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Thesis Summary  
 

The brain generates predictions about the world based on our prior experiences. Such 

phenomena have been formally quantified through the framework of Bayesian perceptual 

inference. The popularity of the Bayesian framework as a theory of perception has increased 

greatly over the years, but there are still many questions that need to be addressed before we 

can ascertain whether perception can be classified as truly Bayesian. In this thesis, I investigate 

whether time perception follows the principles of Bayesian models of perception. The main 

questions I focused on are how the variability of prior expectations and individual differences 

in the ability to perceive durations accurately influence temporal estimation. Bayesian models 

suggest that the magnitude of biases towards the prior would increase if the variance of the 

prior decreases, but to date, this prediction has not been adequately investigated. Similarly, 

the theory also suggests that sensory precision, observer’s ability to detect small changes in 

stimulus magnitude, should also affect perceptual biases, with greater sensory precision 

resulting in a weaker bias towards the prior. In addition, I was also interested in investigating 

what brain processes give rise to the perceptual biases that observers experience in magnitude 

estimation tasks. To do this, across different experiments, I used EEG to investigate if the brain 

tracks observers’ subjective experience of duration, and eye-tracking to investigate the 

previously proposed role of dopamine in biasing duration estimation. Finally, I also 

investigated to what extent prior expectations and time perception, in general, are influenced 

by conscious awareness. Overall, the experiments presented in this thesis aim to further our 

understanding of how the brain constructs our perception of time and whether Bayesian 

frameworks constitute a useful tool for understanding perception in general.  
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Chapter 1. General introduction 
 

Perception feels deterministic. Imagine you are at a restaurant and a waiter places a plate in 

front of you. You look at and smell the contents of the plate and unless you have had some 

weird experiences in the past, conclude that this is indeed the pizza you ordered. It looks like 

pizza, it smells like pizza, and you are sitting in a place that sells pizza. What else could the 

round doughy thing with tomato sauce, mozzarella, and pepperoni slices in front of you be? It 

could be many other things, for example, a very convincing pizza prop sprayed with pizza 

perfume. Furthermore, even if the pizza tastes precisely like a pepperoni pizza should, it might 

be something completely different – the dough might be gluten-free, while the pepperoni and 

mozzarella might be vegan. The reality is that even though perception feels deterministic, it is 

not. Sensory signals are ambiguous, our perceptual system is noisy, and our prior knowledge 

about the potential causes of the incoming sensory signals is incomplete (for example if you do 

not know vegan pepperoni even exists). The level of uncertainty in every step of the process 

dictates there cannot be a one-to-one mapping between a given sensation and its cause – the 

same percept could be generated by numerous processes. 

The idea of probabilistic perception is not new. Helmholtz (1860) posed perception as 

unconscious inference – perception involves the process of inferring the most likely cause of 

the sensory information entering the brain. In a similar fashion, Gregory (1980) proposed that 

during perception, the brain engages in a process of iterative hypothesis testing in order to 

find the most likely interpretation of the available sensory information. It is important to note 

that the brain has no access to the underlying cause of sensory inputs, and this information 

remains hidden. Instead, the brain can only come up with its best guess regarding what 

process has caused this input based on previously established regularities. These ideas have 

been formalized mathematically through the Bayesian brain framework, which defines 

perception through the terms of Bayesian inference (Knill & Pouget, 2004; Pouget, Beck, Ma, & 

Latham, 2013). The brain forms an internal model of the world which generates predictions 

about the causes of incoming sensory inputs. These predictions (called priors) and the 

information provided by the sensory signal (the likelihood) are represented as probability 

density functions over the possible values the parameter of interest could take (Knill & Pouget, 

2004; Pouget, Beck, Ma & Latham, 2013).  The perceptual system deduces the most likely 

cause of sensory inputs by combining its prior predictions with the likelihood into a posterior 

probability distribution. Finally, the brain updates its model of the world by replacing the prior 

with the posterior. The extent to which the brain engages in probabilistic inference during 
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perception is still unknown, but extensive research has been and continues to be conducted in 

order to shed more light on this question.  

1.1 Perception depends on the reliability of sensory information 

Some of the most convincing evidence in favour of probabilistic perception comes from studies 

investigating multisensory integration. When multiple sources of sensory input provide 

conflicting information regarding the characteristics of a stimulus, the resulting percept is 

biased towards the source that is considered to provide more reliable information. For 

example, vision typically provides more accurate information about spatial location than 

audition (e.g., Alais & Burr, 2004). As a result, when there is a spatial discrepancy in the 

location information provided by the visual and auditory subcomponents of a multisensory 

stimulus, the visual signal usually biases the perceived location of the auditory signal – a 

phenomenon known as the ventriloquist effect (Alais & Burr, 2004; Battaglia, Jacobs, & Aslin, 

2003). In an extreme version of the ventriloquist effect, visual motion has even been reported 

to create an illusory perception of motion in an otherwise stationary auditory stimulus 

(Mateeff, Hohnsbein, & Noack, 2002). In contrast, audition has been proposed to provide more 

accurate information about temporal structure than vision (Welch & Warren, 1980), and 

consequently, studies have found that the timing of visual events is biased towards the timing 

of auditory events (Fendrich & Corballis, 2001; Vroomen & de Gelder, 2004).  

Many studies have found that the integration of visuotactile and visuo-proprioceptive cues is 

also precision-dependent. Vision tends to provide more accurate information about object 

properties than touch. For example, discrimination thresholds for stimulus size were found to 

be lower for visual compared to haptic stimuli (Ernst & Banks, 2002). The higher precision of 

visual compared to tactile perception results in the dominance of visual over haptic 

information on reports of stimulus size (Ernst & Banks, 2002), and shape (Rock & Victor, 1964; 

Power & Graham, 1976; Helbig et al., 2012). Evidence consistent with probabilistic integration 

has been also reported in studies investigating the integration of visual and proprioceptive 

information to determine hand position (Van Beers, Sittig, & Gon, 1999) and movement paths 

(Reuschel, Drewing, Henriques, Rösler, & Fiehler, 2010), the integration of visual and vestibular 

cues of self-motion (Morgan, DeAngelis, Angelaki, 2008; Angelaki, Gu, & DeAngelis, 2011; see 

Fetsch, DeAngelis, & Angelaki, 2010 for a review), and the integration of thermal and tactile 

cues in reporting the temperature of an object (Ho, Chow, Tsunokake, & Roseboom, 2019). 

Finally, studies have also shown that the influence of the unimodal signals on the resulting 

percept is dynamically adjusted when there is a change in the relative reliability of the 
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integrated signals. For example, as noise in the visual domain increases, the ventriloquist effect 

is reversed (Battaglia et al., 2003; Alais & Burr, 2004), while estimates of the size (Ernst & 

Banks, 2002) and shape (Heller, 1983; Helbig et al., 2012) of visuo-haptic stimuli become more 

biased towards the information provided in the tactile domain. These findings provide strong 

evidence that the brain updates its model of the world dynamically as new information is 

presented, which is a key element of Bayesian inference.  

The literature on multisensory cue integration provides strong evidence that observers 

estimate the relative variability of the incoming sensory information. These results also 

suggest stimulus variability cannot be encoded in a modality-specific manner in the brain. For 

example, imagine the ventriloquist effect – you are trying to determine where in space an 

audio-visual stimulus originates. The auditory and visual components of the stimulus provide 

conflicting information and to arrive at your best guess you have to compare the reliability of 

the two components. If stimulus variability were encoded in a modality-specific way, it would 

be very difficult to make a direct comparison between the reliability of two components of the 

stimulus. Instead, the evidence that human observers can compare the relative variability of 

signals coming from different modalities suggests that the brain encodes variability in a 

domain-general manner.    

1.2 Perception depends on previous experience 

Studies on multisensory perception have shown that sensory signals are integrated optimally, 

taking into account their relative variability. However, perception is not influenced only by the 

reliability of the incoming sensory information but also by our prior knowledge about the 

world. The role of prior expectations in perception becomes apparent when we consider 

ambiguous stimuli. For example, look at Figure 1.1A. Most people will immediately interpret 

the image at the top as a staircase planted on the floor, facing upwards because this is how we 

are used to seeing staircases in the real world. However, the figure can also be interpreted as a 

staircase planted on the ceiling and facing downwards (Figure 1.1B). The sensory evidence in 

favour of both hypotheses is exactly the same, so perception cannot be based solely on the 

available sensory information. Instead, we use our prior knowledge about the world to help us 

resolve some of the existing ambiguity by shifting perception towards the interpretation with 

which we are more familiar. 
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Figure 1.1. Schroeder's stairs. (A) An illusion created by Henrich Georg Friedrich Schroeder. The image is 

ambiguous – it can be interpreted either as normal stairs going up (bottom left image) or as stairs 

rotated upside-down (bottom right). (B) Two possible interpretations of the ambiguous image 

 

In another relatable example of the effect of priors on perception, some everyday objects are 

strongly associated with a particular colour – bananas are typically yellow – which can bias 

observers’ perception of colour. For example, when participants were asked to make images of 

fruit achromatic, the colour of the resulting image was shifted towards the opposite of the 

diagnostic colour of the fruit (Hansen, Olkkonen, Walter, & Gegenfurtner, 2006).  For the 

image of a banana to appear grey, the banana had to have a slightly bluish hue, while a truly 

achromatic image of a banana appeared slightly yellow (Figure 1.2). Studies using fMRI have 

further shown that observers’ strong predictions about diagnostic colour are reflected in brain 

activity (Bannert & Bartels, 2013; Vandenbroucke, Fahrenfort, Meuwese, Scholte, & Lamme, 

2014). More specifically, the diagnostic colour of objects could be decoded from activity in the 

visual cortex when objects were presented in grey (Bannert & Bartels, 2013), or in an 

ambiguous colour – for example, a tomato presented in the colour midway between red and 

green (Vandenbroucke et al. 2014). 

A 

B ? 
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Figure 1.2. Visualization of the results reported by Hansen et al. (2006). An achromatic image of a 

banana was perceived as slightly yellow, while an image with a blue tint was perceived as grey. This is 

just a visualization of the results and not an image generated from the analysis of the data.  

 

It is important to note that previous experiences can also generate repulsive biases.  

Sometimes, prolonged exposure to a stimulus can bias the perception of subsequent stimuli 

away from the originally presented stimulus, a phenomenon known as adaptation. For 

example, if you stare at a yellow object for a prolonged amount of time and then look at 

another object, it will appear blue (Figure 1.3).  

 
ro
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1.3 Perception of time 

In the sections above, we have discussed how sensory variability and prior expectations affect 

the perception of different stimulus characteristics such as colour, position, size. Would these 

principles also hold for more abstract stimulus features such as duration? The perception of 

time differs substantially from other perceptual domains in terms of its features and 

associated physiology. Vision, audition, and proprioception, for example, are associated with 

sensory-specific brain regions that are involved in the initial processing of incoming sensory-

specific information. Unlike features like brightness and pitch, however, duration is not bound 

to any specific ‘primary’ sense – all stimuli, irrespective of sensory modality, exist in time and 

have temporal duration. As such, time perception has to, at least partly, be amodal and cannot 

be associated with one specific time-processing region the same way as basic features of vision 

can be associated with V1. These fundamental differences make studying the characteristics 

and neural underpinnings of time perception a non-trivial research endeavour.  

Time is a very broad term, and it is therefore important to specify what is meant by time 

perception throughout this work. First, time perception operates on different scales. 

Researchers have focused on three ranges – circadian timing, interval timing, and millisecond 

timing (Buhusi & Meck, 2005). Circadian rhythms control metabolism and sleep-wake cycles 

and operate over a very narrow range around 24 hours. Millisecond timing operates at a sub-

second range and is involved in, for example, motor control and speech. Finally, interval timing 

usually refers to the perception of time of sub-second durations (although rarely below 100ms) 

Figure 1.3. Colour adaptation. Look at the yellow circle for 20 seconds and then look at the grey 

circle. The grey circle should appear slightly blue.  

Direction of bias 

against previous experience 

Grey circle appears blue 

Previous 

experience  
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to minutes and even hours, and as such, it is involved in behaviours involving planning and 

decision-making. In addition to serving different functions, time perception across these scales 

also involves different neuronal mechanisms (Buhusi & Meck, 2005). The work presented here 

focuses on interval timing and specifically on the scale of sub- to supra-second intervals.  

Another important distinction in the time perception literature is the difference between 

retrospective and prospective timing. Usually, we do not think about the duration of a certain 

event until after the event has passed – for example, we do not go to the cinema with the 

intention to time how long the movie is, but reflect on how long the experience felt when the 

movie ends. This phenomenon is referred to as retrospective timing, and in such experimental 

tasks, participants are not informed that they will have to make a temporal judgement until 

the stimulus has disappeared (Brown & Stubbs, 1988). Although retrospective timing tasks 

have high ecological validity, they are hampered by the fact that each participant can 

contribute only one data point because once they have been asked to estimate the duration of 

a stimulus, judgements made on any following trials will no longer be retrospective. In 

contrast, most experiments typically use prospective timing tasks in which participants know in 

advance that they will be required to make temporal estimates (Brown & Stubbs, 1988). While 

less ecologically valid, prospective timing tasks have the advantage that participants can 

contribute multiple data points, and prospective estimates tend to be more accurate than 

retrospective estimates (Brown & Stubbs, 1988). All tasks documented here use prospective 

timing. In summary, here I use the term “time perception” to refer to prospective duration 

estimations of stimuli on the short end of the interval timing scale – milliseconds to seconds. 

1.4 Thesis overview  

The research discussed above shows that perception takes into account the observer’s 

previous experience and the relative variability of the available sensory signals. However, 

would the optimal integration observed across sensory signals also govern the integration of 

the sensory likelihood and the prior? Can manipulating the precision of the prior and the 

likelihood influence the magnitude of the bias exerted by the prior on perception? Also, given 

the fundamental differences between time perception and the primary perceptual domains, it 

is still not clear to what extent the perception of time is governed by these processes, and how 

previous experiences influence our perception of duration.  

The aim of this thesis is to investigate the role of Bayesian inference in duration perception 

and the role that the statistical features of stimulus distributions play in the integration of 

priors and likelihoods. Chapter 2 provides a more detailed look at the mathematical basis of 
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Bayesian inference. I also review the existing evidence that observers can extract the statistical 

features of sensory information (range, central tendency, variance), as well as theoretical and 

empirical work that gives an indication of how duration estimation can be situated within a 

Bayesian framework. In Chapter 3, I introduce the different variations of Bayesian models used 

throughout the following empirical chapters. Then, in Chapter 4, I present two experiments 

that focused on how the shape of the prior, more specifically, the variance of the prior, affects 

duration reports. Our main hypothesis, based on the prediction of a Bayesian ideal observer 

model, was that responses would be biased towards the prior more when the prior has a 

smaller variance. We found that the magnitude of perceptual biases was greater in a peaked 

Gaussian compared to a uniform distribution, supporting the predictions of the model. 

However, we did not find evidence of a stronger bias in a skewed peaked distribution 

compared to a uniform distribution. Having established how changes in the shape of the prior 

influence duration reports, in Chapter 5 I present two duration perception experiments in 

which we investigated the effect of sensory precision on biases towards the prior in 

behavioural reports and brain activity, measured using EEG. In the first experiment, we found 

that the prior had a clear effect on both duration responses and brain activity – the same 

physical stimulus elicited different duration estimates and different patterns of EEG activation 

depending on the range of the underlying stimulus distribution. However, across both 

experiments, we found no relationship between sensory precision and the magnitude of either 

the behavioural or neuroimaging estimates of perceptual biases. All the experiments 

introduced so far investigated duration estimation biases induced by stimuli that participants 

were aware of, but it is still not known to what extend conscious awareness is necessary for 

the perception of durations or for the perceptual biases to occur. In Chapter 6, we investigated 

how masking visual stimuli affects participants’ estimates of duration and whether masked 

stimuli give rise to perceptual biases. We found that participants were not able to estimate the 

duration of masked stimuli, masked stimuli did not influence the processing of subsequently 

presented durations, and masked stimuli were not taken into account when estimating global 

distributional statistics. The final empirical chapter, Chapter 7, presents our preliminary 

findings from a study investigating the role of dopamine in the perception of time. Finally, 

Chapter 8 discusses the findings reported in the previous chapters in relevance to the existing 

literature, highlights some wider issues in the time perception research, and provides ideas for 

future studies that build onto our findings.  

 



18 
 

Chapter 2. Literature review  
 

Here I will discuss results of previous studies investigating a range of perceptual domains, but 

with a specific focus on empirical and theoretical work in the field of time perception. I will 

start this review with an overview of Bayesian statistical inference to get a better 

understanding of the principles behind the Bayesian brain hypothesis. I will then present 

research on ensemble perception to show that observers can estimate the statistical 

properties of stimulus distributions, and discuss how the framework of Bayesian perceptual 

inference can be used to understand the processes involved in duration estimation. In the end, 

I will discuss the behavioural and neuroimaging evidence investigating if human observers can 

form representations of summary statistics (and consequently engage in Bayesian inference) in 

the absence of awareness.  

2.1 From Bayes’ rule to Bayesian perceptual inference 

The process of Bayesian inference is based on Bayes’ rule, which is derived from the formula 

for calculating conditional probabilities – the probability of some event A occurring, given that 

another event B has occurred:  

 
𝑃(𝐴|𝐵) =  

𝑃(𝐴 ∩ 𝐵)

𝑃(𝐵)
 

(1) 

where 𝑃(𝐴|𝐵) is the conditional probability of A given B, 𝑃(𝐴 ∩ 𝐵) is the joint probability of A 

and B occurring together, and 𝑃(𝐵) is the unconditional probability of B occurring 

independently of A. The key to deriving Bayes’ rule is that the joint probability 𝑃(𝐴 ∩ 𝐵) can 

be rewritten in two ways:  

 𝑃(𝐴 ∩ 𝐵) = 𝑃(𝐴)𝑃(𝐵|𝐴) but also 𝑃(𝐴 ∩ 𝐵) = 𝑃(𝐵)𝑃(𝐴|𝐵) (2) 

Therefore: 

 𝑃(𝐵)𝑃(𝐴|𝐵) =  𝑃(𝐴)𝑃(𝐵|𝐴) (3) 

Rearranging this equation gives us Bayes’ rule: 

 
𝑃(𝐴|𝐵) =  

𝑃(𝐴)𝑃(𝐵|𝐴)

𝑃(𝐵)
 (4) 

Within the Bayesian framework, 𝑃(𝐴|𝐵) is called the posterior, 𝑃(𝐴) – the prior, 𝑃(𝐵|𝐴) – the 

likelihood, and 𝑃(𝐵) – the marginal likelihood or evidence. To explain the intuition behind 

Bayesian inference, let us take an example. Imagine that you have bought a bag of almonds 
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from a new store, and you want to estimate the quality of the almonds given the number of 

bitter almonds in the bag. The bag contains 20 almonds, and the number of bitter almonds can 

vary from 0 (highest quality) to 20 (worst quality). As the store is new, you have no previous 

knowledge of the quality of almonds sold there, so your prior will take the shape of a uniform 

distribution – you will assign an equal probability to all possible values of quality. By eating the 

bag of almonds, you discover that 3 of the almonds were bitter, so the marginal likelihood is 

the probability of having 3 bitter almonds – 3/20. You use this information to build the 

likelihood probability distribution (in this case a Binomial distribution) which gives you the 

probability of finding 3 bitter almonds under all possible values of quality. Having gathered this 

new information, you can update your initial belief about the quality of the almonds by 

multiplying the prior with the likelihood, which gives you the posterior probability distribution. 

As the marginal likelihood is just a constant, we can drop the term from the equation above, 

and rewrite Bayes’ rule to state that the posterior is proportional to the product of the prior 

and the likelihood: 

 𝑃(𝐴|𝐵) ∝ 𝑃(𝐴)𝑃(𝐵|𝐴) (5) 

Importantly, the influence of the prior and likelihood on the posterior is weighted based on 

their relative precision – in this example, the likelihood has a smaller variability than the prior, 

so the posterior will be shifted more towards the likelihood. As our variable of interest, in this 

case, is discrete, the posterior probability distribution gives us the exact probability that 

quality is equal to each of the possible parameter values. You can therefore estimate almond 

quality by identifying the parameter value that has the highest probability under the posterior 

distribution. Finally, the process of Bayesian inference can also be iterative – your current 

posterior immediately becomes your prior the next time you observe new information.  

If perception involves a process similar to Bayesian inference, observers must be able to track, 

at least roughly, the probability of different stimulus values occurring in order to build and 

update their prior beliefs over time. Unlike the example with almond quality above where the 

variable of interest is discrete, the sensory features the brain is trying to estimate are (mostly) 

continuous – for example distance, brightness, volume. Therefore, in the Bayesian brain 

framework, the prior and likelihood of observed data are represented as probability density 

rather than probability mass functions (e.g., Knill & Pouget, 2004). In a probability density 

function, the probability of a parameter having a specific value is zero. Therefore, following the 

Bayesian brain hypothesis, the brain cannot be tracking the specific probability of each level of, 

for example, brightness. It is still not clear how exactly prior expectations are represented in 
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the brain, but one efficient approach would be to summarize the regularities of sensory input 

by tracking the statistical characteristics of sensory information over time (Khayat & Hochstein, 

2018) – for example, what stimulus appears most often, or how variable the sensory inputs 

are.  By extracting the statistical properties of presented stimuli, such as their range, central 

tendency, and variability, the brain would be able to form an overall representation of the 

stimulus distribution. If we subscribe to the assumption of Gaussianity, the mean and variance 

of the posterior can be easily derived based on the mean and variance of the likelihood and 

prior: 

 
µ𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 =  

µ𝑃𝑟𝑖𝑜𝑟 × 𝜎𝑃𝑟𝑖𝑜𝑟
2 + µ𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 ×  𝜎𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑

2

𝜎𝑃𝑟𝑖𝑜𝑟
2 + 𝜎𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑

2  
(6) 

 

 
𝜎𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟

2 =  
𝜎𝑃𝑟𝑖𝑜𝑟

2 × 𝜎𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑
2

𝜎𝑃𝑟𝑖𝑜𝑟
2 +  𝜎𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑

2  
(7) 

 

Therefore, an important prerequisite for Bayesian-like processes to take place in perception is 

for observers to be able to compute summary representations of stimulus features presented 

across time and space. Evidence that this is the case comes from decades of studies on 

ensemble perception.  

2.2 Ensemble perception – forming summary representations explicitly 

Extracting the statistical characteristics of multiple stimuli presented in a single instance in 

time or in a sequence across time can be useful to generate a gist of the environment. Studies 

on ensemble perception have shown that when asked explicitly to do so, participants can 

estimate the central tendency and variability of stimulus sets (for a review see Whitney & Leib, 

2018). 

Studies on ensemble perception provide overwhelming evidence that human observers form 

summary representations of central tendency when presented with multiple stimuli at the 

same time (Figure 2.1A). For example, when presented with a display of similar stimuli such as 

lines with different orientations observers can accurately judge the average orientation of the 

set (Dakin & Watt, 1997; Parkes et al., 2001). An abundance of studies suggest that people can 

perform such operations on other stimulus features ranging in complexity including direction 

and speed of motion (Williams & Sekuler, 1984), spatial position (Morgan & Glennerster, 1991; 

Hess & Holliday, 1992; Whitaker, McGraw, Pacey, & Barrett, 1996; Alvarez & Oliva, 2008), size 

(Ariely, 2001; Chong & Triesman, 2003, 2005; Whiting & Oriet, 2011), numerical magnitude 
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(Morris & Masnick, 2015), facial expression and gender (Haberman & Whitney, 2007, 2009a). 

Despite the evidence that observers form estimates of central tendency when presented with 

multiple stimuli, it is still not clear what processes observers engage in to arrive at such 

estimates. The experiments presented above assume that participants average across all 

presented stimuli (e.g. Chong & Triesman, 2003). However, evidence suggests that the mean 

size of an array can be accurately estimated by subsampling one to three stimuli from the set, 

and comparing the average stimulus size across two sets can be achieved by considering only 

the smallest or largest stimuli in the two sets without actually computing the mean (Myczek & 

Simons, 2008; although see Chong, Joo, Emmanouil & Triesman, 2008 for a response). 

Therefore, while there is an abundance of evidence that human observers form (some sort of) 

estimates of central tendency, it is not clear how these estimates are computed, and future 

studies should include better controls to ensure tasks investigating mean estimation cannot be 

completed using simpler strategies.  

Research has also shown that people can extract the mean stimulus value when stimuli are 

presented in a sequence (Figure 2.1B). Observers can estimate the average size (Albrecht & 

Scholl, 2010; Corbett & Oriet, 2011; Albrecht, Scholl, & Chun, 2012; Khayat & Hochstein, 2018), 

brightness (Khayat & Hochstein, 2018), orientation (Khayat & Hochstein, 2018), location (Juni, 

Gureckis, & Maloney, 2012), facial expression (Haberman & Whitney, 2009b), numerical 

magnitude (Malmi & Samson, 1983), pitch (Albrecht et al., 2012; Piazza, Sweeny, Wessel, 

Silber, & Whitney, 2013), loudness (Curtis & Mullin, 1975), heaviness (Anderson, 1967), and 

duration (Schweickert, Han, Yamaguchi, & Fortin, 2014; Ren, Allenmark, Muller, & Shi, 2020) 

when stimuli are presented sequentially. Like averaging across space, averaging across time is 

also likely to be achieved without necessarily computing the mean of all stimuli, although the 

strategies employed are likely to be different. For example, Hubert-Wallander and Boynton 

(2015) found evidence that the subset of stimuli in a sequence that observers used to estimate 

central tendency were selected based on their position in the sequence. Estimates of average 

size, motion direction, and facial expression were influenced more by items presented later in 

the sequence, displaying recency effects (also see Anderson, 1967 for similar results regarding 

mean heaviness estimation). In contrast, average location estimates were influenced more by 

stimuli presented earlier in the sequence, displaying primacy effects. In addition to these 

biases, studies on averaging stimulus magnitude across time have also suggested that 

observers’ estimates of central tendency are closer to the geometric compared to the 

arithmetic mean of the presented stimuli (Ren et al., 2020). Overall, very few studies have 

attempted to investigate what measure of central tendency participants compute when asked 
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to estimate the “mean” of a group of stimuli (see Watamaniuk &  uchon, 1992 for an attempt 

to compare the arithmetic mean and mode), and it is still not clear how these estimates are 

computed and what statistic they represent. 

 

Figure 2.1. Ensemble perception of mean stimulus size across space (A), and time (B). After the 

presentation of the set, participants are asked to make some judgement, such as if a test probe is equal 

to the mean of the just presented set. 

While a lot of research on ensemble perception has focused on observers’ ability to estimate 

central tendency, variance estimation has not been researched as extensively. It has been 

found that participants can estimate the variance of the facial expressions in a set of faces 

(Haberman, Lee, & Whiney, 2015), the orientation in a set of lines or gratings (Dakin & Watt, 

1997; Morgan, Chubb, & Solomon, 2008), the size in a set of circles (Solomon, Morgan & 

Chubb, 2011; Tokita, Ueda, & Ishiguchi, 2016), the direction of motion in an RDK (Suárez-

Pinilla, Seth, & Roseboom, 2018). In addition, long exposure to a set of stimuli also creates 

variance adaption – after observing an ensemble of object highly variable in colour, 

subsequently presented ensembles appear less variable and vice versa (Norman, Heywood, & 

Kentridge, 2015; Maule & Franklin, 2020). This aftereffect was further found to translate 

across object features from colour to orientation (Maule & Franklin, 2020), which suggests that 

the stimulus variance could be an abstract property encoded independently of the stimulus 

feature in question. To our knowledge, however, no study to date has investigated variance 

estimation in sensory domains outside of vision or in ensembles presented across time rather 

than space, so much is yet unknown about the generalizability of this process. Studies have 
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also shown that the variance of stimulus sets influences performance on perceptual tasks and 

the estimation of other ensemble statistics, specifically central tendency. For example, 

participants were more accurate in estimating the average direction of motion in an RDK and 

the average colour or shape of objects in a display when it has a smaller variability (de Gardelle 

& Summerfield, 2011; de Gardelle & Mamasian, 2015). In addition, Juni et al. (2012) found that 

estimates of the mean location of targets presented in a sequence depended on the known 

variance of the distributions from which each target is sampled – targets that participants 

knew came from distributions with smaller variance were weighted more heavily in the 

estimation of mean location. Together these findings suggest that one function of variance 

estimation could be to judge the reliability of sensory inputs to estimate other statistical 

properties of stimulus ensembles in an optimal manner.   

Even though it is still unclear what processes participants engage in to estimate the summary 

statistics of stimulus distributions, the studies discussed above provide evidence that 

observers can estimate the central tendency and variance of stimulus sets. This suggests that 

the perceptual system is equipped with the necessary mechanics to engage in Bayesian 

perceptual inference. In the next section, I will discuss how duration estimation can emerge 

from a process like Bayesian perceptual inference.  

2.3 (Time) perception as Bayesian inference 

If we pose time perception as a process governed by the principles of Bayesian inference, we 

have to consider how the brain measures time, how prior expectations of duration are 

represented in the brain and integrated with the sensory likelihood to form perception, and 

finally, what signals in the brain might reflect these operations.  

2.3.1 Sensory likelihood – measuring time 

To build the sensory likelihood Gaussian distribution, we need to determine the mean and the 

variance of the distribution. The mean will correspond to the brain’s estimate of the presented 

duration, and the variance will correspond to the noise associated with making this estimate. 

Here I briefly review some of the theories that have been proposed to explain how time is 

measured in the brain. However, it is important to note that investigating the specific process 

through which the brain measures time is not the core aim of the research I present in the 

subsequent chapters. My focus is specifically on the integration of the prior and the likelihood, 

for which the process underlying the likelihood is of little direct relevance.  
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Mean of the sensory likelihood  

Multiple theories have been proposed to explain how the brain forms estimates of duration 

and they can be loosely divided into theories suggesting that the brain tracks time like a clock 

and theories showing that time can be encoded without such specialized machinery. The most 

prominent class of models in time perception, which can be collectively labelled under the 

umbrella term of scalar timing theory, propose that the brain estimates durations through an 

internal clock mechanism (e.g., Treisman, 1963; Gibbon, 1977). At all times, a pacemaker 

generates countable pulses at regular intervals (also see Miall, 1989 for an account based on 

multiple pacemakers). When an event of interest occurs, a switch is turned on, and an 

accumulator starts counting the number of pulses that have occurred since turning the switch. 

When the event of interest ends, a readout of the accumulator is taken and stored in memory 

allowing the observer to transform the accumulators’ estimate into reportable units of time, 

compare the current accumulator estimate to previous estimates still in memory, and (if 

required) engage in some decision processes. Numerous other theories, however, challenge 

the notion that an internal clock mechanism is needed to encode time. Such theories include 

the state-dependent network model –  durations are encoded in the state of cortical neural 

networks (Karmarkar & Buonomano, 2007), the firing rate model – durations are encoded in 

the firing rate of neurons (Durstewitz, 2003), and the duration channels model which proposes 

that duration is encoded in the brain through neuronal selectivity which is the same 

mechanisms used to encode other stimulus features like orientation and pitch (Heron, Aaen-

Stockdale, Hotchkiss, Roach, McGraw, & Whitaker, 2012). Neurons in the visual and auditory 

cortex respond selectively to a narrow range of orientations and frequencies respectively, and 

knowing which neurons were activated allows the rest of the brain to infer what sensory 

information was presented (Hubel & Wiesel, 1968; Regan & Tansley, 1979). As a result, Heron 

et al. (2012) proposed that time perception is based on a similar channel-based mechanism 

with different populations of neurons responding selectively to a specific range of durations, 

and provide evidence that such a model can explain duration adaptation effects.  

In addition to an internal clock being unnecessary to track time, another issue with scalar 

timing theory is that it assumes that the brain’s internal clock mechanism attempts to track 

objective time. However, other work suggests that duration estimates are based on perceptual 

content. The estimated duration of an interval increases with increase in the number of events 

or the complexity of events occurring during the interval (Frankenhaeuser 1959; Ornstein, 

1969; Block, 1974; Avant, Lyman, & Antes, 1975). Proponents of scalar timing theory have 

suggested that some mechanism based around arousal and attention that could account for 
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these findings. The presentation of an external stimulus leads to an increase in arousal which 

in turn speeds up the internal clock and results in duration overestimation (Penton-Voak, 

Edwards, Percival, & Wearden, 1996; Droit-Volet & Wearden, 2002). Following this 

proposition, the more complex the event to be estimated is, the more the speed of the clock 

will increase, leading to greater overestimation. While arousal controls the speed of the 

pacemaker, attention has been proposed to affect how quickly the switch that connects the 

pacemaker and accumulator is turned on (Lejeune, 1998). The accumulator starts counting the 

ticks emitted by the pacemaker only after the switch is turned on, so the quicker the switch is 

turned on, the more accurate the estimate by the accumulator will be. It has been proposed 

that when attention is low, the latency between the start of the event to be timed and the 

turning of the switch increases and becomes more variable, leading to underestimation of 

duration and more variable estimates respectively (Droit-Volet, 2003; Allan, 1992). Others 

have proposed the addition of another component to the internal clock model, an attentional 

gate situated between the pacemaker and the switch which opens more or less depending on 

how much attention is paid to the duration of an event (Zakay & Block, 1996). When the 

observer pays attention to the duration of the stimulus, the gate opens more widely and 

allows more pulses to pass through to the accumulator. There is still no consensus amongst 

proponents of scalar timing whether attention modulates time estimates through a separate 

gate component or by controlling the switch in the original formulation of the internal clock 

model (Zakay, 2000; Lejeune, 2000).   

Even though mechanisms based around arousal and attention could help scalar timing theory 

account for the discrepancy between objective and subjective time, a more parsimonious 

explanation for this deviation has been proposed by a new model of time perception 

suggesting that the brain estimates time by directly keeping track of changes in perceptual 

content without the involvement of any clocks (Roseboom et al., 2019; Sherman, Fountas, 

Seth, & Roseboom., 2020). The researchers used a hierarchical deep convolutional 

classification network to develop a model that estimates the duration of visual scenes.  

Changes in perceptual content drive changes in the activation patterns of the units throughout 

the networks. If the change in activation exceeds some threshold, time is perceived to have 

passed.  At the end of the event of interest, the accumulated units of time are transformed 

into reportable units such as milliseconds or seconds.  To test the explanatory power of this 

theory, the researchers presented human observers and the neural network with the same 

naturalistic videos and found that the temporal estimates generated by the model 

corresponded well to the estimates reported by the participants. In conclusion, the proposition 
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that time is tracked based on the content of perceptual experience is more parsimonious than 

the time-sensing machinery proposed by scalar timing theory, and this study provides further 

evidence that the brain does not need an internal clock to track time. However, which 

mechanism the brain employs to measure time (counting ticks emitted by a pacemaker or 

counting changes in the environment) has no implications for the purposes of investigating 

how prior expectations influence perceived duration.  

Standard deviation of the sensory likelihood 

After we have determined the different possible ways in which the brain could be estimating 

time, we have to discuss what processes determine the reliability of time estimates. As studies 

on multisensory integration suggest (see General Introduction, p.11), the variance of the 

sensory likelihood will partially depend on how noisy the stimulus is, with noisier stimuli 

leading to broader sensory likelihoods (e.g., Battaglia et al., 2003; Alais & Burr, 2004).  

Assuming that the noise in the sensory signal is kept constant, the variance of the sensory 

likelihood will depend predominantly on the resolution with which the perceptual system can 

make the required estimate. Here I will call this resolution sensory precision – the greater the 

sensory precision, the more accurate the judgements produced by the perceptual system will 

be, and the lower the variance of the sensory likelihood. Take a clock face as an example. A 

clock-face with markings showing the hours and minutes will allow you to differentiate smaller 

differences in time than a clock face with no markings. The former clock face will therefore 

allow you to tell what time it is with greater precision, and the probability distribution of the 

current time will have a smaller variance. 

In perceptual tasks, including duration estimation, sensory precision can be inferred following 

Weber’s law. Weber’s law postulates that the just noticeable difference between two stimuli 

scales with stimulus magnitude – the incremental increase in stimulus magnitude required for 

an observer to notice a change in the stimulus is proportional to the absolute magnitude of the 

stimulus. Specifically, Weber’s law states that: 

 
𝑘 =

∆𝐼

𝐼
 (8) 

where the constant 𝑘, known as the Weber fraction, describes the proportional relationship 

between the absolute stimulus magnitude 𝐼 and the just noticeable difference ∆𝐼 associated 

with 𝐼. In other words, the smaller the Weber fraction, the greater the sensory precision 

associated with a given stimulus. It is assumed that the Weber fraction is different across tasks 

and modalities, for example, distance discrimination versus contrast discrimination, but within 
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a given sensory task it is believed to be independent of absolute stimulus magnitude. Within 

the time perception literature, Weber’s law is also widely referred to as the scalar property of 

variance (scalar variability for short). Scalar variability refers specifically to the observed 

phenomenon that as stimulus’ duration (or any magnitude-related property) increases, 

responses become more variable (Figure 2.2; Gibbon, 1977). This relationship has been 

quantified through the coefficient of variation which represents the ratio between the 

standard deviation of the produced estimates and either the duration of the interval being 

estimated or the mean of the provided responses (e.g., Gibbon, 1977; Wearden, 1991). As the 

interval to be estimated increases, so should the associated variance of estimates, such that 

the coefficient of variation remains constant across a range of durations. 

 

Figure 2.2. Scalar variability in time perception. The variability of reported duration increases with 

increase in presented duration. The white line represents the mean of responses, and the shaded area 

the standard deviation of responses. As the presented duration increases, the variability of responses 

increases as well. 

Even though Weber’s law provides a neat theoretical account of the variability of magnitude 

estimation, its relevance and applicability to the domain of time perception remain an open 

question.  On the one hand, some studies have found that scalar variability is preserved for a 

range of durations with the coefficient of variation remaining constant from 0.5 to 1.3s 

(Wearden & McShane, 1988), and from 0.5 to 32s (Zeiler, Scott, & Hoyert, 1987, but only when 

data was aggregated across all participants – see Wearden, 1991). However, not all empirical 

findings support the predictions of Weber’s law. Studies comparing the discrimination 

performance associated with a short compared to a long stimulus – 50 and 1000ms 
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(Rammsayer & Pichelmann, 2018), 200 and 2000ms (Lavoie & Grondin, 2004), 200 and 1000ms 

(Grondin, 2010) – have found that the Weber fraction was larger for the longer durations.  

Studies incorporating ranges of durations show similar results – the Weber fraction (and 

coefficient of variation) increases with duration in a range of supra-second intervals across 

duration discrimination and reproduction tasks (Grondin, 2012; see also Woodrow, 1930). 

However, studies incorporating even wider ranges of durations suggest that the positive linear 

relationship between absolute stimulus duration and discrimination does not hold for very 

short durations. When durations range from 50 to 3200ms (Getty, 1975), and 100 to 1000ms 

(Rammsayer, 2014) the relationship between the discrimination threshold and absolute 

duration follows a U-shaped function – as durations decrease below 200ms, the Weber 

fraction increases. Increase in Weber fractions for very short durations has also been reported 

in earlier research (Henry, 1948; Abel, 1972; Fetterman & Killeen, 1992). Overall, the results 

discussed here suggest that the original formulation of Weber’s law is applicable only for a 

limited range of durations. An alternative generalized formulation of Weber’s law has been 

proposed in which the variance of estimates is a combination of a variance component 

proportional to the stimulus magnitude and some constant residual variance (Getty, 1975). 

This version of the model seems to explain the increase of the Weber fraction for short 

durations well but still fails to provide a good fit for the increase in Weber fraction observed 

for long durations (see Killeen & Weiss, 1987 for another reformulation of Weber’s law). This 

suggests that time perception has different properties across different scales, even 

milliseconds to seconds, and raises the question of whether scalar variability should be 

considered a general property of interval timing at all. 

Finally, assuming that duration estimation does follow Weber’s law at least partially, it is still 

widely debated what processes could give rise to these effects. On the one hand, following 

scalar timing theory it is possible that the perceptual system represents stimulus magnitude on 

a linear scale and estimates simply become noisier as stimulus magnitudes increase (Figure 

2.3B; Gibbon 1977; Cantlon, Cordes, Libertus, & Brannon, 2009). On the other hand, it is 

possible that stimulus magnitude is represented on a logarithmic scale and scalar variability 

emerges when stimulus magnitudes are transformed into a linear scale for the sake of 

reporting (Figure 2.3A; Fechner, 1860; Petzschner & Glasauer, 2011; Ren et al., 2020). Which 

proposition provides a more accurate account of perception remains an open question.  
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2.3.2 Prior – building duration expectations 

Our ability to define what kind of statistical information is reflected in the prior is limited 

because we do not have access to observers’ subjective priors. Most studies analyze 

perceptual reports to indirectly determine the information the prior must contain for a given 

response to occur (more on this in the next section below). Going a step further, Acerbi, 

Wolpert, and Vijayakumar (2012) attempted to reconstruct the subjective prior distribution of 

each participant from their behavioural responses in a duration reproduction task. In most 

cases, the reconstructed priors were good approximations of the actual stimulus distributions 

– there was no evidence of differences between the mean, variance, and skewness of the 

participants’ reconstructed priors and the presented stimulus distributions. However, the 

reconstructed prior differed from the real stimulus distribution when it came to kurtosis - 

participants’ reconstructed priors typically had heavier tails than the stimulus distribution, and 

do not accurately reflect multimodality.  

One key assumption of the Bayesian brain hypothesis is that priors are updated as new sensory 

information is encountered. Nonetheless, many studies using Bayesian perceptual models 

employ a fixed prior. When assuming a fixed prior, the shape of the prior remains the same 

from the first to the last trial in the experiment, and the prior does not change as a result of 

recent trial history. Some notable examples of studies using fixed priors include Jazayeri and 

Figure 2.3. The two hypothesized representation of duration (or any magnitude characteristic). (A) If 

duration is encoded on a logarithmic scale, the variability of the representations is constant. As durations 

increase their representations become increasingly compressed which makes two long durations more 

difficult to distinguish then two short durations. (B) If duration is represented on a linear scale, durations 

are spaced at equal intervals, but the variability of their representations increases linearly with increase 

in the presented duration. Figure adapted from Cantlon et al. (2009). 
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Shadlen (2010) and Acerbi et al. (2012). In contrast, in models assuming an updating prior, the 

prior changes on every trial as new information is encountered, similar to a Kalman filter. In 

updating priors, new and past trials can have equal weight in the computation of the prior (for 

example, Petzschner & Glasauer, 2011), or the weight of past trials can decay to mimic 

forgetting (for example, Ostwald et al., 2012). Studies find minor advantages of updating 

compared to fixed priors (Petzschner & Glasauer, 2011) and updating priors with forgetting 

compared to updating priors without forgetting (Ostwald et al., 2012). However, the reported 

differences in model performance are usually not substantial, which could be a by-product of 

specific task characteristics, specifically, the randomization of the stimuli. In a fully randomized 

trial sequence, either model will fit the data well because the structure of the immediate past 

trials will mimic the experiment's overall structure. In a random walk sequence, however, a 

Kalman model will fit the data better because the immediately past trials are not 

representative of the entire stimulus distribution (Glasauer & Shi, 2018). Ultimately, 

participants’ subjective prior remains hidden, and researchers can only infer its most likely 

characteristics based on participants’ reports. 

