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Summary

General relativity and the cosmological concordance model (ΛCDM) successfully explain
a myriad of observations. The perihelion precession of Mercury; the polarization of the
cosmic microwave background; the observed baryon acoustic oscillations feature in the
matter power spectrum; and the statistics of weak gravitational lensing all contribute to
the vindication of the theories. However, these theories fall short in some areas. One of
these shortfalls is the explanation of the magnitude of the cosmological constant; another
is the tension between late-time and early-time measures of the Hubble constant. The
purpose of this thesis is to investigate alternative theories of gravity and cosmology and
the possible rectification of their shortcomings.

Kaloper & Padilla’s sequester theory decouples the cosmological constant from vacuum
loops containing Standard Model particles. The sequestering mechanism is the result of
an additional global term, representing a kind of matter which does not gravitate, as
other contributions to the action do. This results in a very small effective cosmological
constant which is proportional to the historic average of locally excited matter. We gauge
the success of the theory by calculating the form of the divergence coming from two-loop
Standard Model scalar vacuum diagrams, determining the level of detuning the theory
suffers.

We also investigate the consequences of adding an additional component to the uni-
verse, cubic Galileons, and coupling them disformally to Standard Model matter. This
is not an attempt to solve the cosmological constant problem, the cosmological constant
remains in the action and the cubic Galileon exists as a sub-dominant contribution to
the total energy density. We calculate the analogue of Maxwell’s equations and use the
Wentzel-Kramerss-Brillouin (WKB) approximation to find the wave equation for light and
in turn, the small discrepancy in the speeds of light and gravity in this theory. Addition-
ally, we also calculate constraints coming from observations of the integrated Sachs Wolfe
(ISW) effect, and the phase velocity of light. These are compiled along with already
established constraints coming from collider experiments.
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Notation

Throughout this thesis we use natural units such that c = ~ = 1. For example, in these

units we write the reduced Planck mass as,

MP =
√

~c
8πGN

≈ 4.341× 10−9kg = 2.435× 1018GeV, (1)

where GN is Newton’s gravitational constant. We will use the mostly positive signature

for the metric,

ds2 = ηαβdxαdxβ = −dt2 + d~x2. (2)

We denote a partial derivative as ∂µ and a covariant derivative as ∇µ where,

∇αT βρ = ∂αT
β
ρ + ΓβσαT σρ − ΓσραT βσ . (3)

The affine connection is defined as,

Γαβµ = 1
2g

αν (∂βgνµ + ∂µgβν − ∂νgβµ) . (4)

The Riemann tensor is,

R σ
µαβ = ∂αΓσβµ − ∂βΓσαµ + ΓσανΓνβµ − ΓσβνΓναµ. (5)

The Ricci tensor is the Riemann tensor contracted on the second and fourth indices,

Rβµ = R α
βαµ . (6)

The following commutation relation is associated with the Riemann tensor,

[∇α,∇β]Aµ = −R ν
αβ µAν = R ν

αβµ Aν . (7)

The energy-momentum tensor can be written as,

Tαβ = (ρ+ p)uαuβ + pgαβ. (8)

The cosmological constant plays an important role in this thesis. It it usually denoted

by Λ. In Section 1.3 Λ is also used to denote a hard cutoff scale. In Chapter 4 ΛC is

used to denote the cosmological constant and Λ is used to denote the scale at which cubic

Galileon terms become non-negligible.
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Chapter 1

Introduction

In this thesis we address two theories and there effects on our understanding of cosmology.

The first is the sequester theory, which attempts to remove the cosmological constant

problem without changing other observations. The theory is examined in how it is affected

by a particular class of quantum corrections.

The second theory that is examined proposes an additional component of the Universe

that comes in the form of a cubic Galileon scalar disformally coupled to matter. This

is tested against observations of: the differences in speeds of light and gravity; ATLAS

constraints; and the integrated Sachs Wolfe (ISW) effect.

Setting the scene for these examinations, this chapter will begin with a brief review of

general relativity (GR), including a description of some of its successes and shortcomings.

The weak and strong equivalence principles, corner stones of GR are defined. We discuss

the current state of cosmological observations of the accelerated expansion of the Universe.

Finally, we explicitly state the cosmological constant problem, and give an introduction

to the sequester theory of gravity, which is a proposed solution.

1.1 General Relativity

Einstein’s theory of general relativity Einstein (1916, 1917) (GR), formulated over 100

years ago has consistently held up as the best theory of gravity to date. GR unifies

Newton’s gravity with special relativity, accurately describes the perihelion precession

of Mercury Einstein (1916); Park et al. (2017) and predicted the existence of recently

discovered gravitational waves Abbott et al. (2016a,b).

The equivalence principle as well as combining Newton’s gravity and special re-

lativity, guided the development of GR. The equivalence principle is formulated as separate
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equivalence principles today.

The weak and strong equivalence principles are cornerstones of Einstein’s theory of

general relativity. An observer who is freely falling in a static, homogeneous gravitational

field does not feel any gravitational forces.

The weak equivalence principle says that the gravitational force exerted

on a particle of mass m is proportional to m. The gravitational force is not

different for different kinds of matter, it is always F = mg, where g is the

acceleration due to gravity. The titanium-platinum Eötvös parameter charac-

terizing the relative difference in their free-fall accelerations, has been found

to be the same to at least one part in 1015 Touboul et al. (2017).

The strong equivalence principle extends the weak equivalence principle to

all the laws of physics, gravitational and otherwise. The outcome of any local

experiment (gravitational or not) in a freely falling laboratory is independent

of the velocity of the laboratory and its location in spacetime. The strong

equivalence principle enforces that Newton’s gravitational constant GN is the

same everywhere and constant over the life of the Universe. Any cosmological

evidence for the existence of a fifth force would break the strong equivalence

principle. The best limit on the validity of the strong equivalence principle un-

der strong-field conditions was obtained with a pulsar in a triple stellar system,

PSR J0337+1715. The extreme difference in binding energy between neutron

stars and white dwarfs allows for precision tests of the strong equivalence prin-

ciple via the technique of pulsar timing. It was found that found that any

acceleration difference between the neutron star and inner white dwarf is less

than one part in 105 Voisin et al. (2020).

Einstein’s theory of general relativity (including the cosmological constant) satisfies the

strong equivalence principle. In general, alternative theories of gravity break the strong

equivalence principle. The weak equivalence principle means the trajectory of a point mass

in a gravitational field depends only on its initial position and velocity, and is independent

of its composition and structure. This is true even for virtual particles in the vacuum. We

shall see later in this thesis that this can lead to problems.

The Einstein-Hilbert action, including a bare cosmological constant Λb and min-
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imally1 coupled to matter is,

SEH =
∫
d4x
√
−g

[
M2

P
2 R− Λb

]
+ Sm(gµν ,Ψi), (1.1)

where, R is the Ricci scalar and MP is the Planck mass. For now, we will not specify the

action for matter but simply write as Sm, where Ψi denotes all fields that couple minimally

to the metric, understanding that this could include all types of matter, baryons, dark

matter and radiation.

ΛCDM is a theory of cosmology that assumes general relativity as the theory of gravity

and the constituents of the Universe as mostly cosmological constant Λtot and cold dark

matter (CDM). Cold dark matter is matter that behaves non-relativistically (cold) and

interacts very weakly with ordinary baryonic matter and electromagnetic radiation (dark).

There are a wide variety of possible dark matter candidates (see Garrett and Duda (2011)

for a review). The term “baryonic” is used here to refer to all objects made of atoms, ions

and electrons, such as stars and planets. The cosmological constant is the “dark energy” in

the ΛCDM theory, meaning it is responsible for the accelerating expansion of the universe.

The relative energy densities today are measured as being roughly 69% cosmological

constant, 31% non-relativistic matter, mostly CDM, with baryons only making up around

5% of the total energy density of the Universe today. There is also a very small amount

of radiation today Aghanim et al. (2018). ΛCDM is discussed further in the next section,

however we now return to the Einstein-Hilbert action.

Varying the Einstein-Hilbert action SEH with respect to the inverse metric gµν , then

rearranging, yields Einstein’s field equations,

M2
PGµν = Tµν − gµνΛb. (1.2)

Gµν is the Einstein tensor and is equal to Rµν −Rgµν/2 and is divergence-free due to the

Bianchi identity ∇µGµν = 0. Tµν is the energy-momentum tensor,

Tµν = − 2√
−g

δSm
δgµν

. (1.3)

Suspending the inclusion of the cosmological constant in Einstein’s field equations one can

see that matter, Tµν is affecting spacetime Gµν and vice versa.

1Minimal coupling here means that the matter is minimally coupled to gravity. That is to say that the

only coupling of the matter fields Ψi to gravity is through the Lorentz invariant measure √−g d4x, where

g = det gµν . Derivatives of the matter fields are accompanied by connection terms Γσµν because one must

use gauge covariant derivatives.
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The total cosmological constant Λtot which sources the curvature of the Universe is a

combination of (at least) two components 2 the bare cosmological constant Λb which can

be seen explicitly in Equation 1.1, is a classical contribution, it is compatible with both

general covarience and a conserved energy-momentum tensor (as has already been shown).

Λb can be thought of as a free parameter, a priori we have no reason to discard it. The

second contribution comes as a result of quantum field theory. ρvac corresponds to the

energy stored in the vacuum and so is part of the energy momentum tensor Tµν = δµνρvac.

These two components are indistinguishable to cosmological probes so any cosmological

observations can only constrain the linear combination Λtot = Λb + ρvac.

1.2 Cosmology in ΛCDM

The perihelion precession of Mercury can be considered the first observational confirmation

of General Relativity Einstein (1916). Now over one hundred years on we have a myriad of

other observations which support general relativity and ΛCDM. In this thesis we concern

ourselves with just a few of those observations coming from cosmology.

The Universe is expanding at an accelerating rate and this has been confirmed by a

number of different experiments and observations of both late-universe and early-universe

phenomena. The first evidence for the accelerated expansion came from measuring the

brightness and redshift of type 1a supernovae Riess et al. (1998); Perlmutter et al. (1999).

More recently, evidence has also come (indirectly) from early-time observations such as

the CMB power spectrum Hinshaw et al. (2013); Hou et al. (2014).

The Hubble constant H0 ∼ 70 km s−1 Mpc−1 is a measure of the accelerating expansion

of the Universe. At this value a galaxy one megaparsec (around 3.3×106 light-years) away,

that is moving with the Hubble flow only, is travelling away from us at 70 km s−1. If we

imagine a galaxy further away, at two megaparsecs, this galaxy is travelling away from us

at 140 km s−1.

Assuming ΛCDM, the Hubble constant can be indirectly determined using CMB ob-

servations. By plotting the CMB power spectra one can read-off the sound horizon of the

photo-baryonic fluid at last scattering by measuring the distance between peaks. Using
2The qualification “at least” is included here because we know of at least two contributions to the

total comsological constant, Λtot = Λb + ρvac, the bare cosmological constant and the vacuum energy

density. In Chapter 2 of this thesis we break the vacuum energy density contribution down further into

two components, giving us Λtot = Λb + ΛIR + ΛUV. This is covered in more detail in Chapter 2 but one

can consider ΛIR to be the contributions to the vacuum energy density coming from known physics and

ΛUV is an incalculable contribution from unknown physics lying above the standard model.
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this as a standard ruler the distance to the last scattering surface can be inferred using

knowledge of how the Universe has expanded between the time of last scattering and today.

The value of the Hubble constant inferred using this method is 67.4± 0.5 km s−1 Mpc−1

Aghanim et al. (2018).

Determining H0 using baryon acoustic oscillation measurements 3, another early-time

probe, bears some similarities with inferring H0 from the CMB Addison et al. (2018);

Abbott et al. (2018). Using these methods the Hubble constant is measured to be 66.98±

1.18 km s−1 Mpc−1 and 67.77± 1.30 km s−1 Mpc−1 respectively.

Measuring H0 with local experiments is more direct and normally relies on standard

candles as opposed to standard rulers. Type 1a supernovae are standardizable (more so in

combination with Cepheid observations), therefore we can determine a type 1a supernova’s

distance from us by measuring their apparent magnitude. The speed at which a type 1a

supernovae travels away from us can be determined using their redshift Riess et al. (2019),

in this case the Hubble constant is calculated to be 74.03 ± 1.42 km s−1 Mpc−1. Other

local measurements of H0 include observations of time delays of multiply-imaged quasars

Birrer et al. (2019), which deduces a Hubble constant of 72.5+2.1
−2.3 km s−1 Mpc−1.

This list of probes of the accelerated expansion is far from exhaustive. However it is

already apparent that different measurements are not compatible. Late-time observations

which are cosmology independent compared to the early time value from the CMB, which

assume ΛCDM, exhibit a roughly 10% discrepancy at a few standard deviations. Address-

ing the Hubble tension is not a major focus of this thesis but it has been a great interest

to many in the cosmology community in recent years. Some believe that the error comes

from the early universe probes (wrongly) assuming ΛCDM in order to infer a subsequently

incorrect Hubble rate (see Di Valentino et al. (2019) and references therein). It seems there

may be something wrong with the current understanding of the Universe and specifically

with dark energy.

The cause of the acceleration is often referred to as dark energy. The cosmological

constant is often referred to as the simplest theory of dark energy because it is a constant

in spacetime. The cosmological constant does not redshift but every other form of matter

or energy will. It is therefore inevitable that a cosmological constant will dominate the

energy-density of the Universe at late times. A cosmological constant dominated universe

is one undergoing a de Sitter phase (exponential expansion). The best explanation we have

3Abbott et al. (2018) measures the Hubble constant by making supernova measurements using the

inverse distance ladder method based on baryon acoustic oscillations. Addison et al. (2018) inferred a

value of the Hubble constant from the local distance ladder and from Planck CMB data.
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so far for accelerating expansion is a cosmological constant with energy density roughly

Λtot ∼ (meV)4 4.

This is not to say that the cosmological constant is a perfect theory of dark energy.

We have already discussed the Hubble tension, however there is another missing piece

in our understanding of the Universe: explaining the observed value of the cosmological

constant, this is discussed in detail in the next section.

1.3 The Cosmological Constant Problem

Here, we show that the observed energy density of the vacuum Λtot, is at least 56 orders of

magnitude smaller than known contributions to it Weinberg (1989). The vacuum energy

density can be understood in terms of Feynman bubble diagrams and that is how we

explain it here.

Exactly how the calculation of these quantum contributions to the vacuum is done does

not matter. Much the same answer is achieved whatever kind of quantum field we choose

to calculate it for (including for a massive scalar field). For illustration, we perform the

calculation for φ4 theory, a simple scalar theory with a non-trivial self interaction term.

1.3.1 An example calculation of a vacuum energy

We will begin by following a argument made by Sakharov Sakharov (1967) which says

that:

A quantum fluctuation (or vacuum state fluctuation or vacuum fluctuation) is the

temporary random change in the amount of energy in a point in space, as prescribed by

Heisenberg’s uncertainty principle. The uncertainty principle states the uncertainty in

energy and time can be related by,

∆E∆t > 1
2~. (1.4)

This means that pairs of virtual particles with energy ∆E and lifetime shorter than ∆t

are continually created and annihilated in empty space Heisenberg (1927). The vacuum

is not empty.

The second part of Sakharov’s argument develops this further: the energy-momentum

tensor of a field placed in the vacuum state must be given by,

〈0|Tµν |0〉 ≡ 〈Tµν〉 = −ρvacgµν , (1.5)
4Although ΛCDM does not explain the Hubble tension, some alternative theories of dark energy might

possibly explain the discrepancy, including the Galileon ghost condensate Peirone et al. (2019).
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where ρvac is the constant energy density of the vacuum. This equation is valid for all fields

in the Universe. This can be proved in more than one way but we present the quantum

mechanical argument here.

1. In Minkowski spacetime the only invariant tensor is ηµν .

2. The vacuum state must be the same for all observers and therefore, 〈Tµν〉 ∝ ηµν .

3. Therefore, in a curved spacetime we can write, 〈Tµν〉 = −ρvac(t, ~x)gµν .

4. The energy-momentum tensor must be conserved therefore, ρvac(t, ~x) = ρvac = const.

continuing Sakarov’s argument, if the form of the energy-momentum tensor is as above

and we assume the weak equivalence principle holds for all matter - and therefore includes

zero point fluctuations. Then we must conclude that zero point fluctuations gravitate.

We have accepted that the vacuum gravitates. The rest of this section will then be

dedicate to the question of: how much? This can be answered in many ways. Here, we

have chosen to formulate this question in terms of Feynman diagrams.

Even more specifically, we will calculate the amplitude of a two-loop bubble diagram

for a real, self-interacting scalar field. We did not need to do this. As we stated at the

beginning of this section much the same answer is achieved whatever kind of field, and for

however many loops, we choose to calculate the vacuum energy density for. So why did we

make this choice? We could have performed a simpler calculation, choosing to calculate a

one-loop diagram. The two-loop diagram we have chosen is slightly more realistic because

it is the first example where we see a non-trivial interaction.

The reader might ask then why not have a look at the full complexity of the problem?

Instead of demonstrating the calculation for a scalar field, demonstrate instead two differ-

ent calculations: one calculation for a bosonic field and the other a fermionic field. The

honest answer to this question is that we could have done this. Pedagogical calculations

of this kind can be found in Martin (2012).

How much does the vacuum gravitate?

There are different ways to calculate the effect of these fluctuations. We do it here

with perturbative quantum field theory5 The Lagrangian density for a real, massive scalar

field φ with a quartic interaction is,

L = 1
2η

µν∇µφ∇νφ−
1
2m

2φ2 − λ

4!φ
4. (1.6)

5To calculate the effect of the quantum fluctuations on the vacuum we will perform the calculation

perturbatively, order by order in a series expansion in the number of virtual particles participating in the

interaction.
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The vacuum is affected by quantum fluctuations just like everything else in the Uni-

verse. Quantum fluctuations of the vacuum change the matter field 6. Because of the

weak equivalence principle, this changed matter distribution will also result in a changed

gravitational field.

Assuming that these quantum fluctuations do gravitate, we calculate here what these

quantum fluctuations of the φ field do to the matter distribution in the Universe. We

begin by defining a new action, the effective action, a modified expression for the action

which takes into account quantum-mechanical corrections. The equations of motion for

the vacuum expectation value of the field can be derived from the requirement that the

effective action be stationary. The effective action is denoted here by Seff and the following

equation holds,

eiSeff =
〈
eiSφ+iSother

〉
φ
. (1.7)

〈
eiSφ+iSother

〉
is the average over the generating function. The generating function’s partial

derivatives “generate” the differential equations that determine the system’s dynamics. We

are averaging over the φ fluctuations. It is important to note that the quantum effective

action Seff, won’t depend on the field φ explicitly because of the averaging of fluctuations

around φ = 0. Sother comes from shifting the background field.

To calculate the effective action, we need only to compute the connected diagrams7

from the action and average over those. So the first contribution to Seff is,

iSeff ⊇
〈
i

∫
d4x

λ

4!φ
4
〉
φ
. (1.8)

We perform the calculation in the interaction picture Negele and Orland (1988). So,

Seff ⊇
λ

4!

∫
d4x

〈
φ4
〉
φ
, (1.9)

where φ4 is at position x. To calculate a quantum contribution to the effective action we

will evaluate the contribution coming from the diagram in Figure 1.1. This is two copies

6Presumably, the gravitational field responds to the matter field after accounting for quantum fluctu-

ations. The Lamb shift is an example of how quantum fluctuations do indeed change measured results

Lamb and Retherford (1947); Bethe (1947). The Lamb shift not only affects the inertial energy of an atom,

but also its gravitational energy (see previous discussion of the weak equivalence principle). Without a

quantum gravity theory we cannot know for certain how the gravitational field responds to the matter

field.
7A connected Feynman diagram is one which every part of the diagram is connected to at least one

external line. Non-connected diagrams do not contribute to the effective action and this can be seen by

shifting the vacuum from |0〉 to |Ω〉.
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of the propagator at coincidence,〈
φ4
〉
φ

= − λ4!

∫
d4k

(2π)4
d4q

(2π)4
1

k2 +m2
1

q2 +m2 . (1.10)

Recall, that this will not explicitly depend on the field φ. We can also see from the

Einstein-Hilbert action, Equation 1.1, that a contribution to the effective action that

does not depend on any fields will behave like the cosmological constant term, so we

can conclude that the net effect of the field fluctuations will behave like a cosmological

constant.

Figure 1.1: The vacuum bubble diagram that we calculate the amplitude for. It contributes

to 〈0|Seff |0〉.

To simplify things we begin by calculating a single integral, we will label this D 8,

D = i

∫ d4k

(2π)4
1

k2 +m2 − iε
. (1.11)

If the integral were to be evaluated at this stage it would diverge as k4/k2 = k2. The

physical reason for this is because this integral is averaging over all the quantum fluctu-

ations in the theory. It is true that the fluctuations get smaller when you go to higher

energy. At very high energies the contribution from the fluctuations falls off, scaling as

1/k2 but, the number of fluctuations of wave number k grows, scaling as k4.

Instead, we begin the calculation by performing a Wick rotation. Ignoring the iε factors

for a minute, there are singularities in the integrand when k2 = −m2. One can avoid

the singularities in the integrand by changing from Lorentzian coordinates to Euclidian

spherical polar coordinates. We imagine k0 is a complex variable. The integration over

d4k includes dk0 integrated from negative to positive infinity. We find the singularities in

the integrand as a function of k0. The singularities of the integrand are at,

− k2
0 + ~k2 +m2 − iε = 0. (1.12)

We can rearrange this to find the values of k0,

k0 = ±
√
~k2 +m2 − iε. (1.13)

We make a binomial expansion in powers of ε and only keep the lowest order. Writing
~k2 +m2 = E2(~k), the energy of the on-shell momentum particle k is,

k0 = ±E(~k)
(

1− i ε

E(~k)

)1/2
. (1.14)

8The iε prescription comes from correct specification of the vacuum state Weinberg et al. (1995).
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We define ε′ = ε E(~k) and rewrite k0,

k0 = ±E(~k)
(

1− i

2ε
′ + . . .

