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Abstract 

This thesis describes the synthesis and development of novel cyclic phosphanes, with the intent to 

exploit their electronic character and subsequently explore their respective reactivities.  

A family of diphosphametacyclophanes bearing the electronically distinctive diketophosphanyl 

functionality are prepared from reacting RP(SiMe3)2 (R = Me, Ph) with the respective diacyl chloride 

and were characterised spectroscopically and unequivocally by single-crystal X-Ray diffraction.  The 

aromatic 5-R substituent can influence the displacement angle between π-systems, allowing control 

over the cavity size, which could hold promise for metal sequestration. Electronically, it was found 

that the LUMO was more stabilised for weaker donating substituents and overall exhibit no 

delocalisation/conjugation around the macrocyclic core; instead the two diketophosphanyl units are 

essentially discretely isolated. Attempts to enhance their electron acceptor character via oxidation 

was unsuccessful, yet these macrocycles coordinate to transition metals, facilitating the synthesis of 

[M(η4-C8H12)Cl{3-C(O)-C6H4-(C(O)PMe)}2] (M = Rh, Ir) and [{Pt(PEt3)Cl2}2{3-C(O)-C6H4-(C(O)PPh)}2]. 

The first examples of 6- and 7-membered saturated phosphorus heterocycles bearing the diketo-

functionality, RP{C(O)}2CnH2n (n = 3, 4; R= aryl, alkyl) have been synthesised and fully characterised. 

The coordination chemistry of these species has been explored including a series of tungsten-

pentacarbonyl complexes, which were prepared and elucidated spectroscopically and by X-Ray 

diffraction. Data suggest these heterocycles are relatively weak σ-donors, placing them between 

traditional phosphanes and phosphites in this regard.   

In tangential studies, novel trifluorophosphalkenes (RP=C(OSiMe3)CF3) are pursued by reacting the 

respective bis-silylated phosphane, RP(SiMe3)2 (R = Ph, tBu, Mes, SiMe3) with one equivalent of 

trifluoroacetic anhydride,  leading to the isolation of both the E- and Z-isomers. The reactivity of these 

phosphaalkenes has been explored, including [4+2] cyclicadditions to afford cyclic species such as 

Me3SiPCH2CHCHCH2C(OSiMe3)(CF3), which was tentatively identified. Similarly, reactions with 

LiN(SiMe3)2 afford a range of complex products at ambient temperature, but with evidence for 

trifluoromethylphosphaalkyne below −20 °C, respectively. Efforts to effect coordination are outlined, 

demonstrating an unexpected variability in coordination mode. 

Finally, the first dianionic diphosphaboracycles ([C6P2BC6H5]2- 2[Li(THF)1.5]2+, [C6P2BC6H5]2- 

2[Li(TMEDA)]2+) are synthesised from the reaction between 1,2-bis(phosphino)benzene and 

dichlorophenylborane. The reactivity and coordination chemistry of which has been extensively 

explored leading to a series of novel compounds, including a ɳ5, ɳ1, ɳ1-trimolybdenum complex, 

confirming that the diphosphaboracycle can act as a π-ligand with metals other than lithium. 
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Chapter 1 - Introduction 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

“The chemists are a strange class of mortals, impelled by an almost insane impulse to seek their 

pleasures amid smoke and vapour, soot and flame, poisons and poverty; yet among all these evils I 

seem to live so sweetly that may I die if I were to change places with the Persian king.”  

        --Johann Joachim Becher 1635-1682 
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This introduction aims to broadly cover the importance of phosphorus chemistry, with a particular 

focus upon the incorporation of electronically distinctive phosphorus motifs within π-conjugated 

materials, a subject of relevance for both Chapters 2 and 3. In contrast, a more relevant introduction 

is included at the start of Chapters 4 and 5. 

1.1 Phosphorus “The Philosopher’s Stone” 

Phosphorus, also known as ‘the devil’s element’, was first discovered in 1669 by alchemist Hennig 

Brandt;1 it was first isolated by the putrefaction of urine for several days and then boiling down to a 

paste which was subsequently distilled at higher temperatures, the vapour from which was condensed 

under water to give the element as “a white waxy substance that glowed in the dark when exposed 

to air”.2 The source of white phosphorus has since been improved, involving the heating of phosphate 

rock (calcium phosphate) to 1200-1500 °C in the presence of sand and refined coal to produce P4 

vapour, which is condensed under water to afford P4 as a white solid.3 Phosphorus is the 11th most 

abundant element on earth and exhibits an extensive and varied chemistry with applications ranging 

from fertilisers and fire retardants to the crucial role it plays In the biochemistry of all living things.4,5  

Within the realms of inorganic chemistry, phosphorus exhibits reactivity with elements from across 

the periodic table; more specifically, organophosphorus chemistry is diverse, phosphorus being able 

to adopt a range of different coordination numbers (σ), valencies (λ) and geometries.6 For 

organophosphorus chemistry these can be divided into the categories in Figure 1, Table 1.7  

 

 

Figure 1. Different categories of organophosphorus compounds. 

Table 1. Organophosphorus categories and relevant examples of each. 

Organophosphorus Categories Relevant Examples 

λ5, σ5 PR5, P(OR)5 

λ5, σ4 OPR3, OP(OR)3, EPR3 (E = S, Se, Te) 

λ4, σ4 [PR4]+[X]- 

λ3, σ3 PR3, P(OR)3 

λ3, σ2 RP=R,  

λ3,σ1 P≡R, 
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This thesis focuses primarily on tri- and di-coordinate organophosphorus species, therefore literature 

regarding tertiaryphosphanes and phosphaalkenes will be reviewed, including defining characteristics, 

synthetic methodologies and applications. 

1.2 Phosphanes 

The most commonly documented phosphorus-containing species are phosphanes, they are neutral 

two-electron donor compounds (L-type ligands), adopting a trigonal-pyramidal geometry.8 

Phosphanes can be divided into the sub-categories: primary (1.1a), secondary (1.1b) and tertiary 

(1.1c), with the last of these having numerous sub classes, for example: phosphomides (1.2a), 

diphosphanes (1.2b), cyclic-phosphanes (1.2c) and phosphites (1.2d; Figure 2). This thesis investigates 

tertiary phosphanes, with a particular interest in phosphomides, aryl diphosphanes and cyclic-

phosphanes.   

 

 

Figure 2. Sub-categories of phosphanes. 

 

1.2.1 Preparation of Tertiary Phosphanes 

There are a variety of different routes to synthesise tertiary phosphanes (PR3), though some feature 

in the literature more frequently than others. Classical methods involve the use of phosphane (PH3), 

PCl3 or P(SiMe3)3. Phosphane gas is produced on an industrial scale from the reaction of P4 with MOH 

(M = Na, K), while PCl3 is synthesised from P4 and Cl2.1 Alternatively, P(SiMe3)3 is prepared by heating 

P4 or red phosphorus at reflux with Na and Me3SiCl (Scheme 1).9 After workup both PCl3 and P(SiMe3)3 

are subsequently purified by distillation.   
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Scheme 1. Preparation of PCl3 and P(SiMe3)3. 

 

The preparation of tertiary phosphanes is then undertaken via several general reactions, for example 

phosphane gas (PH3) can be reacted with NaOtBu to generate the corresponding metal phosphide, the 

addition of RX to this species affords the desired tertiary phosphane (illustrated in Scheme 2a with  1-

bromonapththalene).10 Other methods include generating a lithium phosphide and subsequently 

reacting with a halogenated substrate such as an alkylhalide (Scheme 2b).11,12 In contrast, lithiated 

organic substrates such as lithium alkynyls can be reacted with halophosphanes to functionalise the 

phosphorus centre (Scheme 2c).13 Alternatively, treating halophosphanes with Grignard reagents, 

such as the addition of PhMgX to PCl3, affords PPh3 (Scheme 2d), though tertiary phosphanes can also 

be prepared by catalytic dehydrocoupling of primary phosphanes (Scheme 2e), via radical reactions 

(Scheme 2f)14 and even from the photolytic reaction of P4 and ArX (Scheme 2g).15  
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Scheme 2. Selected examples for the synthesis of phosphanes.11-15 

 

1.3 Applications of Phosphanes 

1.3.1 Steric and Electronic Properties 

Phosphanes of all types play a major role in coordination and organometallic chemistry.16 Phosphanes 

are commonly employed as ancillary ligands as a result of their capacity to augment and control 

reactivity due to the tunability of their electronic and steric properties. In 1977, Tolman documented 

a quantitative way to measure the electron donating or withdrawing ability of a ligand (L), by 

measuring and comparing the A1 CO vibrational mode (νCO) for complexes of the type [LNi(CO)3], 

exhibiting C3v symmetry,17 the resulting carbonyl stretch now being known as the Tolman electronic 

parameter (TEP). However, Tolman noted that the coordination behaviour of [R3PNi(CO)3] complexes 

could not be explained purely by electronic effects and discussed the relationship between steric and 

electronic parameters. This led Tolman define an additional measure, to assess the steric bulk of a 

ligand in a [LNi(CO)3] complex, defined as “the solid angle formed with the metal at the vertex and the 

outermost edge of the van der Waals spheres of the ligand atoms at the perimeter of the cone” (Figure 

3, Table 2), now known as the Tolman cone angle. Though this method is based on [LNi(CO)3] 

complexes, there are conversion factors which can be used for alternative metal complexes.18  



6 
 

One example that highlights the relationship between sterics and electronic features, is the competing 

reactivities of PMe3 and PtBu3
 toward [Ni(CO)4]; PMe3 is found to coordinate to [Ni(CO)4] preferentially, 

despite the greater basicity of PtBu3, as assessed on the basis of their respective A1 stretching 

frequencies ([Ni(CO)3PtBu3]; νCO 2056 cm-1, [Ni(CO)3PMe3]; νCO 2064 cm-1). This effect was explained as 

a result of steric hindrance, the bulky tertiary-butyl substituents clashing (cone angle 106◦, cf. 98.9◦ 

([Ni(CO)3PMe3]) with the CO ligands of the metal complex, in comparison to the less sterically crowded 

methyl groups. Together, the TEP and Tolman cone angle have become powerful tools for assessing 

the steric and electronic properties of different phosphanes, which are important characteristics for 

catalysis. 

 

Figure 3. Example of the Tolman cone angle.17,18 

Table 2. Tolman electronic parameters and Tolman cone angles of common phosphane complexes [Ni(CO)3PR3].17 

Phosphorus Ligand νCO (cm-1) Cone Angle (◦) 

PtBu3 2056 106 

PMe3 2064 98.9 

PPh3 2069 103 

PH3 2083 93.8 

PCl3 2097 100 

 

1.3.2 Catalysis 

The size of a phosphane ligand has been shown to affect the reactivity of the metal centre to which it 

is coordinated, enabling catalytic control. For example, gold catalysed cycloaddition reactions with a 

PtBu2(o-biPh) (o-biPh = 2-biphenyl) supporting ligand follow a 1,2-H-shift pathway, whilst the same 

reaction with the smaller (PhO)3P ligated system alternatively undergoes a 1,2-alkyl-shift (Scheme 3).19 

Another example is the hydroformylation of styrene using 2,2’-dimethyl-1,1’-binaphthyl phosphanes 

in the presence of [Rh(CO)2(acac)], in this instance the enhanced basicity at phosphorus upon the 
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introduction of more electron donating substituents on phosphorus (NMe2-C6H4), results in a higher 

enantiomeric excess (ee = 48 % (R)) than for alkyl and aryl analogues (ee = 20 % (R)).20,21 

 

 

Scheme 3. Reactivity differences between (PhO)3P and (tBu)2(o-biPh)P ligands in gold(I)-catalysed cycloaddition.19 

 

Phosphane ligands are now ubiquitous in catalysis and some important complexes which stand out 

for their prevalent use include Wilkinson’s catalyst [RhCl(PPh3)3], widely used for the hydrogenation 

of alkenes,  the mechanism of which has been described as the most extensively studied in catalytic 

research (Scheme 4).22,23,24 Other common examples include Vaska’s complex ([IrCl(CO)(PPh3)2]) which 

is also utilised for the hydrogenation of unsaturated organic substrates,25 the first generation Grubbs 

catalyst [RuCl2(CHPh)(PCy3)2],26 which is famously employed to catalyse ring opening metathesis,27and 

[Pd(PPh3]4], widely used for carbon-carbon bond formation within the Heck reaction,28 Suzuki-,29  

Stille-,30 Sonogashira- and Negishi-coupling.31,32  
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Scheme 4. Mechanism for the hydrogenation of alkenes using Wilkinson’s catalyst.24 

 

Chiral phosphane ligands have been incorporated into metal complexes leading to asymmetric 

catalysis,33 and since the first report of asymmetric hydrogenation by Knowles and co-workers in 1968, 

a library of chiral mono- and diphosphanes has been reported; Figure 4 highlights some early 

examples.33 Of the chiral phosphanes, it has been noted that the use of diphosphane ligands yields 

efficient enantioselective catalysis, for example the asymmetric hydrogenation of alkenes exhibiting 

over 95% ee.33 

 

 

Figure 4. Early examples of chiral mono- and diphosphanes used in asymmetric hydrogenation.33 
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One chiral diphosphane ligand that is widely used in asymmetric catalysis is 2,2’-

bis(diphenylphosphino))-1,1’-binaphthyl (BINAP; 1.3a). For example BINAP is used in Noyori 

asymmetric hydrogenations, in which ketones and related functional groups are enantioselectively 

reduced. These hydrogenations are used in the production of several drugs including the antibacterial 

levofloxin and antibiotic carbapenem.34 Since the discovery of BINAP the field of asymmetric catalysis 

and the pool of chiral-phosphanes has been ever expanding, initially by the structural modification of 

the BINAP ligand itself to improve enantioselectivity; common modifications included variation of the 

aryl substituent at phosphorus as well as alterations to the biaryl skeleton. Subsequently, inspired by 

the BINAP ligand, novel chiral diphosphanes were developed, one such example being the 

disubstituted-cyclophane PHANEPHOS (Figure 5; 1.3b),35 which exhibits enhanced selectivity over its 

carbon-based analogues. PHANEPHOS locks the catalytically active species (1.3c) into a specific 

conformation, thus affording the product as a single enantiomer, for example the hydrogenation of 

dehydroamino acid methyl esters results in 99% ee with complete conversion.36,37 

 

 

Figure 5. BINAP, PHANEPHOS, and the BINAP catalytically active species.35-37  

 

The application and general importance of phosphane chemistry extends further than catalysis,33 

another common application of phosphanes includes their use as reducing agents, such as in the 

Staudinger- and Wittig-reactions, where the ease with which phosphanes are oxidised is exploited. 

The Staudinger reaction enables the reduction of azide functionalities via an iminophosphorane 

intermediate, generating amines or amides without the requirement of harsh conditions (Scheme 

5a).38,39 Similarly, in the Wittig-reaction alkenes are prepared from their respective aldehyde or ketone 

starting materials  via a phosphaylid (Scheme 5b). This method is advantageous over more 

conventional reducing agents as even sterically hindered ketones can be converted to their alkene 

derivatives.40 Phosphanes are also employed as reducing agents in the Mitsunobu reaction, in which 

primary and secondary alcohols are converted to esters, ethers, thioethers, imides or azides with PPh3 

and an azodicarboylate (typically DEAD or DIAD; Scheme 5c).41 However, phosphorus chemistry is not 

limited to purely synthetic applications, phosphanes also find use within materials chemistry, for 
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example within organic light-emitting diodes (OLEDs) and organic photovoltaic cells (OPV cells); 

phosphanes are also used in the preparation of π-conjugated materials more generally, a subject of 

significance for this thesis.42,43,44,45 

 

 

Scheme 5. The Staudinger, Wittig and Mitsunobu Reactions.38,40,41 

 

1.4 π-Conjugated Materials  

One area of particular prominence in modern chemical science is molecular electronics, which offers 

the possibility of efficient light-weight and flexible electronic devices which are significantly reduced 

in size relative to conventional electronic components.46 Organic π-conjugated polymers such as 

polyaniline, polypyrrole and polyacetylene have been explored in this regard as they exhibit electron 

delocalisation along the polymeric chain which acts as a path for charge transport, resulting in semi-

conducting properties (Figure 6).47 These functionalities have therefore been utilised within high-

performance electronic devices such as organic light emitting diodes (OLEDs),48,49 photovoltaic cells,50 

electrochromic windows  and polymeric sensors.51,52  

 

 

Figure 6. Poly(aniline), poly(pyrrole) and poly(acetylene). 

