2.3],

‖ρ(·, t1)− ρ̄(·, t1)‖L1(0,Lwt1) ≤ ‖ρN0 − ρ̄N0 ‖L1(−2LwT,3LwT ) ≤ 2ε.

Indeed in the case considered here where ρ and ρ̄ are bounded by 1, constant s in equation

(6.2.22) of [Daf16] is bounded by 2Lw. Hence

|a1 − ā1|εβ ≤ ‖ρ(·, t1)− ρ̄(·, t1)‖L1(0,Lwt1) ≤ 2ε

implying that

|a1 − ā1| ≤ ε1−β.

We therefore conclude that

|z̄(t)− z(t)| ≤ (t− t1)Lwε
β +

ι1
mρ

ε1−β + (t1 − t0)Lwε
β

= (t− t0)Lwε
β +

ι1
mρ

ε1−β. (5.38)

The above estimate is valid for t < t2 where t2 is the next time instant at which

lim
t→t+2

|ρ(z(t), t)− ρ̄(z̄(t), t)| > εβ.

We also note for the first term in the right-hand side of (5.38) we have assumed that over

(τ1, t), ρ and ρ̄ are within distance εβ. If this is not the case ā can be replaced at the

start of the argument by the next shock after which ρ and ρ̄ are within distance εβ. Then

a similar argument considering limt→t−1
ρ̄(z̄(t), t) as the value for ρ̄ over (t1, τ1) gives the

same estimate.

To derive (5.38) we supposed that z hits the shock first, that is a1 = z(t1). If we have

instead z̄(t1) = ā1, then the only change in (5.38) would be the replacement of ι1 by ῑ1.

Hence, in the situation of an up-jump, regardless of which particle hits the shock at t1, we

obtain for τ1 < t < t2,

|z̄(t)− z(t)| ≤ (t− t0)Lwε
β +

max{ι1, ῑ1}
mρ

ε1−β. (5.39)

ii) If ι < 0, that is when we have a down-jump, it has to be of size 2−N < ε. Indeed,

for a front tracking solution, all down-jumps after the initial time turn into fans of small

shocks, and we note that since ‖ρ0 − ρ̄0‖L∞ < 2ε, for small enough ε, t1 > 0. Hence by

Lemma 5.2.4 we have for τ1 < t < t2

|z̄(t)− z(t)| ≤ |w(ρ̄(z̄(t), t))− w(ρ(z(t), t))|(t− t1)

+
ε

mρ
max

{
a1 − z(t1), ā1 − z̄(t1)

}
+ |z̄(t1)− z(t1)|

≤ (t− t0)Lwε
β +

ε

mρ
max

{
a1 − z(t1), ā1 − z̄(t1)

}
, (5.40)
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where we have used the same argument as part (i) to bound |z̄(t1)− z(t1)|.

As discuseed above, estimates (5.39) and (5.40) remain valid upto t2. Then at t2 at

least one of the particles is at a shock point and the other one is about to hit one, we

denote the position of these shocks at t2 for z and z̄, by a2 and ā2 respectively. Defining

τ2, ι2 and ῑ2 similar to above we obtain

|z̄(t)− z(t)| ≤ (t− t0)Lwε
β +

ε1−β

mρ

2∑
j=1

max{ιj , ῑj , 0}

+
ε

mρ

2∑
j=1

max
{
aj − z(tj), āj − z̄(tj)

}
for t ≤ t3, with t3 the next instant after which ρ and ρ̄ are again more that εβ apart.

Continuing in this fashion until final time T and noting that for a given ε, there are finite

k number of such shocks (k can depend on ε) [BL99], in the interval (0, L) (with L < T ),

we obtain

|z̄(T )− z(T )| ≤ (T − t0)Lwε
β +

ε1−β

mρ

k∑
j=1

max{ιj , ῑj , 0}

+
ε

mρ

k∑
j=1

max
{
aj − z(tj), āj − z̄(tj)

}
.

By [Daf16, Theorem 6.2.6] and noting that by Lemma 5.2.2 z and z̄ do not encounter any

of the initial shocks more than once, we have

k∑
j=1

max{ιj , ῑj , 0} ≤
k∑
j=1

max{ιj + ῑj , 0} ≤ ‖ρ0‖BV + ‖ρ̄0‖BV .

Moreover, by definition of tj , aj and āj

k∑
j=1

max
{
aj − z(tj), āj − z̄(tj)

}
≤ 2Lw(T − t0).

We hence conclude that

‖z − z̄‖L∞(t0,T ) = |z̄(T )− z(T )|

≤ (T − t0)Lwε
β +

ε1−β

mρ
(‖ρ0‖BV + ‖ρ̄0‖BV ) +

2Lw(T − t0)ε

mρ

as z and z̄ are increasing functions of t. The best rate is then achieved when β = 1 − β,

that is β = 1/2. We hence have, after reinstating superscript N ,

‖zN − z̄N‖L∞(t0,T ) ≤ C0

√
ε,

with C0 = (T − t0)(1 + 2
mρ

)Lw + 1
mρ

(‖ρ0‖BV + ‖ρ̄0‖BV ).
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Step 2 (The general case). Now for any ρ0, ρ̄0 ∈ L1 ∩BV (R; [mρ, 1]) such that

‖ρ0 − ρ̄0‖L1([−2LwT,3LwT ]) ≤ ε,

let ρ̄N and ρN be the the front tracking approximations of ρ and ρ̄, with z̄N and zN the

corresponding trajectories all constructed as in Step 1. We have just proved that,

‖z̄N (t)− zN‖L∞(t0,T ) ≤ C0

√
ε. (5.41)

Thanks to Theorem 5.1.6, as N →∞ we have

‖z̄N − z̄‖L∞([t0,T ]) → 0,

‖zN − z‖L∞([t0,T ]) → 0,

for any t0 > 0. Hence, there exist constants N1, N2 big enough such that

‖z̄N − z̄‖L∞([t0,T ]) ≤
√
ε

2
, for all N > N1,

‖zN − z‖L∞([t0,T ]) ≤
√
ε

2
, for all N > N2.

Choose N > max{N̂ ,N1, N2}, together with (5.41) we obtain

‖z̄ − z‖L∞([t0,T ]) ≤ ‖z̄N − z̄‖L∞([t0,T ]) + ‖zN − z‖L∞([t0,T ]) + ‖z̄N − zN‖L∞([t0,T ])

≤ (1 + C0)
√
ε.

This completes the proof.

Lemma 5.2.4 (Estimates for Riemann problems). Let w, w̄ ∈ Λ, and ρl < ρr, ρ̄l < ρ̄r.

Let ζ and ζ̄ satisfy

ζt + (f(ζ))x = 0, ζ̄t + (f̄(ζ̄))x = 0,

ζ(x, 0) =


ρl if x < a

ρr if x > a,

ζ̄(x, 0) =


ρ̄l if x < ā

ρ̄r if x > ā,

respectively and suppose that f(ρi) = ρiw(ρi) and f̄(ρ̄i) = ρ̄iw̄(ρ̄i) for i = l, r.

