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Abstract 

 

The Sahel in West Africa is a vast semi-arid region stretching from the Atlantic coast to the Red Sea 

and marks a transition between the Guinean forests and the Sahara desert, home to several millions 

of people. It is a climatologically hot region with a peak of heat observed in boreal spring before the 

summer monsoon. However, heatwave research in the region is still in its infancy despite that, as in 

most regions of the globe, high temperatures have escalated over recent decades as a result of climate 

change. This thesis builds knowledge on the characteristics, physical understanding and 

predictability of heatwaves in the Sahel at the weather and intraseasonal scales. These timescales 

have received little attention from previous work despite being important for operational risk 

management. The analyses are built on two main datasets including the fifth generation of the 

European reanalyses (ERA5) and the hindcast of the ECMWF ensemble extended-range forecasting 

system (ENS-ext).  

 

Sahelian intraseasonal heatwaves are overall short-lived with mean duration between three and five 

days. Record-breaking events can nonetheless last up to two weeks in some locations. Heatwaves in 

the Sahel are also characterised by low frequencies of occurrence with typically one to two events a 

year across most of the region. On the other hand, they are very severe in intensity given that the 

mean state of the atmosphere is already hot. The eastern and central parts of the Sahel are the most 

affected by heatwaves in terms of duration, frequency and intensity whereas the proximity to the 

Atlantic Ocean attenuates extreme heat events in western Sahel.  

 

The physical quantification of heat can be done in considering temperature only or adding other 

environmental variables to build multivariate thermal indices. The upstream choice of thermal index 

for heatwave study is important in the Sahel. Indeed, heatwaves sampled using different indices show 

only moderate synchronicity between them. Besides, the Sahel is characterised by a low concomitance 

between daytime and nighttime heatwave events, which is a relieving factor when it comes to the 

impact on health.  

 

Regarding the thermodynamic processes, heat advection and greenhouse effect of moisture are found 

to be the main underlying causes. Both these processes are made possible by a significant 

perturbation of the low-level flow, favouring a transport of hotter or more humid air masses towards 

Sahelian locations. At the large-scale, this circulation anomaly is often associated with convective 

anomalies in the Guinean region of West Africa, where convection is at its peak during the spring 
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season. Consequently, the link between heatwaves in the Sahel and tropical modes of variability 

including the Madden Julian Oscillation (MJO) and the equatorial Rossby (ER) and Kelvin waves 

(EK), which are important drivers of the Guinean convection, was investigated. The examination 

reveals that the probability and, to a lesser extent, intensity of Sahelian heatwaves are significantly 

modulated by the passage of tropical modes over the West African domain. Depending on their 

convective phases, i.e. either enhanced or suppressed, they can increase or decrease heatwave 

probability in the region. The modulation is sensitive to the diurnal period and geographical location 

with nighttime heatwaves more impacted by the modes over eastern Sahel and daytime heatwaves 

more affected over western Sahel. Among the investigated modes, the MJO was found to have the 

greatest impact on heatwaves owing to its larger spatial extension and longer periodicity.  

  

The skill of Sahelian heatwave prediction by numerical models was assessed using ENS-ext which is 

regularly considered as one of the best forecasting systems at the intraseasonal scales. Significant 

skill was found in the first two to three weeks of the forecast. Longer predictability can be achieved 

using a “flexible” evaluation i.e. tolerating errors within a given temporal window, especially at the 

longest lead-times, where even approximate indication of heatwave occurrence is valuable for 

targeted anticipatory actions. With increasing lead-times, heatwaves are found to be more 

predictable at night than at day. Interestingly, ENS-ext is able, on one hand, to relatively well predict 

the local activity of tropical modes over West Africa and, on the other hand, to simulate their observed 

impact on Sahelian heatwaves. Furthermore, heatwave prediction skill is higher when tropical modes 

are active, implying that they are good sources of heatwave predictability. As a result, in the future, 

more precision and longer predictability can be obtained for heatwave prediction in the Sahel in view 

of the continual improvement in the representation of convection and tropical modes by models. 

 

Given its findings, this thesis has many implications for heatwave risk management in the Sahel 

across a range of sectors including, but not limited to, health, labour productivity, water and energy. 
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Chapter 1. Introduction  

 

1.1. Generalities about heatwaves 

 

1.1.1 Emergence of heatwaves in the literature  

 

Climate change has become one of the hottest topics over recent decades at the global level. As early 

as the 1980s, an emerging consensus was already pointing to a major role of man-made carbon 

dioxide causing an increase of temperature beyond the natural climate variability (Hansen et al. 1981; 

WMO N°661). The increasing trend of global temperature has remained on track, with the latest 

annual report from the US National Oceanic and Atmospheric Administration (NOAA) showing that 

2020 has been the second hottest year on record with the global temperature 0.98°C above the 

twentieth-century average (NOAA 2021).  The consequences of this warming on the climate system 

itself are important and include ice melting especially at the poles (Stammerjohn et al. 2008) and 

glacial retreat (Xu et al. 2009),  sea-level rise (Nerem et al. 2018), changes of oceanic circulation 

(Meredith et al. 2012) and precipitation patterns (Dore 2005). Furthermore, extreme weather and 

climate events are more and more frequent (Meehl et al. 2000) and are increasingly linked to climate 

change (Moore et al. 2015; Mann et al. 2017; Diffenbaugh et al. 2017). The most recurrent extremes 

include tropical cyclones, heavy rainfall events and sustained periods of extreme heat or heatwaves. 

The latter are the focus of this PhD research. 

 

Heatwaves are a growing concern for countries worldwide and the literature abounds of cases that 

have been particularly disastrous. The recent deadliest reported heatwaves are that of Russia in 2010 

with more than 55,000 deaths (Barriopedro et al. 2011), Europe in 2003 with about 40,000 deaths 

(García-Herrera et al. 2010) and India in 2015 with more than 2,200 deaths (Sarath Chandran et al. 

2017). Many regions of the world now suffer from heatwaves with events in Australia, South Asia 

and the Middle East, Europe and Northern America regularly making the headlines. Heatwaves, 

despite not having a universally accepted definition, are characterised by heat levels significantly 

higher than usual with the potential to harm human’s health and comfort. They can be confined to 

small areas (of the scale of a city for example), or spread over many countries (Keellings et al. 2018). 

In terms of observed trend, heatwaves have increased in frequency, spatial extent and duration across 

most places of the globe (Sharma and Mujumdar 2017; Perkins-Kirkpatrick and Lewis 2020). 

Likewise, in agreement with global warming, heatwave intensity has also increased over recent years 

(Perkins et al. 2012). The future evolution of these extremes is also worrying. Several published works 

indeed warn of more frequent, wider spread and more severe heatwaves in decades to come (e.g. 

https://www.zotero.org/google-docs/?kkDpIJ
https://www.zotero.org/google-docs/?kkDpIJ
https://www.zotero.org/google-docs/?kD9wCq
https://www.zotero.org/google-docs/?kD9wCq
https://www.zotero.org/google-docs/?ByT5JZ
https://www.zotero.org/google-docs/?ByT5JZ
https://www.zotero.org/google-docs/?crx7o1
https://www.zotero.org/google-docs/?Q45s8S
https://www.zotero.org/google-docs/?Q45s8S
https://www.zotero.org/google-docs/?PqS4jT
https://www.zotero.org/google-docs/?UmsOMP
https://www.zotero.org/google-docs/?UmsOMP
https://www.zotero.org/google-docs/?BDSw21
https://www.zotero.org/google-docs/?BDSw21
https://www.zotero.org/google-docs/?JEPSbs
https://www.zotero.org/google-docs/?FMIvQY
https://www.zotero.org/google-docs/?XyjK0W
https://www.zotero.org/google-docs/?XyjK0W
https://www.zotero.org/google-docs/?kI0SQG
https://www.zotero.org/google-docs/?CSlDhm
https://www.zotero.org/google-docs/?hHFPxi
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Russo et al. 2014; Cowan et al. 2014; Im et al. 2017; Rohini et al. 2019). This challenges governments 

and non-governmental organisations across the globe to undertake actions that will help mitigate 

heatwave harmful impacts.     

 

1.1.2 Negative impacts of heatwaves 

 

These impacts are primarily seen in the health sector. Severe heatwaves are often associated with 

increased mortality, which in the most extreme cases, can turn to become public health disasters 

(Keatinge 2003; Gasparrini and Armstrong 2011). Besides the mortality, heatwaves can cause a surge 

of hospital admissions putting a strain on medical services (Toloo et al. 2014; Gronlund et al. 2014; 

Goldie et al. 2017; van Loenhout et al. 2018; Davis and Novicoff 2018). The diagnoses reveal that 

these admissions are related to heatstroke and sunstroke (Hopp et al. 2018), respiratory (Anderson et 

al. 2013), cardiovascular (Yin and Wang 2017) and renal diseases (Borg et al. 2017) as well as mental 

disorders (Trang et al. 2016). Even though heat affects almost everyone, some social groups are more 

vulnerable than others.  Thus, the elderly (Oudin Åström et al. 2011; Liss et al. 2017; Cheng et al. 

2018) and young children (Johnson et al. 2005; Xu et al. 2014; Nicholls and Strengers 2018) are 

generally the most at risk during heatwave events. It should also be noted that the period of the day 

during which heatwaves occur has differential impacts on health, with concurrent daytime and 

nighttime events being the most dangerous since they do not allow any respite to the body (Fischer 

and Schär 2010; Kueh et al. 2017; Mukherjee and Mishra 2018).   

 

Besides health, a handful of other socio-economic sectors can be impacted. Extreme heat events are 

indeed associated with an increased strain on the power (Pechan and Eisenack 2014; Cook et al. 2015; 

Añel et al. 2017), water (van der Velde et al. 2010) and transport infrastructures (Lemonsu et al. 

2015). Ecosystem services (Depietri et al. 2013) and tourism (Moreno 2010; Koutroulis et al. 2018) 

can also be perturbed. Efforts should therefore be dedicated to these different sectors in order to keep 

to minimum the heat-related disturbances especially in the least developed countries where they are 

in a relatively fragile state.   

 

1.1.3 Insufficient heatwave studies in the least developed countries 

 

Unfortunately it is precisely in these countries that heatwaves have received the least attention. From 

a global review by Campbell et al. (2018), it appears that, in addition to the fragility of their 

https://www.zotero.org/google-docs/?ugKvr9
https://www.zotero.org/google-docs/?QJPy12
https://www.zotero.org/google-docs/?BfNUNi
https://www.zotero.org/google-docs/?BfNUNi
https://www.zotero.org/google-docs/?NycO9y
https://www.zotero.org/google-docs/?qzay0n
https://www.zotero.org/google-docs/?qzay0n
https://www.zotero.org/google-docs/?Ja4SkY
https://www.zotero.org/google-docs/?ejp1id
https://www.zotero.org/google-docs/?cTeq1K
https://www.zotero.org/google-docs/?QRvegZ
https://www.zotero.org/google-docs/?QRvegZ
https://www.zotero.org/google-docs/?5G5g9b
https://www.zotero.org/google-docs/?CVnRjA
https://www.zotero.org/google-docs/?CVnRjA
https://www.zotero.org/google-docs/?4UonMo
https://www.zotero.org/google-docs/?4UonMo
https://www.zotero.org/google-docs/?T7vr3I
https://www.zotero.org/google-docs/?ORm67V
https://www.zotero.org/google-docs/?ORm67V
https://www.zotero.org/google-docs/?qbLy3B
https://www.zotero.org/google-docs/?1VhpcL
https://www.zotero.org/google-docs/?ZRtx89
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economies, they are likely to experience the most extreme heatwaves in the future, and yet they are 

under (or not) represented in the current heatwave literature. This urges the scientific community to 

have more regard for heatwaves in these regions. Almost all heatwave research areas need to be 

addressed or deepened: evidentiating the very existence of heatwaves, describing their statistical 

characteristics from historical records, understanding their physical mechanisms, analysing their short 

to medium term predictability as well as their future evolution under different greenhouse gas 

emission pathways. How (much) heatwaves impact societies and economies in the least developed 

countries should also be meticulously investigated as this might differ from the findings in high-

income countries.   

 

Of these least developed countries, those in Africa (sub-Saharan Africa in particular) are regularly 

cited as hotspots of present and future climate with heatwaves likely to worsen in the coming decades 

(Russo et al. 2016). Surprisingly, despite evidence from historical records that several severe 

heatwaves have hit sub-Saharan Africa in the past, they are overlooked in the global emergency events 

database (EM-DAT) with only two events reported between 1900 and 2019, to be compared with 83 

events in Europe just between 1980 and 2019 (Harrington and Otto 2020). Various reasons may 

explain this omission of African heatwaves in the global literature. Africa has a relatively warm 

climate with high levels of heat all year round, which may make periods of exceptionally hotter 

situations perhaps less striking. In addition, many heat-related casualties go unreported at the national 

levels as a result of a lack of strong institutional policy in that regard. Local expertise is also missing 

in many countries, making heat-related studies tributary to western countries for both funding and 

human resources.  

 

One African region which has been particularly affected by climate shocks is the West African Sahel. 

The region has indeed been plagued by prolonged droughts resulting in famines (Meillassoux 1974; 

Charney 1975; Janicot et al. 1996; Cook 2008), torrential rains leading to devastating floods and 

damages to the built and natural environments (Lafore et al. 2017; Taylor et al. 2017; Salack et al. 

2018; Tazen et al. 2019), as well as severe dust storms (Middleton 1985; Tulet et al. 2008; Klose et 

al. 2010).  The Sahel is also characterised by the high variability of its seasonal rainfall at various 

time scales (Sultan et al. 2003; Parker et al. 2005; Nicholson and Webster 2007; Poan et al. 2016) 

which occurs in boreal summer. These three main thematics (drought, rainfall variability and dust) 

have retained the largest part of climate-related publications over the region. As a result, despite being 

among the hottest regions of the globe, the Sahel has not benefited from numerous studies on 

heatwaves. This thesis therefore intends to contribute to filling this knowledge gap.  

https://www.zotero.org/google-docs/?dhShPc
https://www.zotero.org/google-docs/?HzHDit
https://www.zotero.org/google-docs/?MpCEik
https://www.zotero.org/google-docs/?MpCEik
https://www.zotero.org/google-docs/?88RFOp
https://www.zotero.org/google-docs/?88RFOp
https://www.zotero.org/google-docs/?C42Sgg
https://www.zotero.org/google-docs/?C42Sgg
https://www.zotero.org/google-docs/?VAcTlC
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1.2. General presentation of the Sahel 

 

There is no consensual physical delimitation of the Sahel. It is generally regarded as the semi-arid 

region marking the transition between the Sudanian Savanna and the Sahara desert, stretching from 

the Atlantic Ocean to the Red Sea. In this study, it is taken as the continental domain delimited by the 

coordinates 20°W, 30°E, 10°N and 20°N. It is characterised by an overall flat topography, with mean 

altitude typically between 200 and 500 m (Sylla et al. 2012).  

 

Lying between the equatorial and subtropical zones, the Sahel has a relatively complex climate 

system. A brief description of this system is made here, starting from the global circulation, before 

focusing on more local features. At the global scale, solar heating is known as the primary source of 

the energy found on earth. This energy is however received differentially at the earth surface, with 

the equatorial regions being more heated than the poles. Atmospheric (and oceanic) motions are thus 

triggered to evenly redistribute this energy across the earth. Given its buoyancy, the warm (and 

humid) equatorial air rises, whereas off-equatorial air masses converge at the surface toward the 

equator to replace the rising air (by continuity). The large-scale convergence and the uplifting near 

the equator engender an area of deep convection where the earth maximum precipitation is observed: 

the Intertropical Convergence Zone (ITCZ). As the air rises, near the tropopause (about 10-15 km in 

the tropics), it loses buoyancy and is thus constrained poleward. The poleward motion progressively 

cools the air, and given the increasing effect of the Coriolis force1 away from the equator, it is 

deflected eastward, forming the subtropical jets (approximately at the 30° parallel of each hemisphere 

-horse latitudes-).  As the air is by then cold (heavy), it descends and warms up adiabatically, leading 

to a decrease of its relative humidity. This subsidence inhibits convection, engendering some of the 

world largest deserts (e.g. the Sahara). At the surface, the dry and cold air diverges given the 

subsidence, and is directed back toward the equatorial zone, closing the loop. This surface 

equatorward motion is also affected by the Coriolis force, leading to a northeasterly flow (trade wind). 

The overall circulation is thus made up of two “twin loops”, one in each hemisphere. They are called 

Hadley cells, and comprise each an ascending branch near the equator and a descending branch 

located near 30° (Fig. 1.1). 

 

                                                
1 Coriolis force: An apparent force created by the earth’s rotation, which, as seen by an observer on 

the earth, deflects moving air to the right in the northern hemisphere and to the left in the southern 

hemisphere.  

https://www.zotero.org/google-docs/?2WrWFd
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Fig. 1.1 Schematic of the Hadley cells.  

 

The Hadley cells and the ITCZ are less well defined over lands, as in addition to surface convergence, 

other regional features such as local atmospheric jets and waves, proximity to the oceans, terrain-

induced convective systems, moisture recycling, and spatiotemporal variability of land cover and 

albedo distort the expected patterns (Dezfuli 2017).  As a result, over Africa, the notion of 

Intertropical Front (ITF, also called Intertropical Discontinuity ITD) is often used instead to clearly 

designate the surface convergence (Lele and Lamb 2010). The ITF, over West Africa, corresponds to 

the frontline between the trade winds from the northern hemisphere (northeasterly winds, called 

Harmattan) and those from the southern hemisphere, which are originally southeasterly but 

progressively turn southwesterly after crossing the equator, as a result of a directional change of the 

Coriolis force. The southwesterly flow is termed as monsoon wind as it brings large quantities of 

moisture from the Gulf of Guinea into continental West Africa. The area of maximum convection 

and rainfall is located 400 to 500 km south to the ITF, since moisture is moderate near the ITF (given 

the Harmattan winds).  
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Fig. 1.2 The ITF (dotted line) over Africa in July–August and January. Arrows represent near surface wind 

flow and contours mean sea level pressure. Source: Nicholson 2011. 

 

As already mentioned, the general circulation described above is a consequence of the differential 

heating of the earth by the sun. Given the revolution of the earth in orbit around the sun, this 

differential heating changes throughout the year, and this also affects the atmospheric circulation and 

the ITCZ (and ITF over West Africa). In boreal winter, because of the earth’s axis tilt, the southern 

(northern) hemisphere receives its maximum (minimum) heating. As a result, the ITCZ is located at 

its southernmost position. Over West Africa, the ITF is found near 5°N (Fig. 1.2). Consequently, the 

Sahel is under the influence of the Harmattan winds which carry cool, dry and dusty air masses from 

the Sahara toward the Gulf of Guinea. It is the driest and coolest season of the year in the Sahel, with 

monthly average minimum (maximum) temperature near 15C (30C) across most of the Sahel (Figs. 

1.3 & 1.4). These values are relatively high, implying a quasi-permanent warm state all year round.  

 

Fig. 1.3 Annual cycle of daily maximum temperature in the Sahel using ERA5 reanalysis. Units in C. 
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In spring, the earth inclination focalises the solar heating between 10 and 15°N (Lavaysse et al. 2009), 

which, combined with favourable albedo, ranks the Sahel as the hottest area of West Africa. The 

Sahel therefore coincides with the West African Heat Low (WAHL), a dynamic feature highlighting 

areas of high surface temperatures and low pressures (Lavaysse et al. 2009). Temperatures then often 

exceed 40C during the day (Fig. 1.3) and 25C during the night (Fig. 1.4). The ITF also shifts 

northward to reach the Sahel such that rainfall is maximum in the Guinean sector of West Africa: this 

marks the Guinean phase of the West African Monsoon (WAM). Given that the ITF lies within the 

Sahel, near surface winds are generally weak (Guichard et al. 2009), but an important variability is 

observed as monsoonal winds often surge into the Sahel (Couvreux et al. 2010), advecting moisture 

in the Sahel, with a potential greenhouse effect to further heat up the region. A comparison of Fig. 

1.3 vs Fig. 1.4 reveals that maximum temperatures reach their peak (in April-May) before minimum 

temperatures (May-June). The main reason is the higher sensitivity of minimum temperatures to 

moisture, which becomes important in the Sahel only in late spring as the ITF progresses northward. 

 

 In summer, the WAHL and the ITF migrate to Saharan latitudes (Fig. 1.2). The large thermal gradient 

between the Sahara and the Gulf of Guinea generates the African Easterly Jet (AEJ) in the mid-

tropospheric levels (Cook 1999). In its turn, through instability, the AEJ causes westward propagating 

weather disturbances called African Easterly Waves (AEWs), which are responsible for organised 

convection in the form of squall lines (Burpee 1972, Reed et al. 1988, Fink and Reiner 2003). The 

exact origin of AEWs is however still the subject of ongoing research. The Sahel therefore becomes 

the region of maximum precipitation in West Africa (Sahelian phase of the WAM), with rainfall totals 

increasing from 200 mm at the Sahara border to 600 mm in the south (Nicholson 2013). Finally, in 

autumn, the WAHL and ITF withdraw back to Sahelian latitudes. Subsequently, the Sahel 

experiences its second thermal peak of the year, which is however much less pronounced than that 

observed in spring (Figs. 1.3 & 1.4). Likewise, a second rainy season is observed over the Guinean 

sector.  

 

Summarily, the climate of the Sahel consists of two main seasons engendered by the meridional 

oscillation of the ITF: a relatively short rainy season in summer and a dry season over the rest of the 

year. The dry season comprises a relatively cool period in winter and two thermal peaks observed just 

prior to and after the summer rainy season with the first peak being the most important. Given the 

large reliance of the Sahelian populations on rainfall for agriculture (the main activity in the region) 

and the large variability of the rainy season at all timescales, most scientific projects in the region 
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have focused on the WAM, the most important to date being the African Monsoon Multidisciplinary 

Analysis (AMMA). However, hot conditions are quasi-permanent over the Sahel, especially in spring, 

where days during which temperatures soar largely above their mean values are potentially harmful. 

The situation is worsened when these days are consecutive, forming heatwave events. These events 

were, however, practically absent from Sahelian literature until the 2010s. It was to fill this gap, and 

inspired by the growing evidence of the negative impacts of heatwaves in Europe, that the French-

led Sahelian Heatwave Early Warning and their Impact on Health (ACASIS) project was initiated. 

Thanks to this project and other isolated works, a comprehensive study of Sahelian heatwaves has 

been undertaken leading to the first scientific insights on these hazards. 

 

Fig. 1.4. Same as Fig. 1.3 but for daily minimum temperature. 

 

 

1.3. Review of Sahelian heatwave literature  

 

The existing literature on extreme heat over the Sahel can be categorised into three major areas: 

characterisation, physical mechanisms and future projections. 

 

1.3.1 Characteristics of heatwaves in the Sahel 

 

Most papers discussing the long-term evolution of temperature over the Sahel agree on a significant 

warming over the last decades. New et al. (2006), examining observed temperature timeseries over 

West Africa between 1961 and 2000, claimed that a large proportion of stations showed statistically 

significant upward trends for both minimum and maximum temperatures. Moreover, they found that 

the increase of very hot days is accompanied by a similar decrease of very cold days inducing a 

stationarity of the diurnal temperature range. The outcome of this is then a global hotter climate. 

Guichard et al. (2012) from observational and reanalyses datasets also concluded of a warming in the 

Sahel over the last 60 years. Considering the diurnal cycle, the increase is differential, with nights 

https://www.zotero.org/google-docs/?LWBnak
https://www.zotero.org/google-docs/?8HutN6
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warming faster than days. They also made the point that during the warmest season (boreal spring), 

the variability at inter-annual scale is weaker than at multi-decadal scale. A similar result is achieved 

by Fontaine et al. (2013), who evaluate to 1°–3C the warming appearing by the mid-1960s over the 

Sahara and Sahel. Furthermore, this warming goes with higher (lesser) frequency of warm (cold) 

temperatures as mentioned by New et al. (2006). In addition, Fontaine et al. (2013) defined heatwaves 

at regional scale over the eastern and western Sahel, and realized that over recent decades, they are 

becoming longer lasting and more frequent. Rising trends of the maximum and minimum temperature 

anomalies, which have been also more and more pronounced since the past 60 years, are what Ringard 

et al. (2016) also found over the entire West Africa at both regional and local scales. Their analysis 

is built on station-based indices over the 1900–2012 period. Additionally, they further supported the 

larger intensification of nocturnal temperature warming over the second half of the 20th century as 

compared to that of daytime temperature. With different data, in occurrence NCEP and ERA-Interim 

reanalyses, as well as outputs from CORDEX models, Adeniyi and Oyekola (2017) confirm that the 

magnitude of heatwaves is increasing. The conclusions of Oueslati et al. (2017) also abide by the 

upward trend of heatwave frequency. They however used a different heat measure than that of other 

studies, the US heat-index (HI) which includes the effect of moisture in the perception of heat. As a 

result, it appears interesting to widen this approach by incorporating other environmental variables 

that also affect heat perception (radiation and wind for example). In a spatiotemporal point of view, 

Oueslati et al. (2017) also found Sahelian heatwaves to become longer lasting, covering larger areas, 

and reaching higher intensities. This is consistent with Ceccherini et al. (2017) which made use of the 

daily Heat Wave Magnitude Index (HWMId). They suggested that, between 2006 and 2015 

especially, an increase of the frequency and the spatial coverage of extreme heatwaves has been 

evident. Concatenating the Global Historical Climatology Network (GHCN) and Global Surface 

Summary of the Day (GSOD) databases, Moron et al. (2016) also concluded of an increase of the 

daily minimum and maximum temperature. They also mentioned that heat spells tend to last longer, 

with almost constantly positive anomalies since the mid-1990s. This paper also tried to explain this 

evolution at different timescales. Thus, the low-frequency (>8 years) variations are attributed to the 

regional-scale mark of global warming, whilst the high-frequency (<8 years) variations are linked to 

a delayed remote impact of El Niño–Southern Oscillation (ENSO) events over the region, with warm 

(cold) anomalies tending to follow warm (cold) ENSO events. Finally, through a special filtering 

method, Barbier et al. (2018) were able to retain synoptic and intraseasonal scale heatwaves and 

showed that during spring and early summer, the deeper one gets into the season, the shorter and less 

frequent are heatwaves. This is however a paradoxical finding since temperatures are higher closer to 

https://www.zotero.org/google-docs/?XZcELt
https://www.zotero.org/google-docs/?SkXHT0
https://www.zotero.org/google-docs/?gd2f7X
https://www.zotero.org/google-docs/?Kb4etO
https://www.zotero.org/google-docs/?Kb4etO
https://www.zotero.org/google-docs/?Y9oV6Y
https://www.zotero.org/google-docs/?zz9wAe
https://www.zotero.org/google-docs/?Wi78OF
https://www.zotero.org/google-docs/?OgB8FO
https://www.zotero.org/google-docs/?DwVw8Z
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the monsoon season than at the beginning of spring. Unfortunately, no other work has focused on 

these timescales to discuss these findings. 

 

Summarily, the characterisation studies largely agree on the increasing threat that heatwaves pose to 

Sahelian populations through the increase of their frequency, the amplification of their magnitude, 

their increasingly large spatial extent and lasting nature. Sahelian heatwaves have been even more 

threatening over recent decades. 

 

1.3.2 Physical mechanisms 

 

The literature on physical mechanisms shaping heatwaves in the Sahel is less abounding than that on 

statistical characteristics. Fontaine et al. (2013) is a precursor in this area. Through compositing 

weather patterns over regional-scale heatwave events, they established that Sahelian heatwaves are 

associated with positive low-level temperature anomalies over the Sahel and Sahara as well as a low 

and mid-level cyclonic rotation over Morocco. This large-scale dynamics is associated with a Rossby 

wave pattern which mitigates low-level northeasterlies (Harmattan). Additionally, in terms of 

moisture, wetter and dryer patterns are found respectively west and east to 0°, while the vertical 

velocity shows an upward (downward) anomaly above the western (eastern) regions associated with 

the Rossby wave pattern. Short Rossby waves would therefore, according to the authors, play an 

important role given the coherence of these patterns with a potential jet stream deformation. Sambou 

et al. (2020) showed that heatwaves in Senegal, the westernmost part of the Sahel, are associated with 

a positive sea-level pressure anomaly centred near the strait of Gibraltar. This anomalous pressure 

system promotes easterly and northeasterly wind anomaly which carries continental hot air towards 

the coast. The thermodynamic causes of Sahelian heatwaves have been investigated by Oueslati et al. 

(2017) through a case study (of the April 2010 event). Their main finding is that the greenhouse effect 

of moisture is important especially for nighttime heatwaves. Atmospheric circulation plays an 

important role by advecting this moisture from the Gulf of Guinea. In addition, they supported the 

ENSO modulation of heatwaves at the interannual timescales (initially claimed by Moron et al. 

(2016)), by showing that warm ENSO events increase water vapour feedback in the region. The 

dominant role of water vapour in the April 2010 nighttime heatwave is further proved by Largeron et 

al. (2020) through a modelling study. They furthermore pointed to the early northward incursion of 

monsoonal winds and the well-known tropical plume phenomenon (which is connected to 

extratropical Rossby waves) as being the dynamical causes through which important moisture was 

brought into the Sahel.   

https://www.zotero.org/google-docs/?8dn2mv
https://www.zotero.org/google-docs/?HHSj8V
https://www.zotero.org/google-docs/?HHSj8V
https://www.zotero.org/google-docs/?zcZavQ
https://www.zotero.org/google-docs/?zcZavQ
https://www.zotero.org/google-docs/?oni1st
https://www.zotero.org/google-docs/?oni1st
https://www.zotero.org/google-docs/?GpmmBo
https://www.zotero.org/google-docs/?GpmmBo
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So, the main conclusions of these studies are the potential impact of mid-latitude weather systems on 

Sahelian heatwaves and the leading role played by water vapour mostly on nighttime events. They 

remained relatively evasive on the leading mechanisms of daytime heatwaves and did not 

systematically assess the differences across different subregions of the Sahel. In addition, in terms of 

large-scale dynamics, besides extra-tropical weather systems, previous non-heatwave-related 

research suggests other potential drivers which have not been explored.  

 

The spring season, during which temperatures reach their maximum in the Sahel, also corresponds to 

the Guinean phase of the WAM as shown in Section 1.2. Actually, the variability of the Sahel is 

intrinsically linked to that of Equatorial Africa, especially just before and after the monsoon season.  

Thus, Kalapureddy et al. (2010) found that the synoptic variability over the Sahel during the pre- 

(April to June) and post-monsoon (October and November) is controlled by monsoon surges with a 

periodicity similar to that of the well-known AEWs (3-5 days). According to Couvreux et al. (2010), 

these monsoon surges may be stationary or westward moving along with the AEWs. In the same order 

of ideas,  Mera et al. (2014) also showed that synoptic and subseasonal circulation disturbances lead 

to an influx of moisture from the Gulf of Guinea into the Sahel (and could therefore lead to a similar 

greenhouse effect as the April 2010 nighttime heatwave). These circulations are essentially controlled 

by extratropical cyclones, but also by equatorial Kelvin (EK) and Rossby (ER) waves, and possibly 

the Madden-Julian oscillation (MJO). These waves could serve as connectors between Sahelian 

heatwaves and the Guinean phase of the WAM, since they are the main drivers of the monsoon at the 

intraseasonal scale, as stressed by Berhane et al. (2015). There is also a benefit in these modes 

contributing to heatwaves in the Sahel, as they have the potential to provide intraseasonal 

predictability. 

 

1.3.3 Heatwave prediction  

 

The last area of scientific research on extreme heat in the Sahel addresses their prediction at different 

timescales. At weather through to seasonal scales, the literature is extremely scarce. Only one single 

paper with a total focus on the Sahel has been published on the topic. This paper (Batté et al. 2018) 

evaluated two coupled forecasting systems (one operational and the other experimental used in the 

WMO’s S2S project) both based on the CNRM-CM coupled global climate model at seasonal and 

intraseasonal scales. Using the ERA-Interim reanalysis as reference, they found their models, at the 

seasonal scale, to have a significant (low) skill in predicting interannual anomalies when the 

evaluation is conducted regional (gridpoint)-wise.  As for the intraseasonal predictability, it showed 

https://www.zotero.org/google-docs/?T9NvHT
https://www.zotero.org/google-docs/?2dbu3T
https://www.zotero.org/google-docs/?HHryXT
https://www.zotero.org/google-docs/?9ivi4G
https://www.zotero.org/google-docs/?y9tNLw


12 
 

skill only for the deterministic range (up to seven days). Additionally, although not Sahel-focused, 

the results of Perez et al. (2018) revealed that the ECMWF model has a good skill at predicting 

heatwaves in the Sahel in the short term (first week of the forecast).  