 

It has been well documented that the performance of these organic π-conjugated materials is 

predominantly controlled by their chemical structure, augmented by intermolecular interactions such 

as π-π-stacking.53 Research has therefore focused on making subtle structural modifications to tune 

the optoelectronic behaviour of π-conjugated materials by altering their electronic properties (e.g. 
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band gap),54,55 these structural modifications include the incorporation of electron donating or 

withdrawing groups to influence the electronics of the system. Similarly, the planarity of the molecule 

as well as the packing arrangement in the solid state have been shown to influence the nature and 

extent of intermolecular interactions and thus alter the electronic properties; the degree of steric bulk 

present is a key feature in this regard. Another important approach is to increase the degree of 

conjugation present in the system, enhancing electron delocalisation and thus lowering the energy of 

the LUMO, affording red-shifted absorptions.56  

The incorporation of organophosphorus building blocks (Figure 7)51 has recently been used as a 

method for tailoring the properties of π-conjugated systems. The presence of phosphorus results in 

an n-π* transition from the phosphorus lone pair which is therefore not observed for carbocentric 

analogues, affording markedly different HOMO-LUMO energies and thus electronic properties. In 

addition to this, much-like carbon-based systems the frontier molecular orbitals are predominantly 

controlled by the chemical structure and the structural dependence in this regard has been 

investigated for phosphorus-based building blocks, including arylphosphanes, phospholes, 

phosphaalkenes and diphosphenes.51  

 

 

Figure 7. Phosphorus-based building blocks for π-conjugation.51  

 

1.4.2 Phosphorus Incorporation into π-Conjugated Materials  

The incorporation of phosphorus (Figure 7) into π-conjugated materials was first reported in the 

1990s; these compounds exhibit notably different properties to their nitrogen based analogues.57 This 

difference stems from nitrogen possessing a lower inversion barrier (ca2-5 kcal mol-1), thus being able 

to achieve an optimum planar configuration facilitating the interaction of its lone pair with 

neighbouring carbon p-orbitals, whereas for phosphorus the inversion barrier is much higher (30-35 

kcal mol-1) and consequently planar geometry is harder to achieve.51,58,59 However, the pyramidal 

geometry of phosphorus allows for negative hyperconjugation upon oxidation and thus pronounced 

electron acceptor character (pentavalent phosphoryl species; vide infra). Moreover, the lone pair is 

more accessible for further functionalisation (e.g. metal coordination), a useful method for tuning the 

electronic properties. 
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The incorporation of unsaturated phosphorus functionalities into π-conjugates promotes electron 

delocalisation of the π-system, whereas the inclusion of a reactive heteroatom allows for post-

synthetic modifications and thus the tuning of the frontier molecular orbitals. These properties 

highlight why phospholes are currently the most extensively studied phosphorus-based building block 

for π-conjugated materials. Another method to ‘tune’ the electronics of phospholes is to alter the 

substituents in the 2,5-positions; for example incorporating the electron-rich 2-thienyl functionality 

(1.4a; Figure 8) results in notably red-shifted absorptions (Δλmax = 58 nm) relative to compound 1.4b.60 

Similarly, compound 1.4a exhibits an even more pronounced redshift than when incorporating 2-

pyridyl groups (1.4c; Δλmax = 36 nm). It has been calculated that the HOMO-LUMO separation 

decreases for the series in the order: 1.4b > 1.4c > 1.4a, with the pronounced π-conjugation observed 

for 1.4a resulting from a “better interaction between the HOMO of the phosphole and thiophene 

units, compared to that with pyridine”, though compounds 1.4a-1.4c all exhibit fluorescence, 1.4b and 

1.4c exhibiting emission at 463-466 nm, whereas compound 1.4a is significantly red-shifted emitting 

at 501 nm.44 

 

 

Figure 8. Phospholes with varied 2,5-aryl substituents (1.4a-1.4c).60 

 

Incorporating an isoelectronic analogue of C=C (P=C) has a drastic effect on the electronic behaviour, 

as exemplified by compound 1.5, which exhibits intense blue fluorescence.61 The fluorescence can be 

modified by altering the substituent at the 2-position, for example changing the aryl unit to an alkyl 

resulted in a higher LUMO energy and thus a blue-shift.62 Phosphorus building blocks are now being 

embedded into extended π-conjugated frameworks, common examples including poly(p-

phenylenediethynylene phosphane)s (PPYPs; Figure 10), which can exhibit luminescence in both 

solution and in the solid-state.63 The incorporation of dialkyloxy groups (1.6c) results in a slight blue-

shift relative to compound 1.6b (Δλ = 4 nm) with comparable absorptions noted for compound 1.6d, 
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alternatively, the incorporation of a fluorene group (1.6e) results in a red shift of 24 nm relative to 

1.6b. The photo-physical properties of polymer 1.6a could not be analysed due to its insoluble nature. 

 

  

Figure 9. 1,3-Benzoxaphospholes.61 

 

Figure 10. Generic structure of a PPYP and series of PPYPs.63 

 

Figure 11. Alkynylphosphane oxides from compounds 1.6b-1.6e.63 

 

Compounds 1.6b-1.6e exhibit little to no emission in solution, which is often observed for P() species 

as a consequence of the phosphorus lone pair quenching fluorescence.64 One method to counter this 

effect is to form a phosphane oxide (P=O), thus sequestering the lone pair and preventing this 

fluorescence quenching mechanism. In this instance treating compounds 1.6b-1.6e with hydrogen 

peroxide resulted in clean oxidation and afforded compounds 1.6b.O-1.6e.O (Figure 11), all of which 

exhibit blue fluorescence, though a slight redshift was noted as conjugation was increased, consistent 

with a reduction in the HOMO-LUMO band gap. These compounds exhibit what is commonly termed 
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‘turn-on fluorescence’ as emission is only observed upon functionalisation of phosphorus. Beyond 

such applications, the oxidation of phosphanes more generally is a useful and important method for 

altering the energy level of the LUMO and thus changing the electron-accepting capabilities of the 

phosphorus moiety.65 

 

1.4.3 Post-Synthetic Functionalisation of Phosphanes in π-Conjugated Materials 

1.4.3.1 Oxidation of Phosphorus Centres 

In addition to being employed as a means of preventing fluorescence quenching (vide supra) oxidation 

of tertiary phosphanes with chalcogens sequesters the lone pair and creates a hypervalent 

environment, therefore increasing the relative electronegativity of the phosphorus centre and altering 

its character from electron donor to an electron acceptor.66 The P=E bond (where typically E = O, S, 

Se; Figure 12) is strongly polarised and best described as involving π back-donation from a filled p-

orbital (lone pair at E) into an antibonding σ*PE and σ*PC orbital; this interaction has been defined as 

negative-hyperconjugation, for which the trigonal-pyramidal geometry of phosphorus is considered a 

key feature.67 As a consequence of the increased electronegativity of phosphorus, it becomes an 

inductively withdrawing substituent that can alter the frontier molecular orbitals of a π-conjugated 

system, commonly resulting in a lowering of LUMO energies.51,68   

 

 

Figure 12. Product from oxidising a tertiary phosphane. 

 

Fluorescence is a common consequence of oxidation, as illustrated by the oxidation of trianthryl 

phosphane (1.7a; Figure 13), resulting in compound 1.7b which exhibits fluorescence, where 1.7a 

exhibited none.69 The general red-shifted absorptions is exemplified by compound 1.8a (Figure 13), 

relative to 1.8b (e.g. λmax: 245 and 258 nm, respectively).70 In addition to oxidation, the degree of 

conjugation also allows for simple control of the absorptive and emissive properties, for example, in 

the phosphepines (1.9a and 1.9b; Figure 14),71 the introduction of a saturated 5-membered ring in 

1.9b results in a red-shifted absorption maximum (λmax), emission maximum (λem) and an increased 

quantum yield (φ), 1.9a:  λmax = 347 nm, λem = 446, φ = 0.43; 1.9b: λmax = 363 nm, λem = 449, φ = 0.51, 

though both compounds emit in the blue-region. It has also been documented that the position of an 
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endocyclic sulfur atom results in starkly contrasting absorptive behaviours, as demonstrated in 

compounds 1.10a and 1.10b,72 the former exhibiting a higher energy absorption at 266 nm and several 

lower energy features at 385, 405 and 428 nm, while 1.10b only displays the lower energy bands 366, 

385, 406 nm, which are blue shifted relative to 1.10a.  

 

 

Figure 13. Trianthryl phosphane and functionalised trianthryl phosphanes (1.7), 2,5-bis(diphenylphosphino)thiophene (1.8a) 
and 2,5-bis(diphenylphosphane oxide)thiophene (1.8b)  (PTP and PTPO).69,70 

 

 

Figure 14. Examples of phosphepines (1.9a-1.9b) and phosphapyrenes (1.10a-1.10b).71,72  

 

Notably, the chalcogen present in a P=E bond (E = O, S, Se) can influence the compounds’ effectiveness 

for optoelectronic devices. One property of interest in this regard is the electron mobility, which is 

defined as the measured value of drift velocity (average velocity attained by charged partiles) per unit 

of electric field strength, typically within a semi-conductor.73 For example, the sulfur-containing 

system 1.11a (Figure 15) exhibits enhanced electron mobility relative to oxide 1.11b (12a = 2x10-3 cm2 

V s-1; 1.11b = 5x10-6 cm2 V s-1 under 2.5x10-5 V cm-1).73 Both 1.11a and 1.11b could successfully be used 

within OLEDs, however, 1.11a is notably more efficient electron transport material, exhibiting lower 

driving voltage,74 and higher luminosity.68,73 In contrast, the incorporation of heavier chalcogens 

 
 Driving voltage is the maximum voltage you can apply without the risk of immediately damaging the material. 
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typically results in an increased rate of both radiative and non-radiative decay, leading to short lived 

excited states and thus quenches emission.75,76   

 

 

Figure 15. Di(benzophosphole oxide)benzene (1.11a) and di(benzophosphole sulfide) benzene (1.11b), Benzo[b]phosphole 
sulfides. highly electron-transporting materials for organic semiconductor devices.73 

 

In addition to the use of chalcogens, coordination to metal centres such as gold is another commonly 

employed method to generally reduce LUMO energies. The series of benzophosphole derivatives 

1.12a-d (Figure 16) illustrate the typical post-synthetic approaches used to modify the 

absorptive/emissive properties of phosphanes more generally.77 Compound 1.12a can be readily 

oxidised to compound 1.12b or 1.12c via exposure to air or by heating in the presence of S8;78 

compound 1.12d is prepared from the reaction between 1.12a and Au(SMe2)Cl.79 Compounds 1.12b-

1.12d exhibit comparable absorptive profiles, though a slight red-shifted absorption is observed for 

the Au()-complex (1.12d; 333 nm, Δλmax = 3 nm), similarly they are all photoluminescent and emit 

in the UV-region (φ: 1.12b = 4.2; 1.12c = 0.2; 1.12d = 13.4), however, compound 1.12d exhibits a 

significantly higher quantum yield than 1.12b, which is in-turn somewhat higher than 1.12c. The 

quantum yields appear to be heavily perturbed upon functionalisation of phosphorus,51 for 1.12d this 

is believed to be a result of gold altering the packing arrangement in the solid state resulting in 

increased π-π interactions.80 Gold complexes generally exhibit more red-shifted absorptions than 

observed for compound 1.12d, for example compounds 1.13 and 1.14a-c exhibit red shifted 

absorptions of Δλ = 50 nm and 32-97 nm compared to their uncoordinated analogues.81 

 

 

Figure 16. Benzophosphole Derivatives.77 
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Figure 17. AuCl functionalised phosphole and phosphaalkenes.81,80 

 

1.5 In Pursuit of New Electronically Active Phosphanes 

The majority of the phosphorus-based building blocks mentioned throughout the preceding sections 

are based on phosphorus functionalities which have been extensively explored, in some cases since 

as early as the 1950s.78 As such the introduction and exploration of novel functionalities is clearly a 

basis for further tailoring π-conjugated systems, not simple just to prepare new conjugated materials 

but to introduce motifs that exhibit properties not currently available from well-established building 

blocks, with the intent to prepare compounds possessing unique electronic properties. 

1.5.1 The Incorporation of Electron Accepting Moieties  

One active area of interest for the development of novel phosphorus-building blocks has been 

enhancing their electron accepting nature by including electron-withdrawing groups. A recent 

approach toward this has been the incorporation of carbonyl functionalities in order to reduce the 

energy of the LUMO and thus enhance electron acceptor character.82 This effect is illustrated by 1.15 

(Scheme 6) the introduction of a single carbonyl unit in the para-position of the six-membered 

phosphinine ring (1.15) resulting in a red-shift relative to its diacetal starting material (1.16; Δλmax = 10 

nm).83  

 

 

Scheme 6. Synthesis of dithieno[2,3-b;3’,2’-e]-4-keto-1,4-dihydrophosphinines.83 
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In an extension of this concept, Baumgartner incorporated a second carbonyl unit into a 7-membered 

phosphacycle (Figure 18), preparing a diketophosphanyl (-C(=O)-PR-C(=O)-) with the intent to further 

reduce LUMO energies.84 Relative to compound 1.15, compounds 1.17a and 1.17b exhibit lower 

energy absorptions and higher absorption coefficients (ε) (λmax: 1.15 = 270 nm, 1.17a = 468 nm, 1.17b 

= 492 nm), consistent with reduced LUMO energies. In addition to this, both 1.17a and 1.17b 

demonstrate blue-to-green emissions, where 1.15 exhibits none.84  

 

 

Figure 18. Dithieno[3,2-c:2',3'-e]-2,7-diketophosphepins.84 

 

Compounds 1.17a-b illustrate the advantages associated with incorporating another carbonyl 

functionality, especially as an acyl phosphane unit. Much like precedent phosphorus-based systems, 

the phosphorus centre can be functionalised (Scheme 7), compound 1.18a-O exhibiting a more red-

shifted absorbance than in 1.18a, by ca 7 and 32 nm for the two different absorption bands. 

