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Rhiannon W. Harries, Doctor of Philosophy

Biological cell–substrate interactions
with few-layered nanomaterials

Biology, fundamental to understanding life, remains a vitally important area of
research. There is still much left for humankind to understand even after decades of
research. This is clear now more than ever; as I write this, research has been disrupted
for about 12 months due to various COVID-19 restrictions. Biology, therefore, is ripe
for the fresh, new advances that result from interdisciplinary collaboration. Recent
years have seen the exciting development of new few-layered materials, providing
new possibilities in biology, as well as other areas. To this end, the work presented
herein considers the interactions between different cell lines and various synthesised
nanomaterial substrates.

To distinguish effects due to the inherent biology of the cell and effects due to
the nanomaterial substrate, well-defined substrates are crucial to interdisciplinary
research. Thin films created by the Langmuir–Schaefer (L–S) deposition technique are
a good candidate. This technique provides an easily controllable method of producing
single-layer substrates. Here, a method resulting in improved understanding of the
physical and chemical influences on L–S film formation is described. Surface pressure-
surface coverage data can be normalised to nanosheet size to account for edge effects.
This new approach allows the L–S film density to be determined from standard
dispersion properties alone. In addition, this work produced the first demonstration
of the production of single layer hexagonal boron nitride films using this method.

To test nanomaterial–cellular interactions, various cell lines were seeded onto
MoS2 L–S substrates. To the best of our knowledge, this study resulted in the first
demonstration of the internalisation of MoS2 through mechanotransduction. The
material showed localisation to the endoplasmic reticulum, which combined with
the innate fluorescence or Raman signal of the MoS2 nanosheet, could lead to a
new theranostic tool. This study was expanded to consider cell interactions with
other transition metal dichalcogenide materials, WS2 and MoSe2, to investigate the
difference between structure and chemistry seen by the cell. This work provides a
step change to studying nanomaterial–cellular interactions, opening the door to new
therapies and diagnostics.



iv

Publications

Elements of this thesis have contributed (in part or in their entirety) to the following
publications:

1. Rhiannon W. Harries, Christopher J. Brown, Sean P. Ogilvie, Matthew J.
Large, Aline Amorim Graf, Keiran Clifford, Thomas Simon, Georgios Giamas,
Alan B. Dalton, and Alice A. K. King, Langmuir Films of Layered Nanomater-
ials: Edge Interactions and Cell Culture Applications. J. Phys. Chem. B, 2020,
124 (33) pp. 7184–7193.

2. Rhiannon W. Harries, Christopher J. Brown, Lisa Woodbine, Aline Amorim
Graf, Matthew J. Large, Keiran Clifford, Peter J. Lynch, Sean P. Ogilvie,
Alan B. Dalton, and Alice A. K. King, Cell–Substrate Interactions Lead to
Internalization and Localization of Layered MoS2 Nanosheets. ACS Appl. Nano
Mater., 2021, 4 (2) pp. 2002–2010

3. Christopher J. Brown, Rhiannon W. Harries, Peter J. Lynch, Aline Amorim
Graf, Jonathan P. Salvage, Thomas Simon, Alan B. Dalton, Georgios Giamas,
and Alice A. K. King, Observations of spontaneous neovascularisation of
glioblastoma on synthetic three-dimensional reduced graphene oxide scaffolds.
2021 (submitted)

https://doi.org/10.1021/acs.jpcb.0c05573
https://doi.org/10.1021/acs.jpcb.0c05573
https://doi.org/10.1021/acsanm.0c03338
https://doi.org/10.1021/acsanm.0c03338


v

Acknowledgements

I never intended to complete an MPhys, let alone a PhD! But one serendipitous
conversation with my supervisor-to-be, Alice, set me on the path that I have taken
over the past few years. So thank you for asking me about my future plans and
interests that day we were both invigilating for the summer school. I would have
missed out on so much had it been someone else working with me that day! Thanks
also to Maria for encouraging me to apply for the summer school in the first place,
and to Jackie for being the ray of sunshine often needed on many gloomy afternoons.
Thanks to Alan for fostering a sense of independence, and for teaching me the
importance of networking (always much easier after a few drinks!).

Physics was brought alive to me at school by my teacher, Nia Ifans. Without
sharing the knowledge from her ‘epiphanies’ (obtained while leaning in door frames)
or the healthy competition for ‘brownie points’, things might be very different! Diolch
am bopeth, Mrs Ifans.

I wouldn’t have made it through this PhD without the unerring support I have
received from Aline. She has always been there for me through thick and thin, and I
can’t emphasise enough how much her friendship has meant to me. You always have
just the right advice, whether my problem is scientific or personal! Thank you.

Thank you to everyone else, past and present, who has made my time in the
Materials Physics group so much fun: Matt, Peter, Sean, Manoj, Yuanyang, Manuela,
Giuseppe, Marcus, Frank, Abdullah, Chris, Keiran, Hannah, Cencen, Adel, and
Anne.

To my undergraduate friends at uni while I’ve been on this journey — Alex,
Poppy, Sam, and Ewan — thank you for always brightening my day. Alex; I hope
you don’t think that the work presented herein is ‘preliminary excrement’ (!).

To Dani Hajas — thanks for your endless encouragement, and for still being here
after seven years. I guess you didn’t kill too many of my brain cells after walking
me into that map? Soon we will be able to play a few more games of snapszer and
cribbage (you’ll have to teach me the rules all over again!).

To Ryan — thanks for being a constant in my life at the University of Sussex.
Life wouldn’t be the same without your jokes (or are they ‘jokes’?).

To Mitch and Eleanor — thank you for the fun games nights and silly chat.
Whoever knew there were so many cute tea cosy patterns? I promise I will eventually
make one! It’s been fantastic getting to know you both, long may it continue.

To The House of Slight Panic — Tom, Neelesh, and Gemma — I’m glad we’re
still in touch. Tom; thank you for being so interested in what I’ve been up to over
the past few months, it has been so encouraging and has really meant a lot to me.



vi

To the ‘Unofficial’ Star Trek Society — Charlotte, Will, and Dan — thank you
for all the interesting discussions and insights. It’s always fun hearing madcap ideas
from you guys, and I feel like if nothing else, I have learned the difference between a
cruise ship and an ocean liner.

To the old guard from DocSoc: Ben, Susanna, George, Jake, Fridah, Laurence,
Emily, Nick, Luke — what a family we have been. Thanks for creating an atmosphere
where I always felt welcome and was always entertained. And to Rory — thanks for
manning the fort for the past few years.

To everyone at Sussex Harmony — thank you for sharing this journey with me!
It will be sad to move away, but I hope I will be able to visit and to sing with you
on occasion. Rachel; thank you for being a good friend, and for being so willing to
feed me for the past six years! Cynthia; thank you for your kindness, laughter, and
advice over the years. It wouldn’t have been the same without the Brighton Bus.
Though we may be apart, we can still create art...

To my friends from home — Jade, Chloe, Danny and Jai, Llŷr and Siâna, Siôn
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Chapter 1

Introduction

Nanotechnology is the study and application of matter at the nanoscale, which is

about 1 to 100 nanometers. This encompasses a broad range of scientific disciplines,

including surface science, organic chemistry, molecular biology, semiconductor physics,

energy storage, and engineering. The field in its modern sense is still young, having

been growing steadily over the past 50 years.

The term ‘nano-technology’ was first used by Norio Taniguchi at a conference in

1974 [1], but it was not until the invention of the scanning tunnelling microscope by

Gerd Binnig and Heinrich Rohrer in 1981 [2, 3] and the atomic force microscope by

Gerd Binnig, Calvin Quate and Christoph Gerber in 1986 [4] that nanotechnology

research began to take off in earnest. These instruments enabled researchers to image

and to manipulate individual atoms for the first time. Without these inventions, and

those that followed, the emergent properties of materials on the nanoscale would not

be known and investigated for the wide array of applications researched today.

Nanobiotechnology refers to the application of nanotechnologies in biological fields,

for example development of a “lab-on-a-chip”, real-time nano-sensors, drug delivery

vectors, and tissue engineering [5, p. 1]. This is distinguished from bionanotechnology,

which is the application of biological building blocks and tools for modern nanoscale

technology, for example DNA nanotechnology (use of artificial nucleic acids for

technology), or the use of peptide nanotubes or protein fibrils for the fabrication of

physical elements at the nanoscale [5, p. 1]. According to the MedLine database, the
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Figure 1.1: Nanobiotechnology applications.

term “nanobiotechnology” is first recorded in 2000 [5, p. 13]; this confirms that this

is a young, interdisciplinary field which has gathered pace over the past few decades.

Fresh perspectives from interdisciplinary collaboration could lead to new insights in

several areas (Figure 1.1). These areas can be broadly categorised as being

• diagnostic,

• therapeutic, or

• “theranostic” (i.e. having combined therapeutic and diagnostic ability).

New inroads in these areas are in no small part attributable to the number of new

nanomaterials and associated composites that have been synthesised and investigated

since Geim and Novoselov’s Nobel Prize-winning work on the isolation of monolayer

graphene in 2004 [6].

A whole host of few-layered and low-dimensional nanomaterials with interesting

properties could introduce new ammunition to the arsenal of existing diagnostics,

treatments, and theranostics. These materials typically have different properties

when compared to the bulk form. Many exhibit enhanced physical, chemical, and
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biological functionality due to their uniform shapes, high surface-to-volume ratios,

and high specific surface areas [7] (some key materials and their properties are

discussed in 2.1). This makes different nanomaterials ideal for applications such as

biomedical nanocomposites (high surface-to-volume could improve scaffold or implant

properties) and drug delivery (high specific surface area allows large numbers of drug

molecules to be adsorbed), among others (see Figure 1.1). Furthermore, materials

could exhibit different toxicities at the nanoscale. Ensuring biocompatibility is

clearly vital if there is to be wide-scale adoption of biomedical applications based on

nanomaterials. The burgeoning research on few-layer and low-dimensional materials

means that, even for the most well established nanomaterials, their interactions

with living cells and tissues is still poorly understood. One way to tackle this is to

create well-defined substrates for cell and tissue studies; this would allow potential

biological responses to be separated from any changes in the substrate properties.

1.1 Thesis outline

Reviewing the current state-of-the-art in nanobiotechnology, it is clear that well-

defined substrates are of great importance to cell–substrate interactions. This thesis

seeks to address two main themes:

• Is it possible to define a methodology to ensure a controlled and tuneable

production of two-dimensional (2D) thin film substrates?

• Most nano–bio studies introduce the nanomaterial to the cell by dispersion

in the cell medium — can nanomaterials be introduced to the cell from the

substrate alone? Does this change the effect on the cell?

Chapter 2 covers the properties and common processing methods of layered

nanomaterials, and techniques used to characterise these materials. Particular

attention will be given to the transition metal dichalcogenides (TMDs), as these are

investigated in more depth in later chapters. Additionally, various applications of

low-dimensional materials in diagnostics and therapeutics will be discussed.
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In Chapter 3, the Langmuir–Schaefer (L–S) deposition technique is discussed in

more detail. Particular focus is given to the edge interactions of monolayer nanosheets.

A framework to account for material interactions is developed by normalising the

film surface coverage to nanosheet size, allowing greater understanding of thin film

densities, and leading to a generic film formation methodology. This has wide

implications, as control over thin film creation is crucial for various applications.

One such application is also explored in this chapter, that of repeatable production

of sample substrates for biological studies. The significant modification in cancer

cell growth is demonstrated by the edge density of the material substrate used.

Chapter 4 details cell experiments on molybdenum disulfide (MoS2) substrates.

While most nano–bio experiments introduce the nanomaterial to the cell by dispersion

in the cell medium, this work introduced MoS2 to the cell only via the thin film

substrate onto which the cells were seeded. After a week of growth, bone carcinoma

cells exhibited internalisation of the MoS2, with material clearly present within

the cell, localised in the endoplasmic reticulum (ER). This is confirmed by optical

microscopy and by 2D and three-dimensional (3D) Raman spectroscopy. The innate

fluorescence and Raman signal of monolayer MoS2 lending itself to cell imaging, and

its ability to target specific organelles, makes this an interesting phenomenon with

potential theranostic applications.

This requires further investigation; Chapter 5 begins this work by considering

the effect of other TMDs, tungsten disulfide (WS2) and molybdenum diselenide

(MoSe2), on bone carcinoma cell growth. Cells were grown in the same conditions

for one week to more easily compare with the work on MoS2. The work showed

that internalisation of the nanomaterial is not unique to MoS2, but is also shown in

WS2. However, MoSe2 was not visibly internalised within the cells. This suggests

that the sulfur chemistry may play an important role in the internalisation process,

although the reason for the lack of MoSe2 internalisation has not been confirmed.

It is uncertain whether the material was never internalised, or whether there was a

rapid internalisation and excretion of the material in the 7 day growth window before
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trypsinisation and reseeding for imaging. The claim that cell–substrate interactions

are an important feature for uptake was reinforced by visible cell extensions of U2OS

cells on MoSe2 substrates, which showed active sensing processes at work.

This thesis introduces a generic methodology for the controlled production of

L–S films, applicable to a range of layered nanomaterials. This work describes the

first demonstration of the deposition of L–S films of hexagonal boron nitride (BN)

(Chapter 3). MoS2 nanosheets are shown to be internalised and localised within the

cell by mechanotransduction, leading to a potential new theranostic agent.



6

Chapter 2

Few-layered and low-dimensional

materials

The last few decades have been a boom time for research into few-layered low-

dimensional nanomaterials, with good reason. These materials, their properties

long known and well characterised at the macro scale, can exhibit vastly different

properties at the nanoscale. This has made possible many new applications, and

research into potential medical and biological uses is ongoing, as described in 2.4.

Greater understanding of these nanomaterials and their properties is vital for

the realisation of future applications. The ability to characterise them thoroughly is

therefore necessary. This chapter discusses the properties, synthesis and processing

of materials used during the course of this thesis, and the characterisation techniques

used to investigate their properties. Experimental details for Chapters 3–5 are also

included.

2.1 Properties of layered materials

Graphene is perhaps the most well known two-dimensional (2D) layered nanomaterial

— many people globally will have come into contact with its bulk form, graphite (in

the form of pencil lead), at an early age. However, there is increasing interest in other

low-dimensional nanomaterials; in particular the transition metal dichalcogenides
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(TMDs) are hailed as the new ‘wonder materials’ [8]. The following subsections

will discuss carbon-based nanomaterials (2.1.1) and TMDs (2.1.2) in more detail,

and other nanomaterials such as hexagonal boron nitride (BN) (2.1.3) will also be

discussed.

2.1.1 Carbon-based nanomaterials

The carbon family of nanomaterials spans from the zero-dimensional (0D) to the

three-dimensional (3D). In addition to the 2D graphene, these materials include the

0D fullerenes (first predicted by Osawa in 1970 [9] and discovered by Kroto et al. in

1985 [10]); the 1D carbon nanotube (CNT), whose first discovery is contentious∗ [15];

and the 3D graphite, a layered material formed of stacks of graphene monolayers,

natural deposits of which have been known and used for centuries. Together, these can

be considered the graphitic family; graphene can be used as an initial building block

for the formation of these other materials (Figure 2.1). Additionally, there are a range

of other carbon nanomaterials including carbon quantum dots (QDs) [16,17], carbon

black [18], carbon nanofibres [19, 20], and the more exotic carbon nanohorns [21,22]

and carbon nano-onions [23,24].

There has been a surge of research involving graphene since 2004, when the

work for which Novoselov and Geim won their Nobel Prize was first reported [6].

This described the isolation of graphene nanosheets large enough to measure its

remarkable electronic properties for the first time [6], detailed further in [25]. These

properties are produced as a result of the structure of graphene.

Carbon atoms have four valence electrons, two in the 2s orbital and the other two

in the 2px and 2py orbitals. When bonding with other atoms, one of the electrons

in the 2s orbital is promoted to the 2pz orbital, such that each orbital has one

electron [27]. In graphene, only the 2s, 2px, and 2py orbitals undergo hybridisation,

forming three sp2 orbitals [27]. These orbitals lie perpendicular to the remaining
∗Single-walled CNTs were first discovered independently by Iijima and Ichihashi, and Bethune

et al., in 1993 [11,12]. The discovery of multi-walled CNTs is also frequently ascribed to Iijima [13];
while this work certainly brought CNTs wider attention in the scientific community, they were
perhaps first observed in 1952 by Radushkevich and Lukyanovich [14].
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Figure 2.1: The iconic hexagonal structure of graphene is shown in blue (top).
Graphene can be considered the initial building block for the graphitic family,
comprising fullerenes (left), CNTs (centre), and graphite (right). Image from [26].

2pz orbital, forming covalent σ bonds in a trigonal planar geometry, resulting in

graphene’s familiar layered hexagonal lattice [25, 27]. This is shown in Figure 2.1.

The 2pz orbitals form π bonds between graphene sheets, and are the cause of the

weak bonding which allows the easy exfoliation of graphite.

It is these σ and π bonds that give graphene its remarkable mechanical and

electronic properties. The delocalised electron density associated with σ bonds ranks

these among the strongest covalent bonds, giving graphene its extreme strength

(intrinsic strength of 42 N/m in a defect-free sheet) [28]. This delocalisation also

improves the electronic transport properties [27]. While the π bonds explain the

weak, easily-broken bonding between sheets of graphene, they are also the cause of

graphene’s unique electronic properties [29].

A tight-binding model can be used to derive the energy dispersion relation

of graphene [25, 30]. The band structure can therefore be visualised by plotting

this relation, shown in Figure 2.2. The dispersion relation is linear at the K

points, called the Dirac points, which correspond to the corners of the first Brillouin
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Figure 2.2: 3D plot showing the band structure of graphene over the first Brillouin
zone (left). Contour plots showing the energy contours for the conduction band (top
right) and valence band (bottom right). Valence band in orange and conduction
band in blue.

zone [25, 30]. This makes graphene a zero-gap semiconductor, or semi-metal; its

electrons have no effective mass and are scattering-free over distances on the order of

micrometers [25]. Further, the conductivity of graphene can be tuned with an external

gate potential [6,25]. Graphene has also been investigated for biological applications,

although its inert nature doesn’t lend itself easily to ensuring biocompatibility.

However, while modification of graphene can enhance its compatibility in biological

systems [31], graphene oxide (GO) is a more obvious choice for use in nano–bio

research.

GO has received more attention in this sphere due to its excellent surface func-

tionality, amphiphilicity, aqueous dispersibility, fluorescence quenching ability and

surface-enhanced Raman scattering property [31]. Unlike graphene, the oxygenated

sheets of GO allow for easy functionalisation or loading of biological compounds,

leading to improved biocompatibility, solubility and selectivity [32]. However, this

benefit also limits its use as a substrate or scaffold, as these functional groups increase
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the hydrophilicity compared to graphene, meaning that GO readily disperses in water

and cell media [27,33]. For this reason, reduced graphene oxide (rGO) could offer

‘the best of both worlds’ — rGO maintains enough functional groups to be easily

functionalised [34,35], while also becoming less soluble [36].

2.1.2 Transition metal dichalcogenides

Transition metal dichalcogenides (TMDs) are compounds described by the chemical

formula MX2, where M is a transition metal (e.g. Mo, W) and X is a chalcogen

(e.g. S, Se) [8, 38]. The monolayer, formed of a hexagonal plane of transition metal

ions sandwiched between planes of chalcogen atoms [39], typically has a thickness

of ∼6–7 Å (Figure 2.3) [38]. Similar to graphene, the in-plane covalent bonding is

strong and the bulk TMD is formed by the stacking of weakly bonded monolayers;

this means that the bulk crystal is similarly easy to exfoliate [8]. While not strictly

2D materials, as the monolayer is formed of three planes of atoms, TMDs are often

classed as such due to their extremely thin monolayers [38–40].

Figure 2.3: Crystal structure of MoS2. Image from [37].
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Some TMDs occur naturally as crystalline minerals such as molybdenite (MoS2)

or the rarer tungstenite (WS2) [8]. TMDs are also produced synthetically by chemical

vapour deposition (CVD), hydrothermal, and solid phase pyrolysis processes [39, 40].

Chemical exfoliation by intercalation was the predominant method of few-layered

TMD production for study in the decades before graphene was first isolated [41–48].

However, the work in this thesis uses liquid-phase exfoliated (LPE) materials; this

technique is discussed further in 2.2.1.

Naturally occurring MoS2 commonly has the 2H-MoS2 crystal phase, while

synthetic MoS2 often has the 3R-MoS2 phase [8]. Both of these polytypes, with

respective hexagonal and rhomboedral symmetries, have a trigonal prismatic geometry

and are semiconducting [8, 49, 50]. MoS2 is probably the most well studied TMD. It

has been investigated for several decades; few-layer MoS2 has been reported since the

1960s [51], and the monolayer was first reported 20 years later [45]. In this thesis few-

or monolayered MoS2, WS2, and MoSe2 are studied, although these three materials

are only some of the about 40 TMDs known to have a layered structure [8].

Bulk MoS2 is an indirect band gap semiconductor with a band gap of 1.29 eV [53].

As the layer number decreases towards the monolayer, the indirect band gap increases

to over 1.90 eV [53]. This shifts the lowest energy transition to the direct band gap

(Figure 2.4), resulting in a strong photoluminescence in monolayer MoS2 [52, 53].

MoS2 has been used for applications such as lubrication (its weak interplanar

bonding gives it a low coefficient of friction) [54–56] and catalysis [57–61] for the

best part of a century. More recent research has focussed on the potential of

few-layered MoS2 for new applications, ranging from microelectronics [62–68] to

superconductivity [69–76] to photovoltaics [77–84]. Of particular relevance to this

thesis are possible biological applications. MoS2 has been considered for bioimaging

because of the photoluminescence of the monolayer form [85–88]. Due to its high

fluorescence quenching, recent years have also seen increasing interest in the use of

MoS2 for biosensors [89–96]. Additionally, MoS2 has high absorbance of near infrared

light, leading to its investigation for potential photothermal therapies (PTTs) [97–102].
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Figure 2.4: Calculated band structures of (a) bulk MoS2, (b) quadrilayer MoS2, (c)
bilayer MoS2, and (d) monolayer MoS2. The solid arrows indicate the lowest energy
transitions. Image from [52].

Drug delivery vehicles based on MoS2 have been described in the literature [103–106],

as well as combination PTT/drug delivery applications [107–110]. A new potential

theranostic application for MoS2, utilising its inherent photoluminescence and local

heating, is described in detail in Chapter 4.

2.1.3 Other nanomaterials

Like the TMDs, hexagonal boron nitride (BN) is another graphene analogue.

Its crystal structure is shown in Figure 2.5; the in-plane covalent bonding is very

strong, and the layered structure of the bulk is formed by van der Waals bonding

between these planes [111]. This differs slightly from graphene because of the

two elements involved — when stacked, the boron atoms lie above and below the

nitrogen atoms [111]. Although BN also exists in other forms (e.g. cubic, wurtzite,

rhombohedral), the hexagonal form is the most common as it is the most stable [112].
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Figure 2.5: Crystal structure of BN. Image from [111].

Despite the similarity in structure, BN exhibits different electronic properties to

those of graphene. This change is caused by the narrowing of the sp2
π bands (due to

the difference in electronegativity) compared to graphene [113]. As a result there is

a loss of conductivity, yielding an insulator (or a wide-band semiconductor) [113]. A

range of wide band gaps (5.5–5.9 eV) have been reported recently [114,115], though

depending on the method used, this range increases to 3.6–7.1 eV [116].

Because it acts as an insulator, BN is a promising material for use as a dielectric

in electronic devices [117]. However, to scale up, this requires the production of

large areas of flat BN. Dean et al. used a mechanical transfer process to produce

graphene-on-BN devices [117]. Another method which could produce thin films of

BN suitable for such devices is Langmuir deposition (technique described in more

detail in 2.2.3). Recent work has produced the first demonstrations of Langmuir–

Schaefer [118] (discussed in Chapter 3) and Langmuir–Blodgett [119] films of BN.

Although this research is in its infancy, utilising such processing techniques could

give new approaches to transparent and flexible devices [119], or to controllable

substrates for biological studies [118].
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Potential applications of other nanomaterials including

• metal nanoparticles (NPs)

(e.g. AuNPs, CuNPs, metallofullerenes, etc.),

• transition metal oxides and hydroxides

(e.g. TiO2, ZnO NPs, layered Zn(OH)2), and

• silica NPs

are discussed in the review of low-dimensional nanomaterials with intercellular

function for diagnostics, therapeutics and theranostics in 2.4.

2.2 Synthesis of layered materials and substrate

production

To achieve the properties associated with few-layered nanomaterials, the initial

material needs to be well exfoliated. The reasons that exfoliated materials are

desirable are numerous. As discussed at the beginning of this chapter, it is as the 2D

landscape is approached that the unique and special properties of nanomaterials are

enabled. Moreover, delaminating the bulk material increases the accessible surface

area of the material, leading to enhanced reactivity in catalytic applications [120].

Synthesis of few- or monolayered nanomaterials can be separated into two broad

categories: top-down, where bulk material is exfoliated to produce thin sheets; and

bottom-up, where the material is created from scratch from the relevant building

blocks. Liquid-phase exfoliation by sonication (LPE) is one example of a top-down

approach. The work presented in this thesis uses nanomaterials produced by this

method, and LPE is discussed in more detail in 2.2.1. Some other synthesis techniques

are discussed briefly in 2.2.2.

Once a nanomaterial is produced, the resultant dispersion is available for pro-

cessing. Nanomaterial dispersions provide a convenient basis for the creation of a

number of useful substrates for further experimentation. The work in this thesis
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focuses on 2D thin films produced by Langmuir film deposition, and this method

is described further in 2.2.3. Additionally, the experimental details of the synthesis

and processing techniques used for work in this thesis are provided in 2.2.4.

2.2.1 Liquid-phase exfoliation by sonication

Liquid-phase exfoliation by sonication (LPE) to produce monolayer graphene was

first described by Hernandez et al. in 2008 [121]. This paper describes the production

of graphene, though the same sonication process was quickly shown to debundle

CNTs [122,123], and thereafter shown to exfoliate a wide range of layered materials

including TMDs [49,124], BN [124,125], and black phosphorus [126,127].

LPE is easily scaleable compared to other methods such as mechanical exfoliation.

This scalability means that it is possible to achieve higher production rates, important

if nanomaterials are to become key materials in industry [120]. LPE also produces

defect-free nanosheets [128], which could be important in applications where the

material quality is paramount. However, it is important to note that this method

isn’t without problems. Although defect-free, the size of the nanosheets produced are

often small compared to those produced by mechanical exfoliation [129]. Despite this

drawback, nanosheets produced by LPE can still be harnessed for their enhanced

properties [129].