The evolution of Sahelian heatwaves at climate timescales has benefited from more attention. 

According to CMIP5 projections analysed by Ringard et al. (2016), in any scenario, Sahelian 

heatwaves will have a significant increasing trend in the future. Russo et al. (2016) postulated that in 

the most severe scenario, by 2040, unusual heatwave events will occur on a regular basis in the Sahel. 

Dosio (2017), under the same scenario and using the 1981-2010 period as a reference estimates to 

+3.5 to +6C the increase of temperature over the region starting from around 2060. Another study by 

Déqué et al. (2017) claimed that, under a global warming by 2C, the occurrence of heatwaves in the 

Sahel will increase by a factor 10 if defined with the same temperature threshold in the reference 

climate and in the scenario.  

 

From these studies as well as those with a more global scope, there is a relatively good level of 

certainty that heatwaves across the Sahel will be worse in intensity, frequency and duration in the 

very next decades. Countries of the region and their partners are therefore urged to undertake both 

strategic and tactical actions to relieve their populations from the burden of these extremes. This 

requires a deep knowledge on the hazard itself, which is not yet satisfactorily achieved, given the 

numerous research gaps that need to be filled.  

 

1.4. Research questions 

 

Many research gaps not (or not fully) addressed by the existing literature can be highlighted below. 

At first instance, one global objective in climate research is to have a holistic understanding of the 

climate system across all timescales in order to deliver seamless predictions of the earth system 

(Palmer et al. 2008). In this way, the intraseasonal scale has attracted much attention in recent years 

and offers new opportunities for climate risk management (Webster and Jian 2011). The existing 

literature on Sahelian heatwaves has however not delved much on the topic, prioritising the 

interannual and climate scales. This then calls for a deeper investigation of heatwaves at the 

intraseasonal scale in the region.  

Besides, as in many regions, the vast majority of studies have used temperature as a heat measure 

with only two (Oueslati et al. 2017; Sambou et al. 2020) taking into account the effect of moisture. 

However, other environmental parameters, such as wind and solar radiation, play an important role 

https://www.zotero.org/google-docs/?J4lBfd
https://www.zotero.org/google-docs/?wzhlNB
https://www.zotero.org/google-docs/?bqldS7
https://www.zotero.org/google-docs/?XjlkAX
https://www.zotero.org/google-docs/?BaUwEl
https://www.zotero.org/google-docs/?ZmJfk3
https://www.zotero.org/google-docs/?ls3pkN
https://www.zotero.org/google-docs/?BUj0PA
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in the perception of heat, and it would be interesting to see how complexifying the heat definition 

with these parameters affects the nature of heatwaves.  

There has also been no sufficient exploration of the physical causes of heatwaves. For example, there 

is no clear evaluation of how the physics change between different sub-domains of the Sahel (e.g. the 

western vs eastern Sahel) as well as their seasonality. In addition, the physical causes of daytime 

heatwaves remain elusive and should therefore be more assessed. Furthermore, in terms of large-scale 

dynamics, no paper has addressed the impact that the Guinean phase of the WAM could play on 

Sahelian heatwaves, despite a potential connection between the two, suggested by anterior literature 

(see Section 1.3.2). Research in this route is interesting as it could add predictability to Sahelian 

heatwaves. The predictability itself has not been widely investigated, especially at the intraseasonal 

horizons. It will therefore be important to strengthen research on the topic, taking care to consider 

potential sources of predictability. 

 

Because of the above complication, the present thesis seeks to answer the following main question:  

How predictable are Sahelian heatwaves from weather to intraseasonal timescales? 

 

Although seeming simplistic, answering this research question is not straightforward. It indeed raises 

new questions that need to be addressed in order to give more clarity to the final answer. From the 

outset, it is necessary to clearly delineate the object of the study (i.e. intraseasonal-scale heatwaves) 

and apprehend its nature in terms of both statistical and physical properties. Hence the first research 

sub-question: What are intraseasonal-scale heatwaves in the Sahel and what are their 

underpinning thermodynamics? 

 

Then, it is important to explore their drivers, i.e. the large-scale conditions that sustain their 

thermodynamic ingredients for prolonged periods. This leads to the question: What are the large-

scale drivers of Sahelian heatwaves? 

 

Finally, since the ultimate interest is in the prediction of heatwaves, it is necessary to assess the skill 

of the state-of-the-art models in predicting them. This step benefits from the answers provided to the 

two previous sub-questions, in a view of extending the current limits of the prediction skill, based on 

the knowledge on the drivers of the hazard.  The question is thus: what is the prediction skill of 

heatwaves and is there a potential for improvement considering their physical drivers?  

 

1.5. How significant is the contribution of this thesis to knowledge? 
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The Sahel is home to dozens of millions of people who have one of the fastest growth rates of the 

planet (May et al. 2017). With extreme heat being a growing threat in this already hot region, 

mitigation actions are urgently required. Preventive actions should be taken at different timescales. 

This study paves the way for heatwave risk management in the region at the short and medium terms 

i.e. from a few days to a few months. These timeframes are especially relevant for humanitarian 

preventive interventions, but their effectiveness is contingent on sound understanding and skilful 

predictions of the hazards themselves. Very few is however known about Sahelian heatwaves at 

weather and intraseasonal timescales. The present thesis builds knowledge on this issue. It has a 

thorough approach to the physical science of heatwaves by examining their nature, drivers and 

predictability. It also makes connections between each of these aspects, such that they are well 

sequenced with a logical interdependence. In addition, it helps in closing the knowledge gap in 

tropical and low-income regions’ heatwaves and therefore in a more general way, contributes to a 

better understanding of the earth's climate system. 

 

1.6. Description of each chapter 

 

Each of the three research sub-questions is addressed in the form of a research paper.  

 

The first question (what are intraseasonal-scale heatwaves in the Sahel and what are their 

underpinning thermodynamics?) is addressed in chapter 2. Five distinct heat measures, combining 

different environmental variables including temperature, moisture, wind and solar radiation, have 

been used. Previous studies in the Sahel have focused mainly on temperature alone, while there is 

evidence from other regions that the choice of heat measure (also termed as thermal index) has 

important implications for the downstream results (Heo and Bell 2019). It is therefore important to 

assess the extent to which the nature of Sahelian heatwaves (characteristics and thermodynamics) is 

sensitive to the very measure of the heat itself. As the focus of this research is on the intraseasonal 

scale, the timeseries of the thermal indices as well as that of the physical variables were high-pass 

filtered to retain intraseasonal variability. A statistical analysis of heatwaves detected from these 

intraseasonal signals was then conducted to characterise them in terms of intensity, duration and 

frequency. Likewise, an energy budget analysis was used to determine the thermodynamic processes 

that locally shape these extremes at the intraseasonal scale. Special attention was paid to the difference 

of both statistical and thermodynamic characteristics of heatwaves across the five thermal indices. 

This provided a hint into their potential large-scale drivers (Chapter 3). 

https://www.zotero.org/google-docs/?4m3aPX
https://www.zotero.org/google-docs/?4EBN1d
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The identified local thermodynamic processes were used to inform the investigation of the second 

issue of the thesis (what are the large-scale drivers of Sahelian heatwaves?), developed in Chapter 

3. The large-scale drivers question was partly addressed by previous work, which suggested a 

potential role of mid-latitude weather systems (Fontaine et al. 2013). However, considering previous 

literature on the WAM, further supported by the findings on heatwave thermodynamics, it appeared 

that the intraseasonal drivers of the Guinean phase of the WAM could also, by extension, exert a 

control on Sahelian heatwaves. These drivers, also active in other tropical regions (hence their name 

tropical modes of variability), include the MJO and the convectively coupled equatorial waves. The 

task in this part of the thesis thus consisted in assessing whether tropical modes significantly impact 

Sahelian heatwaves. To carry out this task, tropical modes were first identified based on a method 

pioneered by Riley et al. (2011), which allows to estimate their activity at a given location. Then, the 

statistical study of the occurrence and intensity of heatwaves versus the activity of tropical modes 

allowed the assessment of the relationship between the two. A case study of a major heatwave event 

was also conducted to bolster the findings. The understanding of the drivers was then used to inform 

the assessment of the skill of numerical models at predicting heatwaves. 

 

The third research question (what is the prediction skill of heatwaves and is there a potential for 

improvement considering their physical drivers?) was lastly addressed in Chapter 4 using the 

ECMWF ensemble extended-range forecasting system (ENS-ext) hindcast, as this model is regularly 

reckoned as the best model in many model-intercomparison studies (de Andrade et al. 2019). The 

hindcast covers the past 20 years with a forecast horizon of 46 days. The evaluation was performed 

through three major steps. The first step consisted in a simple evaluation of how good the model is at 

predicting Sahelian heatwaves. Given the extreme nature of heatwaves, a special evaluation metric, 

the Symmetric Extremal Dependency Index (SEDI) was used as more generic metrics degenerate 

when it comes to rare events. The second step of the evaluation looked at the quality of the 

representation by the model of (i) the physical drivers on the one hand and (ii) the relationship 

between these drivers and heatwaves on the other hand. It is indeed demonstrated that one prerequisite 

for a model to be able to draw predictability of a hazard from its physical drivers is to first be able to 

simulate both the driver and its link to the hazard (Marshall et al. 2013). Finally, to test whether a 

given driver of heatwave variability is also a source of predictability, the skill of heatwave prediction 

was compared between instances where the model forecasts this driver to be active versus instances 

where it was forecast to be inactive. The conclusions were reinforced through the case study of the 

prediction skill of a heatwave event. 

https://www.zotero.org/google-docs/?o31rZB
https://www.zotero.org/google-docs/?4cfAW8
https://www.zotero.org/google-docs/?5bS9MH
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Chapter 5 brings the findings of all these papers together and elaborates on their implication for 

operational risk management before discussing the next steps for heatwave research in the Sahel.  
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Chapter 2. Characteristics and thermodynamics of Sahelian heatwaves analysed using various 

thermal indices 

 

Reproduced with the permission of Springer (https://link.springer.com/article/10.1007/s00382-020-05438-5)  

 

Characteristics and thermodynamics of Sahelian Heatwaves analysed using various thermal 

indices 

Kiswendsida H. Guigma1*, Martin Todd1, Yi Wang1* 

 

1University of Sussex, Brighton. UK 

*Corresponding authors: 

Email addresses: k.guigma@sussex.ac.uk (K. Guigma), Yi.Wang@sussex.ac.uk (Y. Wang) 

 

Abstract 

Prolonged periods of extreme heat also known as heatwaves are a growing concern in a changing 

climate. Over the Sahel, a hot and semi-arid region in West Africa, they are still relatively poorly 

understood and managed. In this research, five multivariate thermal indices derived from the ERA5 

database were used to characterize Sahelian heatwaves for statistical analysis and as a sampling 

basis to investigate their underlying thermodynamic causes. Results show that on average most 

locations in the Sahel suffer from one or two heatwaves a year, lasting three to five days, but with 

severe magnitude. The eastern Sahel is more at risk than the west, experiencing more frequent and 

longer lasting events. Despite similar statistics of intensity, duration and frequency across the 

heatwave indices, for a given diurnal phase, there is surprisingly low agreement in the timing of 

events. Furthermore daytime and nighttime heatwaves have little synchronicity. In terms of 

associated thermodynamic processes, heat advection and the greenhouse effect of moisture are 

identified as the main causes of Sahelian heatwaves. The processes are nevertheless sensitive to the 

indices, consequence of the distinctness of their respective samples. Therefore, attention should be 

given to the choice of either index in operational monitoring and forecasting of heatwaves. This will 

allow to effectively target different exposed socio-economic groups and resultantly enhance the 

efficiency of early warning systems. 

 

Keywords: heatwaves, Sahel, thermal indices, simultaneousness, thermodynamic processes. 
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2.1. Introduction 

Heatwaves, extended periods of extreme heat (Gasparrini and Armstrong 2011), are increasingly 

recognised as a major hazard to the society, with impacts directly on human health (e.g. Guirguis et 

al. 2013; Arbuthnott and Hajat 2017) and important socio-economic sectors, including agriculture 

(Smoyer-Tomic et al. 2003), energy (Añel et al. 2017), transport (Palin et al. 2013), infrastructure 

(Chapman et al. 2013) and tourism (Perry 2000). Recent illustrative examples of heatwaves that have 

caused major loss of life and global impacts through commodity supply chains include Russia in 2010 

(estimated 55,000 deaths, Barriopedro et al. 2011) and Europe in 2003 (estimated 40,000 deaths, 

García-Herrera et al. 2010; Miralles et al. 2014). Indeed, in Australia, heatwaves have been identified 

as the deadliest natural hazard (Coates et al. 2014). Under a warming climate there is clear evidence 

that heat extremes have been increasing in recent decades (Hartmann et al. 2013), and are likely to 

continue to do so under all plausible greenhouse gas emission trajectories (Collins et al. 2013). 

The Sahel region of West Africa is especially vulnerable to heatwaves with mean temperatures and 

heatwave risks peaking in the spring and autumn seasons immediately prior to and following the 

summer monsoon (Guichard et al. 2009). In addition, the population of the Sahel is extremely 

vulnerable to climate shocks due to dependence on climate sensitive sectors (e.g. agriculture), 

widespread poverty and inadequate provision of health services amongst others (e.g. Davidson et al. 

2003; Tschakert 2007). However, the literature on the Sahel’s climate and society focuses 

overwhelmingly on rainfall variability and its societal impact, and much less on the causes and 

impacts of extreme heat. Yet, like other regions, there are clear upward trends in Sahelian 

temperatures (e.g. Guichard 2014; Moron et al. 2016), most notably during nighttime. Recent studies 

have shown upward trends in duration, frequency and intensity of heatwave events over the past 

decades (Fontaine et al. 2013; Moron et al. 2016; Ceccherini et al. 2017; Barbier et al. 2018) and 

future projections also show a growing risk of extreme heat in the region (e.g. Nangombe et al. 2019; 

Rohat et al. 2019). However, some contradictory evidence of unchanged frequency exists (Adeniyi 

and Oyekola 2017), which may be related to the choice of heatwave index.  

The negative impacts of extreme heat can, nevertheless, be mitigated, based on skilful forecasts (e.g. 

Ebi et al. 2004; Masato et al. 2015; Lee et al. 2016). Heatwave-health early warning systems are being 

developed in a number of countries, guided by the WMO-WHO (2015). Further, complementing 

national government systems, in the humanitarian sector, systematic approaches to using 

weather/climate forecasts in risk management called Forecast-Based Action (FbA) and Financing 

(FbF) are being developed and implemented by the Red Cross/Red Crescent Society amongst others 

(Perez et al. 2018; Wilkinson et al. 2018), and are being applied to heatwave hazards. The relevant 

meteorological timescales for an efficient implementation of these plans are the synoptic and 
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intraseasonal scales.   In the Sahel, the ACASIS (Sahelian heatwave early warning and their impacts 

on health) project advanced the scientific evidence of drivers and impacts of heatwaves 

(https://acasis.locean-ipsl.upmc.fr/). Heatwaves have been routinely monitored by two national 

meteorological services in the Sahel, namely in Burkina Faso and Senegal. Effective forecasting and 

risk management require nevertheless a clear definition and understanding of heatwave processes, 

especially at the short (synoptic and intraseasonal) timescales. 

There is no conventionally accepted definition of a heatwave (Souch and Grimmond 2006). Various 

heatwave indices have been proposed, which often combine various environmental variables 

(humidity, wind and solar radiation) to represent the link between the physical phenomenon (heat) 

and the physiological issues (health or comfort) (e.g. Macpherson 1962; Cheng et al. 2012; de Freitas 

and Grigorieva 2015, 2017). Further, the selection of thresholds of index intensity, duration and 

spatial extent varies across the literature and operational systems (e.g. Nairn and Fawcett; Robinson 

2001; Zhang et al. 2012; Perkins and Alexander 2012; Smith et al. 2013; Perkins 2015; Gachon et al. 

2016; Xu et al. 2016, 2017). However, multiple heatwave indices complicate both 1) Scientific 

analysis as the heatwave event samples and underpinning thermodynamic processes may vary. 2) 

Monitoring and prediction and early warning under conditions where predictability and the link to 

health outcomes varies between indices. 

Because of above complication, this paper has two main scientific objectives: (1) to compare the 

statistical characteristics of high-frequency heatwaves in the Sahel using diverse multivariate thermal 

indices (see methods in Section 2.2.2.1-2.2.2.2, results in Section 2.3.1) and (2) based on these 

indices, to assess and compare for the first time the underlying thermodynamic processes driving the 

heatwaves (see methods in Section 2.2.2.3, results in Section 2.3.3). The variability of the 

thermodynamics across heatwave indices will give an insight as to their robustness and, by 

implication, their potential predictability.  Note that the large-scale dynamical drivers of heatwave 

events are not considered here since they will be explored in a companion paper later. 

The novelty of this research is that through its approach, it makes a connection between pure 

atmospheric physics and proved health outcomes (e.g. Black 2010) through the use of multivariate 

thermal indices. In addition, the comparative study of heatwave characteristics sampled from different 

thermal indices is in itself original, since over this region, to the best of the authors’ knowledge, such 

analysis has not yet been conducted. This study is also the first to investigate the thermodynamics of 

heatwaves at the synoptic to intraseasonal scale, and is thus relevant for FbA/FbF plans. 

The makeup of the paper is as follows. Section 2.2 details the methodology used. Section 2.3 presents 

the results both in terms of statistical characteristics and thermodynamic processes. Section 2.4 

https://acasis.locean-ipsl.upmc.fr/
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discusses the findings of this paper with respect to other published works and elaborates on the 

potential dynamical large scale drivers.  Section 2.5 summarizes the study. 

 

2.2. Data and Methods 

2.2.1. Data and derivation of thermal indices 

 

To meet the research aims of comparing multivariate heatwave indices and determining the associated 

thermodynamic processes, a self-consistent multivariate dataset is desirable. The Sahel is a data-

sparse region and so, the fifth generation of the European reanalysis (ERA5 hereafter) dataset is used, 

regridded at 0.5° x 0.5° resolution and covering the 1979-2018 period (C3S, 2017). The limitations 

of reanalyses data as a modelled dataset are acknowledged. However, Barbier et al. (2018) have 

demonstrated greater agreement with observed temperatures over the Sahel for ERA-Interim (Dee et 

al., 2011). ERA5 is an improvement of ERA-Interim when compared to observations and other 

reanalysis products. Furthermore, Oueslati et al. (2017) have reported that the ERA-Interim reanalysis 

is able to very well capture the annual cycle and the interannual variability of the US heat-index (an 

index which is used in the present study over the Sahel). There is additional evidence that ERA5 is 

the reanalysis that offers the best representation of various near surface meteorological products, 

including near surface moisture and wind speed (e.g. Olauson 2018; Ramon et al. 2019), which are 

used in this paper (see Table 2.1). ERA5 is therefore well suited to this research.  The study domain 

of the Sahel is defined as the continental area located between 20°W-30°E and 10°-20°N.  

Five distinct formulations of heat measures (hereafter thermal indices) have been selected from over 

100 currently existing indices (Pappenberger et al. 2015) to characterise Sahelian heatwaves 

(specified in Table 2.1). They include Temperature (T), the Heat Index (HI), the Steadman non radiant 

Apparent Temperature (AT), the Net Effective Temperature (NET) and the Universal Thermal 

Comfort index (UTCI). Since this study aims at targeting the effective impacts on comfort, the criteria 

for the choice are essentially how they simulate the exposure of Sahelian populations to diverse 

extreme heat-related environmental conditions. This follows a joint WMO-WHO recommendation 

on heatwaves and health early warning systems (WMO-No.1142, 2015). The exposure conditions 

represented by the thermal indices are also summarised in Table 2.1. Note that they have all been 

used in other semi-arid regions.  

For each day over the period 1979-2018, daytime and nighttime indices are derived from each thermal 

index. For T, HI, AT and NET, daytime (nighttime) values are obtained by combining the daily 

maximum (minimum) temperature and the averages over the daytime (nighttime) time steps of 09,  
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Table 2.1. Description of thermal indices used in this paper. 

Index name 

(abbreviation) 
References Formula Variables 

Environmental 

characteristics 

1-

Temperature 

(T) 

(Fischer and 

Schär (2010); 

Perkins and 

Alexander 

(2012); Panda 

et al. (2017) 

T  T: temperature 

Classic heat 

measure; 

shielded indoor 

conditions 

2-Heat Index 

(HI) 

Steadman 

(1979); 

Oueslati et al. 

(2017) 

𝐻𝐼 = −42.37 + 2.04𝑇 + 10.14𝑅𝐻 −

0.22 𝑇. 𝑅𝐻 − 6.83 ∗ 10−3𝑇2      −

5.48 ∗ 10−2𝑅𝐻2 + 1.22 ∗ 10−3𝑇2. 𝑅𝐻 +

8.52 ∗ 10−4𝑇. 𝑅𝐻2 − 1.99 ∗

10−6𝑇2. 𝑅𝐻2 

 

(i)T: temperature  

(ii) RH: relative 

humidity 

Shielded 

indoor 

conditions 

integrating 

moisture effect 

3-Apparent 

temperature 

(AT) 

Steadman 

(1994);  Willett 

and Sherwood 

(2012); Krstić 

(2011) 

𝐴𝑇 = 𝑇 + 0.33𝑒 − 0.7𝑉 − 4 

 

(i) T: temperature in 

C,  

(ii) e: 

water             vapour 

pressure in hPa. 

(iii) V: wind speed at 

10m height in ms-1. 

Shielded 

outdoor 

conditions 

4-Net 

Effective 

Temperature 

(NET) 

Hentschel 

(1987); Li and 

Chan (2000); 

Blazejczyk et 

al. (2012) 

𝑁𝐸𝑇

= 37

−
37 − 𝑇

0.68 − 0.0014𝑅𝐻 +
1

1.76 + 1.4𝑉0.75

−
0.29𝑇

1 − 0.001𝑅𝐻
 

 

(i) T: temperature 

inC,  

(ii) RH: relative 

humidity in %,  

(iii) V:wind speed at 

1.2m above the 

ground in ms-1 

Shielded 

Outdoor 

Conditions 

accounting for 

human 

physiology 

5-Universal 

Thermal 

Comfort Index 

(UTCI) 

Blazejczyk et 

al. (2012); 

Bröde et al. 

(2012) 

Polynomial accessible at 

http://james-ramsden.com/calculate-utci-

c-code/ 

 

(i)T: temperature in 

C 

(ii)RH: relative 

humidity in %; 

(iii) V: wind speed at 

10 m above the 

ground in ms-1 

(iv)Tmrt: mean 

radiant temperature 

C. 

Exposed 

outdoor 

conditions 

accounting for 

human 

physiology 

  

http://james-ramsden.com/calculate-utci-c-code/
http://james-ramsden.com/calculate-utci-c-code/
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12, 15 and 18 UTC (21, 0, 3, and 6 UTC) of the other variables involved. The computation of UTCI 

is relatively complex (Bröde et al. 2012). The data are however now directly available on the ERA5 

portal (Di Napoli et al. 2020) at an hourly resolution. For this index, the daytime (nighttime) 

component is taken as the maximum (minimum) over the period between 07 and 18 UTC (19 and 06 

UTC), respectively, which introduces a small inconsistency with the other indices.   

Considering separately the diurnal phases, there is thus a total of ten thermal indices, namely: Tday, 

Tnight, HIday, HInight, ATday, ATnight, NETday, NETnight, UTCIday and UTCInight. These short 

names will consistently be used in the paper. 

 

Table 2.2. Heatwave types under investigation. 

 FM AMJ 

Day Day Night 

East Sahel Ed-FM Ed-AMJ En-AMJ 

West Sahel Wd-FM Wd-AMJ Wn-AMJ 

 

2.2.2. Methods for heatwave characteristics inter-comparison 

 

The first step in answering the two research objectives is to define a heatwave day at each data grid-

cell across the Sahel. The following method is used to achieve this. 

 

2.2.2.1. Heatwave definition 

 

The analysis covers the months of February to June corresponding to the hot period in between the 

cool winter season and the monsoon season, and during which the first and most important peak of 

the temperature annual cycle is observed (Guichard et al. 2009; Nicholson 2018).  For a given grid-

cell and a given thermal index, several steps are followed to detect heatwaves.  

First of all, from the raw data of the thermal index, the 75th percentile of the total distribution is 

computed and is considered as a locally fixed threshold, which will allow to discard non-absolutely 

hot days.  

Then considering that the synoptic to intraseasonal timescales are the most relevant for heatwave 

prediction and risk management plans, the thermal index values are converted into anomaly values 

by removing the daily climatology (itself smoothed through a 31-day centred running averaging). 

These anomalies are further high-pass filtered using Lanczos weights (Duchon 1979) with a cut-off 
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frequency of 90 days, to retain variability in the synoptic and intraseasonal timescales. As data is lost 

at the edges of the input timeseries, the subsequent analysis is built on years 1980 to 2017 which are 

complete. From these filtered anomalies, the 90th percentile value of each calendar day is derived 

using a 31-day centred window to remove noise associated with a relatively short 38-year dataset.   

Heatwaves are finally defined as sequences of at least three consecutive days passing both magnitude 

constraints simultaneously: (i) The 75th percentile of the raw data total distribution and (ii) The 

calendar day 90th percentile of the high-pass filtered data. 

Note that the calendar day threshold has been used by previous studies (e.g. Schoof et al. 2017; 

Perkins-Kirkpatrick and Gibson 2017).  

 

2.2.2.2. Inter-comparison of thermal index-based heatwaves at the grid-cell scale 

 

In order to answer research question one, a comparison is made between the statistics of heatwaves 

across the various thermal indices used on a gridcell basis. This includes specifically: 

(i) The heatwave duration, frequency and intensity. The duration corresponds to the length, i.e. the 

number of days of an event. The frequency is defined as the average number of events per year over 

the 1980-2017 period. The intensity is defined as the average value of the index high-pass filtered 

anomaly during the heatwave. To allow comparison between different indices, the intensity values 

are standardised (divided by their standard deviation). The results of heatwave duration, frequency 

and intensity are presented in map formats in Section 2.3.1.1. 

 

(ii) The ‘synchronicity’ of heatwave detection. For each grid-cell the binary timeseries of heatwave 

occurrences for different indices is compared using the coefficient of similarity or Jaccard coefficient 

(Jaccard 1901). Given two sets of data X and Y, the Jaccard coefficient is the ratio between their 

intersection and their union:  

𝐽(𝑋, 𝑌) =
𝑋∩𝑌

𝑋∪𝑌
  (1) with  0 ≤ 𝐽(𝑋, 𝑌) ≤ 1                 (1).  

If 𝑋 = 𝑌, 𝐽(𝑋, 𝑌) = 1. If X and Y have no common elements  𝐽(𝑋, 𝑌) = 0. 

 For binary signals, the formula is:  

𝐽(𝑋, 𝑌) =
𝑀11

𝑀10+𝑀01+𝑀11
                                              (2). 

M00: total number of attributes where both timeseries X and Y have a value of 0 

M10: total number of attributes where the attribute of X is 1 and the attribute of Y 0 

M01: total number of attributes where the attribute of X is 0 and the attribute of Y 1 

M11: total number of attributes where X and Y both have a value of 1. 
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The results of this analysis are presented in Section 2.3.1.2. 

A direct comparison between the thermal indices over all days of the February to June period 

(irrespective of the presence of heatwaves) is also made through computing the correlation 

coefficients between them. Furthermore, the importance of the three main constituting variables (i.e. 

temperature, relative humidity and wind speed) in the thermal indices is assessed. This is done by 

analysing the coefficients of determination of the linear regression of each thermal index on each 

variable, following Berman et al. (2016). The coefficients of determination in the present context are 

statistical measures of the portions of variances of the thermal indices attributable to the constituting 

variables. The diurnal phases of the variables are the same as described in Section 2.2.1, i.e. daily 

maximum (minimum) for temperature, and averages over the time steps 09, 12, 15 and 18 UTC (21, 

0, 3, and 6 UTC) for relative humidity and wind speed at daytime (nighttime). Both correlation and 

determination coefficients are computed at each grid-cell before spatially averaging over the Sahel 

domain and are presented in Section 2.3.1.3. 

 

2.2.3. Methods for understanding the thermodynamic processes underpinning heatwaves   

2.2.3.1. Definition of arealy extensive large-scale heatwave events 

 

To address the second research objective, the thermodynamic processes are analysed, only on days 

where major, arealy extensive, large-scale heatwave events (hereafter, LSHWs), i.e. events extending 

over a large number of contiguous grid-cells occurred. Focusing on the LSHWs allows to identify 

clear signals in the thermodynamic processes, minimising small-scale ‘noise’ in these data.  

For each day over the February to June period, binary masks are obtained over the Sahel domain 

using occurrence/non-occurrence of heatwaves at each grid-cell (grid-cell heatwaves are defined in 

Section 2.2.2.1 above). Then, a hierarchical clustering (Anderberg 1973; Everitt et al. 2011) is applied 

to these grid-cells based on the spatial distances between them using the average linkage method.  

The ultimate aim is to identify days where LSHWs were observed. This method initially considers all 

grid-cells as clusters, merges the closest two, recalculates the distance between the clusters, merges 

again the closest two and so forth. The distance between two clusters is defined as the average distance 

between each grid-cell of one cluster to every grid-cell of the other cluster. The clustering process 

ends when the distance between the closest two clusters is larger than a subjective cut-off distance 

defined in this paper as 1,000 km, characteristic of the synoptic scale in meteorology. Then, the areas 

of the clusters are calculated, and only those extending over at least 600,000 km2 (consistently with 

Barbier et al. 2018) are considered as LSHWs. The algorithmic of this method is summarised in the 
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supplemental material to this paper (see the flowchart in Fig. S2.1 and an illustration of a real case in 

Fig. S2.2).  

Sensitivity tests have been carried out on both the cut-off distance (initially set to 1,000 km) and the 

minimum areal extension of the LSHWs (600,000 km2 initially). Reducing the latter leads to an 

increase of the number of events by the same order than the change of areal threshold (50% decrease 

of the areal threshold leads to a doubling of the sample size), and reversely when it is increased. On 

the other hand, the increase of the cut-off distance between clusters leads to wider clusters and then 

a higher number of LSHWs. The order of the increase of the cut-off level is also conserved in terms 

of change of sample size (with decreasing values of cut-off level, LSHW events become rarer). 

However, these changes of both areal extent thresholds and cut-off distances have no significant 

impacts on the spatial structures of LSHWs or the identified thermodynamic processes (see Section 

2.2.3.2).  

Because the minimum 3-day temporal constraint (see Section 2.2.2.1) is applied prior (at grid-cell 

level) to the minimum areal extent threshold (as in Schoetter et al., 2015), the LSHW event samples 

exclude any very fast moving events. This is consistent with the goal of detecting the likely most 

harmful events as it is assumed the longer the duration the greater the impact is. The resulting maps 

show the occurrence and location of LSHWs that allow the analysis of the characteristics patterns of 

LSHW occurrence (see Section 2.3.2) and provide the sampling basis to composite the fields of 

thermodynamic processes (see description in Section 2.2.3.4 and results in Section 2.3.3).  For this 

subsequent analysis, the samples of LSHW events (see Table 2.3) are separated into appropriate 

seasons, consistent with previous work (e.g. Kalapureddy et al. 2010; Moron et al. 2018): (i) The dry 

season (February-March, hereafter, FM) and (ii) The pre-monsoon season (April to June, hereafter, 

AMJ). The pre-monsoon is the hottest season of the year and obviously the most active in terms of 

heatwave occurrence. The FM season stands as a transition between the coolest and the hottest 

seasons and carries a risk of thermal ‘shocks’ associated with the thermo-physiological strain of rapid 

adjustment (de Freitas and Grigorieva, 2015)  

 

2.2.3.2. Spatio-temporal partitioning of heatwaves 

 

The LSHW maps are analysed as follows. First, an empirical orthogonal function (EOF) 

decomposition is used to determine the patterns of spatial variability in LSHWs. These EOFs are 

calculated separately for each index, each season and for night and day (excluding the FM season for 

all nighttime indices as well as daytime indices of AT-day and HI-day, due to the small LSHW sample 

sizes) on all dates where a LSHW event is detected over the Sahel domain (see Table 2.3 for the exact 
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input sample sizes of each index). The input data consist of the high-pass filtered anomaly values of 

the thermal index over the whole domain (including grid-cells which are not part of the LSHW event).  