)
. (1.15)

The positive solution of k0 is on the positive side of the singularity and vice versa.

Figure 1.2: Integral diagram where the original contour is in red. Singularities are located

at the crosses, just off the real axis.

The effect of the iε factor has been to move the singularities just slightly off the

axis. The purpose of this exercise was to thread a contour across the real axis without

intercepting either of the singularities. We take ε→ 0 later in the calculation.

Now, we can rotate the contour. The contour begins by tracing along the real axis,

just missing both singularities. The contour is completed by following a quarter of a

circle in the top right quadrant, coming down the imaginary axis, before finally following

a quarter of a circle in the bottom left quadrant. No singularities are enclosed in the

contour. Cauchy’s theorem tells us that the integral over the closed contour must be zero,
∮

=
∫
→

+
∫

top arc

+
∫
↓

+
∫

bot arc

= 0.

The contributions coming from the arcs of the circle are zero so we need only evaluate the

integral on the real axis and the imaginary axis. They must sum to 0,
∫
→

=
∫
↓

.

This is Wick rotation. One can rotate the integral over the real axis in such a way that

you avoid intercepting singularities, finally integrating on the imaginary axis. The integral

can now be written,

D = i

∫ d3k

(2π)4 idkE
1

k2
E + ~k2 +m2 − iε

, (1.16)
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where kE is Euclidian and runs from negative to positive infinity. We can now drop the iε

term. This leaves a a four-dimensional integral in polar coordinates with a fairly simple

integrand.

Renormalization is the process of factoring out the high energy part of the integral -

the part where we assume quantum field theory is no longer an accurate description of

physics. Followed by replacing this with something that we take from measurement. We

will now factorise this integral into one part that we trust quantum field theory is accurate

and another where we cannot make this assertion. There are various methods of doing

this, they are called regularisation schemes. The two regularisation schemes that are most

commonly used are hard cutoff and dimensional regularisation. The reason for exploring

both in this thesis is because we wish to show that a cosmological constant problem exists

whichever regularisation scheme you choose.

Hard Cutoff

We do trust quantum field theory to be an accurate description of physics up to around

the TeV scale because it makes accurate predictions at the LHC. Presumably there is some

high energy theory (quantum gravity) which will describe what goes on at higher energies.

For the hard cut off regularisation scheme one must decide at which energy scale to

stop trusting quantum field theory. We call this energy scale the hard cutoff, Λ. We first

perform the angular integration.

D = −1
∫ k=Λ

k=0

2π2

Γ(2)
κ3dκ

(2π)4
1

κ2 +m2 , (1.17)

where Γ(2) = 1. It is possible to evaluate this directly,

D = − 2π2

2(2π)4

{
Λ2 +m2 ln m2

m2 + Λ2

}
. (1.18)

Its not quite clear what this tells us yet. This regularisation scheme on the surface may

appear somewhat crude. We began with an integral up to k = ∞. We knew when we

began the calculation that quantum field theory is probably not an accurate description

of physics up to infinite energies. Here, we have lowered the limit of integration to the

point at which we stop trusting quantum field theory.

Presumably there exists a quantum gravity theory which describes physics at higher

energies. Physicists have provided possible candidates but we certainly do not have a

consensus. Here, we assume that the quantum gravitational contribution to the effective

action (and in turn the total cosmological constant) is zero or at least negligible compared

to the quantum field theory contribution we have calculated in this section (we revisit this
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assumption when concluding the calculation). We will see when compared with dimen-

sional regularisation although applying a hard cutoff appears crude it yields consistent

results.

Dimensional regularisation

Here, we demonstrate renormalization via dimensional regularisation where the high

energy region of your integral (where we assume quantum field theory will not be an

accurate description of the physics) is treated in a different way to the rest of the integral9.

We have included this here to show that dimensional regularization cannot save us from

the cosmological constant problem. One could think of the reason for the appearance of

infinities as there being to many high energy fluctuations k4 for the rate at which they

are falling off 1/k2. In dimensional regularisation we change the amount of volume that

there is at high energy making the integral converge. Instead of performing the integral

in four dimensions it is done in d = 4 − ω dimensions. At the end of the calculation we

take d→ 4,

D = −1
∫ 2

Γ(2− ω)(4π)ω−2κ
3−2ωdκ

κ2 +m2 , (1.19)

we are changing the number of high energy fluctuations but we are not changing the rate

at which they fall off, they still scale as (κ2 + m2)−1. We shall see that performing the

calculation for small ω yields a convergent answer. Following this,

D = −1 2
Γ(2− ω)(4π)ω−2

∫
κ3−2ωdκ

κ2 +m2 . (1.20)

We see that there is still a divergence at ω → 0. This integral like other dimensionaly-

regularized integrals can be done in terms of Γ-functions using standard results,

D = −1
2(m2)−1+2−ωΓ(2− ω)Γ(1− 2 + ω)

Γ(1) , (1.21)

simplifying this,

D = −1(4π)ω−2(m2)1−ωΓ(−1 + ω). (1.22)

We Taylor expand each part of this in ω,

D = −1(4π)ω−2(m2)1−ωΓ(−1 + ω) = −(4π)−2m2
{ 1
ω
− γ + ln 4π − lnm2 + 1 + . . .

}
,

(1.23)

where γ is the Euler-Mascheroni constant. This means the single integral after using

dimensional regularisation is,

D = − m2

(4π)2

{ 1
ω

+ ln 4π − γ − lnm2 + . . .

}
. (1.24)

9Dimensional regularization is used in Chapter 2 of this thesis.
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This does not immediately resemble the hard cutoff result Equation 1.18. This is because

we have attempted two different ways of separating the integral into the trustworthy

and untrustworthy parts. All that we have done up to this point is break the integral

into two (in two different ways). Renormalisation is the process of breaking the integral

into two, keeping the trustworthy part and rewriting the untrustworthy part in terms

of observations. The untrustworthy part of the integral diverges like Λ and 1/ω for the

hard cut-off and dimensional regularisation methods respectively. There are standard

prescriptions for dealing with the divergencies in dimensional regularisation. Here, we use

modified minimal subtraction MS Bardeen et al. (1978).

Modified minimal subtraction MS amounts to dropping the terms proportional to 1/ω,

ln 4π and −γ. Modified minimal subtraction is a standard way to manage high energy

parts of the integration, the result is,

D = −1 m2

16π2 ln m
2

µ2 + . . . (1.25)

where µ has dimensions of [M] so that the total argument of the logarithum is dimension-

less. This may be considered the simplest possible answer.

For the hard cut-off there is not really an analogous procedure. However, the integral

can be broken up into different parts that represent the high-momentum and the low-

momentum,

D = − Λ2

16π2 −
m2

16π2 ln m2

m2 + Λ2 . (1.26)

Now, suppose one takes a measurement at high momentum in such a way that we can

replace Λ in the hard cut-off case with something tame. On dimensional grounds this

would be a mass scale. Even if this is done, there is one remaining problem, the logarithm

also depends on Λ. Therefore the logarithm is also sensitive to the result of the integral at

very high momentum. We manage this with another scale, a mass scale µ, that replaces

m2 + Λ2.

D = −1
(
M2 + m2

16π2 ln m
2

µ2 + . . .

)
, (1.27)

where M is the threshold correction taken from the aforementioned measurement. The

cut-off dependence has been repackaged in terms of what was taken from observation and

the constant that comes along with it.

Now we see that the log terms match, in particular the coefficient of the log term

in both cases is the same. It is not immediately obvious, but by comparison the high

momentum part will be an additive constant. The term proportional to the logarithm in

the MS case is not allowed dimensionally. As before we rewrite this in terms of something

taken from measurement, ensuring the dimensions work out correctly.
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So the final formula we get is valid in either the hard cut-off or dimensional regular-

isation MS schemes,

Seff ⊇
λ

4!

∫
d4x

(
M2 + m2

16π2 ln m
2

µ2 + . . .

)2
(1.28)

We now interpret this result. No matter what kind of matter fields this is calculated for,

no matter how many loops in the calculation, the result is always a variation of what we

have here.

Firstly, the scale of the answer is determined by either the threshold correction M

or the mass scale m. There are three contributions, which scale as M4,M2m2 and m4.

It is worthwhile keeping in mind what we thought each of these scales corresponded to:

the part that we know quantum field theory is an accurate description of physics and the

part where we assume some quantum gravity theory takes over. When cosmologists take

a measurement of the cosmological constant, we measure all of the contributions to this

operator from all of the loops involving all of the standard model species. The sum total

of the contributions is of order,

(10−3eV)4 = M4,M2m2,m4.

So there are two cosmological constant problems. One from quantum field theory and

another from quantum gravity. The version of the cosmological constant problem based

on the quantum field theory says that there exists a term m4 of this magnitude 10 for

each of the standard model particles in the vacuum energy density. The vacuum energy

contribution we calculated here was for a scalar field, but the argument we have made is

a dimensional one. If we had performed the calculation for a fermion the contribution to

the vacuum energy density would still be ∼ m4.

We can conclude that there ought to be contributions to the vacuum from standard

model particles. The largest contribution comes from the top quark, which has a mass

m4
t ∼ (170GeV)4 Zyla et al. (2020). This results in an unpleasant surprise of order,

ρvac
ρobs

∼
(170GeV

10−3eV

)4
∼ 1056. (1.29)

We computed a two-loop calculation here because we worked with φ4 theory because

we wanted to demonstrate how the cosmological constant problem manifests in a theory

with non-trivial interactions. The theory we chose has a four point vertex. Given we now

see how this theory contributes to the vacuum energy at this scale we could consider going
10The factor m4 is multiplied by a coupling constant. Most dimensionless coupling constants are of order

one, some are as small as O(10−3) .
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to higher-loop order. One might even hope that the next-to-leading order may cancel the

contribution of the leading order. Unfortunately, this is not the case. Furthermore, the

higher-order loop contributions cannot even be considered much smaller than the leading

order contribution. At three loops the contribution is essentially the same. This can be

seen on dimensional grounds (there is nothing different about the propagators) and this

is true for higher-order loops. It is true that there will be more factors of the coupling

constant λ but as we have said before these are generally of order one. So, we can see

that the convergence of the sum of all contributions to the vacuum energy density will be

roughly m4.

Often the cosmological constant problem is described as a discrepancy of 120 orders of

magnitude, not 56 as we have found here. Why is this? The size of this discrepancy comes

from the assumption that there is a larger contribution to the vacuum energy density, that

scales with the Planck mass to the power 4,

M4
Pl

ρobs
∼
(1018GeV

10−3eV

)4
∼ 10120. (1.30)

It is not possible to know for sure that there is a contribution to the vacuum energy

density of this scale. This is separate to the cosmological constant problem coming from

quantum field theory, this problem concerns the unknown theory of quantum gravity. Most

physicists do not expect that current formulations of quantum field theory are valid at

these energies, one should expect some higher energy theory to take over at these scales.

However, we have already seen that there is cosmological constant problem of 56 orders

of magnitude, coming from well understood quantum field theory.

There are a great number of suggestions for the possible theory of quantum gravity (for

a review see Schulz (2014)), the truth is that physics at these high energies are unknown,

it may not even be accurately described by a field theory. Presumably somewhere at

or below the Planck mass a field theory description becomes applicable. We might also

postulate that perhaps at an inflationary scale or the (grand unified theory) GUT scale

(∼ 1016GeV) there might exist particles with this kind of mass increasing the size of the

known cosmological constant problem.

1.3.2 The radiative stability problem

We have seen that the cosmological constant problem comes from quantum fluctuations

in the vacuum. Calculating the vacuum energy density to higher precision by: changing

the cut-off scale, adding more heavy particles, trusting quantum field theory to a higher
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energy, or by calculating to higher-loop order will all result in additional terms of order

M4.

Previously, we used renormalization to remove an infinite contribution to our calcula-

tion of the two-loop vacuum diagram. We could possibly use the tool of renormalization

to remove these large but finite contributions of M4. There is a problem though that we

would have to renormalize every-time we changed the cutoff11. We are going to refer to this

problem that exists with both perturbative and non-perturbative (Wilsonian) methods of

quantum field theory as the radiative stability problem.

Recall that all cosmological probes of the cosmological constant cannot distinguish

between the vacuum energy and the bare cosmological constant. What is actually meas-

ured by cosmologists is the linear sum of these two Λtot = Λ + ρvac. We know that the

observed cosmological constant is around (meV)4. We also know that ρvac is at least

(170GeV)4. Therefore, the bare cosmological constant must be a number of the same

magnitude as ρvac and cancel exactly to 56 decimal places with ρvac, leaving a remainder

which is the observed cosmological constant. This is the cosmological constant problem.

The radiative stability problem says, that every time the precision of your calculation

is changed, a completely different value for ρvac is found. The value will still be roughly

the same order of magnitude but the bare cosmological constant will have to be changed,

so that it now cancels this new value for ρvac exactly to 56 decimal places with a remainder

consistent with observations. The tuning of the bare cosmological constant required to

match observation is unstable against any change in the effective description, be it changing

the loop order in perturbation theory, or changing the cutoff.

1.4 Einstein and Jordan frames

Scalar-tensor theories of gravity can be written in more than one way. The Lagrangian

in scalar-tensor theory can be expressed in the Jordan frame in which the scalar field or

some function of it multiplies the Ricci scalar, or in the Einstein frame in which the Ricci

scalar is not multiplied by the scalar field. It is possible to move between the two frames

by means of a transformation. In this section we will transform an example action from

the Einstein to the Jordan frame to illustrate the usefulness of transforming an action in
11A pedagogical explanation of the cosmological constant problem and the sequester theory is given in

Padilla (2015). In these notes what we have called the “radiative stability problem” here is called the

“comsological constant problem”. The need to repeatedly fine tune whenever the higher loop corrections

are included reflects the cosmological constant’s sensitivity to the details of the (unknown) high energy

physics
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this way 12.

There are many examples in the literature of transforming gravitational theories from

the Jordan frame to the Einstein frame (see Faraoni et al. (1999); Flanagan (2004)). There

are less examples in the literature of this the other way around. This is because many

alternative gravity theories are formulated by using a conformal transformation mapping

the Jordan frame to the Einstein frame.

The Einstein-Hilbert action minimally coupled to a scalar-tensor Lagrangian LST,

written in the Einstein frame, is,

S =
∫
d4x
√
−g

[
M2

pl
2 R− LST(gµν , φ,∇φ, ...)

]
+ Sm(gµν ,Ψi). (1.31)

When this action is varied with respect to the inverse metric, the resulting equations of

motion will always result in the Einstein tensor (see Equation (1.2)) summed with other

parts of the theory. The Einstein frame description of scalar tensor theories is particularly

useful in the context of gravitational lensing Faraoni and Gunzig (1998, 1999) for deducing

the distribution of matter.

The Jordan frame is especially useful for looking at alternative couplings. Here, we

illustrate the differences between the frames. Suppose that the matter action is not min-

imally coupled to the scalar field φ as in Equation 1.31 but instead conformally coupled.

We will also specify our scalar tensor Lagrangian to be a massive scalar with a linear

kinetic term. We can write this action in the Einstein frame,

S =
∫
d4x
√
−g

[
M2

P
2 R− gµν∇µφ∇νφ−

1
2m

2φ2
]

+ Sm(g̃µν ,Ψi), (1.32)

where,

g̃µν = C2(φ)gµν , (1.33)

and therefore, Sm(g̃µν ,Ψi) = Sm(C−2(φ)gµν ,Ψi). When written in the Einstein frame,

as it is here, the conformal coupling is seen in the matter sector of the action. This

non-minimal coupling between the scalar field φ and the matter fields Ψi can be seen as

a fifth fundamental force. This means test particles do not follow the geodesics of gµν
but of g̃µν instead. The coupling also means that the scalar field φ can exchange energy

12The sequester theory was first written in the Einstein frame Kaloper and Padilla (2014a), later a Jordan

frame realisation of the theory D’Amico et al. (2017) inspired further development of the theory. The theory

explored in Chapter 4 of this thesis is first written in the Einstein frame before it is transformed into the

Jordan frame. The context of these two points is the reason that this section of the thesis transforms an

example scalar tensor theory from the Jordan frame to the Einstein frame and not the other way around,

as is common in the literature.
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with the standard model sector and so it is no longer true that the energy-momentum

tensor is covariantly conserved, instead the combination Tµνtotal = Tµνm + Tµνφ is conserved,

∇µTµνtotal = 0.

With a change of frame we could move where we see the coupling, whilst still expressing

a physically equivalent model. To express the action in terms of g̃ we will make use of

Equation 1.33, as well as the following,

gµν = C2(φ)g̃µν , (1.34)
√
−g = C−4(φ)

√
−g̃, (1.35)

R = C2(φ)R̃+ 6C(φ)2̃C(φ)− 12g̃αβ∇̃αC(φ)∇̃βC(φ). (1.36)

We can now express everything in terms of the tilded frame13,

S =
∫
d4x

√
−g̃
[

M2
P

2C2(φ)(R̃+ 6C(φ)−12̃C(φ)− 12C−2(φ)g̃αβ∇̃αC(φ)∇̃βC(φ))

− C−2(φ) ˜gµν∇̃µφ∇̃νφ−
1

2C4(φ)m
2φ2

]
+ Sm(g̃µν ,Ψi). (1.37)

Here, φ couples non-minimally to curvature (see the coefficient of the Ricci tensor depends

on φ) but matter couples directly (minimally) to the Jordan frame metric14. Test particles

follow the geodesics of the tilded, Jordan frame metric. And the energy-momentum tensor

is conserved as follows, ∇̃µT̃µνm = 0.

Changing between the Einstein and Jordan frames is a powerful tool that we use

throughout the rest of this thesis.

1.5 Introduction to the sequester

How might the physics community solve the cosmological constant problem? A symmetry,

that prevents threshold corrections piling up, was originally thought to be a possible

solution Zumino (1975). However, a symmetry solution has been unsuccessful in this

endeavour Weinberg (1989).
13We have written covariant derivatives with tildes here as they are constructed using the metric g̃µν .

However, for a scalar φ it is true that the covariant derivative is equal to the partial derivative ∇αφ = ∂αφ.

Because the partial derivative is not itself constructed from the metric, we know that ∂̃αφ = ∂αφ.
14One could also rescale the scalar field and its mass, φ = Cφ̃ and m = Cm̃, see Dabrowski et al.

(2009). If we had chosen the conformal factor C(φ) to be a constant and not depend on the field φ or any

spacetime component, then making the aforementioned transformations of the scalar field and mass would

yield a scalar field φ̃ that is minimally coupled to the metric g̃. Although the scalar field φ would still be

non-minimally coupled to g̃.
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Dark energy theories such as Quintessence and Chameleons (inflation at late times)

generally assume that there is no cosmological constant and that this comes about by some

unknown mechanism. Dark energy is instead sourced by a scalar field (in the particular

cases of Quintessence and Chameleons the potential energy of the scalar field is the source

of the dark energy).

The anthropic solution to the cosmological constant problem says that the bare cos-

mological constant does in-fact cancel the vacuum energy density to the large number

of decimal places leaving behind the observed cosmological constant that we see today.

Given an infinite number of possible universes all with different values of the bare cosmo-

logical constant. Only universes with a small Λtot such as the one we live in are reasonably

capable of structure formation and in turn supporting intelligent life. 15. Anthropic ar-

guments gained credibility with the development of string theory (see Linde (2017); Bull

et al. (2016) for details).

A holistic theory of gravity would not only satisfy observations and solve the cosmolo-

gical constant problem it would also be UV complete (make accurate predictions at high

energies or short distances). Making a UV complete or quantum theory of gravity is not

the focus of this thesis. We can assume that general relativity is an effective theory of

gravity, the low energy limit of some higher energy theory Donoghue (1994). In a similar

way Newtonian gravity is a low energy limit of general relativity.

There are many different ways to attack the cosmological constant problem, this thesis

focuses on just one possible solution, the sequester. The sequester breaks the weak equival-

ence principle with a global modification to gravity at infinite wavelength. In the sequester

theory there exists a new kind of matter that does not gravitate where the vacuum energy

density flows to.

When cosmologists measure the cosmological constant (of which one contribution

comes from the vacuum energy density) what is actually measured is the curvature of

the universe and the ratios of the different components in it. We believe quantum ef-

fects generate large vacuum energies, but cosmologists measure very small curvatures.

The sequester theory attempts to break this direct link between the vacuum energy and

the curvatures measured in cosmology. This is done without affecting other instances of

quantum corrections which are responsible for other observations such as the Lamb shift

discussed earlier. One could think of this as breaking the weak equivalence principle but

only for the vacuum energy density.
15This is a very brief summary of the anthropic solution to the cosmological constant problem. For a

much more rigorous explanation see Banks et al. (2001) and for historical context see Weinberg (1987).
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We can think of the cosmological constant as the gravitational source of longest (in-

finite) wavelength. For these reasons there have been more than one attempt to modify

General Relativity at very large distances. The basic idea behind degravitation is to

have gravity become suppressed beyond some large scale L, so that ultra long wavelength

sources like the cosmological constant no longer gravitate Arkani-Hamed et al. (2002);

Dvali et al. (2007). Other theories that modify gravity on large finite scales exist e.g. the

fat graviton theory Sundrum (2004b,a).

The sequester theory modifies gravity only on infinite wavelengths, a global modifica-

tion of gravity. Locally the sequester theory mimics general relativity so cannot be con-

strained using fifth force tests. The sequestering scenario Kaloper and Padilla (2014a,b,

2015); Kaloper et al. (2016a); Kaloper and Padilla (2017) aims to resolve the problem of

radiative instability of the vacuum energy.