2.3.3 Posterior – integrating measured and predicted duration 

The main evidence that duration estimation, and magnitude estimation in general, arises from 

the integration of likelihood and prior comes from studies that investigate the effect of 

previously presented stimuli on perceptual reports. For example, it has been found that 

duration estimates exhibit serial dependence – judgements are biased towards the stimulus 

presented on the previous trial (Roseboom, 2019). On a more global scale, it has also been 

found that perceptual reports are biased not only towards the stimulus encountered in the 

immediate past but also towards the mean of the overall stimulus distribution. Durations 

longer than the mean are underestimated, and durations shorter than the mean are 

overestimated, while the mean represents a point of indifference – responses are equally 

under- and overestimated. This regression to the mean effect is range specific – the same 

physical value will be underestimated if it is larger than the mean value but overestimated if it 

is smaller than the mean value. Within the domain of duration estimation this central 

tendency bias is also known as Vierordt’s law (Woodrow, 1934; Kowalski, 1943; Wearden, 

2003; Lejeune & Wearden, 2009; Jazayeri & Shadlen, 2010, 2015; Cicchini, Arrighi, Cecchetti, 

Giusti, & Burr, 2012; Shi, Church, & Meck, 2013; Aagten-Murphy, Cappagli, & Burr, 2014; Murai 

& Yotsumoto, 2016; Shi & Burr, 2016; Roach, McGraw, Whitaker, & Heron, 2017; Barne et al., 

2018; Rhodes, Seth, & Roseboom, 2018; Roseboom et al., 2019), and has been reported using 
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multiple different tasks. These include ready-set-go tasks, where durations are defined by two 

flashes or tones and participants have to produce a button press such that the interval 

between the second flash and the button press has the same duration as the interval between 

the first and the second flash (e.g., Jazayeri & Shadlen, 2010); interval reproduction, where 

participants have to produce an interval of the same duration as the stimulus by keeping the 

response button down (e.g., Acerbi et al., 2012); and direct estimation where participants 

report the perceived duration of the interval verbally (e.g., Experiment 3 in Penton-Voak et al., 

1996), or using a visual analogue scale (e.g., Roseboom et al., 2019; Suárez-Pinilla et al., 2019). 

Furthermore, serial dependence and regression to the mean have been reported across other 

perceptual domains including serial dependence in orientation (Fischer & Whitney, 2014), 

numerosity (Cicchini et al., 2014), facial identity (Liberman, Fisher, & Whitney, 2014), visual 

variance (Suárez-Pinilla et al., 2018), size (Hollingworth, 1910), and regression to the mean in 

loudness (Stevens & Greenbaum, 1966; Teghtsoonian & Teghtsoonian, 1978), movement 

planning (Hudson, Maloney, & Landy, 2007; Gallivan & Chapman, 2014), target-reach time 

(Chang & Jazayeri, 2018), linear and angular distance estimates (Petzschner & Glasauer, 2011). 

The prevalence of such biases across different behavioural tasks and domains provides solid 

evidence that observers build and use predictions based on previously experienced sensory 

information to inform perception in the present moment.  

Despite the wealth of research investigating regression to the mean effects in perception, the 

effect of the relative variance of the prior (or the likelihood) on perceptual reports remains a 

critical open question. Studies investigating how the variance of the prior affects estimates of 

location and force have found that when the prior has a smaller variance, responses become 

more optimal, and show greater regression towards the mean (Körding, Ku, & Wolpert 2004; 

Berniker, Voss, & Kording, 2010; Acerbi, Vijayakumar, & Wolpert, 2014). Focusing on the 

domain of time perception, Miyazaki et al. (2005) presented participants with sequences of 

three visual stimuli separated by equal inter-stimulus intervals and asked them to predict 

when the third stimulus would appear. In different blocks, the inter-stimulus intervals were 

drawn from a Gaussian distribution with a small or large variance. They found that 

participants’ reports of stimulus arrival were more biased towards the mean presentation time 

when the distribution of inter-stimulus intervals had a small variance. However, in all these 

experiments the effect of variance was confounded by simultaneous manipulations of 

distribution range – distributions with large variance also had a larger range than distributions 

with small variance (Figure 2.4) – which prohibits strong conclusions about the specific 
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influence of prior variance on behavioural reports (under the mentioned Gaussian 

assumptions). 

 

Figure 2.4. Confounding effects of range and variance. (A) S       “p  c   ”       bu   n – it has a small 

variance and a small range, while (B)         “b    ”       bu   n – it has a large variance and a large 

range. In experiments where variance and range are confounded, it is not clear the difference in which 

statistical feature is driving the differences in participants’ responses.  

 

To date, very few studies have investigated how more complex distributional characteristics of 

the prior affect duration estimation, and the existing evidence shows that perceptual reports 

reflect the skewness but not multimodality of the prior distribution.  For example, Ryan (2011) 

examined how duration reports differed if stimuli were drawn from a uniform distribution, a 

distribution skewed towards shorter durations and a distribution skewed towards longer 

durations. As in the classical regression to the mean effect, in the uniform distribution, short 

durations were overestimated, while long durations were underestimated. In contrast, when 

long distributions were overrepresented, participants’ responses to the long durations showed 

no bias, while all other durations in the range were overestimated. Similarly, when short 

durations were overrepresented, responses to short durations showed no bias, while all other 

durations were underestimated (also see Acerbi et al., 2012 for similar results). Nonetheless, 

all available evidence suggests that multimodality does not affect perceptual reports (Ryan 

2011; Acerbi et al., 2012). Ryan (2011) found no differences in participants’ duration responses 

when the stimuli followed a uniform and a bimodal distribution, suggesting that observers do 
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not estimate bimodality. Similarly, Acerbi et al.’s (2012) found that when stimuli followed a 

bimodal distribution duration reports did not exhibit a strong bias towards the most probable 

stimuli, and participants did not assimilate the shapes of these distributions. The empirical 

results of both of these studies are consistent with the results from the prior reconstruction 

analysis reported by Acerbi et al. (2012) which suggested that participants’ subjective prior did 

not represent bimodality – the statistical characteristics of stimulus distributions that are not 

reflected in the prior do not affect perception and perceptual reports. 

Finally, evidence that perceptual reports reflect a process similar to Bayesian inference comes 

from studies investigating how sensory precision affects responses on duration estimation 

tasks. As discussed above, if the external properties of the stimulus are kept constant, the 

variance of the sensory likelihood will predominantly reflect participants’ sensory precision 

which can be defined through Weber’s law. Therefore, following the principles of Bayesian 

inference, greater sensory precision should result in a weaker bias towards the prior, but the 

research investigating this prediction is limited. The strongest available evidence that sensory 

precision affects the magnitude of perceptual biases comes from a study that found that 

participants’ Weber fractions, estimated on the basis of a duration bisection task, were 

positively correlated with regression to the mean in their responses in a duration reproduction 

task (Cicchini et al., 2012). Importantly, these findings suggest that sensory precision is stable 

across tasks – sensory precision in duration bisection is related to sensory precision in duration 

reproduction. In addition, musicians tend to have smaller Weber fractions (i.e. greater sensory 

precision) than non-musicians (Grondin & Killeen, 2009), and studies have found that expert 

musicians tend to experience weaker regression to the mean than non-musicians across 

different duration perception tasks (Cicchini et al., 2012; Aagten-Murphy et al. 2014). These 

are promising findings providing evidence in favour of the prediction of Bayesian theories, but 

further research is needed to investigate the strength of the relationship between sensory 

precision and perceptual biases in the general population. 

2.3.4 Conclusion 

Positioning time perception within the framework of Bayesian inference can help us identify 

the gaps in our existing knowledge of what processes stand behind our ability to estimate 

durations. Despite recent advances in our understanding of the mechanisms involved in time 

estimation (Roseboom et al., 2019), we still don’t know what determines the variability of 

temporal estimates or in what scale the brain encodes time. Furthermore, the research, 

investigating how the properties of the prior influence duration perception, has failed to 
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thoroughly investigate the effects of most statistical features apart from the mean. Most 

notably, no studies to date have examined the specific, non-confounded effects of prior 

variance on magnitude estimation in any modality, not just duration, which is surprising given 

that one of the key predictions of Bayesian integration related to the relative precision of the 

prior and the likelihood. Similarly, very few studies have investigated how sensory precision 

influences the integration of the prior and the likelihood, with the existing evidence focusing 

specifically on the difference between musicians and non-musicians.  

2.4 Neurophysiology of time 

In the previous section, I discussed the available behavioural evidence that time perception 

arises from a process akin to Bayesian inference. I will now focus on some of the 

neurophysiological correlates of time perception relevant to the integration of prior 

expectations and sensory inputs at the stage of decision making. Very briefly, the brain 

mechanisms behind the perception of time are still largely unknown. The literature 

surrounding this topic extends from pharmacological studies examining the roles of different 

neurotransmitters (Meck, 1996; Marinho et al., 2018), fMRI studies trying to determine how 

different brain areas are involved in duration estimation (Pouthas et al. 2005; Grondin, 2010; 

Sherman et al., 2020), and EEG studies investigating the time course of brain dynamics during 

timing (Macar & Vidal, 2004; Barne et al., 2018). Here I will focus on three physiological 

processes whose role in time perception and decision-making is still unclear – contingent 

negative variation (CNV), mismatch negativity (MMN), and dopamine release. 

2.4.1 Contingent negative variation  

One component of the evoked response potential that has been proposed to be associated 

with the perception of time is the contingent negative variation (CNV; Walter, Cooper, 

Aldridge, McCallum, & Winter, 1964). The CNV is observed as a response to a stimulus that 

signals the imminent presentation of another stimulus. It constitutes a prolonged component 

with a negative polarity that can reach several hundred milliseconds and can be observed after 

the early components of the ERP. Usually, the amplitude of the CNV ramps up following the 

presentation of the first stimulus, depending on the task it can reach a plateau, and finally goes 

back to baseline when the second stimulus is presented. The CNV has been observed with 

different stimulus pairs such as two sensory stimuli marking the start and end of an interval 

(Macar & Vitton, 1982), a sensory stimulus marking the start and a motor response marking 
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the end of the interval (Walker et al., 1964), and the onset and offset of a filled interval (Ng, 

Tobin, & Penney, 2011).  

There is still a debate regarding what processes are reflected in the CNV (see Macar & Vidal, 

2004). On the one hand, studies have found evidence that the CNV is related to the actual 

timing of the incoming sensory signal. For example, when participants were asked to 

reproduce an interval with a given duration, there was a positive correlation between 

participants responses and the amplitude of the CNV recorded while participants were 

producing their responses (Macar, Vidal, & Casini, 1999). The researchers also found that 

durations longer than the standard interval were associated with greater CNV amplitude than 

durations shorter than the standard interval in a discrimination task. As a result of such 

findings, proponents of the internal clock model have suggested that the CNV reflects the 

accumulation of pulses by the internal clock (Macar & Vitton, 1982; Macar et al., 1999; Casini 

& Vidal, 2011). 

Nonetheless, many findings contradict the proposition that the CNV reflects only temporal 

accumulation. For example, in a duration bisection task, it was found that the amplitude of the 

CNV recorded in a given trial correlates with the duration presented on the previous trial – 

CNV amplitude was greater on trials preceded by longer durations (Wiener & Thompson, 

2015).  It was also reported that the CNV associated with the same physical duration differed 

depending on the context in which the stimulus was presented – the amplitude of the CNV was 

greater when the stimulus was the longest in the set compared to when the stimulus was the 

shortest in the set (Damsma, Schlichting, & van Rijn, 2020). In contrast to these findings, the 

accumulator in internal clock models is not affected by prior expectations. If the CNV reflected 

the accumulation process, then there should have been no effect of previously experienced 

stimuli on the CNV. These results instead suggest that the CNV reflects stimulus anticipation 

based on prior expectations. When the presented stimulus is shorter than expected, the 

ramping up of the CNV is cut short, and the amplitude remains low. Conversely, when the 

presented stimulus is longer than expected – the amplitude of the CNV increases until the 

anticipated event occurs. Finally, findings from temporal generalisation (Macar & Vidal, 2003) 

and bisection tasks (Ng et al., 2011) go one step further and suggest that the CNV could reflect 

the outcome of the decision-making process. In a bisection task it was found that for long 

stimuli, the amplitude of the CNV started to drop when the mean between the two anchors 

was reached rather than remain constant until the end of the stimulus (Ng et al., 2011). These 

results are evidence that the CNV reflects decision making because its time-course is 
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reminiscent of the strategy most observers would be expected to adopt in such a task – a 

stimulus will be identified as closer to the short anchor if it is shorter than the mean between 

the two anchors. Conversely, a stimulus will be identified as closer to the long anchor if it is 

longer than the mean. Overall, based on the existing evidence, it is more likely to assume that 

the CNV reflects stimulus anticipation and decision making, rather than merely stimulus 

processing, but more research is needed to provide conclusive results.  

2.4.2 Mismatch negativity  

Another component of the ERP that has been proposed to play a role in time perception is the 

mismatch negativity response (MMN), which is elicited by violations of regularity, and could 

therefore be related to the assimilation of statistical information in perceptual predictions. In 

the classical oddball paradigm used to measure MMN, participants are presented with a 

sequence consisting of the repetition of a stimulus known as the standard stimulus. 

Occasionally the stream of repeated stimuli is interrupted by the presentation of a deviant 

stimulus that differs from the standard. Originally, MMN was measured using EEG and was 

observed in the auditory domain as a negative component of the event-related potential (ERP) 

with fronto-central topography and latency between 100 to 200ms from the onset of an 

unexpected auditory tone presented in the absence of attention (Näätänen, Paavilainen, 

Rinne, & Alho, 2007). It is important to note that while both the CNV and MMN are affected by 

prior expectations, the information they encode is not the same (Macar & Vidal, 2004). In the 

domain of time perception, the CNV reflects the physical duration expected based on the prior 

and participants’ decision regarding the duration of the stimulus. In contrast, the MMN reflects 

only how well that stimulus fits within the model of the world currently held by the brain. For 

example, consider two distributions with different ranges – one consisting of short durations 

(100-500ms), and one consisting of long durations (600-1000ms), but the same standard 

deviation (to provide a simple example we will assume that the brain encodes time in a linear 

scale). Observers would hopefully perceive the longest stimuli in the two distributions (500 

and 1000ms) differently. As a result, the CNV elicited by the longest stimulus of the long 

distribution (1000ms) should have a greater amplitude than the CNV elicited by the longest 

stimulus of the short distribution (500ms). In contrast, the amplitude of the MMN elicited by 

these stimuli should be the same because, despite their physical differences, they are equally 

likely within the two distributions. The same principles hold if the brain encodes time on a 

logarithmic scale, only the ranges (when transformed to linear scale) would be different. 
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MMN has been observed across multiple sensory modalities including visual (Stephnics, 

Kremláček, &  zigler, 2014), auditory (Näätänen et al., 2007), somatosensory (Strömmer, 

Tarkka, & Astikainen, 2014), and temporal perception (Chang, Seth, & Roseboom, 2017). In 

many experiments investigating temporal MMN, stimuli are presented after a fixed inter-trial 

interval which coupled with the repetition of the standard stimulus in oddball paradigms gives 

rise to a rhythmic structure (Tse & Penney, 2006; Roger, Hasbroucq, Rabat, Vidal, & Burle, 

2009; Hsu et al., 2010). Consequently, the presentation of a deviant stimulus violates both 

expectations of duration and rhythm, and it is impossible to disentangle the 

neurophysiological responses associated with one from the other. More recently studies have 

reduced the confounding effect of rhythm by varying the duration of the inter-trial intervals, 

and have found that MMN can be elicited specifically as a result of violating expectations of 

duration (Chen, Huang, Luo, Peng, & Liu, 2010; Chang et al., 2017). Furthermore, studies have 

found that that the amplitude of the MMN depends on variance and range of the stimulus 

distribution (Garrido, Sahani, & Dolan, 2013; Garrido, Teng, Taylor, Rowe, & Mattingley, 2016; 

Randeniya, Oestreich, & Garrido, 2019). For example, Garrido et al. (2013) found that the 

amplitude of the MMN in response to an unexpected stimulus was greater when the stimuli 

were drawn from the distribution with small variance and narrow range rather than a 

distribution with large variance and wide range. Such results provide compelling evidence that 

MMN could reflect the integration of prior expectations and sensory information as they are 

reminiscent of the effect of prior variance (and range) found in behavioural reports (e.g., 

Berniker et al., 2010; Miyazaki et al., 2005).  

Despite the extensive research documenting the properties of the MMN, it is still unclear what 

neurological processes give rise to this component of the evoked response potential. The 

theories that have been most extensively examined relate MMN to neuronal sensory 

adaptation, change detection, model adjustment, and prediction error detection (Lieder, 

Daunizeau, Garrido, Friston, & Stephan 2013). From these theories, neuronal adaptation 

suggests that MMN reflects sensory processing, while the change detection, model adjustment 

and prediction error accounts relate MMN to detecting statistical irregularities with the last 

two proposing different roles for MMN within the Bayesian brain framework. Here I will focus 

on the neuronal adaptation, model adjustment, and prediction error accounts of MMN.  

According to the neuronal adaptation hypothesis, MMN reflects early sensory processing 

rather than violations in regularity. Neuronal adaptation constitutes a decrease in a neuron’s 

firing rate in response to repeated stimulation, and proponents of this theory suggest that 
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MMN is generated by differences in the fatigue of neuronal populations responding to a 

specific stimulus feature (May, Tiitinen, Ilmoniemi, Nyman, Taylor, & Näätänen, 1999; May & 

Tiitinen, 2010). The repeated presentation of a standard stimulus leads to a decrease in the 

response of the population of neurons that respond specifically to that stimulus, resulting in a 

decrease in the amplitude of the EEG signal. The neurons selective for the deviant stimulus are 

not adapted, and their activity leads to an enhanced response when the deviant is presented. 

While neuronal adaptation can provide a parsimonious account of MMN, sensory-specific 

adaptation cannot explain how MMN is elicited in paradigms that do not implement a 

repetition of a standard stimulus, or in paradigms in which the unexpected event is the 

repetition of a standard stimulus (Saarinen, Paavilainen, Schöger, Tervaniemi, & Näätänen, 

1992; Garido, Kilner, Stephan, & Friston, 2009; Symonda et al., 2017).  These findings suggest 

that even if neuronal adaptation has some role in the generation of MMN, MMN is unlikely to 

reflect just the processing of the sensory features of presented stimuli.  

In contrast to the theory of neuronal adaptation of MMN, the model adjustment account and 

the prediction error account suggest that MMN reflects later stages of perceptual decisions 

rather than the initial sensory processing of the stimulus. According to both theories, the brain 

maintains a dynamic model of the environment that updates as new sensory information is 

encountered. The model adjustment hypothesis suggests that MMN reflects model updating in 

response to the incorporation of new information that does not match the predictions of the 

model (Winkler, Karmos, & Näätänen, 1996; Winkler & Czigler, 1998; Ostwald et al., 2013; 

Winkler, 2007). In contrast, the prediction error hypothesis suggests that MMN reflects the 

difference between the predicted sensory input and the incoming sensory information 

(Wacongne, Changeus, & Dehaene 2012; Stefanics et al., 2014). It is essential to note the 

distinctions between these two accounts of MMN.  In the prediction error hypothesis, MMN 

reflects whether the predictive model accounts for the sensory input and therefore signals 

whether the model should be updated. This account differs from the model adjustment 

hypothesis where MMN reflects the difference between the prior and the posterior, or 

whether the predictive model was updated after the presentation of sensory information. 

Both theories can account for findings that neuronal adaptation cannot explain, and 

computational models of MMN based on the model adjustment hypothesis or the prediction 

error hypothesis outperform models based on neuronal adaptation (Ostwald et al., 2012; 

Lieder et al., 2013). Nonetheless, modelling studies to date have failed to provide convincing 

evidence in favour of one theory over the other (Lieder et al., 2013), and empirical studies 

have not yet found a way to distinguish these two theories.  
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To summarize, the evidence to date challenges the proposition that MMN reflects sensory 

processing, and supports the prediction error and model adjustment accounts which suggest 

that MMN reflects later stages of stimulus processing. However, empirical studies have not yet 

differentiated between these two theories, and it is still unclear whether MMN signals the 

updating of the predictive model or the discrepancy between predicted and actual sensory 

inputs.  

2.4.3 Dopamine 

The dopaminergic system has also been suggested to be involved in time perception (Coull, 

Cheng & Meck, 2011), but its exact role is still disputed. Proponents of scalar timing theory 

suggest that dopamine modulates the rate of the internal clock – the greater the level of 

dopamine in the brain, the higher the rate of the pacemaker (Matell & Meck, 2004; Meck, 

1996). Early evidence in favour of this hypothesis suggested that in a temporal bisection task 

administering dopamine antagonists in rats (decrease dopamine levels) leads to an 

underestimation of time intervals, while administering dopamine agonists (increase dopamine 

levels) leads to an overestimation of time intervals (Maricq & Church, 1983; Meck 1983; Meck, 

1986; Matell, King, & Meck, 2004). In addition, it was recently reported that the firing rate of 

neurons in the medial frontal cortex and the basal ganglia in non-human primates was flexibly 

adjusted based on the duration of produced temporal intervals (Wang, Narain, Hosseini, & 

Jazayeri, 2018), providing further supportive evidence for the involvement of dopaminergic 

activity in timing. Consequently, Wang et al. (2018) proposed a neural circuit model of action 

timing which was later expanded to account for the responses of human participants on 

different tasks requiring periodic production of actions (Egger, Lee, & Jazayeri, 2020). 

Despite the research presented above, the existing pharmacological evidence in humans on 

the role of dopamine in time perception is mixed. Patients with conditions associated with low 

dopamine levels such as schizophrenia and depression have shown deficits in duration 

discrimination compared to healthy controls (Wahl & Sieg, 1980; Rammsayer, 1990). Patients 

with  arkinson’s disease have also demonstrated deficits in duration estimation and 

production tasks (Pastor, Artieda, Jahanshahi, & Obeso, 1992; Lange, Tucha, Steup, Gsell, & 

Naumann, 1995). Crucially, administering l-dopa medication in  arkinson’s patients increases 

dopamine and improves performance in duration estimation and reproduction (Pastor et al., 

1992; Lange et al., 1995). These findings provide evidence that dopamine levels in the brain 

could be directly related to time perception – a decrease in dopamine levels leads to deficits in 

time perception tasks while an increase in dopamine levels resolves those deficits. 
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Nonetheless, other studies have found conflicting results which challenge the suggested role of 

dopamine. Non-medicated  arkinson’s patients showed deficits on a bisection task when 

presented with supra-second but not sub-second intervals (Smith, Harper, Gittings, & 

Abernethy, 2007). Conversely, medicated patients performed no differently than controls on 

duration estimation of long intervals, 12-48s, but they still had deficits in duration 

discrimination of short intervals, 1-2s (Riesen & Schnider, 2001). It is also difficult to draw 

strong conclusions based on patient data alone as diseases have widespread, heterogeneous 

effects, which makes it difficult to relate a given result to one specific deficit in isolation. 

Unfortunately, manipulating dopamine levels in healthy controls has not provided conclusive 

results either. For example, administering a dopamine antagonist had an effect on duration 

discrimination, but administering a dopamine agonist or l-dope did not (Rammsayer, 1989a; 

Rammsayer, 1989b; Rammsayer, 1999).   

Pharmacological manipulations also cannot be used to establish whether transient dopamine 

fluctuations alter duration perception on a trial-by-trial basis. Previous studies have found that 

dopamine release is positively correlated with the rate of spontaneous blinking in non-human 

primates (Karson, 1983; Groman et al., 2014). Nonetheless, many studies in healthy human 

participants have also failed to find a relationship between dopaminergic activity and 

spontaneous blinking (van der Post, de Waal, de Kam, Cohen, & Gerven, 2004; Mohr, Sandor, 

Landis, & Brugger, 2005; Dang et al., 2017; see Jongkees & Colzato, 2016 for a review), raising 

concerns about the reliability of this measures. Despite the controversy in the literature, 

Terhune, Sullivan, and Simola (2016) decided to investigate how trial-by-trial fluctuations in 

dopamine levels alter duration perception using spontaneous blinks as a proxy for dopamine 

activity. They found that in a duration bisection task, observers overestimated durations on 

trials preceded by blinks. The effect was observed across intervals presented in both the visual 

and auditory domain. Nonetheless, it was recently found that pre-trial spontaneous blinking 

did not affect duration estimation of naturalistic videos (Suárez-Pinilla et al., 2019), and raises 

further questions regarding the potential involvement of dopamine in time perception, and 

the relationship between spontaneous blinking and duration estimation. Recently, Mikhael 

and Gershman (2019) suggested that the conflicting evidence presented above can be 

reconciled by reshaping the role of dopamine in timing through its role in signalling reward-

prediction errors – an unexpected reward leads to an increase in dopamine levels (and 

increase in the rate of the pacemaker) while an omission of an expected reward leads to a 

decrease in dopamine levels (and decrease in the rate of the pacemaker).   
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An alternative possibility for the role of dopamine in duration estimation tasks is that 

dopamine does not reflect a duration-related component of the decision process, but is 

related to more general processes like responses biases, action selection, and motivation 

which all influence performance on perceptual tasks. One study found that stimulation to the 

basal ganglia, which results in increased release of dopamine, led to an increase in the 

probability of affirmative responses in a change detection task (both hits and false-alarms, 

Wang, Rangarajan, Gerfen, & Krauzlis, 2018). Such results suggest that changes in dopamine 

concentration could act by shifting the decision criterion – evidence exceeding the decision 

criterion leads to an affirmative response (a change occurred), while evidence that falls below 

the criterion leads to a negative response (a change did not occur). Lowering the decision 

criterion would result in more changes being successfully detected, but also in more trials 

lacking a change being falsely labelled to contain a change. Criterion shifts can also potentially 

explain Terhune et al.’s (2016) results – an increase in dopamine may lead to a transient 

increase in propensity to respond “long” without changing the available sensory evidence. This 

could also explain why no effect of pre-trial spontaneous blinking has been observed in a 

duration estimation task, which is potentially less subject to such biases (see Suárez-Pinilla et 

al., 2019).  In addition to biasing responses, dopamine concentrations have also been found to 

reflect action choice (Howard, Li, Geddes, & Jin, 2017). Rats were presented with two levers, 

one to the left and one to the right, and trained to press the left lever in the first half of the 

trial and the right lever in the second half of the trial. The researchers found that rats showed 

high dopamine concentration in the first half of the trial, and low dopamine concentrations in 

the second half of the trial, suggesting that dopamine levels were specifically reflecting the 

action chosen by the animal. Finally, it has been proposed that shifts in duration perception 

due to changes in dopamine concentration could be related to changes in motivation (Wise, 

2004; Balcı, 2014). For example, Soares, Atallah, & Paton (2016) found that suppressing the 

activity of dopaminergic neurons in rats resulted in flattening of the psychometric curve in a 

duration discrimination task. Based on such results, it is difficult to view Terhune et al.’s (2016) 

findings only through the interpretation that dopamine speeds up the (hypothetical) internal 

clock.   

It is also important to consider that the effect of spontaneous blinking on duration estimation 

may not reflect changes in dopaminergic activity. Blinking leads to gaps in perceptual content 

with variable duration (VanderWerf, Brassinga, Reits, Aramideh, & Ongerboer de Visser, 2003). 

Spontaneous blinking also leads to decreased sensitivity to retinal stimulation (Volkmann, 

Riggs, Moore, 1980) and is associated with decreased activation in the visual cortex (Bristow, 
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Frith, & Rees, 2005; Golan et al., 2016). It was also found that in a duration bisection task, 

blinks on the current trial led to an underestimation of durations for visual but not auditory 

stimuli (Grossman et al., 2019). These results can be explained by the theory that duration 

estimation is based on perceptual content (Roseboom et al., 2019) – blinking reduced 

perceptual content in the visual but not auditory domain, and in turn, leads to an 

underestimation of visually presented durations. Within this framework, it is also possible to 

explain Terhune et al.’s (2016) results without referring to dopamine at all. Blinking leads to 

duration underestimation and simultaneously increases the uncertainty associated with the 

temporal estimate made at the time of blinking. As a result, intervals experienced immediately 

after a blink might be biased away from the estimate made on the previous trial, leading to an 

overestimation of the presented duration.  

2.4.4 Conclusion 

Different theoretical accounts and empirical studies have related CNV, MMN, and dopamine 

concentration to sensory or decision-making aspects of perception. On the one hand, CNV has 

been proposed to reflect the duration of the presented stimulus, MMN – to arise as a result of 

low-level sensory adaptation, and dopamine release – to regulate the speed of the internal 

clock. On the other hand, many studies provide evidence that these processes are involved in 

later stages of processing with CNV reflecting the outcome of the decision process, MMN – the 

prediction error between priors and sensory inputs or the integration of sensory inputs into 

the brain’s generative model, and dopamine release – shifts in response bias. Nonetheless, the 

debate in the literature is far from resolved, and more research is needed to establish the role 

of these processes in time perception and Bayesian inference.  

2.5 Bayesian inference outside of awareness  

All studies discussed so far have investigated the mechanisms of perceptual inference under 

conditions of full awareness. Nonetheless, multiple lines of research provide evidence that 

some sensory processes can still occur when observers are not aware of the encoded sensory 

information. For example, adaptation to motion (OShea & Crassini, 1981; Roumani & 

Moutoussis, 2020), and orientation (Wade & Wenderoth, 1978; He & Macleod, 2001) still 

occurs even if the stimuli are suppressed from awareness. In contrast, adaptation to more 

complicated features such as face expression (Yang, Hong, & Blake, 2010) and identity 

(Moradi, Koch, & Shimojo, 2005) require that the adapting stimulus be visible.   
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Nonetheless, not many studies have investigated if subjective priors and the integration of 

prior expectations with sensory input require awareness. Suárez-Pinilla (2018) used continuous 

flash suppression (CFS) to examine if serial dependence in orientation perseveres outside of 

awareness. CFS is a masking paradigm in which a high-contrast flashing stimulus, the mask, 

presented to the dominant eye suppresses a low-contrast target presented to the non-

dominant eye from entering awareness (Tsuchiya & Koch, 2005). In Suárez- inilla’s (2018) 

study a grating of variable orientation was presented to the participants’ non-dominant eye, 

while on half of the trials a dynamic high-contrast mask was presented to the dominant eye to 

suppress the target stimulus from awareness. It was found that visible stimuli affected 

responses on subsequently presented gratings, while suppressed stimuli did not, suggesting 

that serial dependence does not occur outside of awareness (also see Kim, Burr, Cicchini & 

Alais, 2020 for further support of these findings). In contrast to these results, Suárez-Pinilla 

(2018) found that representations of central tendency could take into account masked stimuli. 

The orientations of the presented stimuli varied between -60 to +60 degrees. Across two 

conditions, either leftward (-60 to -24 degrees) or rightward orientations (24 to 60 degrees) 

were masked, with the rest of the orientations being visible, with orientations between -12 

and +12 degrees visible in both conditions. If regression to the mean depended only on the 

orientation of the visible stimuli, responses to the overlapping orientations would be biased 

towards leftwards orientations when rightward orientations were masked and vice versa. In 

contrast to this prediction, the researchers found strong evidence that there was no difference 

in participants’ responses to the overlapping stimuli between the two conditions, suggesting 

that the masked stimuli were taken into account when building a global representation of 

central tendency. Nonetheless, the authors list several methodological concerns which bar 

very strong conclusions, most notably that the short duration of the experimental blocks may 

not have been enough for participants to form accurate representations of the prior 

distribution.     

Studies have also investigated whether the brain tracks the statistical regularities of sensory 

input using EEG to measure the MMN elicited by unexpected stimuli at different levels of 

awareness. Studies have reported that MMN can be measured during sleep, suggesting that 

awareness is not necessary for the brain to track statistical regularities. In one study, Atienza, 

Cantero, & Gómez (1997) found that a classical auditory oddball sequence elicited MMN 

during both wakefulness and REM sleep (see Loewy, Campbell, & Bastien, 1996 for supporting 

results). Extending these findings, Atienza and Cantero (2001) reported that after behavioural 

training, changes in complex sound sequences elicited an increase in MMN amplitude during 
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both wakefulness and REM sleep. Furthermore, these studies did not find any significant 

differences in the characteristics of the MMN between wakefulness and REM sleep, suggesting 

that the same processes of regularity tracking operate across different levels of consciousness. 

Other studies have reported that MMN could not be elicited by changes in auditory pitch 

during non-REM sleep (Winter, Kok, Kenernans, & Elton, 1995; Loewy et al., 1996), suggesting 

that the perceptual system does not track the statistical characteristics of stimuli in the same 

way across the entire spectrum of consciousness. In another line of research, studies have 

investigated whether MMN persists outside of awareness by manipulating the visibility of 

stimuli. Jack et al. (2017) used binocular rivalry to make the deviant stimulus in a visual MMN 

oddball paradigm invisible.  Participants were presented with gratings of different orientation 

to the left and the right eye, and standard and deviant stimuli differed in contrast – the deviant 

had a lower contrast than the standard. The deviant was presented either to both eyes, only to 

the dominant eye, or only to the non-dominant eye. The researchers found that unperceived 

deviants presented to the non-dominant eye still elicited a change in MMN amplitude 

compared to the standard stimuli. However, an important limitation of this study, which the 

authors acknowledge, is that the changes in MMN amplitude could be entirely explained by 

the contrast differences between the standard and deviant stimuli, as stimuli with lower 

contrast generally elicit evoked responses with lower amplitudes than stimuli with high 

contrast.  Another study using stimuli not confounded by changes in contrast showed that 

visual MMN could not be evoked in the absence of perceptual awareness (Flynn, Liasis, 

Gardner, & Towell, 2016). Flynn et al. (2016) used visual stimuli that differed in orientation and 

used forward and backward masking to make both the standard and deviant stimuli invisible. 

Using this design, Flynn et al. (2016) found that when participants could not detect the 

presentation of a stimulus, there were no differences in the ERPs elicited by standard and 

deviant stimuli, suggesting that the perceptual system cannot track the statistical regularities 

of visual stimuli that do not enter perceptual awareness. Overall, the contradictory results 

cited by studies investigating if the brain tracks statistical regularities in the absence of 

awareness necessitate further research into this topic.   

2.6 Gaps in the existing literature 

Extensive research has investigated whether perception follows the principles of Bayesian 

inference. Studies have mainly examined how the mean and range of the prior distribution 

influence perceptual reports, but the effects of distributional variance on perception and brain 

activity are still largely unknown. To date, very few studies have examined how the variance of 

stimulus distributions alters the influence of prior expectations on stimulus processing and 
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behaviours reports, and the effect of variance has always been confounded by simultaneous 

manipulations of distributional range. The hypothesis that reports should be biased towards 

the mean of the stimulus distribution more when the distribution has a small variance is an 

important assumption of the Bayesian brain hypothesis, which needs to be thoroughly 

examined to ascertain whether human perception is truly Bayesian. The neurophysiological 

processes that could allow the brain to form representations of the statistical properties of the 

prior distribution and to form decisions based on these summary representations are also still 

only vaguely understood. Bayesian models also predict that the effect of the prior on 

perceptual reports depends on the variance of the sensory likelihood. Sensory precision is one 

of the key variables which determine the variance of the sensory likelihood, but to date, the 

research examining whether perceptual biases are influenced by the sensory precision of the 

observer has been limited. Finally, we still do not know to what extent awareness is necessary 

to form and update perceptual predictions. Some studies suggest that observers can form 

prior expectations in the absence of awareness, but it is still not clear how sophisticated these 

predictions can be under limited resources. For example, it is possible that without awareness 

the perceptual system can form only limited priors that do not take into account complex 

statistical information or are otherwise constrained to basic perceptual dimensions such as 

auditory pitch rather than abstract dimensions such as duration. Situating these questions 

within the domain of time perception adds a layer of complexity and challenges because 

although the way people track time has been the subject of scientific research for many 

decades, there are still many basic characteristics of time perception that are not as well 

understood as the architecture of more primary domains such as the processing of visual and 

auditory features of objects.  
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Chapter 3. Bayesian models 
 

In Chapters 4 and 5, we use different versions of an ideal observer model to estimate the 

required sample size for each experiment and to form numerical predictions regarding 

participants’ responses in the duration perception tasks. All versions of the model produce 

predicted behavioural responses based on participants’ internal estimate of the stimulus 

distribution (i.e., the subjective prior), the sensory likelihood associated with the stimulus 

presented on every trial, and the subjective error mapping between the presented duration 

and the responses. Model predictions of duration reproduction (Chapter 4 and Chapter 5, 

Experiment 1) are also based on the motor likelihood associated with the selected motor 

command, while predictions of direct duration reports (Chapter 5, Experiment 2) are affected 

by the report noise associated with giving responses on a visual analogue scale. Motor noise 

and response noise are implemented in the same way across the models, but we use different 

terms to reflect the difference in the processes involved with the two modes of response 

generation. 

3.1 Model 1: Fixed prior, durations represented on a linear scale 

In Chapter 4, we modelled participants’ responses in a duration reproduction task using the 

model detailed by Acerbi et al. (2012). The below description of this model is from Baykova et 

al. (2019).  The components of the model are illustrated in Figure 3.1.  

On every trial, participants are presented with a stimulus 𝑥 drawn from the probability 

distribution 𝑝(𝑥). We assume that participants would form an internal representation 𝑦 of the 

presented stimulus and that this internal representation is corrupted by sensory noise 𝑤𝑠. 

Therefore, the sensory likelihood in the model defines the probability distribution of 𝑦, and is 

approximated by a Gaussian probability distribution centred at the duration of 𝑥 with a 

standard deviation equal to  𝑤𝑠, 𝑝𝑠(𝑦|𝑥; 𝑤𝑠). Next, participants produce a response 𝑟 by 

generating a motor command with duration 𝑢, which is corrupted by motor noise 𝑤𝑚. The 

motor likelihood in the model defines the probability distribution of the response 𝑟, and is 

approximated by a Gaussian probability distribution centred at the duration of the motor 

command 𝑢 with a standard deviation 𝑤𝑚, 𝑝𝑚(𝑟|𝑢; 𝑤𝑚). 

After participants produce a response, they receive signed feedback which specifies the error 

between the response 𝑟 and the stimulus 𝑥, which is computed as 𝑓(𝑥,𝑟)=𝑟−𝑥. The model 

assumes that participants build a subjectively expected loss function that is the quadratic form,  
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𝑓 2̃(𝑥, 𝑟), of the objective loss function 𝑓(𝑥, 𝑟). Finally, throughout the experiment, participants 

are expected to build an internal representation of the stimulus probability distribution. This 

subjective prior 𝑞(𝑥) is represented as a Gaussian approximation of the objective stimulus 

distribution in each condition.  

The first part of the model, the internal model (Equations 9  to  11), determines the optimal 

action, 𝑢∗(𝑦), which is the motor command 𝑢 that minimizes the subjectively expected loss 

between the stimulus 𝑥 and the response 𝑟:  

 
𝑢∗(𝑦) ∝ 𝑎𝑟𝑔 𝑚𝑖𝑛

𝑢
∫ 𝑝𝑠(𝑦|𝑥; 𝑤𝑠)𝑞(𝑥)𝑝𝑚(𝑟|𝑢; 𝑤𝑚) 𝑓 2̃(𝑥, 𝑟)𝑑𝑥𝑑𝑟 (9) 

Where the subjective loss function is defined as:  

 𝑓 2̃(𝑥, 𝑟) = (𝑟 − 𝑥)2. (10) 

Equation (9) then becomes: 

 
𝑢∗(𝑦) ∝ arg min

𝑢
∑ 𝑝𝑠(𝑦|𝑥𝑖; 𝑤𝑠)𝑞(𝑥𝑖)[𝑤𝑚

2 + (𝑢 − 𝑥𝑖)2]

 1162

𝑖=1

. (11) 

  

Crucially, because the participants do not know which stimulus is presented, the optimal 

action must minimize the subjective loss across all possible stimulus durations.  

The second part of the model, the generative model – Equation (12), generates the probability 

distribution of responses 𝑝(𝑟) based on the sensory likelihood of the presented stimulus 𝑥 and 

the motor likelihood of the optimal response 𝑢∗(𝑦): 

 𝑝(𝑟|𝑥; 𝑤𝑠, 𝑤𝑚) ~ ∫ 𝑝𝑠 (𝑦|𝑥; 𝑤𝑠)𝑝𝑚(𝑟|𝑢∗(𝑦); 𝑤𝑚) 𝑑𝑦. (12) 

The probability distribution of responses 𝑝(𝑟), the posterior, has a mean and variance equal 

to: 

 
µ𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 =  

𝑥 × 𝑤𝑠
2 + 𝑢∗(𝑦) ×  𝑤𝑚

2

𝑤𝑠
2 + 𝑤𝑚

2 , 𝑎𝑛𝑑  𝜎𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟
2 =  

𝑤𝑠
2 ×  𝑤𝑚

2

𝑤𝑠
2 + 𝑤𝑚

2  (13) 

Finally, the model-predicted response is derived by integrating the posterior probability 

distribution of responses over the possible values:  

 𝑟 ~ ∫ 𝑝(𝑟|𝑥; 𝑤𝑠, 𝑤𝑚)𝑑𝑥. (14) 

 

. 
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3.2 Model 2: Fixed prior, durations are represented on a logarithmic scale 

In Chapter 5, Experiment 1, we used a modified version of the model above to predict 

participants’ responses in a task where they have to reproduce the duration of visually 

presented stimuli. Following the evidence in the literature that estimates of stimulus 

magnitude are better represented on a logarithmic scale (Petzschner & Glasauer, 2011; 

Petzschner, Glasauer, & Stephan, 2015), in the modified version of the above model, hidden 

variables and computations are defined on a logarithmic scale. As in the original model, on 

every trial, participants are presented with a duration x which follows the probability 

distribution 𝑝(𝑥) in linear space. The internal representation of the stimulus, 𝑦𝑙, is 

transformed to a logarithmic scale, and the sensory likelihood is defined as a log-normal 

probability distribution, 𝑝𝑠(𝑦𝑙|𝑥𝑙; 𝑤𝑠𝑙): 

Figure 3.1. Components of Model 1. (A) The sensory likelihood is a Gaussian distribution centred at the 
presented stimulus with variance which is expected to be proportional to the duration of that stimulus. 
(B) The motor likelihood is a Gaussian distribution centred at the duration of the selected motor 
command with variance that is expected to be either proportional to the duration of the motor 
command (top), or constant (bottom). (C) The subjective prior is a Gaussian distribution with mean and 
variance equal to the mean and variance of the objective stimulus distribution. (D) The subjective loss 
function is represented as the squared loss function. This figure is from Baykova et al. (2019). 
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𝑥𝑙 = ln
𝑥

√1 +
𝑤𝑠

2

𝑥2

, 𝑎𝑛𝑑  𝑤𝑠𝑙 =  √ln(1 +
𝑤𝑠

2

𝑥2
) (15) 

where 𝑤𝑠   is the sensory noise parameter defined in linear space. 

The motor likelihood is also defined as a log-normal distribution, 𝑝𝑚(𝑟𝑙|𝑢𝑙; 𝑤𝑚𝑙) – the 

observable variable 𝑟𝑙 and the hidden variable 𝑢𝑙 are represented on a logarithmic scale, and 

the standard deviation is defined as: 

 

𝑤𝑚𝑙 =  √ln(1 +
𝑤𝑚

2

exp (𝑢𝑙)2
) (16) 

where 𝑤𝑚   is the motor noise parameter defined in linear space.  