Sensitivity tests of the EOF results were carried out and are discussed in Section 2.3.2.  

The resulting EOF loading patterns broadly show a dipolar structure indicative of preferred 

occurrence of LSHW events over the eastern versus the western Sahel (see Section 2.3.2). On the 

basis of these EOF loading patterns, six characteristic heatwave types are identified (see Table 2.2 

for the abbreviations used), accounting for the two subregions of the eastern (E) and western (W) 

Sahel domains, two seasons (FM and AMJ), and the diurnal cycle of day (‘d’) and night (‘n’). The 

major LSHW event days of each of the six characteristic types are identified as instances where the 

standardised EOF time coefficients absolutely exceed one (the sign is combined with the spatial 

loadings to decide whether they correspond to the eastern or western Sahel). These samples of major 

characteristic LSHW events form the basis of the analysis of thermodynamic processes (methods 

described below, results in Section 2.3.2). 

  

2.2.3.3. Thermodynamic processes causing large-scale heatwave events 

 

To quantify the thermodynamic processes driving LSHW events, as in Oueslati et al. (2017), the 

surface energy budget (hereafter, SEB) is derived from ERA5 data: 

  
𝑐𝑠∆𝑇

∆𝑡
= 𝑆𝑊𝑅 + 𝐿𝑊𝑅 + 𝑆𝐻𝐹 + 𝐿𝐻𝐹                         (3).  

Where SWR is the net shortwave radiation, LWR is the net longwave radiation, SHF is the sensible 

heat flux, LHF is the latent heat flux and cs is the specific heat at constant pressure of the surface. 

Note that the ground fluxes are neglected in this study. To assess the role of clouds during some 

heatwave types, the cloud radiative effect (CRE) was derived from the ERA5 data as the difference 

between the (longwave and shortwave) radiation of a cloud-free atmosphere and that of the real 

atmosphere. As a convention, the radiative fluxes are counted negatively when directed away from 

the surface to the atmosphere. The radiative fields are relatively well represented in ERA5 over land 

(Martens et al. 2020), and can thus be trusted in the present study. 

The SEB considers only diabatic processes since it is derived from the first law of thermodynamics 

at the surface level, where processes are frequently non-adiabatic. It also accounts only for the skin 

temperature (temperature at levels of a few centimetres high above the ground). However, people live 

in the boundary layer where adiabatic processes including air advection may also play an important 

role (e.g. Foken 2008; Leuning et al. 2012; Cuxart et al. 2015). Therefore, using the 925 hPa level as 
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a proxy for the boundary layer, the horizontal temperature advection is analysed during heatwave 

events to complement the SEB: 

𝐴 = −𝑉⃗ 𝛻⃗ 𝑇 = −𝑢
𝜕𝑇

𝜕𝑥
− 𝑣

𝜕𝑇

𝜕𝑦
                                       (4).  

Where T is temperature and 𝑉⃗  is the horizontal wind which is decomposed into its zonal (u) and 

meridional (v) components. 

To account for moisture, the second most common parameter to the indices, near surface relative 

humidity data are investigated. Cloud cover data are also examined to describe the synoptic conditions 

during heatwaves. 

Similarly to the thermal indices, all the physical quantities are first high-pass filtered to retain 

variability at the synoptic and intraseasonal scales (see Section 2.2.1). Their composite mean 

anomalies for the major LSHW event days and preceding days were derived for each of the six LSHW 

types. The statistical significance at the 0.05 probability level of each composite mean departure from 

zero was determined by a Student’s t-test. These anomalies are standardised and the magnitude of the 

anomalies indicates their likely contribution to causing the heatwave. 

To compare the magnitude of the thermodynamic processes driving various heatwave indices directly, 

they are spatially averaged over grid-cells where the EOF spatial coefficient has a normalised 

amplitude larger than 0.3 (results shown in Section 2.3.3).  

 

2.3. Results         

2.3.1. Heatwave characteristics and statistics across thermal indices 

2.3.1.1. Heatwave characterization 

 

The three most important measures of heatwaves are assessed: duration, frequency and intensity 

(defined in Section 2.2.2.2). In terms of duration (Figs. 2.1a & 2.2a) it is seen that:  

(i) Sahelian heatwaves are typically not especially long lasting, with a mean duration not much in 

excess of the three-day minimum threshold and with little apparent sensitivity to the various thermal 

indices. Overall, the mean duration is quite low compared to other regions (e.g. Australia, Cowan et 

al. 2014) and other definitions over the Sahel (Oueslati et al. 2017; Barbier et al. 2018). However, the 

longest lasting daytime heatwaves on record (Figs. S2.3.a & S2.4.a) persist for up to two weeks over 

some locations (central Burkina Faso, Northwestern Nigeria and across the Chad-Niger border). 

 

(ii) Daytime events are longer lasting than nocturnal events (Fig. 2.1a vs Fig. 2.2a), persisting on 

average up to 4.5 days (Fig. 2.2a) notably over the Central Sahel.  
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Fig. 2.1 Characteristics of nighttime heatwaves: (a) average duration in number of days per event, (b) average 

intensity in standardised units and (c) frequency in number of events per year. See Section 2.2.2.2 for the 

computation method. 

 

(iii) Although the spatial variability in duration is not pronounced, broadly the central and eastern 

Sahel experiences longer lasting events than the western Sahel during both day and night across most 

indices (Figs. 2.1a & 2.2a). 

 

(iv) Across the thermal indices, although differences are relatively small, over the eastern Sahel, AT 

presents the longest events at night (AT-night) but has some of the shortest events during the day 

(AT-day). This may be caused by the strong diurnal cycle of wind speed and its ‘cooling’ effect in 

the AT index formulae (Table 2.1). Surface wind speeds are highest during the day when boundary 

layer mixing is greatest and lowest at night, when the surface-atmosphere decoupling is pronounced 

and nocturnal low-level jets commonly form (Parker et al. 2005; Washington and Todd 2005; Fiedler 

et al. 2013).  

  

Regarding heatwave intensity it can be noticed that: 

(i) Nighttime events are slightly more intense than daytime (the magnitude of the differences between 

them is mostly below 0.3 standard deviation) (Fig. 2.1b vs Fig. 2.2b). 
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Fig. 2.2 Same as Fig. 2.1 but for daytime heatwaves. 

 

 

Fig. 2.3 Average Jaccard similarity coefficients between each thermal index and the other four of the same 

diurnal phase at (a) Nighttime and (b) daytime, and (c) between the daytime and the nighttime components of 

the same index. 
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(ii) There is a higher intensity in the eastern, the extreme western and the southernmost parts (Sudan 

belt) of the Sahel compared to the centre for most indices. 

 

(iii) There is considerable variability in intensity with the most extreme events exceeding 5 (3) 

standard deviations in the eastern (western) Sahel (Figs. S2.3b & S2.4b). Such events are likely to be 

very harmful in terms of health.  

 

Regarding heatwave frequency, most grid-cells experience between one and two events per year 

(Figs. 2.1c & 2.2c), with increasing values from the western to the eastern Sahel, for both day and 

night events - a similar structure to that of duration and intensity. Daytime events are slightly more 

frequent than nighttime events.  

 

These contrasts in the diurnal cycle and the spatial distribution are mostly explained by the constraints 

of the heatwave definition and the spatio-temporal variability of the thermal indices. A sensitivity test 

on the minimum duration constraint reveals that extreme hot events persist longer in daytime than 

nighttime over the dry eastern Sahel whereas over the western Sahel, nighttime heatwaves last longer. 

The locally fixed intensity threshold (75th percentile of the total distribution of the raw indices) also 

amplifies the day/night and East/West disparities through highlighting the differential annual cycle. 

The distributions of indices during the nighttime and over and the western Sahel are more clustered 

around the average values (Figs. S2.5 & S2.6), resulting in lesser heatwave probabilities especially 

during the transitional months (February and March). In fact, for most indices (UTCI being the 

exception), the variances are larger during the daytime and over the eastern Sahel than at nighttime 

and over the western Sahel (Fig. S2.7).  

It should also be noted that the 75th percentile of the total distribution is very determinant in ensuring 

that the intraseasonal events that are detected are hot indeed. March is a transition month in the Sahel 

and without this constraint most heatwaves would have been detected in this month given its strong 

intraseasonal variability. 

In summary, the statistics show the eastern Sahel (especially Chad and Sudan) to be the most affected 

by heatwaves, hosting the longest lasting, most intense and most frequent events. Heatwaves are more 

frequent and longer-lasting during the daytime compared to the nighttime, while there is little diurnal 

difference in intensities. For the same diurnal period, the differences in heatwave statistics between 

indices are not especially important.  

 

2.3.1.2. Synchronicity of heatwaves defined by the various thermal indices 
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The previous section suggests that the choice of thermal index does not greatly affect the 

characteristics and basic statistics of the detected heatwaves. However, does this mean the indices 

identify the same events? The analysis of the Jaccard coefficient of similarity suggests quite surprising 

results. The average Jaccard coefficient (i.e. the average Jaccard coefficient for a given thermal index 

versus the other four indices) for nighttime (Fig. 2.3a) and daytime (Fig. 2.3b) separately is typically 

less than 0.5 across the vast majority of the domain grid-cells. No clear spatial consistency is observed 

in the similarity index patterns across the pairs of indices, although the northeast of the domain 

centred on the Chad-Sudan border repeatedly depicts the maximum similarity between indices. Even 

for the most similar two indices, the Jaccard coefficients are only quite moderate with almost all the 

domain experiencing values less than 0.7 during the day, and lower for nighttime. The probable 

reasons for this dissimilarity are discussed in Section 2.3.1.3, and in Section 2.4 the potential 

implications for heatwave risk management in the Sahel are discussed.  

The similarity between day and nighttime events is lower still (Fig. 2.4c), with typically less than 

10% of all heatwave days being common to both day and night for most indices and grid-cells. The 

HI index has the greatest similarity across day and night, such that daily average of this index would 

yield the most robust combined indicator. So, in the Sahel, daytime and nighttime heatwaves do not 

usually occur simultaneously, a finding consistent with Barbier et al. (2018). This also has profound 

implications which are explored in Section 2.4. 

 

Table 2.3. Sample sizes of daytime and nighttime LSHWs over the 1980-2017 period.  

  

T HI AT NET UTCI 

night day night day night day night day night day 

Feb 7 43 0 6 0 7 10 41 0 19 

Mar 49 160 33 34 9 70 66 162 6 134 

Apr 182 238 163 169 105 222 183 235 113 247 

May 224 202 212 199 204 212 190 191 217 208 

Jun 137 128 136 124 116 150 137 134 139 164 

                      

FM 56 203 33 40 9 77 76 203 6 153 

AMJ 543 568 511 492 425 584 510 560 469 619 

Total 599 771 544 532 434 661 586 763 475 772 
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2.3.1.3. Factors of the low co-occurrence across heatwave samples     

   

In this section, the reason for the low Jaccard coefficients between heatwaves sampled from different 

indices over the same diurnal phase (Figs. 2.3a & 2.3b) is investigated. Two main factors could be 

seen to exert a control on the coincidence of heatwaves sample from different indices: (i) the upstream 

constraints imposed on heatwave definition (duration and intensity thresholds) and (ii) the interaction 

between the constituting variables of the thermal indices. 

 

 

Fig. 2.4 Sensitivity of Sahel-wide average Jaccard coefficients between T-day and the four other daytime 

heatwave indices (HI-day, AT-day, NET-day and UTCI-day) to changes of heatwave definition thresholds. The 

red line represents averages of the Jaccard coefficients when the relative threshold is varied between the 90 th 

and the 50th percentile of calendar day distribution (keeping the absolute threshold to 75th percentile of the total 

distribution and the minimum duration to three days); likewise for the blue (green) lines but changing the 

absolute threshold and keeping the calendar day threshold to the 90th percentile and the duration to three days 

(changing the duration between five days and one day and keeping the relative threshold to the 90th percentile 

of calendar  distribution and the absolute threshold to the 75th percentile of the total distribution) 
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A sensitivity analysis on the impact of the duration, absolute and calendar day magnitude thresholds 

is presented in Fig. 2.4 using Tday as an example (the rates of the changes are similar for the other 

heatwave indices). Thus, lowering the magnitude thresholds induces an increase of the Jaccard 

coefficient between the heatwave samples. As an illustration, the average Sahel-wide Jaccard 

coefficient between Tday and the four other daytime heatwave indices is approximately 1.5 times 

higher if the calendar day threshold is set to the 50th percentile rather than the 90th percentile (without 

changing the other constraints). Similar (but slightly lower) variations are observed for the absolute 

intensity threshold. The coincidence between heatwave samples also increases with decreasing 

heatwave duration thresholds. There is indeed an average increase (Sahel-wide) of 0.04 of the Jaccard 

coefficient when the duration threshold is shortened by a day. This means that, if at the outset the 

minimum duration was set to two consecutive days, the absolute intensity threshold to the 60th 

percentile of the total distribution, and the relative intensity threshold to the 80th percentile of calendar 

day distribution, the average Jaccard coefficient of Tday would have been 0.5 instead of 0.36 (not 

shown). Consequently the more extreme the constraints for heatwave detection, the lower the co-

occurrence of heatwave events across different thermal indices. Note that the variation of the different 

thresholds does not affect the spatial patterns of the Jaccard coefficients illustrated in Fig. 2.3. 

The correlation coefficients between the thermal indices are relatively high (black solid lines in Fig. 

S2.8) but the proportions of the thermal index variance explained by temperature, relative humidity 

and wind speed (method described in Section 2.2.2.2) varies significantly from an index to another, 

and also contributes to the low inter-index Jaccard coefficients, especially during the AMJ season. 

Out of these constituents, wind speed (green dashed lines in Fig. S2.8) is generally the least important 

to the index variance. It however shows a relatively important portion of explained variability during 

the dry season (FM) where its annual cycle is at its peak with daytime more affected than nighttime. 

The daytime components of AT and UTCI are the most impacted by wind speed. Wind almost has no 

impact on HI, and therefore with increasing ventilation, a moist and hot air is more likely to lead to a 

HI-heatwave. 

Since all indices have temperature as their principal variable (Table 2.1), it explains most of their 

variance (above 80% in most indices, red dashed lines in Fig. S2.8). However, its importance varies 

with the season, the diurnal cycle and the indices themselves. In FM, the influence of temperature is 

the largest and slightly decreases gradually in AMJ as the role of relative humidity (blue dashed lines 

in Fig. S2.8) increases due to moisture surges (Couvreux et al. 2010). It should be noted that 

temperature itself is strongly associated with moisture in AMJ at daytime (due to clouds; Fig. S2.8b). 

Consequently, an anomalously clearer (cloudier) sky than usual increases (decreases) the probability 

of T-day heatwaves (the same conclusion cannot be straightforwardly drawn for HI, AT and UTCI 



34 
 

heatwaves probabilities as shown below). NET is the index with the strongest links with temperature, 

especially at daytime with the coefficient of determination close to 1 (Fig. S2.8h), leading to high 

Jaccard coefficients between T-day and NET-day. The thermal indices with the weakest links with 

temperature are HI-day, AT-day, AT-night and UTCI-night (Fig. S2.8d, S2.8f, S2.8e and S2.8i 

respectively). The causes are not the same however. For HI-day and AT-day, it is due to the opposed 

daytime evolution of temperature versus moisture (Gounou et al. 2012): an increase of moisture may 

be associated with an increase of clouds (e.g. mid-level altocumulus, Bourgeois et al. 2018), and thus 

cause a decrease of temperature. For AT-night and UTCI-night, the wind speed, although with low 

determination coefficients, tends to counteract both the moisture and temperature effects. UTCI-day 

on the other hand maintains a relatively important link with temperature, given that it takes solar 

radiation into account in its formulation, the latter being itself well correlated with temperature 

(Blazejczyk et al. 2012).  

Summarily the choice of various constraints for heatwave definition and the interactions between the 

constituting variables of thermal indices are two important factors for the (a)synchronicity of 

heatwaves samples. The second factor also affects the underpinning thermodynamic causes as will 

be described in Section 2.3.3. 

 

2.3.2. Thermodynamic processes: spatial structures of Sahelian heatwaves 

 

From this section, the focus is on LSHW events as defined in Section 2.2.3.1. Table 2.3 presents the 

input sample sizes of each index for each month and season of interest over the 1980-2017 period. T 

(HI) has the largest (smallest) sample size. Regarding the temporal distribution, the smallest heatwave 

sample is recorded in February across all indices, mainly as a consequence of the absolute threshold 

(75th percentile). The months with the largest heatwave occurrences are April for the daytime (except 

HI-day) and May for the nighttime (Table 2.3).  

The spatial structures of variability associated with LSHWs are assessed through an EOF analysis 

(see Section 2.2.3.2). To ensure robust results, the sensitivity of the technique to the sampling domain 

(Hannachi et al. 2007) is tested by using two imbricated regions consistent with Richman (1986): A 

small domain covering the Sahel only (20°W-30°E and 10°-20°N), and a larger domain extending 

over the entire Northern Africa domain (20°W-50°E and 0°-35°N). The resulting EOF loading 

patterns are very similar within their overlapping area and only the larger domain is retained for 

further analyses since the EOF loadings of the smaller domain peak towards the boundaries of the 

Sahel box, suggesting processes of larger spatial scale. The EOF loading patterns are also insensitive 

to the choice of minimum areal threshold or cut-off distance (see Section 2.2.3.1).  
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Fig. 2.5 Leading EOF loadings for different LSHW types using the T index. Numbers in brackets are the 

portions of variance explained (see Section 2.2.3.2 for the method description). 
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The results indicate that the leading mode of each heatwave type, which explains around 15% of the 

total variance, has a zonally dipolar structure (Fig. 2.5, illustrated using the results from the T index). 

This means that LSHW events over the western (eastern) Sahel are associated with a relative cooling 

(warming) in the eastern (western) Sahel. Note that the temperature anomalies associated with several 

weather type patterns over the northern tropical Africa domain also present the dipolar structure 

(Moron et al. 2018). The percentages of variance of LSHWs explained by the EOFs are relatively low 

but the method in itself is a robust and objective approach to capture the natural patterns of variability 

and has extensively been used in climate studies (e.g. Hannachi et al. 2006). 

 

2.3.3. Thermodynamic processes: energy budget and moisture analyses 

 

In this section, the underlying thermodynamics associated with each heatwave type are assessed using 

the terms of the SEB (equation 3) and the heat advection (equation 4) presented in Section 2.2.3.3. 

Before describing the details of each heatwave type, it is important to mention some general 

observations. All heatwave types are associated with an increase of temperature, and most of them 

see a significant decrease of wind speed. In terms of magnitude, the eastern Sahel heatwave processes 

are generally larger than their western Sahel counterparts. Similarly, in FM the magnitude of the 

processes are more important than in AMJ, in agreement with Moron et al. (2018). The analysis of 

the SEB on days leading to the heatwave reveals that for most heatwave types the anomalies of the 

processes keep the same sign as during the heatwave or are null. A progressive increase of their 

magnitude is however observed towards the onset of the heatwaves (except during the FM season), 

meaning that the heating is not sudden but is a gradual process. 

The latent heat flux is generally the least important of the SEB terms, with relatively small anomalies, 

hence its omission hereafter. 

For conciseness purposes, to indicate the origins of hot air in cases where heat advection is important, 

only wind anomalies associated with T are shown (Fig. 2.12).  

The key results presented by heatwave type in the following discussion are summarised in Table 2.4, 

where information on the diagnostic and leading processes as well as the agreement between the 

indices is presented. 

 

Daytime heatwaves in the FM season over the western Sahel (Wd-FM). Fig. 2.6. They are 

characterised by a decrease of surface relative humidity and cloudiness for T and NET and reversely 

for UTCI. Regarding the underlying processes, T and NET agree on the leading role of heat advection 
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centred near the border between Mali and Mauritania, and originating from the region southeast to 

the heatwave area (i.e. Burkina Faso and Western Niger; Fig. 2.12a). 

 

Fig. 2.6 Normalised anomalies associated with heatwaves occurring over the western Sahel at daytime during 

the FM season (Wd-FM). The top panel shows the anomalies of the indices themselves and the subsequent 

panels the anomalies of net radiation (Rad), sensible heat flux (SHF), temperature advection (T-Adv) and near 

surface relative humidity (RH) in that order. Shown from left to right are the anomalies associated with 

heatwaves detected using T, NET and UTCI respectively. White areas are not significant at the 0.05 probability 

level. 
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As shown in Fig. S2.9, the advection initiates up to three days prior to the heatwave and peaks the 

day before the onset with an intensity above 0.3 standard deviation. During UTCI events, the intensity 

of temperature advection is less important (less than 0.2). However the presence of low-level moisture 

favours a gain of thermal radiation amounting to around 0.1 that also contributes to the warming. 

 

Fig. 2.7 Same as Fig. 2.6 but for heatwaves occurring over the eastern Sahel at daytime during the FM season 

(Ed-FM). 
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Fig. 2.8 Normalised anomalies associated with heatwaves occurring over the western Sahel at daytime during 

the AMJ season (Wd-AMJ). The top panel shows the anomalies of the indices themselves and the subsequent 

panels the anomalies of net radiation (Rad), sensible heat flux (SHF), temperature advection (T-Adv) and near 

surface relative humidity (RH) in that order. Shown from left to right are the anomalies associated with 

heatwaves detected using T, HI, AT, NET and UTCI respectively. White areas are not significant at the 0.05 

probability level. 

 

 

Daytime heatwaves in the FM season over the eastern Sahel (Ed-FM). Fig. 2.7. The characteristics 

of these events are consistent across the thermal indices. They are associated with a dipole of low-

level moisture anomalies with the eastern Sahel (i.e. the heatwave region) hosting dryer air. There is 

also an increase of cloud cover whose structure has a southwest-northeast (SW-NE) orientation from 

the Gulf of Guinea toward the eastern Sahara (not shown). An important decrease of surface wind 

speed is also observed (the FM season corresponds to the annual peak of wind speed in the region, 

Guichard et al 2009). The leading thermodynamic process is (consistently across all indices) hot air 

advection from the equatorial West Africa to the eastern Sahel/Sahara (Fig. 2.12b). It starts up to five 

days before the heatwave (Fig. S2.9), increases gradually and reaches its maximum the day before 

the onset. It also leads to the surface sensible heat flux anomaly turning positive (as per the 

convention, this means less flux from the ground into the atmosphere). A particularity of this 

heatwave type is that, comparatively to the others, it is associated with large anomalies especially of 
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temperature (in excess of two standard deviations), wind speed (absolutely above 0.5 standard 

deviation), advection (above 0.5 standard deviation) and sensible flux (close to one standard 

deviation). The surface shortwave radiation follows the cloudiness pattern with negative anomalies 

oriented SW-NE from the Guinean countries through central Sahel to the eastern Sahara. As for the 

longwave anomalies, they match the low-level moisture, depicting a dipolar structure with radiative 

loss over the heatwave region. 

 

 

Daytime heatwaves over the western Sahel in AMJ (Wd-AMJ). Fig. 2.8. These events extend over a 

broad sector from the countries of the Gulf of Guinea to the western Sahara, centred in northern Mali. 

They are consistently accompanied by a decrease of moisture and cloudiness (Fig. S2.10) over the 

region of interest. The decrease is the most important for T and NET. At the exception of AT, all 

heatwave indices show an increase of the surface ventilation (Fig. S2.10, consistent with Section 

2.3.1.3).  

The thermodynamic causes differ between the northern (Mauritania) and the southern (Burkina Faso, 

southern Mali) parts of the heatwave region. In the northern part, four out of five indices (T, AT, NET 

and UTCI) point to advection of hot air (with a magnitude around 0.2 standard deviation) from the 

area near the Algeria-Mali-Niger trijunction as cause of the heating. In HI events, the increase of 

incident solar radiation (following the decrease of cloudiness) stands as the leading cause of the 

heatwave in front of heat advection.  

In the southern part of the heatwave region, all indices concord on an increase of sensible heat flux 

from the soil into the atmosphere as the process responsible for the heating. This process also extends 

to the Guinean band. 

 

Daytime heatwaves over the eastern Sahel in AMJ (Ed-AMJ). Fig. 2.9. These heatwaves extend over 

a broad sector of the eastern Sahel, and appear to be an extension of heatwaves centred over the 

northeastern Sahara at the intersection between Libya, Egypt and Sudan. The meteorological 

conditions during this heatwave vary with the thermal indices, even if all show a significant decrease 

of wind speed, with AT having the maximum anomaly (above 0.5 standard deviation). On one hand, 

T, NET and UTCI see a decrease in moisture and cloudiness. On the other hand, in AT, and even 

more in HI, a substantial increase of moisture and cloudiness is observed in association with a low-

level moisture convergence. Yet, regardless of the indices, all these heatwaves are driven primarily 

by the same process namely hot air advection from the southernmost Sahel (Fig. 2.12d), gradually 

increasing from approximately four days before the onset of the events (Fig. S2.9). This advection 
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dumps the sensible heat flux between the soil and the atmosphere over the region covered by the 

heatwave. Expectedly, the advective warming is the most important for indices with dry anomalies 

(T, NET and UTCI). The net radiation anomalies are small over all indices but for different reasons. 

In T, NET and UTCI, the decrease in cloudiness allows more solar radiation in, but the dryness of the 

low-level atmosphere also lets more thermal radiation out. On the other hand, there is less incoming 

solar radiation during HI and AT heatwaves due to the cloud cover whereas the increase of low-level 

moisture limits the thermal loss. 

 

Fig. 2.9 Same as Fig. 2.8 but for heatwaves occurring at daytime over the eastern Sahel during the AMJ 

season (Ed-AMJ). 

 

 

Nighttime heatwaves over the western Sahel in AMJ (Wn-AMJ). Fig. 2.10. They cover most of the 

western Sahel and Guinea but have intensity anomalies of only moderate magnitude (less than one 

standard deviation) in comparison with other heatwave types. The thermal indices can be categorised 

into two groups on the basis of the synoptic conditions during these heatwaves. T, HI and NET 

heatwaves occur along with an increase of wind speed and cloud cover (Fig. S2.10) over the region 

of interest, whilst the low-level moisture shows a small decrease. Reversely during AT and UTCI 

heatwaves, the low-level moisture increases significantly (a magnitude comparable to that of 
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temperature), whereas a decrease of wind speed is observed. Resultantly, the thermodynamics also 

vary with these two groups of indices. For T, HI and NET, the processes consist of small anomalies 

of longwave radiation. In AT and UTCI heatwaves, the increase of longwave radiation is well marked 

(in excess of 0.5 standard deviation). They also have two additional sources of heating: (i) sensible 

heat flux from the surface and (ii) small heat advection in the lower atmosphere. Therefore, unlike 

with Ed-AMJ events, the difference in synoptic conditions is also reflected in the thermodynamic 

quantities. 

 

 

Fig. 2.10 Same as Fig. 2.8 but for heatwaves occurring over the western Sahel at nighttime during the AMJ 

season (Wn-AMJ). 

 

 

Nighttime heatwaves over the eastern Sahel in AMJ (En-AMJ). Fig. 2.11. They extend in a southwest- 

northeast axis from the eastern Sahel to the northeast Sahara where the intensity is the greatest. As in 

Ed-FM, they show the highest agreement between the thermodynamic conditions sampled from the 

different heatwave indices. Indeed, all show a large increase of moisture and cloud cover which is the 

most important in AT and UTCI heatwaves where the magnitude of the moisture anomaly almost 

equates that of temperature. There is also a consistent decrease in wind speed across all indices (Fig. 

S2.10).  
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En-AMJ heatwaves occur as a result of (i) primarily longwave warming and (ii) sensible heat flux 

from the soil. The longwave warming extends from the equatorial West Africa region northeastwardly 

to the northeast coast of Africa, with magnitude peaking to above one standard deviation in AT and 

UTCI. The sensible heat flux is mainly confined within the southern half of the eastern Sahel, and its 

magnitude also goes up to 0.4 standard deviation.  

Summarily the thermodynamics and synoptic conditions vary between daytime and nighttime and 

between the eastern and the western Sahel. Furthermore, there is a lower agreement between the FM 

and the AMJ daytime heatwaves over the western Sahel than over the eastern Sahel. However, there 

is an overall better consistency of the thermodynamic processes across heatwaves indices (Table 2.4) 

than what the low Jaccard coefficients suggest.    

 

 

Fig. 2.11 Same as Fig. 2.8 but for heatwaves occurring over Eastern Sahel at nighttime during the AMJ season 

(En-AMJ). 

 

 

2.4. Discussion  

 

From an operational perspective, the low coincidence between heatwaves detected from different 

indices over the same diurnal period may have profound implications for heatwave prediction and 



44 
 

early warning, given that many countries (including in the Sahel) only consider a single index in their 

operational systems (WMO-No.1142, 2015). Using one particular index rather than another will 

necessarily lead to missing out heatwave events identified by the other indices, which could 

nonetheless be more relevant to a given group of vulnerable populations. It is thus recommended to 

monitor a range of indices in order to target various socio-economic groups of vulnerable populations 

with the most relevant index. Such an approach is relevant to the recent emphasis on multi-hazard 

impact-based forecasting (WMO-No. 1150, 2015) in which the warnings seek to indicate the potential 

damages of hydro-meteorological events on humans and their assets. For example, large proportions  

 

Fig. 2.12 Normalised anomalies of temperature advection (shades) and wind speed (vectors) associated with 

heatwaves detected using T. Only anomalies significant at the 0.05 probability level are plotted. 
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of Sahelian populations practice their economic activities outdoor and are exposed to relatively long 

hours of sunshine, including construction workers and street vendors in urban centres (Quak 2018 ; 

Balarabe and Sahin 2020), pastoralists and increasingly market gardeners (Woltering et al. 2011) and 

informal gold diggers (Ouedraogo and Mundler 2019) in rural areas. The UTCI index, which accounts 

for solar radiation (Table 2.1) may therefore be the most indicated for targeting these groups. From a 

spatial point of view, in the southernmost parts of the Sahel, where the similarity is the lowest, it is 

important to use indices which give much weight to humidity (HI, AT and UTCI), as this region also 

has the largest moisture variability, especially in AMJ. On the other hand, over the northeastern parts 

of the domain as well as the whole Sahel during the FM season, only little value will be added to heat 

warnings that use complex indices because of small variability of environmental variables (see 

Section 2.3.1.3). For these cases, mere temperature is a reasonably good choice. 

The fact that only small proportions of heatwaves occur simultaneously at daytime and nighttime is 

an important information for risk management. There is evidence that hot days followed by hot nights 

indeed pose a greater threat to people (e.g. Schär 2016; Murage et al. 2017) because the body does 

not have a respite to the heat in such situations. As such, the lack of day/night synchronicity can be 

interpreted as a relieving factor for Sahelian populations. However, the few (but dangerous) cases 

where both heatwave types are synchronous should not be overlooked. 

In terms of underlying thermodynamic processes, despite differences of the sampling bases, 

comparisons of the findings of this paper with that of previous publications can still be made. Most 

notably, the findings agree with Guichard (2014), Oueslati et al. (2017) and Sambou et al. (2020) on 

the leading role of greenhouse effect of moisture during Sahelian nighttime heatwaves. It should be 

noted that this process is not specific to the Sahel, but is also observed during nighttime heatwaves 

over other tropical regions (e.g. Oppermann et al. 2017; Chen et al. 2019). Likewise, the shortwave 

radiation at the southernmost part of the Sahel accompanying daytime heatwaves corroborates the 

findings of Oueslati et al. (2017) and is also found to drive some heatwaves in mid-latitude areas like 

Europe (e.g. Lhotka et al. 2018).   