The basic idea of sequestering the vacuum energy is that the bare cosmological constant

Λ 16 is promoted to a global dynamical variable. Λ is still a spacetime constant, but we can

vary over it in the action. An additional term σ is added to the standard Einstein-Hilbert

Lagrangian at the most global scale,

S =
∫
d4x
√
−g

[
M2
pl

2 R− λ4Lm
(
λ−2gµν ,Ψ

)
− Λ

]
+ σ

( Λ
λ4µ4

)
, (1.38)

where, µ is some mass scale. This is done with the aim of coupling the global dynamical

variable Λ to the standard model in such a way that we can remove the radiative stability

problem. The precise form of the sequestering function σ (which does not couple to the

metric and in turn gravity) is determined by phenomenology, and the global parameter λ

fixes the hierarchy between matter scales and the Planck mass.

We will see in the next Chapter that the sequester mechanism successfully cancels the

vacuum energy at each and every order in the expansion and leaves behind a very small

residual cosmological constant that depends on the historic average of locally excited

matter and not on the vacuum energy. This residual cosmological constant is calculated

approximately by Kaloper & Padilla to be smaller by a few orders of magnitude than the

vacuum energy density we observe today Kaloper and Padilla (2014a) and so an extra

dark energy is required to explain this.

What is the physical mechanism behind this? One can think of the sequester as the

vacuum energy flowing to another kind of matter which does not gravitate, breaking the

weak equivalence principle. The rest of the matter in the Universe remains untouched

and so all other physics apart from that which relates to the vacuum energy remains the
16From here on the bare cosmological constant will no longer be referred to as Λb but simply Λ
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same. To a person wishing to solve the radiative stability problem this sounds fantastic.

Although there is a caveat, that we require a UV complete theory to properly explain this

new mysterious type of matter which the vacuum energy flows to and which breaks the

weak equivalence principle.

In the next Chapter we will explore the sequester in detail. We do not concern ourselves

with the nature of the UV complete theory. Instead we examine whether different realisa-

tions of the sequester Kaloper and Padilla (2014a,b); Kaloper et al. (2016b); Kaloper and

Padilla (2017) provide radiative stability for all kinds of vacuum energy loops, including

loops containing gravitons.
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Chapter 2

Ultraviolet sensitivity of the

cosmological sequester

Abstract

We revisit the “sequester” proposal of Kaloper, Padilla and collaborators, in which the

amplitude of the cosmological constant is decoupled from large contributions due to loops

containing Standard Model particles. We review the different formulations of the model

that have appeared in the literature, and estimate the importance of a particular class

of quantum corrections—those that dress the interaction between the “rigid” scalars and

infrared properties of the spacetime such as its 4-volume and integrated curvature. In

formulations that do not adequately sequester graviton loops we argue that dressing of

these interactions causes further failures of complete sequestration. We estimate the size

of the effect and find that it is typically smaller than the cosmological term directly

induced by loops containing a single virtual graviton. Meanwhile, in the most developed

formulation of the scenario (where a rigid scalar couples to the Gauss–Bonnet density),

this dressing can be absorbed into a rescaling of the rigid fields and is therefore harmless.

2.1 Introduction

It is nearly 40 years since the cosmological constant problem was first stated clearly Wilczek

(1984); Weinberg (1989). (For the earlier history, see Ref. Rugh and Zinkernagel (2002);

Straumann (2002).) Despite immense efforts over the intervening decades, it remains

the most enigmatic component of the concordance cosmological model. The problem is

simple to state. Observation requires the cosmological constant Λ to dominate the present

Hubble rate, and therefore 3H2
0M

2
P ≈ Λ. The measured value of H0 gives an estimate
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Λ ≈ 10−12 eV4. Meanwhile quantum contributions to Λ from Standard Model particles

are much larger. Why, then, is the measured value so small?

The case for ‘fine tuning’.—The operational meaning of Λ is less clear than other quant-

ities that are known to receive large quantum corrections, such as the running couplings

that appear in scattering amplitudes, because it couples only at wavenumber zero where

scattering does not occur. Nevertheless, like any low-energy constant, Λ presumably can

be divided into an incalculable ultraviolet contribution ΛUV from unknown physics lying

above the Standard Model, and an infrared contribution ΛIR generated by quantum cor-

rections with Standard Model particles running in the loops. We expect ΛIR ∼ mt from

loop diagrams containing the top quark, which is the heaviest Standard Model particle.17

It follows that Λ = ΛUV + ΛIR should be of order m4
t ∼ (175 GeV)4 or larger unless

ΛUV is accurately balanced to cancel large contributions from Λ4
IR. The measurement

Λ ∼ 10−12 eV4 apparently implies that ΛUV is balanced so that cancellation occurs to

roughly 56 decimal places.18 The scales that contribute to ΛUV and ΛIR are very different,

so there is no reason why ΛUV should be related to Standard Model energies. This makes

it unlikely that cancellation happens by accident.

Unless new physics changes the relationship between Λ, ΛIR and ΛUV, the most plaus-

ible conclusion is that whatever determines ΛUV must be constrained by some principle

forcing Λ to be nearly zero. Such a principle would strongly violate decoupling, because

it would make the Wilson coefficients of the low-energy action into highly sensitive func-

tions of the ultraviolet boundary condition. The apparent tuning we observe would be a

consequence of this exquisite sensitivity.

It is certainly possible that the correct resolution of the cosmological constant problem

involves a failure of decoupling along these lines. Unfortunately, modern ideas in particle
17It is often said that the low-energy calculation yields ΛIR ∼M4

P, but this is not justified. Although the

vacuum energy computed with a hard momentum cutoff is quartically divergent, it must be remembered

that cutoffs do not track dependence on heavy masses Burgess and London (1993). The low-energy theory

cannot yield a trustworthy dependence on any mass scale heavier than it contains itself, and the heaviest

mass described by the effective Lagrangian for the Standard Model is the top mass mt. See also §4.2 of

Ref. Lyth (2011), and Refs. Sloth (2010); Maggiore (2011); Mangano (2010), which show explicitly that

the quartically divergent terms cannot be interpreted as a dark energy component.

If there is a contribution to the cosmological constant of order ∼M4
P, it comes from ΛUV and not ΛIR.

For example, this might happen if local field theory remains valid all the way up to the Planck scale, and

the low-energy gravitational force is generated by integrating out one or more particles of mass ∼ MP.

But the outcome could be different if local field theory fails as a good approximation to Nature at some

much lower scale.
18The large number of decimal places required is because cancellation has to occur in ΛUV + ΛIR.
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physics have not yielded any candidate principle that could be responsible for the smallness

of Λ. Moreover, the failure of decoupling makes robust low-energy model building difficult.

For these reasons it is now more common to look for an alternative resolution.

Overview of this paper.—In this paper we revisit the “sequester” proposal of Kaloper

& Padilla Kaloper and Padilla (2014a,b); Kaloper et al. (2016b); Kaloper and Padilla

(2017). This is a concrete scenario for new physics that changes the argument given

above by removing (“sequestering”) the low-energy contribution from all Standard Model

particles. The outcome is that the observed cosmological constant Λ would be set by ΛUV,

unless there are further contributions from new unsequestered sectors.

By itself the sequester (or at least its simplest versions) would not explain the observed

magnitude of Λ.19 Even if all matter species participate in sequestration, there would still

be a puzzle if we expect ΛUV to receive contributions larger than 10−3 eV. This might be

the case, for example, if low-energy Einstein gravity is an effective description generated

by integrating out one or more Planck-mass particles. The advantage of the sequester

is that the small observed value no longer requires cancellations between ΛUV and ΛIR.

We express this by saying that its value is technically natural within the Standard Model.

Whether or not it is technically natural with respect to the ultraviolet model is a question

that can be resolved only when that theory is specified.

The status of arguments based on technical naturalness has been called into question

following the discovery of a Higgs particle at M ∼ 125 GeV without new accompanying

particles Richter (2006); Hossenfelder (2018). In the formulation we are using, “natur-

alness” has a clear meaning in terms of sensitivity—or lack of it—to large corrections

between widely separated scales Giudice (2013); Williams (2015); Giudice (2019).20 This

is not merely an aesthetic choice, and accordingly Nature may or may not be “natural”

in our sense. Nevertheless, it is reasonable to expect this concept of naturalness to be a

useful guide because experience has shown that the vast majority of physical phenomena

do decouple in this way.

Clearly we should not be satisfied with a theory in which Λ is made technically natural
19In §2.3.4 we will see that the most developed version of the sequester would absorb ΛUV in addition

to ΛIR, at the cost of introducing a new cosmological-like term associated with an unknown scale µ. See

Eqs. (2.33) and (2.34). Therefore, no matter what strategy we choose, it seems that one can not arrive at

an unambiguous prediction for the observed value of Λ.
20This is a broader definition than the original concept of technical naturalness due to ’t Hooft ’t Hooft

(1980). ’t Hooft’s criterion that a small parameter y is natural if the symmetry of the theory is enlarged

in the limit y → 0 is a sufficient but not necessary condition for widely separated scales to decouple in this

sense.
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at the expense of other low-energy constants that receive large ultraviolet corrections. If

this occurs we have not removed the problem, but merely translated it from one low-energy

sector to another. In this paper we aim to apply this test to the sequester model.

Synopsis.—Two principal variants of the sequester have been discussed in the literature.

In the first version, one works in the Einstein frame and couples the sequestered sectors to

a conformally rescaled metric. This version was introduced in Refs. Kaloper and Padilla

(2014a,b); see Ref. Padilla (2015) for a pedagogical description. We describe it as the

‘Einstein frame model’. The conformal rescaling dynamically adjusts mass scales in the

sequestered sector relative to the fixed Planck scale. A global constraint couples the

cosmological term to this conformal factor, allowing it to absorb contributions from pure

matter loops. In this version, loops involving virtual gravitons are known to reintroduce

unsequestered corrections to the observed Λ. We discuss this model and the degree to

which it ameliorates ultraviolet sensitivity of the cosmological constant in §2.2.

A second variant was introduced in Refs. Kaloper et al. (2016b); Kaloper and Padilla

(2017). In this version one works in the Jordan frame and there is no auxiliary rescaled

metric. There are two global constraints, the first of which couples the gravitational scale

to the mean Ricci curvature of spacetime. The second couples the cosmological constant

to the total spacetime volume and a physical mass scale µ, which is a priori unknown.

The is the ‘Jordan frame model.’ In this version one can adjust the way in which the

global constraints couple to spacetime curvature so that loops of virtual gravitons are also

absorbed. This version of the sequester and its ultraviolet properties are discussed in §2.3.

We conclude in §2.4.

Notation.—We work in units where c = ~ = 1. The (reduced) Planck mass is MP ≡

(8πG)−1/2 = 2.435×1018 GeV. We express the cosmological constant in terms of an energy

scale Λ with engineering dimension [M]4. The corresponding “cosmological term” in the

Einstein equations is Λ. We generally frame our calculations in Minkowski space to avoid

unneeded complexities associated with curved spacetime; because ultraviolet properties

do not depend on these curvature scales, this procedure does not forfeit any essential

generality.
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2.2 Einstein frame model

2.2.1 The sequester action

In this section we briefly review the sequester mechanism in Einstein frame Kaloper and

Padilla (2014a,b), and discuss its ultraviolet sensitivity. The gravitational action is written

in terms of the Einstein-frame metric gµν . Sequestration of one or more matter sectors is

achieved by coupling them to a conformally rescaled (‘Jordan frame’) metric g̃µν = λ2gµν ,

viz.

S =
∫

d4x
√
−g
(
M2

P
2 R(g)− Λ + ΛUV − λ4Lm(g̃µν ,Ψ)

)

+ σ

( Λ
λ4µ4

)
.

(2.1)

If multiple sectors are to be sequestered their actions should appear additively. In Eq. (2.1),

R(g) = gµνRµν(g) is the Ricci scalar constructed using the Einstein-frame metric gµν ,

Lm is a matter Lagrangian density, and Ψ schematically stands for the different species

of sequestered matter fields. We assume these to be the Standard Model fields. The

low energy contribution to the cosmological constant, ΛIR, does not appear in Eq. (2.1)

explicitly. It is generated by the infrared part of loop corrections to Lm. The bare

cosmological constant (if there is one), plus any contributions from unsequestered sectors

that have been integrated out to produce (2.1), are included in ΛUV.

The quantity Λ is no longer the combination ΛUV + ΛIR, but is rather a new field that

can loosely be regarded as a counterterm for ΛIR. In particular, although it participates

in the path integral, we take Λ to have no local degrees of freedom. It is determined

classically by extremization of the action. The dimensionless conformal rescaling λ is

taken to be a field of the same kind.

The global term σ is a function of Λ and λ in the specific dimensionless combination

Λ/(λµ)4. Critically, it does not couple to either the Einstein- or Jordan-fame metric, and

therefore does not source the global gravitational field. The scale µ has dimension [M],

but its precise meaning depends on the definition of σ. We will discuss its significance in

more detail in §2.3.2 below. Finally, for reasons to be explained below, we should take σ

to be an odd function of its argument. It is otherwise assumed to be an arbitrary smooth

function.

The rigidity of Λ and λ is unusual, but can be given a local, microscopic basis in terms of

integrals of a four-form flux F4 over spacetime Kaloper et al. (2016b). Such a flux is a top-

order form in d = 4 dimensions and therefore acts as a volume form in the integral
∫
F4. In
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particular, this integral can be written without requiring a metric. Borrowing terminology

from thermodynamics, we describe terms such as
∫
F4 that do not scale with gµν as

intensive. Ordinary contributions to the action such as
∫

(?1) are conversely extensive.

Notice that if σ does not scale at least with the coordinate volume of spacetime, this

violates Hawking’s suggestion that the action should be additive over cobordant regions
21 in order for quantum gravitational amplitudes to superpose correctly Hawking (1979).

2.2.2 Low-energy phenomenology

We now consider low-energy solutions to (2.1). First, notice that the matter contribution

in (2.1) can be written22

Sm ≡ −
∫

d4x
√
−g̃ Lm(g̃µν ,Ψ). (2.2)

Therefore it is clear that the matter fields Ψ are minimally coupled to the Jordan-frame

metric g̃µν . By taking g̃µν to be flat up to corrections from the Newtonian potential,

it follows that predictions for laboratory measurements in a weak gravitational field will

match those of the unsequestered Standard Model.

We conclude that the masses and other properties of the Standard Model reported by

the Particle Data Group Tanabashi et al. (2018) are those measured in g̃µν . We denote

these experimental scales with a tilde, viz. M̃Z , m̃t. They are related to scales measured

in the metric gµν by a conformal rescaling M̃Z →MZ = λM̃Z .

Sequestering low-energy loops.—Extremization of (2.1) with respect to Λ and λ yields,

σ′

(λµ)4 =
∫

d4x
√
−g, (2.3a)

4 Λ
(λµ)4σ

′ =
∫

d4x
√
−g̃ T̃µµ =

∫
d4x
√
−g Tµµ, (2.3b)

where a prime ′ denotes differentiation of σ with respect to its argument, and the Jordan-

frame energy–momentum tensor T̃µν measured with respect to g̃µν is defined by

T̃µν ≡ −
2√
−g̃

δSm
δg̃µν

. (2.4)

A similar definition applies for the Einstein-frame energy-momentum tensor Tµν , which

is measured with respect to gµν . The two definitions are related by T̃µν = λ−2Tµν . We
21Two compact boundaryless manifolds M and N are cobordant if there exists a compact manifold with

boundary W such that ∂W = M −N . In other words two manifolds are cobordant if their disjoint union

bounds a manifold.
22We take this as the definition of the matter action Sm.
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assume σ′ 6= 0 at the extremum. To allow consistent solutions with Λ < 0 but λ > 0 we

require σ′(x) to be even, and hence σ(x) must be odd, as stated above.

Taking the ratio of Eqs. (2.3b) and (2.3a) yields a constraint for Λ,

Λ = 1
4〈〈T

µ
µ〉〉, (2.5)

where 〈〈· · ·〉〉 denotes spacetime averaging in the metric gµν , i.e. 〈〈Q〉〉 ≡
∫

d4x
√
−g Q/

∫
d4x
√
−g.

Since we assume σ is differentiable, Eq. (2.3a) requires the volume of spacetime to be finite

if we wish to avoid λ = 0. (This would conformally rescale all masses in the sequestered

sector to zero.) It follows that the spacetime average 〈〈Q〉〉 can be defined, even if it is

difficult to evaluate in practice.

The Einstein equations that follow from (2.1) are

M2
PGµν = Tµν − (Λ− ΛUV)gµν

= Tµν −
1
4〈〈T

µ
µ〉〉gµν + Λ4

UVgµν ,
(2.6)

where Gµν(g) = Rµν(g) − R(g)gµν/2 is the usual Einstein tensor constructed from gµν .

As explained above, the σ term in the action does not couple to gµν and therefore does

not source a long-wavelength gravitational field. Diffeomorphism invariance guarantees

that any matter loops renormalize the cosmological term in Lm measured using g̃µν (see

Fig. 2.2), and therefore

T̃µν = Λ̃IRg̃µν + τ̃µν(g̃,Ψ, · · · ), (2.7)

where the ‘subtracted’ energy–momentum tensor τ̃µν(g̃,Ψ, . . .) vanishes outside matter23.

We have added a tilde to ΛIR to indicate that it is built from scales such as m̃t measured

in a homogeneous gravitational field. When expressed in terms of Tµν we obtain

Tµν = λ4Λ̃IRgµν + λ2τ̃µν(g̃,Ψ, . . .), (2.8)

It follows that the effective Einstein equation can be written

M2
PGµν = τµν −

1
4〈〈τ

ρ
ρ〉〉gµν + ΛUVgµν . (2.9)

The conclusion is that, in the Einstein equation, the low-energy contribution ΛIR is re-

moved to all orders in the loop expansion of Lm.

What has been achieved?—To reiterate, this does not “solve” the cosmological constant

problem because we still have no means to estimate ΛUV. Depending on the ultraviolet
23τ̃µν are, by definition, local excitations about the vacuum and so are zero where there is only vacuum

and no other matter. See Padilla (2015).
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model, it may be large. But since an estimate of ΛUV was never the aim of the sequester,

this criticism is unfair. Instead, what has been achieved is that if ΛUV can somehow be

made small, its impact on the global spacetime geometry is not destabilized by loops at

much lower scales.

Loosely speaking, this analysis shows that the sequester is not a ‘field theory’ mech-

anism, in the sense that the properties of loops are unmodified in the ultraviolet. Rather,

we have added a new form of matter Λ that is constrained by its field equation to cancel

the portion of the vacuum energy sourced by matter loops. Ordinarily this would be of no

benefit, because the energy density associated with Λ would itself gravitate. As explained

above, the special feature of the action for Λ is that its σ part does not source any gravit-

ational field. Heuristically, this allows us to ‘degravitate’ or ‘sequester’ the vacuum energy

by storing it in σ. When stored in this way the matter loops are gravitationally inert.

After vacuum loops have been sequestered, the effective source term for the gravita-

tional field is the subtracted energy–momentum tensor τµν computed in the metric gµν ,

together with a correction from its spacetime volume average 〈〈τρρ〉〉. The size of this cor-

rection was estimated in Refs. Kaloper and Padilla (2014a,b), who considered a model in

which the unsequestered contribution ΛUV was set to zero.

Nevertheless, there is something surprising about this outcome. We are still working in

the context of local field theory, with its characteristic poor control of ultraviolet effects.

Where has the original ultraviolet sensitivity of the cosmological term gone? The sequester

does contain a new physical ingredient, in the form of the σ-term that is shielded from

gravity. However, we have not introduced a new physical principle that forces Λ to capture

the entirety of ΛIR in this non-gravitating sector. Therefore one might worry that quantum

corrections ‘detune’ the dynamical equation for Λ, preventing complete sequestration of

ΛIR and reintroducing the low-energy cosmological term.

Radiative corrections.—Indeed, when discussing any proposed solution to the cosmological

constant problem it is never sufficient to work at tree level. Like any naturalness problem,

the cosmological constant problem is intrinsically quantum mechanical because it is only

in a quantum theory that loop corrections generate direct correlations between widely

separated scales. The conclusion is that radiative corrections must be included before we

can judge the merits of any particular proposal.

A subset of relevant corrections were considered in Refs. Kaloper and Padilla (2014a,b);

Kaloper et al. (2016b); Kaloper and Padilla (2017). First, these authors considered a

symmetry λ → Ωλ, gµν → Ω−2gµν , Λ → Ω4Λ under which Eq. (2.1) is invariant. They



30

argued this was sufficient to guarantee that, to all orders in matter loops, ΛIR would couple

in the same way as the tree-level vacuum energy. In our presentation this symmetry is

implied by coupling Lm to the Jordan-frame metric g̃µν but Λ to the Einstein-frame metric

gµν . The loop-level behaviour of ΛIR then follows from diffeomorphism invariance with

respect to g̃µν . We will give a pedestrian proof of these properties in §2.2.3 below, based

on analysis of Feynman diagrams. As we show there, like all global symmetries, this one

is broken by coupling to gravity.

Second, Refs. Kaloper and Padilla (2014a,b); Kaloper et al. (2016b); Kaloper and

Padilla (2017) studied the symmetry Λ→ Λ + λ4ν4, Lm → Lm− ν4 which they suggested

would guarantee that Λ absorbed ΛIR to all orders in matter loops. [That is, that Λ and

Tµν would appear additively in the Einstein equation as in Eq. (2.6).] This last symmetry

is not in fact a transformation of the fields that participate in the action, and is not

respected by quantum corrections.

2.2.3 Ultraviolet sensitivity in Einstein frame

This list does not exhaust the loop corrections to Eq. (2.1). In particular, the analysis of

Refs. Kaloper and Padilla (2014a,b); Kaloper et al. (2016b); Kaloper and Padilla (2017)

leaves open the issue of (i) corrections to the intensive global function σ that “stores” the

unwanted large loop terms; and (ii) corrections to the extensive interaction
∫

d4x
√
−gΛ.

To study corrections to σ would require a microscopic theory that explains how the flux

F4 is supported. The sequester proposal does not aim to provide such a description.