After providing a response, participants receive feedback which is computed as the difference 

between the duration of their response and the duration of the stimulus in linear space: as 

𝑓(𝑥,𝑟) = (𝑟−𝑥). The subjectively expected loss function is, however, computed on a logarithmic 

scale as the squared difference between the estimated response transformed into log-space 

and the stimulus transformed into log-space:  𝑓 2̃(𝑥𝑙, 𝑟𝑙) = (𝑟𝑙 − 𝑥𝑙)2. Finally, the subjective 

prior 𝑞(𝑥𝑙) is a Gaussian approximation of 𝑝(𝑥) transformed into log-space. The objective 

stimulus distribution 𝑝(𝑥)has a mean of 𝑎, and a standard deviation of b. From there, 𝑞(𝑥𝑙) is 

a log-normal distribution centred at 𝑎𝑙, with a standard deviation 𝑏𝑙: 

 

𝑎𝑙 = ln
𝑎

√1 +
𝑏2

𝑎2

, 𝑎𝑛𝑑  𝑏𝑙 =  √ln(1 +
𝑏2

𝑎2
). (17) 

The computations involved in the two stages of the model described above, the internal model 

and the generative model, therefore take place in log space: 

 Internal model: 𝑢𝑙
∗(𝑦𝑙) ∝ arg min

𝑢𝑙

∑ 𝑝𝑠(𝑦𝑙|𝑥𝑙𝑖; 𝑤𝑠𝑙)𝑞(𝑥𝑙𝑖)[𝑤𝑚𝑙
2 + (𝑢𝑙 − 𝑥𝑙𝑖)2]5

𝑖=1 ; (18) 

 Generative model: 𝑝(𝑟𝑙|𝑥𝑙; 𝑤𝑠, 𝑤𝑚) ~ ∫ 𝑝𝑠 (𝑦𝑙|𝑥𝑙; 𝑤𝑠𝑙)𝑝𝑚(𝑟𝑙|𝑢𝑙
∗(𝑦𝑙); 𝑤𝑚𝑙) 𝑑𝑦𝑙. (19) 

The posterior estimate (the integral of the posterior distribution) is transformed back into 

linear scale to provide the observable response:  

 𝑟 ~exp (∫ 𝑝(𝑟𝑙|𝑥𝑙; 𝑤𝑠𝑙 , 𝑤𝑚𝑙)𝑑𝑥𝑙). (20) 
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3.3 Model 3: Updating prior, durations are represented on a logarithmic 

scale  

In Chapter 5, Experiment 2, we use a Bayesian ideal observer model with an updating prior to 

predict regression to the mean in a duration estimation (rather than reproduction) task. As in 

Model 2, hidden variables are represented on a logarithmic scale and responses are translated 

to linear scale for reporting. The only difference between the two models is that in Model 3, 

participants’ subjective prior updates after every trial by a Kalman filter. 

On each trial participants are presented with a duration that is transformed to log-space, 𝑥𝑙 .  

The mean of the sensory likelihood is equal to the presented duration 𝑥𝑙  corrupted by some 

random noise, 𝑛, which is randomly drawn from the normal distribution 𝑁(0, 𝑤𝑠𝑙). The 

standard deviation of the sensory likelihood is equal to 𝑤𝑠𝑙 . The subjective prior 𝑞(𝑥𝑙), changes 

on every trial. On the first trial, we assume that the mean and standard deviation of the prior, 

𝑎𝑙  and 𝑏𝑙 , are equal to the presented duration and the sensory noise associated with that 

duration, 𝑥𝑙 and 𝑤𝑠𝑙  respectively. On subsequent trials, the mean and standard deviation of 

the prior update depending on the Kalman gain, which is calculated as: 

 
𝐾𝑖 =  

𝑏2
𝑙 𝑖

𝑏2
𝑙 𝑖 + 𝑤𝑠 𝑖

, (21) 

where 𝑖 designates the current trial index. We also calculate the prediction error between the 

mean of the sensory likelihood, 𝑥𝑙 + 𝑛, and the mean of the prior, 𝑎𝑙 , for trial 𝑖 as:  

 𝑃𝐸𝑖 =  (𝑥𝑙 𝑖 + 𝑛𝑖) −  𝑎𝑙 𝑖 (22) 

Then, the mean and standard deviation of the prior for the next trial update to become: 

 𝑎𝑙 𝑖+1 =  𝑎𝑙 𝑖 +  𝐾𝑖 × 𝑃𝐸𝑖 , 𝑎𝑛𝑑 𝑏𝑙 𝑖+1 =  √(1 − 𝐾𝑖) × 𝑏2
𝑙 𝑖. (23) 

As in Model 2, the motor likelihood is defined as a log-normal distribution, 𝑝𝑚(𝑟𝑙|𝑢𝑙; 𝑤𝑚𝑙). The 

only difference between the definition of the motor likelihood between Model 2 and Model 3 

is that here we refer to the standard deviation of the motor likelihood, 𝑤𝑚𝑙, as report noise 

rather than motor noise. In duration reproduction (Models 1 and 2), participants’ ability to 

provide a given response depends on the precision of the produced motor command. In 

contrast, direct estimations of duration where participants report the presented duration on a 

visual analogue scale (Model 3), would not depend as much on the precision of participants’ 

motor command but mostly on participants’ constraint of what deviation from the internal 

representation of the stimulus is acceptable.  
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The feedback and the associated subjectively expected loss function, the internal model, the 

generative model, and the selection of the final response are the same as in Model 2.  

3.4 Model parameters free to vary  

Across all models, sensory noise (𝑤𝑠) and motor/response noise (𝑤𝑚) are free to vary. In 

Chapter 4, the sensory and motor noise parameters associated with each duration were 

determined separately for each participant based on their performance on two additional 

behavioural tasks – a 2-interval forced-choice task and a reaction time task. In Chapter 5, 

sensory noise was also determined empirically, while the value of the motor/report noise 

parameter for each participant was fitted using the Metropolis-Hastings algorithm (Metropolis, 

Rosenbluth, Rosenbluth, Teller, & Teller, 1953; Hastings, 1970).  
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Chapter 4. Influence of prior distribution variance on 

time perception  
 

Bayesian models of perception propose that the extent to which perception is affected by 

prior expectations depends on the precision or variance of the prior distribution – more 

precise priors will bias perception more strongly than broader priors. However, evidence for 

this in human behaviour is limited.  It has been shown that reproductions of duration are more 

biased towards the prior distribution of presented stimuli when that distribution is peaked 

rather than uniform. However, in this case, the two distributions also differed in central 

tendency and skewness, making it difficult to disentangle the specific effect of distributional 

variance on perception. We conducted two duration-reproduction experiments in which 

participants were presented with durations drawn from a precise or broad prior. Experiment 1 

(N=7) was a replication of an experiment by Acerbi et al. (2012), and participants were 

presented with a skewed or uniform distribution with the same range. In Experiment 2 (N=8), 

the durations were drawn from a uniform or Gaussian distribution that had the same mean, 

range, and skewness. By keeping all other statistical properties constant across stimulus 

distributions, we could directly investigate the influence of distributional variance on time 

perception. In Experiment 2, we found that participants’ responses were more biased towards 

the prior in the Gaussian compared to the uniform condition, supporting the prediction of a 

Bayesian ideal observer model. However, in Experiment 1, we found a dissociation between 

the model’s predictions and participants’ responses in the skewed condition as the data 

showed evidence of both attractive and repulsive biases. To conclude, our results provide 

direct evidence in favour of one of the most fundamental assumptions of the Bayesian brain 

framework but also show the explanatory limits of Bayesian models thus calling for a greater 

focus towards developing a general framework that resolves the apparent contradiction 

between opposing perceptual biases. 

4.1 Introduction 

Subjective sensory experience is influenced by our prior knowledge about the world (e.g., Ma 

& Jazayeri, 2014). One efficient method of summarizing the regularities of the world would be 

to track the statistical characteristics of sensory information (Khayat & Hochstein, 2018) over 

time. These characteristics might include, for example, what stimulus appears most often, and 

how variable or reliable the sensory inputs are. In recent years, it has become popular to 

describe this influence of previous experience on subsequent perception using ‘Bayesian’ 
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frameworks wherein perception is viewed as a probabilistic inference reflecting the integration 

of sensory inputs with prior expectations about their potential causes (Friston, 2010; Clark, 

2013; Hohwy, 2013). Typical computational models of this inference process represent sensory 

inputs (likelihoods) and prior expectations as probability distributions (Knill & Pouget, 2004; 

Pouget et al., 2013; Ma & Jazayeri, 2014). However, it is not clear how exactly prior 

expectations are represented in the brain (Walker, Cotton, Ma, & Tolias, 2018; Beck et al., 

2008). In this study, we will investigate the assumption of common Bayesian accounts of 

perception that the variability of prior experience strongly determines its subsequent influence 

on perception. To do so, we will examine how the variability of the distribution of recently 

experienced temporal durations influences human participants’ subsequent reproductions of 

duration. 

To effectively utilise information from prior sensory experience, human observers must be 

able to track the variability of particular sensory inputs over time. Perceptual reports are well-

known to reflect some statistical characteristics of the distribution of previous sensory 

experience. It has long been established that perceptual reports across different sensory 

domains and tasks are biased towards the mean of previously presented stimuli (Lejeune & 

Wearden, 2009; Hollingworth, 1910; Petzschner et al., 2015). Values greater than the mean 

are underestimated, and values smaller than the mean are overestimated. This ‘regression to 

the mean’ effect is range specific – the same physical stimulus value will be underestimated if 

it is greater than the mean but overestimated if it is smaller than the mean – and such biases 

have been reported in a range of domains, including time perception (e.g., Jazayeri & Shadlen, 

2010; Cicchini et al., 2012; Roseboom, 2019; for a full review see Literature review, p.30). 

Despite the wealth of research investigating regression to the mean effects in perception, the 

extent to which observers internalize information about the variance of stimulus distributions 

when forming predictions remains a critical open question. A common interpretation of 

Bayesian brain frameworks proposes that prior expectations and sensory likelihoods are 

represented as probability distributions, often specifically assuming they are well-

approximated by a Gaussian distribution (for example, Friston & Kiebel, 2009; Pouget et al., 

2013, Darlington, Beck, & Lisberger, 2018). Under this assumption, the influence of prior 

expectations on perception depends on the variance of the prior– keeping sensory information 

constant, the smaller the variance of the prior, the more perception is biased towards the 

prediction (Figure 4.1). Evidence broadly consistent with this prediction has been provided by 

studies investigating how the variance of prior distributions affects estimates of the location of 

hidden targets (Berniker et al., 2010; Acerbi et al., 2014), performance on a force-matching 
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task (Körding, et al., 2004) and predictions of stimulus arrival time (Miyazaki et al., 2005). For 

example, Berniker et al. (2010) and Körding et al. (2004) found greater regression to the mean 

in participants’ responses when the prior distribution had a small variance, while Acerbi et al. 

(2014) found that responses were more optimal when the prior distribution had a smaller 

variance. It has also been suggested that features of brain activity, specifically the mismatch 

negativity evoked response, reflect differences in distributional variance and range (Garrrido et 

al., 2013; Garrido et al., 2016; Randeniya et al., 2019). However, in all these experiments the 

effect of variance was confounded by simultaneous manipulations of distribution range – 

distributions with large variance also had a larger range than distributions with a small 

variance – which prohibits strong conclusions about the specific influence of prior variance on 

behavioural reports (under the mentioned Gaussian assumptions).  

Focusing specifically on duration estimation, evidence that human observers may assimilate 

the variance of stimulus distributions when reporting the length of temporal intervals was 

provided by Acerbi et al. (2012).  Manipulating the variance of a stimulus distribution entails 

manipulating the probability with which different stimulus levels are presented during the 

experiment. One of the experiments reported by Acerbi et al. (2012), Experiment 2, revealed 

that manipulating the probability of presentation of the different durations influenced time 

judgements. When durations were drawn from a uniform distribution, responses were biased 

towards the mean of the stimuli. When durations were drawn from a distribution in which a 

short stimulus was presented more frequently than any other stimulus duration (resulting in a 

short mean duration), participants underestimated the duration of all stimuli (responses were 

biased towards the stimulus with high probability). These results suggest that behavioural 

responses were affected by the probability of different stimulus levels and by extension, their 

variance. However, by increasing the probability of a stimulus that did not coincide with the 

mean of the uniform distribution, Acerbi et al. (2012) also changed the mean and skewness of 

the distribution. In Acerbi et al.’s (2012) study, the simultaneous manipulation of several 

distributional properties across conditions does not pose a challenge for the validity of their 

inference, because their main objective was to examine, computationally, whether 
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participants’ reconstructed priors resembled the statistical properties of the objective stimulus 

distributions in different conditions.  

However, investigating the specific effect of distributional variance on behavioural 

performance necessitates manipulating only the variance of the presented distributions while 

keeping other statistical properties the same across conditions. In this case, the concurrent 

differences in mean, variance, and skewness between distributions make it impossible to 

determine what proportion of the behavioural difference between conditions could be 

attributed to the manipulation of variance alone. 

Here we report a study extending the findings of Acerbi et al. (2012) by specifically testing the 

influence of the variance of stimulus distributions on perceptual reports, avoiding confounding 

changes in other distributional characteristics. First, we replicated the key experiment from 

Acerbi et al.’s (2012) study examining the role of changing the mean and variance of the 

presented stimulus distribution. This previous experiment provides the strongest available 

evidence that human observers assimilate information about the variance of underlying 

stimulus distributions in the context of temporal perception, and it is, therefore, important to 

validate their findings. In a second experiment, we will directly investigate the effects of 

variance on behavioural responses. As in Acerbi et al.’s (2012) original study, participants were 

asked to reproduce the duration of presented temporal intervals manually. In one condition, 

the intervals were drawn from a truncated uniform distribution, and in a second condition 

from a truncated Gaussian distribution. Importantly, in both conditions the distribution had 

Figure 4.1. Predicted effect of prior variance on perception. According to Bayes rule, the posterior 
(purple) results from the integration of the prior (blue) and likelihood (red). When the prior has a small 
variance (A), the resulting posterior is biased towards the prior more than when the prior has a large 
variance (B). 
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the same mean, range, and skewness, differing only in distribution variance. We hypothesised 

that duration judgements would be more strongly biased towards the mean of the stimulus 

distribution when the stimuli follow a Gaussian compared to a uniform distribution. This 

prediction follows from the assumption that sensory priors and likelihoods are well-

approximated by Gaussian distributions.  

The experiments detailed here provide a direct way to test whether human perception, in the 

domain of time judgements, behaves in a way consistent with Bayesian processing. 

Furthermore, the present research can more generally further our understanding of how 

human observers extract summary statistics from sensory stimuli presented over time and 

help us better understand how prior expectations are used in perceptual processing. 

4.2 Method 

4.2.1 Pre-registration and data availability  

The stage 1 registered report accepted by Royal Society Open Science is available at the Open 

Science Framework (https://osf.io/75p42/). The data is available here: 

https://osf.io/75p42/files/ (this includes data from the simulations to determine sample size, 

and the behavioural data).   

4.2.2 Design 

Across two proposed experiments, we investigated how the shape of the distribution from 

which durations are drawn influences the mean and standard deviation of human participants’ 

responses.  In both experiments, participants were presented with 6 temporal intervals 

ranging from 600 to 975ms in steps of 75ms and were asked to reproduce these intervals. In 

Experiment 1, which replicates Experiment 2 from Acerbi et al. (2012), the intervals were 

drawn from either a uniform or a skewed distribution in different experimental sessions 

(Figure 4.2A). Blocks of trials within each experimental session were divided into 6 randomized 

sequences, each of 96 trials, with each sequence reflecting the characteristics of the stimulus 

distribution for that session. In the skewed distribution, the 675ms interval was presented with 

a probability of 56/96, and each of the remaining stimuli with a probability of 8/96.  Here we 

predicted that the standard deviation of the responses would be smaller in the skewed 

compared to the uniform distribution - responses would be more varied under the uniform 

distribution – reflecting the difference in the variance of the presented distributions: ~128ms 

in the empirical uniform distribution and ~107ms in the empirical skewed distribution 

(Prediction 1, Figure 4.3A). We also predicted that the overall mean response averaged across 

https://osf.io/75p42/
https://osf.io/75p42/files/


57 
 

durations and participants will be shorter in the skewed than the uniform distribution, 

reflecting the bias in the presented distribution of intervals toward shorter values – 787.50ms 

in the uniform condition, 731.25ms in the skewed condition (Prediction 2, Figure 4.3A). 

In Experiment 2, participants were presented with time intervals drawn either from a uniform 

or a Gaussian distribution in different experimental sessions (Figure 4.2B). The empirical 

uniform distribution had a mean of 787.5ms and a standard deviation of ~128ms. The 

empirical Gaussian distribution had the same mean as the uniform distribution (787.5ms) and 

a standard deviation of ~93ms. Again, each block in a session consisted of 6 runs of 96 trials 

reflecting the statistical properties of the distribution. In the Gaussian distribution, the 

stimulus probabilities, rounded to the nearest whole number, were: 5/96 for 600ms and 

975ms, 16/96 for 675ms and 900ms, and 27/96 for 750ms and 825ms. These parameters were 

chosen such that the Gaussian distribution is maximally distinguishable from the uniform 

distribution while at the same time not approaching a point distribution, as exposure to point 

distributions is known to produce repulsive aftereffects rather than regression towards the 

mean (e.g., Roseboom, Linares, & Nishida, 2015; Webster, 2015; Linares, Cos, & Roseboom, 

2016). Repeated presentation of the same stimulus (adaptation) causes the perception of 

subsequently presented stimuli to be repelled from the original stimulus. In the domain of 

time perception, it has been found that adaptation to long intervals makes subsequent stimuli 

appear shorter, while adaptation to short intervals makes subsequent stimuli appear longer 

(Heron et al., 2011). In addition, we decided that a minimum of ~100 repetitions per stimulus 

would be needed to reliably measure performance, and if the Gaussian distribution were to be 

more peaked, we would not be able to collect enough data for the durations at the extremes 

of the range. Finally, we aimed to keep the range of the Gaussian and uniform distribution 

equal, and if the variance of the Gaussian were too narrow, this would also change the range 

of the distribution as the rounded probabilities of extreme values will drop to zero. Here we 

expected that participants’ responses would be more biased towards the mean in the Gaussian 

distribution, and therefore predicted that the standard deviation of their responses would be 

smaller under the Gaussian than under the uniform distribution (Prediction 3, Figure 4.3B). 
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Figure 4.2. Distributions of intervals presented in each condition. (A) In Experiment 1, participants were 

presented with intervals drawn from a skewed distribution (top) and a uniform distribution (bottom) in 

different experimental sessions. (B) In Experiment 2, participants were presented with a Gaussian 

distribution (top) and a uniform distribution (bottom) in different sessions.  
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Figure 4.3. Predicted effects of prior shape on regression to the mean. (A) In Experiment 1, we predict 
that the magnitude of the bias towards the prior will be greater in the skewed compared to uniform 
condition. As a result, responses in the skewed distribution will have a smaller standard deviation than 
responses in the uniform distribution. We also predict that participants will be biased towards a shorter 
duration in the skewed than in the uniform distribution. (B) In Experiment 2, we predict that regression to 
the mean will be stronger in the Gaussian compared to the uniform distribution. As a result, responses in 
the Gaussian distribution will have a smaller standard deviation than responses in the uniform 
distribution. We also predict that in the Gaussian distribution participants will be biased towards a shorter 
duration than in the uniform distribution, but this difference will be smaller than the difference in 
Experiment 1. 

A. Experiment 1                      B. Experiment 2 
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In addition, in Experiment 2, the uniform and Gaussian distributions have the same mean, so 

we expected that participants’ responses would regress towards the same value. However, 

duration estimation exhibits scalar variability (Weber’s law, generally) – as durations increase, 

the variability associated with behavioural responses increases linearly in physical values 

(Gibbon, 1977; Church & Meck, 2003; Wearden, 2003; Lejeune & Wearden, 2006; Rammsayer, 

2014). Under our Bayesian assumptions, this asymmetry in estimation variability would cause 

the absolute magnitude of underestimation of long durations to be greater than the 

overestimation of short durations. As already noted, there were fewer trials of the shortest 

and longest durations in the Gaussian compared to the uniform distribution, resulting in 

stronger overall regression to the mean effects for the Gaussian condition (see Prediction 3). 

The combination of asymmetry in regression effects introduced by scalar variability and 

stronger regression to the mean effects in the Gaussian condition overall should result in a 

small difference in the mean estimated duration between conditions such that durations in the 

Gaussian condition would be estimated as shorter than in the uniform condition (Prediction 4, 

Figure 4.3B).  

The two conditions in each experiment were tested in separate experimental sessions. 

Sessions were completed on different days to minimize carry-over effects between conditions. 

The order of the conditions in the two experiments was counterbalanced between 

participants. If a participant completed both experiments, then the order of the conditions 

across the two experiments was be pseudorandomized with the additional constraint that the 

skewed and Gaussian distributions would not be presented in successive experimental 

sessions. Sessions were completed at the same time of day to keep participants’ levels of 

alertness similar across sessions (therefore, the minimum period between two sessions was 

~24 hours). In addition to the main experimental sessions, participants completed two 

additional tasks designed to estimate perceptual and motor noise (see Procedure). Each task 

was completed in a different session.  

4.2.3 Procedure 

In both experiments, the main experimental task was a duration reproduction task following 

Acerbi et al.’s (2012) procedure (Figure 4.4). Each trial started with the presentation of a 

fixation cross, which was a cue that participants could initiate the interval-to-be-replicated. At 

their own pace, participants pressed a button on a button box, and after a time interval 

between 600 and 975ms (see Figure 4.4), a Gabor appeared on the screen for ~18.8ms 

(approximated by 3 consecutive frames; see Materials and Apparatus for characteristics of the 
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Gabor). 250ms after the Gabor disappeared, the fixation cross appeared again to prompt 

participants to reproduce the duration of the presented interval (the interval between initial 

button-press and Gabor disappearance). Temporal reproduction was performed by pressing 

and holding the button on a button box for the entire apparent duration of the interval. After a 

period between 300-500ms following a response, participants were presented with visual 

feedback for ~100ms (approximated by 16 consecutive frames) which was computed as the 

signed difference between reported and actual duration, 𝑓(𝑥, 𝑟) = 𝑟 − 𝑥. The colour of the 

feedback further signified whether participants were within 10% of the duration presented on 

the current trial. The feedback was bright green if the given response was within 10% of the 

presented duration, and brown if the error between the response and the presented duration 

was greater than 10%. Between 100-300ms after feedback presentation, the fixation cross 

disappeared and 100-300ms later the next trial began. Bayesian ideal-observer models 

sometimes include a parameter fitted to account for errors resulting from lapses in attention 

(Stengård & van den Berg, 2019; Acerbi et al., 2014). To reduce the effect of lapses without 

including free parameters in our model, on every trial, after the presentation of the stimulus, 

participants were given the option to opt-out instead of reproducing the presented duration. 

Participants were instructed to opt-out if they were not paying attention during the 

presentation of the interval on a given trial – they were distracted when pressing the button to 

begin the interval or missed the presentation of the Gabor which signalled the end of the 

interval. They were further instructed that they should not opt-out if it was simply a difficult 

trial, as terminated trials would be repeated later in the run, so there is no benefit to this 

strategy. Participants were not able to opt out after providing a response. 

Participants completed multiple blocks of the duration reproduction task per session, 

depending on their performance. Each block consisted of 6 runs of 96 trials which reflected the 

statistical properties of the distribution for that session (see Figure 4.2). To monitor 

performance, we calculated Spearman’s correlation coefficient between presented and 

reported time at the end of each block, and the fractional change in mean squared response 

error between every two successive blocks. Fractional change was calculated as the difference 

in mean squared error between two blocks divided by the mean squared error of the first of 

the two blocks. Following Acerbi et al. (2012), testing in Experiment 1 was terminated when 

participants’ performance stabilized – the fractional change between two successive blocks 

must be less than 0.08. In the analysis, we included data only from these last two blocks in 

order to reduce the effects of learning on the results. In Experiment 2, we terminated testing 

when participants complete 3 blocks with stable reproduction performance. Here there was no 
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requirement for the three blocks to occur in immediate succession. This difference between 

the two experiments was decided because under the Gaussian distribution, the stimuli with 

lowest presentation frequency (600 and 975ms) were presented only 30 times in a block, and 2 

blocks would not provide enough trials for analysis. Finally, trials were excluded and repeated 

if: (1) participants gave multiple responses, (2) failed to begin responding within 1500ms of the 

presentation of the response prompt, (3) responded before the appearance of the response 

prompt (4) gave responses outside of the window between 300ms and 1462ms (extending 

from 50% below the shortest duration to 50% above the longest duration in the range), or (5) 

decided to opt-out instead of reproducing the presented interval. After the end of each block, 

the recorded button presses were further examined for invalid responses. This included trials 

in which, due to issues with the button box, the recorded responses did not contain a clear 

marker for the start or the end of the response. These trials were excluded from the analysis. 

 

Figure 4.4. Duration-reproduction task.      c p n  ’               p   uc       u     n  f   p    n    

time interval. The interval began when participants pressed a button on a button box and ended when a 

Gabor appeared on the screen. Participants were asked to reproduce the interval by keeping the same 

button pressed for the same apparent duration as the interval. Finally, they received visual feedback 

regarding the accuracy of their response. In the feedback (the rightmost box) the white line in the middle 

of the box denotes perfect reproduction, while the coloured line denotes the error between participants’ 

reproduced duration and the actual duration of the interval. The distance between the coloured and 

white line, therefore, denotes the magnitude of the error. The position of the coloured line relative to the 

white line denotes the direction of the error – if the interval was underestimated, the coloured line is to 

the left, and it is to the right if overestimated. The colour of the coloured line further denotes whether 

p    c p n  ’    p n e is within 10% of the duration presented on that trial (green) or not (brown). 

 

One of the goals of these experiments was to build Bayesian ideal observer models to describe 

participants’ behavioural reports. Two parameters in these models that we expected would 

vary between participants are (i) perceptual noise and (ii) motor noise. Therefore, in addition 

to the experimental sessions outlined above, participants completed two tasks designed to 

estimate these parameters. Originally, we planned for participants to complete both of these 

tasks after the main experimental sessions. However, due to the COVID-19 pandemic, some 
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participants who took part in both Experiment 1 and Experiment 2 completed the extra tasks 

in between the reproduction sessions of the two experiments.  

To measure perceptual noise, we used a two-interval forced-choice task in which, on each trial, 

participants were presented with two intervals - a standard interval and a comparison interval 

- and indicated which of the two was apparently shorter in duration. The beginning of each 

interval was be defined by a button press initiated by the participant, and the end of the 

interval by the presentation of a Gabor (~18.8ms; see Materials and Apparatus for 

characteristics of the Gabor). Participants completed 12 blocks (50-80 trials per block), and in 

each block, the standard interval was one of the six durations used in the main experiment 

(600, 675, 750, 825, 900, or 975ms). We used the Bayesian adaptive psychometric method 

QUEST (Watson & Pelli, 1983) to estimate the comparison duration at which participants 

correctly identified the shorter duration in a trial with 75% accuracy. On each trial, QUEST 

provided a suggestion of the optimal difference between the main and comparison stimuli that 

should be tested next. On trials where QUEST proposed a difference smaller than 0ms, the 

presented difference between the main and comparison stimuli was drawn from a uniform 

distribution spanning 0 to 10ms. Participants received feedback indicating whether their 

response was correct on each trial.  We used the estimated duration threshold at each 

duration level as an estimate of participant-specific perceptual noise.  

Initially, participants completed 50 trials after which we evaluated whether the estimate of the 

threshold provided by QUEST has converged. If at the end of a block the last 10 trials 

contained 5 consecutive trials between which the difference in the stimulus values suggested 

by QUEST was less than 0.5ms, we concluded that the estimate of the threshold has 

converged, and the block ended. If the difference between the suggested values was larger, 

we concluded that the threshold has not converged, and participants completed 10 more trials 

after which the convergence was evaluated again. The block ended either when the criterion 

for convergence was fulfilled or when participants reached 80 trials irrespective of whether 

QUEST has converged or not. The difference suggested by QUEST after the last trial in each 

block was taken as the estimate of perceptual noise. Plots showing the convergence of 

threshold for each participant and each stimulus are included in Appendix A (Figure A1). 

Overall, for all participants QUEST converged in the majority of blocks, and in at least one of 

the two blocks for each main stimulus (Appendix A, Table A1). While testing Participant 3, a 

hardware issue caused one of the blocks containing the 900ms stimulus and one of the blocks 

containing the 975ms stimulus to end too early.  articipants’ average thresholds for each 

stimulus level have also been plotted in Appendix A (Figure A2). 
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In addition to perceptual noise, we estimated motor noise using a reaction time task. In this 

task, at the beginning of each trial participants pressed a button that triggered the 

presentation of a low-contrast Gabor (see Materials and Apparatus for characteristics of the 

Gabor).  articipants’ task was to keep the button depressed while the Gabor was present and 

release the button as quickly as possible when the Gabor disappeared. The six stimulus 

durations from the main experimental task were presented in separate blocks. Each block 

consisted of 100 trials. Previous studies have reported that for healthy adults, the average 

simple reaction times to visual stimuli range between 150 to 260ms (Elliott, 1968; Wilkinson & 

Allison, 1989; Eckner, Kutcher, & Richardson, 2010). Therefore, if participants released the 

button before the disappearance of the Gabor or less than 100ms after it disappeared, the trial 

was discarded and repeated, as reaction times quicker than 100ms are likely to reflect stimulus 

anticipation. We fit an Exponentially Modified Gaussian (exGaussian) distribution to the 

reaction times to each stimulus using the DISTRIB toolbox for Matlab (Lacouture & Cousineau, 

2008) and used the estimated standard deviation of the distribution as an estimate of motor 

noise.   

Across participants, Experiment 1 took ~8 hours to complete and Experiment 2 took ~12 hours. 

Instructions for all tasks can be found in Appendix B. 

4.2.4 Materials and apparatus 

The experiment was run on Matlab2018b using Psychtoolbox-3.0.14 (Brainard, 1997, Pelli, 

1997; Kleiner, Brainard, Pelli 2007) and presented on a colour-calibrated 22-in Iiyama Master 

Pro 513 CRT monitor with 160Hz refresh rate, and 800x600 pixel resolution. The experiment 

was presented on a grey background. Participants sat ~57cm away from the screen. The main 

stimulus was a black-and-white Gabor with 3dva size, 2c/d spatial frequency. The standard 

deviation of the Gaussian envelop of the Gabor was 0.33dva. The rotation angle and phase of 

the grating was randomized between 0 and 180° on every presentation to mitigate visual 

adaptation effects.  

Participants provided responses through a custom-made button box that was connected to a 

professional grade sound card (M-Audio Delta 66) with a sampling rate of 44100 Hz. This 

allowed us to achieve an average error in measured latency of ~0.002ms for recording the 

timing between button presses and releases, and ~0ms (SD = ~1ms) for the timing between 

button press and visual outcome.   
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4.2.5 Participant exclusion criteria 

We applied strict exclusion criteria to participants’ performance to ensure the quality of the 

collected data. To ensure that participants were familiar with the structure of the duration-

reproduction task and could read the feedback display, each session started with a practice 

block. In the practice block, participants were presented with a sequence consisting of 10 

repetitions of a short, medium, and long stimulus presented in order – 400ms, the mean of the 

distribution used in the testing blocks, and 1175ms. The sequence was repeated twice. At the 

end of every trial in the practice block, the feedback remained on the screen until the 

participant pressed a button on the keyboard. The first testing block in each session was also 

designated for practice, and it was not included in the analysis.  

In the main experimental task, any session was terminated, and participants were be excluded 

from further participation in the study if they did not show sufficiently good task performance: 

(1) on the second testing block in each session, the Spearman correlation coefficient between 

presented and reported time had to be at least 0.60 and the slope at least 0.5 (an increase in 

participants’ responses of at least 1 ms for every 2 ms increase in stimulus duration); (2) on the 

third testing block, the correlation between presented and reported time had to be at least 

0.65 and the slope at least 0.5. Successful participants then completed additional blocks until 

they produced the necessary number of blocks needed for analysis. Blocks included in the 

analysis of each experiment had to exceed the performance thresholds above (Spearman 

correlation coefficient >= 0.65 and slope >=0.5). In addition, like Acerbi et al. (2012), we 

wanted to analyse only data collected after participants’ reproduction performance had 

stabilised to avoid measuring general task learning rather than the influence of acquired 

distributional statistics. Therefore, in Experiment 1 the absolute fractional change in mean 

squared error between the two last blocks had to be smaller than 0.08. In Experiment 2 where 

we required 3 blocks, there was no requirement for the blocks used in the analysis to be 

successive.  

The original version of the experiment detailed in the stage 1 registered report included less 

training and more constricting exclusion criteria that were put in place to save time (for 

example, participants were to be excluded if their performance did not plateau within a 

certain number of blocks). However, participants found the task difficult, so we increased the 

amount of training. In addition, we also found that even with extra training, most participants 

were still findings the task difficult, so it was counterproductive to exclude capable participants 

who needed to complete more blocks to reach stable performance.   



65 
 

4.2.6 Data analysis 

Bayesian ideal observer model 

We followed Acerbi et al.’s (2012) approach to build Bayesian ideal observer models to predict 

each participant’s responses to the stimuli in the two experiments. The model we used here is 

detailed in Chapter 3.1 (Model 1, p.46). Some criticisms of computational models of perception 

relate to the fact that during the analysis stage, researchers have multiple degrees of freedom, 

which ensures that any pattern of responses could be explained by some model that is derived 

post-hoc (Bowers & Davis, 2012). The present study used a fully deterministic model that left 

us no flexibility for fitting any model parameters. This allowed us to derive specific, falsifiable 

predictions regarding participants’ behaviour that we tested using Bayesian statistics. The 

values for the two parameters in the model that were free to vary, sensory noise (𝑤𝑠) and 

motor noise (𝑤𝑚), were estimated empirically. For each participant and every duration, 𝑤𝑠 was 

estimated through the previously described 2IFC task as the threshold at which participants 

could indicate the shorter of two stimuli with 75% accuracy. 𝑤𝑚 was estimated as the standard 

deviation of the exGaussian distribution fitted to each participants’ reaction times associated 

with each stimulus level. It is also important to note that the model used here assumes a fixed 

prior. It was not necessary to use a prior that updates across trials because the analysis was 

based only on data collected after participants reach stable performance, at which point we 

assumed that they would have internalized the properties of the stimulus distributions. 

Statistical analysis 

We conducted Bayesian t-tests to examine whether the skewed and Gaussian conditions give 

rise to responses with smaller variability than the uniform conditions (Predictions 1 and 3) and 

whether mean responses are shorter in the skewed and Gaussian conditions compared to the 

uniform conditions (Predictions 2 and 4). To test Predictions 1 and 3 we calculated the 

difference in the standard deviation of responses across all durations between distributions 

(within each condition we will calculate the standard deviation of all estimates, ignoring 

duration levels). We chose this measure because we wanted a single, simple metric for each 

condition that would be sensitive to the magnitude of the regression to the mean – when 

regression to the mean is stronger, participants’ responses will be less varied (and vice versa).  

To test Predictions 2 and 4 we calculated the difference in mean responses across all durations 

between the relevant distributions, again averaged across participants. In all four Bayesian t-

tests, the null hypothesis was defined as a point distribution at 0 difference, and the 

alternative hypothesis was defined as a half-normal distribution centred at 0 with a standard 
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deviation equal to the difference in distributions we expect to find. Each specific alternative 

hypothesis is detailed below. As our required sample size was below 30 participants (see 

section Participants), we applied a correction to standard error estimates as suggested by 

Dienes (2014) and Berry (1996) – standard errors were increased by a factor of (1 +  
20

𝑑𝑓2), 

where df stands for degrees of freedom. Bayes factors (BF10) larger than 3 were interpreted as 

providing evidence for the alternative hypothesis, and BFs smaller than 1/3 were interpreted 

as providing evidence for the null hypothesis (Dienes, 2014).  

The expected difference between the standard deviation of responses under the uniform and 

skewed distributions (Prediction 1) and the uniform and Gaussian distributions (Prediction 3) 

were based on the Bayesian ideal observer model. For each participant, we calculated the 

difference in the standard deviation of the model-generated responses (across all stimulus 

durations) between the two distributions. Then, we found the average difference across all 

participant-based model estimates and used this as the standard deviation of the alternative 

hypothesis (H1).  

For the comparisons of mean responses under the different distributions in each experiment 

(Prediction 2 and Prediction 4), we relied on the results reported in Acerbi et al. (2012). The 

authors report a one-sample frequentist t-test which revealed that the difference in response 

bias (the difference between actual and reported duration) between the skewed and uniform 

distribution was significantly different from zero (Mdifference(uniform-skewed) = 32.2ms, SD = 

7.9ms). Based on this result, we defined our expected difference in mean duration estimates 

(the standard deviation of H1) as 32.2ms. 

To calculate the standard deviation and mean of behavioural responses for each condition, we 

sub-sampled trials from duration levels with greater presentation frequencies. To ensure that 

our results were not due to any specific subsample, we generated 1000 samples per 

participant and calculated the differences in mean and standard deviation. We then used the 

mean of the re-sampled distributions as the participant-specific estimates of the differences 

between conditions, which gave us a strong indication of the true parameters.   

4.2.7 Required sample size 

We estimated our required sample size using the Bayesian analysis outlined above on data 

simulated with Acerbi et al.’s (2012) Bayesian ideal observer model (see Dienes, 2014). We ran 

simulated experiments with different sample sizes (between N=12 and N=20) and checked 

what Bayes factor we expect to obtain with that sample size. To estimate the expected Bayes 
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factor for the difference in mean response between the different distributions in each 

experiment (Prediction 2 and Prediction 4), we based our estimate of prior effect size (the 

standard deviation of H1) on the difference reported by Acerbi et al. (2012): 32.2ms. To 

estimate the expected difference in the standard deviation of responses between stimulus 

distributions in each experiment ( rediction 1 and  rediction 3), we analysed Acerbi et al.’s 

(2012) raw data. For each participant (N=6), we extracted the data collected in the last 12 runs 

(~1000 trials), which would have corresponded to the data used in the original analysis. Next, 

we calculated the standard deviation of responses across all durations separately for the 

uniform and skewed distribution for each participant. Finally, we averaged the difference in 

standard deviation between the two distributions (uniform SD – skewed SD) across all 

participants to obtain our prior effect sizes for Prediction 1 and Prediction 3, which we found 

to be equal to 16.69ms. Finally, for comparisons that provided evidence for the alternative, we 

also investigated whether we would be able to conclude in favour of the null if we find no 

difference between the distributions. For these tests, the predicted effects were again set to 

the differences in Acerbi et al.’s (2012) data, and the measured effects were set to 0. 

To mirror the design of the experiments, the simulated sequences for the comparisons 

between the uniform and skewed distributions consisted of 1152 trials (2 blocks of 576 trials), 

and the sequences for the comparisons between the uniform and Gaussian distributions 

consisted of 1728 trials (3 blocks of 576 trials). We also report the robustness region (RR) for 

each Bayes factor, which is the range of prior effect sizes which would lead to the same 

inferential conclusion. For example, if the reported Bayes factor supports the alternative 

hypothesis, the robustness region gives the minimum and maximum prior effect sizes which 

would also lead to Bayes factors that support the alternative hypothesis. 

We varied the perceptual and motor noise across simulations to mimic individual differences in 

performance. Perceptual noise, defined as the just noticeable difference in duration 

discrimination tasks, increases proportionally with increase in the duration of the standard 

stimulus (e.g., Shi et al., 2013). Therefore, in our simulations, perceptual noise was defined as a 

scalar. Estimates of perceptual noise (Weber fraction) were sampled from a lognormal 

distribution centred at 0.157 (SD = 0.02) – the mean of the fitted perceptual noise parameters 

reported by Acerbi et al. (2012). The standard deviation of the sampling distribution was 

greater than the standard deviation reported in Acerbi et al. (2012) in order to simulate 

greater inter-participant variability. The generated estimates of perceptual noise varied 

between ~10-25% of the presented duration, which is in accordance with results reported by 

studies using 2IFC visual duration tasks to estimate the Weber fraction between 600-1000ms 
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(Rammsayer & Pichelmann, 2018; Rammsayer, 2014; Lapid, Ulrich, & Rammsayer, 2008). 

When analysing the behavioural data from the experiment, the perceptual noise parameter for 

every participant was directly derived from their responses on the 2IFC task. To our 

knowledge, no studies to date have examined whether motor variability remains constant or 

increases proportionally to stimulus duration. To evaluate both of these possibilities, we 

defined motor noise as constant in one set of simulations, and as proportional to stimulus 

duration in another set of simulations. Estimates for scalar motor noise were sampled from a 

lognormal distribution with a mean of 0.072 (SD = 0.01) – the mean of the fitted motor noise 

parameters reported by Acerbi et al. (2012). Again, we increased the standard deviation of the 

sampling distribution to avoid underestimating inter-participant variability. The generated 

estimates of scalar motor noise varied between ~13-20% of each stimulus duration. In the 

simulations where motor noise was constant across durations, the estimates of scalar noise 

were multiplied by a constant (787.5), generating parameters that varied between ~100-

170ms. In the analysis of the experimental data, the motor noise parameter for each 

participant was derived directly from their performance on the reaction time task.  

In our initial simulations, the model provided realistic values for the mean differences across 

conditions but underestimated the variability we can expect to find across participants in the 

behavioural experiment (see Table 1), which leads to unrealistically high estimates of expected 

effect size. This is likely because the model does not account for random variability across 

participants, such as fatigue and motivation, which will affect the behavioural results. 

Therefore, to more accurately estimate our expected effect size, we added a parameter to 

simulate measurement noise to the difference between the compared conditions for each 

simulated participant. The corrupted difference scores were randomly chosen from Gaussian 

distributions centred at the ideal differences produced by the model with standard deviations 

that were varied between 5-15ms across the simulated participants. We ran 1000 simulations 

for each combination of sensory, motor, and measurement noise. It is important to note that 

measurement noise is not part of the Bayesian ideal observer specified above, and this was not 

included in the analysis of the experimental data – we added additional noise to the 

simulations solely to provide more realistic results to help determine desired sample size.   
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Difference in standard deviation of simulated responses (N=12)  

 
Constant motor noise Scalar motor noise 

 No added  
noise 

With added 
noise 

No added  
noise 

With added 
noise 

Prediction 1: 
Mean  

Uniform – Skewed (SE) 
 

13.78 (0.20) 13.63 (3.43) 14.05 (0.21) 14.05 (3.78) 

Prediction 3: 
Mean  

Uniform – Gaussian (SE) 
 

15.07 (0.26) 15.27 (3.49) 15.09 (0.24) 14.77 (3.40) 

 

Difference in mean of simulated responses (N=12)  

 
Constant motor noise Scalar motor noise 

 No added  
noise 

With added 
noise 

No added  
noise 

With added 
noise 

Prediction 2: 
Mean  

Uniform – Skewed (SE) 
 

26.79 (1.57) 26.74 (3.69) 27.32 (1.36) 26.34 (3.83) 

Prediction 4: 
Mean  

Uniform – Gaussian (SE) 
 

0.48 (0.21) 0.22 (3.48) 0.12 (0.26) 0.72 (3.40) 

 

Table 4.1. Results from simulations. Average difference in mean and standard deviation of the 

simulated responses across the two experiments with and without added measurement noise. 

 

The simulations with added measurement noise revealed that with a sample size of 12 we 

could expect to exceed our sensitivity threshold for the comparisons of standard deviations 

across distributions (Prediction 1 and Prediction 3). For both of these predictions, we specified 

a prior effect size of 16.69ms.  Regarding Prediction 1, the simulations with constant motor 

noise showed that the average standard deviation was higher under the uniform distribution 

compared to the skewed distribution, Mdifference = 13.63ms (SE = 3.43) which provided support 

for the alternative hypothesis with BF10 = 772.66, RR [1, 1000]. Alternatively, when we 

specified a measured difference of 0ms (SE = 3.43), the data provided evidence in favour of the 

null hypothesis, BF10 = 0.20, RR [9.7, 1000]. Regarding Prediction 3, the simulations with 

constant motor noise revealed that the average standard deviation was higher under the 



70 
 

uniform than the Gaussian distribution, Mdifference= 15.27ms (SE= 3.49), and we found evidence 

for the alternative hypothesis, BF10= 4003.47, RR [0.9, 1000]. When the measured difference 

was set to 0ms (SE=3.49), we found evidence in favour of the null hypothesis, BF10 = 0.20, RR 

[9.8, 1000]. We found similar results when motor noise was proportional to the stimulus 

duration (see Table 4.1). 

