
   

 

A University of Sussex PhD thesis 

Available online via Sussex Research Online: 

http://sro.sussex.ac.uk/   

This thesis is protected by copyright which belongs to the author.   

This thesis cannot be reproduced or quoted extensively from without first 
obtaining permission in writing from the Author   

The content must not be changed in any way or sold commercially in any 
format or medium without the formal permission of the Author   

When referring to this work, full bibliographic details including the 
author, title, awarding institution and date of the thesis must be given 

Please visit Sussex Research Online for more information and further details   



1 
 

 

 

 

Functional populations in the pyramidal cell layer of hippocampal area CA1 

 

By: 

 

Dorieke Mathilde Grijseels 

 

 

 

A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of 

Philosophy 

 

 

University of Sussex 

Submission Date: April 2021 



2 
 

Statement 

 

I hereby declare that this thesis has not been and will not be, submitted in whole or in 

part to another University for the award of any other degree. 

 

Signature: 

  



3 
 

Statement of contribution 

Chapter 2 of this thesis has been submitted for publication, and has been released on bioRxiv 

as a preprint (DOI: https://doi.org/10.1101/2021.02.26.433025). The candidate contributed 

significantly to formulation of ideas, performed all experiments and analyses and wrote the 

manuscript. Dr Kira Shaw performed surgery on 2 of the experimental animals, and 

contributed to the manuscript. Dr Caswell Barry was involved in formulating the ideas, 

contributed to the manuscript, and supervising the candidate. Dr Catherine Hall was involved 

in formulating the ideas, and contributed significantly to the manuscript, and was the main 

supervisor of the candidate.  

For Chapter 3, the candidate contributed significantly to formulation of ideas, performed all 

hippocampal experiments, executed all analyses and wrote the manuscript. Dr Kira Shaw 

performed surgery on 2 of the experimental hippocampal animals, and preprocessed the data 

for all visual cortex recordings. Dr Caswell Barry was involved in formulating the ideas and 

supervising the candidate. Dr Catherine Hall was involved in formulating the ideas and was the 

main supervisor of the candidate.  

For Chapter 4, the candidate contributed significantly to formulation of ideas, performed all 

hippocampal experiments, executed all analyses and wrote the manuscript. Dr Kira Shaw 

performed surgery on 2 of the experimental hippocampal animals, and preprocessed the data 

for all visual cortex recordings. Dr Katie Boyd performed all visual cortex experiments. Dr 

Caswell Barry was involved in formulating the ideas and supervising the candidate. Dr 

Catherine Hall was involved in formulating the ideas and was the main supervisor of the 

candidate.  

 

  

https://doi.org/10.1101/2021.02.26.433025


4 
 

Acknowledgements 

This thesis would not have been possible without the help and support of several people. 

Thank you Catherine for all your help and guidance, always staying enthusiastic about the work 

and trying to help me through even when I was being querulous, and of course sharing your 

cats in trying times. To my (unofficial) second supervisor Caswell, thank you for all your help 

and guidance with the projects, always being willing to make time for me, and sharing your 

wisdom on the enigma that is the hippocampus.  

I could not have finished this thesis without the lovely Hall lab. Orla, I don’t know what I would 

have done without you. You were always there with helpful advice, trying to make me see the 

good side of things and helping me work through whatever my latest crisis was. It was an 

absolute pleasure to do this PhD alongside you, I couldn’t have asked for a better friend. Kira, 

thank you for all your help and advice throughout this process. I will try to honour your motto 

and pay it forward as much as I can. You are also the best running buddy, and always up for 

talking things through when I got stuck. Katie, you have taught me more than I ever thought 

possible. Thank you for always being up for a rant, sharing your extensive wisdom with me, or 

discussing the latest running shoe controversy. Devin, throughout my PhD I have been 

continually inspired by your view on life, Barcelona was without a doubt one of the highlights 

of my PhD.  Laura, thank you for all your help with the little creatures, and always being up for 

cat talk. Silvia, despite this last year having been hard, your drive to power through has 

inspired and amazed me.  

I also owe the world to Katy, thank you for inspiring me in many of my activities outside of the 

PhD, for being my partner in crime in organising all the LGBTQ+ events over the years, and for 

always being there to help and advice. 



5 
 

To Sussex Neuroscience, thank you for giving me this opportunity and for all your support 

throughout the years. Especially Ruth, thank you for everything you have done! Also, thanks to 

all the SN 4-year students for the community you have created and all your support and 

advice, especially Rich, thank you for being a fount of wisdom and the best climbing buddy.  

Lastly, I want to thank the LGBTQ+ in STEM community who have inspired me and helped me 

grow these last years. I hope I can one day inspire future scientists the way you have inspired 

me. This thesis is dedicated to you. 

  



6 
 

 

Abbreviations 

1D One-dimensional  

CA Cornu Ammonis 

DG Dentate gyrus 

EC Entorhinal cortex 

FN False negative 

FP False positive 

GRI Goal representation index 

lEC Lateral entorhinal cortex 

LIA Large irregular activity 

mEC Medial entorhinal cortex 

MI Mutual information 

OLM Oriens lacunosum moleculare  

ORLA Odd running-active low-frequency aperiodic cells 

PC Place cell 

PYR Pyramidal cells 

PV Parvalbumin expressing interneurons 

REM  Rapid eye movement 

ROI  Region of interest 

SIA Small irregular activity 

SLO Stationary low-frequency oscillatory cells 

SSE Sum of squared errors 

SST Somatostatin expressing interneurons 

SWR Sharp wave-ripples 

TN True negative 

TP True positive 

VR Virtual reality 
 

 



7 
 

 

Table of Contents 

Acknowledgements ....................................................................................................................... 4 

Abbreviations ................................................................................................................................ 6 

Abstract ....................................................................................................................................... 11 

1 Introduction ........................................................................................................................ 13 

1.1 Spatial representation in the hippocampus ................................................................ 17 

1.1.1 Place cells ............................................................................................................ 17 

1.1.2 Beyond egocentric location ................................................................................ 20 

1.1.3 Beyond the hippocampus ................................................................................... 21 

1.2 Network activity in the hippocampus ......................................................................... 22 

1.2.1 Theta oscillations ................................................................................................ 22 

1.2.2 Gamma oscillations ............................................................................................. 25 

1.2.3 Irregular activity and ripples ............................................................................... 26 

1.3 Virtual reality experiments ......................................................................................... 27 

1.3.1 Sensory modalities in virtual environments ....................................................... 27 

1.3.2 Place cell activity in virtual environments .......................................................... 30 

1.4 Aims............................................................................................................................. 32 

2 Choice of method of place cell classification determines the population of cells identified
 ……………………………………………………………………………………………………………………………………… 36 

2.1 Abstract ....................................................................................................................... 37 

2.2 Author Summary ......................................................................................................... 38 

2.3 Introduction ................................................................................................................ 39 

2.4 Results ......................................................................................................................... 42 

2.4.1 Place cell detection by the Combination and Stability methods is sensitive to the 
properties of place fields and the number of times mice traverse the environment ........ 42 

2.4.2 Variability and reliability decrease detection of model place cells, particularly by 
the Combination method .................................................................................................... 48 

2.4.3 The Peak method detects the most place cells in real datasets ......................... 51 

2.4.4 Different populations of real CA1 pyramidal cells are identified as place cells by 
the different methods ......................................................................................................... 60 

2.4.5 Identified place cell populations differ on key characteristics ........................... 61 



8 
 

2.4.6 Optimisation of the Combination method.......................................................... 65 

2.5 Discussion .................................................................................................................... 68 

2.5.1 What is a place cell? ............................................................................................ 68 

2.6 Materials and Methods ............................................................................................... 69 

2.6.1 Ethics Statement ................................................................................................. 74 

2.6.2 Animals ................................................................................................................ 74 

2.6.3 Hippocampal cranial window surgery ................................................................. 75 

2.6.4 Two-photon imaging ........................................................................................... 76 

2.6.5 Image Analysis ..................................................................................................... 77 

2.6.6 Model data generation ....................................................................................... 78 

2.6.7 Manipulation of place cells ................................................................................. 79 

2.6.8 Performance measures ....................................................................................... 81 

2.6.9 Place cell detection methods .............................................................................. 81 

2.6.10 Statistical analysis ................................................... Error! Bookmark not defined. 

2.6.11 Data and software availability ............................................................................ 81 

2.7 Acknowledgements ..................................................................................................... 86 

2.8 Supporting information .............................................................................................. 87 

3 The effect of object location novelty and cue abundance on populations in hippocampal 
area CA1 ...................................................................................................................................... 99 

3.1 Introduction ................................................................................................................ 99 

3.2 Results ....................................................................................................................... 102 

3.2.1 Mice learn to perform a novel spatial task in virtual reality ............................. 102 

3.2.2 Animals do not show behavioural preference for object locations .................. 106 

3.2.3 Place cells have increased information about location in novel conditions ..... 110 

3.2.4 Object-vector cells place fields follows the location of the cue object ............ 114 

3.2.5 Place cells do not remap between conditions with the same novelty condition
 119 

3.2.6 Place cells contribute less to decoding of location in novel conditions ........... 124 

3.2.7 Hippocampal cells encode the animal’s location relative to the cue object .... 129 

3.3 Discussion .................................................................................................................. 133 

3.4 Materials and methods ............................................................................................. 137 

3.4.1 Animals .............................................................................................................. 137 

3.4.2 Hippocampal cranial window surgery ............................................................... 137 



9 
 

3.4.3 Two-photon imaging ......................................................................................... 138 

3.4.4 Behavioural task ................................................................................................ 139 

3.4.5 Image analysis ................................................................................................... 141 

3.4.6 Celltype analysis ................................................................................................ 141 

3.4.7 Overlap analysis ................................................................................................ 143 

3.4.8 Bayesian decoder .............................................................................................. 143 

3.5 Supporting information ............................................................................................ 146 

4 Novel functional cell types with high power in at low frequencies in hippocampal area CA1
 186 

4.1 Introduction .............................................................................................................. 186 

4.2 Results ....................................................................................................................... 188 

4.2.1 A novel type of hippocampal pyramidal cell is identified using regularity of firing 
and rest activity ................................................................................................................. 188 

4.2.2 Novel functional cell type has high power at low frequencies ......................... 191 

4.2.3 Novel functional cell types are differentially modulated by locomotion ......... 195 

4.2.4 Periodic and aperiodic components differ depending on cell type and 
locomotion ........................................................................................................................ 200 

4.2.5 Synchrony of functional cell types .................................................................... 204 

4.2.6 SLO cells show location encoding during stationary periods, but not locomotion
 208 

4.2.7 Visual cortex also contains excitatory cells with SLO characteristics ............... 211 

4.3 Discussion .................................................................................................................. 214 

4.3.1 Potential upstream sites innervating SLO cells ................................................. 216 

4.4 Materials and Methods ............................................................................................. 218 

4.4.1 Animals .............................................................................................................. 218 

4.4.2 Hippocampal cranial window surgery ............................................................... 218 

4.4.3 Two-photon imaging ......................................................................................... 220 

4.4.4 Image Analysis ................................................................................................... 221 

4.4.5 Frequency analysis ............................................................................................ 222 

4.4.6 Cell type identification ...................................................................................... 222 

4.4.7 Analyses ............................................................................................................ 224 

4.5 Supporting information ............................................................................................ 226 

5 Discussion .......................................................................................................................... 232 



10 
 

5.1 Aim 1: To understand how the method by which place cells were defined, affected 
what cells were included in the population. ......................................................................... 232 

5.2 Aim 2: To understand how cue abundance and displacing a cue object, in addition to 
training on a behavioural task, affects coding of space by hippocampal populations. ........ 234 

5.3 Aim 3: To characterize the activity of two novel types of functional cells in CA1 and 
their relationship to environmental and behavioural factors .............................................. 237 

5.4 Final Conclusions ....................................................................................................... 239 

6 References ........................................................................................................................ 240 

 

  



11 
 

UNIVERSITY OF SUSSEX 

DORIEKE MATHILDE GRIJSEELS 

Submitted for the degree of 

Doctor of Philosophy 

Abstract 

The hippocampus is an area of the brain that plays a crucial role in spatial navigation. Place 

cells are hippocampal pyramidal cells which hold a representation of self-location by firing 

selective in a single location: the place field. Pyramidal cells in CA1, including place cells, 

respond differently to a variety of external factors, such as cues or rewards in the 

environment, and internal factors, such a brain state. As such, heterogenous functional 

populations are present in CA1 both in addition to, as well as within the place cell population. I 

studied how pyramidal cells in CA1 form different functional populations in response to the 

manipulation of internal and external factors. 

A combination of modelling approaches and mouse experiments was used to investigate this. 

Models of place cell populations were created to test the performance of place cell detection 

methods. Mice with a genetically encoded calcium indicator were trained to perform an object 

location novelty experiment in a virtual reality environment while their hippocampus was 

imaged using two-photon microscopy.  

Our modelled place cells revealed one specific method to be optimal for detecting place cells. 

Using this method, I found that object location novelty had a stronger effect on place cell 

coding than cue abundance of an environment. In addition to the place cell populations, I 

identified two novel functional populations, the Stationary Low-frequency Oscillatory (SLO) 
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and Odd Running-active Low-frequency Aperiodic (ORLA) cells, within CA1 that are 

characterized by periodic and aperiodic activity respectively.  

These results first contribute to an increased consensus on place cell detection, and by 

extension place cell identity, used within the field. I also show the impact of both external 

factors, in the place cell population, and internal factors, in the SLO and ORLA cells, giving us 

an increased understanding of factors that differentially drive hippocampal activity.   
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1 Introduction 

The hippocampal formation is critically involved in spatial memory and navigation. It is located 

in the temporal lobe and is made up of three parts [1]: the hippocampus proper (usually simply 

referred to as hippocampus); pre- and parasubiculum; and the entorhinal cortex. The 

hippocampus consists of three cornu Ammonis (CA) subfields (CA1, CA2 and CA3), dentate 

gyrus (DG), and subiculum, with each subregion performing distinct functions. The entorhinal 

cortex is divided into medial (mEC) and lateral (lEC) parts, each with three distinct cell layers 

(II, III and IV/V) which differently project onto the different hippocampal regions.  

All parts within the hippocampal formation are closely connected through various connections, 

which allow for information to be distributed throughout the formation (Fig 1.1). The main 

inputs of the hippocampus come from the entorhinal cortex via the perforant pathway. The 

CA2 and CA3 subfields, as well as DG, mainly receive inputs from layer II, while CA1 and 

subiculum are innervated by neurons from layer III [2]. Within the hippocampus itself DG 

projects to CA3 through mossy fibres, and CA3 innervates CA1 through the Schaffer collaterals. 

CA1 then projects back onto the deep layers (IV/V) of EC as well as the subiculum. The EC 

receives inputs from the postrhinal and perirhinal cortices, and connects back on to these 

neocortical areas [3]. The pre- and parasubiculum also have recurrent connections with EC, 

and additionally connect to DG. As subiculum connects back onto pre- and parasubiculum, this 

forms a complete loop. Pre- and parasubiculum receive inputs from a variety of subcortical 

areas, including thalamus and septum. Although this description includes the main 

connections, it is in some ways a simplification, and many more connections have been found 

[3]. Together they facilitate the flow and integration of information needed for the memory 

and navigation function of the hippocampal formation. 

The hippocampus shows heterogeneity in both structure and function across its various axes. 

In mice, the hippocampus curves along the dorso-ventral (longitudinal) axis. Along this axis, its 
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connectivity to both cortical and subcortical areas varies gradually [4]. For example, reciprocal 

connections between amygdala and hippocampus are mainly situated in the ventral portion of 

the hippocampus [5]. As such, lesions to ventral, but not dorsal, hippocampus cause reductions 

in fear response [6]. Conversely, lesions to dorsal, but not ventral, hippocampus cause 

impairments in spatial learning and memory, suggesting this function is mainly located in 

dorsal hippocampus [7].  

Despite ventral hippocampus playing a seemingly negligible role in spatial learning and 

memory, it still contains place cells [8]. However, place cells also show variations across the 

longitudinal axis: cells in CA3 show an increase in place field size at increasingly ventral 

locations [9], while CA1 cells have lower spatial resolution at more ventral locations [10]. This 

reflects the gradient in grid cells characteristics along the dorso-ventral axis in the entorhinal 

cortex, where grid cells show an increase in spacing towards the ventral side [11].  

The hippocampus, and CA1 specifically, also shows variations in cell characteristics and 

function along the transverse axis [12,13]. CA3 will show more overlap in the cells used to 

represent distinct environments than CA1 for those same environments. In addition, the distal 

part of CA1 (i.e. further from CA3) specifically responds to object manipulations [14]. Within 

CA1, the more proximal area (closer to CA2 and CA3) shows a decrease in place field size 

compared to the distal are (closer to subiculum) [13]. These functional difference reflect a 

difference in connectivity: whereas medial entorhinal cortex (mEC) largely connects to 

proximal CA1, lateral entorhinal cortex (lEC) connects to distal CA1 [12,14]. As such, proximal 

CA1 receive spatial input from the grid cells, while distal CA1 receives more context-related 

input.  

Lastly, the hippocampus also shows heterogeneity along the radial axis. Along this axis, the 

pyramidal cell layer CA1 is divided into two layers, though unlike layers in other cortical areas, 

these are not visually distinct [15]. The deep layer is located closer to the surface in rodents, 
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and contains more place fields [16] than the superficial layer during navigation. However, this 

effect is dependent on the type of environment, as cue-poor environments are preferably 

encoded by superficial place cells, while deep place cells encode cue-rich environments [17]. In 

addition, deep place cells use a phase code – encode location by their activity relative to theta 

– while superficial cells use a rate code [17]. 

The focus of this thesis is the hippocampus, specifically CA1, and how it is involved in 

facilitating spatial navigation through various functional subpopulations of pyramidal cells. CA1 

can be divided into several layers, or strata, from deep to superficial: stratum oriens, stratum 

pyramidale, stratum radiatum and stratum lacunosum-moleculare. Stratum oriens is where 

the basal dendrites of the CA1 pyramidal cells are located, as well as the cell bodies of oriens 

lacunosum moleculare (OLM) and trilaminar interneurons [18,19]. Stratum pyramidale is 

tightly packed with pyramidal cell bodies, interspersed with the somas of interneurons 

innervating these pyramidal cells. Stratum radiatum contains the Schaffer collaterals from CA3 

to CA1. The most superficial layer in CA1, stratum lacunosum-moleculare, is the main site of EC 

input [19].  

We chose to focus on CA1, and specifically dorsal CA1, for several reasons. CA1 has 

overlapping representations for environments with similar spatial elements, rather than 

remapping completely when part of an environment changes [20]. CA1, and specifically dorsal 

CA1, contains place cells with relatively small place fields [13], and a high spatial resolution 

[10]. CA1 also rapidly remaps in response to changes in the environment, while other areas of 

the hippocampus, e.g. CA3, respond more slowly [20,21]. Lastly, dorsal CA1 is located the 

closest to the brain surface, and thus is most accessible for imaging. Because of these 

properties the place cells of CA1 are likely to show fast and modular responses to modular 
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changes in the environment, which would allow for the detection of subsets of cells 

responding to particular manipulations of the environment. 

 

Fig 1.1. Connectivity of the hippocampal formation. Major pathways connecting the various parts of the 

hippocampal formation. Arrows indicate the direction of the connections. 

The main excitatory cells in CA1 are the pyramidal cells, which have pyramid-shaped cell 

bodies and prominent dendritic trees that extend out both apically and basally across the 

various layers of CA1. These cells receive GABAergic inputs from the axo-axonic and basket 

interneurons on their axon-initial segment and cell body respectively [18]. The Schaffer 

collaterals from CA3 innervate the CA1 pyramidal cells both on the apical and basal dendrites, 

whereas the EC connects on the apical dendritic tuft in stratum lacunosum moleculare. These 
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various inputs on the different parts of the CA1 pyramidal cell allows it to integrate a range of 

signals, performing its critical function in memory and navigation [18]. 

1.1 Spatial representation in the hippocampus 

The hippocampus has been suggested to hold a spatial map of the environment [22]. The basis 

of this map are place cells, pyramidal cells that are active selectively in a certain location, 

called the place field [23]. Together, place fields cover an entire environment, thus forming a 

spatial map of the environment. Initially it was believed that each unique environment had a 

single spatial map associated with it. However, more recently it has been shown that the 

hippocampus can have concurrent maps of the same environment, with cells switching 

between these maps on separate visits to the same environment [24]. Within a single visit 

each map is largely stable, and these stable representations can remain for weeks to months. 

When an animal switches environments, the place fields of individual place cells will change 

location, a phenomenon called remapping [25].  

Although the spatial map was the earliest [26], and is probably still the most prevalent theory 

of how the hippocampus mediates navigation, other theories have recently gained traction 

[27,28]. For example, it has been proposed that the hippocampus encodes not just space as a 

cognitive map, but any structured relationship, but we just so happen to investigate it most in 

spatial tasks [27,29]. Alternatively, the predictive map theory is based around the idea that 

rather than place cells reflecting the animal’s current position, they reflect a prediction of the 

upcoming states [28]. As these states are not necessarily spatial, this theory explains how the 

hippocampus can encode non-spatial paradigms [30].  

1.1.1 Place cells  

Place cells are selectively active at a certain location in an environment, the place field (Fig 

1.2). They have distinct place fields in one-dimensional [31], two-dimensional [23] , and even 
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three-dimensional space [32,33]. The speed at which an animal is running affects place cell 

activity, with higher speeds equating to higher spike rates overall [34]. In 1D environments, 

their place activity is often directional, meaning they will only fire when traversing the fields in 

one direction but not the other [31,35,36].  

 

Fig 1.2. Example place cell. A model place cells firing action potentials (left, red dots) while a mouse is running 

through an environment (left, black line). Right shows the average ratemap of the firing, with more yellow indicating 

an increased spike rate.  

When moving between different environments, or when significant changes are made to an 

existing environment, place cells remap [25,37]. This was first examined by Muller and 

colleagues [25], who performed a study in which animals were exposed to a grey environment 

with a white cue card. Upon changing the wall on which the cue card was located, the place 

cells remapped, by rotating with the cue card. In addition, they changed the environment size 

and shape, and showed a subset of cells remapped completely when the size was changes, 

whereas all cells remapped when the shape of the environment was changed. Lastly, 

introducing a barrier in an existing firing field, caused the field to disappear. A follow-up study 

showed that replacing a white cue card with a black cue card also elicited remapping [38], but 
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only after the animals had become familiar with both cards, thus suggesting a role of 

experience in remapping.  

Jeffery and Anderson made the distinction between geometric cues (e.g. shape or size of the 

environment) that caused cells to change to location of firing, based on earlier modelling work 

[39], and contextual cues (in their case the colour) which determine whether a cell fires or not.  

Leutgeb et al. [40] divided the types of remapping two different distinct forms. Rate remapping 

involves a minimal change in location of firing for the place cells, but a change in the firing 

rate, which Leutgeb et al. [40] showed is caused by modular changes to the environment, such 

as shape or colour. In contrast, global remapping involves place fields moving to new locations, 

which is caused by a moving the environment into a new location, i.e. moving the 

experimental setup into a new room [40]. 

However, these rules for rate compared to global remapping do not necessarily persist 

between experiments with different paradigms. For example, in a two-compartment 

experiment with identical compartments in different locations, which should induce global 

remapping according to Leutgeb et al. [40], some cells showed the same maps across the 

compartments, while others differed between the two [41]. In another multicompartment 

experiment, where each compartment looked the same but had a different spatial location, 

only rate remapping was found, but changing the wall colour of one of the compartments 

caused place cells to change their place field for that environment [42]. Indeed, remapping can 

be modular, where some environmental changes cause some cells to change their place field 

location, but not others [43]. So far, this has only been found for contextual changes, 

particularly the colour and odour of the environment, and not the geometric changes, such as 

location of the environment. Although a breadth of studies have sought to characterize the 

changes that could induce remapping, which include shape [40,44,45], size and location [40] of 

the environment [25]; the visual cues in an environment [25,46]; and the colour of the walls 
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[40,43,45,47],, remapping remains largely unpredictable, and the underlying process causing 

the remapping is not fully understood. Therefore, one of the key aims of this thesis is to 

determine how remapping responds to novel manipulations of the environment to build on 

this work. Specifically, we introduce novel object location as a possible manipulation to induce 

remapping, which is a relatively small geometric change to the environment, but requires 

spatial memory, and is highly salient to the animals [48].  

Although place cells are often considered as a singular population, their characteristics can 

vary greatly along the axes of CA1 [49]. Along the radial axis, where deep and superficial layers 

can be distinguished, place cells respond differently to cue-poor and cue-rich environments 

[17]. While superficial place cells respond strongly to cue-poor environments and use a rate 

code to represent these, deep place cells encode cue-rich environments with a phase code. 

Along the proximodistal axis, place cells have varying spatial specificity, with those more 

proximal showing smaller place fields and a higher degree of activity phase-locked to the 

hippocampal theta rhythm, one of the key hippocampal oscillations [13]. These variations 

along the axes of the hippocampus allow it to encode environments with varying amounts of 

cues on different scales, which is likely to be vital for animals who will encounter a wide range 

of environments in the wild. 

1.1.2 Beyond egocentric location  

In addition to place cells, the hippocampus also contains other spatial cells. Landmark-vector 

cells are active when an animal is in a particular location relative to an external cue. They 

respond to all or a subset of the same cues (e.g. objects) in an environment [50]. Similarly, 

reward cells are always active when the animal is in a reward location, and will follow the 

reward if it is displaced [51]. Although both these types of cells still have a spatial component, 

as they are active when the animal is in a certain location relative to a cue, they critically differ 

from place cells in that they follow distinct cues, rather than map the global environment.  
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A proportion of place cells has been found to respond to another animal’s location in both rats 

and bats [52,53]. Sometimes cells responded to the same location both when the animal itself, 

or when another animal occupied it, while other cells purely responded to its own or the 

other’s location [52]. These cells are markedly distinct from landmark-vector and reward cells, 

as they are allocentric rather than egocentric, meaning they respond to the location of an 

external cue, in this case another animal, regardless of the animal’s own location relative to a 

cue.  

In addition to these cells with a spatial component, the hippocampus also contains non-spatial 

cells [30]. In a task where a mouse was exposed to a tone that gradually rose in frequency, 

some cells responded specifically to a certain frequency [30]. Although this is a non-spatial 

task, it could still be explained as a state space, as the relationship between one tone and the 

next remains the same (i.e. a tone of 10 Hz is always followed by a tone of 11 Hz). This fits in 

with the idea of the hippocampus encoding sequential information of any kind, spatial or not 

[27,28].  

1.1.3 Beyond the hippocampus 

Place cells are not unique to CA1 or even the hippocampal formation. Several studies have 

recently found place cells in the visual cortex [54–56]. These studies cleverly distinguished 

between visual signals and location, by replicating the same visual scene at multiple locations. 

Purely visual cells should respond to both visual scenes equally, but the visual cortex also 

contained cells that only responded in one location, suggesting a location-specific effect. Place 

cells can be found throughout higher visual areas, but it is not yet clear how spatial 

information reaches these areas [56]. 

The medial entorhinal cortex (mEC), which is part of the hippocampal formation and provides 

inputs to CA1, contains grid cells [11]. These are cells that are active in a hexagonal grid-like 

pattern throughout an environment. Because of the direct connection between mEC and CA1, 



22 
 

the grid cells are thought to play an important role in modulating place cell firing [57,58]. 

However, alternative theories pose that grid cells form a scaffolding for path integration, while 

place cells are for the most part independently modulated by sensory inputs [58,59]. 

In addition to grid cells, the hippocampal formation also contains a range of other cell types 

which are relevant for navigation. The subiculum is the main site of head direction cells, which 

are active when the animal is facing a certain direction, though they are also found in other 

parts of the hippocampal formation [60,61]. Both subiculum and mEC contain border cells, or 

boundary-vector cells, which fire selectively near walls and other borders in an environment 

[62,63]. Both within CA1 and the wider hippocampal formation new cell types are still being 

discovered, such as the reward cell and object-vector cells [51,64], making it likely more are 

yet to be found. The exact function each of these spatial cell types play in navigation and how 

they interact, is yet to be uncovered.  

1.2 Network activity in the hippocampus 

Activity of single cells across the hippocampus, forsooth the entire brain, are modulated by 

network activity, as measured by the local field potential [65,66]. This network activity is 

largely characterized by oscillations at varying frequency bands, which largely depend on the 

behavioural state of the animal. In the rodent hippocampus the predominant oscillatory bands 

are theta (4-12 Hz), gamma oscillations (30-150 Hz) and ripples (140-200 Hz) [67,68]. Ripples 

occur only for irregular short periods when network activity without clear oscillatory behaviour 

in the lower (theta) frequency range, a state called large irregular activity (LIA), prevails [69–

71]. 

1.2.1 Theta oscillations 

The theta band includes oscillations of 4-12 Hz [72], which are modulated by the behavioural 

state of the animal. They occur in the hippocampus both during awake movement and REM 
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(rapid eye movement) sleep, but are largely absent when the animal is immobile [65,73,74]. 

When the animal is awake, the amplitude of the oscillations is modulated by the running speed 

of the animal [75,76]. The medial septum [77,78] and entorhinal cortex [72,79] have both been 

suggested as possible drivers of theta oscillations in the hippocampus. GABAergic cells in the 

medial septum, specifically parvalbumin-positive (PV) and hyperpolarization-activated cyclic 

nucleotide–gated (HCN) interneurons, temporally precede theta oscillations in hippocampus, 

and as such have been suggested as ‘pacemakers’ [80]. 

However, theta oscillations can also arise spontaneously in the absence of either of these brain 

areas [81]. In addition, theta oscillations exhibit a phase shift along the septotemporal axis of 

the hippocampus, which cannot be explained by a difference in input from entorhinal cortex or 

medial septum [76]. It is therefore theorized that theta oscillations in the hippocampus 

actually arise through separate weakly coupled oscillators along this axis, which arise through 

local subcircuits, where the medial septum may coordinate or entrain the global oscillation 

[72,76].  

The activity of place cells in the hippocampus is modulated by theta oscillations. Place cells fire 

at a specific phase in the theta cycle depending on the location of the animal relative to that 

place cell’s field, in a process called phase precession (Fig 1.3) [82]. This is the basis of the 

phase code, where an animal’s position can be read out from when the spikes of a cell occur 

relative to the theta phase. To what degree cells encode place using a phase code compared to 

a rate code, where the number of spikes encodes the location, depends on the cue abundance 

of an environment and the location of cell [83]. Sequences of place cells firing during theta 

sequences may also reflect future or past paths, depending on the environment and animal 

behaviour [84].  
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Fig 1.3. Phase precession. Top ovals show the place field of three example cells. As a mouse traverses from left to 

right, the corresponding cells will fire, showing phase precession relative to the underlying theta oscillations 

(bottom). Cell 1 will first fire, starting late in the theta cycle. As the mouse progresses through the place field, the 

action potentials will happen progressively earlier in the cycle. As the place fields overlap, cell 2 will start firing, but 

later in the cycle, thus causing the cells to fire in a sequence during the cycle.  

In addition to modulating place cell firing, theta oscillations may allow the ability to discretize 

information, with each cycle corresponding to a single ‘package’ of information [84,85]. In 

addition, theta modulation affects learning rates in a spatial task [86]. Theta thus plays an 

important role not only in spatial encoding through the phase code, but also in separating and 

organising spatial information and facilitating learning. 

Theta oscillations are present continuously during running in rodents, specifically rats and 

mice, and strongly modulate the place and grid cells. However, this is not the case for other 

animals, including bats [33], ferrets [87], marmosets [88], and humans [89], raising questions 

about the role of theta oscillations in hippocampal functioning. In both humans and 
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marmosets, theta occurs in short bouts, rather than occurring continuously, during movement, 

which has been suggested to relate to active exploration [88,90]. In ferrets, theta is continuous 

both during movement and immobility, when theta oscillations cease in rats [87]. In bats, both 

place cells and grid cells are able to fire without the occurrence of theta [33,91], though they 

do still show properties of nonoscillatory phase coding and synchrony [92]. Together, these 

cross-species findings suggest continuous theta oscillations during movement are not required 

for the proper function of the hippocampus, at in least in species other than rodents.  

1.2.2 Gamma oscillations 

Gamma oscillations have a frequency of about 25-140 Hz, though definitions vary [93,94]. They 

were originally divided into slow (25-55 Hz) and fast (60-140 Hz) bands [95], though later 

studies suggested three bands: slow (30-80 Hz), mid (60-120 Hz) and fast (>100 Hz) [96]. In CA1 

gamma oscillations can appear independently of theta oscillations, but the gamma power is 

overall higher during theta-associated behaviours [97–99]. Like theta, gamma oscillations arise 

from multiple sources [99]. CA3 largely drives slow gamma oscillations in CA1, while medial 

entorhinal cortex drives fast gamma oscillations [95]. Local interneurons have additionally 

been shown to play a role in modulating the oscillations [99–101].  

Only a proportion of excitatory pyramidal cells in CA1 are phase-locked to gamma oscillations 

and they are only phase-locked to the gamma phase in the local network [99]. This phase-

locking increases for place cells when they respond to an attended stimulus while distractors 

are present [102], suggesting a role of gamma oscillations in attention. Single cells can be 

phase-locked to more than one gamma band at a time [103]. As each gamma band has a 

distinct source [96], this suggests gamma oscillations may play a role in integration of multiple 

signals. In addition, the separate bands differentially modulate place cells, with place cells 

encoding current location during fast gamma, and encoding future locations during slow 

gamma [104].  
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Although gamma has been suggested to be important for attention processes, integration of 

information and communication between brain areas [97,105], much is still unknown about 

how it functions in the hippocampus and how it affects spatial representation. It is likely theta 

and gamma oscillations are working in concert to facilitate hippocampal functions [103], and 

their interaction may depend on in the location in the hippocampus, the behavioural state of 

the animal, or even cell class [106], making it harder to pinpoint the exact mechanisms.  

1.2.3 Irregular activity and ripples 

In the absence of theta oscillations, the network activity is marked by irregular activity [74]. 

During periods of large irregular activity (LIA), which primarily occur during immobility and 

slow wave sleep, irregular occurrences of sharp wave-ripples (SWRs) take place [107,108]. 

These events are combinations of sharp waves, which are propagated from CA3 through the 

Schaffer collaterals, and high frequency (140-200Hz) ripples [68,107,108].  

During these SWRs place cells reactivate in replay events, encoding the path previously taken 

by the animal [109]. These replay events are crucial for spatial learning and memory [110,111], 

which likely happens through consolidation of experienced spatial events [112]. Another 

replay-like event, termed ‘preplay’, has also been identified, where the cell activity reflects a 

future rather than a previously experienced path [113]. They are hypothesized to be involved 

in planning of future actions [114,115].  

Periods of LIA are occasionally interrupted by small irregular activity (SIA), when SWRs are 

absent, both while an animal is awake and asleep [71]. During this time the majority of CA1 

cells become silent, while a small portion increases its activity [71,116]. These cells are 

location-dependent, suggesting they may provide some form of spatial code [71]. Additionally, 

this state has been linked to increased arousal during sleep, as it can be induced by presenting 

auditory stimuli during sleep [117]. It has therefore been suggested as an intermediate state of 

arousal between awake and sleep [117,118].  
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1.3 Virtual reality experiments 

Although historically many navigation experiments were performed in real-world 

environments, in recent years virtual reality (VR) has become an increasingly important 

technique to study navigation in rodents [31,35,119,120], insects [121–123], fish [124], and 

humans [125,126]. VR provides a unique paradigm for studying navigation, as it allows animals 

to perform navigational behaviours while they are restrained to a single location. This makes it 

easier to perform optical and electrophysiological recordings, such as two-photon imaging [35] 

or patch-clamp recordings [31], in these animals. Although VR is often implemented as a 

closed-loop system [127], meaning the animal’s movements control its surroundings, one can 

also perform open-loop experiments, where the surroundings and the movements are 

unrelated (e.g. [124,128]). This may provide unique insights into how animals use sensory 

feedback to plan future movements [128,129]. 

1.3.1 Sensory modalities in virtual environments 

Many VR systems are mainly vision-based [127], meaning the animal only gets visual input, 

often projected onto a screen, but lack of other types of sensory input, such as somatosensory 

or olfactory. These other sensory modalities, in addition to vision, may be able to drive or 

improve navigation, and their omission in visual virtual reality can thus impact the 

representation of these environments. However, the extent to which they impact navigation 

differs from one sensory modality to the next. 

Overall, auditory cues are weak drivers of navigational behaviour, though some inconsistencies 

exist between species of rodents. Mice are able to perform a version of the Morris water maze 

task using only auditory cues [130], while rats are unable to perform the Morris water maze 

task using auditory cues alone [131]. However, the addition of auditory cues to a visual cue 

results in increased performance in rats, suggesting they can use auditory cues to supplement 

other sensory cues, particularly visual cues, when they are available.  
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In natural environments, mice use active whisking to perceive objects around them [132]. 

Whisking, unlike other sensory modalities, requires the mouse to be next to an object or wall, 

meaning it can only guide navigation in limited circumstances. Nevertheless, this behaviour 

likely provides important information about location, as mice are able to use it to discern 

object location with a high accuracy [133]. In VR environments the mice are often not able to 

whisk the cues that they see, as they are presented as visual only stimuli, but the effect of this 

absence of input from the whiskers on the spatial representation in the hippocampus has not 

been thoroughly tested. 

Lastly, both rats and mice can use olfactory cues for navigation [43,134–137]. Mice are able to 

follow odour plumes around an environment, and use odour gradients to navigate to a 

location [136]. Olfactory cues also contribute to the stability of place cell firing [137]. The 

contribution of olfactory cues to navigation has also been studied in a virtual setting, where 

mice were exposed to odours depending on their location in a virtual environment [138]. In 

this setting mice could be trained to navigate based on odour, but only after being trained with 

a combination of visual and olfactory cues. It is thus unclear if olfactory cues alone can drive 

navigation in a virtual setting, but they certainly contribute to the overall encoding of the 

environment. 