(For recent attempts to describe an ultraviolet completion of this kind, see Refs. Padilla

(2019); Bordin et al. (2020); El-Menoufi et al. (2019); Sobral-Blanco and Lombriser (2020);

Alexander et al. (2020).) We comment on this in §2.4. On the other hand, the interaction

term couples to spin-2 excitations of the metric gµν , and will therefore be “dressed” by loops

containing off-shell quanta associated with these excitations 24 (cf. Ref. Oda (2017a)). This

is a model independent effect, in the sense that it does not depend on the microscopic origin

of F4. In this section we aim to enumerate these corrections and quantify their impact.

Loops respect diffeomorphism invariance.—First, we pause to prove the property stated

above, that pure matter loops generate a cosmological term scaling as λ4 to all orders in

the loop expansion. This follows from diffeomorphism invariance with respect to g̃µν , but
24Expanding 2.1 perturbativly in excitations of the metric gµν = ηµν + hµν etc. will mean that we

have factors of h multiplying parts of the matter Lagrangian and so we see an interaction. So we have an

interaction between spin-2 quanta and standard model particles. In fact any standard model loops will be

accompanied by graviton loops with Λ insertions. See 2.1
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can also be proved by direct analysis of Feynman diagrams. The results will assist us in

an analysis of corrections to the Λ coupling, to be given below.

Consider any operator in Lm formed from a monomial of nb bosonic fields and nf

fermionic fields. After replacing measured mass scales M̃ by their conformally rescaled

equivalents M = λM̃ , and performing the same replacement k = λk̃ for momenta, it can be

checked that such an operator scales like λnb+3nf/2. Meanwhile, a boson propagator scales

like λ−2 whereas a fermion propagator scales like λ−3. Therefore a diagram containing Ib
internal boson lines, Eb external boson lines, If internal fermion lines, and Ef external

fermion lines will scale like λD, where

D = −2Ib − 2Eb − 3If − 3Ef +
∑
i

Ni

(
nb,i + 3

2nf,i
)
. (2.10)

Ni is the number of vertices of type i, each of which contains nb,i bosonic fields and nf,i

fermionic fields.

Each diagram must satisfy the topological identity 2I + E = ∑
kNknk, where now I

denotes the total number of internal lines (whether bosons or fermions), E denotes the

total number of external lines, Nk denotes the number of vertices of type k, and each type-

k vertex connects nk lines. To translate to an operator in the effective action we should

amputate external lines. Applying the identity separately to the bosonic and fermionic

components of the amputated diagram, it follows that the effective operator will scale like

λDamp , where

Damp = Eb + 3
2Ef . (2.11)

(This analysis applies even if the bosonic and fermionic components are disconnected,

provided the assignment of internal and external lines is the one appropriate for the entire

diagram.) No matter how complex the diagram, Eq. (2.11) involves only the total number

of amputated bosonic and fermionic lines. Such a diagram will renormalize operators

that are polynomial in Eb bosonic fields and Ef fermionic fields. The λ-dependence of

this renormalization will be λEb+3Ef/2, the same as we deduced above for unrenormalized

operators in Lm. The conclusion, as has already been stated, is that pure matter loops

preserve the λ-dependence of the coupling in Eq. (2.1).25

Stability of global constraint.—Next, we argue that detuning the dynamical equation for

Λ can prevent complete sequestration. Specifically, to obtain complete cancellation in the
25Recall that this scaling applies after conformal redefinition of the masses. From inspection of Eq. (2.1),

one might expect the cosmological term generated by matter to scale as λ4M̃4
SM, where M̃SM is some

characteristic Standard Model scale. This does not conflict with (2.11) for Eb = Ef = 0 because after

rescaling MSM = λM̃SM the cosmological term scales as λ0 as claimed.
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Einstein equation, the factor of 4 that appears on the far left of Eq. (2.3b) is required to

match a factor of 4 from the trace of the metric in Tµµ. Even a small mismatch of these

factors will leave a residual low-energy cosmological term in Eq. (2.6).

While the 4 from the trace δµµ cannot be modified by ultraviolet effects, the other

factor of 4 is a consequence of the power λ−4 appearing in the combination Λ/(λµ)4 that

enters the global function σ. We will argue below that this factor can be renormalized by

ultraviolet effects. It follows that Eq. (2.1) may receive significant corrections from high

energies, and therefore fails the test for naturalness in the sense we have defined.

How sensitive is the successful operation of the sequester to the precise factor 4 in

Eq. (2.3b)? If it is replaced by 4(1 + α), the analogue of the sequestered Einstein equa-

tion (2.9) becomes

M2
PGµν = α

1 + α
λ4Λ̃IRgµν + τµν

− 1
4(1 + α)〈〈τ

µ
µ〉〉gµν + ΛUVgµν .

(2.12)

As expected, there is now incomplete cancellation of ΛIR. To estimate the magnitude of

the residual cosmological term requires a numerical estimate for λ. In a finite universe,

Eq. (2.3a) yields

λ ∼ σ′Hage
µ

. (2.13)

The mass scale Hage was introduced in Ref. Kaloper and Padilla (2014b) and specifies the

lifetime of the universe. This roughly determines the spacetime volume,

1
H4

age
∼
∫

d4x
√
−g. (2.14)

Clearly Hage < H0 ∼ 10−33 eV.

Ref. Kaloper and Padilla (2014b) suggested that σ should be engineered to obtain

λ = O(1). In this case, the effective gravitating cosmological constant is roughly αΛIR ∼

αΛ̃IR ∼ αm̃4
t , assuming |α| � 1. With these estimates, |α| must inherit the tuning to

56 decimal places that was previously required for the combination ΛUV + ΛIR. If λ

is made smaller then α can be relaxed accordingly, but this scenario encounters other

difficulties Kaloper and Padilla (2014b).

Extensive corrections to the Λ coupling.—Let us now estimate the model-independent

corrections to the extensive coupling −ΛV , where V =
∫

d4x
√
−g.

First, consider the two-loop correction that appears in the left-hand diagram of Fig. 2.1.

Regarded as a contribution to the quantum effective action, this contains a single insertion

of a Λ vertex which is “bridged” to a pure Standard Model loop by a pair of spin-2
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excitations. 26 This diagram is part of a larger class of diagrams, represented by the

right-hand part of Fig. 2.1, in which an arbitrary number of Λ insertions are bridged to a

Standard Model sub-diagram (of arbitrary complexity) by graviton lines.

(These diagrams are not the only sources of renormalization for the Λ coupling. We

could equally well consider diagrams in which the Λ insertions are embedded within the

Standard Model sub-diagram. For our purpose, it suffices to consider only a sub-class of

possible renormalizations.)

According to the analysis given above, the λ dependence of this Standard Model sub-

diagram can be computed from Eq. (2.10). This time we are not amputating external

lines, so the scaling is λDsub where Dsub = −Eb − 3Ef/2. Because the sub-diagram

connects to the ring of Λ insertions via graviton lines (which do not scale with λ) we have

Eb = Ef = 0. Meanwhile, counting the number of Λ insertions and a factor M−2
P for

each graviton propagator, we conclude that such a diagram produces an operator O in the

quantum effective action of the form

On = cn
(2π)4(L+1)M

4
SM

Λ
M4

P

(
Λ

M2
PM

2
SM

)n−1

= cn
(2π)4(L+1) ΛnM−2(n+1)

P M6−2n
SM ,

(2.15)

where L counts the number of loops in the Standard Model sub-diagram and cn is a

Wilson coefficient that can be taken to be of order unity. The scale MSM represents

a typical Standard Model mass. After replacing MSM by its experimentally-measurable

counterpart M̃SM ∼ TeV, it follows that O scales like λ6−2n.

To validate Eq. (2.15) we have evaluated the explicit two-loop diagram given in the left-

hand part of Fig. 2.1, for which n = 1. Using dimensional regularization as the ultraviolet

regulator, this yields the expected scaling

O1 = c1
(2π)8

λ4M̃4
SM

M4
P

Λ. (2.16)

The factor (2π)−8 is included from the measure on the loop integrals. Eq. (2.16) will be

the leading correction provided |Λ| . (MPMSM)2. This will generally be the case where

Λ is dynamically constrained to sequester a loop contribution of order M4
SM. The field

26Some details of the calculation of this diagram’s amplitude can be found, in Appendix A
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equations corrected by O1 are

(1− λ4ε) σ′

(λµ)4 =
∫

d4x
√
−g, (2.17a)

4(1 + λ4ε) Λ
(λµ)4σ

′ =
∫

d4x
√
−g Tµµ, (2.17b)

M2
PGµν = Tµν − (1 + λ4ε)Λgµν + ΛUVgµν , (2.17c)

where ε ≡ (2π)−8c1(M̃SM/MP)4 � 1 and we have dropped terms of O(ε2). After elimin-

ating Λ, the Einstein equation can be written, still up to O(ε) [cf. (2.12)],

M2
PGµν =

(
(λ4ε)ΛIR + ΛUV

)
gab + τµν −

1
4〈〈τ

ρ
ρ〉〉. (2.18)

We have omitted O(ε) corrections if they merely perturb existing terms of order unity. The

conclusion is that O1 corrects Eqs. (2.17a)–(2.17b) differently, and therefore renormalizes

the relative factor 4 between their left-hand sides.

As in the analysis leading to Eq. (2.12), this O1-corrected factor no longer cancels the

exact 4 coming from δµµ, leaving a residual loop term in Eq. (2.18). This outcome is

practically inevitable. In this formulation of the sequester, one is attempting to balance

a protected topological quantity δµµ against the properties of a class of unprotected Lag-

rangian operators. One is immune from ultraviolet effects but the other is not, making

the balance extremely delicate.

Size of residual loop-level term.—How significant is this effect? Taking λ of order unity

and M̃SM of order 1 TeV makes ε of order 10−68, or possibly as large as 10−62 if we omit the

loop-counting factor (2π)−8 on the assumption it is partially cancelled by combinatorial

factors. Meanwhile if Λ̃IR is also of order 1 TeV then the residual loop-sourced cosmological

term in (2.18) is of order (10−4 eV)4 to (10−5 eV)4, or (10−4 eV)4 to (10−3 eV)4 if the loop-

counting factor is omitted. This is on the boundary of being acceptable given current

observational constraints.

The outcome is that whether the Einstein-frame model can survive ultraviolet correc-

tions to the extensive coupling is model-dependent. Assuming the sequestered sector to

be the Standard Model gives a barely acceptable phenomenology, with success or failure

largely dependent on whether λ is larger or smaller than unity.

Alternatively, if the sequestered sector contains particles that are heavier than the

Standard Model—for example, perhaps from a higher-lying supersymmetric sector—then

the model is unlikely to survive unless λ is significantly smaller than unity. If the heaviest

sequestered mass scale is even 10 TeV then the residual cosmological constant is already

in excess of the observed value.



35
1

Λ

Λ
Λ

Λ

Λ
Λ

Λ

n insertions

Figure 2.1: Loops renormalizing the coupling of Λ to the spacetime volume. Left: loop

with single insertion of Λ vertex, represented by the open circle. Wiggly lines represent

spin-2 excitations of the metric gµν ; solid lines represent Standard Model fields. This

diagram renormalizes the coefficient of Λ in σ. Right: loop containing n insertions of Λ.

This diagram renormalizes the coefficient of Λn in σ. The shaded circle represents any

Standard Model sub-diagram. The left-hand diagram is a particularly simple example of

the class represented by the right-hand diagram.

Figure 2.2: Diagrams contributing to renormalization of the cosmological constant in the

Einstein frame. Solid lines represent generic Standard Model particles, and wiggly lines

represent spin-2 excitations of the metric gµν . Left: pure Standard Model loop. This

diagram scales like λ4 when expressed in terms of experimentally-measured mass scales,

and is captured by the sequester. Right: mixed Standard Model and graviton loop.

Because the Einstein-frame graviton propagator is proportional to the hard scale M−2
P ,

this diagram must scale like λ6 rather than λ4. As explained in the main text, this implies

it is not captured by the sequester in Einstein frame.
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2.3 Jordan frame model

2.3.1 Graviton loop corrections

The radiative corrections described in §2.2.3 above involved loop diagrams containing vir-

tual Einstein-frame gravitons that dress the Λ coupling to the spacetime volume. There is

a further class of diagrams of this type that are significant in the Einstein frame. These are

loop diagrams containing virtual gravitons that contribute to the low-energy cosmological

constant. As explained in Ref. Kaloper and Padilla (2017), and as we will review below,

these contributions escape the sequester.

Consider the left-hand diagram of Fig. 2.2, which is a loop diagram containing only

matter fields. As explained in the discussion leading to Eq. (2.11), this diagram has

Eb = Ef = 0 external lines and therefore scales like λ0 multiplied by M4
SM. Expressed in

terms of the mass measured in a homogeneous gravitational field this is ∝ λ4M̃SM.

Diagrams containing virtual gravitons.—Now consider the right-hand diagram of Fig. 2.2.

In addition to matter fields (represented by the solid lines), this contains an internal

graviton (represented by the wiggly line). Each graviton propagator is proportional to the

fixed Planck scale M−2
P with no conformal rescaling. It follows on dimensional grounds

that a renormalization of the cosmological term with zero external lines, any number of

internal matter lines, and ng internal graviton lines, will scale asM4+2ng
SM /M

2ng
P ∝ λ4+2ng .27

If ng 6= 0 these diagrams do not preserve the λ dependence of Eq. (2.1) Kaloper and Padilla

(2017).

2.3.2 Jordan-frame formulation

To solve this, Ref. Kaloper and Padilla (2017) proposed an alternative description of the

sequester that we review below. It is based on28 a reformulation of Eq. (2.1) in the

Jordan frame Kaloper et al. (2016b). We wish to analyse the ultraviolet properties of this

formulation separately, so we discuss it here before going on to consider the problem of

capturing diagrams containing virtual gravitons.

In Eq. (2.1) the gravitational action is built from gµν , but matter couples to g̃µν . The

conformal factor between gµν and g̃µν adjusts the importance of the matter action Lm

relative to the fixed Einstein term R(g). Alternatively, one can build the action solely
27Such scalings are possibly modified by powers of logarithms, but we drop these unless they are dom-

inant.
28“based on” is an important qualification here, as it is not simply a change of frame that is needed to

get from one theory to the other a second flux is also needed to lead to the σ̂ term.
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from the Jordan-frame metric, leaving the relative importance of the Einstein term as a

free parameter,

S =
∫

d4x
√
−g
(
κ2

2 R− Λ + ΛUV − Lm

)

+ σ
( Λ
µ4

)
+ σ̂

( κ2

M2
P

)
.

(2.19)

This is the Jordan-frame formulation of the sequester. The gravitational coupling is set

by κ, which is related to MP by the global term σ̂. As with σ, this should be a smooth

function of its argument and is assumed to be produced by integration of a second flux,∫
F̂4. The Einstein frame metric gµν does not appear.

Sequestration of low-energy loops.—The field equations that follow from (2.19) are

κ2Gµν = Tµν −
(
Λ− ΛUV

)
gµν , (2.20a)

1
µ4σ

′
( Λ
µ4

)
=
∫

d4x
√
−g, (2.20b)

1
M2

P
σ̂′
( κ2

M2
P

)
= −

∫
d4x
√
−g R2 . (2.20c)

Using the definition of spacetime average 〈〈· · ·〉〉 given in §2.2.2, Eqs. (2.20b)–(2.20c) require

〈〈R〉〉 = −2 µ
4

M2
P

σ̂′

σ′
. (2.21)

Meanwhile, tracing the Einstein equation (2.20a) and taking the spacetime average, we

find

〈〈R〉〉 = − 1
κ2 [〈〈Tµµ〉〉 − 4(Λ− ΛUV)] . (2.22)

Eqs. (2.21) and (2.22) must hold simultaneously, and therefore

Λ− ΛUV = 1
4〈〈T

µ
µ〉〉 −

µ4

2
κ2

M2
P

σ̂′

σ′
. (2.23)

Finally, we replace Λ in the Einstein equation to obtain

κ2Gµν = Tµν −
1
4〈〈T

µ
µ〉〉+ µ4

2
κ2

M2
P

σ̂′

σ′
gµν . (2.24)

Relation between the Einstein and Jordan frame.—The Einstein and Jordan frame for-

mulations are related by a change of frame, and therefore must presumably be regarded

as equivalent. This equivalence holds even up to quantum corrections provided one is

sufficiently careful to include contributions from the transformation Jacobian; see, e.g.

Ref. Brax et al. (2011). The key issue to be addressed is how ultraviolet modes enter each

formulation, to be discussed in §2.2.3.
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Before doing so, we enumerate the principal differences between the sequester phe-

nomenology in Einstein frame and Jordan frame. First, in Jordan frame, not only the

low-energy loop contribution ΛIR is sequestered, but also the ultraviolet part ΛUV. This

happens because both sources for the cosmological term now couple to the Jordan-frame

metric. The distinction between them is therefore arbitrary at the level of the Einstein

equation. We will see below that this emerges from a more general conclusion, that fluctu-

ations coupling to the Jordan-frame metric (including gravitons) are sequestered, whereas

fluctuations coupling to the Einstein-frame metric are not.

Second, the critical factor of 1/4 in the combination Tµν − 〈〈Tµµ〉〉/4 is not ultraviolet

sensitive. In particular, it is no longer produced by balancing a topological invariant

against the properties of a particular group of Lagrangian operators. Instead, the factor

of 1/4 in Eqs. (2.20b) and (2.24) is also produced by a trace. Therefore it is not corrected

by extensive renormalizations of the coupling of Λ to spacetime. We will consider below

what is the effect of these renormalizations in the Jordan frame.

Third, the Jordan frame formulation generates a residual cosmological-like term. This

is the last term in (2.24). Assuming κ2 ∼ M2
P and σ′ ∼ σ̂′ ∼ O(1), it yields a residual

cosmological constant of order µ4. Ref. Kaloper and Padilla (2017) argued that this

contribution is at least radiatively stable because it arises from the intensive term σ,

which does not couple either to gab or the matter fields in Lm. It is therefore uncorrected

by matter and graviton loops. On the other hand, depending on its origin, σ might be

susceptible to other loop corrections associated with unknown mass scales. If so, µ must

apparently be associated with the lowest of these scales, because it is the most relevant

terms involving Λ that dominate Eq. (2.22). (However, it should be remembered that µ

does not have a precise meaning until we specify the typical size of Taylor coefficients in

σ.)

This does not preclude the possibility that µ could typically be large. As with the

cosmological constant itself this need not be fatal for the model, because we can always

suppose that the renormalized value of µ is lower than its natural scale. If we choose to

do so, however, then presumably we encounter a new naturalness problem in the Λ sector.

In particular, Λ must become relevant at a very low energy scale ∼ (10−3 eV)4 to avoid an

unwanted large contribution.

At the level of the effective theory (2.19) there is nothing further that can be said

to set our expectations about the typical size of µ. To do so would require a detailed

microscopic theory of the fluxes and how they are sourced. Such a theory could be used to
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compute corrections to the functions σ and σ̂. In this connection, see Refs. Padilla (2019);

El-Menoufi et al. (2019).

2.3.3 Ultraviolet dependence in Jordan frame

In Eq. (2.19) there will be extensive renormalizations of the coupling of κ and Λ to space-

time. Note that Λ couples to the spacetime volume, whereas κ2 couples to the integrated

curvature
∫

d4x
√
−g R. Renormalizations of the Λ coupling were considered above and

are unchanged in this theory. Renormalization of the κ coupling will arise from diagrams

analogous to those of Fig. 2.1, but with insertions of κ2R rather than Λ. (As before, the

class of diagrams shown on the right-hand side of Fig. 2.1 does not exhaust the contri-

butions at a given order in κ2R, but they provide a representative class that is simple to

study.) The leading effects can be summarized by the replacements

κ2

2 R→
κ2

2 (1 + αε)R, (2.25a)

Λ→ (1 + βε)Λ (2.25b)

where α and β are O(1) Wilson coefficients, and ε is defined by

ε ≡ 1
(2π)8

M4
SM
κ4 � 1. (2.26)

To account for renormalizations of the low-energy cosmological constant from diagrams

including virtual gravitons, as in the right-hand diagram of Fig. 2.2, we include a repres-

entative term γM6
SM/κ

2 in Lm, where γ is another O(1) coefficient. A contribution of this

form will be generated by diagrams such as the right-hand side of Fig. 2.2 containing a

single internal graviton line. It would typically be accompanied by contributions of higher

order in κ−2 from diagrams containing two or more internal graviton lines, but if the scale

MSM of the sequestered sector is far below the Planck scale then the one-graviton diagram

will be dominant. Notice that this term will contribute to the κ field equation. This is the

origin of the mismatch that allows such contributions to escape complete sequestration.

After a short calculation, it follows that the effective Einstein equation in this model

can be written, up to O(ε),

κ2Gµν = (1− αε)Tµν −
(
1− (α+ β)ε

)〈〈T ρρ〉〉
4 gµν

+ βεΛUVgµν −
γ

2
M6

SM
κ2 gµν

+ µ4

2
κ2

M2
P

σ̂′

σ′
(1 + αε)gµν .

(2.27)
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We can identify a number of effects. First, dressing of the κ2 coupling (proportional to

α) can be absorbed into a redefinition of the Planck scale. It does not cause de-tuning of

the sequester. By comparison, we cannot simply absorb (2.25b) into a redefinition of Λ

because of its κ dependence.

Second, dressing of the Λ coupling (proportional to β) is again responsible for break-

ing complete cancellation of the low-energy cosmological contribution between Tµν and

〈〈Tµµ〉〉/4. The residual cosmological constant will be of order εΛIR ∼ εM4
SM and therefore

of a similar size to the estimates for the Einstein frame given at the end of §2.2.3. For

numerical values we refer to the discussion given there.