Let z : [t0, T ]→ R and z̄ : [t0, T ]→ R be solutions of

ż = w(ζ(z, t)) and ˙̄z = w̄(ζ̄(z̄, t)),

respectively with z(t0) = z0 < a and z̄(t0) = z̄0 < ā.

Then, for any t > t0 with t− t0 relatively small,

z̄(t)− z(t) = (w̄(ρ̄r)− w(ρ))(t− t0) +
ρ̄r − ρ̄l
ρ̄r

(ā− z̄0)− ρr − ρl
ρr

(a− z0) + z̄0 − z0.
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Figure 5.1: The Riemann problem. The particles starts at x0, after a while they catch up with

the shocks in front of them, then right after that, they continue to travel with lower speeds.

Proof. We have

ζ(x, t) =


ρl if x < a+ λt

ρr if x > a+ λt,

with

λ =
f(ρl)− f(ρr)

ρl − ρr
=
ρlw(ρl)− ρrw(ρr)

ρl − ρr
,

and

ζ̄(x, t) =


ρ̄l if x < ā+ λ̄t

ρ̄r if x > ā+ λ̄t,

with

λ̄ =
ρ̄lw̄(ρ̄l)− ρ̄rw̄(ρ̄r)

ρ̄l − ρ̄r
.

The particle z first travels with speed w(ρl) until it hits the shock, then travels with speed

w(ρr). The hitting time τ can be calculated as w(ρl)τ + z0 = λτ + a, thus

τ =
a− z0

w(ρl)− λ
.

The trajectory of z is given by

z(t) =


w(ρl)(t− t0) + z0 if t− t0 < τ

w(ρr)(t− t0 − τ) + w(ρl)τ + z0 if t− t0 ≥ τ.

On the other hand, the particle z̄ first travels with speed w̄(ρ̄l) until it hits the shock and
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travels with speed w̄(ρ̄r) after that. Similarly,

z̄(t) =


w̄(ρ̄l)(t− t0) + z̄0 if t− t0 < τ̄

w̄(ρ̄r)(t− t0 − τ̄) + w̄(ρ̄l)τ̄ + z̄0 if t− t0 ≥ τ̄ ,
(5.42)

where τ̄ is the hitting time

τ̄ =
ā− z̄0

w̄(ρ̄l)− λ̄
. (5.43)

Hence after the particle has passed both shock points, that is t > max{τ, τ̄}+ t0, we have,

setting wi := w(ρi) and w̄i := w̄(ρ̄i) for i = r, l,

z̄(t)− z(t) = (w̄r − wr)(t− t0) + (w̄l − w̄r)τ̄ − (wl − wr)τ + z̄0 − z0.

Noting that

(wl − wr)τ = (wl − wr)
(ρr − ρl)(a− z0)

ρr(wl − wr)
=
ρr − ρl
ρr

(a− z0),

and similarly

(w̄l − w̄r)τ̄ =
ρ̄r − ρ̄l
ρ̄r

(ā− z̄0),

we have

z̄(t)− z(t) = (w̄r − wr)(t− t0) +
ρ̄r − ρ̄l
ρ̄r

(ā− z̄0)− ρr − ρl
ρr

(a− z0) + z̄0 − z0,

and the result follows.

5.2.2 Stability with respect to changes in flux functions

In this section, we study the stability of the particle trajectories with respect to small

changes in the flux function (with the initial field being fixed). We define the set Λ as

(5.35). Let w̄ ∈ Λ and ρ̄ satisfy

∂tρ̄+ ∂x(ρ̄w̄(ρ̄)) = 0, (5.44)

ρ̄(x, 0) = ρ0(x). (5.45)

We have the following stability estimate.

Theorem 5.2.5. Assume that ρ and ρ̄ are the entropy solutions to (5.27)-(5.28) and

(5.44)-(5.45) respectively with the same initial data ρ0 ∈ L1∩BV (R; [mρ, 1]), 0 < mρ < 1,

and with w, w̄ ∈ Λ satisfying

‖w − w̄‖Lip ≤ ε.
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Then the corresponding particle trajectories z and z̄ satisfy

‖z − z̄‖L∞([t0,T ]) ≤ Cw ε1/2,

for any given T > 0, and with

Cw = 1 + 2(T − t0)(1 +
2

mρ
)‖w‖Lip +

2

mρ
‖ρ0‖BV .

Proof. We argue as in the proof of Theorem 5.2.3 and first consider ρN and ρ̄N , the

front tracking approximations of ρ and ρ̄, and their corresponding trajectories zN and

z̄N respectively. We follow a similar argument to Step 1 of proof of Theorem 5.2.3 and

employ Lemma 5.2.4, the only difference here is that in the right-hand side of inequalities

(5.37) and (5.40) w(ρ̄) is replaced with w̄(ρ̄) and we write instead

|w̄(ρ̄(z̄(t), t))− w(ρ(z(t), t)| ≤ |w(ρ̄(z̄(t), t))− w(ρ(z(t), t)|+ |w̄(ρ̄(z̄(t), t))− w(ρ̄(z(t), t)|

≤ Lwεβ + ‖w − w̄‖L∞

≤ Lwεβ + ε,

as ρ ≤ 1 and hence ‖w − w̄‖L∞ ≤ ‖w − w̄‖Lip. We therefore obtain

|z̄N (T )− zN (T )| ≤(T − t0)(Lwε
β + ε) +

ε1−β

mρ

k∑
j=1

max{ιj , ῑj , 0}

+
ε

mρ

k∑
j=1

max
{
aj − z(tj), āj − z̄(tj)

}
.

Since, again by [Daf16, Theorem 6.2.6] and as by Lemma 5.2.2 z and z̄ do not encounter

any of the initial shocks more than once, we have

k∑
j=1

max{ιj , ῑj , 0} ≤
k∑
j=1

max{ιj + ῑj , 0} ≤ 2‖ρ0‖BV ,

and noting that

k∑
j=1

max
{
aj − z(tj), āj − z̄(tj)

}
≤

k∑
j=1

(aj − z(tj)) + (āj − z̄(tj))

≤ ‖w‖Lip(T − t0) + ‖w̄‖Lip(T − t0)

≤ (2Lw + ε)(T − t0).

we obtain

|z̄N (T )− zN (T )| ≤ (T − t0)(Lwε
β + ε) +

2‖ρ0‖BV
mρ

ε1−β +
ε

mρ
(2Lw + ε)(T − t0)

≤ 2(T − t0)(1 +
2

mρ
)εβ +

2‖ρ0‖BV
mρ

ε1−β
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as β < 1, and we get the best rate in ε when we choose β = 1/2. We hence have

‖z̄N − zN‖L∞ ≤ C0

√
ε

with C0 = 2(T − t0)(1 + 2
mρ

) + 2‖ρ0‖BV
mρ

. Then, the same argument as Step 2 of Theorem

5.2.3 gives the result.

5.3 Summary and outlook

This chapter studies the particle trajectories for scalar conservation laws and their proper-

ties. Several new results on the stability of the particle trajectories with respect to changes

in the initial field are established.

The study of the differential equations when their vector field depends on solutions

to hyperbolic conservation laws has been a subject of a number of works in literature,

see for instance [BS98, Bre03, CM03, Mar04, LMP11, DMG14] and references therein.