For the comparisons of mean responses across distributions (Prediction 2 and Prediction 4), 

the simulations again revealed that we could expect to exceed our sensitivity threshold with a 

sample size of 12. The prior expected effect for both predictions was set to 32.2ms – the 

difference in mean responses reported by Acerbi et al. (2012). In the simulations in which 

motor noise was constant, the average difference in mean responses between the uniform and 

skewed distributions (Prediction 2) was 26.74ms (SE = 3.69). This result provides strong 

evidence for the alternative hypothesis with BF10 = 4.26x1010, RR [0.55, >1000]. When the 

measured difference was set to 0ms (SE = 3.69), we found evidence in favour of the null, BF10 = 

0.12, RR [10.40, 1000]. The average difference in mean responses between the uniform and 

Gaussian distribution (Prediction 4) produced in the simulations was 0.22ms (SE= 3.48). In 

contrast to the results regarding Prediction 2, this provides strong evidence in favour of the 

null hypothesis (BF10= 0.12, RR [10.35, 1000]). We found similar results when motor noise was 

proportional to the stimulus duration rather than constant (See Table 4.1).  

The simulations detailed above revealed that we could expect to find moderate to very strong 

evidence either in favour of the null or the alternative hypothesis for a wide range of possible 

prior effects. This suggests that even if the model under- or overestimates the differences 

between conditions because we have misspecified participants’ true noise parameters, we 

would still likely arrive at the same inferential result. We computed additional simulations to 

examine further how robust our analyses would be to the over-and underestimation of the 

perceptual and motor noise parameters. The results from these simulations have been 

included in Appendix C. In brief, the comparison between the standard deviation of the two 

distributions is relatively robust to parameter misspecification. The sensitivity threshold of 

BF10>3 was reached with a reasonable range of motor and perceptual noise parameters. The 

difference predicted by the model is too small only when perceptual noise is grossly 

underestimated, or when there is a large discrepancy between motor and perceptual noise – 

for example when perceptual noise is very high but motor noise is very low. We believe it is 

unlikely to observe such extreme deviations from the true estimates of participants’ noise 

parameters. For more details, please refer to Appendix C.  
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4.2.8 Participants 

Acerbi et al.’s (2012) experiment was completed by 6 participants. Based on the estimates of 

sensitivity for the proposed Bayesian t-tests discussed above, we aimed to recruit a starting 

sample of 12 adult participants (18 years of age or older) for each experiment and conduct our 

analyses. We were primarily interested in the comparison between the standard deviation of 

the distributions in the two experiments. Therefore, we planned that if our results for these 

tests do not exceed the set sensitivity criterion (BF10<1/3 or BF10>3), we would continue data 

collection and redo the analysis after every additional participant until we reach a maximum of 

20 participants per experiment.  

As of now, we have recruited 47 participants to take part in the study. Of them, 16 participants 

(MeanAge = 23.81 years,  SDAge = 4.55) fulfilled the performance criteria, but 6 dropped out due 

to the pandemic. From the remaining participants, 6 participants completed both experiments, 

1 participant completed only Experiment 1, and 2 participants completed only Experiment 2. 

Therefore, the results presented here are based on 7 participants in Experiment 1, and 8 

participants in Experiment 2.  

4.3 Results 

4.3.1 Effect of variance on responses 

The main aim of this study was to investigate the effect of distributional variance on regression 

to the mean, with our overall hypothesis being that distributions with a smaller variance will 

lead to greater regression towards the mean. In Experiment 1, participants were presented 

with durations drawn from a uniform or skewed distribution, while in Experiment 2 

participants were presented with durations drawn from a uniform or Gaussian distribution. We 

predicted that participants’ responses would show greater regression towards the mean, and 

therefore smaller standard deviation, under the skewed (Prediction 1) and Gaussian 

distributions (Prediction 3) compared to the uniform distribution.   

First, we found that, on average, the standard deviation of participants’ responses was higher 

under the uniform than the skewed distribution, mean difference = 1.85ms (SE = 2.74). The 

Bayesian ideal observer model predicted a mean difference of 11.29ms, and the behavioural 

results provided anecdotal evidence in support of the null, BF10 = 0.43. In Figure 4.5, we can 

see that the predictions of the model participants’ data diverge for the longest durations in the 

range. The model predicted that, on average, under the skewed distribution, participants’ 

responses to the 825, 900, and 975ms stimuli would be more biased towards the mean than 
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under the uniform distribution. However, in the behavioural data, average responses to the 

three longest stimuli did not differ substantially between the two conditions. 

In support of  rediction 3, on average the standard deviation of participants’ responses in 

Experiment 2 was higher under the uniform than the Gaussian distribution, mean difference = 

19.12ms (SE = 9.41), and we found that these results provide moderate evidence in support of 

the effect predicted by the Bayesian ideal observer model, predicted difference = 15.34ms, 

BF10 = 4.48, RR [7.15 42.75]. Figure 4.5 also shows no substantial differences in the behavioural 

and model-predicted results. The pattern of averaged responses in the behavioural data is 

well-reflected in the average responses predicted by the Bayesian ideal observer model. 

4.3.2 Effect of mean on responses 

We predicted that participants’ responses would be biased towards the mean of the 

underlying stimulus distribution. In Experiment 1, the mean of the skewed distribution was 

shorter than the mean of the uniform distribution, so we predicted that participants responses 

would be shorter in the skewed than the uniform distribution (Prediction 2). In Experiment 2, 

we also predicted that mean responses will be shorter in the Gaussian than the uniform 

condition due to greater regression towards the mean for longer compared to shorter 

durations (Prediction 4). For both predictions, we tested the difference in the behavioural data 

against the difference in mean responses between the uniform and skewed distribution 

reported by Acerbi et al. (2012) in their second experiment: 32.2 ms. 

As predicted, in Experiment 1, mean responses were shorter in the skewed compared to the 

uniform condition, mean difference = 8.87 (SE = 4.99). However, the obtained difference was 

smaller than the prior expected effect and consequently provided only anecdotal evidence in 

favour of the alternative hypothesis, BF10 = 1.37. Finally, in Experiment 2 mean responses were 

4.68ms (SE = 9.63) shorter in the Gaussian than uniform condition, but that difference was 

considerably smaller than the expected effect and provided anecdotal evidence in favour of 

the null hypothesis. BF10 = 0.44. 
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Figure 4.5. Behavioural results and model predictions for each experiment. The figures on the top row 

show responses to each stimulus duration averaged across participants, separately for the uniform and 

skewed distribution in Experiment 1 (left), and the uniform and Gaussian distribution in Experiment 2 

(right). The bottom figure shows the average responses predicted by the Bayesian ideal-observer model 

for the conditions in each experiment. The green dotted line represents veridical responses. Error bars 

show +/- SD, c  cu                n       v     n  f p    c p n  ’  v   g  responses.  
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4.4 Discussion 

In this study, we investigated whether the variance of the prior distribution influences the 

magnitude of perceptual biases towards the prior. Replicating and extending a study by Acerbi 

et al. (2012), we ran two experiments in which participants had to reproduce durations drawn 

from distributions with different variances, and implemented a Bayesian ideal-observer model 

to predict participants’ regression to the mean effect in each condition. In Experiment 1, which 

replicated Acerbi et al. (2012), participants were presented with durations drawn from a 

skewed or uniform distribution, while in Experiment 2 durations were drawn from a Gaussian 

or uniform distribution. In Experiment 2 we found that, on average, participants’ responses 

supported the prediction of the Bayesian ideal-observer model – responses were biased more 

towards the mean of the stimulus distribution under the Gaussian compared to the uniform 

distribution. In contrast, in Experiment 1, we found that participants’ responses diverged from 

the prediction of the model. While the model predicted that participants would be more 

biased towards the mean in the skewed distribution, the behavioural data revealed a 

considerably smaller (almost non-existent) difference in the magnitude of regression to the 

mean than predicted by the model. Although we did not find conclusive evidence in favour of 

the null hypothesis, these preliminary findings suggest that the Bayesian model was not able to 

capture the pattern of participants’ responses. In each experiment, we also investigated 

whether there was a difference in the value towards which participants regressed under the 

different stimulus distribution. In both experiments, we found that the mean of participants 

responses was shorter in the peaked than in the uniform conditions, and even though the 

results did not provide conclusive evidence for either the null or the alternative hypothesis, 

the differences we found were smaller than the result reported by Acerbi et al. (2012). 

Previous studies investigating how the precision of the prior distribution affects responses 

confounded differences in variance with concurrent changes in range, making it impossible to 

divulge the specific effect of prior variance on perception (Berniker et al., 2010; Acerbi et al., 

2014; Körding et al., 2004; Miyazaki et al., 2005; Garrido et al., 2013; Garrido et al., 2019). A 

fundamental prediction of Bayesian brain theory is that specifically the variance of the prior 

affects the magnitude of perceptual biases. Until now, this assumption had not been tested 

directly. In Experiment 2, we show that participants’ responses reflect changes in the variance 

of the underlying distribution when keeping mean, range, and skewness constant. Studies in 

the field of ensemble perception have shown that participants can estimate the variance of 

stimulus distribution when explicitly asked to do so (e.g., Haberman et al., 2015; Solomon, 

Morgan et al., 2011; Suárez-Pinilla et al., 2018). Our results here further show that participants 
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also implicitly estimate the variance of stimuli presented over time to optimize future 

behaviour.   

 ontrary to our results in Experiment 2, we found that participants’ responses in Experiment 1 

did not support the prediction of the Bayesian ideal-observer model defined by Acerbi et al. 

(2012). While the model predicted that participants’ responses would be biased towards the 

mean more in the skewed compared to the uniform distribution, there were very small 

differences between the two conditions in the behavioural data. The divergence between the 

model's predictions and the behavioural data is most striking for the three longest durations in 

the range – 825, 900, and 975ms. The model predicts that as the duration of the stimulus 

increases from 825 to 975ms, the regression to the mean in the skewed condition would 

increase relative to the uniform condition. In contrast, we see the opposite in participants’ 

data – the difference between the two distributions is greatest at 750ms, beyond which the 

difference in responses between the two distributions progressively decreases, which is 

reminiscent of results reported by studies investigating adaptation effects (e.g., Roseboom, 

2019). These results contradict the findings of Acerbi et al. (2012) who found that the Bayesian 

ideal observer model provided a good fit to participants’ responses in the skewed condition. 

Interestingly, the researchers also found that the Bayesian ideal observer model could explain 

behavioural responses obtained in a highly skewed distribution where the overrepresented 

stimulus appeared on ~80% of the trials, compared to ~60% of the trials in their “standard” 

skewed distribution which we also used here. As the samples recruited in these experiments, 

including ours, are relatively small, it is possible that the differences between our results and 

the results reported by Acerbi et al. (2012) could be explained by individual differences, as 

others have found wide variation in the spread and strength of attractive and repulsive biases 

across participants (Bliss, Sun, &  ’Esposito, 2017). 

The pattern of results in the skewed condition is reminiscent of results reported by studies 

investigating adaptation effects (e.g., Roseboom, 2019), and suggests that the skewed 

distribution could be giving rise to opposing biases in different parts of the stimulus 

distribution – the stimuli closest to overrepresented duration are biased towards it, while 

more distant durations are biased away from it. In their most general formulations, Bayesian 

ideal-observer models are not equipped with the mechanisms necessary to predict repulsive 

after-effects. In contrast, models focused on explaining adaptation effects (e.g., Heron et al., 

2012) are not able to predict positive biases, and overall, there has been little attempt to 

bridge the gap between these distinct classes of models. However, as the results in Experiment 

1 show, repulsive and attractive biases can co-exist, and a model capable of predicting only 
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one type of bias falls short of describing participants’ behaviour. It was recently shown that a 

hierarchical model consisting of a sensory layer based on population codes (which gives rise to 

adaptation), and a decision layer based on Bayesian inference (which gives rise to biases 

towards the prior) was able to predict positive and negative biases in estimating motion 

variance (Suàrez-Pinilla, 2018). Such an approach has the potential to provide a unifying 

account of two seemingly conflicting perceptual phenomena, and thus allow researchers to 

explain complex patterns of behaviour that are otherwise not well captured by the individual 

models alone.  
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Chapter 5.  Effect of sensory precision on 

behavioural and neuroimaging perceptual biases in 

duration reproduction and estimation tasks 
 

In the previous chapter, I presented two experiments in which we investigated how 

manipulating the variance of the prior distribution influences regression to the mean. 

Conversely, Bayesian brain theories predict that the magnitude of perceptual biases also 

depends on the variance of the sensory likelihood, but the existing research investigating the 

influence of sensory precision on regression to the mean is limited. Similarly, little is known 

about the potential neural correlates of regression to the mean. Here I present two 

experiments in which we investigated how sensory precision influences the magnitude of 

behavioural and neuroimaging perceptual biases in duration perception tasks. In both 

experiments, participants were presented with durations drawn from two overlapping 

distributions – a short and a long distribution. In Experiment 1 (N=20) we found that 

participants’ behavioural estimates of the duration of the overlapping stimulus differed 

between the two conditions, and using EEG (N=19) we found that a multivariate classifier was 

able to distinguish stimulus context on the basis of the brain activity associated only with the 

overlapping stimulus. However, we found evidence of no difference in the magnitude of the 

behavioural or neuroimaging bias towards the prior between participants with low and high 

sensory precision. Furthermore, our preliminary results from Experiment 2 (N=27) reveal no 

conclusive evidence in favour of a correlation between regression to the mean and sensory 

precision under conditions of low motor noise. Altogether our results suggest that either the 

process that leads to regression to the mean-type effects might not be entirely Bayesian in 

nature or that the measures researchers use to estimate constructs like sensory precision and 

regression to the mean need to be properly validated.  

5.1 Introduction 

A key prediction of Bayesian models is that the resulting probability distribution, the posterior, 

will be biased more or less towards the prior depending on the relative variability of the 

likelihood relative to the variability of the prior – as the variability of the sensory likelihood 

decreases, the bias towards the prior will also decrease (see Figure 4.1 for an illustration of the 

effect of the relative variance of the likelihood and prior on the posterior). Here we are 

investigating how the precision of the sensory likelihood influences the magnitude of 
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perceptual biases in time perception using computational modelling and 

electroencephalography, where sensory precision is defined as the inverse of the likelihood 

variance (i.e., the greater the variance of the likelihood, the smaller the precision and vice 

versa).  

Following the assumption of Gaussianity, an observer’s best prediction before the 

presentation of new sensory information will be equivalent to the mean of the prior 

distribution. As already discussed in previous chapters, in magnitude estimation tasks (wherein 

participants must directly estimate the value of the presented stimulus), perceptual biases 

towards the prior can be measured based on the regression to the mean in observers’ 

responses – stimulus magnitudes smaller than the mean tend to be overestimated, while 

stimulus magnitudes greater than the mean tend to be underestimated (Lejeune & Wearden, 

2009; Jazayeri & Shadlen, 2010; Petzschner et al., 2015). The effect is range-specific such that 

the same physical stimulus will be over- or underestimated depending on its position in the 

prior distribution (Figure 5.1A). Therefore, based on the assumption of Bayesian models 

discussed above, we can predict that the precision of the sensory likelihood would influence 

the magnitude of regression to the mean – the less precise the sensory likelihood, the stronger 

the bias towards the prior. Alternatively, as sensory precision increases, regression to the 

mean will decrease, and participants’ responses will be closer to the true stimulus magnitude 

(Figure 5.1B). This, in turn, means that the difference in reported magnitude between the 

same physical stimulus presented in two different contexts will decrease as sensory precision 

increases.  

To date, there is very limited evidence investigating the relationship between sensory 

precision and perceptual biases in behaviour. Previous studies have found that there is a 

positive correlation between the regression to the mean participants exhibit in duration 

reproduction tasks and their sensory precision measured through a duration bisection task 

Cicchini et al., 2012). In addition, studies have also found that musicians, and expert 

drummers, in particular, experience weaker regression to the mean than participants with no 

musical experience (Cicchini et al. 2012; Aagten-Murphy et al. 2014). Neuroimaging studies 

provide evidence that priors can also influence the brain activity associated with a specific 

sensory stimulus, suggesting that the effect of sensory precision predicted by Bayesian 

perceptual models may not be limited to behavioural data. Studies within the domain of time 

perception have found that the amplitude of the CNV is influenced by the duration presented 

on the previous trial (Wiener & Thompson, 2015; Damsma et al., 2020), and by the range of 

the distribution from which stimuli are drawn (Damsma et al., 2020). On a trial-to-trial level, 
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these studies showed that across a duration bisection (Wiener & Thompson, 2015) and a 

duration reproduction task (Damsma et al., 2020) the amplitude of the CNV on the current trial 

became more negative following longer durations presented on the previous trials. Damsma et 

al. (2020) also reported that in a duration reproduction task the amplitude of the CNV elicited 

by the same physical duration was more negative when the stimulus was embedded in a range 

of long compared to a range of short durations.  

 

 

Effects of stimulus context on EEG activity have been found not only in timing tasks but in 

other perceptual domains as well. Studies on pitch perception have found that the mismatch 

negativity (MMN) evoked response is affected by the variance and range of the underlying 

stimulus distribution – the smaller the variance and range of the prior, the greater the MMN 

amplitude elicited by the same physical stimulus (Garrido et al., 2013; Garrido et al., 2016; 

Randeniya et al., 2019). It has also been suggested that sensory precision affects the MMN 

response associated with a deviant stimulus, with greater sensory precision being related to an 

MMN response with higher amplitude. Kraus et al. (1996) showed that children with learning 

difficulties had worse syllable discrimination performance and smaller MMN response in 
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Figure 5.1. Regression to the mean. (A) Overall regression to the mean effect across two partially 

overlapping ranges – stimulus magnitudes greater than the mean are underestimates, while stimulus 

magnitudes smaller than the mean are overestimated. Due to scalar variability, regression to the mean is 

stronger for longer durations, so responses in the long range (in blue) are more biased to the mean than 

responses in the short range (in orange).  (B) Effect of sensory precision on regression to the mean 

predicted by Bayesian brain models – high sensory precision (blue) results in weaker regression to the 

mean than low sensory precision (red). Responses of participants with low sensory precision are closer to 

veridical, and there is a smaller difference in responses to the overlapping stimulus. Again, due to scalar 

variability, regression to the mean is stronger in the long range than in the short range.  In both figures 

the grey dotted line represents veridical responses. 



80 
 

relation to syllable change compared to age-matched controls who could discriminate syllables 

with smaller acoustic differences and showed greater MMN response. These results suggest 

that the more different two stimuli are perceived to be, the more differentiable their 

associated brain activity will be.  

As already discussed, in regression to the mean the same physical stimulus is perceived to be 

greater or smaller than the mean depending on the range of the stimulus distribution it is 

embedded in. In a preliminary analysis of the experiment presented here (Baykova & 

Roseboom, 2019) and a recent study by Damsma et al. (2020) it was shown that a classifier 

could distinguish stimulus context based solely on the EEG activity associated with a physical 

stimulus common to both distributions – the stimulus was the longest duration in one range of 

stimuli, and the shortest duration in the other range of stimuli. We can further predict that as 

the regression to the mean increases, the brain activity associated with a given stimulus will 

carry more information about the underlying stimulus distribution. Bayesian perceptual 

models predict that observers with low sensory precision will exhibit stronger regression 

towards the mean. Therefore, we can predict that in a Bayesian observer with low sensory 

precision, the brain activity elicited by a given stimulus will vary substantially depending on the 

overall stimulus distribution (Figure 5.2). Conversely, a Bayesian observer with high sensory 

precision will be less affected by context, and the brain activity associated with a given 

stimulus will differ less across different stimulus distributions. In other words, we assume that 

the brain activity generated by a given stimulus is a mixture of signals reflecting not only 

processing of the incoming physical information, but also signals related to the observer’s 

subjective experience. If we assume that brain activity reflects observers’ subjective 

experience, we can predict that in a Bayesian observer with low sensory precision, the brain 

activity elicited by a given stimulus will carry more information about stimulus context 

compared to a Bayesian observer with high sensory precision (who will experience a given 

stimulus identically irrespective of the underlying distribution, Figure 5.2).   
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Figure 5.2. Effect of sensory precision on perceptual biases in brain activity. An observer with low 

sensory precision will experience the same physical stimulus, 626ms, very differently depending on the 

context the stimulus is presented in. This should result in a large difference in brain activity when the 

same stimulus is presented in different contexts. In contrast, the perceived duration of an observer with 

high sensory precision will be less affected by context. Therefore, the difference in brain activity when the 

same stimulus is presented in different contexts will be smaller.  

 

Here we present two experiments in which we investigated the effect of sensory precision on 

perceptual biases across two duration perception tasks.  In Experiment 1, participants 

completed a duration reproduction task in which they were presented with durations drawn 

from a short (340 to 626ms) or long range (626 to 1152ms). Our first hypothesis was that 

participants would exhibit regression towards the mean – they would overestimate the 

duration of the 626ms stimulus when it is presented in the context of the long range, but they 

would underestimate its duration when it is presented in the context of the short range. We 

will use a Bayesian ideal observer model to derive a specific, numerical prediction for this 

effect. Having established the presence of regression to mean in our dataset, we examined our 

main behavioural hypothesis – that observers with low sensory precision would exhibit 

stronger regression to the mean than observers with high sensory precision. Low and high 

sensory precision groups were derived using a median split. In Experiment 1, we also used EEG 

to investigate how sensory precision influences neuroimaging proxies of perceptual biases.  In 

the EEG session participants were passively presented with the same stimuli they saw in the 

340 

626 

626 

1152 
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behavioural experiment. Our prediction was that stimulus context would influence the brain 

activity associated with the same physical stimulus (626ms). Our first hypothesis was that an 

MVPA classifier would be able to distinguish stimulus context significantly better than chance 

when it is trained and tested only on the EEG data associated with the overlapping stimulus. In 

this case, we would be able to use classification performance as an indication of perceptual 

bias on the neuroimaging level, and our prediction was that context classification would be 

better in participants with low compared to high sensory precision. Finally, we also carried out 

univariate analysis examining how context influenced the amplitude of the CNV associated 

with the overlapping stimulus. Our prediction was that the CNV would have a greater 

amplitude (become more negative) when the overlapping stimulus is presented in the context 

of long compared to short durations. We also predicted that the difference in amplitude would 

be greater in participants with low compared to high sensory precision.  

In Experiment 2, participants completed a direct duration estimation task in which they 

reported the duration of the presented intervals on a visual analogue scale. In duration-

reproduction tasks, there is a potential discrepancy between perceived and reported duration 

due to confounding factors related to the method of providing responses (for example, motor 

noise). Reports in direct duration-estimation tasks are less likely to be affected by confounding 

factors unrelated to the sensory processing of the stimulus, and could therefore provide a 

more accurate representation of the relationship between sensory noise and regression 

towards the mean. Here we treated sensory precision as a continuous rather than categorical 

variable, and our prediction was that sensory precision and regression towards the mean 

would be positively correlated.  

 5.2 Experiment 1 

5.2.1 Method 

Pre-registration of behavioural experiment and data availability 

The hypotheses, design, experimental procedure, and analysis plan for the behavioural 

experiment are pre-registered at the Open Science Framework (https://osf.io/nbf38). The 

behavioural data is available here: https://osf.io/qgtfe/files/. The EEG data is available here: 

https://osf.io/u9kbv/files/ (this includes: raw EEG data, pre-processed EEG data, list of 

removed epochs, list of removed ICA components, results from the MVPA analysis, data for 

the ERP analysis).  

https://osf.io/nbf38
https://osf.io/qgtfe/files/
https://osf.io/u9kbv/files/
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Design 

In this experiment, we investigated how sensory precision influences behavioural and 

neuroimaging perceptual biases towards the prior. The sensory precision of each participant 

was estimated based on the average 75% threshold reached in a 2-interval forced-choice 

(2IFC) duration discrimination task. We used a median split based on the average 75% 

threshold to divide participants into high and low sensory precision groups.  

We quantified behavioural perceptual bias as the magnitude of regression to the mean 

(greater regression to the mean signifies greater bias) in a duration reproduction task.  

Participants were asked to reproduce durations drawn from a range of 5 stimuli between 340-

626ms (short range), and a range of 5 stimuli between 626-1152ms (long range). Regression to 

the mean was defined as the difference in reproduced durations in response to the stimulus 

present in both conditions, 626ms (Figure 5.3). Notably, the durations follow a logarithmic 

scale to account for Weber’s law – the variability of behavioural responses increases 

proportionally with increase in stimulus magnitude.  

To investigate perceptual biases on the neural level, participants also completed an EEG 

session during which they were presented with the same ranges of durations. In the EEG task, 

we estimated perceptual bias based on the accuracy with which a multivariate classifier 

decodes stimulus context based on activity associated with the same physical stimulus – the 

626ms (better classification performance signifies greater bias).  

 

 

 

 

 

1. Procedure 

 

 

 

 

Figure 5.3. Stimulus conditions in the duration reproduction task. In different blocks participants were 

presented with stimulus durations drawn from a short or a long range. There was one stimulus common 

to the two ranges, 626ms, responses to which were used to quantify regression towards the mean.   

340 396 461 537 626 729 849 989 1152

 ura on

340 396 461 537 626 729 849 989 1152
 ura on

626Long – 626Short = Regression to the mean 
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 Apparatus  

The experiment was run on Matlab2018b using Psychtoolbox-3.0.14 (Brainard, 1997, Pelli, 

1997; Kleiner, Brainard, Pelli 2007). The behavioural tasks were presented on a 22-in Iiyama 

Master Pro 513 CRT monitor, and the EEG task was presented on a 22-in LaCie Electron blue IV 

CRT monitor. Both monitors were gamma-corrected, had a resolution of 800x600 pixels, and a 

refresh rate of 120Hz. Participants sat ~57 cm away from the screen in all sessions. The main 

stimulus was a stationary cloud of 17 black and 17 white dots presented on a grey background. 

Each dot had a size of 0.4dva, and the overall size of the entire cloud was 12dva. The position 

of each dot was randomized on every trial to mitigate visual adaptation effects. In the 

behavioural sessions, participants provided responses on a gaming computer keyboard, and in 

the EEG session – on a standard keyboard.  

Procedure 

Participants completed 3 sessions in total. The first two sessions comprised of two behavioural 

tasks – a duration reproduction task, and a 2IFC task (completed in that order). The third 

session involved only passive observation of durations completed during EEG recording.  Each 

of the behavioural sessions took ~2.5 hours to complete, and the EEG session took ~2 hours. 

Instructions for all tasks can be found in Appendix D. 

Duration reproduction task 

The main behavioural task in this experiment was a duration reproduction task (Figure 5.4). A 

white fixation cross was presented on the screen, and participants had to press a button on 

the keyboard to initiate each trial. 350-850ms after participants started a trial, they were 

presented with a cloud of black and white dots (34 dots in total, 17 black). The positions of the 

dots were randomized on each trial to limit adaptation. The white fixation cross remained on 

the screen during the stimulus presentation, and participants were instructed to fixate at the 

cross throughout the entire duration of the trial. 250ms after the disappearance of the dots, 

the fixation cross turned green to prompt participants to reproduce the duration of the 

stimulus by keeping a button on the keyboard down for the entire apparent duration of the 

interval. Between 200-400ms after the response, participants were provided with visual 

feedback signifying the signed difference between the response and the actual stimulus 

duration. The feedback was presented for 100ms, and after the feedback disappeared, the 

screen remained blank for 300ms. After that, the fixation cross was presented again to signify 

to participants that they could start the next trial.   
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The duration reproduction task was divided across two sessions. The order of the conditions 

(short range and long range) was counterbalanced across sessions and across participants. 

Within each session, participants had to take a 15-minute break between the two conditions. 

At the start of each condition, participants completed a training block of 35 trials (7 repetitions 

per stimulus), in which the durations were presented in ascending order. After training, 

participants had to complete 5 blocks (50 trials in each block) in which the Spearman 

correlation between reported and actual duration was at least 0.65, and the slope was at least 

0.5. If participants failed to reach the threshold at the end of a given block, they were required 

to complete an additional block.  articipants were allowed to “repeat” a maximum of 3 blocks. 

If a participant failed to reach the performance criteria in four blocks in either condition and in 

either session, the testing session was terminated, and the participant’s data were excluded 

from the analysis. To summarise, depending on their performance, participants completed 

between 5 and 8 blocks per condition per session. In total, the data used for the analysis 

consisted of 100 trials per stimulus per condition.   

 

 

 

 

 

 

 

Finally, trials in this task were excluded and replaced online if: (1) responses were shorter than 

half the duration of the shortest stimulus in the range, or longer than 1.5 times the longest 

duration in the range, 170-939ms in the short range and 313-1728ms in the long range; (2) 

participants responded too late –  they did not begin their responses within 1500ms of the 

Figure 5.4. Duration reproduction task. On every trial, participants are presented with an array of 

black and white dots that stays on the screen for some time. 250ms after the stimulus disappears, 

participants are prompted to reproduce the apparent duration of the stimulus by keeping a button 

pressed for the same duration as the stimulus. 200-400ms after participants give their response, they 

are provided with feedback reflecting their accuracy. If the coloured line is to the left of the midline, 

then participants underestimated the presented duration, if the coloured line is to the right of the 

midline – participants overestimated the presented duration. If the coloured line is green, the 

response was within 10% of the presented duration.  
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presentation of the response prompt; (3) participants responded too early – they began their 

response before the presentation of the response cue.  

2IFC task 

In addition to the duration reproduction task participants also completed a 2-interval forced-

choice task designed to estimate participants’ sensory precision (Figure 5.5). On every trial, 

participants were presented with two temporal intervals – a standard and a comparison 

interval. The standard interval was 626ms long, and the comparison interval was, in different 

blocks, either shorter or longer than the standard interval. Accordingly, depending on the 

condition, the participants’ task was to indicate which of the intervals was longer or shorter. 

We used the Bayesian adaptive psychometric method QUEST (Watson & Pelli, 1983) to 

estimate participants’ 75% threshold. If on any trial the difference between the main and 

comparison stimuli suggested by QUEST was smaller than 0, the presented difference was 

drawn from a uniform distribution between 6 to 18ms. 

Originally, in the preregistration, we determined that each participant would complete one 

block per condition (70 trials per block) and that we will estimate sensory precision by 

averaging the two directional thresholds. However, we decided to increase the number of 

blocks to two per condition per person, in order to achieve more accurate estimates of sensory 

precision. 2 participants have completed only one block per condition, while the rest of the 

participants have completed two blocks per condition.  

We did not evaluate whether QUEST has converged at the end of each block but during 

piloting, we established that QUEST stabilized within 50-60 trials. Plots showing the 

convergence of the threshold for each participant are included in Appendix F (Figure F1). For 

the vast majority of cases, the estimate of the 75% threshold stabilized by the end of each 

block.  
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The two conditions in the 2IFC task were divided across the two experimental sessions, and 

they were completed after the duration reproduction task. The 2IFC condition in which 

participants had to indicate the longer of the two durations was completed in the session in 

which participants finished the duration reproduction task with the short condition. The 2IFC 

condition in which participants had to indicate the shorter of the two durations was completed 

in the session in which participants finished the duration reproduction task with the long 

condition.  

 

 

 

 

 

 

EEG task 

In the EEG session, participants were presented with the same stimuli as in the duration 

reproduction task, but here they were not required to provide duration reports (Figure 5.6).  On 

10% of the trials (excluding trials showing the 626ms), the fixation cross changed colour from 

white to green, and participants were required to press a button as soon as they detected the 

change. The change-detection task was implemented to make sure participants were paying 

attention to the stimulus. Trials in which the fixation cross changed colour or participants 

pressed the button even if the fixation cross did not change were excluded from the analysis. 

 

In the behavioural reproduction task, we accounted for any potential order effects by asking 

participants to complete two experimental sessions in which we switched the order of the 

conditions. Dividing the EEG task into two sessions would have caused issues for the analysis, 

so participants had to complete the whole task in one session. Therefore, the EEG task was 

divided into 4 sections, each consisting of 250 trials (5 blocks of 50 trials each). The order of 

the sections was either: (1) Long – Short – Short – Long, (2) Short – Long – Long – Short. Each 

section began with a learning block in which participants were presented with the relevant 

durations in ascending order so that they learn what distribution the stimuli would be drawn 

Figure 5.5. 2IFC task. On every trial, participants were presented with two intervals, and in different 

blocks they had to indicate which interval was shorter or longer 
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from. Whenever there was a change in the condition between two sections (at the end of 

sections 1 and 3), participants had to take a 15-minute break.  

 

 

 

 

 

 

 

Figure 5.6. EEG task. In the EEG session, participants were presented with the same durations as in the 

duration-reproduction task but passively. To make sure participants were paying attention, they were 

required to detect changes in the colour of the fixation cross, which occurred on 10% of the trials. 

Bayesian ideal-observer model 

We used a modified version of the Bayesian ideal observer described by Acerbi et al. (2012) to 

predict participants’ responses in the behavioural duration reproduction task and estimate the 

overall expected regression to the mean effect in the sample as well as the expected effect of 

sensory precision on regression to the mean. For a description of the model, please refer to 

Chapter 3.2 (Model 2, p.48). 

The model has two parameters that are free to vary – sensory noise, 𝑤𝑠, and motor noise, 𝑤𝑚. 

To estimate the sensory noise associated with each stimulus level, we calculated Weber’s 

fraction, WF, based on participants’ performance in the 2IF  task such that 𝑊𝐹 =

𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑/626. From there, the sensory noise associated with each stimulus level was 

calculated as 𝑤𝑠(𝑖) = 𝑊𝐹 ∗ 𝑥(𝑖), where 𝑥 is the physical duration of stimulus 𝑖.   

To fit the motor noise parameter, we used the Metropolis-Hastings algorithm (Metropolis et 

al., 1953; Hastings, 1970). The procedure was carried out as follows. First, we determined a 

starting value for the motor noise parameter: 31.3ms (~5% of 626ms) and ran the model. Then 

we calculated the sum of squared errors between participants’ responses and the responses 

predicted by the model for each of the two ranges (short: 340-626, long: 626-1052): 

 

𝑆𝑆 =  ∑
(𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑆ℎ𝑜𝑟𝑡𝑖 −  𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑆ℎ𝑜𝑟𝑡𝑖)2

2 × 𝜎𝑠ℎ𝑜𝑟𝑡
2

5

𝑖=1

+ ∑
(𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝐿𝑜𝑛𝑔𝑗 −  𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝐿𝑜𝑛𝑔𝑗)2

2 × 𝜎𝑙𝑜𝑛𝑔
2 ,

5

𝑗=1

 (24) 
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where 𝜎 𝑠ℎ𝑜𝑟𝑡
2  refers to the variance in participants responses in the short condition, and 𝜎𝑙𝑜𝑛𝑔

2  

refers to the variance in participants responses in the long condition.   

From this, the probability of the data given the current motor noise parameter (or the 

likelihood) becomes: 

 𝑃(𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒|𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑚𝑜𝑡𝑜𝑟 𝑛𝑜𝑖𝑠𝑒) = exp(−𝑆𝑆). (25) 

In the next step of the algorithm, we proposed a new value for the motor noise parameter. 

This value was drawn from a Gaussian distribution centred at the current motor noise value, 

with SD = 10. If the sampled motor noise value was smaller than 12ms or larger than 125ms, 

another value was sampled. We then run the model with the new proposed value and 

calculate the sum of squared errors between the participant’s responses and the model 

predictions with the new motor noise value. Then we calculated the ratio between the 

likelihood of the data given the current motor noise value and the likelihood of the data given 

the new motor noise value:  

 𝑃(𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒|𝑛𝑒𝑤 𝑚𝑜𝑡𝑜𝑟 𝑛𝑜𝑖𝑠𝑒)

𝑃(𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒|𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑚𝑜𝑡𝑜𝑟 𝑛𝑜𝑖𝑠𝑒)
= exp(−𝑆𝑆𝑛𝑒𝑤 + 𝑆𝑆𝑜𝑙𝑑). (26) 

Finally, to decide which parameter value to keep, we sampled a random number between 0 

and 1. If the likelihood ratio calculated above was greater than the randomly sampled number, 

we replaced the original motor noise estimate with the newly proposed estimate. If the 

likelihood ratio was smaller than the randomly sampled number, we discarded the newly 

proposed motor noise estimate and kept the original estimate. The process was repeated 1000 

times, and in the end, we chose the motor noise estimate that had the highest likelihood.  

Behavioural statistical analyses  

We used Bayesian t-tests to investigate the behavioural hypothesis of interest. In all t-tests, 

the null hypothesis was defined as a point distribution at 0 difference, and the alternative 

hypothesis was defined as a half-normal distribution with a mean of 0 and a standard deviation 

equal to the effect predicted by the Bayesian ideal-observer model detailed in Chapter 3. To 

determine the prior expected effect for the overall regression to the mean effect (responses to 

the 626ms will be longer in the Long condition compared to the Short condition), we 

computed the average model-expected regression to the mean effect across all participants. 

To determine the prior expected effect for the effect of sensory precision on regression to the 

mean (observers with greater sensory precision will exhibit weaker regression to the mean), 

we computed the difference in model-predicted regression to the mean between participants 
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whose behaviourally-measured sensory precision (as measured in the 2IFC task) was lower 

than the median sensory precision and participants whose behaviourally-measured sensory 

precision was greater than the median. Bayes factors (BF10) larger than 3 were interpreted as 

providing evidence for the alternative hypothesis, and BFs smaller than 1/3 were interpreted 

as providing evidence for the null hypothesis (Dienes, 2014).  

EEG data collection and pre-processing 

EEG data were recorded using a 64-channel ANT neuro amplifier at 1024Hz. EEG data analysis 

was conducted in the EEGLAB toolbox (Delorme & Makeig, 2004) running on Matlab2019a. The 

data were downsampled to 512Hz. Then the data were band-pass filtered at 0.1-45 Hz and 1-

45Hz. The second filtered dataset was used to detect eye movements, and eye blinks using 

independent component analysis. After filtering, long breaks between blocks were deleted 

from the data so that artefacts due to participants movement during breaks do not affect bad 

channel detection. Bad channels were detected using the clean_rawdata() function and 

removed from both datasets. Next, the data were epoched from -250 to +1550ms relative to 

stimulus onset and manually inspected to remove bad epochs. Epoch rejection was kept to a 

minimum and focused on removing trials with unique artefacts and trials in which participants 

likely did not pay attention to the stimulus. This included epochs in which the participants 

blinked at the onset or offset of the stimulus, or blinked multiple times during the presentation 

of the stimulus. Epochs in which blinks occurred at other times were not removed.  Epochs 

were also rejected if there was uncharacteristic muscle activity during stimulus presentation, 

which would signal that participants were not paying attention to the stimulus. On average 

across all participants and stimuli, 4.58% of epochs were rejected (SD = 3.6, Max = 16.02). 

Across all participants, we retained an average of 96.53 epochs (SD = 4.83, Min = 79) 

containing the 626ms stimulus in the short condition, and an average of 95.53 epochs (SD = 

6.43, Min = 82) containing the 626ms stimulus in the long condition. Next, we ran ICA, using 

the Picard algorithm (Ablin, Cardoso, & Gramfort, 2018), on the dataset filtered at 1-45Hz, and 

projected the ICA weights to the 0.1-45Hz data set. We then used IClabel (Pion-Tonachini, 

Kreutz-Delgado, & Makeig, 2019) to remove eye components and components defined 

primarily as muscle activity (with a threshold set at 90%). Finally, the missing channels were 

interpolated, and the data was referenced to average.  

Decoding analyses 

The data was first downsampled to 128Hz. The decoding analyses were performed using the 

Amsterdam Decoding and Modelling toolbox version 1.07 (ADAM – Fahrenfort, Van Driel, Van 



91 
 

Gaal, & Olivers, 2018). An LDA classifier was trained to distinguish stimulus context (short from 

long) based on the EEG activity associated only with the 626ms stimulus. All EEG channels 

were used in the analysis. The classifier was trained and tested using 10-fold cross-validation, 

and classification performance was evaluated using the area under the curve (AUC). T-tests 

were used to assess whether classification performance was significantly better than chance 

(.5) at each time point in the epoch, and we corrected for multiple comparisons using cluster-

based permutations.  

CNV analysis 

To investigate the effect of context on the brain activity associated with the overlapping 

stimulus (626ms) we also conducted ERP analyses using the Mass Univariate ERP Toolbox 

(Groppe, Urbach, & Kutas, 2011a, 2001b). The EEG activity measured by each electrode was 

averaged across all participants, separately for each stimulus level not used in the main 

analysis (340, 396, 461, 537, 729, 849, 989, and 1152ms). Electrodes were selected for analysis 

based on whether they displayed CNV-like activity. We defined CNV-like activity as a prolonged 

increase in negativity of the EEG amplitude starting after the onset of the presented interval 

(Figure 5.7A). Across the stimuli, we found a consistent cluster of 20 electrodes displaying 

CNV-like activity in parietal and occipital areas: CP6, CP4, P6, P5, P4, P3, Pz, P2, P1, P5, PO8, 

PO7, PO6, PO5, PO4, PO3, Poz, O2, O1, Oz (Figure 5.7B). Figure 5.7C shows the averaged ERP 

for each of the stimuli used to define the electrode cluster of interest.  

We defined the start of the CNV as the peak with the highest positive amplitude following 

stimulus onset, which was not followed by another positive peak for at least 200ms. The end 

of the CNV was defined as the latency of the first peak with negative amplitude following the 

start of the CNV (see Figure 5.7A). With these guidelines, we computed the start and the end 

of the CNV at each electrode, and for each stimulus, averaged across participants. Next, across 

these latencies, we found the earliest recorded CNV start latency and the latest recorded CNV 

end latency. We used these values to define our CNV window in order to be as liberal as 

possible and to make sure we do not exclude any potentially relevant EEG activity from the 

analysis. The chosen CNV windows spanned from 275ms following stimulus onset to 250ms 

following stimulus offset.  

To determine if the EEG activity associated with the 626ms stimulus presented in the long 

compared to short context differed within the pre-determined electrode and latency window 

we performed a permutation test with 2500 permutations based on paired t-tests on every 

time point between 275 to 876ms from stimulus onset at every electrode from the identified 
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cluster. Results were corrected for multiple comparisons using tmax permutations, which 

ensures correction for familywise error to the level of Bonferroni correction (Bonferroni test-

wise alpha = 8x10-6). This method for correction for multiple comparisons provides strong 

control for Type I errors and allows us to make statistical inferences regarding the latency and 

location of an effect. However, this method also increases the chance of Type II errors, and it 

disregards the fact that EEG activity extends across time and space – the activity recorded at 

each time point and channel is not independent of the activity recorded at neighbouring time 

points and channels (Bullmore et al., 1999). An alternative method for correcting for multiple 

comparisons is to use cluster-based permutation which takes into account the temporal and 

spatial clustering of EEG data. However, with this approach, no inference can be made 

regarding the latency and location of an effect within a cluster (Groppe, Urbach, & Kutas, 

2011; Sassenhagen & Draschkow, 2019). The goal of the mass univariate analysis conducted 

here was to define how the effects of context and sensory precision on CNV activity extend 

through space and time. In addition, we wanted to minimize Type I errors, and for these 

reasons, the tmax permutation approach was deemed as more appropriate. 

Finally, we also performed a permutation test based on independent samples t-tests to 

determine if there was a significant difference in context effects between the group with high 

and low sensory precision. The electrode cluster, latency window, number of permutations, 

and the method for correcting for multiple comparisons were kept the same as above.  
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Figure 5.7. CNV latency and electrode cluster. (A) Example of CNV-like activity. Averaged activity for 
stimulus duration 729ms at POz. The black dotted lines show stimulus onset and offset, and the red lines 
show the CNV window. The shaded areas show mean amplitude +/- 1SD. (B) Cluster of electrodes 
selected for CNV analysis. Electrodes marked in green displayed CNV-like activity in response to the 340, 
396, 461, 537, 729, 849, 989, and 1152ms stimuli. The EEG data associated with the 626ms stimuli was 
not included for the selection of electrodes. (C) ERP activity averaged across all selected electrodes in the 
cluster for each stimulus duration. The shaded areas show mean amplitude +/- 1SD. 
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Participants 

The final sample for this experiment consisted of 20 participants (Mean age = 25.14, SD age = 

3.69). One participant was excluded from the EEG analysis due to an experimenter error, the 

participant did not complete a sufficient number of blocks in one of the conditions. To arrive at 

our final sample, we tested a total of 48 participants. However, 26 participants were excluded 

because they did not fulfil the performance criteria (see Procedure: Duration reproduction 

task, p.84-85), while 2 additional participants dropped out.   