Third, the Λ dressing also causes inexact cancellation of the ultraviolet part ΛUV. The

leftover piece has exactly the same structure as the left-over low energy loop contribution

in Tµν , again because there is no distinction between these terms at the level of the Einstein

equation. In the remainder of this paper we shall drop explicit dependence on ΛUV and

include its contribution in Lm if required. Finally, we clearly see the contribution of the

right-hand diagram in Fig. 2.2; this produces the term proportional to γM6
SM/κ

2 Kaloper

and Padilla (2017).

2.3.4 Sequestering the graviton loops

Kaloper et al. observed that the troublesome γ term appears in Eq. (2.27) as a consequence

of its appearance in the κ field equation Kaloper and Padilla (2017). If it could be

removed from this field equation then terms of any order in κ−2 contained in Tµν would

be sequestered as part of the usual cancellation between Tµν and 〈〈Tµµ〉〉/4, at least in the

absence of renormalizations to the Λ coupling to the volume of spacetime.

In turn, graviton-loop contributions to the low-energy cosmological term contribute to

the κ field equation only because the graviton propagator carries a normalization of κ−2.

To decouple these contributions Kaloper et al. proposed the following formulation (which

they described as ‘omnia sequestra’) Kaloper and Padilla (2017); Coltman et al. (2019)

S =
∫

d4x
√
−g
(
M2

P
2 R+ θRGB − Λ− Lm

)

+ σ

( Λ
µ4

)
+ σ̂(θ).

(2.28)

Recall that we are now absorbing ΛUV, if present, into Lm. The normalization of the

Einstein term reverts to the fixed Planck scale MP. Meanwhile we introduce the Gauss–

Bonnet density RGB coupled to a rigid scalar θ that replaces κ. The Gauss–Bonnet density
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is defined by

RGB ≡ R2 − 4RµνRµν +RµνρσRµνρσ. (2.29)

In four dimensions its integral is proportional to a topological invariant, the Euler char-

acteristic χ(M) of the manifold M . Because it is topological (it integrates to a boundary

term), it follows that RGB does not modify the form of the graviton propagator or its

self-interaction vertices. The conclusion is that each internal graviton line scales like M−2
P

and carries no θ dependence. Operators in the quantum effective action that are built

from diagrams containing such lines do not perturb the field equation for θ.

Further, because of its topological character, the coefficient of the Gauss–Bonnet dens-

ity is not renormalized. At the level of Feynman diagrams this follows because θ does not

contribute to graviton vertices. Therefore there is no analogue of the diagrams in Fig. 2.1

for RGB. For the same reason, quantum corrections do not introduce θ-dependence in Lm

at any order in the loop expansion.

The coupling of Λ to the spacetime volume will still be dressed by graviton loops,

yielding Eq. (2.25b) with the replacement κ2 → M2
P in ε. However, unlike Eqs. (2.25b)

and (2.26), there is now no obstruction to absorbing the loop correction into a redefinition

of Λ. Accordingly we do not expect de-tuning of the sequester in this case.

To verify this expectation consider the field equations following from (2.28) with the

leading loop correction to the Λ coupling included,

M2
PGµν = Tµν − (1 + αε)Λgµν , (2.30a)
σ′

µ4 = (1 + αε)
∫

d4x
√
−g (2.30b)

σ̂′ = −
∫

d4x
√
−g RGB (2.30c)

From Eqs. (2.30b)–(2.30c) we conclude

σ̂′

σ′
µ4 = −(1− αε)〈〈RGB〉〉. (2.31)

Because the Gauss–Bonnet density integrates to the Euler characteristic, up to a numerical

factor, this is a relatively stringent condition on µ. Assuming the derivatives σ′ and σ̂′ are

order unity29 it roughly requires µ ∼ Hage, where Hage is the quantity defined in (2.14).

See also Ref. Coltman et al. (2019).

Meanwhile, the trace of the Einstein equations requires

R = 4
M2

P
(1 + αε)Λ− 1

M2
P
Tµµ. (2.32)

29In our presentation, we are absorbing the integrated fluxes
∫
F4,

∫
F̂4 into the definition of σ, σ̂. If

these factors are large they may modify conclusions based on dimensional analysis of (2.31).
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As in the analyses given above, taking the spacetime expectation of this formula gives an

expression for Λ in terms of 〈〈R〉〉 and 〈〈Tµµ〉〉. This expression should be used to eliminate

Λ from the Einstein equation. Finally, expressing 〈〈R〉〉 in terms of 〈〈RGB〉〉 yields

M2
PGµν = Tµν −

1
4〈〈T

ρ
ρ〉〉gµν − Lgµν , (2.33)

where L is defined by (cf. Eqs. (11)–(12) of Ref. Kaloper and Padilla (2017))

L2 = 3
8M

4
P

(
〈〈RGB〉〉 − 〈〈W 2〉〉+ 2

M2
P
〈〈(Tµν − Tgµν/4)2〉〉

− 1
6M4

P

[
〈〈T 2〉〉 − 〈〈T 〉〉2

])
,

(2.34)

where T = T ρρ and Wµνρσ is the Weyl tensor derived from gµν . This is exactly the

result derived in Ref. Kaloper and Padilla (2017). As expected, dressing of the Λ coupling

has no effect at the level of the effective Einstein equation. We conclude that extensive

renormalizations of the coupling between Λ and the spacetime volume do not de-tune

sequestration in the formulation (2.28).

2.4 Conclusions

In this paper we have studied a class of radiative corrections to the sequester model

proposed by Kaloper, Padilla and collaborators. Although the corrections we compute

have previously been recognized, their effect has not been studied explicitly. The class

of diagrams we study renormalize the couplings between the “rigid” scalar fields that are

characteristic of the sequester scenario, and infrared properties of the spacetime such as

its volume and integrated curvature.

In both the Einstein and Jordan frame formulations (given by Eqs. (2.1) and (2.19)

in our notation), we find that these renormalizations disrupt complete sequestration of

low-energy loop contributions. If the sequestered sector is the Standard Model, we find

that these corrections very nearly produce an unacceptable cosmological term in excess

of the observed value Λ ∼ (10−3 eV)4. Whether or not a particular realization of the

scenario yields an acceptable phenomenology then depends on how the global function σ

is engineered (and likewise for σ̂ in the Jordan-frame formulation).

Alternatively, if the sequestered sector contains higher mass particles such as supersym-

metric partners with masses in excess of 10 TeV, the residual cosmological term is likely to

be fatal. The situation could possibly be saved if physical scales are significantly rescaled

in the effective Einstein frame metric. This is easiest to see in the explicit Einstein-frame
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description, where masses are rescaled by the conformal factor λ. We can possibly arrange

for this rescaling λ to be small, but such scenarios encounter other difficulties Kaloper and

Padilla (2014b).

The simpler formulations of the sequester (those that do not invoke the Gauss–Bonnet

density) are already known to “fail” in the sense that they do not capture contributions

to the vacuum energy from diagrams that contain virtual gravitons. Although the renor-

malizations we have computed are related to these known failure modes, they are not

the same. In most models the loop terms we compute are likely to be somewhat smal-

ler, since the leading contribution involves two virtual gravitons and therefore scale as

(MSM/MP)4. This should be compared to a single-graviton loop scaling as (MSM/MP)2

as in the left-hand diagram of Fig. 2.2.

We find that these renormalizations do not affect the most developed formulation of

the sequester, given by Eq. (2.28) in our notation. In this formulation, dressing of the Λ

interaction can be absorbed into a redefinition of Λ itself and is therefore harmless.

Whether or not one finds the sequester a plausible solution to the naturalness prob-

lem of the cosmological constant depends on whether we are prepared to accept its key

ingredient—the introduction of non-gravitating sectors in the action that are shielded from

gravity: they do not source gravitational fields, and they do not interact with gravitons.

For related models utilising a similar premise see Refs. Oda (2017b); Carroll and Remmen

(2017); Sobral-Blanco and Lombriser (2020); Bordin et al. (2020). This is the cost of entry

for all versions of the sequester scenario. Once accepted, it is only necessary to arrange

for the large low-energy loop contribution to be ‘stored’ in these non-gravitating sectors.

At the level of the effective actions used in this paper there is little more that can be

said. In particular, we have not been able to apply “naturalness” arguments to the non-

gravitating functions σ and σ̂, because to do so would require specification of a microscopic

theory that describes the fluxes F4, F̂4 that project out local degrees of freedom from the

rigid fields Λ, κ and θ (depending on the formulation in use). These non-gravitating sectors

are the final repository for sequestered vacuum energy. If it is possible to build models in

which these sectors have their own microscopic description, it would be very interesting

to apply naturalness criteria to the model as a whole.
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Chapter 3

Introduction to dynamical dark

energy and alternative couplings

A large variety of dark energy and modified gravity models have been proposed to ac-

count for the present day accelerated expansion of the Universe (generally assuming all

contributions to the cosmological constant are zero). Horndeski theory provides us with a

useful tool to study this large theory space. In this section, we will first outline Horndeski

theory, before discussing alternative couplings in the context of Horndeski theory.

3.1 Horndeski theories

In this subsection we outline the properties of Horndeski theories Horndeski (1974).

Horndeski theory is the most general theory of gravity in four dimensions whose Lag-

rangian is constructed out of the metric tensor and a scalar field and leads to second

order equations of motion and has no Ostrogradsky ghosts30. Horndeski theory provides

a general framework that applies to most of the higher derivative scalar dark energy the-

ories such as Galileons Nicolis et al. (2009), chameleons Khoury and Weltman (2004b,a),

quintessence Ratra and Peebles (1988); Caldwell et al. (1998), k-essence Armendariz-Picon

et al. (2000, 2001) and fab-4 Charmousis et al. (2012a,b); Copeland et al. (2012).

The Horndeski action (in its contemporary formulation) could also be referred to as

30The Ostrogradsky theorem states that any physical system with equations of motion having derivat-

ive order greater than two suffer from the linear instability, provided that the system is non-degenerate

Ostrogradsky (1850). For a pedagogical explanation see Section 1.3 of Kobayashi (2019). It should be

emphasized that the second-order (and no higher) equations of motion are not the necessary conditions

for the absence of Ostrogradsky ghosts in theories with multiple fields, see Section 4 in Kobayashi (2019)

for a review of beyond Horndeski theories.
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the action of the four-dimensional generalized Galileon,

S [gµν , φ] =
∫

d4x
√
−g

[ 5∑
i=2

1
8πGN

Li [gµν , φ] + Lm [gµν , ψM ]
]
, (3.1)

with the Li parameters being,

L2 = G2(φ,X)

L3 = G3(φ,X)2φ

L4 = G4(φ,X)R+G4,X(φ,X)
[
(2φ)2 − φ;µνφ

;µν
]

L5 = G5(φ,X)Gµνφ;µν − 1
6G5,X(φ,X)

[
(2φ)3 + 2φν;µφα;νφµ;α − 3φ;µνφ

;µν2φ
]
. (3.2)

In general the factors G2 to G5 can be arbitrary functions of the scalar field φ and its

linear kinetic term X = −(1/2)gµν∇µφ∇νφ. L4 and L5, are strongly constrained by the

direct measurement of the speed of gravitational waves following GW170817, Lombriser

and Taylor (2016); Bettoni et al. (2017); Creminelli and Vernizzi (2017a); Sakstein and

Jain (2017a); Ezquiaga and Zumalacárregui (2017).

In the discussion above we have described the generalised Galileon, synonymous with

Horndeski theory. Looking more closely at the G4 term, if the coupling G4(φ,X) is

independent of φ, this corresponds to the covariant Galileon theory that respects the

Galilean symmetry, ∂µφ→ ∂µφ+ bµ in Minkowski spacetime Nicolis et al. (2009).

3.2 Screening

A scalar field theory as dark energy modifies gravity on cosmological scales. However, the

extra force mediated by the scalar degree of freedom φ must be “screened” on small scales

(such as within the solar system) where general relativity has been tested to high precision.

Three groups of the screening mechanisms have been proposed they occur when:

• φ is effectively massive in the vicinity of a source. This means that in terrestrial

experiments, the large mass of the field suppresses its interaction with matter. More

precisely the effective potential for φ depends on the local energy density through

the coupling of φ to matter. This is known as the chameleon screening mechanism

Khoury and Weltman (2004b,a).

• φ is effectively weakly coupled to the source by making the non-linear kinetic term

X2φ large. This is Vainshtein screening Vainshtein (1972); Deffayet et al. (2002);

Babichev and Deffayet (2013).
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• The coupling of φ to matter is effectively suppressed by making the linear kinetic

term X large. This is called symmetron screening Hinterbichler and Khoury (2010);

Hinterbichler et al. (2011) or k-mouflage Babichev et al. (2009).

The Vainshtein mechanism is relevant to the Galileon theories, and below we will review

this screening mechanism in the context of a cubic Galileon φ minimally coupled to gravity.

Beginning with the action,

S =
∫
d4x
√
−g

(
M2

P
2 R− 1

2g
µν∂µφ∂νφ−

c3
Λ3

3
2φgµν∂µφ∂νφ

)
, (3.3)

where Λ3 is a constant with dimensions of mass and c3 is a dimensionless constant. Varying

this action with respect to the field φ gives the equations of motion for φ,

0 = 2φ+ 2c3
Λ3

3

[
−∇β∇νφ∇β∇νφ+ (2φ)2 + [∇ν ,∇α]∇αφ∇νφ

]
. (3.4)

It is convenient to use the commutation relation for covariant derivatives to write the final

term as Rµν∂µφ∂νφ because we know that the curvature must be zero in a flat spacetime.

We will now assume that the scalar field changes only radially φ = φ(r) and we will

specify to the Minkowski metric in polar coordinates,

ds2 = −dt2 + dr2 + r2
(
dθ2 + sin2 θdϕ2

)
. (3.5)

Working in this metric and integrating (to turn the second order ODE into a first order

ODE) the equation of motion gives,

0 = 4c3
Λ3

3

(
φ′

r

)2
+
(
φ′

r

)
− cr−3 (3.6)

where we have used ′ to denote a derivative with respect to r. c is a constant of integration,

normally determined by boundary conditions. We will leave c undetermined here as it does

not change the illustration. We now solve for φ′ using the quadratic formula,

φ′ = −rΛ
3
3

8c3
± Λ3/2

3
8c3

√
16c3c

r
+ r2Λ3

3. (3.7)

From this expression, one notices that in the limit of large c3 (keeping all other quantities

fixed) φ′ scales like 1/c1/2
3

31. Therefore, we can write (taking the positive square root

above),

φ′ =
(

Λ3
3c

4rc3

)1/2

− Λ3
3r

8c3
+
(

Λ9
3r

5

212cc3
3

)1/2

+O
(
c−2

3

)
. (3.8)

31Substituting the scalar field solution into the Einstein equations, the Galileon contributions are sup-

pressed by powers of 1/c3, hence they can be neglected in the large c3 limit. This suggests that we can

analyse this system, in the large c3 limit, by a perturbative expansion in powers of 1/c3.
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The first term (which scales with r−1/2) in the expansion arises from the nonlinear kinetic

term. The second term (which scales with −r) in the expansion arises from the linear

kinetic term. If we are to use a Galileon scalar field as the dark energy, it must also

respect observations on small scales. We previously described the Vainshtein mechanism

as a suppression of the coupling to matter, occurring when the non-linear kinetic term is

dominant. Enforcing that the nonlinear kinetic term is dominant this leads to the following

inequality for r,

r3 <
16c3c

Λ3
3
, (3.9)

we will label the corresponding radius at the boundary of this inequality rV = (16c3c)1/3/Λ3.

This means that the fifth force mediated by the Galileon field is suppressed at length scales

smaller than rV. Therefore, one must tune the free parameters of the theory in such a

way that this radius rV is sufficiently large that the fifth force effects are not seen on small

scales, for example within the solar system.

The purpose of the Vainshtein screening in this example was to screen the fifth force

on short scales. One might also postulate that one could screen on cosmological time

scales. Imagine a universe where the dark energy is entirely described by cubic Galileons.

One could imagine tuning the coefficient of the nonlinear kinetic term c3Λ−3
3 in order to

achieve a cosmological Vainshtein solution; a screening which universally suppresses fifth

forces when the mean cosmological energy density is large, in order to achieve consistency

with measurements of the matter dominated universe Chow and Khoury (2009); Burrage

et al. (2017). We will revisit this idea in the next Chapter.

3.3 Couplings

Minimal couplings occur when scalar fields and other matter in the universe couple minim-

ally to the metric gµν . There are other ways in which species can couple to each other. We

have explored one of those ways already in Section 1.4, the conformal coupling. There is

another coupling worth examining, the disformal coupling. A conformally and disformally

coupled metric can be expressed as,

g̃µν = C(φ,X)gµν +D(φ,X)∂µφ∂νφ, (3.10)

where X is the standard kinetic term for the scalar field φ i.e. X ≡ −gµν∂µφ∂νφ/2. The

metric g̃µν is the most general metric that is a function of gµν , φ and its first derivatives
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and which respects causality and the weak equivalence principle 32 Bekenstein (1992).

It is important for us to define exactly what we mean by respecting causality. We define

it here as the metric formulation possessing well defined past and future light-cones. No

closed causal curves exist Bruneton (2007); Bonvin et al. (2007)33.

What does this metric mean physically? These transformations of the metric can

be thought of as stretching of the metric and therefore they change physical scales. A

purely conformal transformation, when D = 0 will stretch all spacetime dimensions the

same amount. A disformal transformation is a slightly harder to interpret physically it is

not really a scaling, since it is additive (it does not scale the metric that already exists,

but rather adds new pieces). When D 6= 0, this will appear as stretching the direction

of ∂αφ with a different factor from other directions. Shapes disform under disformal

transformations. This means that Maxwell’s equations are only invariant under Lorentz

transformations in this metric if D = 0.

These transformations given in Equation 3.10, preserve the form of the Horndeski

action. By this we mean that transforming a Horndeski action in this way simply changes

the form of the functions, but ultimately they correspond to a theory in the Horndeski

class Bettoni and Liberati (2013).

There is no reason to expect that a cubic Galileon does not conformally or disformally

couple. In Burrage et al. (2017) it was found that this cosmological Vainshtein screening

increases the allowable parameter space of the conformally coupled cubic Galileon. It

was found that the cosmological Vainshtein mechanism keeps the background close to

that of ΛCDM and suppresses Galileon forces until the energy density of the Universe is

sufficiently low. However, this did not save the cubic Galileon (acting as the sole source

of dark energy) being ruled out by integrated Sachs-Wolfe effect (ISW) observations Renk

et al. (2017).

3.4 Screening coupled Galileons

Returning to the idea of Galileon dark energy, and couplings. In Karwan et al. (2016) a

Galileon theory of gravity, where only the disformal coefficient is allowed to vary,

g̃µν = gµν +D(φ)∂µφ∂νφ, (3.11)
32A coupling of this kind does indeed break the strong equivalence principle, we state the differences

between the two equivalence principles in Subsection 1.1
33This is especially important to remember later in the thesis when we find that for a disformally coupled

cubic Galileon gravity travels faster than electromagnetic waves, without violating causality.
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is studied. It was found that for this theory, the Vainshtein mechanism is absent. In the

sense that the strength of the fifth force that is sourced by the disformally coupled Galileon

is not decoupled from matter on small scales. However, the Vainshtein mechanism is not

necessary for this theory. The fifth force is very weak compared to gravity, therefore this

theory closely mimics the Einstein theory of gravity at all scales inside the Hubble radius

without a screening mechanism.

A disformal coupling is very hard to constrain using cosmology. This is because the

disformal coupling is a derivative one, therefore the amplitude for φ exchange with a static,

non-relativistic source vanishes. The classical force generated between such sources must

therefore also vanish. The leading contribution to fifth-forces that result from disformally

coupled scalars is generated at one-loop level and is highly suppressed. This statement is

consistent with the results that we find in Chapter 4.
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Chapter 4

Constraints on a cubic Galileon

disformally coupled to Standard

Model matter

Abstract

We consider a disformal coupling between Standard Model matter and a cubic Galileon

scalar sector, assumed to be a relict of some other physics that solves the cosmological

constant problem rather than a solution in its own right. This allows the energy density

carried by the Galileon scalar to be sufficiently small that it evades stringent constraints

from the integrated Sachs–Wolfe effect, which otherwise rules out the cubic Galileon theory.

Although the model with disformal coupling does not exhibit screening, we show there is

a ‘screening-like’ phenomenon in which the energy density carried by the Galileon scalar is

suppressed during matter domination when the quadratic and cubic Galileon operators are

both relevant and the quadratic sector has a stable kinetic term. We obtain the explicit

3+1 form of Maxwell’s equations in the presence of the disformal coupling, and the wave

equations that govern electromagnetic waves. The disformal coupling is known to generate

a small mass that modifies their velocity of propagation. We use the WKB approximation

to study electromagnetic waves in this theory and show that, despite remarkable recent

constraints from the LIGO/Virgo observatories that restrict the difference in propagation

velocity between electromagnetic and gravitational radiation to roughly 1 part in 1015,

the disformal coupling is too weak to be constrained by events such as GW170817 or by

the dispersion of electromagnetic radiation at different wavelengths.
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4.1 Introduction

For some time, observational constraints on the Hubble rate (both direct and indirect)

have yielded strong evidence for a “dark energy” sector causing the expansion rate to

accelerate since redshift z ≈ 0.5. Despite significant effort, the nature of this sector

remains largely unknown. It may well imply new forces that effectively produce long-

range gravitational repulsion. If so, these forces necessarily couple to Standard Model

matter and therefore can be studied using a combination of terrestrial, astrophysical and

cosmological measurements. For a recent review, see Ref. Brax et al. (2020).

If one or more new forces are present, the minimal possibility is that they are mediated

by a scalar field. Even if this is not the case and the intermediate field transforms in a

higher-dimensional representation of the Lorentz group, each physical polarization will act

like a scalar field—but perhaps with restricted couplings determined by the representation.

By constraining the different ways that presently-undetected scalar fields can couple to the

Standard Model, we can hope to place indirect constraints on the unknown dark energy

sector.