Coordination of 1.18 to gold (1.18-AuCl) results in a similar red-shift to 1.18-a, however, 1.18a-AuCl 

also displays dual-emission, not observed for 1.18a or 1.18a-O, the second emission is believed to be 

a result of charge transfer from the lone pair of the gold-bound chloride atom to the diketophosphanyl 

core.84 

 

 

Scheme 7. Functionalisation of compound 1.18a.84 
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Diketophosphanyl systems fall within the general class of acyl phosphanes, which are explored more 

generally for their fundamental chemistry as well as catalytic properties.85,86 Acyl phosphanes can be 

synthesised via the Becker condensation which involves the addition of a silylated phosphane 

(R2PSiMe3) to an acyl chloride, resulting in the formation of an acyl phosphane. However, in the 

presence of a second P-silyl function many are prone to a facile 1,3-silatropic shift affording 

prefentially phosphaalkenes (see Chapter 4). More typically, acyl phosphanes are synthesised by 

reacting a secondary phosphane with an acyl chloride, some instances requiring the addition of base 

(Scheme 8).87,88  

 

 

Scheme 8. Representative synthetic strategies for Acyl-phosphanes.87,88 

 

Acyl phosphanes can exhibit hyperconjugation between the πPO and σ*PC orbitals resulting in a 

reduction of double bond character for the carbonyl unit,89 and thus delocalisation of the phosphorus 

lone pair. This delocalisation is comparable to that of the nitrogen lone pair in amides and these 

species are described as ‘phosphomides’, exhibiting the resonance structure illustrated in Figure 19 

as first postulated by Kostyanovky.90 Phosphomides are more strictly defined as acyl phosphanes that 

exhibit carbonyl stretches in the region νCO 1630-1650 cm-1,91 reminiscent with those of amides.86 At 

present, no aliphatic acyl phosphanes have been shown to exhibit ‘phosphomide character’,92 though 

a number of aryl-based systems have been reported. Nevertheless, acyl-phosphanes in general have 

been shown to stabilise LUMOs, especially for heavily conjugated systems, rendering them a desirably 

functionality to incorporate into π-conjugated materials.  
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Figure 19. Resonance forms of acyl phosphanes.90 

1.5.2 Cyclophanes 

The incorporation of chromophores into molecular architectures is a key feature within the 

investigation of π-conjugated materials for optoelectronic applications, highlighting cyclophanes as a 

desirable functionality in that regard.93 Initially, researchers such as Cram investigated cyclophanes 

for the synthetic challenge of discovering molecules which “skirt the fine line between isolability and 

self-destruction” and Figure 20 illustrates a few of their examples.94,95 

 

 

Figure 20. [2.2] Paracyclophane and some examples of cyclophanes made by Cram.93,95  

 

Cyclophanes now find application within optoelectronic devices, exhibiting interesting absorptive and 

emissive properties as a consequence of the aromatic π-system being fixed in a rigid arrangement, the 

intra-arene distances of which are lower than typical aryl organic moieties. For paracyclophane (pCp; 

1.19) absorbance bands were detected at 225, 244, 286 and 302 nm; the long-wavelength band has 

been termed the “cyclophanes band” as it exceeds the typical absorption of simple alkyl-substituted 

aromatics,96,97 with a broad emissive band is observed at 365 nm. These spectroscopic properties are 

believed to result from strong σ-π interactions between the alkyl-bridge and aromatic unit, as well as 

through-space π-π interactions, resulting in energy-transfer around the entire cyclophane core.96 The 

electronic communication between chromophoric units in general depends on their relative 

orientations as well as inter-ring distance, the interactions of which can be altered via modifications 

to the aromatic group and bridge length, or by extending the conjugation (Figure 21).98  
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The effect of conjugation is illustrated in compounds 1.20a-c, 1.20a exhibiting the shortest 

conjugation (relative to 1.20b and 1.20c) and a red shifted emission relative to pCp (356 nm), while 

the increased conjugation in 1.20b leads to a blue-shifted absorption as well as a red shifted emission 

relative to pCp and compound 1.20a.96 In contrast, removing the alkene substituents and instead 

incorporating an unsaturated bond in the bridging chain (1.20d)98 results in similar absorptive features 

to compound 1.20a. It has also been observed that elongation of the saturated bridging chain (1.21a 

and 1.21b), results in blue-shifted absorptions (Δλ = 10 nm).98 

 

 

Figure 21. Varying optical properties via modifications of the aromatic or bridging moieties.96,98 

 

1.5.3 Heterophanes 

Carbocentric cyclophanes highlighted the potential these macrocyclic structures possess and 

consequently led to the development of heterophanes incorporating an endocyclic donor atom such 

as nitrogen. The first example of a heterophane was [2.2](2,6)pyridinophane (1.22),99 which inspired 

the preparation of similar species (Figure 22) and the first review of parapyridinophanes was published 

in 1986 by Czuchajowski and co-workers.100,101 The incorporation of nitrogen into the basic 

[2.2]paracyclophane skeleton (1.23) resulted in red-shifted absorptions, with a π-π* transition at 308 

nm, reduced in energy relative to that of 1.19 (302 nm); this is a generally observed feature for the 
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incorporation of nitrogen, lowering the LUMO energy and thus red-shifting absorptions relative to 

precedent carbocentric systems.102,103  

 

 

Figure 22. A range of parapyridinophanes.99-103 

 

Heterophanes are not limited to nitrogen, both oxygen and sulfur being extensively documented as 

part of the bridging unit (1.24);104 there are also examples of oxygen and sulfur being incorporated 

into the aromatic unit, such as in [2.2](2,5)-furanophane (1.25a) and -thiophenophane (1.25b), which 

are isoelectronic with pyrrolophane (1.25c; Figure 23).105,106 Compound 1.25b exhibits a red-shifted 

absorptive band relative to 1.25c, which is in turn red-shifted from that of 1.25a (λmax: 275 (1.25b), 

240-250 (1.25c) and 222 nm (1.25a) respectively); this is a consequence of conformational rigidity 

which was found to increase with heteroatom size: 1.25b > 1.25c > 1.25a.107 

 

 

Figure 23. 2,1-Dithia-[3,3]-metacyclophane (1.24) and [2.2](2,5)-furanophane, -pyrrolophane and thiophenophane (1.25a-
c).104-107 

 

Although phosphorus has previously been incorporated into the skeleton of π-conjugated materials, 

which exhibit notably different absorptive/emissive properties relative to nitrogen and carbon based 

analogues (vide supra Section 1.4.2), there are only a handful of known phosphacyclophanes, all of 

which incorporate a P-O-C linkage within the skeleton in each case (Figure 24).108,109,110 More elusive 

still are the phosphmetacyclophanes of which the first, 1,10-dimethyl-1,10-diphospha-[3.3]-
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metacyclophane-2,9,11,18-tetraone (1.26),111 was prepared in 2012 via a simple condensation route 

(Scheme 9). However, despite the recent work highlighting the interesting emissive properties seen 

for precedent cyclophanes along with the electron accepting capabilities of the diketophosphanyl unit, 

only the coordination chemistry of 1.26 has been briefly investigated, leaving the photo-absorptive 

properties entirely unexplored. 

 

 

Figure 24. Phosphacyclophanes.108-110 

 

 

Scheme 9. Synthesis of the first Diphosphametacyclophane: 1,10-dimetyl-1,10-diphospha-[3.3]-metacyclophane-2,9,11,18-
tetraone (1.26). 
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1.6 Concluding Remarks  

The investigation of phosphorus-containing species for optoelectronic applications is clearly an 

intriguing topic, allowing for the fine tuning of absorptive and emissive properties via structural 

modifications both pre- and post-synthetically. The incorporation of acyl phosphanes, specifically the 

diketophosphanyl unit, possesses potential for new optoelectronic materials, though very few 

examples have been explored. Similarly, there is a notable lack of phosphacyclophanes reported in 

the literature, systems which could potentially possess interesting emissive properties with the clear 

potential for electronic tuning by post-synthetic modifications. Even more elusive are the 

diphosphametacyclophanes, which incorporate the electron accepting diketophosphanyl moiety into 

a cyclophanic scaffold, though the photophysical properties have not yet been investigated.  

 

1.7 Aims and Objectives  

Herein, a family of phosphacyclophanes incorporating two diketophosphanyl units will be explored, 

this study will examine the relationship between dimer, trimer and tetramer formation, alongside 

investigating the cyclophanes’ photophysical properties and how these are influenced by structural 

modifications. Furthermore, this work will explore electronically distinctive 6- and 7-membered 

phosphorus heterocycles, trifluoromethylphosphaalkenes and diphosphaboracycles, exploring their 

coordination chemistry and respective reactivity, leading to the synthesis of a range of novel 

compounds and complexes thereof with an additional investigation into the unusual electronics of the 

diphosphaboracycles via cyclic voltammetry.   
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Chapter 2 – The Synthesis and Electronic Behaviour of the 

Diphosphametacyclophanes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

“I’m going on an adventure!”  

-- The Hobbit: An Unexpected Journey (2012)  
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2.1 Introduction 

Unlike carbocentric and nitrogenous cyclophanes, phosphacyclophanes are sparsely reported in the 

literature, with none exhibiting direct C-P bonds (vide supra Section 1.5.3).108,109,110 More elusive still 

are phosphametayclophanes of which the first, (1,10-dimethyl-1,10-diphospha-[3.3]-

metacyclophane-2,9,11,18-tetraone) 2.1, was discovered in 2012 by Saunders et al.111  

 

 

Scheme 10. Synthesis of the first diphosphametacyclophane.111  

 

Compound 2.1 incorporates the ‘diketophosphanyl’ functionality (-C(=O)-PR)-C(=O)-) which has 

previously been incorporated into π-conjugated materials as a method of reducing LUMO energies 

and thus red-shifting absorptions (see Chapter 1).84 In addition, from diketophosphanyl moieties a 

phosphanoyl and benzoyl radical pair can be generated via bond cleavage (Scheme 11), the former 

serves as an effective initiator for radical polymerisation(photoinitiator),112 overcoming the inefficient 

polymerisation seen for carbocentric congeners.113 

 

 

Scheme 11. Photolysis of BAPOs, generating a primary phosphanoyl and benzoyl radical pair from bond cleavage..112 

 

Following the development of the diketophosphanyl functionality, Balakrishna and co-workers 

attempted to synthesise an analogue of 2.1 based on a pyridyl skeleton,114 however, trimeric (2.2) and 

tetrameric (2.3) species were instead obtained (Figure 25), these being identified and distinguished 

on the basis of mass spectrometric and structural data, given their apparently identical 31P{1H} NMR 

resonances, δp 23.3. Balakrishna proposed the higher oligomer formation is a result of intramolecular 
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π-π interactions between the phosphorus-bound phenyl substituents (CH-π, π-π) and concluded the 

methyl derivative will favour dimer formation due to its inability to “facilitate CH-π or π-π 

intramolecular interactions”.114 Their conclusions were supported by DFT calculations at the M062X/6-

31G** level of theory, which suggest that the trimeric and tetrameric structures possess significant 

stability relative to their dimeric analogue (ΔG = −6.7 kcal mol-1, −12.8 kcal mol-1 respectively), whereas 

the dimeric structure of the methyl derivative was found to be lower in energy compared to the 

trimeric and tetrameric derivatives (ΔG = +4.4 kcal mol-1, +5.5 kcal mol-1 respectively).   

 

 

Figure 25. Work by Balakrishna and Co-workers.114 

 

Relative to compound 2.1, Balakrishna’s trimeric and tetrameric oligomers (2.2 and 2.3, respectively) 

incorporate a pyridyl unit and are accessed via an alternative synthetic pathway.114 Therefore, these 

phosphametacyclophanes warrant further investigation to determine if the size of the macrocycle 

(dimer, trimer and tetramer) can be controlled, whilst simultaneously exploring their 

absorptive/emissive properties.  

 

2.2 Synthesis and Characterisation of the Diphosphametacyclophanes 

2.2.1 Investigating Dimeric, Trimeric and Tetrameric Phosphametacyclophanes 

In order to determine the generality of Balakrishna’s conclusion, pyridyl-free analogues of 2.1 were 

sought, applying a modification of their methodology. Thus, isophthaloyl chloride was reacted with 

phenyl phosphane in the presence of triethylamine (Scheme 12) with the aim of producing m-{-C(O)-

C6H4(C(O)PPh)}2 (2.4). However, in contrast to Balakrishna’s work, more than one product formed with 

resonances observed in the 31P{1H} NMR spectrum at δP 30.3 (>3 peaks overlapping), 41 (s) and −29 

(m) (Figure 26), with only broad resonances observed in the aromatic region of the 1H NMR spectrum. 

However, the resonance at δP −29 gives rise to a doublet of multiplets in the proton-coupled spectrum, 
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the magnitude of coupling being consistent with a P-H species (JPH = 230 Hz). Repeated synthetic 

attempts fail to afford consistency in the number of resonances in this region, though the impurities 

at δP 41 (unidentified) and δP −29 (unidentified P-H species) are always present. 

 

Figure 26. 31P NMR spectrum (C6D6, 161.72 MHz) from trying to prepare 2.4 from PhPH2. 

 

Scheme 12. Attempted Synthesis of 2.4 from a primary phosphane. 

Repeating the reaction without the presence of base, initially resulted in the observation of a doublet 

resonance in the 31P NMR spectrum at −29 ppm (JPH = 230 Hz), though 35% of PhPH2 still remained. 

After stirring for a further 3 days a yellow solid was isolated, exhibiting a doublet at δP 25, JPH = 573 Hz 

alongside numerous unresolved signals. 

The final approach to access compound 2.4 starts from the bis-silylated phosphane, PhP(SiMe3)2, 

which when reacted with isophthaloyl chloride  in a 1:1 ratio (Scheme 13), afforded 2.4 as a yellow 

solid, exhibiting a phosphorus resonance at δp 30.5 (w1/2 = 17 Hz). It is worth noting the importance of 
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reaction conditions for this synthesis, as the product distribution between 2.4 and by-products 

appears directly related to the concentration of reagents being added; optimal conversion was 

achieved by adding a 0.4 M solution of isophthaloyl chloride to a dilute ethereal solution of 

PhP(SiMe3)2 (0.13 M), which afforded the cleanest conversion and highest crude yield (Table 3). The 

synthesis of 2.4 is appreciably less facile than that of 2.1, which could suggest that the electronic 

nature of the phosphorus substituent and thus the basicity of the phosphorus centre plays a key role 

in the reaction, i.e. the reaction is slower with reduced basicity (2.4) and possibly more scope for side 

reactions.   

 

Scheme 13. The synthesis of 2.4 from PhP(SiMe3)2, the yield of which shows appreciable concentration dependence.  

 

Table 3. Condition optimisation for the synthesis of 2.4. 

[PhP(SiMe3)2]/ 

mol dm-3 

[Isopthaloyl Chloride]/ 

mol dm-3 

Product Distribution from 31P 

and 1H NMR (%).a 

Crude Yield 

(%) 

0.01 0.01 85 (2.4), 13 (A), 1.5 (B) - 

0.60 0.60 2.4 +1H impurities 4 

0.12 0.12 80 (2.4), 20 (A) 3.5 

0.22 0.22 86 (2.4), 7 (A), 7 (B) - 

0.08 0.08 75 (2.4), 25 (C) - 

0.25 0.25 62 (2.4), 21 (A), 17 (B) - 

0.34 0.562 98 (2.4), 2 (A) 31 

0.13 0.41 2.4 31 

0.50 0.50 94 (2.4), 1 (A), 5(B) 11 

1 1 74 (2.4), 2.(A), 8 (D), 15 (B) 50 

0.50 0.50 94 (2.4), 6(A) 14 

0.5 (−78 °C filtration)b 0.5 (−78 °C filtration)b 2.4 + 1H impurities - 

a. δP: 30.5 = 2.4, 41 = A, −30 = B, 19.3 = C, -1.5 = D.  b. The yellow solid and solution were analysed, this was the only 
filtration performed cold.  
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The 1H NMR spectrum of compound 2.4 exhibits five broad aromatic environments which integrate 

for 18 protons, consistent with the formation of 2.4; furthermore a single C=O resonance is observed 

in the 13C{1H} NMR spectrum. The broad resonances and poorly resolved spectra could be indicative 

of fluxionality in solution, though no appreciable change was observed between −80 °C and 60 °C.  

 

Figure 27. 1H NMR Spectrum (CD2Cl2, 303K, 399.49 MHz) of 2.4. 

 

Despite the complex solution-state behaviour, the presence of 2.4 was confirmed by the observation 

of the molecular ion (480.0699 m/z) in the electron ionisation mass spectrum, and ultimately by X-Ray 

diffraction (Figure 28; Table 4, vide infra).  Overall, the data for 2.4 show no evidence for the formation 

of trimeric or tetrameric species, in spite of the predicted thermodynamic preference of higher 

oligomers on the basis of Balakrishna’s DFT studies.114 This would seem to question the impetus for 

formation of higher oligomers, perhaps suggesting either higher oligomer formation must be driven 

by the incorporation of the pyridyl group, or alternatively the synthetic route itself.  
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Figure 28. Molecular structure of 2.4 with thermal ellipsoids at the 50 % probability level; solvent molecules omitted for 

clarity. 

In order to determine the relative influence of the pyridyl moiety upon the formation of higher 

oligomers, the reaction between MeP(SiMe3)2 and 2,6-pyridinedicarbonyl chloride was explored, 

resulting in the formation of 2.5. Compound 2.5 was characterised by a single resonance in the 31P{1H} 

NMR spectrum, δP 30.1, and characteristic 13C{1H} and 1H resonances associated with the acyl carbon 

and aromatic moieties.  Confirmation of the dimeric structure of 2.5 was obtained from X-Ray 

diffraction (Figure 29); a number of repeat syntheses were untaken and screened with no indication 

of higher oligomer formation demonstrating consistency in the products obtained. 

 

 

Scheme 14. The synthesis of 2.5 from MeP(SiMe3)2 and 2,6-pyridinedicarbonyl chloride. 
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Figure 29. Molecular structure of 2.5 with thermal ellipsoids at the 50 % probability level. 

Compound 2.5 was only observed as a dimer and thus would seem to suggest that pyridine 

incorporation is not the cause for higher oligomer formation, thus leaving the synthetic route as the 

likely key factor. However, numerous efforts to replicate Balakrishna’s work, including with a range of 

substrates, resulted only in intractable mixtures of polymeric materials, thus preventing verification 

of the conclusion. 