The study of particle trajectories in the context of traffic flow starts with the work by

Colombo and Marson in [CM03]. In that work, the existence of the particle trajectories

and their stability with respect to the initial position of the particles are obtained. The

continuity property of the mapping from initial fields to trajectories is also studied, but

their convergence with specific rates had not been known until our work [DD20].

In a more general context, differential equations of the form ż(t) = b(z(t), t) when the

vector field b is not necessarily continuous is the subject of an active research direction,

starting with [DL89] (thus, it is usually called DiPerna-Lions flow). In that seminal paper,

the authors study the well-posedness of z for Sobolev vector fields with bounded divergence

in connection with some continuity equation (which is closely related to the connection

between (5.1) and (5.2)). This work has been extended to BV coefficients with bounded

divergence in [Amb04].
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Chapter 6

Bayesian inverse problems in

scalar conservation laws

In this chapter, we investigate some inverse problems arising from scalar conservation

laws in one-space dimension by employing a Bayesian approach. Consider again the scalar

conservation law

∂tv(x, t) + ∂xf(v(x, t)) = 0, (x, t) ∈ R× (0,∞), (6.1)

with some initial value, which we will mostly refer to as the upstream field1,

v(x, 0) = v0(x), x ∈ R, (6.2)

Specially, we will be looking at the following two problems

• Problem 1. The model (6.1) is known. Finding the upstream field v0 based on

(finite) observations of the (function of) solution v.

• Problem 2. The upstream field v0 is known. Finding the flux function f of the model

(6.1), again based on (finite) observations of the (function of) solution v.

Throughout this chapter, when we say the solution v of the forward problem (6.1)-(6.2),

we mean the unique entropy solution. These two inverse problems are important in ap-

plications. Consider the case in traffic flow for example. Problem 1 may be helpful in

predicting the future behaviour of traffic flow by finding its state v(x, t0) at some time

t0 ≥ 0, and then input this data into some device or toy model to observe the traffic state

at a later time. Problem 2, especially when the flux is partly unknown, may be used to

1We avoid using the term initial data here to not confuse with the data given by the inverse problems.
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detect road conditions, obstacles or other information that cannot be observed directly by

the observer. A specific example is to detect obstructions due to car accidents or other

events that happened inside a tunnel.

We will be employing the Bayesian approach (see Chapter 3) to our inverse problems

and investigate their well-posedness and approximation. Both inverse problems are written

in the same form: finding unkown u from observed data y with

y = G(u) + ξ, (6.3)

where ξ denotes the observable noise and G : X → Y is the parameter-to-observation2

map (or observation map if no confusion arises) with Banach spaces X,Y . Given a prior

measure µ0 on X that stores already known information of u, the solution of (6.3) is

understood as a posterior measure µy. This measure updates the information of u when

the data is taken into account.

Throughout this chapter, two kinds of observation maps will be considered, corre-

sponding to two kinds of data. The first one is the trajectory data3, given when the

observations are made by observing the particle trajectory z(t) of the forward problem

(6.1). In this case, the forward map is given by

Sl : u 7→ z(t). (6.4)

The second kind of data is direct measurement data4, obtained when the observations

are made by observing directly the entropy solution v of the forward problem (6.1). The

forward map is given in this case by

Se : u 7→ v(x, t). (6.5)

We will consider these two forms of observation maps for both inverse problems, that

is, u may be the initial field or the flux function. Based on the discussions in Chapter 3,

we study the well-posedness and approximation of the probability posterior µy.

6.1 Recovering the upstream field with trajectory data

6.1.1 Well-posedness

Suppose that we make finite number of noisy observations y = (y1 y2 . . . yJ)T from the

particle trajectory

yj = z(tj) + ξj , j = 1, . . . J, (6.6)

2Note there is a change in notation, we use G here instead of the general G in Chapter 3.
3occationally called Lagrangian data.
4also called Eulerian data.
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with z is a particle trajectory of (6.1)-(6.2), defined as the Filippov solution of (5.2)-(5.3).

We suppose that ξj are independent and Gaussian distributed

ξj ∼ N (0, γ2).

Here we are interested in recovering the upstream field. We let

u := v(·, 0)

G(u) := (G1(u), . . . , GJ(u)), with Gj(u) := z(tj),
(6.7)

where tJ > tJ−1 > · · · > t1 > 0. We have the following well-posedness result.

Theorem 6.1.1. Suppose y ∈ RJ is given by (6.6). Let µ0(X) = 1 where X = L1(R) ∩

BV (R). Then the posterior measure µy given by

dµy

dµ0
(u) =

1

Z
exp

(
− 1

2γ2
|y −G(u)|2

)
,

with

Z =

∫
X

exp
(
− 1

2γ2
|y −G(u)|2

)
dµ0,

is well-defined and continuous in Hellinger distance with respect to y.

Proof. We write G = O ◦ Sl with O : X → RJ the point observation operator z 7→ y and

Sl the forward operator mapping u ∈ X to z ∈ Cb([t0, T ]) with Cb denoting the space of

bounded continuous functions. Consider {uN} ⊂ L1 ∩ L∞ and suppose that uN → u in

L1 and let vN be the solution of the conservation law for t > t0 with vN (t0) = uN . Then

we have vN → v in L1(0, T ;L1(R)). Let zN : [t0, T ]→ R be the unique Filippov solution

to

żN (t) ∈ [w(vN (zN (t)+, t)), w(vN (zN (t)−, t))], with zN (t0) = z(t0) = x0.

By Theorem 5.1.6 we have zN → z uniformly. This concludes the continuity of Sl : u 7→ z.

Since the point observation operator O is continuous we have G = O ◦ Sl : X → RJ is

continuous. It is evident that Z < 1 and since G is bounded (due to the boundedness of

z) we have Z > 0. The result follows by Theorem 3.2.2 and 3.2.6.

6.1.2 Approximations

In this section, we consider the approximation of the Bayesian inverse problem of recovering

initial field from tracking the trajectory z(t) of a given particle. The Bayesian formulation

reads

y = G(u) + ξ, (6.8)
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where the observation map is given as G(u) = {z(tj)}Jj=1 and tj , j = 1, . . . , J , denote the

time slots of observations. Be aware that each z(tj) is a function of the unknown initial

field u (to emphasise this fact, we will occasionally write z(t) as z(t, u) or even just z(u)).

Consider the approximate version of (6.8)

y = GN (u) + ξ, (6.9)

with the observation map being

GN (u) = {zN (tj)}Jj=1, (6.10)

where zN (t) denotes some approximation of the particle trajectory z(t).

In the rest of this section we consider y ∈ RJ , Γ a diagonal matrix with nonzero

members all equal γ2, and µ and µN satisfying

dµ

dµ0
(u) =

1

Z
exp

(
− 1

2γ2
|y −G(u)|2

)
(6.11)

dµN

dµ0
(u) =

1

ZN
exp

(
− 1

2γ2
|y −GN (u)|2

)
(6.12)

with Z and ZN given as

Z =

∫
X

exp(−Φ(u))µ0(du), (6.13)

ZN =

∫
X

exp(−ΦN (u))µ0(du). (6.14)

The following convergence results concern the approximate measure µN arising in

approximations of initial field of the forward problem (giving a sequence of exact solutions)

or front tracking approximations.