Universal couplings.—To preserve the weak equivalence principle, any new scalar fields

should couple to all forms of matter in the same way. What are the possibilities? At

linear level, we can write two universal, diffeomorphism-invariant couplings for a scalar

field φ: first φT/M , where T = gµνTµν is the trace of the energy–momentum tensor

Tµν ≡ (−2/√−g)δSm/δg
µν , Sm is the matter action, and M is a mass scale characterizing

the strength of the force; and second (∂µφ∂νφ)Tµν/M4, with the same meanings for Tµν
and M .

We now wish to promote these interactions into a nonlinear completion. Note that if

the constituent species in Sm are to obey the weak equivalence principle then they should

couple to a single metric g̃µν , even if this is not the metric gµν used to construct the

gravitational sector. Then the nonlinear interaction must be Sm = Sm(g̃µν ,Ψ), where Ψ

stands schematically for the different species of matter fields and g̃µν is related to gµν by

a Bekenstein transformation Bekenstein (1992, 2004),

g̃µν = C(φ)gµν + D(φ)
M4
D

∂µφ∂νφ. (4.1)

We describe g̃µν as the “Jordan frame metric”. The C-term is a conformal transforma-

tion of gµν ; in contradistinction, the D-term is called disformal. To recover the linear

interactions written above we should expand the C- and D-functions in Taylor series,

C = 1 +φ/MC + · · · and D = 1 + · · · , and work to lowest order in 1/MC or 1/MD, as ap-
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propriate. There is no expectation that the mass scales characterizing the conformal and

disformal couplings will coincide. Bekenstein showed that this procedure yields the most

general interaction between φ and matter that respects causality and the weak equivalence

principle Bekenstein (1992).

Constraints on MD.—If MC and MD are sufficiently large, so that any new forces are weak,

then the linearized interactions will dominate. The linear conformal coupling φT/MC will

generate a number of complicated interactions, depending on the vertices already present

in Sm. Generically, however, any massive species appearing in Sm will become endowed

with a Yukawa interaction whose coupling constant depends on the particle mass m. It

follows that except for very light species, the φ-mediated force will be dominated at low

momentum transfer by Yukawa exchange, which yields a 1/r2 force law with exponential

cutoff e−mr. Such Yukawa forces are known to be highly constrained Adelberger et al.

(2003). It is now well understood that these unwanted forces can be “screened”, but only

at the cost of significant complication in the self-interactions of φ. In this paper we do not

consider the conformal sector any further.

The disformal coupling (∂µφ∂νφ)Tµν/M4
D is substantially harder to detect. Because it

is derivatively coupled, the amplitude for φ exchange with a static, non-relativistic source

vanishes. The classical force generated between such sources must therefore also vanish:

the leading contribution to such fifth-forces is generated at one-loop level and is highly

suppressed Kugo and Yoshioka (2001); Kaloper (2004); Brax and Burrage (2014).

Nevertheless, attempts have been made to constrain MD. The strongest of these come

from collider phenomenology. Kaloper gave the approximate lower bound MD & 200 GeV

based on unitarity of electron–positron annihilation at LEP Kaloper (2004). It was

later shown by Brax & Burrage that because of cancellations the cross-section for scalar-

mediated fermion annihilation has an energy dependence that differs from the estimate

used in Ref. Kaloper (2004). This yielded a weaker lower bound MD & 100 GeV from

monophoton searches at LHC Brax and Burrage (2014). Brax, Burrage & Englert went

on to consider oblique corrections, Z boson phenomenology, and monophoton, dilepton

and monojet events Brax et al. (2015). They concluded that the strongest constraints

came from monojet searches by the CMS collaboration during LHC Run 1, which yielded

the refined bound MD & 650 GeV. Currently, the strongest constraint comes from a ded-

icated ATLAS analysis using 37 fb−1 of LHC data collected in the period 2015–2016 at

centre-of-mass energy
√
s = 13 TeV. This yields MD & 1.2 TeV Aaboud et al. (2019).

Complementary but weaker constraints can be obtained from astrophysics and cosmo-
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logy. Brax et al. studied spectral distortions in the cosmic microwave background (CMB)

due to variations in the speed of light induced by the disformal coupling Brax et al. (2013).

Later, Burrage, Cespedes & Davis analysed constraints from the power spectrum of CMB

anisotropies in a specific scalar model with “quartic Galileon” self-interactions Burrage

et al. (2016). Also, Brax & Davis and Brax, Davis & Kuntz derived constraints from grav-

itational effects including perhihelion advance, Shapiro time delay, and inspiral of compact

objects Brax and Davis (2018); Brax et al. (2019).

Gravitational waves.—The advent of multi-messenger astronomy has changed this picture.

It is now possible to test theories of modified gravity using observations of gravitational

waves, which have been shown to yield extremely powerful constraints. In particular,

in 2017 the LIGO and VIRGO gravitational wave observatories detected radiation emit-

ted from the binary neutron star merger GW170817 Abbott et al. (2017d). Remark-

ably, this merger event could be associated with an electromagnetic counterpart which

was interpreted as a gamma-ray burst. Assuming the gravitational and electromagnetic

radiation was emitted at nearly the same time, the observed difference in arrival time

|∆t| = (1.74± 0.05) s over a path length ∼ 1015 s implies that the (averaged) propagation

speed of gravitational and electromagnetic waves over their common trajectory can differ

by no more than roughly 1 part in 1015.

Many authors have noted that disformal couplings modify the speed of propagation

of electromagnetic waves relative to gravitational waves. (We will rederive this important

result in §4.2.) Therefore, in principle, multi-messenger events such as GW170817 offer an

opportunity to place constraints on such couplings, even from a single incident. Indeed,

a large number of proposals for dark energy and modified gravity have been strongly

disfavoured based on GW170817 alone because they produce a time difference |∆t| that is

unacceptably large Ezquiaga and Zumalacárregui (2017); Creminelli and Vernizzi (2017b);

Baker et al. (2017); Langlois et al. (2018); Sakstein and Jain (2017b).

Leloup et al. applied these constraints to a “full” covariant Galileon model with dis-

formal couplings to matter Leloup et al. (2019). Similar constraints has previously been

obtained in the absence of disformal couplings by a number of authors Ezquiaga and Zu-

malacárregui (2017); Wang et al. (2017); Sakstein and Verner (2015). Galileons are scalar

field models with possibly higher-derivative kinetic terms that nevertheless yield second-

order field equations due to algebraic cancellations Nicolis et al. (2009). The model was

generalized to curved spacetime (“covariantized”) in Ref. Deffayet et al. (2009). There are

five possible Galileon operators that can appear in the Lagrangian, of which G1 is a linear
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potential and G2 is the ordinary kinetic term,

G1 = φ, (4.2a)

G2 = −1
2∇µφ∇

µφ ≡ X, (4.2b)

G3 = −2X2φ, (4.2c)

G4 = −2X
[
2(2φ)2 − 2∇µ∇νφ∇µ∇νφ+XR

]
, (4.2d)

G5 = −2X
[
(2φ)3 − 3(∇µ∇νφ∇µ∇νφ)2φ

+ 2∇µ∇νφ∇ν∇ρφ∇ρ∇µφ− 6Gνρ∇µ∇µ∇νφ∇ρφ
]
. (4.2e)

In these equations, ∇µ is the covariant derivative constructed from gµν .

Eqs. (4.2a)–(4.2e) are special cases of the operators studied by Horndeski Horndeski

(1974), restricted to satisfy a shift symmetry φ → φ + c at the level of the action.34

Note that G1 does not spoil this property (at least on a cosmological background) since

it transforms as a total derivative. The shift symmetry restricts the operators that can

be generated by quantum corrections, making the set G1 to G5 radiatively stable among

themselves. The “full” model studied by Leloup et al. includes all five operators. This is

sometimes described as a quintic model. By analogy, if we include all operators except G5

we have a quartic model. If we include all operators except G4 and G5 we have a cubic

model.

A cosmological background spontaneously breaks Lorentz invariance so that time trans-

lations t → t + c are no longer a manifest symmetry. On these backgrounds, G4 and G5

modify the speed of propagation of gravitational waves. The conclusion of Refs. Ezquiaga

and Zumalacárregui (2017); Wang et al. (2017); Sakstein and Verner (2015) was that

in Galileon models where φ sources late-time acceleration and is compatible with other

cosmological measurements, the time lag |∆t| between arrival of gravitational and electro-

magnetic radiation from GW170817 is much too large. Leloup et al. extended the same

conclusion to the quintic Galileon with disformal couplings Leloup et al. (2019).

Outline of this paper.—In this paper we pursue a different but related problem. The con-

clusions of Refs. Ezquiaga and Zumalacárregui (2017); Wang et al. (2017); Sakstein and

Verner (2015); Leloup et al. (2019) were driven by the need to switch on some contribution

from G4 and G5 in order to evade constraints from the integrated Sachs–Wolfe (“ISW”)
34The Galileon operators in fact exhibit symmetry under a larger Galilean group of transformations

φ→ φ+ c+ bµx
µ. This symmetry is softly broken in the covariantized model by terms of order 1/MP and

is therefore restored in the limit MP →∞ where gravity decouples. However, this larger symmetry group

is not important for the present discussion.
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effect Barreira et al. (2014); Brax et al. (2016). (If CMB–galaxy cross correlations meas-

uring the ISW effect are excluded, any self-accelerating Galileon model is typically able to

satisfy CMB, BAO and H0 constraints without tuning the coefficients of the Gi Renk et al.

(2017); Barreira et al. (2014).) In turn, the large ISW signal arises because the Galileon

field makes a large contribution to the Hubble rate.

This is not the only scenario in which one can imagine a Galileon scalar sector to

arise. For example, it may not happen that the energy density of the Galileon field is

itself responsible for sourcing late-time acceleration. Indeed, from one point of view such

models are hardly more interesting as a solution of the cosmological constant problem

than simply taking Λ4 ≈ (10−3 eV)4 and dispensing with a dynamical component. This

is because a self-accelerated Galileon scenario must usually take Λ4 = 0 at the outset,

which is no more justifiable than choosing (10−3 eV)4 unless we invoke some unknown

symmetry that would make Λ = 0 a fixed point. While we do not advocate this position

dogmatically, it is worth bearing in mind. One might be more willing to tolerate the choice

Λ = 0 required for a dynamical solution if it could naturally explain the scale 10−3 eV, or

the redshift associated with the onset of acceleration, but this does not seem to be the

case for Galileon scalars.

In this paper we do not assume that Galileon sector is associated with a solution to

the cosmological constant problem. It may arise as a vestige of other physics that is

associated with the solution, for example as the spin-0 polarization of a massive graviton

that somehow degravitates the vacuum. Alternatively it may have nothing to do with the

cosmological constant at all. In either case, our aim is to keep the Galileon a subdominant

contributor to the cosmological energy budget.

The question to be resolved is whether a disformal coupling can be ruled out based on

GW170817 alone (or similar measurements), even without modifications to the propaga-

tion velocity of gravitational waves from G4 and G5. Accordingly we take these operators

to be absent. As explained above, the resulting cubic model would be ruled out by meas-

urements of the integrated Sachs–Wolfe effect if its energy density were significant. But

provided it is subdominant, the model is cosmologically acceptable.35

We do not study the conformal interaction in this paper and therefore set the Beken-

stein C(φ)-function to unity. To go further, note that if the φ shift symmetry is unbroken

35The cubic Galileon model has a well-known instability causing its energy density to grow at late

times Chow and Khoury (2009). Ultimately this will set a limit on the period for which our model could

be a viable effective description. We will see in §4.3 that there are acceptable models for which the onset

of the instability has not yet occurred.
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then D(φ) = 1. Making this choice substantially simplifies the analysis, but still yields the

leading contribution unless the shift symmetry is strongly broken. (It is also possible that

higher-order terms in ∇µφ are generated by radiative corrections, but the usual argument

of effective field theory shows that these will be subdominant at low energy.)

Summary.—In §4.2 we derive Maxwell’s equations with the inclusion of a disformal coup-

ling. Parts of this analysis has already been given in Ref. Brax et al. (2013),36 but we

repeat them here in order to fix notation and make our account self-contained. Because

the disformal coupling is wavenumber-dependent, the resulting electrodynamic equations

can be regarded as conventional Maxwell theory in a dispersive medium. In §4.3 we dis-

cuss cosmological solutions of the disformally coupled scalar field. By solving the Maxwell

equations on this background we show that an evolving bundle of light rays propagat-

ing over cosmological distances is unstable, in principle, to decay into Galileon particles.

A similar “tired light” effect is well-known in theories of axions and axion-like particles,

including a dark energy “chameleon” with appropriate coupling Raffelt and Stodolsky

(1988); Csaki et al. (2002); Burrage (2008); Brax et al. (2012). Where the loss of photons

from the bundle is not catastrophic, there are two key observables. First, the propagation

velocity of electromagnetic waves differs from those of gravitational waves, as explained

above. Second, because the Maxwell equations on the scalar field background are dispers-

ive, such a bundle of light rays would disperse as it travels over cosmological distances.

We discuss both effects and use them to derive constraints on MD. Finally, we conclude

in §4.4.

Notation.—We use metric signature (−,+,+,+) and work in units where c = ~ = 1.

The reduced Planck mass is defined by M−2
P = 8πG with numerical value MP ≈ 2.435 ×

1018 GeV. The scalar field action is LGal ≡ c2G2 + c3G3/Λ3, where c2 and c3 are Wilson

coefficients that are expected to be of order unity, and Λ is an energy scale that determines

when the nonlinear operator G3 becomes important relative to G2. We describe G2 and G3

as the linear and nonlinear kinetic terms, respectively. In the remainder of this paper we

absorb c3 into Λ without loss of generality. Further, because there is a scaling symmetry in

the Galileon sector we must fix c2 in order to break the redundancy Barreira et al. (2014).

The role of c2 is therefore only to select whether the quadratic kinetic term is individually

stable or ghostlike, and by making a further scaling transformation we can always arrange

that c2 = ±1.

36The analysis given in this reference also assumes an axion-like coupling to the square of the electro-

magnetic field strength tensor, FabF ab, which we do not invoke.
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With these choices, on a cosmological background, the Lagrangian density specializes

to

LGal(φ) = c2
2 φ̇

2 + 1
Λ3 φ̈φ̇

2. (4.3)

4.2 Maxwell theory

In this section we derive Maxwell’s equations in the presence of a disformal coupling. A

version of this analysis was previously given using manifestly covariant methods by Brax

et al. Brax et al. (2013), who considered electrodynamics in the presence of a disformal

coupling together with an additional axion-like interaction with the Maxwell term. (For

example, an interaction of this form is known to arise under change of frame; see Ref. Brax

et al. (2011).) In comparison with the discussion there, our analysis does not include the

axion-like coupling. To make the physical content of the model as transparent as possible

we frame our discussion in terms of the Maxwell equations and the physical E and B

fields. We comment further on the relation between our calculations below.

4.2.1 Disformally-coupled electromagnetism

The action is

S =
∫

d4x
√
−g

[
M2

P
2 R− 2ΛC + LGal(φ)

]
+
∫

d4x
√
−g̃LSM(g̃µν ,Ψ), (4.4)

where LSM is the Standard Model Lagrangian density, and the remainder of the notation

matches that used in §4.1. In particular, g̃µν is the Jordan frame metric and Ψ continues

to stand schematically for the different species of Standard Model particles. Also, R =

R(g) is the Ricci scalar constructed from the ‘vanilla’ (Einstein frame) metric gµν and

ΛC ≈ (10−3 eV)4 is a cosmological constant that is assumed to drive the observed late-

time acceleration of the expansion a(t).

Eq. (4.4) could equivalently be written in the Jordan frame by exchanging R = R(g)

for R̃ = R̃(g̃), the Ricci scalar constructed from the Jordan-frame metric g̃. The disformal

coupling between φ and matter would then become manifest as a derivative coupling

between φ and G̃µν , where G̃µν = R̃µν − R̃g̃µν/2 is the ordinary Einstein tensor. This

approach was adopted in Ref. Leloup et al. (2019).

In this paper we focus on the Maxwell term in the Standard Model Lagrangian. In the

presence of a source 4-current Jµ = (ρ,J) this can be written

LEM√
−g

= −1
4FµνF

µν + JµAµ, (4.5)



58

where, as usual,

Fµν = ∇µAν −∇νAµ. (4.6)

The contravariant metric corresponding to g̃µν is [cf. Eq. (4.1) with C = 1]

g̃µν = gµν − ΛD∂µφ∂νφ. (4.7)

Like D, the scale ΛD has dimension [M−4]. It is conventionally written in terms of the

Einstein-frame kinetic energy for the scalar field X ≡ −gµν∂µφ∂νφ/2. Then it follows that

ΛD = M−4
D

1− 2XM−4
D

= M−4
D

1− φ̇2/M4
D

. (4.8)

The last equation applies only in the special case of a cosmological background, where φ

depends only on coordinate time t. In this equation and subsequently, an overdot denotes

a derivative with respect to t.

The integration measures√−g and
√
−g̃ have a well-known relation Bekenstein (2004);

Bettoni and Liberati (2013),
√
−g̃ = (1− 2XM−4

D )1/2√−g = (1− φ̇2/M4
D)1/2√−g. (4.9)

Moreover the Christoffel symbols are related by Bettoni and Liberati (2013)

Γ̃ρµν = Γρµν + ΛD∇ρφ∇µ∇νφ. (4.10)

These formulae allow us to exchange covariant derivatives ∇µ compatible with the metric

gµν for derivatives ∇̃µ compatible with g̃µν .

Variational principle.—To derive the Maxwell equations it is most convenient to write the

action in ‘Schwinger’ form. This is analogous to the Palatini formulation of Einstein grav-

ity, in which one takes the Ricci scalar R = R(Γ) to be constructed from the connection

Γ, but without any assumption regarding the relation between Γ and gµν . One then treats

Γ and gµν as independent fields. After variation with respect to Γ and gµν separately, de-

manding that bulk contributions vanish yields the Einstein equation whereas demanding

that boundary terms vanish requires ∇µ to be compatible with gµν . Therefore the Palat-

ini variational procedure also determines Γ via the fundamental theorem of Riemannian

geometry.

A similar approach due to Schwinger can be applied to the Maxwell Lagrangian.37 To

proceed, replace the Maxwell action (4.5) by

LEM√
−g

= −1
2(∇µAν −∇νAµ)Fµν + 1

4FµνF
µν + JµAµ. (4.11)

37See lecture 4 in the notes on quantum field theory by Ludwig Fadeev published in Ref. Deligne et al.

(1999).
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The field-strength tensor Fµν and the connection Aµ are to be regarded as independent,

making the Lagrangian density linear in derivatives as for the Palatini procedure. Variation

with respect to Fµν evidently reproduces the expected definition of the Maxwell tensor,

Eq. (4.6). Substitution of this result in (4.11) yields (4.5), and therefore we conclude that

both variational principles are equivalent.

We now introduce the distinction between gµν and g̃µν . Following the same procedure

that led to (4.11), we find

LEM[g̃, A, J ] =
√
−g̃
(
−1

2(∇̃µAν − ∇̃νAµ)F̃µν + 1
4 F̃µνF̃

µν
)

+
√
−g JµAµ, (4.12)

where ∇̃ is the covariant derivative constructed from the connection Γ̃ given in Eq. (4.10),

and F̃µν is the Maxwell tensor built from ∇̃ and the electromagnetic 4-potential Aµ.

Transformation of the source current.—We are free to express the theory in terms of

whatever frame is most convenient. In this section our aim is to obtain the Maxwell

equations for the Einstein-frame E and B fields. This is useful because eventually it is

the Einstein-frame metric gµν that will carry an FRW cosmology. The Hubble rate for

this metric will receive contributions from the Einstein-frame E and B fields, modified by

their interactions with the φ field.

For this purpose we require the Einstein frame 4-current Jµ = (ρ,J) appearing in

Eq. (4.12), whose time and space components are the charge density ρ and 3-current J

respectively. Although we are working in the Einstein frame, for practical purposes it is

convenient to express these in terms of the equivalent Jordan-frame quantities, because

it is these that would be measured by an experimentalist working in a small freely-falling

laboratory in which the influence of gravity and fifth-forces can be neglected. To determine

exactly how Aµ couples to these quantities we begin with the action for a Dirac spinor ψ

coupled to the Jordan-frame metric g̃µν ,∫
d4x LD =

∫
d4x

√
−g̃

[
−ψ̄ /Dψ + h.c.

]
, (4.13)

where /D ≡ γaẽ µ
a (∇̃µ − iqAµ) is the gauge- and diffeomorphism-covariant Dirac operator

for a spin-1/2 fermion of charge q, ẽ µ
a is a vierbein for g̃µν , and ψ̄ = ψ†γ0 is the adjoint

spinor to ψ. Greek indices µ, ν, . . . label tensor indices transforming under spacetime

coordinate diffeomorphisms, whereas Latin indices a, b, . . . label indices transforming

under the tangent space Lorentz group SO(1, 3). In particular, the vierbein satisfies

ẽ µ
a ẽ

aν = g̃µν and ẽ µ
a ẽbµ = ηab. (4.14)

Finally, the γa are Dirac matrices transforming under the tangent space Lorentz group.

They satisfy the usual Dirac algebra {γa, γb} = 2ηab1, where 1 denotes the identity matrix
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in the Dirac spinor representation. The action of the covariant derivative on a spinor can

be written

∇µψ = ∂µψ + 1
8ω

ab
µ γabψ, (4.15)

where γab ≡ [γa, γb] and ωabµ is the spin connection.