2.2.1 Variation of The Phosphametacyclophanes Aromatic Substituents 

The relationship between dimer, trimer and tetramer formation is clearly not a result of π-stacking 

between P-aryl substituents, or incorporation of a pyridyl unit and thus presumably is a consequence 

of the synthetic route; this opens a range of options for the development of the general 

diphosphametacyclophane motif. One key question is how variation of substituents about the 

cyclophane skeleton might influence their photophysical properties. In order to probe this, a series of 

5-substituted isophthaloyl chlorides were prepared, either by literature methods or via modifications 

thereof (Scheme 15). Subsequently, MeP(SiMe3)2 was reacted with each respective 5-substituted 

isophthaloyl chloride, in a 1:1 ratio (Scheme 16), leading to the formation of 2.6-2.10. Compounds 2.6-

2.10 were characterised spectroscopically via their single phosphorus NMR resonance and associated 

acyl and aromatic signatures, with the carbonyl moieties further confirmed by their infrared 

absorbances associated with the carbonyl moiety (Table 4). The growth of single crystals led to 

structural confirmation (Figure 31), with key parameters outlined in Table 5 (vide infra).  



33 
 

 

Scheme 15. Synthesis of 5-R-isophthaloyl derivatives. a) 5-Aryl-isophthaloyl esters; b) 5-R-isophthaloyl chlorides by 
modifications of literature procedures for R= I. 

 

 

Scheme 16. General reaction scheme for para-substituted phosphacyclophane derivatives. 
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Table 4. Selected Spectroscopic Data for 2.1, 2.4-2.10 (1H 399.5 MHz, 13C 100.46 MHz, 31P 161.71 MHz). 

 P
a C=O C (1JCP

b) H (2JHP
b) CO / cm-1 

2.1111 32.7 206.9 (46) 1.58 (3.1) 1654, 1637 

2.4 30.5 208.5 (35)c - 1639 

2.5 30.1 209.1 (51) 1.63 (6.2) 1656, 1640 

2.6 34.5 207.2 (46)d 1.65 (2.7)d 1657, 1614 

2.7 32.3 207.3 (46)c 1.58 (2.7)c 1653, 1640 

2.8 36.1 205.4 (47)c 1.61 (3.0)c 1640d 

2.9 35.7 207.4 (46)c 1.66 (2.3)c 1658, 1639 

2.10 35.2 205.9 (46) 1.66 (3.1) 1648,d 2227e 

aas C6D6 solution. bin Hz. cas CD2Cl2 solution. das CDCl3 solution. esymmetric mode not observed. fCN Stretch. 

 

Attempts to access macrocycles bearing C≡N or C≡CH substituents by reacting MeP(SiMe3)2 with 5-

ethylnyl or 5-cyanoisophthaloyl chloride were unsuccessful, resulting only in the formation of MePH2 

in situ, (δP −163 (1JPH = 188 Hz)).115 Efforts to access these macrocycles by cross-coupling reactions or 

indeed halide abstraction with 2.8 were also unsuccessful.  

 

 

Figure 30. Desired ethynyl- and cyano-phosphametacyclophanes. 

2.2.3 Spectroscopic and Structural Features of the Diphosphametacyclophanes 

The 31P{1H} NMR spectra for compounds 2.4-2.10 each exhibit a single resonance in the region 30-36 

ppm (vide supra, Table 4), consistent with that observed for 2.1 and within the range of most 

precedent diketophosphanyl derivatives (68-30 ppm).84,111,116 It is notable that Balakrishna’s systems 

(2.2, 2.3) are observed at significantly lower frequency (δP 23), which would seem a simple diagnostic 

tool for identifying the di- over tri- and tetra-meric systems. The acyl moieties of 2.4-2.10 are apparent 

from a single acyl resonance in the 13C{1H} NMR spectra and their infrared absorbances, which are 

consistent with the symmetry of the systems. This is also reflected in the 1H NMR spectra, resonances 
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associated with the aromatic and p-methyl moieties (ca 1.6 ppm (d, 2JHP = 2-6 Hz)) integrating 

consistently.  

The spectroscopic data are broadly consistent across the series (2.4-2.10), though changes to the 

aromatic substituent lead to variation of δP; the highest shift is observed for 2.8 presumably as a 

consequence of the electronegativity of iodine. In each case, the acyl carbon couples to phosphorus, 

with 2.4 exhibiting the weakest 1JCP coupling, presumably due to reduced s-character at phosphorus 

as a consequence of the phenyl donor.117,118 In contrast, 2.5 possesses the strongest 1JCP and 2JHP 

coupling across the series, which could feasibly be as a result of the electronegative pyridyl group. The 

molecular geometries of the phosphametacyclophanes 2.4-2.10 are illustrated in Figure 28, Figure 29 

and Figure 31 (vide supra), with selected parameters summarised in Table 5.  
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Figure 31. Molecular structures of 2.6-2.10 with thermal ellipsoids at the 50 % probability level; the modelled disorder (2.6: 
tBu, 2.9: Ph) and solvent of crystallisation (2.6, 2.9, 2.10) omitted for clarity. 

 

 

 

 

2.6 2.7 

2.8 

2.9 2.10 
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Table 5. Selected bond lengths (Å) and angles (°) for compounds 2.1 and 2.4-2.10 with estimated standard uncertainties in parentheses. 

 2.1111 2.4 2.5 2.6 2.7 2.8 2.9 2.10 

P-C(O) 1.894(3) 1.892(5) 1.892(2) 1.892(1) 1.910(3) 1.898(4) 1.890(2) 1.881(5) 

P-C(R) a 1.816(4) 1.816(4) 1.835(4) 1.818(2) 1.825(5) 1.810(4) 1.821(2) 1.820(5) 

C=O 1.202(3) 1.201(6) 1.215(3) 1.212(2) 1.207(4) 1.207(5) 1.214(3) 1.224(5) 

C(O)-C(Ar) 1.494(4) 1.491(6) 1.491(3) 1.484(2) 1.486(4) 1.496(5) 1.490(3) 1.485(6) 

C(Ar)-E b 1.390(3) 1.401(6) 1.334(2) 1.391(2) 1.392(4) 1.390(6) 1.390(3) 1.395(6) 

Cexo-E’ c - - - 1.531(2) 1.499(7) 2.098(4) 1.555(4) 1.478(7) 

N-C - - - - - - - 1.150(8) 

C(N)-C - - - - - - - 1.437(8) 

P—P 5.111(1) 5.147(1) 4.751(1) 5.050(7) 5.073(2) 5.090(1) 5.089(4) 5.067(1) 

Centroid 3.930(1) 3.923(6) 4.832(5) 4.027(6) 4.897(6) 3.865(2) 3.976(3) 3.750(1) 

Displacement 41.64(10) 41.53(16) 86.24(12) 45.49(6) 83.8(2) 38.11(3) 43.65(5) 34.26(16) 

C(R)-P-C(O) 98.76(14) 102.0(2) 96.91(11) 99.15(9) 97.90(16) 99.5(2) 99.02(10) 99.8(2) 

C(O)-P-C(O) 95.73(13) 96.9(2) 97.07(13) 100.33(10) 97.8(2) 98.8(2) 96.65(9) 93.5(2) 

P-C(O)-C(Ar) 117.6(2) 116.7(3) 119.80(15) 119.23(12) 119.1(2) 116.1(3) 117.90(15) 118.4(3) 

E-C(Ar)-C(O) 121.9(3) 121.1(4) 117.42(18) 121.71(15) 122.2(3) 120.8(4) 120.92(18) 119.9(4) 

O=C-P 120.6(2) 121.1(4) 119.57(17) 119.12(14) 118.5(2) 121.3(3) 120.12(17) 120.2(4) 

E’-Ci-Co - - - 120.39(16) 120.8(2) 120.2(3) 125.1(3) 121.4(4) 

N-C-C - - - - - - - 179.4(9) 

a. R = Me 2.1, 2.5-2.10; Ph 2.4.  b. E = CH 2.1, 2.4, 2.6-2.10; N 2.5.  c. E’ = H 2.1, 2.4, 2.5; C 2.6, 2.7, 2.9, 2.10; I 2.8.
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The phosphametacyclophanes adopt a ‘butterfly’ conformation with a P--P separation in the range of 

5.050(7)-5.147(1) Å, apart from 2.5 which exhibits a reduced distance of 4.751(1) Å. The C=O bond 

lengths are consistent with standard ketones (e.g. 1.21 Å for acetone),119 and are comparable to 

precedent diketophosphanyl compounds,84,111,116  The P-C(O) distance for these macrocycles is notably 

longer than most acylphosphanes (1.79-1.85 Å),120 though 2.10 exhibits a reduced distance relative to 

the series. In addition, the phenyl rings in 2.10 are not co-planar, exhibiting a torsion angle of 27 ° 

relative to one another, suggesting reduced conjugation relative to co-planar systems,121 this loss of 

planarity has previously been seen as a result of steric repulsion between ortho-hydrogens.122,123,124,125 

Similar behaviour is observed for 2.9, though the three-fold disorder about the distal phenyl rings 

impedes quantitative discussion. 

The C(O)-P-C(O) angles marginally deviate across the series, being largest for 2.5 and 2.7; similarly, 

they both exhibit an ca 1 Å longer centroid-centroid separation than the other macrocycles. More 

notably, the skeletal benzene rings are displaced from co-planarity by 34.26(16) ° and 86.24(12) ° in 

the smallest (2.10) and largest (2.5) cases respectively; the nature of the aromatic 5-R substituent is 

clearly influential, where significantly smaller displacement angles are observed for more electron 

withdrawing 5-R substituents.126 In the case of compound 2.7, a network of hydrogen bonding is 

observed between the 5-Me substituent and the carbonyl groups on the adjacent molecule (Figure 

32), leading to a significantly larger displacement angle, a similar packing arrangement is also observed 

for compound 2.5. Insight into the displacement angle is provided by DFT studies (B3LYP/6-311G(3d, 

3p)), which indicate 2.1, 2.4 and 2.6-2.10 possess an inter-ring bonding interaction constraining their 

proximity and disposition within the macrocyclic core; in contrast, the equivalent interaction within 

2.5 is localised to the nitrogen centres, leading to significant widening of the inter-ring angle (Figure 

33).  

 

Figure 32. Solid-state packing arrangement of 2.7 (left) and 2.5 (right) illustrating H-bonding and π-H interactions 

constraining the conformation. 
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Figure 33. Molecular orbitals for 2.1 (left) and 2.5 (right), illustrating the inter-ring bonding interaction. 

 

The DFT studies also provide insight into the frontier molecular orbitals, and reveal that in each case 

both the HOMO and HOMO-1 are predominantly associated with the phosphorus lone pair and 

carbonyl fragments (46-50 and 38-46 %,  respectively (HOMO)), with the aromatic moieties featuring 

in lower lying orbitals (typically, HOMO-3 and -4); for compound 2.10 the cyanide functionality is not 

significantly involved until HOMO-14, whereas the LUMO-LUMO+3 are primarily associated with the 

aromatic and carbonyl units (π*(CO/Ar)). These data suggest the HOMO is predominantly associated with 

the phosphorus lone pair (Figure 34), suggesting preferential coordination through phosphorus over 

the π-system (see Section 2.4).111  

 

 

Figure 34. Calculated HOMOs of 2.5 and 2.7. 

 

2.4 2.7 
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2.3 UV-Vis Spectroscopy and Electrochemical Studies 

The photophysical properties of 2.1 and 2.4-2.10 were investigated using UV-Vis spectroscopy to 

explore how structural variations perturb the absorptive features; the spectra were measured 

between 220-800 nm, data are presented in Figure 35 (exemplar spectrum Figure 37), λmax and molar 

absorptivity values have been tabulated (Table 6). The sharp absorption at ca 225 nm is a real feature, 

the spectra being recorded across several concentrations and different path lengths to equivalent 

effect. 

   

Figure 35. Stacked UV-Vis Spectra of 2.1, 2.4-2.10 220-500 nm, omitted 200-220 nm. 1.0x10-5 mol dm-3 in CH2Cl2, path 

length 1 cm. 
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Figure 36. Stacked Experimental UV/Vis Spectra 280-500 nm, 1.0 x 10-5 mol dm-3 in CH2Cl2, 1 cm path. 

 

Figure 37. Exemplar UV-Vis Spectrum of 2.9. 1.0x10-5 mol dm-3 in DCM, path length 1 cm.  
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Table 6. λmax and molar absorptivity values for 2.1, 2.4-2.10. 

λmax / nm [ε / 104 dm3 mol-1 cm-1] 

2.1 229 [26.52] 250 [10.21] 279 [4.24] 365 [0.64] 415 [0.43] 

2.4 225 [15.52] 255 [5.43] 294 [1.05]   

2.5 225 [6.56] 245 [1.54] 281 [0.82] 322 [0.02] 415 [0.04] 

2.6 225 [21.24] 240 [8.05] 286 [1.56] 330 [0.27] 370 [0.17] 

2.7 230 [29.30] 256 [2.96] 290 [0.96] 303 [0.51] 365 [0.19] 

2.8 225 [18.35] 250 [3.25] 283 [0.99] 319 [0.10] 395 [0.37] 

2.9 225 [15.97] 246 [5.49] 280 [2.37] 380 [0.42] 415 [0.31] 

2.10 221 [5.16] 256 [2.54] 290 [0.99]   

 

The UV-Spectra all exhibit three distinct features, including a high-energy absorption at ca 221-230 

nm, with subsequent lower-energy bands observed around 250 and 280 nm. Additionally, much 

weaker broad features are observed around 300-350 nm and 400 nm, though these were not 

convincingly detected for 2.4 or 2.10. In order to aid explanation of the observed photochemical 

transitions, the first 150 excited states were calculated using TD-DFT (e.g. Figure 38) with the B3LYP 

functional and 6-311G(3d,3p) basis set for P,C,H and O, with the LANL2DZ basis set used for I; these 

calculations included a CPCM (CH2Cl2) solvent model.  

The highest energy feature (225-230 nm) is in each case associated with a πAr → π*(CO/Ar) transition 

from the HOMO-5/HOMO-8 levels into low-lying acceptor orbitals (LUMO to LUMO+3). In the case of 

2.6 and 2.9 there is also a small n → π*(CO/Ar) contribution from the phosphorus lone pair (HOMO-8 → 

LUMO+2 and HOMO-11 → LUMO+1 respectively). The sharp high energy feature is most prominent 

for 2.1 and 2.7, displaying a slight red shift (5 nm), in contrast 2.10 displays a weaker, blue-shifted 

transition (221 nm). More generally, the remaining compounds exhibit comparable spectra, though 

notably 2.5 displays much lower intensity absorptions across the full spectrum. The subsequent higher 

energy bands (ca 250, 280 nm) consist of π → π* transitions from low lying occupied orbitals to the 

LUMO/LUMO+1 levels, with increasing contributions from n → π* from the phosphorus lone pairs 

(HOMO/HOMO-1) to LUMO+3. The weaker broader features (ca 300-350, 400 nm) are associated with 

transitions between the frontier molecular orbitals, HOMO → LUMO, HOMO-1 → LUMO and HOMO 

→ LUMO+1, which are predominantly n → π*(CO/Ar) in nature.  
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Figure 38. Simulated UV/Vis Spectrum for 2.9, derived from TD-DFT. 

In comparison, Baumgartner’s diketophosphepins (2.11, 2.12) show two distinct features at 270-290 

and 390-460 nm,84 significantly red shifted relative to the diphosphametacyclophanes. However, 2.1, 

2.4-2.10 exhibit comparable photophysical behaviour to Takeda’s diphosphaindacenetetraone 

(2.13),120 which is surprising considering the two diketophosphanyl units present in the 

phosphametacyclophanes, which would be anticipated to lead to reduced LUMO energies and thus 

red-shifted absorptions. 

 

Figure 39. Diketophosphepins, 2.11, 2.12 and Diphosphaindacenetetrone, 2.13.84,120 

 

To assess the electron accepting abilities of these phosphametacyclophanes their redox chemistry was 

probed via cyclic voltammetry in CH2Cl2, at a Pt or Au disk working electrode (1 mm) with [nBu4N][PF6] 
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or [nBu4N][BArF
24] supporting electrolyte. Notably the reductive events were not significant for 

compound 2.7 and 2.4, while only one reductive event was observed for compound 2.9. The 

electrochemical data for compounds 2.1 and 2.4-2.10 at 0.1 V s-1 scan rate has been tabulated (Table 

7).  

Table 7. Electrochemical data for compounds 2.1 and 2.5-2.10.0.5 mM, solvent: CH2Cl2; supporting electrolyte: 0.1 M 

tetrabutylammonium hexafluorophosphate) recorded using a Pt working electrode, Pt wire counter electrode and Ag pseudo-

reference electrode (potentials are given vs. Fc+/Fc(0.00 V)). 