The LPE process begins with a mixture of the bulk material in the chosen

dispersant. This is introduced to either bath or probe sonication, which produces

ultrasonic waves [120]. These waves cause cavitation bubbles to form in the dispersant;

Figure 2.6: Schematic description of sonication-assisted liquid-phase exfoliation
(LPE). Image adapted from [120].
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when these bubbles burst, high-energy jets are released [120]. This energy is enough

to break the inter-layer bonding of the bulk material, producing exfoliated few-layer

nanosheets [120]. This is shown in Figure 2.6. The success of the sonication depends

in no small part on the dispersant used. Solvents [130–132], surfactants [133–137],

polymers [138, 139], and biomolecules [140–142] have all been demonstrated as

dispersants. Du et al. have reviewed many different dispersants used for LPE of

various layered materials [143]. Water is available in abundance and is nontoxic, so

would make an ideal dispersant for nanomaterials. However, nanomaterials are not

soluble in water, so the addition of surfactants or polymers is necessary. The work

in this thesis uses nanomaterial dispersions in organic solvents, as surfactants are

toxic to biological systems. As such, only solvent dispersants are discussed in detail.

The success in producing a stable nanomaterial dispersion, i.e. a dispersion which

doesn’t reaggregate and precipitate quickly, has been shown to depend on surface

energy matching between material and solvent [121]. Solvents with surface energies

close to that of the layered material produce a more stable dispersion; reaggregation

is less likely because the energy difference between the exfoliated and reaggregated

states is small [120, 128]. Good solvents for the exfoliation of graphene therefore

require surface tensions of ∼40–50 mJ/m2 [121]; this explains the inability of pure

water to satisfactarily exfoliate graphite, as it has a surface tension of 72 mJ/m2 [120].

Which solvents make ‘good’ dispersions is a subject which has received much

investigation. As discussed above, the energy cost of exfoliation is a key factor.

Hernandez et al. identified the use of Hansen solubility parameters to estimate the

energy cost of nanomaterial exfoliation [144]. Originally developed to explain the

solubility of polymers, this framework is also able to describe the dispersibility of

nanomaterials satisfactorily. The intermolecular interactions between solvent and

solute can be broadly classified into dispersive (D), polar (P), and hydrogen-bonding

(H) components [144]. The distance in Hansen parameter space from solvent (B)

to solute (A) can be used as a simple parameter to represent the similarity of the
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materials’ suface energies. This is given as

R =
√

4(δD,A − δD,B)2 + (δP,A − δP,B)2 + (δH,A − δH,B)2 (2.1)

where δD,B, δP,B, δH,B are the solvent Hansen parameters and δD,A, δP,A, δH,A are

the solute Hansen parameters [145, p. 29]. The constant “4” is included in front

of the first term having been found empirically to ensure that R is spherical in

Hansen parameter space [145, p. 29]. When R is minimised, so is the energy cost of

graphene exfoliation. Although shown to work for graphene, this framework has also

successfully described other materials [124,146].

Hernandez et al. showed that dispersion concentration increases as R de-

creases [144], and dispersions of MoS2 have been produced with concentrations

as high as 40 mg/mL [147]. Graphene dispersions have been shown to reach concen-

trations of at least 63 mg/mL, though this method included a centrifugation step

before redispersion of the material in fresh solvent [148].

Centrifugation is therefore an important step in obtaining high quality nanoma-

terial dispersions. This method is well established, having been used in laboratory

practice for well over 100 years [149]. In short, the dispersion is rotated at a high

number of revolutions per minute (RPM); this artificially increases the gravitational

force felt by nanosheets in the dispersion. The largest sheets feel the largest gravita-

tional force, so separate quickest from the rest of the dispersion. Hence, separation

occurs at different rates depending on sheet size, allowing the isolation of few-layered

nanosheets in minutes, rather than days.

Not only does centrifugation remove unexfoliated bulk material and increase the

concentration of the final dispersion, but it can also be used to obtain specific sizes

of nanosheets. LPE produces nanomaterials with a broad range of sheet sizes and

thicknesses [150]. If nanosheets within a specific, narrow range are required then

additional processing is needed. One size selection technique is known as liquid

cascade centrifugation (LCC) [151]. This process covers a series of successively

stronger centrifugation steps. Each step has a gradually increased RPM, such that
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Figure 2.7: Diagram illustrating the liquid cascade centrifugation (LCC) process,
beginning with a graphene dispersion in cyclohexanone. Details in figure relate
to 2.2.4.1.

the dispersion is subjected to steadily increasing gravitational forces. These fractions,

each with smaller and thinner nanosheets, can be redispersed to produce samples.

The LCC technique is shown in Figure 2.7.

2.2.1.1 High-pressure homogenisation

While sonication-assisted LPE materials are mainly used in this thesis, some material

was produced by high-pressure homogenisation. The shear forces required to exfoliate

the material are provided by forcing the dispersion through a narrow nozzle at high

pressure [152]. The specific system used in this thesis is described by Large et al.

and is shown in Figure 2.8 [137]. The initial dispersion is poured into the inlet

reservoir, and from here it is drawn into the intensifier pump. The system can

generate pressures of up to 3000 atm, and the compressed dispersion is decompressed

through a diamond nozzle within the process cell [137]. The resultant high-speed

jet of dispersion collides with fluid flowing in the opposite direction, generating the

shear forces which exfoliate the bulk material. From here the dispersion is passed

into a heat exchanger; the turbulent forces necessary for exfoliation produce a lot of
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heat, so the dispersion is cooled to a specified temperature controlled by an external

chiller. At the end of the cycle, the dispersion can either be collected or recirculated,

depending on the system configuration [137].

Figure 2.8: Schematic of the high-pressure homogenisation equipment used, overlayed
on a photograph of the system. Image from [137].

2.2.2 Other synthesis techniques

While liquid-phase exfoliation by sonication and high-pressure homogenisation were

the only synthesis techniques used in this thesis, other methods are commonly used

in the literature. Some other techniques are discussed briefly in this section.

One method mentioned in passing in 2.1.2 is ion intercalation. Whereas

LPE utilises sonication to break the weak bonding between the layers in layered

nanomaterials, ion intercalation involves the introduction of ion guests between these

layers [153]. The ions increase the size of the gaps between layers [154], leading

to exfoliation if enough energy is supplied [120]. In 2.1.2 the long history of TMD

exfoliation by ion intercalation was mentioned, but it is important here to note

that graphite has also been subject to ion intercalation studies for the past several

decades [155].
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No discussion of nanomaterial exfoliation would be complete without mentioning

mechanical exfoliation. This method is well known as the technique first used

to isolate monolayer graphene by Novoselov and Geim in 2004 [6]. This simple

yet powerful technique works by physically peeling individual layers from the bulk

crystal using scotch tape, allowing each layer to be deposited on a substrate of choice.

This synthesis technique has also been used to obtain other few-layered materials,

including but not limited to TMDs [156] and group IV metal chalcogenides [157].

Possibly the most common bottom-up synthesis method is chemical vapour

deposition (CVD). The process involves the introduction of the precursor material

as a vapour to a vacuum chamber which contains the substrate; the vapour then

reacts with the substrate to produce a monolayer of the desired material [158]. This

can create monolayers with large areas, but is an expensive process that currently

lends itself mainly to high-performance applications [159]. Moreover, the nanosheets

produced can be quite defective, and cannot be transferred from the initial substrate

used. Regardless, CVD is the one of the most common bottom-up synthesis techniques

in industry, used for microelectronics (mobile phones, laptops, etc.), data storage,

and medical equipment applications [160].

2.2.3 Langmuir deposition

The Langmuir deposition technique functions by utilising the air–liquid interface as

a 2D plane for the assembly of exfoliated nanosheets. Nanomaterial dispersion is

dropped onto the liquid subphase (frequently deionised water is used, though some

materials may require a modified subphase); the droplets spread on the subphase

surface until the solvent evaporates and a thin, monolayer film is left at the air–liquid

interface.

Therefore, solvent choice is an important aspect of the process. The chosen

solvent must fulfil three main requirements. It must:

• have a high vapour pressure, so that it evaporates and leaves a film of particu-

lates at the interface [161];
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• spread on the water surface, to maximize the area over which nanoparticles

are spread to minimize reaggregation during solvent evaporation [162]; and

• be water-immiscible, to avoid mixing with the subphase.

The density of the nanomaterial monolayer can be modified before deposition by

controlling the film area with barriers. This was first described by Agnes Pockels in

1891 [163]; she had created a trough with moveable barriers from a tin pan and inserts.

The trough was further developed by Irving Langmuir and Katherine Blodgett [164].

Control over the film density is important, as this is related to the surface pressure

of the film and can affect its behaviour. When trough area is large and the film

density is low, the material is sparsely distributed in the trough; these ‘films’ are not

continuous, and may consist of islands of material across the trough area. As the

trough area decreases, the film density increases until nanosheets come into contact

with each other. If this continues, the film will eventually cease to be monolayer as

the density reaches a maximum and the nanosheets begin to overlap. This process

describes the change of surface pressure from low to high, and can be described as

the ‘phase transitions’ [165] of the monolayer film (Figure 2.9).

Figure 2.9: Typical pressure–area isotherm indicating the different phases in a
Langmuir monolayer. As the trough area, and hence area per molecule, decreases,
the surface pressure increases, causing the monolayer to undergo ‘phase transitions’.
The molecular arrangement in the different phases is indicated. Image from [166].
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Once the nanomaterial film is at the desired density it is deposited onto a suitable

substrate. The thin films studied throughout this thesis are deposited onto glass

cover slips as these are standard substrates in the biological sciences, so compatibility

with cell study methods was ensured. There are two main techniques to deposit

the nanomaterial film from the air–water interface onto a substrate: Langmuir–

Blodgett deposition, which involves the vertical dipping of a substrate through

the monolayer [164], and Langmuir–Schaefer (L–S) deposition, which involves the

horizontal dipping of a substrate [167].

The Langmuir deposition technique was developed with amphiphilic molecules,

as the polar nature of these molecules meant that they would align in the same

orientation on the subphase and transfer easily to the substrate [168]. The technique

has since been shown to work for a range of nanoparticles [166] including but not

limited to pure and functionalised fullerenes [169–171]; capped metallic NPs [172–

174]; functionalised CNTs [175–177]; silver nanowires [178]; graphene [179–181];

MoS2 [182–184]; and phosphorene [185].

2.2.4 Synthesis and processing of materials for Chapters 3–5

This section contains experimental details of the material synthesis and substrate

production for the work presented in Chapters 3–5.

2.2.4.1 Synthesis and processing of materials for Chapter 3

Synthesis of materials

BN powder (0.5 g, Aldrich Chemistry) was added to 20 mL of cyclohexanone

(VWR Chemicals) and probe sonicated using a Sonics Vibracell VCX750 and ½-inch

(13 mm) tip at 60% amplitude for 3 hours. The resulting dispersion was centrifuged

for 25,000 g min using a Thermo Scientific Sorvall Legend X1. The supernatant was

collected for further characterisation.
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MoS2 powder (0.4 g, Aldrich Chemistry) was added to 20 mL of cyclopentanone

(VWR Chemicals) and probe sonicated using a Sonics Vibracell VCX750 and ½-inch

(13 mm) tip at 60% amplitude for 1 hour. The resulting dispersion was centrifuged

for 150,000 g min using a Thermo Scientific Sorvall Legend X1. The supernatant was

discarded, and 20 mL of fresh cyclopentanone added. This was probe sonicated using

a Sonics Vibracell VCX750 and ½-inch (13 mm) tip at 60% amplitude for 3 hours.

The resulting dispersion was centrifuged for 25,000 g min using a Thermo Scientific

Sorvall Legend X1. The supernatant was collected for further characterisation.

WS2 powder (0.75 g, Aldrich Chemistry) was added to 30 mL of acetone (VWR

Chemicals) and probe sonicated using a Sonics Vibracell VCX750 and ½-inch (13 mm)

tip at 60% amplitude for 1 hour. The resulting dispersion was centrifuged for

150,000 g min using a Thermo Scientific Sorvall Legend X1. The supernatant was

discarded, and 20 mL of fresh cyclopentanone added. This was probe sonicated

using a Sonics Vibracell VCX750 and ½-inch (13 mm) tip at 60% amplitude for

3 hours. The resulting dispersion was centrifuged for 25,000 g min using a Thermo

Scientific Sorvall Legend X1. The resultant WS2/acetone dispersion was centrifuged

for 5,400,000 g min using a Thermo Scientific Sorvall Legend X1. The supernatant

was discarded, and the solute redispersed in 5 mL of fresh cyclohexanone added to

each centrifuge tube.

Graphene dispersions in cyclohexanone were processed as described in Large

et al. [137]. Size-selected graphene dispersions were required. The dispersion was

diluted 1:1 with cyclopentanone (Aldrich Chemistry) for the largest flake size (referred

to as L-gra). LCC [151] was used to obtain fractions of the original dispersion with

different nanosheet size by extraction and re-centrifugation of the supernatant after

each centrifugation step (Figure 2.7). Each time, this process leaves behind a solute

that has an increasingly smaller average flake size. The dispersion to be size-selected

for small flake size (referred to as S-gra) was further diluted 1:10 in cyclopentanone

before centrifugation for 4,800,000 g min using a Thermo Scientific Sorvall Legend

X1. The supernatant was collected for further characterisation.
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Langmuir–Schaefer deposition of films

A NIMA 102A Langmuir trough and NIMA surface pressure sensor (type PS4, serial

no. 045) equipped with platinum Wilhelmy plate was used. Material dispersions

were used to create thin films with varying surface coverages. The dispersion

concentrations used ranged between 0.018–2.558 g/L (i.e. within the range typically

produced by LPE), and the amounts deposited ranged between 100–900 µL. For film

fabrication calibration, a range of surface pressures has been used (ranging from

approximately 0.5–40 mN/m). To investigate quantitatively, a series of thin films of

various materials were deposited by L–S technique at varying pressures.

2.2.4.2 Synthesis and processing of materials for Chapter 4

Synthesis of materials

MoS2 powder (0.4 g, Aldrich Chemistry) was added to cyclopentanone (20 mL,

VWR Chemicals) and probe sonicated using a Sonics Vibracell VCX750 and ½-inch

(13 mm) tip at 60% amplitude for 1 hour. The resulting dispersion was centrifuged

for 150,000 g min using a Thermo Scientific Sorvall Legend X1. The supernatant

was discarded, and fresh cyclopentanone (20 mL) added. This was probe sonicated

using a Sonics Vibracell VCX750 and ½-inch (13 mm) tip at 60% amplitude for

3 hours. The resulting dispersion was centrifuged for 25,000 g min using a Thermo

Scientific Sorvall Legend X1 to remove unexfoliated nanosheets. The supernatant

was collected for further characterisation.

Langmuir–Schaefer deposition of films

A MoS2 dispersion was used to create thin films by the Langmuir deposition

technique. Films were created using both a NIMA 102A Langmuir trough and NIMA

surface pressure sensor (type PS4, serial no. 045) equipped with platinum Wilhelmy

plate, and by using a Petri dish without a surface pressure sensor. Material was

deposited onto pristine glass cover slips once the films appeared dense to the naked

eye.
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2.2.4.3 Synthesis and processing of materials for Chapter 5

Synthesis of materials

WS2 powder (0.75 g, Aldrich Chemistry) was added to 30 mL of acetone (VWR

Chemicals) and probe sonicated using a Sonics Vibracell VCX750 and ½-inch (13 mm)

tip at 60% amplitude for 1 hour. The resulting dispersion was centrifuged for

150,000 g min using a Thermo Scientific Sorvall Legend X1. The supernatant was

discarded, and 20 mL of fresh cyclopentanone added. This was probe sonicated using

a Sonics Vibracell VCX750 and ½-inch (13 mm) tip at 60% amplitude for 3 hours.

The resulting dispersion was centrifuged for 25,000 g min using a Thermo Scientific

Sorvall Legend X1. The supernatant was collected for further characterisation.

The WS2/acetone dispersion was centrifuged for 5,400,000 g min using a Thermo

Scientific Sorvall Legend X1. The supernatant was discarded, and the solute redis-

persed in 5 mL of fresh cyclohexanone added to each centrifuge tube.

MoSe2 powder (0.5 g, Aldrich Chemistry) was added to 20 mL of cyclopentanone

(VWR Chemicals; Sigma-Aldrich) and probe sonicated using a Sonics Vibracell

VCX750 and ½-inch (13 mm) tip at 60% amplitude for 1 hour. The resulting

dispersion was centrifuged for 150,000 g min using a Thermo Scientific Sorvall

Legend X1. The supernatant was discarded, and 20 mL of fresh cyclopentanone

added. This was probe sonicated using a Sonics Vibracell VCX750 and ½-inch

(13 mm) tip at 60% amplitude for 3 hours. The resulting dispersion was centrifuged

for 25,000 g min using a Thermo Scientific Sorvall Legend X1. The supernatant was

collected for further characterisation.

Langmuir–Schaefer deposition of films

WS2 and MoSe2 dispersions were used to create thin films by the Langmuir

deposition technique. Films were created using both a NIMA 102A Langmuir trough

and NIMA surface pressure sensor (type PS4, serial no. 045) equipped with platinum
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Wilhelmy plate, and by using a Petri dish without a surface pressure sensor. Pristine

glass cover slips were masked with scotch tape approximately halfway; material was

deposited onto these substrates once the films appeared dense to the naked eye.

2.3 Characterisation techniques

This section describes the physics behind the characterisation techniques used in this

thesis. Broadly, these encompass microscopy (2.3.1, 2.3.4) and spectroscopy (2.3.2,

2.3.3).

2.3.1 Optical microscopy

While this technique is well known, it is worth mentioning here as it is used extensively

throughout the work in this thesis. Light microscopes use visible light to produce

a magnified image of an object that is projected onto a sensor (e.g. the retina of

the eye or the photosensitive surface of an imaging device) [186]. Compound light

microscopes use two lenses together to produce the final image magnification [187].

The optical components of a typical upright optical microscope are shown in

Figure 2.10a. Light is provided to the microscope stage by a mirror or an integrated

light source. The light passes through the condenser, which focuses the light onto

a small area of the specimen, before illuminating it [186]. From the specimen, the

light next reaches the objective, which collects the light diffracted by the specimen

and forms a magnified real image near the eyepieces (depicted in Figure 2.10b) [186].

The eyepiece together with the detector (eye, camera, etc.) forms a final real image

which is interpreted as having been magnified [186].

Bright-field microscopy occurs when light is transmitted through the sample to

the objective; the image contrast is generated by the absorption of light in dense

areas of the sample [188]. Until the late 1980s, other imaging modes were laborious

to implement because most microscopes had a fixed tube length (i.e. the distance

between the objective and the eyepiece is specified) [186]. This ‘finite’ design,
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Figure 2.10: (a) Diagram showing optical components of an upright optical micro-
scope. (b) Perception of a magnified virtual image of a specimen in the microscope.
The objective forms a magnified real image of the specimen (called the real inter-
mediate image) in the eyepiece. The intermediate image is examined by both the
eyepiece and eye, which together form a real image on the retina. Because of the
perspective, the retina and brain interpret the scene as a magnified virtual image
about 25 cm in front of the eye. Image and caption adapted from [186].

shown in Figure 2.11a, doesn’t easily allow for additional optical accessories such as

polarisers to be added to the light path [186]. These additions increase the effective

tube length, resulting either in image artefacts or in the placement of additional

optical elements to counteract the effect of the accessories [186].

To combat the problems associated with fixed tube length microscopes, an altern-

ative approach dubbed ‘infinity optics’ was developed (shown in Figure 2.11b) [186].

Instead of focusing light rays from the objective at the intermediate image plane,

the design is modified such that the objective produces parallel light rays that image

at infinity [186]. These rays are brought into focus by an additional component, the

tube lens [186]. The area between the objective and the tube lens is designated the

‘infinity space’, and it is possible to introduce additional optical accessories into the

light path here without producing artefacts [186].
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Figure 2.11: Finite and infinity-corrected optical configurations. (a) Finite optical
configuration; light rays are focused from the objective at the intermediate image
plane. (b) Infinity-corrected optical configuration; light rays between the object-
ive and tube lens are parallel, providing the ‘infinity space’ region where optical
accessories may be placed without causing image artefats. Image from [186].

Although bright-field microscopy can be used to image living cells, many biological

samples appear with low contrast. In particular, specimens which are colourless and

transparent, such as many types of cells, are not easily seen. To improve visibility of

these samples, other imaging modes must also be utilised.

Dark-field microscopy excludes the unscattered light ray from the final image,

which appears as a very dark background with a bright sample on it [189]. The

technique is simple, and requires only the addition of a dark-field condensor lens.

Artefacts which are common in phase-contrast microscopy, such as halos or shadows,

do not usually appear in dark-field images. However, due to the low light in the final

image the sample must be strongly illuminated [189], which can damage biological

samples.
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Another method that improves the contrast in transparent samples is differential

interference contrast (DIC) microscopy. As its name suggests, DIC microscopy uses

principles of interferometry to resolve features that would otherwise be invisible. This

is because most detectors are sensitive only to the intensity of light, only showing

contrast based on how much light is absorbed; DIC microscopy instead utilises

the phase changes caused by transparent specimens to produce an image of the

specimen [190].

In microscopes adapted for this technique, the initial light is polarised first by

a polariser and then by the first Nomarski-modified Wollarston prism [190]. This

produces two laterally-separated light rays which are orthogonally polarised and

coherent [191]. These rays are focused by the condenser such that they pass through

the sample a small (sub-resolution) distance apart from each other [190]. Because

the adjacent areas of the sample will have different thicknesses or refractive indices,

the light rays will experience different optical path lengths (OPLs), causing a relative

change in phase between the rays. The light rays travel through the objective and

are focused onto the second Nomarski-modified Wollarston prism, which recombines

the light rays into one polarised beam and gives rise to interference of the rays [188].

Figure 2.12: Gradients in optical path length (OPL) yield differences in amplitude.
(a) DIC image of a mammalian erythrocyte (its diameter indicated by the white line).
(b) Plot and (c) first derivative of the OPL across the diameter of the cell. Positive
and negative slopes in panel (a) correspond to regions of higher and lower amplitude
in panel (c). Regions of the object exhibiting no change in slope (e.g. centre of
the cell) have the same amplitude as the background. This gives DIC images their
misleading “3D” appearance. Image from [186].
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Figure 2.13: Comparison of images of the same Madin Darby canine kidney cell
obtained from bright-field (left), dark-field (centre) and DIC (right) microscopy.
Scale bar = 10 µm. Image from [192].

The final DIC image depends on the gradient of the OPL (Figure 2.12). The

advantage of DIC microscopy is apparent when compared with bright-field and dark-

field microscopy; this technique produces images with higher contrast and better

z-resolution [192] (Figure 2.13).

Fluorescence microscopy is a technique commonly used for biological imaging.

The term ‘fluorescence’ describes the process where specimens absorb light of one

wavelength and re-emit it at a longer wavelength [187]. It is an example of the

wave–particle duality of light. When a photon of light is incident upon fluorescent

material an electron is excited from the ground state to a higher energy state. As

the electron relaxes within the excited state, energy is dissipated to the surroundings

until the electron reaches the lowest level of the excited state [187]. At this point

it returns to the ground state, and a photon of corresponding energy is emitted.

Because some of the initial energy has dissipated, the emitted photon has less energy

than the incident photon; this is why light emitted by fluorescence always has a

longer wavelength than the incident light (Figure 2.14) [187].

The fluorescence microscopy technique has the ability to localise enzymes, sub-

strates, and genes, and to characterise physicochemical properties of the cell, including

membrane potentials, viscosity, and pH with high resolution and contrast [187]. Usu-

ally nonfluorescent molecules or antibodies are tagged with a fluorescent dye or

material to make these structures visible [186]. However, recent research increas-
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ingly utilises fluorescent nanoparticles for imaging purposes; unlike more traditional

fluorescence microscopy, these materials don’t suffer from photobleaching, and don’t

require tagging. Some nanomaterials used for fluorescence imaging are discussed

in 2.4.

Figure 2.14: Energy diagram of a fluorescent molecule. The absorption and fluores-
cence emission spectra of the molecule are shown on the right. Image from [187].

2.3.2 Raman spectroscopy

Light is not only absorbed and emitted by atoms and molecules; photons can also be

scattered by a sample. Scattering is either elastic, where molecules are left in the

same state, or inelastic, where molecules are left in a different state. These two types

of scattering are known as Rayleigh scattering and Raman scattering, respectively.

Rayleigh scattering is much more common than Raman scattering, the latter

comprising only ∼10−5 of the incident beam [193, p. 15]. It is responsible for the

blueness of the sky due to its strong (I ∝ λ−4) wavelength dependence [194, 195].

Rayleigh scattering is shown in Figure 2.15.

Raman scattering causes the wavelength (and hence energy) of the scattered

light to change compared to the incident light. This can be split into two categories

depending on whether the scattered light has an increased or decreased wavelength

compared to the incident light. Stokes scattering occurs when the emitted light has

a longer wavelength; this is caused by the excitation of a ground state molecule to
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a virtual state, before relaxation back down to a higher energy vibrational state.

Anti-Stokes scattering occurs when the emitted light has a shorter wavelength; this

is caused by the excitation of a molecule in a vibrational state to a virtual state,

before relaxation back down to the ground state. Stokes scattering is more common

than anti-Stokes scattering because it is more likely for the molecule to be in the

ground state when light is incident upon it. However, the ratio of anti-Stokes to

Stokes scattering increases with temperature following the Boltzmann distribution,

N ∝ exp
(
− E

kBT

)
, because more molecules will be in the first vibrationally excited

state under these circumstances. Both of these are shown in Figure 2.15.

Figure 2.15: Energy diagram of Rayleigh, Stokes Raman, and anti-Stokes Raman
scattering.

A Raman spectrometer is used to measure the Raman scattering of a material

(a basic schematic is shown in Figure 2.16). In simple terms, this comprises a laser

to illuminate the sample, followed by filters to collect either Stokes or anti-Stokes

Raman scattered light (filters out other light components) and diffraction gratings

to diffract the scattered light into a spectrum, before finally being detected by a

CCD detector. This gives a Raman spectrum at a single point of the sample. Some

Raman spectrometers have the ability to obtain a 2D map by scanning in x and

y directions across a specified area, giving a picture of the material across a wider
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Figure 2.16: Basic schematic of a Raman spectrometer. Image from [196].

area. With a confocal system, which is additionally capable of incrementing in the z

direction automatically, this process can be extended into three dimensions to create

a 3D volumetric map.