Theorem 6.1.2. Let vN be a sequence of exact solutions (or front tracking approxima-

tions) of bounded variation converging in L1 to the entropy solution v of (6.1)-(6.2) with

initial field v0 taking value in a bounded interval [−M,M ]. Let µN , µ be given as (6.11)-

(6.12) where G,GN are defined by (6.7)-(6.10). Then µN converges to µ in the sense

that

dHell(µ
N , µ)→ 0, (6.15)

as N →∞.

Proof. From the definition of Hellinger distance, the formulations (6.11)-(6.12) and the

basic inequality (a+ b)2 ≤ 2(a2 + b2) we have

dHell(µ, µ
N )2 =

1

2

∫
X

√ dµ

dµ0
−

√
dµN

dµ0

2

µ0(du)

≤ I1 + I2,
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where

I1 =
1

Z

∫
X

(
e−

1
2

Φ(u) − e−
1
2

ΦN (u)
)2
µ0(du), (6.16)

I2 =

∣∣∣∣ 1√
Z
− 1√

ZN

∣∣∣∣2 ∫
X
e−ΦN (u)µ0(du). (6.17)

Since the data is finite and the noise is Gaussian, ξ ∼ N (0,Γ), then Φ and ΦN can be

defined as

Φ(u) =
1

2γ2
|y −G(u)|2, ΦN (u) =

1

2γ2
|y −GN (u)|2, (6.18)

where GN (u) is some approximation of G(u). Basic calculations lead to

|Φ(u)− ΦN (u)| ≤ C|G(u)−GN (u)|,

due to the boundedness of G,GN . Together with the locally Lipschitz property of e−x for

x > 0, we have

I1 ≤
∫
X

∣∣Φ(u)− ΦN (u)
∣∣2 µ0(du)

≤ C
∫
X

∣∣G(u)−GN (u)
∣∣2 µ0(du).

Thanks to Theorem 5.1.6, for every u ∈ X, GN (u) → G(u). By dominated convergence

theorem, it follows that I1 → 0 as N →∞.

For I2, it is sufficient to show that |Z − ZN | → 0. We have

|Z − ZN | ≤
∫
X
| exp(−Φ(u))− exp(−ΦN (u))|µ0(du)

≤
∫
X
|Φ(u)− ΦN (u)|µ0(du).

The same arguments as above lead to |Z − ZN | → 0, therefore I2 → 0 as N → ∞. This

completes the proof of Theorem 6.1.2.

Remark 6.1.3. The use of Hellinger distance here is mainly for the sake of convenience

and also due to its popularity in the literature. Other choices of distances between measures

may be possible. We mention here an important one, the Wasserstein distance, whose us-

age has been rising recently in the theory of optimal transport, statistics and machine

learning (see for instance, [PC19]). A version of the convergence (6.15) in Wasserstein

distance (of the first order) dWass can be proved. Indeed, thanks to the famous Kan-

torovich–Rubinstein duality theorem (see [Vil08]), we may write

dWass(µ, µ
N ) = sup

‖h‖Lip≤1

∣∣∣∣∫
X
hdµ−

∫
X
hdµN

∣∣∣∣
= sup
‖h‖Lip≤1

∣∣∣∣∫
X
h(u)

(
exp(−Φ(u))

Z
− exp(−ΦN (u))

ZN

)
µ0(du)

∣∣∣∣ ,
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and then use the estimate

|h(u)| ≤ ‖h‖Lip‖u‖X + |h(0)| ≤ C(1 + ‖u‖X) (6.19)

to get rid of h. The rest of the proof can be carried out similarly, with the help of Fernique’s

theorem where appropriate. See also [Spr20]. In the rest of this chapter, all convergence

results in Hellinger distance also apply to Wasserstein distance, with suitable modifications

as we discussed above.

The convergence result of the approximate posterior when one uses the vanishing

viscosity approximation for the forward problem is also given.

Theorem 6.1.4. Assume that Assumption 5.1.8 holds at every shock curve of the entropy

solution v to the equation (5.1). Let vε be the vanishing viscosity approximation of v (see

(5.18)) and zε be the corresponding particle trajectory, defined as (5.19). Let µ be given

as in (6.11) with G given in (6.7). Assume that µε is defined as follows

dµε

dµ0
(u) =

1

Zε
exp

(
− 1

2γ2
|y −Gε(u)|2

)
,

Zε =

∫
X

exp
(
− 1

2γ2
|y −Gε(u)|2

)
dµ0,

where Gε(u) = {zε(xj , tj)}Jj=1. Then µε converges to µ in the sense that

dHell(µ
ε, µ)→ 0, (6.20)

as ε→ 0.

The proof of Theorem 6.1.4 is entirely similar to the one of Theorem 6.1.2 with a recipe

based on Theorem 5.1.9 and will be omitted here.

6.2 The case of traffic flow: rate of convergence

6.2.1 Recovering upstream density

This section is devoted to explore the convergence results for the Bayesian inverse problem

(6.8) where the unknown is the upstream density u = ρ0 of the traffic flow model (5.27)-

(5.28). We still have G defined as in (6.7). We consider the approximate inverse problem

(6.9) where the approximate observation map is given as

GN (u) := G(uN ), (6.21)

with uN ∈ X an approximation of u ∈ X with X = L1 ∩ BV (R; (0, 1)) (note that values

of traffic densities lie in [0, 1]). The following theorem provides a convergence rate for the
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approximation of the posterior in terms of the one of the upstream density. As we have

discussed several times previously, such a specific rate of the convergence is extremely

hard to get in the context of hyperbolic conservation laws if one’s observations are based

on the direct measurements of the entropy solution.

Theorem 6.2.1. Let X = L1 ∩ BV (R; (0, 1)). Suppose that for any u ∈ X, the approxi-

mating sequence {uN} ⊂ X satisfies

‖uN − u‖L1∩L∞ ≤ ψ(N), ψ(N)→ 0 as N →∞.

Assume that µ0(X) = 1, and ∫
X

1 + ‖u‖2BV
m2
u

µ0(du) <∞ (6.22)

where mu = infx∈R u(x). Let µ and µN be given as in (6.11) and (6.12) with GN defined

by (6.21). Then

dHell(µ
N , µ) ≤ C

√
ψ(N),

as N →∞.

Remark 6.2.2. A prior satisfying the conditions of the above theorem can be constructed

as follows. Let ν0 be a Gaussian measure with ν0(W 1,1) = 1 where W 1,1 is the space of

integrable functions with integrable derivatives on R. We note that W 1,1(R) ⊂ L1∩BV (R).

Let v ∼ ν0 and

u(x) = F (v(x)) :=

 1
2ev(x), if v(x) ≤ 0

1− 1
2e−v(x), if v(x) > 0.

Consider µ0 := ν0 ◦ F−1. We have

mu = min
x∈R

u(x) ≥ 1

2
e−‖v‖L∞

and

‖u‖BV =

∫
R
|u′|dx ≤ 1

2

∫
R
|v′|dx ≤ 1

2
‖v‖W 1,1 .