To identify the charge density ρ and current J we break Eq. (4.13) into space and time

components. Notice that after doing so our expressions appear to mix indices transforming

under the SO(1, 3) and diffeomorphism groups, although this appearance is fictitious. We

find,

LD√
−g

=−ψ̄γ0∇̃0ψ −
(1− φ̇2/M4

D)1/2

a
ψ̄γi∇̃iψ + iq

(
ψ̄γ0A0ψ + (1− φ̇2/M4

D)1/2

a
ψ̄γiAiψ

)
+ h.c., (4.16)

where a = a(t) is the scale factor and ‘h.c.’ denotes the Hermitian conjugate of the entire

preceding expression. Spatial indices i, j, . . . should be summed using the spatial part

of the Einstein-frame FRW metric gij = a2δij . Identifying ρ̃ = iqψ̄γ0ψ + h.c. as the

Jordan-frame charge density and J̃ = iqψ̄γiψ/a+ h.c. as the corresponding 3-current, we

conclude

ρ = ρ̃ and J = (1− φ̇2/M4
D)1/2J̃. (4.17)

Returning to Eq. (4.12), expressing all quantities in terms of the Einstein frame, and

using (4.17) for Jµ, we obtain

LEM√
−g

= −εφ(∂0Ai − ∂iA0)F 0i − 1
2εφ

(∂iAj − ∂jAi)F ij + εφ
2 F0iF

0i + 1
4εφ

FijF
ij

+ ρ̃A0 + 1
εφ
J̃ iAi.

(4.18)

We have used (4.8) and defined the quantity εφ to satisfy

εφ ≡
(

1− φ̇2

M4
D

)−1/2
. (4.19)

To proceed we introduce the Einstein-frame E and B fields using the conventional defini-
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tions38

aEi = −F0i, (4.21a)

aBi = 1
2εijkF

jk, (4.21b)

where εijk is the covariant Levi-Civita tensor; its components take the values ±√−g. In

terms of these fields the action can be rewritten

LEM√
−g

= −εφ
a

E · ∂
∂t

(a2A) + εφ
a
φ∇ ·E− 1

εφ
A · ∇ ×B− εφ

2 E2 + 1
2εφ

B2

− ρ̃φ+ a2

εφ
J̃ ·A,

(4.22)

where we have integrated by parts, dropped boundary terms at spatial infinity, and used

that D = 1/M4
D is spatially independent in our model. (If D has spatial dependence then

the action has a more complicated formulation.) We have also dropped explicit summation

over spatial indices in favour of ordinary dot and cross products in a three-dimensional

Euclidean metric. In this 3+1 split the electromagnetic 4-potential satisfies Aµ = (φ,A),

where φ and A are the three 3-dimensional scalar and vector potential respectively.

4.2.2 Maxwell’s equations

Maxwell’s equations can be obtained from Eq. (4.22) by variation with respect to φ, A, E

and B. Of these, φ and B enter the action in terms that do not involve time derivatives,

and therefore produce constraints rather than dynamical equations. The variations of A

and E produce the evolution equations of the theory.

Constraints.—To see this in detail, first perform the variation with respect to φ. This

yields Gauss’ law,
1
a
∇ ·E = ρ̃

εφ
. (4.23a)

By analogy with the usual Maxwell equation for a medium with permittivity ε, ∇·E = ρ/ε,

we see that the electric field responds to charge density as if it were immersed within a
38An observer moving in spacetime with 4-velocity uµ, normalized (with our metric convention) so that

uµu
µ = −1, would observe electric and magnetic fields defined by

Eµ = uνFµν (4.20a)

and

Bµ = −1
2 εµνρσu

σF νρ, (4.20b)

where εµνρσ is the four-dimensional Levi–Civita tensor normalized so that ε0123 = √−g. An observer

comoving with the cosmological expansion has uµ = (1,0), from which Eqs. (4.21a) and (4.21b) follow.

See, e.g., Ref. Tsagas (2005).
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medium with electric constant εφ = (1−Dφ̇2)−1/2. However, we will see that this analogy

cannot be extended to all the Maxwell equations. Meanwhile, variation with respect to B

enforces conservation of magnetic flux,

B = ∇×A ⇒ 1
a
∇ ·B = 0. (4.23b)

As expected, both Eqs. (4.23a) and (4.23b) are constraints.

Dynamical equations.—The remaining Maxwell equations follow from variation with re-

spect to A and E. The A variation yields Ampère’s circuital law,

1
a
∇×B = aJ̃ + εφ

a2
∂

∂t

(
a2εφE

)
. (4.23c)

By comparison, the form of this law in a medium with fixed electric and magnetic constants

ε and µ would be ∇ × B = µJ + µεĖ. Therefore, apparently, there is no assignment of

electric and magnetic constants that would maintain the analogy of the scalar condensate

as a dielectric medium, as can be done for the gravitational coupling Plebanski (1959).

Finally, variation with respect to E yields Faraday’s law of induction

E = −1
a
∇φ− 1

a

∂

∂t
(a2A) ⇒ 1

a
∇×E = − 1

a2
∂

∂t
(a2B). (4.23d)

This is not modified by the disformal coupling.

Relations equivalent to (4.23a)–(4.23d) were given in Ref. Brax et al. (2013), although

because this reference worked in terms of a covariant formalism they were not broken out

into separate Maxwell equations.

4.2.3 Electromagnetic waves

The wave equation.—Our interest lies in the propagation of electromagnetic radiation

from cosmological distances, and for this purpose we require an equation governing elec-

tromagnetic waves. After specializing to the vacuum case, a suitable equation from the

magnetic field B can be obtained by taking the curl of Ampère’s law, Eq. (4.23c), and

substituting the time derivative of Faraday’s law (4.23d) to eliminate ∇ × Ė. The wave

equation resulting from this procedure is (cf. Refs. Turner and Widrow (1988); Tsagas

(2005))

B̈ +
(

5H + ε̇φ
εφ

)
Ḃ +

(
2(3H2 + Ḣ) + 2H ε̇φ

εφ

)
B− 1

a2ε2φ
∇2B = 0. (4.24a)

The coupling to gravity has been well-studied. Both gravitational effects and the disformal

coupling generate a soft mass term that does not spoil gauge invariance. In particular
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note that this wave equation describes coupled electric and magnetic oscillation of a fixed

frequency, rather than a free magnetic field. Despite the large friction term 5H appearing

in (4.24a), the energy density ∼ B2 of a free magnetic field still redshifts at the rate 1/a4

expected for radiation. The same applies for a free electric field. See, eg. Barrow and

Tsagas (2011). Once a solution for B is known, it can be used to generate a solution for

E via Eq. (4.23d). Alternatively, E can be solved directly using

Ë +
(

5H + 3 ε̇φ
εφ

)
Ė +

(
2(3H2 + Ḣ) + 7H ε̇φ

εφ
+
ε̇2φ
ε2φ

+ ε̈φ
εφ

)
E− 1

a2ε2φ
∇2E = 0. (4.24b)

Electromagnetic waves governed by Eqs. (4.24a) or (4.24b) do not propagate with velocity

c = 1. Neglecting the effect of the mass term, their phase velocity is

c2
EM = 1

ε2φ
= 1− φ̇2

M4
D

. (4.25)

This result is accurate to leading order in 1/MD. The same formula was previously given

in Ref. Brax et al. (2013).

Notice that Eq. (4.25) is always subluminal provided φ̇2/M4
D � 1. In this calculation

we have worked to leading order in 1/MD, so this limitation is effectively a consistency

condition. When cEM � 1 higher terms in 1/MD must become important and we cannot

use our calculation to make a clear statement about the phenomenology. We describe this

as the “nonlinear region”. Whether a given model falls in this region depends explicitly on

MD and the scalar field profile, and as we will see below this depends in turn on Λ and the

expansion history H(t) of the model. Loop corrections will almost certainly renormalize

the numerical coefficients at each order, making this region very difficult to study.

WKB solution.—Eqs. (4.24a) and (4.24b) can be reduced to a common form by making a

field redefinition to remove the friction term (that is, the term linear in Ė or Ḃ). Making

the transformations

E(t,x) = G(t,x)
a5/2ε

3/2
φ

, and B(t,x) = G(t,x)
a5/2ε

1/2
φ

(4.26)

it can be checked that both fields can be built from solutions to the equation

G̈ +m2
eff(t)G− 1

a2ε2φ
∇2G = 0, (4.27a)

where the time-dependent mass m2
eff(t) is defined by

m2
eff(t) ≡ −H

2

4 −
Ḣ

2 −
H

2
ε̇φ
εφ

+ 1
4
ε̇2φ
ε2φ
− 1

2
ε̈φ
εφ
. (4.27b)

Clearly, this merely reflects the fact that both E and B are derived from the same under-

lying gauge field.
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The terms involving H2 and Ḣ are generated by mixing with the metric Breitenlohner

and Freedman (1982). They are both roughly of order H2. The terms involving derivatives

of εφ will depend on the detailed profile of the scalar field φ(t). In Ref. Brax et al. (2013)

it was suggested that these terms would also typically be of order H2 unless the field is

undergoing a sudden transition. In §4.3 below we will see that this expectation is borne

out for the scalar field profile generated when the nonlinear kinetic term G3 is relevant.

In this situation we can expect |ṁeff/m
2
eff| to be of order |Ḣ/H2| ∼ 1, which implies that

the mass changes significantly on timescales of order the Hubble time. For electromagnetic

waves whose wavelength is much smaller than the horizon we can regard m2
eff as roughly

fixed over many cycles of the wavetrain. It follows that we can obtain an approximate

description of its evolution using the WKB procedure. We expand G in a suitable basis of

polarization matrices with Fourier mode functions ψ(t,k). Then the WKB approximation

consists in writing

ψ(t,x) = α(t) exp
(
ik · x− iθ(t)

)
, (4.28)

where the phase θ(t) varies rapidly on the timescale of α(t).

Substitution of (4.28) in (4.27a) yields
α̈

α
− θ̇2 +m2

eff + k2

a2ε2φ
+ i
(

2 α̇
α
θ̇ + θ̈

)
= 0. (4.29)

Demanding that the real and imaginary parts cancel separately shows that the amplitude

α(t) varies like α(t) = α0/θ̇(t)1/2. Meanwhile, the phase function θ(t) satisfies

− 1
2

...
θ

θ̇
+ 3

4
θ̈

θ̇

θ̈

θ̇
− θ̇2 +m2

eff + k2

a2ε2φ
= 0. (4.30)

We write

θ = θfast + θslow, (4.31)

where θfast is designed to absorb the ‘fast’ variation due to integration of the source term,

dθfast
dt =

(
m2

eff + k2

a2ε2φ

)1/2
≡ ωeff(t), (4.32)

where the last equality defines the effective frequency ωeff. The solution is θfast ≈
∫ t ωeff(t′) dt′.

In particular, θfast(t2)−θfast(t1) ≈ ωeff(t̄)∆t if t1 and t2 are not too widely separated, where

t̄ = (t1 + t2)/2 and ∆t = t2 − t1. It follows that the second derivative θ̇fast varies much

more slowly than θfast, making θ̈fast a slowly-varying function that determines θslow. If

desired we could solve (4.30) perturbatively for θslow, although for the purposes of this

paper we do not need such precision. It follows that a typical mode function of the field

G approximately satisfies

ψ(t,k) = α0√
ωeff(t)

exp
(
ik · x− i

∫ t

ωeff(t′) dt′
)
. (4.33)
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This solution was previously given in Ref. Brax et al. (2013), neglecting the mass term

m2
eff. It was described there as the “eikonal approximation”. In this case the WKB

approximation reduces to the same procedure.

Time-of-flight formula.—The phase velocity of the wavetrain at time t is roughly ωeff(t)/k.

If we regard an electromagnetic wave as a coherent superposition of very many collimated

photons, it is clear that the phase velocity of the wave must equal the propagation velocity

of the photons because of the peculiar properties of massless particles in special relativity.

For massive particles travelling at less than the speed of light this relationship is no

longer so clear. In certain circumstances (such as water waves) it can happen that the

phase velocity is unrelated to the velocity of individual particles that participate in the

wavetrain.

Recalling (4.25) it follows that the phase velocity for (4.33) can be written

cp = ωeff
kphys

= cEM
kphys

(
k2

phys + m2
eff

c2
EM

)1/2
= cEM

(
1 + m2

eff
c2

EMk
2
phys

)1/2
(4.34)

where kphys = k/a is the physical wavenumber corresponding to the comoving wavenumber

k. Note that cEM is only equal to the phase velocity if m2
eff = 0. However, it is clearly

unsatisfactory to regard the phase velocity cp as an estimate for the characteristic particle

velocity in the beam. First, cp can easily become superluminal even if m2
eff is positive.

Second, there is an unwanted divergence at small kphys, and at large kphys (where energies

are ultrarelativistic) cp approaches cEM rather than unity. These properties are entirely

characteristic of phase velocities and have nothing to do with the disformal coupling or

the fact that (4.33) is propagating on a curved background.

Instead, we proceed as follows. We are still considering (4.33) to describe a coher-

ent superposition of very many collimated particles that share an approximate common

momentum 4-vector. Therefore, consider a small box of spacetime that lies along the

particles’ trajectory. According to the equivalence principle we can regard (4.33) as the

wavefunction for an on-shell particle with 4-momentum kµ in the interior of the patch.

For small displacements δxµ = (δt, δx) within the patch this yields

ψ ≈ exp
(
ik · δx− iωeffδt

)
≈ eikµδxµ (4.35)

which implies that we should regard ωeff(t) as the characteristic energy for particles in

the beam at time t. This is related to their propagation velocity via the usual special

relativistic formula E = γm, and hence

v =
√

1− m2
eff

ω2
eff

= cEM

( 1
c2

EM +m2
eff/k

2
phys

)1/2
. (4.36)
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Clearly v has more satisfactory properties than cp. As kphys → 0 the propagation velocity

approaches zero. In the ultrarelativistic limit kphys → ∞ we have v ↑ 1. Further, v is

always subluminal if m2
eff is positive.

Using v to estimate particle velocities in the beam, the time of flight between two

locations A and B is

T (A→ B) =
∫ B

A

dr
v
, (4.37)

where dr is an element of length along the trajectory and we have assumed that A and

B are sufficiently local that the effects of curvature can be ignored. This is typically the

case for LIGO sources. For local sources it will also be a reasonable approximation to take

v as time independent, in which case the travel time of electromagnetic radiation TEM

compared to the travel time of gravitational radiation Tgrav will be

TEM ≈
1
v
Tgrav. (4.38)

To obtain a quantitative estimate requires information about the scalar field profile. We

discuss this in §4.3 before applying (4.37) to GW170817 in §4.4.

4.3 The dynamics of the scalar field

Our task is now to solve for the evolution φ(t) of the Galileon scalar. To leading order

in 1/MD the action can be obtained by linearizing Eq. (4.4) in the disformal coupling.

Explicitly, this is∫
d4x
√
−g

[
M2

P
2 (R− 2ΛC) + c2

2 φ̇
2 + 1

Λ3 φ̈φ̇
2 +

(
1− φ̇2

2M4
D

)
ρ

]
, (4.39)

where ρ is the density of baryonic and cold dark matter. Eq. (4.39) applies at any epoch,

but we mostly use it during matter domination where ρ = ρm. As explained in §4.1, we

fix c2 in order to break a scaling symmetry in the Galileon sector; its role is to make the

quadratic kinetic term stable if c2 = +1 and ghostlike if c2 = −1. We will allow the

cubic self-interaction scale Λ to vary over a suitable parameter range. It can be positive

or negative.

Remarkably, Eq. (4.39) admits an exact solution in which the linear and nonlinear φ

kinetic terms combine to support a nontrivial field profile. Applying the Euler–Lagrange

equation to (4.39) in terms of φ̇ requires ∂L/∂φ̇ = d/dt
(
∂L/∂φ̈

)
. This leads immediately

to the algebraic solution

φ̇(t) = −
(
c2 + ρm(t)

M4
D

) Λ3

3H(t) . (4.40)
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In the absence of the nonlinear term the only solution available is φ̇ = c for constant

c. This is substantially less interesting and does not lead to interesting time-dependent

effects from the disformal coupling in Eqs. (4.24a)–(4.24b) or (4.27a). In the late universe

ρm is negligible in comparison with MD once we impose the ATLAS constraint MD &

1.2 TeV Aaboud et al. (2019). Therefore we see that the disformal coupling cannot play

an important role in the evolution of φ except during the very early universe, before the

time of the electroweak phase transition.

Eq. (4.40) is valid for all cosmological backgrounds and parameter values, provided that

φ̇2 � M4
D. In the late universe its time variation is set by H(t), as indicated in §4.2.3.

Notice that this solution bears a strong resemblance to the “tracker” solutions described

by Barreira et al. Barreira et al. (2013); Renk et al. (2017), which are defined so that

φ̇H

MPH2
0
≡ ξ = constant. (4.41)

These solutions yield φ̇ ∼ 1/H, as does (4.40) when the disformal coupling can be neg-

lected.

Parameter constraints.—Recall that to evade stringent constraints from the ISW effect we

do not allow the Galileon to contribute significantly to the energy budget of the Universe.

The energy density contributed by the Galileon sector is

ρGal = ρG2 + ρG3 = 1
2c2φ̇

2 + 1
Λ3 φ̈φ̇

2, (4.42)

where ρG2 and ρG3 measure the energy density contributed by the quadratic and cubic

Galileon operators G2 and G3, respectively. We constrain the model parameters Λ and

MD so that ρGal evaluated at the present day is smaller than the current background

energy density ∼ meV4. In terms of the solution (4.40) we can evaluate ρG2 and ρG3

individually,

ρG2 ≡
1
2c2φ̇

2 ≈ 1
2c2

Λ6

9H2 , (4.43)

ρG3 ≡
1

Λ3 φ̈φ̇
2 = 2

3
Ḣ

H2

(
c2 + ρm

M4
D

− 6 H
2

M4
D

)
c2ρG2 ≈

c2
3
Ḣ

H2
Λ6

9H2 . (4.44)

In the final expressions we have assumed ρm �M4
D.

4.4 Conclusion

We are now in a position to apply the time-of-flight formula (4.37) to GW170817. Assum-

ing (4.40) for the scalar field profile, we find that the difference in travel time is negligible,
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despite the tightness of the constraint. We assume the lower limit for MD allowed by col-

lider measurements Aaboud et al. (2019), and take Λ = 2.4×10−13 eV, which is the largest

value permitted by the constraints on ρGal for this value of MD. These choices maximize

the time-of-flight difference. Unfortunately, for any physically reasonable kphys, it can be

checked that TEM and Tgrav are indistinguishable to more than 15 significant figures for any

low-redshift event such as GW170817. Therefore we conclude that the disformal coupling

alone is so weak it cannot be constrained even by precise time-of-flight observations. A

similar conclusion applies to the dispersion of light implied by the k-dependence of (4.33)

and (4.36).

In Fig. 4.1 we show constraints in the parameter space for MD and Λ. Notice that

there is a curious competition between ρG2 and ρG3 during matter domination. Because

the linear kinetic energy density is proportional to φ̇2, the constraint is independent of the

sign of Λ. It is also almost independent of the sign of c2.39 Prior to dark energy domination

the linear and non-linear terms ρG2 and ρG3 in Eq. (4.42) have almost exactly the same

amplitude; their ratio is c22Ḣ/(3H2) ' c2 during matter domination, up to corrections of

order ρm/M4
D. Hence if c2 = −1 the total scalar kinetic energy is always suppressed during

matter domination and until dark energy dominates at z . 0.5. This ‘screening-like’ effect

is curious and is worthy of further attention. Today, for a flat ΛCDM cosmology with

Ωm ' 0.29 the linear energy dominates by a factor of 3.5 over the non-linear term.

Our analysis supports earlier impressions that a disformal coupling is difficult to con-

strain using cosmology alone. If so, then collider physics will remain the best prospect for

determining constraints on the disformal coupling scale MD, but conversely we cannot ex-

pect the current ATLAS bound MD & 1.2 TeV to be dramatically superseded in the near-

or medium-term future. While previous studies including a Galileon sector and a disformal

coupling have reported that best-fit models typically yield a time-lag ∆t too large to be

compatible with LIGO/VIRGO constraints, the effect in these analyses is driven by the

internal structure of the Galileon sector and not by the disformal coupling.

39A discussion of the frame dependence is considered in Faraoni et al. (1999); Flanagan (2004).
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Figure 4.1: The plot shows the parameter space for the cubic Galileon model disformally

coupled to matter, in the cubic Galileon parameter Λ and the disformal scale MD. For

definiteness we show the constraint with c2 = +1, but there is only an order unity shift

when c2 = −1. The x-axis runs from 1.2 × 1012eV, the minimum value for MD given by

collider constraints up to MP. The light grey region is ruled out due to observations of the

ISW effect. The dark grey region contains models which cannot be accurately described

by the calculation performed here. The allowed parameter space is shown in white.
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Chapter 5

Conclusion

Here I will briefly review the most exciting things to happen in the cosmology community

over the last five years, the time it took me to complete my PhD. I will then describe the

most compelling expectations of the field of cosmology over the next 15 years. Finally, I

will summarise the conclusions of the specific work contained in this thesis before giving

my expectations for the sequester theory and for disformal couplings in the future.

A few days before the start of my PhD, the Laser Interferometer Gravitational-Wave

Observatory (LIGO) made the first direct detection of gravitational waves on 14 September

2015. It was inferred that the signal, dubbed GW150914, originated from the merger of

two black holes with masses 36+5
−4 M� and 29 ± 4 M� , resulting in a 62 ± 4 M� black

hole Abbott et al. (2016a). The announcement of the discovery was not made until early

the next year. The phenomena had been predicted 100 years earlier by Einstein as a

consequence of his general theory of relativity Einstein (1916, 1917). This observation

and those that followed resulted in the 2017 Nobel Prize in Physics being awarded for the

detection of gravitational waves Nobel Media AB (2017).