For a material to be Raman-active, a molecular rotation or vibration must cause

a change in the molecular polarisability, α [197, p. 63]. If Raman-active, then

Raman spectroscopy measures the intensity of the scattered light as a function of

Raman shift (the difference in wavenumber between the excitation and scattering).

These spectra exhibit bands at various frequencies that correspond to vibrations of

specific bonds in the material; these are known as Raman modes. The vibrational

frequencies of the Raman modes depend on the masses of the atoms involved and

the strength of the bonds between them; low vibrational frequency indicates heavy

atoms and weak bonds, while high vibrational frequency indicates light atoms and

strong bonds [193, p. 18]. An overall idea of the composition of the material is gained

by observing which modes are present, and their ratios to one another.

It is well established that the ratio between Raman mode intensities, e.g. between

the ID and IG modes for graphene, changes with nanosheet size [198–201]. Metrics

based on this concept were developed for LPE graphene samples by Backes et al. [202].
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Recently, improved Raman metrics utilising pixel-wise metricised Raman mapping

have been developed by Amorim Graf et al., and are shown to apply to both graphene

and MoS2 [203]. Furthermore, a new metric for MoS2 layer number was developed

based on an intensity ratio, I465/I453, of resonant Raman modes [203].

Raman spectroscopy is a non-destructive, non-invasive technique, which lends

itself well to the study of sensitive samples, such as biological cells or tissues. Spectra

are aquired rapidly, without need for sample preparation. However, the Raman

signal can be swamped by fluorescence from some materials; this characterisation

technique can be used in combination with other techniques that may be less affected

by, or that actively utilise, fluorescence signals.

2.3.3 UV–visible spectroscopy

UV–visible spectroscopy is a technique used to measure the optical extinction

(comprising absorbance and scattering components) or transmittance of a solid or

liquid sample as a function of wavelength.

Figure 2.17: Schematic of a UV–visible spectrometer. Image from [204].
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The internal components of a UV–visible spectrometer are shown in Figure 2.17.

Briefly, a broadband light source is filtered and monochromated such that only light

of a single wavelength is used for illumination. This light is passed through a beam

splitter, forming two paths so that both the sample and reference can be measured

simultaneously. Some of this light is absorbed by the sample, some is scattered,

and some is transmitted; the transmitted light is measured by photodiodes. Any

difference between the sample and reference transmittance measurements is assumed

to be caused by the material in the sample.

Often, knowing the extinction (Ext) may be more useful than knowing the

transmittance (T ) of a sample. The two are related by the equation

Ext = − log10(T ). (2.2)

For many samples, extinction can be directly related to concentration (c) by the

Beer–Lambert law. This can be written as

Ext = ε`c, (2.3)

where ε is the extinction coefficient and ` is the OPL through the sample.

UV–visible spectroscopy can reveal exciton peaks in the spectra which are caused

by electronic transitions in the material. Electronic structure is affected by the

exfoliation of the material (as shown for MoS2 in Figure 2.4), so there is a correlation

between the measured exciton peaks and the thickness of the material. This has

led to the development of spectroscopic metrics based on UV–visible spectroscopy

measurements, which can provide information about the lateral size and the layer

number of the material in question [202,205–208].
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2.3.4 Atomic force microscopy

Scanning probe microscopy encompasses several techniques that obtain images of

sample surfaces by using a physical probe to scan the sample. Atomic force microscopy

(AFM) is one of these techniques. Compared to the traditional optical microscope it

has a very high resolution. AFM can overcome the optical diffraction limit, so has a

resolution on the nanometer scale [209]; however, a slow imaging speed is required

to achieve the best resolution. Additionally, it provides a 3D image of the sample

surface [209]; to use reading a book as an analogy, AFM is to optical microscopy

what Braille is to standard print on a page.

A diagram of a typical atomic force microscope (AFM) setup is shown in Fig-

ure 2.18. The force sensor is based on a cantilever with a sharp tip (tip radius of a

few nanometers). As the cantilever rasters across the sample surface, the tip interacts

with the sample, sensing attractive or repulsive forces between the molecules of

the tip and sample [209]. Even small changes in the forces cause the cantilever to

deflect, altering the reflection angle of the laser light incident upon the cantilever.

This shifts the position of the reflected light on the photodiode array, and hence

influences the photocurrent produced. Combining feedback from the photodiode

array with the piezoelectric sensor controlling the motion of the cantilever allows

precise measurements of the surface structure to be obtained.

There are three main scanning modes used for AFM measurements: contact

mode, noncontact mode, and tapping mode [209]. Contact mode can be used to

achieve high resolution images in both air and fluid environments; however, it can

only be used to image samples with hard surfaces which cannot be deformed, because

more fragile surfaces can be damaged. In noncontact mode the tip never makes

contact with the sample surface. While this avoids issues associated with contact

mode, such as damaging soft samples (e.g. some biological tissues), the resolution is

lower due to the long-range forces used, and the image can be inaccurate due to the

contamination layer present on all samples in ambient conditions.
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Figure 2.18: Schematic of AFM. The laser path goes from the laser source to the
photodiode via reflection on the cantilever. The cantilever is attached to the tip,
which interacts with the sample.

Tapping mode is a good alternative, combining features from both contact and

noncontact modes. In this mode, the cantilever is oscillated at or near its resonant

frequency, and the phase shift between the driving oscillation and the feedback is

measured. This mode is suited to most biological samples, as it can provide high

resolution images of soft samples which may be damaged easily. Figure 2.19a shows

the force response curve of the tip. When close to the surface repulsive forces are

dominant; moving further from the surface attractive forces are dominant, until the

tip is far enough away that any forces from the surface are negligible [210]. The

domains for contact, noncontact, and tapping mode can be mapped onto this graph,

and are shown in Figure 2.19b.

Artefacts are features that appear in images but which are not naturally present.

They occur as a result of the imaging procedure. Some of the main sources of

artefacts when using AFM are the quality of the tip used, vibrations during imaging,

and issues arising from image processing. This underlines the importance of ensuring

that the tip is undamaged, ensuring that there are as few environmental vibrations

as possible (e.g. by mounting the stage on a bed of gas, etc.).
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Figure 2.19: Force–distance graph for tip–sample interactions during AFM. (a) Plot
shows the force response curve resulting from the repulsive and attractive forces felt
by the tip. (b) The domains for contact, noncontact, and tapping mode are overlaid
onto this plot. Image adapted from [211].

AFM has been used in this thesis to obtain statistics related to nanosheet

lateral size and layer number. The nanosheet layer number can be obtained from

the measured AFM thicknesses using established metrics based on step height

analysis [151, 205, 206, 212]. It is well established that direct conversion of AFM-

measured height to layer number is complicated by adsorbed surfactant or solvent

on nanosheets and substrate. Step height analysis accounts for this by considering

the heights of several nanosheets simultaneously. By plotting each nanosheet height

in ascending order, a series of steps appear in the data; the first step in the data

gives the thickness of the monolayer.

2.3.5 Characterisation techniques for Chapters 3–5

This section contains experimental details of the characterisation techniques used for

the work presented in Chapters 3–5.

2.3.5.1 Characterisation techniques for Chapter 3

Optical microscopy

Optical microscopy was performed using an Olympus BX53M microscope with a

5× magnification in bright-field mode. The optical micrographs were pre-processed

to crop the image down to the area of the cover slip only.
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Optical images of the samples were required for calculation of surface coverage.

Images were taken of large sample areas (at least half of each 18 mm × 18 mm

sample) to allow a more accurate approximation of the film distribution over the

whole sample.

Binary threshold method to determine film surface coverage

A simple, two-step post-processing method was used to determine the film surface

coverage from the optical micrographs. Firstly, the open-source ImageJ software [213]

was used to run a binary threshold on the micrographs to separate the nanomaterial

film from the substrate (a small section of a typical optical micrograph and its

corresponding threshold is shown in Figure 2.20 as an example). Secondly, a custom

Python script was written to automate the calculation for determining the fraction

of nanomaterial present.

Figure 2.20: (a) Optical micrograph. (b) Binary threshold of the optical micrograph.

UV–visible spectroscopy

UV–visible spectroscopy measurements were performed using a Shimadzu UV-3600

Plus spectrophotometer. Liquid characterisation was performed using quartz cuvettes

(Starna Scientific); solid characterisation was performed using a microscope slide

holder.
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Atomic force microscopy

AFM measurements were performed using a Bruker Dimension Icon AFM system

in PeakForce QNM® mode. AFM was performed on sparse Langmuir films of each

material to obtain statistics on flake length, width, and layer number using NanoScope

Analysis software. This allows flake area to be calculated. At least 100 flakes of each

material were used to obtain reliable statistics.

2.3.5.2 Characterisation techniques for Chapter 4

Atomic force microscopy

AFM measurements were performed using a Bruker Dimension Icon AFM system

in PeakForce QNM® mode. AFM was performed on sparse Langmuir films to

obtain statistics on flake length, width, and layer number using NanoScope Analysis

software.

Optical microscopy

Optical microscopy was performed using an Olympus BX53M microscope with a

range of objectives (5×–100×) in both bright-field and DIC modes.

Raman spectroscopy

Raman spectra were taken using an upright Renishaw InVia confocal Raman

microscope. A 660 nm laser was used for resonant measurements of MoS2. Volumetric

maps were taken using resonant laser (660 nm) and 100× objective and a grating

of 1800 l mm−1. The maximum depth uncertainty is ∼3 µm, but using small step

sizes and overlapped data provides a much greater accuracy (closer to 1 µm). The

step size and area were varied depending on the sample size (step size ranged from

0.1 to 0.5 µm). Very low power (0.001 mW) and short exposure times (< 0.5 s) were

used.
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2.3.5.3 Characterisation techniques for Chapter 5

Optical microscopy

Optical microscopy was performed using an Olympus BX53M microscope with a

range of objectives (5×–100×) in both bright-field and dark-field modes.

Raman spectroscopy

Raman spectra were taken using an upright Renishaw InVia confocal Raman

microscope. A 532 nm laser was used with a grating of 2400 l mm−1. A power of

5 mW was used for exposure times of 10 s.

2.3.6 Cell experiments for Chapters 3–5

This section contains experimental details of the cell experiments conducted for the

work presented in Chapters 3–5.

2.3.6.1 Cell experiment for Chapter 3

The cell line used for the cell study was U87 glioblastoma from the American Type

Culture Collection. The study ran for 14 days, with observations made at day 3 and

day 13, and images taken at day 4 and day 12 using an EVOS FLC imaging system

(Life Technologies) at 20× magnification.

2.3.6.2 Cell experiments for Chapter 4

The cell lines used for the cell studies were U2OS (obtained from the American

Type Culture Collection) and 1BR primary fibroblasts (obtained from the Genome

Damage and Stability Centre Research Tissue Bank, University of Sussex). Cell

lines were grown on MoS2 thin films (deposited onto pristine glass cover slips as

described in 2.2.4.2), and grown on pristine glass cover slips used for the control.

The 1BR primary fibroblasts were seeded with 0.4×103 #/mL and the U2OS with

0.6×104 #/mL cell seeding density. Cells were fixed on cover slips using 3% para-

formaldyhyde and 2% sucrose PBS, for 10 minutes at room temperature. Samples
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were washed with DI water before imaging. Study lengths ranged from 3 to 14 days.

Cells were grown in DMEM and MEM, respectively, supplemented with 15% FCS,

L-glutamine, and pen–strep at 370 °C and 5% CO2. Cell counting was performed

using hemocytometry after tryspinisation using trypsin EDTA (0.25%). For the

nystatin studies, cells were grown with a 20% nystatin solution in the complete media.

Error bars in cell counts are calculated as the standard error in the mean of three

repeated experiments (one experiment has two repeats per sample, four counts per

sample) for the U2OS cells. Error bars for the fibroblasts come from experimental

error in single experiment (two repeats per sample, four counts per sample).

In one experiment, U2OS cells were grown on MoS2 substrates and pristine

glass controls. Once the cells reached confluence after 7 days in culture, they were

trypsinised, split, and reseeded with fresh media and onto fresh substrates at the

initial (day 0) density to allow room for further proliferation on the new substrates.

The new substrates used were either further fresh MoS2 substrates or pristine glass

controls. The cells were reseeded such that cells initially from MoS2 substrates (M)

were grown on further fresh MoS2 substrates (MM) or glass controls (MC), and

cells from control substrates (C) were seeded onto MoS2 substrates (CM) or further

control substrates (CC). Error bars are calculated from standard error in the mean

from two repeat experiments (two samples per type in each experiment).

2.3.6.3 Cell experiments for Chapter 5

The cell lines used for the cell studies were U2OS (obtained from the American

Type Culture Collection) and 1BR primary fibroblasts (obtained from the Genome

Damage and Stability Centre Research Tissue Bank, University of Sussex). Cell

lines were grown on WS2 and MoSe2 thin films (deposited onto pristine glass cover

slips as described in 2.2.4.3), and grown on pristine glass cover slips used for the

control. The 1BR primary fibroblasts were seeded with 0.4×103 #/mL and the

U2OS with 0.6×104 #/mL cell seeding density. Cells were fixed on cover slips using

3% paraformaldyhyde and 2% sucrose PBS, for 10 minutes at room temperature.



43

Cells were grown in DMEM and MEM, respectively, supplemented with 15% FCS,

L-glutamine, and pen–strep at 370 °C and 5% CO2. The study ran for 7 days on the

original substrates. At this point, cell counting was performed using hemocytometry

after trypsinisation using trypsin EDTA (0.25%). The trypsinised cells from control,

WS2, and MoSe2 substrates were all reseeded onto pristine glass cover slips for a

further 2 days before fixation. Samples were washed with DI water before imaging.

2.4 Applications of low-dimensional nanomateri-

als in diagnostics, therapeutics and theranostics

in life sciences

The rise of nanobiotechnology research has led to new nano–bio interfaces aiming

to achieve controlled manipulation of cellular functions and features. Herein, recent

developments in the use of a range of nanomaterials (e.g. carbon-based materials,

transition metal dichalcogenides, layered metal hydroxides, etc.) for diagnostic, thera-

peutic and theranostic applications is reported. Imaging is the area of diagnostics

considered, encompassing fluorescence imaging, live cell imaging, and biosensing.

Photothermal therapy, drug delivery, and stem cell control are the discussed thera-

peutic applications. Toxicity studies for various materials are also included. Finally,

theranostic applications are considered. The recent COVID-19 pandemic has ex-

posed the necessity of innovation in many of these areas, particularly for improved

biosensing systems. The vast array of well characterised nanoparticles now available

offers a promising route to develop many of these technologies, with optionality

through control of chemistry, structure and optoelectronic properties.
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2.4.1 Introduction

Nanobiotechnology is a rapidly developing field of research. The use of nanomaterials

in cellular biology is enabling growth of new imaging techniques, drug delivery and

therapies. In particular, the more recent acceleration of research into nanomaterials

provides a new opportunity to develop nano–bio interfaces that have not been

possible previously. Cells and their organelles, transport vesicles, etc. operate on

the nanoscale, so interdisciplinary research provides a new way to address these

nanoscale features and functions in a controlled way.

Exhibiting properties vastly different to those of bulk material, nanomaterials have

become a promising new tool in this field. Their small size allows for nanomaterials

to be internalised by the body’s own mechanisms, while researchers’ high degree of

control over shape and functionalisation gives the ability to target these materials to

particular areas of the body.

There remains debate over the role of material morphology and the chemistry of

the material. While a resolution to this question is not yet apparent, simplifying the

parameter space can help address this problem. The use of synthetic analogues is

one way to achieve this, as is to focus on lower-dimensional cases as a starting point.

While recent decades have seen the isolation of myriad new two-dimensional (2D)

materials with wide-ranging properties and possibilities, carbon remains an obvious

first choice for research into diagnostics and therapeutics as it provides a starting

point for biocompatibility in carbon-based life.

At the nanoscale, therefore, carbon provides a plethora of potentially useful

properties. The strength and chemical stability of carbon nanomaterials lends

them well to production of tissue scaffolds and implant production, while the easy

manipulation of the material is a recurring theme for intercellular processes such

as fluorescent tagging, drug delivery, and photothermal therapy. Carbon-based

materials considered in this section include graphene, graphene oxide (GO), and
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reduced graphene oxide (rGO); carbon and graphene nanodots and quantum dots

(QDs); carbon black; nanodiamonds; carbon nanotubes (CNTs), carbon nanofibers;

carbon fullerenes; and other more exotic carbon nanomaterials.

Although carbon-based materials are clearly well researched for biological ap-

plications, other low-dimensional materials also receive increasing attention in this

sphere. In particular, nanohybrids or nanocomposites combining materials seem to

be a popular choice to enable precise control over chemical properties, and hence

over nano–bio interactions. Other materials included in this review are transition

metal dichalcogenides (TMDs); gold nanoparticles (AuNPs); silica NPs; hexagonal

boron nitride (BN); copper nanoclusters; metal oxide NPs; layered zinc hydroxide;

TiO2; metallofullerenes; metallo-QDs; among others.

There are good and bad aspects to each of these materials. Some common aspects

are discussed by Anık, Timur, and Dursun [214] and have been summarised in

Table 2.1.

Table 2.1: Pros and cons for a range of materials commonly researched for nanobio-
technological applications.

Material Pros Cons

2D graphene-
based
nanomaterials
(inc. GO,
rGO)

• Enters the cell membrane easily
• Can merge with DNA and protect

it from enzymatic degradation
• Can be utilised as nanocarriers in

in vivo structures
• Higher drug loading because of

their large surface areas

• Aggregation of graphene-based
nanomaterials in lungs and liver

• Cause oxidative stress
• Damage to cell membranes
• Bonding or adhesion with cell

receptors can activate stress and
apoptotic mechanisms

• Toxicity depends on time,
concentration, aspect, and surface
chemistry

Carbon
nanotubes
(CNTs)

• Functionalised, water-soluble
CNTs can enter into cells easily
(depending on size and surface
chemistry)

• Drugs can be loaded within CNTs’
hollow inner channel, or on the
wall surface with the help of
hydrophobic interaction

• Some MWCNTs and SWCNTs can
accumulate in the lungs causing
pulmonary toxicity and
inflammation (based on CNT size
and uniformity)

• Large MWCNTs, and SWCNTs
injected intraperitoneally, can
cause inflammation and
granuloma formation

• Raw CNTs show worse in vivo
toxicity than functionalised CNTs
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Table 2.1: Pros and cons for a range of materials commonly researched for nanobio-
technological applications (continued).

Material Pros Cons

Fullerenes
• Fullerene C60 has a spherical

structure and is apolar, allowing it
to pass the cell membranes

• Can easily be modified
• Convenient structure leads to use

as drug delivery vehicles and
sometimes as nano drugs

• Fullerene exposition resulted in
lipid peroxidation and glucose
depletion in the brain

• Fullerenes that reach the brain
through circulation or axonal
translocation dissolve into the
lipid-rich brain tissue, and because
of their direct redox activity, brain
damage might occur

Quantum dots
(QDs) • Fluorescent properties in

broad-spectrum
• High quantum yield
• Low photobleaching
• Can be used in photodynamic

therapy, in vivo imaging, and drug
biodistribution

• Based on the usage of heavy
metals in their composition, and
also their discharge from the body,
in vitro studies have shown that
QDs may be toxic

• Degree of toxicity sometimes
depends on the surface coating

• Plain QDs can be cytotoxic by
induction of reactive oxygen
species which leads to damage to
plasma membranes, mitochondria,
and nucleus

Gold
nanoparticles
(AuNPs)

• Biocompatible nature
• Controllable size distribution
• Possible to vary NP shape
• Easily conjugated
• Ease of preparation

• The stabiliser CTAB which has
been used in the production of
gold nanorods causes considerable
cytotoxicity

• Conformational change in protein
structure, e.g. serum albumin, has
also been reported upon exposure
of the protein to AuNPs

• Surface interaction of proteins at
the nanoscale affects protein
fibrillation, which could lead to
neurodegenerative diseases such as
Parkinson’s and Alzheimer’s

Iron oxide
nanoparticles
(IONPs)

• Less cytotoxic
• Magnetic properties
• Controlled size and surface

modification

• Superparamagnetic IONPs tend to
accumulate in the liver without
showing any significant biological
degradation

This review will consider three overarching themes: diagnostic (with a particular

focus on imaging), therapeutic, and theranostic applications of low-dimensional

materials. Within these themes, narrower topics will be considered. Discussion of
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imaging applications includes fluorescence imaging, live cell imaging, and cell sensing,

while discussion of therapeutic applications will include photothermal therapy, drug

delivery, stem cell control, and toxicity studies.

2.4.2 Imaging

The ability to diagnose illnesses quickly, correctly, and efficiently is an important

first step to combating diseases. Without an accurate understanding of the disease

in question, treatment may be ineffective, or worse, actively detrimental to the

patient. However, diagnosis is important not only at the macro scale, but also at

the cellular level. Some of the most promising nanoscale approaches to this small-

scale diagnosis include fluorescence probes, live cell imaging, and cell sensing. Other

imaging techniques are also being investigated. In particular, non-fluorescence Raman

imaging could provide a new avenue of exploration, as a non-invasive technique that

has the potential to be used with live cells [215, 216]. However, studies dedicated to

these other techniques are still relatively few in number, so the focus of the following

sections will be on the three methods mentioned above.

2.4.2.1 Fluorescence imaging

Fluorescence imaging allows for certain molecular processes or structures to be

observed. This is achieved by utilising fluorescent probes that are able to target

specific locations within the cell. Targeting is traditionally best achieved with carbon

materials that are easily functionalised to attach to particular probes, often fluores-

cent dyes or proteins, however these carbon materials are not innately fluorescent.

Advances in recent years have given rise to studies using different targeting materials

that are inherently fluorescent and so do not necessarily require functionalisation

with a separate fluorescent probe.

Of particular interest in this area are nanodots. Carbon nanodots, or carbon QDs,

have properties that make them well suited for use as fluorescence probes. Not only

does their small size (< 10 nm) and low cytotoxicity make them an obvious choice
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for such biological applications, carbon nanodots also show low or no photobleaching,

a common problem associated with the fluorescent dyes and proteins which have

been in use for some time [217].

There is a good range of analyte specification across the various available NPs

in serum and blood, but for cell imaging the fluorescent NPs are mostly limited to

the cytoplasm, indicating that work on improving localisation and perhaps adding

targeting functional groups would develop these materials further.

Although carbon or graphene nanodots in various forms constitute a large pro-

portion of the materials included, others are also referenced. Research is grouped by

material in Table A.1, beginning with carbon and graphene nanodots/QDs before

moving on to various other materials investigated for use in fluorescence imaging.

Where known, the table gives the proposed material, probe (if different to material),

specific target, and cell lines and/or animal models tested.

2.4.2.2 Live cell imaging

Live cell imaging expands further on fluorescence imaging by tracking molecular

processes or structures in real time. This is predominantly mediated through

fluorescence imaging, and so similar fluorescent nanoparticles are used for this

specific case in addition to the more general case discussed in 2.4.2.1. However,

some other detection methods have been considered, including photoluminescence,

stimulated emission depletion (STED) nanoscopy, and amperometric experiments

(these are all included in Table A.2).

Perhaps unsurprisingly given the strong link between fluorescence imaging and

live cell imaging, carbon nanodots and QDs are also popularly investigated for this

application. These are discussed by Kim et al. [218] in addition to a host of other

graphene or graphene-based nanomaterials used for live cell biosensing platforms.
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Again, we see that the current targets are somewhat limited in this field. Only

ions are so far reported, with no organelle staining for example, so there is scope

to further improve the localisation and specificity of these NPs. Interestingly, a

combination of imaging techniques may be relevant here; combining Raman with

fluorescence could improve live cell imaging.

As in 2.4.2.1, although carbon or graphene nanodots in various forms constitute

a large proportion of the materials included in Table A.2, other materials are also

referenced. Research is grouped by material, beginning with carbon and graphene

nanodots/QDs before moving on to other carbon and non-carbon nanomaterials

and composites. Where known, the table includes the proposed material, probe (if

different to material), detection method, specific target, and cell lines and/or animal

models tested.

2.4.2.3 Biosensing

Biosensing refers to the detection of biomolecules using an analytical device (i.e., bi-

osensor) that combines a biological component with a physicochemical detector [219,

220]. Conventionally, a biosensor consists of a bioreceptor (often a biological com-

ponent such as cells, enzymes, antibodies, peptides, oligonucleotides, etc.) which

interacts with the target and yields a physical or chemical change that is amplified

into a readable signal with the help of a transducer (detector) component [221]. More

recent developments have led to the aptasensor, a type of biosensor that uses DNA

or RNA aptamers as the biological recognition element [222]. In aptasensors, the

recognition reaction is independent of the transducer used [222].

The past ∼15–20 years have seen a rapid increase in the influence of nanomaterials

on biosensor development [223]. Moreover, the COVID-19 pandemic (currently

ongoing) has emphasised the need for “easy-to-use, quick, cheap, sensitive and

selective detection of virus pathogens” [224]. Comprehensive reviews focusing on

biosensors for COVID-19 detection can be found at [225,226].
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Graphene is commonly investigated for biosensors and aptasensors, helped by

the fact that it is abundant, chemically stable, and conductive [224]. Vermisoglou

et al. summarise state-of-the-art graphene-based sensing systems for a variety of

viruses [224]. However, the biosensing field is broadly open for a huge variety of

NPs. The range of possible analytes is enormous, and with such a wide palette of

nanomaterials to choose from, it should be possible to select for end application.

There is likely to be huge growth in the area of nanomaterial biosensors over the

coming years as affinities and targets are identified for the various NPs and the

technology to incorporate them into sensing platforms becomes more standardised.

Research reviewed here is grouped by material in Table A.3, beginning with

graphene-based systems, then covering other carbon-based systems and systems

based on other materials. The proposed material, probe (if different to material),

detection method, target, and cell lines and/or animal models tested are listed in

the table.

2.4.3 Therapeutics

Once disease has been successfully diagnosed, the aim is to treat it as efficiently

as possible. Without effective therapy, a diagnosis is useful only to curb curiosity.

Some of the most cutting edge nanoscale approaches include photothermal therapy,

drug delivery, and stem cell control. In addition, nanomaterials are not native to

the human body, so a wide range of toxicity studies have been conducted on various

materials considered for these and other treatments. These areas of research are

discussed further in this review.