Hence ∫
X

1 + ‖u‖2BV
m2
u

µ0(du) ≤
∫
W 1,1

‖v‖2W 1,1e2‖v‖W1,1 dν0(dv) <∞

since ‖v‖L∞ ≤ ‖v‖W 1,1 and by Fernique’s theorem.

Proof of Theorem 6.2.1. By proceeding similarly as in the proof of Theorem 6.1.2, we

arrive at

dHell(µ, µ
N )2 ≤ I1 + I2,



74

where I1 and I2 are given by (6.16) and (6.17). Therefore

I1 ≤ C
∫
X
|G(u)−G(uN )|2µ0(du) ≤ Cψ(N)

∫
X

1 + ‖u‖2BV
m2
u

µ0(du) ≤ Cψ(N),

by (6.22) and where in the second inequality we have used Theorem 5.2.3. A similar

argument leads to

I2 ≤ C|Z − ZN |2 ≤ Cψ(N).

The result then follows.

6.2.2 Recovering the flux function

We now consider the inverse problem of finding the velocity function w given finite La-

grangian trajectory data, with the upstream field is known. This is equivalent to finding

the flux function since in traffic flow the flux function takes the form f(ρ) = ρw(ρ). As

before, the Lagrangian data is collected as follows,

yj = z(tj) + ξj , j = 1, . . . , J, (6.23)

where ξj ∼ N (0, γ2) and are independent. Note that each z(tj) now depends implicitly

on the unknown w. To be consistent with the notation of Theorem 3.2.2 and 3.2.6 we still

set here u = w and use the notation G for the mapping u 7→ y. We have the following

well-posedness result whose proof, thanks to the continuity of the forward map w 7→ z

(Theorem 5.2.5), is very similar to that of Theorem 6.1.1 and will be omitted here.

Theorem 6.2.3. Suppose y ∈ RJ is given by (6.23). Let µ0(Λ) = 1 where Λ with Lip(R)

is as given in (5.35). Then the posterior measure µy given by

dµy

dµ0
(u) =

1

Z
exp

(
− 1

2γ2
|y −G(u)|2

)
,

with

Z =

∫
Λ

exp
(
− 1

2γ2
|y −G(u)|2

)
dµ0,

is well-defined and continuous in Hellinger distance with respect to y.

We now show that µy is stable with respect to appropriate perturbations of the forward

operator, provide that the shocks behave the same way as in the case of traffic flow.

Theorem 6.2.4. Let the assumptions of Theorem 6.2.3 hold. Suppose also that for any

u ∈ Λ, the approximating sequence {uN} ⊂ Λ satisfies

‖uN − u‖Lip ≤ ψ(N), ψ(N)→ 0 as N →∞.
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Assume that
∫

Λ ‖u‖Lip µ0(du) < ∞ and µ and µN are given as in (6.11) and (6.12) with

GN = G(uN ). Then

dHell(µ
N , µ) ≤ C

√
ψ(N),

as N →∞.

Proof. Proceed similarly as in the proof of Theorem 6.2.1 and of Theorem 6.1.2, where

the corresponding stability result of the forward problem, Theorem 5.2.5, is used.

A related situation to the estimation of the flux function considered here is the problem

considered in [HPR14] where they study the following inhomogeneous scalar conservation

law

∂tρ(x, t) + ∂x(k(x)g(ρ(x, t))) = 0, (6.24)

with some appropriate function k : R → R. In the context of traffic flow, the function k

represents external factors that influence the traffic flow. Such factors may be interpreted

as road conditions or the presence of obstacles on the road. In particular, when k is

constant, they show that one can recover, using Tikhonov regularisation, a piecewise

linear interpolation gν that approximates g in the sense that the solutions corresponding

to g and gν are close in L1. However, they assume that the whole solution is known at

(almost) every point (or almost every point except some certain interval) and the initial

data is chosen to be piecewise constant only.

6.3 Inverse problems with direct measurement data

In this section, we come back to our original inverse problem and suppose that we make

finite number of noisy observations y = (y1 y2 . . . yJ)T from the solution v. We discuss the

well-posedness and also the approximation of the Bayesian inverse problem (6.3). Denote

by u ∈ X the unknown of the inverse problems for the scalar conservation law

∂tv + ∂xf(v) = 0, v(x, 0) = v0(x),

which is either the initial field v0 or the flux function f . For the former, X = L1 ∩BV (R)

with norm ‖ · ‖L1 and for the later

X = {f : R→ R, f(0) = 0, f is convex , ‖f‖Lip <∞},

where ‖ · ‖Lip is defined as (2.31). The observation maps of the solution and of the

approximate solution are given as

G(u) = O ◦ Se(u), and GN (u) = O ◦ SNe (u), (6.25)
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where O : X → RJ is the evaluation operator and Se, S
N
e : X → L1 ∩ BV (R) are the

forward operator and its approximation. This approximation may be coming from any

computational method involved in solving the forward problem (including front tracking

and vanishing viscosity) or a result of some disturbance in the initial condition.

Using the ball evaluation operator

First of all, suppose that in some applications one can collect the data using the ball

evaluation operator, that is, O = {Oj}Jj=1 : X → RJ , where

Oj(v) :=

∫
Br(xj)

v dx,

here we denote Br(xj) = {x : |x − xj | < r}. Then, any small perturbation of u in X

translates to a small perturbation of O in L∞, thanks to Theorem 2.4.3 and Theorem

2.4.4. Indeed, if ‖uN − u‖X ≤ ψ(N), then

|Oj ◦ SNe (uN )−Oj ◦ Se(u)| ≤
∫
Br(xj)

|SNe (uN )− Se(u)|dx

≤
∫
R
|SNe (uN )− Se(u)|dx

≤ Cψ(N).

Therefore, the condition (3.24) follows and so does Corollary 3.2.9. In fact, by using this

method, we can estimate any unknown initial field v0 ∈ L1 ∩L∞ given a Lipschitz f , and

any unknown Lipschitz continuous flux function for a given v0 ∈ L1 ∩ BV (R). We note

that the flux function need not be convex here (see Theorem 2.4.4).

Using the point evaluation operator

Let us consider now the point evaluation operator

O(v) = {v(xj , tj)}Jj=1.

We show here that the Bayesian inverse problem is well-defined and continuous in data y

because the measurability of the forward map still holds. Lack of continuity of the forward

map however leads to weaker approximation properties of the posterior compared to the

Lagrangian data case. We write

yj = v(xj , tj) + ξj , j = 1, . . . J, (6.26)

with ξj ∼ N (0, γ2) and independent, and let

u := v(·, t0)

G(u) := (G1(u), . . . , GJ(u)), with Gj(u) = v(xj , tj).
(6.27)
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We have the following well-posedness result.

Theorem 6.3.1. Suppose y ∈ RJ is given by (6.26). Let µ0(X) = 1, with X = L1(R) ∩

L∞(R). Then the posterior measure µy given by

dµy

dµ0
(u) =

1

Z
exp

(
− 1

2γ2
|y −G(u)|2

)
,

with Z =
∫
X exp

(
− 1

2γ2
|y −G(u)|2

)
dµ0 is well-posed.