Reduction 1 (V) Reduction 2 (V) 

 1Epc
 1E1/2

 1ΔEp
 1ELUM0(eV)a 2Epc

 2E1/2
 2ΔEp

 

2.1 -1.96 -1.835 0.25 -2.965 -2.24 -2.15 0.18 

2.5 -1.84 -1.735 0.21 -3.065 -2.21 -2.115 0.17 

2.6 -1.965 -1.885 0.16 -2.915 -2.245 -2.225 0.2 

2.8 -1.625 -1.605 0.04 -3.195 - - - 

2.9 -1.815 -1.725 0.18 -3.075 -2.185 -2.035 0.22 

2.10 -1.81 -1.735 0.1 -3.065 -2.15 -2.11 0.18 

aELUMO = −(4.8 + 1E1/2/V) eV 

Generally, two distinct reductive events were observed (e.g. Figure 40) at Epc = -1.71 to -1.98 V and -

2.15 to -2.25 V vs Fc+/Fc, the peak-to-peak separation (ΔEp) being indicative of a quasi-reversible 

process, consistent with previously described diketophosphanyl compounds.120,127 The ELUMO values 

are similar to the small number of diketophosphanyls (-3.02 to -4.04 V), albeit only just, indicating a 

decreased electron accepting capability relative to most. The notably lower reduction potential for 2.9 

indicates a more stabilised LUMO for weaker donating substituents, with 2.9 lying ca 0.15 eV lower in 

energy than the rest of the series, whereas the LUMO of 2.6 (which bears the most electron donating 

substituent) is 0.25 eV higher in energy.  
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Figure 40. Cyclic voltammogram of 2.1, 2.6 and 2.8 (0.5 mM, solvent: CH2Cl2; supporting electrolyte: 0.1 M 

tetrabutylammonium hexafluorophosphate) recorded using a Pt working electrode, Pt wire counter electrode and Ag 

pseudo-reference electrode (potentials are given vs. Fc+/Fc(0.00 V)). 

 

The quasi-reversible nature of these reductive events suggests the radical anions should be rather 

persistent, furthermore, the first reductive event is comparable to those of bis(acyl)phosphane oxides 

(BAPOs), E1/2 = ca −1.8V, ELUMO = −3.0 eV, which are used as effective initiators for polymerisation.127 

Overall these phosphacyclophanes exhibit comparable redox behaviour to that of simpler aromatic 

diketophosphanyls,120 exhibiting no further stabilisation of the LUMO upon the introduction of the 

second diketophosphanyl moiety. This behaviour could suggest that the two diketophosphanyl units 

are essentially two distinct functionalities, which may be inferred (vide supra) from the HOMO and 

HOMO-1, which are dominated by the phosphorus lone pairs rather than the aromatic cores, the 

frontier molecular orbitals more generally do not appear to exhibit a fully delocalised system, 

indicating no conjugation between the two diketophosphanyl units and thus the two units are 

essentially isolated. 

2.4 Coordination of The Diphosphametacyclophanes 

The oxidation of phosphanes within π-conjugated systems has previously been shown to reduce the 

ELUMO of the system and thus enhance electron acceptor character.84,128 The oxidation of the 
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phosphametacyclophanes with chalcogens (S, Se or Te) was therefore attempted, though resulted in 

the recovery of the free macrocycle. Further attempts using Woolins-reagent,129 hydrogen peroxide 

or meta-chloroperoxybenzoic acid (mCPBA) resulted only in decomposition or the formation of 

MePH2.  

Reacting 2.1 with [M(η4-C8H12)Cl]2 (M = Ir, Rh) results in the formation of [M(η4-C8H12)Cl{3-C(O)-C6H4-

(C(O)PMe)}2] (M = Ir (2.14), Rh (2.15)). However, some residual metal dimer is always present in the 

product and due to the similar solubilities of reagent and product bulk recrystallisation is difficult, 

though it is possible to grow single crystals of the products preferentially (Figure 41; Table 8), albeit 

at low isolated yield. 

 

Figure 41. Molecular Structure of [M(η4-C8H12)Cl{3-C(O)-C6H4-(C(O)PMe)}2] with thermal ellipsoids at the 50 % probability 

level. M = Ir (left) and Rh (right). 

 

Table 8. Selected bond lengths (Å) and angles (°) for 2.14 and 2.15 with estimated standard uncertainties in parentheses. 

 2.14 2.15 

P(M)-CH3
a 1.804 (4) 1.806 (6) 

P-CH3 1.826 (5) 1.825 (8) 

P-Ma 2.2733 (9) 2.2730 (16) 

P(M)-C(O)a 1.911 (4) 1.900 (7) 

P-C(O) 1.895 (4) 1.876 (8) 

C=O 1.209 (5) 1.211 (8) 

M-Cla 2.3792 (8) 2.4646 (13) 

M-C=Ca 2.209 (3) 2.223 (6) 

aM = Ir (2.14) and Rh (2.15). 
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The parameters of the macrocyclic core in complexes 2.14 and 2.15 are generally consistent with data 

for free 2.1, though a slight contraction is noted for the P(M)-CH3 distances. More generally, the bond 

lengths of 2.14 and 2.15 are comparable, only the M-Cl bond distance displaying a significant 

difference, albeit consistent with expectation between Ir/Rh systems.130 The P-Rh bond length is 

somewhat shorter than [RhCl(COD)PPh3] (2.308 (7) Å),131 and longer than the bisphosphomide 

complex [RhCl{2,6-{Ph2PC(O)}2(C5H3N)}] (2.2523 (6) Å),116 which may suggest weaker binding than in 

the latter case.  

Compound 2.4 was reacted with [Pt(PEt3)Cl2]2 to afford [{Pt(PEt3)Cl2}2{3-C(O)-C6H4-(C(O)PPh}2] (Figure 

43). The 31P{1H} spectrum exhibits two doublets, δp 40 and 16 (2JP-P = 425 Hz), with associated 195Pt 

satellites, the magnitude of coupling (1JP-Pt = 2010 and 2770 Hz; Figure 42) being suggestive of trans-

coordination.111 This is consistent with the previously reported coordination of 2.1, reaction with 

[Pt(PEt3)Cl2]2,111 affording a product with two doublets at δP 15.9 and 51.3, bearing comparable P-P 

(2JPP 441 Hz) and Pt-P (1JPPt 2813 and 1951 Hz respectively) coupling, in accordance with trans-

coordination. Crystals suitable for X-Ray diffraction from reactions with both 2.1 and 2.4 remain 

elusive. 

 

Figure 42. 31P NMR spectrum (C6D6, 161.72 MHz) of [{Pt(PEt3)Cl2}2{3-C(O)-C6H4-(C(O)PPh)}2]. 
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Figure 43. [{Pt(PEt3)Cl2}2{3-C(O)-C6H4-(C(O)PPh)}2]. 

 

In an analogous reaction with m-{-C(O)-C5N1H4(C(O)PMe)}2 (2.5; Scheme 17), P-C bond cleavage 

occurred, resulting in the formation of a pincer complex (2.16) as identified from X-Ray diffraction 

(Figure 44). This is similar to the reactions observed for Balakrishna’s tetramer (2.2) when reacted 

with [Pd(allyl)Cl]2,114 however, the reaction with 2.5 does not display such clean conversion, with 

multiple species being observed by 31P NMR. These include three 31P resonances, a doublet of doublets 

at δP 32 (J = 400 Hz, 32 Hz), a doublet at 11.6 (J = 400 Hz) and a triplet at 5.8 (J = 32 Hz), the comparable 

coupling suggests these resonances are associated with one another and could be consistent with the 

formation of 2.16, which was identified by X-Ray diffraction, though the low-quality data deems the 

bond metrics unreliable, thus only permitting connectivity to be confirmed.   

 

Scheme 17. Proposed reaction scheme for compound 2.16. 

 

Figure 44. Molecular structure of 2.16 with thermal ellipsoids at the 50 % probability level; the crystallisation solvent 

omitted for clarity. 
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Despite the coordination chemistry of the phosphametacyclophanes not being extensively studied, 

the formation of 2.14-2.16 and [{Pt(PEt3)Cl2}2{3-C(O)-C6H4-(C(O)PPh)}2] demonstrate that phosphorus 

coordination is achievable, despite the apparent resistance to oxidation.  

 

2.5 Nitrogenous Analogues of the Phosphametacyclophanes 

Though nitrogen-based cyclophanes are notably more common than phosphacyclophanes, they are 

typically prepared via multi-step, complex syntheses. In comparison, via a simple condensation route 

the diphosphametacyclophanes were prepared in a facile manner, which should be able to facilitate 

the preparation of nitrogen analogues as well. Therefore, in seeking a direct nitrogen analogue of the 

phosphametacyclophanes with which to compare, MeN(SiMe3)2 was reacted with isophthaloyl 

chloride under comparable conditions in an effort to prepare m-{-C(O)-C6H4(C(O)NMe)}2 (2.17; 

Scheme 18), however, no reaction occurred after 7 days. The reaction was repeated in toluene and 

brought to reflux, resulting in multiple unidentified species in the 1H NMR spectrum, though none was 

consistent with the formation of 2.17. 

 

Scheme 18. Attempted synthetic route to prepare 2.17. 

 

Given unsuccessful attempts to synthesise 2.17 from MeN(SiMe3)2, an alternative approach was 

considered. MeNH2 was disregarded due to being a gas under ambient conditions and instead aniline 

was used in an attempt to make the nitrogen congener of 2.4 (2.18). Therefore, aniline was reacted 

with isophthaloyl chloride in the presence of triethyl amine (Scheme 19); seemingly the reaction 

stopped once diphenylisophthalamide (2.19) was formed, initially thought to be a consequence of low 

solubility. A second equivalent of isophthaloyl chloride was added in the presence of nBuLi, however, 

even after reflux, compound 2.19, was recovered unchanged.  
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Figure 45. m-{-C(O)-C6H4(C(O)NPh)}2 (2.18). 

 

 

Scheme 19. Attempted reaction to form 2.18, which stopped after forming diphenylisophthalamide (2.19). 

 

Notably, the post-synthetic modification of 2.19 is significantly less facile than its phosphorus 

congener, which could be a consequence of the greater delocalisation of the amide lone pair 

compared with phosphorus analogues. Nevertheless, a similar compound, 2.20, has previously been 

prepared,132 suggesting the problem may instead lie with the size of the substrate. Therefore 2.19 was 

reacted with glutaryl chloride in the presence of base, however, only starting material was recovered, 

despite testing a multitude of temperatures as well as varying the order of addition. Similar reactions 

with benzoyl chloride, resulted in the formation of {C6H4C(O)NC(O)C6H5}2 (2.21; Figure 47), ultimately 

confirmed by X-Ray diffraction (Figure 48). 

 

 

Figure 46. Specific example that the amide functionality can be further functionalised. 
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Figure 47. {C6H4C(O)NC(O)C6H5}2. 

  

Figure 48. Molecular structure of 2.21, with thermal ellipsoids at the 50 % probability level. Selected bond lengths (Å) and 

angles (°): N1-C8 1.443(2), N1-C14 1.414(2), N1-C7 1.412(2), N2-C21 1.397(2), N2-C29 1.442(2), N2-C22 1.430(3), O1-C7 

1.207(2), O3-C21 1.216(2), O2-C14 1.208(2), O4-C22 1.186(18). C14-N1-C8 119.01(13), C7-N1-C8 118.09(15), C7-N1-C14 

120.58(14), C21-N2-C29 12.71(15), C21-N2-C22 116.92(15), C22-N2-C29 116.91(15). 

Notably in compound 2.21 the two benzoyl substituents are situated in opposing directions, 

presumably due to steric constraints. This relative geometry is also observed in 2.19, where the 

hydrogen atoms on nitrogen are positioned in alternate directions,133 which could reasonably 

underpin the lack of reactivity seen with isophthaloyl chloride, as the relative positions of the phenyl 

substituents would limit the size of substrates able to approach the nitrogen centres as a result of 

steric hinderance.  

 

2.6 Investigating the Relationship Between Phosphaalkene and Macrocycle formation  

Isolation of the cyclophanes 2.1, 2.4-2.10 from simple condensation of RP(SiMe3)2 and the respective 

diacyl chloride is remarkable, given that comparable reactions with alkyl and many aryl acid chlorides 

typically favour the Becker condensation pathway to afford phosphaalkenes (Scheme 20). This results 



52 
 

from an acyl phosphane undergoing a spontaneous 1,3-silatropic rearrangement driven by the 

oxophilicity of silicon, to afford the phosphaalkene.  

If a bulkier phosphane is reacted with isophthaloyl chloride, RP(SiMe3)2 (R = tBu or Mes), new 

spectroscopic signatures are detected at δP 197 (tBu) and 153 (Mes) in the 31P NMR spectrum, which 

lie in regions consistent with phosphaalkenes.134,135,136 In addition, the 1H NMR spectra exhibit peaks 

consistent with the aromatic backbone, ‘R’ substituent and the trimethylsilyl group (TMS), integrating 

in a 1:1:1 manner, suggesting the latter has been retained and the corresponding phosphaalkene has 

formed (Scheme 21).  

 

Scheme 20. The Becker condensation pathway. 

 

 

Scheme 21. Proposed phosphaalkene formation. 

 

Although spectroscopic data are consistent with phosphaalkene formation, attempts to isolate the 

product via vac-transfer, distillation, solvent removal and trituration were unsuccessful. Upon 

exposure to vacuum, only a single phosphorus resonance at δP 26 (tBu) and 25 (Mes) is observed, 

though this species has not been identified.  

The mesityl-substituted phosphaalkene is somewhat more ‘stable’, therefore coordination to 

W(CO)5(THF) was attempted, resulting in a significant shift of the phosphorus NMR resonance to δP 

110 alongside the manifestation of tungsten satellites (183W, I = ½, 14 %; JPW = 255 Hz), confirming 

coordination of the phosphorus centre, albeit this species could only be observed in situ. The reaction 

of the proposed mesityl phosphaalkene with [Pt(PEt3)Cl2] led to the decomposition of the 

phosphaalkene, though the Pt centre did react with a minor hydrolysed impurity, yielding two sets of 

doublets (2JPP = 464 Hz, JPPt = 2864, 2058 Hz) in the 31P{1H} NMR spectrum, the latter becoming a 
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doublet of doublets in the coupled spectrum (1JPH = 378 Hz). Crystals suitable for X-Ray diffraction were 

grown, confirming the structure of [{Pt(PEt3)Cl2}2{3-C(O)(Cl)-C6H4-(C(O)P(H)Mes)}] (Figure 49). 

 

Scheme 22. Believed impurity and reaction which led to the observation of [{Pt(PEt3)Cl2}2{3-C(O)(Cl)-C6H4-(C(O)P(H)Mes)}] 

 

Figure 49. Molecular Structure of [{Pt(PEt3)Cl2}2{3-C(O)(Cl)-C6H4-(C(O)P(H)Mes)}] with thermal ellipsoids at the 50 % 

probability level*.1Selected bond lengths (Å) and angles (°): Pt1-Cl2 2.3804(9), Pt1-Cl3 2.3261(8), Pt1-P1 2.2272(8), Pt1-P2 

2.2476(9), P1-C4 1.816(3), P1-C11 1.897(4), P2-C26 1.823(4), P2-C28 1.822(4), P2-C30 1.822(4).Cl3-Pt1-Cl2 88.79(3), P1-Pt1-

Cl2 89.49(3), P1-Pt1-Cl3 175.44(3). 

 

 

 

 

 
*This platinum complex was isolated whilst working with a summer JRA student, Vladimir Simenok. 
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2.7 Summary 

A series of phosphametacyclophanes (2.4-2.10) have been synthesised and characterised by 

heteronuclear NMR spectroscopy and their characteristic carbonyl stretches. Structural data confirm 

these phosphacyclophanes are dimeric in nature, in comparison to work by Balakrishna and co-

workers who observe tri- and tetrameric structures, which can reasonably conclude to be a facet of 

the synthetic route, rather than the incorporation of phenyl or pyridyl units.  

The structural data obtained (Table 5) highlight the influence the 5-R substituent has upon the 

displacement angle between π-systems, with significantly smaller displacement angles being observed 

for more electron withdrawing substituents, allowing control over the cavity size. 