2.4.3.1 Photothermal therapy

One of the most developed technologies discussed in this review, photothermal therapy

(PTT) is a minimally invasive technique which uses laser light to heat contrast agents

or nanomaterials presented to the tissue. This causes thermal damage in this region.
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Lower laser wavelengths are desirable for PTT, as they are less energetic and so are

less likely to cause damage to surrounding healthy tissues. Recent developments

focus on nanomaterials tailored to target specific tissues.

Nanostructures based on gold are heavily researched due to its good biocompatib-

ility and localised plasmon surface resonance (meaning that AuNPs can absorb light

at specific wavelengths) [227]. In fact, AuNPs are used in clinical settings already.

Gold-based therapies feature several times in Table A.4, and the use of AuNPs for

photothermal cancer therapies is reviewed by Vines et al. in [227]. However, many

of the new layered and carbon-based NPs are also being investigated as the use of

infrared excitation is appealing in biological applications.

Research is grouped by material in Table A.4, beginning with carbon-based

materials before moving on to other materials investigated for use in PTT. The table

gives the proposed material, probe (if different to material), irradiation method,

specific target, and cell lines and/or animal models tested.

2.4.3.2 Drug delivery

Drug delivery is a broad term that encompasses several aspects important for the

therapeutic delivery of drugs, including development of new materials or carrier

systems, research into the administration route to the disease, etc. [228]. In 2004,

nanomedicine was defined by the European Science Foundation (ESF) [229] as

The science and technology of diagnosing, treating and preventing disease
and traumatic injury, of relieving pain, and of preserving and improving
human health, using molecular tools and molecular knowledge of the
human body.

‘Novel therapeutics and drug delivery systems’ was chosen by the ESF as one of five key

areas of focus [229]. Drug delivery systems could offer site-specific, time-controlled,

noninvasive delivery of different molecular weight drugs and other bioactive molecules

for the treatment of medical infections and diseases [230].
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Drug delivery is perhaps the area which is most suited to the new nanomaterials

available. The vast array of chemistries and morphologies now available in NPs should

make drug attachment and targeting more specific, providing a whole host of new

vector systems. Research is ongoing to identify the suitable NP–drug partnerships

to optimise these systems. Perhaps unsurprisingly given the emphasis placed on

developing new drug delivery systems, there are several reviews concerning suitability

of a range of materials for this purpose. Plachá and Jampilek [231] review graphene-

based nanomaterial drug delivery systems research in 2017–2019; Guo et al. [232]

review research into in vitro and in vivo CNTs-based drug delivery to cancer and the

brain (as of 2017); and Wang et al. [233] provide a review of nanocarriers based on

2D materials beyond graphene, such as TMDs, MXenes, BN and others (as of 2019).

The materials included in Table A.5 are mostly carbon-based, with several small

0D materials such as carbon dots, nanodiamonds, and C60 fullerenes, possibly because

these smaller particles can follow internalisation pathways more easily or be used as

cages. Research is grouped by material in Table A.5, beginning with carbon-based

materials before moving on to various other materials proposed. Where known, the

table gives the proposed material, probe (if different to material), drug, specific

target, and cell lines and/or animal models tested.

2.4.3.3 Stem cell control

In this review, stem cell control is used as a term to describe the effect of various

materials on stem cell behaviour (e.g. differentiation, proliferation, etc.). Stem cells

exist at the origin of a cell lineage, can differentiate into various types of cells, and

proliferate indefinitely to produce more of the same stem cell [234]. The ability to

stimulate stem cell differentiation is a topic of interest, because this control could

allow for better medical implant biocompatibility, improved wound healing, and

tailored tissue engineering scaffolds, among other possible applications for a range of

diseases.
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Stem cell control is one of the newest research areas. Since our understanding

of how much cell function is dependent upon nanoscale cues has increased, the

possibility to use nanomaterials to manipulate and stimulate at the nanoscale has

become apparent. Stem cell fate is however a hugely complex process and isolation

of individual components or response is difficult. Akin to drugs requiring delivery to

specific areas in the body, discussed in 2.4.3.2, often various molecules (e.g. proteins)

need to be transported to the stem cells to induce specific behaviours. GO has been

investigated for various stem cell control studies because it can be easily functionalised

with such molecules. Various metals have also been researched, possibly due to their

common use in medical implants; as mentioned above, better stem cell control could

lead to medical implants that adapt to the body more quickly and that take longer

to be rejected by the body. Research is grouped by material in Table A.6, beginning

with graphene and GO materials before moving on to other carbon-based materials

and then metal nanomaterials. In general, complexes involving GO seem to result in

enhanced stem cell differentiation and proliferation, those involving nanodiamonds

seem to show improved stem cell adhesion, and Ti surfaces with a rougher topography

seem to improve stem cell differentiation and proliferation. Key conclusions for each

paper are included in the table, along with the proposed material, probe (if different

to material), and cell lines and/or animal models tested.

2.4.3.4 Toxicity studies

For any of the applications discussed throughout this review to be put into practice,

it is vital that the proposed materials themselves, alone or in composites, are not

toxic to humans. Toxicity studies aim to address this by systematically testing

different materials with standard tests (e.g. cytotoxicity, effect of dosage or repeat

dosage, duration of treatment, etc.). Testing can be categorised into three main

sections [235]:
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• acute toxicity studies (adverse effects occurring within a short time, up to

14 days, after administration of a single dose or after multiple doses administered

in a short time period [236]);

• sub-acute toxicity studies (adverse effects occurring after administration for

14–28 days of a single dose or after multiple doses administered in a short time

period [237]); and

• chronic toxicity studies (adverse effects occurring after repeated or continuous

long-term exposure [238]).

However, as new materials begin to be used in biological applications, their

toxicity is also becoming assessed. It is clear that much more plays into toxicity than

just the chemistry of the material, with size and shape also a key factor. This makes

understanding of NP toxicity particularly challenging, as a blanket recommendation

for a material will not catch such nuances. As shown in Tables A.1–A.6, carbon-based

nanomaterials are commonly explored for new nanodiagnostics and nanotherapies.

As such, the toxicity of these materials is particularly important to study, and

carbon-based nanomaterials feature heavily in Table A.7. Research is grouped by

material in Table A.7, beginning with carbon-based materials before moving on

to various other materials proposed. Where known, the table gives the proposed

material, tests, cell lines and/or animal models tested, and key conclusions for each

paper.

2.4.4 Theranostics

Theranostics, a term coined by combining the words therapeutics and diagnostics,

is exactly that — NPs or nanocomposites that provide simultaneous diagnostic

and therapeutic effects [239]. Materials capable of theranostic applications could

be the key to unlock the door to exciting new avenues of research into areas such
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as personalised medicine. This combination therapy could improve early disease

detection and optimise treatment for individuals [240]. Other benefits could include

enhanced drug efficiency, better disease management, and improved healthcare [240].

That theranostics is a subject of burgeoning interest is therefore unsurprising, and

this is highlighted by the range of reviews on different aspects of theranostics. Panwar

et al. [241] review a range of nanocarbons for theranostic applications including

sensing, imaging, and drug delivery, and also provide an outlook on current challenges

(as of 2019). Also considering carbon materials, Hassan et al. [242] review specifically

carbon QDs for photomediated theranostics, with emphasis on the importance of the

integration of light with nanotechnology (as of 2017). Hu et al. [243] discuss QDs,

NPs, and 2D materials decorated with various biomolecules for targeted diagnosis

and treatment (as of 2020). Gong et al. [244] provide a review of photothermal

combination cancer therapy based on 2D TMDs, and consider future prospects and

challenges of using 2D TMD-based nanomaterials for theranostics (as of 2017). Yang

et al. [245], Raja et al. [246], and Mohammandpour and Majidzadeh-A [247] all

present reviews on 2D nanomaterials for cancer theranostics.

The present work also considers a range of materials, mostly carbon- and metal-

based. Research is grouped by material in Table A.8, beginning with carbon-based

materials before moving on to various other materials. The proposed material, probe

(if different to material), detection method, therapy, specific target, and cell lines

and/or animal models tested are given in the table.

2.4.5 Conclusions

While some technologies are already well developed, such as fluorescence imaging

and PTT, there remains more scope for development in areas such as biosensing

and drug delivery. This has been shown especially by the push for improved sensing

systems spurred by the COVID-19 pandemic. Carbon-based nanomaterials still
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hold much promise in all these areas, and are shown here to be the focus of much

research. However, the new layered NPs are beginning to shine through, especially

for biosensing and imaging applications with their tuneable optoelectronic properties.
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Chapter 3

Langmuir films of layered

nanomaterials: edge interactions

and cell culture applications

The application of nanomaterials in technology is limited by challenges in their

processing into macroscopic structures with reliable and scaleable methods. Herein,

it is demonstrated that using scaleable fabrication methods such as liquid-phase

exfoliation by sonication (LPE) it is possible to produce dispersions of a wide variety

of layered nanomaterials with controllable and standardised size and thickness scaling.

These can be used as-produced for Langmuir deposition, to create single layer films

with tuneable density, including the first demonstration of hexagonal boron nitride

(BN). Of particular importance, we show that the difference in edge chemistry of

these materials dictates the film formation process, and therefore can be used to

provide a generic fabrication methodology that is demonstrated for various layered

nanomaterials, including graphene, BN and transition metal dichalcogenides (TMDs).

We show that this leads to controllable cancer cell growth on graphene substrates

with different edge densities but comparable surface coverage, which can be produced
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on a statistically relevant cell study amount. This opens up pathways for the generic

fabrication of a range of layered nanomaterial films for various applications, towards

a commercially viable film fabrication technology.

3.1 Introduction

LPE is a process which has been shown to be the most effective way to produce

large-scale yields of various layered nanomaterials, making it the most practical

production technique available [120,248]. Layered nanomaterials incorporate a range

of two-dimensional (2D) materials with a variety of different properties associated

with them. Graphene is possibly the most well known of these, having received much

attention both in the academic sphere and also in public discourse. Since it was

first isolated [6], its interesting mechanical, electronic, optical and thermal properties

have been studied extensively [25,26,249,250]. Further research has looked into these

properties in other layered nanomaterials such as TMDs [49,251,252], BN [112,253],

and other exotic layered crystals [254–256].

These new materials could lead to many innovations. 2D materials can be utilised

for such wide-ranging applications as electronics and optoelectronics [117,249,252],

biomarker detection [257,258], and energy-related areas [259]. Liquid processing of

2D layered nanomaterials is necessary to obtain dispersions suitable for Langmuir

deposition; this is a well known method of creating thin films, whereby a nanomaterial

dispersion is spread on a liquid subphase [163,260].

The thin films produced by this method are 2D, in the sense that they comprise

a single layer of particles, i.e. they are only as thick as the thickness of the exfoliated

layered nanomaterial used, and depending upon the parameters used varying from

monolayer to multilayer. By use of a moveable barrier it is possible to vary the

surface area of a Langmuir trough, and hence to compress a nanomaterial film. This

technique gives simple control of film creation, with small quantities (mg m−2) of

material resulting in high material efficiency. This allows production of single layer

particulate films with high surface coverages.
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Control over thin film creation is therefore crucial as different applications may

require different finely-tuned film properties [183]. Control over Langmuir film

assembly would allow for generic scaleable procedures for a range of materials

dependent upon application requirements. By providing a framework for normalising

for material interactions, it is possible to understand film densities for different

layered nanomaterials, including BN (the first time its Langmuir behaviour and

deposition has been shown), graphene, MoS2, and WS2. This will be useful for

various applications, including in biomaterials, where edge interactions play a critical

role in cellular growth and adhesion as well as the optimisation of the nanomaterial

surface for functionalisation or surface interaction [182]. Moreover, sample substrates

for biological studies must be able to be produced repeatably to allow for statistically

significant trials. We demonstrate that the growth of glioblastoma cancer cells is

significantly modified by the presence of graphene edges by comparing growth on

films made from two different size graphene nanosheets (larger sheets, L-gra, and

smaller sheets, S-gra). This is critical not only for the understanding of cancer

growth, but also for developing novel, stable, synthetic substrate systems for cellular

studies.

The synthesis and processing of the materials used in this work is described

in 2.2.4.1, the characterisation techniques used are described in 2.3.5.1, and details

of the cell experiment are included in 2.3.6.1.

3.2 Substrate production

Dispersions of various nanomaterials were prepared in-house using LPE. These

dispersions were used to perform Langmuir–Schaefer (L–S) deposition. Langmuir

films are created by dropping nanomaterial dispersion onto a water subphase; as the

solvent evaporates, a thin, monolayer film is left at the air–water interface. Schaefer

deposition is the horizontal lowering of a substrate to transfer this film [261], as

shown in Figure 3.1a.
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Figure 3.1: (a) Diagram showing the L–S deposition process. The deposited nano-
material film is compressed with the trough barriers, then the substrate is brought
into contact with the film before being lifted directly upwards (substrate parallel to
air–water interface). (b) Representative pressure–area isotherms for each material
used. (c) Optical micrographs for each material; the top row is of films deposited at
a lower pressure (∼10 mN/m), while the bottom row is of films deposited at a higher
pressure (∼25–30 mN/m). Images shown are small areas representative of the whole
film. All scale bars = 100 µm.

There are a few main requirements for solvents used for the L–S process. These

include that the solvent has a high vapour pressure, so that it evaporates and

leaves a film of particulates at the interface [161]; that the solvent spreads on the

water surface, to maximize the area over which nanoparticles are spread to minimize

reaggregation during solvent evaporation [162]; and that ideally, the dispersion should

be water-immiscible.



61

Cycloketones such as cyclopentanone and cyclohexanone have been shown to

be good solvents that satisfy all of these criteria [162]. Additionally, they have

been shown to be good solvents for the exfoliation of layered nanomaterials [144,

262]. This removes the need to exfoliate into a different solvent than that used for

spreading, avoiding the extra step of redispersion of the material into a suitable

spreading solvent. Moreover, redispersion is not always possible because generally

good spreading solvents are not good for dispersion of 2D layered nanomaterials,

even if transferred [162]. By making use of these solvents, it is possible to process the

nanomaterials from powder to completed Langmuir film in a single solvent, greatly

simplifying the procedure, and providing the opportunity for bulk processing.

Typical pressure–area isotherms for all material monolayers with aqueous sub-

phases used are given in Figure 3.1b. These isotherms show the ‘phase trans-

itions’ [165] of the monolayer film. At low pressure (the gas phase) the material is

sparsely distributed in the trough, creating ‘films’ which appear to be mostly blank

substrate with islands of monolayer material. As the pressure increases and flakes of

the material come into contact with each other (the liquid phase), the films become

denser. This is more apparent in the isotherms for BN and L-gra, where the pressure

increases rapidly at smaller trough areas. The variance in behaviour for the different

materials is discussed in more detail later. Once the nanomaterial film is at a given

surface pressure, measured by use of a Wilhelmy plate, it is deposited onto a glass

cover slip. Choosing a range of surface pressures allowed films to range from those

which were visibly dense and homogeneous to those which were visibly sparse.

Optical micrographs of typical films for each material after deposition at high and

low pressures are shown in Figure 3.1c. It is clear that L-gra and BN differ from the

other materials, as they have denser films. Although small sample areas are shown

in Figure 3.1c, large film areas (of at least half of each 18 mm × 18 mm sample)

were measured and used for the analysis. A simple, two-step post-processing method

was used to determine the film surface coverage from the optical micrographs (shown

in Figure 2.20).
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3.3 Nanosheet characterisation

The aim of this study is to develop a standardised method of creating films with

known parameters using a scaleable, commercially viable approach. To this end,

the dispersions used were created using standard processes. These dispersions were

characterised and shown to demonstrate universal (and expected) size scaling [150].

UV–visible spectroscopy measurements were performed on all dispersions, and

representative spectra shown in Figure 3.2a. Metrics that make use of the absorbance

feature ratios associated with each different material have been described in detail by

Backes et al., and indicate the presence of exfoliated nanosheets [151,202,205,206].

This confirms the successful exfoliation to few-layer nanosheets. Lateral dimensions

(length L, widthW ) of material nanosheets were measured by atomic force microscope

Figure 3.2: (a) UV–visible spectroscopy of nanomaterial dispersions used; absorbance
normalised at 350 nm. (b) Nanosheet length vs width AFM statistics. (c) Sheet-wise
LW (length × width) vs layer number AFM statistics. (d) Plotted histogram for
WS2 length data, used to determine an average value 〈L〉 = (181± 58) nm. Inset
shows AFM image of the material.
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(AFM). Sheet thicknesses were measured from AFM profiles, and converted into

layer number N using values for monolayer thicknesses from the literature for

graphene [248], MoS2 [205], WS2 [151], and BN [206].

The L vs W scaling is given in Figure 3.2b and shows that while all nanosheets

follow a power law scaling of the aspect ratio, length scales near linearly with width,

i.e. constant aspect ratio. The fit in Figure 3.2b is provided as a guide to the

eyes and demonstrates a common aspect ratio. Each material is additionally fitted

individually, assuming a linear scaling, to obtain an aspect ratio for each material.

Results for all cases are given in Table 3.1. As the plot is on a log10 scale, the aspect

ratio is calculated by 10c, where c is the intercept of the fit. These aspect ratios imply

that the shape is independent of the material, and suggests we can approximate the

sheets as rectangles.

Table 3.1: Fit results for L vs W plot for each material to obtain values of aspect
ratio.

Material Intercept, c Intercept std
err, σc

Adj. R2

values Aspect ratio

L-gra 0.173 0.014 0.79 1.49
S-gra 0.153 0.014 0.59 1.42
BN 0.184 0.010 0.88 1.53
MoS2 0.204 0.010 0.16 1.60
WS2 0.116 0.009 0.46 1.31

The product of length and width, LW , gives an approximation of nanosheet area.

Plotting LW against N therefore shows how nanosheet area varies with number of

layers. For liquid-exfoliated materials, the lateral size decreases as the thickness

decreases; this is due to an increased sonication time leading to the creation of

new edges [263,264]. Figure 3.2c shows that the materials used behave as expected.

Moreover, all materials generally fall on a universal scaling, although BN shows some

scatter. This is broadly consistent with other research into the effect of LPE on the

size–thickness relationship [150]. The fit in Figure 3.2c, on all materials, is provided

as a guide to the eyes. There are some small differences between materials; results of

fitting each material independently are shown in Table 3.2.
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Table 3.2: Fit results for LW vs N plot for each material.

Material Intercept,
c

Intercept
std err,
σc

Gradient,
m

Gradient
std err,
σm

Adj. R2

values

Fitted
indepen-
dently

L-gra 3.577 0.062 0.958 0.072 0.65
S-gra 4.030 0.043 0.301 0.163 0.06
BN 3.882 0.121 0.424 0.172 0.03
MoS2 4.348 0.088 0.406 0.065 0.21
WS2 4.033 0.039 0.758 0.081 0.44

Fitted
together all 3.887 0.034 0.689 0.037 0.39

From Figures 3.2b and 3.2c it is ascertained that all materials have a lateral size of

less than 1 µm, and are all less than 30 layers thick on average (spread between 1 and

100 layers). Plotting histograms for each sample allows average values to be obtained

by analysis of the distributions. Figure 3.2d shows a representative histogram and

inset micrograph; additional histograms are available in Appendix B. All histograms

are broadly log-normal, as expected [265, 266]. The average values are consistent

with the positions of clusters in the sheet-wise plots shown in Figures 3.2b and 3.2c

and are shown in Table 3.3. The average length and average number of layers, as

obtained from fitting the histograms in Appendix B (Figures B.1–B.5), are plotted

for each material in Figure 3.3.

Figure 3.3: Average length plotted against average number of layers for each material.
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Table 3.3: Average values for nanomaterial length, width, layer number, and approx-
imate area, given with standard errors.

〈L〉 σ〈L〉 〈W 〉 σ〈W 〉 〈N〉 σ〈N〉 〈LW 〉 σ〈LW 〉
(nm) (nm) (nm) (nm) (nm2) (nm2)

L-gra 190 170 119 91 10 15 36000 89000
S-gra 89 49 63 36 2 1 7000 9000
BN 200 190 130 130 6 5 50000 160000
MoS2 370 120 232 75 27 19 91000 56000
WS2 181 58 139 47 3 2 27000 18000

3.4 Surface pressure–surface coverage relation

The surface pressure of a film can change either through addition of more nanomaterial

or by decreasing the trough area. For all materials, and a range of deposition pressures,

surface pressure (Π) was plotted against surface coverage (Φ). Intuitively, the relation

can be fitted logarithmically, as Π ∝ log Φ. This implies that the denser the film, the

slower the rate of change of pressure with respect to the surface coverage. This is

represented mathematically by dΠ
dΦ ∝

1
Φ ; i.e., once a film becomes dense, ever-greater

increases in pressure are required to produce any further increases in surface coverage.

This fit is shown in Figure 3.4a, and R2 values are included in Table 3.4. Figure 3.4a

shows that the materials behave as expected for a Langmuir process and can still

be fitted effectively, despite the system being noisy due to factors such as transfer

efficiency causing a scatter in data.

Figure 3.4: (a) Surface pressure versus surface coverage plot, fitted with a simple
logarithm. (b) Surface pressure–surface coverage plot, fitted with Equation 3.1 [267].
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Although this basic relation works well, Fainerman et al. [267] describe a ther-

modynamic model for the interpretation of pressure-area isotherms of material

monolayers. This also accounts for the size difference between material monolayers

and solvent molecules. Their equation is

Π = −kT
ω0

[
ln
(

1− ω

A

)
+
(
ω

A

)]
− Πcoh, (3.1)

where in the first term k is the Boltzmann constant, T is the temperature, ω0 is the

molecular area of a solvent molecule, ω is the molecular area of a nanoparticle, and

A is the available surface area per nanoparticle.

The first term describes the increase in surface pressure with surface coverage

due to entropy terms associated with subphase–nanosheet interactions. The offset

term is the cohesion pressure, a term related to enthalpy, which describes long-range

interactions between components [267]. In this study it is anticipated that these

interactions will be dominated by attraction or repulsion between nanosheets when

separated on the water surface, and based on the charge of edge states or van der

Waals forces [268]. This information could suggest some phenomenon in the long-

range interactions that is associated with the chemistry of materials used, leading to

controlled film surface coverage.

The same surface pressure and surface coverage data are plotted in Figure 3.4b,

but fitted with the model described in Equation 3.1. Although the model is designed

for amphiphilic particles and only in the liquid expanded (low pressure) phase, the

fit provides some insight for the layered nanomaterials and the intercept value at

minimum pressure should hold true, with deviation expected for the higher pressure

phases. The R2 values are included in Table 3.4. As for the fitting in Figure 3.4a,

although the fit is not ideal, presumably not capturing all of the complex edge

interactions, it is an interesting start to capturing the dominant physics in what is a

noisy and complex system that has not been previously described.
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Table 3.4: R2 values for simple logarithm and Equation 3.1 fitting of surface pressure
vs surface coverage plots.

Material Adj. R2 values
Simple log Fainerman (Eq. 3.1)

L-gra 0.90 0.94
S-gra 0.63 0.75
BN 0.18 0.55
MoS2 0.80 0.56
WS2 0.97 0.61

Values of Πcoh for each material are given in Table 3.5. Negative values of Πcoh

indicate repulsive forces between the particles. This will be dominated by the edges

rather than the surface, due to the unique geometry of the L–S process. Higher

interparticle forces lead to greater stability of films on the surface, because this

creates a higher surface tension and therefore the films remain assembled without

reorganisation or loss to the other phases [268]. Higher interparticle forces also lead

to higher 2D film moduli, but will reduce the spreading efficiency of the nanomaterial

at low density, and hence the optimisation of the surface coverage efficiency [269].

It is seen from Table 3.5 that BN has the least negative cohesion force and hence

forms a film with the least pressure. This might correlate with the micrographs

in Figure 3.1c, which show the BN films as being the densest and most uniform.

Interestingly, it is still a slightly repulsive interparticle force, counter to bulk dis-

persion of BN which is usually described as attractive compared to other layered

nanomaterials (although Πcoh = 0 mN/m is within error) [270]. However, as the

edge effects dominate, the ionic nature of the BN bond leads to charged edges and

potential for functionalised edge sites leading to dominant repulsive edges [270,271].

Table 3.5: Cohesion pressure values (Πcoh) and uncertainties (σΠcoh) for each material,
as obtained from the fit in Figure 3.4b.

Material Πcoh σΠcoh

(mN/m) (mN/m)
L-gra -11.9 2.1
S-gra -10.8 2.3
BN -2.0 4.3
MoS2 -20.3 2.1
WS2 -14.3 1.6



68

For the exfoliation and size selection processes used in this experiment a broad

range of size values were used, implying that pressure–area behaviour is not solely

determined by either nanosheet size or material class. If only nanosheet size had any

effect then Figures 3.4a, 3.4b would show L-gra, BN, and WS2 grouped together,

with MoS2 to one side of this cluster, and S-gra to the other. If material class alone

affected the pressure–area behaviour, then in Figures 3.4a, 3.4b clear distinctions

between the graphene, TMD, and BN samples are expected. In practice, S-gra and

the two TMD samples are clustered together, with L-gra and BN separated, and

the idea that behaviour might rely on a combination of nanosheet size and material

class seems logical. Different material classes have different edge functionalities,

which will influence film formation in different ways; however, size differences within

material classes result in differing numbers of edges per unit area, and hence varying

edge–edge interactions. If edge interactions between nanosheets play a significant role,

as expected for L–S films, then this emphasises the need to account for nanosheet size

before comparing the pressure–surface coverage data of the different samples. This

would allow a fair comparison of how the intrinsic chemistry affects the edge–edge

interaction between nanosheets.

3.5 Surface coverage normalisation

As discussed previously, the influence of material edge interactions on the film surface

pressure can be ascertained more easily by normalising the surface coverage, Φ, to

nanosheet size, approximated by 〈LW 〉. In particular, the need for a parameter

that scales with the number of nanosheet edges per unit area is apparent. For this

purpose, the centre-to-centre interparticle distance, s, is used. This is derived in

Appendix C, and has the form

s =
√
〈LW 〉

Φ . (3.2)
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Figure 3.5: (a) Plot of surface pressure vs interparticle distance. (b) Plot of normalised
surface pressure vs interparticle distance (y-axis normalised for cohesion pressure).

This new variable represents a normalisation of the surface coverage to account

for the influence of the nanosheet size. Plotting surface pressure against this variable

therefore represents a normalisation of the surface pressure–surface coverage plot.

This is shown in Figure 3.5a, where it can be seen that this reduces the materials

to two generic curves. BN shows the closest particle approach, and densest film, as

expected due to the stronger cohesion forces between the BN particles (Table 3.5).