In addition, this paper clearly highlighted the key role played by thermal advection in the occurrence 

of Sahelian heatwaves, which was suggested by Moron et al. (2018) for weather types. Hot air is 

indeed conveyed from the continental eastern Sahel towards the cooler western coast on one hand 

and from the southernmost parts of the Sahel to its northernmost parts on the other hand (see Section 

2.3.3). The importance of this process to heatwaves has also been proved over other regions (Cerne 

et al. 2007; Jacques-Coper et al. 2016; Sfîcă et al. 2017).  
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Table 2.4. Degree of agreement between the indices and diagnostic and major thermodynamic 

processes for each heatwave type. 

HW type 

(Degree of agreement between 

the indices) 

Diagnostic Thermodynamic causes 

West day FM 

(Fair agreement) 

Decrease (increase) of 

moisture for T and NET 

(UTCI). 

-Heat advection (T and 

NET) 

-Heat advection and LW 

(UTCI) 

East day FM 

(Large agreement) 

-dipole of moisture (dry in the 

HW region), weaker winds 

Heat advection. 

West day AMJ 

(Fair agreement) 

Decrease of moisture and 

cloudiness in all indices. 

Increase of wind speed except 

in AT. 

-Heat advection in the 

north and sensible flux in 

the south in T, AT, NET, 

UTCI. 

-shortwave radiation in the 

north and sensible flux in 

the south in HI. 

East day AMJ 

(Fair agreement on the 

diagnostic, large agreement on 

the thermodynamic causes) 

-decrease of moisture and 

cloudiness in T, NET, UTCI. 

-reversely in HI, AT. 

Heat advection. 

West night AMJ 

(Fair agreement) 

-increase of wind speed and 

cloud cover, small decrease of 

moisture in T, HI, NET. 

-decrease of wind speed, 

increase of moisture in AT, 

UTCI. 

-small LW (T, HI, NET). 

 

-LW, sensible flux and 

heat advection (AT, 

UTCI). 

East night AMJ 

(Large agreement) 

Increase of moisture and 

cloudiness, decrease of wind 

speed. 

LW (primarily) and 

sensible flux. 

 

 

The interpretation of the results on thermodynamic processes must however bear in mind the 

limitation of the ERA5 reanalysis data on which they are based. There is a considerable uncertainty 

in many meteorological fields between various reanalyses (Roberts et al. 2014, 2017) notably for 

some of the key radiative quantities of water vapour, clouds and dust. Dust is a crucial component of 



47 
 

the Sahelian atmosphere (Knippertz and Todd 2012) and its radiative contribution to the atmospheric 

heat budget (Alamirew et al. 2018) may then be an important parameter for heatwaves. Furthermore 

there is a clear need for improved observations across the Sahel to support assimilation into reanalyses 

and direct process analysis. 

But notwithstanding this, the main findings of this paper along with that from previous research give 

a clue as to what can be the large-scale dynamical drivers of heatwaves over the Sahel. Thus, despite 

the dryness of the FM season, Ed-FM heatwaves are accompanied by important moisture anomalies 

in the western Sahel (Fig. 2.7), as well as positive rainfall anomalies over the Guinean region of West 

Africa (not shown). Additionally, the low-level circulation has a strong cyclonic anomaly (Fig. 2.12) 

causing moisture surges from the Atlantic. Such patterns recall the findings of studies (Fink and 

Knippertz 2003; Knippertz 2003; Knippertz and Martin 2005, 2007) investigating the causes of extra-

monsoon precipitation over West Africa. The invasion of the Atlantic air masses from a dynamical 

point of view happens as a consequence of a southward penetration of mid-latitude Rossby waves, 

potentially leading to the well-known tropical plumes. It is therefore likely that the build-up stage of 

tropical plumes be favourable to heatwave occurrence over the Sahel.  

During the AMJ season, heatwaves over the eastern Sahel are also associated with a cyclonic turning 

of the low-level wind over the Sahel with a strong southwesterly component (Fig. 2.12). Conversely, 

heatwaves over the western Sahel coincide with a reinforcement of the Harmattan winds. The AMJ 

season is also the period during which the Guinean region experiences the first peak of the West 

African Monsoon (WAM, Gu and Adler 2004; Nguyen et al. 2011; Thorncroft et al. 2011). This 

suggests a potential link between the monsoon and heatwaves, similarly to other tropical regions 

(Ghatak et al. 2017; Luo and Lau 2018).  

In connection with the cyclonic and anticyclonic turning of low-level winds, there may be a 

substantial modulation by the West African Heat Low (WAHL). This major climatic feature is indeed 

located within the Sahel band during the AMJ season (Lavaysse et al. 2009). During Sahelian 

heatwaves, its occurrence oscillates zonally between the west and the east of the Sahel laying almost 

exactly within the heatwave region (Fig. S2.11). Consequently, a link may be found with heatwaves 

(at least statistically), but this requires deeper investigations.  

So three large scale drivers including mid-latitude Rossby waves, the WAM over the equatorial region 

and the WAHL are likely to impact the occurrence of Sahelian heatwaves at the synoptic to 

intraseasonal timescales. The benefit in exploring such connections lies in the potential predictability 

which will be explored in future work. A companion paper (Guigma et al. 2020) examines the 

dynamical processes governing heatwaves, focusing on the role of the tropical modes of variability 

and their interaction with these circulation features. 
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2.5. Conclusion and prospects 

 

This paper investigated synoptic to intraseasonal heatwaves in the West African Sahel. The purpose 

was to (i) derive and compare the statistical characteristics of these heatwaves in the Sahel using 

diverse multivariate thermal indices, and (ii) examine the underpinning thermodynamic processes. 

Consistently across the thermal indices used in this study, heatwaves in the Sahel are characterized 

by short-lasting events (3-5 day duration) which occur once to twice a year and are associated with 

large magnitude. However, different thermal indices sample different events, most particularly 

between daytime and nighttime events, but also perhaps surprisingly there can be notable differences 

in the events identified between indices for the same diurnal period. This may be very important given 

the preponderance of single indices in most heatwave early warning systems around the world 

(WMO-No.1142, 2015).  The most spatially extended events are characterized by a (thermal) zonal 

polarisation of the Sahel. Their underpinning thermodynamic processes vary from one index to 

another, consistently with the differences in the samples. The most robust processes across all indices 

are hot air advection and longwave radiation. 

The results suggest that the choice of thermal index is important with profound implications for: (i) 

The scientific understanding of heatwave phenomena such that synthesising research results should 

recognise the diversity of characteristics, causes and thus, potentially, predictability across different 

indices and (ii) Operational risk management, in that an appropriate choice of thermal index reflecting 

the risk to various exposed populations must be ensured. Thus, forecasters from Sahelian national 

meteorological services (NMSs) can target specific groups of the population (outdoor workers, 

farmers, and workers under shielded conditions etc) based on the typical features of each index. This 

will grant more efficiency and probably more trust to the heatwave warnings which is important for 

co-production.  

Furthermore, a regional scale Early Warning-Early Action plan can make use of the definition and 

characterization of heatwaves of the present paper. Through the double magnitude constraint, there 

is a certitude of sampling only extremely hot events that may require humanitarian actions. However, 

there is a clear need to extend this scientific analysis towards understanding the actual impact on 

society and/or the environment.  Appropriate thresholds of heatwave magnitude and duration should 

be defined in conjunction with relevant stakeholders, based on data and experience of the diverse 

impacts across differing levels of exposure and vulnerability. Such impact-based forecasting methods 

are being developed (Weyrich et al. 2018; Potter et al. 2018) and should be considered for heatwave 

risk management in the Sahel.  
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For example, in the health sector, there is a growing body of research into the link between heat and 

health (e.g. Lam et al. 2013; Herrmann and Sauerborn 2018; Campbell et al. 2018) at the global level. 

Using multiple thermal indices can lead to a better simulation of the heat-health relationship (e.g. 

Kim et al. 2011; Morabito et al. 2014). The present study provides a basis for such investigations over 

the Sahel through identifying and statistically characterising a variety of indices which simulate 

various heat hazards, as well as elaborating on the physical causes behind them. In fact, quantifying 

the link between heatwaves and health should now be a priority in future studies in the Sahel as this 

remains to date poorly explored. 

Finally, in the logic of scaling FbA plans at the Sahel level, it is necessary to first assess the skill of 

forecast models in predicting relevant thermal indices. Given the differences in thermodynamic 

processes between indices identified in this paper, differing levels of predictability may be expected. 

This requires further analysis to build on existing work (e.g. Batté et al., 2018; Perez et al., 2018) to 

extend to all thermal indices in an LSHW approach. This is the subject of ongoing work by the 

authors. 
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Supplemental materials 

This supplement to the article provides additional results on heatwaves detection method, 

characteristics and driving processes. 

 

 

 

Fig. S2.1 Flow chart illustrating the detection of LSHWs (described in Section 2.2.3.1). 
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Fig. S2.2 Example of LSHW detection for T-night on 22 June 1981. (a) Initial grid-point wise binary 

map. (b) Three clusters detected after applying the average linkage method with cut-off level 1,000 

km. (c) Final LSHW after applying the constraint on the spatial extent of clusters (600,000 km2). 
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Fig. S2.3 (a) Longest durations and (b) Maximum intensities of nighttime heatwave events 

observed over the study period. 
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Fig. S2.4 Same as Fig. S2.3 but for daytime heatwaves. 

 

 

 



54 
 

 

Fig. S2.5 Probability distribution of daily minimum temperature averaged over [14W-10W; 

13N-17N] (West), [2W-2E; 13N-17N] (Centre) and [23E-27E; 13N-17N] (East) for each month 

of the year. The vertical dotted line represents the 75th percentile of the total distribution. 
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Fig. S2.6 same as Fig. S2.5 but for maximum temperature. 
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Fig. S2.7 Standard deviation of (a) nighttime indices, (b) daytime indices and the (c) difference 

between the both 
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Fig. S2.8 Analysis of sources of uncertainty in heatwave statistics associated with thermal index 

parameterisation. Solid black lines: Coefficients of correlation between each thermal index and the 

other four of the same diurnal phase averaged for each month of the February to June period and over 

the Sahel domain. Dashed lines: coefficients of determination of the linear regression of each thermal 

index on temperature (red lines), near surface relative humidity (blue lines) and wind speed (green 

lines). See Section 2.2.2.2 for details on the computational method. 
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Fig. S2.9 EOF-based averages of standardised anomalies of temperature advection prior to and on 

the onset days for each thermal index. See Section 2.2.3.4 for computation methods. Only 

significant anomalies at the 0.05 probability level are considered. 
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Fig. S2.10 EOF-based averages of standardised anomalies of 10m wind speed (left panel) and 

cloudiness (right panel) during heatwaves. Only significant anomalies at the 0.05 probability level 

are considered. 
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Fig. S2.11 Anomalies of occurrence of the WAHL during Sahelian heatwaves detected from the 

T index. The WAHL occurrence is defined as in Lavaysse et al. (2009). 

 

 

 



61 
 

Chapter 3. Atmospheric tropical modes are important drivers of Sahelian springtime 

heatwaves 

 

Reproduced with the permission of Springer (https://link.springer.com/article/10.1007/s00382-020-05569-9)  

Atmospheric tropical modes are important drivers of Sahelian springtime heatwaves 

Kiswendsida H. Guigma1*, Françoise Guichard2, Martin Todd1, Philippe Peyrille2 and Yi Wang1 

 1University of Sussex, Brighton. UK 

2Centre National de Recherches Météorologiques (CNRS) / Météo-France UMR 3589 Toulouse, 

Haute Garonne, France 

*Corresponding author. Email address: k.guigma@sussex.ac.uk    

Abstract  

Heatwaves pose a serious threat to human health worldwide but remain poorly documented over 

Africa. This study uses mainly the ERA5 dataset to investigate their large-scale drivers over the Sahel 

region during boreal spring, with a focus on the role of tropical modes of variability including the 

Madden-Julian Oscillation (MJO) and the equatorial Rossby and Kelvin waves. Heatwaves were 

defined from daily minimum and maximum temperatures using a methodology that retains only 

intraseasonal scale events of large spatial extent. The results show that tropical modes have a large 

influence on the occurrence of Sahelian heatwaves, and, to a lesser extent, on their intensity. 

Depending on their convective phase, they can either increase or inhibit heatwave occurrence, with 

the MJO being the most important of the investigated drivers. A certain sensitivity to the geographic 

location and the diurnal cycle is observed, with nighttime heatwaves more impacted by the modes 

over the eastern Sahel and daytime heatwaves more affected over the western Sahel. The examination 

of the physical mechanisms shows that the modulation is made possible through the perturbation of 

regional circulation. Tropical modes thus exert a control on moisture and the subsequent longwave 

radiation, as well as on the advection of hot air. A detailed case study of a major event, which took 

place in April 2003, further supports these findings. Given the potential predictability offered by 

tropical modes at the intraseasonal scale, this study has key implications for heatwave risk 

management in the Sahel. 

Keywords: heatwaves, tropical modes, Sahel, drivers, intraseasonal.  

https://link.springer.com/article/10.1007/s00382-020-05569-9
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3.1. Introduction 

The Sahel is a tropical semi-arid region located in West Africa that experiences high temperatures 

during the largest part of the year (Nicholson 2018), and especially in spring (March to June, MAMJ). 

Recent studies (Fontaine et al. 2013; Ringard et al. 2016; Moron et al. 2016; Oueslati et al. 2017; 

Guichard et al. 2017; Barbier et al. 2018) have highlighted an increase of extreme temperatures, and 

future projections predict even worse heatwave conditions (Russo et al. 2016; Dosio 2017; Déqué et 

al. 2017; Xu et al. 2020; Raymond et al. 2020).    

Unfortunately, this region is also one of the least economically developed in the world (e.g. Davidson 

et al. 2003; Tschakert 2007), implying high levels of vulnerability. An efficient way of using the 

limited resources available to mitigate heatwave impacts, is to focus on preventive actions, based on 

skilful forecasts of these hazards as already implemented in other places (e.g. WMO N°1142; 

Wilkinson et al. 2018). The prevention however requires knowledge and understanding of the large-

scale drivers of Sahelian heatwaves, which are both currently under-documented.  

Greenhouse effect of moisture,  hot air advection and incoming solar radiation (at daytime) appear as 

the dominant processes inducing extremely hot temperatures in spring over the Sahel (e.g. Slingo et 

al. 2009; Guichard et al. 2009; Oueslati et al. 2017; Guigma et al. 2020). The spring season also marks 

the peak of monsoon convection over the Guinean region of West Africa (i.e. south of 10°N; Nguyen 

et al. 2011), and, although not intuitive, there are potential links between convection and Sahelian 

heatwaves. Guigma et al. (2020) indeed found that large-scale heatwaves over the eastern Sahel are 

associated with a low-level cyclonic circulation anomaly over northern tropical Africa with an 

increase of precipitation over the Guinean band, versus an anticyclonic circulation anomaly and a 

decrease of Guinean precipitation for heatwaves over the western Sahel. When convection is 

weakened over the Guinean band, the associated northeasterly flow indeed allows the transport of hot 

air from the eastern Sahel/Sahara towards the coast of the western Sahel; conversely, a convective 

intensification conveys moisture from the Gulf of Guinea into the Sahel, through northward 

penetration of monsoon flow (e.g. Lothon et al. 2008; Couvreux et al. 2010), leading to longwave 

warming. 

At the synoptic and intraseasonal scale, the Guinean convection is strongly modulated by tropical 

modes of variability, namely the Madden Julian Oscillation (MJO) and equatorial waves (e.g. Gu 

2009; Kamsu-Tamo et al. 2014; Berhane et al. 2015). Can these modes of convective variability by 

extension modulate heatwaves in the Sahel? This is a plausible scenario in view of previous studies 

over West Africa. Moron et al. (2018a) for instance, using a weather type approach, found a 

https://www.zotero.org/google-docs/?2oI3tg
https://www.zotero.org/google-docs/?2oI3tg
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https://www.zotero.org/google-docs/?z1WxeX
https://www.zotero.org/google-docs/?K8sDrZ
https://www.zotero.org/google-docs/?uDKA8v
https://www.zotero.org/google-docs/?uDKA8v
https://www.zotero.org/google-docs/?uDKA8v
https://www.zotero.org/google-docs/?iPNtaE
https://www.zotero.org/google-docs/?iPNtaE
https://www.zotero.org/google-docs/?iPNtaE
https://www.zotero.org/google-docs/?HNxvu8
https://www.zotero.org/google-docs/?HNxvu8
https://www.zotero.org/google-docs/?HNxvu8
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https://www.zotero.org/google-docs/?3IRl1U
https://www.zotero.org/google-docs/?0EXVh2
https://www.zotero.org/google-docs/?0EXVh2
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significant modulation of near surface temperature over northern tropical Africa by the MJO and 

equatorial Kelvin (EK) waves at the intraseasonal scale in spring. Advection of both hot air and 

moisture plays an important role in this modulation. Kalapureddy et al. (2010) also found that the 

synoptic variability over the Sahel, during the pre- (April to June) and post-monsoon (October and 

November) seasons, is controlled by monsoon surges with a periodicity similar to that of the African 

Easterly Waves (AEWs; 3-5 days). Furthermore, Couvreux et al. (2010) indicated that these surges 

can be stationary or westward moving, along with the AEWs. In the same logic, Mera et al. (2014) 

showed that synoptic and subseasonal circulation disturbances, driven by extratropical cyclones and 

also by EK and equatorial Rossby (ER) waves, and possibly by the MJO, lead to influx of moisture 

from the Gulf of Guinea into the Sahel.  

Connections between heatwaves and atmospheric synoptic and intraseasonal modes of convective 

variability have already been evidenced in other regions. Murari et al. (2016), for example, found that 

the delay of the Indian monsoon onset weakens southwesterlies in the Arabian Sea, favouring clear 

sky days over India, and subsequently longer lasting and warmer heatwaves. In South America, the 

intraseasonal variability considerably modulates heatwaves in association with the Southern Atlantic 

Convergence Zone (Cerne and Vera 2011). In the southeastern part of Australia, Parker et al. (2014) 

showed that warm conditions are significantly associated with the phases 3-6 of the MJO. More 

recently, the summer 2018 long lasting heatwave over Northeast Asia was found by Hsu et al. (2020) 

to have been favoured by an unusually strong MJO over the western Pacific warm pool.  

The present research aims at assessing the extent to which and in what ways Sahelian heatwaves are 

modulated by tropical modes during the MAMJ season. The reason for the focus on tropical modes 

is the potential for predictability at intraseasonal lead times. Tropical modes are indeed good sources 

of predictability at these scales (Moron et al. 2018b; Dias et al. 2018; Bengtsson et al. 2019; Li and 

Stechmann 2020; Judt 2020). 

To the best of the authors’ knowledge, this study is the first to use a systematic and comprehensive 

approach to investigate the impact of tropical modes on actual heatwaves in the Sahel. Two 

complementary methods are used for this purpose. The first consists of a statistical study over the 

1979-2018 period while the second exemplifies the emerging overall processes with a detailed case 

study event in April 2003. 

The rest of the manuscript is structured as follows. The data and the methods used are summarised in 

Section 3.2. Then, Section 3.3 presents the results obtained from the statistical study. In Section 3.4, 

https://www.zotero.org/google-docs/?gKNekB
https://www.zotero.org/google-docs/?gKNekB
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https://www.zotero.org/google-docs/?HGjTds
https://www.zotero.org/google-docs/?JFfX3c
https://www.zotero.org/google-docs/?JFfX3c
https://www.zotero.org/google-docs/?65Hd3q
https://www.zotero.org/google-docs/?65Hd3q
https://www.zotero.org/google-docs/?MwJ3qu
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the case study of the 2003 heatwave event is analysed in detail. Finally, conclusions and perspectives 

are given in Section 3.5.  

3.2. Methodology  

The Sahel area is hereafter defined as the continental domain limited by the coordinates 20°W, 30°E, 

10°N, 20°N. Since this work aims at depicting the large-scale drivers, the analysis however extends 

to the entire northern half of Africa, and sometimes to an even larger domain.  

3.2.1. Data 

The main dataset used in this paper is the fifth generation of the European reanalyses ERA5 (Hersbach 

et al. 2020) at a resolution of 0.5° x 0.5°, covering the period 1979-2018. The reason for the choice 

of this dataset is that it likely offers the best representation of near surface meteorological variables 

(Olauson 2018; Ramon et al. 2019) as well as radiative fields over land (Martens et al. 2020), and 

provides a comprehensive and self-consistent set of variables for diagnostic analysis.  

This dataset is thus used in this research for (i) heatwave detection from daily minimum and maximum 

temperature at 2m (hereafter referred to as “Tmin” and “Tmax” respectively), (ii) tropical mode 

filtering from outgoing longwave radiation (OLR), and (iii) retrieving physical fields to understand 

the mechanisms of modulation. Previous studies (Oueslati et al. 2017; Barbier et al. 2018) have 

already shown the good quality of near surface thermal indices (including Tmin and Tmax) over the 

Sahel in ERA-Interim of which ERA5 is an improvement.  OLR in ERA5 is taken as the negative of 

the net top-of-atmosphere (TOA) thermal radiation. Wang et al. (2017), Tall et al. (2019), Wright et 

al. (2020) and Hersbach et al. (2020) assessed radiative fluxes in different products and found that 

ERA5 shows TOA fluxes (including OLR) that are very consistent with the observed. Using observed 

OLR data such as the daily interpolated data from the NOAA (Liebmann and Smith 1996) does not 

significantly alter the results obtained with ERA5 (not shown), making it suitable for the present 

study. 

Some of the physical variables used for analysing the mechanisms of heatwave modulation are 

directly available from ERA5: temperature, zonal and meridional components of wind, specific 

humidity, precipitable water and radiation data. As in Oueslati et al. (2017), the surface energy budget 

is derived from the radiation fields using the following equation: 

https://www.zotero.org/google-docs/?8rD3aS
https://www.zotero.org/google-docs/?8rD3aS
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https://www.zotero.org/google-docs/?S3Dqis


65 
 

                
𝑐𝑠∆𝑇

∆𝑡
= 𝑆𝑊𝑅 + 𝐿𝑊𝑅 + 𝑆𝐻𝐹 + 𝐿𝐻𝐹                                                                                           (1) 

Where SWR is the net shortwave radiation, LWR is the net longwave radiation, SHF is the sensible 

heat flux, LHF is the latent heat flux and cs is the surface heat capacity. 

Radiative fluxes are hereafter counted positively when directed from the atmosphere to the surface. 

Other meteorological variables necessary for understanding the physical mechanisms of heatwave 

modulation are not directly accessible from ERA5 and are thus derived. These include advection of 

heat (equation 2) and of specific humidity (equation 3) which are obtained from the horizontal 

components of wind speed, temperature and specific humidity: 

   𝐴𝑇 = −𝑉⃗ 𝛻⃗ 𝑇 = −𝑢
𝜕𝑇

𝜕𝑥
− 𝑣

𝜕𝑇

𝜕𝑦
                                                                     (2) 

   𝐴𝑞 = −𝑉⃗ 𝛻⃗ 𝑞 = −𝑢
𝜕𝑞

𝜕𝑥
− 𝑣

𝜕𝑞

𝜕𝑦
                                                                      (3) 

Where T is temperature, q specific humidity and 𝑉⃗  horizontal wind which is decomposed into its 

zonal (u) and meridional (v) components.  

All variables of the ERA5 database described in this section are available at an hourly frequency. The 

radiative variables are extracted as 12-hourly accumulations (0600 UTC to 1800 UTC  for daytime 

and 1800 UTC to 0600 UTC of day +1 for  nighttime) while the others as instantaneous entries at a 

03-hourly resolution. For the latter, the daytime value is obtained by averaging over 0900, 1200, 1500 

and 1800 UTC and the nighttime value over 2100, 0000, 0300 and 0600 UTC. 

For the specific case of the derived variables (heat and moisture advection), they are first computed 

at the 03-hourly timescale before daily averaging.  

In addition to the ERA5 reanalysis, various observational data have been utilised mainly for the case 

study (Section 3.4). Satellite estimates of  radiative surface fields (incoming and outgoing shortwave 

and longwave radiation) were extracted from the Clouds and Earth’s Radiant Energy System 

(CERES) Synoptic (SYN1deg) Product (Wielicki et al. 1996; Doelling et al. 2013, 2016) at a spatial 

resolution of 1° x 1° over the time period 2000-2018. The initial 03-hourly temporal resolution was 

aggregated to a daily frequency. Satellite estimates of precipitable water from the Atmospheric 

Infrared Sounder (AIRS, Teixeira et al. 2013) aboard NASA's second Earth Observing System polar-

orbiting platform was also used for the case study at 1° x 1° spatial grid. Twice-daily data provided 

by the ascending and descending orbits were averaged to get daily estimates. This dataset runs from 

https://www.zotero.org/google-docs/?a6RZRQ
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2002 to 2016. To analyse the evolution of precipitation over the case study period, daily rainfall totals 

from the Global Precipitation Climatology Project (GPCP, Schamm et al. 2014) were used at a 

resolution of 1°x1°. Finally observed 2m temperature and specific humidity data at the Demokeya 

station in Sudan located at 30.5°E-13.3°N (Ardö 2013) were also investigated. The data cover the 

2002-2012 period with a temporal resolution of 30 minutes. This provides a valuable in-situ 

observation over the eastern Sahel, a data sparse region, where the case study is mainly investigated. 

3.2.2. Heatwave detection 

Among the different definitions of heatwaves (Perkins 2015), a choice has been made on one allowing 

to capture major, large-scale events occurring over synoptic to intraseasonal scales during the spring 

season. Tropical modes are indeed planetary-scale disturbances and their effects are more likely to 

cover extensive areas than smaller isolated areas. Therefore, as in Guigma et al. (2020), Tmin and 

Tmax data are first 90-day highpass filtered to retain variability on the scales of interest. Then, 

potential heatwaves are defined at a given grid-point as spells of at least three consecutive days where 

the daily anomalies of Tmin or Tmax (taken separately) exceed the 90th percentile of the distribution 

of the corresponding calendar days. The 90th percentile for a given calendar day is derived, similarly 

to Russo et al. (2014)  and Guigma et al. (2020), over a 31-day window centred on that day, to remove 

noise caused by the relative shortness of the dataset. After this step, to ensure sampling of only 

absolutely hot events regardless of the period of the year, potential heatwaves sampled on days where 

the raw data (i.e. data before deriving the anomalies) do not exceed the 75th percentile of their total 

distribution are discarded (Guigma et al. 2020). Heatwave intensity is defined, at each grid-cell and 

for each heatwave day (not event), as the 90-day highpass filtered anomaly of Tmin (for a nighttime 

heatwave) or Tmax (for a daytime heatwave) on that day. Next, major large-scale events are defined 

by adding a minimum spatial extent threshold of 600,000 km2 using a region growing technique as in 

Barbier et al. (2018). The outcome is a set of daily binary masks specifying the regions where these 

large-scale heatwaves occur, providing the final sample of heatwaves analysed in this study.   

It should be noted that heatwaves can also be defined from other thermal indices than Tmin and Tmax, 

taking into account additional environmental variables (moisture, wind, solar radiation) as in Guigma 

et al. (2020). Only Tmin and Tmax are however retained for this study because of the consistency of 

the results across these indices (not shown).   

3.2.3. Tropical mode detection 

https://www.zotero.org/google-docs/?RNsVgl
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In this study, the expression “tropical modes'' refers to the synoptic and intraseasonal modes of 

variability of the tropical atmosphere including the MJO and equatorially trapped waves. The MJO 

is the most important driver of intraseasonal variability of the tropical atmosphere (Madden and Julian 

1971, 1972, 1994) and influences the West African Monsoon (e.g. Sossa et al. 2017). In this study, 

equatorial waves are explored in connection with convection (hence the expression convectively 

coupled equatorial waves CCEWs). Over West Africa, Kamsu-Tamo et al. (2014) and Schlueter et 

al. (2019, a,b) demonstrated statistically and dynamically that they have an impact on convection. In 

the present paper, the equatorial waves under investigation are the ER and EK waves. Other waves 

such as AEWs and mixed Rossby-gravity waves are not included as they are not so active in the 

region during the season of interest (MAMJ).  

 

Table 3.1. Characteristics of each mode used in this study. The definition of each characteristic is 

given in Section 3.2.3. 

Mode 
Wavenumber 

band 
Period band (days) 

Equivalent depth 

(m) 
References 

MJO 0 to 9 20 to 100 Not specified Kiladis et al. (2005) 

ER -10 to -1 9.7 to 72 1 to 90 Kiladis et al (2009) 

EK 1 to 14 2.5 to 20 8 to 90 

Straub & Kiladis 

(2002), (Mekonnen 

et al. 2008) 

 

Each tropical mode is characterised by a range of wavenumbers, periods and equivalent depths 

summarised in Table 3.1. A wavenumber is the number of waves (each wave comprising one ridge 

and one trough) that it takes to zonally circumscribe the globe. The period of a wave measures the 

time separating the passage of two consecutive ridges at a given location. As for the equivalent depth, 

a more complex notion used for ER and EK wave filtering, it refers to the depth of the shallow layer 

of atmospheric fluid that is required (by theory) to get the appropriate values for the time-varying and 

horizontal components of their motion (Wheeler and Nguyen 2015).   

Tropical modes are detected from the fields of OLR, which is a good proxy for tropical convection 

(Arkin and Ardanuy 1989), and has been extensively used in tropical mode investigation over West 

Africa (e.g. Lavender and Matthews 2009; Pearson et al. 2010; Yang et al. 2018). To extract a given 

https://www.zotero.org/google-docs/?zFLAL5
https://www.zotero.org/google-docs/?zFLAL5
https://www.zotero.org/google-docs/?zFLAL5
https://www.zotero.org/google-docs/?x0jBTd
https://www.zotero.org/google-docs/?zFLAL5
https://www.zotero.org/google-docs/?Oj7n9U
https://www.zotero.org/google-docs/?DbwkX4
https://www.zotero.org/google-docs/?DbwkX4
https://www.zotero.org/google-docs/?DbwkX4
https://www.zotero.org/google-docs/?8SVnN4
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mode, the mean and first three harmonics of the OLR annual cycle are first removed to obtain 

intraseasonal anomalies. Then, the filtering in the wavenumber-frequency space consists of setting to 

zero any spectral coefficient outside the window corresponding to the mode of interest (Table 3.1), 

such that only the relevant coefficients are retained. The “kf_filter” function of the NCAR Command 

Language (NCL) was used for this operation. The output of the wavenumber-frequency 

decomposition is thus a three dimensional (time, longitude and latitude) filtered OLR field for each 

mode. The full explanation of the method can be found in Wheeler and Kiladis (1999) and Kiladis et 

al. (2006). No decomposition of the input data into asymmetric and symmetric components is done 

because the area of interest is fully located on one side of the Equator (northern hemisphere), as 

already done in several previous studies (e.g. Schreck et al. 2011; Lafore et al. 2017).  

 

 

Fig. 3.1 Variance (in W2m-4) of mode-filtered OLR data during MAMJ. The rectangular box delimits the Sahel 

region. The vertical line marks the reference longitude (5°E) and latitudinal band over which the local activity 

of tropical modes is characterised (see Section 3.2.3). 

 

In order to characterise the daily local activity of each mode, a phase and amplitude are determined 

as follows. Firstly, the 5°E longitude (centre of the Sahel domain) is arbitrarily set as reference 

longitude. Minor variations of the reference longitude do not significantly impact the results (not 

shown). Then, the daily mode-filtered OLR data at this longitude are averaged over the Guinean zone, 

i.e. for the latitudes between the Equator and 10°N (vertical line in Fig. 3.1), where convection is the 

most active in spring (Nguyen et al. 2011). Including latitudes up to 20°N does not make significant 

changes to the results. As in Riley et al. (2011), the resulting unidimensional timeseries and its (first 

order) local time derivative (both normalised by their respective standard deviations) are used to 

derive the trigonometric form of the corresponding mode, from which an angle and an amplitude are 

https://www.zotero.org/google-docs/?yiFXkN
https://www.zotero.org/google-docs/?yiFXkN
https://www.zotero.org/google-docs/?j2Pxue
https://www.zotero.org/google-docs/?j2Pxue
https://www.zotero.org/google-docs/?j2Pxue
https://www.zotero.org/google-docs/?Aolj9K
https://www.zotero.org/google-docs/?Aolj9K
https://www.zotero.org/google-docs/?3IRl1U
https://www.zotero.org/google-docs/?T5sqy3
https://www.zotero.org/google-docs/?T5sqy3
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extracted for each day. On a given day, a mode is considered active only if its amplitude is greater 

than one. Changes to this threshold do not affect the spatial structures of the impact of tropical modes 

on heatwaves but the magnitude of this impact is slightly modified and is discussed in Section 3.3.3. 