As animals use various sensory modalities, a range of virtual reality setups have been 

developed to engage these. An auditory VR was developed where mice were able to use 

auditory cues to determine reward location [139]. However, this task did not necessarily 

require spatial representation, so the effect of auditory stimuli in VR, or the lack thereof, is still 

unclear. To study the effects of whisking, another VR system used movable walls to simulate 

the mice running near, and touch, walls [140]. However, this study only focused on the 

behaviour of the animals, so the effect of this on hippocampal activity is not clear. 
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Although animals use various sensory modalities for navigation, and virtual reality setups 

engaging a range of modalities have been developed, visual-only setups are still the most 

popular [127]. This is likely because, despite missing out on other sensory modalities, visual 

virtual reality environments have several advantages [141]. First, researchers can precisely 

control what (visual) sensory input the animals receive at any given time. Second, they allow 

for the study of the effect of differences in visual input on spatial representation in the brain, 

separately from the effects of other modalities. Lastly, the visual environment can easily and 

quickly be manipulated (unlike e.g. odour), allowing for experiments that would be impossible 

to perform in real-world conditions. 

Mice are able to do a range of tasks in visual VR, and it seems that the key to successful 

navigation in virtual reality environments is the combination of sensory input and idiothetic 

cues, such as proprioception. Although idiothetic cues are limited in most setups, especially 

when animals are head-fixed and cannot get any vestibular input, running alone has a 

considerable effect on place cell firing [129]. This is also illustrated in a study where mice were 

unable to run, but were still presented passively with a virtual environment. This discrepancy 

caused firing in the majority of place cells to alter, with individual cells having reduced firing 

rates and carrying less information about location. Thus, having a closed-loop system where 

the mouse is able to run and control the environment is likely to promote place cell stability. 

Indeed, mice and rats, among other animals, are able to successfully perform navigation in 

visual only environments, even in the absence of other sensory inputs [31,120,123]. This is 

likely because both rats and mice rely heavily on visual cues, despite other sensory cues being 

available. Place cells in rats are strongly affected by visual input [142–144], and when 

presented with conflicting cues across modalities, they will preferably follow visual cues [145]. 

In mice, lack of visual cue input disrupts grid cell firing [146], while adding visual cues increases 
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place cell accuracy [147]. Overall, visual cues seem to be sufficient to drive navigation, making 

visual virtual environments a powerful tool to probe the neuronal basis of navigation. 

1.3.2 Place cell activity in virtual environments 

Despite animals being able to perform navigational tasks in virtual reality environments, their 

representation of these is not identical to that of real-world environments. This has been 

attributed to the lack of vestibular input as well as other sensory elements that might 

uncontrolled for in real-world environments [148]. Differences in behaviour, such as running 

speed or place preferences, may also play a role in the altered representation [148,149]. There 

is also a wide range of paradigms between VR experiments. Some experiments use a 1D virtual 

track, where the animal can only run back and forth [31,35,148], while others use a 2D 

paradigm, where an animal can run in any direction [119,149]. Rats are usually suspended in 

jackets, allowing for limited movement of their head, while mice are often head-fixed so 

cannot move their head at all [127]. Although, some systems allow for the mice to physically 

rotate their head while still being head-fixed [149,150].  

These different paradigms will differentially affect place cell activity. On identical 1D virtual 

and real-world tracks, where a rat is only exposed to distal visual cues, the number of cells 

active on the track is significantly lower in VR compared to a real-world environment [148]. 

Although place cells in both conditions hold spatial information, the information content per 

cell is also lower in VR. In addition, place cells are less stable, with lower firing rates and wider 

place fields in the VR environment. Together these chances suggest a decrease in spatial 

representation of the environment in VR settings. 

On a 1D track where rats were running back and forth, and were passively rotated at the end 

of the track in the VR environment, most cells were unidirectional in both VR and real-world. 

However, the cells that were bidirectional in VR, but not real-world, encoded distance from the 

start or end of the environment, rather than position along the track, meaning their firing 
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location in the two directions was at a different location relative to the environment [148]. 

Though other studies in mice do not report similar findings [35,147], these often do not 

specifically distinguish between distance and place coding. Therefore, their place cells may 

indeed include distance-encoding cells, especially as VR recordings in the dark has shown that 

they exist in mice [151].  

In a 2D environment, place cells in rats also showed reduced spatial information, stability and 

mean firing rate in VR compared to a real-world environment, more so than in the 1D 

condition [119]. Depending on the task, cells again encoded distance more strongly than 

location in a 2D VR world, and this distance encoding was increased compared to location 

encoding when the animals had more stereotyped running paths, such as running from one 

goal to another. This suggests the distance encoding observed in the 1D task might be caused 

by a combination of the VR environment and the stereotyped running animals are forced to do 

by being in a 1D corridor. In another variation of a 2D virtual environment where mice’s heads 

were fixed at a specific bearing, mice were able to freely rotate their head meaning they were 

able to use vestibular input [149]. Here, similar results were found: the place fields were bigger 

and place cells contained less spatial information. However, place cells did not have reduced 

firing rates. In addition, cells also showed increased directionality compared to a real-world 

environment. Overall, this shows that although head rotation affects place cell firing, the lack 

of head rotation is not the driving factor for the differences in space encoding between VR and 

real-world.  

Theta oscillations were also altered in VR compared to real-world environments. Using VR 

causes changes in theta amplitude [119], theta frequency [148,149], reduction of phase 

precession [119], and reduced or abolished modulation by the animal’s running speed 

[148,149]. As these studies compared directly between VR and real-world, they controlled for 

any effect of location of the cells [83,152], or differences between animals. The difference in 
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theta oscillations is thus likely to arise from the difference in sensory input, as well as possibly 

a difference in behaviour of the animals between the two paradigms. 

Although many papers find spatially selective cells in VR environments [31,35,119,147–149], it 

is clear that their activity is altered compared to real-world environments. This is in part due to 

a lack of vestibular input, though not entirely, as shown by the persistence of some of the 

difference in a paradigm where the animal does get vestibular inputs [149]. Other causes may 

be a lack of unpredicted or unmeasured sensory inputs, such as animals leaving olfactory cues 

while running through an environment [135]. Overall, these differences should be considered 

when designing and interpreting VR experiments. 

1.4 Aims 

Although place cells have been extensively researched, the advance of VR systems has opened 

up the possibility for new questions to be addressed. It allows for the easy manipulation of 

environments and precise control of sensory stimuli. Therefore, it is possible to present 

animals with a range of modular environmental changes and record their place cells responses. 

VR is often combined with two-photon imaging of cells, which allows for a large number of 

cells to be simultaneously recorded in a single axial plane. However, this means that traditional 

measures for place cell identification, using spiking rates for example, cannot be applied. VR 

itself also creates altered place cell firing. This leads to the question of how place cells should 

be defined in VR experiments. Lastly, much navigational research has focused on place cells 

alone, while non-place cells have not received similar attention. It is therefore still unclear how 

place and non-place cells work in concert to facilitate spatial navigation. 

To address some of these questions, this thesis aims to elucidate the effect of environmental 

manipulations and behavioural correlates on hippocampal populations during a novel 

behavioural task in a virtual reality environment. Specifically, a population-wide approach was 
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taken, where not just place cells, but the entire hippocampal population was considered. The 

research was guided by three aims: 

1. To determine the best method for defining place cells, and in doing so, understand 

how the method by which place cells are defined, affects what cells are included in the 

population. 

2. To understand how cue abundance and displacing a cue object, in addition to training 

on a behavioural task, affects coding of space by hippocampal populations. 

3. To characterize the activity of two novel types of functional cells in CA1 and their 

relationship to environmental and behavioural factors. 

The focus of Chapter 2 is the classification of place cells in two-photon data in a one-

dimensional virtual environment. As discussed, place cell responses vary depending on the 

behavioural and experimental factors, and using virtual reality will also affect their activity. In 

addition, when VR is combined with two-photon recordings, traditional place cell classification 

methods cannot be used, but no clear consensus has arisen to identify place cells in virtual 

reality paradigms. In this chapter, three methods for place cell classification on two-photon 

data recorded in one-dimensional virtual reality environments are tested for their ability to 

classify model place cells with varying characteristics. Not only does this elucidate the effects 

of the various methods on the populations included as place cells, but it also provides a 

framework for future methods to be tested, thus creating a better understanding, and 

hopefully a consensus, of what is considered a place cell across various studies. 

The optimal method for place cells classification is then used in Chapter 3, which studies the 

effect of object location novelty and cue abundance during a novel behavioural task in virtual 

reality. Object location novelty is often used as a benchmark for hippocampal function [153], 

and objects and their locations have neural correlates in the hippocampus and wider 

hippocampal formation [46,50,64]. However, previous studies have been performed in freely 
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moving animals, allowing the animals to perform certain behaviours around the objects, such 

as sniffing, whisking or rearing. We used a VR task where an object was displaced randomly, 

and we trained mice to recognize this displacement. This uniquely shows the effect of visually 

seeing an object in a novel location, without the confounding effect of the behaviours around 

the object. In addition, we manipulated the cue abundance of the environment and studied 

whether the two manipulations showed modular effects on the hippocampal populations. We 

found that place cells particularly, and the wider hippocampal population in general, are 

strongly modulated by object location novelty, but not cue abundance, resulting in an 

increased encoding of animal location when an object in the environment was displaced. This 

effect was present even in untrained animals, suggesting it was not an effect of the task, 

though the encoding does change with training. Overall, the results give an increase 

understanding of the representation of object location novelty in the hippocampus, and 

increased understanding of how modular changes to an environment affect hippocampal 

populations.  

In Chapter 4 the wider hippocampal population is examined, with a focus on activity at rest, 

which leads to the discovery of two novel functional cell types. SLO (stationary low-frequency 

oscillatory) cells are a small population of cells that are active at 2-5 second regular intervals 

while the mouse is immobile during a behavioural task. They are highly synchronous and show 

location specificity, suggesting possibly a role in retaining spatial information during rest. We 

also identify a running-active population of cells with a high power in a low (0.2-0.5 Hz) 

frequency band, which show aperiodic activity (ORLA cells: odd running-active low-frequency 

aperiodic cells). Overall, this research examines the activity of cells during an understudied 

behavioural state, and importantly linking individual cell activity to overall network behaviour. 

This shows the importance of hippocampal cells not just during active navigation, but also 

when an animal is at rest.  
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2 Choice of method of place cell classification determines the 

population of cells identified 
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2.1 Abstract 

Place cells, spatially responsive hippocampal cells, provide the neural substrate supporting 

navigation and spatial memory. Historically most studies of these neurons have used 

electrophysiological recordings from implanted electrodes but optical methods, measuring 

intracellular calcium, are becoming increasingly common. Several methods have been 

proposed as a means to identify place cells based on their calcium activity but there is no 

common standard and it is unclear how reliable different approaches are. Here we tested four 

methods that have previously been applied to two-photon hippocampal imaging or 

electrophysiological data, using both model datasets and real imaging data. These methods 

use different parameters to identify place cells, including the peak activity in the place field, 

compared to other locations (the Peak method); the stability of cells’ activity over repeated 

traversals of an environment (Stability method); a combination of these parameters with the 

size of the place field (Combination method); and the spatial information held by the cells 

(Information method). The methods performed differently from each other on both model and 

real data. In real datasets, vastly different numbers of place cells were identified using the four 

methods, with little overlap between the populations identified as place cells. Therefore, 

choice of place cell detection method dramatically affects the number and properties of 

identified cells. Ultimately, we recommend the Peak method be used in future studies to 

identify place cell populations, as this method is robust to moderate variations in place field 

within a session, and makes no inherent assumptions about the spatial information in place 

fields, unless there is an explicit theoretical reason for detecting cells with more narrowly 

defined properties. 
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2.2 Author Summary 

Place cells are hippocampal cells that have spatially constrained receptive fields, the place 

field. These cells have been widely studied in the context of navigation, more recently using 

virtual reality environments in combination with optical methods of recording neuronal 

activity. However, there is a lack of consensus regarding how to identify place cells in these 

data. In this study we tested the sensitivity and specificity of four methods of identifying place 

cells. By comparing these methods and quantifying the populations of place cells they identify, 

we aimed to increase our understanding of exactly the populations that are currently being 

studied under the name “place cells”. Although the appropriate method may depend on the 

experimental design, we generally recommend a single method going forward, which will 

increase consensus within the field about what should be included in a place cell population, 

and allow us to better compare results between studies.   
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2.3 Introduction 

Place cells are a subset of hippocampal pyramidal cells that fire selectively when the subject is 

in a certain location [23], and provide a sparse population code for self-location. Studies 

revealing their properties, including location-specific firing [23], directional selectivity [34] and 

context-dependence [43] have been vital for our understanding of how the hippocampus 

codes space. [154].  Place cells are characterised by their place field, which is a spatially stable 

location where the cell preferentially fires. Depending on the size of the environment, place 

cells can have one or multiple place fields [155]. The place fields may change location between 

different environments, a phenomenon called remapping. Place cells are also relevant to 

understanding clinical conditions such as Alzheimer’s disease, as in mouse models of 

Alzheimer’s disease they show impaired firing [156] linked to memory deficits. 

Since their discovery, place cells have been extensively studied in real world environments – 

both open field and constrained - using electrophysiological recordings while animals either 

explore freely or perform directed spatial tasks. In these studies, cells are generally included in 

analyses based on a variety of properties, including their peak firing rate, waveform, 

sparseness of the place field or spatial selectivity (e.g. [32,43,157,158]). Further analyses 

sometimes requires the place fields of these cells to have additional properties, such as a 

maximum number of place fields allowed, or a  stable place field over time (see e.g. 

[32,157,159]).  

However, methodological advances now also allow place cells to be studied in vivo using 

calcium imaging [35,160,161], enabling large populations (n>100) of cells to be recorded for 

multiple sessions. This method requires the brain to be stationary during recording, which 

necessitates the use of a Virtual Reality (VR) environment. Often a visual VR is used during 

imaging, consisting of one or multiple screens displaying an environment that the mouse can 

control by running on a ball or wheel. With a ball, the mouse is able to move in two 
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dimensions (e.g. [162]), whereas with a wheel, mice can only move backwards and forwards. 

These types of VR limit the animal’s ability to look around, and provide sparse sensory 

feedback; for example, whisking does not provide information about the environment. Place 

cells also respond differently in VR environments compared to the real world, showing broader 

place fields and increased directionality [149]. 

Several studies using one-dimensional environments (i.e. corridors) have revealed that 

hippocampal pyramidal cells represent other features in addition to location, such as reward 

[51] and travelled distance [151]. It is unclear to what extent these features are coded by 

separate populations of cells in the hippocampus or cells that, under other circumstances such 

as a dedicated navigation task, might be recruited as place cells. To resolve this, it is important 

to be able to accurately define place cells within such one-dimensional environments, but 

currently different studies use widely varying methods making comparisons between studies 

problematic.   

Varying definitions of place cells have been chosen to account for the constraints imposed by 

the imaging methodology. Unlike electrophysiological recordings, imaging detects changes in 

intracellular calcium levels rather than direct readouts of action or synaptic potentials. The 

non-linear relationship between calcium transients and spike rates makes it hard to accurately 

estimate spike rates from two-photon data [163], so adopting exactly the same methods as 

used in electrophysiological recordings is not possible. In addition, the exact waveform of the 

spikes, another characteristic used to classify place cells (e.g. [32]), is unknown. Instead, 

studies have tended to use adaptations of some, but not all, of the imaging equivalents of peak 

firing rate, sparseness of off-location firing, and place field stability to define a cell as a place 

cell: Dombeck et al. [35] categorised a cell as a place cell based on a combination of properties 

of that cell’s apparent place fields, including the size, peak calcium fluorescence and the ratio 

of the firing within and outside the field. This method, or variations of it, have subsequently 
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been adopted in several studies (e.g. [21,164,165]). Fournier et al. [166] proposed a statistical 

method that uses the peak activity in the rate map of a cell and compares it to the peak 

activity in shuffled versions of the cell. An alternative approach [167] detects place cells from 

the stability of their activity as a function of location, a method based on those used in 

electrophysiology experiments [43]. Lastly, Ziv et al. [168] defined place cells based on the 

mutual information between the cells and the location of the animal, a method which is also 

used widely [24,169,170]. However, it is unclear what biases these different methods exhibit 

and to what extent their classification criteria are equivalent – in short, do they identify the 

same neurons as place cells? 

In this paper we aim to address the lack of consensus on how to identify place cells in two-

photon data in a one-dimensional VR environment. We compare the performance of two 

established methods for the identification of place cells in two-photon data (the methods used 

by Dombeck et al. [35] and Ziv et al. [168]), another method that is often using to characterize 

place cells in electrophysiological studies (e.g. [32,43], described by O’Leary et al. [167]) as well 

as one method developed for use on electrophysiology data which has been adapted for use in 

imaging – described by Fournier et al. [166]. We applied them to a range of synthetic model 

cell populations to explore whether cells identified as place cells by each of these methods 

possess similar characteristics. We conclude that in a range of mock datasets the method 

developed by Fournier et al., which we call the Peak method, is best suited to identify place 

cells, having a high sensitivity and specificity, and lacks assumptions about spatial information 

held by the place cells. As a result, we recommend this method for the identification of place 

cells in two-photon imaging data. Our data also show that choice of identification method is 

important, as the methods classify different, largely non-overlapping populations of cells as 

place cells.  
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2.4 Results 

2.4.1 Place cell detection by the Combination and Stability methods is sensitive to the 

properties of place fields and the number of times mice traverse the 

environment  

We evaluated the performance and suitability of four different approaches for detecting place 

cells (S Fig 2.1):  

1) The Peak method, which classifies cells as place cells based on the average rate of firing 

(approximated by fluorescence change in two-photon data) in one location being higher than 

in the rest of the environment [55];  

2) The Stability method, which identifies place cells as those with stable firing patterns across 

locations over time [167]; 

3) The Combination method, which requires place cells to fire more across a contiguous 

stretch of the environment than at baseline and to fire in this location on at least 20% of 

traversals [35].  

4) The Information method, which classifies cells based on the increased amount of spatial 

information the cells hold about the animal’s location [168]. 

We selected the four methods for varying reasons. The Peak method was originally applied to 

electrophysiological data, and its simplicity allows for the application to fluorescence data with 

minimal adaptations. Similarly, the Stability method was based on methods used for 

characterising place cells in electrophysiological recordings (e.g. [3]), while the Information 

method, or variations thereof, have previously been used to detect place cells in both 

electrophysiological [170] and fluorescence data [24]. This makes these three methods 

promising candidates for application across the two recording paradigms. In contrast, the 
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Combination method was designed specifically for fluorescence data, and has been widely 

employed in the field (e.g. [35,165,169]). 

To characterise the four different approaches for detecting place cells we applied them to 

synthetic datasets consisting of 20 true place cells and 80 random cells, matching the 

prevalence of place cells found using patch-clamp recordings [31]. Mouse location for each 

dataset was generated using experimentally acquired locomotion time courses from mice 

running through a linear virtual reality environment (S Fig 2.2, 8 datasets: 4 mice, 2 sessions 

per mouse). The dataset contained a total of 184 traversals of the environment, with mice 

running 23 traversals per session on average. Model fluorescence maps were generated by 

applying the synthetic cell profiles to 50 randomly selected traversals (Fig 2.1A and B). Periods 

where the mouse was not running – defined as having a velocity below 2 cm/s – were removed 

(Fig 2.1C and D).  

 

Fluorescence maps of the place cells were modelled using a Gaussian to simulate changes in 

fluorescence as a function of location, where the mean determined the place field centre and 

sigma the field width. We used a default width of 50 cm, based on widths previously reported 

in a virtual environments [31,35]. Synthetic data was linearly scaled to match the peak values 

observed in our own two-photon CA1 data (Fig 2.1E). We distributed place field centres evenly 

across the 200 cm long track, then convolved the place field with the position of the mouse to 

determine the fluorescence map of each cell over time (Fig 2.1E, bottom 20 cells, Fig 2.1F). We 

also included 80 control cells (Fig 2.1E, top 80 cells, Fig 2.1G) without place-dependence. 

Poisson noise, which in the default model had an average fluorescence of 0.18% of the default 

peak height, was then added to the traces of all cells. Lastly, the four different place cell 

classification methods were applied to these fluorescence maps. 
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Fig 2.1 Model locomotion profile generation and effect on methods. (A) Section of a locomotion profile collected in 

a 200cm long virtual environment. This was cut into individual traversals of the environment (numbered, separated 

by red dashed lines) (B) locomotion profile generated from 20 randomly selected traversals. (C) Velocity profile of the 

locomotion profile shown in B. The green dashed line indicates the threshold for detecting running (2 cm/s) (D) Trace 

in C after thresholding. Time points with below threshold velocity were excluded from further analysis. (E) 

Fluorescence maps of 20 model place cells (cells 1-20) and 80 non-place cells (cells 81-100). (F) Activity over location 

of a single model place cell over 50 traversals. (G) Activity over location of a single non-place cell over 50 traversals. 

Grey points in F and G are missing data caused by the mouse across this location between acquisition of two frames. 

(H) The sensitivity of each method as a function of the number of traversals included in the locomotion trace. (I) The 

specificity of each method as a function of number of traversals. Lines in (H) and (I) show means over 10 randomly 

generated data sets. Error bars represent 95% confidence intervals. 
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We could therefore vary the parameters that determine the fluorescence map (Gaussian peak, 

width and location, number of traversals of the environment), each with a different effect on 

the properties of the model cells (S Fig 2.3), to determine how much the properties of the 

place field affect their detection by the different methods. To assess place cell classification 

performance, we first calculated how many place and non-place cells were correctly identified 

by each method (true positives and true negatives), versus the number of false positive and 

false negative identifications. From these values, we then calculated the sensitivity (the 

proportion of place cells that were correctly detected), and the specificity (the proportion of 

cells identified as place cells that actually were place cells) of each method (Methods, 

equations (1) and (2)). A perfect detection method would therefore have a selectivity of 1 and 

a specificity of 1. 

Number of traversals. First, we determined the impact of the number of times the mouse ran 

through the environment on place cell detection by varying the number of traversals used to 

generate the model datasets from 2 to 100 (Fig 2.1H and I). We generated 10 model datasets 

for each number of traversals.  

The Peak, Stability and Information methods had a high sensitivity regardless of the number of 

traversals included in the dataset (Fig 2.1H). Both the Peak and Information methods also 

displayed a stable specificity across the range of traversals, with a mean of 0.99 and 0.95 

respectively, reflecting their requirement that a true place cell’s activity is in the top 1% and 

5% (respectively) of shuffled data (Fig 2.1I). However, the Stability method saw a decreasing 

specificity with an increase in traversals, with a specificity of 0.76 at 100 traversals, i.e. more 

non-place cells were classified as place cells as the number of traversals increased. This is likely 

because with an increase in traversals, the Poisson noise of the non-place cells will increasingly 

average out over the traversals, thus resulting in an increased correlation between the 

fluorescence maps of the first and second halves  of the session for the non-place cells. This 
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increases the number of false positives, and thus results in a decrease in specificity. The 

Combination method increased in sensitivity as the number of traversals increased from 2 to 

20, above which it stabilised with a sensitivity of 0.79. The specificity of this method remained 

1 regardless of the number of traversals included.  

Thus our simulations predict that the Combination method would fail to detect at least 27% of 

hippocampal place cells, while up to 23% of the place cells identified by the Stability method 

would be false positives, and accuracy for both methods is affected by the number of times 

mice run through the environment.  

Place field properties. We next tested the effect of manipulating the width of the model place 

fields and their peak “fluorescence” on the ability of the four methods to detect the place cells 

(Fig 2.2C-F). First, we varied the width of the place field between 20 and 200 cm, equivalent to 

10 to 100% of the total environment length, while keeping the peak value at a ΔF/F of 1.3 (see 

S Fig 2.4 for example place cells). For the Peak, Stability and Information methods, varying 

place cell width did not materially affect sensitivity. However, the sensitivity of the 

Combination method was generally lower than the other methods, only approaching their 

sensitivity for place fields between 80 and 120 cm, and failing to detect any place field 

narrower than 40 cm or broader than 160 cm. Specificity of place cell detection was high for 

the Peak, Combination and Information methods and unaffected by the place field width, 

whereas it was generally lower when using the Stability method (Fig 2.2D). It increased linearly 

with place field width for this method, presumably because the correlation between the 

fluorescence maps of the non-place cells and place cells decreases as the width increases. 



47 
 

 

Fig 2.2 Place cell model and its effect on place cell detection. (A) Gaussian model of the fluorescence of a place field 

depending on the location (x-axis). The model takes the following parameters: the centre of the place field (red 

dashed line), the place field width (purple dashed line) and the peak of the Gaussian (green dashed line). (B) example 

fluorescence profile over time of a model data set containing 20 place cells (cells 1-20) and 80 non-place cells (cells 

21-100), generated using the location trace shown. (C, E) Specificity and (D, F) sensitivity of the different methods as 

a function of the place field width (C, D) or peak (E, F). Note in D all methods except the Combination method had a 

sensitivity of 1 across all widths, and the lines overlap. In E there is similar overlap for peak values above 0.1. Data 

are means of 10 simulations. Error bars represent 95% confidence intervals. 

We then varied the peak of the place field between a ΔF/F of 0.0001 and 2 (equivalent to 

0.008% to 155% of the average fluorescence map peak measured in our two-photon data), 

keeping the place field width at 50 cm. Sensitivity was only affected using the Peak, Stability 
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and Information methods at extremely low, and therefore unrealistic, peak values (< 0.1, or  

fewer than 8% of peaks in our real data; Fig 2.2E). The sensitivity for the Combination method 

was generally lower and increased with place cell peak size. The specificity was not affected by 

changes in peak values for any of the methods (Fig 2.2F).  

Next, we varied the number of place fields for each place cell, up to 4 place fields per cell (S Fig 

2.5). The Peak, Stability and Information methods were able to identify the model place cells, 

regardless of the number of place fields, with a high sensitivity, while the Combination method 

showed a dramatic drop in sensitivity above 2 place fields. Specificity was relatively unaffected 

in all methods by increasing the number of place fields, though was maximal using the Stability 

method when cells had 4 place fields.  

Finally, we varied both the place field width and peak values at the same time (S Fig 2.6). The 

results reflect those when varying each parameter individually, illustrating the high general 

sensitivity of the Peak, Stability and Information methods and the much narrower performance 

of the Combination method, which has high sensitivity at only a narrow range of widths and 

with high peak fluorescence values. Conversely specificity is high overall for the Peak, 

Combination, and Information methods, but for the Stability method is lower across the range 

of parameters tested and lowest for narrow place fields.  

In summary, the Combination method detected fewer model place cells and was the most 

affected by realistic variations in place field properties, while the Stability method classified 

more non-place cells as place cells and this tendency increased with narrower place fields. 

Both the Peak and Information methods were sensitive and specific over the whole range of 

place field properties tested, though the Peak method slightly outperformed the Information 

method, having a higher specificity. 
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2.4.2 Variability and reliability decrease detection of model place cells, particularly by 

the Combination method 

Because, physiologically, cells do not fire with identical profiles to repeated presentations of a 

stimulus [171], we simulated how the inherent variability of place cells affected their detection 

by the different methods. We manipulated the reliability of place cell responses by varying the 

percentage of traversals in which they fired (Fig 2.3A) and the location of the place field 

centre, by shifting the position of the activation peak with respect to the average firing field a 

percentage of the place field width (Fig 2.3B). The exact traversals that cells fired in were 

uniformly randomized, while the exact deviation of the place field centre was randomized 

using a Gaussian probability curve, and was repeated 10 times for each parameter. 
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Fig 2.3 Place cell identification in variable and unreliable place cells. (A) Fluorescence map for a place cell with a 

reliability of 40% (B) Sensitivity of methods as a function of the reliability of a place cell. (C) Specificity of methods as 

a function of reliability. (D) Fluorescence map for a place cell with 60% variability. (E) Sensitivity of methods as a 

function of the variability of a cell’s place field across different traversals. (F) Specificity of methods as a function of 

variability. (G) Surface plots of the sensitivity of each method as a function of both reliability and variability. (H) 

Surface plots of the specificity of each method as a function of both reliability and variability. Grey points in A and D 

indicate the mouse did was not recorded at that location in that particular traversal, due to the limited frame rate of 

our recordings. Data shown are the means of 10 randomly created datasets, with the error bars representing 95% 

confidence intervals. 
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The Peak, Stability and Information methods increased their sensitivity as cells became more 

reliable, reaching a maximum when cells fired in over 30% of traversals. The Combination 

method also increased in sensitivity with increased reliability, but at a slower rate, reaching a 

lower maximum sensitivity only when cells fired in 100% of traversals (Fig 2.3C). Varying 

reliability did not affect the specificity of any of the methods (Fig 2.3D). The effect of reliability 

on the Peak and Information methods comes not from any explicit comparison of cells across 

traversals, but because unreliability decreases the size of the place field peak in the average 

fluorescence map, due to the existence of traversals in which the cell is inactive. 

Increased variability of the location of the place field centre caused a reduction of sensitivity 

above 50% variability for the Peak and Combination methods, above 80% variability for the 

Stability method, and above 120% for the Information method (Fig 2.3E). Specificity of all 

methods was again unaffected by changes in variability (Fig 2.3F).  

When changing both the variability and reliability, results were again similar to varying each 

individually, with maximal sensitivity for all methods occurring when cells had high reliability 

and low variability (Fig 2.3G), and stability being similar across all conditions (Fig 2.3H).  

Overall, the Information method had the highest sensitivity, especially across highly variable 

model cells. However, its specificity was lower across the board than the Peak method, for 

which the sensitivity was lower at a high variability. This difference is likely due to the 

respective percentile thresholds (99th for the Peak method and 95th for the Information). The 

response pattern of the Peak method is arguably preferable in this instance, as highly variable 

cells which are active in different locations from traversal to traversal do not fit within what is 

understood to be a place cell. Conversely, the Combination method’s sensitivity was decreased 

by even small decreases in reliability, while the Stability method was more robust than the 

Peak method to high variability, but less so compared to the Information method, and had low 

overall specificity.  
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2.4.3 Place cell parameters affect methods differently in variable populations 
 

Although the modulation of the various place cell parameters (peak, width, reliability and 

variability) illustrate the effect of the singular parameters on the performance of the methods, 

having the same parameter setting for each place cell is unlikely to reflect real place cell 

populations. Moreover, we only combined 2 subsets of parameters (peak and width, reliability 

and variability), but not all four. Therefore, to mimic a more realistic model population, we 

performed a further simulation, where we randomly selected a place field peak, width, 

variability and reliability for each individual cell of the population (Fig 2.4A). As a result, each of 

the 100 cells in the population had a different combination of these parameters. In this 

simulation, we did not include control cells, as we expected enough modelled cells to behave 

unlike place cells (i.e. those with a low reliability, high variability, low peak and/or high width, 

Fig 2.4B). We repeated this simulation 20 times, each time determining the percentage of cells 

classified as place cells by each of the methods. 

 

We found a significant difference in the number of place cells identified by each of the 

methods (Fig 2.4C, p=1.14x10-14, repeated measures ANOVA), with the Information method 

detecting the highest number (65.6 +/- 5.7% (mean +/- std)), followed by the Peak method 

(40.2 +/- 5.3%) and the Stability method (27.8 +/- 3.4%), while the Combination method only 

classified 10.2 +/- 3.4% of cells as place cells. Interestingly, despite the Stability method having 

a high sensitivity and low specificity in the previous simulations, this method classified a lower 

number of cells as place cells compared to the Peak and Information methods, which 

previously had a higher specificity. This is likely because the increased variability of the 

population will cause an increase in the intercell correlation compared to the simulations 

where the place fields were all strictly in different positions and equidistant from each other. 

This will therefore cause an increase in the correlation threshold required for cells to be 



53 
 

included as place cells, and thus an increase in specificity and decrease in sensitivity, resulting 

in a lower number of cells included as place cells overall. At the same time, on average the 

place cells will be less correlated than in our previous simulations, where cells always were 

highly consistent in all but the manipulated variable, and thus fewer are presumably 

sufficiently correlated to be classified as place cells (e.g. many will have higher variability and 

lower reliability so activity will vary from traversal to traversal). 

 

We were interested to see if the same model place cells were identified by the different 

methods, or if different methods identified independent populations. To this end, we 

determined the overlap between each of the methods (Fig 2.4D), and compared this to the 

overlap expected by chance. All combinations of methods had a higher overlap than expected 

by chance (Fig 4D, p=4.4x10-15, p=2.2x10-10, p=2.2x10-16, p=5.8x10-10, p=4.4x10-15, p=2.1x10-10 

for the Peak-Stability, Peak-Combination, Peak-Information, Stability-Combination, Stability-

Information and Combination-Information comparisons respectively, paired t-tests with Holm-

Bonferroni correction for multiple comparisons), indicating that an overlapping population of 

cells were identified as place cells by the different methods. 

 

Lastly, we examined how the various place field parameters affected the percentage of cells 

identified by the methods. For each population, we determined the percentage of cells with a 

particular value for each parameter (e.g. all cells with a width of 100 cm, regardless of the 

values for the other parameters) that were identified as place cells. This illustrates again the 

difference in the percentage of cells identified by each method (Fig 2.4E-H), but shows that the 

effect of the parameters is largely the same across the methods (e.g. increasing place field 

width decreases the number of place cells identified by each method). In addition, the way 

each parameter affected the percentage of place cells showed a similar trend to the effect of 

these parameters on the sensitivity in the previous model (Figs 2.2 and 2.3), though the 
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maximum percentage of place cells detected is lower in each case than the suggested by the 

sensitivity. This is presumably due to the increased sources of variation in the place cell activity 

in this simulation: a cell with optimal reliability is likely to be sub-optimal in the other 

parameters. The notable exception to this is the Combination method, which previously only 

identified cells as place cells when their field width was within a window between 20 and 120 

cm (Fig 2.2C). In this latest simulation, however, no such defined window exists and, like the 

other methods, the number of cells decreases gradually as place field width decreases. This is 

likely because a place cell with a small place field but a high variability can still be classified as a 

place cell by the Combination method, as increased variability will cause the place field in the 

average fluorescence map to seem wider, as illustrated in S Fig 2.3M, so that it falls within the 

window for detection. 
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Fig 2.4 Place cell identification in modelled populations. (A) Example place cell with a width of 20 cm, a peak 

fluorescence of 2, a reliability of 50% and a variability of 40%. (B) Fluorescence maps over location of example 

population ordered by the location of the highest fluorescence peak in the fluorescence map. (C) Percentage of 

modelled cells identified as place cells by the methods. (D) Comparison of percentage of modelled cells identified as 

place cells by two methods. P-values from comparison between observed and expected overlap, using paired t-tests 

with Holm-Bonferroni correction for multiple comparisons. The percentage of cells classified as place cells by the four 

methods depending on its (E) width, (F) peak, (G) reliability and (H) variability. For C and D, each data point is a 

repeat, bars show means, with error bars showing 95% confidence intervals. 

2.4.4 The Information method detects the most place cells in real datasets 

The performance of the different methods of place cell detection on model data predicts that, 

on real datasets, the Peak method will have the highest sensitivity and specificity, with the 

Combination method being less sensitive and the Stability method often being less specific. 

This would suggest that in a real dataset, the Combination method would identify fewer place 

cells than the other two methods, while the Stability method, because it has a higher false 

positive rate on model data, might (inaccurately) detect more cells than the Peak method. 

To test this, we collected neuronal calcium data from the stratum pyramidale of dorsal CA1 in 

4 mice (8 imaging sessions in total) traversing through a 1D virtual reality corridor of 200 cm 

(Fig 2.5A). We applied each of the four methods to these data to identify which cells could be 

categorised as place cells (Fig 2.5B). There was a highly significant difference in the percentage 

of cells classed as place cells by the different methods (p =1.35x10-9, linear mixed-effects 

model with method as a fixed-effect and mouse ID, with session number nested, as a random 

effect), with the Information method detecting the highest number (47.0 +/- 12.2% (mean +/- 

std)), followed by the Peak method (34.5 +/- 11.1%) and the Stability method (16.5+/- 8.8%), 

while the Combination method only classified 3.9 +/- 1.9% of cells as place cells. The properties 

of these cells can be seen in an example recording showing the fluorescence maps of all cells, 

ordered by location (Fig 2.5C). In addition, the populations of cells identified by each of the 
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methods are shown Fig 2.5D-G). Although no ground-truth exists for what should be included 

as a place cell, most identified cells seem to have place fields, suggesting classifications are 

largely appropriate.  



58 
 

 



59 
 

Fig 2.5 Place cell identification in real datasets. (A) Two-photon recording of GCaMP6f in pyramidal cells. Image is a 

standard deviation Z projection of a single recording. (B) Percentage of ROIs identified as place cells by the methods. 

(C) Fluorescence maps over location of all ROIs in an example recording. Cells in this recording identified as place 

cells by (D) Peak, (E) Stability, (F) Combination and (G) Information methods. (H) Comparison of percentage of ROIs 

identified as place cells by two methods. P-values from comparison between observed and expected overlap, using 

paired t-tests with Holm-Bonferroni correction for multiple comparisons. (I) Two photon image from A showing ROIs 

identified as place cells by the four methods. For B and H, each data point is a recording, bars show means, with 

error bars showing 95% confidence intervals. 

2.4.5 Differences between detection in modelled and real data 
 

Based on the results from our modelled datasets, we expected the Stability method to classify 

more cells in a real dataset as place cells than the Peak or Information methods, but in fact it 

identified significantly fewer (p=0.0012 and p<0.0001 respectively, Tukey post-hoc 

comparison). We probed the reasons for this difference both by modulating the properties of 

the modelled cells and inspecting examples of real cells identified differently by the different 

methods. Because the Stability method compares the activity of each cell to that of other cells 

in the population, while the Peak and Information methods compare each cell to a shifted 

version of themselves, the properties of non-place cells could preferentially affect the 

performance of the Stability method. We therefore modulated the number and firing 

properties of the modelled non-place cells to see if this reduced the number of cells identified 

by the Stability method. Increasing the percentage of place cells and adding random calcium 

peaks to the non-place cells resulted in an increase in specificity (S Fig 2.7A-F), likely because it 

decreased the correlation of the fluorescence maps of the first and second halves of the 

sessions for the non-place cells. In addition, we tested the effect of having a population with 

fully overlapping place fields, which again caused an increase in specificity (S Fig 2.7G-I). Lastly, 

adding in random calcium peaks to the place cells in addition to the non-place cells caused a 

similar increase in specificity for the Stability as adding them only to non-place cells (S Fig 2.7J-
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L). Although these factors decrease the overall number of place cells detected by the Stability 

method, due to the reduction of false positives, this could not wholly account for the observed 

decrease in cells detected in real data compared to the other methods. 