If one normalises for the cohesion pressure determined from the fitting in Fig-

ure 3.4b, then in principle the long range interaction differences between the different

materials is removed. Indeed, it is seen in Figure 3.5b that the BN and graphene

converge onto a single curve, but interestingly, the TMDs remain at a distance

and with slightly lower slopes. The TMD films have the largest repulsion from

the cohesion pressure (Table 3.5); this is expected because the sulfur-terminated

edge sites are stable and so the charge distribution at the edge is uneven due the

electronegativity difference between the sulfur and the metal [38, 272]. This leads to

highly polarised edges and therefore strong dipole interactions [38,272]. This effect is

noted to be particularly strong for small particles as the edges become proportionally

more dominant compared to the particle volume [273]. The WS2 particles in this

study are highly exfoliated and of small lateral dimensions, meaning they are likely

to have a high degree of edge charge. This explains the strong repulsive cohesion

pressure, but also the variation in the interparticle force compared to the other
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materials as seen in Figure 3.5. In addition to the long-range edge interactions, the

MoS2 in this experiment is particularly large, and multi-layered, so it is likely that

there are large enough capillary forces acting on these particles compared to the

WS2 particles to start to affect the interactions [268]. The TMD films remain at a

further interparticle separation compared to the other layered nanomaterials, due to

their more polarised edge states and the comparatively stable nature of the edges.

In this way, the class of material can be used to separate out the expected behaviour

for monolayer film formation.

In nanomaterial films, rigidity percolation is reached when the particles form a

connected bridge from one side of the Langmuir trough barrier to the other. For

particles with the least repulsive edge interactions (such as BN) this bridge can

form quickly, without total surface coverage, as even small numbers of particles

agglomerate together forming branched networks. Conversely, a repulsive film will

need to reach almost complete surface coverage to reach rigidity percolation (Φ =

0.7) [274]. This is because the particles will continually rearrange on the subphase

surface to minimise their interaction, and therefore will spread out across the entire

area until forced by density to form a rigid film. The 2D bulk modulus, β, is one

way of quantifying this behaviour. This is described by

β = −A
(
∂Π
∂A

)
T

, (3.3)

where A is the trough area, Π is the surface pressure, and T represents that the

temperature is kept constant [274]. This is plotted for each material in Figure 3.6a.

Although different materials clearly have different maximum bulk moduli, the rigidity

onset occurs at varying surface pressures.

However, when normalised to the cohesion pressure, the 2D bulk modulus follows

a similar onset and maximisation (Figure 3.6b). This fits well with the concept of

rigidity percolation. As expected, the BN has the largest 2D bulk modulus as it has

the strongest interparticle interactions and the densest films. The TMDs show very

weak modulus behaviours, as the repulsive edge states allow for particle slippage in
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Figure 3.6: (a) Plot of surface pressure vs 2D bulk modulus. (b) Plot of normalised
surface pressure vs 2D bulk modulus (y-axis normalised for cohesion pressure).

the film system, maintaining a ‘liquid-like’ state for far longer, until geometrically

‘jammed’. Therefore, the larger MoS2 particles are locked into place more rapidly

than the smaller WS2 particles, or even the exceptionally small S-gra flakes.

This confirms that it is possible to extract interesting information about edge

interactions from the cohesion pressure Πcoh only. This is a useful value beyond

just Langmuir, providing insight into films more generally, including hybrid films,

printing, heterostructure stitching, etc [275,276].

The process from Figure 3.2 to Figure 3.6 describes how variable pressure–surface

coverage data can be normalised to nanosheet size to account for edge effects. This

results in data clustered by material group that Equation 3.1 suggests is related

to the area coverage when accounting for the area density of edges. Outstanding

differences remaining in Figures 3.5 and 3.6 are due to the chemical nature of the

edge functionalities and therefore merit study in further detail. Examining the edge

chemistries in more detail should confirm the relative interaction strengths described

above. However, even without knowing the detail of the chemistry it is possible to

account for nanomaterial class and size across a broad range of materials to determine

film density from standard dispersion properties.
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3.6 Cell study

To demonstrate the importance of controlled film properties, a cell study comparing

different edge densities was conducted. Two sets of films were produced from the

same graphene dispersion size-selected to have larger and smaller sized nanosheets.

As these films were deposited at similar surface coverages, the L-gra films had a

lower area density of edges than the S-gra films.

It is observed that the edge density strongly determines the growth of glioblastoma

cells (Figure 3.7). The films with greater edge density have greatly increased (∼1.5

times greater) cell proliferation at 12 days compared to those with lower edge density,

with increased cell cluster formation and improved cell spreading both at 4 and

12 days. This increased proliferation is likely due to the increased surface roughness

Figure 3.7: Optical micrographs showing U87 glioblastoma cell growth (a) at 4 days
on L-gra substrate, few cells present and not inclined to growth; (b) at 12 days on
L-gra substrate, still few proper cell clusters but those present were less confluent
compared to other substrates; (c) at 4 days on S-gra substrate, cells had good
size extensions; (d) at 12 days on S-gra substrate, many cell clusters observed and
overconfluency apparent. All figures have scale bar = 200 µm.



73

that the cells experience with the greater edge density (as the graphene should itself

be relatively inert), allowing them to form more adhesion sites. The cell stability is

therefore increased, allowing more effective mobilisation and proliferation. Such a

large impact on cell growth is critical when setting up controlled cell studies, and

importantly this Langmuir substrate technique allows for the production of large

quantities of identical substrates, which are important for the statistical requirements

of biological studies [277].

3.7 Conclusions

Liquid-phase exfoliated (LPE) dispersions of BN, MoS2, WS2, and two sizes of

graphene were prepared and used to deposit L–S films at a range of different surface

pressures. This is the first demonstration of the production of single layer BN films

using this method. These dispersions were made by generic processes to facilitate a

standardised film creation method. UV–visible spectroscopy measurements showed

the dispersions to be exfoliated, while AFM measurements were used to obtain

average lateral dimensions and thicknesses for each material. Running a binary

threshold on optical micrographs of the films gave quantitative values for the surface

coverage of the material films, allowing the surface pressure–surface area relation to

be plotted. To gain further insight from these plots, the data were normalised to

account for differing sizes of nanosheets between materials. Plotting surface pressure

against the interparticle distance begins to account for edge density effects and results

in near parallel data. Additionally, the 2D bulk modulus was plotted, and, once

normalised to the cohesion pressure, showed a similar rigidity onset and maximum for

each material. Increased edge density on a graphene cell substrate increased colony

formation and proliferation, demonstrating the importance, and tissue engineering

potential, of control over film properties.

These results allow for an improved understanding of the physical and chemical

influences on film formation, surface pressure, and surface coverage behaviour in

Langmuir films of 2D layered nanomaterials. This straightforward process has been
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demonstrated for a range of layered nanomaterials, including BN, which has not

yet been used extensively for Langmuir deposition. An approach for analysis has

been developed where size effects can be discarded, leaving only the effects due to

the inherent chemistry of the material type. This combination of variable surface

coverage and edge functionalities makes Langmuir films of layered nanomaterials

interesting as substrate modifications for studies of cell growth and proliferation.

These results will have uses beyond even cell studies, as this technique can be used

to create films for a wide range of applications, such as transparent electrodes,

supercapacitors, etc. as well as providing a framework for processing new layered

materials into single layer films, with maximised surface area.
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Chapter 4

Cell–substrate interactions lead to

internalisation and localisation of

layered MoS2 nanosheets

Using an ultrathin film substrate, the first internalisation of MoS2 nanosheets through

mechanotransduction is demonstrated. The usual method of dispersing nanomaterials

in the media limits interactions to random, serendipitous surface contact, and the

nanoparticles must be dispersible in media. A substrate approach means that cells

directly engage with the nanomaterial, sensing and adhering through sustained

interaction and actively internalising the nanomaterial. This activates previously

unobserved cell–substrate mechanotransduction mechanisms and receptor-mediated

uptake pathways. Moreover, a wide variety of nonsoluble nanomaterials can be

used, improving control over the amount of material exposed to a cell through

tuneable deposition density. Volumetric Raman mapping demonstrates localisation

of material to the endoplasmic reticulum (ER), a historically hard-to-target region.

The nanosheets do not cause cytotoxicity, are transferred to daughter cells, and have

applicability across multiple cell lines. The innate fluorescence or Raman signal

of the nanosheet can be utilised for live cell imaging, and targeted accumulation

within specific cellular organelles offers potential for photothermal treatments or
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drug delivery vectors. This substrate-mediated approach provides a step change to

studying nanomaterial–cellular interactions, taking advantage of the broad palette

of available two-dimensional (2D) materials and making use of mechanosensing to

stimulate tuneable responses, with potential for therapies and diagnostics.

4.1 Introduction

The properties of nanomaterials are of increasing interest for biological applications.

The transition metal dichalcogenides (TMDs), such as molybdenum disulfide (MoS2)

and tungsten disulfide (WS2), are of particular interest. These tend to have direct

band gaps in the monolayer form, making them key to optoelectronic devices [278–280].

This also means that they are inherently fluorescent [251], which is a useful attribute

in cell studies as a probe, if an appropriate target can be identified. TMDs also have

accessible chemistries [281] and can be easily functionalised [282–284], which can

improve the biological interaction [285,286] or allow the material to be used as a drug

vector [107,108,287]. MoS2 has fluorescence in the red [288] in the monolayer form,

strong Raman-active phonon modes that are correlated to its geometry [289], and

sulfur edge chemistry that is particularly useful for protein binding [290]. In addition,

molybdenum and tungsten enzymes are known to be essential to life [291,292], yet

how cells access these metals is not well understood, which makes TMDs important

materials for investigation.

Previous work on MoS2 in cell studies has always made use of a media dispersion

and then measured the uptake and localisation from this system [293–296]. Issues with

dispersed nanomaterial studies include the general lack of nanomaterial solubility [295,

296], degradation of the material within the cell [297], and toxicity [298–300]. How

cells sense and physically engage with their substrate is critical to a multitude of

cellular processes, including mobility, motility, proliferation, nutrient uptake, and

stem cell differentiation [301,302]. Development of ultrathin film substrates provides

a unique way to present 2D nanosheets to a cell [118], allowing cells to be seeded

directly onto the material of interest. This physical interaction between cell and
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material leads to different mechanotransduction responses [303,304]. These substrate-

mediated responses provide an opportunity, through the use of nanomaterials, to

access different mechanisms and organelles and stimulate various cellular responses,

which has not been possible before [305]. Although there is little research into active

mechanotransduction of nanomaterials currently, Yeh et al. have shown that when

cells are grown on chemical vapour deposition (CVD) WS2, the cells are able to

internalise portions of the single crystal and also present fluorescence in daughter

cells [306]. However, they did not speculate as to the mechanisms for this uptake or

the internal localisation of the materials.

The synthesis and processing of the materials used in this work is described

in 2.2.4.2, the characterisation techniques used are described in 2.3.5.2, and the

details of the cell experiments are included in 2.3.6.2. The cell lines used are described

in more detail in 5.3.

4.2 Substrate production

Liquid-phase exfoliation by sonication (LPE) is the most scaleable way to produce

large quantities of various layered nanomaterials in dispersion [120, 248]. By con-

trolling exfoliation and centrifugation parameters and solvent choice, it is possible to

tune the morphology and chemistry of the nanosheets produced. Common parameters

that have been used in this work yield MoS2 nanosheets that are ∼200 nm in length

and 8 layers thick, confirmed by atomic force microscopy (AFM) (Figures 4.1a–c)

Figure 4.1: MoS2 nanosheet characterisation. (a & b) AFM statistics histograms for
MoS2 nanosheets showing length and thickness data. (c) AFM image of as-produced
MoS2 nanosheets.
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Figure 4.2: MoS2 thin film substrate characterisation. (a) Optical micrograph of
a typical thin film substrate on glass, a close-up shown in the inset. (b) Map of
the layer number, N , for a typical MoS2 thin film substrate on glass. (c) Typical
resonant Raman spectra (660 nm) taken from the 2D Raman map (b) of the thin
film substrate; metrics [203] indicate that (d) the average thickness is 8 layers and
that (e) the average length is ∼200 nm.

and Raman metrics (Figures 4.2b–e) [203, 212]. MoS2 has Raman-active modes

that can be correlated to the thickness and defect densities, and also has strong

resonance with a 660 nm laser [203]. Figure 4.2c, in particular, illustrates this as the

2LA(M) mode is not present at other wavelengths [203]. These properties mean that

a significant signal can be gathered from a very small sample volume [203]. This

provides an excellent way to characterise the MoS2, to track its location throughout

a cellular interaction, and also to determine any modifications it undergoes [203,297].

The Langmuir–Schaefer (L–S) deposition technique works by dropping nanoma-

terial dispersion onto a trough of water, such that the dispersion solvent evaporates,

leaving a thin film of material at the air–water interface. It has proven to be

highly effective for the production of ultrathin films of a variety of nanomaterials

and has been shown to be possible to tune the thin film density, as discussed in

Chapter 3 [118,162]. With careful solvent selection for the LPE process, it is also
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possible to deposit films directly without any solvent transfer steps. These thin films

can be deposited onto various substrates, but for this work, glass slides have been

used to provide compatibility with standard cell culture techniques and equipment,

and still enable characterisation by Raman spectroscopy before and after cell growth.

The film density is controlled via barriers on the Langmuir trough to provide full or

partial surface coverage (Figure 4.2a). Combining LPE and L–S deposition means

that these thin film substrates can be produced with various 2D layered nanosheets,

in large quantities, repeatably, and therefore can be used for multiple cell growth

studies. Figure 4.3 is a scheme that shows the process from bulk MoS2 powder via

LPE to the final L–S film.

Figure 4.3: Bulk MoS2 (structure shown, left) is added to a suitable solvent, in
this work cyclopentanone, and exfoliated by ultrasonication (shown centre). After
exfoliation is complete, the resulting dispersion is used to create an L–S film (shown
right).

4.3 Cell studies

When cancer cells (U2OS) are seeded onto the L–S thin film substrates, the cells

grow and proliferate with no cytotoxicity evident even after 14 days. In fact, there

is a nonsignificant increase in the cell count after growth on the MoS2 substrates

compared to that on pristine glass cover slips (Figure 4.4a). Potentially, this is due

to the increased surface roughness providing improved adhesion. Of great interest

is that after ∼3 days of incubation on the substrate, the cells begin to modify
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Figure 4.4: Cell–substrate interactions and uptake. (a) Cell count data for U2OS
cells grown on MoS2 substrates (blue) and pristine glass controls (orange); error
bars calculated as standard error in the mean from three repeat experiments (two
samples per type for each experiment). (b) Optical micrograph of U2OS cells (7 days
of growth) on a split substrate (left half of the substrate pristine glass and the right
half coated in a MoS2 Langmuir thin film of typical density shown in the inset);
MoS2 nanosheets have been accreted by the cells (dark regions). The inset scale bar
is also 200 µm. (c & d) AFM height images of U2OS cells (3 days of growth) on
MoS2 nanosheets, with cytoskeletal extensions and adhesion sites directed toward
the MoS2 nanosheets on the substrate. (e & f) Optical micrographs showing the
internalisation of the MoS2 nanosheets and the localisation around the nucleus in
the ER (taken of the same sample as shown in Figure 4.4b). The inset scale bar is
also 20 µm.
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the film and internalise the MoS2 nanosheets. After 7 days, the majority of the

MoS2 has been accreted under the cells and large proportions of it are internalised

(Figures 4.4b, e & f).

Using substrates that are only half-coated in the MoS2 allows this physical

interaction to be seen clearly. What was once a complete thin film on the right half

of the substrate (typical density shown in Figure 4.4b inset) now forms the dark

regions of MoS2 that have been accumulated under and internalised within the cells

(Figures 4.4b, e & f). This is due to the action of the cells adhering to, and mobilising

on, the substrate. As the nanosheet forms part of the cell substrate, the material is

internalised through a mechanotransduction response; the cell senses the substrate

and then actively internalises the material. This response is of enormous interest

and is little understood; it is an entirely different approach to the internalisation

of nanomaterials, which are usually dispersed in the cell media. It can be seen

that the majority of the MoS2 nanosheets are internalised in the region around the

nucleus (Figures 4.4e & f). Some recent work has shown that the stiffness of the

cell substrate influences how much uptake of dispersed nutrients the cell engages

in [307, 308]. For the stiffer materials, the cells can be seen to have formed far

larger cytoskeletons, with extensions and adhesion sites that spread throughout the

substrate. The cells must mechanically interact with their substrate to be able to

engage in material uptake. In this work, the cells are actively interacting with the

MoS2 nanosheets, adhering to them, and applying forces to remove and move them

across the substrate. The cells can be clearly seen to have large spreading areas, lots

of cytoskeletal extensions, and adhesion sites associated with migration and motility

(Figures 4.4c–f). The atomic force microscope (AFM) images illustrate extensions

and adhesion sites specifically grown toward dense regions of MoS2 nanosheets; when

grown on sparse film substrates (Figures 4.4c & d), the cells are seeking out the

nanosheet material. This in turn means that the cells tend to congregate around

denser MoS2 regions, improving their ability to conduct cell-to-cell communication,

which is vital for proliferation and viability.
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Figure 4.5: Localisation and lifetime of MoS2 nanosheets. (a) 2D Raman map of
the intensity of the ∼405 cm−1 A1g peak of MoS2 (green) overlaid on the optical
microscope image of cells; (b & c) metrics [203] indicate the same layer number
(8 layers) but reduced length (<200 nm). (d) Top-down optical view of the location
of (e) volumetric Raman mapping of the intensity of the A1g peak (green), with
some nanosheets inside the cell and some still on the substrate. (f) Cell count data
for U2OS cells grown on MoS2 substrates and glass controls for 7 days and then
removed from the substrate, split, and reseeded as described in 2.3.6.2; the error bars
are calculated from standard error in the mean from two repeat experiments (two
samples per type in each experiment). (g) Raman mapping of cells taken from MoS2
substrates and reseeded onto pristine glass controls, indicating that MoS2 nanosheets
are still localised within the ER and present in daughter cells, with (h) minimal
modification of innate Raman spectra indicating limited degradation.

Raman volumetric mapping is a powerful technique for determining the

localisation of MoS2 nanosheets within the cell. Mapping the peak intensity of the

∼405 cm−1 A1g mode yields detailed spatial information for the nanosheet within

the cell. Combining multiple overlapping steps gives a z-resolution of < 1 µm, and

therefore, it is possible to confirm the difference between the material internalised

within the cell and that above or below the cell. Volumetric (Figures 4.5d, e & D.1)
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and 2D (Figures 4.5a, g & D.2) Raman mapping confirms our observations from

the optical microscopy (Figures 4.4e & f). The MoS2 nanosheets were presented as

a thin film substrate only; no MoS2 was added directly to the cell media, so there

is no possibility of the material being on top of the cells, as can be the case for

media-dispersed nanomaterials. This volumetric map shows nanosheets that are

clearly raised above the substrate, indicating that they are largely internalised in

the region around the nucleus (the endoplasmic reticulum, ER), with some material

identified in the cytoplasm (most likely in lysosomes) and some still lying at the base

of the cell and therefore still on the substrate (Figure 4.5e).

If the cells are harvesting transition metals or sulfur components for internal

processes, then it would be interesting to note if the cells are able to break down

the MoS2 to access the elemental components. Raman spectroscopy (Figure D.3)

indicates that there is little change to the layer number for the MoS2 nanosheets

after its internalisation — still 8 layers (Figure 4.5b) — but the average length has

decreased (Figure 4.5c). This suggests either that the cells are able to begin to

decompose the edge sites (spectra taken from cells after 7 days of growth), as the

metrics do not indicate an increase in defect sites, such as holes, in the basal plane; or

that cells are selectively internalising any smaller-sized sheets on the substrate, due

to a possible limit on the size of the sheets able to be internalised via the caveolin

pathway.

Excitingly, the MoS2 is also transferred to daughter cells (Figure 4.5g), as was

also seen by Yeh et al. with the CVD WS2 [306]. In an experiment, after 7 days of

growth on MoS2 and pristine glass control substrates, the cells reached confluence

and were trypsinised, split, and reseeded onto new substrates (Figure 4.5f). The cells

were reseeded at the initial (day 0) density to allow room for further proliferation on

the new substrates (indicated by the sudden decrease in cell count in Figure 4.5f).

The new substrates used were either further fresh MoS2 substrates or pristine glass

cover slips (control). In this way, cells that had been initially grown on MoS2 are

seeded onto both further MoS2 and clean controls, and cells from the clean controls



84

are seeded onto further clean controls and onto MoS2. As before, it is seen that this

does not affect the proliferation of the cells (Figure 4.5f); if anything (although it is

not significant), the MoS2 actually increases the cell proliferation both before and

after the substrate change. Importantly, MoS2 is still observed to be internalised

within the ER of cells seeded onto the clean substrates (Figure 4.5g), so the MoS2

is retained within the cell and passed on to daughter cells (U2OS doubling time is

∼29 hours). Although we have not performed extensive studies to quantitatively

determine for how many generations the MoS2 is retained in the cells, we can make

some speculation based on the U2OS doubling time. The cell study continued for

7 days after cells initially seeded on MoS2 were reseeded onto pristine glass substrates.

As the U2OS doubling time is ∼29 hours, and this part of the cell study ran for

7 days, we estimate that the MoS2 remains present in daughter cells for at least five

to six generations.

Raman spectroscopy of the MoS2 internalised in the daughter cells again shows

similar layer numbers and no further significant decrease in length compared to

that of the continuous growth for the same length of time (Figure 4.5h). This has

implications for theranostics, as the vector remains within the cell line. As the

tumour grows, for example, all cells may contain the vector, which could be used as

a therapeutic centre or tag. The nanosheet perseverance is further confirmation of

their potential to act as new probes, as the nanosheets can be tracked throughout

long live cell imaging experiments, over multiple generations, and also tracked within

a co-culture. This paves the way for the next generation of diagnostics and imaging

that can investigate the microenvironment and complex tissue development.

4.4 Internalisation mechanisms

The receptor-mediated endocytosis pathways transport material to the ER and

Golgi apparatus, whereas more passive processes silo unwanted or unknown material

into lysosomes and usually eject it [309]. The ER, in particular, is associated with

molybdenum enzymes and sulfur bridges for protein building [291]. Several transition
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metals, including molybdenum, are vital for cell function. The molybdenum cofactor

is found in all kingdoms of life; five molybdenum cofactor enzymes are known to exist

in eukaryotes and four of these are found in humans [310]. A lack of molybdenum

in the environment can lead to a deficiency in molybdenum cofactor, a rare disease

first identified in 1978; this can lead to neurological damage, seizures, and feeding

difficulties [310]. Despite their importance, little is known about how cells access and

internalise these materials. The active interaction and accumulation of the MoS2

nanosheets, shown here, may provide a new means to study the cellular uptake of

essential transition metals.

Figure 4.6: (a) U2OS cells grown on MoS2 substrates, no nystatin solution (control).
(b–d) U2OS cells grown on MoS2 substrates with 20% nystatin solution to limit
caveolin uptake.

Other works using MoS2 nanosheets in dispersion have identified the predom-

inance of the caveolin pathway in the internalisation process. This pathway is

poorly understood, but recent insights have identified its important role in substrate

sensing [311–313], mechanoprotection [314], and cancer growth [311,314]. Nystatin



86

is used as an inhibitor for the caveolin pathway. In the present study, the use

of nystatin did not alter the U2OS cell accretion of the MoS2, but significantly

reduced internalisation was observed, implying that this uptake pathway is dominant

for MoS2. There was some evidence of MoS2 within the cytoplasm, most likely

in lysosomes through passive diffusion or alternate endocytic pathways. Typical

optical micrographs of the U2OS cells grown in 20% nystatin solution are shown in

Figure 4.6. This fits with the expected uptake mechanism for transition metals in

a mechanotransduction substrate response. Additionally, this uptake pathway is a

direct route to the ER, explaining the accumulation within that organelle [314,315].

This all adds strong weight to the argument that the cells identify the transition

metal and sulfur chemistry within the substrate through sensing mechanisms, and

harvest the materials through this directed route for protein and enzyme building.

The caveolin pathway is little studied, and so this nanomaterial substrate technique

provides a route to probe and understand these fundamental cell processes further.

The unfolded protein response (UPR) is a cellular response to errors in protein

folding in the ER; the cell enlarges the ER to accommodate the unfolded material [316].

This response aims to restore normal function to the cell, but, if unsuccessful and

ER stress is prolonged, leads to apoptosis. One of the mechanisms of cancer is that

it is able to maintain the unfolded protein response (UPR) far longer than a normal

cell, thus evading apoptosis. In the present study, a clear increase is seen in the size

of the ER in the sarcoma cells grown on the MoS2 (Figure 4.7a), compared to those

grown on the control (Figure 4.7b), indicating stress in the ER. Not only does this

confirm the localisation of the MoS2 within this organelle, but also this indicates

that the exposed sulfur edges and/or molybdenum metal sites of the MoS2 are being

identified by the cell as protein or enzyme components, thus activating the UPR. It

is interesting to note that this large accumulation of nanosheets within the ER of a

cancerous cell could provide novel cancer theranostics, targeting a specific cancer

mechanism. The overactive UPR of cancer cells could be utilised to accumulate a

critical mass of material in only the cancerous cells, which either drives them to
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Figure 4.7: Generalisation of the methodology and applications. (a & b) Optical
images of U2OS cells grown on (a) MoS2 and (b) control substrates; a substantial
increase in the size of the ER is observed for the cells grown on MoS2 nanosheets.
One ER from each image is highlighted with blue dotted circles to give a guide to its
size and location within the cell. (c) A cell with internalised MoS2 after irradiation
with a 100 mW 660 nm laser showing severe local damage. (d) Cell count data
for primary fibroblast cells, showing no toxicity after 7 days; error bars calculated
from the experimental error of single experiment. (e & f) Optical micrographs of
fibroblast cells grown on MoS2 substrates with nanosheets localised in the ER, but
less accretion under the cells compared to U2OS.
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apoptosis (although cell death was not seen even after 14 days of incubation) or

can be used as a photothermal site. High exposure of the internalised MoS2 with a

resonant laser causes significant localised damage to a cell — the ER is destroyed

through local heating of the excited MoS2 (Figure 4.7c), confirming the possible use

of the internalised MoS2 for photothermal therapy (PTT). Alternatively, drugs that

target this organelle could be attached to the material. All the while, the condition

and location of the nanomaterial could be tracked by Raman volumetric mapping or

indeed by the material’s inherent fluorescence in the case of monolayer TMDs (as

demonstrated by Yeh et al. [306]).