The required sample size (N=20) was determined by running the behavioural statistical analysis 

detailed above on duration reproduction data simulated with the Bayesian ideal observer 

model. More specifically, we determined the sample size expected to provide a sensitive 

result, BF10>3, for the analysis of the effect of sensory precision on regression to the mean.  To 

simulate the needed data, we had to define the sensory and motor noise parameters for each 

“participant”. Sensory noise was varied between 10-20% of the stimulus duration (Rammsayer 

& Pichelmann, 2018; Rammsayer, 2014; Lapid et al., 2008), while motor noise was kept 

constant at 64ms. To mimic the structure of the experiment, in each simulation, we generated 

500 trials per condition. The simulations revealed that we could expect to find evidence of a 

difference in regression to the mean between participants with low and high sensory precision 

(BF10>3) with a sample of 20 participants (10 participants per group). Briefly, the simulations 

revealed that we can expect an average regression to the mean effect of 98.57ms (SE=1.80) 

and that this effect will be 59.57ms (SE=7.15) stronger in observers with low sensory precision 

(also see Baykova & Roseboom, 2019). 

5.2.2 Behavioural results 

Confirmatory analyses 

Overall regression to the mean effect 

The first aim of the behavioural experiment was to investigate if, overall, the regression to the 

mean effect predicted by a Bayesian ideal observer model can provide a good explanation for 

participants’ behavioural responses. Across all participants, the model predicted an overall 

regression to the mean effect of 128.43ms (Figure 5.8A). The regression to the mean effect in 

the behavioural data was 89.78ms (SE=7.90, Figure 5.9A), which, even though numerically 

smaller than the effect predicted by the model, resulted in extreme evidence in favour of the 

alternative hypothesis (BF10 = 1.14x1027). Therefore, these results provide compelling evidence 

that regression to the mean effects in duration perception can be described by Bayesian 
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observer models. Finally, in the behavioural data, regression to the mean ranged between -

16.08 to 137.71ms (IQR = 31.39). A histogram showing the distribution of regression to the 

mean across participants is included in Appendix E (Figure E1). 

Effect of sensory precision on regression to the mean  

The main aim of our experiment was to examine if sensory precision has an effect on 

regression towards the mean. Namely, our hypothesis was, that greater sensory precision will 

be associated with weaker regression towards the mean. We used a median split to separate 

participants into low and high sensory precision groups based on their performance on the 

2IFC task. Based on this division, the Bayesian ideal observer model predicted that the 

regression to the mean effect in the low sensory precision group would be 69.82ms greater 

than the regression to the mean effect in the high sensory precision group (Figure 5.8B). In the 

behavioural data, however, the regression to the mean effect in the low sensory precision was 

5.82ms (SE = 4.73) higher than the regression to the mean effect in the high sensory precision 

group, and these results provided very strong evidence in favour of the null hypothesis 

(BF10=0.0193, Figure 5.9B).  

Exploratory analyses 

After carrying out the confirmatory analyses specified in our pre-registration, we decided to 

conduct additional exploratory analyses to further assess some issues identified after 

collecting the data.  On average, participants’ performance in the 2IFC task was in line with 

previous findings (e.g. Rammsayer, 2014) and there was variability in the estimated thresholds 

between participants (Mean Weber Fraction = 0.19, SD = 0.08, IQR = 0.12). A histogram 

showing the distribution of thresholds across participants is included in Appendix F (Figure F2). 

However, the estimated Weber fractions ranged from 0.09 to 0.38, with 5 participants having 

an average Weber fraction greater than 0.25.  We found these results suspicious because if 

participants’ thresholds were so large, they should not have been able to complete the 

duration reproduction task. To deal with this issue, we decided to exclude blocks in which the 

threshold was greater than 25% of the main stimulus when estimating the sensory precision of 

each participant. A histogram showing the distribution of corrected thresholds across 

participants is included in Appendix F (Figure F3). The corrected thresholds, represented as 

Weber fractions, had a mean of 0.14 (SD = 0.05), and ranged between 0.03 to 0.24 (IQR = 

0.04).  Another issue we identified was that one participant did not show regression to the 

mean – on average, their responses to the 626ms stimulus were 16ms shorter in the long 

compared to the short condition. The model we used in this analysis cannot produce repulsive 
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effects, and it would, therefore, not provide a good account for their data. This is further 

emphasized by the fact that the best fitting value for the motor noise parameter was very 

close to the upper boundary of the range in which we allowed motor noise to vary (124.7, with 

125 being the maximum allowed value). This occurs because in the model when sensory noise 

is fixed, regression to the mean is diminished by increasing motor noise. Without the upper 

boundary set for the motor noise parameter, the best fit that this model can provide for data 

with repulsive effects will be achieved with values approaching infinity.  Therefore, we decided 

to run the same analyses as above, but this time excluding the participant that does not exhibit 

regression to the mean.  

Employing these new exclusion criteria did not provide us with vastly different results. The 

behavioural data again supported the overall regression to the mean effect predicted by the 

model: average model predicted bias = 95.81ms, average behavioural bias = 95.35ms 

(SE=5.41), BF10 = 1.58x1066. Nonetheless, we still found evidence of no difference in regression 

to the mean between the low and high sensory precision group. The model predicted that the 

bias exhibited by the group with low sensory precision would be 65.28ms higher than the bias 

exhibited by the group with high sensory precision, while the difference in the behavioural 

data was 5.26ms (SE = 3.99, BF10 = 0.26). 
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Figure 5.8. Predictions of the Bayesian ideal observer model.  (A) Overall regression to the mean effect 

predicted by the model. (B) Effect of sensory precision on regression to the mean predicted by the model. 

The green dotted line in both figures represents veridical responses. The error bars represent the average 

standard deviation of the predicted response probability distribution across participants associated with 

each duration. 
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5.2.3 EEG results 

Context decoding  

The first aim of the EEG experiment was to determine if the stimulus context influences the 

neural activity associated with the same physical stimulus. We found that the classifier was 

able to discriminate context, short stimulus range versus long stimulus range, based only on 

the EEG activity associated with the 626ms stimulus (Figure 5.10). The results reveal two 

clusters in which classification performance was significantly better than chance: 187.7-

225.6ms, peak AUC = 0.551, p<.05; and 242.2-281.3ms, peak AUC = 0.550,1 p<.05. As the gap 

between the two clusters is only 2 samples, 15.6ms, it is likely that data is highly variable, and 

this is in fact, one cluster. These results suggest that that the neural activity associated with a 

given stimulus does not reflect solely the physical characteristics of that stimulus but also the 

context in which this stimulus is presented, or in Bayesian terminology, the prior. As the 

latencies of the identified clusters (or cluster) show, the EEG activity that is most meaningful in 

discriminating context across participants takes place very shortly after stimulus onset, at 

which point participants still do not know what stimulus they are being shown – the shortest 

possible duration presented in the experiment was 340 ms. As a result, we suggest this activity 

reflects information predominantly regarding the prior.  
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Figure 5.9. Effects in the behavioural data. (A) Overall regression to the mean effect in the behavioural 

data. (B) Effect of sensory precision on regression to the mean in the behavioural data. The green dotted 

line represented in both figures represents veridical responses. The error bars represent the average 
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Sensory precision and context decoding 

Above we presented evidence that stimulus context is reflected in the EEG signal associated 

with the same physical stimulus. Another question we wanted to investigate is whether 

sensory precision has an influence on this effect. We predicted that low sensory precision 

would amplify the effect of context on the neural processing of the 626ms. In other words, we 

hypothesized that a context classification based on the EEG data associated with the 626ms 

would be better in participants with low sensory precision. 

First, we treated sensory precision as a categorical variable, and we split the participants into a 

high and a low sensory precision group using a median split. As an estimate of decoding 

performance, we extracted the peak AUC for each participant across the entire epoch. 

Contrary to our prediction, we found no difference in decoding performance between the 

participants with high sensory precision (mean peak AUC = 0.665, SE = 0.012) and the 

participants with low sensory precision (mean peak AUC = 0.656, SE = 0.012). 

In a second analysis, we treated sensory precision as a continuous variable and checked if 

there is a correlation between sensory precision and decoding performance. Here we found a 

negative correlation between sensory noise and AUC, r=-0.18. So, as sensory noise increases 

(i.e., sensory precision decreases), decoding performance decreases. These results go against 

our prediction that as sensory precision decreases, regression to the mean would increase, 

resulting in a greater influence of stimulus context on the neural processing of the 626ms 

stimulus. 
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Figure 5.10. Classification performance (AUC) across time, averaged over participants. The green 

dotted line represents stimulus onset; the red dotted line represents stimulus offset. The highlighted 

areas from 187.7-225.6ms and from 242.2-281.3ms represent the clusters in which performance is 

significantly better than chance. The shaded areas represent the standard error of the mean calculated 

across participants.  

Regression to the mean and context decoding 

Finally, we wanted to investigate if regression to the mean is correlated with context 

classification performance. We predicted that as regression to the mean increases, the neural 

representation of the 626ms stimulus would become more and more influenced by context, 

which would result in better classification performance. However, we found no correlation 

between regression to the mean and peak AUC (r = -0.04).  

CNV results 

The mass univariate analysis showed some significant differences in ERP amplitude between 

the overlapping stimulus, 626ms, when presented in the two different contexts. Specifically, 

the ERP amplitude at P1 from 730.47 to 740.23ms (significant corrected p-values between 

0.030 and 0.045) relative to stimulus onset was significantly more positive in the long 

compared to short context condition (Figure 5.11). However, there were no significant 

differences in the effect of context (626Long – 626Short) on brain activity differences between 

the group with high and low sensory precision (all corrected p-values > 0.869).  
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Figure 5.11. ERP results (A) ERP at P1 in response to the 626ms stimulus at each context. The dotted lines 
show stimulus onset and stimulus offset. There is a significant difference in ERP amplitude from 730.47 to 
740.23ms. The shaded areas show mean amplitude +/- 1SD. (B) Topography of the difference between 
626Long and 626Short at 730.5ms. (C) ERP in response to the 626ms stimulus at each context averaged 
across all electrodes in the cluster. The dotted lines show stimulus onset and stimulus offset. The shaded 
areas show mean amplitude +/- 1SD. (D) T-score as a function of time. Each coloured line is a different 
electrode from the pre-specified electrode cluster. The dotted black lines show stimulus onset and stimulus 
offset. The dotted red lines represented the critical t-value (after correction for multiple comparisons) – t-
values exceeding the critical value are significant. 
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5.2.4 Discussion 

In this experiment, we successfully replicated the general regression to the mean effect 

reported in other duration estimation studies and found evidence of a potential EEG-based 

correlate of this effect. Focusing on the behavioural results, we found that the same physical 

stimulus was overestimated when it was shorter than the mean of the distribution, and 

underestimated when it was longer than the mean of the distribution, which is in line with 

previous studies in this area (for example Lejeune & Wearden, 2009; Jazayeri & Shadlen, 2010, 

2015).  The regression to the mean effect in the behavioural data was consistent with the 

regression to the mean predicted by the Bayesian ideal observer model, providing evidence 

that these perceptual biases could arise from a Bayesian-like process in the brain. 

Furthermore, our EEG experiment provided evidence for a potential neural correlate of the 

regression to the mean effect. We found that a classifier was able to distinguish above-chance 

whether the same physical stimulus came from a distribution of short or a distribution of long 

durations based on the EEG data associated with that stimulus alone. Observers were not 

required to report the durations of the stimuli, suggesting that this effect could be 

predominantly perceptual. Similar results were recently reported by Damsma et al. (2020), 

who used an auditory interval reproduction task, providing further evidence for the 

generalizability of this effect across tasks and modalities. Together, these results provide 

strong evidence that the brain activity elicited during the processing of a given stimulus 

reflects the overall context in which this stimulus is presented. It is, therefore, possible to use 

classification performance as a proxy measure to assess the magnitude of perceptual biases on 

a “neural” level similarly to how regression to the mean can be used to assess the magnitude 

in perceptual biases in behaviour. Finally, we found a limited effect of context on the 

amplitude of the CNV associated with the same physical duration, but our results contradict 

previous findings. While Damsma et al. (2020) found that the amplitude of the CNV was more 

negative when the same stimulus was presented amongst longer compared to shorter 

durations, we found that the amplitude of CNV was more negative when the same stimulus 

was presented amongst shorter durations. The differences in these results could be associated 

with the differences in the implemented tasks – participants in our study observed the stimuli 

passively, while participants in the study by Damsma et al. (2020) had to reproduce the 

presented durations. Previous research has provided evidence that the CNV is composed of an 

early and late component, with the late component showing a greater increase in negativity in 

tasks involving or allowing greater motor preparation (Gaillard & Näätänen, 1973; Loveless & 

Sanford, 1974; MacKay & Bonnet, 1990; Vidal, Bonnet, & Macar, 1995).  However, to date, no 
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studies have investigated to what extent the response mode used in duration estimation tasks 

affects the characteristics of the CNV. If there are substantial differences in CNV amplitude 

between time perception tasks involving differences in motor preparation, for example, direct 

estimation compared to duration reproduction, the role of the CNV in time perception would 

have to be revisited, and further research would be needed to disambiguate the sensory, 

decision, and motor processes that contribute to the CNV.   

The main aim of the present experiment was to investigate if sensory precision affects the 

magnitude of behavioural and neuroimaging perceptual biases towards the prior.  

Behaviourally, a Bayesian ideal observer model predicted that observers with low sensory 

precision would exhibit stronger regression to the mean than observers with high sensory 

precision. Based on this, we also predicted that in observers with low sensory precision, the 

brain activity associated with a given stimulus will be more influenced by the overall stimulus 

context compared to observers with high sensory precision. In other words, we predicted 

context classification (short vs long range) based on the EEG data associated with the same 

physical stimulus would be more accurate in observers with low sensory precision. 

Nonetheless, in contrast to previous studies (Cicchini et al. 2012; Aagten-Murphy et al. 2014), 

the behavioural results provided strong evidence that sensory precision had no influence on 

regression towards the mean and the EEG results found no evidence of a difference in 

classification performance or difference in CNV amplitude between the two groups.  

It is important to note that the change-detection task we used to ensure that participants were 

paying attention to the stimuli presented in the EEG session does not ensure that participants 

were attending to the stimuli’s duration. It is possible that participants could have completed 

the change-detection task without attending to the duration of the stimuli.  Nonetheless, 

when defining the electrode cluster of interest for the mass univariate analysis, we observed 

that EEG activity differed between the durations presented in the study (Figure 5.7C). While 

this is no indication of whether participants paid attention to the intervals, it provides us with 

some assurance that the brain engaged in some stimulus-related activity. If we had found no 

differences in brain activity between stimuli of different durations, that would have been a 

strong indicator that participants were not engaged in the task. In addition, previous studies 

have found that changes in CNV activity can be elicited during passive observation when 

stimulus-related responses are not required (Donchin, Gerbrandt, Leifer Tucker, 1972; 

Ruchkin, Sutton, Mahaffey, & Glasser, 1986), while changes in MMN can be elicited even when 

participants are not attending to the stimulus characteristic manipulated in the experiment 

(e.g. Näätänen, Paavilainen, Rinne, & Alho, 2007). However, the role of attention in estimating 
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durations remains an open question (for example, consider the differences between 

retrospective and prospective timing tasks, e.g. Zakay & Block, 1996), and it is very likely that 

in the current study there were individual differences in how participants were engaging with 

the stimuli during the EEG session which could have increased the heterogeneity of the results. 

Therefore, to ensure stricter control, future studies would benefit from employing a task that 

specifically directs participants attention towards the duration of the stimuli, such as asking 

participants to report the duration of the intervals presented on a selection of the non-critical 

trials. 

 

One possible issue in our experiment is that the motor noise associated with reproducing 

temporal intervals could be masking the relationship between sensory precision and 

regression towards the mean. The relationship between sensory noise and regression to the 

mean proposed by the model is straightforward. If a participant has low sensory noise, their 

internal estimates of the presented durations will be close to veridical. If a participant has high 

sensory noise, their internal estimates of the presented durations will be biased towards the 

mean. The motor noise parameter in the model, however, affects responses in a different way. 

If a participant has low motor noise, they will be able to produce their desired response 

accurately. If a participant has high motor noise, they will not be able to produce their 

responses accurately, and responses will be shifted away from the optimal command. In fact, 

high motor noise dampens the regression to the mean effect. If we take two participants with 

the same sensory noise, but different motor noise, the participant with high motor noise will, 

overall, overestimate the presented duration – their point of indifference will be higher than 

the mean of the distribution (Figure 5.12). As a result of this shift, the participant with high 

motor noise will underestimate the longest durations in a range less than the participant with 

low motor noise. This effect, however, is not uniform across the entire range of presented 

durations, and switches for very short stimuli – a participant with high motor noise will 

overestimate short durations less than a participant with low motor noise. When we combine 

these two effects – less overestimation of short intervals and less underestimation of long 

intervals – participants with low motor noise will exhibit weaker regression towards the mean 

when compared to a participant who has the same internal estimate but lower motor noise. 

Furthermore, in extreme cases, the model can predict similar regression towards the mean for 

participants who have low sensory and low motor noise, and participants who have high 

sensory and high motor noise. This suggests it is possible that the motor noise associated with 

reproducing durations has masked the relationship between sensory precision and regression 

towards the mean in the behavioural data. This could similarly explain why we did not find a 
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correlation between the regression to the mean effect measured in the behavioural sessions, 

and the performance of the classifier trained to distinguish context – the EEG task involved 

passive observation, and the measured effect was not influenced by additional noise, while the 

behavioural effect was affected by motor noise. 

 

Figure 5.12. Effect of motor noise. Model-generated responses of two simulated participants with the 

same sensory noise but different motor noise. The participant with high motor noise (red) tends to 

underestimate the longest durations in each range less than the participants with low motor noise (blue). 

In addition, the participant with high motor noise tends to overestimate the shortest durations in each 

range less than the participant with low motor noise. As a result, the difference in responses to the 

626ms stimulus between the two ranges is smaller for the participants with high motor noise.  

While motor noise could have masked the effect of sensory precision on regression to the 

mean, it is not clear why we did not find an effect of sensory precision on classification 

performance. It is possible that our measure of sensory precision was unreliable – some 

participants showed high variability in discrimination thresholds between different blocks of 

the 2IFC task. Therefore, we will have to replicate this experiment, taking caution to obtain 

more reliable estimates of sensory precision before we can draw any strong conclusions. 

5.3 Experiment 2 

To address the issues identified in Experiment 1, we ran an online behavioural experiment in 

which we investigated the relationship between regression to the mean and sensory precision 

in the absence of motor noise confounds by using a direct estimation rather than a 
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reproduction task. In the direct estimation task, participants were asked to report the 

durations of the stimuli on a visual analogue scale, and this allowed us to more closely examine 

how sensory precision affects perceptual biases. This experiment was originally planned to be 

a full pre-registered EEG replication of Experiment 1 in which we were going to resolve the 

other identified issues, but we had to adapt our plans due to the COVID-19 pandemic. 

5.3.1 Method 

Pre-registration and data availability 

The hypotheses, design, experimental procedure, and analysis plan for the behavioural 

experiment are pre-registered at the Open Science Framework (https://osf.io/bmsc7/). The 

data is available here: https://osf.io/bmsc7/files/ (this includes data from the simulations to 

determine sample size, and the behavioural data).   

Design 

In this experiment, we investigated whether sensory precision affects the magnitude of 

perceptual biases towards the prior in a behavioural duration estimation task. As in 

Experiment 1, sensory precision was quantified as participants’ average 75% threshold in a 

2IFC duration discrimination task. Regression to the mean in the duration estimation task was 

defined as the difference in participants’ responses to the same physical stimulus, 626ms, 

presented in a range of short (340-626ms) or long (626-1152ms) durations. Our prediction was 

that as the 75% threshold increases (i.e., as sensory precision decreases) regression to the 

mean should increase.  

Apparatus  

The behavioural experiment was run on PsychoPy (Peirce et al., 2019). Participants completed 

the experiment remotely on their own computers, so there were variations in size, resolution, 

and refresh rate. Participants were asked to input the size of the screen, and to sit ~57 cm 

away from the screen. The main stimulus was a stationary cloud of 17 black and 17 white dots 

presented on a grey background. The size and duration of the stimuli were defined based on 

the characteristics of each participant’s monitor to ensure that the consistency of the stimuli 

was stable across participants. Each dot had a size of 0.5dva, and the overall size of the entire 

cloud was 12dva. The position of each dot was randomized on every trial to mitigate visual 

adaptation effects. Participants provided responses using standard computer keyboards and 

mice.  

https://osf.io/bmsc7/
https://osf.io/bmsc7/files/
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Procedure 

Participants completed 2 sessions in total. Each session comprised of a duration estimation 

task and a duration discrimination task and took ~2 hours to complete. Instructions for all tasks 

can be found in Appendix G. 

Duration estimation task  

The estimation task followed the same structure as the duration reproduction task in 

Experiment 1. The main difference was that instead of reproducing the duration of the 

presented stimulus, participants had to report the stimulus duration on a visual analogue 

scale. In each experimental session, participants completed two blocks from each condition – a 

training block and a testing block. The order in which the conditions were presented was 

counterbalanced across sessions and participants, and there was a 15-minute mandatory 

break between the two conditions. In the training blocks, participants were presented with 5 

repetitions of 8 durations that were not part of the testing blocks (short condition training 

durations: 271, 316, 369, 429, 500, 582, 678, and 790ms; long condition training durations: 

500, 582, 678, 790, 920, 1072, 1249, and 1454 ms). Testing blocks consisted of 250 trials or 50 

trials per duration, with 5 durations in each condition (short condition test durations: 340, 396, 

461, 537 and 626ms; long condition test durations: 626, 729, 849, 989, and 1152ms).  

At the beginning of each trial, a fixation cross was presented along with a prompt asking 

participants to start the trial by pressing a button on the keyboard. The fixation cross remained 

on the screen throughout the entire duration of the trial. 600-1000ms after participants 

started the trial, the stimulus was presented, and after the stimulus disappeared, the fixation 

cross remained on the screen for a further 250ms. After that, the visual analogue scale 

appeared, and participants had to provide a response by dragging a computer mouse along the 

scale. The scale ranged from half the duration of the shortest stimulus in the range to 1.5 times 

the longest duration in the range – 170-939ms in the short range and 313-1728ms in the long 

range. In the testing blocks, participants were allowed to opt out instead of providing a 

response. Participants were allowed to skip a maximum of 10 trials. If participants provided a 

response, the feedback was presented for 1000ms. The feedback display was the same as in 

Experiment 1. Finally, 200-500ms after the feedback disappeared, a prompt was presented, 

asking participants to start the next trial. If participants failed to start a trial within 15s of the 

presentation of the prompt or failed to provide a response within 5s of the presentation of the 

response screen, the trial was marked as missed. If participants missed more than 10 trials, the 

experiment ended. Finally, if there was more than a 10ms difference between the desired and 
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achieved duration of the stimulus, the trial was excluded. If more than 20 errors in achieved 

stimulus duration were detected during a block, the experiment was terminated. Trials with 

errors in achieved duration, missed, and skipped trials were reshuffled back into the remaining 

stimulus sequence.  

At the end of every testing block, we computed the Spearman correlation and slope between 

the presented and reported duration of the stimuli. If participants did not reach a correlation 

of 0.65 and a slope of 0.5, the experiment was terminated.  

Duration discrimination task 

On every trial of the duration discrimination task, participants were presented with two stimuli 

and had to report which stimulus was shorter or longer in different blocks. The task followed a 

similar structure to the 2IFC task used in Experiment 1, but here, the difference in the stimuli 

presented on every trial was defined using the method of constant stimuli rather than QUEST. 

The pre- and post-stimulus intervals varied between 500-800ms and the interval between the 

two stimuli varied between 600-1000ms. Participants had 15s to provide a response after 

which they were presented with feedback regarding the accuracy of their responses for 1s. 

After the disappearance of the feedback, participants were prompted to start the next trial.  

The task began with a training block consisting of 16 trials in which the two presented intervals 

were 426 and 826ms long. In the testing blocks, the main stimulus had a duration of 626ms, 

and the comparison stimulus was either shorter or longer than the main stimulus. In each 

condition, there were 6 comparison stimuli which differed by 5-30% (in steps of 5%) from the 

main stimulus. Each comparison stimulus was repeated 15 times per block, and participants 

completed between 2 and 4 blocks per condition depending on their performance. At the end 

of each block, a cumulative Gaussian psychometric function was fitted to participants data. 

The values estimated during the course of the experiment were used only as an indication of 

participants’ performance and were no used in the analysis. If the 75% threshold estimated by 

the model exceeded 187ms, 30% of the main stimulus’ duration, the block was discarded, and 

participants were asked to complete an additional block up to a maximum of 4 blocks. If the 

threshold exceeded 187ms in all blocks, we used the last two blocks in the analysis. Skipped, 

missed trials, and trials in which there was more than a 10ms difference between desired and 

actual duration were repeated. If participants missed more than 10 trials, or there were more 

than 20 trials with stimulus duration errors in a block, the experiment ended.  

After participants completed the experiment, we used the Palamedes toolbox (Prins & 

Kingdom, 2009) in Matlab to fit a cumulative Gaussian psychometric function to participants’ 
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data and assess its goodness-of-fit (PAL_PFML_Goodness_OfFit). Our plan, detailed in the pre-

registration, was to fit a psychometric function to each block within a condition separately, 

exclude blocks in which pDev was less than 0.05 and exclude participants if both blocks in 

either condition do not meet the goodness-of-fit criterion. For the purposes of this work only, 

we fitted the psychometric function to the combined data of all blocks together, and 

participants were excluded if the goodness-of-fit for both conditions was too low. If only one 

condition had to be excluded due to poor fit, the participant’s estimate of sensory precision 

was based only on the 75% threshold associated with the condition showing a good model fit.   

Analysis and Bayesian ideal-observer model 

We calculated  earson’s r correlation between participants’ measure of sensory precision and 

regression to the mean and conducted a Bayesian t-test to test whether the correlation in the 

behavioural data supports the correlation predicted by a Bayesian-ideal observer model. The 

null and alternative hypotheses for the Bayesian t-test were defined in the same manner as in 

Experiment 1.   

We used a Bayesian ideal-observer model to simulate participants’ responses to the duration 

estimation task and estimate the expected correlation between sensory precision and 

regression towards the mean. Here we used a Bayesian ideal-observer model with an updating 

prior because during initial simulations we found that the model with a fixed prior (Chapter3: 

Model 2, p.48) produced data in which the correlation between sensory precision and 

regression towards the mean was unrealistically high ( earson’s r between 0.9-1). In contrast 

to the model with a fixed prior, a model with an updating prior (Model 3, p.50) produced 

correlations more in line with our expectations given the results of Experiment 1 (results from 

100 simulations with 30 participants each: Mean  earson’s r = 0.43, SD = 0.16).  

The sensory noise for each stimulus was estimated based on participants’ average 75% 

threshold in the 2IFC task following the procedure detailed in Experiment 1 (p.88). Report 

noise was fitted using the Metropolis-Hastings algorithm (Metropolis et al., 1953; Hastings, 

1970), following a similar procedure as the parameter fitting of motor noise was in Experiment 

1 (p.88). The starting value for report noise was 5ms, and report noise was allowed to vary 

between 1-25ms. Because we use a model with an updating prior, the model will not predict 

the same responses to each stimulus as in the model with fixed prior used in the previous 

experiment. Therefore, the sum of squared errors between participants’ responses and the 

responses predicted by the model were calculated on a trial-by-trial basis. The proposed value 
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of the report noise parameter was sampled from a Gaussian distribution centred at the current 

report noise value, with a standard deviation of 5ms.  

Participants 

The minimal sample size for this experiment was determined by simulating behavioural 

responses to the duration estimation task using the same Bayesian ideal-observer model that 

we subsequently used to analyse the collected data. We ran simulated experiments with 

sample sizes varying between 30 and 60 participants to check what sample size would be 

needed to find conclusive evidence for the alternative hypothesis (BF10 > 3; 100 simulations for 

each sample size). Each simulated participant had a Weber fraction between 5-25% and a 

report noise of 12.5ms. The prior expected correlation was set to 0.2, as this was our minimal 

correlation of interest. The simulations revealed that we could expect to find evidence in 

favour of the alternative hypothesis (BF10 > 3) with a sample of 30 participants. We, therefore, 

aimed to recruit a minimum of 30 participants before running the analysis described above.  

To date, 93 participants have signed up to complete the study. Of them, 40 participants 

completed the study and sent their data back to us, and of them, 27 (MeanAge = 31.85 years, 

SDAge = 10.51) fulfilled the inclusion criteria specified in the Procedure section above (p.106-

108). This sample includes 2 participants who do not have a full dataset for the duration 

estimation task and 2 participants who do not have a full dataset for the duration 

discrimination task.  Although this sample is below our target, running the planned analysis will 

not have any detrimental effects on the validity of the drawn statistical inference, so here we 

present preliminary findings based on the available data.  

5.3.2 Results 

Confirmatory analysis 

This experiment aimed to investigate if, as predicted by Bayesian frameworks, regression to 

the mean would be correlated with sensory precision. Our hypothesis was that as sensory 

precision decreases, the magnitude of perceptual biases towards the prior should increase. 

Therefore, we predicted that participants’ 75% thresholds in the 2IF  task would be positively 

correlated with the effect of context (long vs short) on participants’ responses in the duration 

estimation task, and we used a Bayesian ideal-observer model to derive a specific numerical 

prediction of the expected effect.  

As in Experiment 1, we found that in the duration estimation task, participants’ responses to 

the same physical stimulus, 626ms, were on average 103.29ms (SE = 11.87) longer when the 
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stimulus was presented in the range of long, compared to the range of short durations. 

Estimates of regression to the mean ranged from -84.30 to 231.20ms (IQR = 71.09). A 

histogram showing the distribution of regression to the mean across participants is included in 

Appendix E (Figure E2).  Results from the 2IFC task also revealed some variability in 

performance across participants, with estimates of the Weber fraction ranging from 0.07 to 

0.22 between participants (Mean Weber Fraction = 0.13, SD = 0.03, IQR = 0.04). A histogram 

showing the distribution of thresholds across participants is included in Appendix H.  

 Finally, we found a positive correlation between this context effect and participants’ 2IF  

thresholds, r = 0.14 (SE = 0.2; red line in Figure 5.13). However, this relationship was weaker 

than the correlation predicted by the Bayesian ideal-observer mode, r = 0.63, and 

consequently, the data provided inconclusive evidence in favour of the null hypothesis, BF10 = 

0.80.  

Exploratory analysis 

In this experiment, we had very strict exclusion criteria to make sure that participants’ 

estimates of sensory precision are not confounded by fatigue and lapses of attention. 

Nonetheless, exploring the results presented in Figure 5.13, some researchers would argue that 

two of the data points are potential outliers and could be biasing the results. According to the 

interquartile method of outlier detection, one participant had an outlying regression to the 

mean value (-84.3ms), and another participant had an outlying 2IFC threshold (Weber Fraction 

= 0.22). Therefore, we conducted the same analysis as above, but this time excluding these 

values, and we found that the correlation between sensory precision and regression to the 

mean increased to 0.27 (SE = 0.21, grey line in Figure 5.13), which provided inconclusive 

evidence in favour of the alternative hypothesis, BF10 = 2.03. 
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5.3.3 Discussion 

Here we present a study investigating the correlation between sensory precision and 

regression to the mean in a direct duration estimation task. In Experiment 1, we found that, 

when treated as a categorical variable, sensory precision had no effect on perceptual biases 

towards the prior in a duration reproduction task. However, it was possible that these results 

were confounded by the effect of motor noise on reproduced durations, and a lack of strict 

data exclusion criteria when estimating sensory precision. While these issues were taken into 

account in the design of Experiment 2, we did not find support for the relationship predicted 

by the Bayesian ideal observer model. The results of our pre-registered analysis, though 

inconclusive, suggest that the correlation in the behavioural data is weaker than the 

correlation predicted by the model and point towards the null hypothesis. Applying additional 

exclusion criteria to remove outliers in the data changes the direction of the evidence in the 

behavioural data in favour of the alternative hypothesis, but the evidence is again inconclusive. 

The results of both analyses suggest that we need to continue data collection, and as these 
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Figure 5.13. Correlation between sensory precision and regression to the mean. Each dot represents 

one participant. In grey is the data of the two participants defined as outliers in the exploratory analysis. 

The red line shows the best-fit line associated with the confirmatory analysis; the grey line shows the 

best-fit line after removing the potential outliers. 



112 
 

exclusion criteria were not part of our original pre-registration, the results of the exploratory 

analysis will need to be further replicated in an independent sample.  

 

Bayesian brain theories suggest that the variance of the sensory likelihood should affect the 

magnitude of perceptual biases – the smaller the variance of the sensory likelihood (so the 

greater the sensory precision), the weaker the bias towards the prior. However, we did not 

find evidence in favour of this prediction across two experiments.  In Experiment 1, we found 

strong evidence suggesting that sensory precision does not affect regression to the mean and 

our confirmatory analysis in Experiment 2 found inconclusive evidence in favour of the null 

hypothesis. One interpretation of these results is that indeed sensory precision does not 

influence regression towards the mean. However, an alternative possibility is that our measure 

of sensory precision in the duration discrimination task did not reflect participants’ sensory 

precision in the duration estimation task.  

 

Here we use the term sensory precision as synonymous with sensory sensitivity. In 2IFC tasks, 

sensory sensitivity is reflected in the threshold of the psychometric curve, also known as the 

just-noticeable difference – the minimal change in stimulus magnitude required to elicit the 

perception of a new stimulus (Kingdom & Prins, 2010). Participants with lower thresholds will 

differentiate stimuli that participants with higher thresholds will not be able to. Discrimination 

thresholds have been used as a measure of sensory precision in previous studies. For example, 

it was found that discrimination thresholds were related to the width of the likelihood function 

in a Bayesian model of speed perception (Stocker & Simoncelli, 2006b). In addition, studies on 

multisensory cue combination have used the thresholds from unimodal discrimination tasks to 

determine the width of the sensory likelihood associated with each unimodal signal (e.g. Ernst 

& Banks, 2002). However, one limitation of using the threshold as a measure of sensory 

precision is that the threshold is affected by both the observers’ sensitivity to changes in the 

stimulus and the observers’ internal variability (Kingdom & Prins, 2010; Vilidaite, Yu, & Baker, 

2017). The presentation of a stimulus elicits a response in the brain, and an observer is going 

to discriminate between two stimuli when there is sufficient difference in the brain responses 

they elicit. The same stimuli, however, will not always give rise to the same neuronal 

responses – brain activity fluctuates with time, causing a stimulus difference that was 

discriminable on one trial to not be discriminable on the next (Milne, 2011). As a result, an 

observer with low sensitivity and low internal variability might have the same discrimination 

threshold as an observer with higher sensory sensitivity but also higher internal variability.  
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Given these issues with interpreting the threshold and the fact that we did not find evidence of 

a relationship between the discrimination threshold and performance in the estimation task, 

we investigated whether there is a relationship between regression to the mean and a 

different 2IFC performance metric – the slope of the psychometric curve fitted to the data. In 

forced-choice tasks, the slope of the psychometric curve is inversely proportional to the 

variability of participants’ discrimination performance, with steeper slopes indicating a greater 

increase of correct responses as the difference between the stimuli increases (Kingdom & 

Prins, 2010). It is important to note, however, that the slope is influenced by both sensory and 

decision noise – while the threshold conflates sensory sensitivity and internal variability, the 

slope conflates sensory sensitivity and response variability. Nonetheless, if the precision of 

responses in the discrimination task is related to bias in the estimation task, we would expect 

that increase in the slope of the psychometric function fitted to the 2IFC data will be related to 

a decrease in regression to the mean in the estimation task. In contrast to this prediction, we 

found that the correlation between regression to the mean and the slope was r = -0.08 (after 

removing 1 outlier, r = -0.04). These results suggest that both the threshold and slope of the 

psychometric function are not ideal measures of sensory precision, and future studies would 

benefit from employing additional tasks to estimate internal and response noise in order to 

provide an unconfounded measure of sensory sensitivity. 

 

Another possibility for the findings discussed above is that the process underlying duration 

discrimination differs from the process underlying duration estimation, and consequently, the 

lack of relationship between regression to the mean and 2IFC performance metrics stems from 

insufficient transfer across tasks. Anecdotally, some participants reported that throughout the 

duration discrimination task, their strategy changed from comparing the presented durations 

to identifying the main stimulus – they were able to select their response after seeing the first 

stimulus. Therefore, the task changes from a duration discrimination task into a memory task. 

An alternative measure of sensory precision used in the literature is the coefficient of variation 

which is calculated directly from participants’ responses in magnitude estimation tasks as the 

ratio between the standard deviation of participants responses to a given stimulus and the 

magnitude of that stimulus (e.g., Gibbon, 1977; Wearden 1991). This measure of sensory 

precision is taken directly from the duration estimation task itself, so there would be no 

problems with task transfer (although an issue with this approach is that regression to the 

mean and the coefficient of variation are jointly estimated).  Furthermore, we found that 

participants’ coefficient of variation (averaged across all stimuli in the two conditions of the 

duration estimation task) was not correlated with their 75% thresholds in the 2IFC tasks, 
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r=0.05 (after removing 1 outlier the correlation was r = -0.12), or the slope of the psychometric 

curve in the 2IFC task (r = 0.02). Therefore, we investigated whether our original measure of 

regression to the mean (the effect of context on responses to the 626ms stimulus), was 

correlated with participants’ average coefficient of variation. Across all participants, the 

correlation was -0.26, and after removing 1 outlier, the correlation was 0.05. These additional 

analyses show that in our sample, there was almost no relationship between two measures of 

sensory precision which in the literature are used to determine the same psychophysical 

construct. 

 

As we found that neither the 75% threshold in the 2IFC task nor the coefficient of variation in 

the duration estimation task correlated with regression to the mean in the direction predicted 

by Bayesian brain frameworks, it is possible that the context effect in the duration estimation 

task does not arise as a result of Bayesian inference. An alternative account that could give rise 

to a similar effect is discussed in Chapter 8 (General Discussion: Wider implications, p.145). We 

also decided to explore whether either measure of sensory precision would correlate with a 

different measure of regression to the mean which is often used in the literature – the 

regression index (1 – slope of the best fit line; Cicchini et al., 2012; Aagten-Murphy et al., 2014; 

Barne et al., 2018). The regression index of each participant was based on the average slope 

across the four experimental blocks in the duration estimation task. We found a correlation of 

0.46 between participants’ regression index and coefficient of variation, and a correlation of 

0.19 (or 0.3 after removing 1 outlier) between participants’ regression index and 75% 2IF  

threshold. The discrepancy between all these results suggests that further research is 

necessary to determine the construct validity of different measures of sensory precision and 

perceptual biases before investigating the relationship between them. Establishing a 

measure’s validity on face value alone is not enough as our knowledge of the potential 

underlying processes contributing to a specific effect is limited.    
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Chapter 6. Attractive biases in duration estimation 

outside of awareness 
 

The experiments presented in the previous chapters provide evidence that the perceptual 

system tracks the statistical properties – range, central tendency, and variance – of 

distributions of temporal intervals. However, it is still unknown whether conscious awareness 

is necessary to estimate the duration of stimuli or to assimilate statistical information across 

time. Here I present an experiment in which we investigated whether the duration of stimuli 

masked using continuous flash suppression give rise to local (serial dependence) and global 

(regression to the mean) attractive biases in duration estimation.  Participants (N=5) were 

asked to estimate the duration of visual stimuli ranging between 150 to 750ms. In two 

different conditions, we used continuous flash suppression to mask either the two shortest or 

two longest stimuli in the range thus creating a dissociation between the mean of all 

presented stimuli and the mean of the visible stimuli in the two conditions. If masked stimuli 

did not contribute to regression to the mean, then responses in each condition would be 

biased towards the mean of just the stimuli visible in that condition. First, we found significant 

differences in participants’ responses between the two conditions, suggesting that the masked 

stimuli did not contribute to the estimation of stimulus summary statistics, but participants’ 

responses were biased against rather than towards the mean of the visible stimuli. We also 

found no significant difference in participants’ responses following the different masked 

stimuli suggesting the durations presented outside of awareness do not give rise to serial 

dependence effects. However, these results are undermined by our inability to show strong 

evidence of serial dependence following the visible durations, which suggests that our study 

was underpowered. Overall, these findings provide evidence that the estimation of durations 

requires conscious awareness, and suggest that stimuli presented outside of awareness likely 

do not contribute to Bayesian inference. However, further research will be necessary to 

investigate what factors gave rise to the negative bias we observed on a global level.  

6.1 Introduction 

Studies have found evidence that sensory information of varying complexity can be processed 

outside of awareness, but it is still not clear where the limits of unconscious perception lie. 

Adaptation effects have been found to survive masking in low-level features such as 

orientation (e.g. He & Macleod, 2001) and motion (e.g. Roumani & Moutoussis, 2020), and 

even higher-order features such as numerosity (Liu, Zhang, Zhao, Liu, & Li, 2013). The research 
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on unconscious perception of more complex stimuli, such as faces, has however provided 

contradictory findings. Some studies report activation of face-processing brain areas in 

response to invisible faces (Moutoussis & Zeki, 2002; Morris, Pelphrey, & McCarthy, 2007), 

while others report no sensory adaptation to facial expression (Yang et al., 2010) and identity 

(Moradi et al., 2005). 

No studies to date have investigated if duration perception requires awareness or not, and 

different theories provide conflicting predictions. It has been proposed that magnitude 

judgements, such as size, numerosity, and duration, share a common mechanism (Meck & 

Church, 1983; Walsh, 2003), which would suggest that if numerosity can be perceived outside 

of awareness, so should duration. However, studies have challenged the proposition of 

(completely) overlapping representation, by showing, for example, only unidirectional 

interference between numerosity and duration in perceptual tasks (Droit-Volet, Clément, & 

Fayol, 2003; Dormal, Seron, & Pesenti, 2006). Theories on how the brain estimates durations 

also provide conflicting predictions regarding the role of awareness in time perception. On the 

one hand, in models based around scalar timing theory, conscious awareness is not necessary 

for the internal clock to operate. Even updated versions of the theory which suggest a role of 

attention (e.g., Zakay & Block, 1996; Lejeune, 1998) into the internal clock do not necessitate 

awareness as attention and awareness can be dissociated (e.g., Hsieh, Colas, & Kanwisher, 

2011; Lami, Alon, Carmel, & Shalev, 2014). In contrast, models which suggest that time 

perception depends on perceptual content (e.g., Roseboom et al., 2019) would predict that 

conscious awareness of the presented stimulus is necessary for its duration to be estimated.  

The experiment presented here investigated if conscious awareness is necessary for the 

duration estimation of visual stimuli. Furthermore, we also investigated whether durations 

presented outside of awareness contribute to the formation of prior expectations locally, in 

serial dependence effects, and globally, in regression to the mean effects. To date, very few 

studies have investigated if stimuli presented outside of awareness contribute to the 

estimation of summary statistics (Suárez-Pinilla, 2018; Kim et al., 2020). Notably, Suárez-Pinilla 

(2018) found that in an orientation estimation task, masked stimuli did not give rise to serial 

dependence effects but contributed to the estimation of the mean orientation in the stimulus 

set. Here, following a very similar design, we presented participants with a distribution of 

durations and used continuous flash suppression (CFS) to mask either the shortest or longest 

stimuli. First, if masked stimuli generate serial dependence effects, we can expect that stimuli 

following the short masked durations will be underestimated, while stimuli following the long 

masked durations will be overestimated, and this difference would be similar to the effect of 
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the equivalent non-masked durations. Regarding the predicted regression to the mean effect, 

if the masked stimuli contribute to the computation of mean duration, duration estimates 

would be biased towards the mean of all stimuli in the distribution irrespective of which 

stimuli are masked. Conversely, if the masked stimuli do not contribute to the computation of 

mean duration, we predict that estimates would be biased towards the mean of only the 

visible stimuli.  