Visual inspection of the firing properties of cells identified by the Peak and Information 

methods, but not by the Stability method, however, showed that the difference in detection is 

caused largely by cells that have different place fields at different times in the session (S Fig 

2.8), in addition to cases where cells either gain or lose a place field during the session.  The 

Stability method fails to identify these cells, because their mean activity over location for the 

first half of the session is different from the second. This type of structured variation in the 

place field location was not captured by our simulations of place field activity, because 

reliability and variability were varied randomly, which did not affect the ability of the Stability 

method to detect place cells. Minor changes to the Stability method or experimental design 

should prevent this effect, for example by comparing odd to even traversals, or by adding a 

familiarisation period for the animals at the start of each session which could ensure place 

fields are more stable when the experiment begins. In addition, a paradigm where the animals 

repeatedly enter the environment, as is the case in our experiment because traversals are 

separated by a tunnel, may induce switching between concurrent spatial maps [24], thus 

decreasing the overall stability of the cells. However, it is an open question whether some of 

the cells identified by the Peak and Information methods should really be classified as place 

cells, for example those with unstable place fields over the session.   

 

2.4.6 Different populations of real CA1 pyramidal cells are identified as place cells by 

the different methods 
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To understand whether the different methods simply identify more or fewer of the same 

population of cells as place cells, we determined the percentage of all ROIs that were 

identified by two methods. Only 1.1% of cells were classed as place cells by all four methods. 

11.1 +/- 7.6% of ROIs were identified as place cells by both the Peak and Stability methods (Fig 

2.5H), while only 2.8 +/- 2.2% of ROIs were identified as place cells by the Peak and 

Combination methods. The Peak method showed a large overlap with the Information 

method, with 28.7 +/- 11.2% of cells identified as place cells in both methods. Only 1.1 +/- 

1.2% of cells were classed as place cells in both the Stability and Combination methods, while 

12.8 +/- 9.3% of cells were identified as place cells in both the Stability and Information 

methods. The information and Combination methods identified 3.2 +/- 1.6% as place cells. 

These overlaps were significantly different between pairs of methods, when corrected for 

expected overlap given the different percentages of cells identified by each method (p=0.0014, 

linear mixed-effects model with method as a fixed-effect, expected overlap as a covariate and 

mouse ID, with session number nested, as random effects). This significant difference is due to 

a higher overlap between the Peak and Information methods compared to the other 

combinations of methods (p=0.075, p=0.01, p=0.003, p=0.002, p=0.004 compared to Peak-

Stability, Peak-Combination, Stability-Combination, Stability-Information and Combination-

Information respectively, Tukey post-hoc comparison). Indeed, we only observed a significant 

different overlap from the expected overlap by chance for the Peak-Information comparison 

(p<0.0001, Tukey post-hoc comparison), but not for any of the other comparisons (p=0.059, 

p=0.59, p=0.88, p=0.084 and p=0.62 for the Peak-Stability, Peak-Combination, Stability-

Combination, Stability-Information and Combination-Information comparisons respectively)  

This suggests that the Peak and Information methods identify an overlapping population of 

cells, but this population is independent of the cells identified by the other two methods. 

These results are notably different from our findings in the simulated populations (Fig 2.4), 

where all methods identified an overlapping population of cells. This suggests that additional 
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variation is present in the real data that we did not capture in our datasets, but that influences 

place cell identification by the different methods. Such variation could include out of field 

firing or structured variations in the place field over a session, as demonstrated in S Fig 2.8. 

2.4.7 Identified place cell populations differ on key characteristics 

To better understand the nature of the different populations of cells identified by each 

method, we characterised their properties, comparing basic physical features, and functional 

characteristics. Place cells and non-place cells identified by the different methods were of 

similar sizes (Fig 2.6A; a smaller size could indicate a noisier image and a higher chance that 

the automated cell detection by Suite2P had made a mistake as identifying it as a cell). Place 

cells and non-place cells identified by all methods were also similarly active, as assessed by 

both mean and maximum spiking rate (Fig 2.6B and C, calculated from the fluorescence profile 

[172]). 
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Fig 2.6 Characteristics of place cell populations. (A) The ROI size, as a percentage of the size of the largest ROI in 

that recording, of the place cell and non-place cell population in the three methods. (B) Mean spiking rate of place 

cells and non-place cells. (C) Maximum spiking rate of place cells and non-place cells. (D) Mutual information 

between cell activity and location for each classification by the three methods. (E) Mean distance between the 

centroids of the place cells (pink), and the distance from place cells to non-place cells (blue). (F) Peak intensity in the 

fluorescence maps, the main characteristic used in the Peak method. (G) Intrasession stability, measured using the 

Pearson correlation coefficient, between the fluorescence map of the 1st half and the fluorescence map of the 2nd 

half for place cell and non-place cell, the main characteristic used in the Stability method. Percentile of (H) peak 

intensity and (I) intrasession stability compared to shuffled controls. (J) Correlation between percentile of peak 

intensity and intrasession stability for all cells. In J, each colour indicates a single dataset. For the other figures, bars 

are the means of 8 datasets, black dots are values for each individual dataset and error bars represent the 95% 

confidence interval. P-values for A-I are from multiple paired t-tests with Bonferroni-Holm correction. 

To investigate the information about location carried in place or non-place cells identified by 

the different methods, we calculated the mutual information between the cell’s activity and 

the animal’s location, providing an approximation of the spatial information carried in each 

cell’s calcium signals [173–175]. More spatial information was carried in place cells identified 

by the Peak and Information method compared to non-place cells, but there was no difference 

in mutual information held by the place cell and non-place cell populations for the Stability or 

Combination methods (Fig 2.6D). This is likely because cells containing spatial information that 

the Peak and Information methods would call place cells are classified as non-place cells using 

the Stability or Combination method. However, even the cells classified as non-place cells in 

the Peak and Information method contain some level of spatial information. Indeed, a previous 

study found that cells may convey information about location without being defined as a place 

cell [176]. For example, a cell whose activity ramps up gradually as the mouse progresses 

through the environment does not have a clear place field and will not be included as such in 

these methods but does communicate substantial spatial information. 

Place cells exhibit no particular spatial organisation [35], and any such organisation compared 

to non-place cells might indicate an unwanted selection by one of the methods, e.g. based on 
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illumination levels in one part of the field of view. Therefore, we determined the physical 

location of the detected place cells within the field of view of the recording. We expect the 

place cells and non-place cells to be randomly distributed within the field of view, as previously 

reported [35]. We determined the location of the centroid of each cell, labelled them as either 

place cell or non-place cell according to the different methods and then determined the 

distance from each place cell to all other place cells, and each place cell to all other non-place 

cells (Fig 2.6E). Place cells were no more similar in location to other place cells than to non-

place cells for any of the methods, suggesting that place cell detection is not being influenced 

by position within the field of view.  

2.4.8 Dependence of place cell detection on model parameters 
 

The lack of overlap between cells identified by the different methods suggests that they 

identify fundamentally different populations of cells as being place cells, i.e. there is not a 

single population of cells that fits all the different definitions of place cells used by the 

different methods. To explicitly test for this, we calculated the extent to which the parameters 

which underlie classification for the Peak and Stability (peak intensity and correlation in firing 

across the session, respectively) were represented in the groups of place cells that were 

selected by each other method (The Combination method uses several parameters so could 

not be analysed in this way, and the parameter for the Information method was already 

compared by testing the mutual information). The Peak and Information methods had 

significantly higher peak intensity in the place cell group compared to the non-place cells (Fig 

2.6F), while there was no difference between the place and non-place cells for the Stability and 

Combination methods.  

Place cells identified by all methods had an increased correlation in activity across the session 

in place cells compared to non-place cells – i.e. they were more stable (Fig 2.6G). Thus, the 

Peak, Combination and Information methods also selects for stable cells – likely because stable 
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place cells are consistently active in the same location across traversals, yielding on average a 

robust peak, which in turns leads to increased spatial information.  

Though both the peak intensity and stability are parameters used as a measure to identify 

place cells in their respective methods, the Peak method compares the values of each 

individual cell to the peaks of shuffled versions of that same cell, while the Stability method 

compares the correlation to randomly selected other cells, rather than comparing the values 

to an absolute threshold. This means that place cells are not necessarily the cells with the 

highest absolute peaks or highest correlation, but rather the highest value relative to their own 

shuffled controls. Therefore, we calculated the percentile these values fell in, relative to the 

shuffled controls, for each cell. Place cells identified by all methods had an increased 

percentile score for both the stability and the peak parameters (Fig 2.6H and I). 

To understand why the methods select place cell populations with similar peak intensity and 

stability, we determined to what extent the parameters used to define place cells were 

independent from each other. We correlated the percentiles for the peak intensity and intra-

session correlation for each cell across all datasets (Fig 2.6J). There was a small but significant 

correlation between the percentiles for peak fluorescence and intra-session correlation 

(Pearson correlation coefficient, R=0.13, p=3.7x10-5). Although this suggests the two measures 

are not completely independent – cells with high peak values have a tendency to have more 

highly-correlated firing patterns within a session – we did not see this reflected in the overlap 

between the methods (Fig 2.4H, S Fig 2.7H). This may be because the correlation coefficient 

between peak intensity and intra-session correlation is too low to have an impact. In addition, 

it may be the case that the more correlated cells are not the same as those that reach the 

threshold for inclusion as a place cell in one or both methods, so are not reflected in the place 

cell overlap. 
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2.4.9 Optimisation of the Combination method 

The Combination method identified many fewer cells in our data than in previously 

publications [35,165] or the other two methods applied here. We wondered if this could be 

due to the number of thresholds the Combination method applies, ([35,165] code to 

implement the Combination method shared by the authors), requiring putative place cells to 

fall within specific parameter ranges. These were presumably optimised for the published 

datasets and may make the method less transferable to other datasets. To test this, we 

investigated how varying these parameters and thresholds affected place cell detection in our 

model and experimental datasets (S Fig 2.9; Methods). Sensitivity for detecting model place 

cells could be improved by increasing the threshold for place field fluorescence compared to 

baseline (S Fig 2.9B) or reducing the threshold in-field/out-field fluorescence ratio to 2 (S Fig 

2.9E), but neither modification caused a substantial increase in the number of cells classed as 

place cells in experimental data (3.9%; S Fig 2.9G). Instead, the critical feature of the 

Combination method is the bootstrapping method, which splits the fluorescence data into 

chunks and shuffles them. Cells are only classed as place cells if fewer than 5% of that cell’s 

shuffles also fit the classification criteria. If we replaced the bootstrapping methods from the 

Combination method with that of the Peak method, which instead offsets fluorescence traces 

relative to time, causing more disruption to the association between fluorescence and 

location, we identified 14.8% of ROIs in our experimental data as place cells (S Fig 2.9G), which 

is within the published range using the Combination method [35], though below the numbers 

identified by the Peak or Information methods in our data (Fig 2.5B). Some of these newly 

identified cells now overlapped with those identified by other methods, 9.3% of all ROIs now 

overlapping with cells identified by the Peak method,5.6% overlapping with those identified 

with the Stability method (S Fig 2.9H), and 11.7% with the Information method. Therefore, 

when using the new bootstrapping method, around 75% of PCs identified by the Combination 

method were also identified by the Peak method. However, the levels of overlap between the 
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Combination method and the other methods were still as expected given the frequency of 

detection by each method (p=0.17, p=0.30, p=0.10 for the Peak-Combination, Stability-

Combination and Combination-Information comparisons respectively, Tukey post-hoc 

comparison following a linear mixed-effects model with method as a fixed-effect and mouse 

ID, with session number nested, as a random effect). This means that the cells identified by 

each method are still likely to be from independent populations (i.e. if a cell is classified as a 

place cell by one method that does not increase its chance of being classified as a place cell by 

another method). 

2.5 Discussion 

We compared four different methods for detecting place cells in two-photon calcium imaging 

data from mice running through a one-dimensional environment, comparing sensitivity and 

specificity of the different methods to model cell data, and whether they identified the same 

real populations of cells as place cells. The methods performed very differently at detecting 

model place cells and were differentially sensitive to changing parameters (e.g. number of 

traversals of the environment, place cell width, consistency of firing). This suggested that 

variability in firing properties across real hippocampal CA1 pyramidal cells would lead to 

different cells being classified as place cells by the different methods. This proved to be the 

case: there was very little overlap in real CA1 place cell populations classified by the different 

methods, except for the Peak and Information methods, which largely overlapped, because 

the key features used by the different methods to classify place cells proved only weakly 

correlated. When research groups use these different methods to detect place cells, they 

therefore identify and study largely independent populations of cells. Researchers should 

therefore explicitly consider the properties they are selecting for when choosing a place cell 

detection method, as this decision will determine which cells they do and do not select. In the 

future, use of a single method across different groups would better allow comparison of 
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results across the field. The increased selectivity and specificity of both the Peak and 

Information method when using model data, leads us to conclude that these methods will 

usually be the best for detecting place cells in calcium imaging data. However, compared to 

the Information method, the Peak method does not inherently make assumptions regarding 

the spatial information held by potential place (or non-place) cells, and this neutrality to the 

information contained within the activity better reflects the capacity of cells without a clear 

location peak to contain spatial information [176]. Finally, the Peak method has previously 

been successfully employed to detect place cells in electrophysiological recordings [24], 

making it widely applicable beyond two-photon recordings. Therefore, we believe the Peak 

method will usually be the preferred method for place cell classification. Nevertheless, some 

curation of detected cells may still be desirable, as some cells identified by the Peak method 

showed unstable firing patterns that may be considered too dissimilar to the firing properties 

of a traditional place cell. 

2.5.1 What is a place cell? 

Because our results reveal that the choice of detection method will determine the population 

of cells identified as place cells by a given experiment, it is important to consider what the 

“desirable” properties of a place cell are, and whether the different classification methods 

detect these properties. O’Keefe’s first description of place cells defined them as “those for 

which the rat's position on the maze was a necessary condition for maximal unit firing.” [23]. 

Of the four methods we assess here, the Peak method comes perhaps closest to this original 

definition, requiring cells to have high and consistent firing in one location compared to others, 

by statistically comparing whether the peak response consistently occurs at the same location. 

The Combination method achieves something similar by requiring firing to be above a certain 

threshold for a defined range of place field sizes, while the Stability method only requires the 

firing pattern to be stable over location and time without the explicit requirement for the peak 
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to be highest in one location. The Information method uses the spatial information, which 

does capture the definition, but also makes the assumption that place cells always have an 

increased amount of spatial information, which is not necessarily the case  [176]. For example, 

cells’ activity could ramp over space, thus containing spatial information without having a clear 

peak in activity in a given location. 

 

The reason for the divergence of place cell definitions from the initial more constrained 

description is the increased emergence of variability in “place cell” properties.  We now know 

that the size, shape, number and stability of place fields are not constant but can be affected 

by the environment and where in CA1 they are recorded: Place fields are wider, and more 

numerous, in larger environments, more stable in the presence of cues and smaller and less 

spatially selective in dorsal vs. medial CA1 [10,25,177–179]. Clearly methods that discriminate 

place from non-place cells according to a rigid interpretation of the “classic” definition will 

miss cells with these more variable properties. Indeed, we found that the Combination method 

has a lower sensitivity to detect cells with a place field outside a narrow range (100-120 cm), 

and failed to detect place cells as variability of place field position increased or reliability of 

firing reduced. Thus, we predict that experimental manipulations that alter the size of the 

environment and number of cues provided would reduce the number of place cells identified 

using the Combination method, but not using the Peak method.  

 

Similar changes in place cell properties can occur due to the method of acquiring neural data, 

impacting on which might be the most appropriate method to choose to detect these cells. 

Many experiments that record the activity of large populations of cells, either using calcium 

imaging, as here, or multi-channel electrode arrays are conducted in head-restrained mice, 

while the animals are running on a 1D linear track [35,54,127,147]. These conditions likely 

cause place cells in our experiments to have broader place fields than in real world 
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environments [119,149], and to be more directionally-sensitive, due to the 1D nature of our 

linear track [35,180]. The place cell detection method used for such imaging data therefore 

needs to recognise these less sharply tuned activity patterns. Both the Peak and Information 

methods found larger numbers of place cells in the experimental data, and selected cells which 

were both relatively stable and spatially selective. This increased number selected as place 

cells in our head-restrained imaging data occurred perhaps because of their broader spatial 

selectivity compared to classic tetrode recordings, suggesting that similar studies using head-

fixed mice and linear tracks would also miss spatially-selective cells if a more conservative 

method were employed.   

 

Less controllable variations in experiments between labs, for example the amount the mice 

run in an experiment, will also differentially affect the number of cells classed as place cells by 

the different methods. Our simulations suggested that all four methods would be more 

sensitive at detecting place cells as mice made more traversals of the environment, but the 

Combination method would miss cells with even relatively high numbers of traversals (missing 

over 50% of cells when 10 traversals were made). Furthermore, the Stability method 

increasingly falsely characterised non-place cells as place cells as the number of traversals 

increased, because non-place cells had higher intracell correlations as the number of traversals 

increased. Thus, only the Peak and Information methods could correctly identify place cells 

with low or high numbers of traversals. Choice of place cell categorisation method will 

therefore clearly affect the number of cells identified in experiments where animals run to 

different degrees. Crucially, however, the confounding of place cell identification with running 

behaviour in 2 of the 3 methods could lead to inaccurate conclusions about how experimental 

manipulations affect place coding. If, for example, mice of a certain genotype run less, 

generating fewer traversals, they could appear to have fewer place cells using the Combination 
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method, or more place cells if using the Stability method, without the number of “true” place 

cells having changed.  

In this study, we only investigated the effect of varying the number of traversals on place cell 

detection, but other characteristics of the locomotion may also have an effect, for example 

running speed or the amount of starting and stopping. As these effects may interact with the 

environment or task, (for example, mice slowing down before a reward delivery), we suggest 

testing the performance of a chosen method of place cell detection on a model dataset with 

the expected locomotion characteristics before using it to detect place cells experimentally. 

We provide source code (https://github.com/DoriMG/place_cell_methods) to facilitate this 

process, into which experiment-specific patterns of locomotion can be loaded and used to 

predict place cell detection using the four methods described here. 

Lastly, in our simulations we modelled each cell independently. By modelling our cells this way, 

we are potentially missing out on network dynamics within the population, where cells fire 

dependently of each other, or are synchronously affected by a third factor, such as global theta 

oscillations. However, because each cell is individually evaluated in the Peak, Combination and 

Information methods, these methods will not be affected by such dynamics, and as such 

adding network dynamics to our models would not affect these results. In the case of the 

Stability method, the cells are compared to shuffles across the population, and both the 

sensitivity and the specificity of this method will very likely be affected by network dynamics. 

An increased correlation across the population will cause an increase in the shuffled 

correlation, thus a higher threshold for intracell correlation for cells to be classified as a place 

cell. If the increase in threshold is large enough, the sensitivity of the Stability method will 

therefore decrease, classifying fewer place cells, while increasing the specificity, meaning 

fewer non-place cells will be falsely marked as place cells. Indeed, we saw a similar effect on 
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specificity for the Stability method when all place fields in the population were in the same 

location, causing an increased correlation across the population (S7 Fig I). 

In addition to correlations of activity across the population of pyramidal cells, network 

dynamics may also cause the activity of a cell in a given traversal to depend on its own prior 

activity (e.g. if a cell fires in traversal n, it might be more likely to fire in traversal n+1). Such an 

intracell dependence will affect the Peak, Combination and Information methods in the same 

way as they are affected by altering the reliability (i.e. how much activity varies across location 

across all traversals), as these methods classify place cells based on the average fluorescence 

map across all traversals, and do not take individual traversals into account. However, the 

Stability method may be affected if such dependency between traversals causes a cell to lose 

or gain a place field, or if the place field shifts position between the first and second half of the 

session, as demonstrated in S8 Fig. Therefore, if one expects strong network dynamics to be 

present in a population of place cells, we recommend using caution when employing the 

Stability method. 

In conclusion, because place cells have a more variable activity pattern than was originally 

thought, particularly across the large populations and range of experimental paradigms 

permitted by calcium imaging, classification methods should be sufficiently able to identify 

cells that vary in terms of the size, and reliability and variability of their place field location. 

However, the different methods we tested select largely different populations of cells which 

differ in key characteristics, highlighting that choice of place cell classification method is critical 

for the conclusions a study will draw as to the nature of place cells. We provide model place 

cell code to help researchers test their how their chosen methods or experimental 

manipulations might affect detection and the properties of place cells in their data. However, 

we suggest that consensus in the field for an identification method would help inter-study 

comparability. Overall, we found that the Peak method demonstrated the optimal high 
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selectivity and specificity for selecting model place cells that was robust to moderate changes 

in place field properties but decreased appropriately as the reliability and variability for the 

place field decreased. It detected many place cells in a real dataset and these cells carried 

more mutual information about location than non-place cells, but without the concerns of 

false positives of the Information method. The Peak method has previously been successfully 

applied to electrophysiological recordings [55], and we therefore would predict that the 

properties of place cells in imaging data detected using the Peak method will most accurately 

reflect the properties of place cells detected in a similar manner in electrophysiological 

studies. Because of its simplicity and lack of assumptions about the spatial information held by 

place and non-place cells, for most experimental designs we would therefore recommend use 

of the Peak method for classifying place cells in calcium imaging data, but advise that 

whichever method is chosen, experimenters consider the likely impact of that method choice 

on the cells identified. 

2.6 Materials and Methods 

2.6.1 Ethics Statement 

Experiments were approved by the UK Home Office, in accordance with the 1986 Animal 

(Scientific Procedures) Act as well as the University of Sussex Animal Welfare Ethical Review 

Board.  

2.6.2 Animals 

Experiments used four C57/BL6 mice (2 female, 2 male) expressing the genetically-encoded 

calcium indicator GCaMP6f under the control of a Thy-1 promoter (C57BL/6J-Tg(Thy1-

GCaMP6f)GP5.5Dkim/J). The mice were housed in a 12h reverse dark/light cycle environment 

at a temperature of 22°C and were given ad libitum access to food and water. 
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2.6.3 Hippocampal cranial window surgery 

Surgery was performed when mice were a minimum age of eight weeks. Before surgery, mice 

received subcutaneous injections of dexamethasone (60 μL, 2mg/mL), saline (400 μL) and 

buprenorphine (40 μL, 0.3mg/mL diluted 1:10 in saline) to reduce inflammation, for hydration, 

and pain relief respectively. Mice were maintained at 0.8-2.0% isofluorane anaesthesia for the 

duration of the surgery. Body temperature was maintained at 37 °C using a homeothermic 

blanket (PhysioSuite, Kent Scientific Corporation). A craniotomy was inserted above dorsal CA1 

as previously described [31]. Briefly, the skin above the skull was removed and the skull was 

scored to increase the surface area for binding dental cement. A custom-made stainless steel 

headplate was then fixed to the skull with black dental cement (Unifast Powder mixed with 

black ink (1:15 w/w) and Unifast Liquid). A 3 mm diameter craniotomy was then performed 

2mm posterior to bregma and 1.5 mm lateral to the sagittal suture. Following the removal of 

the skull flap and the dura, brain tissue overlying the hippocampus was aspirated (New Askir 

30, CA-MI Srl) until vertical striations of the corpus callosum were visible. We then inserted a 

custom 3D printed cannula (2.4 mm ID, 3 mm OD, 1.5 mm height) made of a biocompatible 

Dental SG resin (FormLabs) so that the glass coverslip at the bottom of the cannula lay directly 

on top of the brain tissue. The top of the cannula had a rim (0.2mm height, 3 mm OD) resting 

on top of the skull, which was attached using tissue adhesive (3M VetBond) and then covered 

with more dental cement. A rubber ring was then attached on top of the headplate for 

subsequent use as a well for the water needed for the water-immersion microscope objective. 

The mice were given an injection of meloxicam (125 μL, 5 mg/ml) as an analgesic near the end 

of the surgery and then received meloxicam (200 μL, 1.5 mg/mL) for 4 days following the 

surgery via oral admission. Their health was monitored and they were weighed daily.  
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2.6.4 Two-photon imaging 

Habituation. A week or more after surgery, the mouse was habituated to the imaging rig by 

head-fixing it for an increasing amount of time each day for at least a week before it was 

imaged. During the habituation it was also presented with the virtual reality environment 

several times to make it familiar with this setup. 

Imaging rig (S Fig 2.2). The mice were head-fixed above a polystyrene cylinder, on which they 

could run. The cylinder was fitted with a rotary encoder (Kübler, 4096 pulses per revolution). 

Two screens in front of the mice were used to display a custom virtual reality (VR) 

environment designed using ViRMEn [150]. 

Stimulus presentation. The virtual reality environment presented to the mice was a wide 

corridor, 200 cm long and 80 cm wide, with patterned walls (30 cm high) and floor (see S Fig 

2.2). Three sets of objects (spatial cues) were present outside the walls: blue square pillars 

with white stripes, light blue cones with white and gray diagonal stripes and grey cylinders 

with green dots. The objects were placed at 65 cm, 140 cm and 200 cm from the start of the 

corridor. All objects were 100 cm high and visible from the start of the arena. Both before and 

after the wide corridor was a dark grey tunnel with a diameter of 30 cm, 50 cm long before the 

corridor and 45 cm long after the corridor) which served to allow smooth transitions between 

multiple presentations of the environment. The mice were not required to perform a task 

while in the virtual environment.  

Data acquisition. The stratum pyramidale of dorsal CA1 was imaged using a two-photon 

microscope (Scientifica) with a water-immersion objective (CFl75 LWD 16X W, Nikon; 0.80 

numerical aperture, 3 mm working distance). GCaMP6f was excited using a Chameleon Vision 

II Ti:Sapphire laser (Coherent) at a wavelength of 940nm with a gallium arsenide phosphide 

photomultiplier tube. We used the ScanImage software (Vidrio Technologies, MATLAB) to 

control the microscope and collect data. The stratum pyramidale was identified from the 



77 
 

presence of densely packed cell bodies. Image acquisition used a wide field-of-view (547 x 547 

μm) at a low resolution to optimise the acquisition rate (128x128 pixels, 7.51Hz, pixel size 4.27 

μm). Sessions lasted between 44 and 45 minutes.  

2.6.5 Image Analysis 

Preprocessing. Preprocessing was conducted using Suite2P software [172]. Firstly, images were 

registered using the default settings, then regions of interest (ROIs) corresponding to 

pyramidal cell bodies were identified based on their morphology (having a diameter of 

approximately 2 pixels/8.5 μm) and a tau, the decay time for the calcium indicator, of 0.8. We 

trained a classifier by manually curating the detected ROIs based on the mean image of the 

original recording, the shape and the activity pattern of the ROI. On average 58 +/- 4% of ROIs 

were excluded per imaging session. We obtained the calcium signal corrected for neuropil 

activity for each ROI from the Suite2P output. 

For each ROI, fluorescence time courses were normalised to baseline fluorescence by dividing 

the whole trace by the average intensity in that ROI during the first 100 frames of the 

recording. For calculations of fluorescence maps, any frames where the mouse was stationary 

were excluded (defined as the speed being below 10 % of the maximum speed). 

An extra pre-processing step was used in Dombeck et al. [35] and associated papers, described 

in full in [160], so we at first used this step as well when replicating this method (hereafter 

referred to as the Combination method). After ROI extraction and normalisation the whole 

time series was divided by the baseline, which was defined as the 8th percentile of values in 

each ~15 second interval. Significant transients were then identified as calcium events that 

started when fluorescence deviated more than 2 standard deviations from the baseline and 

ended when the fluorescence returned to less than 0.5 standard deviations from the baseline. 

Fluorescence outside of the significant events was set to 0. However, we noticed that this 

preprocessing step led to place cell activity appearing negative, and thus these cells being 
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rejected, if their activity was shorter than 15s and occurred in the presence of a negative 

baseline. For our data, this led to all cells being rejected at this stage. We therefore did not use 

this preprocessing method in our analyses.  

Subsequently, to test whether the lack of preprocessing explained the low number of cells 

identified using this method, we amended the preprocessing method to correct for slow drifts 

in the baseline while preventing division by a negative baseline, by subtracting rather than 

dividing by the baseline. This caused a small but significant increase in the sensitivity of the 

Combination method compared to non-preprocessed traces (S Fig 2.9A). 

2.6.6 Model data generation 

We generated model place cells to test the performance of the place cell detection methods. 

Time series of calcium responses of model cells were generated using real locomotion traces of 

mice running through a linear virtual environment. 8 datasets containing 184 traversals were 

split into separate traversals and model locomotion traces were generated by randomly 

selecting the required number of traversals (each traversal could be selected more than once). 

Model place cell properties (described below) were convolved with these locomotion traces to 

generate a fluorescence map for each cell, with the same “frame rate” as used in the real 

imaging sessions used to acquire locomotion (7.51 Hz).  

For each dataset, we included 20 model place cells – in which fluorescence was modulated by 

spatial location – and 80 non-place cells – whose fluorescence was independent of location. 

This ratio was chosen to mimic the percentage of place cells typically reported in experiments 

using a one-dimensional track and two-photon microscopy [35]. The inclusion of non-place 

cells was crucial as some of the place cell detection methods use comparisons with other cells 

in their definition, and thus rely on the population containing non-place cells as well as place 

cells. 
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For the model place cells each place field was modelled as a 1D Gaussian field centred at a 

randomly selected location (Fig 2.2A). The sigma of the Gaussian was set to 12.5 cm, such that 

95% of values – 4 times sigma – fall within the place field width of 50 cm, the average place 

field width reported by Dombeck et al. [35]. The peak of the Gaussian (1.3) was determined 

using the top 10% of each cell’s fluorescence in its fluorescence map from 992 cells from 8 

datasets.  

The noise in all cells was modelled using a Poisson distribution (generated using the MATLAB 

poissrnd function), with lambda estimated from the raw traces of 992 cells from 8 datasets. 

The median lambda of the 10% of cells that had the best Poisson fit (235.1, as estimated from 

the sum of squared errors; SSE) was used as the lambda for our model noise. Raw noise was 

generated using this parameter, then ΔF/F of this noise was calculated to obtain the 

normalised noise used in the model cells. The average ΔF/F of the noise, as tested on 10000 

traces each with a length of 1000, was 0.0024 +- 0.0467, which is 0.18% of the peak value. 

Non-place cell traces usually consisted of only noise (Fig 2.2B, top 80 cells), generated as 

above, while the noise was added to the generated place field for the place cells (Fig 2.2B, 

bottom 20 cells). For S Fig 2.7, we also considered the impact of non-spatial firing of non-place 

cells. In our real data, there were on average 0.0062 peaks per frame, i.e. a calcium peaks 

occurred about every 160 frames. We therefore randomly added a range of peaks to non-place 

cell traces, from 0- 0.02 peaks per frame. 

2.6.7 Manipulation of place cells 

We manipulated the place cell properties in order to model the imperfect nature of real place 

cells. We varied the place field width, peak, reliability, spatial variability and the number of 

place fields per place cell. We performed further simulations where we varied the percentage 

of place cells, the occurrence of random calcium peaks and the coverage of the environment 

by the place fields. 
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Place field width. The place field width was varied by varying the sigma of the Gaussian field for 

each place cell.  

Place field peak. The place field peak was varied by scaling the Gaussian model using a single 

scalar. This way, the shape of the Gaussian remained, while the overall peak could be 

increased or decreased. 

Number of place fields. We varied the number of place fields between 1 and 4, spaced to cover 

the whole environment but with no overlap. The upper limit of 4 place fields was therefore set 

by the size of the place field (50 cm) and the environment length (2 m).  

Reliability. We defined the reliability of a place cell as the probability it will have a place field in 

a given traversal. The probability Pfield was between 0 and 1, where Pfield = 0 meant the place 

cells did not have a place field in any traversal, and Pfield = 1 meant the place cells had place 

fields in every traversal. At a probability between the 0 and 1 the place cells had place fields in 

a randomly selected proportion of traversals equal to Pfield times the total number of 

traversals.  

Spatial variability. We defined the variability of a place cell as the average deviation of the 

place field per traversal from the centre of the average place field. We modelled this by 

defining a Gaussian centered around the centre of the average place field, with a flatter 

Gaussian (i.e. higher sigma) equating to a higher variability. For each traversal we drew a value 

from this Gaussian distribution to be the centre of the place field for that traversal. 

Percentage of place cells. The percentage of cells that were designated as place cells out of 100 

total cells was varied. 

Occurrence of random calcium peaks. We varied the occurrence of random calcium peaks in 

the control cells alone (S7 Fig D-F) or all cells (S7 Fig J-L). The occurrence in a measure of peaks 

per frame was measured, and this number was used as the probability for any given frame to 
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contain a calcium peak, to create an occurrence map. This occurrence map was then 

convoluted with the calcium shape extracted from our real data, to create a realistic calcium 

peak. 

Place field coverage. In the default simulations the place fields of the place cells were at 

equidistant locations covering the entire environment. We performed an additional simulation 

where the place fields of all place cells were in the same location, thus not covering the entire 

environment. 

2.6.8 Performance measures 

To calculate the performance of the place cell detection methods, we calculated the sensitivity 

and specificity of each method using the number of true positives (TP), true negatives (TN), 

false positives (FP) and false negatives (FN). The sensitivity is a measure of how well the 

method is able to find all the true place cells in the dataset, while the specificity is a measure 

of how specific the method is for identifying just true place cells without false positives. 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
   (1) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁+𝐹𝑃
  (2) 

2.6.9 Place cell detection methods 

We tested four methods for place cell detection (S Fig 2.1) all of which have all been used in 

previous studies to identify place cells.  

Peak method. This method of place cell detection was described for electrophysiology data 

from mice running through a 1D virtual corridor [166]. We adapted the original method for use 

with fluorescence data as follows: We first calculated the fluorescence maps (the average 

fluorescence in each location bin) for each cell from which we determined the peak 

fluorescence for each cell. The neuronal fluorescence data was then randomly shuffled 500 



82 
 

times relative to the location data by shifting the fluorescence data in time randomly by at 

least 5 seconds. Because the running speed of the mouse is not constant, this alters the 

fluorescence at each location and therefore the “peakiness” of the fluorescence map. Each 

cell’s fluorescence map and peak fluorescence was then determined for each shuffle. Any cell 

with a true peak fluorescence in the top 1% of all shuffles was deemed a place cell. Thus, the 

peak method detects cells with high fluorescence in a place field compared to the baseline. 

Stability method. The stability method was developed by O’Leary [167] and is based on classic 

methods of detecting place cells in real-world two-dimensional (2D) environments which 

require place cells to have a consistent place field over multiple traversals (e.g. [43]). First, a 

separate fluorescence map was calculated for each cell for each of the two halves of a 

recording session and the linear correlation between these two fluorescence maps was 

calculated. These correlation coefficients were then compared to control values obtained by 

comparing the fluorescence map of the first half of a session for that cell with the fluorescence 

maps of the second half of other randomly selected cells in the dataset (100 repeats per cell 

with redraws). The within-cell correlation of the cell was compared to all the shuffles for that 

cells, and if the correlation was above the 95th percentile of the shuffles, it was deemed a place 

cell. 

Combination method. The Combination method [35,164,165] uses a combination of the level of 

fluorescence above baseline, with stability of firing over different traversals. It uses pre-

processed fluorescence traces of cells that have been thresholded so they only include 

significant transients, followed by a number of thresholding steps to find “true” place fields. 

This method has been modified over the three publications cited above, the most recent of 

which was used here. First, the fluorescence map was calculated from the preprocessed traces 

for each cell and possible place fields were determined by thresholding the fluorescence map 

with a cut-off value of 0.25 times the difference between the peak fluorescence value and the 
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baseline. Possible place fields were defined as having above-threshold fluorescence in 

contiguous locations for at least 20 cm and less than 120 cm. Each field was also required to 

have one bin with a value of at least 10% of the mean fluorescence of that cell over the 

session. The mean fluorescence in each place field was then divided by the mean fluorescence 

outside of the place field, and cells were only deemed place cells if the in-field/out-field ratio 

was higher than or equal to 4. Lastly, the cells were required to have a significant transient, as 

defined in the pre-processing thresholding step, in at least 20% of the traversals of the 

environment. All traces were shuffled 1000 times with respect to location and classified using 

the above methods. Only cells that were classified as place cells in fewer than 5% of the 

shuffles were considered to be true place cells. Thus, the Combination method requires place 

cells to significantly increase fluorescence from baseline over a contiguous place field, with 

some stability of responding over time. 

Information method. This method of place cell detection has been used in freely moving mice 

running either through a square or circular environment [168], or a corridor [24]. The original 

method relied on the detection of calcium events, but to reduce the effect of such 

preprocessing we adapted the method to be applied directly to the relative fluorescence. As 

using the fluorescence directly has been shown to accurately reflect the spatial information 

[175], we do not expect this to negatively impact the method’s ability to detect place cells. We 

first calculated the fluorescence maps (the average fluorescence in each location bin) for each 

cell from which we determined the spatial information using equation 3, where N is the 

number of bins, fi is the fluorescence in bin i of the fluorescence map, and f is the average 

fluorescence across the map. For the spatial information we assumed a uniform occupancy 

(i.e. that the mouse spent the same amount of time in each location bin). The neuronal 

fluorescence data was then randomly shuffled 500 times relative to the location data by 

shifting the fluorescence data in time randomly by at least 5 seconds, the same procedure we 

employed for the Peak method. Each cell’s fluorescence map and spatial information was then 
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determined for each shuffle. Any cell with spatial information in the top 5% of all shuffles was 

deemed a place cell. Thus, the peak method detects cells with high level of spatial information 

in a place field compared to the baseline. 