For the active days of each mode, the angles are further binned into eight 45° wide phases labelled 1 

to 8 such that phase 1 represents instances where the mode is the most convectively suppressed 

(maximum of OLR), phase 5 the most convectively enhanced (minimum of OLR) and the six others 

are transitory phases (see the description of the full method in Riley et al. (2011)).  Thus, a given 

active mode (active because passing the minimum amplitude threshold) can be either in a 

convectively suppressed or a convectively enhanced phase. It should be noted that, while the practice 

of setting a reference longitude effectively allows to detect the passage of tropical modes in the region, 

and to better characterise their local activity, it however comes with the caveat that, away from this 

longitude, the signal weakens progressively. As a consequence, towards the boundaries of the region, 

the modes with large wavenumbers are not as well accounted for as those with small wavenumbers.  

3.2.4. Modulation of heatwaves by tropical modes and associated evolution of physical variables 

The modulation of heatwave probability of occurrence and heatwave intensity is assessed, during the 

spring season, by modifying a method initially used by Xavier et al. (2014) for extreme rainfall and 

Hsu et al. (2017) for heatwaves. It consists of comparing heatwave probability/intensity when a given 

mode is active on a specific phase versus the climatological probability/intensity during the MAMJ 

season. The modulation of heatwave probability (MP) is thus given by the following formula: 

𝑀𝑃 =
𝑃𝑥−𝑃𝑎

𝑃𝑎
                                                                                                       (4) 

where Px is heatwave probability given the mode is in phase x, i.e. the number of days where 

heatwaves occur during phase x over the total number of days where the mode is in this phase; Pa is 

the climatological probability of heatwaves, i.e. the number of heatwave days (regardless of the 

activity of the modes) over the total number of days. The probabilities are defined in terms of days 

rather than events, consistently with Hsu et al. (2017). 

Likewise, the modulation of heatwave intensity (MI) is defined as follows: 

  𝑀𝐼 =
𝐼𝑥−𝐼𝑎

𝐼𝑎
                                                                                                       (5) 

https://www.zotero.org/google-docs/?3dwAYW
https://www.zotero.org/google-docs/?3dwAYW
https://www.zotero.org/google-docs/?blG1l8
https://www.zotero.org/google-docs/?kfdcl3
https://www.zotero.org/google-docs/?kfdcl3
https://www.zotero.org/google-docs/?zvrcj9
https://www.zotero.org/google-docs/?zvrcj9
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Where Ix is the average heatwave intensity (defined for each heatwave day and at each grid-cell as 

the highpass filtered anomaly of Tmin or Tmax on that day; Section 3.2.2) given the mode is in phase 

x and Ia the climatological intensity of heatwaves. 

As will be shown in Section 3.3.1, heatwaves can be associated with distinct active tropical modes at 

different phases, in such a way that the superposition of two modes can lead to an amplified or reduced 

forcing on heatwaves. The modulation of heatwave probability by two superposed modes is 

investigated using the following formula: 

𝑀𝑃 =
𝑃𝑥𝑦−𝑃𝑎

𝑃𝑎
                                                                                                       (6) 

 Pxy: heatwave probability when the first mode is in phase x and the second mode in phase y. 

Pa: heatwave climatological probability. 

The significance of the modulation patterns is tested at each grid-point and for each phase of the 

modes through bootstrap resampling (Wang et al. 2008, Mazdiyasni and AghaKouchak 2015, Nissan 

et al. 2017, Harrington et al. 2019). Let N be the number of days where a given mode is in phase x 

(or one mode in phase x and another in phase y for the superposition case). Then, 1000 random 

samples, each of size N days are generated. Heatwave probability (or average intensity) is calculated 

for each sample. From these random probabilities (or average intensities), corresponding values of 

modulation of heatwave probability (intensity) are derived using equation (4), (5) or (6) accordingly. 

Significance is finally tested at a 5% probability level against these 1000 random modulation values. 

The results of the modulation of heatwave probability are presented in Section 3.3.3, and that of 

heatwave intensity in Section 3.3.4.  

To understand the physical mechanisms associated with the modulation of heatwaves, the composites 

of each of the diagnostic variables (presented in Section 3.2.1.) are derived over all active mode-phase 

days. To do this, the mean and the first three harmonics of the seasonal cycle for each variable are 

first removed. Then, they are passed to a Lanczos highpass filter (Duchon 1979) to retain variability 

at timescales shorter than 90 days. The filtering causes a loss of data at both edges of the input time 

series (also observed for heatwave detection and OLR filtering); therefore the analyses cover the 

1980-2017 period. Finally, the composite mean of a given variable over a certain instance (e.g. phase 

x of a mode) corresponds to the average of this variable over all days of this instance. At each grid-
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point, the significant departure of the average values from zero is tested using the Student’s t-test at 

the 0.05 probability level. The results are shown in Section 3.3.5. 

For the case study purpose, the activity of tropical modes is projected onto various physical fields, 

similarly to previous studies (e.g. Kiladis et al. 2006; Knippertz and Todd 2010). To do this, the daily 

mode-filtered OLR data are regressed onto the daily highpass filtered anomalies of the physical 

variables at each grid-point over the 1980-2017 period. Then, the influence of each tropical mode on 

the variable during the heatwave event is qualitatively estimated on a daily basis, using the predicted 

value of the diagnostic variable by the linear regression model. The advantage of this technique is 

that it allows on a given day to know the likely impact of a certain mode on a physical process (results 

in Section 3.4.4).   

Table 3.2. General statistics associated with the activity of tropical modes at the reference longitude 

of 5°E. See Section 3.3.1 for the analysis. 

Total number of MAMJ days over the 1980-2017 period 4636 

Percentage of days where at least one mode is active 96.5% 

Percentage of days where exactly one mode is active 19.0% 

Percentage of days where the MJO is active (and of which EK and ER are 

inactive) 72.7 % (9.3%) 

Percentage of days where the ER is active (and of which MJO and ER are 

inactive) 65.7 % (6.6%) 

Percentage of days where the EK is active (and of which MJO and ER are 

inactive) 70.4% (11.1%) 

Number of days where the MJO is active in phase 5 (and where ER and EK are 

inactive) 409 (22) 

Number of days where the MJO is active in phase 1 (and where ER and EK are 

inactive) 458 (41) 

https://www.zotero.org/google-docs/?DJ250N
https://www.zotero.org/google-docs/?DJ250N
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Number of days where the ER is active in phase 5 (and where MJO and EK are 

inactive) 393 (25) 

Number of days where the ER is active in phase 1 (and where MJO and EK are 

inactive) 409 (42) 

Number of days where the EK is active in phase 5 (and where MJO and ER are 

inactive) 390 (40) 

Number of days where the EK is active in phase 1 (and where MJO and ER are 

inactive) 443 (38) 

 

 

 

 

3.3. Modulation of heatwaves by tropical modes: a statistical analysis 

3.3.1. Activity of tropical modes over Africa during the spring season  

Table 3.2 presents statistics associated with the activity of tropical modes over the Guinean region as 

detected at the reference longitude of 5°E (described in Section 3.2.3) focusing mainly on the most 

suppressed and the most enhanced phases (phases 1 and 5 respectively). During the MAMJ season, 

at least one mode is active 96% of the time irrespectively of the phase. Therefore, the spring season 

is intense in terms of tropical mode activity. For each of these modes, the activity is evenly distributed 

across the eight phases without a preference for any of them (not shown). The number of active days 

is not much different from one mode to another but it is apparent that the MJO has the largest sample. 

The occurrences of exactly one mode (whichever it is) at a given time exclusive of any other mode 

are quite infrequent (19% of the time). For a given active phase of any mode, merely 10% of its 

passages satisfy this configuration. Therefore, active tropical modes generally overlap. Consequently, 

an explicit analysis of the impact of these situations on Sahelian heatwaves is undertaken in Section 

3.3.3.  

The amount of OLR variability explained by the modes is clearly different between them. Figure 3.1 

shows the variance of the mode-filtered anomalies of OLR during the MAMJ season. The MJO, EK 

and ER waves by decreasing order, have an intense activity over the Guinean sector in boreal spring. 

For the MJO and EK waves, the variance peaks at above 200 W2m-4 near the Equator (Figs. 3.1a & 

3.1c). The MJO is active over the entire sector between 10°S and 15°N. On the other hand, the EK 



73 
 

waves are active only within a band surrounding the Equator consistent with theory (the high variance 

of EK waves observed at the edges of the domain are mainly due to imperfections in the filtering 

technique which allows in noise from the mid-latitude eastward Rossby waves). As for the ER waves, 

they maintain a relatively important activity (peaks exceeding 150 W2m-4) over the eastern and central 

parts of the domain (Fig. 3.1b).  

There is a slightly different seasonality between the modes during the spring season. The peak of 

convective activity related to the MJO occurs in March and April, that of EK waves in April and May 

whereas the ER is the most active in May (Fig. S3.1). The activity of these three modes decreases 

significantly in June, prior to the onset of the Sahelian phase of the West African monsoon (e.g. 

Fitzpatrick et al. 2015). This seasonality is further shown by the monthly count of active days of each 

mode at the reference longitude of 5°E (Fig. 3.2).  

Fig. 3.2 Seasonality of the activity of tropical modes and heatwave occurrence. Bluish lines :monthly count of 

active days of the MJO, EK and ER waves as detected at the reference longitude of 5°E between the equator 

and 10°N (the definition of an active day is given in Section 3.2.3.). Green histograms: monthly count of the 

https://www.zotero.org/google-docs/?FBb9N4
https://www.zotero.org/google-docs/?FBb9N4
https://www.zotero.org/google-docs/?FBb9N4
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number of daytime (solid bars) and nighttime (dashed bars) heatwave days spatially averaged over the Sahel 

domain.  Red lines: Monthly values of Tmax (solid lines) and Tmin (dashed lines) spatially averaged over the 

Sahel domain. 

 

3.3.2. Synoptic to intraseasonal heatwaves in the Sahel 

Previous publications have already elaborated on the statistical characteristics of Sahelian heatwaves 

at different timescales. There is a general consensus on their short-lasting nature (e.g. Oueslati et al. 

2017; Guigma et al. 2020) and their important intensity owing to the hot mean state of the region (red 

lines in Fig. 3.2). They are more frequent over the eastern and central Sahel, as shown by the count 

of springtime heatwave days at each grid-point over the 1980-2017 period in Fig. S3.2 (which 

provides the sampling basis of heatwaves for this study).  As with tropical modes, the frequency of 

occurrence of synoptic to intraseasonal scale heatwaves has a moderate seasonality. Figure 3.2 shows 

that daytime heatwaves are mostly observed between February and June, with a peak in April. On the 

other hand, nighttime heatwaves occur mainly between March and July with May standing as the 

most heatwave-prone month. There is thus a shift of nighttime heatwaves with respect to their daytime 

counterparts. The main reason for this is probably the larger dependence of Tmin (and thus nighttime 

heatwaves) on low-level moisture whose penetrations into the Sahel are more frequent closer to the 

onset of the monsoon (Couvreux et al. 2010; Mera et al. 2014).  

3.3.3. Modulation of heatwave probability of occurrence by tropical modes 

This section first discusses the impact that each tropical mode, taken separately, has on heatwave 

occurrence, before analysing the outcome of the superposition of several modes. 

 1) Heatwave modulation by modes taken separately 

Figure 3.3 shows the phase-longitude diagram of the modulation of heatwave probability (MP) 

averaged over the Sahel band (10°N-20°N) for the MJO, ER and EK waves during the spring season. 

Among these three investigated modes, the MJO stands as the lead modulator of heatwave occurrence 

in the Sahel (Figs. 3.3a & 3.3b) and its eastward propagation is clearly reflected in the modulation 

MP pattern. Overall, phases 1 to 4 are associated with higher heatwave probability than the 

climatological probability of occurrence. The values of MP, averaged over the Sahel band, can be as 

high as 1 (i.e. heatwaves are twice more likely under these phases than according to their 

climatology). Reversely for phases 5 to 8, the probability of heatwave occurrence is lower than usual. 

https://www.zotero.org/google-docs/?HPKZDT
https://www.zotero.org/google-docs/?HPKZDT
https://www.zotero.org/google-docs/?HPKZDT
https://www.zotero.org/google-docs/?aO14mH
https://www.zotero.org/google-docs/?aO14mH
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For these phases, MP is typically below -0.5, meaning that the probability of occurrence is less than 

half of its climatological value. The patterns are relatively similar for daytime and nighttime 

heatwaves, but it is apparent that the stripe of positive MP values is wider in Tmin heatwaves than in 

Tmax (red stripe in Fig. 3.3a vs Fig. 3.3b), and reversely for the stripe of negative MP values (blue 

stripe in Fig. 3.3a vs Fig. 3.3b), especially over the western Sahel.  

The modulation of Sahelian heatwaves by the ER wave (Figs. 3.3c & 3.3d) is less important than by 

the MJO. Heatwave probability of occurrence is mostly below normal when the ER wave is in phases 

5 to 8 with values of MP generally higher than -0.5 (i.e. of lower intensity than observed for the MJO). 

In phases 1 to 4, there is a higher heatwave risk than normal over much of the Sahel, with positive 

MP values although usually lower than 1. It should be noted that the modulation by the ER wave is 

more sensitive to the diurnal cycle and geographic location than the two other modes. For example, 

daytime heatwaves over the eastern Sahel are only marginally affected by the activity of the ER wave  
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Fig. 3.3 Phase-longitude diagrams of the modulation of (left panel) nighttime and (right panel) daytime large-

scale heatwave probability of occurrence by the MJO, ER and EK waves during MAMJ averaged over the Sahel 

band (10°N-20°N). The modulation corresponds to the variable MP defined in Section 3.2.4 (equation (4)) as a 

comparison of heatwave probability of occurrence in a given active phase versus the climatological probability. 

Significance was tested at the probability 0.05 level, using bootstrap resampling of tropical mode active days, 

with 1000 repetitions. 
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whereas nighttime heatwaves are much more impacted. On the other hand, over the western Sahel, 

the modulation is more important for daytime than nighttime heatwaves (this is valid for both positive 

and negative modulations). 

The spatial patterns of the modulation of heatwaves by the EK wave (Figs. 3.3e & 3.3f) are similar 

to that of the MJO with marked eastward propagation in both cases. However, they present narrower 

stripes and lower magnitude than with the MJO. The values of MP are indeed in most cases absolutely 

below 0.5, making the EK wave the least important of the three modes for heatwave occurrence in 

the Sahel. They present only little sensitivity to the diurnal cycle. 

The amplitude of tropical modes, as stated in Section 3.2.3, does not affect the spatial distribution of 

MP. On the other hand, with increasing amplitudes, the values of MP are slightly increased (without 

changing their sign). This is illustrated in Fig. S3.3, using a minimum amplitude of 2. Therefore, the 

stronger the amplitude of tropical modes, the more confident the changes of heatwave probability 

described above are.  

The main reason why the MJO has a greater influence on heatwaves than the ER and EK waves is 

very likely related to its spectral properties. Heatwaves are slowly varying events whose minimum 

duration is set to three days here. Therefore, for a given mode to influence their occurrence, it should 

be able to sustain conditions which are favourable to the heating of the atmosphere for a long-enough 

amount of time. Evidently, the longer the period of a mode the higher its ability to develop such 

conditions. This sensitivity of the modulation to the temporal scale corroborates previous results by 

Schlueter et al (2019a) who investigated the modulation of precipitation in West Africa by tropical 

modes. Indeed, they found that, on the scale of three days, the MJO, ER and EK waves have an equal 

importance on precipitation while on the scale of a week, the effect of EK wave becomes marginal 

and beyond 20 days, the MJO is the only mode able to significantly contribute to precipitation 

variability. Besides, the additional constraint on the spatial extension of heatwaves may also favour 

the MJO. Consequently, the results of this study imply that the smaller the wavenumber of a mode, 

the more likely this mode can trigger heatwaves as it is also more able to promote warming conditions 

that spread over large areas.  

It should be noted that the patterns of the modulation of heatwaves shown at the seasonal scale are 

generally consistent across the different months. However, some differences are noticeable, 

especially with nighttime heatwaves, for some modes. Thus, phases 1 to 4 of the ER wave lead to a 
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decreased probability of nighttime heatwave occurrence over  the central Sahel (broadly between 0°E 

and 20°E) in early spring (March-April) whereas the probability is increased in late spring (May-

June), and reversely for phases 5 to 8 (Fig. S3.4a vs Fig. S3.4b). For the EK wave, the decrease of 

heatwave probability observed in phases 5 to 8 is much more pronounced in late spring than in early 

spring (Fig. S3.4c vs Fig. S3.4d). 

 

Table 3.3. Counts (in number of days) of co-occurrences of tropical modes in their most suppressed 

(phase 1) and most enhanced (phase 5) phases by pairs. The counts do not exclude the presence of a 

third mode. 

 

MJO 

 

Phase 1 Phase5 

EK Phase1 44 29 

Phase 5 42 49 

 
 

MJO 

 

Phase 1 Phase5 

ER Phase1 54 24 

Phase 5 25 56 

 
 

ER 

 

Phase 1 Phase5 

EK Phase1 33 42 

Phase 5 31 28 
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Fig. 3.4 Zonal averages (10°N-20°N) of the modulation of heatwave probability of occurrence (MP) by 

superposition of tropical modes during MAMJ. See Section 3.2.4 (equation (6)) for details regarding the 

method. Significance was tested at the 0.05 probability level, using bootstrap resampling of tropical mode active 

days, with 1000 repetitions. 

 

2) Heatwave modulation by superposition of modes in various phases  

Section 3.3.1 evidenced the need for special consideration of instances where multiple tropical modes 

are superposed. These superpositions may occur on any phase of the modes. For conciseness purpose, 

only the most convectively suppressed phase (phase 1) and the most convectively enhanced phase 

(phase 5) are investigated in the present section. However, it should be noted that, although these 

phases represent the extremes of the convective activity driven by the modes in the region, they do 
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not necessarily correspond to the peak of their effects on heatwaves as shown in Fig. 3.3. It is therefore 

possible to consider other phases when assessing the effect of the superposition of multiple modes on 

heatwaves.  

Sample sizes of different combinations of modes in their phases 1 and 5 are relatively moderate, not 

exceeding 50 days (Table 3.3) but allow an insight as to how (much) these configurations impact 

Sahelian heatwave occurrence. The combinations can be mutually constructive (i.e. all modes on the 

same phase) or conflicting (e.g. one mode in an enhanced phase and another in a suppressed phase).  

Figure 3.4 presents the zonal averages over the Sahel domain (10°N-20°N) of the modulations by 

pairs of tropical modes. The superposition of the ER wave and the MJO gives relatively similar results 

for daytime and nighttime, at least over the eastern Sahel (Figs. 3.4a & 3.4b). When these modes co-

occur in a constructive way, the resulting MP pattern is comparable to the one obtained when they 

occur separately and mainly consists in dipolar MP structures: for the suppressed case, an increase of 

heatwave probability in the western Sahel and a decrease in the eastern Sahel (red dotted lines in Figs. 

3.4a & 3.4b), and conversely for the enhanced phase (blue solid lines in Figs. 3.4a & 3.4b). When the 

MJO and the ER wave are conflictingly superposed, there is a decrease of heatwave probability in 

most cases (orange dotted lines and green solid lines in Figs. 3.4a & 3.4b). A few exceptions to this 

include an increase of daytime heatwave probability over the western Sahel when an enhanced ER 

wave and a suppressed MJO are superposed (orange dotted line in Fig. 3.4a), and an increase of both 

daytime and nighttime heatwave probability over the eastern Sahel when the ER wave is in a 

suppressed phase and the MJO in an enhanced phase (green solid lines in Figs. 3.4a & 3.4b).  

The superposition of the EK wave onto the MJO (Figs. 3.4c & 3.4d) leads to modulations of relatively 

large magnitude which generally take the sign of a singular modulation by the MJO. Similarly to the 

combined MJO-ER modulation, dipolar patterns are observed as a result of constructive 

superpositions of the MJO and the EK wave. Heatwave probability is increased over the western 

Sahel (especially at daytime), in opposition to a relatively small decrease over the eastern Sahel when 

both modes are in their suppressed phases (red dotted lines in Figs. 3.4c & 3.4d). When they are both 

in their enhanced phases, heatwave occurrence is increased over the eastern Sahel whereas over the 

western Sahel it is either decreased (case of daytime heatwaves; blue solid lines in Fig. 3.4c) or 

unchanged (case of nighttime heatwaves; blue solid lines in Fig. 3.4d). The conflicting configuration 

in which the MJO is in phase 1 has only minor impacts on heatwave occurrence in the Sahel (orange 

dotted lines in Figs. 3.4c & 3.4d). On the other hand, in the contingency where the MJO is in phase 5 

and the EK wave in phase 1, the modulation of daytime heatwaves is very close to that observed with 



81 
 

the MJO alone (green solid lines in Fig. 3.4c) whilst nighttime heatwave probability is significantly 

increased throughout the Sahel (MP often exceeds 2; green solid lines in Fig. 3.4d).      

Finally the superposition of the ER and EK waves generally causes only minor changes to Sahelian 

heatwave probability (Figs. 3.4e & 3.4f). However when both modes are in a suppressed phase, the 

probability of heatwave occurrence is significantly augmented over the western Sahel (a modulation 

of up to 2). 

In summary, the superposition of multiple modes over the African domain can substantially increase 

heatwave probability over the western Sahel when they are all in a convectively suppressed phase 

and over the eastern Sahel when they are all in a convectively enhanced phase, while the outcome for 

conflicting superpositions depends on the modes under consideration.  

 

3.3.4. Modulation of heatwave intensity 

Heatwave intensity is overall less sensible to tropical modes than the probability of occurrence. Some 

significant patterns are however obtained with the MJO and ER wave and are shown in Fig. 3.5. This 

figure reveals that the intensity of heatwaves is increased when the MJO and the ER waves are in 

phases 4 to 7, with the modulation MI often reaching 0.4. On the other hand, the intensity is decreased 

in phases 1 to 3 of the MJO and ER wave, and MI can also get below -0.4. Finally, the influence of 

EK waves on heatwave intensity is quite minor (Figs. 3.5e & 3.5f). Nighttime heatwave intensity is 

also more affected than daytime heatwave intensity (Figs. 3.5a & 3.5c vs Figs. 3.5b & 3.5d). From a 

spatial point of view, the modulation is more marked over the central and the eastern Sahel than over 

the western Sahel.  

A comparative examination of the patterns of MP (Fig. 3.3) versus that of MI (Fig. 3.5) shows that 

the two do not match exactly, and this can have implications for heatwave risk management, 

especially for nighttime heatwaves whose intensity is more impacted by tropical modes. Thus, in 

phases 6 and 7 of the MJO, nighttime heatwaves are less probable but are more intense (Fig. 3.3a vs 

Fig. 3.5a). Conversely, they are more probable in phases 2 and 3 of the MJO but less intense. When 

the MJO is in phase 4, it poses a higher risk because heatwaves are both more probable and more 

intense. This is also the case when the ER wave is in phases 4 to 7 (Fig. 3.3c vs Fig. 3.5c).   
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Fig. 3.5 Phase-longitude diagrams of the modulation of (left panel) nighttime and (right panel) daytime large-

scale heatwave intensity by the MJO, ER and EK waves during MAMJ averaged over the Sahel band (10°N-

20°N). The modulation corresponds to the variable MI defined in Section 3.2.4 (equation (5)) as a comparison 

of heatwave average intensity in a given active phase versus the climatological intensity of heatwaves. 

Significance was tested at the 0.05 probability level, using bootstrap resampling of tropical mode active days, 

with 1000 repetitions. 
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3.3.5. Potential mechanisms of modulation 

 

Fig. 3.6 Phase-longitude diagrams of the composite of daily anomalies of (left panel) heat advection in K day-

1 and (right panel) precipitable water in mm  over active phases of the MJO, ER and EK waves during MAMJ 

averaged over the Sahel band (10°N-20°N). Significance was tested using a Student t-test at the 0.05 probability 

level. 



84 
 

Previous studies (e.g. Oueslati et al. 2017; Guigma et al. 2020) have pointed to the increase of 

longwave radiation at the surface due to water vapour greenhouse effect, and hot air advection as 

processes underpinning Sahelian heatwaves. This motivates the composite analysis of 

thermodynamic and dynamical variables presented below for active phases of the modes. The aim 

here is to provide an insight as to how heatwave processes are impacted by the physical conditions 

created by tropical modes. 

From Fig. 3.6a it is apparent that the patterns of the advection of heat into the Sahel, although patchy, 

are relatively consistent with that of the modulation of heatwave occurrence. Increased heatwave 

occurrence is indeed broadly associated with hotter air advection whereas cooler air advection goes 

with a decrease of heatwave probability (except over a narrow area around 20°E). The influence of 

tropical modes on heatwave occurrence is also due to their control on water vapour and its associated 

longwave radiative effect. As shown in Fig. 3.6b, over the eastern Sahel and in phases 4 and 5, the 

higher probability of heatwave coincides with a positive anomaly of precipitable water reaching 3 

mm on zonal average (the longwave radiation and precipitable water patterns are very similar, not 

shown). However, the MJO-induced precipitable water anomaly has its greatest impact on heatwave 

intensity. Phases 4 to 7, which are associated with higher heatwave intensity, are also those for which 

the anomaly of precipitable water is positive; reversely, in phases 1 to 3 where heatwave intensity is 

lower, there is a dry anomaly especially marked over the eastern Sahel (Figs. 3.5a & 3.5b vs Fig. 

3.6b). The stronger dependence of nighttime heatwaves on water vapour (Guigma et al. 2020; 

Largeron et al. 2020) likely explains why their intensity is more affected by the MJO (Fig. 3.5a vs 

Fig. 3.5b).    

Associated with ER wave, an advection of hot air is present too, though mostly confined to the eastern 

Sahel (Fig. 3.6c) which could be linked to the increase of heatwave probability in phases 3 to 5 for 

nighttime heatwaves, and 7 to 8 for daytime heatwaves (Figs. 3.3c & 3.3d). Atmospheric water vapour 

itself is not directly linked to heatwave probability but its anomalies give an insight into other 

processes. Over the western Sahel, the increase of heatwave probability in phases 1 to 3 (Figs. 3.3c 

& 3.3d) can be connected to the negative anomaly of precipitable water (Fig. 3.6d), which is 

associated with reduced cloudiness and increased incoming solar radiation (not shown) which is a 

frequent underlying process of Sahelian heatwaves (Guigma et al. 2020). The reverse interpretation 

can be made for phases 5 to 8, where increased cloudiness and precipitable water (Fig. 3.6d) weaken 

incoming solar radiation (not shown) and are associated with a decrease of heatwave probability 

(Figs. 3.3c & 3.3d). As with the MJO, water vapour has a direct impact on heatwave intensity. The 

https://www.zotero.org/google-docs/?81dH8X
https://www.zotero.org/google-docs/?81dH8X
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patterns of precipitable water (Fig. 3.6d) and of the modulation of heatwave intensity (Figs. 3.5c & 

3.5d) are indeed relatively close. 

The links between the EK wave-modulated patterns of heatwave occurrence and physical processes 

are less evident given that the anomalies of the EK wave are predominantly confined to the equatorial 

region as per theory (not shown). Nonetheless, it is apparent that advection of hot air (which is 

important in magnitude) in phases 1 to 5 plays an important role especially over the eastern Sahel 

(Fig. 3.6e), where heatwave probability is increased. On the other hand, advection of cooler air over 

the western Sahel in phases 4 to 7 may also explain the decrease of heatwave probability there.  

Fig. 3.7 Composite of daily anomalies of (a & b) precipitable water in mm and (c & d) 925 hPa heat advection 

in K day-1 over phases 1 and 5 of the MJO. Superimposed vectors are anomalies of horizontal wind at the 925 

hPa level. Significance was tested using a Student t-test at the 0.05 probability level. The rectangular box 

delimits the Sahel region. 
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Fig. 3.8 Time-longitude diagrams of 90-day highpass filtered anomalies of (a) 2m specific humidity (shades; 

units in g Kg-1), daily minimum (blue contours) and maximum (red contours) temperature averaged over the 

10°-20°N band and (b) OLR (shades; units in Wm-2) superimposed with MJO (black contours) and ER (green 

contours) wave-filtered OLR anomalies averaged over the 0-10°N band between 15 March and 15 May 2003. 

In (a) the contour level is 2K for both the minimum and the maximum temperature. In (b), the contour levels 

for the MJO and ER-wave filtered anomalies are 5 and 10 W m-2 (-5 and -10 W m-2) for the dashed (solid) lines. 

 

While phase-longitude diagrams are efficient at summarising the physical conditions promoted by 

tropical modes in their different phases, they do not inform on their full horizontal distribution. To 

get around this issue, Fig. 3.7 shows for illustration purposes, the maps of these variables composited 

over the most convectively suppressed and enhanced phases (phases 1 and 5 respectively) of the MJO. 

They are superimposed with low-level (925 hPa) wind anomalies in order to assess the origins of the 

heat (whose climatological distribution is depicted in Lavaysse et al. 2009). The suppressed phase of 

the MJO is associated with a low-level northeasterly wind anomaly across the Sahel (which is part of 

an anticyclonic cell) carrying the drier and hotter air from the Sahara desert and the eastern Sahel 

towards the western Sahel (Figs. 3.7a & 3.7c). As a result, in the western part of the Sahel, advection 

of hotter air (with magnitude reaching 1.5 K day-1), leads to an increase of heatwave probability (Figs. 

3.3a & 3.3b). On the other hand the arrival of air masses from higher latitudes causes drying and 
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cooling over the eastern Sahel, reducing longwave radiation, hence the decline of heatwave 

probability in this region (Figs. 3.3a & 3.3b). Reversely, when the MJO is convectively enhanced, the 

low-level flow presents a cyclonic anomaly characterised by a northwesterly wind anomaly over the 

western Sahel/Sahara, which advects cooler air (Fig. 3.7d) leading to a decrease of heatwave 

probability (Figs. 3.3a & 3.3b). Over the eastern Sahel/Sahara, a southwesterly wind anomaly carries 

humid air from the equatorial region (Fig. 3.7b), causing an increase of heatwave probability (Figs. 

3.3a & 3.3b) associated with increased longwave radiation.  

These results agree with previous findings by Moron et al. (2018a) who also showed the importance 

of the modulation of low-level circulation by the MJO in increasing/decreasing temperature over 

tropical Africa. They also extend them further by documenting the associated physical processes. 

3.4. Case-study of the April 2003 heatwave 

3.4.1. Motivation and description of the heatwave 

Guigma et al. (2020) showed that intraseasonal heatwaves over the Sahel are generally short-lived 

(average duration not exceeding five days), with only a small portion of them (about 10%) occurring 

concurrently at daytime and nighttime. Yet, in terms of impacts on health, longer lasting daytime 

events which persist during the nighttime are expected to be the most harmful (Schär 2016; Murage 

et al. 2017). Given their small sample size, the findings of the broad statistical analysis of heatwave 

modulation by tropical modes (Section 3.3) may not be directly applicable to them, especially since 

daytime and nighttime were dissociated. From this perspective, it is relevant to investigate them 

through a representative case study as also suggested by Guigma et al. (2020).  This is the reason why 

the Sahelian heatwave which took place during the first half of April 2003 was selected. It is 

characterised by (i) a relatively long duration (more than 10 days) and (ii) a simultaneousness of 

daytime and nighttime heatwaves over a common wide domain. This event is also mentioned as a 

severe one in Oueslati et al. (2017) but, to the best of the authors’ knowledge, it has never been 

investigated. The daytime heatwave started first, on 03 April, while the nighttime one started on 04 

April, and they both ceased on 15 April. From a spatial point of view, the time-longitude diagram of 

temperature anomalies averaged over the Sahel band of 10°N-20°N (Fig. 3.8a) reveals that the 

heatwave kicked off over the eastern Sahel (in northern Chad/Sudan more precisely; not shown), 

stood there until approximately 08 April, moved towards the central Sahel before heading back to the 

east on its latest days. April 2003 was also marked by an important intraseasonal variability of 

temperature, as revealed by a wavelet decomposition of Tmin and Tmax (not shown). The variability 

of temperature at these scales is particularly relevant here as it suggests an important modulation by 

https://www.zotero.org/google-docs/?mC4y9Q
https://www.zotero.org/google-docs/?mC4y9Q
https://link.springer.com/article/10.1007/s00382-020-05438-5#ref-CR104
https://link.springer.com/article/10.1007/s00382-020-05438-5#ref-CR79
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the high-frequency modes of climate variability, including the MJO and equatorial waves. Finally in 

April 2003, there was no incursion of extratropical perturbations into West Africa, nor any strong 

interannual temperature anomaly (not shown), therefore allowing to get a “pure” modulation by 

tropical modes. 