A noncancerous cell line (fibroblasts) also shows localisation of MoS2 within

the ER, although the amount is not as significant as for the cancerous cell line

(U2OS), and there is more material distributed in the cytoplasm (Figures 4.7e & f).

The cells do not seem to actively accrete the nanosheets as the cancer cells do,

the multicoloured contrast indicating the presence of MoS2 still distributed across

the substrate in Figure 4.7f. In this work, the fibroblasts proliferated faster than

U2OS cells and also have larger spreading areas, so they reached confluence more

quickly, limiting the time spent mobilising on the substrate before intercellular

interactions started to dominate. Regardless, there is no indication of cytotoxicity up

to 7 days of growing on the substrate (Figure 4.7d), however, the slight nonsignificant

increase in proliferation as for the U2OS cells was not observed, probably due

to the lower mechanical substrate interaction of fibroblasts compared to that of

bone-derived cells. This shows that the mechanotransduction-mediated uptake of

nanosheets is a potential pathway to internalisation for many different cell types. A

new mechanotransduction internalisation route could be used for developing new

fluorescent and Raman probes for previously unattained targets. However, there

may be more specific implications for cancer cells due to the exaggerated cancer

cell–substrate interactions, the ‘hungry’ nature of cancer cells to scavenge materials

from the environment, and the overactive UPR. These phenomena could all be

exploited through mechanotransduction-mediated uptake of nanosheets to internalise
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imageable drug delivery vectors or localise photothermal sites to cancer-specific

targets, for example. Therefore, this approach may have exciting potential for cancer

theranostics.

4.5 Conclusions

The need for the cell to form adhesions, and deform its environment, is critical to its

functioning. In this work, the substrate is stimulating the cellular membrane proteins

for sensing and recognition, triggering uptake pathways, as well as spreading and

proliferation. These mechanotransduction responses provide new insights into the

full interaction of a cell with its environment and offer novel approaches to studying

cellular mechanisms.

This work presents a completely new internalisation methodology for synthetic

nanoparticles. A new technique for targeting receptor-mediated uptake has been

demonstrated, and its links to internal structures such as the ER have been shown,

which is important in many different diseases [317]. It is well known that accurate

internal mapping is difficult; this work aims to improve this by using Raman spectro-

scopy. While it is possible that the determination of the localisation within the cell

could be improved, significant localisation of the nanosheets in specific organelles

has been seen, all identified and mapped through volumetric Raman spectroscopy, a

non-invasive process that has the potential to be used with live cells. Additionally,

novel insights into mechanotransduction responses to substrate-derived nanomater-

ials have been made and shown to be generic to different types of cells with no

toxicity, but of particular interest to cancer cells due to their overactive mechanical

substrate interactions and modified UPR. Following this initial study, presented here

to introduce the broad scope of this method of looking at cell–substrate interactions,

further biological characterisation experiments are needed to further understand this

system, including detailed cytotoxicity assays, comparisons of other nanomaterials,

and further investigations of the UPR effects.
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The sulfur chemistry of the TMDs can be exploited for biological attachment and

for drug delivery or more specific targeting [182]. By utilising MoS2 as a cell substrate,

there is real potential to use the material’s inherent fluorescence or unique Raman

features for tracking, live cell imaging, and potential therapies with photothermal

treatment or drug delivery of a mechanotransduction-internalised nanovector. This

new approach to nanomaterial–cell interfacing offers an exciting opportunity to

develop the next generation of theranostics.
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Chapter 5

Internalisation and localisation of

transition metal dichalcogenide

nanosheets

5.1 Introduction

A clear way to extend the work in Chapter 4 was to consider other transition metal

dichalcogenides (TMDs). While MoS2 was shown to be internalised in that work, it

had not been ascertained whether the same would be true of WS2, or MoSe2. Yeh

et al. [306] had previously shown that cells internalised chemical vapour deposition

(CVD) WS2, so it seemed likely that this research would yield positive results.

However, this had not yet been studied for liquid-phase exfoliation by sonication

(LPE)-produced TMDs other than the work on MoS2 [318].

As discussed in Section 2.1.2, TMDs are compounds described by the chemical

formula MX2, where M is a transition metal (e.g. Mo, W) and X is a chalcogen

(e.g. S, Se) [8, 38]. The monolayer, formed of a hexagonal plane of transition

metal ions sandwiched between planes of chalcogen atoms [39], is not strictly two-

dimensional (2D). However, TMDs are often classed as such due to their extremely

thin monolayers [38–40]. This standard structure makes different TMDs structural
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Figure 5.1: Structure and dispersion of MoS2 (left), WS2 (centre), and MoSe2 (right).
The materials are structural analogues of each other.

analogues of each other (Figure 5.1). Dispersions of these materials are made in

the same way and have similar solvent compatibilities, but have different band gap

structures due to their different components.

The synthesis and processing of the materials used in this work is described

in 2.2.4.3, the characterisation techniques used are described in 2.3.5.3, and the

details of the cell experiments are included in 2.3.6.3.

5.2 Nanosheet characterisation

Briefly, the WS2 and MoSe2 dispersions used in this study were produced by LPE,

and these dispersions were used to create dense Langmuir–Schaefer (L–S) thin films.

Raman spectra of the substrates were taken to confirm the presence of the expected

material and to show the level of material exfoliation. These spectra can be seen

in Figure 5.2, with labelled phonon modes [319–321]. The WS2 Raman spectrum

shows a sharp peak assigned to the 2LA(M) mode at 349 cm−1, and another peak

assigned to the A1g mode at 419 cm−1 [319]. The high intensity of the second-order

2LA(M) mode compared to the A1g mode implies the presence of mono- or few-

layer (∼2–3 layer) WS2 [319]. The MoSe2 Raman spectrum shows a sharp peak

assigned to the A1g mode at 242 cm−1, and another peak assigned to the E1
2g mode at

292 cm−1 [321]. The peak spacing of approximately 50 cm−1 indicates the presence of
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Figure 5.2: Raman spectra of (a) WS2 and (c) MoSe2 substrates used for cell studies.
Labelled with WS2 [319] and MoSe2 [321] literature values for comparison.

MoSe2 monolayers [321]. The high degree of exfoliation shows that the methodology

is good for optimising the nanoscale properties, and Raman spectroscopy is a simple

and effective way to characterise the material. The exfoliation compares well to that

of the MoS2 used in Chapters 3 and 4.

5.3 Cell lines

The same cell lines were used for this study as for the MoS2 study in Chapter 4, namely

1BR primary fibroblasts and U2OS bone carcinoma. Here, these are described in

more detail. Fibroblasts are mesenchymal cells with an elongated, spindle shape [322].

Their branched cytoplasm projections surround a nucleus with two or more nucleoli,

and contains an abundance of rough endoplasmic reticulum and a large Golgi

apparatus [323]. Fibroblasts are one of the most common cell types in connective

tissue [323], and are responsible for maintaining the structural integrity of connective

tissues by synthesising extracellular matrix components throughout the body [322].

Additionally, fibroblasts are involved in the wound healing process [322]; when tissue

is injured, nearby fibroblasts proliferate, migrate into the wound, and produce large

amounts of collagenous matrix [324]. However, it is important to note that there is
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variation between fibroblasts from different anatomic sites [322], and that a number

of different functions can be displayed even within one system [323]. Figure 5.3a

shows control 1BR primary fibroblasts from this study.

U2OS cells are human osteosarcoma cells derived in 1964 from a moderately

differentiated sarcoma of the tibia of a 15 year old girl [325]. They have an epithelial

morphology. The chromosomes present in this cell line are significantly abnormal [325].

Furthermore, the cells show typical signs of malignancy, including an increased

nucleocytoplasmic ratio, pleomorphism and enlarged nucleoli [325]. Figure 5.3b

shows control U2OS osteosarcoma cells from this study.

Figure 5.3: Optical micrographs of control (a) 1BR primary fibroblasts and (b) U2OS
osteosarcoma cells. Red boxes indicate magnified areas.

5.4 WS2 Substrates

First considering the 1BR primary fibroblasts, the WS2 is visibly internalised within

the cells (Figure 5.4b–e). This is confirmed by Raman spectroscopy of one of these

dark areas within a cell. Figure 5.4a shows the characteristic Raman modes associated
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with WS2 (cf. Figure 5.2a). Because the cells were trypsinised and reseeded onto

pristine glass cover slips for 2 days before fixation, any material present must be

either within the cells, or loose having been ejected by the cell after reseeding.

Figure 5.4: (a) Raman spectrum taken of a visibly dark area in a 1BR cell which grew
on a WS2 substrate for 7 days before trypsinisation and reseeding onto a pristine
glass control. WS2 features are still present, indicating the presence of WS2 within
the cell. Inset shows a typical 1BR cell with visibly internalised WS2. (b–e) Optical
micrographs of 1BR primary fibroblasts grown on WS2 substrates. Red then blue
boxes indicate areas undergoing increasing magnification. Red and purple boxes
indicate different areas of an image undergoing the same magnification.
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There are clear similarities between the amount of internalised WS2 in this work

and the amount of internalised MoS2 in Chapter 4. However, while the WS2 is

still localised to the cell body, it is not as obviously localised to the endoplasmic

reticulum (ER) as MoS2 was previously. Further, the material appears to be occupying

spherical vesicles, suggesting that it is likely that the material may be contained

within lysosomes.

The work presented by Yeh et al. [306] also shows strong uptake of WS2. However,

they use CVD WS2 rather than liquid-phase exfoliated (LPE) WS2, so the size and

quality of the material may differ. Further, Yeh et al. use the LMH hepatocellular

carcinoma cell line whereas this work considers 1BR primary fibroblasts and U2OS

osteosarcoma cells, meaning that direct comparison between cell lines is not possible.

Figure 5.5: Optical micrographs of U2OS osteosarcoma cells grown on WS2 substrates.
(a & b) Many cells show no obvious internalisation of WS2, typical examples given
here. (c) Some cells did show internalisation, but not to the extent as for the 1BR
primary fibroblasts. Red box indicates areas undergoing increasing magnification.
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When looking at the U2OS cells, the contrast with 1BR cells is stark; although

some cells show WS2 uptake (Figure 5.5c), not as much material is seen within these

cells, and several cells do not show any evidence of internalisation (Figure 5.5a & b).

The amount of internalisation is also less than that seen for MoS2.

This suggests that the presence of sulfur groups may cause the generic uptake by

1BR primary fibroblasts, as these cells show large amounts of internalisation of both

MoS2 and WS2. Because there is not as much internalisation of WS2 in the U2OS

cells, it is not so clear that the sulfur groups are the main cause of uptake by these

cells.

Therefore, it is possible that the transition metal has more influence on the

material internalisation for U2OS cells. While Mo and W are both key elements

to cells, only Mo is used in eukaryotic cells; this might explain why less WS2 is

internalised by U2OS cells compared to the amount of MoS2 that was internalised

in Chapter 4. W may also be internalised by the same process due to the similar

chemistries of the two materials [291], but perhaps this would not be as efficient

as the uptake of MoS2. However, this is speculative, and more experimentation is

required to investigate this aspect.

If these hypotheses are correct, namely that 1BR fibroblasts favour the sulfur

groups of the material, and that U2OS favours the Mo transition metal, then it

is possible to suggest potential outcomes for the cell study on MoSe2 substrates.

The 1BR fibroblasts grown on MoSe2 would not necessarily show much material

internalisation because the sulfur groups are not present. U2OS cells may show more

internalisation of MoSe2 than WS2 if the Mo transition metal is preferred. However,

selenium is known to be toxic to cells, so the selenium groups of MoSe2 may mean

that neither cell line shows much internalisation.
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5.5 MoSe2 Substrates

Both cell lines grown on MoSe2 substrates showed very little internalisation and

limited growth, including no growth on one run of U2OS cells (Figure 5.6, 5.7).

However, the cell counts can’t be compared directly with those on WS2 or MoS2

because the cell density wasn’t controlled at reseeding for this initial experiment,

designed to look at internalisation rather than toxicity. Cell extensions are visible,

particularly for several of the U2OS cells grown on MoSe2 (Figure 5.6). Although

extensions are seen for U2OS cell growth on WS2 (e.g. Figure 5.5b), they are

far less common than those seen for U2OS cell growth on MoSe2. This implies

a different substrate interaction for the MoSe2 substrates, perhaps trying to find

adhesion sites not associated with MoSe2 nanosheets (i.e. avoiding the material).

This agrees with the earlier suggestion that the sulfur chemistry could be critical to

the biocompatibility of the TMDs, with coincidental internalisation of the transition

Figure 5.6: Optical micrographs of U2OS osteosarcoma cells grown on MoSe2
Langmuir thin film substrates. Red circles indicate cell extensions; these are enlarged
in the insets.
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Figure 5.7: Optical micrographs of 1BR primary fibroblasts grown on MoSe2 Langmuir
thin film substrates.

metal. However, this experiment uses reseeded cells; it is possible that the cell lines

grown on MoSe2 may have internalised and then expelled the unwanted material

within the initial 7 day growth period before trypsinisation and reseeding onto

controls.

5.6 Conclusions

This work builds on the foundations laid by the initial MoS2 internalisation study

presented in Chapter 4 (from [318]). It is shown that the internalisation methodology

— utilising cell–substrate interactions instead of passive material uptake from the cell

media — is not unique to MoS2, but is also shown for WS2. As in the MoS2 study, the

sulfur chemistry is suggested to play an important role in the internalisation process.

While MoSe2 is not seen internalised within either cell line, it is still undetermined

whether this is due to the material never having been internalised, or due to rapid

internalisation and excretion of the material in the 7 day growth window before

trypsinisation and reseeding for imaging. This requires further investigation by

repeating these experiments at a range of growth windows. U2OS cells on MoSe2

substrates are imaged with cell extensions, showing the active sensing processes at

work. This approach has been shown to be generic to other TMDs in addition to

MoS2, opening the door to further potential theranostic applications utilising the

various TMD materials.
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Chapter 6

Conclusions and future work

Nanobiotechnology is a flourishing field in which nanotechnological advances are used

to explore biological applications. Still, interactions between nanomaterials and cells

or tissues are not well understood. To investigate cell–substrate interactions, it is

therefore crucial to use well-characterised substrates. Presently, it is hard to ensure

that substrates have the same properties from sample to sample because substrate

synthesis is not standardised. This observation prompted the first aim of this thesis:

Is it possible to define a methodology to ensure a controlled and tuneable

production of two-dimensional (2D) thin film substrates?

The ability to control thin film production would allow properties of the thin

film to be known from initial parameters set during synthesis. To become widely

adopted, not only would any such method need to be easily applied, but production

of the materials required would also need to be simple, scaleable, and standardised.

Work in Chapter 3 tackles this by utilising sonication-assisted liquid-phase exfoli-

ated (LPE) nanomaterial dispersions. As discussed in 2.2.1, liquid-phase exfoliation

by sonication (LPE) is known to be an easily scaleable method of nanomaterial

production [120] with several standard characterisation metrics, making it a good

choice for the development of a standardised film creation methodology. Several LPE

materials (hexagonal boron nitride (BN), MoS2, WS2, and two sizes of graphene) were
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used for Langmuir–Schaefer (L–S) deposition at a range of surface pressures, with

the idea that it might be possible to predict the film surface area from measurements

of the surface pressure and the material dimensions alone. Surface pressure–surface

area plots were obtained after surface area was quantitatively measured by analysis

of binary thresholds of optical micrographs of the films, but because film surface area

depends on edge-edge interactions, normalisation for nanosheet size was necessary

to assess the effect of intrinsic chemistry on the edge-edge interactions between

nanosheets. These edge density effects start to be accounted for by plotting surface

pressure against centre-to-centre interparticle distance. The 2D bulk modulus, which

can quantify rigidity percolation, showed a similar rigidity onset and maximum

for each material after normalisation for cohesion pressure (a term which describes

long-range interactions between nanosheets). This straightforward process allows for

an improved understanding of the physical and chemical influences on film formation,

surface pressure, and surface coverage behaviour in Langmuir films of 2D layered

nanomaterials.

The combination of variable surface coverage and edge functionalisation made

Langmuir films of layered nanomaterials an interesting candidate for studies of cell

growth and proliferation. Cell colonies were shown to form and to proliferate on

thin film substrates; furthermore, the cells showed preference for the substrates with

increased edge density. This emphasises the importance of control over thin film

substrate production. The cell study served as an initial proof of concept for the

second aim of this thesis:

Most nano–bio studies introduce the nanomaterial to the cell by dispersion in the

cell medium — can nanomaterials be introduced to the cell from the substrate

alone? Does this change the effect on the cell?

Langmuir thin films for cell studies needed further exploration to fully address

this question. Chapter 4 investigates this further, with focus on MoS2 rather than

graphene substrates due to the material’s interesting chemistry. Cells were found
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to exhibit mechanotransduction responses to the thin film substrate; stimulation

of the cellular membrane proteins for sensing and recognition triggered uptake

pathways. This method of introducing the cell to the nanomaterial leads to uptake

to cell organelles such as the endoplasmic reticulum (ER); noninvasive 2D and

three-dimensional (3D) Raman spectroscopy mapping showed internalisation to

this structure. Moreover, different cell lines were tested and these cell–substrate

interactions were shown to be generic to different types of cells with no toxicity.

This is of particular interest for research into cancer cells due to their overactive

mechanical substrate interactions and modified unfolded protein response (UPR).

It is unclear whether it is the molybdenum or sulfur components which are the

main target of the uptake mechanism. Certainly, the internalisation of monolayer

transition metal dichalcogenides (TMDs) holds particular benefits. The monolayers

are inherently fluorescent and have unique wavelength-dependent Raman modes

which opens up potential applications such as tracking or live cell imaging. The

differing band gaps of the TMDs could provide a way to co-stain samples if the

materials localise to different cellular regions. Photothermal or drug delivery therapies

could also potentially be made possible due to material localisation, so this new

approach to nanomaterial–cell interfacing could provide an exciting opportunity to

develop the next generation of theranostics.

One way to test which of the molybdenum or sulfur components had the biggest

effect on the internalisation of MoS2 was to conduct further experiments on other

TMDs. This is discussed in Chapter 5. Two new materials, WS2 and MoSe2, were

used to create similar Langmuir thin film substrates. The same cell lines were

tested for these materials as for MoS2, namely, 1BR primary fibroblasts and U2OS

osteosarcoma cells. While a reasonable amount of WS2 was seen to be internalised

by the 1BR fibroblasts, less appeared to be internalised in the U2OS cells, and very

little MoSe2 appeared to be internalised into either cell line.
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The results from these initial experiments show that this internalisation method-

ology, where material uptake is mediated by cell mechanotransduction, is not unique

to MoS2, but is also shown in WS2. The fact that little to no MoSe2 internalisation is

seen may bolster the hypothesis that the sulfur chemistry is what plays a particularly

important role in the internalisation process, rather than the molybdenum. Although

there is little MoSe2 uptake, the reasons for this are still unclear and require further

exploration. To ensure that any material present is within the cells, the cells were

trypsinised at 7 days and reseeded onto pristine glass cover slips. This leaves open the

question of whether the MoSe2 was never internalised at all, or whether it was rapidly

internalised and excreted within the first 7 days. Moreover, several cells which had

grown on MoSe2 substrates were imaged with noticeable cell extensions (although

there was some evidence of this in the cells from the WS2 substrates, far fewer cells

were observed with this behaviour). This indicates some strong substrate interactions;

whether this behaviour is due to cells trying to locate areas without MoSe2, avoiding

a toxic material, or due to a rapid attachment process to the nanomaterial is still

unclear.

This places emphasis on the need of further study into the mechanotransduction

processes. Despite the limitations on this preliminary research, it has suggested that

the sulfur chemistry may play the starring role in the uptake pathways associated

with this internalisation methodology. Among other tests needed to complete the

work presented here, full biological characterisation experiments are required to

understand the system; this includes detailed cytotoxicity assays and investigation of

the UPR effects for cells grown on MoS2, WS2, and MoSe2 substrates. Additionally,

repeat tests at a range of growth windows with WS2 and MoSe2 are required, and

comparisons with other nanomaterials may also give insight into the processes at

work.

Better understanding of these processes will be key to realising cell imaging

and drug delivery possibilities. With uptake and localisation of monolayer TMDs,

fluorescent or Raman imaging is possible. Furthermore, this material internalisation
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occurs without fixation or permeabilisation of the cells, so there is no reason that

live cell imaging would not be possible. For TMDs which show localisation, such as

MoS2, the creation of drug delivery vectors is promising. With the known chemistries

of these materials, then for example, adding drug groups via simple sulfur chemistry

should be straightforward. Some specificity of the drug delivery may even be possible,

because uptake seems to differ slightly between cancerous and healthy cells.

Looking ahead, one avenue to explore could be the extension of these initial

experiments into the realm of biosensors. TMDs have previously been shown to be

capable of sensing bovine serum albumin by surface plasmon resonance [326,327] and

of detecting dengue by electrochemical impedance spectroscopy [182]. This dengue

biosensor is of particular interest as it also utilises the Langmuir deposition technique

(although Solanki et al. use the Langmuir–Blodgett technique as opposed to the L–S

technique used throughout this thesis). As mentioned in 2.4.2.3, the need to develop

simple, cheap and sensitive biosensors has been brought into sharp relief over the

past year since the advent of the ongoing COVID-19 pandemic. It seems possible

that biosensors based on MoS2, similar to that for dengue described by Solanki et al.,

could be developed towards the SARS-CoV-2 virus (or other viruses). This would

be an interesting angle to explore in future work.
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Appendices

A Tables for Chapter 2

In Chapter 2, a review of low-dimensional materials in diagnostics and therapeutics

for life sciences applications is presented. The background, relevant review papers

and discussion of common materials is included in 2.4. Here are included tables

of the papers reviewed by the author; relevant information is summarised for each

application. A list of abbreviations is included for convenience.

List of applications being reviewed:

A.1 Fluorescence imaging. . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

A.2 Live cell imaging. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

A.3 Biosensing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

A.4 Photothermal therapy. . . . . . . . . . . . . . . . . . . . . . . . . . . 195

A.5 Drug delivery. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

A.6 Stem cell control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

A.7 Toxicity studies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

A.8 Theranostics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
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List of Abbreviations used in Appendix A:

# | A | B | C | D | E | F | G | H | I | J | L | M | N | O | P | Q | R | S | T

| U | V | W

#

1D one-dimensional. 197

2D two-dimensional. 197, 212, 214

3D three-dimensional. 197

5-FU 5-fluorouracil. 187, 209

A

AA acrylic acid. 212

Ab antibody. 189, 192, 193, 194, 195

AFM atomic force microscope. 210

AgNP silver nanoparticle. 194, 198, 205

AI activity index. 207

AIV avian influenza virus. 192, 193

AMSC adipose-derived mesenchymal stem cell. 203, 204, 205

APTES (3-aminopropyl)triethoxysilane. 198

AuNC gold nanocluster. 186, 190, 196

AuNP gold nanoparticle. 185, 190, 192, 193, 194, 207, 212

B

BMP-2 bone morphogenetic protein 2. 202

BMSC bone marrow-derived mesenchymal stem cell. 202, 203, 204, 206

BP black phosphorus. 212, 214

BSA bovine serum albumin. 186, 192, 194, 213

C
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calcein AM calcein acetoxymethyl. 208

CB carbon black. 186, 199, 207, 209

CCK-8 cell counting kit assay 8. 207

CD carbon dot. 185, 186, 188, 189, 198, 211

CD44 cluster of differentiation 44. 190, 196, 200, 213

CD63 cluster of differentiation 63. 196

CEA carcinoembryonic antigen. 194

CNT carbon nanotube. 190, 193, 198, 199, 200, 204, 205, 208, 209

CQD carbon quantum dot. 185, 188, 189, 198, 211

cRGD cyclo Arg-Gly-Asp (RGD) peptide. 212

CT computed tomography. 213

CuNC copper nanocluster. 190, 191

Cy7 cyanine 7. 195, 212

Cys cysteine. 185

D

DA dopamine. 185, 190, 193

DACHPt dichloro(1,2-diaminocyclohexane)platinum(II). 200

DCF dichlorofluorescein. 207

DCF-DA 2’,7’-dichlorofluorescein diacetate. 208

DCFH-DA 2’,7’-dichlorodihydrofluorescein diacetate. 208

DeK death kinetics. 207

DIZ diameter of inhibition zone. 207

DMEM Dulbecco’s modified Eagle’s medium. 209

DMSA meso-2,3-dimercaptosuccinic acid. 197

DNA deoxyribonucleic acid. 188, 189, 191, 193, 207, 208

DOX doxorubicin; doxorubicin hydrochloride. 195, 198, 199, 200, 201, 211, 212, 213,

214
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DPPH 2,2-diphenyl-1-picrylhydrazyl. 207

E

ELISA enzyme-linked immunosorbent assay. 208

F

FeTMPyP Fe(III) tetrakis (1-methyl-4-pyridyl) porphyrin pentachlorideporphyrin

pentachloride. 187

FITC fluorescein isothiocyanate. 186, 188

G

GO graphene oxide. 188, 192, 195, 196, 198, 202, 203, 207, 211, 212

GQD graphene quantum dot. 185, 189, 198, 211, 212

GrK growth kinetics. 207

GSH glutathione. 187, 189, 191

H

HA hyaluronic acid. 190, 196, 200, 201, 202, 213

HAP hydroxyapatite. 205, 206

Hb haemoglobin. 185, 207

HER2 human epidermal growth receptor 2. 186

HFW human fibroblast. 189, 208

HMVEC human microvascular endothelial cells. 196

hROS highly reactive oxygen species. 191

HSA human serum albumin. 199

hTERT human telomerase reverse transcriptase. 207
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HUVEC human umbilical vein endothelial cell. 185, 195, 196, 213

I

IGF-1R insulin-like growth factor 1 receptor. 195

IgG immunoglobulin G. 193

iRGD a 9-amino acid cyclic peptide (sequence: CRGDKGPDC). 185

J

JEV Japanese encephalitis. 192

L

LDH lactate dehydrogenase. 209

LED light-emitting diode. 195

Lys lysine. 188

M

MAA methacrylic acid. 212

MB methylene blue. 193, 195, 196, 198

MBA methylenebisacrylamide. 212

MBC minimum bactericidal concentration. 207

MDCK Madin-Darby Canine Kidney cells. 195

MI-1 1-(4-Cl-benzyl)-3-Cl-4-(CF3-fenylamino)-1H-pyrrol-2,5-dione. 209

MIC minimum inhibition concentration. 207

miRNA micro RNA (ribonucleic acid). 188, 190, 191, 196

MMP mitochondrial membrane potential. 208

MPA mercaptopropionic acid. 186

MRI magnetic resonance imaging. 191, 211, 213, 214

mRNA messenger RNA (ribonucleic acid). 188
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MRSA methicillin-resistant Staphylococcus aureus. 203

MSC mesenchymal stem cell. 202, 203, 204, 205, 206

MTS 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-

2H-tetrazolium. 210

MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide. 207, 208, 210

MWCNT multi-walled carbon nanotube. 192, 193, 194, 195, 205, 207, 208

MXene transition metal carbide, nitride, or carbonitride. 194

N

ND nanodiamond. 189, 193, 198, 204

NHDF normal human dermal fibroblasts. 195

NIR near-infrared. 188, 189, 193, 195, 196, 197, 206, 212, 213, 214

NO nitric oxide. 208, 209

NP nanoparticle. 185, 187, 191, 192, 193, 195, 196, 198, 199, 202, 208, 210, 211, 213

NRP-1 neuropilin-1. 185

NRU neutral red uptake. 208

NSC neural stem cell. 204

O

OBNSC olfactory bulb neural stem cell. 205

P

PAI photoacoustic imaging. 212, 213, 214

PBMC peripheral blood mononuclear cell. 202

PCL polycaprolactone. 203

PDA polydopamine. 194, 195, 196, 213

PDMS polydimethylsiloxane. 193, 194

PDT photodynamic therapy. 211, 212, 214
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PEG polyethylene glycol. 186, 195, 197, 198, 199, 200, 212, 214

PEI polyethylenimine. 195, 202, 212

PET positron emission tomography. 212

PI propidium iodide. 208

PLGA poly(lactic-co-glycolic acid). 201, 202, 211

PMAH polymaleic acid n-hexadecanol ester. 187

PSC pluripotent stem cell. 202, 204

PTI photothermal imaging. 212, 214

PTT photothermal therapy. 211, 212, 213, 214

Q

QD quantum dot. 186, 187, 191, 201

R

rGO reduced graphene oxide. 192, 195, 203, 204, 207

RNA ribonucleic acid. 190

ROS reactive oxygen species. 207, 208, 209, 213, 214

S

SN-38 7-ethyl-10-hydroxycamptothecin. 200

SPR surface plasmon resonance. 192, 194

ssDNA single-stranded DNA (deoxyribonucleic acid). 190, 193, 196

STED stimulated emission depletion. 188

SWCNT single-walled carbon nanotube. 189, 195, 196, 207, 208, 209

T

TAT trans-activator of transcription. 195

TEM transmission electron microscopy. 193
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TMD transition metal dichalcogenide. 200

Tyr tyrosine. 207

U

UV ultraviolet. 187

V

VEGF vascular endothelial growth factor. 205

W

WHO World Health Organization. 208

WST water-soluble tetrazolium salt. 209, 210
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Table A.1: Fluorescence imaging.