LIGO is made up of two interferometers, one in Hanford, Washington state, and one

in Livingston, Louisiana. Virgo is a similar experiment based near Pisa, Italy. In August

2017, LIGO and Virgo observed the first gravitational waves coming from a binary neutron

star inspiral (GW170817) Abbott et al. (2017b). Because this event was detected at all

three sites at slightly different times, this allowed for an improvement of the localization

of the source by a factor of ten. The localisation of the source facilitated the electro-

magnetic follow-up of the event; neutron star mergers were expected to be accompanied

by an electromagnetic counterpart. Multiple observatories detected the electromagnetic

counterpart, a kilonova in the galaxy NGC 4993, 40 Mpc away, emitting a short gamma

ray burst (GRB 170817A) 1.7 seconds after the merger Goldstein et al. (2017); Abbott
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et al. (2017a); Savchenko et al. (2017); Abbott et al. (2017c); Pan et al. (2017).

These observations were very important for the modified gravity and dark energy

community. More details are given in Subsection 3.1. This is not the only major result to

affect the cosmology community in the last five years.

The Planck collaboration released their final results in 2018 Aghanim et al. (2018).

The data taken by the Planck satellite gave the highest resolution detections of both

the intensity and polarization of the CMB anisotropies. It also catalogued galaxy clusters

through observations of the the Sunyaev-Zel’dovich effect and observations of gravitational

lensing of the CMB. The satellite also took measurements of the integrated Sachs-Wolfe

effect. This data gave us very precise measurements of several cosmological parameters,

including the inferred Hubble constant.

The final release of the Planck results, along with more recent local measurements of

H0 (for examples see Riess et al. (2019); Birrer et al. (2019)), has resulted in the tension

that these measurements exhibit (as outlined in Section 1.2) becoming a trending topic of

discussion in the cosmology community. Independent estimations of the errors of the local

measurements have been made specifically with regard to: errors in redshift measurements

of supernovae Davis et al. (2019), errors in measurements of the local Hubble flow Wojtak

et al. (2014); Odderskov et al. (2017); Wu and Huterer (2017), and Cepheid calibration

Rose et al. (2019); Jones et al. (2018). More exotic solutions to the tension have also been

proposed including alternative theories of dark energy Peirone et al. (2019); Martinelli

et al. (2019).

The first direct image of a black hole was taken in 2017 and released in 2019 Akiyama

et al. (2019a). The black hole that was pictured was at the center of the galaxy M87 and

has an approximate mass of 109M� Akiyama et al. (2019b). The image was made with

radio-wave observations and provides a new tool to test gravity at its most extreme limits

and on a mass scale that was not accessible until now. As such, the article has already

been cited over 500 times, with many of those articles describing tests of general relativity

and alternative theories using observations like this, for some recent examples see Zeng

and Zhang (2020); Banerjee et al. (2020).

One could say that the last five years have been a good time to be a cosmologist. In

the next section we discuss the work done in this thesis in light of these exciting events.

First, we explain why the next 15 years will be just as exciting.

The European Space Agency (ESA) test mission, Laser Interferometer Space Antenna

(LISA) Pathfinder, was launched in 2015 to test the technology necessary to put a test
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mass in (almost) perfect free fall conditions McNamara et al. (2008). The full LISA mission

will provide a new gravitational wave observatory with an arm length of 2.5 million km

(and frequency range of 8.3 seconds or 0.12 Hz) Amaro-Seoane et al. (2017); Stroeer and

Vecchio (2006); Berti et al. (2019); Amaro-Seoane et al. (2012). This will enable further

tests of gravity Belgacem et al. (2019).

A future gravitational wave observatory is not he only new observatory cosmologists

are looking forward to. MeerKAT is a radio telescope consisting of 64 antennas and is

the first phase of the Square Kilometer Array (SKA). When finished SKA will have a

total collecting area of approximately one square kilometre. It will operate over a wide

range of frequencies and its size would make it 50 times more sensitive than any other

radio instrument built to date. The amount of data coming from this telescope will be

approximately an exabyte (1018 bytes) a day, giving the community plenty to work with to

further test gravity and cosmology Bacon et al. (2020); Schwarz et al. (2015); Raccanelli

et al. (2015); Maartens et al. (2015); Weltman et al. (2020).

The final experiments we will describe in this far from exhaustive list of future ob-

servatories are those which will take large galaxy surveys. This includes the following40:

the Dark Energy Survey (DES) Abbott et al. (2005), the Dark Energy Spectroscopic

Instrument (DESI) Levi et al. (2019), Euclid Laureijs et al. (2011), the Vera C. Rubin Ob-

servatory, also known as the Large Synoptic Survey Telescope (LSST) Ivezić et al. (2019),

and 4MOST de Jong et al. (2019). Although the first three are satellites and the last two

are terrestrial; they share some common goals. Galaxy surveys measure the distribution

of large scale structure including galaxies and galaxy clusters. These galaxies can be used

as bias tracers of the underlying dark matter field in the Universe.

5.1 Summary of work done here

We have discussed the biggest advancements in cosmology and gravity in the last five

years and hopefully the reader is convinced that the next 15 will be just as insightful.

This thesis has touched on two different theories which each address different problems

but both have consequences for our understanding of cosmology.

40The SKA could fit into this list but because nothing like it on the scale planned had ever been made

before, it warranted its own paragraph
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5.1.1 The sequester

The sequester proposal was built to solve the problem that we have called in this thesis, the

radiative stability problem (see section 1.3.2 for a definition). Our work and the work of

others El-Menoufi et al. (2019) has shown that the most recent realisation of the sequester

Kaloper and Padilla (2017) seems to solve the problem of radiative stability.

A cornerstone of sequestering the vacuum energy is that additional terms, σ and σ̂ are

added to the standard gravity and matter action, at the most global scale,

S =
∫

d4x
√
−g

(
M2

P
2 R+ θRGB − Λ4 − Lm

)
+ σ

(
Λ4

µ4

)
+ σ̂(θ). (5.1)

Because σ and σ̂ do not couple to the metric, they do not source gravitational fields.

They are constant, they do not change even with changes in the spacetime volume. The

beneficial effects of these terms are not diluted as spacetime expands. These terms seem

unusual, however they do have a microscopic interpretation, integrals of a four-form flux

F4 over spacetime Kaloper et al. (2016b). If one accepts that it is possible for these kind of

terms to exist in the action41, then the large low-energy loop contributions can be stored

in these non-gravitating sectors designed to do exactly that and nothing more.

On the sequester solving the cosmological constant problem there are more questions

here. Within effective field theory, renormalized couplings of operators cannot be predicted

but must be measured, Kaloper & Padilla argue this must be the case for the cosmological

constant (arguments against this explanation can be found in 1.3.2.). To Kaloper & Pa-

dilla solving the radiative stability problem amounts to solving the cosmological constant

problem itself.

If we were to disagree with the argument above, then the sequester solution does

not explain the current value of the cosmological constant energy density. It is proposed

in Kaloper and Padilla (2014b) that a quintessence like field would be an appropriate

explanation. The sequester has no comment on the size of the bare cosmological constant,

which there is no reason to expect not to exist. This could also explain the observed value

of the cosmological constant energy density.

5.1.2 Disformal couplings

We stated in section 3.3 that a disformal and conformal coupling are both parts of the

most general line element that can be written down which obeys the weak equivalence
41The four-form fluxes are an effective description which ultimately will have to be described using a

UV complete theory, this is discussed more in the next part of the conclusions, Subsection 5.2.1.
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principle. In this thesis we explored the possibility of a disformal coupling between a

Galileon scalar field and matter.

We attacked the theory of a cubic Galileon disformally coupled to matter with an

arsenal consisting of: measurements of the speed of gravitational waves compared to light

with GW170817, null observations of missing energy at colliders, observations of the ISW

effect, null observations of the difference in speeds of different frequencies of light, and

considerations of phase velocity of electromagnetic waves. Ultimately we found that the

disformal coupling is very resilient to cosmological tests, with the best constraint on the

disformal scale MD coming from collider constraints. The probes we tested here also did

not constrain the cubic Galileon itself any further than has already been done Renk et al.

(2017).

5.2 Future work

We have already outlined what we can broadly expect from cosmology over the next few

years, here we address the future of the two focuses of this thesis.

5.2.1 The sequester

The cosmological constant problem still remains the biggest problem in theoretical physics.

Its solution would surely warrant a Nobel prize. The idea of sequestering the vacuum loops

was not new in the sense that similar work had come before it, for example Coleman’s

wormholes Coleman (1988).

There is nothing more to be said about observational consequences of the sequester.

It is formulated to solve a single problem and nothing more, leaving all other physics

untouched. One might be concerned that the sequester may affect inflation. In slow-roll

inflation the inflaton source behaves like a constant vacuum energy to zeroth order. We

see a de Sitter phase in inflation and today. Kaloper, Padilla and their collaborators found

that the sequester does not interfere with inflation Kaloper and Padilla (2014a); Coltman

et al. (2019).

Future work on the sequester theory will likely involve the development of a UV com-

plete theory, or rather finding a UV complete theory that permits the sequester in its low

energy effective description. The sequester theory alone states that there is some form of

matter, for which all the vacuum energy flows to, that does not gravitate. There is more

to be understood about what this matter is exactly.

Indeed, work in this direction has already begun. In Kaloper (2019) it is stated that
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the terms that do not couple to the metric in Equation 5.1 resemble terms which typically

appear in string compactifications.

5.2.2 Disformal couplings

The future study of disformal couplings is much more open than that of the sequester

theory. It has been repeatedly shown in the literature and in Chapter 4 that it is very

hard to constrain the disformal coupling with cosmological probes. The best constraints

we have on the coupling so far come from looking for missing energy at colliders, and this

will likely remain.

One may ask if Horndeski theories, disformally coupled or otherwise, play any role

in the growth or distribution of structure in the Universe. There may be another way

to test the disformal coupling through the observation of nonlinear structure. N-body

simulations have been made for a disformally coupled quintessence model Llinares et al.

(2020)42. Interestingly, in Llinares et al. (2020) “excellent” agreement was found between

exact and approximated solutions, which opens the way for running disformal gravity

cosmological simulations using Newtonian solvers.

We propose a test of a Horndeski theory, specifically the cubic Galileon coupled con-

formally and/or disformally to Standard Model matter using data from a weak lensing

survey and redshift space distortions. Weak lensing is a good probe of modified gravity

models because it is sensitive to the growth of large scale structure and the relationship

between the gravitational potentials and matter. Although the slip in Galileon gravity is

the same as that in GR i.e. the Bardeen potentials are equal; the geodesic equation in

Galileon gravity is different due to the “fifth force” effects.

If one were to go down this road of investigation, one may use of a developed Boltzman

solver code e.g. Hi-CLASS Bellini et al. (2020), to output the matter power spectrum. In

predicting the matter power spectrum for such a universe it would be beneficial to also

take into account screening (if it exists in the theory). One could also build a pipeline to

compute the redshift-space multipoles from the Kaiser formula for the redshift-space over

density using the previously computed power spectrum. An example of a similar pipeline

was used in Burrage et al. (2017).

These predictions could then be assembled into a single likelihood code that compares

the shear power spectrum to lensing observations from e.g. KiDS Kuijken et al. (2019),

and the redshift space distortions power spectra to a galaxy survey e.g. 2dFLens Blake
42For other work that has been done on testing a disformally coupled quintessence field acting as dark

energy to matter see e.g. Ref Teixeira et al. (2020)
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et al. (2016). The final step will be to embed this likelihood code in an MCMC code e.g.

MontePython Brinckmann and Lesgourgues (2019).
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des isopérimètres. Mem. Acad. St. Petersbourg, 6(4):385–517. 44

Padilla, A. (2015). Lectures on the Cosmological Constant Problem. 1502.05296. 16, 25,

28

Padilla, A. (2019). Monodromy inflation and an emergent mechanism for stabilising the

cosmological constant. JHEP, 01:175, 1806.04740. 30, 39

Pan, Y. et al. (2017). The Old Host-Galaxy Environment of SSS17a, the First Electro-

magnetic Counterpart to a Gravitational Wave Source. Astrophys. J. Lett., 848(2):L30,

1710.05439. 71

Park, R. S., Folkner, W. M., Konopliv, A. S., Williams, J. G., Smith, D. E., and Zuber,

M. T. (2017). Precession of Mercurys Perihelion from Ranging to the MESSENGER

Spacecraft. , 153:121. 1



88

Peirone, S., Benevento, G., Frusciante, N., and Tsujikawa, S. (2019). Cosmological data

favor Galileon ghost condensate over ΛCDM. Phys. Rev. D, 100(6):063540, 1905.05166.

6, 71

Perlmutter, S. et al. (1999). Measurements of Ω and Λ from 42 high redshift supernovae.

Astrophys. J., 517:565–586, astro-ph/9812133. 4

Plebanski, J. (1959). Electromagnetic Waves in Gravitational Fields. Phys. Rev., 118:1396–

1408. 62

Raccanelli, A. et al. (2015). Measuring redshift-space distortions with future SKA surveys.

1501.03821. 72

Raffelt, G. and Stodolsky, L. (1988). Mixing of the Photon with Low Mass Particles. Phys.

Rev. D, 37:1237. 56

Ratra, B. and Peebles, P. (1988). Cosmological Consequences of a Rolling Homogeneous

Scalar Field. Phys. Rev. D, 37:3406. 44

Renk, J., Zumalacárregui, M., Montanari, F., and Barreira, A. (2017). Galileon gravity in

light of ISW, CMB, BAO and H0 data. JCAP, 10:020, 1707.02263. 48, 55, 67, 74

Richter, B. (2006). Theory in particle physics: Theological speculation versus practical

knowledge. Phys. Today, 59(10):8. 24

Riess, A., Casertano, S., Yuan, W., Macri, L., and Scolnic, D. (2019). Large magel-

lanic cloud cepheid standards provide a 1 percent foundation for the determination of

the hubble constant and stronger evidence for physics beyond cdm. The Astrophysical

Journal, 876:85. 5, 71

Riess, A. G. et al. (1998). Observational evidence from supernovae for an accelerating

universe and a cosmological constant. Astron. J., 116:1009–1038, astro-ph/9805201. 4

Rose, B., Garnavich, P., and Berg, M. (2019). Think Global, Act Local: The Influence of

Environment Age and Host Mass on Type Ia Supernova Light Curves. Astrophys. J.,

874(1):32, 1902.01433. 71

Rugh, S. and Zinkernagel, H. (2002). The Quantum vacuum and the cosmological constant

problem. Stud. Hist. Phil. Sci. B, 33:663–705, hep-th/0012253. 22

Sakharov, A. D. (1967). Vacuum quantum fluctuations in curved space and the theory of

gravitation. Dokl. Akad. Nauk Ser. Fiz., 177:70–71. 6



89

Sakstein, J. and Jain, B. (2017a). Implications of the Neutron Star Merger GW170817 for

Cosmological Scalar-Tensor Theories. Phys. Rev. Lett., 119(25):251303, 1710.05893. 45

Sakstein, J. and Jain, B. (2017b). Implications of the neutron star merger gw170817 for

cosmological scalar-tensor theories. Phys. Rev. Lett., 119:251303. 53

Sakstein, J. and Verner, S. (2015). Disformal Gravity Theories: A Jordan Frame Analysis.

Phys. Rev. D, 92(12):123005, 1509.05679. 53, 54

Savchenko, V. et al. (2017). INTEGRAL Detection of the First Prompt Gamma-Ray

Signal Coincident with the Gravitational-wave Event GW170817. Astrophys. J. Lett.,

848(2):L15, 1710.05449. 71

Schulz, B. (2014). Review on the quantization of gravity. 1409.7977. 15

Schwarz, D. J., Bacon, D., Chen, S., Clarkson, C., Huterer, D., Kunz, M., Maartens, R.,

Raccanelli, A., Rubart, M., and Starck, J.-L. (2015). Testing foundations of modern

cosmology with SKA all-sky surveys. PoS, AASKA14:032, 1501.03820. 72

Sloth, M. S. (2010). On the Effective Equation of State of Dark Energy. Int. J. Mod.

Phys. D, 19:2259–2264, 1005.3241. 23

Sobral-Blanco, D. and Lombriser, L. (2020). A local self-tuning mechanism for the cos-

mological constant. 2003.04303. 30, 43

Straumann, N. (2002). The History of the cosmological constant problem. In 18th IAP

Colloquium on the Nature of Dark Energy: Observational and Theoretical Results on

the Accelerating Universe. gr-qc/0208027. 22

Stroeer, A. and Vecchio, A. (2006). The LISA verification binaries. Class. Quant. Grav.,

23:S809–S818, astro-ph/0605227. 72

Sundrum, R. (2004a). Fat euclidean gravity with small cosmological constant. Nucl. Phys.

B, 690:302–330, hep-th/0310251. 20

Sundrum, R. (2004b). Fat gravitons, the cosmological constant and submillimeter tests.

Phys. Rev. D, 69:044014, hep-th/0306106. 20

’t Hooft, G. (1980). Naturalness, chiral symmetry, and spontaneous chiral symmetry

breaking. NATO Sci. Ser. B, 59:135–157. 24

Tanabashi, M. et al. (2018). Review of Particle Physics. Phys. Rev. D, 98(3):030001. 27



90

Teixeira, E. M., Nunes, A., and Nunes, N. J. (2020). Disformally Coupled Quintessence.

Phys. Rev. D, 101(8):083506, 1912.13348. 75

Touboul, P. et al. (2017). MICROSCOPE Mission: First Results of a Space Test of the

Equivalence Principle. Phys. Rev. Lett., 119(23):231101, 1712.01176. 2

Tsagas, C. G. (2005). Electromagnetic fields in curved spacetimes. Class. Quant. Grav.,

22:393–408, gr-qc/0407080. 61, 62

Turner, M. S. and Widrow, L. M. (1988). Inflation Produced, Large Scale Magnetic Fields.

Phys. Rev. D, 37:2743. 62

Vainshtein, A. (1972). To the problem of nonvanishing gravitation mass. Phys. Lett. B,

39:393–394. 45

Voisin, G., Cognard, I., Freire, P., Wex, N., Guillemot, L., Desvignes, G., Kramer, M.,

and Theureau, G. (2020). An improved test of the strong equivalence principle with the

pulsar in a triple star system. Astron. Astrophys., 638:A24, 2005.01388. 2

Wang, H. et al. (2017). The GW170817/GRB 170817A/AT 2017gfo Association: Some

Implications for Physics and Astrophysics. Astrophys. J. Lett., 851(1):L18, 1710.05805.

53, 54

Weinberg, S. (1987). Anthropic Bound on the Cosmological Constant. Phys. Rev. Lett.,

59:2607. 19

Weinberg, S. (1989). The Cosmological Constant Problem. Rev. Mod. Phys., 61:1–23. 6,

18, 22

Weinberg, S., S, W., and de campos, T. (1995). The Quantum Theory of Fields. Number

v. 1 in Quantum Theory of Fields, Vol. 2: Modern Applications. Cambridge University

Press. 9

Weltman, A. et al. (2020). Fundamental physics with the Square Kilometre Array. Publ.

Astron. Soc. Austral., 37:e002, 1810.02680. 72

Wilczek, F. (1984). Foundations and Working Pictures in Microphysical Cosmology. Phys.

Rept., 104:143. 22

Williams, P. (2015). Naturalness, the autonomy of scales, and the 125 GeV Higgs. Stud.

Hist. Phil. Sci. B, 51:82–96. 24



91

Wojtak, R. a., Knebe, A., Watson, W. A., Iliev, I. T., Heß, S., Rapetti, D., Yepes, G., and
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Appendix A

Sequester calculation details

Here, we give some details of the computation of the left hand diagram in Figure 2.1. The

explicit calculation of the diagram was made to check that no miraculous cancellation of

contribution occurred. The amplitude is,

Itot = i
82

M4
p

∫ d4k

(2π)D
∫ d4p

(2π)D
1

(p2 +m2)a
p2(p− k)2

[(p− k)2 +m2]b , (A.1)

where p is the momentum in the scalar loop and k the momentum of the gravition. We

can write,

I =
∫ d4k

(2π)D
∫ d4p

(2π)D
1

(p2 +m2)a
p2(p− k)2

[(p− k)2 +m2]b , (A.2)

where we have changed the powers in the denominator to a and b. First, using the

Feynman parameterisation to combine denominators and then shifting the integration

variable p′ → p− (1− x)k,

I =
∫ d4k

(2π)D
∫ d4p′

(2π)D
Γ(a+ b)
Γ(a)Γ(b)

∫ 1

0
dx xa−1(1−x)b−1 [p′ + (1− x)k]2[p′ − xk]2

[(p′)2 +m2 + x(1− x)k2]a+b . (A.3)

We are integrating over a symmetric integral and therefore after multiplying out the

numerator odd terms will vanish. Breaking up the integral and computing each one.

Dropping the ′ from p′,

I1 =
∫ d4k

(2π)D
∫ d4p

(2π)D
Γ(a+ b)
Γ(a)Γ(b)

∫ 1

0
dx xa−1(1− x)b−1 p4

[p2 +M2]a+b , (A.4)

where M = m2 + x(1− x)k2. Rotating to spherical coordinates,

I1 = 2πD/2
Γ(D/2)

∫ d4k

(2π)D
∫ ∞

0

dp
(2π)D

Γ(a+ b)
Γ(a)Γ(b)

∫ 1

0
dx xa−1(1− x)b−1 pD−1p4

[p2 +M2]a+b . (A.5)

Using the standard integral,∫ ∞
0

dκ κl−1

(κ2 + ν2)m = νl−2mΓ(l/2)Γ(m− l/2)
2Γ(m) . (A.6)
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The result is,

I1 = 2πD/2
Γ(D/2)

Γ(D/2 + 2)Γ(a+ b−D/2− 2)
(2π)D

∫ d4k

(2π)D
1

Γ(a)Γ(b)

∫ 1

0
dx xa−1(1−x)b−1MD−2a−2b+4.

(A.7)

We take the number of dimensions to be D+ε and then perform the x integral up to order

ε, we then compute the integral numerically, the result is,

Λm4

M4
p

O(1). (A.8)

Computing all other contributions to I as expected, does not yield cancellation of the

contribution.
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