Proof. The positivity and boundedness of G imply 0 < Z < 1. As the likelihood is

continuous in y it remains to show that G : L1 ∩ L∞ → RJ is measurable. We write

G = O ◦ Se with O : X → RJ the point evaluation operator and Se : X → X the forward

operator of the PDE mapping u to v. Since O is continuous, it is sufficient to show that

Se is measurable. By Theorem 2.4.3, Se : L1
loc → L1

loc is continuous. Hence for an open

set A ⊂ L1
loc we have that S−1

e (A) is open on L1
loc. Then, since Se : L∞ → L∞ is bounded,

we have

L∞ ∩ S−1
e (A ∩ L∞) = S−1

e (A) ∩ L∞ is open in L∞.

Noting that B(L∞) = {A ∩ L∞ : A ∈ B(L1
loc)}, we conclude the measurability of Se over

L∞. Now all conditions of Theorem 3.2.2 and 3.2.6 are satisfied and the result follows.

The approximation of the posterior is much more complicated in this case. The gen-

eral approximation theory of Bayesian inverse problems (see Chapter 3) fails since the

stability (in L∞) of the observation operator is no longer satisfied. Nevertheless, below we

discuss possible situations where one still has some sort of convergence for the approximate

posterior.

In practical applications, one may assume that the measurement device can detect the

shocks of strength bigger than ε for some given ε > 0 and avoid them, where the shock

strength is defined as

|v(x(t)+, t)− v(x(t)−, t)|,

for some shock curve x = x(t). Then the measurements may be made in the areas where

no shocks or only shocks of strength smaller than ε are present. We note that by [BL99,

Theorem 3], for any ε > 0, shocks of strength greater than ε are finitely many and hence

have measure zero. In the case that the initial field and flux function are smooth (Ck

with k ≥ 3), generically, solutions produce only a finite set of shocks in a given bounded

domain, thanks to a regularity result discovered by Schaeffer in [Sch73] (see Theorem

2.5.3, see also [Daf85] for considerable improvements). Therefore, in reality, the chance of
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having data from certain positions with no shocks or shocks of strength smaller than any

given ε is likely.

Define

Oε := {(x, t) ∈ R× [0, T ] : |v(x+, t)− v(x−, t)| > ε},

the set of shocks of strength larger than ε. For a small δ > 0 let the Oδε denote the

δ-neighbourhood of Oε. We have the following approximation result.

Theorem 6.3.2. Let assumptions of Theorem 6.3.1 hold. Assume, for some small ε, δ >

0, that the data y = (y1, . . . , yJ) is given as in (6.26) with (xj , tj), j = 1, . . . , J , lying

outside Oδε. Let µ and µN be given by (6.11) and (6.12) respectively with G and GN

defined as in (6.25) and (6.27). Suppose that Se and SNe in (6.25) satisfy, for any fixed

u ∈ X, ‖Se(u)− SNe (u)‖L1 → 0 as N →∞. Then

dHell(µ
N , µ) ≤ Cε,

for N sufficiently large and with C depending on J and the covariance of the measurement

noise.

Proof. For a given u ∈ X, by [BL99, Theorem 5], for large enough N , the shocks of

strength larger than ε of SNe (u) are in a δ-neighbourhood of shocks of strength larger than

ε of Se(u). Therefore outside Oδε both Se(u) and SNe (u) only have shocks of strength at

most ε.

For each N , take an integrable, bounded and continuous function, denoted by S̃N (u),

such that S̃N (u) lies in the ε-neighbourhood of SNe (u). Since SNe (u) converges to Se(u)

almost everywhere along a subsequence, S̃N (u) converges everywhere, along a subsequence,

to a bounded continuous function, denoted by S̃(u), such that S̃(u) lies in ε-neighbourhood

of Se(u). We can always choose S̃N (u) differently in the ε-neighbourhood of SNe (u) such

that the whole sequence S̃N (u) converges everywhere to S̃(u). It therefore follows that

‖SNe (u)− Se(u)‖L∞ ≤ 2ε,

for N sufficiently large. The result then follows arguing along the lines of the proof of

Theorem 6.1.2.

Remark 6.3.3. In the case that no shocks are present, one may take ε = 0 and obtain

the desirable convergence with rate ψ(N). However, it may not be feasible to know a

priori if shocks appear in certain areas, and the shock strengths may be too small that the

measurement devices cannot detect them.
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6.4 Further discussions

In this section, we discuss an alternative way of applying the Bayesian framework for

inverse problems and modify the framework such that it works in a more general space

of functions, the Frechet space. We present an application for inverse problems in scalar

conservation laws with direct measurement data.

6.4.1 A modified framework

We develop in this section a slightly different framework that helps to approximate the

posterior by means of potential functions, for general data (shock-free or not). This works

especially when we can have an amount of data that is as large as we wish.

Assume that we want to recover u from a set of data vJ = (v(1), v(2), · · · , v(J)), with

J ∈ N big enough. Let G(u), GN (u) : X → RJ be the measurement maps and assume

that the measurement data are now given by

y =
1

J


v(1)

v(2)

· · ·

v(J)

+ ξ =
1

J
G(u) + ξ, (6.28)

and similarly for GN (u). We assume that the noise is Gaussian distributed

ξ ∼ N (0,Γ),

where Γ is the covariance operator. We make the following assumption regarding G and

GN (see the next section for the motivation).

Assumption 6.4.1. The operators G,GN are bounded. In addition, there exists a func-

tion ψ : N→ R+ which is decreasing to 0 as N goes to ∞, and a constant C, independent

of N , such that

|Gj(u)−GNj (u)| ≤ Cψ(N), (6.29)

for every j = 1, . . . , J except a few j ∈ S where S is a fixed (finite) set with |S| < J and

is independent of J .

This assumption allows the measurement operators to be even discontinuous, yet

bounded. We have the following result.

Theorem 6.4.2. Let X be a Frechet space whose topology is induced by the metric dX .

Assume that µ and µN are defined respectively by (6.11)-(6.13) and (6.12)-(6.14), where
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µ0 is a probability measure on X. Let G(u) and GN (u) satisfy Assumption 6.4.1. Then

the measures µ and µN are close with respect to d: there is a constant C such that

d(µ, µN ) ≤ C
(

1

J
+
ψ(N)

J

)
,

where d is Hellinger or Wasserstein distance.

Proof. We consider here d to be the Wasserstein distance. The case of Hellinger distance

can be proved similarly. Throughout the proof C is a constant may change from line to

line. Since the measurement data is finite, the potential Φ and ΦN are given as

Φ(u) =
1

2
|y − 1

J
G(u)|2Γ, ΦN (u) =

1

2
|y − 1

J
GN (u)|2Γ,

where | · |Γ = |Γ−1/2 · | is the weighted norm on RJ . Hence,

|Φ(u)− ΦN (u)| ≤ 1

2J
|G(u)−GN (u)|Γ|2y −

1

J
G(u)− 1

J
GN (u)|Γ

≤ 1

2J
(2|y|Γ + max |Gj |+ max |GNj |)|G(u)−GN (u)|Γ

≤ 1

J
C|G(u)−GN (u)|Γ,

thanks to the boundedness of G and GN . We then have∫
X

(1 + dX(u, 0))|Φ(u)− ΦN (u)|µ0(du) ≤
∫
X

1

J
C(1 + dX(u, 0))|G(u)−GN (u)|Γµ0(du).