6.2 Methods 

6.2.1 Data availability  

The behavioural data is available at: https://osf.io/j9fqg/.  

6.2.2 Design 

Across two conditions participants were presented with 9 durations between 150 and 750ms 

in steps of ~75ms, with a mean of 450ms (150, 230, 300, 380, 450, 530, 600, 680, 750ms). In 

one condition, the two shortest stimuli, 150 and 230ms, were masked, shifting the mean of the 

visible stimuli up to 527ms. In a second condition, the two longest stimuli, 680 and 750ms, 

were masked which shifted the mean of the visible stimuli down to 377ms.  

First, to investigate if participants could estimate the duration of stimuli without awareness, 

we focused on the effect of masking on the absolute error between participants’ estimates 

and the actual duration of the four stimuli (150, 230, 680 and 750ms). If awareness is 

necessary to estimate duration, then the absolute error between responses and stimuli will be 

greater when the stimuli are masked than when they are visible.  

To test whether visual stimuli presented outside of awareness contribute to regression to the 

mean effects we focused on the effect that masking those stimuli had on participants’ direct 

duration estimates of the stimuli visible in both conditions (300-600ms). If durations presented 

outside of awareness contribute to the computation of mean stimulus magnitude, duration 

reports in both conditions would be biased towards the mean of all presented stimuli – 450ms. 

If durations presented outside of awareness are not considered in such computations, reports 

would be biased towards the mean of the visible stimuli in each condition, 527ms in condition 

1 and 377ms in condition 2. This would also be the case for masked stimuli, so we can also 

predict that responses to the masked stimuli in condition 1 (150 and 230ms) will be longer 

than responses to the masked stimuli in condition 2 (680 and 750ms). 

https://osf.io/j9fqg/
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Finally, to investigate whether awareness is necessary for serial dependence effects in 

duration estimation, we tested the effect of the duration presented on the previous trial (trial 

n-1) on the standardized error between the participants’ response and the presented duration 

on the current trial (trial n). To calculate the standardized error between the participant’s 

response and the duration presented on every trial, we first calculated the normalized error, 

NE, as: 

 
𝑁𝐸𝑖 =  

𝑅𝑒𝑝𝑜𝑟𝑡𝑒𝑑 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑖 − 𝑃𝑟𝑒𝑠𝑒𝑛𝑡𝑒𝑑 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑖

𝑃𝑟𝑒𝑠𝑒𝑛𝑡𝑒𝑑 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑖
 (27) 

where i denotes trial number. From there, the standardized error, SE, on trial i was calculated 

as:  

 
𝑆𝐸𝑖,𝑘 =  

𝑁𝐸𝑖,𝑘 − 𝑀𝑒𝑎𝑛(𝑁𝐸 𝑜𝑛 𝑎𝑙𝑙 𝑡𝑟𝑖𝑎𝑙𝑠 𝑠ℎ𝑜𝑤𝑖𝑛𝑔 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑘)

𝑆𝐷(𝑁𝐸 𝑜𝑛 𝑎𝑙𝑙 𝑡𝑟𝑖𝑎𝑙𝑠 𝑠ℎ𝑜𝑤𝑖𝑛𝑔 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑘)
 (28) 

where k denotes the duration presented on trial i.  

A negative standardized error would mean that the participant underestimated the presented 

duration, while a positive standardized error would mean that the participant overestimated 

the presented duration. If the duration presented on the previous trial affects responses on 

the current trial, short durations presented on trial n-1 would lead to negative standardized 

errors on trial n. Conversely, long durations presented on trial n-1 would lead to positive 

standardized errors in trial n.  

6.2.3 Stimuli and apparatus  

The experiment was run on Matlab2018b using Psychtoolbox-3.0.14 (Brainard, 1997, Pelli, 

1997; Kleiner, Brainard, Pelli 2007). The stimuli were presented on a 22-in Iiyama Master Pro 

513 CRT monitor with 100Hz refresh rate and 800x600 pixel resolution. Participants viewed the 

screen through a stereoscope, which separated the visual field of the left and right eye. 

Throughout the experiment, participants were asked to rest their head on a chinrest which 

was positioned such that the participants’ eyes would be aligned with the centre of the screen.  

The main stimulus, which was presented to the participants’ non-dominant eye, was a black-

and-white Gabor with size of 5 dva, spatial frequency of 0.45 cycles per degree, 15o 

orientation, 0.25o phase and a Gaussian envelope with sigma equal to 10 pixels. The Gabor 

appeared and disappeared gradually using a temporal Gaussian envelope with a standard 

deviation equal to 0.25 of the stimulus duration. The maximum contrast that the Gabor 

reached during the trial was determined based on participants’ performance in the 2IF  task. 
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Throughout the task, the maximum contrast decreased if participants reported a conscious 

experience of the masked Gabor during the CFS task (more details on this below).  

On some trials, a circular black-and-white mask was presented to the dominant eye of the 

participant. The mask had a size of 10dva and was divided into equally-sized squares (0.5x0.5 

dva). Each square was assigned a random luminance level between 0% and 100%. Every 

100ms, the luminance of each square in the mask was updated. 

A white square frame was presented around the location of the stimulus and mask to aid the 

binocular alignment of the visual input presented to the left and right eye. 

6.2.4 Procedure 

The experiment consisted of 5 sessions. In session 1, participants completed a contrast 

calibration task and training in duration estimation. In sessions 2-5, participants completed a 

shortened version of the duration estimation training, the main CFS task, and a shortened 

version of the contrast calibration task. Session 1 took ~1 hour to complete and sessions 2-5 

took ~2.5 hours each. Instructions for all tasks can be found in Appendix I. 

Continuous flash suppression set up 

Before each task, participants completed a CFS set up which aimed at determining the position 

on the screen where the stimulus and mask should be presented. Participants positioned their 

chin on a chin rest. They were then presented with two square frames to each eye. In the 

middle of one of the squares was a vertical line, in the middle of the other square - a horizontal 

line.  articipants’ task was to align the two images so that the frames overlap and the lines in 

the middle of the frames form a cross. The coordinates of the aligned frames were extracted 

as the coordinates where the stimuli will be shown.  Once the set-up was complete, 

participants were advised to remain still. Participants were allowed to take breaks at the end 

of each block, and the setup procedure was repeated at the start of the next block.  

Contrast calibration task 

The contrast calibration task was a 2-interval forced-choice (2IFC) task designed to determine 

at what contrast participants would not be able to identify the presence of the grating behind 

the mask. On every trial, participants were presented with two intervals one after the other. 

The mask was presented to the participant’s dominant eye in both intervals. In one of the 

intervals, a grating was presented to the participants’ non-dominant eye.  articipants’ task was 

to identify which interval contained the stimulus. Both intervals were 1000ms long. The mask 
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was presented to the dominant eye for the entire duration of the interval. The stimulus was 

presented to the non-dominant eye in the middle of the interval. We tested participants’ 

contrast sensitivity to the shortest and longest stimuli in the range, 150 and 750ms, at 5 

contrast levels - 12.5%, 25%, 50%, 75%, 100%. Тhe initial contrast calibration completed in 

session 1 consisted of 400 trials, 40 trials for each duration and contrast level combination. For 

each of the two durations, a cumulative Gaussian psychometric curve was fitted to participants 

data, with the threshold and slope free to vary. During pilot testing, we noticed that at 

contrast levels greater than 36%, the grating was easily visible through the mask. Therefore, if 

for either duration in the contrast calibration task, the contrast value at which participants 

correctly identified the interval containing the grating with 55% accuracy was greater than 

36%, the initial contrast value was set to 36%. If it was lower than 36%, the initial contrast 

value was set to that value. The 2IFC task completed at the end of sessions 2-5 consisted of 

200 trials, 20 trials for each duration and contrast combination. If the contrast level at which 

participants were 55% accurate at identifying the interval containing the grating had 

decreased, the starting contrast for the grating in the next session was updated.  

The lowest possible contrast at which the stimulus in the main task was allowed to be 

presented was 10%. With the gradual onset and offset, if the peak stimulus contrast was below 

10%, much of the stimulus was very difficult to see (even without masking), affecting duration 

estimates. If during the main experimental task participants reported conscious experience of 

the masked stimulus, the maximum stimulus contrast was decreased following a 10-step 

logarithmic scale between the highest and lowest allowed contrast. If participants reported 

conscious experience of the masked Gabor at 10% contrast, the experiment was terminated.    

Duration estimation training 

In the duration estimation task, participants were presented with a black and white grating 

and asked to report how long the grating remained on the screen for. During training, all 

stimuli were unmasked. Participants were presented with 21 durations from 76 to 862ms in 

steps of ~30-40ms (80, 110, 150, 190, 230, 260, 300, 340, 380, 410, 450, 490, 530, 560, 600, 

640, 680, 710, 750, 790, 860). Each trial started with a 200ms pre-stimulus interval. Then the 

stimulus was presented centred in the middle of a 1000ms stimulus presentation period, and 

in the end, the trial finished with a 200ms post-stimulus interval. Participants were then asked 

to report the duration of the stimulus by moving a computer mouse to the left or the right – 

moving the mouse to the right increased the duration while moving the mouse to the left 

decreased the duration. The initial duration presented on the response screen on each trial 
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was randomized between 0 and 1000ms, and the longest allowed response was 1000ms. At 

the end of the trial, participants received feedback containing the duration of the stimulus and 

the duration of their response. The duration estimation training in session 1 consisted of 210 

trials, 10 repetitions per stimulus. The duration estimation training in sessions 2-5 consisted of 

63 to 210 trials depending on performance. The training was terminated when the Pearson 

correlation between the presented durations and participants’ responses was at least 0.85.  

CFS duration estimation task 

The main experimental task was completed in sessions 2-5 and consisted of a duration 

estimation task in which on some trials, the stimulus was masked using CFS (Figure 6.1). The 

duration of the grating presented to the non-dominant eye of the participants ranged between 

150 to 750ms in steps of 75ms (9 durations in total). Each block consisted of 63 trials, 7 

repetitions per duration, and participants completed 7 blocks per session. Participants 

completed 4 sessions of the main CSF task. In two of the sessions, the two shortest stimuli 

were masked (150 and 230ms), and in the other two sessions, the two longest stimuli were 

masked (680 and 750ms). Each trial began with a pre-stimulus interval, 150-350ms, during 

which a square frame was presented to both eyes. Next, the stimulus was presented centred 

within an 800ms stimulus presentation period, and the trial ended with a 150-350ms post-

stimulus interval during which only the frame was presented. If the stimulus was masked, a 

high-contrast dynamic mask was presented throughout the entire duration of the trial. After 

the end of the post-stimulus interval, participants were asked to estimate the duration of the 

Gabor irrespective of whether they had a conscious experience of the stimulus or not. 

Duration reports were given the same way as in the duration estimation training. No feedback 

was provided after the response. Finally, we used the Perceptual Awareness Scale (PAS, 

Sandberg & Overgaard, 2015) to determine if participants had a conscious experience of the 

stimulus. If participants reported a  AS scale of 3 “(almost clear experience”) or 4 (“clear 

experience”), the contrast of the grating was decreased following the procedure described 

above.  

6.2.5 Participants  

Five participants (Meanage = 26.40, SDage = 0.56) completed the experiment.  
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6.3 Results  

6.3.1 Does duration estimation require conscious awareness? 

First, to investigate if participants could estimate the durations of stimuli presented outside of 

awareness we carried out a 2X4 repeated-measures analysis of variance (ANOVA) on the 

absolute error between responses and stimuli with visibility (2 levels: masked and unmasked) 

and duration (4 levels: 150, 230, 680, and 750ms) as independent variables.  We found a 

significant main effect of masking, suggesting that participants’ responses were more accurate 

when stimuli were visible than when stimuli were masked, F(1, 4) = 56.253, p = 0.0017. We 

also found a significant main effect of duration, F(3,12) = 18.230, p = 9.154e-05, as well as a 

significant masking X duration interaction, F(3,12) = 15.432, p = 2.025e-04, which indicated 

that the increase in duration had a significantly stronger effect on responses when stimuli 

were visible compared to masked.   

A B 

Figure 6.1. Main experimental task. (A) Trial structure. On every trial, a grating of variable duration was 

p    n           p    c p n  ’ n n-dominant eye, and on some trials a dynamic high-contrast mask was 

presented to their non-dominant eye. Participants were instructed to repot the duration and visibility of 

the grating irrespective of whether they were aware of it or not. (B) Stimuli and conditions. The 

durations of the gratings ranged between 150-750ms. In Condition 1, the two shortest stimuli were 

masked (150 and 230ms), while in Condition 2, the two longest stimuli were masked (680 and 750ms). 

This shifts the mean of all visible stimuli from 450ms to 527ms in Condition 1 and to 377ms in Condition 

2.  
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Additional planned pairwise t-tests were then carried out to test the effect of masking on each 

of the four durations. We found that, on average, absolute errors were significantly higher 

when the stimuli were masked rather than visible for each of the four duration (Figure 6.2): 

150ms – t(4) = 7.140, p = 0.003; 230ms – t(4) = 4.937, p = 0.007, 675ms – t(4) = 7.299,                 

p = 0.003; 750ms -  t(4) = 6.910, p = 0.003. All p-values are FDR-corrected. 

6.3.2 Do durations outside of awareness contribute to regression towards 

the mean effects? 

Next, we tested the prediction that participants responses to the stimuli overlapping between 

the two conditions (300-600ms) would be longer when the shortest stimuli were masked (150 

and 230ms; condition 1), than when the longest stimuli were masked (680 and 750ms; 

condition 2). To examine if masked stimuli contributed to regression to the mean, we ran a 2x5 

repeated measures ANOVA on the duration estimates of the 5 overlapping stimuli (300-600ms) 

across the 2 conditions (shortest stimuli masked or longest stimuli masked). We found a main 

effect of stimulus duration on reports such that estimates increased with the duration of the 

presented stimuli, F(4,16) = 145.892, p = 2.260e-12. We also found a significant effect of 

condition, F(1,4) = 17.692, p = 0.0136, however the results went in the opposite direction of 

our hypothesis - participants responses to the overlapping stimuli were longer in condition 2, 

Mean response = 480.996 (SD = 106.195), than in condition 1, Mean response 415.913ms  (SD 

= 100.410). There was no significant interaction between condition and stimulus duration, 

F(4,16) = 0.660, p = 0.629.  

We also carried out additional planned pairwise t-tests examining the effect of condition on 

each of the 5 durations (Figure 6.2). The difference between conditions was significant in 

responses to the 300, 450 and 600ms stimuli (300ms: t(4) = 4.238, p = 0.045, 95% CI [20.187, 

96.903], 450ms: t(4) = 4.174, p = 0.045, 95% CI [25.923, 128.942], 600ms: t(4) = 3.785, p = 

0.0.45, 95% CI [20.250, 131.750]). The difference between conditions was not significant for 

the 375ms (t(4) = 2.964, p = 0.072, 95% CI [3.689, 113.185]) and the 525ms stimuli (t(4) = 

2.750, p = 0.072, 95% CI [-0.542, 110.562]). All p-values are FDR-corrected. 

Finally, we also predicted that responses to the masked stimuli in condition 1 would be longer 

than responses to the masked stimuli in condition 2. However, responses to the masked 

stimuli in both conditions were closer to the mean of all durations presented in the experiment 

rather than the mean of only the visible durations in each condition, MeanCondition1 = 418.664ms 

(SD = 48.322), MeanCondition2 = 433.301 (SD = 21.648), and we found no significant difference 

between duration reports, t(4) = -0.508, p=0.638, 95% CI [-94.643, 63.370]. 
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6.3.3 Do durations presented with and without awareness give rise to serial 

dependence effects? 

To test whether the duration of visible stimuli created serial dependence effects we fitted a 

linear regression between the standardized error between participants’ responses and the 

presented duration on trial n, and the duration of the stimulus presented on trial n-1. Overall, 

participants underestimated the current stimulus when the previous trial presented a short 

stimulus (evidenced by negative standardized error) and overestimated the current stimulus 

when the previous trial presented a long stimulus (evidenced by positive standardized error). 

We found that in condition 1 (visible stimuli: 300-750ms) the duration presented on trial n-1 

significantly predicted response bias on the current trial, b = 4.332e-4 (SE = 9.788e-5), t(5) = 

4.427, p = 0.007 and the model provided significantly better fit to the data than the null, F(1,5) 

= 19.596, p = 0.007, R2 = 0.797. However, in condition 2 (visible stimuli: 150-600ms) there was 

no significant serial dependence effect, b = 4.92e-4 (SE = 2.032e-4), t(5) = 2.419, p = 0.060, and 

Figure 6.2. Mean responses to the stimuli in each condition. First, participants were significantly more 
accurate in estimating the shortest and longest stimuli (150, 230, 680 and 750ms) when they were visible 
compared to masked. Second, responses to the overlapping stimuli were shorter in condition 1, where the 
shortest stimuli were masked, than in condition 2, where the longest stimuli were masked. Focusing 
specifically on the stimuli visible in both conditions, the difference in responses was significant for the 300, 
450, and 600ms.  
◊ denotes p<0.05(FDR-corrected) for a comparison of absolute errors between stimuli.    

* denotes p<0.05(FDR-corrected) for a comparison of duration estimates between stimuli.    

◊ 

◊ 

◊ 

◊ 
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we failed to reject the null model, F(1,5) = 5.851, p = 0.060, R2 = 0.539. The results are 

presented in Figure 6.3.  

Finally, to investigate if masked stimuli elicited serial dependence effects, we ran a one-way 

repeated-measures ANOVA on the standardized error between stimulus and response on trial 

n with the masked duration presented on trial n-1 (4 levels: 150, 230, 680, and 750ms) as an 

independent variable. On average, three of the four masked durations lead to a slight 

underestimation of the following stimulus, but the analysis revealed no significant differences 

in responses between the 4 masked stimuli, F(3,12) = 0.89, p = 0.473. 

 

 

 

 

 

 

 

 

 

 

 

 

6.4 Discussion 

The aim of the present experiment was to investigate whether estimates of stimulus duration 

require conscious awareness and whether stimuli presented outside of awareness contribute 

to regression to the mean and serial dependence effects. We found significant differences in 

the accuracy of participants responses depending on whether the same physical stimuli were 

masked or not. We also found that participants’ responses to the stimuli visible in both 

conditions were affected by the masking of the shortest and longest durations, suggesting that 

masked durations are not taken into consideration when computing summary statistics of 

stimulus distributions. Our prediction was that reports to the visible stimuli would be biased 

 

 

 

 

 

 

   , 

p<.05 

Figure 6.3. Serial dependence effects. The dotted coloured lines represent the best-fit lines for the 

regression between visible durations presented on trial n-1 and the response bias on trial n. We found a 

significant effect of visible stimuli on subsequent reports only in condition 1. We also found no effect of 

masked stimuli on subsequent responses. 
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towards the mean of the visible stimuli – participants would overestimate the duration of the 

stimuli when the shortest durations were masked and underestimate the duration of the 

stimuli when the longest durations were masked. However, we found the opposite effect – 

when we masked the longest durations, participants overestimated the duration of the visible 

stimuli, and when we masked the shortest durations, participants underestimated the 

duration of the visible stimuli.  

Our data suggest that duration estimation requires conscious awareness of the stimulus which 

has some implications for theories on the mechanisms underlying the perception of time. 

Focusing specifically on the relevance of our findings for theories of time perception, scalar 

timing theory does not make explicit predictions regarding the role of conscious awareness in 

the working of the internal clock, but it can be predicted that awareness is not needed for the 

activity of either the pacemaker or accumulator. Some formulations of the internal clock 

model specify that attention has an effect on the activity of the switch component of the 

internal clock (Zakay & Block, 1996; Lejeune, 1998). However, attention does not require 

awareness (e.g., Hsieh, Colas, & Kanwisher, 2011), so even under these models, it would be 

possible that a system following scalar timing theory could form an estimate of duration 

without the stimulus reaching awareness. A human observer’s awareness of the duration 

estimate would be required, but they do not need to necessarily be aware of the stimulus in 

order to build that estimate. In contrast, our findings that participants could not estimate the 

duration of masked stimuli provide evidence in favour of the theory that duration estimations 

are derived from the observers’ perceptual content. Roseboom et al. (2019) suggest that 

perception of time arises from the perception of changes in perceptual content. Consequently, 

if an event does not reach conscious awareness, it will have no effect on perceptual content 

and its duration will not be possible to be estimated.  

In addition, we also provide evidence that attractive perceptual biases in duration require 

conscious awareness. Previous studies have found that adaptation to numerosity can occur 

outside of awareness (Liu et al., 2013). In contrast, masked stimuli were found to contribute to 

regression to the mean but not serial dependence in an orientation estimation task (Suárez-

Pinilla, 2018). Based on the available evidence it is difficult to conclude whether the difference 

between these studies and our results is due to differences in how the brain processes 

orientation, numerosity, and duration or differences between the three types of investigated 

biases – sensory adaptation, serial dependence, and regression to the mean. On the one hand, 

orientation is considered a low-level feature of visual stimuli that is encoded from the earliest 

instances of sensory processing in the brain and thus differs from both numerosity and 
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duration which can be considered as more abstract stimulus features (Whitney & Leib, 2018). 

It is commonly suggested that perception of duration and numerosity could be based on a 

common neuronal mechanism (Walsh, 2003).  Based on this assumption, it is possible that the 

difference between our results and the results of Liu et al. (2013) could be pointing towards a 

fundamental difference between repulsive and attractive biases – sensory adaptation does not 

require conscious awareness while serial dependence and regression to the mean do. In 

support of this proposition, researchers have found multiple differences in the characteristics 

of sensory adaptation and serial dependence, which suggest that these opposing biases might 

occur at different stages of perception (Fisher & Whitney, 2014; Fritsche, Mostert, & de Lange, 

2017; Suárez-Pinilla et al., 2018). However, this cannot completely explain the discrepancy 

between our findings and the findings of Suárez-Pinilla (2018). If masked orientations do not 

give rise to an attractive bias on a local scale, then it is unlikely that they would contribute to 

global attractive biases. Suárez-Pinilla (2018) suggest that their results could be explained by 

the relatively short lengths of the blocks and transfer of priors between conditions such that 

participants formed global rather than condition-specific priors. As discussed below, we 

suspect that participants in our experiment were also forming a global prior based on the 

duration estimation training conducted at the beginning of each session, and that prior was 

only partially shifted during the experimental task. 

This study yielded two unexpected findings that require further consideration – we found only 

limited evidence for serial dependence in visible durations and, more globally, we found 

evidence of repulsion from rather than regression to the mean of the presented stimuli. 

Previous research has found that the direction of trial-to-trial local biases in perceptual 

decisions is related to confidence – trials associated with high confidence give rise to positive 

biases, while trials associated with low confidence give rise to negative biases (Suárez-Pinilla, 

2018). Focusing on our experiment, it is possible due to the characteristics of the main task, 

duration judgements even of visible stimuli were not associated with very high confidence – 

participants received no feedback (this would have revealed the durations of the masked 

stimuli), and the stimuli were low contrast with gradual onset and offset (to make sure they 

did not break through the mask). This could explain why we see mixed evidence for serial 

dependence, and possibly why we see repulsion from the mean. At the beginning of every 

session, participants completed a duration estimation training task in which they had to 

estimate a wide range of durations (including the stimuli that would, later on, be masked in 

the main CFS task) and received feedback on their performance. It is, therefore, possible trials 

in the training task were associated with high confidence and as a result, gave rise to very 
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strong expectations which the main CFS task was unable to shift. As a result, participants could 

have been biased towards providing responses closer to the stimuli they were expecting to see 

but were missing. Evidence that the training task might have created very strong expectations 

comes from the finding that in both conditions participants responses to the masked stimuli 

were closer to the mean of all durations rather than the mean of only the visible stimuli.   

To conclude, the current study provides initial evidence that estimation of stimulus duration 

requires conscious awareness, and as a result, durations presented outside of awareness 

probably do not generate perceptual biases. Nonetheless, we cannot draw strong conclusions 

on the basis of this data alone as our inability to show convincing serial dependence following 

visible durations suggests our analysis was underpowered, and it is not possible to determine if 

the repulsion from the mean effect we observed could stem from unmeasured effects of 

confidence or our task design.  
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Chapter 7. Effect of spontaneous blinking on 

performance in a duration bisection task 
 

This final empirical chapter presents the preliminary findings of an experiment investigating 

the role of dopamine in time perception. We aimed to replicate three experiments conducted 

by Terhune et al. (2016) which showed that spontaneous blinking (a proxy measure of 

dopaminergic activity) leads to an overestimation of durations in a duration bisection task. 

While we have not completed data collection yet, our preliminary findings across two 

experiments (N=11 and N=9) do not provide support for Terhune et al.’s (2016) results, 

showing no conclusive evidence of an effect of blinking on performance across both sub-

second and supra-second visual intervals. If the final dataset does support the prediction that 

spontaneous blinks affect responses in duration bisection, further experiments examining if 

the effect extends to other time perception tasks would be necessary to ascertain whether 

dopaminergic activity affects responses by shifting decision biases or by influencing the 

processing of temporal stimuli.  

7.1 Introduction 

There is an ongoing debate regarding the role of the dopaminergic system in time perception. 

Proponents of the scalar timing theory suggest that dopamine influences the speed of the 

internal clock (Meck, 1995). This proposition has been supported by pharmacological studies 

conducted on animals (Maricq & Church, 1983; Meck 1983), and human patients with 

dopamine-related disorders such as  arkinson’s ( astor et al., 1992), although the evidence for 

the latter is mixed (e.g., Riesen & Schnider, 2001; Smith et al., 2007).  

Studies have suggested that the role of dopamine in time perception can also be investigated 

non-pharmacologically by using spontaneous blinking as a proxy measure for dopaminergic 

activity, as the rate of spontaneous blinking has been found to correlate with dopamine 

release (e.g., Karson, 1983).  Using this technique Terhune et al. (2016) discovered that in a 

duration bisection task, stimuli presented following a blink were overestimated compared to 

stimuli preceded by no blinks. These results support the proposition that dopamine influences 

the rate of the pacemaker in the internal clock– as dopamine increases, the pacemaker 

generates more ticks for the same physical duration, leading to the overestimation of the 

presented interval and therefore increasing the propensity to classify stimuli as long rather 

than short. However, another study found no effect of spontaneous blinking on performance 
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in a duration estimation task (Suárez-Pinilla et al., 2019), raising concerns about the 

generalizability of Terhune et al.’s (2016) findings, the role of dopamine in time perception, 

and the reliability of spontaneous blinking as a measure of dopaminergic activity.  For example, 

evidence suggests that dopaminergic activity can affect performance on perceptual tasks by 

inflicting response biases (Wang et al., 2018), or influencing motivation (Soares et al., 2016) 

rather than changing perception. In addition, studies on the relationship between spontaneous 

blinking and dopamine release have provided conflicting results (e.g. van der Post, de Waal, 

2004), so it is unclear whether Suárez- inilla et al.’s (2019) findings reflect no relationship 

between dopamine and duration estimation, or no relationship between dopamine and 

spontaneous blinking.  For a detailed review of the surrounding literature, please refer to 

Chapter 2 (Neurophysiology of time: Dopamine, p.39). 

Here, we decided to replicate the study by Terhune et al. (2016) to directly investigate the 

reliability of their findings and re-examine whether their results reflect an influence of 

spontaneous blinking, as a proxy for dopamine activity. Following Terhune et al.’s (2016) 

experiment, participants completed a duration bisection task – they were presented with a 

range of durations and had to classify the stimulus presented on each trial as either long or 

short. If spontaneous blinking leads to an overestimation of durations, then the psychometric 

function fitted to participants’ probability of long responses should exhibit a leftward shift – 

the bisection point (50% threshold) associated with post-blink-trials would be shorter than the 

bisection point associated with trials preceded by no blinks.  

7.2 Method 

7.2.1 Pre-registration and data availability 

The hypotheses, design, experimental procedure, and analyses are pre-registered at the Open 

Science Framework (https://osf.io/x9zc8). The eye-tracking data and the behavioural data is 

available at: https://osf.io/2p3fv/files/.  

7.2.2 Design 

In this experiment participants had to complete a duration bisection task – participants were 

presented with stimuli of different durations and had to classify the duration presented on 

each trial as short or long. The dependent variable of interest was the ~50% threshold, or 

bisection point, of the psychometric function fitted to participants data from the bisection 

task.  

https://osf.io/x9zc8
https://osf.io/2p3fv/files/


131 
 

The range and modality of the stimuli were manipulated between participants and had three 

levels – sub-second visual intervals (7 stimuli from 300 to 700ms in steps of 67ms), supra-

second visual intervals (7 stimuli from 1400 to 2600ms in steps of 200ms), and sub-second 

auditory intervals (7 stimuli from 300 to 700ms in steps of 67ms). Here we presented results 

regarding conditions 1 and 2 – the sub-second and supra-second visual conditions.  

Trials were additionally divided based on trial type into post-blink and post-no-blink trials. 

Blinks were defined using the autodetected blink events from the eye-tracking output (start of 

eye blink and end of eye blink). If at least one blink began or ended within the post-stimulus 

interval of the previous trial, the current trial was labelled as a post-blink trial. If on the 

previous trial, a participant kept their eyes open throughout the entire post-stimulus interval, 

the current trial was labelled as a post-no-blink trial. Post-stimulus intervals varied randomly 

between 800-1200ms in condition 1 (visual sub-second condition), 900-2100ms in condition 2 

(visual supra-second condition), and was fixed to 1000ms in condition 3 (auditory sub-second 

condition).  

7.2.3 Procedure 

Participants completed three blocks in each condition. Each block was divided into 1 training 

run and 3 testing runs. The training run contained 10 repetitions of the shortest and longest 

duration pertaining to the appropriate condition, and participants’ task was to classify whether 

the stimulus on each trial was the short or the long stimulus. At the end of the trial, 

participants were provided with feedback related to the accuracy of their responses. During 

the testing runs, participants were presented with a range of durations between the shortest 

and longest anchor from the training run, and participants’ task was to determine if the 

stimulus presented on each trial appeared to be more similar in duration to the short or long 

anchor. As this was an appearance task, participants were not provided with feedback. In 

conditions 1 and 3 each stimulus was presented on 90 trials overall, and in condition 2 each 

stimulus was presented on 72 trials overall.  

Every trial started with a presentation of a fixation cross which varied between 1250ms and 

1450ms. After that, the stimulus was presented, followed by a post-stimulus interval that 

varied from 800ms to 1200ms in condition 1, and from 900ms to 2100ms in condition 2. After 

that, a response cue was presented prompting participants to classify the presented interval as 

short or long by pressing a key on the keyboard, J or N, with the mapping between key and 

response counterbalanced between participants (Figure 7.1). In the training blocks, following 
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the participant's response, feedback indicating whether their response was correct or not was 

presented for 1000ms. Instructions can be found in Appendix J. 

 

 

7.2.4 Apparatus 

The experiment was run on Matlab2018b using Psychtoolbox-3.0.14 (Brainard, 1997, Pelli, 

1997; Kleiner, Brainard, Pelli 2007) and the Eyelink toolbox (Cornelissen, Peters, & Palmer, 

2002). An Eyelink 1000 Plus eye tracker with 500Hz sampling rate was used to detect eye 

blinks from participants’ right eye.  

The visual stimulus consisted of a purple circle, 13dva, presented on a grey background. The 

stimulus was calibrated to have the same luminance as the background. The fixation cross and 

all written instructions presented during the experiment were presented in dark yellow and 

also matched the luminance of the background. The experiment was presented on a LaCie, 

Electron 22 Blue II 22-inch monitor with a resolution of 1024x768 pixels and 120Hz refresh 

rate.  

Participants sat at 57cm away from the screen and rested their head on the chinrest 

throughout the entire duration of a block. The eye tracker was calibrated at the beginning of 

every block using a 5-point grid. The experiment was started only if the average error recorded 

during the calibration was below 0.5 degrees of visual angle. One participant for whom the eye 

tracker could not be calibrated did not take part in the experiment.  

Figure 7.1. Trial structure. On every trial in the testing runs, participants had to classify the presented 

stimulus as either more similar to the short anchor or to the long anchor. If the participant blinked during 

the post-stimulus interval of the previous trial, the current trial was marked as a post-blink trial. If the 

participant did not blink during the post-stimulus interval of the previous trial, the current trial was 

marked as a post-no-blink trial.  
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7.2.6 Analyses 

Using the Palamedes toolbox (Prins, & Kingdon, 2009) for Matlab, we fitted logistic 

psychometric functions to the proportion of long responses each participant gave to the 

stimuli presented on trials preceded by blinks and trial preceded by no blinks separately. 

Replicating the analysis detailed by Terhune et al. (2016), the threshold and slope parameters 

of the psychometric function were free to vary, the guess rate was fixed to 0, and the lapse 

rate was fixed to 0.1. For each participant, we extracted the 50% thresholds, or bisection 

points, from the functions fitted to the post-blink and post-no-blink trials, and we used 

Bayesian t-tests to investigate if there was a difference in the bisection points arising from 

post-blink and post-no-blink trials. The expected effects for the Bayesian t-tests were based on 

the results reported by Terhune et al. (2016) – 44ms for condition 1, and 69ms for condition 2. 

Finally, for each trial type, we computed bias-corrected and accelerated bootstrap intervals 

(Efron, 1987) across participants. We carried out an additional analysis where all parameters of 

the logistic function were free to vary. The rest of this analysis followed the same steps as 

above.  

7.2.5 Exclusion criteria 

We followed the exclusion criteria detailed by Terhune et al. (2016). Participants were 

excluded if they blinked during the post-stimulus interval on less than 10% of the trials. 

Participants were also excluded if the logistic function fitted to either the post-blink or post-

no-blink trials showed poor fit to the data. Goodness-of-fit was assessed using the Palamedes 

toolbox (Prins, & Kingdon, 2009; PAL_PFML_GoodnessOfFit function with 1000 simulations), 

and participants with pDev values smaller than 0.05 were excluded from the analysis. We also 

excluded participants if the difference in bisection point for post-blink or post-no-blink trials 

was more than 3 standard deviations away from the mean bisection point for the respective 

trial type averaged across all participants.   

7.2.7 Participants 

The required sample sizes were determined using Bayesian t-tests. For each condition, we 

determined the smallest sample size that would yield a Bayes factor greater than 3 or smaller 

than 1/3 if we expect to find results similar to those reported by Terhune et al. (2016). The 

prior expected effects and observed effects in the t-tests were set to the differences in 

bisection points between trials preceded by blinks and trials preceded by no blinks reported by 

Terhune et al. (2016): 44ms for the sub-second visual condition (condition 1), and 69ms for the 
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supra-second visual condition (condition 2). The standard deviations of the observed 

differences were calculated based on the results provided by the authors: 82.64ms for 

condition 1, and 146.05ms for condition 2. The sample sizes with which we can expect to 

obtain a Bayes factor greater than 3 are 14 participants in condition 1, and 17 participants in 

condition 2. When we collect these initial samples, we will conduct the analyses detailed 

above. If we have not exceeded our sensitivity threshold (BF10 smaller than 1/3 or BF10 greater 

than 3), we will continue data collection and reanalyse the data after every participant until we 

reach a maximum of 30 participants per experiment. We have not reached the minimal sample 

size yet, so the results presented in this paper are only preliminary. 

A total of 41 participants (N women = 28; Mage = 22.38 years, SDage=6.42) took part in the 

experiment. Of them, 19 participants had a full set of eye-tracking data and corresponding 

behavioural data for condition 1, and 14 for condition 2. 2 participants from condition 1 and 1 

from condition 2 were excluded due to insufficient blinks. In the analysis replicating Terhune et 

al. (2016), 6 participants were excluded due to poor model fit (pDev<0.05) from both condition 

1 and 2. One participant from condition 1 was excluded due to outlying bisection point values 

(>MeanBP + 3SDs), no outliers were found in the data corresponding to condition 2. In the 

additional analysis detailed above, 2 and 5 participants were excluded due to poor model fit 

(pDev<0.05) from condition 1 and 2 respectively, and 1 participant from condition 1 was 

excluded due to outlying bisection point values (>MeanBP + 3SDs)  

To summarise, the analysis replicating Terhune et al. (2016) was based on 11 participants in 

condition 1, and 7 participants in condition 2. The additional analysis was based on 15 

participants in condition 1 and 9 participants in condition 2. 

7.3 Results  

First, we replicated the analysis detailed by Terhune et al. (2016). On average, participants 

responses in the two conditions did not show a consistent difference between post-blink and 

post-no-blink trials (Figure 7.2). In the visual sub-second condition, the bisection point in post-

no-blink trials, MBP = 480.46ms (SD=40.40), was greater than the bisection point in post-blink 

trials, MBP = 467.15 (SD=51.56), indicating that durations presented following a blink appeared 

longer. However, the mean difference we found, Meandiff = 13.31ms, bootstrap CI95%: [1.80. 

25.55], was smaller than the result obtained by Terhune et al. (2016) providing inconclusive 

evidence in favour of the alternative hypothesis, BF10 = 1.52. In the visual supra-second 

condition, there was no difference in the bisection point associated with post-no-blink trials, 

MBP = 1955.42ms, (SD = 141.52), and post-blink-trials, MBP = 1955.67 (SD=88.85), Meandiff = -
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0.25ms, bootstrap CI95% [-61.69, 57.97], providing inconclusive evidence in favour of the null 

hypothesis: BF10 = 0.62.  

 

 

The additional analysis we carried out provided similar results. The difference in bisection 

points between post-no-blink and post-blink-trials in condition 1, Meandiff = 2.24, bootstrap 

CI95% [-24.57, 22.055], provided inconclusive evidence in favour of the null hypothesis: BF10 = 

0.34. The difference in bisection points in condition 2, Meandiff = -3.44, bootstrap CI95% [-

62.67, 45.42], also provided inconclusive evidence in favour of the null hypothesis: BF10 = 0.46. 

7.4 Discussion 

The experiment presented here aims to investigate if spontaneous blinking, as a proxy for 

dopaminergic activity, leads to an overestimation of durations. Proponents of scalar timing 

theory predict that an increase in dopamine levels speeds up the internal clock leading to 

overestimation of durations. To date, only two studies have investigated the effect of 

spontaneous blinking on performance in time perception tasks, and their results are 

contradictory. Terhune et al. (2016) found that blinks affected performance on a duration 

bisection task, while Suárez-Pinilla et al. (2019) found no effect of blinking on duration 

estimation of naturalistic stimuli. The current study aimed to replicate the experiment 

Figure 7.2. Behavioural results. Average proportion of long responses for each stimulus on post-blink 

(red), and post-no-blink trials (green) in the sub-second visual condition (A), and the supra-second visual 

condition (B). These are the results of the participants included in the analysis replicating Terhune et al. 

(2016). Error bars show +/- 1SE. The solid lines in both figures show the psychometric curves fitted to the 

average data of all participants.  
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conducted by Terhune et al. (2016). Participants completed a duration bisection task, and we 

tested the hypothesis that the stimulus duration which participants classify as long on 50% of 

the trials would be longer if a blink occurred during the previous trial compared to if a blink did 

not occur the previous trial. In the data we have obtained to date, we found conclusive 

evidence in favour of neither the alternative nor the null hypothesis. We will need to finish 

data collection to be able to provide stronger conclusions, but our current results suggest that 

if an effect of spontaneous blinking on duration estimation does exist, the effect will be likely 

smaller than the effect reported by Terhune et al. (2016).  

Even though we do not have the complete results for this experiment yet, we can discuss the 

possible implications of failing or succeeding to replicate the findings of Terhune et al. (2016). 

To begin with, even if we find evidence of no effect of spontaneous blinking on performance in 

the duration bisection task, this will not necessarily suggest that dopamine has no role in time 

perception. Instead, it is possible that spontaneous blinking is not a reliable proxy measure for 

dopaminergic activity, which is supported by previous studies investigating the relationship 

between dopamine and blinking in humans (van der Post et al., 20114). For example, it was 

found that administration of a dopamine antagonist and a dopamine agonist had no effect on 

spontaneous blinking in healthy adults (van der Post et al., 20114; Dang et al., 2017) and that 

there was no relationship between spontaneous blink rate and the availability of dopamine 

receptors (D2 receptors in particular; Dang et al., 2017). Furthermore, a dopamine antagonist 

was reported to increase spontaneous blink rate in non-human animals (Kotani et al., 2016). 

Finally, another study found that the effect of a dopamine agonist on spontaneous blink rate 

depended on the participants’ baseline blink rate. Participants with low blink rate at baseline 

exhibited an increase in blink rate following the application of the agonist, while participants 

with high blink rate exhibited a decrease in blink rate following the application of the agonist 

(Cavanagh, Masters, Bath, & Frank, 2014). Combining the results of these studies, there is still 

a lot that is unknown about the relationship between the dopaminergic system and 

spontaneous blinking, suggesting that spontaneous blinking is, for now, not a reliable measure 

of dopamine activity.  

Another possible outcome of this experiment after completing data collection is that our 

results replicate the findings reported by Terhune et al. (2016) – the bisection point on trials 

following blinks is shorter than the bisection point on trials following no blinks.  However, a 

difference in bisection points alone is not enough to disentangle whether dopamine’s role is 

specific to the duration estimation component of the task or is related to response or decision 

biases that are independent of the duration estimation process (Figure 7.3A). The bisection 
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point associated with post-blink trials will also be shorter if an increase in dopaminergic 

activity is associated with a general increase in the probability of long responses across the 

whole range of tested stimuli (Figure 7.3B1). The analysis performed by Terhune et al. (2016) 

that we are replicating here cannot differentiate between these two possibilities, and one 

should also consider the participants’ responses across all presented stimuli. For example, 

previous studies have found that increase in dopaminergic activity increases the proportion of 

positive responses in a change detection task (Wang et al., 2018), while a decrease in 

dopaminergic activity results in a decreased rate of responses in duration estimation task 

(Soares et al., 2016).  hanges specific to participants’ bisection point in the absence of a 

general increase in long responses (Figure 7.3B2) also have two potential explanations. A 

horizontal shift in the psychometric function could indicate a shift in perceived duration (Figure 

7.3C2), but also a shift in criterion – when dopamine is higher, observers may shift their 

criterion for replying “long” towards shorter durations (Figure 7.3C1).  No study to date has 

managed to successfully disentangle these possibilities. Therefore, to date, it is still not clear to 

what extent dopamine’s role in duration estimation might is related to the timing component 

of the task.  

If Terhune et al.’s (2016) results replicate, further research would be necessary to find out 

whether this effect generalizes across other duration estimation tasks in order to improve our 

understanding of the specific role that dopamine plays in time perception. One possibility 

would be to again investigate the effect of blinking on duration estimation, but using simpler, 

more controlled stimuli than the naturalistic videos used by Suárez-Pinilla et al. (2019), which 

could have altered motivation and attention on a trial-by-trial basis thus introducing 

confounds into the design. Duration bisection and duration estimation tasks differ in the way 

in which decisions are reached, and responses are provided. For example, in a duration 

bisection task, it is enough to have a single criterion separating long from short responses – a 

decision can be reached based on whether the sensory evidence surpasses that criterion or 

not. In contrast, a duration estimation task would be associated with multiple interrelated 

decision criteria, as there are multiple possible responses. Therefore, if spontaneous blinking 

leads to an overestimation of durations across both duration bisection and duration estimation 

tasks, this could provide strong evidence for a role of dopamine in time estimation rather than 

decision biases.  
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Chapter 8. General discussion 
 

Here I discuss how the empirical work presented in the previous chapters informs the existing 

literature on perceptual biases in duration estimation1, I provide some suggestions for 

reconciling the unexpected findings in some of the reported studies, and suggest some further 

directions of how we plan to build on the findings reported here. 