3.4.2. Activity of tropical modes in April 2003 

Figure 3.8b shows a time-longitude diagram of highpass-filtered OLR anomalies averaged over the 

Guinean band to which the mode-filtered OLR anomalies (averaged over the same latitudinal band) 

are superimposed as contours.  This is a common technique used in tropical mode investigations (e.g. 

Schreck and Molinari 2011; Ventrice and Thorncroft 2012; Lafore et al. 2017). 

Over the heatwave period (i.e. first half of April), two MJO packets crossed West Africa (black 

contours in Fig. 3.8b). For the first packet, it is its convectively suppressed phase which is relevant to 

the heatwave. It penetrated West Africa during the second half of March 2003 and reached the Indian 

Ocean near 10 April. As for the second packet, its convectively enhanced phase (which is the one 

relevant to the heatwave) entered West Africa in early April, reached its maximum amplitude over 

Central West Africa (10°W-10°E) in mid-April before exiting the African domain after weakening at 

its eastern parts. An ER wave packet (green contours in Fig. 3.8b) also travelled westwards across 

West Africa during the first half of April 2003. The enhanced phase was the first to reach Africa from 

the eastern coast and was observed over Sahelian longitudes in early April. It eventually strengthened 

in mid-April, when it met with the enhanced phase of the second MJO packet. The suppressed phase 

reached West Africa after 15 April.  

 

3.4.3. Overall physical processes during the event  

An analysis of the thermodynamic budget emphasizes that two processes, namely longwave heating 

(Fig. 3.9a) and hot air advection (Fig. 3.9c) largely shaped the April 2003 heatwave. Indeed, during 

this period, the area covering Chad and Sudan is home to a strong hot air advection, reaching 1.5 K 

day-1 at some places. As a result, the thermal gradient between the atmosphere and the ground is 

weakened, leading also to a decrease of the sensible heat flux according to ERA5 (not shown). As for 

the net longwave heating, it is observed over the western and central Sahel/Sahara, and most 

importantly over the southeasternmost parts of the Sahel with a maximum exceeding 20 Wm-2. This 

longwave anomaly results mostly from a greenhouse effect (GHE) of water vapour, as testified by 

the pattern of precipitable water which presents a similar anomaly (Fig. 3.9b). Dust aerosol (an 

https://www.zotero.org/google-docs/?vwDwSD
https://www.zotero.org/google-docs/?vwDwSD
https://www.zotero.org/google-docs/?vwDwSD
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important constituent of the Sahelian atmosphere) was not significant in April 2003 according to 

MODIS data (not shown), precluding any significant contribution from this component to the 

observed warming. 

 

Fig. 3.9  Anomalies of (a) Net longwave radiation at the surface in Wm-2, (b) Precipitable water in mm, (c) 925 

hPa level heat advection in K day-1, (d) 925 hPa level specific humidity advection (g kg-1 day-1) averaged over 

the first half of April 2003. Vectors in (c) and (d) represent the 925 hPa level wind anomalies (only magnitudes 

greater than 1 m s-1 are shown). All quantities are obtained from ERA5. The rectangular box delimits the Sahel 

region. 

 

The longwave warming anomaly at the surface is also a footprint of a reinforcement of convective 

activity over West Africa. Besides the positive anomaly of precipitable water, there is indeed a low-

level cyclonic anomaly with monsoonal wind surges into the Sahel, advecting water vapour from the 

Gulf of Guinea (Fig. 3.9d). Furthermore, the patterns of low-level circulation, hot air advection and 

precipitable water observed during the heatwave period are very similar to their composite mean 

anomalies over the convectively enhanced phases of the MJO (Figs. 3.7b & 3.7d). As a reminder, 

heatwave probability is increased over the eastern Sahel when the MJO is in these phases (Figs. 3.3a 

& 3.3b). As such, the April 2003 event, despite being exceptional (by its length and daytime/nighttime 

concomitance), adheres to the general findings presented in Section 3.3, both in terms of the physical 



90 
 

conditions created by tropical modes and the outcome for heatwave occurrence. The next section 

emphasises this in more detail.  

 

3.4.4. Day to day evolution of the heating processes and impact of tropical modes 

A day to day analysis of the heatwave event further allows a deeper insight into the evolution of 

different processes shaping the heatwave and the role played by tropical modes.  

 

Fig. 3.10 Time-longitude diagram of (a) ERA5 heat advection at the 925 hPa level. Shades represent the daily 

highpass filtered anomalies and contours the regression of these anomalies on the MJO (black contours) and 

ER waves (green contours). Units are in K day-1 and the contour level is 0.1 (negative levels are omitted). (b) 

CERES incoming longwave radiation. Shades represent the daily highpass filtered anomalies and contours the 

regression of these anomalies on the MJO (black contours), the ER waves (green contours). Units are in Wm-2 

and the contour levels are 2.5 and 5 (negative levels are omitted). (c) AIRS precipitable water. Shades represent 

the daily highpass filtered anomalies and contours the regression of these anomalies on the MJO (black 

contours) and ER waves (green contours). Units are in mm and the contour levels are 1 and 3 (negative levels 

are omitted). All the quantities are averaged over the 10°N-20°N latitudinal band between 15 March and 30 

April 2003. 

 

1)   An initial role of heat advection fostered by the MJO (late March -04 April) 

Figure 3.10a shows that the onset of the heatwave over the eastern Sahel was preceded by a sustained 

advection of hot air in late March and during the first days of April. The low-level wind pattern in 



91 
 

Fig. 3.9c shows that the hot air originated from the central and southern Sahel (approximately 10°N-

13N°), where the West African Heat Low (WAHL) is typically located at this time of the year 

(Lavaysse et al. 2009). The projection of the activity of the different modes on this process (described 

in Section 3.2.4) shows that the MJO (which was in a convectively suppressed phase at that time; Fig. 

3.8b) was its main driver. In Fig. 3.10a, the MJO-regressed anomalies (black contours) indeed 

encapsulate the heat advection. Therefore the MJO acted in suppressing convection over the WAHL 

area, causing a warming which is further advected to the northeastern Sahel and led to the heatwave 

initiation. 

2)   A progressive takeover by water vapour GHE led by the ER wave (05-08 April) 

Despite a progressive decrease of heat advection after the onset, the heatwave was sustained mainly 

as a result of the arrival of moist air in the Sahel from the subequatorial region (Fig. 3.9d), causing a 

water vapour GHE as illustrated in Fig. 3.10b (using observed incoming longwave radiation at the 

surface, a proxy for GHE). In-situ observations at the Demokeya station (30.5°E; 13.3°N) also 

confirm the progressive increase of water vapour during this stage of the heatwave (Fig. S3.5). The 

regressed values of incoming longwave radiation (green contours in Fig. 3.10b) as well as of 

precipitable water (green contours in Fig. 3.10c) on the ER wave are positive and match relatively 

well the spatial structure of the anomalies of these variables, suggesting a preponderant role of this 

wave at this stage of the event. Thus, agreeingly with its expected impact on heatwaves discussed in 

early spring (Section 3.3), the convectively enhanced ER wave organised a low-level meridional 

transport of water vapour into the eastern Sahel, and, through longwave radiation, heated up the 

region. The statistical findings are further strengthened since consistency is shown here across 

different observational (satellite) datasets.   

3)   Final stage: a reinforcement of the GHE forced by the MJO (09-14 April) 

The westward motion of the ER wave allowed the heating to reach the central and western parts of 

the Sahel. From 09 April, the convectively enhanced phase of the second MJO packet entered the 

West Africa sector (Section 3.4.2, Fig. 3.8b). It further increased moisture through a zonal transport 

of water vapour from the Atlantic into the Sahel. As a result, the GHE effect reached its peak (above 

30 Wm-2) leading to an intensification of temperature anomalies, especially at night (Fig. 3.8a). The 

leading role of the MJO on this stage of the heatwave is discernible from the regression of the relevant 

processes on its timeseries (black contours in Figs. 3.10b & 3.10c). Its eastward propagation also 

dragged the region of maximum heating back towards the eastern Sahel. Again this is predicted by 

the statistical analysis as it is shown that, through water vapour GHE (Figs. 3.6b & 3.7b), convectively 

https://www.zotero.org/google-docs/?zT95Pk
https://www.zotero.org/google-docs/?zT95Pk
https://www.zotero.org/google-docs/?zT95Pk
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enhanced phases of the MJO heat up the eastern Sahel, augmenting heatwave probability therein 

(Figs. 3.3a & 3.3b). From approximately 15 April, the MJO-driven intensified convection caused 

organised rainfall events that watered large parts of the heatwave region (Fig. S3.6)  and led to a 

decrease of temperature. This eventually ended the heatwave.  

It should be noted that the evolution of GHE and precipitable water depicted by ERA5 is very similar 

to that of CERES and AIRS respectively. Furthermore, the influence of the modes on the evolution 

of the physical processes is also well captured by ERA5. This is shown by the daily evolution of the 

regressed fields of interest spatially averaged over grid-cells where the heatwave is detected (Fig. 

S3.7).  

In summary, the April 2003 heatwave, from a large-scale point of view, was initiated by a 

convectively suppressed MJO that promoted hot air advection, and sustained through GHE of water 

vapour brought in, first by a convectively enhanced ER wave and later on by a convectively enhanced 

MJO. In addition to supporting the statistical characteristics of heatwave occurrence in the eastern 

Sahel, this case study also provided an insight on the organisation of the water vapour low-level flow 

by tropical modes which is an important driver of heatwaves. Thus, it appears that the MJO exerts its 

control mainly through zonal transport of water vapour whereas the ER wave mostly affects 

meridional transport.  

3.5. Conclusion and perspectives  

Extreme heat represents a growing threat for Sahelian populations, with the latest research stressing 

that by the end of the century, climate change would make the region reach worrying levels of thermal 

discomfort (Xu et al. 2020; Raymond et al. 2020). Therefore, undertaking actions which could 

mitigate this important issue is a top priority. This study contributes towards this through an analysis 

of the relationship between tropical modes and Sahelian heatwave events with the view of improving 

scientific understanding of these extremes. More precisely, it demonstrates that the MJO, ER and EK 

waves are important factors for the occurrence and - to a lesser extent - intensity of heatwaves in the 

region during the spring season. Their influence on heatwave occurrence is a function of their 

convective phase (enhanced or suppressed) and amplitude; it is also distinct for nighttime and daytime 

heatwaves and varies with the geographical location. Generally, in their convectively suppressed 

phases, they advect hot air from the climatological location of the WAHL towards the western coast 

of the Sahel, increasing heatwave probability there. When they are in convectively enhanced phases, 

they increase longwave warming especially over the eastern Sahel by bringing in water vapour from 

the Guinean region of Africa. Several tropical modes often overlap over the region. In these situations, 

https://www.zotero.org/google-docs/?K8sDrZ
https://www.zotero.org/google-docs/?K8sDrZ
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heatwaves are more likely to occur over the western Sahel when all modes are in a convectively 

suppressed phase, and over the eastern Sahel when they are convectively suppressed. The statistical 

findings were further illustrated by the detailed analysis of a strong Sahelian heatwave event which 

occurred in April 2003. Hot air advection and longwave radiation, driven by the MJO and ER waves 

were responsible for a relatively long lasting event that had the particularity of affecting both daytime 

and nighttime.   

From an operational point of view, the heatwaves-tropical modes relationship is important since the 

wave activity can be used by forecasters as an additional relevant tool to prepare warnings. Moreover, 

there is a potential for further work aiming at building statistical models of heatwave predictability 

based on the activity of tropical modes and the interaction between them. The modulation patterns at 

5°E shown in the present study can already be used to forecast the likelihood of heatwave occurrence 

at a given location in the Sahel, taking into account the spectral properties (wavenumber and period) 

of the modes. For example, when a convectively suppressed ER wave is detected at 30°E, a forecaster 

in Senegal can expect hot conditions over his/her region in the following 10 days. Better forecast 

recipes can be obtained from the monitoring of tropical mode activity by reassessing their impact 

when they are located at longitudes closer to the areas covered by the forecaster, but also at selected 

longitudes further away (because, given their wavenumbers, tropical modes can impact regions fairly 

remote from their central position). This therefore calls for more regional coordination between 

national meteorological services. 

Besides, with the amelioration of weather observation networks, the increase of computational 

capacity and improvement of numerical models, tropical modes are now better represented and 

predicted (Dias et al. 2018; Janiga et al. 2018; Kim et al. 2018; Bengtsson et al. 2019). These skills 

can therefore be transferred to heatwave prediction at the intraseasonal scale and thus help to win 

time for preparedness actions. The authors are already engaged in research in that direction.  

Other large-scale drivers of Sahelian heatwaves have been suggested by previous studies (Fontaine 

et al. 2013; Moron et al. 2018; Guigma et al. 2020). In particular, intrusions of extratropical Rossby 

waves often combined with tropical plumes can lead to significant increases of temperature and 

moisture in the Sahel as was the case in April 2010 (Largeron et al. 2020). It is therefore important 

that future studies also focus on the links between these large-scale features and heatwaves and on 

the interactions between them and tropical modes.  

Finally, it may be important to assess whether the upward trend of Sahelian temperature and heatwave 

frequency and intensity over the recent past (Fontaine et al. 2013; Moron et al. 2016; Guichard et al. 

https://www.zotero.org/google-docs/?XgDgut
https://www.zotero.org/google-docs/?XgDgut
https://www.zotero.org/google-docs/?eWMKbE
https://www.zotero.org/google-docs/?eWMKbE
https://www.zotero.org/google-docs/?aQyf3d
https://www.zotero.org/google-docs/?aQyf3d
https://www.zotero.org/google-docs/?AFP9FG
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2017; Ceccherini et al. 2017) is partly attributable to the global warming-induced increased activity 

of tropical modes over the same period (Song and Seo 2016; Adames et al. 2017). This has 

implications for future projections, as the accuracy of the simulation and future evolution of 

springtime convection over the Guinean region by climate models might have repercussions on 

Sahelian heatwave predictions.  
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Supplemental materials 

 

This document provides supplementary figures to the main manuscript. 

 
Fig. S3.1 Seasonality of the variance (in W2m-4) of mode-filtered OLR data during MAMJ. The rectangular 

box delimits the Sahel region. The vertical line marks the reference longitude (5°E) and latitudinal band over 

which the local activity of tropical modes is characterised (see Section 3.2.3). 
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Fig. S3.2 Total number of (a) nighttime and (b) daytime heatwave days during MAMJ over the study period 

(1980-2017). The rectangular box delimits the Sahel region. 
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Fig. S3.3 Same as Fig. 3.3 in the main manuscript except using a minimum amplitude of 2 for active tropical 

mode detection. 

 



98 
 

 
Fig. S3.4 Seasonality of the modulation of nighttime heatwave probability of occurrence by (top panels) ER 

and (bottom panels) EK waves. The left panels show the modulation for March-April, and the right panels 

that for May-June. 
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Fig. S3.5 Anomalies of 2m temperature (K) and relative humidity (%) observed at the Demokeya station 

(30.5°E-13.3°N) in April 2003. 
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Fig. S3.6 Time-longitude diagram of GPCP daily precipitation in mm averaged over the 10°N-20°N 

latitudinal band between 15 March and 30 April 2003. 
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Fig. S3.7 Daily evolution of mode-regressed values of (a & b) heat advection in K day-1, (c & d) incoming 

longwave radiation at the surface in Wm-2 and (e & f) precipitable water in mm averaged over grid-cells 

which are part of the heatwave. The MJO regressed variables are in blue, that of the ER wave in red and that 

of the EK wave in green. 

 

  



102 
 

Chapter 4. Prediction skill of Sahelian heatwaves out to subseasonal lead times and 

importance of atmospheric tropical modes of variability 

 

Reproduced with the permission of Springer (https://link.springer.com/article/10.1007/s00382-021-05726-8)    
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atmospheric tropical modes of variability  

Kiswendsida H. Guigma1*, David MacLeod2, Martin Todd1, Yi Wang1 

 

1University of Sussex, Brighton. UK 

2University of Bristol, Bristol. UK 

*Corresponding author: k.guigma@sussex.ac.uk 

   Abstract 

Global warming has increased the frequency of extreme weather events, including heatwaves, over 

recent decades. Heat early warning systems are being set up in many regions as a tool to mitigate 

their effects. Such systems are not yet implemented in the West African Sahel, partly because of 

insufficient knowledge on the skill of models to predict them. The present study addresses this gap by 

examining the skill of the ECMWF ENS extended-range forecasting system (ENS-ext) to predict 

Sahelian heatwaves out to subseasonal lead-times. It also assesses the importance of tropical modes 

of variability, which were previously identified as important large-scale drivers of heatwave 

occurrence in the Sahel. The results show that ENS-ext is able to predict Sahelian heatwaves with 

significant skill out to lead-week 2 to 3. With increasing lead-time, heatwaves are more predictable 

at nighttime than at daytime. Likewise, the pre-monsoon season heatwaves have a longer 

predictability than those occurring in late winter. The model is also able to relatively well simulate 

the observed relationship between heatwave occurrence and tropical mode activity. Furthermore, the 

prediction skill is better during the active phases of the modes, suggesting that they are good sources 

of heatwave predictability. Therefore, improving the representation of tropical modes in models will 

positively impact heatwave prediction at the subseasonal scale in the Sahel, and gain more time and 

precision for anticipatory actions.  

Keywords: heatwaves, predictability, ECMWF, tropical modes, Sahel 
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4.1. Introduction 

 

The recent developments in climate change are marked by an increased occurrence of extreme 

weather and climate events, including heatwaves (Stott 2016). There has indeed been an upward trend 

of heatwaves both at the global and regional levels (Perkins-Kirkpatrick and Lewis 2020), with future 

projections warning of even more severe thermal discomfort (Xu et al. 2020; Raymond et al. 2020) 

for the human community.  

 

The West African Sahel, a climatologically hot region (e.g. Nicholson 2013), suffers from extreme 

heat events all year round (with peaks in boreal spring). The literature indicates that Sahelian 

heatwaves are relatively short-lived as compared to other regions, but are extremely severe in 

magnitude (e.g. Oueslati et al. 2017; Guigma et al. 2020a). Moreover, over the recent decades and in 

agreement with the global trend, they have been more frequent, more intense (especially at night) and 

longer lasting (Fontaine et al. 2013; Ringard et al. 2016; Moron et al. 2016; Oueslati et al. 2017; 

Barbier et al. 2018). Climate projections also anticipate an increase of the magnitude, spatial extent 

and frequency of extreme heat events (Russo et al. 2016; Dosio 2017; Sylla et al. 2018) that could 

only aggravate the thermal risk in the region.  

 

The impacts of extreme heat in the region, as elsewhere in Africa, are largely unreported or 

underreported (Harrington and Otto 2020). A few studies have however elaborated on the topic, 

giving an insight into the adverse effects of heat across a range of sectors. Diboulo et al. (2012) and 

Azongo et al. (2012) showed strong associations between higher temperature and daily mortality in 

western Burkina Faso and northern Ghana respectively. The increase of death rates is especially 

important at the short-term (a few days after the heatwave events), with under-five children being the 

most hit. In the energy sector, Aissatou et al. (2017) evidenced a relatively strong correlation between 

extreme heat events and peaks of electricity consumption in two major Sahelian cities (Dakar and 

Niamey). Furthermore, the International Labour Office stresses in a recent report (ILO 2019) that, in 

Africa, seven of the 10 countries most severely affected by labour productivity loss due to heat stress 

are located in the Sahel. In this report, the working hours lost to heat stress in 1995 across West 

Africa, were estimated to be the equivalent of more than two million full-time jobs, which represents, 

in economic terms, 3.3% of the GDP of the region. With the projected increase of heat in the region, 

these losses are expected to reach more than eight million full-time jobs, or equivalently 4.77% of the 

GDP by just 2030. The agriculture and construction sectors, which employ an important portion of 

the work force, are the most severely affected. 

https://www.zotero.org/google-docs/?lf28qP
https://www.zotero.org/google-docs/?X9dilf
https://www.zotero.org/google-docs/?9Rv6qN
https://www.zotero.org/google-docs/?iiKqw0
https://www.zotero.org/google-docs/?iiKqw0
https://www.zotero.org/google-docs/?iiKqw0
https://www.zotero.org/google-docs/?Zb9yzR
https://www.zotero.org/google-docs/?KbKA2v
https://www.zotero.org/google-docs/?KbKA2v
https://www.zotero.org/google-docs/?L385lV
https://www.zotero.org/google-docs/?A4ckKz
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Faced with this issue, it is urgent to undertake actions to alleviate the adverse effects of these 

extremes. In that regard, numerical weather prediction (NWP) models could provide information to 

help governments and humanitarian organisations in the region to trigger preventive actions. Such 

heat early warning systems (HEWSs), jointly recommended by the World Health Organisation 

(WHO) and the World Meteorological Organisation (WMO; WMO N°1142), are already 

implemented in several countries across North America (e.g. McElroy et al. 2020; Henderson et al. 

2020), Europe (e.g. Morabito et al. 2019; Casanueva et al. 2019), Australia (e.g. Nicholls et al. 2008; 

Nitschke et al. 2016) and South Asia (e.g. Knowlton et al. 2014). A non-exhaustive global map of 

heat-action plans has been prepared by the Global Heat Health Information Network (GHHIN) and 

is accessible from http://ghhin.org/map/.   

 

One prerequisite for HEWSs is skilful prediction from the NWP models at a reasonable lead-time for 

action. However, the skill of Sahelian heatwave forecasting has received only minor attention. The 

main work on this topic so far is an evaluation of two CNRM-CM forecasting systems in use at 

Météo-France by Batté et al. (2018). They found that, at the subseasonal scale, the skill of their 

forecasting systems is essentially restricted to the deterministic horizons (first 10 days). Coughlan de 

Perez et al. (2018) investigated the short-term (out to 10 days) predictability of temperature extremes 

at the global level, and found that while the NOAA model has limited skill, the ECMWF model 

instead presents a potential for the implementation of rapid preventive actions for heatwave impact 

mitigation. They also made the recommendation that further research be conducted to identify the 

drivers of heatwave predictability in regions including Africa. Likewise, Batté et al. (2018) mentioned 

that extended predictability may be provided by planetary waves and teleconnections. 

 

These recommendations are in tune with previous work by Guigma et al. (2020b), who identified 

tropical modes of variability as important large-scale drivers of Sahelian heatwaves. Precisely, the 

activity of the Madden Julian Oscillation (MJO), the equatorial Rossby (ER) and Kelvin (EK) waves 

in the Equatorial West Africa sector (0-10°N), where convection peaks in spring, significantly 

modulates the frequency and spatial distribution of heatwaves in the Sahel. Given the spatio-temporal 

properties of these modes, Guigma et al. (2020b) suggested that they could provide heatwave 

predictability at subseasonal timescales. Subseasonal predictability has received increasing attention 

over recent years, given the range of new opportunities for risk management in several sectors (health, 

disaster preparedness, water management, energy and agriculture) that it brings (White et al. 2017).  

 

https://www.zotero.org/google-docs/?JKAlMe
https://www.zotero.org/google-docs/?JKAlMe
https://www.zotero.org/google-docs/?l9HLnB
https://www.zotero.org/google-docs/?ofmEIX
https://www.zotero.org/google-docs/?ofmEIX
https://www.zotero.org/google-docs/?kcIQEW
http://ghhin.org/map/
https://www.zotero.org/google-docs/?0Warye
https://www.zotero.org/google-docs/?gzSSXA
https://www.zotero.org/google-docs/?p47rwY
https://www.zotero.org/google-docs/?brkz3H
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This research seeks to address the gap in understanding of heatwave predictability in the Sahel and 

has two objectives: (i) to evaluate the skill of Sahelian heatwave prediction at the synoptic and 

subseasonal scales (i.e. up to ~45 days) and (ii) to assess the importance of tropical modes as a source 

of predictability. This is achieved through a statistical evaluation of a long record of hindcast (or re-

forecast) data and a detailed examination of a case study heatwave event.  

 

By building understanding of climate and predictability, this research seeks to pave the way for the 

development of HEWSs and the scaling of anticipatory forecast-based Actions/Financing (FbA/FbF) 

for such events (e.g. Coughlan de Perez et al. 2015). This is an especially relevant approach in 

developing countries, including the Sahel, where climate investments are currently principally 

directed to post-disaster recovery (Mirza 2003).   

 

The remainder of this manuscript is structured as follows. Section 4.2 introduces the forecast and 

reference datasets used in this study as well as the different methods for tropical mode detection and 

skill evaluation. In Section 4.3, the results of both the statistical and the case studies are presented 

and discussed. Finally Section 4.4 summarises the findings, and elaborates on the next steps for future 

research on heatwaves in the Sahel.  

 

4.2. Data and Method 

 

The present research analyses heatwave prediction skill for forecasts initialised in two seasons, as in 

Guigma et al. (2020a): the February to March season (FM hereafter) and the pre-monsoon April to 

June season (AMJ hereafter), which marks the peak of heat in the region.  

 

4.2.1. Description of the ECMWF ENS extended-range forecasting system 

 

In this study, the ECMWF ENS extended-range forecasting system (ENS-ext hereafter) has been 

chosen to evaluate the prediction skill of Sahelian heatwaves at the synoptic to subseasonal lead-

times. The main reason for this preference is that in most inter-model comparative studies, ECMWF 

has proved to be the most skilful (e.g. Janiga et al. 2018; de Andrade et al. 2019; Bengtsson et al. 

2019). In addition, national meteorological services in the Sahel can freely access some of the 

ECMWF high-resolution real-time forecast data (including 2m temperature), thanks to a partnership 

between the African Centre for Meteorological Applications for Development (ACMAD) and the 

European Centre.  

https://www.zotero.org/google-docs/?LGJ3cv
https://www.zotero.org/google-docs/?dOkjgJ
https://www.zotero.org/google-docs/?Sktf51
https://www.zotero.org/google-docs/?59hYD4
https://www.zotero.org/google-docs/?59hYD4
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ENS-ext generates a hindcast twice a week (Monday and Thursday) in running an 11 member-

ensemble (one control and 10 perturbed members) for the last 20 years, starting on the same weekday 

and month as the real time forecast. The present study uses all the hindcast data generated in 2018 

(thus covering the 1998-2017 period), consisting of 105 different calendar days (initialisation dates). 

Note that 2018 covers two different versions of the model (CY43R3 and CY45R1) as an upgrade was 

implemented in June 2018. The hindcast, like the real-time forecast, has a time horizon of 46 days 

(output data are generated every six hours), with a native horizontal resolution of O640 (about 18km) 

up to day 15, degrading to O320 (about 36km) between day 16 and day 46. 

 

Two main sets of variables are extracted. (i) Thermal variables consisting of temperature (T), 

maximum and minimum temperatures (Tmax and Tmin) and dewpoint temperature (Td), all at the 

screen level (2m height), from which are derived thermal indices (see Section 4.2.2). (ii) Outgoing 

longwave radiation (OLR) data which are used to assess the activity of tropical modes (see Section 

4.2.4). The thermal variables are extracted as 06-hourly forecasts at a resolution of 0.5° x 0.5° over 

the Sahel domain (20°W-30°E ; 10°N-20°N), while the OLR data are downloaded as forecast 24-hour 

totals at a resolution of 2.5° x 2.5° over the global tropics (20°S-20°N). Both sets of variables extend 

up to the full 46-day forecast horizon.  

 

The hindcasts are verified against the fifth generation of the European Reanalyses (ERA5, Hersbach 

et al. 2020), also produced by ECMWF. ERA5 has a native horizontal resolution of approximately 

31km. The variables retrieved are those extracted from the hindcast, and the resolution chosen 

accordingly. In terms of the quality of near-surface temperatures in ERA5, Oueslati et al. (2017) and 

Barbier et al. (2017) assessed ERA-Interim, which ERA5 is an improvement of, against the Global 

Summary Of the Day (GSOD) observational dataset, and concluded that it was suitable for heatwave 

study in the Sahel. Furthermore, Gleixner et al. (2020) showed that in ERA5, near-surface 

temperatures are less climatologically biased, and their interannual variability better represented than 

in ERA-Interim across Africa, including in the Sahel band. Similarly, Wang et al. (2017), Tall et al. 

(2019), Wright et al. (2020) and Hersbach et al. (2020) proved that ERA5 represents relatively well 

the observed OLR over the tropical domain, confirming its suitability as reference dataset for the 

analysis of tropical modes. The Berkeley Earth Surface Temperatures (BEST; Muller et al. 2014; 

Rohde et al. 2016) dataset is used as a second reference dataset to provide an independent evaluation 

of thermal indices (given that ERA5 is created using the same model as ENS-ext). BEST data consist 

https://www.zotero.org/google-docs/?y2V3OJ
https://www.zotero.org/google-docs/?y2V3OJ
https://www.zotero.org/google-docs/?nZaZYo
https://www.zotero.org/google-docs/?nZaZYo
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of daily Tmax and Tmin (no moisture data is available) at a native resolution of 1° x 1°, regridded to 

0.5° x 0.5° to match the hindcast grid.   

 

4.2.2. Thermal index derivation 

 

Guigma et al. (2020a) showed that in the Sahel, heatwaves defined using different thermal indices 

over the same diurnal period, or the daytime versus nighttime heatwaves of a same index are not 

synchronous, and often result from different underlying thermodynamic processes. Their 

predictability could therefore also differ, and to account for this eventuality, two distinct measures of 

heat are used in this paper: Temperature (T) and the heat index (HI). Considering their daytime and 

nighttime components separately gives a total of four thermal indices.  

For temperature, the nighttime (daytime) component is taken as the daily minimum 

(maximum) value of the 06-hourly forecasts of minimum (maximum) temperature and is hereafter 

referred to as T-night (T-day).  

 

The formula for HI derivation (Steadman 1979) is as follows: 

𝐻𝐼 = −42.37 + 2.04𝑇 + 10.14𝑅𝐻 − 0.22 𝑇. 𝑅𝐻 − 6.83 × 10−3𝑇2 − 5.48 × 10−2𝑅𝐻2 + 1.22 ×

10−3𝑇2. 𝑅𝐻 + 8.52 × 10−4𝑇. 𝑅𝐻2 − 1.99 × 10−6𝑇2. 𝑅𝐻       (1) 

Where T is temperature, and RH relative humidity computed from temperature and dewpoint 

temperature.  

The nighttime (daytime) component of HI, hereafter referred to as HI-night (HI-day), is computed by 

replacing T from (1) by  T-night (T-day) and RH by the averages of the 06-hourly forecasts of  relative 

humidity valid at 00 and 06 UTC (12 and 18 UTC).   

 

Similarly, T-night, T-day, HI-night and HI-day are derived from the ERA5 dataset using the 

corresponding timesteps. T-night and T-day are directly available in BEST. 

 

4.2.3. Heatwave definition and forecast probability 

 

Using the method of Guigma et al. (2020a), heatwaves in the ERA5 dataset are defined for each 

thermal index and at each grid-cell, as spells of at least three consecutive days where the daily index 

value exceeds both the 75th percentile of its total distribution over all days, and the 90th percentile of 

https://www.zotero.org/google-docs/?G7ixpl
https://www.zotero.org/google-docs/?wsbPdh
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its calendar day distribution computed over a 31-day centred window. Binary data of heatwave 

occurrence (coded 1) or non-occurrence (coded 0) are thus obtained.  