The electronic properties of these macrocycles were probed via UV-Vis spectroscopy and cyclic 

voltammetry. Overall, it was found that ELUMO was more stabilised for weaker donating substituents 

on the aromatic ring (e.g. I) and indeed that the macrocycles photophysical and redox behaviour was 

comparable to that of simpler aromatic diketophosphanyls, exhibiting no further stabilisation of the 

LUMO with the second diketophosphanyl moiety, suggesting that the two diketophosphanyl units are 

essentially two distinct functionalities possessing no delocalisation/conjugation between the two 

units. 

Attempts to further reduce the ELUMO of the system and thus enhance their electron acceptor character 

via oxidation were unsuccessful. However, these macrocycles readily coordinate to transition metals, 

facilitating the synthesis of [M(η4-C8H12)Cl{3-C(O)-C6H4-(C(O)PMe)}2] (M = Rh, Ir) and [{Pt(PEt3)Cl2}2{3-

C(O)-C6H4-(C(O)PPh)}2]. 

Attempts to access nitrogenous analogues of 2.1 and 2.4 were unsuccessful, however, a benzoyl 

substituted derivative (2.21) was prepared. Finally, unlike Me and Ph substituted bis-silylated 

phosphanes (RP(SiMe3)2), tBu and Mes analogues form phosphaalkenes via Becker-type condensation 

when reacted with isophthaloyl chloride, the Mes-Phosphaalkene coordinates tungsten 

pentacarbonyl (JPW = 255 Hz), though only stable in solution. 
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Chapter 3  - Phosphacycloalkyldiones: Synthesis and coordinative 

behaviour of 6- and 7-member cyclic diketophosphanyls 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

“I am fire! I am…death!” 

--The Hobbit: The Desolation of Smaug (2013) 
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3.1 Introduction 

Despite the increasing exploitation of diketophosphanyl derivatives in organic opto-electronics 

(Chapter 2), the exploration of α-acyl phosphanes more generally remains sparse. Although a number 

of such compounds have been reported, their lack of use presumably stems from the inherent 

weakness of the phosphomide linkage (P-C(O)) rendering them prone to hydrolytic and/or oxidative 

cleavage,137 though a small number have been investigated for ruthenium-catalysed 

hydrogenations,138 rhodium-catalysed hydroformylation86 and the coordination chemistry of 

C6H4{C(O)PPh2}2-1,3 and C5H3N{C(O)PPh2}2-2,6 has also been described.87,88 

The diketophosphanyl functionality (-C(=O)-PR-C(=O)-) has recently become established as a desirable 

moiety for opto-electronically active species, leading to an upsurge of interest in bis(acyl)phosphanes. 

The ‘diketo’ motif exhibits reduced LUMO energies compared with precedent carbon and nitrogen 

systems,84 thus a range of derivatives based upon aromatic backbones have been investigated,84,116,139 

with the intent to enhance their n-type properties, consequently improving the performance of 

organic optoelectronic devices (e.g. OLEDS, POVs). 

Acyclic derivatives have also shown promise as photoinitiators, with bis(acyl) phosphane oxides 

(BAPOs) overcoming the inefficient UV curing seen for carbocentric congeners.113 The P-C(O) bond 

cleavage produces a phosphanoyl and benzoyl radical pair, which serves as an effective initiator for 

radical polymerisation (vide supra Scheme 11).112 

 

 

Figure 50. Examples of diketophosphanyl compounds.84,116,120  

 

No examples of cyclic bis(acyl)phosphanes based upon fully saturated backbones exist and indeed 

saturated phosphacycles more generally are somewhat less studied, the first being discovered by 

Grüttner in 1915 (3.1; Figure 51),140 with only a handful being reported since.141,142,143 Among the small 

collection of saturated phosphacycles, only a few bear an acyl functionality (Figure 52);144,145,146  the 

coordination chemistry of these compounds has briefly been explored,144 with a particular focus on 

catalytic applications.147,148  
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Figure 51. Reported saturated phosphacycles.141-146 

 

Figure 52. Representative acyl functionalised saturated phosphacycles.144-146 

 

Following the synthesis, isolation and systematic study of phosphametacyclophanes (Chapter 2), 

analogous materials based upon a saturated cyclic motif were sought. This chapter describes the 

synthesis of 6- and 7-member cyclic bis(phosphomides) RP{C(O)}2CnH2n (n = 3, 4; R= aryl, alkyl) and 

investigates their donor behaviour via coordinative and computational studies. 

 

3.2 Synthesis and Characterisation of the Phosphacycloalkyldiones 

Phosphinanes 3.2 and phosphepanes 3.3 were obtained from the condensation reaction of the 

respective bis-silylated phosphane (RP(SiMe3)2 , R = Me, nBu, tBu, Ph) and acyl chlorides 

{C(O)Cl}2{(CH2)n} (n = 3, 4; Scheme 23). In each case, compound identity was elucidated from 

spectroscopic data (Table 9), the observation of consistent molecular ions in the mass spectra, and in 

the case of 3.2d and 3.2e, X-Ray structural data (Table 9). The observed 31P{1H} NMR shifts δP 68-31 

are in line with the standard range of trialkyl phosphanes,149 in addition a single P-C(O) environment 

is observed in the 13C{1H} NMR spectra δC 221-216, with a doublet multiplicity (1JCP = 40-50 Hz) which 

is in agreement with precedent acyl phosphanes, while no signals suggestive of phosphaalkene 

formation are observed.150 Additionally, the retention of P-alkyl/aryl substituents were also observed 

in the 1H NMR spectra, which integrate with broad consistency. 

 
 Initial synthesis of 3.2e was performed alongside summer student Vladamir Simenok. 
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Scheme 23. Synthesis of phosphacycloalkyldiones 3.2a-e and 3.3a-d. 

Table 9. Selected Spectroscopic data for 3.2a-e and 3.3a-d (13C 100.46 MHz, 31P 161.71 MHz).. 

 P
a C (1JCP

b) CO
c / cm-1 

3.2a 36.9 220.5 (42)d 1739 (w), 1668 (s) 

3.2b 47.7 219.6 (43)a 1768 (w), 1660 (s) 

3.2c 68.2 218.8 (48)a 1736 (w), 1655 (s) 

3.2d 49.2 218.5 (44)e 1737 (w), 1667 (s) 

3.2e 31.3 217.0 (41)a 1738 (w), 1659 (s) 

3.3a 39.7 217.7 (48)a 1659 (s)f 

3.3b 48.9 218.5 (48)a 1736 (w), 1657 (s) 

3.3c 60.9 221.5 (50)d 1736 (m), 1652 (s) 

3.3d 49.0 218.1 (47)d 1735 (w), 1665 (s) 

aas C6D6 Solution. bin Hz. Cas THF solution. das CDCl3 solution. eas CD2Cl2 solution. fsymmetric mode not observed. 

 

The 31P NMR spectral shifts are in line with precedent diketophosphanyl derivatives (δP 30−67),84,139 

though the phosphane substituent ‘R’ appears to have a more notable influence on δP for 3.2 and 3.3 

than was observed for phosphametacyclophanes (δP 32.7 (Me), 30.5 (Ph)). The phosphacycles 3.2 and 

3.3 exhibit higher frequency phosphorus shifts relative to their fully saturated comparators (δP −34.3 

to 2.1; Figure 51, vide supra), presumably as a consequence of the flanking carbonyls deshielding the 

phosphorus centre. The shift of the associated P-C(O) resonance in the 13C{1H} NMR is comparable to 

similar ‘diketo’ containing compounds (δC 199-209; 1JCP
 = 35-51 Hz), though somewhat lower than the 

acyl(chloro)phosphane RC(O)P(Cl)(t-Bu) (R = C14H10), δC 211 (1JCP
 = 67 Hz).151 

The 1H resonances observed for 3.2 and 3.3 generally integrate consistently, however, those 

associated with the cyclic skeleton display poor resolution, suggestive of conformational non-rigidity 

 
 Initial synthesis of 3.2e was performed alongside summer student Vladamir Simenok. 
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in solution (Figure 54, 30 °C), presumably resulting from chair-boat interconversion (Figure 53). This 

is most pronounced in the case of compound 3.2a, in which the associated proton signals are barely 

distinguishable at ambient temperature, however, the four unique environments become well 

resolved at −40 °C (Figure 55) allowing the inequivalent protons to be assigned, though the complex 

splitting patterns observed in 3.2a hinder the extraction of coupling constants. Lower temperatures 

led to loss of resolution due to slow-tumbling,117 while the slow exchange limit could not be reached. 

The molecular composition of 3.2 and 3.3 was confirmed by high-resolution mass spectrometry and 

the structure of these heterocycles was ultimately confirmed by X-Ray diffraction (Figure 56, Figure 

57); structural parameters are outlined in (Table 10). 

 

Figure 53. Chair-Boat phosphacycle interconversion. 

 

Figure 54. Variable temperature 1H NMR (C7D8, 303-238 K, 399.49 MHz) spectra for compound 3.2a for the alkyl region. 
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Figure 55. 1H NMR Spectrum (C7D8, 238 K, 399.49 MHz) for compound 3.2a. 

 

 

Figure 56. Two orientations of the molecular structure of 3.2d with thermal ellipsoids at the 50% probability level. The left 

hand side orientation is to display the conformation of the phosphacyclic backbone. 

 



61 
 

 

Figure 57. Two orientations of the molecular structure of 3.2e with thermal ellipsoids at the 50 % probability level. The left 

hand side orientation is to display the conformation of the phosphacyclic backbone. 

 

Table 10. Selected bond lengths (Å) and angles (°) for compounds 3.2d and 3.2e, with estimated standard uncertainties in 

parentheses. 

Bond/Angle 3.2d 3.2e 

P1-C1 1.865 (6) 1.853 (2) 

P1-C5 1.888 (6) 1.857 (2) 

P1-C6 1.825 (5) 1.816 (2) 

C1-O1 1.202 (7) 1.208 (2) 

C5-O2 1.192 (8) 1.214 (2) 

C6-C7 1.398 (8) 1.412 (2) 

C7-C12 - 1.513 (2) 

C1-P1-C5 97.0 (3) 100.11 (7) 

C1-P1-C6 102.8 (3) 107.89 (7) 

C5-P1-C6 103.5 (3) 105.41 (7) 

P1-C1-O1 121.2 (4) 121.80 (12) 

P1-C5-O2 120.0 (5) 120.62 (13) 

C1-C2-C3 112.4 (5) 112.59 (14) 

C6-C7-C12 - 122.96 (14) 

 



62 
 

Structural data for compounds 3.2d and 3.2e, confirm that the phosphacycles adopt chair-like 

conformations, with the respective aryl groups (Ph, Mes) aligned almost orthogonally to the plane of 

the heterocycle (77.48 °, 89.98 ° respectively). Although, no direct comparators for these heterocycles 

exist, the ‘diketo’ parameters can be compared against the small number of precedent aromatic 

diketophosphanyls (e.g. Figure 50, vide supra Chapter 2). The C=O bond lengths are within the 

standard range of ketones (ca 1.21 Å),119 and are comparable with previously reported 

diketophosphanyl compounds (1.20-1.23 Å).139 The P-C(O) distance in 3.2e is somewhat shorter than 

that of 3.2d, as well as the average distance for mono-acyl phosphanes in the CCDC (by ca 0.02 Å).152 

In comparison, 3.2e and 3.2d exhibit significantly shorter P-C(O) bond lengths than the previously 

reported phosphametacyclophanes 2.1, 2.5-2.11 (1.881(5)-1.910 (3) Å, Chapter 2). The C1-C2-C3 bond 

angle is in line with similar 6-member phosphacycles (vide supra, Figure 51),141 displaying a slightly 

larger angle than carbocentric congeners (109.5 °).153 It is also noted that the P-Aryl bond lengths are 

slightly shorter than that of their triarylphosphane analogues (PPh3 and PMes3 , 1.834(2), 1.837 

Å),154,155,156 but significantly shortened relative to MesP(SiMe3)2 (1.851 (2) Å; Figure 58), as well as the 

small range of precedent ArP(SiR3)2 (Ar = C6H3
iPr2-2,6,157 Mes*,158 C6H2

iPr2-2,4,6,159 Ph160, R = alkyl) and 

their complexes (1.829 – 1.884 Å)161,162.  

 

 

Figure 58. Molecular Structure of MesP(SiMe3)2 with thermal ellipsoids at the 50 % probability level. The asymmetric unit 

comprises two molecules, the second of which has been omitted for clarity. Selected bond distances (Å) and angles (°): P1-

Si1 2.2465(5), P1-Si2 2.2529(4), P1-C7 1.8505(13), Si1-C1 1.8729 (16), Si2-C4 1.8727 (15), C7-C8 1.4158(18), C8-C15 

1.5109(19). Si1-P1-Si2 111.039(18), C7-P1-Si1 103.08(4), C7-P1-Si2 114.58(4), C15-C8-C7 122.48(12), P1-C7-C8 115.82(10). 

 

 
 Initial synthesis of MesP(SiMe3)2 was performed alongside summer student Vladamir Simenok. 
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3.3 Coordination of the Phosphacycloalkyldiones 

Upon exposure to air both 3.2 and 3.3 readily decompose as noted previously for phosphomide 

containing species,137 though the products in this case were not determined. Even so, attempts to 

oxidise 3.2 and 3.3 via heating solutions of the free heterocycle with chalcogens (S, Se, Te) resulted 

only in the recovery of the unreacted heterocycle; this is presumably an influence of the flanking 

carbonyls, leading to some inductive stabilisation of the lone pair. 

To determine if metal coordination was possible, 3.2d was reacted with half an equivalent of 

[Cl2PtPEt3]2 in DCM, affording cis-[PEt3PtCl2(Ph)P{C(O)(CH2)3C(O)}] (3.4; Scheme 24) as yellow plate like 

crystals in high yield (83%). Compound 3.4 was first characterised spectroscopically, the 31P{1H} NMR 

spectrum exhibiting two sets of doublets at δP 26.8 ((Ph)P{C(O)(CH2)3C(O)}], 2JPP = 15 Hz) and δP 9.0 

(PEt3, 2JPP = 15 Hz) (Figure 59), with associated Pt satellites (J(PtP) = 3413 Hz and 3166 Hz respectively). 

The corresponding 195Pt NMR spectrum displays a doublet of doublets δPt −4432 (1JPtP = 3412 Hz, 3164 

Hz), the magnitude of the Pt-P coupling being consistent with a cis-coordination geometry,163,164 as 

confirmed by X-Ray diffraction studies (Figure 60). It is noted that metal coordination imparts some 

aerobic stability, permitting bulk purity to be confirmed by microanalysis. 

 

Scheme 24. Synthesis of cis-[PEt3PtCl2(Ph)P{C(O)(CH2)3C(O)}](3.4). 
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Figure 59. 31P{1H} NMR Spectrum (CD2Cl2, 303 K, 161.72 MHz, D1 = 30 s) for compound 3.4. 

 

Figure 60. Molecular Structure of 3.4 with thermal ellipsoids at the 50% probability level. 

The weakly diffracting nature of the crystals of 3.4 only allow connectivity to be determined.  

Interestingly, the phosphacyclic core appears to have inverted into the boat conformation compared 

to the free heterocycles which possesses the chair conformer in the solid state (Figure 56, Figure 57).  

In seeking to determine if this is a general feature of coordination, 3.2d was reacted with [Rh(η4-

C8H12)Cl]2, the product from which exhibits a single resonance in the 31P{1H} NMR spectrum (δP 49.2) 

at 30 °C, identical to the free heterocycle, though the red colouration and presence of broad C8H12 

resonances in the 1H NMR spectrum suggest coordination has occurred. Upon cooling to temperatures 

below −50 °C, P-Rh coupling is resolved, δP 55.7 (1JP-Rh = 137 Hz; Figure 61), suggesting the formation 

of [(η4-C8H12)RhCl(Ph)P{C(O)(CH2)3C(O)}] (3.5), the phosphorus resonance is at a somewhat higher 

frequency than that of comparative trialkyl/aryl complexes [RhCl(COD)(PR3)] (R = Ph3, Et3, nPr3, iPr3, 
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nBu3,  Cy3; δP 13.0-38.6),165 and in the upper range of the fluoride analogues [RhF(COD)(PR3)] (R = Ph3, 

Et3, iPr3, Cy3; δP 24.7-59.2).166 However, the P-Rh coupling lies between those of trialkyl/aryl phosphane 

and phosphite comparators (1JP-Rh = 144-162 Hz and 249 Hz, respectively)167 and the bisphosphomide 

complex [RhCl{2,6-{Ph2PCO)}2(C5H3N)}] (1JP-Rh = 104 Hz),88 and are in line with Rh(L)2Cl (L= dpe, dpp, 

dpb, diop) complexes, 1JP-Rh = 132-134 Hz.168 These data might suggest the s-density of phosphorus in 

the free heterocycles is between that of classic phosphanes and phosphomides. Crystals of 2.15 were 

grown from DCM/Pentane, permitting structural characterisation (Figure 63, Table 11). 