𝑆𝐼 =  ∑ 𝑓𝑖 log2
𝑓𝑖

𝑓
𝑁
𝑖=1    (3) 

2.6.10 Model cell properties 
The way in which varying the different characteristics of model place cells affects their 

properties was illustrated (S3 Fig). By comparing real cell properties (e.g. of FWHM) to the 

modelled variables (e.g. width), experimenters can predict the impact of their choice of place 

cell classification method on detection of their real world cells. 

Full width at half maximum. We used the full width at half maximum (FWHM) as 

representation of the place field width. We calculated the maximum value within the 

fluorescence map, and then determined the width of the place field at half this value. Notably, 

this value will be lower than the width defined in the model, because the FWHM is a 

conservative representation of the width. 

Stability. The stability was again defined as the correlation coefficient between the 

fluorescence maps of the first and the second half of the session, as used in the Stability 

method. 

Mutual information. Mutual information between the fluorescence traces and the location of 

the animal was calculated using equation 3, as described above. 

Out/in ratio. The out/in ratio was the mean fluorescence outside of the place field divided by 

the fluorescence within the place field, and is a measure of the signal to noise ratio of the 

place field. A lower number represents a higher signal to noise ratio. 
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2.6.11 Place cell properties 
The place cells were characterized using several of the Suite2P outputs (ROI size, average and 

maximum spiking rate) [172], in addition to characteristics that were calculated using custom 

analyses: 

Mutual information. Mutual information between the fluorescence traces and the location of 

the animal was calculated using equation 3, as described above. 

Cell-cell distance. The cell-cell distance was calculated as the mean distance in pixels between 

the centre of the ROIs for all cells of one type (i.e. place cell or non-place cell) within the field 

of view.  

Peak intensity. The peak intensity was the size of the largest peak (in ΔF/F) in the fluorescence 

cell, as used in the Peak method.  

Stability. The stability as defined as the correlation coefficient between the fluorescence maps 

of the first and the second half of the session, as used in the Stability method. 

Peak percentile. The peak percentile was the percentile score of the peak intensity compared 

to the peak intensity of the shuffles, as used in the Peak method. 

Stability percentile. The peak percentile was the percentile score of the stability compared to 

the stability of the shuffles, as used in the Stability method. 

2.6.12 Statistical analysis 
All statistical tests were conducted in R [181]. Where appropriate, a Shapiro–Wilk test was 

used to test the data for normality. If the data was determined not to deviate from a normal 

distribution (p>0.05), we performed the appropriate parametric test, otherwise a non-

parametric test was applied. The tests performed for each comparison are detailed in the text. 

Linear mixed models were performed in R using the lme4 package (version 1.1-23). All other 

statistical tests were performed in R using the rstatix package (version 0.6.0). 



86 
 

2.6.13 Data and software availability 

The MATLAB used to automatically generate model datasets is available on GitHub 

(https://github.com/DoriMG/place_cell_methods). This repository also contains the 

locomotion dataset we used to generate the model data. We further provide an explanation of 

how to use the code to generate novel model datasets with varying parameters. Experimental 

data used for each relevant figure is available via FigShare (10.6084/m9.figshare.13560548).  

2.7 Acknowledgements 

With thanks to Alice O’Leary and Daniel Dombeck for sharing their code. We would like to 

thank O. Hall-Bird and M. Hall-Bird for their insights and useful suggestions on this project.   

https://github.com/DoriMG/place_cell_methods


87 
 

2.8 Supporting information 



88 
 

 



89 
 

S Fig 2.1 Graphical summary of tested methods. A graphical representation of how the (A) Peak, (B) Stability, (C) 

Combination and (D) Information methods define a place cell based on its fluorescence map. 

 

S Fig 2.2 Experimental setup. The two-photon experimental setup as seen from behind the mouse. The mouse is 

head-fixed and standing on a wheel that it can use to control the environment projected onto the screens in front of 

it.  
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S Fig 2.3 Properties of model place cells. Full width half maximum, stability, mutual information and out/in 

fluorescence ratio of modelled place cells with varying number of traversals (A-D), width (E-H), peak fluorescence (I-

L), variability (M-P) and reliability (Q-T).   
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S Fig 2.4 Model place cells of varying widths. Fluorescence maps of model place cells with a width of (A) 20 cm, (B) 

50 cm, (C) 100 cm and (D) 200 cm. 
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S Fig 2.5 The effect of the number of place fields on detection. (A) Sensitivity and (B) specificity of methods as a 

function of the number of place fields. Data shown are the means of 10 trials with randomly created data using the 

set parameters, error bars show 95% confidence interval. Sensitivity of all methods except for Combination method 

are 1 in A, resulting in overlapping lines.  
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S Fig 2.6 The combined effect place field width and peak. Sensitivity (A) and specificity (B) of the Peak, Stability, 

Combination, and Information methods (as labelled) as a function of the peak of the place field and the width of the 

place field (up to 200 cm, the full environment length).  Data shown are the means of 10 trials with randomly 

created data using the set parameters. 
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S Fig 2.7 The effect of number of place cells and firing probability of non-place and place cells. (A) Example cell 

population with 80% modelled place cells. Sensitivity (B) and specificity (C) of the Peak, Stability, Combination, and 

Information methods as a function of the percentage of modelled place cells in the population. Altering the number 

of non-place cells increased specificity of the Stability method (i.e. fewer non-place cells, and therefore fewer total 

cells, were identified) when the number of place cells was increased beyond what is likely to be physiological (20-

30%, [29]). (D) Example activity of a non-place cell with 0.01 random calcium peaks per frame. Sensitivity (E) and 

specificity (F) of the Peak, Stability, Combination, and Information methods as a function of the activity (peaks per 

frame) of the non-place cells. In the originally modelled datasets, the non-place cells all contained random 

background levels of Poisson noise with no firing, whereas the non-place cells in real data most likely do fire, though 

in a location-independent manner. We therefore introduced calcium peaks in the non-place cells with shapes and 
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numbers of peaks modelled on our real data. There was no effect on sensitivity of increasing the activity of non-place 

cells, but the specificity of the Stability method increased with increasing non-place cell activity. (G) Example cells 

population with all place fields in the same location. Sensitivity (H) and specificity (I) of the Peak, Stability, 

Combination, and Information methods depending on the location of the place fields, showing an increase in 

specificity for the Stability method when all place cells have the same place field. This is likely due to an overall 

increase in correlations in the shuffled controls, as place cells will now correlate more highly with other place cells. 

This increase in average correlation for the shuffles, and thus an increase in threshold for being included as a place 

cell, increases the specificity. (J) Example activity of a non-place cell with 0.01 random calcium peaks per frame. 

Sensitivity (K) and specificity (L) of the Peak, Stability, Combination, and Information methods as a function of the 

activity (peaks per frame) of the all cells. Adding random calcium peaks to the place cells, in addition to the non-

place cells, affects the specificity of the Stability method similarly to adding these peaks only to the non-place cells. 

This manipulation also causes an increase in sensitivity for the Combination method. These results can therefore not 

fully explain why the Stability method found fewer cells in our real data set.  Data shown are the means of 10 trials 

with randomly created data. Error bars show 95% confidence intervals. Sensitivity of methods except for 

Combination method are 1 across the various manipulations in B, E, H and K, resulting in overlapping lines. 
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S Fig 2.8 Examples of cells identified by the Peak and Information method, but not the Stability method. Smoothed 

fluorescence maps of example cells that either (A) gain or (B) lose a place field, or (C) that have different place fields 

at different times in the session. The colour represents the normalized fluorescence.  
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S Fig 2.9 The effect of altering Combination method thresholds on identification of place cells in model and real 

data. (A) The sensitivity of the Combination method on detecting place cells in model data is increased when 

preprocessing is introduced, The sensitivity of the Combination method as a function of (B) in-field threshold (the 

minimum peak within a place field allowed as a fraction of the difference between the overall fluorescence peak in 

the data and the baseline), (C) minimum field width, (D) maximum fluorescence peak in the field, (E) in/out-field 

ratio, (F) ratio of traversals the cell fired in. (G) The percentage of ROIs in real data identified as place fields using 

Combination or Peak bootstrapping methods. (H) The percentage of ROIs identified as place cells by different 

methods, using the Peak bootstrapping method within the Combination method. Blue dashed lines indicate 

parameters used in published data and earlier analyses here. P-value in A is from an unpaired two-sample Wilcoxon 

test, p-value in B from a paired t-test.  
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3 The effect of object location novelty and cue abundance on 

populations in hippocampal area CA1 

3.1 Introduction 

The hippocampus plays a crucial role in navigation [22,26] and spatial memory [182]. It 

contains spatially tuned cells, such as place cells [22], in addition to cells tuned to particular 

task-related or environmental features, such as reward or object location [50,51,183]. The 

activity patterns of these populations of cells in the hippocampus are affected by a wide range 

of factors, including local and global cues [46,184], environmental context [43], and internal 

state of the animal [185,186].  

Behaviourally, animals respond strongly to novel objects in an environment, as well as familiar 

objects that have been displaced from their normal location [48,153,187,188]. When a novel 

object is introduced into an environment, animals tend to spend more time exploring this 

object [153,187,188]. Similarly, when a familiar object is moved to a novel location, this also 

causes increased exploratory behaviour [48,187,188]. The hippocampus is especially important 

for the latter behaviour, as it involves spatial memory, and lesions to the hippocampus cause a 

reduction in these exploratory behaviours [187].  

Individual cells in the hippocampus also respond strongly to objects in and around the 

environment [50,147,189]. Some place cells alter their activity in response to local cues, such 

as local objects, and global cues, including distal landmarks [46]. When these cues are 

displaced, their firing may follow the local or global cues, or change independently of the 

displacements [46,184,190]. The addition of local cues to an environment can also cause 

overrepresentation of the object locations in the place fields [147]. How individual cells 

respond to local object changes depends on the location of its field with cells closer to the 

change object being more likely to remap [189]. In addition, the hippocampus contains 
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specialized object-vector cells, also called landmark-vector cells, which always fire at a certain 

distance and direction relative to objects in an environment [50,64]. 

Reward locations provide a particular salient cue that affects place cell firing. Many studies 

report an overrepresentation of place fields at reward locations [51,111,191,192], while others 

don’t see such overrepresentation, but do see out of field activation at the reward location in 

place cells [193]. This overrepresentation is affected by both visual cues at the reward and the 

amount of training or experience a mouse has [111,194]. It includes, at least partially, the 

presence of a separate population of cells with firing fields linked to a reward location [51]. 

Lastly, changes in the contextual cues in an environment, such as the colour of an 

environment, or the task-related context, lead to changes in place cell activity 

[43,137,195,196]. Individual cells may respond more to particular contexts and not to others, 

such as single cells always responding to an environment with white walls, regardless of the 

odour [195]. The environmental context can also control how single cells respond to cues, for 

examples cells responded differently to the same visual cue depending on the shape of the 

environment [197]. 

Although many studies have interrogated how single factors, such as environmental 

components or internal state, affect hippocampal populations separately, it is still unclear how 

multiple factors interact to create a single environmental representation. It has been 

suggested that place cells integrate heterogenous input of the different environmental 

changes [43]. Here, we aim to combine several factors in a novel object location recognition 

task, to look at how an interaction of factors influences the firing of pyramidal cells in CA1. We 

exposed our animals to environments that varied in cue abundance and cue object location, 

and trained them to recognize the displacement of the cue object in order to receive reward. 

The cue object location variation is equivalent to an object location memory task, which is 

used to measure hippocampal-dependent memory function in mouse models [48]. As such, we 
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would expect this manipulation to strongly drive hippocampal cells. The cue abundance 

manipulations involved adding patterns to the floors and walls, and adding distal objects. The 

patterned walls and floors are similar to context cues used in previous studies, where the floor 

and wall colours was changed [43], which could drive place cell remapping. In addition, distal 

objects or landmarks have also previously been shown to drive remapping in a subset of place 

cells [46,143]. We would therefore expect the changes applied in the cue abundant condition 

to strongly drive place cell remapping.  

Previous studies have often focused on the effect of one manipulation (e.g. [147]), or multiple 

manipulations of one kind (e.g. two types of objects [46] or two types of context cues [43]). 

Here, we use two distinct manipulations, that both separate have been shown to strongly drive 

place cell remapping, to investigate how the hippocampal population responds to either 

manipulation separately, and both manipulations at the same time. Our aim is to study how 

various manipulations of the environment are encoded in the hippocampus to create a single 

representation of the environment. In particular, we are interested to see whether the two 

manipulations affect different subsets of place cells, which are then combined to represent the 

full environment, as previously proposed for the integration of contextual cues [43]. 

We imaged CA1 pyramidal cells of these mice at several time points while they were learning 

to perform this task, allowing us to look at the effect of cue abundance, object location novelty 

and level of training on the activity of hippocampal cell populations. We expected a modular 

effect of our two factors, with some cells remapping when cue abundance changed, others 

when object location novelty changed, and some responding only to unique combinations of 

cue abundance and object location novelty. 

As our task uniquely dissociated cue object location from reward location, we could distinguish 

between responses to the cues and reward responses. In addition, in the novel object location 

condition, the cue object was displaced to a random location, thus allowing us to distinguish 
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between place cells and cells responding specifically to the cue object location. We expected 

to see an increase of place cell response around both the cue and control objects, and the 

recruitment of object-vector cells in the novel object location condition.  

Surprisingly, we did not find a modular effect of the two environmental factors. Instead, cue 

abundance did not affect hippocampal cell population activity. However, displacing the cue 

object decreased the number of place cells and increased location encoding. In addition, a 

change in object location novelty caused place cells to remap, which was not the case for 

changes in cue abundance. This suggests that the hippocampal cells respond strongly to the 

displacement of an object, even when the animals cannot explore the objects by whisking or 

sniffing, and that the displacement of an object leads to place cell remapping. Lastly, non-place 

cells contribute more to the encoding of location in environments with a displaced object 

compared to the object in the familiar condition, highlighting the role of the wider 

hippocampal population in location encoding.  

3.2 Results 

3.2.1 Mice learn to perform a novel spatial task in virtual reality 

To study the effects of environmental factors on hippocampal representation, we first trained 

our mice to perform a behavioural task in a virtual reality environment. The mice traversed in 

the same direction repeatedly through a 200 cm long virtual corridor while they were head-

fixed (Fig 3.1A,D). Between each traversal of the corridor, the mice ran through a 95 cm dark 

pipe, during which we rendered the next environment. Using the pipe made the rendering of 

the new environment indetectable to the animal. We manipulated two characteristics of the 

environment: the cue abundance and the spatial location of a cue object. The cue abundance 

of the environment was either sparse (Fig 3.1B), with grey walls and a grey floor and no distal 

objects, or abundant (Fig 3.1C), with patterned walls and floors and two distal objects. In 33% 
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of the traversals (novel condition), the blue ball (Fig 3.1B,C) was displaced along the length of 

the corridor, compared to its regular position (familiar condition).  

For the task, the mice had to lick for a reward in the reward zone at the end of the corridor (Fig 

3.1D, 180-200 cm), which was marked by a lighter area on the floor, when they had recognized 

that the object was in an unfamiliar location (novel condition). We trained the animals in three 

steps (S Fig 3.1A). First, we trained them to lick in the reward zone by presenting a reward 

every time they entered the reward zone in the rewarded traversals (step 1). Once they licked 

at least 40% of the trials, we stopped presenting the reward on every rewarded traversal and 

only delivered it if the mouse started licking (step 2). Once the mouse learned to lick in the 

reward zone prior to receiving the reward in 40% of the trials, we started introducing 

punishment, a full screen white flicker, when the mouse licked in the non-rewarded traversals, 

to train it to distinguish between the novel and familiar conditions. We deemed a mouse fully 

trained when it showed an absolute difference of 30% in traversals licked between the novel 

(rewarded) and familiar (unrewarded) condition.  

We trained a total of 12 mice, 9 of which (75%) completed step 3 of training (Fig 3.1E). We 

imaged seven of these mice throughout their learning process. On average, it took these mice 

27 days (range: 16 to 37 days) to reach step 3, with training sessions occurring 2-3 times a 

week. Although the performance varied from day to day (S Fig 3.1B), we saw an overall 

increase in rewards obtained as the training progressed (Fig 3.1F).  

We first studied the effect of the environmental manipulations (i.e. cue abundance and object 

novelty) on the behavioural performance of the mice. We looked separately at the 

performance in the familiar condition, where the correct choice was abstaining from licking, 

and the novel condition, where the correct choice was licking, as the measure of correct trials 

is different between the two, which may be biased by the mouse’s predilection for licking. We 

did not see an effect of cue abundance in either of the conditions, and only an interaction 
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effect between cue abundance and training in the familiar, but not the novel condition (Fig 

3.1G, Table 1, linear mixed model). We did see a strong effect of training in both conditions 

(Table 1, familiar: p=0.0001, novel: p=1.6x10-6). Interestingly, in the familiar condition there 

was a decrease in performance with training, whereas in the novel condition there was an 

increase. This is likely because mice learned to lick for reward as they were trained, so the 

untrained mice had a tendency to abstain from licking overall, resulting in a high performance 

in the unrewarded trials. As they went through training, they were encouraged to lick, 

increasing both licking in unrewarded trials (thus reducing performance) and rewarded trials 

(increasing performance).  

Lastly, we looked at the effect of the amount of displacement on the performance of the task 

in the novel environments. We expected to see an increased performance if the object was 

more displaced, as the displacement would be more obvious for the mouse. We divided 

traversals into those with a displacement less than 60 cm (roughly the average displacement 

across all trials), and more than 60 cm. Surprisingly, the amount of displacement did not affect 

the performance of the task (S Fig 3.1C, Table 2, linear mixed model), nor did cue abundance 

or an interaction between the two. The performance across all conditions did increase after 

training. The lack of effect of displacement suggests that mice can recognize that the object 

was displaced even when it was only moved a short distance from its familiar position. 

We present here a new behavioural task in virtual reality with a novel object location 

recognition element that is designed to engage the hippocampus. These results show that the 

mice are able to perform this task, even when they only get visual input about their 

surroundings, compared to the multisensory input in the real world. Overall, the mice show an 

increase in performance after training, and cue abundance did not affect their behaviour, 

meaning any potential hippocampal difference between the sparse and abundant condition is 

not mediated by performance.  
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Fig 3.1 Behavioural setup and task performance. (A) A 3D representation of the two-photon experimental setup. 

The headfixed mouse is seen standing on a wheel with the objective over its head, while the virtual reality is 

displayed on the screens in front of it. (B-C) Example mouse view at the start of the (B) sparse and (C) abundance 

conditions. (D) Top view of the sparse environment showing the location of the cue object, control object and the 

reward zone. (E) Number of days it took for each mouse to reach each of the three training steps. (F) Percentage of 

rewards gained as a function of the amount of training received. Grey lines are separate mice, black line indicates 

the average. (G) Percentage of correct choices made before and after training in the four different conditions. In G, 
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each data point is a session, bars show means, with error bars showing 95% confidence intervals. See Table 1 for N 

numbers for comparisons and all statistical analysis. 

3.2.2 Animals do not show behavioural preference for object locations 

In real-world environments behavioural tasks, such as a novel object recognition or object 

location memory tasks, animals spend an increased amount of time around novel or displaced 

object compared to control objects [187,188]. Although our animals could freely run and stop 

whenever they wanted, they could only ever move in one direction along the corridor. As such, 

they were unable to explore objects as they would in a real-world task, by whisking or sniffing 

around the object. We wanted to test if they nevertheless still maintained a behavioural 

preference for slowing down or stopping around the object locations, and we expected our 

animals to slow down in particular around the cue object when it was displaced.  

Both cue abundance or an interaction effect between cue abundance and object location 

novelty, did not affect the speed of the animal (Fig 3.2A, Table 3). However, the animals ran 

faster in the environments with the displaced object, than when the object was in the familiar 

location (Fig 3.2A, Table 3, p=0.010). In addition, trained mice ran faster than untrained mice 

(p=0.011). Thus, the cue abundance of the environment did not cause the animals to change 

their running behaviour, but both object location novelty and training did. The increase in 

speed suggests that, contrary to what we expected, the animals spend less time exploring the 

cue object when it was displaced. 

To further study this, we looked at the average speed at the different locations within the 

environment (Fig 3.2B). We expected the mice slow down around the cue object compared to 

the control object location, and in the reward zone in the rewarded (novel) condition. We 

quantified the speed of the animals in areas of interest by averaging over the location bins 

around the control object (130 to 170 cm), around the familiar location of the cue object (30-

70 cm) and the reward zone (170 to 200 cm). As expected, trained mice still ran faster than 
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untrained mice across conditions (S Fig 3.2A, Table 4, p<2x10-16, linear mixed model), and mice 

were faster when the cue object was in a novel location (p=1.8x10-7), but the cue abundance 

did not affect the animal’s velocity (p=0.86). As the location bin also affected the animal’s 

velocity (p=0.004), we compared the speed in the location bins for each of the novelty 

conditions. In the familiar condition, but not the novel condition, the mouse slowed down in 

the reward zone compared to around the control object (p=0.04, post-hoc Tukey test, Table 4) 

and the cue object (p=0.03). As we saw no difference in speed between the cue and control 

object locations in either familiar or novel conditions (p=0.99 and p=0.44), the mice do not 

seem to change their behaviour at the cue object. 

The lack of difference between the cue object and the control object in the novel condition 

might be due to the cue object moving in the novel condition. Therefore, we also analysed the 

speed of the mouse relative to the cue object (Fig 3.2C). We again quantified velocity in three 

location bins, this time using different areas of interest: before the object (-100 to -30 cm), 

around the object (-30 to 30 cm) and after the object (30 to 100 cm). Again, trained mice ran 

faster than untrained mice across conditions (S Fig 3.2B, Table 4, p<2x10-16, mixed linear 

model) and mice were faster when the cue object was in a novel location (p=0.0004), but cue 

abundance had no effect on velocity (p=0.99). Although the location bin did not affect velocity 

across the conditions (p=0.39), there was a significant interaction effect between location bin 

and object location novelty (p=0.0002). Therefore, we compared the location bins for each of 

the novelty conditions. In the familiar condition, the mice were significantly slower before 

compared to around or after the object (p=0.025, p=0.003, post-hoc Tukey test) and after 

(p=0.003) the object. Conversely, in the novel condition the mice ran faster before compare to 

after the object (p=0.023). In both conditions, we do not see a clear decrease in speed around 

the object, suggesting the mice did not slow down around the cue object, regardless of 

whether it was in the familiar or a novel location. 
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In summary, we consistently saw an effect of novelty on the speed of the mice across all tests, 

with the mice running faster in the novel conditions. However, our results suggest that the 

animals also did not slow down around the displaced cue object. This is unexpected, as we 

would expect the novel object location to elicit exploratory behaviour resulting in decreased 

running. A possible explanation is that the mice know they are in a rewarded trial, and are 

therefore more motivated to reach the reward zone at the end, resulting in an increased 

velocity. Overall, these results show that although the mice learn our behavioural task, they do 

not show the characteristic behavioural patterns seen in similar real-world tasks.  
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Fig 3.2 Animal velocity during the behavioural task. (A) The mean velocity of the mouse in cm/s in each 

environment. (B) The mean velocity at each location of the environment, divided into 100 location bins. (C) The mean 

velocity at each location relative to the cue object, divided into 100 location bins. In A, each data point is a session, 

bars show means, with error bars showing 95% confidence intervals. In B and C the black lines show the means 

across the sessions, with the coloured error bars showing 95% confidence intervals. See Table 3 for N numbers for 

comparisons and all statistical analysis. 

3.2.3 Place cells hold increased information about location in novel conditions 

As place cells represent a spatial map of the environment, we wanted to know how the 

number of place cells and the location of their place fields changed to represent the 

environments with different cue abundance and object location novelty conditions. To find the 

number of place cells in each condition, we classified the cells based on the maximum value in 

their fluorescence map, as previously described (Chapter 2, [198]). We quantified the place 

cells as the percentage of the total number of ROIs (region of interest) in a dataset. Overall, we 

found a relatively low number of place cells in each condition, compared to previous reports 

[35,198]. The percentage of place cells was significantly reduced when the cue object was 

displaced, while cue abundance had no effect (Fig 3.3A, Table 5, p=1.2x10-13, p=0.31, linear 

mixed model). The percentage was also reduced in trained compared to untrained mice 

(p=0.005). The reduction in place cells in the novel condition may be due to the cue object 

changing location, causing cells either to remap completely or follow the object between 

traversals, which would make us unable to identify them as place cells.  

We wanted to know whether the place cells changed the amount of information about the 

animal’s location, as a measure of their contribution to the overall spatial representation. We 

therefore determined the mutual information between the place cells and the mouse location, 

which represents the amount of information a place cell holds about the location [173–175]. 

Interestingly, we see an increase in mutual information in the novel compared to the familiar 

condition (Fig 3.3B, Table 5 p=1.3x10-10), meaning that although there were fewer place cells, 
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the individual place cells held more information about the location. Cue abundance did not 

affect the mutual information (p=0.54), but there was an effect of training (p=0.005), with the 

place cells in the untrained mice holding more information about location.  

We measured several additional features of the place cells to further characterize them. None 

of our conditions affected the place field width (S Fig 3.3A, Table 6, linear mixed model). 

However, place cells were significantly less stable in the novel condition (S Fig 3.3B, Table 6, 

p=8.1x10-10, linear mixed model). In addition, the ratio between the mean fluorescence outside 

and inside the place field, a measure of signal-to-noise of the place cell [147], was higher in the 

novel conditions (S Fig 3.3C, Table 6, p=0.004, linear mixed model). Both these effects, the 

stability being lower and the out/in ratio being higher, point towards the place cells being 

more noisy with a less consistent place field when the object is in a novel location. This seems 

to contradict the results from the mutual information, as they hold more information about 

the location of the animal in the environment in this condition. 

As previous studies have reported an overrepresentation of place cells near a goal (rewarded) 

location [51,193], we next studied whether such overrepresentation was present in our task. 

We used the goal representation index (GRI) [193], which is the mean percentage of place field 

centres in the reward location compared to two control locations. None of our conditions 

significantly affected the GRI (Fig 3.3C, Table 5, linear mixed model). We tested whether there 

was an overrepresentation in any of the individual conditions. A GRI of 1 means the reward 

location has the same number of place field as the control locations, and any deviation 

represents an under- or overrepresentation. The GRI did not significantly differ from 1 in any 

condition (Fig 3.3C, Table 5, one-sample Wilcoxon signed rank test with Holm–Bonferroni 

correction for multiple comparisons). Both these results indicate that the reward zone was not 

overrepresented in the location of the cells’ place fields.  
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We were further interested to see if the cue object and reward zone were overrepresented in 

the place field locations, so we determined the number of place field centres across the 

environment, comparing the object locations and the reward zone (Fig 3.3D, S Fig 3.3D). The 

place field centre for each cell was defined as the location of the maximum value in the 

fluorescence map. We quantified the differences in representation of different locations by 

dividing them into three bins: around the control object (130 to 170 cm), around the familiar 

location for the cue object (30 to 70 cm) and the reward zone (170 to 200 cm). There was a 

difference in percentage of place field centres between the bins (S Fig 3.3D, Table 6, p=0.001, 

linear mixed model). As we did not see an effect of training, we performed a post-hoc test 

using Tukey’s method to determine the pairwise differences in each condition on the values 

per bin, averaged over training. This revealed a significant difference only in the 

novel/abundant condition, where there were significantly more place cells with their fields in 

the cue object location than in the reward zone (Table 6, p=0.004). Again, there is no 

overrepresentation of the reward zone, nor is the cue object location overrepresented relative 

to the control object. 

In summary, we found a low number of place cells compared to previous results [35,198]. This 

may be caused by the experimental setup, where mice were randomly presented with one of 4 

conditions. This interleaving of conditions may have prevented the build-up of a stable 

representation of the environment, thus resulting in cells with unstable fluorescence maps, 

which are not classified as place cells in our data. The percentage of place cells is decreased in 

the novel compared to the familiar condition, but the cells hold increased mutual information 

about the location. Lastly, our results show no overrepresentation of the reward zone nor the 

cue object location in the location of the place fields. 
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Fig 3.3 Characteristics of the place cells. (A) Number of place cells found in each condition as a percentage of the 

total number of ROIs. (B) Mutual information (MI, in 
𝑏𝑖𝑡𝑠∆𝐹

𝐹⁄

𝐴𝑃
) between the cell activity and location. (C) Goal 

representation index, which is the mean activity in the reward zone divided by the mean activity in two control 

zones. P-values above bars from one-sample Wilcoxon signed rank test compared to a mean of 1 with Holm–

Bonferroni correction for multiple comparisons. (D) The percentage of cells out of all place cells with their place field 

centres in different locations. The environment was divided in twenty 10 cm bins. In A-C, each data point is a session, 

bars show means, with error bars showing 95% confidence intervals. In D the coloured lines show the means across 

the sessions, with the error bars showing 95% confidence intervals. P-values next to A-C are from a linear mixed 

model with cue abundance, object location novelty, training and the interaction of cue abundance and novelty 

(cue*novelty) as fixed-effects and mouse and imagining session as random-effects. See Table 5 for N numbers for 

comparisons and all statistical analysis. 

3.2.4 Object-vector cells place fields follows the location of the cue object 

The hippocampal formation contains specialized object-vector cells, also called landmark-

vector cells to encode object locations [50,64]. These cells are active when an animal is in a 

particular location relative to an object, and thus do not rely on the global location. Our 

experimental setup lends itself perfectly to detect such cells, because in our novel condition 

the cue object is displaced to a different location every time, causing the object-vector cells to 

have clearly different activity patterns from the place cells, as their activity follows the object 

location. 

To detect these object-vector cells in our data, we used the place cell detection method, but 

rather than calculating fluorescence maps over location, we calculated them over the location 

relative to the object. We again used the 99th percentile as the threshold (S Fig 3.4A). There 

was a significant correlation between the object-vector and place percentile scores (S Fig 

3.4B), causing some cells to be classified as both place cells and object-vector cells (S Fig 3.4C). 

We excluded any cells that were already included as place cells. Using this method, we 

detected a number of cells that showed a firing field linked to the object (Fig 3.4A, S Fig 3.5). 
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We saw a range of cells with firing fields centred on the object (S Fig 3.5A-C), before the object 

(Fig 3.4A, S Fig 3.5D) or after the object (S Fig 3.5E,F). 

As the location of the object is fixed in the familiar condition, we could not distinguish 

between object-vector cells and place cells in this condition. We therefore only analysed 

object-vector cells the novel condition. First, we determined the percentage of cells that were 

classified as object-vector cells, again as a percentage of the total number of ROI in a dataset. 

The percentage of object-vector cells was not significantly affected by cue abundance (Fig 

3.4C, Table 7, linear mixed model), but, as for the place cells, decreased with training 

(p=0.001).  

We calculated the mutual information between the object-vector cells and the location 

relative to the object, and found no effect of cue abundance or training (Fig 3.4C, Table 7, 

linear mixed model). In addition, neither the object-vector field width and the ratio of 

fluorescence outside compared to within the object-vector field were affected by cue 

abundance or training (S Fig 3.6A,B, Table 8, linear mixed model). We quantified the stability of 

the cells as the Pearson correlation between the mean fluorescence over location relative to 

the object on the even compared to the odd traversals. Again, there was no significant effect 

of cue abundance (S Fig 3.6C, Table 8, linear mixed model), but the cells were more stable in 

untrained compared to trained mice (p=0.034). So, although there is a decrease in both place 

cells and object-vector cells with training, unlike the place cells, the object-vector cells do not 

gain an increase in mutual information, and they become more unstable with training.  

In addition, we compared the mutual information with the location relative to the object 

compared to the mutual information with the location relative to the global environment for 

the object-vector cells (S Fig 3.4D). We found no difference between the two scores. This is 

likely because the locations are oftentimes close to each other (when the object is only 



116 
 

displaced a small distance), thus resulting in a similar fluorescence map across the two 

reference frames. 

As previous studies have shown object-vector cells respond to multiple or all objects in the 

environment [50,64], we wondered whether our identified object-vector cells also showed 

activity around the control object. To test this, we calculated the fluorescence map of the 

object-vector cells both around the cue and the control object. We then determined the 

correlation between the activity around the two objects using the Pearson correlation 

coefficient. We also performed 100 shuffled controls, where we calculated the correlation 

between the fluorescence map of an object-vector cell around the cue object, and a random 

cell around the control object. We saw a significant difference between the original 

correlations and shuffled controls (Fig 3.4D, Table 7, p=2.6x10-9, linear mixed model), but no 

effect of cue abundance. This suggests that across both cue abundance conditions, the object-

vector cells respond to both the cue and control objects in a similar way.  

As shown in our example cells, we see a range of locations for the firing fields of the object-

vector cells. We would expect a larger number of object-vector field before the object, as the 

animal was unable to perceive the object after it had passed it. To test whether this was the 

case, we determined the distribution of the firing field centres relative to the object (Fig 3.4E). 

We quantified this similarly to how we had for the place cells, by dividing the locations into 

three different bins: before the object (-100 to -30 cm), around the object (-30 to 30 cm) and 

after the object (30 to 100 cm). We saw a difference between the location bins across the 

conditions (S Fig 3.6D, Table 8, p=0.0012, linear mixed model), but no effect of cue abundance 

or training. We performed a post-hoc test using Tukey’s method to determine the pairwise 

differences between the location bins (Table 8). This revealed a significant increase in object-

vector fields after compared to before (p=0.0008), and around the object (p=0.0009) in the 

sparse condition, but no differences in the abundant condition. So, despite the animal being 
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unable to see the object after it had passed it, more object-vector cells had their firing fields 

after the object in the sparse condition.  

In summary, as our task included a randomly displaced object, we were able to find cells that 

specifically respond to a location relative to the object, although there was also a large overlap 

with the place cells. We saw a reduction in the number of these cells after training. As the cue 

object is relevant to the task, this might be counterintuitive, and we would expect an increased 

number of cells to respond to it after training. However, the task does not rely on the position 

relative to the object, but rather the position of the object itself in the environment, so object-

vector cells may not be needed to perform it accurately. Interestingly, we see object-vector 

cells before, after, and around the object, with most having place fields after the object in the 

sparse condition. This suggests that the animals have a spatial representation of the object 

even if they cannot actively perceive it.  
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Fig 3.4 Characteristics of the object-vector cells. (A) Example fluorescence maps over location (left) and location 

relative to the object (right) for a cell identified as object-vector cell. (B) Number of object-vector cells found in each 

condition as a percentage of the total number of ROIs. (BC Mutual information (MI, in 
𝑏𝑖𝑡𝑠∆𝐹

𝐹⁄

𝐴𝑃
) between the cell 

activity and location relative to the object. (C) Goal representation index, which is the mean activity in the reward 

zone divided by the mean activity in two control zones. (D) Pearson correlation between the fluorescence around the 

cue object and around the cue object for the object-vector cells for the original data and shuffled controls. 100 

shuffles were performed, where the cells identities were shuffled for the comparison. (E) The percentage of cells out 

of all object-vector cells with their activity field centres in different locations relative to the object. The locations 

were divided in twenty 10 cm bins. In B-C, each data point is a session, bars show means, with error bars showing 

95% confidence intervals. In D each datapoint for the original data is a session, whereas the datapoints for the 

shuffled are the mean across 100 shuffles per dataset, bars show means, with error bars showing 95% confidence 

intervals. In E the coloured lines show the means across the sessions, with the error bars showing 95% confidence 

intervals. P-values above B and C are from a linear mixed model with cue abundance and training as fixed-effects 

and mouse and imagining session as random-effects. P-values above D are from a linear mixed model with cue 

abundance and shuffle and the interaction between cue abundance and shuffle (cue*shuffle) as fixed-effects and 

mouse and imagining session as random-effects. See Table 7 for N numbers for comparisons and all statistical 

analysis. 

3.2.5 Place cells do not remap between conditions with the same novelty condition 

We expected the place cells to respond modularly to the two conditions, cue abundance and 

object location novelty. However, cue abundance did not have an effect on the number or 

properties of the cells. We wanted to further look at how the conditions affected the place 

fields of the cells, so we imaged the same cells across the different environments, and 

determined how much the place and object-vector cells retained their location-specific firing 

across the environments. We were specifically interested in the effect of our two conditions, 

the cue abundance and the object location novelty, on the remapping of place and object-

vector cells. We therefore grouped together comparisons where the animals were exposed to 

different novelty conditions, different cue abundance conditions, or had neither condition in 

common. 
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First, we looked at how many cells were classified as place cells across both conditions in each 

comparison. To this end, we determined the overlap coefficient, the overlap of place cell 

populations between two conditions divided by the number of place cells in the condition with 

the lowest number, which is effectively the overlap relative to the total possible overlap in 

place cells. We saw no difference between the overlap groups, meaning that a similar of 

number of cell remained place cells when either the cue abundance, the object location 

novelty, or both conditions changed. However, the overlap did decrease with training across all 

groups (Fig 3.5A, p=0.030, mixed linear model). This may be indicative of the conditions each 

developing a unique representation as the animal learned the task.  

We were interested whether the percentage of place cells the various conditions had in 

common was above what we expected by chance, which we calculated by multiplying the 

percentages of place cells in the compared conditions. There was a higher overlap of place 

cells than expected by chance in all groups and training conditions, except for the trained mice 

when the compared environments had no conditions in common (Fig 3.5B, paired two-sample 

Wilcoxon test, with Bonferroni-Holm correction for multiple comparisons). This suggests that 

some place cells specifically remain place cells when either of the conditions remains the 

same. However, when both conditions change, an independent population of place cells is 

recruited, though only after training. This fits with the idea of the conditions developing more 

unique representations for the conditions through training.  

These two measures only looked at whether a particular cell was deemed a place cell across 

the conditions, but not whether it maintained the same activity pattern across the conditions. 