 

Heatwaves are also defined in the hindcast dataset at each grid-cell and for each thermal index using 

several steps. As a reminder, for each thermal index, a given grid-cell has a total of 1062600 data 

records, broken down into 105 initialisation dates each year, 46-day integrations (or forecast 

horizons), 20 years of forecasts (covering 1998-2017) and 11 ensemble members. Pooling all the 11 

members together, the 75th percentile of the total distribution and the 90th percentile of each calendar 

day are calculated. Both thresholds are derived as a function of lead-time, giving a total of 46 values 

for the 75th percentile and 4830 values for the 90th percentile (46 lead-times x 105 calendar days). The 

latter is smoothed through averaging over a window of 10 initialisation dates (including the date of 

interest, the four initialisation dates before, and the five initialisation dates after). For example, to 

calculate the 90th percentile of forecasts initialised on 15 January 2018, the forecasts initialised on 01, 

04, 08, 11, 15, 18, 22, 25, 29 January and 01 February are used.  

 

Once the magnitude thresholds are defined, heatwaves are detected in each member as spells of three 

or more consecutive days where the thermal index exceeds both the two thresholds defined above. In 

order to account for events which start before the first day of the forecast but run into the forecast 

time, each 46 day-long forecast integration is padded at its beginning with the two days of reference 

heatwave occurrence binary data immediately before the forecast. These extra two days are removed 

after the detection step. The forecast data thus turn binary to indicate the occurrence or non-

occurrence of heatwaves. 

 

Then, on a given day and at a given grid-cell, the forecast probability of heatwave occurrence is given 

by the ratio of the sum of the ensemble members' binary heatwave values to the ensemble size of 11 

(ranging from 0 to 1 in 1/11 increments).  

 

4.2.4. Predicted tropical mode activity and link with heatwaves 

 

In order to assess whether tropical modes can be a source of skill for heatwave prediction, their 

activity in each of the ENS-ext individual members, as well as in the ensemble mean (EM) (mainly 

for the case study purposes) is filtered, using the same method as in Janiga et al. (2018), which consists 

of several steps. 

 

https://www.zotero.org/google-docs/?E5gdPh
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(i) First, besides the 11 individual members, daily values of the EM forecast OLR for each grid-cell 

across the global tropics are derived. For each of the 11 individual members and the EM, there is a 

total of 96600 data points (105 initialisation dates x 20 years, each with a forecast horizon of 46 days).  

 

(ii) The ends of each 46-day long forecast integration are padded: the heads with the 730 days (two 

years) of reference (ERA5) OLR immediately prior to the forecast first day, and the tails with zeros 

(zero-padding) to a length of 730 days also. This results in new data segments of length 1506 days 

each (46 days of forecast plus 2 x 730 days of padded data) for each individual member and the EM, 

from which the mean and first four harmonics of the reference OLR are subtracted. 

(iii)  Then, each segment undergoes a wavenumber frequency filtering similarly to (Wheeler and 

Kiladis 1999), to retain the harmonics of the MJO, ER and EK waves. The exact characteristic 

wavenumbers, periodicities and equivalent depths used to detect each of these three modes of tropical 

variability are the same as those used in Guigma et al. (2020b), and are shown in Table 4.1. The 

outcome of the filtering for each mode and for each segment is a 1506-day long timeseries of filtered 

OLR data at each of the global tropics grid-cell. For verification purposes, the 46 days of forecast in 

each segment are replaced by the corresponding analysed ERA5 data, and the same filtering is 

applied. This gives to each forecast mode-filtered data segment an equivalent observed mode-filtered 

data segment, which it can be verified against. 

 

Table 4.1.  Characteristics of the tropical modes analysed in this study.  

Mode Equivalent depth 

(m) 
Wavenumber Period band 

(days) 
References 

MJO Not specified 0 to 9 20 to 100 Kiladis et al. (2005); 

ER 1 to 90  -10 to -1 9.7 to 72 Kiladis et al (2009) 

EK 8 to 90 1 to 14 2.5 to 20  Straub & Kiladis (2002) 

(Mekonnen et al. 2008) 

MJO: Madden Julian Oscillation; ER: Equatorial Rossby wave; EK: Equatorial Kelvin wave. 
 

Then, another set of methods is used to assess the activity of tropical modes locally over the Equatorial 

West Africa sector (this set of methods is not applied to the EM data). The forecast and observed 

1506-day long mode-filtered data segments are each averaged at the characteristic 5°E longitude 

between the equator and 10°N (this band of latitudes corresponds to the region of maximum 

convection over West Africa in spring; Guigma et al. 2020b). For each segment, the resulting 

unidimensional timeseries and its first order time derivative are standardised (using the standard 

https://www.zotero.org/google-docs/?cXR909
https://www.zotero.org/google-docs/?cXR909
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deviation from ERA5 for both the forecast and observed segments), and, through trigonometric 

operations, they are combined to identify wave angle and amplitudes for each day. The angles are 

further binned into eight 45° wide phases labelled 1 to 8. A mode is considered active on a given day 

only if its amplitude reaches or exceeds one. If not, the corresponding phase takes the value 0. The 

composite anomalies of observed OLR against these phases are shown in Fig. S4.1 for each mode of 

variability. The reader is referred to Guigma et al. (2020b) for a thorough description of the method. 

At the end of this process, the days corresponding to padded data (a total of 1460 days for each 

segment) are removed from the data segments, such that only the mode phases of the effective 46 

days of the forecast and the corresponding observation are retained. The final outcome for each mode 

of variability is then 12 arrays (11 forecast and one observation) of filtered OLR data, each of 

dimensionality 46 (forecast horizons) x 105 (initialisation dates) x 20 (years). 

 

 

4.2.5. Forecast evaluation metrics 

 

4.2.5.1. General evaluation 

 

To evaluate the skill of ENS-ext, a set of evaluation metrics has been used.  The complete description 

of each metric is presented in Joliffe and Stephenson (2012).  

 

1) Anomaly correlation coefficients 

 

The strength of the association between the observed versus predicted values of thermal indices is 

evaluated using the anomaly correlation coefficients (ACCs), i.e. correlation coefficients between the 

anomalies of observed versus the anomalies of predicted values of the indices. The ACCs for the four 

thermal indices are discussed in Section 4.3.1. 

 

2) Symmetric Extremal Dependency Index  

 

Heatwaves are relatively rare events. Many common measures of forecast quality struggle to give 

real indications of model skill for extreme events, as they degenerate to trivial values with 

increasingly rare events (Ferro and Stephenson 2011). For this reason, non-degenerate metrics have 

been specifically designated to assess the skill associated with rare events. This study uses the 

https://www.zotero.org/google-docs/?QpuyHe
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Symmetric Extremal Dependence Index (SEDI), suggested by Hogan and Mason (2012) to be the 

best choice, and successfully used in similar heatwave studies (e.g. Marshall et al. 2014; Mandal et 

al. 2019). SEDI itself is based on two simple scores: the hit rate (H) and false alarm rate (F) which 

are derived from a two-by-two contingency table (Table 4.2) between a deterministic forecast and 

observation of heatwave occurrence: 

𝐻 =
ℎ𝑖𝑡𝑠

ℎ𝑖𝑡𝑠 +𝑚𝑖𝑠𝑠𝑒𝑠
    (2)  

 

𝐹 =
𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚𝑠

𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚𝑠 +𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
    (3) 

 

In (2) and (3), hits are instances where heatwaves were forecast and did occur indeed,  misses 

instances where heatwaves were not forecast but occurred,  false alarm instances where heatwaves 

were forecast but did not occur, and correct negatives instances where heatwaves were not forecast 

and did not occur (see Table 4.2). 

 

From H and F, SEDI is obtained by applying this logarithmic formula: 

 

𝑆𝐸𝐷𝐼 =
𝑙𝑛 𝐹−𝑙𝑛𝐻−𝑙𝑛(1−𝐹)+𝑙𝑛(1−𝐻)

𝑙𝑛𝐹+𝑙𝑛𝐻+𝑙𝑛(1−𝐹)+𝑙𝑛(1−𝐻)
      (4) 

 

The possible values for SEDI range from -1 to 1, with 1 being the perfect score and positive values 

indicating that the model is better than random.  

 

Table 4.2. Contingency table of heatwave occurrence between a deterministic forecast and the 

observation.  
 

Observed 

yes no 

Forecast yes hits False 

alarms 

no misses Correct 

negatives 

  

https://www.zotero.org/google-docs/?39QBhP
https://www.zotero.org/google-docs/?3iSbej
https://www.zotero.org/google-docs/?3iSbej
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In the present research, the SEDI calculation proceeds similarly to Marshall et al. (2014) as follows: 

contingency tables are first built separately for each of the 11 individual members before pooling 

them as a single table to calculate H and F, and SEDI subsequently. To assess the significance of the 

SEDI scores, their standard errors are derived using the following formula (Ferro and Stephenson 

2011):  

𝑆𝐸𝑆𝐸𝐷𝐼 =
2|

(1−𝐻)(1−𝐹)+𝐻𝐹

(1−𝐻)(1−𝐹)
log[𝐹(1−𝐻)]+

2𝐻

1−𝐻
log[𝐻(1−𝐹)]|

𝐻{log[𝐹(1−𝐻)]+log[𝐻(1−𝐹)]}2
√

𝐻(1−𝐻)

𝑝𝑛
    (5) 

 

Where H is the hit rate, F the false alarm rate, n the sample size and p the base rate (relative frequency 

of heatwave occurrence). 

At a given grid-cell, the SEDI score is considered significant if the confidence interval (i.e. 

[𝑆𝐸𝐷𝐼 − 2𝑆𝐸𝑆𝐸𝐷𝐼; 𝑆𝐸𝐷𝐼 + 2𝑆𝐸𝑆𝐸𝐷𝐼] ) does not include zero. 

 

 

4.2.5.2. Evaluation of heatwave prediction skill taking into account the modulation by tropical modes 

 

To assess the skill of the ENS-ext in simulating the activity of tropical modes, the forecast local 

phases are verified against those detected from ERA5 (local phases are defined in Section 4.2.4), 

using hit rates. As with the SEDI scores, the contingency tables are first built separately before 

pooling them to calculate the hit rates. They are discussed in Section 4.3.3.1.  

 

To assess how well the model represents the relationship between tropical modes and heatwaves, the 

frequency of heatwave occurrence conditioned on the phase of tropical modes (also termed as 

modulation of heatwave occurrence by the modes) is evaluated in both the model and the reference 

datasets, using the same formula as in Guigma et al. (2020b): 

𝑀 =
𝑃𝑥−𝑃𝑎

𝑃𝑎
          (6) 

Where Px is the conditional frequency of heatwaves over an active phase x of a given mode, and Pa 

the frequency derived from all days, irrespectively of the activity of the mode. 

The results for this modulation are presented in Section 4.3.3.2. 

 

Finally, a given tropical mode is considered to be a source of heatwave predictability if the SEDI 

scores are higher under its forecast active phases than its inactive phase. This assessment considers 

https://www.zotero.org/google-docs/?8A52AR
https://www.zotero.org/google-docs/?8A52AR
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(i) all the eight active phases altogether (i.e. the comparison is made between instances where the 

mode amplitude is greater than one versus instances where it is equal to or less than one) as in Hudson 

et al. (2011) and (ii) each phase separately in order to determine precisely which phases contribute 

the most to the skill. At each grid-cell, statistical significance at a 95% level is tested using a 

nonparametric bootstrap resampling, with 1000 repetitions as in Guigma et al. (2020b).   

 

4.2.6. Additional methods for the case study 

 

To understand the causes of the heatwave case-study event analysed in Section 4.3.4, the patterns of 

net radiation (shortwave and longwave) and turbulent fluxes (sensible heat flux SHF and latent heat 

flux LHF) at the surface are analysed from the ERA5 data. For each of these terms, the anomalies are 

derived by subtracting the calendar day mean and are subsequently averaged over the heatwave 

period. The fluxes are, by convention, counted positively when directed from the atmosphere towards 

the surface. 

 

The activity of the tropical modes during this period is visualised through a time-longitude diagram 

of the mode-filtered OLR averaged between the Equator and 20°N, a commonly used technique in 

tropical meteorology (e.g. Schreck et al. 2011, Guigma et al. 2020b).  

 

 

4.3. Results and discussion 

 

4.3.1. Skill of thermal index prediction by ENS-ext  

 

ENS-ext has a relatively good skill in predicting the four thermal indices under investigation. Figure 

4.1 shows the ACCs averaged over the Sahel across the 46 lead days for the FM and AMJ seasons 

(see Section 4.2.5.1 for method description). For the first week of the forecast for example, the ACCs 

of all the four thermal indices exceed 0.6. There is then a fast decrease of the forecast skill out to 

week 3-4 of the forecast bringing the ACC values down to about 0.2. The fast decrease of ACCs 

beyond the first week is also noticed by Batté et al. (2018) using the Météo-France S2S system, but 

the drop is much sharper there. A diurnal dependence in thermal index prediction skill is noticeable 

for both seasons. For the shortest lead-times (out to about day 7), daytime indices slightly outperform 

their nighttime counterparts and conversely for longer lead-times (exception for HI-day in AMJ). The 

prediction skill also presents a relatively marked seasonality. Thus in the FM season (Fig. 4.1a) the 

https://www.zotero.org/google-docs/?rPvXQt
https://www.zotero.org/google-docs/?025cmq
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ACCs are generally better than during AMJ (Fig. 4.1b) but only for the shortest lead-times. There is 

indeed a reversal at longer lead-times such that the more humid season of AMJ presents higher skill 

than FM (even though ACC values are low). Figure 4.1 also shows that ENS-ext clearly outperforms 

persistence forecast (black dashed lines in Fig. 4.1), even at the shortest lead-times. 

 

 

Fig. 4.1 Anomaly correlation coefficients (ACCs) between the ENS-ext forecasts and the ERA5 reference 

averaged over the Sahel for the four thermal indices over the (a) February-March and (b) April to June seasons. 

The black dotted lines represent the average ACCs of the persistence forecast across the four indices.  

 

 

The examination of the spatial distribution of the ACCs reveals differences across the Sahel (Fig. 

S4.2 using T-day for illustration). For the shortest horizons, the skill is higher in the north than in the 
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south of the Sahel (irrespectively of the season), whereas at longer forecast lead-times, there is 

increasingly higher skill in the south than in the north (where the correlation becomes insignificant).    

 

 

Fig. 4.2 SEDI scores in the FM seasons for each of the four heatwave indices using ERA5 as reference dataset. 

Each panel represents a specific week of the forecast with the first week at the top. White areas are not 

significant at the 95% probability level.  

 

 

4.3.2. Heatwave prediction skill and potential for early action 

 

The skill of ENS-ext in predicting Sahelian heatwaves is assessed using the SEDI score (described in 

Section 4.2.5.1). Similarly to the ACCs of the indices, the FM season offers larger SEDI scores of 

heatwave prediction than the AMJ season at short lead-times. Thus, with ERA5 as reference, for the 

first and second weeks of forecast, the scores are respectively above 0.8 and 0.5 (0.6 and 0.3) in the 

FM (AMJ) seasons across much of the region as shown in Fig. 4.2 (Fig. 4.3). The skill vanishes 

quicker in the subsequent lead-weeks in FM than in AMJ such that, after week 3, there is almost no 

skill (SEDI scores below zero means random forecast better than the model) in forecasts initialised 

in FM, whereas some scarce areas still have positive (though very weak) SEDI scores in AMJ at lead-

week 6. As is also observed with the ACCs, the SEDI scores are initially higher in the northern half 

of the domain, but a reversal is observed at longer lead-times (this is less evident  in FM as heatwaves 

are not detected in northern Sahel at that season). The seasonality and the evolution with lead-time of 
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the skill are similar across all four heatwave indices. It should be noted however, that in AMJ, the 

decrease of skill of nighttime heatwave indices (T-night and HI-night) is slower than that of their 

daytime counterparts, especially in the southern Sahel, consistently with previous findings by Batté 

et al. (2018). HI-day has the fastest rate of skill decrease, with only limited areas showing positive 

SEDI scores after week 2. This marks a contrast to HI-night which is the best forecast heatwave index 

at the longest lead-times. The lower skill observed in HI-day may be related to the differential diurnal 

cycle between Tmax and the relative humidity (the two variables from which it is derived) in the 

Sahel. Whilst Tmax peaks in the early hours of the afternoon and increases with clear skies, moisture 

reaches its minimum at the same time, with cloudier skies tending to increase it (Guichard et al. 2009; 

Bourgeois et al. 2018). 

 

The verification using BEST as reference is shown in Fig. S4.3 and it shows mainly similar patterns 

as using ERA5 with however slightly lower SEDI scores. 

 

 

Fig. 4.3 Same as Fig. 4.2 but for the AMJ season.  

 

 

Compared with other regions across the globe, it can be said that the Sahel enjoys at least the same 

degree of heatwave predictability at the subseasonal scale. Thus, European heatwaves are found by 

Lavaysse et al. (2019) to be predictable mostly up to two weeks in advance using ENS-ext. In 

https://www.zotero.org/google-docs/?f9EVR5
https://www.zotero.org/google-docs/?f9EVR5
https://www.zotero.org/google-docs/?hfckCL


117 
 

Australia, the Bureau of Meteorology’s POAMA-2 ensemble model is able to well predict heatwaves 

two to three weeks ahead with SEDI scores reaching 0.5 at these lead-times under some weather 

regimes (Hudson et al. 2011; Marshall et al. 2014). In India, a region with a closer climate system to 

that of the Sahel, the skill of heatwave prediction by the Indian Institute of Tropical Meteorology’s 

ensemble prediction system is found to still be significant at lead-week 3, with comparable SEDI 

scores as those of the Sahel during the pre-monsoon season (Mandal et al. 2019). As such, the Sahel 

can also benefit from HEWSs as currently implemented in these regions (e.g. Lowe et al. 2011; 

Nitschke et al. 2016; Hess et al. 2018; Casanueva et al. 2019). 

 

One potential explanation for the spatiality/seasonality of the ACC and heatwave prediction skill can 

be found in the large-scale circulation controlling the Sahelian atmosphere. The FM season 

experiences a large influence from extratropical weather systems coming from the northern edge of 

the domain (Knippertz and Martin 2005), which are known for their large synoptic-scale 

predictability (e.g. Knippertz and Fink 2009; Wheeler et al. 2017). On the other hand, AMJ is 

characterised by an increasing activity of the MJO and equatorial waves, which are by then more 

active in the equatorial sector of Africa (e.g. Berhane et al. 2015; Guigma et al. 2020b). These modes 

of variability, since they are less inclined to forecast error growth with lead-time than extratropical 

disturbances, confer higher subseasonal predictability to the tropics (Judt 2020). 

 

While the verification is so far based on strict comparison of forecast and observed heatwaves at the 

exact grid-cell and day, it may also be relevant, for operational purposes, to include a window of 

flexibility in which the forecast still has some potential for action (e.g. Coughlan de Perez et al. 2016). 

Such a “tolerant” evaluation is assessed here from the temporal point of view through considering 

that a positive forecast of heatwave (i.e. heatwave forecast to occur) is considered to be a hit if it 

occurs within a time window of three days centred on the forecast validity date, i.e. between a day 

earlier and a day after. Given the three-day minimum duration constraint used in this paper, the 

tolerance only affects the onset and cessation of heatwave events. The comparison between the Sahel-

wide average SEDI scores of strict and tolerant evaluation is shown in Fig. 4.4. It is apparent that the 

gain in skill obtained through the tolerant evaluation is more important in AMJ than in FM (Figs. 4.4c 

& 4.4d vs Figs. 4.4a & 4.4b). Moreover, the gain is the largest at the longest lead-times, with 

difference of SEDI scores from the strict evaluation reaching a value close to 0.2 in AMJ (Figs.4.4c 

& 4.4d). As a matter of comparison, the tolerant evaluation shows a heatwave prediction skill at lead-

week 6 similar or better than that of the strict evaluation at lead-week 3 (or at lead-week 2 if a five-

day window of tolerance is used instead, not shown). Providing forecasts with such a tolerance for 

https://www.zotero.org/google-docs/?RhNKFh
https://www.zotero.org/google-docs/?pLi0Mk
https://www.zotero.org/google-docs/?EQgwVj
https://www.zotero.org/google-docs/?EQgwVj
https://www.zotero.org/google-docs/?ztHd0K
https://www.zotero.org/google-docs/?UiwX1j
https://www.zotero.org/google-docs/?3BLSYq
https://www.zotero.org/google-docs/?6R3IZr
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the longest lead-times could prove relevant for heat-health early actions in the region. With long lead-

times, the preparedness actions likely do not need daily accuracy in the forecast. An operational 

scheme could adopt the 'Ready-Set-Go!' approach of the Red Cross in which various inexpensive 

actions are implemented at long lead-times, and different more specific or costly actions are then 

invoked based on more accurate shorter-lead forecasts (Bazo et al. 2019). In this sense, the tolerant 

verification statistics show that the skill at long lead-times is meaningful to risk managers. 

 

 

Fig. 4.4 SEDI scores spatially averaged over the Sahel domain for (a & b) the FM and (c & d) the AMJ seasons. 

Daytime (nighttime) heatwaves are shown in red (blue) with the strict (tolerant) verification in solid (dotted) 

lines. Strict and tolerant verifications are defined in Section 4.3.2.1. 

 

 

 

4.3.3. Tropical modes as a source of predictability for Sahelian heatwaves 

 

Guigma et al. (2020b) showed that at the subseasonal scale, heatwaves in the Sahel are modulated by 

tropical modes of variability, namely the MJO, the ER and EK waves. Furthermore, in Section 4.3.1, 

the higher skill at subseasonal scale in the AMJ season than in the FM season could be related to the 

greater activity of tropical modes in the former season. The present section aims at assessing whether, 

https://www.zotero.org/google-docs/?lxG6R2
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in addition to being important drivers of heatwave occurrence, tropical modes also constitute a 

significant source of predictability. Marshall et al. (2014) mentioned two conditions that any model 

should a priori meet to be able to predict a hazard in association with its climatic driver: (i) well 

predict the climatic driver, and (ii) well simulate the relationship between the climatic driver and the 

hazard. These two conditions will first be assessed, before considering whether tropical modes indeed 

provide skill for heatwave prediction in the Sahel. The analysis is restricted to the first three weeks 

of the forecast, beyond which the SEDI scores become relatively low (Fig. 4.3), and covers only the 

AMJ season. 

 

4.3.3.1. How well does ENS-ext predict tropical modes? 

 

At the global level, Janiga et al. (2018) discussed the predictability of the mode-filtered OLR across 

the tropics and found ECMWF to be the model with the lowest bias for forecasts of the mean state 

and activity of tropical modes. Furthermore, investigations by Dias et al. (2018) revealed that 

ECMWF is relatively skilful at propagating tropical modes for longer lead-times. Here the focus is 

on the Equatorial West Africa Sector (the region just south of the Sahel, i.e. 20°W-30°E; 0°-10°N) 

where convection is shown to modulate heatwave occurrence in the Sahel (Guigma et al. 2020b). To 

assess the skill of the model in capturing the local activity of tropical modes, the forecast phases are 

compared against observation using hit rates (defined in Section 4.2.5.2).   

 

Among the three investigated modes, the MJO (blue histograms in Fig. 4.5) stands clearly as the most 

skilfully predicted. At week 1 for example, the hit rate is above 0.4 in most active phases. This value 

decreases to 0.3 at week 2 and slightly above 0.2 at week 3. As for the ER wave, it has hit rates which 

are on average 0.1 point lower than that of the MJO, being about 0.3, 0.2 and above 0.1 at weeks 1, 

2 and 3 respectively. The EK wave shows the lowest hit rates. They indeed always remain below 0.2, 

even at week 1, and at weeks 2 and 3, stand below 0.1. Note that the lower skill associated with the 

EK wave has already been highlighted by previous work (e.g. Li and Stechmann 2020). For each 

mode, the hit rates are generally comparable across the eight phases, with however slightly higher 

values in the central phases (phases 3 through 6). The differences observed between the different 

modes are in agreement with their spectral properties summarised in Table 4.1. The MJO and ER 

wave indeed have a longer periodicity than the EK wave. This provides them with a longer “memory” 

and leads to slower error growth.  

https://www.zotero.org/google-docs/?XMTvx5
https://www.zotero.org/google-docs/?xYcjGk
https://www.zotero.org/google-docs/?xYcjGk
https://www.zotero.org/google-docs/?xYcjGk
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Fig. 4.5 Hit rates of predicted tropical mode phases at the reference longitude of 5°E for the first three weeks 

of the forecast. The rightmost histograms in each panel represent the average hit rates across the eight active 

phases. The blue, red and green bars represent the MJO, ER and EK waves respectively. 
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Fig. 4.6 Modulation of T-day heatwave probability of occurrence by active phases of tropical modes in 

observation (left panels) and ENS-ext (right panels). The modulation is the variable M defined in Section 4.2.5.2 

(equation (6)). 
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4.3.3.2. How well does the model simulate the link between tropical modes and heatwaves? 

 

Guigma et al. (2020b) already elaborated on the modulation of heatwave occurrence by tropical 

modes from an observational perspective, with a discussion of the underlying physical mechanisms. 

This modulation, as described in Section 4.2.5.2, compares heatwave occurrence under active phases 

of the modes to the climatological occurrence. The quality of the replication of this modulation by 

ENS-ext is a function of the mode under consideration, and is discussed here using T-day heatwaves 

for illustration. As shown in the left panels of Fig. 4.6, observed phases 1 to 3 of tropical modes 

(which roughly correspond to a suppression of convection, Fig. S4.1) are overall favourable to 

heatwaves, whereas phases 5 to 7 (enhancement of convection) obstruct heatwave occurrence. It is 

apparent that in ENS-ext, the influence of the MJO and ER wave on heatwaves is well simulated. 

Both the zonal propagation (eastward for the MJO and westward for the ER wave) and the magnitude 

of the modulation (with M values absolutely reaching 1.5) are well captured by the model (Figs. 4.6b 

& 4.6d). On the other hand, for the EK wave (Fig. 4.6f), whilst there is a relatively acceptable 

simulation of the propagation of the modulation across phases, ENS-ext struggles to get the 

magnitude correct. There is indeed an underestimation of the forcing that EK waves exert on heatwave 

occurrence. This is however not a surprise, given that the model also has difficulty to predict the 

activity of this mode (Section 4.3.3.1). For the three other thermal indices (T-night, HI-night and HI-

day), similar conclusions are drawn, i.e. a skilful representation of the impact of the MJO and the ER 

wave on heatwaves versus a limited skill for the EK wave (not shown). 

 

 

Fig. 4.7 Difference of SEDI scores between forecasts falling on active versus inactive phases of the MJO. All 

active phases are pooled together and the significance of the SEDI differences is tested by bootstrap resampling 

(see Section 4.2.5.2).  
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4.3.3.3. Heatwave prediction skill in active versus inactive phases of the modes 

 

The previous two sections have shown that ENS-ext meets the two necessary conditions (according 

to Marshall et al. 2014) to be able to draw heatwave predictability from tropical modes, especially 

from the MJO and ER wave (much less for the EK wave). This section addresses whether there is 

indeed an enhancement of prediction skill associated with the activity of tropical modes during the 

AMJ season. This is done through stratifying the forecast (not observation) into active versus inactive 

phases, as described in Section 4.2.5.2, and assessing the SEDI differences between the two instances. 

Out of the three modes of variability, the MJO is the largest source of prediction skill. For T-night, 

HI-night and HI-day, the MJO-related skill reaches values of 0.4, mainly over the central Sahel (Mali, 

Burkina Faso and western Niger) and extends out to week 2 to 3 of the forecast (Fig. 4.7). For T-day, 

the skill is mainly observed over the eastern Sahel. The main phases responsible for the positive SEDI 

differences are phases 3 and 4 (Fig. S4.4). For the ER wave, the improvement of skill, limited to 0.3, 

is mostly found over the eastern (western) Sahel for T-night, HI-night and HI-day (T-day) at week 1 

(Fig. 4.8) and comes essentially from phases 7 and 8 (Fig. S4.5). At longer lead-times, the ER-related 

skill is relatively marginal, apart from T-day and HI-day which show some skill over the central Sahel 

(Burkina Faso and western Niger) at week 2-3 (Fig. 4.8). As for the EK wave, the skill, analysed only 

for week 1 of the forecast (beyond which the model cannot well predict it, Section 4.3.3.1) originates 

mostly from phase 3 and is generally not much in excess of 0.1 (Fig. S4.6).   

 

These results therefore show that the MJO, the ER wave and, to a lesser extent, the EK wave provide 

predictability to Sahelian heatwaves. This implies that heatwave predictions are more reliable when 

an intense activity of tropical modes is also (skilfully) forecast. Such a conclusion is especially 

interesting for operational forecasters in the region. They can indeed rely on the local activity of 

tropical modes to estimate the confidence levels of their heatwave warnings.  

 

Fig. 4.8 Same as Fig.4.6 but for the ER wave. 

https://www.zotero.org/google-docs/?zVu6Jn
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Fig. 4.9 Heatwave occurrence and thermodynamic conditions between 27 May and 02 June 2015. a & b show 

the number of heatwave days sampled by T-day and T-night respectively. c & d (e &f) show the average 

anomalies of sensible heat flux (net radiation) at the surface in Wm-2  for  daytime and nighttime respectively. 

They are conventionally counted positively when oriented from the atmosphere towards the surface. g & h 

display the average anomalies of heat advection at the 925 hPa pressure level superimposed with wind 

anomalies at the same level respectively for daytime and nighttime. 
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4.3.4. Case study of a tropical mode-driven heatwave over Burkina Faso 

 

In this section, the detailed analysis of the prediction of a heatwave event over Burkina Faso, in the 

central Sahel, by ENS-ext is undertaken with the objective of assessing, in a real case, how the activity 

of tropical modes can impact the skill of the model. The choice of this event is justified mainly by the 

fact that it was physically favoured by tropical modes, and also because of its relatively large spatial 

extent.  

 

 

Fig. 4.10 Time-longitude diagram of high-pass filtered OLR averaged between the Equator and 20°N from 15 

May to 15 June 2015 in Wm-2. The MJO, ER and EK wave-filtered OLR averaged over the same domain are 

superimposed as black, green and purple contours respectively. Contour levels are 2 and 8 Wm-2 (only positive 

contours, representing convectively suppressed phases are shown). The rectangular black box in the middle of 

the plot delimits the longitudinal domain of Burkina Faso (6°W-3°E) and the heatwave period (27 May-02June). 
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4.3.4.1. Description of the heatwave and thermodynamic conditions  

 

The heatwave event under scrutiny took place mainly in Burkina Faso between 27 May and 02 June 

2015. Figures 4.9a and 4.9b show the spatial distribution and the length of the event across the 

country. Both daytime and nighttime were affected (which is unusual in the Sahel; Guigma et al. 

2020a) over the whole country. It should be noted that the event was less marked in HI-day and HI-

night than in T-day and T-night (not shown). 

 

The analysis of some thermodynamic variables over the heatwave period reveals that the daytime 

event was chiefly shaped by a strong sensible flux from the ground towards the atmosphere (a 

magnitude above 40 Wm-2 in some areas; Fig. 4.9c) which was anomalously dryer than usual (not 

shown), an increased incoming solar radiation in the south of the country (Fig. 4.9e) and heat 

advection in the north (Fig. 4.9g). At night, the heat resulted mainly from a longwave radiation 

emission from the ground (Fig. 4.9f) which was overheated during the day (a relatively cool air was 

however advected, reducing the heat load, Fig. 4.9h).   

 

4.3.4.2. Evolution of tropical modes during the event  

 

The increase of incoming solar radiation during the day and longwave loss during the night were 

favoured by large-scale conditions that suppressed convection over the region. To find out the origins 

of this convective inhibition, the time-longitude diagram of the ERA5 mode-filtered OLR is shown 

in Fig. 4.10. It is apparent that an ER wave originating from the Indian Ocean was the main mode 

suppressing convection over the domain surrounding Burkina Faso (green lines in Fig. 4.10) during 

the heatwave period. Besides, the initial and last days of the heatwave are also affected by EK waves 

on convectively suppressed phases which also promoted the heating. An eventual contribution from 

the MJO is ruled out since it was instead on a convectively enhanced phase (not shown). 

 

4.3.4.3. Skill of the model over the heatwave period  

 

The average anomalies of T-day and T-night over the heatwave period in the ENS-ext EM forecasts 

and in the ERA5 analysis, as well as the average anomalies in ERA5 over the week preceding the 

heatwave (persistence) are shown in Fig. 4.11. The first remark is the relatively good spatial 

coherence between the forecasts at different lead-times and the observation, valid for both T-day and 

https://www.zotero.org/google-docs/?i3GQOB
https://www.zotero.org/google-docs/?i3GQOB
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T-night. The model was therefore able to predict the anomalously hot conditions that prevailed over 

Burkina Faso between 27 May and 02 June 2015, even at the longest lead-times. 