Material Probe Target Cell lines/Animal models Ref.

Histidine-functionalised GQDs Cytoplasm Human ACHN [328]

Oxide GQDs (O-GQDs); reduced
oxide GQDs (R-GQDs)

Functional groups
(oxygen-containing for R-GQDs)

Nucleus HeLa [329]

CD–silica NP composites (Phosphorescence-based rather
than fluorescence)

EM-6 [330]

CQDs Strong hydrophobic interactions Hb Human blood [331]

Glucose modified CQDs Glucose Cytoplasm HepG2; HL-7702 [332]

Gold conjugated CDs
nano-assembly

Displacement of CDs from AuNP
surface with the addition of Cys

Cys HeLa [333]

CDs (pork as carbon source) Quenching due to surface
absorption

Uric acid Human serum and urine [334]

CQDs (as an antipoisoning drug
for heavy metal ions)

Mercury and chemet Human serum [335]

iRGD-decorated carbon nanodots iRGD peptide NRP-1 and ανβ3 integrin receptors 4T1; A2780 [336]

N-doped CDs Formation of non-fluorescent
ground state complex

Cysteamine MDA-MB-231 [337]

N-doped CQDs Tyrosinase DA; alpha lipoic acid Human blood and urine [338]

CDs N–H bonds; electronic transfer
between CDs and DA

DA (accumulation in intracellular
space)

CRL-5822; HUVEC [339]

CDs Reversible transformation
between azo and quinone
structures induced by
protonation–deprotonation

H+ (pH sensor) HeLa [340]
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Table A.1: Fluorescence imaging (continued).

Material Probe Target Cell lines/Animal models Ref.

CDs Intracellular polarity (accumulate
in lysosomes and mitochondria)

HepG2; HL-7702 [341]

CB and calcium carbonate
incorporated with FITC–PEG
2-aminoethyl ether acetic acid
solution

Cytoplasm periphery A549 [342]

WS2 QDs Transformation of Fe2+/Fe3+ and
the enzymatic reaction

Glucose Human blood and serum [343]

Aptamer@AuNCs and
aptamer@CdTe QDs
cell/tumour-targeting
nanostructure

HER2 SK-BR-3; MCF-7 (control) [344]

AuNCs/N-doped CDs
nanohybrids

Cu2+ HepG2 [345]

AuNC embedded in BSA
(BSA–AuNCs)

(Interaction between BSA and
flavonoids, e.g. aggregation of
AuNCs)

Flavonoids (quercetin, apigenin,
nobiletin, baicalein, rutin, and
wogonin)

Serum, plasma, proprietary
Chinese medicine Rutin Tablets

[346]

BSA/3-MPA co-modified AuNCs Quenched by Fe3+ due to strong
electron transfer ability

Alkaline phosphatase Saos-2 [347]

MPA capped CdTe QDs Quenched (“turned off”) by Fe3+,
then “turned on” by ascorbic acid

Ascorbic acid Human plasma [348]

Dual-mode probes based on
mesoporous silica nanomaterials
doped with an
aggregation-induced emission dye
and Gd3+

Accumulation in cytoplasm L929; DU149 [349]
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Table A.1: Fluorescence imaging (continued).

Material Probe Target Cell lines/Animal models Ref.

Coumarin-decorated cationic
copolymer functionalised
mesoporous silica NPs

5-FU chemotherapeutic agent;
p53 tumour suppressor gene
(UV-light cross-linked and pH
de-cross-linked)

H+ (triggered by acidic
environment)

MCF-7; COS-7 [350]

Oxidised, porous graphitic carbon
nitride nanosheets (CNNSs)

Fluorescence quenching of CNNSs
due to overlap of FeTMPyP
absorbance band and CNNSs
emission band; quenched
fluorescence “turned on” in
response to H2O2 (caused by
decomposition of FeTMPyP)

H2O2 RAW 264.7 [351]

Manganese-fullerenes core–shell
nanocomposites

Collapse of the outer MnO2 shell
leading to reconstruction of the
nanoprobes after exposure to GSH

GSH HeLa [352]

Dual QDs-based
fluorescence-linked
immunosorbent assay

Amphiphilic oligomers (PMAH) Inflammation biomarkers (serum
amyloid A and C-reactive protein)

[353]
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Table A.2: Live cell imaging.

Material Probe Detection method Target Cell lines/Animal
models

Ref.

GO/Fe3O4 hybrids with
functionalised polymer

FITC Fluorescence BxPC-3 [354]

Ternary complex of GO, Al
ions, and alizarin red
(GO–Al–AR)

Fluorescence Lys Human retinal pigment
epithelium

[355]

Multiple-targeted GO
nanocarrier

Manganese superoxide
dismutase (Mn-SOD);
β-actin; control DNA with
random sequence

Fluorescence Intracellular mRNA MDA-MB-231 [356]

N-doped CDs Fluorescence Fe3+ HeLa [357]

Fluorine and nitrogen
co-doped CDs

Fluorescence/STED
nanoscopy

Nucleolus; tunnelling
nanotubes

4T1 [358]

Carbon nanodots Hairpin-structured/amino
group modified DNA

Fluorescence miRNA [359]

CDs Fluorescence HeLa [360]

NIR emissive CDs Fluorescence Fe3+; accumulation in
cytoplasm

AGS; K562; MGC-803 [361]

N-doped carbon nanodots Carboxyl/hydroxyl or
nitrogen functional groups

Fluorescence Fe3+ HCT-116 [362]

N-doped CDs Carboxyl/hydroxyl/amine
functional groups

Fluorescence Au3+ A549 [363]

N-rich metal-free and metal
doped CQDs

Phenolic hydroxyl groups Fluorescence Fe3+ HeLa [364]
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Table A.2: Live cell imaging (continued).

Material Probe Detection method Target Cell lines/Animal
models

Ref.

N-doped CDs Hydroxyl/amine groups Fluorescence Fe3+ C. albicans; Clone 9
hepatocytes

[365]

N-doped CQDs Fluorescence Hg2+; GSH MCF-7 [366]

N,P-dual doped CDs
(A-NPCDs)

Nitrogen, phosphorus and
oxygen containing functional
groups [for Hg(II) target];
broad absorption band
overlapping the emission and
excitation spectrum of
A-NPCDs [for Cr(VI) target]

Fluorescence Hg(II); Cr(VI) HEK-293 [367]

N,S co-doped aminated
ligninsulfonate/GQDs

Coordination between
sulfonic acid group and Ag+

Fluorescence Ag+ A549 [368]

Alkyne-functionalised
hyperbranched-polyglycerol-
coated fluorescent
NDs

Fluorescence Azide-modified
membrane proteins;
azide-modified Abs of
membrane proteins

HeLa; HFW [369]

Oligonucleotide-
functionalised
DNA–SWCNTs

(GT)n oligonucleotides Visible and NIR fluorescence
(observed intracellular
fluorescence intensities shown
to increase with increasing
oligonucleotide length);
confocal Raman spectroscopy

RAW 264.7 [370]
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Table A.2: Live cell imaging (continued).

Material Probe Detection method Target Cell lines/Animal
models

Ref.

Prussian blue (PB)
microcubes-decorated
graphenated CNTs
(g-CNTs)-modified electrode

Polycrystalline structure of
PB allows small H2O2
molecules to pass through
but screens other species
such as DA and ascorbic
acid; negatively charged
surface of g-CNTs able to
repel negatively charged
ascorbate anions

Amperometric experiment H2O2 RAW 264.7 [371]

C60–poly(amino acid)
composites

Fluorescence HeLa [372]

HA-coated gold
nanodot-decorated hollow
carbon nanospheres

5’-fluorophore
(FAM)-labelled ssDNA
probes

miRNA-21 CD44-positive colorectal
cancer

[373]

AuNP-based probe Functionalised hairpin
nucleic acid, Cy3 fluorophore

Fluorescence RNA-induced silencing
complex (RISC)

A549; HeLa; MCF-7 [374]

Peptide–gold nanoclusters Highly metallophilic
Hg2+–Au+ interactions
leading to a significant
change of conjugate electron
structure in the Hg–Au
complex

Fluorescence Hg2+ NIH-3T3 [375]

AuNCs Fluorescence A549; HDFa [376]

CuNCs–glycol chitosan (GC)
nanogel nanocomposite

COO− groups on
CuNCs@GC surface; Zn2+

acting as a crosslinker to
re-aggregate dispersed
nanoclusters

Photoluminescence Zn2+ A549 [377]
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Table A.2: Live cell imaging (continued).

Material Probe Detection method Target Cell lines/Animal
models

Ref.

GSH-coated CuNCs Fluorescence H+ (pH sensor) HeLa; L-132 [378]

CuInS2/ZnS QDs Biotin-binding protein
traptavidin

Fluorescence Biotinylated cell surface MCF-7 [379]

Benzoperylene probe–ZnS
QDs nanocomposite

Photoluminescence hROS (ONOO−, ·OH,
H2O2, O2−, ClO−)

HeLa [380]

Core–shell QDs containing
environmentally-benign
transition metal ion
Mn(II)-doped ZnS as a core
material encapsulated within
different thickness ZnS shell
layers

[Non-specific cellular uptake];
cation-exchange process with
metal ions which have a low
solubility product constant
(Ksp) compared with that of
chalcogenides

Fluorescence HeLa, HEK-293; Hg2+,
Pb2+

[381]

ZnO NPs Fluorescence T47D [382]

ZnO NPs Hairpin-structured DNA Fluorescence miRNA-21; miRNA-373 HeLa; HepG-2; L-O2 [383]

Gadolinium cluster
encapsulated metallofullerene
Gd3N@C80

MRI probe [IL-13-TAMRA-
Gd3N@C80(OH)30-
(CH2CH2COOH)20]

Fluorescence Overexpressed IL-13Rα2
receptors

RAW 264.7 [384]

Gadolinium phosphate
(GdPO4) nanoprisms doped
with lanthanide (Eu3+,
Tb3+) ions

Fluorescence HeLa; L-O2 [385]
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Table A.3: Biosensing.

Material Probe Detection method Target Cell lines/Animal
models

Ref.

Synthetic and biomolecular
functionalised
graphene-based sensing array

Functionalised graphene
nanocomposites

Ultrasensitive
electrochemical impedance
signal (electrostatic and
hydrophobic interactions
between probe and target)

Phospholipids,
membrane proteins and
carbohydrates of the cell
surface

A549; HeLa; HepG2;
K562; MCF-7;
MDA-MB-231;
MCF-7/ADR; NIH-3T3;
PC-12; HEK-293T;
PBMCs

[386]

Carboxy functionalised
graphene on Si/SiO2
substrate

Amine functionalised Abs
(anti-JEV for JEV and
anti-AIV for AIV) covalently
coupled with carboxyl
activated graphene

Field-effect transistor-based
(monitoring the change in
resistance of the graphene
channel as a function of
time)

Monoclonal Abs of JEV
and AIV

JEV; AIV [387]

Monolayer nanosheets of
graphene- and WS2-coated
commercial Au chips

BSA SPR Anti-BSA [327]

ZnO nanowires and graphene
nanoplates synthesis on an
Au interdigitated electrode

Resistivity-based Glucose [388]

Cuprous oxide (Cu2O) NP
and acid-functionalised GO
composite

Cyclic voltammetry;
amperometry

8-
hydroxydeoxyguanosine
(8-OHdG)

Biological fluids (blood
serum and urine)

[389]

Amine-terminated MWCNTs–
rGO–polyaniline–AuNPs
modified screen-printed
carbon electrode

Cyclic voltammetry;
amperometry

Glucose Human blood serum
samples

[390]
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Table A.3: Biosensing (continued).

Material Probe Detection method Target Cell lines/Animal
models

Ref.

Single-chirality DNA–CNT
complex (CNTs
noncovalently functionalised
with specific ssDNA
oligonucleotides)

Lipid binding to the
ss(GT)6-(8,6) complex
reduces the water density
near the nanotube surface,
thereby lowering the effective
local solvent dielectric; the
lower dielectric environment
corresponds to a blue-shift of
the nanotube emission
wavelength

NIR hyperspectral
microscopy

Lumen of endolysosomal
organelles

Fibroblasts from a
Niemann–Pick type C
patient

[391]

Molybdenum NPs
self-supported functionalised
MWCNTs (MoNPs@f -
MWCNTs)-based core–shell
hybrid nanomaterial

Electrochemical DA Rat brain, human blood
serum, and dopamine
hydrochloride injection
samples

[392]

Magnetised CNT-based
lateral flow strip biosensor

Ab-modified magnetised
CNTs

Visual detection Rabbit IgG Whole blood [393]

Patterned nano-arrays of
carbon nanofibers forming a
nanosensor–cell construct

Electrochemical MB (testing access to
cytoplasm)

RAW 264.7 [394]

Ab-conjugated NDs Maltotriose-conjugated
polypropylenimine
dendrimers

TEM; fluorescence Nuclear pore complex HeLa [395]

Uniform Pd nanosheets DNA detection probes with
single-stranded sticky end for
ssDNA detection

Fluorescence Single-stranded
circulating tumour DNA
(ctDNA)

[396]

PDMS herringbone
structures made with a ZnO
nanorod template

Monoclonal Ab against the
hemagglutinin of H5 AIV

AuNP-based colorimetric
detection with a silver
enhancer

Hemagglutinin of H5
AIV

AIV [397]
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Table A.3: Biosensing (continued).

Material Probe Detection method Target Cell lines/Animal
models

Ref.

Gold-coated fiber modified
with MoS2 nanosheets
followed by
bio-functionalisation with
anti-BSA Abs

Anti-BSA Abs SPR BSA protein [326]

Ti3C2 MXene-based sensing
platform and
MWCNTs–PDA–AgNPs
signal enhancer

Monoclonal anti-CEA
antibody (Ab1) through its
Fc region

SPR CEA [398]

AuNP–PDMS composite film Direct assay and sandwich
assay

BSA [399]
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Table A.4: Photothermal therapy.

Material Probe Method Target Cell lines/Animal
models

Ref.

Positively charged
graphene/Fe3O4/PEI
nanocomposite

(Positive surface charge
increased cellular uptake)

808 nm laser irradiation MCF-7; U14; mice [400]

GO–MB nanocomposite Red LED irradiation MDA-MB-231 [401]

GO functionalised with an
amphiphilic polymer containing
[2-
(methacryloyloxy)ethyl]dimethyl-
(3-sulfopropyl)ammonium
hydroxide (SBMA) brushes and
loaded with IR780

808 nm NIR laser irradiation MCF-7; NHDF [402]

rGO–PEG–folic acid functional
nanomaterials

NIR laser irradiation MDA-MB-231;
HUVEC

[403]

PDA-functionalised rGO
nanosheets and bimetallic AuPd
NP composites

915 nm NIR laser irradiation MDA-MB-231; L929 [404]

rGO functionalised with
oxidised polyphenols

808 nm NIR laser irradiation A549; MDCK [405]

Cy7 dye-conjugated SWCNTs
bound with targeting IGF-1R
Abs

Targeting IGF-1R Ab 785 nm NIR laser irradiation BXPC-3; PANC-1;
ASPC-1; SW1990;
BALB/c male mice

[406]

TAT-chitosan functionalised
MWCNTs-based drug delivery
system for DOX

NIR irradiation DOX entered cell
nucleus; MWCNTs
remained in cytoplasm

Bel7402 [407]

Fluorescent-labelled fullerene
C60

Visible light irradiation Jurkat; L1210 [408]
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Table A.4: Photothermal therapy (continued).

Material Probe Method Target Cell lines/Animal
models

Ref.

Water soluble
malonodiserinolamide
[60]fullerene (C60-ser)
conjugated to the surface of
mesoporous silica NPs
(SiO2–C60)

Radiofrequency exposure (Smaller cells more
susceptible)

HUVEC; HMVEC;
primary dermal
fibroblast; L939; HeLa;
4T1

[409]

HA-modified SWCNTs, GO, and
fullerene

Visible light irradiation CD44 receptors MCF-7; female KM
mice

[410]

Gold nanocages Acoustic radiation; 780 nm
laser irradiation

MDA-MB-231 [411]

Core–shell multifunctional
nanomaterial-based all-in-one
nanoplatform composed of gold
nanobipyramids@PDA and
AuNCs

mucin1 (MUC1) aptamer;
ssDNA

808 nm NIR laser irradiation mucin1 (MUC1);
miRNA-21

MCF-7; HepG2; L02 [412]

MB photosensitiser-trapped
AuNCs

Dual light irradiation
(660 nm for MB, 808 nm for
gold)

CT26; female BALB/c
mice

[413]

Exosomes mildly functionalised
by integration with aptamers
and Au nanorods to assemble
Apt–Exos–AuNRs combination

aptamer 1 (comprising the
HepG2-recognition aptamer
(TLS11a) and
CD63-recognition aptamer)
and aptamer 2 (comprising
the nucleolin-recognition
aptamer (AS1411) and
CD63-recognition aptamer)

808 nm diode NIR laser
irradiation

HepG2; MCF-7; A549;
HCT116; L02

[414]

Gold–curcumin nanostructure 808 nm NIR laser irradiation;
650 nm laser irradiation

4T1 [415]
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Table A.4: Photothermal therapy (continued).

Material Probe Method Target Cell lines/Animal
models

Ref.

Au/MnO2 nanocomposite 808 nm NIR laser irradiation C540 (B16/F10); male
BALB/c mice

[416]

DMSA-modified iron
oxide-decorated MoS2
nanosheets with double
PEGylation

808 nm laser irradiation 4T1; RAW 264.7;
BALB/c mice

[417]

Ultrasmall single-layer MoS2
nanodots with different phases
(1T-MoS2 nanodots more
effective than 2H-MoS2
nanodots

1064 nm NIR-II laser
irradiation)

A549; HeLa [418]

TaO2 deposited onto
chitosan-coated MoS2 nanosheet

808 nm NIR laser irradiation MCF-7; HBL-1000 [419]

Monocomponent hollow Pt
nanoframe (“Pt spirals”), whose
superstructure is assembled with
three levels (3D frame, 2D
layered shells, and 1D
nanowires)

NIR-II laser irradiation HeLa; 4T1; mice
bearing U14 tumours

[420]

Silica nanostructures on Cu9S5
core–shell nanostructures

808 nm NIR laser irradiation EC109; TE8 [421]

Bismuth sulfide (Bi2S3)
nanorods with retractable zinc
protoporphyrin IX molecules

Zinc protoporphyrin IX 808 nm NIR laser irradiation oxygenase-1
(overexpressed in
cancer cells)

4T1 [422]
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Table A.5: Drug delivery.

Material Probe Drug Target Cell lines/Animal
models

Ref.

Nano GO MB Cell cytoplasm NIH-3T3 [423]

Polyacrylate-grafted GO “Albumin” surface
terminations

DOX SH-SY5Y [424]

PEG-modified GO and cobalt
NP composites

DOX L929; 3T3; MG63 [425]

GO–AgNP nanocomposites Cisplatin HeLa [426]

Drug-conjugated CQDs Metronidazole P. gingivalis [427]

GQDs-grafted
dextran/glycol-polymeric
hydrogel

Buprenorphine Stromal cells
(noteworthy
infiltration)

L929 (mouse fibroblast);
female SD rats with
chronic contraction
injury

[428]

GQDs Charge-reversal
APTES

DOX Nucleus MDA-MB-231 [429]

Nitrogen and sulfur co-doped
CDs

Mitoxantrone Cytoplasm HeLa [430]

ND-based composites DOX Cytoplasm mainly,
some cell nuclei

HepG2 [431]

DOX conjugated with NDs DOX Human glioblastoma [432]

Carbon nanofibers; CNTs Carboplatin; cisplatin DU-145; PC-3; EJ28 [433]

Smart freestanding CNTs with
hydrophilic core and chitosan
surface functionalisation

DOX MDA-MB-231 TXSA;
human foreskin
fibroblast

[434]
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Table A.5: Drug delivery (continued).

Material Probe Drug Target Cell lines/Animal
models

Ref.

PEG-coated CNTs ABT737 nanodrug Mitochondria (via
early endosomes)

A549; NHFB [435]

C60 fullerene Cisplatin Three principal
plasma membrane
transporters involved
in the efflux of
anticancer drugs
(P-gp, MRP-1, and
MRP-2)

Human isogenic
p54-null, Bax-null, and
wild-type HCT-116;
HeLa; human Jurkat
T-leukaemia; KB-3-1
and KBC-1; HL-60/adr;
HL-60/vinc; Lewis lung
carcinoma (LLC)
C57BL/6J male mice

[436]

C60 fullerene and HL1, HL2 HL1 (dimorfolido-N-
trichloroacetylphosphorylamide);
HL2 (dimorfolido-N-
benzoylphosphorylamide)

Human Jurkat
T-leukaemia; Molt-16;
CCRF-CEM

[437]

Glycine-tethered C60 fullerenes
conjugated with N-desmethyl
tamoxifen

Tamoxifen MCF-7 [438]

C60 fullerene DOX, cisplatin and landomycin
A

[439]

HSA attached to pore openings
of mesoporous carbon NPs
surface-modified with PEG

DOX Cytoplasm 4T1; Female BALB/c
mice

[440]

CB Acoustic waves Calcein Cell membrane DU145 [441]

Oxidised carbon nanohorns Meso-tetra(4-N-methylpyridyl)
free base (H2TMPyP4)
porphyrin; platinum
(PtTMPyP4) porphyrin

HeLa [442]
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Table A.5: Drug delivery (continued).

Material Probe Drug Target Cell lines/Animal
models

Ref.

Oxidised and unoxidised carbon
nanohorns; CNTs

Minocycline S. mutans; A.
actinomycetemcomitans

[443]

Non-covalently functionalised
carbon nano-onions
functionalised with a
HA–phospholipid conjugate
(CNO:f-HA–DMPE)

Cells overexpressing
CD44; digestive tract
of the zebrafish larvae

MDA-MB-231
(overexpressing CD44);
A2780 (control); adult
zebrafish

[444]

MoS2 nanosheets functionalised
with lipoic acid-modified PEG

DOX; SN-38; chlorine e6 Folic acid HeLa; KB [107]

Single-layer MoS2 nanosheets
decorated with chitosan

DOX KB; Panc-1; mouse
blood samples; male
BALB/c nude mice

[108]

TMDs and phosphocholine
liposomes hybrids

DOX; calcein HeLa [287]

Nano-radiogold-decorated
composite bioparticles

DOX Nucleus; lysosomes MCF-7; CRL-1790 [445]

Platinum(II) drug-loaded gold
nanoshells

DACHPt Cytoplasm;
endo/lysosomes

HCT116; HT29; LS174T [446]

Rodlike mesoporous silica
coated with gold nanoshells,
modified with ultrasmall
gadolinium-chelated
supramolecular photosensitisers

Ultrasmall gadolinium-chelated
supramolecular photosensitizers

4T1; human blood;
BALB/c and nude mice

[447]

Layered zinc hydroxide Naproxen HFFF2 [448]
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Table A.5: Drug delivery (continued).

Material Probe Drug Target Cell lines/Animal
models

Ref.

Hybrid inorganic–organic
nanocolloids electrostatically
conjugated with DOX

DOX Cytosol; nucleus Glioblastoma [449]

Nanofibrous silica
microparticles/polymer hybrid
aerogels

Camptothecin HeLa; SiHa; C33A;
HaCaT; L929 cells,
ATCC® CCL1; Vero,
ATCC® CCL81

[450]

Hydroxy boron nitride
nanosheets and Pd nanohybrids

DOX Cytoplasm; nucleus MCF-7; female BALB/c
mice

[451]

Silver sulfide QDs 14C metformin SK-Hep-1; HEK293T;
male C57/Bl6 mice

[452]

Copper oxide QDs-coated
HA/PLGA

Piperine hCMEC/D3; male
Wistar rats

[453]
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Table A.6: Stem cell control.

Material Probe Cell lines/Animal
models

Key conclusions Ref.