In order to test whether place cells had a stable place field across conditions, we determined 

the fluorescence map across locations for each of the conditions, and then calculated the 

Pearson correlation of the fluorescence map for each cell between the conditions. For every 

comparison, we only included cells that were included as place cells in both conditions. As a 
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control, we also determined the within-condition stability of each cell, by calculating the 

Pearson correlation between the average fluorescence maps over the even compared to the 

odd trials within a condition. There was a difference between the within- and between-

condition correlations in the same abundance and difference groups, but not the same novelty 

group in both training conditions (paired-sample Wilcoxon test, with Bonferroni-Holm 

correction for multiple comparisons). This suggests that the place cells do not remap when 

switching between environments with the same novelty conditions, but they do if the novelty 

condition is different between the environments. Meanwhile, a change in cue abundance did 

not affect remapping. 

We also applied these overlap and remapping analyses to the object-vector cells. In this case, 

we only performed one comparison, as the object-vector cells are only defined in the 

novel/sparse and novel/abundant conditions. Again, we did not see a difference between the 

trained and untrained groups (Fig 3.5D, unpaired two-sample Wilcoxon test). We compared 

the observed overlap to the expected overlap for the object-vector cells, and saw no 

significant difference in both training conditions (Fig 3.5E, paired-sample Wilcoxon test, with 

Bonferroni-Holm correction for multiple comparisons). It thus seems that when the 

environment changes in cue abundance, a new subset of object-vector cells is recruited.  

Lastly, we repeated the correlation analysis, but instead of using the fluorescence maps over 

location, we used the fluorescence maps relative to the displaced object. For the object-vector 

cells, we did not see a significant difference between the within- and between-condition 

correlations in either the trained or untrained mice (Fig 3.5F,). Although for the object-vector 

cells case we cannot compare across conditions with different novelties, this indicates a lack of 

significant remapping between abundance conditions, as was the case for the place cells.  

Overall, these results show a low overlap between environments in the place and object-

vector cells. The overlap for the place cells decreases after training when the environments 
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had no condition in common, which suggests some form of pattern separation may take place 

[199]. In addition, we see remapping across conditions with the same cue abundance when the 

object location novelty changed. However, when the object location novelty stayed the same 

and the abundance changed, there was less remapping. This suggests that the place cells have 

a consistent representation within each novelty condition, but not within the cue abundance 

conditions.  
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Fig 3.5 Overlap of place and object-vector cells between the different conditions. (A) Overlap coefficient for the 

comparison of place cells between environments with the same cue abundance condition, the same object location 
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novelty condition, or different cue abundance and object location novelty conditions. (B) Observed and expected (by 

chance) percentage of ROIs that were identified as place cells, p-values from a paired two-sample Wilcoxon signed 

rank test with Holm-Bonferonni correction. (C) Correlation of the fluorescence map of place cells in environments 

with the same cue abundance, novelty, or that were different in both, p-values from a paired two-sample Wilcoxon 

signed rank test with Holm-Bonferonni correction. (D) Overlap coefficient for the comparison of object-vector cells 

between environments with the same novelty condition, p-value from unpaired two-sample Wilcoxon signed rank 

test. (E) Observed and expected (by chance) percentage of ROIs that were identified as object-vector cells, p-values 

from a paired two-sample Wilcoxon signed rank test with Holm-Bonferonni correction. (F) Correlation of the 

fluorescence map of place cells in environments with the same novelty, p-values from a paired two-sample Wilcoxon 

signed rank test with Holm-Bonferonni correction. For all plots each data point is a session, bars show means, with 

error bars showing 95% confidence intervals. P-values next to A are from a linear mixed model with comparison and 

training as fixed-effects and mouse and imagining session as random-effects. See Table 9 for N numbers for 

comparisons and all statistical analysis. 

 

3.2.6 Place cells contribute less to decoding of location in novel conditions 

The goal for the animals is to know whether the cue object is displaced and correctly lick when 

it reaches the reward zone. In order to do this, we expect it to be able to estimate its own 

location accurately. We determined how accurately the place cells encode the animal’s own 

location using a variation of a Bayesian decoder [200]. We used a separate decoder for each 

environment by calculating each cell’s prior per environment. The decoding error was 

quantified as the distance between the predicted location and the true location in centimetres. 

As the end of our environment is connected to the start of the next environment via the 

tunnel, we accounted for this in the error calculation. As a control, we randomly shuffled the 

cells relative to their priors (i.e. each cell was assigned another cell’s prior). This showed a 

significantly larger decoding error across all conditions (S Fig 3.7A, Table 11), meaning our 

decoder is able to meaningfully decode the animal position from the place cell activity.  



125 
 

We first looked at the decoding error across environments in the different stages of training. 

As expected, we saw a significant decrease in decoding error in trained compared to untrained 

mice (Fig 3.6A, Table 10, p=0.0002, linear mixed model). This suggests the cells got better at 

encoding the environment as a result of training in the task. Neither cue abundance or an 

interaction between cue abundance and object location novelty affected the decoding error. 

However, the decoding error was significantly lower in the novel compared to the familiar 

conditions (Fig 3.6A, Table 10, p=7.0x10-16). This means the cells more accurately represented 

the animal’s location on the track when the object was displaced, compared to when it was in 

the familiar location. 

As both the cue object and reward location are relevant for the task, we expected the 

decoding of location to be more accurate around these locations compared to the control 

object. To test this, we calculated the decoding error for every frame of a recording, and then 

averaged the error across 2 cm location bins. We again performed a shuffle procedure, and 

subtracted the shuffled error per location bin from the original error to correct for any trends 

in the error due to the nature of our trial setup (Fig 3.6B). We quantified the differences by 

looking at three areas on interest: the familiar location of the cue object (30-70 cm), the 

location of the control object (130-170 cm) and the reward zone (170-200 cm). Again, there 

was a decrease in error in the novel compared to the familiar conditions (S Fig 3.7B, Table 11, 

p=1.3x10-14, linear mixed model), and no significant effect of cue abundance. Interestingly, 

location bin also had a significant effect on decoding error (p=0.002), which we investigated 

further. As there was no effect of cue abundance, we performed a post-hoc test using Tukey’s 

method comparing the locations separately for both novelty conditions, collapsed across cue 

abundance. This showed that in the novel, but not the familiar condition, there was a 

significant increase in decoding accuracy both around the cue object and the reward zone 

compared to the control object location (p=0.024 and p=0.011, Table 11). This suggests that 

the animals indeed encode the locations most relevant for the task (the reward zone and the 



126 
 

cue object location) more accurately than the control object, even though the cue object is not 

in the cue object location in this condition. 

As we saw an increase in mutual information in the place cells in the novel compared to the 

familiar condition (Fig 3.3B), we wondered whether the decrease in decoding error in novel 

conditions was caused by the place cells. Therefore, we next looked at the contribution of 

place cells to the decoding. We performed the decoding using only the place cells and 

subtracted the previously determined error across all cells from the result. If the place cells 

contributed greatly to the decoding, we expected their decoding error to be similar to the 

decoding error across all cells, resulting in a low difference in error. We first tested this by 

comparing the decoding error difference for each of the conditions to 0. In the familiar 

condition, the error difference was not significantly different from 0, across cue abundance 

and training conditions (Fig 3.6C, Table 10, one-sample Wilcoxon signed rank test with Holm–

Bonferroni correction for multiple comparisons). However, in all conditions across the novel 

condition, the error difference was significantly higher than 0. This means that in the novel 

condition, but not the familiar condition, non-place cells significantly contribute to location 

decoding. 

As this suggests there is a difference between the conditions, we also compared the error 

difference across cue abundance, novelty and training conditions. The trained mice had a 

significantly higher error difference compared to the untrained mice (Fig 3.6C, Table 10, 

p=0.046, linear mixed model), suggesting the contribution of the place cells decreased with 

training. In addition, the error difference was significantly greater in the novel than the familiar 

condition (Fig 3.6C, Table 10, p=2.5x10-13). This indicates that the place cells have an overall 

lower contribution to the decoding in conditions when the cue object is in a novel location. 

Presumably in these conditions, non-place cells play a more important role. 
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As we saw differences in encoding between the task relevant and control cue locations, we 

tested whether the place cells contributed to this difference. To this end, we determined the 

change in decoding error at different locations caused by the place cells, by subtracting the 

error per location across all cells from the decoding error of the place cells alone (Fig 3.6D). We 

used the same three zones of interest to quantify the differences. Again the error difference 

was higher in the novel than the familiar condition (S Fig 3.7C, Table 11, p=9.1x10-11, linear 

mixed model), while neither cue abundance nor training had a significant effect. As there was 

a significant effect of location (p=1.8x10-6), we performed the same post-hoc test using Tukey’s 

method, which showed a significant decrease in encoding error difference between the control 

and the reward location in the familiar condition (p=0.001). In addition, the encoding error 

difference was significantly lower in the reward location compared to the control and the cue 

object in the novel condition (p=0.0017 and p=0.0009, Table 11). This suggests that the place 

cells more strongly contribute to encoding the reward location compared to other locations in 

the environment across the conditions.  

Overall, cue abundance has no effect on the encoding of location across our various tests. 

However, we are better able to decode the animal’s location when the cue object is displaced, 

with the reward zone and the cue object location in particularly having a decreased encoding 

error. Place cells contribute less to the decoding in the novel compared to the familiar 

conditions. Interestingly they contribute relatively more around the reward location, even 

though we did not see an overrepresentation of reward location in the place fields. This would 

suggest that the place cells are more important for encoding the reward location, while non-

place cells contribute more to encoding other areas of the environment.  
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Fig 3.6 Decoding animal location across environmental conditions. (A) Mean decoding error of a Bayesian decoder 

predicting location based on the activity of all cells. (B) Mean difference between the original decoding error across 

location and the decoding error of a shuffled version. (C). Mean difference in decoding error between a decoder that 

includes all cells, and one using only place cells. P-values above bars from one-sample Wilcoxon signed rank test 

compared to a mean of 0 with Holm–Bonferroni correction for multiple comparisons. (D) Mean difference between 

the decoding error across location using all cells and the decoding error using only place cells. In A and C, each data 

point is a session, bars show means, with error bars showing 95% confidence intervals. In B and D the black lines 

show the means across the sessions, with the coloured error bars showing 95% confidence intervals. P-values next to 

A and C are from a linear mixed model with cue abundance, object location novelty, training and the interaction of 

cue abundance and novelty (cue*novelty) as fixed-effects and mouse and imagining session as random-effects. See 

Table 10 for N numbers for comparisons and all statistical analysis. 

3.2.7 Hippocampal cells encode the animal’s location relative to the cue object 

As the location of the cue object is relevant for the task, and we see object-vector cells which 

respond to a specific location relative to the cue, we also determined how well these cells 

encoded the animal’s position relative to the cue object. We used a Bayesian decoder as 

detailed above, but this time using the fluorescence map relative to the object location rather 

than the fluorescence map over location for the cell’s prior probability. We included the 

encoding in the familiar condition, though it should be noted that the location is of the object 

in this condition is always the same. Here, we did not use a circular error, as we used a set 

distance around the object (100 cm), and the end of this region was not connected to the start 

of the next one at a set distance. We again performed a shuffled control, and the decoder 

error of the original decoder was significantly lower than error in the shuffled control in all 

conditions (S Fig 3.8A, Table 13), meaning our decoder is able to meaningfully decode the 

animal position from the place cell activity.  

We next tested the effect of the environmental conditions and training on the decoding of 

object location. Again, both training and displacement of the cue object caused a decrease in 

decoding error (Fig 3.7A, Table 12, p=0.021 and p=3.3x10-11, linear mixed model), but cue 
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abundance had no effect. So, in addition to the animal’s own location, the cells also encode its 

location relative to the cue object more accurately in the novel condition. 

As we saw an increase in the number of object-vector cells with their object-vector field centre 

after the cue object, we were interested to see if this is reflected in the coding error. We 

determined the difference in decoding error at different locations relative to the cue object, 

again using the error per location and subtracting the shuffled error (Fig 3.7B), and quantified 

this by looking at three areas of interest: before the object (-100 to -30 cm), around the object 

(-30 to 30 cm) and after the object (30 to 100 cm). Again, the error decreased in the displaced 

condition (S Fig 3.8B, Table 13, p=5.0x10-11, linear mixed model), but neither cue abundance 

nor training affected the error. We did see an effect of location (p=1.8x10-9), which we studied 

further with a post-hoc test using Tukey’s method comparing the locations separately for both 

novelty conditions. In both the familiar and novel conditions the encoding error was 

significantly lower around compared to before (p=0.0033 and p<0.0001, Table 13), and after 

the object (p=0.014 and p=0.022). Thus, the animal is better able to estimate its location 

relative to the object when it is around the object.  

However, the object-vector cells overrepresented location after the object, rather than around 

the object. Therefore, we also examined the contribution of the object-vector cells to the cue 

object location decoding. As these cells were only defined in the novel condition, we restricted 

our analysis to this condition. As previously, we subtracted the error of the decoder using all 

cells from the error of the decoder that only included object-vector cells. Again, we first tested 

this by comparing the decoding error difference for each of the conditions to 0. Across the cue 

abundance and training conditions, the error difference was significantly greater than 0 (Fig 

3.7C, Table 12, one-sample Wilcoxon signed rank test with Holm–Bonferroni correction for 

multiple comparisons). This means that decoding of the animal’s location relative to the cue 

object did not strongly depend on object-vector cells. 
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We additionally compared the error difference across cue abundance and training conditions. 

Cue abundance did not affect the error difference (Fig 3.7C, Table 12). However, after training 

the error difference was higher (Fig 3.7C, Table 12, p=0.012, linear mixed model), showing a 

similar pattern as the place cells, suggesting the object-vector cells contributed less to the 

encoding of the cue object location after training.  

We lastly determined the difference in decoder error when only using object-vector cells 

across the different locations (Fig 3.7D). Again, we quantified this with the three location 

zones: before, around or after the object. We saw no effect of cue abundance, but we did see 

an effect of location (S Fig 3.8, Table 13, p=0.0010, linear mixed model). A post-hoc test using 

Tukey’s method revealed the error difference was significantly larger after compared to before 

or around the cue object (p=0.0037 and p=0.0035, Table 13). This means the object-vector 

cells contributed relatively more to the encoding before and around compared to after the cue 

object. This is surprising, as we saw an overrepresentation of object-vector cells after the 

object.  

Overall, we are able to decode the location of the cue object, even if it is not always in the 

same location in the environment, suggesting the hippocampal cells hold a representation of 

the animal’s location relative to the cue object. In addition, we found increased decoding 

accuracy around the object location. The object-vector cells showed a relatively small 

contribution to the decoding, especially after training. In addition, the object-vector cells 

contribute less to encoding the animal’s location relative to the object after it had passed the 

object. Together, these results suggest that non-object-vector cells contribute greatly to 

encoding an animal’s position relative to the object.  
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Fig 3.7 Decoding animal location relative to the cue object. (A) Mean decoding error of a Bayesian decoder 

predicting location relative to the cue object based on the activity of all cells. (B) Mean difference between the 

original decoding error across location and the decoding error of a shuffled version. (C). Mean difference in decoding 

error between a decoder that includes all cells, and one using only object-vector cells. P-values above bars from one-

sample Wilcoxon signed rank test compared to a mean of 0 with Holm–Bonferroni correction for multiple 

comparisons. (D) Mean difference between the decoding error across location using all cells and the decoding error 

using only object-vector cells. In A and C, each data point is a session, bars show means, with error bars showing 

95% confidence intervals. In B and D the black lines show the means across the sessions, with the coloured error bars 

showing 95% confidence intervals. P-values next to A are from a linear mixed model with cue abundance, object 

location novelty, training and the interaction of cue abundance and novelty (cue*novelty) as fixed-effects and mouse 

and imagining session as random-effects, those above C are from a linear mixed model with cue abundance and 

training as fixed-effects and mouse and imagining session as random-effects. See Table 12 for N numbers for 

comparisons and all statistical analysis. 

3.3 Discussion 

We studied the effect of two environmental conditions, cue abundance and object location 

novelty, as well as training on a novel behavioural task on the representation of an 

environment. We found a strong effect of object location novelty on behaviour and various 

place cell characteristics, with the mouse running faster and the place cells becoming less 

accurate, but holding more spatial information, when the cue object was displaced, but no 

effect of cue abundance across our analyses. In addition, we found remapping of place cells 

when the object location novelty condition changed, but not when the cue abundance 

changed. These differences translated into an increased decoding of location in the novel 

condition, suggesting the hippocampus encoded the mouse location in this condition more 

precisely compared to the familiar condition, but did not change its encoding when the cue 

abundance changed. 

In this study we introduced a novel, virtual reality, behavioural task, requiring the animals to 

recognize an object’s location using only visual input. Although previous real-world equivalents 
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have shown animals to spend more time around displaced or novel objects [187,188,201], we 

do not see a similar effect in our paradigm. Mice have been previously shown to respond to 

novelty in a visual-only paradigm [201], but in that paradigm the mice were still able to freely 

approach and explore the screen showing the objects. In our case the mice are restricted to 

the middle of the environment and can only face forward, thus reducing their ability to 

interact with the object. The mice indeed did not slow down around the objects, there were no 

confounding effects of exploratory behaviours such as whisking and sniffing. This uniquely 

allowed us to determine which cells respond to the object based only on visual stimuli. We 

show for the first time that object-vector cells are not dependent on the mouse being able to 

interact with an object, and will represent an object even when it is not able to perceive it in 

any way (visually, olfactory or otherwise).  

Our paradigm also affects the cell dynamics, evidenced by the low number of place cells we 

find compared to previous reports [35,198]. Although virtual reality does cause changes in the 

place cells characteristics compared to real-world environments [149], the number of place 

cells we detect here are also low compared to previous virtual reality paradigms, particularly in 

the novel condition. A possible explanation is the random interweaving of conditions, unlike 

previous studies [35,147], as place fields take may take some time in an environment to 

stabilize [202]. By interweaving the trials as we have, we may be giving the mice less time to 

create a stable representation of the environment. In addition, our animals experience a large 

number of individual entries into the environment, which may induce switching between 

multiple maps of a single environment [24]. Despite the low number of place cells the mice are 

able to perform the task and hold an accurate representation of the environment, as 

evidenced by the task performance and the Bayesian decoder results. Indeed, although the 

number of place cells and their stability was lower, and the out/in fluorescence ratio was 

higher, in the novel condition, we were able to more accurately decode the location of the 

animal in this condition. This highlights the importance of non-place cells in spatial 
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representation, and possibly suggests that the non-place cells become more important in more 

variable environments.  

We do not see an effect of cue abundance across our tested metrics, including the behaviour, 

number of place cells and object-vector cells, and the decoder error. Thus, in our task, cue 

abundance does not influence the representation of the environment in the brain. This is 

surprising, because our abundant condition added several cue elements, including distal 

objects and patterning on the walls and floor. Earlier studies have shown that distal object can 

change place cell activity and cause remapping [46,184,190], though this effect may be 

secondary to that of local objects [190]. In our paradigm the cells already respond so strongly 

to the cue object being displaced, the number of place cells recruited by the distal objects may 

be negligible. In addition, we do not distinguish between deep and superficial layers of dorsal 

CA1 in our imaging. Depending on the quality of the surgery and the specifics of a particular 

imaging session, we may include only deep cell bodies, only superficial, or a combination of 

both within an imaging session. A recent study [17] showed that these different layers respond 

differentially to sparse and abundant environments, with the superficial cells responding 

strongly to sparse environments, while the deep cells respond more strongly to abundant 

environments. In addition, this study also showed that place cells preferably use rate coding 

for sparse environments, but phase coding for abundant environments. We only examined 

rate coding, as our imaging resolution was not high enough to study the phase code of the 

place cells, and as such would not have been able to see such differences.  

Even if the distal objects were not sufficient to induce a change, we would have expected an 

effect of wall patterning on the percentage of place cells, as a previous study has shown [147]. 

In addition, changes in wall and floor patterning is a type of contextual cue, such as the 

changing of the colour or odour of an environment, which we would expect to induce 

remapping [43]. One explanation would be that we only look at the remapping of cells that 
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were identified as place cells in both conditions, thus missing out cells that gained or lost their 

place cell classification between the conditions and skewing our remapping analysis towards 

more stable cells. However, we did not see a difference in the overlap between the 

environments, which we would expect if this were the case. Alternatively, we might suggest 

that the mice have learned to ignore this contextual cue, as it is not task relevant. However, if 

this were the case, we would expect to see an effect of training, which we do not see, meaning 

the mice start ignoring the cue abundance condition before learning to perform the task.  

Overall, our results suggest that rather than a modular effect, with two contextual features 

inducing similar place cells changes [43,195], there may be more of a hierarchical effect, where 

one environmental feature, in this case cue object displacement, affects the place cells more 

than another feature. It would be interesting to increase the number of features in the 

environment that are changed to determine whether this holds for other features, such as 

odour or task context. In addition, it would be interesting to see if we can reverse the effect by 

forcing the mice to attend to the cue abundance, by linking the reward to this feature rather 

than the object displacement. 

Altogether, we show an absence of response to cue abundance in this virtual reality task, 

suggesting that the animals either do not pay attention to, or ignore, additional cues in the 

environment in this paradigm. However, they do respond very strongly to object location 

novelty, even when they are not able to behave around the objects as they would in a real-

world task. As we are able to restrict the behaviour and monitor closely what the mouse sees 

at any given time during the, we can uniquely draw conclusions about the effect of visual cues 

hippocampal coding during this task. For example, we can see that the mice hold a 

representation of its location relative to the object even if the object is not in its visual field. 

Future work could take advantage of this paradigm and its advantages to study the effect of 

modular changes to the environment and its effect on hippocampal coding. 
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3.4 Materials and methods 

3.4.1 Animals 

All experimental procedures were approved by the UK Home Office, in accordance with the 

1986 Animal (Scientific Procedures) Act. Experiments used four C57/BL6 mice (2 female, 2 

male) expressing the genetically-encoded calcium indicator GCaMP6f under the control of a 

Thy-1 promoter (C57BL/6J-Tg(Thy1-GCaMP6f)GP5.5Dkim/J). The mice were housed in a 12h 

reverse dark/light cycle environment at a temperature of 22°C and were given ad libitum 

access to food and water. 

3.4.2 Hippocampal cranial window surgery 

Surgery was performed when mice were a minimum age of eight weeks. Before surgery, mice 

received subcutaneous injections of dexamethasone (60 μL, 2mg/mL), saline (400 μL) and 

buprenorphine (40 μL, 0.3mg/mL diluted 1:10 in saline) to reduce inflammation, for hydration, 

and pain relief respectively. Mice were maintained at 0.8-2.0% isofluorane anaesthesia for the 

duration of the surgery. Body temperature was maintained at 37 °C using a homeothermic 

blanket (PhysioSuite, Kent Scientific Corporation). A craniotomy was inserted above dorsal CA1 

as previously described [23]. Briefly, the skin above the skull was removed and the skull was 

scored to increase the surface area for binding dental cement. A custom-made stainless steel 

headplate was then fixed to the skull with black dental cement (Unifast Powder mixed with 

black ink (1:15 w/w) and Unifast Liquid). A 3 mm diameter craniotomy was then performed 

2mm posterior to bregma and 1.5 mm lateral to the sagittal suture. Following the removal of 

the skull flap and the dura, brain tissue overlying the hippocampus was aspirated (New Askir 

30, CA-MI Srl) until vertical striations of the corpus callosum were visible. We then inserted a 

custom 3D printed cannula (2.4 mm ID, 3 mm OD, 1.5 mm height) made of a biocompatible 

Dental SG resin (FormLabs) so that the glass coverslip at the bottom of the cannula lay directly 

on top of the brain tissue. The top of the cannula had a rim (0.2mm height, 3 mm OD) resting 
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on top of the skull, which was attached using tissue adhesive (3M VetBond) and then covered 

with more dental cement. A rubber ring was then attached on top of the headplate for 

subsequent use as a well for the water needed for the water-immersion microscope objective. 

The mice were given an injection of meloxicam (125 μL, 5 mg/ml) as an analgesic near the end 

of the surgery and then received meloxicam (200 μL, 1.5 mg/mL) for 4 days following the 

surgery via oral admission. Their health was monitored, and they were weighed daily.  

3.4.3 Two-photon imaging 

Habituation. A week or more after surgery, the mouse was habituated to the imaging rig by 

head-fixing it for an increasing amount of time each day for at least a week before it was 

imaged. During the habituation it was also presented with the virtual reality environment 

several times to make it familiar with this setup. 

Imaging rig (Fig 3.1A). The mice were head-fixed above a polystyrene cylinder, on which they 

could run. The cylinder was fitted with a rotary encoder (Kübler, 4096 pulses per revolution). 

Two screens in front of the mice were used to display a custom virtual reality (VR) 

environment designed using ViRMEn [37]. 

Reward delivery system. We built a custom reward delivery and lick detection system using a 

Raspberry Pi. The reward delivery was performed using a blunted 21G needle attached to a 

tube. The needle was placed on a custom 3D printed micromanipulator that consisted of two 

modular axes (https://www.thingiverse.com/thing:203734, Baden lab) as well as a hinge to 

determine the angle of the needle. This allowed for precise placement in front of each mouse. 

The reward, diluted condensed milk, was delivered through a custom 3D printed pump driven 

by a servo motor, which was controlled through the Raspberry Pi. The Raspberry Pi received 

input from the computer controlling the virtual reality environment through a data acquisition 

device (LabJack T7), which sent a signal whenever a reward was to be delivered.  

https://www.thingiverse.com/thing:203734
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The system also included a lick detection system. This was achieved by turning the metal 

needle tip into a capacitive touch sensor. The needle was connected onto a circuit which also 

included a 1MΩ resistor. Our system was calibrated at the start of each session, and the 

voltage was readout throughout the session. When a big change in voltage was measured, 

caused by the tongue of the mouse touching the needle, a signal was sent to the computer 

controlling the virtual reality environment and the appropriate action was taken. If the mouse 

licked in the reward zone, a signal was sent back to deliver a reward by activating the motor. If 

the mouse licked outside of the reward zone and was in step 3 of behavioural training, a 

punishment, in the form of a flashing screen, was delivered.  

Data acquisition. In the hippocampal experiments, the stratum pyramidale of dorsal CA1 was 

imaged using a two-photon microscope (Scientifica) with a water-immersion objective (CFl75 

LWD 16X W, Nikon; 0.80 numerical aperture, 3 mm working distance). We used the ScanImage 

(Vidrio Technologies, MATLAB) software to control the microscope and collect data. The 

stratum pyramidale was identified from the presence of densely packed cell bodies. We 

optimised the acquisition rate by using a wide field-of-view at a low resolution (128x128 pixels, 

7.51 Hz, 3.77 µm pixel size).  

3.4.4 Behavioural task 

Environment. The virtual reality environment presented to the mice was a wide corridor, 200 

cm long and 80 cm wide, with 30 cm high walls (S Fig 5B). Both before and after the wide 

corridor was a dark grey tunnel with a diameter of 30 cm, 50 cm long before the corridor and 

45 cm long after the corridor) which served to allow smooth transitions between multiple 

presentations of the environment. Inside the environment were always two objects: a blue 

and black striped ball and a white and black striped block. On each traversal both the cue 

abundance, binarized into two levels, and the location of the ball was randomly selected. For 

the cue abundance this meant either a combination of grey walls, a grey floor, and no external 
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objects (sparse condition), or patterns walls and floor and two additional objects (a cyan, black 

striped cone and a black, white and green blocked ball) outside of the walls (abundant 

condition). In the case of the ball location this was either in a familiar location (50 cm into the 

environment) or on a randomized location along the corridor (always 30 cm left of the middle) 

at least 15 cm from the familiar location, and at least 25 cm from the start and end of the 

environment, to ensure good visibility of the object. 

Mouse training. Mice were trained to lick for reward (diluted condensed milk) in a reward zone 

at the end of the environment when they had detected that the goal object was displaced 

from its familiar position. The training was divided into three steps in order of difficulty (S Fig 

3.1A). In the first step the mice only experienced the task passively; the reward was delivered 

regardless of whether the mice licked or not. In the second step the task was presented 

actively; the mice had to lick in the reward zone in order to receive the reward. In both these 

steps, no punishment was given when the mice licked on a non-rewarded trial. In step three, a 

punishment consisting of a flashing screen was introduced when the mice licked in a non-

rewarded trial. Training sessions usually lasted up to three hours, but were dependent on the 

performance of the mouse.  

We monitored animal performance throughout the training, this helped in determining when 

to introduce the next step. The next training step was introduced when the mouse licked in 

40% of the passive trials (step 1), 40% of the active trials (step 2), and showed at least 30% 

difference in licks rewarded compared to non-rewarded trials (step 3). We always introduced 

these steps one by one, never both in one session. Once a mouse reached a certain step, we 

did not go back to a previous step, regardless of how they performed on a given day. We 

imaged the mice throughout training, aiming to collect data at least twice for every training 

step. 
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3.4.5 Image analysis 

Preprocessing. Preprocessing was conducted using Suite2P software [172]. Firstly, images were 

registered using the default settings, then regions of interest (ROIs) corresponding to cell 

bodies were identified based on their morphology (having a diameter of approximately 10 μm) 

and a tau, the decay time for the calcium indicator, of 0.8. We refined the default Suite2P 

classifier to identify cells from non-cell ROIs by training it on 8 separate datasets that were 

collected with the same imaging settings. We obtained the calcium signal corrected for 

neuropil activity, by subtracting 0.7 times the neuropil signal from the ROI signal for each ROI, 

from the Suite2P output. Then we normalised time courses to baseline fluorescence for each 

ROI by dividing the whole trace by the average intensity in that ROI during the first 100 frames 

of the recording, obtaining the fluorescence as ΔF/F.  

3.4.6 Celltype analysis 

Place cell detection. We used a method of place cell detection previously described for 

electrophysiology [55], which we adapted for, and tested on, two-photon microscopy data 

(Chapter 2, [198]). In short, we determined the fluorescence map for each cell by averaging 

the fluorescence over location, only including frames where the speed of the mouse was at 

least 1cm/s, and found the maximum value within the fluorescence map. Next, we shuffled the 

trace relative to the location 500 times, calculated the fluorescence map for the shuffled trace, 

and recorded the maximum fluorescence of the fluorescence map for each shuffle. If the 

original maximum value was in the 99th percentile of the shuffled maximum values, the cell 

was deemed a place cell. 

Object-vector cell detection. To detect object-vector cells in our data, we used the same 

method as for the place cell detection. However, rather than calculating the fluorescence map 

over location, we calculated it over the relative location from the object. We only included any 

locations that were up to 100 cm from the object. After obtaining this fluorescence map, we 
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again calculated the maximum value, and then performed the shuffling procedure as 

previously described. To be included as object-vector cells, cells not only had to possess a 

maximum value in the 99th percentile, but also not be included as a place cell. 

Mutual information. We calculated the mutual information between the cells and the location 

[173]. We calculated the bits of information directly from the fluorescence, rather than first 

applying a spike deconvolution, as this has been shown to give an accurate estimate of the 

information [175]. In short, we divided the fluorescence signal for each cell into 4 bins. We 

then calculated the probability of the fluorescence to be in each bin (pj), as well as the 

probability for each fluorescence bin per location bin (pij). Next, we calculated the mutual 

information per cell using Equation 1.  

 MI𝑖𝑗 = ∑ ∑ 𝑝𝑖𝑗 log(
𝑝𝑖𝑗

𝑝𝑖 ∙ 𝑝𝑗
)

𝑗𝑖

 
Equation 1 

 

Place field width. We measured the place field with by first determining the location of the 

maximum value within the fluorescence map for each cell. Next, we determined the full width 

half max (FWHM) as the mean between the maximum and the minimum value within the 

fluorescence map. Using the location of the maximum value as a centre, we the measured the 

place field width from the number of continuous location bins around the centre with 

fluorescence higher than the FWHM. 

Stability. We determined the stability of the cells by first calculating the fluorescence map per 

traversal of the environment. Next, we took the average fluorescence map across the even and 

the odd traversals. The stability was defined as the Pearson correlation between the maps for 

the even and odd traversals. 

Out/in ratio. To calculate the ratio between the fluorescence outside the place field and within 

the place field, we first calculated the fluorescence map per cell. We determined the location 

bins of the map included within the place field using the FWHM as described for the place field 
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width. We then divided the mean fluorescence across all location bins in the fluorescence map 

outside of the place field by the mean fluorescence across those within the place field to 

obtain the out/in ratio. 

Goal Representation Index. We based our goal representation index (GRI) on a previously 

described study [193]. In short, we determine the number of place field centres in the reward 

zone (180-200 cm), as well as the number in two other areas which were both outside of the 

reward zone and away from the familiar position of the cue object (90-110 cm and 140-160 

cm). The GRI is defined as the number of place cell that have their centre in the reward zone, 

divided by the number of place cells that have their centre in the control zones, where we 

averaged across the two zones. A value of higher than 1 indicated an overrepresentation of the 

goal zone.  

3.4.7 Overlap analysis 

Overlap coefficient. We calculated the overlap in cell types identified between two conditions 

using the overlap coefficient (Equation 2). The coefficient is the ratio between the number of 

cells (N) classified in both conditions (i and j) and the lowest number of cells of the two 

conditions, and is thus a reflection of the ratio compared to the maximal possible overlap.  

 
OC =

𝑁𝑖 ∩ 𝑁𝑗

min(𝑁𝑖 , 𝑁𝑗)
 

Equation 2 

 

3.4.8 Bayesian decoder 

We used a Bayesian decoder, courtesy of Caswell Barry, adapted from [174], to predict the 

mouse location from the hippocampal activity [200]. For the decoder we used the spiking 

activity for each session as calculated by the Suite2P spike deconvolution algorithm [172]. This 

activity was binarized, meaning a 1 was assigned when any spikes were present, and otherwise 

it was set to 0. We determined the probability of the cells being active in each location bin 
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(p(a|s)) by calculating the rate map. The prior probability for the cells firing (p(a)) was simply 

the mean number of spikes across the recording. The prior for the probability of occupying a 

location (p(s)) was set to be flat, meaning the decoder assumed the same probability (
1

N
, with N 

being the number of location bins) for every location. 

Using these prior probabilities we calculated the posterior probability (p(s|a)) that a mouse 

was in a location given the observed cell activity, using Bayes rules. Two posteriors were 

calculated, one when a transient was observed (Equation 3) and one when no transient was 

observed (Equation 4).  

 
p(s|a) = 

p(a|s)p(s)

p(a)
 

Equation 3 

 

 
p(s|¬a) = 

(1-p(a|s))p(s)

1-p(a)
 

Equation 4 

 

The final posterior probably was calculated using the above equations per cell and summing 

across the cells. In datasets with a large number of cells, the individual probability per cell 

might approach the numerical limits of the software [174], so these summations were 

performed in log space and then converted back by calculating the exponent. This gave us the 

probability for that the animal was in a location for each location bin per frame.  

Decoding error. We calculated the decoding error by first determining the predicted location 

from the calculated posterior probability. This was done by taking the location bin with the 

highest probability as the predicted location. The error was defined as the difference between 

the predicted location and the true location the animal was in, taking into account the circular 

nature of the environment (i.e. the end of the environment connected back to the start via the 

pipe).  
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3.5 Supporting information 

 

S Fig 3.1 Animal training and task performance. (A) Computationally generated example of mouse behaviour 

illustrating the three training steps. (B) Percentage of total possible rewards gained over the training days, with each 

mouse illustrated in a different colour. (C) Percentage of correct licks when the object was displaced less than 60 cm 

(left) or more than 60 cm (right). In C, each data point is a session, bars show means, with error bars showing 95% 

confidence intervals. P-values next to C are from a linear mixed model with cue abundance, displacement, training 

and the interaction of cue abundance and displacement (cue*displacement) as fixed-effects and mouse and 

imagining session as random-effects. See Table 2 for N numbers for comparisons and all statistical analysis. 
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S Fig 3.2 Mouse velocity at different location in the environment or relative to the cue object. (A) Mouse velocity at 

three locations of interest (around the control object, around the cue object and in the reward zone). (B) Mouse 

velocity at locations relative to the cue object (before, around or after the object). P-values below A-B are from a 

post-hoc Tukey’s method test collapsed across training and cue abundance. Each data point is a session, bars show 

means, with error bars showing 95% confidence intervals. See Table 4 for N numbers for comparisons and all 

statistical analysis. 
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S Fig 3.3 Additional place cell characteristics. (A) Mean place field width of the place cells. (B) Mean ratio of the 

fluorescence out and inside the place field. (C) Stability, as measured by the correlation between the fluorescence 

map of the even and odd trials. (D) The percentage of place cells with place field centres at three locations of interest 

(around the control object, around the cue object and in the reward zone. P-values next to A-C are from a linear 

mixed model with cue abundance, object location novelty, training and the interaction of cue abundance and novelty 

(cue*novelty) as fixed-effects and mouse and imagining session as random-effects. P-values below D are from a 

post-hoc Tukey’s method test collapsed across training. Each data point is a session, bars show means, with error 

bars showing 95% confidence intervals. See Table 6 for N numbers for comparisons and all statistical analysis. 
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S Fig 3.4 Further characterisation of object-vector classification. (A) Histograms showing distribution of percentile 

scores of the object-vector cells across the four environments. Red dashed line indicates the threshold used to 

include cells as OVCs. (B) Relation between the object-vector cell (OVC) percentile score and place cell (PC) percentile 

score across all datasets. Black lines indicate mean trend line across all cells. (C) Percentage of all ROIs identified as 

exclusively place cells (pink), exclusively object-vector cells (green) or both (blue). (D) Mutual information with 

location relative to the object (pink) or relative to the global environment (blue) of the object-vector cells. Bars show 

means, with error bars showing 95% confidence intervals and dots indicating individual datasets. P-values in D from 

paired t-test with Holm-Bonferonni correction for multiple comparisons. 