(6.30)

Without loss of generality, assume that Γ has the diagonal form of the eigenvalues (γ2
1 , · · · , γ2

J),

where γi > 0. Thus,

|G(u)−GN (u)|Γ =

√√√√ J∑
i=1

1

γ2
i

|Gi(u)−GNi (u)|2

≤
J∑
i=1

1

γi
|Gi(u)−GNi (u)|

≤
∑
i∈S

1

γi
|Gi(u)−GNi (u)|+

∑
i/∈S

1

γi
|Gi(u)−GNi (u)|.

(6.31)

We now see that, since |S| <∞ and Gi, G
N
i are bounded, we have

∑
i∈S

1

γi
|Gi(u)−GNi (u)| ≤ |S|C 1

mini γi
, (6.32)

By virtue of (6.29), it is clear that

∑
i/∈S

1

γi
|Gi(u)−GNi (u)| ≤ C 1

mini γi
ψ(N). (6.33)
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From (6.31)–(6.33) we obtain

|G(u)−GN (u)|Γ ≤ C(1 + ψ(N)).

Combining with (6.30) and using Fernique’s theorem we arrive at∫
X

(1 + dX(u, 0))|Φ(u)− ΦN (u)|µ0(du) ≤
∫
X

1

J
C(1 + dX(u, 0))(1 + ψ(N))µ0(du)

≤ C
(

1

J
+
ψ(N)

J

)
.

(6.34)

Now using the inequality |e−x − e−y| ≤ |x− y| for all x, y ≥ 0 and (6.34), we see that

|Z − ZN | ≤
∫
X
| exp(−Φ(u)− exp(−ΦN (u))|µ0(du)

≤
∫
X
|Φ(u)− ΦN (u)|µ0(du)

≤
∫
X

(1 + dX(u, 0))|Φ(u)− ΦN (u)|µ0(du)

≤ C
(

1

J
+
ψ(N)

J

)
.

(6.35)

Now, from the definition of Wasserstein distance,

dW (µ, µN ) = sup
‖h‖Lip≤1

∣∣∣∣∫
X
hdµ−

∫
X
hdµN

∣∣∣∣
= sup
‖h‖Lip≤1

∣∣∣∣∫
X
h(u)

exp(−Φ(u))

Z
− exp(−ΦN (u))

ZN
µ0(du)

∣∣∣∣
≤ I1 + I2,

(6.36)

where

I1 =
1

Z
sup

‖h‖Lip≤1

∫
X
|h(u)|

∣∣exp(−Φ(u))− exp(−ΦN (u))
∣∣µ0(du)

≤ C sup
‖h‖Lip≤1

∫
X
|h(u)||Φ(u)− ΦN (u)|µ0(du)

≤ C
∫
X

(1 + dX(u, 0))|Φ(u)− ΦN (u)|µ0(du)

≤ C
(

1

J
+
ψ(N)

J

)
,

(6.37)

thanks to previous estimates and (6.19); and

I2 = |Z−1 − (ZN )−1| sup
‖h‖Lip≤1

∫
X
|h(u)| exp(−ΦN (u))µ0(du)

≤ C|Z − ZN |
∫
X

(1 + d(u, 0))µ0(du)

≤ C
(

1

J
+
ψ(N)

J

)
,

(6.38)

thanks to Fernique’s theorem and (6.35). Therefore, by gathering (6.36)–(6.38), we arrive

at

dW (µ, µN ) ≤ C
(

1

J
+
ψ(N)

J

)
.

This completes the proof.
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Remark 6.4.3. • This result shows that if J is fixed but resonably large, we can keep

the two posteriors resonably close. This is an atempt to get some convergent-like

estimate for the posterior when the solution of the forward problem developes discon-

tinuities. The task is challenging and it seems to be the best we can get if the data

is collected directly from the solution.

• The Fernique theorem used in the proof of Theorem 6.4.2 is in fact a general version

of the classical theorem, where the underlining space X is not necessarily a separable

Banach space but a locally convex topological space. See [Bog98] for a proof of this

general version.

• One can also prove that, by processing similarly, the approximation converges in

Hellinger distance with the same rate

dHell(µ, µ
N ) ≤ C

(
1

J
+
ψ(N)

J

)
.

• We note also that, for the Wasserstein distance it is not expected to have the same

convergence of expectation as for Hellinger’s.

6.4.2 Applications

In this section we illustrate some situations of conservation laws which satisfies the con-

ditions required for the approximation we have discussed in the last subsection. Before

moving to a direct example, we discuss briefly the nature of shocks of conservation laws.

Despite the simple form of the scalar conservation law, the understanding of its shock

set for general initial data and flux is still limited. In [Liu81], Liu shows that the set

of points of discontinuity of a bounded variation entropy solution of (6.1)-(6.2) which is

constructed by the random choice method of Glimm [Gli65] is the countable union of

Lipschitz arcs. Consequently, the set of shocks is countable. Beyond that, there is no

information on the global structure of the shock set [Daf85].

However, when the initial data and the flux is sufficiently smooth, the shock set of the

solution could behave quite “nicely”. More precisely, for generic initial data, the solution

of the scalar conservation law has a finite set of discontinuities. This is due to the following

regularity result by Schaeffer (see [Sch73], also Theorem 2.5.3).

Lemma 6.4.4 (Schaeffer). Denote S(R) to be the Schwartz space. Assume that f is

smooth and uniformly convex. Then there exists a set F ⊂ S(R) which is open and dense

in S(R) such that for every v0 ∈ F, the entropy solution v of the scalar conservation law
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(6.1)-(6.2) is piecewise smooth: the number of shocks of v is finite and v is smooth in the

complement of the shock set.

With this regularity result at hand, we are able to apply the approximation procedure

given in the last subsection, employing the new setting (6.28). This gives a convergence

result for the approximation of the inverse problem of finding initial data in S(R). Recall

that the Schwartz space S(R) is defined as follows

S(R) = {f ∈ C∞(R,R) : ‖f‖α,β := sup
x∈R
|xα(Dβf)(x)| <∞, for all α, β ∈ N}.

The family of semi-norms {‖ · ‖α,β, α, β ∈ N} is countable, hence S(R) is metrizable. We

define the metric dX on S(R) by

dX(u, v) =
∞∑

α+β=:k=0

2−k
‖u− v‖α,β

1 + ‖u− v‖α,β
, u, v ∈ S(R).