In addition, while conducting the research presented here, we became aware of some issues 

that previous studies investigating regression to the mean in duration perception either have 

not reported or have not taken into account. The concerns we raise are also relevant to the 

wider field of time perception research in general, but here I focus specifically on the studies 

investigating Bayesian perceptual biases.  The first issue we discovered was that most 

participants we recruited were not able to do duration reproduction to a degree that indicates 

they could accurately perceive the presented stimuli. This raises concerns regarding the 

generalizability of any effect based on such tasks. Previous studies also do not reliably report 

concrete exclusion criteria determined prior to data collection to ensure that the data is 

suitable for drawing conclusions regarding the mechanisms of human time perception. For 

reference, this is the equivalent of investigating the processes underlying colour perception 

without excluding participants who are colour-blind. Furthermore, if a task is based on the 

assumption that most people are not colour-blind, but in fact the opposite is true, then the 

findings will apply only to a small group of people rather than to the general population 

overall. In addition, most studies do not report taking any special precautions to ensure the 

timing accuracy of the equipment used to record responses raising concerns about the 

reliability of the data used for analyses.  

8.1 Summary of key findings 

In Chapter 4 we found evidence that when other distributional statistics are kept constant, the 

variance of the prior distribution influences the magnitude of regression to the mean effects – 

a peaked (Gaussian) stimulus distribution gave rise to a stronger bias towards the prior than a 

wide (uniform) distribution with the same range and mean. Our findings also support and 

extend the results of previous studies which report that simultaneous changes in the range 

and variance of stimulus distributions – stimulus distributions with a narrow range and 

 
1 The findings of Chapter 7 are not discussed further because the preliminary findings I presented do not 
allow us to draw conclusions strong enough to contribute to the overall literature on the role of 
dopamine in time perception and Bayesian inference.  
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variance were found to general stronger biases than stimulus distribution with a wide range 

and variance (Körding et al., 2004; Miyazaki et al., 2005; Berniker et al. 2010; Garrido et al., 

2013). To our knowledge, this is the first study to investigate and find support for the specific 

prediction of Bayesian brain theories that difference in the variance of the prior distribution 

alone modulates the effect of prior expectations on perception.  

In Chapter 4, we also conducted a replication of an experiment by Acerbi et al. (2012) where 

we investigated the effect of variance in peaked skewed distribution compared to a uniform 

distribution. The skewed distribution was constructed by increasing the presentation 

frequency of the second shortest stimulus in the range relative to the other stimuli in the 

range. We found that the skewed distribution with small variance did not give rise to a 

stronger regression to the mean effect compared to the uniform distribution. On average, 

participants’ behavioural responses diverged from the predictions of the Bayesian model, 

showing a decrease instead of an increase in the magnitude of the bias for stimuli not in the 

immediate vicinity of the overrepresented stimulus. In addition, as the skewed distribution had 

a shorter mean than the uniform distribution, we predicted that participants’ responses would 

be, on average, shorter in the skewed condition. Although we found that in the skewed 

condition participants were biased towards a shorter value compared to the uniform 

condition, the difference we found was smaller than the effect reported by Acerbi et al. (2012), 

and we did not manage to replicate their results.  

In Chapter 5, we successfully replicated the range effect of regression to the mean in a 

duration reproduction and a duration estimation task – the same physical duration was 

overestimated when it was shorter than the mean but underestimated when it was longer 

than the mean. These results provide further support that context effects are ubiquitous in 

perception (e.g., Jazayeri & Shadlen, 2010; Petzschner & Glasauer, 2011; Petzschner et al., 

2015). Furthermore, we found evidence of potential EEG correlates of this context effect. Most 

notably, an MVPA classifier was able to distinguish stimulus context based on the EEG activity 

recorded for the same physical stimulus. Damsma et al. (2020) recently reported similar 

findings, and together, our results strongly suggest that brain activity reflects not only the 

physical characteristics of the presented stimuli but also participants’ subjective experience 

which is affected by their prior expectations.  

Nonetheless, the main aim of the research presented in Chapter 5 was to investigate the effect 

of sensory precision on perceptual biases. However, we did not find conclusive evidence in 

favour of the prediction of Bayesian models that sensory precision should modulate the effect 
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of prior expectations on perception. We found no difference in regression to the mean in 

duration reproduction between participants with high and low sensory precision, and we 

found a much weaker correlation between sensory precision and regression to the mean than 

the correlation predicted by a Bayesian model. Finally, we found no difference in the ability of 

the MVPA classifier to distinguish stimulus context between participants with high and low 

sensory precision. To date, very few studies have investigated the relationship between 

sensory precision and regression to the mean, and our results contradict their findings. For 

example, Cicchini et al. (2012) found that regression to the mean and sensory precision were 

positively correlated.  The researchers used different measures to estimate these parameters, 

and as already discussed in Chapter 5 (p.113-114) it is possible that we did not find the effects 

we were expecting because the estimates we used do not reflect participants’ true sensory 

precision and/or regression to the mean. An alternative possibility is that regression to the 

mean arises from a different process, not entirely consistent with the Bayesian models we 

have examined. This is discussed further below.  

Finally, the results of Chapter 6 suggest that durations could not be estimated outside of 

awareness and that stimuli presented outside of awareness did not contribute to global and 

local attractive biases (regression to the mean and serial dependence respectively). A recent 

study on the role of conscious awareness in perceptual biases in orientation perception 

provides mixed support for our findings (Suárez-Pinilla, 2018). On the one hand, serial 

dependence was found for visible but not masked stimuli. On the other, it was also found that 

estimates of mean orientation were based on both visible and masked stimuli, while in our 

study, masked stimuli did not contribute to regression to the mean. As discussed in Chapter 6 

(p.127), it is likely that the discrepancy between these findings arose due to the experimental 

design of the study. In addition, a study by Liu et al. (2013) found that sensory adaptation to 

numerosity can occur when stimuli are masked. Our findings that masked durations do not 

give rise to attractive biases can be interpreted as providing evidence against a common 

mechanism underlying magnitude estimation across domains (Walsh, 2003). Alternatively, it is 

possible that repulsive and attractive biases occur at different stages of processing, and while 

adaptation does not require awareness, regression to the mean does. This proposition fits with 

recent propositions that adaptation occurs at the stage of sensory processing, while serial 

dependence arises at the stage of decision making (Fritsche et al., 2017). 
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8.2 Wider implications 

From the findings summarized above, two results that were particularly unexpected given the 

predictions of the Bayesian brain hypothesis and the specific Bayesian ideal-observer models 

that we used to form our specific predictions – first, that the skewed peaked distribution gave 

rise to a mixture of negative and positive biases, and second, that sensory precision was not 

related to regression to the mean. Here I present some speculations on how these issues could 

be resolved. Considering the increased interest in open science across neuroscience and 

psychology, I also discuss some issues with transparency and data quality in the literature on 

duration reproduction. 

8.2.1 Reconciling attractive and repulsive perceptual biases  

Most of the research I have presented here focuses on biases towards the prior – serial 

dependence on a local level, and regression to the mean on a global level. However, in Chapter 

4 we found that a peaked, skewed stimulus distribution gave rise to a mixture of attractive and 

repulsive biases. Repulsive biases in perception have often been accounted for by sensory 

adaptation (Webster, 2011), and typically arise when the repeated presentation of a particular 

stimulus value causes the perception of other subsequently presented stimulus values to be 

repelled from it (Webster, 2011). It has been proposed that this perceptual effect results from 

a change in neuronal excitability and selectivity – the repeated presentation of a stimulus 

causes a decrease in the firing rate of neurons selective for the adapted value (Kohn, 2007).  

While it may seem contradictory that prior experiences can lead to both attractive and 

repulsive biases, researchers have found differences in the experimental conditions that give 

rise to neuronal adaptation and serial dependence. For example, it was recently found that the 

direction of perceptual biases changes with trial history – the strongest serial dependence 

effect was induced by the most recently presented stimulus, while stimuli presented further 

back into the trial history gave rise to negative biases (Suárez-Pinilla et al., 2018). The same 

study also found that trials associated with high decision confidence gave rise to serial 

dependence, while low confidence trials gave rise to adaptation effects. Other studies report 

evidence that serial dependence in vision still occurs when subsequent stimuli are presented in 

different locations on the retina (Fisher & Whitney, 2014), while sensory adaptation in vision is 

retinotopic (Wenderoth & Wiese, 2008; Morgan, 2014). Finally, adaptation to an abstract 

stimulus feature, i.e. numerosity, was found to occur outside of awareness (Liu et al., 2013), 

while attractive biases to an abstract stimulus feature, i.e. duration, were not found for 

masked stimuli (see Chapter 6). The differences between adaptation and serial dependence 



143 
 

suggest that these processes might be operating at different levels of perception – adaptation 

evolves at the stage of sensory processing while serial dependence (and positive biases in 

general) evolve later, probably at the stage of decision making (Fritsche et al., 2017).  

Further to the empirically established differences between the effects, researchers have also 

proposed that repulsive and attractive biases may have different functional roles, suggesting 

that it could be possible to reconcile these opposing biases within a single perceptual 

framework. On the one hand, following adaptation, subjective reports of stimulus values close 

to the adaptor are repulsed away, suggesting that stimulus discriminability has increased – 

observers become more sensitive to stimulus changes close to the adapted value. As a result, 

researchers have proposed that adaptation serves to improve observers’ ability to detect 

changes in the environment (Clifford & Wenderoth, 1999; Kohn, 2007; Webster & MacLeod, 

2011; Webster 2015; Fritsche et al., 2017). On the other hand, researchers propose that 

attractive biases help stabilize perception over short periods of time (Fisher & Whitney, 2014; 

Fritsche et al., 2017; Cicchini, Mikellidou, & Burr, 2018). If we assume that the state of the 

external world remains relatively stable over short timescales, then a positive bias towards 

previous experience would smooth out perceptual errors and (hopefully) result in optimal 

decision making. The distinction in the potential roles of sensory adaptation and attractive 

biases further fits with the proposition that they operate at different stages of perception – 

adaptation is inducing changes in sensory sensitivity during initial stimulus processing, while 

serial dependence and regression to the mean are influencing decisions to optimize behaviour.  

Probabilistic perceptual models based on different mechanisms have been proposed to explain 

attractive and repulsive perceptual biases. First, it has been proposed that Bayesian inference 

provides the only available domain-general mechanism for conceptualizing the effect of prior 

expectations on behavioural reports observed in magnitude estimation tasks across modalities 

(Petzschner et al. 2015). Furthermore, Petzschner and colleagues (Petzschner & Glasauer, 

2011; Petzschner et al., 2015) show that Bayesian models can resolve the apparent conflict 

between classical psychophysical laws. Both the Weber-Fechner law and Stevens’ power law 

hold if we assume that the brain represents the sensory likelihood and prior in logarithmic 

space, and transforms the posterior distribution into linear space for the purpose of providing 

a response. Therefore, the Bayesian model detailed by Petzschner et al. (2015) constitutes a 

powerful framework for investigating the role of prior expectations on decisions in any task 

based on magnitude estimation.  
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Sensory adaptation in duration estimation has been accounted for by a probabilistic model 

based on population codes. Heron et al. (2012) suggest that time perception is based on the 

activity of a population of duration-selective channels. Each channel has a preferred duration, 

and the channel’s probability of response depends on how close the presented duration is to 

its preferred duration. In this model, the probability distribution of perceived duration results 

from the combination of the response probability distribution of a population of such 

duration-selective channels. Heron et al. (2012) successfully used this framework to explain 

adaptation effects in perceived duration – sensory adaptation was modelled as a reduction in 

the channel’s response probability, with the magnitude of response reduction depending on 

the similarity between the adaptor and the channel’s preferred duration. Similar to the 

generalizability of Petzschner et al.’s (2015) Bayesian ideal-observer model, the strength of the 

model proposed by  eron et al.’s (2012) is that it is based on a general brain-architecture 

principle (e.g., Hubel & Wiesel, 1968) that can explain sensory and neuronal adaptation across 

perceptual domains.  

While Bayesian inference and the duration channel accounts provide good explanations for 

attractive and repulsive biases respectively, neither model can naturally account for the 

opposite bias2. Therefore, models built to explain directional biases would fail to capture 

behavioural patterns that reflect both types of biases. In Chapter 4, we found that in a peaked 

distribution of durations, stimuli close to the over-represented stimulus show positive bias, 

while more distant stimulus values show a repulsive bias. Similarly, Fritsche et al. (2017) and 

Bliss et al. (2017) found that serial dependence was induced when the previous and current 

trial were relatively similar, while large changes in stimulus values between trials could lead to 

negative biases. Finally, as already discussed, Suárez-Pinilla et al. (2018) found that serial 

dependence and sensory adaptation coexist within the same task. Such findings suggest that it 

would be sub-optimal for researchers to continue to study regression to the mean and sensory 

adaptation in isolation.   

One possibility to reconcile these findings would be to combine  eron et al.’s (2012) and 

 etzschner et al.’s (2015) models into a single hierarchical framework where population codes 

give rise to the sensory likelihood, and Bayesian inference is used to integrate the sensory 

likelihood with prior expectations. Thus, adaptation would occur as part of the sensory 

 
2 Bayesian models can account for sensory adaptation if we relax the assumption of Gaussianity. For 
example, Stocker and Simoncelli (2006a) proposed that adaptation may cause different changes in the 
shape of the sensory likelihood close and far from the adapted stimulus value (also see Wei & Stocker, 
2015).  
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processing of the stimulus, and positive biases would occur at the time of decisions. Such a 

hierarchical model was recently put into practice (Suárez-Pinilla, 2018), and it was shown that 

it could predict both attractive and repulsive biases in the variance of motion stimuli. As both 

population codes and Bayesian inference provide domain-general accounts of perceptual 

biases, it is very likely that the hierarchical model proposed by Suárez-Pinilla (2018) would also 

account for opposing biases in other modalities such as duration perception.  

8.2.2 Role of sensory precision and working memory in attractive 

perceptual biases 

In Chapter 5, I presented two experiments in which we did not find conclusive evidence in 

favour of a relationship between sensory precision and regression to the mean. An exploratory 

analysis we conducted on the data collected in Chapter 4, comparing the magnitude of 

regression to the mean between musicians and non-musicians, casts further doubt on the 

potential effect of sensory precision on perceptual biases. Previous studies have reported that 

musicians tend to show weaker biases in duration estimation tasks (Cicchini et al. 2012; 

Aagten-Murphy et al. 2014), and also have smaller Weber fractions compared to non-

musicians (Grondin & Killeen, 2009). Although investigating the effect of musical expertise on 

time perception was not the main goal of the duration reproduction experiment presented in 

 hapter 4, we collected basic data regarding participants’ musical experience. Thirty-two 

participants in our sample played a musical instrument on a regular basis (at least once a 

week). The other 14 participants either had no musical experience or had not played an 

instrument for at least 5 years. We compared the Spearman correlation participants achieved 

at the end of the first full block they completed (576 trials). Contrary to the findings of 

previous studies, we found that the musicians, MeanSC = 0.36 (SD = 0.22), in our sample did 

not outperform the non-musicians, MeanSC = 0.44 (SD = 0.18). This was also the case when we 

specifically compared performance only between musicians (N=15) and non-musicians (N=6) 

who in their first session took part in the uniform condition:  MeanSCmusicians = 0.38 (SD=0.19), 

MeanSCnon-musicians = 0.44 (SD = 0.21). While this experiment was not set up to test the effect of 

musical experience on perceptual biases, these findings are in stark contrast with the results of 

previous studies and provide further evidence that the relationship between sensory precision 

and regression to the mean may not be as straightforward as predicted by Bayesian ideal-

observer models.  

There are a number of possibilities that could explain why in Chapter 5, we did not find a 

relationship between sensory precision and regression to the mean that is consistent with the 
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predictions of Bayesian models.  As discussed in the chapter-specific discussion (see p.113) it is 

possible that the measures we used did not accurately reflect participants’ true sensory 

precision and perceptual bias in the duration reproduction and estimation tasks. An alternative 

possibility is that the pattern of responses we observed in the duration reproduction and 

estimation tasks was generated by a non-Bayesian process and that the magnitude of 

regression to the mean was therefore not related to sensory precision.  

A key assumption of Bayesian brain theories is that subjective priors are updated iteratively as 

new information is encountered. Using Kalman filters to simulate updating priors, previous 

studies have shown that global attractive biases can be well modelled based on the 

accumulation of local, trial-by-trial biases (e.g., Petzschner et al., 2015). These local biases, 

referred to as serial dependence, have been widely studied (e.g., Fisher & Whitney, 2014; 

Liberman et al., 2014; Bliss et al., 2017; Czoschke, Fischer, Beitner, Kaiser, & Bledowski, 2019). 

Interestingly, there is a key difference in the general approach studies that focus on serial 

dependence take to model local attractive biases and the approach studies that focus on 

regression to the mean take to model global biases (Jazayeri & Shadlen, 2010; Acerbi et al., 

2012; Petzschner et al., 2015). Namely, research on serial dependence suggests that local 

attractive biases could arise from processes related to working memory (Kiyonaga, Scimeca, 

Bliss, & Whitney, 2017). If we assume that global attractive biases arise from the summation of 

local biases, then the role of working memory on regression to the mean needs to be better 

understood.  

Working memory is a system that allows information to be stored for a limited time while it is 

in use. The main evidence in favour of the proposition that serial dependence originates from 

working memory comes from a range of studies that report that an increase in the delay 

between stimuli and responses leads to an increase in the magnitude of serial dependence 

(Papadimitriou, Ferdoash, & Snyder, 2015; Bliss et al., 2017; Fritsche et al., 2017). As an 

increase in the delay between stimulus and response leads to an increase in the involvement 

of working memory (e.g., Bliss et al., 2017), these results suggest that the integration of the 

current and previous trial depends, at least partially, on working memory. If serial dependence 

was purely perceptual in nature, manipulating the delay between stimulus and response 

should not affect the magnitude of the bias exerted by the stimulus on the previous trial. 

However, this is not the case because studies show that serial dependence evolves as the 

current stimulus is held longer in working memory.  
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In the serial dependence literature, researchers use the first derivative of the Gaussian (DoG) 

curve to model attractive biases towards the stimulus presented in the previous trial (e.g., 

Fischer & Whitney, 2014; Bliss et al., 2017; Fritsche et al., 2017). It is worth noting that 

Bayesian ideal-observers models are process models based on pre-specified constructs, while 

models based on the DoG curve are purely descriptive. In that sense, when I refer to the DoG 

curve as a model, I refer only to the way it fits the data. As shown in Figure 8.1A the serial 

dependence effect is strong for stimuli that are close in value to the stimulus presented in the 

previous trial and diminishes as the difference between the previous and current stimulus 

increases, and the DoG curve fits this pattern of results well. Bliss et al. (2017) found that the 

spread of serial dependence, or the width of the DoG curve, varied across participants. 

Notably, in some participants, stimuli on the previous trial that were very different from the 

stimuli presented on the current trial even generated repulsive biases. Differences in the width 

of the DoG curve could be related to individual differences in working memory. As discussed 

above, the strength of the serial dependence effect depends on the involvement of working 

memory – the longer the current stimulus is kept in working memory, the stronger and more 

spread out the effect of serial dependence (Figure 8.1B, Fritsche et al., 2017). Therefore, the 
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Figure 8.1. Using the derivative of the Gaussian (DoG) curve to model serial dependence. (A) shows 

the responses of one participant in an orientation estimation task modelled using the DoG curve (thick 

black line, figure adapted from Fisher & Whitney, 2014). The peak of the DoG curve reflects the strength 

of the serial dependence effect.  (B) shows average serial dependence in an orientation estimation task 

(thin lines) modelled using the DoG Curve (thick lines). The serial dependence effect is stronger when 

there is a delay between stimulus and response (orange) compared to when responses are given 

immediately after stimulus offset (purple). The figure is adapted from Fritsche et al. (2017). Note that in 

both figures the curves are flipped compared to the example curves in Figure 8.2 because here the Y-

axis shows the error between the response and the stimulus presented on the current trial rather than 

directly the provided response. 



148 
 

differences in serial dependence Bliss et al. (2017) observed across participants could be 

explained by individual differences in working memory – participants who engage working 

memory more or have greater working memory capacity would exhibit stronger serial 

dependence. If there is an overlap in the processes that give rise to local and global attractive 

biases, then the DoG curve could also explain regression to the mean effects. The top row of 

Figure 8.2 provides an illustration showing how a DoG process could account for the overall 

context effect in regression to the mean and provide very similar results to a Bayesian process 

(figures A and B). In this illustration, the presented durations range from 200-450ms and 450-

700ms. Depending on the width of the DoG curve, the two models could predict very similar 

responses for the presented stimuli and a very similar effect of context on the overlapping 

stimulus. We could expect such results to occur if the tested stimulus ranges are particularly 

narrow, such as in this example. However, if, for example, the range of the tested stimuli 

increases, the predictions of the two models begin to diverge. While most Bayesian models 

would predict that the regression to the mean effect would continue to increase3, a DoG 

model would predict that the attractive bias would decrease and eventually disappear. 

If a DoG process can account for regression to the mean effects, then, individual differences in 

the magnitude of the bias could also be, at least partially, accounted for by individual 

differences in working memory, which is reflected in the width of the DoG curve. Figure 8.2C 

shows the effect of sensory precision on regression to the mean predicted by Bayesian models, 

while Figure 8.2D illustrates the possible effect of working memory on regression to the mean. 

The key difference here is that a Bayesian model predicts that high regression to the mean is 

related to poor sensory precision, while a DoG model predicts that high regression to the mean 

is related to good cognitive functioning. It is, therefore, possible that in Chapter 5 we were not 

able to predict the magnitude of regression to the mean across participants because the 

models we used are based on the presumption that regression to the mean is a perceptual 

effect based on sensory precision, rather than a mnemonic effect based on working memory. 

To date, the role of working memory in regression to the mean, and more generally in 

Bayesian perceptual inference, remains unknown, and further research will be necessary to 

establish the connections between these fields of study. 

 

 

 
3 In some formulations, Bayesian models predict that eventually the regression to the mean reaches a 
plateau (e.g., Jazayeri & Shadlen, 2010).  
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Figure 8.2. Perceptual biases explained by a Bayesian model (left) or DoG, (right). The range effect 

described by studies on regression to the mean, which is also predicted by Bayesian ideal-observer 

models (A), can also be described by the DoG curve (B). In this illustration, the predictions of the two 

models diverge for stimuli outside of the presented range (light orange). The green dots signify the 

responses to the overlapping stimulus in the two ranges.  While Bayesian models predict that differences 

in the magnitude of regression to the mean are related to differences in sensory precision (C), under the 

alternative account, differences in the magnitude of regression to the mean are related to individual 

differences in working memory (D).  
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8.2.3 Generalizability and data quality issues in duration reproduction 

research: task performance 

Experiments aiming to investigate what factors influence participants’ perception of duration, 

first need to provide evidence that participants are able to estimate the duration of stimuli 

with a certain level of accuracy. If there is no sufficient correlation between presented and 

reported time, then we would not be able to draw any meaningful conclusions regarding the 

mechanism behind time perception because the absence of a correlation between stimulus 

duration and participants’ responses would entail that changes in participants’ duration 

responses are not related to changes in stimulus duration. Researchers might disagree on what 

would be the minimal correlation between stimulus duration and responses that would 

provide sufficient evidence that participants can perform the task. In the reproduction and 

estimation experiments reported in Chapters 4 and 5, participants were required to reach a 

Spearman correlation of 0.65 and a slope of 0.5 for their data to be included in the analysis 

(Figure 8.3). In magnitude estimation tasks such as these, we would expect that the magnitude 

of the stimulus would be the most influential factor driving participants’ responses. Even 

though the blind application of arbitrary cut off points for interpretation of effect sizes are 

rarely useful, a correlation coefficient of 0.65 sits close to the upper bound of what is 

conventionally considered as a moderate correlation (Overholser, & Sowinski, 2008; Mukaka, 

2012; Her & Wong, 2020). In addition, in the experiment detailed in Chapter 8, participants 

were required to reach a  earson’s correlation of 0.85 in the duration estimation training task 

before starting the experiment, and all tested participants reached the threshold successfully. 

The experiment in Chapter 6 was conducted before the experiments in Chapters 4 and 5. 

Because we were aware that duration reproduction tasks are harder than duration estimation 

tasks, we lowered the required performance thresholds from a correlation of 0.85 to a 

correlation of 0.65. We, therefore, believe that our exclusion criteria were liberal while at the 

same time, ensuring there could be no doubt that the participants were capable of estimating 

the presented stimuli.  

Nonetheless, there are several possibilities to improve the way performance criteria are 

implemented in future duration reproduction studies in order to ensure that a greater 

proportion of participants are included in the analysis. In all experiments, we have employed 

“flat” exclusion criteria – if after a certain number of blocks participants are below the 

threshold, they are excluded from the experiment.  This approach ignores individual 

differences in learning rates. Studies in other domains have reported individual differences in 

participants’ use of feedback in perceptual tasks (Santesso et al., 2008; Withagen & van 
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Wermeskerken, 2009; Arbel & Wu, 2016; Muller-Gass, Duncan, Tavakoli, & Campbell, 2019). 

Evidence that differences in perceptual learning could have affected performance in our 

experiments comes from Chapter 4, where 12 participants did not reach the necessary 

performance thresholds after completing two blocks of 600 trials each. Eight of these 

participants showed no improvement in performance from one block to the next, suggesting 

that further training would be unlikely to lead to better performance. In contrast, the other 

four participants showed marked improvement between the first and the second block, 

suggesting that with further training, they would have been able to learn the task. Therefore, 

an alternative strategy to estimate performance that would reduce the exclusion rate would 

be to keep testing participants even if they are below the threshold as long as they show 

improvement from block to block and exclude participants only if their performance plateaus 

below the required performance threshold. In addition, one issue with using the correlation 

and slope between presented and reproduced time as performance metrics is that a low 

correlation or slope might reflect either random responses or complete regression to the 

mean, and neither the slope nor the correlation can differentiate between these two cases. 

Therefore, a complimentary strategy to reduce the exclusion rate while still ensuring high-

quality data would be to decrease the required correlation but to add another performance 

metric quantifying the variability of participants’ responses to each stimulus. If responses to a 

given duration are clustered close across trials this would indicate genuine performance even if 

the correlation is lower. If responses vary widely, this would indicate participants are giving 

responses at random.  

Our results show that a very small proportion of people in the general population were able to 

reproduce durations, casting doubt over the reliability of the effects reported by previous 

studies using duration reproduction tasks to study time perception. Across the duration 

reproduction experiments reported in Chapters 4 and 5, we found that only 35% and 46% of 

participants, respectively, fulfilled the performance criteria of each study. Past studies 

examining perceptual biases in duration estimation do not report any exclusion criteria based 

on task performance, and where available, results suggest that at least a part of the 

participants included in the analyses were not capable of doing the task (Jazayeri & Shadlen, 

2010; Acerbi et al. 2012, Cicchini et al., 2012; Aagten-Murphy et al., 2014; Murai & Yotsumoto, 

2016; Roach et al., 2017; Barne et al., 2018). In some studies, the researchers reported the 

slope of the best fit line between presented and reported duration (Murai & Yotsumoto, 2016) 

or the regression index between presented and reported time (1 – the slope of the best fit line; 

Cicchini et al., 2012; Aagten-Murphy et al., 2014; Barne et al., 2018), allowing the reader to 
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assess how accurately participants were estimating the presented stimuli. All these studies 

included participants with a slope below 0.4. For example, in Cicchini et al. (2012) 3 of the 6 

participants with no musical experience had a slope of ~0.3, and the average slope of all 6 

participants was 0.48. This is problematic because it means that the reported effects are 

biased by the results of participants who were not able to estimate time, and therefore limits 

the knowledge we can obtain regarding the mechanisms behind time perception from these 

studies. It is also important to note that most studies do not report including any training 

(Cicchini et al., 2012; Aagten-Murphy et al., 2014; Roach et al., 2017; Barne et al., 2018), which 

means that their results are further confounded by learning effects (see Acerbi et al., 2012) 

and makes it increasingly unlikely that participants from the general population would have 

been able to perform to a satisfactory degree. The discrepancy between our results and the 

results of these studies raises further questions in the light of the replication crisis in 

psychology (Pashler & Wagenmakers, 2012; Open Science Collaboration, 2015) and the 

increased drive towards open science (Nosek et al., 2015; Frankenhuis & Nettle, 2018; 

Spellman, Gilbert & Corker, 2018). Without pre-registration of analyses and exclusion criteria, 

we cannot be certain how participants were recruited and selected to take part in previous 

studies, and we are not able to assess the suitability of the collected data to answer the 

research questions posed by a given study.  
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Figure 8.3. Examples of different performance in the experiment reported in Chapter 4. Each plot is 

based on the data from one block from the uniform condition from Chapter 4 (~570 trials), and these 

            ff   n  p    c p n  . T   b u            p    c p n  ’  n  v  u      p n     n   c       . On 

the left plot, we can see that a correlation of 0.67 and slope of 0.62 (higher than our thresholds) are 

achievable with considerable overlap of responses across the presented stimuli (even between the 

shortest and the longest stimuli) – participants did not have to give completely accurate responses to 

reach our thresholds. Nonetheless, as the duration of the presented stimulus increased, it is clearly 

visible that the duration of the provided responses increased as well. As the correlation and/or slope 

decrease below 0.65 and 0.5 respectively (middle and right), responses become more varied and the 

relationship between presented and reported time becomes less clear. 
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While the failure of past studies to properly control for participants’ ability affects the 

reliability of their results, the fact that more than half of the people we tested were not 

capable of accurately reproducing durations suggests that the findings of properly controlled 

reproduction studies do not generalize. However, we believe that the lack of generalizability of 

our findings does not stem only from the conservative exclusion criteria that we have used, 

but also from limitations of duration reproduction as a method to study time perception. 

While 46% of participants fulfilled the performance criteria required in the reproduction task 

in Chapters 5, 68% of participants managed to reach the same performance threshold in the 

duration estimation task. As we used the same stimuli in the reproduction and estimation 

tasks in Chapter 5 (the durations of the stimuli differed only because of difference in monitor 

refresh rates), the differences in performance likely reflect differences in non-timing related 

components of the tasks and indicate that the performance criteria alone cannot explain the 

high exclusion rate in the duration reproduction experiment.  Further support for this idea 

comes from the finding that participants in the duration estimation study in Chapter 8 

managed to reach a much higher performance threshold – a Pearson correlation of 0.85, 

although the sample in this study was much smaller. In a duration estimation task, participants 

need to estimate the duration of an event. In a duration reproduction task, participants need 

to estimate the duration of an event, and then produce a motor command with the same 

duration. Therefore, in duration reproduction tasks it is not clear whether we are studying 

participants’ ability to estimate time or produce accurate motor commands, which was the 

main motivation for conducting the duration estimation experiment in Chapter 5. It is possible 

that some of the participants who failed in the reproduction tasks were capable of estimating 

the presented durations but failed to map their internal estimates to the appropriate motor 

response. In addition, if there is a discrepancy between estimated and produced duration, the 

feedback in reproduction tasks becomes harder to incorporate. The participant would not 

know whether to apply the feedback to their internal representation of the duration or the 

duration of the motor command. To summarize, the findings across our studies suggest that 

duration reproduction tasks are confounded by variables unrelated to the timing component 

of the task, and suffer from considerable generalizability issues. Our results show that only a 

small proportion of the population are likely to be capable of performing these tasks to a 

satisfactory degree. Therefore, albeit ensuring high data quality, the stringent exclusion criteria 

that we have used reduce the generalizability of our findings, which highlights the limitations 

of duration reproduction tasks as a method of studying time perception in the general 

population. If research strives to uncover the general mechanisms underlying time perception, 

future studies should move away from duration reproduction tasks and instead implement 
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tasks that fulfil some minimum generalizability criteria to re-evaluate the relevance of past 

findings based on potentially flawed methodology.  

Finally, one might consider that our performance criteria could have led to the inclusion of 

only participants who perform the tasks in the experiments in Chapter 5 at ceiling, resulting in 

little performance variability across participants. For example, in Experiment 2, low variability 

in regression to the mean across participants could pose an issue for computing the correlation 

between bias and sensory precision. As discussed above, the metrics we used to judge 

performance in the duration estimation and reproduction tasks conflate poor performance 

and strong regression to the mean – a low correlation between presented and reported 

duration can mean either random responding or complete assimilation of the prior. Excluding 

participants who show complete regression to the mean would be an issue when computing 

the correlation between bias and sensory precision, because the correlation coefficient is 

sensitive to the range of available values. If the parameter values used to compute a 

correlation are restricted to a range of the parameter values available in the population, the 

correlation coefficient shrinks. In addition, in Experiment 1, low variability in discrimination 

performance could pose an issue for conducting a median split to classify participants into low 

and high sensory precision groups. If the participants included in the experiment have very 

similar 2IFC thresholds, there will only be a marginal difference between participants across 

the two groups. Therefore, our results would show no effect of sensory precision on regression 

to the mean even if such an effect exists in the population. Nonetheless, we were able to show 

that there was variability in regression to the mean and discrimination performance across 

both experiments in Chapter 5 (for the distribution of bias and sensory precision in Experiment 

1 see Appendix E, Figure E1 and Appendix F, Figure F2 and F3; for the distribution of bias and 

sensory precision in Experiment 2 see Appendix E, Figure E2 and Appendix H). Furthermore, 

even if there is only little variability in participants’ performance across the tasks, the 

experiments aimed to investigate whether Bayesian ideal observer models can predict the 

effect of sensory precision on regression to the mean. In other words, we were not interested 

in the raw magnitude of the effect of precision on bias, but whether the magnitude of the 

effect in the behavioural data corresponded to the magnitude of the effect predicted by the 

models. Importantly, the models used participants’ 2IF  data as input, therefore incorporating 

the potentially limited range in participant performance. If the models predicted no effect of 

precision on bias and we found no effect of precision on bias in the behavioural data, then the 

behavioural data would have supported the predictions of the model. However, in the results 

of both experiments in Chapter 5, the relationship between precision and bias in the 
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behavioural data did not support the relationship predicted by the Bayesian ideal observer 

models. Even given the potentially restricted range of sensory precision values in the data, the 

models in both experiments predicted a very strong relationship between sensory precision 

and regression to the mean. As discussed in Chapter 5 (p. 108), in Experiment 2 we used a 

model with an updating prior because our original model, which assumed a fixed prior, 

predicted a nearly perfect correlation between bias and precision. Therefore, while more 

lenient exclusion criteria would have resulted in greater variability in performance across 

participants, this would have had little effect on our inferential conclusions as the variability in 

participants’ performance is accounted for in the predictions of the models.    

8.2.4 Data quality issues in duration reproduction research: equipment 

timing accuracy 

A final issue in the duration reproduction literature is that most researchers do not specify the 

latency of the equipment used to record participants’ responses, so it is impossible to 

determine the amount of measurement noise corrupting the data (see Acerbi et al. 2012 for a 

notable exception). In the duration reproduction study reported in Chapter 5, we used a 

keyboard advertised as a high-speed gaming keyboard to record participants reproduced 

durations of the presented stimuli. In addition, we used the KbQueue family of functions in 

Psychtoolbox as they have been reported to detect the timing of keypresses more accurately 

than the standard Kb functions (KbQueueCreate, 2020). Our initial plan was to use the same 

keyboard in the reproduction experiment detailed in Chapter 44. However, as part of the stage 

1 review process of the registered report, a reviewer drew our attention to possible latency 

issues with recording responses on keyboards. Therefore, we recorded the latency between 

the time at which a participant presses the space key on the keyboard and the time at which 

the computer records that the key was pressed. We attached a pressure sensor to the space 

bar of the keyboard and connected the pressure sensor to an external audio card with 

44100Hz refresh rate (M-Audio Delta 66). That way, we could compare the true time of button 

presses, recorded by the audio card, with the timing of the button press recorded by the 

computer. One participant (the author) generated 1000 button presses, and we found that, on 

average, the computer registered a keypress 16.24ms (SD = 3.82) later than the pressure 

sensor. In addition, there was considerable variability in the recorded latencies, with the 

highest recorded latency reaching  31.34ms (Figure 8.4A). The problem is not so much in the 

latency itself – if the keypresses recorded by the computer are always late by a consistent, 

 
4 Data collection for Experiment 1 in Chapter 5 preceded data collection for the experiments in Chapter 
4.  
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fixed amount, this latency can be simply subtracted from participants’ responses. If the latency 

varies from trial to trial, however, then it becomes difficult to account for. Based on these 

results, we can be fairly certain that participants’ duration reproductions were corrupted by 

variable measurement noise which could have obscured the relationship between sensory 

precision and regression to the mean. Nonetheless, Experiment 2, where we used direct 

estimation instead of reproduction, suggests that measurement noise alone is not enough to 

explain the null result in the reproduction study.  

Based on the results of the keyboard latency test above, in Chapter 4 we recorded participants 

responses using a custom-built button box connected to a professional-grade audio-card (M-

Audio Delta 66; 44 100Hz refresh rate), which allowed us to record the duration of 

participants’ reproductions with high accuracy. Nonetheless, we had to ensure that the 

duration of the stimuli was presented accurately. This was not a trivial issue as in that 

experiment, the start of the interval was defined by a button press and the end of the interval 

by the presentation of a stimulus on the screen. Therefore, we conducted a timing calibration 

experiment prior to data collection to measure how accurately the computer presented the 

desired interval between a button press on the button box and the presentation of a stimulus 

on the monitor. The button box was connected to two computers equipped with professional-

grade audio-cards – the computer on which participants would subsequently complete the 

experiment (the presentation computer), and a second computer which was used to measure 

the latency between a button press and the presentation of a stimulus (the measurement 

computer). The timing of stimulus presentation on the presentation computer was measured 

using a photodiode which was connected to the audio-card of the measurement computer. 

The calibration experiment was carried out in a dark room. On every trial, one participant (the 

author) generated a press on the button box. After some pre-specified time (equal to the 

intervals used in the experiment) a white circle was presented on the screen of the 

presentation computer, which was otherwise black.  We then measured the difference in the 

desired and achieved interval between the button press and the visual stimulus measured by 

the measurement computer. The data, based on  1081 button presses5, shows that the 

average difference between desired and achieved duration was  0.82ms (SD = 2.01 ), and 

latencies were consistent across the different stimulus durations (Figure 8.4B). In addition, we 

found that the difference between desired and achieved duration was highest after the button 

 
5 The number of button presses generated for each stimulus was as follows: 600ms – 175 button 
presses; 675ms – 171 button presses; 750ms – 183 button presses; 825ms – 131 button presses; 900ms 
– 175 button presses; 975ms – 246 button presses.  
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box had been inactive for a prolonged amount of time (for example, at the beginning of a 

testing block), so in the real experiment, the first trial in each block was discarded and 

participants were instructed to press the button a couple of times before restarting the 

experiment after a break. 

Unfortunately, measuring the timing accuracy of the equipment used in experiments appears 

to not be a common practice in psychology research, which has led to repeated calls for 

researchers to exercise greater control and transparency (Plant & Quinlan, 2013; Plant, 2016). 

This is particularly problematic given that previous studies have documented great variability 

in keyboard latencies not only within but also between devices. For example, a study testing 

11 keyboards showed that average latencies across devices ranged from 4.24ms to 49.04ms 

(Figure 8.4C, Wimmer, Schmid, & Bockes, 2019), and similar findings have been reported 

elsewhere (Luu, 2017; Bockes, Wimmer, & Schmid, 2018). Altogether these results show that 

keyboards do not generally provide the sufficient accuracy needed to record responses where 

the timing of button presses is of crucial importance. However, most studies using duration 

reproduction or ready-set-go tasks to study perceptual biases in time perception use 

keyboards to collect participant’s responses and do not provide any information regarding 

their latencies (Jazayeri & Shadlen, 2010; Cicchini et al. 2012; Aagten-Murphy et al., 2014; 

Roach et al., 2017). Others do not even specify what equipment was used to collect responses 

(Murai & Yotsumoto, 2016; Barne et al., 2018), although it is probably safe to assume that the 

researchers would have indicated if they used specialized equipment or conducted any 

calibration tests. This issue should not be taken lightly, as the failure to validate timing 

accuracies prior to data collection can invalidate a study’s results (e.g.,  rosse &  alor, 2014). 

We do not believe that the duration reproduction studies that have not reported equipment 

latencies have done so in bad faith, as we were originally not aware of how severe the latency 

failure of modern keyboards was either. However, it is the responsibility of the researcher to 

measure and report the timing accuracy of the equipment used and not proceed with the 

planned experiment unless stimuli can be presented, and responses recorded with sufficient 

accuracy. This is especially important for research pertaining to time perception. It should 

become standard practice for researchers to record and report the timing accuracy of 

equipment in scientific articles, and for reviewers to demand this information be included 

when missing. If researchers do not exercise stringent controls, it becomes easy to see why 

psychology overall has a poor reputation amongst other disciplines and is not considered a 

proper science by many (Berezow, 2012).  
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Figure 8.4. Distribution of device latencies. (A) shows the results of our timing experiment with the 

keyboard used to reproduce durations in Chapter 5. The boxplot shows the distribution of differences in 

the time of keypresses recorded by the audio card and the time of the keypresses recorded by the PC. 

Negative differences mean that the time recorded by the computer was later than the time recorded by 

the audio card. The median difference was 16.19ms, and in 50% of the recorded keypresses, the 

difference was between 13.70 and 18.68ms. The red crosses represent outliers. (B) shows the difference 

between desired and achieved interval duration for each stimulus using the button box from Chapter 5. 

Across all stimuli, the median difference was 0.90ms, and 50% of the differences were between -0.85 and 

2.47ms. The outlier (marked in red) occurred at the start of a testing block, likely because the button box 

was inactive for a long period of time. Therefore, to reduce the occurrence of such errors, we discarded 

the first trial in each block. (C) shows the latencies distributions of 11 different keyboards recorded by 

Wimmer et al. (2017). Blue shows latencies recorded using default USB polling rates, and orange shows 

latencies using 1000Hz polling rate (roughly, polling rate refers to how often the computer checks the 

USB device for new data). Figure adapted from Wimmer et al. (2017).  

8.3 Future directions 

In the discussion above, I identified some issues that require further research – the interaction 

between attractive and repulsive biases in perceptual reports, and the role of working memory 

in global perceptual biases. In addition to these issues, the findings of the research presented 

here raised a number of additional questions regarding the neural correlates of perceptual 

biases in magnitude estimation that future research should address. First, as regression to the 

mean is a general phenomenon documented across multiple sensory domains and tasks, it 

would be worth examining if the EEG correlate of regression to the mean we reported in 

Chapter 5 also generalizes across modalities. Furthermore, if brain activity reflects the range of 
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the underlying stimulus distribution, it would also be intriguing to investigate whether and 

how the effect of distributional variance on behaviour is reflected in the brain.  

8.3.1 Do the neuronal correlates of perceptual biases in duration 

estimation generalise to magnitude estimation in other domains? 

In Chapter 5, we provide evidence of EEG correlates for contextual effects in duration 

estimation. One potential direction for future research to extend on these findings will be to 

investigate if the neural signatures of these contextual effects generalise across modalities. 

Walsh’ (2003) “A Theory Of Magnitude” (ATOM) suggests that the brain encodes magnitude as 

an abstract, unitless feature, independent of the actual dimension (for example size or 

duration) being judged. Evidence that magnitude estimation across dimensions is based on a 

common mechanism is provided by studies reporting that temporal judgements are affected 

by differences in magnitude-based characteristics of the stimulus that are not relevant to the 

task – for example, bigger stimuli are judged as longer than smaller stimuli presented for the 

same duration (Xuan, Zhang, He, & Chen, 2007). Similar effects on temporal judgements have 

been reported for the number of presented items, luminosity, and numerical value when the 

stimuli are Arabic digits (Xuan et al., 2007; Oliveri et al., 2008). Neuroimaging studies provide 

further evidence for overlapping activation in parietal and frontal brain areas across different 

magnitude estimation tasks (Buelti & Wash, 2009; Koch, Oliveri, & Caltagirone, 2009; 

Sokolowski, Fias, Ononye, & Ansari, 2017).  Studies have reported overlap in activation across 

parietal and frontal areas for judgements on duration and numerosity of stimuli (Hayashi et al., 

2013), judgements on the physical and numerical magnitude of digits (Kaufmann et al., 2005), 

as well as judgements on duration, numerosity and length (Skagerlund, Karlsson, Träff, 2016).  