 

 

S Fig 3.5 Examples of object-vector cells. Example fluorescence maps over location (left) and location relative to the 

object for object-vector cells with maps around (A-C), before (D) or after (E-F) the object.  
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S Fig 3.6 Additional object-vector cell characteristics. (A) Mean place field width of the object-vector cells in the 

novel condition. (B) Mean ratio of the fluorescence out and inside the place field. (C) Stability, as measured by the 

correlation between the fluorescence map of the even and odd trials. (D) The percentage of object-vector cells with 

place field centres at three locations relative to the cue object (before, around or after the object). P-values above to 

A-C are from a linear mixed model with cue abundance and training as fixed-effects and mouse and imagining 

session as random-effects. P-values below D are from a post-hoc Tukey’s method test collapsed across training. Each 

data point is a session, bars show means, with error bars showing 95% confidence intervals. See Table 8 for N 

numbers for comparisons and all statistical analysis. 
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S Fig 3.7 Decoding of animal location. (A) Mean error of the original decoder (orange) and a decoder where the cell 

identities were shuffled (green), p-values from a paired two-sample Wilcoxon signed rank test with Holm-Bonferonni 

correction. (B) Difference between the error per location bin of the original decoder and the shuffled decoder at 

three locations of interest (around the control object, around the cue object and in the reward zone). Negative 

results show the original decoder was more accurate than the shuffled decoder. (C) Difference between the error per 

location bin of the original decoder and the decoder which only included place cells at the three locations of interest. 

Positive results show that place cells contributed less to the decoding. P-values below B-C are from a post-hoc 

Tukey’s method test collapsed across training and cue abundance. In A each datapoint for the original data is a 

session, whereas the datapoints for the shuffled are the mean across 100 shuffles per dataset, in B-C, each data 

point is a session. Bars show means, with error bars showing 95% confidence intervals. See Table 11 for N numbers 

for comparisons and all statistical analysis. 
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S Fig 3.8 Decoding of animal location relative to cue object. (A) Mean error of the original decoder (orange) and a 

decoder where the cell identities were shuffled (green), p-values from a paired two-sample Wilcoxon signed rank test 

with Holm-Bonferonni correction. (B) Difference between the error per location bin of the original decoder and the 

shuffled decoder at three locations relative to the cue object (before, around or after the object). (C) Difference 

between the error per location bin of the original decoder and the decoder which only included object-vector cells at 

the three locations of interest for the novel direction. P-values below B-C are from a post-hoc Tukey’s method test 

collapsed across training and cue abundance. In A each datapoint for the original data is a session, whereas the 

datapoints for the shuffled are the mean across 100 shuffles per dataset, in B-C, each data point is a session. Bars 

show means, with error bars showing 95% confidence intervals. See Table 13 for N numbers for comparisons and all 

statistical analysis. 
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Statistics tables 

Familiar condition: Linear mixed model with cue abundance (cue), training and their 
interaction (cue:training) as fixed-effects and mouse and imagining session as random-effects 

Model: choice ~ cue*training + (1|mouse) + (1|session) 

Factor N Mean 
sq 

NumDF DenDF F-value p-value 

Cue Sparse: 64 
Abun.: 65 

603.9 1 79.293 

 

2.1793 

 

0.1438354  

 

Training Untrained:79 

Trained:50 

4829.4 

 

1 59.785 

 

17.3218 

 

0.0001026 *** 

 

Cue:training Sparse/untrained: 39 

Abun./untrained: 40 

Sparse/trained: 25 

Abun./trained: 25 

1888.3 

 

1 79.293 

 

6.7730 

 

0.0110413 * 

 

 

Novel condition: Linear mixed model with cue abundance (Cue), training and their interaction 
(Cue:training) as fixed-effects and mouse and imagining session as random-effects 

Model: choice ~ cue*training + (1|mouse) + (1|session) 

Factor N Mean 
sq 

NumDF DenDF F-value p-value 

Cue Sparse: 61 
Abun.: 58 

53.7 1 72.290 

 

0.1471 

 

0.7025  

 

Training Untrained:72 

Trained:47 

9367.7 

 

1 112.790 

 

25.6576 

 

1.605e-06 *** 

 

Cue:training Sparse/untrained: 37 

Abun./untrained: 35 

Sparse/trained: 24 

Abun./trained: 23 

205.7 

 

1 71.075 

 

0.5634 

 

0.4554  

 

Table 1: Statistics for Fig 3.1 
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Novel condition: Linear mixed model with cue abundance (cue), displacement, training and the 
interaction (cue:displacement) as fixed-effects and mouse and imagining session as random-
effects  

Model: choice ~ cue*displacement + training + (1|mouse) + (1|dataset) 

Factor N Mean 
sq 

NumDF DenDF F-value p-value 

Cue Sparse: 102 
Abun.: 102 

260.6 

 

1 157.04  0.4226  0.5166  

Displacement <60 cm: 98 

>60 cm: 106 

66.9 

 

1 158.48  0.1085 0.7423  

Training Untrained: 124 

Trained: 80 

16889.
4 

 

1 186.12  27.3885  4.461e-07 **
*  

Cue:displacement Sparse/<60cm: 49 

Abun./<60cm: 49 

Sparse/>60cm: 53 

Abun./>60cm: 53 

591.0 

 

1 158.43 0.9584 0.3291 

Table 2: Statistics for S Fig 3.1 
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Linear mixed model with cue abundance (cue), novelty, training and the interaction 
(cue:novelty) as fixed-effects and mouse and imagining session as random-effects 

Model: speed ~ cue*novelty + training + (1|mouse) + (1|dataset) 

Factor N Mean 
sq 

NumDF DenDF F-value p-value 

Cue Sparse: 124 
Abun.: 123 

1.8512  1 202.13  0.4193 0.518008 

Novelty Familiar: 129 

Novel: 118 

30.0487  1 202.35 6.8064 0.009761 ** 

Training Untrained: 151 

Trained: 96 

28.9048   1 214.75 6.5473 0.011192 * 

Cue:novelty Sparse/familiar: 64 

Abun./ familiar: 65 

Sparse/novel: 60 

Abun./novel: 58 

0.9073  1 201.62 0.2055 0.650788 

Table 3: Statistics for Fig 3.2 
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Speed relative to location 

Linear mixed model with cue abundance (cue), novelty, location, training and the interactions 
(cue:novelty), (cue:location), (novelty:training) and (cue:novelty:location) as fixed-effects and 
mouse and imagining session as random-effects 

Model: speed ~ cue*novelty*location + training + (1|mouse) + (1|dataset) 

Factor N Mean 
sq 

NumDF DenDF F-value p-value 

Cue Sparse: 371 
Abun.: 369 

0.26 1 675.84 0.0326 0.856844 

Novelty Familiar: 386 

Novel: 354 

219.99 1 676.22 27.8382 1.778e-07 ***  

Location Control obj.: 246 

Cue obj.: 247 

Reward: 247 

43.08 2 673.74 5.4519 0.004479 ** 

Training Untrained: 453 

Trained: 287 

870.75 1 314.87 110.1857 < 2.2e-16 *** 

Cue:novelty Sparse/familiar: 191 

Abun./ familiar: 195 

Sparse/novel: 180 

Abun./novel: 174 

1.34 1 675.40 0.1696 0.680583 

Cue:location Sparse/control: 123 

Abun./control: 123 

Sparse/cue obj.: 124 

Abun./cue obj.: 123 

Sparse/reward.: 124 

Abun./ reward: 123 

1.53 2 673.74 0.1941 0.823653 

Novelty:location Familiar/control: 128 

Novel/control: 118 

Familiar /cue obj.: 129 

Novel /cue obj.: 118 

Familiar /reward.: 129 

Novel / reward: 118 

13.40 2 673.74 1.6958 0.184233 

Cue:novelty:locati
on 

Control obj.: 

Sparse/familiar: 63 

Abun./ familiar: 65 

Sparse/novel: 60 

2.56 2 673.74 0.3242 0.723244 
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Abun./novel: 58 

 

Cue obj.: 

Sparse/familiar: 64 

Abun./ familiar: 65 

Sparse/novel: 60 

Abun./novel: 58 

Reward 

Sparse/familiar: 64 

Abun./ familiar: 65 

Sparse/novel: 60 

Abun./novel: 58 

 

Tukey’s method post-hoc test on location by novelty 

Familiar condition 

Contrast Estimate SE Df t-ratio p-value 

Control vs 
cue obj 

-0.0636 0.414 716 -0.154 0.9871 

Control obj 
vs reward 

0.9914 0.414 716 2.397 0.0442 

Cue obj vs 
reward 

1.0550 0.413 716 2.556 0.0290 

 

Novel condition 

Contrast Estimate SE Df t-ratio p-value 

Control vs 
cue obj 

-0.5301 0.432 716 -1.228 0.4369 

Control obj 
vs reward 

0.0646 0.432 716 0.150 0.9877 

Cue obj vs 
reward 

0.5947 0.432 716 1.378 0.3531 

 

Speed relative to object 

Linear mixed model with cue abundance (cue), novelty, location, training and the interactions 
(cue:novelty), (cue:location), (novelty:training) and (cue:novelty:location) as fixed-effects and 
mouse and imagining session as random-effects 

Model: speed ~ cue*novelty*location + training + (1|mouse) + (1|dataset) 

Factor N Mean 
sq 

NumDF DenDF F-value p-value 
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Cue Sparse: 371 
Abun.: 369 

0 1 712.68 0.0003 0.9867117 

Novelty Familiar: 386 

Novel: 354 

101.60 1 713.08 12.5531 0.0004213 *** 

Location Control obj.: 246 

Cue obj.: 247 

Reward: 247 

7.69 2 712.61 0.9505 0.3870182 

Training Untrained: 453 

Trained: 287 

1760.1
2 

1 722.77 217.4629 < 2.2e-16 *** 

Cue:novelty Sparse/familiar: 191 

Abun./ familiar: 195 

Sparse/novel: 180 

Abun./novel: 174 

0.32 1 712.6 0.0396 0.8423017 

Cue:location Sparse/control: 123 

Abun./control: 123 

Sparse/cue obj.: 124 

Abun./cue obj.: 123 

Sparse/reward.: 124 

Abun./ reward: 123 

4.97 2 712.61 0.6141 0.5414166 

Novelty:location Familiar/control: 128 

Novel/control: 118 

Familiar /cue obj.: 129 

Novel /cue obj.: 118 

Familiar /reward.: 129 

Novel / reward: 118 

71.93 2 712.61 8.8864 0.0001542 *** 

Cue:novelty:locati
on 

Control obj.: 

Sparse/familiar: 63 

Abun./ familiar: 65 

Sparse/novel: 60 

Abun./novel: 58 

 

Cue obj.: 

Sparse/familiar: 64 

Abun./ familiar: 65 

Sparse/novel: 60 

1.87 2 712.61 0.2310 0.7938175 
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Abun./novel: 58 

Reward 

Sparse/familiar: 64 

Abun./ familiar: 65 

Sparse/novel: 60 

Abun./novel: 58 

 

Tukey’s method post-hoc test on location by novelty 

Familiar condition 

Contrast Estimate SE Df t-ratio p-value 

Before vs 
around 

-0.923 0.354 713 -2.604 0.0254 

Before vs after -1.179 0.354 713 -3.329 0.0026 

Around vs 
after 

-0.257 0.354 713 -0.725 0.7488 

 

Novel condition 

Contrast Estimate SE Df t-ratio p-value 

Before vs 
around 

0.235 0.373 713 0.629 0.8041 

Before vs after 0.984 0.372 713 2.646 0.0226 

Around vs 
after 

0.750 0.373 713 2.011 0.1102 

Table 4: Statistics for S Fig 3.2. 
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Place cell percentage 

Linear mixed model with cue abundance (cue), novelty, training and the interaction 
(cue:novelty) as fixed-effects and mouse and imagining session as random-effects 

Model: percentage ~ cue*novelty + training + (1|mouse) + (1|dataset) 

Factor N Mean 
sq 

NumDF DenDF F-value p-value 

Cue Sparse: 121 
Abun.: 120 

31.12 1 196.16 1.0451 0.307894 

Novelty Familiar: 126 

Novel: 115 

1895.5
9 

1 196.84 63.6628 1.192e-13 *** 

Training Untrained: 149 

Trained: 92 

238.76 1 205.20 8.0186 0.005091 ** 

Cue:novelty Sparse/familiar: 63 

Abun./ familiar: 63 

Sparse/novel: 58 

Abun./novel: 57 

12.60 1 197.17 0.4230 0.516180 

 

Mutual information 

Linear mixed model with cue abundance (cue), novelty, training and the interaction 
(cue:novelty) as fixed-effects and mouse and imagining session as random-effects 

Model: MI ~ cue*novelty + training + (1|mouse) + (1|dataset) 

Factor N Mean 
sq 

NumDF DenDF F-value p-value 

Cue Sparse: 119 
Abun.: 116 

0.01042 1 185.00 0.3774 0.539757 

Novelty Familiar: 124 

Novel: 111 

1.28406 1 184.45 46.5192 1.257e-10 *** 

Training Untrained: 146 

Trained: 89 

0.21852 1 213.78 7.9166 0.005355 ** 

Cue:novelty Sparse/familiar: 63 

Abun./ familiar: 61 

Sparse/novel: 56 

Abun./novel: 55 

0.04763 1 186.64 1.7256 0.190589 

 

Goal representation index 

Linear mixed model with cue abundance (cue), novelty, training and the interaction 
(cue:novelty) as fixed-effects and mouse and imagining session as random-effects 

Model: GRI ~ cue*novelty + training + (1|mouse) + (1|dataset) 
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Factor N Mean sq NumDF DenDF F-value p-value 

Cue Sparse: 119 
Abun.: 116 

0.0002928 1 222.04 0.0245 0.8756 

Novelty Familiar: 124 

Novel: 111 

0.0055462 1 223.45 0.4650 0.4960 

Training Untrained: 146 

Trained: 89 

0.0019097 1 157.15 0.1601 0.6896 

Cue:novelty Sparse/familiar: 63 

Abun./ familiar: 61 

Sparse/novel: 56 

Abun./novel: 55 

0.0056316 1 222.69 0.4721 0.4927 

 

Post-hoc one-sample Wilcoxon signed rank test with Holm-Bonferonni correction – compared 
to a mean of 1 

Cue abun. Novelty Training n Adjusted p 

Sparse Familiar Untrained 41 0.675 

Sparse Familiar Trained 25 0.804 

Abundant Familiar Untrained 41 0.675 

Abundant Familiar Trained 25 0.675 

Sparse Novel Untrained 41 0.675 

Sparse Novel Trained 25 0.924 

Abundant Novel Untrained 41 0.675 

Abundant Novel Trained 25 0.924 
Table 5: Statistics for Fig 3.3 
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Place field width 

Linear mixed model with cue abundance (cue), novelty, training and the interaction 
(cue:novelty) as fixed-effects and mouse and imagining session as random-effects 

Model: width ~ cue*novelty + training + (1|mouse) + (1|dataset) 

Factor N Mean 
sq 

NumDF DenDF F-value p-value 

Cue Sparse: 119 
Abun.: 116 

82.401 1 220.65 2.2088 0.1387 

Novelty Familiar: 124 

Novel: 111 

16.440 1 221.76 0.4407 0.5075 

Training Untrained: 146 

Trained: 89 

1.637 1 216.54 0.0439 0.8343 

Cue:novelty Sparse/familiar: 63 

Abun./ familiar: 61 

Sparse/novel: 56 

Abun./novel: 55 

8.259 1 220.87 0.2214 0.6385 

 

Out/in ratio 

Linear mixed model with cue abundance (cue), novelty, training and the interaction 
(cue:novelty) as fixed-effects and mouse and imagining session as random-effects 

Model: oi_ratio ~ cue*novelty + training + (1|mouse) + (1|dataset) 

Factor N Mean sq NumDF DenDF F-value p-value 

Cue Sparse: 119 
Abun.: 116 

0.000401 1 182.91 0.0439 0.834292 

Novelty Familiar: 124 

Novel: 111 

0.075632 1 182.43 8.2804 0.004486 ** 

Training Untrained: 146 

Trained: 89 

0.009103 1 214.25 0.9966 0.319249 

Cue:novelty Sparse/familiar: 63 

Abun./ familiar: 61 

Sparse/novel: 56 

Abun./novel: 55 

0.001544 1 184.56 0.1690 0.681463 

 

Stability 

Linear mixed model with cue abundance (cue), novelty, training and the interaction 
(cue:novelty) as fixed-effects and mouse and imagining session as random-effects 

Model: stability ~ cue*novelty + training + (1|mouse) + (1|dataset) 
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Factor N Mean 
sq 

NumDF DenDF F-value p-value 

Cue Sparse: 105 
Abun.: 106 

0.02387 1 172.75 1.7163 0.1919 

Novelty Familiar: 121 

Novel: 90 

0.58762 1 174.78 42.2495 8.105e-10 ** 

Training Untrained: 132 

Trained: 79 

0.00001 1 191.32 0.0009 0.9764 

Cue:novelty Sparse/familiar: 61 

Abun./ familiar: 60 

Sparse/novel: 44 

Abun./novel: 46 

0.01795 1 172.78 1.2903 0.2576 

 

Place field centres per location bin 

Linear mixed model with cue abundance (cue), novelty, location, training and the interactions 
(cue:novelty), (cue:location), (novelty:training) and (cue:novelty:location) as fixed-effects and 
mouse and imagining session as random-effects 

Model: percentage ~ cue*novelty*location + training + (1|mouse) + (1|dataset) 

 

Factor N Mean 
sq 

NumDF DenDF F-value p-value 

Cue Sparse: 357 
Abun.: 348 

24.709 1 692 1.0063 0.316135 

Novelty Familiar: 372 

Novel: 333 

87.705 1 692 3.5719 0.059182 

Location Control obj.: 235 

Cue obj.: 235 

Reward: 235 

171.49
5 

2 692 6.9844 0.000993*** 

Training Untrained: 438 

Trained: 267 

19.545 1 692 0.7960 0.372607 

Cue:novelty Sparse/familiar: 189 

Abun./ familiar: 183 

Sparse/novel: 168 

Abun./novel: 165 

2.539 1 692 0.1034 0.747898 

Cue:location Sparse/control: 119 

Abun./control: 116 

Sparse/cue obj.: 119 

20.781 2 692 0.8463 0.429434 
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Abun./cue obj.: 116 

Sparse/reward.: 119 

Abun./ reward: 116 

Novelty:location Familiar/control: 124 

Novel/control: 111 

Familiar /cue obj.: 124 

Novel /cue obj.: 111 

Familiar /reward.: 124 

Novel / reward: 111 

45.420 2 692 1.8498 0.158045 

Cue:novelty:locati
on 

Control obj.: 

Sparse/familiar: 63 

Abun./ familiar: 61 

Sparse/novel: 56 

Abun./novel: 55 

 

Cue obj.: 

Sparse/familiar: 63 

Abun./ familiar: 61 

Sparse/novel: 56 

Abun./novel: 55 

Reward 

Sparse/familiar: 63 

Abun./ familiar: 61 

Sparse/novel: 56 

Abun./novel: 55 

8.718 2 692 0.3550 0.701273 

 

Tukey’s method post-hoc test on location by condition 

Sparse/familiar condition 

Contrast Estimate SE Df t-ratio p-value 

Control vs cue 
obj -0.683 0.883 656 -0.774 0.7192 

Control obj vs 
reward 0.584 0.883 656 0.661 0.7862 

Cue obj vs 
reward 1.267 0.883 656 1.435 0.3236 

 

Abundant/familiar condition 
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Contrast Estimate SE Df t-ratio p-value 

Control vs cue 
obj 0.303 0.897 656 0.338 0.939 

Control obj vs 
reward 1.401 0.897 656 1.561 0.2632 

Cue obj vs 
reward 1.098 0.897 656 1.224 0.4396 

 

Sparse/novel condition 

Contrast Estimate SE Df t-ratio p-value 

Control vs cue 
obj -2.039 0.936 656 -2.178 0.0758 

Control obj vs 
reward -0.524 0.936 656 -0.56 0.8414 

Cue obj vs 
reward 1.515 0.936 656 1.618 0.2388 

 

Abundant/novel condition 

Contrast Estimate SE Df t-ratio p-value 

Control vs cue 
obj -1.848 0.945 656 -1.956 0.1242 

Control obj vs 
reward 1.041 0.945 656 1.102 0.5133 

Cue obj vs 
reward 2.889 0.945 656 3.057 0.0066 

Table 6: Statistics for S Fig 3.3 

  



171 
 

Object-vector cell percentage 

Linear mixed model with cue abundance (cue) and training as fixed-effects and mouse and 
imagining session as random-effects 

Model: percentage ~ cue + training + (1|mouse) + (1|dataset) 

Factor N Mean 
sq 

NumDF DenDF F-value p-value 

Cue Sparse: 65 
Abun.: 65 

0.181 
1 127 0.0081 0.9283 

Training Untrained: 80 

Trained: 50 
248.304 1 127 11.1553 

0.0011** 

 

Mutual information 

Linear mixed model with cue abundance (cue) and training as fixed-effects and mouse and 
imagining session as random-effects. 

Model: MI ~ cue + training + (1|mouse) + (1|dataset) 

Factor N Mean sq NumDF DenDF F-value p-value 

Cue Sparse: 65 
Abun.: 65 

0.023036 
1 93.743 0.5333 0.4671 

Training Untrained: 80 

Trained: 50 
0.117688 1 103.93 2.7245 

0.1018 

 

Cue vs control object place field correlation 

Linear mixed model with cue abundance (cue), shuffle and the interaction (cue:shuffle) as 
fixed-effects and mouse and imagining session as random-effects. 

Model: correlation ~ cue*shuffle + (1|mouse) + (1|dataset) 

Factor N Mean sq NumDF DenDF F-value p-value 

Cue Sparse: 108 
Abun.: 104 

0.05817 
1 174.95 1.8703 0.1732 

Shuffle Original: 106 

Shuffled: 106 
1.22888 1 173.46 39.5112 

2.557E-09*** 

Cue:shuffle Sparse/original: 54 

Abun./ original: 52 

Sparse/shuffled: 54 

Abun./ shuffled: 52 
0.03631 1 173.46 1.1675 

0.2814 

Table 7: Statistics for Fig 3.4 
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Place field width 

Linear mixed model with cue abundance (cue) and training as fixed-effects and mouse and 
imagining session as random-effects. 

Model: width ~ cue + training + (1|mouse) + (1|dataset) 

Factor N Mean 
sq 

NumDF DenDF F-value p-value 

Cue Sparse: 55 
Abun.: 52 

209.43 
1 41.326 0.9671 0.3311 

Training Untrained: 69 

Trained: 38 
411.35 1 87.467 1.8995 

0.1717 

 

Out/in ratio 

Linear mixed model with cue abundance (cue) and training as fixed-effects and mouse and 
imagining session as random-effects. 

Model: oi_ratio ~ cue + training + (1|mouse) + (1|dataset) 

Factor N Mean sq NumDF DenDF F-value p-value 

Cue Sparse: 55 
Abun.: 52 

10.8895 
1 89.107 0.8734 0.3525 

Training Untrained: 69 

Trained: 38 
5.2011 1 57.481 0.4172 

0.5209 

 

Stability 

Linear mixed model with cue abundance (cue) and training as fixed-effects and mouse and 
imagining session as random-effects. 

Model: stability ~ cue + training + (1|mouse) + (1|dataset) 

Factor N Mean sq NumDF DenDF F-value p-value 

Cue Sparse: 41 
Abun.: 42 0.015298 1 42.912 1.0504 0.31115 

Training Untrained: 53 
Trained: 30 0.068786 1 47.855 4.723 0.03474 

 

Place field centres per location bin 

Linear mixed model with cue abundance (cue), location, training, and the interaction 
(cue:location) as fixed-effects and mouse and imagining session as random-effects. 

Model: percentage ~ cue*location + training + (1|mouse) + (1|dataset) 

Factor N Mean 
sq 

NumDF DenDF F-value p-value 

Cue Sparse: 165 
Abun.: 162 0.066 1 320 0.0035 0.95265 

Location Before: 109 
Around.: 109 

128.64
4 2 320 6.8742 0.001194** 
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After: 109 

Training Untrained: 204 
Trained: 123 0.139 1 320 0.0074 0.931465 

Cue:location Sparse/before: 55 
Abun./ before: 54 
Sparse/around: 55 
Abun./around: 54 
Sparse/after.: 55 
Abun./ after: 54 49.001 2 320 2.6184 0.074481 

 

Tukey’s method post-hoc test on location by novelty 

Sparse/novel condition 

Contrast Estimate SE Df t-ratio p-value 

Before vs 
around -0.0168 0.825 286 -0.02 0.9998 

Before vs after -3.0362 0.825 286 -3.681 0.0008*** 

Around vs 
after -3.0194 0.825 286 -3.66 0.0009*** 

 

Abundant/novel condition 

Contrast Estimate SE Df t-ratio p-value 

Before vs 
around 0.3374 0.833 286 0.405 0.9135 

Before vs after -0.5567 0.833 286 -0.669 0.7819 

Around vs 
after -0.8941 0.833 286 -1.074 0.531 

Table 8: Statistics for S Fig 3.6 
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Place cell overlap coefficient 

Linear mixed model with comparison and training as fixed-effects and mouse and imagining 
session as random-effects. 

Model: coefficient ~ comparison*training +(1|mouse) +(1|dataset) 

Factor N Mean sq NumDF DenDF F-value p-value 

Comparison Same abun.: 65 
Same novelty: 65 
Different: 65 

0.001771 
2 131.39 0.1106 0.89537 

Training Untrained: 120 

Trained: 75 
0.07768 1 121.37 4.8504 

0.02953* 

 

Expected place cell overlap vs chance 

Paired two-sample Wilcoxon signed rank test with Holm-Bonferonni correction  

Comparison Training n Adjusted p 

Same abun. Untrained 41 0.0243* 

Same abun. Trained 25 0.00109** 

Same novelty Untrained 41 0.00109** 

Same novelty Trained 25 0.0149* 

Different Untrained 41 0.0419* 

Different Trained 25 0.643 

 

Place field correlations 

Paired two-sample Wilcoxon signed rank test with Holm-Bonferonni correction  

Comparison Training n Adjusted p 

Same abun. Untrained 41 0.0372* 

Same abun. Trained 25 0.0208* 

Same novelty Untrained 41 0.22 

Same novelty Trained 25 0.782 

Different Untrained 41 0.0199* 

Different Trained 25 0.0103* 

 

Object-vector overlap coefficient 

Unpaired two-sample Wilcoxon signed rank test 

Group 1 Group 2 n1 n2 p-value 

Untrained Trained 41 25 0.148 

 

Expected object-vector cell overlap vs chance 

Paired two-sample Wilcoxon signed rank test with Holm-Bonferonni correction  

Comparison Training n Adjusted p 

Same novelty Untrained 41 0.879 

Same novelty Trained 25 0.135 
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Object-vector place field correlations 

Paired two-sample Wilcoxon signed rank test with Holm-Bonferonni correction  

Comparison Training n Adjusted p 

Same novelty Untrained 41 0.256 

Same novelty Trained 25 0.429 
Table 9: Statistics for Fig 3.5 
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Bayesian decoder error 

Linear mixed model with cue abundance (cue), novelty, training and the interaction 
(cue:novelty) as fixed-effects and mouse and imagining session as random-effects 

Model: error ~ cue*novelty + training + (1|mouse) + (1|dataset) 

Factor N Mean 
sq 

NumDF DenDF F-value p-value 

Cue Sparse: 126 
Abun.: 125 

8.8 
1 201.25 0.0743 0.7854366 

Novelty Familiar: 131 

Novel: 120 9157.2 
1 201.53 77.1187 6.972E-16*** 

Training Untrained: 155 

Trained: 96 
1732.3 1 222.35 14.5887 

0.0001735*** 

Cue:novelty Sparse/familiar: 65 

Abun./ familiar: 66 

Sparse/novel: 61 

Abun./novel: 59 344.2 
1 

200.57 2.8984 0.0902154 

 

Place cell error difference 

One-sample Wilcoxon signed rank test compared to a mean of 0 with Holm–Bonferroni 
correction 

Training Cue Novelty n Adjusted p 

Untrained Sparse Familiar 41 0.78 

Trained Sparse Familiar 25 0.91 

Untrained Abundant Familiar 41 0.91 

Trained Abundant Familiar 25 0.52 

Untrained Sparse Novel 41 0.0043** 

Trained Sparse Novel 25 0.0001*** 

Untrained Abundant Novel 41 0.03* 

Trained Abundant Novel 25 0.0001*** 

 

Linear mixed model with cue abundance (cue), novelty, training and the interaction 
(cue:novelty) as fixed-effects and mouse and imagining session as random-effects 

Model: error ~ cue*novelty + training + (1|mouse) + (1|dataset) 

Factor N Mean 
sq 

NumDF DenDF F-value p-value 

Cue Sparse: 124 
Abun.: 123 

56 
1 195.49 0.5896 0.44348 

Novelty Familiar: 129 

Novel: 118 5869.6 
1 195.64 61.8402 2.456E-13*** 

Training Untrained: 151 
382.8 1 214.96 4.0334 

0.04586* 
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Trained: 96 

Cue:novelty Sparse/familiar: 64 

Abun./ familiar: 65 

Sparse/novel: 60 

Abun./novel: 58 132.7 
1 

194.89 1.3983 0.23844 

Table 10: Statistics for Fig 3.6 
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Error compared to shuffle 

Paired two-sample Wilcoxon signed rank test with Holm-Bonferonni correction 

Cue Novelty n Adjusted p 

Sparse Familiar 66 9.58e-12*** 

Abundant Familiar 66 9.58e-12*** 

Sparse Novel 66 2.47e-11*** 

Abundant Novel 66 3.60e-11*** 

 

Error per location bin 

Linear mixed model with cue abundance (cue), novelty, location, training and the interactions 
(cue:novelty), (cue:location), (novelty:training) and (cue:novelty:location) as fixed-effects and 
mouse and imagining session as random-effects 

Model: error ~ cue*novelty*location + training + (1|mouse) + (1|dataset) 

Factor N Mean 
sq 

NumDF DenDF F-value p-value 

Cue Sparse: 371 
Abun.: 369 

23 
1 687.51 0.0526 0.818687 

Novelty Familiar: 386 

Novel: 354 
27179.
5 

1 688.05 62.0665 1.299E-14*** 

Location Control obj.: 246 

Cue obj.: 247 

Reward: 247 2710.7 
2 679.94 6.1901 0.002167** 

Training Untrained: 453 

Trained: 287 
3690.2 1 351.25 8.4268 

0.003931** 

Cue:novelty Sparse/familiar: 191 

Abun./ familiar: 195 

Sparse/novel: 180 

Abun./novel: 174 672 
1 

686.45 1.5346 0.215842 

Cue:location Sparse/control: 123 

Abun./control: 123 

Sparse/cue obj.: 124 

Abun./cue obj.: 123 

Sparse/reward.: 124 

Abun./ reward: 123 84.2 
2 

679.94 0.1922 0.825179 

Novelty:location Familiar/control: 128 

Novel/control: 118 

Familiar /cue obj.:129 

Novel /cue obj.: 118 281.9 
2 

679.94 0.6437 0.525655 
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Familiar /reward.: 129 

Novel / reward: 118 

Cue:novelty:locati
on 

Control obj.: 

Sparse/familiar: 63 

Abun./ familiar: 65 

Sparse/novel: 60 

Abun./novel: 58 

 

Cue obj.: 

Sparse/familiar: 64 

Abun./ familiar: 65 

Sparse/novel: 60 

Abun./novel: 58 

Reward 

Sparse/familiar: 64 

Abun./ familiar: 65 

Sparse/novel: 60 

Abun./novel: 58 196.8 
2 

679.94 0.4493 0.638237 

 

Tukey’s method post-hoc test on location by novelty 

Familiar condition 

Contrast Estimate SE Df t-ratio p-value 

Control vs cue 
obj 3.29 2.61 683 1.259 0.4191 

Control obj vs 
reward 4.41 2.61 683 1.688 0.2105 

Cue obj vs 
reward 1.12 2.61 683 0.43 0.903 

 

Novel condition 

Contrast Estimate SE Df t-ratio p-value 

Control vs cue 
obj 7.17 2.72 683 2.632 0.0236* 

Control obj vs 
reward 7.91 2.72 683 2.904 0.0106* 

Cue obj vs 
reward 0.74 2.72 683 0.272 0.9601 
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Place cell error per location bin 

Linear mixed model with cue abundance (cue), novelty, location, training and the interactions 
(cue:novelty), (cue:location), (novelty:training) and (cue:novelty:location) as fixed-effects and 
mouse and imagining session as random-effects 

Model: error ~ cue*novelty*location + training + (1|mouse) + (1|dataset) 

Factor N Mean 
sq 

NumDF DenDF F-value p-value 

Cue Sparse: 371 
Abun.: 369 

43 
1 687.09 0.2753 0.59995 

Novelty Familiar: 386 

Novel: 354 6771.7 
1 687.76 43.3476 9.099E-11*** 

Location Control obj.: 246 

Cue obj.: 247 

Reward: 247 2107.4 
2 680.21 13.4899 

0.000001797*
** 

Training Untrained: 453 

Trained: 287 
208 1 346.2 1.3312 

0.24939 

Cue:novelty Sparse/familiar: 191 

Abun./ familiar: 195 

Sparse/novel: 180 

Abun./novel: 174 0 
1 

686.14 0.0003 0.98575 

Cue:location Sparse/control: 123 

Abun./control: 123 

Sparse/cue obj.: 124 

Abun./cue obj.: 123 

Sparse/reward.: 124 

Abun./ reward: 123 33.7 
2 

680.21 0.2159 0.80584 

Novelty:location Familiar/control: 128 

Novel/control: 118 

Familiar /cue obj.:129 

Novel /cue obj.: 118 

Familiar /reward.: 129 

Novel / reward: 118 315.6 
2 

680.21 2.0202 0.13343 

Cue:novelty:locati
on 

Control obj.: 

Sparse/familiar: 63 

Abun./ familiar: 65 

Sparse/novel: 60 379.9 
2 

680.21 2.4318 0.08865 
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Abun./novel: 58 

 

Cue obj.: 

Sparse/familiar: 64 

Abun./ familiar: 65 

Sparse/novel: 60 

Abun./novel: 58 

Reward 

Sparse/familiar: 64 

Abun./ familiar: 65 

Sparse/novel: 60 

Abun./novel: 58 

 

Familiar condition 

Contrast Estimate SE Df t-ratio p-value 

Control vs cue 
obj 0.558 1.56 683 2.281 0.0591 

Control obj vs 
reward 0.622 1.56 683 3.605 0.001** 

Cue obj vs 
reward 0.064 1.56 683 1.326 0.3809 

 

Novel condition 

Contrast Estimate SE Df t-ratio p-value 

Control vs cue 
obj 0.302 1.63 683 -0.186 0.9812 

Control obj vs 
reward 0.742 1.63 683 3.528 0.0013** 

Cue obj vs 
reward 0.044 1.63 683 3.714 0.0006** 

 

Table 11: Statistics for S Fig 3.7 
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Object-relative Bayesian decoder error 

Linear mixed model with cue abundance (cue), novelty, training and the interaction 
(cue:novelty) as fixed-effects and mouse and imagining session as random-effects 

Model: error ~ cue*novelty + training + (1|mouse) + (1|dataset) 

Factor N Mean 
sq 

NumDF DenDF F-value p-value 

Cue Sparse: 123 
Abun.: 123 

27.2 
1 199.13 0.1867 0.66613 

Novelty Familiar: 129 

Novel: 117 7179.8 
1 200.43 49.3156 3.314E-11*** 

Training Untrained: 150 

Trained: 96 
781.3 1 217.74 5.3664 

0.02146* 

Cue:novelty Sparse/familiar: 64 

Abun./ familiar: 65 

Sparse/novel: 59 

Abun./novel: 58 70.6 
1 

198.28 0.4849 0.48702 

 

Object-vector error difference 

One-sample Wilcoxon signed rank test compared to a mean of 0 with Holm–Bonferroni 
correction 

Training Cue Novelty n Adjusted p 

Untrained Sparse Novel 41 1.46E-9*** 

Trained Sparse Novel 25 2.38E-7*** 

Untrained Abundant Novel 41 2.33E-10*** 

Trained Abundant Novel 25 2.38E-7*** 

 

Linear mixed model with cue abundance (cue) and training as fixed-effects and mouse and 
imagining session as random-effects 

Model: error ~ cue + training + (1|mouse) + (1|dataset) 

Factor N Mean 
sq 

NumDF DenDF F-value p-value 

Cue Sparse: 123 
Abun.: 123 

19.53 
1 67.52 0.071 0.79072 

Training Untrained: 150 

Trained: 96 
1789.27 1 102.81 6.5018 

0.01225* 

 

Table 12: Statistics for Fig 3.7  
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Error compared to shuffle 

Paired two-sample Wilcoxon signed rank test with Holm-Bonferonni correction 

Cue Novelty n Adjusted p 

Sparse Familiar 66 9.58e-12*** 

Abundant Familiar 66 9.58e-12*** 

Sparse Novel 66 3.27e-11*** 

Abundant Novel 66 3.79e-11*** 

 

Error per object-relative location bin 

Linear mixed model with cue abundance (cue), novelty, location, training and the interactions 
(cue:novelty), (cue:location), (novelty:training) and (cue:novelty:location) as fixed-effects and 
mouse and imagining session as random-effects 

Model: error ~ cue*novelty*location + training + (1|mouse) + (1|dataset) 

Factor N Mean 
sq 

NumDF DenDF F-value p-value 

Cue Sparse: 368 
Abun.: 369 

28.7 
1 687.95 0.0714 0.78933 

Novelty Familiar: 387 

Novel: 350 
17937.
6 

1 692.13 44.5791 5.015E-11 

Location Control obj.: 246 

Cue obj.: 245 

Reward: 246 8347.3 
2 680.29 20.745 1.797E-09 

Training Untrained: 449 

Trained: 288 
1117 1 367.08 2.7761 

0.09654 

Cue:novelty Sparse/familiar: 192 

Abun./ familiar: 195 

Sparse/novel: 176 

Abun./novel: 174 60.6 
1 

685.13 0.1506 0.69811 

Cue:location Sparse/control: 123 

Abun./control: 123 

Sparse/cue obj.: 122 

Abun./cue obj.: 123 

Sparse/reward.: 123 

Abun./ reward: 123 4 
2 

680.29 0.0099 0.99018 

Novelty:location Familiar/control: 129 

Novel/control: 117 

Familiar /cue obj.:129 

Novel /cue obj.: 116 663.9 
2 

680.29 1.65 0.19282 
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Familiar /reward.: 129 

Novel / reward: 117 

Cue:novelty:locati
on 

Control obj.: 

Sparse/familiar: 64 

Abun./ familiar: 65 

Sparse/novel: 59 

Abun./novel: 58 

 

Cue obj.: 

Sparse/familiar: 64 

Abun./ familiar: 65 

Sparse/novel: 58 

Abun./novel: 58 

Reward 

Sparse/familiar: 64 

Abun./ familiar: 65 

Sparse/novel: 59 

Abun./novel: 58 57.5 
2 

680.29 0.143 0.86677 

 

Tukey’s method post-hoc test on location by novelty 

Familiar condition 

Contrast Estimate SE Df t-ratio p-value 

Before vs 
around -8.161 2.5 681 -3.267 0.0033** 

Before vs after 0.592 2.5 681 0.237 0.9695 

Around vs 
after 8.754 2.5 681 3.505 0.0014** 

 

Novel condition 

Contrast Estimate SE Df t-ratio p-value 

Before vs 
around -13.926 2.63 681 -5.298 <0.0001*** 

Before vs after -5.04 2.62 681 -1.922 0.1333 

Around vs 
after 8.886 2.63 681 3.381 0.0022** 

 

Object-vector cell error per location bin 

Linear mixed model with cue abundance (cue), location, training, and the interaction 
(cue:location) as fixed-effects and mouse and imagining session as random-effects. 
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Model: error ~ cue*location + training + (1|mouse) + (1|dataset) 

Factor N Mean 
sq 

NumDF DenDF F-value p-value 

Cue Sparse: 176 
Abun.: 174 

48.6 
1 305.34 0.0588 0.8086356 

Location Before: 117 

Around.: 116 

After: 117 5849.9 
2 291.35 7.0793 

0.0009951 
*** 

Training Untrained: 212 

Trained: 138 
3476.3 1 190.31 4.2069 

0.0416305* 

Cue:location Sparse/before: 59 

Abun./ before: 58 

Sparse/around: 58 

Abun./around: 58 

Sparse/after.: 59 

Abun./ after: 58 60.6 
2 

291.35 0.0734 0.9292509 

 

Novel condition 

Contrast Estimate SE Df t-ratio p-value 

Before vs 
around 0.104 3.77 302 0.028 0.9996 

Before vs after -12.205 3.76 302 -3.247 0.0037** 

Around vs 
after -12.309 3.77 302 -3.267 0.0035** 

Table 13: Statistics for S Fig 3.8 
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4 Low frequency oscillations in hippocampal area CA1 

4.1 Introduction 

Although pyramidal cells in hippocampal area CA1 are among the most studied neuronal cells 

in the brain [19,203], studies into their function have mostly focussed on their activity during 

locomotion. During locomotion, they are active in a location-dependent fashion, which is 

important for navigation tasks [23,26]. However, periods of rest are also crucial for the 

hippocampus to support vital functions, such as memory consolidation through replay [204], 

and the planning of future goal-directed navigation [114]. Both of these behaviours – 

locomotion and resting – have their own functions, and as such are marked by different types 

of brain activity, at both global and neuronal scale. 