 

Fig. 4.11 Average anomalies of T-day and T-night over the 27 May - 02 June 2015 period in (top panels) ERA5 

analysis and persistence and (subsequent panels) in ENS-ext ensemble mean forecasts at different start dates. 

The persistence (‘Pers’) is taken as the average of ERA5 anomalies over the period from 20 to 26 May 2015. 

The numbers between brackets indicate the lead-times in days from the forecast start dates to the onset and 

cessation of the heatwave.  

 

 

Better, on the last two initialisations before the event, the model beat persistence, notwithstanding 

that for T-day there is a slight overestimation of the magnitude of the anomalies. Two forecasts, 

namely those initialised at lead-times 31 days and 10 days to the onset, are however characterised by 
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less accuracy than the rest, especially in comparison with forecasts initialised at longer lead-times 

than them.  

 

Fig. 4.12 T-day and T-night average heatwave forecast probabilities (in %) over the 27 May - 02 June 2015 

period at different start dates. The numbers between brackets indicate the lead-times in days from the forecast 

start dates to the onset and cessation of the heatwave.  

 

 

Figure 4.12 shows the heatwave forecast probabilities at different lead-times for T-day and T-night. 

The flavour of the heatwave was already perceptible at lead-time 24 days to the onset (i.e. more than 

three weeks in advance) with at least one individual member predicting the event over the vast 

majority of the country, consistently in both T-day and T-night (note that the climatological forecast 

probability is below 0.1 over the heatwave period; not shown). The forecast probabilities increased 

on the following initialisation dates to eventually reach 50% three days prior to the onset. However, 

as with the index anomalies, some initialisation days “lost” the heatwave signal in the run-up. Thus, 

forecast probabilities at lead-times 17 and 10 days to the onset are lower than that at the respective 

longer lead-times.  
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Fig. 4.13 ER wave-filtered OLR observed in ERA5 (top left) and predicted by ENS-ext averaged over the 27 

May- 02 June 2015 period. The numbers between brackets indicate the lead-times in days from the forecast 

start dates to the onset and cessation of the heatwave. 
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To understand the weakening of the forecast probabilities at these dates, the EM forecast of tropical 

mode activity is examined, knowing that the heatwave was associated with a convectively suppressed 

ER wave (Section 4.3.4.2). Figure 4.13 thus shows observed and EM-predicted ER wave-filtered 

OLR, starting from lead-time 24 days to the onset where the heatwave was first significantly 

predicted. It is apparent that at lead-time 17 and 10 days to the onset, the forecast of the ER wave 

activity over Burkina Faso was less accurate than at other lead-times. While the entire country was 

under the influence of a convectively suppressed phase of the ER wave during the heatwave period, 

at lead-times 17 and 10 days, the model was predicting a convectively enhanced phase across at least 

half of the country. Therefore it can be said that the wrong forecast of the physical driver also led to 

a less accurate forecast of the heatwave itself, with the reverse being true.  

 

Previous studies have already highlighted similar cases where the misrepresentation of subseasonal 

variability by models also caused misses in heatwave forecasts (e.g. QI and YANG 2019; Hsu et al. 

2020). As a result, improving the skill of prediction of tropical modes in models could also be 

beneficial for heatwave prediction in the Sahel as well as in other regions.  

 

4.4. Conclusion 

 

The ECMWF ENS extended-range forecasting system shows significant skill for heatwave prediction 

across most parts of the Sahel in the first two to three weeks of the forecast. The AMJ season has a 

longer lead-time predictability than the FM season, likewise nighttime heatwaves are better predicted 

at longer lead-times than their daytime counterparts. This study has also demonstrated that 

atmospheric tropical modes of variability, mostly the MJO and ER waves, are effective sources of 

skill for heatwave prediction in the Sahel. The forecast skill is indeed higher when they are active in 

the region than when they are weak. The case study of the prediction of a heatwave event driven by 

tropical modes in 2015 over Burkina Faso further illustrated this, by showing that the forecasts of 

heatwaves are more skilful when that of the tropical modes are accurate. Information on the predicted 

activity of tropical modes can thus be useful to forecasters in their heatwave warnings. 

 

In addition, as already highlighted by Guigma et al. (2020b), a more accurate simulation of tropical 

modes will have a positive repercussion on heatwave prediction in the region. This will likely improve 

the current skill and extend it to longer lead-times, thus winning more time and precision for 

preparedness actions. In this context and given the connection between convection and tropical 

https://www.zotero.org/google-docs/?czq9MV
https://www.zotero.org/google-docs/?czq9MV
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modes, convection-permitting models can play an important role as they reduce model errors, and 

likely offer a better representation of tropical modes (Judt 2020). It has indeed been shown that the 

parameterisation of moist convective processes and their links to the large-scale flow is an important 

source of errors in the tropics (Dias et al. 2018). 

 

But even with the current level of predictability, there is a potential for HEWSs. With a predictability 

of two to three weeks, there is indeed a range of actions that can be triggered in advance (e.g. Matthies 

and Menne 2009; Lowe et al. 2016; Nissan et al. 2017). As evidenced in other regions of the globe, 

many socio-economic sectors (especially public health) can benefit from such systems (e.g. Knowlton 

et al. 2014). The scaling up of HEWSs actually emerges as a pressing necessity given the future 

projections of global warming (Xu et al. 2020; Raymond et al. 2020) and could therefore serve as an 

efficient tool to mitigate its adverse effects. Furthermore, since the predictability is extendible when 

the verification criteria are relaxed, low-cost preparedness actions can be taken at even longer lead-

times, following the “Red-Set-Go!” approach of the Red Cross. 

 

However to get the best of such systems, it is important to have a clear understanding of how the heat 

hazard affects populations (e.g. WMO N°1142; Casanueva et al. 2019). This includes identifying the 

most affected social groups, the most lethal heat thresholds, the most relevant thermal indices, the 

most recurrent heat-related illnesses in the region etc. Such a research area is still in its infancy in the 

Sahel and should therefore receive more attention now that the potential for anticipatory action is 

evidenced. Furthermore the investigations can extend to other sectors like energy and water 

management which are heat-sensitive in this semi-arid region. This will allow a holistic approach to 

the heat issue and contribute to save many lives and protect livelihoods in the Sahel. 
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The verification data are freely available at the following repositories: 

ERA5: https://cds.climate.copernicus.eu/cdsapp#!/home  

BEST: http://berkeleyearth.org/data-new/  

 

The hindcast data are freely available to ECMWF member states at the following address: 

https://www.ecmwf.int/en/forecasts/accessing-forecasts.   
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Supplemental materials 

 

This supplement to the article provides additional results. 

  

 
Fig. S4.1 Composite of ERA5 OLR anomalies against each active phase of the MJO (left panels), the ER 

(middle panels) and the EK waves (right panels) detected at the reference longitude of 5°E. White areas are 

not significant at the 95% probability level. 
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Fig. S4.2 Anomaly correlation coefficients of T-day. Each panel represents a specific week of the forecast 

with the first week at the top. White areas over land are not significant at the 95% probability level. 
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Fig. S4.3 SEDI scores in the (two leftmost panels) FM and (two rightmost panels) AMJ seasons for T-day and 

T-night heatwaves using BEST as reference dataset. Each panel represents a specific week of the forecast 

with the first week at the top panel. White areas are not significant at the 95% probability level. 

 

 

 

 

 

 
Fig. S4.4 Difference of SEDI scores between forecasts falling on active phase 3 versus inactive phase of the 

MJO. The significance of the SEDI differences is tested by bootstrap resampling (see Section 4.2.5.2). 
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Fig. S4.5 Difference of SEDI scores between forecasts falling on active phase 7 versus inactive phase of the 

ER wave. The significance of the SEDI differences is tested by bootstrap resampling (see Section 4.2.5.2). 

 

 

 

 

 

Fig. S4.6 Same as Fig. 4.6 but for the EK wave and for the first two weeks of the forecast. 
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Chapter 5. Conclusion  

 

This thesis has advanced knowledge on the physical science of heatwaves in the Sahel. The focus was 

on weather and intraseasonal scales which have been overlooked by previous research although being 

crucial for risk management. This piece of work was built on three specific areas of climate research 

namely the nature, drivers and predictability of heatwaves at the aforementioned timescales. Each of 

these areas has been explored in a scientific paper in order to reach a wide community of scientists 

and stakeholders. These papers contain important new findings that are summarised below. 

 

5.1. What is now known about Sahelian heatwaves thanks to this thesis? 

 

Characteristics and underlying thermodynamic processes 

 

In the first paper (characteristics and thermodynamics of Sahelian heatwaves analysed using various 

thermal indices), the key objectives were to evaluate the statistical characteristics of Sahelian 

heatwaves and explore the thermodynamic processes that shape them. To achieve this, a fundamental 

task consisted of defining heatwaves which arise as a result of the intraseasonal variability of the 

Sahelian atmosphere while being also potentially harmful to people.  For this reason two magnitude 

thresholds were used. The first one seeks to identify days where the temperature at a given location 

is absolutely hot irrespectively of the period of the year. It has been defined as the 75th percentile of 

the total distribution of thermal indices. The second magnitude threshold, seeking to identify 

relatively hot events that result from the variability at the intraseasonal scale, is defined as the 90th 

percentile of the calendar day distribution of 90-day highpass filtered anomalies of the thermal 

indices. Five thermal indices were used, accounting for different ways to measure the heat load 

(through combining different environmental variables), and for each of them, the daytime and 

nighttime components were analysed separately. The results show that, overall, heatwaves in the 

Sahel are relatively short-lasting (mean duration of three to five days) and with a low frequency of 

occurrence (less than two events a year). However, with the absolute magnitude constraint (75th 

percentile of the total distribution), the sampled events are of high magnitude, given that the region 

itself has a hot climate. From a spatial point of view, heatwaves are slightly longer lasting and more 

frequent over the eastern and central Sahel than in the western Sahel. Likewise daytime heatwaves 

also have longer duration and higher frequency than their nighttime counterparts. These statistics are 

relatively similar across the different thermal indices. However, an analysis of the simultaneity of 

heatwave events revealed that the thermal indices do not sample the same heatwave events. There is 

on average less than 50% chance that a heatwave detected by a given index be also captured by 
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another index. This low coincidence is explained by the parameterisation of the indices but also by 

the constraints of heatwave definition (magnitude and duration thresholds). Furthermore, it has been 

found that the concomitance of nighttime and daytime heatwave events is a relatively rare situation 

in the Sahel. The analysis revealed indeed that only around 10% of daytime heatwaves persist at night. 

To assess the thermodynamics at play during Sahelian heatwave events, high-pass filtering of diverse 

physical variables was performed as the focus is on the intraseasonal modulation. The results show 

that the asynchronicity between daytime and nighttime heatwave events chiefly owes to different 

underlying processes. Thus, the nighttime heatwaves are mainly the result of a greenhouse effect of 

water vapour that prevents the temperature from dropping at night. On the other hand, the daytime 

heatwaves are often caused by heat advection from hotter regions (e.g. hot air advected from the 

hinterland towards the western coast causes heatwave events in the western Sahel) as well as sensible 

heat flux from the ground and increased downward solar radiation (on days where cloudiness 

decreases significantly). For a given diurnal period and from an index to another, the identified 

processes may slightly change or be of different magnitudes, but overall the leading thermodynamics 

remain similar across the indices (as opposed to the low co-occurrence of their heatwave samples). 

The analysis of the low-level circulation during heatwaves as well as moisture distribution revealed 

large-scale anomalies that involved the whole Northern Africa domain. Large heatwave events are 

indeed associated with harmattan reinforcement or monsoon surges depending on the affected region. 

Moreover, significant convection and rainfall anomalies are especially detected in the Guinean region 

of West Africa where the monsoon is at its peak during the spring season. This came in support of 

previously published papers which implicitly suggested a possible connection between thermal 

conditions in the Sahel and convection in the Gulf of Guinea region. This also oriented the 

investigation of large-scale drivers of Sahelian heatwaves toward the drivers of Guinean convection.  

 

Large-scale drivers: importance of tropical modes of variability 

 

Since the timescale of interest in this thesis is the intraseasonal scale, the connection between 

convection in the Guinean region of West Africa and heatwaves in the Sahel is assessed using the 

intraseasonal drivers of this convection as a proxy for it. The investigated drivers are the tropical 

modes of variability including the MJO, ER and EK waves. They were detected from the intraseasonal 

anomalies of OLR, a proxy for convection. Using a method initially developed by Riley et al. (2011), 

the magnitude and phase of their local activity were evaluated. The results showed that from a 

statistical point of view, heatwaves in the Sahel are indeed significantly modulated by the tropical 

modes of variability. They can lead, depending on their convective phase and the Sahelian subregion 

https://www.zotero.org/google-docs/?t9jdpy
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under consideration, to a decrease or an increase of the likelihood of heatwaves. Among the analysed 

modes, the MJO proved to be the most important driver of heatwaves. This is explained by its longer 

periodicity and smaller wavenumbers that allows it to maintain slowly varying atmospheric 

conditions for a sustained period of time over relatively large areas. During its active phases, Sahelian 

heatwaves can be twice more likely than usual in the region. The ER and EK waves are also found to 

be significant to heatwave occurrence in the region, although with notably less importance than the 

MJO. In addition, it is common to have many of these modes overlapping over the region. The 

outcome of such instances in terms of heatwave occurrence is ultimately a function of the nature and 

intensity of the overlapping modes as well as their respective convective phases. Unlike on the 

frequency of occurrence, tropical modes have a limited effect on heatwave intensity. The mechanisms 

through which this modulation takes place are linked to the underlying thermodynamic causes of 

Sahelian heatwaves identified in the first paper. Tropical modes exert a control on large-scale 

circulations in the region, allowing them to also control the transport and distribution of heat and 

moisture. For example, on their convectively enhanced phases, they advect moisture in the eastern 

Sahel, favouring (mostly) nighttime heatwaves therein whereas the western Sahel is cooled off (with 

then less chance for heatwave occurrence) by the arrival air masses from northern latitudes. A case 

study of a two-week duration heatwave event in April 2003 over the Sahel was conducted to further 

emphasize the role played by tropical modes on Sahelian heatwaves. The event was initiated by the 

MJO, which, through sustainably suppressing convection, allowed heat advection towards the 

northeasternmost parts of Sahel. The warming was maintained thanks to the arrival of a convectively 

enhanced ER wave which brought in moisture, creating a greenhouse effect. This longwave warming 

was reinforced when the convectively enhanced phase of the MJO reached the region before a 

cessation of the heatwave caused by the rainy events that followed, due to the intensification of 

convection. Therefore in the second paper it has been established that tropical modes of variability, 

namely the MJO, ER and EK waves are important to Sahelian heatwaves. This comes in support of 

other drivers that were suggested by the literature, notably the mid-latitude weather systems whose 

intrusions into the tropics also lead to hot weather events in the Sahel. Unlike the mid-latitude drivers 

which are active mainly at the synoptic scale, the MJO, ER and EK waves are intraseasonal modes 

of variability. As such, they also present the potential to provide heatwave predictability at the 

intraseasonal scale which is a relevant timeframe for heat risk management. Heatwave predictability 

and potential role of tropical modes are the object of the third research paper of this thesis. 

 

Skill of Sahelian heatwave prediction 
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The predictability of heatwaves in the Sahel has been assessed at weather and intraseasonal scale (out 

to forecast day 46) using ENS-ext. The predictions of ENS-ext were verified against its own analysis 

i.e. ERA5 and the Berkeley Earth Surface Temperature (BEST) dataset. Considering the 

asynchronicity of heatwaves defined from different thermal indices (in the first paper), the eventuality 

of an index-sensitive predictability was accounted for by considering two distinct thermal indices, 

temperature (T) and the heat index (HI, which adds moisture effect). Daytime and nighttime heatwave 

prediction skills were also assessed separately since they are not concomitant, and, most importantly, 

are driven by different thermodynamic processes. The results show that in the Sahel, heatwave 

prediction has a significant skill out to lead-week two to three and is extendible to subsequent weeks 

when the verification is conducted with flexibility. There is a marked seasonality with heatwaves 

having a longer predictability in the pre-monsoon AMJ season than in the FM season. However, for 

the first week of the forecast, the FM season heatwaves show higher skill than their AMJ counterparts. 

It has also been shown that, at long lead-times, heatwaves are more predictable at nighttime than at 

daytime. Regarding the sensitivity to the thermal indices, the nighttime component of HI offers the 

longest predictability of all analysed indices whereas its daytime component has limited skill. The 

importance of tropical modes (which were found in the second paper to be important drivers of 

heatwaves) as sources of predictability has also been assessed in the AMJ season, since it is in this 

season that they are the most active in the region. For this, the skill of ENS-ext in predicting their 

local activity was first analysed. It was found that the model shows fairly good skill in predicting the 

MJO and ER wave out to the third week of forecast, whereas this is limited to the first week for the 

EK wave. Then, the observed modulation of Sahelian heatwave frequency by tropical modes has also 

been found to be well simulated by the model. Finally a regime-dependent analysis was conducted to 

determine whether tropical modes indeed provide skill to heatwave prediction. This was done through 

stratifying the ENS-ext forecasts into instances where the forecast tropical modes are active versus 

instances where they are inactive. The results show that active phases of tropical modes are associated 

with higher heatwave prediction skill than inactive phases. By mode, the MJO is the most important 

source of predictability, followed by the ER wave. Their contribution to the skill of heatwave 

prediction extends out to the third week of the forecast and covers much of the Sahel. The EK wave 

also enhances the prediction skill during its active phases, but this is restricted mostly to the first week 

of the forecast. The main reason for the lower skill associated with the EK wave is the lesser ability 

of the model to predict it, inherent to the shorter periodicity of this wave. As a consequence, a better 

representation of tropical mode activity by numerical models will help improve the skill of heatwave 

prediction. The analysis of the evolution of the prediction skill with lead-time of a major heatwave 

event in 2015 further confirmed this potential for improvement. The heatwave itself was driven 
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primarily by the ER wave. At lead-times for which ENS-ext was able to correctly forecast the activity 

of the ER wave, it was also able to give a good forecast of the heatwave event. On the other event, at 

lead-times for which the model struggled to capture the activity of the ER wave, it was neither able 

to give a skilful forecast of the heatwave.  

 

 

5.2. What are the implications for operational management of heatwave risk in the Sahel? 

 

In addition to their contribution to the purely scientific knowledge, the findings of this thesis are also 

of interest for heatwave risk management.   

Thus, the low concomitance between daytime and nighttime heatwaves is a significant relief for 

Sahelian populations in terms of health. Previous research has indeed demonstrated that such 

concomitance exacerbates human discomfort, causing high morbidity and mortality (e.g. Schär 2016; 

Murage et al. 2017; Mukherjee and Mishra 2018). Therefore, most heat-related actions in the Sahel 

will address either a daytime or a nighttime event and are thus likely less costly. Besides, even though 

some heatwave events can last up to two weeks, the average duration is generally below six days. As 

compared to other regions of the globe, this is another attenuating factor for heatwave risk in the 

Sahel. Short-lived heatwaves doubtlessly harm less than if they last longer. For risk managers, this 

also means that their action can be focused on a relatively short period of time and be more efficient. 

For example, during heatwaves, various mitigation actions including public awareness campaigns, 

increasing access to water and setting-up of cooling centres are recommended by humanitarian 

organisations such as the Red Cross Climate Centre2. The sustainability of these actions for a 

prolonged time in low-income countries, like those of the Sahel, could be problematic. With the 

relatively short duration of heatwaves however, they become more conceivable, such that maximum 

assistance is made available over a couple of days to relieve the most vulnerable people. This 

perspective is also more likely to motivate governments and organisations in the region to invest in 

HEWSs. 

 

The low coincidence of heatwaves detected from different thermal indices also has implications for 

risk management. It suggests that an HEWS should priorly make clear which socio-economic 

group(s) are on target. This targeting should be carefully undertaken, taking into account the exposure 

                                                
2 Red Cross Red Crescent Climate Centre (2019). Heatwave guide for cities. Retrieved from 

https://www.climatecentre.org/downloads/files/IFRCGeneva/RCCC%20Heatwave%20Guide%2020
19%20A4%20RR%20ONLINE%20copy.pdf  

https://www.zotero.org/google-docs/?7GXO63
https://www.zotero.org/google-docs/?7GXO63
https://www.climatecentre.org/downloads/files/IFRCGeneva/RCCC%20Heatwave%20Guide%202019%20A4%20RR%20ONLINE%20copy.pdf
https://www.climatecentre.org/downloads/files/IFRCGeneva/RCCC%20Heatwave%20Guide%202019%20A4%20RR%20ONLINE%20copy.pdf
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and vulnerability aspects. It should consider various aspects such as professional activity, geographic 

location, age and gender, housing facilities etc. Once this is done, the thermal index (es) for heatwave 

detection should be chosen accordingly in order to ensure capturing the actual heat threat for the 

identified groups. It could be relevant for a HEWS to utilise many different thermal indices if it 

intends to reach distinct groups.  

 

The fact that tropical modes drive heatwave occurrences in the Sahel is especially interesting for 

operational forecasters in the region. In a HEWS, they will be in charge of issuing the alerts which 

different stakeholders will act upon. The monitoring of tropical modes activity can therefore be an 

additional tool to assist in that regard. For this, they can make use of the forecasts of tropical modes 

activity out to a month ahead, which are generated and freely distributed by institutions such as the 

North Carolina Institute for Climate Studies (https://ncics.org/portfolio/monitor/mjo/). Strong events 

of tropical mode passages will help provide more confidence to their forecasts. They can even further 

their expertise by characterising the local specificities of the modulation of heatwaves by the modes 

in the area covered by their alerts. Taking into account the extratropical drivers as well, they will be 

able to develop empirical heatwave forecasting schemes to guide them in their daily tasks. Evaluating 

and communicating these schemes to researchers will eventually lead to more progress in the 

scientific understanding of Sahelian heatwaves, especially at the local scale.  

 

The prediction skill, as highlighted in the third research paper, evidences more tangibly the potential 

for heatwave preparedness action. With similar prediction skill, i.e. two to three week predictability, 

other regions have set up their HEWSs, proving that such systems are also possible in the Sahel. In 

the joint WMO-WHO guidance on heat-health warning systems (WMO N°1142), it is indicated that 

subseasonal forecasts are relevant for such systems as it allows an optimisation of financial, logistic 

and human resource management, as well as being convenient for public awareness-raising activities. 

Furthermore the “Ready-Set-Go!” approach of the Red Cross introduced in the third paper can well 

be implemented in the Sahel at long lead-time. With information on the possible occurrence of  a 

heatwave one month before for example, and even without precision on the exact days that will be 

affected, several general and relatively inexpensive actions can already be triggered. They will 

eventually be reinforced by more decisive actions as the certainty improves closer to the heatwave. 

This also calls for the development of more probabilistic multi-week heat-related forecasts by global 

and regional meteorological centres. With the continual improvement of the representation of tropical 

modes in models (e.g. Hirons et al. 2013), these multi-week forecasts are expected to improve (it was 

shown in the third paper that a good representation of tropical modes also leads to good skills of 

https://ncics.org/portfolio/monitor/mjo/
https://www.zotero.org/google-docs/?UI7cQM
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heatwave prediction). Of particular use will be the forecasts of different thermal indices, to account 

for the hazard posed to different socio-economic groups. From these forecasts, meteorological 

services at national and subnational levels will be able to use their expertise to develop tailored 

products for their areas. These products can include clear and concise indications of the likelihood of 

the occurrence of extreme heat conditions for targeted socio-economic groups, taking care to specify 

the affected administrative domains and the expected severity. Co-producing them with other experts 

and institutions involved in the heat risk management will also guarantee more practical usability to 

these products. Such efforts are expected to significantly relieve Sahelian populations from the 

heatwave threat. However there is still more to find about heatwaves and their effects in the Sahel. 

 

5.3. What still needs to be addressed by future work? 

 

This thesis leaves open many research gaps that need to be addressed by future works in order to 

advance knowledge on Sahelian heatwaves. These gaps concern the physical science of heatwaves 

but also their impacts on different socio-economic sectors. 

 

Future projections in relation to convection and thermal indices 

The thesis has established a link between convection variability and heatwaves in the Sahel at the 

weather and intraseasonal scales. As a result, future projections of convection in the region also have 

profound implications for future heatwaves. With global warming, an increase of precipitation is 

expected in much of West Africa (although with large uncertainty given contradictions between 

models) owing to an intensification of convection at all timescales (Berthou et al. 2019; Dosio et al. 

2019; Akinsanola et al. 2020). The explicit link between this increased convection and extreme heat 

events in the Sahel should thus be addressed, taking into account the relative uncertainty around future 

convection. In addition, with global warming, atmospheric moisture increases (Clausius-Clapeyron 

equation) and should therefore impact some thermal indices which have been investigated in this 

study. Consequently, the future behaviour of heatwaves in the Sahel may also differ depending on 

which thermal indices (considering the diurnal cycle as well) are used for the projections. This is an 

important point to investigate as it also relates to how different socio-economic groups will be 

affected.  

 

Interaction between extratropical Rossby waves and tropical modes 

Extratropical weather systems have been suggested by previous studies (Fontaine et al. 2013) as 

drivers of Sahelian heatwaves and Largeron et al. (2020) identified them as the main large-scale factor 

https://www.zotero.org/google-docs/?ZbzmJz
https://www.zotero.org/google-docs/?ZbzmJz
https://www.zotero.org/google-docs/?cfjmm8
https://www.zotero.org/google-docs/?OkUbi6
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behind the April 2010 nighttime heatwave. However, there has been so far no systematic analysis of 

their role on the occurrence of heatwaves in the Sahel. There is thus a need to conduct a 

characterisation study to identify the statistics of this modulation, and a dynamic analysis to 

understand the mechanisms through which it takes place. A comparative study between the 

modulation by tropical modes and that of extratropical weather systems is also relevant to determine 

which is the most important. Furthermore, it will be interesting to investigate the interactions between 

these two drivers. Their timescales of activity often overlap and previous studies have already shown 

that they often interact in West Africa (Chauvin et al. 2010; Roehrig et al. 2011; Hall et al. 2017). 

However, these studies only cover the boreal summer as the interest is generally on the impact on 

rainfall. It is therefore important to extend them to the FM and AMJ seasons to assess how these 

interactions contribute to the modulation of Sahelian heatwave occurrence.  

 

Heat-health research 

For an effective management of heatwave risk, major efforts should be made to understand how they 

affect populations. In the Sahel, the social and economic impacts have been largely overlooked with 

only scare papers on the topic (Diboulo et al. 2012). One potential reason for this, as suggested by 

(Harrington and Otto 2020) is the lack of reports of heatwave casualties. Therefore the first step 

towards understanding the effects of heatwaves in the region could be the establishment of a database 

of heat-related casualties. Public health organisations in the Sahel can encourage systematic recording 

of consultations, hospital admissions and mortality that may be related to the heat. This necessitates 

an awareness-raising among health practitioners and demographers. In addition, given the fragility of 

health systems (Adair et al. 2020), it is important to associate community leaders and local 

administrations to promote death notifications. The gathering of such statistics will favour the setting 

up of solid databases that can be used not only for heatwave studies but also for other socio-economic 

analyses.  

 

In terms of health studies, several elements can be considered. The first is to analyse whether 

heatwaves indeed pose specific health issues to populations. Hot conditions prevail most of the year, 

and it may be the case that, by acclimatisation, heatwaves do not threaten the Sahelians as much as 

in mid-latitude regions. Likewise, the very concept of heatwaves may not be relevant in the region. 

With daytime temperatures regularly above 40C in spring, it may be the case that short periods of 

time where they exceed these values (the mean duration is generally less than six days) do not have 

pronounced impacts. Rather, the seasonal mean heat load could be more significant in terms of health. 

https://www.zotero.org/google-docs/?uFUcPZ
https://www.zotero.org/google-docs/?eq6KSg
https://www.zotero.org/google-docs/?cA12tT
https://www.zotero.org/google-docs/?aw7LtO
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These are relevant questions to address before setting to scale up early warning systems. Profound 

investigations are thus necessary to elucidate these unknown aspects of heatwaves in the Sahel.  

 

In the instance where heatwaves are found to significantly cause health issues in the region, it will be 

interesting to characterise this impact. For example, thermal thresholds are key factors in HEWS. In 

this study, they were arbitrarily set, but for an efficient operational system, they should be associated 

with an important health landmark. Across many countries that have functioning HEWSs, the 

thresholds are generally defined based on death rates, the reason being that mortality data are 

generally the most collected and standardised of all health metrics (WMO N°1142). However, it is 

also relevant to take into account hospital admissions or morbidity data in order to determine different 

thresholds accounting for different levels of severity.  

The setting-up of thresholds should go along with the identification of vulnerable groups as well as 

the pathologies that are the most recurrent during heatwaves. Diboulo et al. (2012) found that the 

mortality of under-five children is strongly affected by extreme heat at short-term (lag 0-1 day) in 

Nouna, western Burkina Faso. However these results are based on 10-year data from a single health 

centre. There is thus a need to extend that to other health districts across the Sahel for a statistically 

meaningful generalisation.  Furthermore, establishing a list of heat-related pathologies (including 

diseases that are aggravated by the heat) in the region is very helpful when it comes to alerting health 

professionals of heatwave risks. They would in that case be forewarned about potential changes in 

causes and numbers of consultations and thus prepare to provide an adequate response. Another 

benefit is that people susceptible to be affected by these diseases can also be forewarned when 

heatwaves are imminent, stimulating preventive actions among them. Given that the measure of heat 

itself is important as underlined in the first paper, it is relevant that all these studies play with different 

thermal indices in a logic to determine for each pathology the index (es) with the strongest sensitivity.   

 

Impact on water and energy 

Apart from health, many other socio-economic sectors could be affected by heatwaves and future 

studies should assess these impacts as well. In terms of energy for example, there is preliminary 

evidence that, at the interannual level, the trends of power consumption match that of extreme heat 

in some of the largest Sahelian cities (Aissatou et al. 2017). It is thus plausible that at the intraseasonal 

level, extreme heat events put substantial pressure on energy demand in the region. The same strain 

is also observable on water demand and extreme heat is often pointed as one of the major causes of 

https://www.zotero.org/google-docs/?rtBhDt
https://www.zotero.org/google-docs/?pWVatw
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power and water shortages which have multiplied and become longer lasting in recent years3. It is 

thus important that future research addresses the actual impact of heatwaves on the water and energy 

sectors for a better management. These studies should also account for the predicted worsening of 

heatwaves in future decades such that mitigation actions be taken. It should however be noted that 

heatwaves may also have positive impacts on energy. The Sahel is known for its important potential 

for solar energy (e.g. Azoumah et al. 2010), and, as shown throughout the three papers of the thesis, 

some heatwaves are associated with a decrease of cloudiness and an increase of incoming radiation. 

As such, promoting the use of solar energy can be a good mitigation strategy. This “green” energy 

can indeed be used to cool off households without negative impacts on the environment and climate, 

as opposed to conventional sources of energy. The practical feasibility however requires more in 

depth studies. 

  

Impact on labour productivity 

Labour productivity in a range of important sectors of the Sahelian economy such as street selling, 

market gardening and agriculture, construction and mining industry can also be affected by 

heatwaves. In many regions, the impact of heat on these sectors is often assessed by quantifying the 

equivalent economic losses. For example, Watts et al. (2018) estimated that, at the global level, 153 

billion hours of labour were lost in 2017 because of heat. Conducting similar studies in Sahelian 

countries at local levels (e.g. in major cities) will therefore draw attention to the negative impact of 

heatwaves on the economy and could convince different actors to invest in mitigating them. 

 

Once the impact of heatwaves on all these sectors will be quantified, it will be possible to move 

toward heat impact-based forecasting which will add substantial value to the HEWS.  

 

  

                                                
3 http://amediaagency.com/burkina-faso-drought-triggers-water-and-power-shortages/  

https://www.zotero.org/google-docs/?FrTayo
https://www.zotero.org/google-docs/?z1Sn4e
http://amediaagency.com/burkina-faso-drought-triggers-water-and-power-shortages/
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