Nonetheless, multiple studies report findings challenging the idea that magnitude estimation is 

based on an overlapping sensory processing mechanism. For example, behavioural studies 

have found that interference between relevant and irrelevant stimulus dimensions in 

magnitude estimation tasks is not always bidirectional – while the numerosity of the presented 

items has been found to interfere with judgements of duration and length, the duration or 

length of the stimulus does not interfere with judgements of numerosity (Dormal, Seron, & 

Pesenti, 2006; Dormal, & Pesenti, 2007). In addition, at least some of the positive results in the 

literature (e.g. Xuan et al., 2007; Oliveri et al., 2008) can be the result of decision rather than 

perceptual bias – changes in a task-irrelevant dimension (e.g. size) could bias decisions 

regarding another stimulus dimension (e.g. duration) without changing how the task-relevant 

dimension of the stimulus is actually perceived (Yates, Loestscher, & Nicholls, 2012).  
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Based on the conflicting findings in the literature, further research is needed to investigate 

whether a common magnitude perception mechanism exists across domains. We provide 

evidence that contextual effects in duration estimation, whether a stimulus belongs to the 

distribution of long or short intervals, can be decoded using EEG (also see Damsma et al., 2020 

for further supporting evidence). Behavioural studies to date have reported that regression to 

the mean is present across many perceptual domains such as duration, size, distance (e.g., 

Jazayeri & Shadlen, 2010; Hollingworth, 1910; Petzschner & Glasauer, 2011) but no studies 

have yet directly investigated the relationship between these effects. Therefore, one question 

emerging from these findings is whether behavioural and neuroimaging contextual effects in 

one domain (e.g., duration) would predict contextual effects in another domain (e.g., 

numerosity).  

8.3.2 What are the neural correlates of the variance effect on perceptual 

biases in behaviour? 

Another potential area for future research based on our findings would be to investigate what 

neural correlates reflect the effect of variance on perceptual biases. Previous studies have 

shown that the amplitude of the MMN elicited by a deviant stimulus depends on the variance 

and range of the underlying stimulus distribution (Garrido et al., 2013, 2016). In Garrido et al.’s 

(2013) study, participants were presented with auditory stimuli whose pitch was drawn from a 

normal distribution with either small variance and narrow range, or large variance and wide 

range. The researchers designed a paradigm in which the deviant and standard stimuli are 

defined probabilistically, rather than based on the frequency of their presentation. In most of 

the trials, for example, 80% of trials, participants are presented with stimuli drawn from a 

normal distribution with a given mean and standard deviation (but excluding the mean). The 

remaining 20% of the trials contain the standard (10%) and deviant (10%) stimuli. The standard 

stimulus is defined as the mean of the distribution (meaning that the standard is statistically 

very likely to appear), while the deviant is drawn from the tail of the distribution (meaning that 

the deviant is statistically very unlikely to appear).  An important feature of this paradigm 

which contrasts it from standard oddball tasks used in the field (Näätänen, Pakarinen, Rinne, & 

Takegata, 2004) is that the standard and deviant stimuli are presented for the same number of 

trials – what defines which stimulus is perceived a standard and which as deviant depends on 

the probabilistic structure imposed by the filler trials. Using this task, Garrido et al. (2013) 

found that the amplitude of the MMN in response to the unexpected stimulus was greater 

when the stimuli were drawn from the distribution with small variance and narrow range 

rather than a distribution with large variance and wide range. However, as the researchers 
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manipulated the variance and range of the distributions concurrently is it difficult to draw 

definite conclusions about the specific effects of variance on the amplitude of the MMN. Here 

we showed that when keeping range constant, behavioural responses are sensitive to change 

in variance alone (Chapter 4). Therefore, a natural next step in our research would be to 

investigate if MMN would also reflect unconfounded changes in the variance of stimulus 

distributions.  

8.4 Conclusions 

The main aim of the research presented in this thesis was to investigate if duration perception 

follows the principles of Bayesian perceptual inference. The reported results show that 

behavioural responses are sensitive to the variance of the underlying stimulus distribution, 

providing direct evidence for a fundamental prediction of Bayesian perceptual theories. 

Nonetheless, our findings also highlight the need for future research to focus on developing a 

comprehensive framework designed to account for a wider range of opposing perceptual 

biases. There is also a gap in the literature concerning how factors not usually considered in 

Bayesian perceptual models, for example working memory, could influence attractive and 

repulsive biases. This work also draws attention to the importance of exercising greater 

transparency and data quality control in empirical research as we can learn little about 

perception from corrupted data and tasks that do not generalize. 
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Appendix 

Appendix A. 2IFC threshold convergence and distribution, Chapter 4 

Table 1A. Convergence of the 75% threshold (in ms) for each participant, stimulus, and block. 

Cells highlighted in green signify that the criterion for convergence was met. Cells highlighted 

in orange signify that the criterion for convergence was not met.   

 

 

Figure A1: Trial-by-trial Weber fractions suggested by QUEST individually for each participant 

and stimulus across the two experiments in Chapter 4. On each trial of the 2IFC task, QUEST 

provided a suggestion for the difference between the main and comparison stimulus that 

should be tested next based on the participant’s performance on the previous trials. 

Sometimes QUEST would suggest a difference smaller than 0 in which case the difference 

suggested by QUEST did not correspond to the actual difference in that trial (which was drawn 

from a uniform distribution between 0 and 10ms). In each block, QUEST convergence was 

assessed when participants completed 50 trials. If the last 10 trials in the block contained 5 

consecutive trials between which the difference in the values suggested by QUEST was less 

than 0.5ms, we concluded that the estimate of the threshold has converged, and the block 

ended. If the difference between the suggested values was larger, participants completed 

additional chunks of 10 more trials each at the end of which the convergence was evaluated 

again. The maximum length of each block was 80 trials irrespective of whether the QUEST 

converged. Participants completed 2 blocks per stimulus. Trials from the first block are 

depicted in orange, trials from the second block are depicted in blue.  
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 600 675 750 825 900 975 
 Block 1 Block 2 Block 1 Block 2 Block 1 Block 2 Block 1 Block 2 Block 1 Block 2 Block 1 Block 2 

3 60.67 67.76 77.31 63.86 97.62 46.15 53.47 111.56 104.61 67.60 110.91 127.08 

4 94.79 54.76 91.62 55.06 81.85 61.88 93.90 93.90 65.69 161.47 200.52 142.37 

16 167.61 86.08 226.93 102.96 84.31 176.84 149.07 208.74 217.54 243.61 328.86 211.57 

21 95.24 74.59 80.50 57.01 73.16 105.33 58.42 92.73 102.99 60.62 138.11 104.64 

26 227.08 257.99 206.24 184.91 102.82 69.54 102.29 102.30 87.01 107.60 76.06 216.54 

28 132.49 85.57 128.04 151.92 130.02 124.76 100.88 124.47 115.77 115.59 83.34 152.75 

34 69.11 74.39 52.22 88.03 33.37 85.50 98.44 50.57 92.87 79.12 78.88 95.52 

36 117.96 173.96 68.15 96.74 112.20 133.21 75.19 55.04 192.63 114.88 166.11 122.09 

44 64.79 86.92 125.95 63.84 66.66 50.40 73.31 71.01 129.47 81.96 69.70 94.95 
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Figure A2: Average Weber fractions for each participant and each stimulus across the two 

experiments in Chapter 4. Each coloured line represented a different participant (N=9). 
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Appendix B. Instructions for tasks in Chapter 4  

1. Duration reproduction 
 

In this task, you will be presented with temporal intervals, and you will be asked to 
reproduce them. When a white fixation cross will appear on the screen, you can start 
the next trial. Keep looking at the fixation cross throughout the entire trial. Each trial 
will start with the presentation of a temporal interval. The start and end of the interval 
will be designated by two short events. The start of the interval will be a button click 
that you generate by briefly clicking the button on the button box. After some time, a 
black-and-white grating will appear on the screen for a very short time. The end of the 
interval will be signalled by the disappearance of the grating. It is important that you 
do not use any techniques to time or count how long the intervals are. All durations in 
the experiment are very short and difficult to count. Just pay attention to how much 
time passes between your button click and the disappearance of the grating Shortly 
after the grating disappears, the fixation cross will turn green. This is your cue that you 
can provide a response. You will respond by reproducing the interval presented on the 
trial - keep the button on the button box pressed for as long as you think the interval 
between the click you generated, and the disappearance of the grating was. After 
providing your response, you will receive feedback [here participants were shown the 
feedback display]. The coloured line represents how your response was from the true 
duration of the interval. If the coloured line is exactly over the white line in the middle 
of the box, this means there was no error between your response and the presented 
interval. If the coloured line is to the left of the white line, it means your response was 
shorter than the presented interval. If the colour line is to the right of the white line, it 
means your response was longer than the presented interval. The further the coloured 
line is from the middle, the bigger the difference between your response and the 
stimulus. The colour of the coloured line also provides you with some information – if 
the line is green, it means your response was within 10% of the presented duration. If 
the line is brown, it means your response was further away. Your goal is to try to be as 
accurate as possible.  
 
There are a few instances in which trials will be excluded and repeated later on in the 
block. If you start reproducing the interval before the response cue appears, the trial 
will be excluded, and a message saying “Too soon” will appear on the screen. If you 
start reproducing the interval longer than 1.5s after the response cue appears, the trial 
will be excluded, and a message saying “Too late” will appear on the screen. Trials will 
also be excluded and repeated if an error occurs during the response, in which case a 
message saying “Invalid trial” will appear on the screen. 
 
The task will start with a training block containing 60 trials. In the training block, you 
will be presented with a sequence consisting of 10 repetitions of a short stimulus, a 
medium stimulus, and a long stimulus. They will be presented in ascending order – first 
all short stimuli, then all medium stimuli, and finally all long stimuli. The sequence will 
be presented twice. In the training block, you are not allowed to skip trials, and the 
feedback display is going to stay on the screen until you press the spacebar. These 
durations do not appear in the main testing blocks. 
 
After the training block is over, you will complete a variable number of test blocks 
depending on your performance. Each test block takes around 40 minutes to 
complete, and it is divided into six shorter runs of ~100 trials each. The stimuli in the 
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test blocks will be between 600 and 975ms long and they will be shuffled. In the test 
blocks, when it is time to provide a response, you are allowed to skip the trial by 
pressing “Z”. Only skip trials if something happened that prevents you from estimating 
the duration of the interval was – for example, if you blinked when the grating was 
presented and you didn’t see the grating, or if you felt that you were not focused 
during the trial. Skipped trials will be presented later on in the block, so do not skip 
trials if they were difficult because they will be repeated. If you decide to skip a trial, a 
message saying “Trial skipped” will be displayed on the screen. Finally, in the test 
blocks, the feedback display will be presented for a short amount of time, and it will 
disappear on its own. The task is self-paced so you can take breaks whenever you need 
to. The task is difficult and requires concentration, so if you are tired it is best to take a 
break.  

 

2. Duration discrimination 
 
In this task, you will be presented with two temporal intervals one after the other, and 

you will be asked to report which interval was shorter. The start and end of each of the 

two intervals will be defined by a short event. The start of each interval will be a 

button click that you generate by briefly clicking the button on the button box. After 

some time, a black-and-white grating will appear on the screen for a very short time. 

The end of the interval will be signalled by the disappearance of the grating. Each trial 

will begin with the presentation of a white fixation cross – keep looking at the cross 

during the entire trial. The presentation of the cross is your cue that you can click the 

button to generate the first interval. After some time, a grating is going to appear on 

the screen – the disappearance of the grating is the end of the first interval. Shortly 

after that, the fixation cross will disappear. When the fixation cross appears again, this 

is your cue that you can generate the second interval. Click on the button box to start 

the second interval, after some time a grating will appear on the screen for a very 

short time. The disappearance of the grating signals the end of the second interval. Do 

not use any techniques to time the duration of either of the intervals. After some time, 

you will be asked to report which interval was shorter.  ress “1” if think that the first 

interval was shorter, or “2” if you think the second interval was shorter. At this point, 

you can change your response. If at any point in the trial something happened that 

prevented you from paying attention to the intervals, you can skip the trial by pressing 

“Z”.  For example, skip the trial if you blinked and didn’t see either of the gratings or if 

you felt that you were not focused on the task. Skipped trials will be repeated later in 

the block. When you are happy with your choice, press the spacebar to save your 

response. If you decided to skip the trial, a message saying “Trial skipped” will be 

presented on the screen.  If you provided a response, a message will be presented 

stating whether your response was correct or incorrect.  

You will complete 12 blocks, each block will be between 50-80 trials long, or ~5-10 

minutes. Take a break at the end of each block, and in addition, you can take a break 

whenever you are tired within a block.  
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3. Reaction time task 
 
In this task, you will be asked to keep the button on the button box pressed for some 

time and release it as fast as possible when the grating on the screen disappears. 

You can start a trial when the white fixation cross appears on the screen. In this task, 

you have to press the button box and keep it pressed. When you press the button, a 

grating will appear on the screen and it will remain there for some time. Keep the 

button pressed. When the grating disappears, release the button as fast as you can. It 

is important to wait until the grating disappears before you initiate the release of the 

button. If you release the button before the grating disappears or too soon after the 

grating disappears, this will be considered a false-start, and the trial will be excluded 

and repeated. In this case, a message saying “Too soon” will appear on the screen. 

You will complete 6 blocks, each block is 100 trials long, and should take ~5 minutes. 

Take a break at the end of each block, and if you are tired at any point within each 

block as well.  
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Appendix C. Testing robustness to parameter misspecification, Chapter 4  

This section is included as Supplementary information in:  

Baykova, R., Buckley, C., Seth, A., & Roseboom, W. (in-principle acceptance). Influence 

of prior distribution variance on time perception (Registered Report Stage 1). Royal 

Society Open Science. Available at: https://osf.io/75p42/ 

 

The Bayesian ideal observer model used in Chapter 4 (Model 3) may fail to generate 

meaningful predictions if the tasks we have designed to measure perceptual and motor noise 

do not provide truthful representations of the parameters that influence participants’ 

performance in the duration reproduction task. Therefore, we conducted additional 

simulations to ensure that our proposed analysis is robust to parameter misspecification. Here 

we used the Bayesian ideal observer model to generate predicted effects for the differences 

between the uniform and skewed distributions only and tested whether Acerbi et al.’s (2012) 

data would provide sufficient evidence for either the null or the alternative hypothesis. The 

researchers reported that the averages of the model fitted parameters for perceptual and 

motor noise were 0.157 and 0.072, respectively. Considering those estimates as the true 

parameter values, we examined what results we could expect in the actual experiment if we 

grossly over-and underestimate these values. In all simulations, there are 12 “participants”, 

motor noise is defined as a scalar, and there is added measurement noise. For the measured 

effect for the difference in the standard deviation, we calculated the average difference 

between the uniform and skewed conditions in Acerbi et al.’s (2012) raw data – 16.69ms 

(SE=7.10 corrected for N=12).  

We investigated the robustness of our analysis to under- and overestimation of the noise 

parameters. Underestimated parameter values were sampled from lognormal distributions 

centred at 1/5, 1/4, 1/3, and 1/2 of the true parameter values. Overestimated parameter 

values were sampled from lognormal distributions centred at 2 times greater, 3 times greater, 

4 times greater, and 5 times greater than the true parameter values. To cover all possible 

combinations of parameter values listed above, as well as the possibility that only one of the 

two parameters is misspecified, we conducted a total of 80 simulations. 

The results for the difference between the standard deviations of the uniform and skewed 

distributions provide evidence that this test is relatively robust to parameter misspecification. 

A total of 42 out of the 80 simulations provided moderate to strong evidence in favour of the 

alternative hypothesis (Table A1). There is a qualitative difference in the effects of motor and 

perceptual noise on the difference in standard deviations predicted by the model. Ignoring the 

effect of perceptual noise, as motor noise increases the difference in the variability of the 

responses in the two conditions decreases because responses move closer to veridical across 

both priors. In contrast, the effect of perceptual noise on the predicted difference in standard 

deviations follows an inverted U pattern. When perceptual noise is too low, the variability of 

responses across the two conditions is similar because responses are close to veridical, 

irrespective of the prior distribution. Conversely, when perceptual noise is too high, the 

variability of responses across the two conditions is again similar, but this time because 

responses are close to the mean of the prior distribution. Finally, when perceptual noise is 

neither too high, nor too low, the simulations provide evidence in favour of the alternative 

hypothesis. The simulations reached the sensitivity threshold of BF10>3 across all levels of 

https://osf.io/75p42/
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motor noise when perceptual noise was between 0.157 (true parameter value) and 0.471 

(3x0.157). Looking at the other results, all simulations in which perceptual noise was 0.039 

(1/4 of 0.157) and 0.031 (1/5 of 0.157) underestimated the expected difference in standard 

deviations and therefore provided inconclusive results. This was also the case for simulations 

in which there was a discrepancy between motor and perceptual noise – when perceptual 

noise was too high and motor noise too low, and vice versa. Nonetheless, the simulations 

suggest that we would still be able to find sufficient evidence in favour of the alternative 

hypothesis for a range of combination of noise parameter values. Furthermore, based on 

Acerbi et al.’s (2012) reported estimates of motor and perceptual noise, and the existing 

evidence for the relationship between physical and subjective time (Rammsayer & Pichelmann, 

2018; Rammsayer, 2014; Lapid, Ulrich, & Rammsayer, 2008), we can be confident that arriving 

at such extreme values such as some of those used here will be very unlikely. 

 

Table C1: Results for the difference in SD between the uniform and skewed conditions 

(N=12). Columns one and two contain the mean of the sampling distribution of the perceptual 

and motor noise. Cells highlighted in blue signify simulations in which noise parameters were 

underestimated relative to their true value (shaded in white), and cells highlighted in red 

signify simulations in which the parameters were overestimated. The intensity of the colour 

signifies the absolute magnitude of deviation from the true parameters – the darker the 

colour, the greater the deviation. Column three contains the expected difference in the 

standard deviation of responses produced by the model, and column four contains the 

associated Bayes factor. In column four, cells highlighted with green signify simulations in 

which the results provide sufficient evidence in favour of the alternative hypothesis (BF10>3). 

Cells highlighted with orange signify simulations which resulted in BF10<3. 

Mean of perceptual noise 
sampling distributions (SD) 

Mean of motor noise sampling 
distributions (SD) 

Simulated expected 
difference in SDs 

BF10 

 
0.014 (0.001) 2.424 1.959  
0.018 (0.001) 2.315 1.900  
0.024 (0.001) 1.822 1.654  
0.036 (0.001) 1.252 1.412 

0.031 (0.002) 0.072 (0.001) 0.312 1.089  
0.144 (0.001) 0.245 1.069  
0.216 (0.001) -0.056 1.017  
0.288 (0.001) 0.228 1.061  
0.360 (0.001) 0.015 1.002 

 

 

   
0.014 (0.001) 3.813 2.839  
0.018 (0.001) 3.440 2.582  
0.024 (0.001) 3.108 2.366  
0.036 (0.001) 2.693 2.110 

0.039 (0.002) 0.072 (0.001) 1.166 1.378  
0.144 (0.001) 0.472 1.133  
0.216 (0.001) 0.178 1.051  
0.288 (0.001) 0.165 1.047  
0.360 (0.001) 0.114 1.029 

     
0.014 (0.001) 6.457 4.875  
0.018 (0.001) 6.094 4.596 
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0.024 (0.001) 5.627 4.226  
0.036 (0.001) 4.918 3.667 

0.052 (0.002) 0.072 (0.001) 2.744 2.140  
0.144 (0.001) 1.009 1.315  
0.216 (0.001) 0.300 1.082  
0.288 (0.001) 0.355 1.102  
0.360 (0.001) 0.259 1.069 

 

 

   
0.014 (0.001) 10.766 7.371  
0.018 (0.001) 10.587 7.303  
0.024 (0.001) 10.528 7.285  
0.036 (0.001) 9.772 6.972 

0.0785(0.002) 0.072 (0.001) 6.863 5.184  
0.144 (0.001) 3.386 2.546  
0.216 (0.001) 1.635 1.573  
0.288 (0.001) 1.253 1.408  
0.360 (0.001) 0.783 1.235 

 

 

  

 0.014 (0.001) 15.549 8.043  
0.018 (0.001) 15.507 8.043  
0.024 (0.001) 15.602 8.042  
0.036 (0.001) 15.412 8.048 

0.157  

  

 
0.144 (0.001) 11.568 7.611  
0.216 (0.001) 8.713 6.426  
0.288 (0.001) 6.676 5.043  
0.360 (0.001) 5.478 4.104   

    

0.014 (0.001) 9.817 6.993  
0.018 (0.001) 9.899 7.030  
0.024 (0.001) 10.027 7.081  
0.036 (0.001) 10.112 7.121 

0.314 (0.002) 0.072 (0.001) 10.482 7.268  
0.144 (0.001) 11.126 7.484  
0.216 (0.001) 11.410 7.568  
0.288 (0.001) 11.049 7.460  
0.360 (0.001) 10.446 7.250     

 

0.014 (0.001) 5.834 4.387  
0.018 (0.001) 5.625 4.221  
0.024 (0.001) 5.639 4.232  
0.036 (0.001) 5.805 4.367 

0.471 (0.002) 0.072 (0.001) 6.137 4.626  
0.144 (0.001) 7.385 5.565  
0.216 (0.001) 8.182 6.104  
0.288 (0.001) 8.717 6.424  
0.360 (0.001) 8.737 6.436     

 

0.014 (0.001) 3.686 2.749  
0.018 (0.001) 3.562 2.660  
0.024 (0.001) 3.471 2.599  
0.036 (0.001) 3.875 2.882 
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0.628 (0.002) 0.072 (0.001) 3.973 2.948  
0.144 (0.001) 4.722 3.510  
0.216 (0.001) 5.641 4.238  
0.288 (0.001) 6.338 4.783  
0.360 (0.001) 6.728 5.082     

 

0.014 (0.001) 2.385 1.941  
0.018 (0.001) 2.343 1.915  
0.024 (0.001) 2.478 1.993  
0.036 (0.001) 2.438 1.966 

0.785 (0.002) 0.072 (0.001) 2.611 2.063  
0.144 (0.001) 3.319 2.497  
0.216 (0.001) 4.059 3.015  
0.288 (0.001) 4.667 3.472  
0.360 (0.001) 4.782 3.561 
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Appendix D. Instructions for tasks in Chapter 5, Experiment 1  

1. Reproduction task 
 
In this task, you will be presented with temporal intervals, and you will be asked to 

reproduce them. To start a trial, press the spacebar. A white fixation cross is going to 

appear in the middle of the screen, keep looking at the cross for the entire trial. Shortly 

after that, a cloud of black and white dots will be presented on the screen for a 

variable amount of time. The position and configuration of the dots on the screen will 

change between trials, but this is not related to the task you have to complete. Shortly 

after the dots disappear, the fixation cross will turn green. This is your cue that you can 

begin your response. To reproduce the interval, press and keep the spacebar on the 

keyboard pressed for as long as you think the dots were presented. It is important that 

you do not try to explicitly count how long the stimulus was presented for. All 

durations in the experiment are very short and difficult to count. Just pay attention to 

how long the dots remain on the screen for. Some time after you provide a response, 

you will receive feedback [here participants were shown the feedback display]. The 

coloured line represents how your response was from the true duration of the interval. 

If the coloured line is exactly over the white line in the middle of the box, this means 

there was no error between your response and the presented interval. If the coloured 

line is to the left of the white line, it means your response was shorter than the 

presented interval. If the colour line is to the right of the white line, it means your 

response was longer than the presented interval. The further the coloured line is from 

the middle, the bigger the difference between your response and the stimulus. The 

colour of the coloured line also provides you with some information – if the line is 

green, it means your response was within 10% of the presented duration. If the line is 

brown, it means your response was further away. Your goal is to try to be as accurate 

as possible. 

There are a few instances in which trials will be excluded and repeated later in the 

block. If you start reproducing the interval before the response cue appears, the trial 

will be excluded, and a message saying “Too soon” will appear on the screen. If you 

start reproducing the interval longer than 1.5s after the response cue appears, the trial 

will be excluded, and a message saying “Too late” will appear on the screen. 

The task will start with a training block consisting of 35 trials. In the training block, you 

will be presented with the stimuli in ascending order (from shortest to longest). After 

that, you will complete between 4 and 8 testing blocks depending on your 

performance. Each testing block will consist of 50 trials. It will contain the same stimuli 

as in the training block, but their order will be shuffled. At the end of each block, the 

script will calculate the correlation between the presented durations and your 

responses. If you manage to complete 5 blocks in which you exceed the needed 

threshold, you will have a 15-minute break, after which you will do the second part of 

the duration reproduction task. The task will be the same, but the durations will be 

different. If you do not manage to reach the needed threshold in any 4 blocks, this will 

be the end of the experiment.   

The task is difficult and demanding. You can take as many breaks as often as you like.
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2. Discrimination task 
 
In this task, you will be presented with two temporal intervals one after the other, and 

you will be asked to report which interval was shorter or longer in different blocks. 

When you are ready to start the trial, press the spacebar. A fixation cross will appear 

shortly after, keep looking at the fixation cross throughout the whole trial. Then, a 

cloud of black and white dots will be presented for some time. This will be the first 

interval. The position and configuration of the dots do not matter. After the first 

interval ends, the screen will show the fixation cross alone for some time. Then, the 

cloud of dots will appear again for a different duration. This will be the second interval. 

It is important to not use any strategies to time the duration of either interval. After 

the second interval ends, you will be asked to report which stimulus was shorter or 

longer – the question on the screen will specify which, make sure you read it carefully. 

If you think the correct answer is interval 1, press “1”. If you think the correct answer is 

interval 2, press “2”. At this point, you can change your response. When you are happy 

with your choice, press the spacebar to save your response. 

You will complete 2 blocks, each will be 70 trials long. This is expected to take ~20 

minutes. You can take a break at any point. 

  

3. EEG task 
 
This task has the same structure as the duration reproduction task you completed 

earlier but you will not be required to reproduce the durations of the stimuli. Every 

trial will begin with the presentation of a white fixation cross. Keep looking at the 

fixation cross throughout the entire trial. After some time, a cloud of black and white 

dots will be presented on the screen for some time. You will not be asked to reproduce 

the duration of the stimulus, but still pay attention to the presented duration as if you 

would have to provide a response. Do not explicitly count how long the stimulus is 

presented for. On some trials, the fixation cross will be presented in green instead of 

white. Your task is to detect those changes as fast as possible. When you see the 

fixation cross changes colour, press the spacebar.  

The session will consist of 4 sections. Each section will consist of 6 blocks. In the first 

block, you will see the durations from the current condition in ascending order, so that 

you get used to the distribution. In the rest of the blocks, the stimuli will be shuffled. 

Each block will take around 3 minutes to complete. There will be two scheduled 15-

minute breaks at the end of section 1 and section 3. You can take additional breaks at 

the end of each block. During trials, please keep your face relaxed, do not clench your 

teeth, and try to avoid rocking your feet or fidgeting – these will affect the EEG signal. 

Finally, blink naturally, do not try to suppress blinks.  
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Appendix E. Distribution of regression to the mean in Chapter 5, 

Experiments 1 and 2 

Figure E1: Distribution of regression to the mean Chapter 5, Experiment 1.  Regression to the 
mean is calculated as the difference in responses to the 626ms stimulus when it is presented in 
the context of long compared to short durations. The histogram shows the number of 
participants falling within each regression to the mean bin, with the data divided into bins 
centred at -15 to 135ms in steps of 10ms. 
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Figure E2: Distribution of regression to the mean Chapter 5, Experiment 2.  Regression to the 
mean is calculated as the difference in responses to the 626ms stimulus when it is presented in 
the context of long compared to short durations. The histogram shows the number of 
participants falling within each regression to the mean bin, with the data divided into bins 
centred at -75ms to 225ms in steps of 20ms. 
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Appendix F. 2IFC threshold convergence and distribution Chapter 5, 

Experiment 1 

Figure F1: Trial-by-trial Weber fractions suggested by QUEST individually for each participant 

and block across the two conditions in Chapter 5, Experiment 1. On each trial of the 2IFC task, 

QUEST provided a suggestion for the difference between the main stimulus (626ms) and the 

comparison stimulus that should be tested next based on the participant’s performance on the 

previous trials. Sometimes QUEST would suggest a difference smaller than 0 in which case the 

difference suggested by QUEST did not correspond to the actual difference in that trial (which 

was drawn from a uniform distribution between 6 and 18ms). Participants completed 2 blocks 

per condition. Trials from the first block are depicted in orange, trials from the second block 

are depicted in blue. In Condition 1 participants were asked to identify the longer of the two 

stimuli presented on each trial, in Condition 2 – the shorter of the two stimuli presented on 

each trial.  
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Figure F2: Distribution of Weber fractions based on performance on the 2IFC task in Chapter 
5, Experiment 1, calculated following the pre-registered analysis plan.  Weber fractions are 
calculated by diving the average 2IFC threshold of each participant by the main stimulus in the 
discrimination task – 626ms.  The histogram shows the number of participants falling within 
each Weber fraction bin, with the data divided into bins centred at 0.095 to 0.38 in steps of 
0.015. 
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Figure F3. Distribution of Weber fractions based on performance on the 2IFC task in Chapter 
5, Experiment 1, calculated following the exploratory analysis plan.  Weber fractions are 
calculated by diving the average 2IFC threshold of each participant by the main stimulus in the 
discrimination task – 626ms.  The histogram shows the number of participants falling within 
each Weber fraction bin, with the data divided into bins centred at 0.04 to 0.25 in steps of 
0.015. 
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Appendix G. Instructions for tasks in Chapter 5, Experiment 2 

 

1. Estimation task 
 

[Start of task] 

In this task, you will be asked to estimate how long a visual stimulus stays on the 

screen for. Please sit 60cm away from your monitor.  

The stimulus is an array of black and white dots. On every trial, the dots will change 

position on your screen. Their position does not matter - it is not relevant to your 

task. Your task is to estimate how long the dots are on the screen. To start a trial, 

you will have to press Space. Each trial starts with the presentation of a green 

fixation cross. During the trial, keep looking at the cross. Press Space for a 

demonstration of a trial. 

[Participants are shown an example trial. The cloud of black and white dots is presented, 

followed by the scale used to record responses.] 

To provide your estimate of the duration of the dots, click on the scale and drag the 

marker to the left or to the right until you are happy with your selection. When you 

have selected your response, click on the number below the scale to save it. Try it 

out below. (In the experiment you will have 5 seconds to provide a response. 

[Participants provide a response and are shown different examples of the feedback 

display.] 

After providing your response, you will receive graphic feedback showing how 

accurate you were on that trial. The white line in the middle of the box represents 

perfect accuracy. The coloured line represents your accuracy. The further away 

the coloured line is from the white midline, the bigger the difference between 

your response and the true duration of the stimulus. 

Example 1: If the coloured line is to the right of the midline, your response was 

longer than the stimulus. 

Example 2: If the coloured line is to the left of the midline, your response was 

shorter than the stimulus. 

The colour of the feedback line also provides information about the accuracy of 

your response. If the feedback line is red, your response was very far away from 

the duration of the stimulus. If the feedback line is green, your response was close 

to the duration of the stimulus. 

Example 1: Your response was very far from the true stimulus duration. 

Example 2: Your response was close to the true stimulus duration. 

It is important that you do not try to count how long the dots are on the screen 

for. All durations you will see will be very short and very hard to count, but please 

do not try to use any counting strategies to complete the task. Just pay attention 

to how long the dots remain on the screen. 
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The experiment is divided into 4 blocks. Training blocks: Blocks 1 and 3 are for 

training so that you get used to the task. Each training block will take about 5 

minutes to complete. Testing blocks: Blocks 2 and 4 are the testing blocks. Each 

testing block will take about 20 minutes to complete. Performance: At the end of 

each block, the script will calculate the correlation between the presented 

durations and your responses. If the correlation at the end of a block is below a 

certain threshold, the experiment will end, and you will not complete the rest of 

the experiment.  

Breaks: There will be multiple fixed breaks throughout the experiment. You 

cannot skip these breaks, you cannot take longer than the allocated time, and you 

cannot take breaks at any other times. A counter will display the remaining break 

time. An alarm will sound to signal the end of a break, but do not rely solely on 

this. Make sure you are at your computer when the break ends because the 

experiment will restart. 

Missing trials: The maximum allowed "break" between trials will be 15 seconds. If 

you do not start a trial within this period, the trial will be marked as missed. If you 

fail to provide a response 5 seconds after the response screen appears, the trial 

will be marked as missed as well. If you miss more than 10 trials, the experiment 

will end. Do not worry about these time restrictions - within this experiment, 5 

seconds is a very long time. 

Computer errors: Trials will also be discarded if the computer fails to present 

stimulus durations accurately. If the computer fails on more than 20 trials, the 

experiment will end. You will be reminded of these instructions at the start of 

each block.  

[Start of blocks 1 and 3 - training block] 

This block is for training. It consists of 40 trials and will take about 5 minutes to 

complete. 

[Start of block 2 – first testing block] 

This is a testing block. It consists of 250 trials and will take about 20 minutes to 

complete. 

 Breaks: There will be a 2 min break in the middle of the block and a 15 min break 

at the end of the block. You cannot skip the breaks and you have to be ready to 

continue when the breaks end. A counter will display the remaining break time. 

An alarm will sound to signal the end of the break, but do not rely solely on this. 

Make sure you are at your computer when each break ends because the 

experiment will restart. 

 Skipping a trial: In testing blocks, on each trial, you are allowed to skip INSTEAD of 

providing a response. To skip a trial, press S when the response screen appears. 

Skip trials if you did not pay attention to the intervals. Skipped trials will be 

presented later on. You are allowed to skip a maximum of 10 trials in each block. 

[Start of block 4 – second testing block, last block in the estimation task] 
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This is the last testing block. It consists of 250 trials and will take about 20 minutes 

to complete 

Breaks: There will be a 2 min break in the middle of the block and a 5 min break at 

the end of the task. After this break, please start the discrimination task (the other 

file in the folder). You cannot skip the breaks and you have to be ready to 

continue when the breaks end. A counter will display the remaining break time. 

An alarm will sound to signal the end of the break, but do not rely solely on this. 

Make sure you are at your computer when each break ends because the 

experiment will restart. 

    

2. Discrimination task 
 

[Start of task] 

 
In this task, you will be asked to compare two temporal intervals. On every trial, 

you will be shown two intervals one after the other. Then, you will be asked which 

interval was SHORTER [or LONGER in the other condition]. Altogether you will do 

between 3 and 5 blocks depending on your performance. Each block takes 10 

minutes to complete. Please sit 60cm away from your monitor. 

'During the experiment, a green fixation cross will be presented in the middle of 

the monitor. Please, keep looking at the cross throughout the entire trial. A 

prompt will appear to indicate when it is time to begin a trial. To start a trial, press 

Space. Pressing Space before the prompt appears will have no effect. After you 

press Space, an array of black and white dots will appear on the screen for some 

time. When the array disappears, there will be a brief pause after which a second 

array of black and white dots will appear on the screen. Press Space for a 

demonstration of the stimulus. 

[Participants are shown an example trial. A cloud of black and white dots is twice, one   

after the other, followed by the response screen.] 

You will be asked to compare the two intervals. To provide your response, click on 

the scale and select 1 for Interval 1 or 2 for Interval 2. When you have selected 

your response, click on the button below the scale to save it. (In the experiment 

you will have 5 seconds to provide a response.) 

[Participants provide a response and are shown the feedback display.] 

After providing your response, you will receive feedback on whether your 

response was correct. If your response was correct, the feedback message will say 

'Correct' in green. If your response was incorrect, the feedback message will say 

'Incorrect' in red.  

Make sure that when you start the trial, you are ready and paying full attention. If 

on any trial you feel like you did not pay attention to the stimulus, instead of 

responding you can skip the trial by pressing S. Skipped trials will be repeated 

later on. You can skip a maximum of 10 trials in each block. It is important that 

you do not try to count how long the dots are on the screen for. All durations you 
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will see will be very short and very hard to count, but please do not try to use any 

counting strategies to complete the task. Just pay attention to how long the dots 

remain on the screen. 

[Start of training block]  

In this condition, you will be asked which of the two intervals is SHORTER [or 

LONGER in the other condition]. This block is for training and consists of 16 trials.  

[Start of testing block] 

In this condition, you will be asked which of the two intervals is SHORTER [or 

LONGER in the other condition]. Each block contains 90 trials and will take about 

10 minutes to complete. 

 Skipping a trial: On each trial, you are allowed to skip INSTEAD of providing a 

response. To skip a trial, press S when the response screen appears. Skip trials 

only if you did not pay attention to the intervals. Skipped trials will be presented 

later on.\n You are allowed to skip a maximum of 10 trials in each block. 

 Missing a trial: If you do not start a trial within 15 seconds of the start prompt, or 

you do not respond within 5 seconds of the response prompt, the trial will be 

marked as missed. If you miss more than 10 trials, the experiment will end. 

Breaks: There will a 2 min break at the end of each testing block. You cannot skip 

the break and you have to be back when the break ends. A counter will display 

the remaining break time. An alarm will sound to signal the end of the break, but 

do not rely solely on this. Make sure you are at your computer when the break 

ends because the experiment will restart. 

Computer error: Sometimes the computer might not display the desired durations 

accurately. If this happens more than 20 times, the experiment will end. 

Please do not use any counting strategies to estimate how long the stimuli are 

presented for! 

Please sit 60cm away from your monitor. 
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Appendix H. 2IFC threshold distribution Chapter 5, Experiment 2 

Figure H1. Distribution of Weber fractions based on performance on the 2IFC task in Chapter 

5, Experiment 2. Weber fractions are calculated by diving the average 2IFC threshold of each 

participant by the main stimulus in the discrimination task – 626ms.  The histogram shows the 

number of participants falling within each Weber fraction bin, with the data divided into bins 

centred at 0.07 to 0.23 in steps of 0.01. 
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Appendix I. Instructions for tasks in Chapter 6 

1. Contrast discrimination 
 

In this task, you will be asked to detect faint stimuli presented on the screen. 

You will have to press space to start each trial. On each trial, you will be 

presented with two intervals, one after the other. In both intervals, a black and 

white checkerboard will be presented on the screen. During one of the two 

intervals, a black and white grating will be presented in the same place as the 

checkerboard. After the second interval ends, your task will be to report which 

of the two intervals contained the grating.  ress “1” for interval 1, or “2” for 

interval 2. At this point, you can change your response. Once you are happy with 

your choice, press space to save your response.  

[Session 1] You will complete 20 blocks. 

[Sessions 2 to 5] You will complete 10 blocks. 

Each block will contain 20 trials, and it will take around 3 minutes. Please do not 

move your head from the chinrest during the block because this will affect the 

calibration. You will have the opportunity to move at the end of each block. If 

you get tired during a block, try to close your eyes at the end of a trial. 

2. Duration estimation training 
In this task, you will be asked to estimate the duration of a black and white 

grating presented on the screen. In each trial, you will be presented with a black 

and white grating that will stay on the screen for a variable amount of time. Do 

not explicitly count or time how long the grating is presented for, just pay 

attention to how much time passes while the grating is on the screen. After the 

grating disappears, you will be asked to report how long the grating was 

presented for. A randomly selected duration will appear on the screen, on every 

trial the duration will be different. To change the suggested duration, move the 

mouse to the left or to the right. Moving the mouse to the left will decrease the 

duration, moving the mouse to the right will increase the duration. When you 

are happy that the number displayed on the screen reflects the duration of the 

grating presented in the trial, press space to save your response. You will then 

be given feedback showing the actual duration of the grating. Press space to 

start the next trial.  

[Session 1] You will complete 10 blocks. 

[Sessions 2 to 5] You will complete between 3 and 10 blocks. 

Each block will contain 21 trials and will take around 4 minutes. Please do not 

move your head from the chinrest during the block because this will affect the 

calibration. You will have the opportunity to move at the end of each block. If 

you get tired during a block, try to close your eyes at the end of a trial.  

3. Main duration estimation task 
 

In this task, you will be asked to estimate the duration of a black and white grating 

presented on the screen. The task will be very similar to the duration estimation 
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training task. On every trial, you will be presented with a black and white grating. 

Do not explicitly count or time how long the grating is presented for. On some 

trials, a black and white checkerboard will be presented in addition to the grating, 

and you may not be able to see the grating.   

When the stimuli disappear, you will be asked to report how long the grating was 

on the screen. A randomly selected duration will appear on the screen, on every 

trial the duration will be different. To change the suggested duration, move the 

mouse to the left or to the right. Moving the mouse to the left will decrease the 

duration, moving the mouse to the right will increase the duration. When you are 

happy that the number displayed on the screen reflects the duration of the 

grating presented in the trial, press space to save your response. On trials where 

the black and white checkerboard was presented and you did not see the grating, 

you still have to provide a response for the duration of the grating. In these 

situations, you will have to provide your best guess of what the duration of the 

grating might have been. It is important to note that the duration for which the 

checkerboard is presented is not indicative of the duration of the grating, so do 

not use the duration of the checkerboard to estimate the duration of the grating.  

In this task, you will not receive feedback regarding the accuracy of your estimate.  

After you provide your duration estimate, you will be asked to report how clear 

your experience of the black and white grating was. There will be four available 

responses: 1 – no experience, 2 – weak experience, 3 – almost clear experience, 

and 4 – clear experience. “4” would correspond to a clear, non-ambiguous 

experience of the grating being presented. “3” would correspond to having a 

weaker experience of the stimulus than “4” – an ambiguous experience of the 

stimulus, with some aspects of the stimulus being experienced move vividly than 

others. “2” would correspond to feeling that something has been shown, but 

without being able to characterize any of its features further.  “1” would 

correspond to not seeing the grating at all.  

You will complete 7 blocks. Each block will contain 63 trials, and it will take around 

10 minutes to complete. Please do not move your head from the chinrest during 

the block because this will affect the calibration. You will have the opportunity to 

move at the end of each block. If you get tired during a block, try to close your 

eyes at the end of a trial.  
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Appendix J. Instructions for tasks in Chapter 7 

You will complete 3 blocks of a time perception task, in which you will be presented 

with visual stimuli with variable durations. Each block will start with 20 trials for 

training. In the training, you will be presented with 10 repetitions of a short 

interval, and 10 repetitions of a long interval. Your task will be to learn to tell apart 

the short from the long intervals. On each trial, a flash will appear on the screen. 

After the flash disappears, you will be asked to report whether the stimulus was the 

long or the short stimulus. You will use the buttons J and N to provide your 

responses – which button corresponds to “short” and which button corresponds to 

“long” will be displayed on the screen. After you provide your response, you will 

receive feedback regarding the accuracy of your response. A message saying 

“ orrect” will be displayed if you provide the correct response, and a message 

saying “Incorrect” will be displayed if you provide the wrong response.  

In the testing part of the block, you will be presented with a range of durations 

between the short and long durations you saw in the training block. Again, on every 

trial, you will be presented with a flash. After the flash disappears, you will be asked 

to report whether the stimulus was more similar to the shortest or to the longest 

interval you saw in the training. You will not be provided with feedback in the test 

trials.  

It is essential that you do not use any techniques to explicitly count the stimuli. 

Do not move your head from the chinrest during a block because this will interfere 

with the eye-tracking and we will have to start the block again. If your eyes get 

tired, you can have a break by closing your eyes. You will have the opportunity to 

move at the end of each block. Each block will take ~20 minutes to complete. 
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