Neural oscillations play a crucial role in the hippocampus during each of the brain states. Both 

during REM sleep and locomotion theta oscillations are present in rodents [65,74,205,206]. 

These oscillations modulate the precise timing of firing of pyramidal neurons [65], and are 

involved in phase precession, the phenomenon that cells fire at different theta phase times 

depending on the animal’s location within the place field [82]. During slow wave sleep, in the 

absence of theta oscillations, slow (and delta) oscillations (0.1-4Hz) dominate [207–209]. Such 

slow oscillations, which are thought to originate from the thalamus [210], affect the timing of 

slow wave-ripples (SWR) in the hippocampus [209,211]. These are sharp waves that occur in 

conjunction with high frequency (110-200 Hz) oscillatory events, called ripples [108,212]. 

Overall, hippocampal brain states are roughly divided into three states. During locomotion and 

REM sleep, neuronal activity is marked by the presence of theta and gamma oscillations 

[70,71]. During periods of immobility and slow wave sleep, in the absence of theta oscillations 

[65], large irregular activity (LIA) is present, characterized by co-occurring sharp waves and 

ripples (SWRs) [69–71]. A third brain state, small irregular activity (SIA), has been found to 
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occur during sleep [71,116,117], and at particular times during wakefulness, for example when 

an animal abruptly ‘freezes’ [71,74,117]. Though SIA occurs spontaneously during sleep, it can 

also be elicited by auditory stimuli administered during sleep [117]. Because of this, it has been 

implied to be an intermediary state between resting and active states [117]. 

Individual cells in the hippocampus show different levels of activity depending on the brain 

state. The activity of pyramidal cells, as well as the majority of somatostatin (SST) and 

parvalbumin (PV) positive interneurons, in the hippocampus is generally positively modulated 

by running speed [34,157,213]. During locomotion, a proportion of CA1 pyramidal cells, the 

place cells, are active in a location-dependent fashion [23]. Though CA1 pyramidal cells are 

largely silent during LIA, the majority of cells increase their firing during SWR events in LIA 

[116]. The firing of pyramidal cells associated with SWRs involves ‘replay’ events, the 

sequential reactivation of location-specific cells [214].  

When SIA occurs during sleep, the vast majority of CA1 pyramidal cells becomes silent, while 

only a small subset (3-5%) increases its activity [71,117]. Like cells during locomotion, but not 

during LIA, these cells show location-dependent firing, and as such have a place field in the 

sleeping location where the SIA occurred [71]. SIA during wakefulness has been less well-

described in CA1, and has been suggested to be less stable [117], and as such, little is known 

about activity of individual cells in this subfield during wakeful SIA events. During sleep, the 

CA2 subfield also shows a population of cells that fire in periods of SIA [116]. These same cells, 

termed N units, also fire at a high rate when mice are awake, immobile, and not showing SWR, 

along with a very small population of CA1 and CA3 cells. As both the CA1 and CA2 cells fire 

during SIA and have similar activity modulators, they may be related [118]. 

A neural characteristic similar to the sharp waves during ripples, termed the N-wave, has been 

identified during SIA [116,118]. It differs from the sharp wave in its direction: it is marked by a 

positive change in the LFP signal. In addition, although it is mainly characterized by slow 
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frequencies, it does not show a true oscillatory pattern, but rather is aperiodic in nature. 

Otherwise, SIA seems to mainly be marked by a lack of clear oscillations and a flattening of the 

EEG signal [117].  

In this Chapter, we observe a small population of CA1 pyramidal cells which are preferably 

active during periods of immobility during a virtual reality navigation task. Their activity is 

marked by a high power in a low frequency (0.2-0.5Hz) band, which is caused both by 

oscillatory behaviour in this band, as well as a strong aperiodic component, high synchronicity 

between individual cells, and location specific activity. We additionally find a population of 

pyramidal cells with similar characteristics in the visual cortex. Lastly, we observed and 

characterized a subpopulation of pyramidal cells that are active during running, which show a 

high power in the same low frequency band, but do not oscillate.  

4.2 Results 

4.2.1 A novel type of hippocampal pyramidal cell is identified using regularity of firing 

and activity during rest 

During a two-photon recording of dorsal CA1 (Fig 4.1A) we noticed a group of cells showing a 

simultaneous increase in fluorescence simultaneous at regular intervals (Fig 4.1B, 

supplementary video: 10.6084/m9.figshare.14452878). This only happened during periods 

where the mouse was not locomoting. We confirmed this in the fluorescence trace over time, 

where periodic activity could be seen during stationary periods for a group of cells (Fig 4.1B, D, 

cells highlighted by orange box). Because these cells were characterized by slow periodic 

activity during times when the mouse was stationary, we call them Stationary Low-frequency 

Oscillatory cells (SLOs).  

To identify these cells quantitatively, we calculated two parameters: the rest/running 

fluorescence ratio and the number of peaks in the autocorrelogram. To calculate the 

file:///E:/Dropbox%20(Brain%20Energy%20Lab)/Everything/Dori/Thesis/10.6084/m9.figshare.14452878
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rest/running fluorescence ratio, we simply divided the mean fluorescence (ΔF/F) during 

stationary epochs by the mean fluorescence outside of these epochs. Any candidate cells had 

to have a rest/running ratio of at least two standard deviations above the mean of the 

population (Fig 4.1C, red line).  

The number of peaks in the autocorrelogram was used as a proxy for the regularity or 

periodicity of the activity, with fewer peaks indicating more regular activity. To calculate it, we 

plotted the smoothed autocorrelogram of each ROI and measured the number of local maxima 

(peaks) within 30 seconds each side of the centre. An ROI that is more periodic will have its 

peaks lined up in the autocorrelogram (Fig 4.1E), and thus will have fewer peaks in the same 

period than a non-periodic cell (Fig 4.1F). Again, we determined this value for every ROI in the 

dataset, and for an ROI to be included it had to have a value for the number of peaks at least 

two standard deviations below the mean of the population (Fig 4.1G, red line).  

Any cells that adhered to both these criteria were deemed SLOs (Fig 4.1H, top left quadrant). 

We used these criteria to find SLOs in 84 datasets from 12 mice. We found SLOs in 32 out of 84 

datasets (Fig 4.1I), and in these 32 datasets, on average 0.63% (range: 0.31-1.70%) of cells 

were identified as SLOs), which equated to 1.7 cells (range: 1-5 cells) per dataset. Although this 

seems like a low number, this may be due to the nature of the task, in which mice were 

incentivised to run. Indeed, the length of the longest rest event within a dataset significantly 

correlated with the proportion of cells identified as SLOs (Fig 4.1J, Spearman correlation 

coefficient = 0.27, p=0.01). Having datasets where mice were stationary for longer periods of 

time might thus result in a higher percentage of SLOs. 
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Fig 4.1 Identification of Stationary Low-frequency Oscillatory cells (SLOs). (A) Example two-photon recording 

showing cells in green. Image is the mean Z projection of a single recording. (B) Example fluorescence of cells over 

time, bottom graph shows the velocity of the mouse during this period. The marked orange area indicates cells 

showing periodic activity during rest periods, and is shown in more detail in D. (C) The ratio between mean 

fluorescence during rest and running for each cell in an example dataset, with the red dashed line showing the mean 

+ 2*std. (D) Zoomed fluorescence during a rest period in B, showing synchronous periodic activity in 6 cells. The 

bottom graph shows the mean fluorescence during this period across the 6 cells. Example autocorrelograms for (E) a 

possible SLO and (F) a control cell. Each red dot marks a local maximum. (G) Number of peaks in the 

autocorrelograms for all cells in an example dataset, with the red dashed line showing the mean - 2*std. (H) Relation 

between number of peaks and rest/running fluorescence ratio for this example dataset. The red dashed lines 

indicate the same thresholds as the lines in (C) and (G). Cells in the top left quadrant are identified as SLOs. (I) The 

percentage of ROIs identified as SLOs in 84 datasets, the bar shows the mean across all datasets with at least 1 SLO 
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cell, errorbar shows 95% confidence interval. (J) Relation between the percentage of SLO cells and the length of the 

longest rest event of a dataset. Grey line is the regression line, r- and p-values from Spearman correlation test. 

4.2.2 Novel functional cell type has high power at low frequencies 

As we could see periodic activity of the SLOs by eye, we proceeded analysing the power and 

frequency of this activity using a discrete Fourier transform. Compared to the control cells, the 

SLOs had a peak in power at a low frequency, as illustrated in the pink noise-corrected power 

spectra (Fig 4.2A). We determined the power band where the SLOs showed increased power 

as any values above mean + 3 times the standard deviation in a smoothed version of the pink 

noise-corrected power spectrum, resulting in a frequency band of 0.2-0.5Hz.  

We used this power band to find the relationship between the relative band power and the 

parameters we previously used to identify the SLOs: rest/running fluorescence ratio and 

number of peaks in the autocorrelogram. We calculated the relative band power by dividing 

the power in our target band (0.2-0.5Hz) by the power in a control band (2-3.5 Hz), in the 

uncorrected power spectra. We selected this band as it fell outside of theta range [65], and 

was sufficiently distinct from our power band. This band did fall within the delta power band, 

but this was unavoidable, as it covers any frequencies we could measure at our acquisition 

rate that did not overlap with the target band (0.5-4 Hz) [19,215]. The relative power at 0.2-0.5 

Hz showed an exponential relationship with both parameters (Fig 4.2B,C, S Fig 2.1A,B). The 

parameter of the exponential relationship between rest/running fluorescence ratio and power 

in the frequency band, and between the number of peaks of the autocorrelogram and power 

in the frequency band, both differed significantly from zero (Fig 4.2D, p=6.09e-4 p=3.48e-15 

respectively, Wilcoxon signed-rank test with Holm-Bonferroni multiple comparison correction).  

Next, we analysed the relative power in this target frequency band compared to the control 

frequency band in both the SLOs and control cells. Although the SLOs had a higher relative 

power on average, the control cell population also contained a small number of cells with high 
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power in the target frequency band (Fig 4.2E). We decided to separate out these cells into a 

new population that included any cells with a relative power greater than three times the 

standard deviation above the mean across all datasets. These cells were not as easily visually 

distinguishable in their activity pattern as the SLOs (Fig 4.2F). As they did not fire preferentially 

during stationary periods, and showed high relative power particular during running (Fig 4.3B), 

we named them Odd Running-active Low-frequency Aperiodic (ORLA) cells. Overall, this new 

population formed 1.65 (std: 3.23)% of all ROIs in our datasets, which equated to 4.7 (std: 9.4) 

cell per dataset. When looking at the power spectrum of these three groups, we saw that both 

the SLOs and the newly identified ORLAs, but not the control cells, have a peak in the 0.2 to 0.5 

Hz power band in the pink noise-corrected power spectra.  

As different hippocampal populations can display differences in physiological properties [16], 

we were interested to see if our newly identified cells were physiologically distinct. We studied 

a range of relevant cell characteristics for the two cell populations we identified: SLO cells and 

ORLA cells. Although there was a general effect of cell type on ROI size (S Fig 4.1A, p=0.048, 

linear mixed model with cell type as fixed-effect and imagining session as random-effect), we 

did not see any significant differences between the pairs of cell types after applying a post hoc 

multiple comparisons test (Tukey’s; p=0.07, p=0.72, p=0.12 for the SLO-ORLA, SLO-control and 

ORLA-control comparisons respectively). There was no difference in the maximum spike rate (S 

Fig 4.1B, p=0.50, linear mixed model with cell type as fixed-effect and imagining session as 

random-effect), as estimated using the deconvolution step in Suite2P [172]. However, there 

was a difference in overall spike rate between the cell types (S Fig 4.1C, p<2e-16, linear mixed 

model with cell type as fixed-effect and imagining session as random-effect). The SLO cells had 

a higher mean spiking rate than both ORLA and control cells (Tukey’s; p<0.0001, p<0.0001, for 

the SLO-ORLA and SLO-control comparisons), while the ORLA cells had a significantly increased 

mean spiking rate compared to the control cells (Tukey’s, p=0.048, ORLA-control comparison).  
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Finally, we determined whether the populations were spatially clustered. We expect some 

level of clustering, as the hippocampus shows spatial clustering of cell types along all its axes 

[16,216–218]. On average, both the SLO and ORLA cells were closer to ROIs of the same cell 

type (in) than ROIs of different cell types (out) (S Fig 4.1E, p=0.012 and p=4.6e-6 for SLOs and 

ORLAs respectively, paired two-samples Wilcoxon test, Holm-Bonferroni corrected for multiple 

comparisons), while the control cells showed the opposite trend (p=3.6e-5). This suggests the 

SLOs and ORLAs cluster together, possibly along one of the hippocampal axes, as other cell 

types do, although further recordings will be needed in order to confirm this.  

Here, we distinguished, in addition to the SLO population, another population: the ORLA cells. 

Like the SLO cells, they show a relatively high power in a low (0.2-0.5 Hz) frequency band. The 

SLO and ORLA populations both show physiological difference from the control population in 

their maximum spiking rate and the level of clustering, suggesting they may be distinct 

physiological, and possibly spatially clustered, populations. However, they did not have an 

altered size or mean firing rate.  
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Fig 4.2 Power spectrum of SLO and control cells. (A) Pink noise-corrected power spectra of the control (pink) and 

SLOs (blue). (B) Example relationship between rest/running fluorescence ratio and relative power in 0.2-0.5 Hz band 

compared to 2-3.5 Hz band for one dataset. Black line shows exponential fit. (C) Example relationship between the 

number of peaks in the autocorrelogram and relative power in 0.2-0.5 Hz band compared to 2-3.5 Hz band for one 

dataset. Black line shows exponential fit. (D) Exponential fit parameter (b) fit across all datasets for SLO and control 

cells. P-values are from Wilcoxon signed-rank tests compared to a mean of 0 with Holm-Bonferroni multiple 

comparison correction. (E) Distribution of the relative power in 0.2-0.5 Hz band compared to 2-3.5 Hz band for SLO 

and control cells. (F) Example fluorescence of control cells with a high relative power in 0.2-0.5 Hz band compared 

to 2-3.5 Hz band over time (ORLA), the bottom graph shows the velocity of the mouse during this period. (G) The 

percentage of ROIs identified as SLOs and ORLAs across all datasets. (H) Pink noise-corrected power spectra of the 

control cells (pink), SLOs (blue), and ORLAs (green). Bars are the means of 84 datasets, black dots are values for 

each individual dataset and error bars represent the 95% confidence interval. For the power spectra (A and H) black 

shows the mean power, coloured traces show the 95% confidence interval.  

4.2.3 Novel functional cell types are differentially modulated by locomotion 

We further investigated how both the SLOs and the ORLAs are modulated by locomotion, and 

how the relative power in the low frequency band changes in response to locomotion. We first 

identified epochs of rest or locomotion of 60 seconds or longer. We then determined the 

average fluorescence of each of the functional cell types during these epochs. Despite our SLOs 

being selected for having a high rest/running fluorescence ratio, we found no difference for 

any of the cell types between rest and locomotion when only including longer epochs (Fig 

4.3A, unpaired two-samples Wilcoxon tests with Holm-Bonferroni correction for multiple 

comparisons). However, as the SLO cells were only identified in cells with more rest, we had 

limited data on their activity during longer running epochs, which might explain the lack of 

difference. 

To determine how the power changes as a result of locomotion, we used a discrete Fourier 

transform to determine the power and frequency of firing during periods of rest or 

locomotion. We found a higher relative power for the SLOs during rest than during running (Fig 
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4.3B, C, p=0.02 unpaired two-samples Wilcoxon test with Holm-Bonferroni correction for 

multiple comparisons). The ORLAs displayed the opposite pattern, with a higher relative power 

during running than during rest (Fig 4.3B, D, p=5.9e-5 unpaired two-samples Wilcoxon test 

with Holm-Bonferroni correction for multiple comparisons). Similarly, the control cells had a 

significantly higher relative power during running than during rest (Fig 4.3B, E, p=8.2e-5 

unpaired two-samples Wilcoxon test with Holm-Bonferroni correction for multiple 

comparisons).  

We were next interested in whether the cell types had sustained activity during the epochs of 

rest or locomotion. We determine the average fluorescence of each cell during the first minute 

of the rest or locomotion epoch (Fig 4.3F-H). To quantify the change in fluorescence through 

the course of such epochs, we compared the average fluorescence in the first 10 seconds 

(early) to the fluorescence in 50-60 seconds (late) into the epochs. On average the activity in 

the SLOs ramped during rest epochs (Fig 4.3F, left), as it seemed to have a higher activity late 

compared to early in rest epochs, though this difference was just short of significant (Fig 4.3I, 

p=0.05, paired t-test with Bonferroni-Holm correction). Sadly, as both sufficiently long running 

epochs of at least a minute and SLOs were rare, we did not have enough data to determine the 

activity of SLOs during running epochs.  

The ORLAs did not show a difference in their activity late compared to early in the rest or 

locomotion epochs (Fig 4.3G, I-J, p=0.80, p=0.95, paired t-test with Bonferroni-Holm 

correction). The control cells showed a strong decrease in activity late compared to early into 

rest epochs (Fig 4.3I, p=1.2e-13, paired t-test with Bonferroni-Holm correction), which seemed 

to be caused by a sharp drop in activity at the start of the epochs (Fig 4.3H, left). Interestingly, 

during the locomotion epochs a similar drop was observed, though less pronounced, and just 

shy of significant (Fig 4.3H, J, p=0.05, paired t-test with Bonferroni-Holm correction). Overall, 
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this suggests that as the SLOs increase their activity, the control cells go silent during rest 

epochs.  

If the SLOs would predict the onset of a locomotion epoch, we would expect the cells to 

reduce their firing towards the end of a rest epoch. To study this, we aligned the ends of all 

epochs, split out by rest and locomotion, and determined the average fluorescence 50-60 

seconds from the end (early) and in the last 10 seconds (late). In the SLOs there was a 

difference in activity between early and late for the rest epochs, which seems to be caused by 

a peak just before the end of the rest period. (S Fig 4.2A, D, p=0.01, paired t-test with 

Bonferroni-Holm correction). Again, we did not have enough data to study the locomotion 

epochs. 

The ORLAs showed an increase in activity late compared to early in the rest epochs (S Fig 4.2B, 

D, p=0.0004, paired t-test with Bonferroni-Holm correction), but no difference in the 

locomotion epochs (S Fig 4.2E, p=0.76, paired t-test with Bonferroni-Holm correction). 

Similarly, the control cells showed an increase in activity late compared to early in the rest 

epochs (S Fig 4.2C, D, p=4.4e-8, , paired t-test with Bonferroni-Holm correction), which seemed 

to be caused by a sharp increase in activity in the last few seconds, the mirror image of the 

trend seen at the start of the epochs (Fig 4.3G). We again see no difference in the activity early 

compared to late in the locomotion epochs in the control cells (S Fig 4.2E p=0.76, paired t-test 

with Bonferroni-Holm correction). Both the control cells and ORLA cells thus seem to increase 

their activity just ahead of a bout of locomotion, suggesting their ramp in activity, rather than 

a decrease in SLO activity, marks whether the mouse will start running. 

Altogether, we do not find a change in overall fluorescence between rest and running epochs 

for all the cell types, but we do find a change in relative power in the low frequency band, with 

the SLO cells having increased power during rest, and the ORLA and control cells during 

running. The SLO fluorescence ramps during rest epochs, while the control cell activity 
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decreases, and at the end of rest epochs both the control and ORLA cell activity increases 

again to mark the start of a new locomotion bout. 
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Fig 4.3 Modulation of novel functional cell types by locomotion. (A) Mean fluorescence during rest and locomotion 

epochs for the different function cell types. (B) Relative power (in 0.2-0.5 Hz band compared to 2-3.5 Hz band) in rest 

and running epochs for the different functional cell types. Pink noise-corrected power spectra of the (C) SLOs, (D) 
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ORLAs and (E) control cells during rest (pink) and locomotion (blue) epochs. Mean fluorescence over time for the first 

minute of rest (pink) and locomotion (blue) epochs for (F) SLOs, (G) ORLAs and (H) control cells. Mean fluorescence 

during the first 10 seconds (pink) and 50-60 seconds in the epochs (blue) during rest (I) and locomotion (J) for the 

functional cell types. Bars are the means of 84 datasets, black dots are values for each individual dataset and error 

bars represent the 95% confidence interval. The black power spectra (C-E) and fluorescence traces (F-H) show the 

mean, coloured traces show the 95% confidence interval. P-values in A and B are from unpaired two-samples 

Wilcoxon tests with Holm-Bonferroni correction for multiple comparisons. P-values in I and J are from multiple paired 

t-tests with Bonferroni-Holm correction. 

4.2.4 Periodic and aperiodic components differ depending on cell type and 

locomotion 

So far, we have looked at power spectrum of the cells in terms of relative band power. 

However, this measure combines both periodic and aperiodic components of the power 

spectrum [219]. To split out these components and further characterize the oscillatory nature 

of both novel cell types, we employed the FOOOF (fitting oscillations & one over f) tool [220]. 

This tool allows for the fitting of both aperiodic (1/f-like) and periodic parameters to the power 

spectra. So, we determined the average power spectrum across rest or locomotion events of 

at least 60s per cell, and fitted the periodic and aperiodic parameters for each power spectrum 

(example spectrum in Fig 4.4A).  

The tool showed a high fit across cell types during rest (Fig 4.4B, mean 𝑅2 SLOs: 0.93, ORLAs: 

0.85, control: 0.78). The fit was reduced during running for both the SLOs and the control cells 

(mean 𝑅2 SLOs: 0.34, control: 0.68), but not the ORLAs (mean 𝑅2: 0.87). In the case of SLOs, 

this may be explained by a paucity of data, as few SLOs were identified in sessions that also 

had sufficiently long running events. In addition, running may induce an increase in movement 

artefacts in the data, introducing noise which makes it harder to accurately fit the power 

spectrum. 
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First, we determined the parameters of the periodic components in the fits. In line with 

previous findings, we found that most SLOs showed a peak in the frequency band of interest 

(0.2-0.5 Hz) during rest, but not running (Fig 4.4C,F,I). Both ORLAs and control cells showed an 

increase in peaks in this band during rest compared to running as well (Fig 4.4D,E,G-I). Overall, 

in all three groups of cells (SLO, ORLA and control cells) at least a subset of cells show a peak 

during rest (Fig 4.4C-E) in the 0.2-0.5 Hz frequency band, suggesting this may be a property 

shared across a variety of cells, or possibly an indication that the method used to classify SLO 

cells did not sufficiently include cells with an oscillatory peak in this band. Conversely, none of 

the groups show an increase in peaks in this back during the running condition. This lack of 

peaks in the running condition may be partially explained by a paucity of data in the case of 

the SLOs and the increase in motion artefacts, as well as increased overall activity of the cells, 

during running. 

The exponent of the fit, which represents the steepness of the power spectrum, was also 

greatly affected by rest and running across the cell types. While the SLOs have a higher 

exponent during rest, both the ORLAs and the control cells have a higher exponent during 

running (Fig 4.4J, p=0.007, p=2.4e-6, p=2.4e-6 respectively, unpaired two-samples Wilcoxon 

tests with Holm-Bonferroni correction for multiple comparisons). We also fitted a ‘knee’ 

parameter, which indicates that there is not a fully linear fit in log-log space of the aperiodic 

component, but rather a bend in the linear relationship. Again, we see a difference between 

rest and locomotion for the SLO cells, with the knee significantly lower during locomotion (Fig 

4.4K, p=0.018, unpaired two-samples Wilcoxon tests with Holm-Bonferroni correction for 

multiple comparisons). While the ORLA cells show no difference between rest and locomotion, 

the control cells have the opposite trend to the SLO cells, with the knee increasing during 

running (Fig 4.4K, p=5.2e-4, unpaired two-samples Wilcoxon tests with Holm-Bonferroni 

correction for multiple comparisons) . 
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These analyses show us that in the case of the SLOs, we see both a difference in aperiodic and 

periodic components compared to the ORLAs and control cells. During rest the SLOs have a 

higher exponent, which indicates a steeper 1/f curve, thus a relatively higher power at lower 

frequencies. However, on top of that, many SLOs also have a periodic component in the low 

frequencies as well. In contrast, the ORLAs are mainly characterized by a high aperiodic 

component, especially during running, while there is less of a periodic component (as indicated 

by the lower number of peaks, Fig 4.4I).  
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Fig 4.4 Analysis of the power spectra with FOOOF. (A) Example fit of a power spectrum (pink, uncorrected, log 

scale) showing the aperiodic (green) and full (blue) model. (B) Mean fit measured by the R squared between the fit 

and the original power spectrum per cell type. (C-H) Histogram showing the number of the peaks at each frequency 

for each cell type during stationary (C-E) and running (F-H) periods. (I) the percentage of cells with a peak within the 
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0.2-0.5Hz frequency band. (J) The exponent of the aperiodic fic. (K) The knee parameter of the aperiodic fit. Bars are 

the means of 84 datasets, black dots are values for each individual dataset and error bars represent the 95% 

confidence interval. P-values in I-K are from unpaired two-samples Wilcoxon tests with Holm-Bonferroni correction 

for multiple comparisons. 

4.2.5 Synchrony of functional cell types 

The SLOs were initially identified by eye as highly synchronous (supplementary video: 

10.6084/m9.figshare.14452878), so we wanted to quantified their synchronicity for further 

analysis. As their activity is relatively sparse, and we interested in the co-occurrence of activity 

peaks, we based our measure of synchrony on these activity peaks. To identify them, we first 

took the mean fluorescence of all SLOs within a session (Fig 4.5A, pink trace), which we band-

pass filtered at our previously identified frequency band (0.2-0.5Hz, Fig 4.5A, blue trace). Any 

local maxima were identified as activity peaks (Fig 4.5A, black dots). We only included datasets 

with at least 2 SLOs in this analysis (n = 12 datasets, 34 cells). 

To find the synchrony, we determined the mean activity from 1.5 seconds before until 1.5 

seconds after each identified peak for each cell (see examples for the different functional cell 

types in Fig 4.5B-D). For each cell we determined the offset, i.e. the relative time from the 

peak at which it has its local maximum. An offset of 0 meant that the cell fired in synchrony 

with the average signal. We also determined the mean absolute offset, using the absolute 

value to determine the time from the peak, where a higher value meant that a particular cell 

was more offset. 

Overall the SLOs fired highly synchronously, with most cells having a low offset, all within 150 

ms, from the mean signal (Fig 4.5E). They were significantly more synchronous than the ORLA 

and control cells (Fig 4.5H, p<0.0001 and p<0.0001, Tukey's multiple comparison test after 

performing a linear mixed model with cell type as fixed-effect and imagining session as 

random-effect), even though there are some synchronous cells in both these cell types (Fig 

file:///E:/Dropbox%20(Brain%20Energy%20Lab)/Everything/Dori/Thesis/10.6084/m9.figshare.14452878
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4.5E,F). The SLO cells also have a small standard deviation of offset, meaning within individual 

datasets most cells fire close to the peak of the mean signal (Fig 4.5I). Again, this was 

significantly higher than the ORLA and control cells (Fig 4.5I, p<0.0001 and p<0.0001 Tukey's 

multiple comparison test after performing a linear mixed model with cell type as fixed-effect 

and imagining session as random-effect). This shows the SLO cells are much more synchronous 

than either of the other cell types.  

As we see big differences in the power spectra of all functional cell types between rest and 

locomotion epochs, we separated out the synchrony during rest and locomotion (S Fig 4.3). 

During rest, there is again a high synchrony in SLOs across datasets (S Fig 4.3A,D,E), while the 

ORLAs and control cells have a proportion of cells that are synchronous (S Fig 4.3B,C). Again, 

the SLO cells have a lower offset and lower standard deviation of the offset than both ORLA 

and control cells, indicating they are significantly more synchronous than these other 

populations (S Fig 4.3D,E). Although the SLOs show a higher mean offset (S Fig 4.3F, I) and a 

higher variation within datasets (S Fig 4.3J), both their offset and standard deviation is still 

significantly lower than the control cells. This suggests that even though the SLO cells seem 

less synchronous during running, some of the synchrony in the SLO cells remains compared to 

the controls. 

As comparing the synchrony only to the mean trace of the SLO cells may bias the result 

towards the SLOs being more synchronous, we repeated the analysis, but using the mean trace 

of the ORLA (S Fig 4.4A-E) or the control (S Fig 4.4F-J) cells instead. Relative to the mean trace 

of the ORLA cells, the SLO cells are significantly less synchronous than the ORLA cells, but 

significantly more so than the control cells (S Fig 4.4D). However, the SLO cells do show a lower 

standard deviation in the offset compared to both the ORLA and control cells (S Fig 4.4E), 

suggesting that when their peaks do not align with the mean ORLA trace, they do align with 

other SLO cells within the dataset. Relative to the mean trace of the control cells, none of the 
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cell types are particularly synchronous (S Fig 4.4I), but, again, the SLO cells do show a lower 

standard deviation in the offset compared to both the ORLA and control cells (S Fig 4.4J). 

Overall, this suggests that the ORLA cells may be more synchronous than the previous analysis 

suggested, while confirming that the SLO cells are highly synchronous. 

These findings fit in with our analyses of the power spectra, which showed that while SLOs 

have a clear periodic components, ORLAs and control cells do not. As ORLAs lack this periodic 

component, it is very unlikely they would fire synchronously. Meanwhile, the SLOs do have a 

periodic component, and this analysis show that these are highly synchronous. However, this 

synchrony mainly exists during rest, and decrease during running. Again, this may be due to a 

paucity in data, or increased motion artefacts during running.  
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Fig 4.5 Synchrony of activity in novel functional cell types. (A) Example of identification of the peaks, which are 

local maxima (black dots) in the band passed trace (blue), which is obtained by applying a 0.2-0.5 Hz band-pass filter 

to the mean activity across all SLOs (pink). Examples of mean traces of (B) SLOs, (C) ORLAs and (D) control cells 

around local maxima. Each coloured line indicates a single example SLO (B), ORLA (C) or control (D) cell. Offset of all 

(E) SLOs, (F) ORLAs, and (G) control cells across all datasets. (H) Mean offset and (I) standard deviation of the offset 

per dataset of the difference functional cell types. Bars are the means off datasets, black dots are values for each 

individual dataset and error bars represent the 95% confidence interval. P-values for H and I are from Tukey's 

multiple comparison test after performing a linear mixed model with cell type as fixed-effect and imagining session 

as random-effect. 

4.2.6 SLO cells decreased location encoding during locomotion 

Although the majority of location-encoding cells are active during running, previous studies 

have found cells that were preferably active during rest and still encoded for location [71,116]. 

Therefore, we were interested whether the SLO cells also were preferentially active in a 

certain location. To study this, we first determined the average activity of each cell during each 

rest event. We then divided our track into 15 20-cm bins, and assigned a bin to each rest event 

based on the location it took place. Then we could find the average activity for each cell per 

bin. We used the number of standard deviations the fluorescence of the highest bin deviated 

from the mean fluorescence across all bins as a measure of location preference (Fig 4.6A). 

There was a significant difference in location preference between the three cell types (Fig 4.6B, 

p=0.035, linear mixed model with cell type as fixed-effect and imagining session as random-

effect). Particularly, the SLO cells had an increased location preference compared to the 

control cells (p=0.028, Tukey's multiple comparison test), but not compared to the ORLA cells, 

nor did the ORLA cells differ from the control cells. 

We determined whether the cells showed location-specific activity during locomotion by 

identifying the overlap between cells identified as place cells, as identified using the Peak 

method (Chapter 2, [198]), and our three cell types. There was a significant difference in the 

number of place cell identified in each of the cell types (Fig 4.6C, p=0.004, linear mixed model 
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with cell type as fixed-effect and imagining session as random-effect). None of the SLO cells 

were identified as place cells during running periods, which was significantly less than the 

place cells detected in the other cell types (Fig 4.6C, p=0.004, Tukey's multiple comparison 

test). As place cells are assigned in an all-or-nothing fashion (either a cell passes the threshold 

to be classified as a place cell or not), the lack of overlap between place cells and SLOs might 

be caused by the low number of cells, and/or cells falling just short of the threshold. In order 

to determine this, we looked at the ‘peakiness’, a measure of the probability that a cell is a 

place cell (Chapter 2, [198]). The three cell types differed significantly in their peakiness (Fig 

4.6D, p<2.2e-16, linear mixed model with cell type as fixed-effect and imagining session as 

random-effect), with the SLO cells having a significantly lower peakiness than both the ORLA 

cells and the control cells (both p<0.001, Tukey's multiple comparison test). 

Overall, although SLO cells had a significantly higher location preference score during rest than 

the control cells, they did not differ from the ORLA cells, and indeed did not show a very 

convincing location preference on manual inspection (Fig 4.6A). Therefore, although they 

could have similar location preference to the cells described in Jarosiewicz et al. [71], further 

studies, potentially simulating the home cage nest setup, are needed to show this conclusively. 

In addition, the SLO cells do not fire in location-specific fashion during locomotion, as shown 

by the lack of overlap between the SLO cells and place cells. However, we also find a low 

number of place cells across cell types compared to previous studies (Chapter 2, [35,198]), 

indicating an overall decreased location encoding in our datasets, which may also affect these 

results.  
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Fig 4.6. Location encoding in the different cell types. (A) Example fluorescence during rest per location bin for one 

cell, with the mean across all the bins marked by the dashed line. (B) Mean location preference during rest as 

measured in standard deviations from the mean. (C) Percentage of cells of each cell type classified as place cells. (D) 

The average peakiness (measure of the likelihood a place is a place cell) for each place cell. Bars are the means of 84 

datasets, black dots are values for each individual dataset and error bars represent the 95% confidence interval. P-

values from Tukey's multiple comparison test after performing a linear mixed model with cell type as fixed-effect and 

imagining session as random-effect. 
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4.2.7 Visual cortex also contains excitatory cells with SLO characteristics 

As hippocampal and neocortical activity during rest states can be coordinated [221], we next 

applied the selection criteria we defined to find whether SLO and ORLA cells also existed in the 

visual cortex. We both looked at pyramidal cells (PYR), using the Thy-1 GCaMP6f mouse line, 

and somatostatin expressing (SST) interneurons, using Cre-Lox expression of GCaMP6f.  

A small percentage of cells were identified as SLO cells (0.27% and 0.09% for PYR and SST 

respectively), with significantly more pyramidal cells than SSTs (Fig 4.7B, p=0.002, unpaired 

two-samples Wilcoxon test, Holm-Bonferroni corrected for multiple comparisons). The 

percentage in the pyramidal population is similar to the percentage we identified in our 

hippocampal data (0.24%). We also found a small population of ORLA cells in both the 

pyramidal and SST cells (2.30% and 2.43% for PYR and SST respectively), though for these cells 

we saw no significant difference in the number of cells identified between the two groups 

(p=0.065, Unpaired Two-Samples Wilcoxon Test, Holm-Bonferroni corrected for multiple 

comparisons). Again, this percentage is comparable to, though slightly higher than, the results 

from the hippocampus (1.65%). 