As seen for the free heterocycles, the broad 1H resonances become resolved upon cooling (Figure 62), 

allowing the inequivalent CH2 protons to be assigned. This dynamic behaviour is reminiscent of chair-

boat isomerisation as seen for the free heterocycles (Figure 53), though coordination/free heterocycle 

exchange cannot be excluded. 

 

Figure 61. Variable temperature 31P{1H} NMR (CD2Cl2, 161.72 MHz) spectra for 3.5. 
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Figure 62. Variable temperature 1H NMR (CD2Cl2, 399.5 MHz) spectra for 3.5. 

 

 

Figure 63. Molecular structure of 3.5 with thermal ellipsoids at the 50% probability level. The modelled disorder about the 

COD unit has been omitted for clarity. 
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Table 11. Selected bond lengths (Å) and angles (°) for compound 3.5, with estimated standard uncertainties in parentheses. 

Bond Length (Å) Bond Angle (°) 

P1-Rh1 2.272 (4) C1-P1-C5 95.0 (3) 

P1-C1 1.887 (6) C1-P1-C6 104.9 (3) 

P1-C5 1.887 (6) C5-P1-C6 106.9 (3) 

P1-C6 1.804 (6) O1-C1-P1 121.5 (4) 

C1-O1 1.200 (7) O2-C5-P1 122.2 (5) 

C5-O2 1.203 (8) C6-P1-Rh1 119.51 (19) 

Rh1-Cl1 2.363 (6) Rh1-P1-C1 112.53 (18) 

Rh1-C13 2.216 (6) Rh1-P1-C5 114.87 (18) 

Rh1-C16 2.137 (7) P1-Rh1-Cl1 87.38 (5) 

 

Within both complexes 3.4 and 3.5 the phosphacyclic ligand adopts a boat conformation, where the 

free heterocycles only display the chair conformer. This behaviour has previously been observed by 

Pringle et al. (vide supra; Figure 52), concluding that “occupation of pseudo-axial sites by bulky 

substituents (which would be inevitable in a chair conformation) is avoided” leading to the preferential 

formation of the boat conformer.144 For 3.5, close contacts are also observed between the oxygen and 

proximal CH of the phosphacycle in the adjacent molecule (Figure 64), these H-bonding interactions 

could also facilitate preferential boat formation. 

 

Figure 64. Solid-state packing arrangement of 3.5 illustrating H-bonding interactions, potentially favouring boat 

conformation. 

Compound 3.5 exhibits comparable P-C(O) and C=O bond lengths to those of 3.2d; similarly the Rh-C 

bond distances are in line with comparative Rh(COD)PR3 complexes,166 though slightly elongated 

relative to [Rh(η4-C8H12)Cl]2 (2.07 (4) Å).169 A  somewhat contracted P-Aryl bond distance is noted for 
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3.5 relative to 3.2d, suggesting a stronger P-Ph bond for 3.5. Although typically upon coordination the 

elongation of the P-R bond length from backbonding into the σ* orbital and contraction from 

decreased P(Lonepair)-R(bonding pair) repulsions balance out,170 in this instance the latter effect 

appears to be of more significance. The P-Rh bond length is shorter than trialkyl phosphane analogues 

(e.g. [RhCl(COD)(PPh3] 2.308 (7) Å),131 and slightly longer than in the bisphosphomide complex 

[RhCl{2,6-{Ph2PC(O)}2(C5H3N)}] (2.2523 (6) Å);88 though it would be expected that the more strongly 

donating trialkyl phosphanes would be more tightly bound, an inverse relationship is observed. 

 

3.4 The Preparation and Electronic Exploration of Tungsten Pentacarbonyl Complexes  

In seeking a more detailed understanding of the coordinative behaviour of the 6- and 7-membered 

phosphacycles, their respective tungsten pentacarbonyl complexes were synthesised (3.6a-3.6d, 3.7; 

Scheme 25).  Upon reacting 3.2 or 3.3b with W(CO)5(THF) a coordination shift for the phosphorus 

centre to lower frequency (ΔδP = 10-20 ppm) was observed alongside the manifestation of 183W 

satellites (I = ½, 14 %) (Table 12). The magnitude of tungsten-phosphorus coupling (1JWP) can be 

indicative of the s-character at phosphorus,171,172 the coupling being reported to increase as a function 

of π-acidity, thus higher coupling constants are typically observed for more electronegative 

substituents on phosphorus (Table 13), as their σPC* orbitals are lower in energy.173,174  

 

 

Scheme 25. Synthesis of tungsten complexes 3.6 and 3.7. 
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Table 12. Selected NMR Spectroscopic data for 3.6 and 3.7.a 

 δP (1JWP
b) ΔδP

 δC WC(O)cis 

(1JCW
b) 

δC WC(O)trans 

(1JCW
b) 

3.6a 20.7 (203) -16.2 195.4 (125) 197.9 (149) 

3.6b 33.1 (202) -14.6 195.4 (125) 197.9 (148) 

3.6c 51.3 (207) -16.9 196.0 (125) 197.2 (146) 

3.6d 28.9 (214) -20.3 195.7 (125) 197.8 (148) 

3.7 39.2 (216) -9.7 195.8 (125) 198.0 (147) 

aas C6D6 solution. bin Hz. 

 

The coupling constants of [W(CO)5(L)] (L = 3.2, 3.3b) are considerably lower in magnitude than those 

of phosphites (378-411 Hz) and generally somewhat lower than trialkyl/aryl phosphanes, though it is 

noted that PnBu3 exhibits a somewhat lower coupling (200 Hz).171,175,176 From the small number of 

phosphomide complexes in the literature, [{H4C4P(C(O)Me)}W(CO)5] is the only comparable example 

(215 Hz),177 while others (e.g. [PhC(O)P(X)W(CO)5] (X = Cl, F, OMe, O(CH2)2OMe)) exhibit coupling in 

the range of 230-280 Hz.178,179 Though, the magnitude of 1JWP for 3.6a-3.6d follow the correlation Ph > 

tBu > Me > nBu, they are not situated between phosphite and phosphane comparators as expected. X-

Ray quality crystals were grown from saturated benzene solutions permitting comparative structural 

analyses (Figure 65-Figure 67; Table 14). 
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Table 13. Phosphorus-tungsten coupling constant for 3.6a-3.6d, 3.7 and related analogues. 

Ligand (L) 1JWP
a Ref. 

P(OPh)3 411 171
 

P(OMe)3 398 171 

P(OnBu)3 390 171 

PPh3 280 171 

PtBu3 232 176 

PMe3 230 175 

H2PMe 225 180 

PH3 216 180 

nBuP{C(O)}2C4H8 (3.7) 216  

H4C4PC(O)Me 215 177 

PhP{C(O)}2C3H6 (3.6d) 214  

HP(SiMe3)2 212 180 

tBu P{C(O)}2C3H6 (3.6c) 207  

MeP{C(O)}2C3H6 (3.6a) 203  

nBuP{C(O)}2C3H6 (3.6b) 202  

PnBu3 200 171 

P(SiMe3)3 157 181 

ain Hz 

 

 

Figure 65. Two orientations of the molecular structure of 3.6a with thermal ellipsoids at the 50% probability level. 
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Figure 66. Two orientations of the molecular structure of 3.6c with thermal ellipsoids at the 50% probability level. 

 

 

 

Figure 67. Two orientations of the molecular structure of 3.6d with thermal ellipsoids at the 50% probability level. The 

asymmetric unit comprises two units, the disordered second unit has been omitted for clarity. 
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Table 14. Selected bond lengths (Å) and angles (°) for compounds 3.6a, 3.6c and 3.6d with estimated standard uncertainties 

in parentheses. 

 3.6a 3.6c 3.6d 

P1-C1 1.880 (3) 1.879 (5) 1.882 (10) 

P1-C5 1.881 (4) 1.883 (5) 1.889 (12) 

P1-C6 1.815 (3) 1.882 (5) 1.818 (10) 

C1-O1 1.202 (4) 1.209 (7) 1.212 (13) 

C5-O2 1.206 (4) 1.203 (6) 1.205 (10) 

W1-P1 2.5065 (7) 2.5149 (10) 2.490 (3) 

W-COtrans 1.998 (3) 2.007 (3) 2.009 (11) 

W-COcis 2.045 (3) - 2.064 (4) 2.024 (5) – 2.060 (5) 2.02 (1) – 2.05 (1) 

COtrans 1.145 (4) 1.147 (6) 1.14 (2) 

COcis 1.133 (5) – 1.143 (4) 1.133 (6) – 1.144 (6) 1.13 (1) – 1.17(2) 

W1-P1-C1 117.00 (10) 109.84 (16) 111.5 (3) 

W1-P1-C5 114.19 (10) 111.69 (17) 111.9 (3) 

W1-P1-C6 116.72 (11) 122.04 (17) 121.9 (3) 

C1-P1-C5 97.81 (14) 101.9 (2) 102.6 (5) 

C1-P1-C6 103.41 (15) 104.7 (3) 103.1 (5) 

C5-P1-C6 105.36 (15) 104.7 (2) 103.8 (5) 

C1-C2-C3 113.9 (3) 113.1 (4) 113.0 (11) 

 

The phosphacyclic backbones in compounds 3.6a, 3.6c and 3.6d retain the chair-like conformations 

and exhibit comparable bond lengths and angles to the free heterocycles with the corresponding aryl 

substituent (3.6d), adopting a similar angle (C-P-C; 77.46 °) to that observed for 3.2d. The comparable 

COcis and COtrans bond lengths for compounds 3.6 suggest the alkyl/aryl substituent has limited effect 

on the σ-donor strength of these heterocycles. In contrast, the W-P bond distances reflect substituent 

donor strength tBu > Me > Ph and are in-line with [W(CO)5P(CH(SiMe3)2(X)C(O)Ph]  (Figure 68; X = Cl, 

F, OMe, O(CH2)2OMe) (X = Cl, 2.506 (1) Å),179 though notably shorter than trialkyl/aryl phosphane 

analogues [W(CO)5PMe3] (2.516 (2) Å),182 [W(CO)5PtBu3] (2.686 (2) Å)183 and [W(CO)5PPh3] (2.545 (1) 

Å)184, which is likely to be a facet of steric hinderance.185 The trans-W-CO distances are shorter than 

for the cis carbonyls, and indeed those within free W(CO)6 (2.036-2.066 Å),186 implying 3.2a, 3.2c and 

3.2d have a lower trans-influence than CO, whereas the respective trialkyl/aryl phosphanes 

[W(CO)5PR3] (R = Ph, tBu, Me) exhibit comparable trans-W-CO distances (2.00(1) - 2.006(5) Å).182-184 

Notwithstanding, their associated carbon shifts and C-W coupling constants suggest 3.6 exhibit 
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reduced σ-donor character relative to PPh3 (C 199 ,1JCW 140),  PMe3 (C 200, 1JCW 145) and P(OPh)3 (C 

196, 1JCW 137 Hz).187  

 

 

Figure 68. Acyl(chloro)phosphane complex. 

 

The carbonyl stretching frequencies of 3.6 and 3.7 were analysed, the trans-carbonyl (pseudo-A1) 

mode being clearly distinguishable at higher frequency relative to other absorptions (Table 15). Across 

the series of tungsten complexes little variation in this trans-carbonyl mode was observed, suggesting 

the phosphorus substituent has little effect on the donating capabilities of these heterocycles and are 

therefore predominantly driven by the diketophosphanyl. In addition, compounds 3.6 and 3.7 exhibit 

a slight increase in the trans-carbonyl stretching mode relative to PR3 comparators, and a decrease 

relative to P(OR)3 analogues (Table 15).  

 

Table 15. Carbonyl stretches of compounds 3.6, 3.7 and related analogues, obtained using a solution cell. 

 trans-CO / cm-1 CO / cm-1 

W(CO)5(PMe3)a 2069 1976, 1942, 1932 

W(CO)5(PnBu3)a 2068 1932 

W(CO)5(PPh3)a 2071 1976, 1940 

3.6aa 2076 1946, 1933 

3.6ba 2075 1953, 1950, 1942 

3.6ca 2075 1955, 1940 

3.6da 2076 1949 (br) 

3.7a 2075 1951, 1946, 1938 

W(CO)5(P{OMe}3)a 2079 1962, 1948 

W(CO)5(P{OPh}3)b 2083 1968, 1959 

aas solution in THF. bas solution in hexane.  
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Overall, the coordinative behaviour of these heterocycles establishes them as relatively weak σ-

donors, supported by the shortened Pt-Cl bond length (2.307 (11)Å) observed for 3.4 relative to triaryl 

phosphane analogues (2.346 Å);188 this implies a lower trans-influence of 3.2d relative to traditional 

triaryl phosphanes.* Similarly, the magnitude of P-Rh coupling (1JP-Rh) could suggest the phosphorus 

centre in the free heterocycles possesses reduced s-density relative to classic phosphanes, though this 

can only be confirmed for the phenyl substituted heterocycle (3.2d). Furthermore, infrared analyses 

of the tungsten complexes place heterocycles 3.2 and 3.3 between conventional phosphane and 

phosphite compounds in ligand space,189 supporting prior observations, suggestive of relatively weak 

σ-donor character.  

 

3.5 Computational Studies of The Phosphacycloalkyldiones 

In order to gain insight into the fundamental electronics of 3.2a-e, 3.6a and 3.6d, computational 

analyses were performed. Initial calculations for the free 6-membered heterocycles (3.2a-e) were 

performed at the B3LYP level of theory with the 6-311G(3d,3p) basis set, while the LanL2DZ190 effective 

core potential (ECP) basis set was implemented to model the tungsten atoms in their respective 

complexes. Geometry optimisation and frequency calculations were performed, key structural 

parameters have been summarised in Table 16.   

 

Table 16. Selected bond lengths (Å), angles (°) and HOMO energies for the computed 3.2a-e structures.  

 3.2a 3.2b 3.2c 3.2d 3.2e 

P-Ra 1.838 1.849 1.888 1.819 1.825 

P-C(O) 1.877 1.867 1.873 1.883 1.866 

C=O 1.206 1.208 1.208 1.204 1.207 

C(O)-P1-C(O) 95.9 98.9 97.4 96.1 100.1 

C(O)-P1-Ra 102.8 104.6 106.8 105.0 108.6 

P-C=O 121.5 121.2 122.5 122.3 122.3 

C(O)-CH2-CH2 112.1 112.8 112.7 112.3 113.2 

HOMO Energy (eV) -0.245 -0.240 -0.240 -0.242 -0.237 

aR: a = CH3, b = nBu, c = tBu, d = Phenyl and e = Mesityl. 

 
* This can only be loosely stated due to the weakly diffracting nature of the crystal. 
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The computed structures all exhibit the chair-conformer and the bond lengths for 3.2d and 3.2e are 

in agreement with the solid state (± 0.02 Å), with the larger C(O)-P-C(O) angle for 3.2e relative to 3.2d 

also observed. In each case the C=O distances are relatively consistent, where the P-C(O) distances 

and C(O)-P-C(O) angles showing the largest deviation across the series; in comparison 3.2a possesses 

the smallest angle, potentially as a consequence of the weak bonding interaction between the 

carbonyl and CH3 group, though the CH3 group only contributes 4% to the HOMO. It is worth noting 

that in each case the HOMO is predominantly associated with the phosphorus lone pair and carbonyl 

moiety (42-47 % and 43-48 % respectively).  

 

  

 

Figure 69. Visualisation of the HOMO orbitals for 3.2a-e. 

 

 
 Starting geometries were derived from experimental structural data for 3.2d and modified accordingly. 

3.2b 3.2c 

3.2d 3.2e 

3.2a 
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The computed tungsten complexes exhibit somewhat elongated W-P bond distances relative to 

experiment, though the experimental values were shorter than expected (Table 14). Overall, the bond 

distances are generally comparable to experiment (Table 17) and the HOMO is in each case associated 

with tungsten. 

 

Table 17. Selected bond lengths (Å) and angles (°) for the computed tungsten complexes 3.6a and 3.6d vs experimental solid-

state data. 