Assume now that vu is the solution of (6.1)-(6.2) with initial data v0 = u ∈ X = S(R)

and vNu is the solution of the approximation PDE of (6.1)-(6.2) such that

|vNu − vu| ≤ Cψ(N), (6.39)

at every continuity point of vu and vNu , where ψ(N) → 0 as N → ∞. Let F ∈ S be the

set given in Lemma 6.4.4. Denote

S = {i : v(i) or vN(i) are collecting from discontinuities of vu, v
N
u for u ∈ F},

hence (6.39) may not be satisfied in S. Thanks to Lemma 6.4.4, the number of shocks

is essentially finite, hence J can be chosen large enough such that |S| < J . Let µ0 be a

probability measure on X = S whose support lies outside X \ F. Hence, µ0(X \ F) = 0

and then∫
X

(1 + dX(u, 0))|Φ(u)− ΦN (u)|µ0(du) =

∫
F
(1 + dX(u, 0))|Φ(u)− ΦN (u)|µ0(du)

Therefore, all assumptions of Theorem 6.4.2 still hold. We come to the following result.

Corollary 6.4.5. Assume that µ is the solution of the Bayesian inverse problem (6.3) of

finding u = v0 in (6.1)-(6.2), which is defined by (6.11)-(6.13) where µ0 is a probability

measure on the metric space (S, dX) whose support lies outside S \ F. Let µN be defined

by (6.12)-(6.14). Then µN is an approximation of µ in the sense that: there is a constant

C such that

d(µ, µN ) ≤ C
(

1

J
+
ψ(N)

J

)
,

where d is Hellinger or Wasserstein distance.
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In many situations in practice, we may only obtain the convergence without knowing

the rate. In other words, we cannot transfer the rate of approximation of the forward PDE

into the rate of approximation of the corresponding inverse problem, but the continuity is

still obtained.

6.5 Summary and notes

Due to the nature of shocks and irreversibility, inverse problems of the physical phenomena

involving these features are challenging. There have been only a few attempts in studying

inverse problems for hyperbolic conservation laws, despite their wide range applications.

Some of the work addressing some particular aspects of these inverse problems may be

found in [JS99, CJS03, KT05, CZ11, BD13, HPR14, BCD17, CP20, LZ20].

This chapter investigates the Bayesian inverse problems for scalar conservation laws in

a systematic way. Two types of general inverse problems of recovering the initial field and

flux function are considered. Based on the study of the particle trajectory theory for the

forward problems in Chapter 5, it is proved that the posterior for each inverse problem is

well-defined and stable with respect to data. The approximations of the posterior in terms

of the forward map are also addressed thoroughly. The presentation here is an expansion

of part of our work [DD20].

The discussions in Section 6.4 (not included in [DD20]), where we talk about the

Bayesian framework in Frechet space, are barely touching the surface. Questions regarding

how to construct a probability prior on X are not yet studied.

There are many other open and interesting problems related to the Bayesian inverse

problems that we consider in this chapter. Some of them are listed in Chapter 7.
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Chapter 7

Conclusion and Outlook

7.1 Conclusion

In this thesis, we employ a Bayesian approach to study inverse problems in scalar conser-

vation laws. Inverse problems involving hyperbolic conservation laws are challenging due

to the development of shock waves and their irreversibility. These characteristic proper-

ties of scalar conservation laws are featured in Chapter 2, where we summarised the most

significant aspects of scalar conservation laws in a concise and informative way. Back-

ground on inverse problems, including regularization methods and the Bayesian approach

to inverse problems, are outlined in Chapter 3.

The heart of the thesis lies in Chapter 5 and Chapter 6. Chapter 5 is devoted to the

study of the particle trajectories for scalar conservation laws. Motivated from a model

of traffic flow, we consider some ordinary differential equations where their right-hand

side depends on solutions of scalar conservation laws. Despite the presence of shocks, by

using Filippov theory for differential equations, which was outlined in Chapter 4, it is

showed that the particle trajectories are well-posed. Moreover, we prove that this particle

trajectory theory is compatible with the front tracking approximation method and the

vanishing viscosity method in the sense that the approximate particle trajectories given

by either of these methods converge uniformly to the particle trajectories corresponding

to the entropy solution of scalar conservation laws. For certain flux functions, illustrated

by traffic flow, we are able to obtain the convergence rate for the approximate particle

trajectories with respect to changes in the initial field or flux function. This task is done

by combining the front tracking method with Filippov theory.

As the second main part of the thesis, recorded in Chapter 6, we study some Bayesian

inverse problems for scalar conservation laws and establish several well-posedness and ap-
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proximation results. Specifically, we consider two types of inverse problems: the inverse

problem of recovering the upstream field and the inverse problem of finding the flux func-

tion, both from observations of appropriate functions of the entropy solutions of scalar

conservation laws. Based on the theory of particle trajectories developed in the first part

of the thesis and the Bayesian inversion theory developed by Stuart et.al., we prove that

the statistical solutions to these inverse problems are well-posed and stable with respect

to changes in the forward model. Rates of convergence of the posterior approximations

are also given for certain inverse problems.

Finally, for the data given from measuring directly the entropy solution, we propose

some different ways to approximate the posterior without assuming the strong continuity

of the forward model. Some of those are such as measuring the data in L1 balls, collecting

shock-free data, or adjusting the Bayesian framework.

7.2 Outlook and future work

We list here some interesting research questions that are closely related to the work of this

thesis and that we would like to persue in the near future.

7.2.1 The consistency problem

An important problem arising after the work of this thesis is the consistency (a statistical

property) of the inverse problems. We want to know if the underlying truth can be

recovered provided that we are able to collect as many data points as we wish. To this

end, we need some stability structures of the inverse maps z 7→ ρ0 and z 7→ f . The

L1 contraction property of the forward map provides a good picture and may help to

understand these structures. This is our work in progress [DD21].

7.2.2 The non-convex flux case

One of our assumptions on f is that it is either strictly convex or strictly concave. How-

ever, there are models of scalar conservation laws in which neither of the above is the case,

such as the Buckley-Leverett equation with applications in oil recovery industry. When f

has inflection points, the structure of solutions becomes more intricate. Also, the famous

Oleinik decay estimate fails, resulting in possibly the non-uniqueness of the particle tra-

jectories. In [Mar04], the author considered the flux function with a single inflection point

and obtained a well-posedness result for the Filippov solution. The stability properties
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of the trajectories when either the initial field or the flux function is perturbed are both

open for future studies.

7.2.3 Rate of convergence for vanishing viscosity approximation

We establish in this thesis the convergence of the approximate trajectory arising from the

vanishing viscosity method. However, having a rate for that convergence is still an open

problem. To be able to go further, one may need to have a deeper understanding of the

vanishing viscosity approximation and how it relates to the structural properties of the

entropy solution.

7.2.4 Numerical experiments

The work that has been carried out in this thesis is mostly theoretical. It is important to

perform numerical experiments to illustrate these results. This may require some special

techniques developed for hyperbolic conservation laws.

Moreover, the study of the statistical solutions for inverse problems in order to extract

information from them is not easy and typically involves numerical methods, such as

MCMC method. I plan to carry this task in my future work.

7.2.5 Other related questions

• Finding the optimal rates for the convergence of the approximate trajectories (it is

not currently known if ε1/2 is optimal).

• Extending to the multi-dimensional problems (when x ∈ Rd, for d > 1).

I also plan to apply the Bayesian inversion framework to other PDE models, such as

problems from electrical impedance tomography (the Calderón problem).
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