The power spectra for the three cell types in the pyramidal data looked similar to what we 

previously found in the hippocampus (Fig 4.7C-E), but the SSTs showed an increased power in 

higher frequencies across all populations (>2Hz, Fig 4.7C-E). In addition, a small peak could be 

seen in the control cells, in addition to the SLO and ORLA populations, for the SST data. The 

FOOOF analysis shows a similar trend to the hippocampal results, with increased aperiodic 

exponents for SLO and ORLA cells (Fig 4.7F). The SSTs showed a decreased exponent across cell 

types, which fits with the less flat shape of the power spectra (i.e. higher power in higher 

frequencies). We also saw a relatively high number of peaks in the target band, for both SLO 

and ORLA cells, across the pyramidal and SST datasets (Fig 4.7G). Interestingly, the percentage 

of peaks in the target band for SSTs did not reflect the visible peak in the power spectrum. This 
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may be due to a small number of cells having a large peak. In addition, we did not split this 

data out by locomotion and rest epochs, as we had insufficient data for this, which is likely to 

affect these results.  

Next, we determined the synchrony of the different cell types in the pyramidal and SST 

datasets, using the same measure as used in the hippocampus (Fig 4.5). Again, our results 

matched the finding from hippocampus, with a low mean offset, meaning a high synchrony, for 

the SLO cells, both in PYR and SST data (Fig 4.7H-I). In contrast, both the ORLA and control cells 

showed no synchrony in both PYR and SST data (Fig 4.7H-I).  

In summary, we find similar SLO and ORLA cell types in visual cortex, mainly in pyramidal cells, 

but also to a smaller extent in SST interneurons. This may point towards a propagation of the 

signal from the hippocampus to the visual cortex, or possibly the presence of a global signal 

that drives the cells in both these brain areas.  
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Fig 4.7: SLO and ORLA pyramidal cells and SST interneurons in the visual cortex. (A) Example recording (mean over 

all frames) of pyramidal cells (top, green) and SST interneurons (bottom, red) in the visual cortex. (B) Percentage of 

ROIs identified as SLO and ORLA cells. (C-E) Mean power spectra for pyramidal cells and SST interneurons across the 

different cell types. (F) Aperiodic exponent of the fits of the power spectra using the FOOOF too. (G) Percentage of 

cells with a peak in the 0.2-0.5 Hz power band. (H) Mean and (I) standard deviation of the offset from the average 

peak in the 0.2-0.5 Hz band-passed trace, a measure of synchrony. Bars are the means of 183 (PYR) and 127 (SST) 

datasets, black dots are values for each individual dataset and error bars represent the 95% confidence interval. 
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4.3 Discussion 

We identified a small percentage of CA1 pyramidal neurons, which we called SLO cells, that 

were preferably active during rest, showed high power in a low (0.2-0.5Hz) frequency band, 

and were highly synchronous. In addition, we identified a larger population of CA1 pyramidal 

neurons, which we called ORLA cells, that also had a high power in a low frequency band, 

though largely due to aperiodic activity, were mainly active during locomotion periods, and did 

not show synchronous activity. The SLO cells had location-encoding properties during periods 

of immobility, but not during locomotion, whereas the ORLA cells did not encode location 

during either behaviour. Lastly, we found similar populations in the visual cortex in pyramidal 

cells and somatostatin-positive interneurons, though the SST data contained markedly less 

SLO-like cells.  

We used two characteristics that were identified by eye – the increased activity during rest and 

the periodicity – to characterize the SLO cells. The periodicity was estimated using the 

autocorrelogram, and although this measure gives an approximation of periodicity, the local 

peaks will be confounded by noise within the fluorescence traces. Indeed, the method relies 

upon the control cells having noise that causes an increase in local peaks. Therefore, it is only 

an approximation of periodicity. The periodicity in the identified cells is confirmed by the peaks 

present in the power spectrum, the other groups also contained cells with peaks in the 0.2-0.5 

Hz band, and not all SLO cells had similar peaks. Therefore, characterising these cells by the 

power spectrum, and confirming this characterization using the autocorrelograms, may be 

preferred over the current method, and it likely alters the cells classified as SLO cells.  

Our SLO cells are possibly similar to CA1 cells that have previously been found to be active 

during SWS in the absence of SWR during a brain state called SIA [71]. Kay et al. [118] propose 

a “still” brain state as a brain state between a locomotor and a SWR brain state, equivalent to 

this still SIA state. They hypothesize that during this state animals hold a continuous spatial 
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code of the environment. Indeed, our results suggest that the SLOs show location-specific 

firing, and their activity is continuous, and even ramps, during rest events. This means that 

these cells might be a population, separate from the place cells, that continuously holds an 

internal representation of the current location during periods of rest. It has been suggested 

that such cells are needed to encode the location of events that do not rely on locomotion or 

navigation, such as the location of a certain stimulus [116]. 

However, this does not explain why such a small number of CA1 cells is involved. However, the 

number of cells we recorded showing this behaviour may be low for several reasons. Firstly, 

the ROI identification uses an activity-based measure of including cells [172]. Manual curation 

revealed that several SLOs that we could clearly identify by eye, were excluded using this 

measure. Although we included all ROIs as cells to combat this, it is likely that some potential 

SLOs were not identified as ROIs to begin with. Secondly, although it is theoretically possible to 

resolve individual spikes from calcium recordings [222], we are likely not able to resolve the 

activity to this detail, so even if some cells were showing a similar pattern of electrical activity 

to our identified SLOs with subthreshold activity, single spikes or spike trains, we would not 

have been able to identify them [163,223]. 

Overall, the function of the SLO cells and the ORLA cells is still unclear. It is possible the SLO 

cells are involved in holding a representation of the location an animal is resting in, so that if 

an event happens, they play a role in linking the memory of the event to that particular 

location. This would fit in with the notion of them being related to an intermediary level of 

attention. However, it is unclear how this would interact with the place cells, which already 

encode for location during running. In order to find out whether these cells are indeed 

necessary for location encoding during rest, future studies should aim to eliminate their 

activity and determine whether this impairs an animal’s navigation or contextual memory 

retrieval abilities.  
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4.3.1 Potential upstream sites innervating SLO cells 

Given the small population size — <1 % of all ROIs were classified as SLOs in our data — CA1 

might not be the principal site of such activity. Indeed, a previous study [116] found a much 

larger percentage of cells in CA2, which they termed N-units, that have similar activity to our 

SLOs during immobility. It is possible that the large CA2 population causes the activity in our 

small population of CA1 neurons, as it has been shown that CA2 connects onto CA1 neurons 

[224–226]. In particular, CA2 connects to the deep layer of CA1 [224], possibly indicating the 

SLO cells are particularly located in this layer in CA1. However, we find that the SLO cells are 

also modulated by a slow oscillation, which was not reported for CA2 [116]. Although it is 

feasible that the previous report did not find these oscillations, because they high-pass filtered 

their recordings at 0.5 Hz, meaning they would not detect similar oscillations. Alternatively, the 

SLO cells may be modulated by oscillatory activity from a different brain area, or indeed 

emerge from the CA1 itself. Spontaneous slow oscillations have been shown to arise in 

hippocampal slices through GABAergic interneurons [227]. However, the presence of similar 

oscillatory activity in V1 suggests that there might be a more global modulation at play. 

A more global slow oscillation has previously been described in neocortical areas, including the 

visual cortex, in cats [208], again involving local inhibition. This oscillation was identified both 

under anaesthesia and during natural sleep, and was thought to be separate from SWS. 

Indeed, we see a bump in power at low frequencies in the SST interneurons, even in the 

control population, which might point towards their involvement in driving slow oscillations. 

Giving the widespread nature of this oscillation — it was present across motor, sensory and 

associational cortical areas — it is not unlikely such an oscillation also presents itself in the 

hippocampus. 
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4.3.2 A role for the ORLA cells 

In addition to the SLO cells, we identified a population of ORLA cells, which were active 

primarily during running periods and showed a relative high power at low (0.2-0.5 Hz) 

frequencies, which was mainly caused by aperiodic activity. They did show overlap with the 

traditional place cell population, though the variability between datasets was quite high. This 

was not entirely surprising, as the ORLA cells were identified as those with the highest relative 

power of the control cells, and may thus be a subpopulation of these cells rather than a 

distinct population. The ORLA cells thus may have place cell-like activity in some cases. 

The presence of the aperiodic activity in the low frequencies in the ORLA cells is reminiscent of 

the N-waves identified in CA2 [116]. The waves have been observed to modulate firing outside 

CA2 as well, including in CA1. However, as they were only observed during periods of rest, 

while the ORLA cells have a high aperiodic component during rest and especially running 

epochs. It is therefore not clear whether a similar network pattern could be responsible for the 

ORLA activity. It might be possible that the N-waves persist throughout the different states, 

but are perhaps not as readily observed in the LFP signal, as they are overpowered by the 

theta oscillations present during locomotion.  

Alternatively, the high aperiodic exponent of the ORLA cells may be indicative of a 

phenomenon separate from the N-waves and other characteristic activity at rest, such as the 

SLO cells. Although the aperiodic component of neural data is often deemed background 

noise, recent studies have stressed its importance for neural processes [220,228]. These 

studies have often focussed on population level activity using measures such as LFP [229] or 

fMRI [230,231]. However, on the level of single neurons, the aperiodic signal can reflect the 

correlation of the inputs into the cell, and as such may be a readout of the connectivity of a 

single cell [232]. Therefore, our ORLA cells may be highly connected cells within the 

hippocampal formation, potentially allowing them to perform the role of hub cells [233].  
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In conclusion, our study shows two functional cell types which, although both characterized by 

a relatively high power in a low frequency band, show very different functional profiles, 

suggesting they may play different roles in the hippocampus. These results add to the corpus 

of literature suggesting heterogeneity of the pyramidal cells in the hippocampus [234]. In 

addition, we showed that our cell types existed both in hippocampus and visual cortex, 

suggesting a possible brain-wide phenomenon. Lastly, we show modulation of these cells by a 

low frequency oscillation across brain areas.  

4.4 Materials and Methods 

4.4.1 Animals 

All experimental procedures were approved by the UK Home Office, in accordance with the 

1986 Animal (Scientific Procedures) Act. Hippocampal experiments used twelve C57/BL6 mice 

(5 female, 7 male) expressing the genetically-encoded calcium indicator GCaMP6f under the 

control of a Thy-1 promoter (C57BL/6J-Tg(Thy1-GCaMP6f)GP5.5Dkim/J). Visual cortex 

experiments used 5 C57/BL6 mice (2 female, 3 male) expressing the genetically-encoded 

calcium indicator GCaMP6f under the control of a Thy-1 promoter (C57BL/6J-Tg(Thy1-

GCaMP6f)GP5.5Dkim/J), and 6 C57/BL6 mice (4 female, 2 male), which were crosses of 

heterozygous SST-IRES-Cre with floxed GCaMP6f, resulting in GCaMP6f expression in the SST 

interneurons. The mice were housed in a 12h reverse dark/light cycle environment at a 

temperature of 22°C and were given ad libitum access to food and water outside of 

experiments. The mice used for the hippocampal experiments were acutely water-deprived for 

up to 4 hours prior to an experiment.  

4.4.2 Hippocampal cranial window surgery 

Surgery was performed when mice were a minimum age of eight weeks. Before surgery, mice 

received subcutaneous injections of dexamethasone (60 μL, 2mg/mL), saline (400 μL) and 
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buprenorphine (40 μL, 0.3mg/mL diluted 1:10 in saline) to reduce inflammation, for hydration, 

and pain relief respectively. Mice were maintained at 0.8-2.0% isofluorane anaesthesia for the 

duration of the surgery. Body temperature was maintained at 37 °C using a homeothermic 

blanket (PhysioSuite, Kent Scientific Corporation). A craniotomy was inserted, for the 

hippocampal experiments above dorsal CA1, for the visual cortex experiments above visual 

cortex, as previously described [31,235]. Briefly, the skin above the skull was removed and the 

skull was scored to increase the surface area for binding dental cement. A custom-made 

stainless steel headplate was then fixed to the skull with black dental cement (Unifast Powder 

mixed with black ink (1:15 w/w) and Unifast Liquid). A 3 mm diameter craniotomy was then 

performed 2mm posterior to bregma and 1.5 mm lateral to the sagittal suture.  

For the hippocampus experiments, after removal of the skull flap and the dura brain tissue 

overlying, the hippocampus was aspirated (New Askir 30, CA-MI Srl) until vertical striations of 

the corpus callosum were visible. We then inserted a custom 3D printed cannula (2.4 mm ID, 3 

mm OD, 1.5 mm height) made of a biocompatible Dental SG resin (FormLabs) so that the glass 

coverslip at the bottom of the cannula lay directly on top of the brain tissue. The top of the 

cannula had a rim (0.2mm height, 3 mm OD) resting on top of the skull, which was attached 

using tissue adhesive (3M VetBond) and then covered with more dental cement.  

For the visual cortex experiments, the dura was carefully removed to allow imaging of the 

underlying brain tissue without obstruction of dural vessels. A glass window consisting of two 3 

mm diameter and one 5 mm diameter round coverslips glued together with optical adhesive 

was inserted into the hole, with the smaller coverslips effectively plugging it, while the larger 

coverslip rested on the skull. This was again attached using tissue adhesive and covered with 

dental cement.  

For all animals, a rubber ring was then attached on top of the headplate for subsequent use as 

a well for the water needed for the water-immersion microscope objective. The mice were 
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given an injection of meloxicam (125 μL, 5 mg/ml) as an analgesic near the end of the surgery 

and then received meloxicam (200 μL, 1.5 mg/mL) for 4 days following the surgery via oral 

admission. Their health was monitored and they were weighed daily.  

4.4.3 Two-photon imaging 

Habituation. A week or more after surgery, the mouse was habituated to the imaging rig by 

head-fixing it for an increasing amount of time each day for at least a week before it was 

imaged, resulting in at least two weeks, but usually longer, of recovery time. The animals for 

the hippocampal experiments were also presented with the virtual reality environment during 

this habituation period to make it familiar with this setup. 

Imaging rig (S Fig 4.5A). The mice were head-fixed above a polystyrene cylinder, on which they 

could run. The cylinder was fitted with a rotary encoder (Kübler, 4096 pulses per revolution). 

Two screens in front of the mice were used to display the stimulus. In the case of the 

hippocampal experiments, these screens displayed a custom virtual reality (VR) environment 

designed using ViRMEn [150]. In the visual cortex experiments, they showed moving gratings 

of varying contrasts and widths, generated using PsychoPy [236].  

Stimulus presentation. The virtual reality environment presented to the mice was a wide 

corridor, 200 cm long and 80 cm wide, with 30 cm high walls (S Fig 5B). Both before and after 

the wide corridor was a dark grey tunnel with a diameter of 30 cm, 50 cm long before the 

corridor and 45 cm long after the corridor) which served to allow smooth transitions between 

multiple presentations of the environment. Inside the environment were always two objects: a 

blue and black striped ball and a white and black striped block. On each traversal both the cue 

abundance, binarized into two levels, and the location of the ball was randomly selected. For 

the cue abundance this meant either a combination of grey walls, a grey floor, and no external 

objects (sparse condition), or patterns walls and floor and two additional objects (a cyan, black 

striped cone and a black, white and green blocked ball) outside of the walls (abundant 
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condition). In the case of the ball location this was either in a familiar location (50 cm into the 

environment) or on a randomized location along the corridor at least X cm from the familiar 

location, but always 30 cm left of the mouse. 

In the visual cortex experiments, the mice were presented with moving gratings (S Fig 4.5C). 

These varied in frequency (0.04 or 0.2 cycles per degree), contrast (5%, 25%, 63% or 100%) and 

size (full screen or small 20 degree circle). When contrast was varied, only the full screen 

stimulus was used, and when size was varied, only the 100% contrast was used.  

Data acquisition. In the hippocampal experiments, the stratum pyramidale of dorsal CA1 was 

imaged using a two-photon microscope (Scientifica) with a water-immersion objective (CFl75 

LWD 16X W, Nikon; 0.80 numerical aperture, 3 mm working distance). In the visual cortex 

experiments, cortical area V1 we used a different water-immersion objective (XLUMPlanFL N 

20X, Olympus; 1.00 numerical aperture, 2 mm working distance), as we did not need to 

achieve the same depth. GCaMP6f was excited using a Chameleon Vision II Ti:Sapphire laser 

(Coherent) at a wavelength of 940nm with a gallium arsenide phosphide photomultiplier tube. 

We used the ScanImage (Vidrio Technologies, MATLAB) or SciScan (Scientifica) software to 

control the microscope and collect data. The stratum pyramidale was identified from the 

presence of densely packed cell bodies. For the hippocampal experiments, we optimised the 

acquisition rate by using a wide field-of-view at a low resolution (128x128 pixels, 7.51 Hz, 3.77 

µm pixel size). Pyramidal cell recordings in the visual cortex were at varying acquisition rates 

(3.05-7.63 Hz), while the SST recordings were always at 7.63 Hz, and both were at a slightly 

higher resolution than the hippocampus recordings (256x128 pixels, 1.98 µm pixel size).  

4.4.4 Image Analysis 

Preprocessing. Preprocessing was conducted using Suite2P software [172]. Firstly, images were 

registered using the default settings, then regions of interest (ROIs) corresponding to cell 

bodies were identified based on their morphology (having a diameter of approximately 10 μm) 
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and a tau, the decay time for the calcium indicator, of 0.8. Suite2P applies a classifier to 

identify cell bodies, but as we observed that obvious SLO cell candidates were omitted in this 

step, we decided to include all ROIs in all analyses.  

We obtained the calcium signal corrected for neuropil activity, by subtracting 0.7 times the 

neuropil signal from the ROI signal for each ROI, from the Suite2P output. Then we normalised 

time courses to baseline fluorescence for each ROI by dividing the whole trace by the average 

intensity in that ROI during the first 100 frames of the recording.  

4.4.5 Frequency analysis 

We found the power spectrum for each ROI by applying Welch’s method ([237]) to each 

preprocessed trace, using the MATLAB inbuilt pwelch function. We used a 60 second window 

and 50% overlap between windows. We set the number of discrete Fourier transform points to 

the closest power of 2 higher than the window size, or 256, whichever was higher. With a 60 

second window and an acquisition rate, this equated to 512 points.  

To further analyse the power spectra, we applied the FOOOF method [220]. We used the 

freely available Python code to extract the aperiodic and periodic components for each ROI, 

and imported these into MATLAB for further processing using custom scripts.  

4.4.6 Cell type identification 

SLO cells. SLO cells were identified using a combination of two parameters: the rest/running 

fluorescence ratio and the number of peaks in the autocorrelogram. For the rest/running 

fluorescence ratio we divided the frames into rest and running. Rest included any frames 

where the velocity of the mouse was less than 10% of the maximum velocity. We next 

determined any rest events that included continuous rest for at least 60 seconds. For each ROI 

we averaged the fluorescence during these rest events by the fluorescence outside of these 

events, and obtained the rest/running fluorescence by dividing the resulting values. We 
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calculated the autocorrelogram by performing a cross-correlation on the fluorescence trace of 

each ROI to obtain the Pearson’s correlation for each offset of the trace compared to itself 

(custom MATLAB code, courtesy of Caswell Barry). We cropped the result to only include 30 

seconds around the centre, resulting in a cross-correlation across 60 seconds in total. Next, we 

found the number of local maxima using the findpeaks function in MATLAB. Once we had 

obtained both the rest/running fluorescence and the number of peaks for each ROI, we found 

the mean and standard deviation across the population for both. We only included cells as SLO 

cells if they both had a rest/running fluorescence at least two standard deviations above the 

mean, and a number of peaks at most two standard deviations below the mean.  

ORLA cells. We identified the ORLA cells based on the relative power. We obtained the power 

spectrum for each as described above. From these power spectra we calculated the relative 

band power by taking the mean power in our band of interest (0.2-0.5 Hz), and dividing it by 

the mean power between 2-3.5 Hz. After obtaining the relative power, we calculated the mean 

and standard deviation across all ROIs across all sessions. We did this separately for the three 

sets of data collected with similar characteristics: the hippocampal recordings, the V1 

pyramidal recordings, and the V1 SST interneuron recordings. For each of these sets we set a 

threshold for inclusion as ORLA cell to be three standard deviations above the mean.   

Place cells. Place cells were identified using the Peak method as previously described [pcm ref, 

chapter 1 ref]. In short, we calculated the fluorescence map, the average fluorescence at each 

location, for each ROI and determined the maximum value in this map. We then shifted the 

fluorescence trace relative to the location trace to obtain a shuffled version, and calculated the 

maximum value of the fluorescence map of the shuffled version. We repeated this shuffling 

procedure 500 times and determined the percentile score of the original maximum value 

relative to the shuffles. This percentile score was used as the peakiness score, or the likelihood 
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a ROI was a place cell. If the percentile score was at least 99, we classified the cell as a place 

cell.  

4.4.7 Analyses 

Activity modulation. To determine the effect of locomotion on the cell activity, we identified 

epochs of rest and running during a session. First, we identified frames of the recording where 

the mouse was not locomoting by finding frames where the velocity was smaller than 10% of 

the maximum velocity. Next, we found distinct rest or running epochs by identifying 

continuous frames of locomotion or rest. If groups of continuous frames were interrupted for 

less than 1 second, they were grouped as one continuous epoch. For each epoch, we then 

determined the length, and excluded any epochs that were shorter than 60 seconds (451 

frames).  

Synchrony. The synchrony of the different cells was identified by first taking the average of all 

the SLO cells in the dataset. We then band-pass filtered this trace using a 0.2-0.5 Hz filter. 

Next, we determined any local peaks, and determined the activity of each individual ROI in the 

dataset in 3 seconds around the timepoint of this peak. We averaged this activity per ROI 

across the peaks and determined the maximum value of this mean. The absolute time from 

the middle of the trace (i.e. the offset) was calculated to determine the relative timing of the 

ROI compared to the original peaks. We only included sessions with at least 2 SLO cells (N=12), 

as the synchrony of 1 cell cannot be determined (it is synchronous to itself). 

Location encoding. We took two approaches to analyse the location encoding properties of the 

cells. Firstly, we found the overlap with place cells and the related peakiness measure, as 

described above. Secondly, we determined the location preference for each cell during rest. As 

the rest periods did not take place in a wide range of locations, and the total rest per location 

was not evenly distributed, we decided on this alternative approach. For this, we binned our 

total environment (pipes and corridor) into 15 evenly spaced bins. We then determined what 
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bin each rest event took place in, and the mean fluorescence in that bin. The location 

preference was calculated by determining the mean and standard deviation of these mean 

fluorescence across the bins, and determining how many standard deviations the value in the 

bin with the highest fluorescence deviated from the mean.  

 

  



226 
 

4.5 Supporting information 

 

S Fig 4.1 Cell characteristics of the different functional cell types. (A) ROI radius relative to the mean radius of the 

recording. (B) Maximum spiking rate as deconvolved using Suite2P. (C) Mean spiking rate across the recording. (D) 

Mean distance between all cells within a cell type (pink) or between cells from that cell type and other cell types 

(blue). Bars are the means of datasets, black dots are values for each individual dataset and error bars represent the 

95% confidence interval.  
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S Fig 4.2 Activity in cell types at the end of rest and running epochs. Mean fluorescence over time for the last 

minute of rest (pink) and locomotion (blue) epochs for (A) SLOs, (B) ORLAs and (C) control cells. Mean fluorescence 

during the 50-60 seconds from the end (pink) and the last 10 seconds in the epochs (blue) during rest (D) and 

locomotion (E) for the functional cell types. Bars are the means of 84 datasets, black dots are values for each 

individual dataset and error bars represent the 95% confidence interval. The fluorescence traces (A-C) show the 

mean fluorescence in black, coloured traces show the 95% confidence interval. P-values for D and E are from 

multiple paired t-tests with Bonferroni-Holm correction. 
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S Fig 4.3 Synchrony of activity in novel functional cell types during rest and locomotion. Offset during rest of all (A) 

SLOs, (B) ORLAs, and (C) control cells across all datasets. (D) Mean offset and (E) standard deviation of the offset 

during rest per dataset of the difference functional cell types. Offset during locomotion of all (F) SLOs, (G) ORLAs, and 

(H) control cells across all datasets. (I) Mean offset and (J) standard deviation of the offset during locomotion per 

dataset of the difference functional cell types. Bars are the means off datasets, black dots are values for each 

individual dataset and error bars represent the 95% confidence interval. P-values for D, E, I and J are from Tukey's 

multiple comparison test with Bonferroni-Holm correction.  
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S Fig 4.4 Synchrony of activity in novel functional cell types relative to ORLA and control cells. Offset of the (A) 

SLOs, (B) ORLAs, and (C) control cells relative to the peaks in the mean trace of all ORLA cells in the dataset. (D) 

Mean offset and (E) standard deviation of the offset per dataset of the difference functional cell types. Offset of the 

(F) SLOs, (G) ORLAs, and (H) control cells relative to the peaks in the mean trace of all control cells in the dataset. (I) 

Mean offset and (J) standard deviation of the offset per dataset of the difference functional cell types. Bars are the 

means off datasets, black dots are values for each individual dataset and error bars represent the 95% confidence 

interval. P-values for D, E, I and J are from Tukey's multiple comparison test after performing a linear mixed model 

with cell type as fixed-effect and imagining session as random-effect. 

 

 

S Fig 4.5. Imaging setup and stimuli for two-photon experiments. (A) 3D model showing the imaging setup with the 

visual stimulus project on the screen. (B) Example of one of the virtual environments used in the hippocampal 

recordings. (C) Visual grating pattern shown on the screen during the visual experiments. 
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5 Discussion 

The aim of this thesis was to examine the effects of environmental and behavioural factors on 

hippocampal activity. We distinguished between several different hippocampal cell 

populations: place cells, object-vector cells, SLO cells and ORLA cells. We showed that these 

cells differentially responded depending on the environmental cues available to the animal, 

and whether the mouse was active or not. Overall, we showed the importance of studying 

diverse hippocampal populations, and how various populations each showed different activity 

patterns depending on the behavioural states on the mice and stimuli in the environment. 

5.1 Aim 1: To determine the best method for defining place cells, and in doing 

so, understand how the method by which place cells are defined, affects 

what cells are included in the population. 

In order to study place cell populations, we first needed to know how to define them, which 

was the first aim of this thesis. We focussed on the definition of place cells, but the same 

method of classification also applies to object-vector cells, and indeed any cell that may have a 

particular response field. The three place cell classification methods we tested, resulted in 

vastly different populations of cells being classified as place cells. As the Peak method, which 

compared the maximum activity in the fluorescence map compared to the shuffled maximum, 

had the highest sensitivity even when the place cells were variable and unreliable, we 

recommended using this method to classify place cells, and used this method in the other 

chapters. 

These results have important implications place cell research more widely. Critically, it explains 

why different studies find conflicting results about place cells, as the populations they study 

might be independent. For example, in our study on how hippocampal place cells code 

different environments in Chapter 3 we did not find an overrepresentation of reward location, 
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unlike other studies (e.g. Gauthier et al. [51]). However, this could be explained by the fact 

that Gauthier et al. [51] used mutual information as a measure to classify their place and 

reward cells, while we used the Peak method. As the Gauthier et al. method is distinct from 

three methods we tested, we do not know how the place cells classified by it are 

characterized. We did analyse the amount of mutual information in the various place cell 

populations, and in the Peak method the place cells had significantly higher mutual 

information, suggesting there will be some overlap between the place cells as classified by the 

Peak method and those classified by Gauthier et al. This underscores the need for consistent 

place cell classifying in the field, and characterising the place cell population if a new method is 

used. 

Although we tested the methods using an imaging dataset using mice expressing the GCaMP6f 

calcium indicator, we believe the results are also applicable across other genetically encoded 

calcium indicators. Many variations of calcium indicators are used in place cell research (for 

example GCaMP3 [35,51] and GCaMP6s [24]). Different types of calcium indicators have 

varying properties and dynamic ranges, thus responding differently to changes in spike rates 

[163]. Even the transgenic line in which the indicator was expressed can affects its properties 

[223]. If a method is to work similarly regardless of these properties, it should not depend on a 

set threshold for fluorescence. Rather, it should allow for a relative comparison to the dataset, 

as is the case in the Peak method, and indeed the Stability method, but not the Combination 

method. Therefore, we believe our proposed method is applicable to datasets with varying 

indicators, allowing for better comparison between results for studies using different calcium 

indicators and transgenic lines. 

This study focussed specifically on calcium imaging, but it also provides the opportunity to 

compare between electrophysiology and calcium recordings. Although calcium indicators 

reflect action potentials [163], their activity is not equivalent to electrophysiological recordings 
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[223]. One could apply spike deconvolution, using each indicator’s unique response function, 

to estimate the spiking rate, but the majority (up to 85% [223]) of single spikes will not be 

detected using GCaMP6f. As the Peak method was originally developed for electrophysiology, 

but successfully classifies place cells in calcium activity as well, our work provides a valuable 

way to link the two different methodologies, without having to rely on spike deconvolution. 

The Peak method can also be applied across datasets collected in 1D or 2D environments, 

regardless of the methodology used, and thus provides the ability to directly compare between 

calcium and electrophysiology datasets in a variety of environments.   

As using VR for place cell studies is becoming increasingly popular, there is need for a single 

method to accurately compare findings between real and VR environments. Currently, 

different studies use vastly different methods for place cell detection in these environments 

(e.g. [24,35,55,147]) and thus their results cannot be compared. Using VR itself also affects 

place cell firing, so it is vital to be able to compare studies as well as possible, as this will allow 

us to accurately interpret how the findings apply to the real world and broader contexts. We 

believe our study provides this opportunity and will thus prove vital as research on place cells 

in VR continues to develop. 

5.2 Aim 2: To understand how cue abundance and displacing a cue object, in 

addition to training on a behavioural task, affects coding of space by 

hippocampal populations. 

Our second aim was to understand how hippocampal populations were affected by changes to 

cue abundance and object location novelty in an environment. Object location novelty caused 

a decrease in the number of place cells, but an increase in the information about location 

contained in their activity, as well as an increase in the ability to decode an animal’s location 

from its cells’ activity. Cue abundance had no effect on the place cells or encoding properties. 

Our paradigm allowed us to identify a population of object-vector cells, which responded 
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relative to the cue object location, even when it was displaced. Lastly, the hippocampal 

population as a whole was able to accurately encode the cue object location, even when the 

animal was unable to perceive the object.  

Earlier studies have suggested that when multiple contextual cues are available, place cells 

receive heterogenous input that they integrate to create their response [43,195]. Here, we 

built on that idea by giving our animals multiple contextual cues, object location novelty and 

cue abundance, and determining if and how place cells integrate these cues. Interestingly, our 

results differ from previous studies: Anderson et al. [43] found that cells mostly respond to 

particular combinations of contextual cues, in their case wall colour and odour, while our 

results show that the place cells respond strongly to one contextual cue (object location 

novelty), but not to the other. However, our results do not necessarily conflict with the idea of 

place cells receiving heterogenous inputs. Instead, we believe there are two possible ways this 

theory can be expanded to include our results. 

A first explanation is that there may be a modulatory role of attention. Place cells change their 

representation of an environment in response to differing attentional states [238]. In addition, 

increased attentional demand of a task can cause increased stability of place cells [185]. In our 

task, the animals were trained to attend to the novel object location, as they were rewarded 

when the object is displaced. They therefore would have attended more strongly to novel 

object location condition, i.e. whether the cue object is displaced or not. This attention may 

have modulated the relative strength with which the two contextual cues (novel object 

location and cue abundance) affect place cells firing. This theory would predict that if the mice 

were to perform the exact same task, but were rewarded based on the cue abundance 

condition rather than the object location novelty, the relative strength of modulation would 

switch, with the place cells being more strongly modulated by cue abundance. 
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Although attention modulation explains some of our results, attention alone cannot explain 

why we see modulation of place cells by novel object location, but not cue abundance, in the 

untrained mice. This may be explained by an inherent hierarchy in the modulation. A previous 

study proposed such a hierarchy in modulation for the encoding individual environmental 

cues, after finding more cells responding to a rotation of distal compared to local cues [184]. 

We propose here that a similar hierarchy exists for the type of manipulation (e.g. displacement 

compared to addition of cues). Based on our results, displacing a cue is more likely to be coded 

by cells than adding cues, suggesting that displacement affects most cells more strongly, thus 

is higher in the hierarchy. To be able to prove this, a follow-up experiment where the distal cue 

is displaced, and the local cues are added or removed should be performed. This can show 

whether the hierarchy indeed persists, and how it interacts with the type of cue (i.e. distal or 

local).  

In addition to place cells being affected by object location novelty, we also showed the 

importance of non-place cells. The relative contribution of the place cells, as defined by the 

Peak method, decreased in the novel condition, and as a result of training, while the decoding 

accuracy increased. This suggests that the encoding of location when the object is displaced, 

especially after training, relies heavily on the activity of non-place cells. Of course, the 

population we call non-place cells will include cells that other studies have included as place 

cells depending on their classifying method, which begs the question what the activity pattern 

of these cells look like and how they contribute to encoding. In addition, we do not know if it is 

a contribution by the whole population, or if only a subset of the non-place cells contributes 

significantly to the encoding. These results encourage future studies to include all cells, and 

not just place cells, to analyse how non-place cells are involved in spatial navigation and how 

they are affected by various environmental manipulations. 
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5.3 Aim 3: To characterize the activity of two novel types of functional cells in 

CA1 and their relationship to environmental and behavioural factors. 

The last aim of this thesis was to study and characterize the activity of two novel types of 

functional cells: ORLA and SLO cells. ORLA cells were active during running periods, and were 

characterized by high aperiodic power in low frequencies. SLO cells were synchronously active 

cells, which fired preferably during rest, and showed low frequency oscillations. These cells 

also showed place preference, meaning they were more likely to fire when the mouse stopped 

in a certain location. This suggests that these cells may play some role in spatial 

representation. Again, this substantiates the idea that non-place cells play an important role in 

hippocampal function.  

We hypothesize that the SLO cells are linked to SIA, a brain state that is marked by the absence 

of theta oscillations and SWRs, because they are active when the mouse shows similar 

behaviour to its behaviour during SIA. The SLO cells are similar in several ways to cells that 

were found to fire preferably during SIA [71,116]. Firstly, the population of cells active during 

SIA involved only a small (<5%) subset of CA1 pyramidal cells, and they showed activity mainly 

during immobility. Additionally, they were silent during running bouts, and they show high 

power in low frequencies. Lastly, both reports also showed some level of place dependence. 

However, neither of the previous studies reported synchronous activity or oscillations in the 

<1Hz frequency band. Thus, the question remains how these cells relate to those previously 

identified, and how they contribute to overall hippocampal function.  

It is feasible that the SLO cells are in fact the same as those previously identified, and previous 

studies may have not found synchrony and oscillations for methodological reasons. We used 

calcium imaging, while previous studies used electrophysiology. Electrophysiology would give a 

much higher (usually 2 kHz or more) temporal resolution. Thus, what is synchronous in our 

data, may seem slightly offset when looking at individual spikes. Neither of the previous papers 
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studied the synchrony of their cells, so it is hard to know whether they would find synchrony in 

their cells in CA1 when considering similar timescales to calcium imaging (i.e. 100-200 ms). In 

addition, if SLO cells are close together — and we found they were significantly clustered — 

and are firing at the same time, it is possible they would not be reliably distinguishable as 

separate cells in electrophysiological recordings, and would be grouped together into a single 

unit. 

Although both previous studies showed a high power in low (<4Hz) frequency bands, they 

specifically found high power between 1-4Hz [71,116]. Again, methodology will have a great 

effect here. As our imaging was done at 7.51 Hz, we can only reliably measure oscillations up 

to about 3 Hz. In addition, the GCaMP6f has a decay time of about 0.8 seconds, meaning any 

oscillations above about 1.5 Hz will be difficult to distinguish. In contrast, electrophysiology 

recordings are usually high-pass filtered. Indeed, Kay et al. [116] high-pass filter their signal at 

0.5 Hz, and Jarosiewicz et al. [71] at 1 Hz. So, neither paper would have been able to find 

oscillations at the frequency we find (0.2-0.5 Hz) in their recordings. It is therefore possible 

that there is indeed such an oscillation present. Because of these methodological differences, 

it is impossible to say whether the SLO cells are the same as the cells reported previously. We 

plan to further study this by recording both calcium activity and electrophysiological signals at 

the same time, and hope to show our findings compare to previous results from 

electrophysiological studies.  

The ORLA cells were characterized by high aperiodic activity in the same low frequency band 

as the SLO cells. They were distinct from the SLO population, and were selected by finding the 

cells with the highest relative power in the low frequency band. As such, they might not form a 

distinct subpopulation, but rather a subset of a general population. These cells did not show 

the characteristic oscillations pattern, nor were they synchronous. In addition, we found no 

evidence of place preference in the ORLA cells. It is therefore unclear how they relate to the 
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SLO cells, or to the place cells, and what their function is within the hippocampus. One clue 

might be in their aperiodic activity. This type of activity is reflective of the excitation/inhibition 

balance, with a higher aperiodic exponent indicating more excitation than inhibition [239]. As 

the ORLA cells have a high relative exponent, this suggests they receive relatively more 

excitatory than inhibitory inputs compared to the general population. Of course, we are using 

calcium imaging, and it is unclear whether we could actually detect changes in relative input in 

the calcium, as these signals would be too small to distinguish from noise, so this should be 

verified with electrophysiology. If it is indeed the case, a change in the relative 

excitatory/inhibitory balance could mean these cells play a key role in the coordination of the 

local network dynamics of the hippocampus. 

5.4 Final Conclusions 

Overall, we believe this thesis critically contributes to the research of the role of hippocampal 

populations in spatial navigation. We took a broad approach, including all cells and populations 

rather than limiting ourselves to the study of place cells alone, which resulted in the 

identification of object-vector cells, SLO cells and ORLA cells in our datasets. In addition, we 

studied the hippocampus in a wide range of behavioural states and during varying 

environmental manipulations, allowing us to study the populations’ activity in detail. We 

showed the importance of these populations, and non-place cells in general, in location 

encoding across the behavioural states and environmental manipulations. We hope that future 

work can build on the research in this thesis and further expand our knowledge of 

hippocampal populations and their function in spatial navigation.  
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