Graphene substrates with
controlled domain size

Human MSCs Upregulated neuronal differentiation of human
MSCs on small domain graphene compared to large
domain graphene

[454]

Pristine GO nanosheets Rat BMSCs Pristine GO nanosheets at a concentration of
0.1 µg/mL provide benefits to promote BMSCs
proliferation and osteogenesis under a
sequential-seeding method

[455]

GO; BMP-2–GO Rat bone marrow stem
cells and chondrocytes;
osteoarthritic rats

GO may be potentially used to control the release
of carrier materials; BMP-2–GO slowed the
progression of NF-κB-activated degenerative
changes in osteoarthritis

[456]

A nonviral vector based on
Fe3O4 NP-decorated GO
complexed with PEI
(GO–Fe3O4–PEI complexes)

Three individual episomal
plasmids
(pCXLEhOCT3/4-shp53,
pCXLE-hSK, and
pCXLE-hUL) encoding
pluripotent-related factors
of Oct3/4, shRNA against
p53, Sox2, Klf4, L-Myc,
and Lin28

Human PBMCs Combined effect of magnetic targeting and
photothermal stimulation promoted the transfection
efficiency of suspension cells; transfected cells show
positive expression of the pluripotency markers and
have potential to differentiate into mesoderm and
ectoderm cells; GO–Fe3O4–PEI complex provides a
safe, convenient, and efficient tool for
reprogramming PBMCs into partially induced PSCs
able to rapidly transdifferentiate into mesodermal
lineages without full reprogramming

[457]

Phase-engineered GO Human BMSCs Transformation results in clustering of oxygen
atoms on the GO surface, greatly improving its
ability toward substance adherence; results in
enhanced differentiation of human BMSCs toward
the osteogenic lineage

[458]

BMP-2 immobilised on
GO-incorporated PLGA/HA
biodegradable microcarriers

MC3T3-E1 The immobilisation of BMP-2 onto the
GO–PLGA/HA microcarriers resulted in
significantly greater osteogenic differentiation of
cells in vitro (bone tissue engineering application)

[459]
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Table A.6: Stem cell control (continued).

Material Probe Cell lines/Animal
models

Key conclusions Ref.

Laser-printed GO surfaces
with both a local
photothermal GO reduction
and the formation of
nano-wrinkles along precise
geometric patterns

Calvarial-derived MSCs
(cMSC); MRSA

The morphology of the designed surfaces guided
stem cell orientation and the reduction accelerated
differentiation; reduced sharp nano-wrinkles were
able to enhance the GO antibacterial activity
against MRSA

[460]

Micro-sized (1–10 µm) and
nano-sized (100–300 nm) GO
sheets (MGO; NGO)

Human AMSCs Human AMSCs grown on the MGO-coated
substrates show enhanced cell spreading and
proliferation rate when compared with those of
NGO counterpart, regardless of their densities

[461]

Bioactive GO-modified
titanium implant surface

Rat BMSCs Compared with the surface type in common use, the
GO-modified surface favoured cell adhesion and
spreading, and significantly improved cell
proliferation and osteogenic differentiation of rat
BMSCs in vitro; GO modification on titanium
implant surface has potential applications for
achieving rapid bone-implant integration through
the mediation of FAK/P38 signalling pathways

[462]

PCL, rGO/PCL, and
GO/PCL nanofibrous meshes
via electrospinning

NIH-3T3; human
osteosarcoma; MG-63

rGO/PCL fibrous meshes supported improved cell
adhesion, spreading and proliferation of fibroblasts
and osteoblast-like cell lines; rGO/PCL fibrous
meshes enhanced in vitro calcium deposition in the
extracellular matrix produced by osteoblast-like
cells, and human MSCs grown onto the same
substrates had an increased expression of the
osteogenic markers necessary for mineralisation
(bone tissue engineering application)

[463]
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Table A.6: Stem cell control (continued).

Material Probe Cell lines/Animal
models

Key conclusions Ref.

Nanostructured rGO
microfibers

RAW 264.7 rGO microfibers inhibit the proliferation of RAW
264.7 macrophages without affecting their viability
and cell cycle profiles; rGO microfibers able to
support the formation of a highly interconnected
neural culture composed of both neurons (map2+

cells) and glial cells (vimentin+ cells)

[464]

Gelatin from cold water fish
skin (FG) electrospun
microfibers loaded with NDs

Human AMSCs Increased viability and proliferation profile of
human AMSCs in contact with FG/NDs, correlated
with very low cytotoxic effects of the materials;
human AMSCs developed an elongated cytoskeleton,
suggesting that addition of NDs to FG materials
encouraged cell adhesion

[465]

Pervasion of beta-tricalcium
phosphate (βTCP) with ND
particles

Sheep BMSCs; (female
merino sheep bone tissue
engineering application)

βTCP carrying 4% ND resulted in enhanced
attachment of MSCs in vitro; ND in βTCP resulted
in a consistently steady bone formation when
compared to pure βTCP in guided-bone
regeneration after lateral augmentation of the
mandible in sheep

[466]

ND monolayers with varied
surface functionalisations

Human NSCs Confluent cellular attachment occurs on oxygen
terminated NDs (O–NDs), but not on hydrogen
terminated NDs (H–NDs)

[467]

Multivalent
polyanion-dispersed CNTs for
nanostructured fibrous
scaffolds

Induced PSCs Biocompatible platform for promoting the adhesion
and proliferation of induced PSCs; immunostaining
shows that the nanostructured fibrous scaffolds
induce higher neural differentiation efficiency
compared to the control substrates; the aligned
fibrous scaffolds can guide the orientation of
generated neurites

[468]
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Table A.6: Stem cell control (continued).

Material Probe Cell lines/Animal
models

Key conclusions Ref.

Co-engrafted CNTs and
human OBNSCs

Human OBNSCs Engrafted human OBNSCs–CNTs restored cognitive
deficits and neurodegenerative changes associated
with trimethyltin-induced rat neurodegeneration
model; the CNTs seemed to provide a support for
engrafted OBNSCs, increasing their tendency to
differentiate into neurons rather than into glia cells

[469]

MWCNTs; nano-HAP Human AMSCs Cell attachment strength and proliferation on the
MWCNTs were better than on the nano-HAP;
MWCNTs induced osteogenic differentiation of the
human AMSCs better than the nano-HAP;
MWCNTs could induce ectopic bone formation in
vivo while the nano-HAP could not

[470]

Chemically crosslinked CNTs
(of various diameters),
graphene nanoplatelets, and
graphene nanoribbons coatings

Primary human AMSCs The greatest autodeposition of calcium was
observed on graphene nanoribbon surfaces, while
MWCNTs of high diameter had the greatest
influence on stem cell fate

[471]

Hexagonally arranged gold
nanostructures of three
different dimensions on silicon

Human AMSCs Nanostructure size and distance affects the
spreading of human AMSCs; an increase of
nanostructure feature dimensions corresponded to a
decrease of cell size and to the expression of focal
adhesions and presence of the small GTPase RhoA

[472]

Metal ion (Zn, Ag and
Cu)-doped HAP nano-coated
surfaces

Human AMSCs Results demonstrate that the viability and
osteogenic differentiation of the human AMSCs and
cell adhesion capability are higher on nanocoated
surfaces that include Zn, Ag and/or Cu metal ions
than commercial HAP

[473]

AgNPs incorporated VEGF Human MSCs AgNPs with VEGF molecules promoted the cell
adhesion and proliferation of human MSCs; AgNPs
incorporated VEGF material is highly favourable to
fracture healing and blood vessel repair

[474]
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Table A.6: Stem cell control (continued).

Material Probe Cell lines/Animal
models

Key conclusions Ref.

Hydrogenated black TiO2
(H-TiO2) coating with
hierarchical
micro/nano-topographies

Rat BMSCs The fabricated H-TiO2 coating possessed excellent
and controllable photothermal effect in inhibiting
tumour growth under 808 nm NIR laser irradiation
in vitro and in vivo; the hierarchical hybrid
micro/nanostructured surface and Ti-OH groups
improved the adhesion, proliferation, differentiation
and osteogenic gene expressions of rat BMSCs

[475]

Nanopatterned Ti surfaces (by
electrochemical nanopattern
formation, ENF)

Human MSCs Human MSCs on ENF surfaces exhibit increased
proliferation and enhanced osteogenic differentiation
compared to the ordered TiO2 nanotubular and
compact TiO2 surfaces

[476]

Phosphorylated Ti coating
(TiP-Ti) with a micro/nano
hierarchically structured
topography on commercially
pure Ti implants

Rat BMSCs; female
Sprague Dawley rats

The improved osteointegration mainly benefited
from the better spread and adhesion of rat BMSCs
on the micro/nano hierarchically structured TiP-Ti
surfaces compared to HAP coated Ti (the positive
control) and untreated Ti (the negative control)

[477]

Polyether ether ketone
(PEEK); Ti6Al4V (smooth Ti);
macro-micro rough Ti6Al4V
(Endoskeleton®);
macro-micro-nano rough
Ti6Al4V (nanoLOCK®)

Human MSCs Incorporation of a hierarchical macro-micro-nano
roughness on titanium produces a stellate
morphology typical of mature
osteoblasts/osteocytes, rapid and random migration,
and improved osteogenic differentiation in seeded
human MSCs

[478]
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Table A.7: Toxicity studies.

Material Tests Target/Cell lines
/Animal models

Key conclusions Ref.

Fabricated nano GO (NGO)
sheets

Extrinsic and synchronous
fluorescence spectroscopy; far
circular dichroism spectroscopy;
molecular docking investigation;
cellular assays (trypan blue
exclusion, cellular uptake, ROS,
cell cycle, and apoptosis);
molecular assay

Secondary and
quaternary structural
alterations of human
Hb; human
lymphocyte cells

NGOs can unfold the quaternary structure of Hb
in the vicinity of Tyr residues; α-helicity of Hb
experienced substantial alteration upon
interaction with increasing concentrations of
NGOs; NGOs interacted with polar residues of
Hb; NGOs lead to ROS formation, cell cycle
arrest, and apoptosis through the BAX and
BCL2 pathway

[479]

AuNPs-decorated rGO
nanocomposite

MTT assay; DCF assay;
bacterial toxicological
evaluation; DIZ and AI
evaluation; MIC and MBC
determination; GrK and DeK
evaluation

A549; HCT116 The synthesised nanocomposite showed
significant anti-cancer activity towards A549 cell
line and Gram-negative bacterial strain E. coli
compared to the rest

[480]

rGO; O. sanctum rGO (ORGO) Test for phenols; test for
flavonoids; DPPH assay; IC50
value determination; haemolysis
assay; CCK-8

Hb; Balb 3T3 GO showed higher haemolytic activity of 6.9%
and higher inhibition of growth of 3T3 cells at
all tested concentrations than ORGO

[481]

SWCNT; MWCNTs; ultrafine
CB; crocidolite asbestos

Primary human small
airway epithelial cells
immortalised with
hTERT (SAECs)

Chronic exposure to carbon nanomaterials and
asbestos caused substantial DNA damage and
p53 dysregulation in human SAECs; exposed
lung cells exhibited neoplastic and cancer stem
cell (CSC)-like properties, as indicated by
anchorage-independent colony formation,
spheroid formation, anoikis resistance, and CSC
marker expression; high aspect ratio materials
including SWCNT, MWCNT and asbestos
exhibited strong neoplastic and CSC-like
properties as compared to low aspect ratio
ultrafine CB particles

[482]
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Table A.7: Toxicity studies (continued).

Material Tests Target/Cell lines
/Animal models

Key conclusions Ref.

Unfunctionalised
MWCNTs–ultrahigh molecular
weight polyethylene
(MWCNT–UHMWPE)
nanocomposites

Cellular assays (Trypan blue,
calcein AM, cell proliferation,
cell adhesion)

HFW Good cell viability on the surface of
MWCNT–UHMWPE composites even after 72 h;
nanocomposites showed better cell attachment
for fibroblasts than pristine UHMWPE; overall,
the results showed that MWCNT–UHMWPE
composites displayed good cellular growth and
biocompatibility indicating another way CNTs
can be nontoxic

[483]

Raw and functionalised
MWCNTs (RMWCNTs;
FMWCNTs)

Cytotoxicity assays (MTT,
NRU); cellular morphology
(phase contrast microscope);
intracellular ROS generation
(DCFH-DA); MMP
(Rhodamine-123 fluorescent dye)

MCF-7 Concentration-dependent decrease in cell
viability of MCF-7 cells; RMWCNTs- and
FMWCNTs-exposed cells found to alter the
normal morphology of MCF-7 cells; cells showed
significant induction in ROS generation and
reduction in MMP level

[484]

Pristine and functionalised
MWCNTs

Cell viability (PI); intracellular
ROS (DCF-DA, confocal
microscopy); MMP (Rhodamine
123); DNA damage (comet
assay); phlogistic effect (gene
expression analysis and ELISA
tests)

Differentiated
SH-SY5Y

The neurotoxic and neuroinflammation
properties of the examined MWCNTs assessed in
vitro highlighted the potential pathogenic
mechanisms triggered by these engineered NPs;
impairment of several molecular pathways could
contribute to the onset and progression of
neurodegenerative diseases

[485]

Carboxylated SWCNTs and
MWCNTs (SWCNT-COOH and
MWCNT-COOH)

Cell viability (MTT test); cell
motility (evaluated by WHO
guidelines); ROS production;
NO production

Human spermatozoa Neither MWCNT-COOH nor SWCNT-COOH
exerted negative effect on viability, but motility
was significantly dropped in a dose-dependent
manner; no significant effect of the type, dose
and exposure time of the CNT-COOH on NO
production; exposure of sperm cells to both
examined types of CNTs at concentrations as
low as 0.1 µg/ml caused a significant increase in
ROS levels

[486]
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Table A.7: Toxicity studies (continued).

Material Tests Target/Cell lines
/Animal models

Key conclusions Ref.

Eight commercially available
CNTs

WST-1 measurement; LDH
detection; ROS detection;
inflammatory cytokine detection

RAW 264.7 Cellular uptake of CNTs by RAW 264.7
macrophages depends on their sizes, specifically
on the widths of their bundles in dispersion,
regardless of type or manufacturer; uptake of
CNTs increased linearly with dynamic size, and
cytotoxicity increased with uptake

[487]

SWCNTs with physicochemical
alterations in structure resulting
from ball-milling

Evaluation of protein
components (proteomics)

Normal and
cholesterol-rich mouse
serum

Increased ball-milling time of SWCNTs resulted
in enhanced structural defects; following
incubation in normal mouse serum, differences in
the biomolecular content of the biocorona due to
the ball-milling process were identified;
incubation in cholesterol-rich mouse serum
resulted in the formation of unique biocoronas
compared to SWCNTs incubated in normal
serum

[488]

Pristine C60 fullerene aqueous
solution (C60FAS); 5-FU and
pyrrole derivative MI-1
cytostatic drugs

Colorectal cancer The number of tumours and total lesion area
decreased significantly under the action of
C60FAS and MI-1; because these drugs have
different mechanisms of action, their
simultaneous administration can potentially
increase the effectiveness and significantly reduce
the side effects of antitumour therapy

[489]

CB particles with primary
diameter 56 nm (CB56) and
95 nm (CB95)

Cytotoxicity (trypan blue);
8-nitroG formation
(immunocytochemistry); ROS
generation (flow cytometry); NO
release (Griess method); cellular
uptake (DMEM treatment)

RAW 264.7; A549 Both types of CB induced 8-nitroG formation,
mainly in the nucleus of RAW 264.7 and A549
cells; CB95 tended to induce more 8-nitroG
formation than CB56; CB95 generated larger
amounts of ROS than CB56 in RAW 264.7 cells;
CB95 produced significantly larger amount of
NO than CB56; CB95 was more efficiently
internalised into the cells than CB56

[490]
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Table A.7: Toxicity studies (continued).

Material Tests Target/Cell lines
/Animal models

Key conclusions Ref.

MoS2 functionalised with
thiobarbituric acid (TBA)

Cell viability assays (MTT;
WST-8)

A549 MoS2–TBA is less toxic to cells compared to
MoS2

[491]

Boron nitride nanotubes
(BNNTs)

Cytotoxicity (WST-8, MTS,
MTT assays); cardiomyocyte
beating behaviour (novel
cardiomyocyte AFM model)

NB4; HepG2; U87 Correlation between tube length and cytotoxicity
with longer tubes having higher cytotoxicity;
BNNTs exhibit concentration and cell-line
dependent cytotoxic effects

[492]

Titanium dioxide NPs modified
with noble metals (Au, Ag, Pd,
Ag2O, and PdO)

Cell viability (MTT; flow
cytometry, Annexin V-FITC)

Caco-2; BJ; L929 Irrespective of cell line and assay used, NPs of
unmodified titanium dioxide as well as those
with addition of gold and palladium have a slight
impact on cell viability at the investigated
concentration range (10–200 µg/mL); NPs with
addition of silver (Ag and Ag2O) were found to
have significantly higher toxic effect, the level of
which varied depending on the cell line and assay
used

[493]
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Table A.8: Theranostics.

Material Probe Detection method Therapy Target Cell lines/Animal
models

Ref.

Highly fluorinated GO
(FGO) as a carrier for
linoleic acid–curcumin
conjugate
(FGO–Lino–CUR)

T2-weighted MRI Chemotherapy
(linoleic acid–curcumin
conjugate as an
anticancer drug)

MCF-7; MCF10A;
4T1-induced
BALB/c mice

[494]

Cyclodextrin-
functionalised GO bound
to carbon-coated iron
NPs (GO-CD/Fe@C)

MRI Chemotherapy (DOX) Nuclei (mainly);
lysosomes, mitochondria
(some amount)

MDA-MB-231 [495]

Fluorescent CQDs Fluorescence imaging PDT; chemotherapy
(rose bengal)

Mitochondria MCF-7; HeLa;
HepG2; AT II; L02;
RAW 264.7

[496]

Protein (urokinase-type
plasminogen
activator)–CD
nanohybrids

Fluorescence imaging Thrombolysis ability Human blood clots;
male BALB/c mice
subjected to 3 h
transient middle
cerebral artery
occlusion (tMCAO)
or sham-operated

[497]

PLGA–CDs hybrid Fluorescence imaging Chemotherapy
(irinotecan); PTT
(810 nm laser
irradiation)

MDA-MB-231 [498]

Pristine GQDs; GQDs
irradiated with gamma
rays; GQDs doped with N
and N,S atoms

GQDs (GQDs
functionalised with
urea better for
imaging than
pristine GQDs)

Fluorescence imaging PDT (GQDs-U) HeLa [499]
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Table A.8: Theranostics (continued).

Material Probe Detection method Therapy Target Cell lines/Animal
models

Ref.

Phycocyanin-
functionalised
single-walled carbon
nanohorns (PC@SWNHs)
hybrid

Phycocyanin PAI; thermal imaging PDT (SWNHs); PTT
(SWNHs)

4T1; MDA-MB-231;
mice

[500]

2D BP nanosheets
functionalised with
positively charged
PEG–NH2

NIR (Cy7) Chemotherapy (DOX) Lysosomes HeLa [501]

Hollow carbon
nanospheres

PAI; NIR PTT (NIR-triggered) HeLa; HepG2;
MCF-7; male nude
BALB/c mice

[502]

C60 fullerene-based
tumour-targeted PET
imaging probe

64Cu; cRGD Fluorescence imaging;
PET

Radiotherapy;
radiopharmaceuticals

Integrin ανβ3 U87 MG (integrin
ανβ3 positive);
MCF-7 (integrin
ανβ3 negative)

[503]

GO–GQDs hybrid Fluorescence imaging PTT (NIR-triggered) MDA-MB-231; L929 [504]

PEI- and PEG-modified
carbon nano-onion
clusters (CNOCs)

Optical (uptake so
high that fluorescence
labelling is not
required); dual-modal
PTI/PAI

PTT AT II; A549; mice [505]

AuNPs-functionalised
hollow
P(MAA-co-MBA-co-AA)
nanocontainers

Fluorescence imaging Chemotherapy (DOX) MCF-7; HEK-293 [506]
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Table A.8: Theranostics (continued).

Material Probe Detection method Therapy Target Cell lines/Animal
models

Ref.

Structured NP
(GNR@HPMO@PVMSN)
composed of a gold
nanorod (GNR) core,
hollow periodic
mesoporous organosilica
(HPMO) shell and
PDA-doped virus-like
mesoporous silica NP
(PVMSN) outer shell

PAI; infrared thermal
imaging

PTT (808 nm NIR
laser irradiation);
chemotherapy (DOX)

GNR@HPMO@PVMSN
is mainly distributed in
the liver, spleen and
lung

7721; H22
tumour-bearing
female BALB/c nude
mice

[507]

Fe3O4–Au
nano-heterostructures

MRI Magnetic fluid
hyperthermia

Huh7; PLC/PRF/5-
Alexander

[508]

Folate-modified
vincristine-loaded
PDA-coated Fe3O4
superparticles

MRI Chemotherapy
(vincristine); PTT
(808 nm laser
irradiation)

HaCat; T24; T24
tumour-bearing
BALB/c nude mice

[509]

PDA-modified Fe3O4
nanocomposites

T2-weighted MRI PTT (808 nm NIR
laser irradiation)

4T1; 4T1
tumour-bearing
BALB/c mice

[510]

Fe3O4@PDA@BSA–
Bi2S3
composite

MRI; CT ROS-induced
chemodynamic
therapy (CDT); PTT
(808 nm NIR laser
irradiation)

Bi ions largely
accumulated in the liver,
spleen, and kidneys on
the first day, but
evidence of excretion
over 14 days

L929; HT29
tumour-bearing
BALB/c mice

[511]

HA-modified porous
carbon-coated Fe3O4 NPs

HA MRI PTT; chemotherapy
(DOX)

CD44 receptors HeLa; HUVEC; nude
mice

[512]
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Table A.8: Theranostics (continued).

Material Probe Detection method Therapy Target Cell lines/Animal
models

Ref.

Boron nitride nanosheets
functionalised with tannic
acid–Fe3+ coordination
complex (TA–Fe/BNNS)

T1-weighted MRI PTT (808 nm NIR
laser irradiation)

KB tumour cells;
5-wk-old female
BALB/c nude mice

[513]

2D PEGylated
antimonene nanosheets

Multi-modal
fluorescence
imaging/PAI/PTI

PTT; chemotherapy
(DOX)

MCF-7 [514]

Gd3+-doped monolayered-
double-hydroxide
(MLDH) nanosheets

Dual-modal NIR
fluorescence
imaging/MRI

Chemotherapy
(coloading of DOX and
indocyanine green)

HepG2; HepG2
tumour-bearing mice

[515]

Ultrathin nanosheets of
CoFe-selenide with a
finely controlled structure
followed by surface
modification with PEG

T2 MRI PTT (808 nm NIR
laser irradiation)

HeLa; HeLa
tumour-bearing mice

[516]

Aggregation-induced
emission (AIE)
photosensitisers and 2D
BP nanosheet compound

Fluorescence imaging
(NIR region); PTI
(808 nm NIR laser
irradiation)

PTT (808 nm NIR
laser irradiation);
PDT (ROS generation
under 808 nm laser
irradiation)

4T1; 4T1
skin-tumour-bearing
male BALB/c nude
mice

[517]

Glucose oxidase-armed
manganese dioxide
nanosheets (MNS–GOx)

MRI; PAI PTT (808 nm NIR
laser irradiation);
self-oxygenation

A375
tumour-bearing mice

[518]
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B AFM images and statistics histograms from

Chapter 3

In Chapter 3, average values of length (L), width (W ), LW (length × width),

and number of layers (N) for each material were needed to normalise the data

for nanosheet size. To obtain these average values, the sheetwise data was binned

to allow analysis of the distributions. Figures B.1–B.5 show the histograms of L,

W , LW , and N obtained from AFM statistics for each material. The insets show

example AFM images of a nanosheet for each material; Figure B.6 shows enlarged

versions of these AFM images.

Figure B.1: Histograms of L-gra (i) length; (ii) width; (iii) LW ; (iv) N .
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Figure B.2: Histograms of S-gra (i) length; (ii) width; (iii) LW ; (iv) N .

Figure B.3: Histograms of BN (i) length; (ii) width; (iii) LW ; (iv) N .
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Figure B.4: Histograms of MoS2 (i) length; (ii) width; (iii) LW ; (iv) N .

Figure B.5: Histograms of WS2 (i) length; (ii) width; (iii) LW ; (iv) N .
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Figure B.6: AFM images of (i) L-gra; (ii) S-gra; (iii) BN; (iv) MoS2; (v) WS2.
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C Derivation of interparticle distance variable

from Chapter 3

The system on the air–water interface can be approximated as shown in Figure C.1.

It is assumed that the film comprises uniformly distributed square nanosheets, and

that the trough area, A, is also square.

s

s

d

Figure C.1: Top-down diagram of a Langmuir trough with a uniformly distributed
film on the air–water interface.

The centre-to-centre interparticle distance, s, and the mean nanosheet diameter,

d, are related such that
d2

s2 = Af

A
,

where Af is the total film area. This is apparent when considering the square formed

by s2 (shown by the dashed blue line in Figure C.1). As the total film area per

trough area gives the surface coverage of the film, Φ, this ratio can be rewritten as

d2

s2 = Φ.

Since the area of a nanosheet has been approximated as 〈LW 〉, the diameter can

be taken as
√
〈LW 〉. Substituting in this value and rearranging, the interparticle

distance can be written as

s =
√
〈LW 〉

Φ .
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D Additional Raman spectroscopy and mapping

for Chapter 4

By mapping the peak intensity of the 405 cm−1 A1g mode, and using Raman

volumetric mapping, it is possible to determine detailed spatial information for the

nanosheet within the cell. Combining multiple overlapping steps gives a z-resolution

of < 1 µm, and therefore it is possible to confirm the difference between material

internalised within the cell and that above or below the cell. This is shown in

Figures 4.5d, 4.5e & D.1.

Figure D.1: Raman volume map of the A1g Raman mode for cells after 7 days growth
on a MoS2 substrate.
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2D Raman mapping confirms our observations from optical microscopy, show-

ing that the nanosheets are largely internalised in the region around the nucleus

(the ER), with some material identified in the cytoplasm. This is seen in Fig-

ures 4.5a, 4.5g & D.2.

Figure D.2: 2D Raman map of the A1g mode showing MoS2 localised around the
nucleus.

As discussed in the paper, Raman spectroscopy was used to ascertain whether

the internalisation process modified the MoS2. The results shown in Figure D.3 show

that there is little to no change to the material.

Figure D.3: Raman spectrum from MoS2 internalised in cells after 7 days growth on
a MoS2 substrate.
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