 3.6a 3.6a(experimental) 3.6d 3.6d(experimental) 

P-Ra 1.827 1.815 (3) 1.825 1.818 (10) 

P-C(O) 1.891 1.880 (3) 1.894 1.882 (10) 

C=O 1.203 1.202 (4) 1.202 1.205 (10) 

W-P 2.551 2.5065 (7) 2.5706 2.490 (3) 

W-COtrans 2.026 1.998 (3) 2.022 2.009 (11) 

W-COcis 2.066 2.045 (3) 2.049 2.02 (1) 

COtrans 1.145 1.145 (4) 1.145 1.14 (2) 

COcis 1.142 1.143 (4) 1.141 1.13 (1) 

aR: 3.6a = CH3, 3.6d = Phenyl 

  

Natural bond orbital (NBO) analysis has previously been utilised for the quantitative determination of 

s-character of phosphanes, therefore, similar analyses were performed for heterocycles 3.2a-e 

alongside the mono-acylated (3.8) and fully saturated (3.9) analogues as well as PMe3 for comparative 

purposes. However, in this instance no clear conclusions could be drawn from the computed s- and p- 

orbital components of the phosphorus lone-pair. 

 

 

Figure 70. Monoacylated and fully saturated analogues of 3.2a. 

 

Tungsten complexes 3.6a and 3.6d, and the PMe3 analogue ([W(CO)5(PMe3)]) were analysed to 

examine the nature of the W-P bond (Table 18). The phosphorus s-character in 3.6d is decreased 
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relative to 3.6a, indicative of a weaker bond which correlates with experimental results. In addition, 

the calculated IR stretches display a similar trend to those observed experimentally, [(CO)5WPMe3] 

possessing a lower energy trans-carbonyl (pseudo-A1) stretch, indicative of a more strongly donating 

phosphane substituent. 

 

Table 18. NBO components of tungsten pentacarbonyl complexes 3.6a, 3.6d and [(CO)5WPMe3]. 

   Tungsten Phosphorus 

 %W %P %s %p %d %s %p 

3.6a 29.5 70.5 25.4 55.4 30.3 37.3 62.7 

3.6d 28.7 71.3 14.6 56.4 29.0 35.8 64.2 

PMe3 31.1 68.9 14.4 56.4 29.2 36.2 63.4 
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3.6 Summary 

A series of 6- and 7-member cyclic bis(phosphomides) have been successfully synthesised and fully 

characterised. The fluxionality of these systems was confirmed by variable temperature NMR 

spectroscopy, allowing the inequivalent proton resonances to be resolved below −40 °C. The 

attempted oxidation of the phosphacycloalkyldiones with chalcogens (Se, S and Te) resulted in the 

recovery of starting material, which could result from an inductive stabilisation effect from the 

carbonyls. However, this effect does not preclude coordination as demonstrated by the Pt (3.4) and 

Rh (3.5) complexes. 

Tungsten pentacarbonyl complexes were prepared and characterised by NMR spectroscopy, X-Ray 

diffraction and microanalytical methods. The associated carbon shifts and C-W couplings for the trans-

carbonyl ligand suggest compounds 3.2 possess reduced σ-donor character relative to traditional 

phosphanes, which was supported by structural data. Infrared analysis of these complexes found the 

heterocycles to be relatively weak σ-donors, the ‘A1’ stretching modes lying between those of 

respective PR3 and P(OR)3 analogues, which is in line with conclusions from NMR and structural data. 

It is worth noting that the alkyl/aryl substituent (‘R’) appears to have little influence on the infrared 

stretching frequencies, suggesting the ‘diketo’ unit dominates the electronics of these heterocycles. 

Alongside experimental investigations, in-silico studies were performed, the computed structures of 

which were in good agreement with the solid state. In addition, NBO calculations were performed for 

the tungsten complexes, the phosphorus s-character in the W-P bond for the phenyl system (3.6d) 

was decreased relative to methyl (3.6a), indicative of a weaker bond, in-line with experimental results. 

Overall, experimental and computational observations identify these heterocycles as relatively weak 

σ-donors, finding their electronic behaviour between that of traditional phosphanes (PR3) and 

phosphites (POR3). 

  



79 
 

Chapter 4 - Trifluoromethylphosphaalkenes: Synthetic and Reactivity 

Studies 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

“I am sorry that I made you a part of my perils…” 

--The Hobbit: The Battle of the Five Armies 
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4.1 Introduction 

Phosphorus has the capability to ‘mimic’ carbon, silicon or nitrogen depending on its coordinated 

state.7 It has been established that phosphorus is more similar to its diagonal relative, carbon, than to 

nitrogen and indeed it has been stated that the “vertical nitrogen-phosphorus analogy sheds no light 

upon low-coordinate phosphorus chemistry”.191 The similar electronegativities of carbon and 

phosphorus (C: 2.5; P: 2.2)192,193 lead to somewhat comparable reactivity between isoelectronic 

functionalities such as phosphaalkenes (R2C=PR) and alkenes (R2C=CR2), which are also isolobal. In 

contrast the HOMO of imines corresponds to the lone-pair, with the π-bond lying much lower in 

energy. Where for phosphaethylene (H2C=PH) the HOMO is the π-bond, which is substantially higher 

in energy than that of imine, while the lone pair of phosphaethylene is only 0.40 eV more stable than 

the π-HOMO (Figure 71).194 This small HOMO – HOMO-1 energy gap allows phosphaalkenes to react 

at both the π-system and the lone-pair, whereas imines typically react via the nitrogen lone-pair 

alone.191 Although a lot of recognisable alkene-like chemistry is observed for phosphaalkenes, the 

reactive lone pair can interfere with further transformations. This can, however, be shut down by 

coordination of the lone pair, allowing reactivity to proceed exclusively at the π-system thus making 

phosphaalkenes essentially direct analogues of alkenes. This relationship has led to phosphorus being 

termed ‘the carbon-copy’ and these parallels are exemplified by phospha-variants of common olefinic 

reactions, e.g. the phospha-Wittig,195 cycloaddition,196 and η2-coordination to metals.197 

  

 

Figure 71. Frontier Orbitals of Imine and Phosphaethylene.191 

 

Phosphaalkenes are typically synthesised via the Becker-condensation, which involves the addition of 

a silylated phosphane RP(SiMe3)2 (R = Me, Ph) to an acyl chloride (e.g. tBuCOCl; Scheme 26) initially 

forming an acyl phosphane that undergoes a spontaneous 1,3-silatropic rearrangement ([1,3] SR), 
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driven by the oxophilicity of silicon, to afford the phosphaalkene.87 While the phosphaalkene is 

typically the energetically favoured product, there are instances where the acyl phosphane can be 

isolated as was the case in the preceding chapters.198,199  

 

 

Scheme 26. Synthesis of phosphaalkenes via the Becker condensation. 

 

Phosphaalkenes can also be prepared by the Phospha-Peterson reaction, which is essentially an 

extension of the Becker condensation, whereby ArPH2 is treated with nBuLi and ClSiMe2
tBu to afford 

the respective lithium salt [(Me3Si)2P(Ar)tBu][Li]. The subsequent addition of R(H)C=O affords the 

desired phosphaalkene via a 1,3-silatropic shift, affording hexamethyldisiloxane as by-product 

(Scheme 27a).200 Alternatively, phosphaalkenes can be synthesised by dehydrohalogenation, for 

example by reacting RP(Cl)C(H)Ph2 with a base such as DBU (Scheme 27b); this method was used by 

Bickelhaupt in 1978 to synthesise the first thermally stable phosphaalkene, MesP=CPh2,201 and has 

since been used to access a range of novel phosphaalkenes, including Me3SiC=PCl, a valuable synthon 

for preparing a wide variety of further phosphaalkenes.202 

 

 

Scheme 27. Synthesis of phosphaalkenes by dehydrohalogenation and the Phospha-Peterson reaction.200,201 

 

Phosphaalkenes now find a multitude of uses, ranging from ligands within coordination chemistry to 

new inorganic polymers (Figure 72). The latter find use as π-conjugated materials, due to their 

tendency to exhibit red-shifted absorptions relative to carbocentric analogues, due to reduced LUMO 

energies.7 Despite this prevelant activity, pursuit of novel-phosphaalkenes remains an active area of 

research, especially as they are convenient precursors to access phosphalkynes (RC≡P).203 The initial 
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syntheses of phosphaalkynes required harsh conditions, the first example (HC≡P) being synthesised 

via electrical discharge between graphite electrodes within a phosphane atmosphere.204 Since this 

discovery, more adaptable synthetic routes have been reported, with phosphaalkynes now typically 

prepared via 1,2-elimination reactions from phosphaalkenes (Scheme 28).205 

 

 

Figure 72. Coordination modes of phosphaalkenes and exemplar phosphaalkene polymers. 

 

Scheme 28. Synthesis of Phosphaalkynes.206 

 

A surprising omission from the range of known phosphaalkynes is trifluoromethylphosphaalkyne (4.1; 

Figure 73), the closest analogue being FC≡P, which was observed in the gas phase by Nixon and 

Kroto.207 Similarly, the precursor to 4.1 and trifluoromethylphosphaalkenes more generally would be 

interesting compounds in their own right, but no such species have been explored. This chapter 

describes the synthesis and reactivity of a series of trifluoromethyl-substituted phosphaalkenes and 

the pursuit of the elusive trifluoromethylphosphaalkyne (4.1), a potentially useful compound to 

incorporate into π-conjugated materials.  

 

Figure 73. Trifluoromethylphosphalkyne. 
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4.2 Synthesis and Characterisation 

The synthesis of trifluoromethylphosphaalkenes was pursued by a modified Becker condensation 

route, using trifluoroacetic anhydride in place of an acid chloride. Compounds 4.2a-4.2d were thus 

obtained from the respective bis-silylated phosphane, RP(SiMe3)2 (R= Ph, tBu, Mes, SiMe3) (Scheme 

29). The 31P{1H} NMR spectrum in each case exhibited a quartet in the range δP 228-153 (Table 19), a 

region in which phosphaalkenes are commonly observed (e.g. ArFP(H)C(R)=CH2 and Poly(p-

phenylenephosphaalkene) (PPPs; vide supra Chapter 1)).56,208 The formulation of 4.2a-4.2d is 

substantiated by the observation of a doublet in the 19F NMR spectrum (2JFP = 47-37 Hz), with the 

associated R and TMS substituents apparent from the 1H and 13C{1H} spectra. Much-like many 

precedent phosphaalkenes 4.2d is obtained as a mixture of E- and Z-isomers (Figure 74), apparent as 

two resonances in the 31P NMR spectrum, a quartet at δP 161 (JPF = 39 Hz) and a broad quartet 

resonance at δP 153.6;  a doublet and broad singlet resonance were apparent in the corresponding 19F 

NMR spectrum at δF −67.1 (JFP = 39 Hz), −66.9, respectively. The 29Si{1H} NMR spectrum exhibits four 

resonances, consistent with both isomers forming, these signals include a doublet at δSi 26 (J = 4 Hz),  

singlets at δSi 24 and 7 along with a doublet of quartets at δSi −0.5 (J = 44, 3 Hz), the latter presumably 

being coupled by phosphorus and the CF3 group, whereas the doublet (δSi 26) only experiences 

coupling from phosphorus, which would support the formation of 4.2d. Compounds 4.2a and 4.2c 

exhibit only one resonance in the 31P NMR spectrum, suggesting either the E- and Z-isomers have an 

identical signal or only one isomer has formed. 

 

For 4.2d, the higher frequency species with a δP 161.3 is likely to be the E-isomer as it has generally 

been observed that Z-isomers exhibit lower frequency shifts in both the 13C{1H} and 31P NMR 

spectra.209 In addition to this, the E-isomer of fluorovinyl phosphanes generally exhibits larger P-F 

coupling (3JPF = 39 Hz),117 which can be augmented by interactions between overlapping lone pair 

orbitals (P and F) known as through-space coupling.209 The magnitude of coupling via the through-

space mechanism varies according to the element present and in the case of P-F species, if in close 

enough proximity this has generally been shown to increase the coupling constant, for example in o-

trifluoromethylsubstituted triphenylphosphane derivatives.210  

 

 

Scheme 29. Synthesis of the trifluoromethylphosphaalkenes (4.2). Only compound 4.2d could be isolated. 
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Table 19. Selected Spectroscopic data for compounds 4.2a-d. 

 P
a (3JPF)b F

a (3JPF)b 

4.2a 211.5 (47) −68.3 (47) 

4.2b 228.4 (38) −69.4 (38) 

4.2c 168.2 (46) −70.6 (46) 

4.2d 161.3 (39) −67.1 (39) 

c. as C6D6 solution.  d. in Hz.  

 

 

Figure 74. 31P{1H} NMR (C6D6, 161.72 MHz) spectrum for 4.2d. 

 

Compound 4.2d is readily isolated via static vacuum distillation, albeit with some loss of product due 

to its volatility, however, the isolation of 4.2a-4.2c proved more challenging. Compounds 4.2a and 

4.2b appear unstable to removal of volatiles, including via static-vacuum distillation, whereas volatiles 

can be removed from compound 4.2c. However, even when cooled to −40 °C, 4.2c slowly converts to 

a new species, apparent from a new resonance at δP 30 in the 31P NMR spectrum (septet, JPF = 13 Hz; 

Figure 75), with an apparent doublet observed in the corresponding 19F NMR spectrum at δF −76.5 (JFP 

= 13 Hz). The JPF coupling could be consistent with phosphorus coupling to two separate CF3 groups, 
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though in very similar or indeed equivalent environments, with a comparable shift to that of [1,3]-

diphosphacyclobutane (4.3; δP 34.5) observed.211,212 However, the head-to-tail dimer, 4.4, can be 

excluded, since both of the two CF3 groups would experience coupling to both phosphorus centres 

and thus result in a resonance with triplet multiplicity.   

 

Figure 75. 31P{1H} NMR (C6D6, 161.72 MHz) spectrum for potential dimer of 4.2c. 

 

 

Figure 76. [1,3]-Diphosphacyclobutane (4.3) and the compound 4.4 (the dimer of 4.2c). 

 

4.3 Reactivity Studies of the Trifluoromethylphosphaalkenes 

4.3.1 Diels-Alder (4+2) Cycloaddition Reactions 

In common with their carbon congeners, phosphaalkenes have previously been shown to undergo 

[4+2] cycloadditions with butadiene.211 Therefore, compound 4.2d was reacted with an atmosphere 

of butadiene (Scheme 30), resulting in the observation of four new resonances in the 31P NMR 

spectrum as those for 4.2d were lost. The new resonances all exhibit characteristic CF3 coupling (Figure 

77), with four associated doublets in the corresponding 19F NMR spectrum, the proportions of which 

suggest four discrete species. Notably, these species are observed at significantly lower frequency 

than for 4.2d and in a region often attributed to fully saturated phosphorus compounds.213 Heating 
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the reaction resulted in the loss of all four resonances, though it is noted that thermal degradation is 

also apparent upon heating 4.2d in isolation. Two of the species initially observed were found to be 

volatile in nature and could be separated from the mixture by static-vacuum distillation (Figure 78). 

Attempts to identify these two species by mass spectrometry resulted in the observation of a single 

molecular ion peak of 328 m/z, raising the possibility that they are diastereoisomers of 4.5 (Scheme 

30). 

 

 

Figure 77. 31P NMR (C6D6 ,161.72 MHz) for reaction mixture of 4.2d + butadiene. 
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Figure 78. 31P NMR (C6D6, 161.72 MHz) for destination flask, after static-vacuum distillation of 4.5. 

 

 

Scheme 30. [4+2] Cycloaddition reaction between 4.2d and butadiene, potentially affording the cyclic-phosphane (4.5). 

 

In an attempt to confirm the structure of 4.5, reactions were performed with W(CO)5(THF), the 

product being characterised by a quartet resonance at δP −40 (JPF =  Hz), which exhibited tungsten 

satellites (J(PW) = 238 Hz; Figure 79) and two broad singlets in the 19F NMR spectrum (δF −74 (w1/2 = 19 

Hz), −75 (w1/2 = 15 Hz)). Attempts to crystallise this complex from benzene resulted only in the 

observation of W(CO)3(η6-C6H6) by X-Ray diffraction, the only source of C6H6 is the solvent. 
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Figure 79. 31P NMR (C6D6, 161.72 MHz) for 4.5 + W(CO)5(THF). 

 

In an attempt to prepare a less-volatile product, compound 4.2d was reacted with the bulkier 1,4-

diphenyl-1,3-butadiene. Although four new species were again observed, this time in the region 46-

27 ppm in the 31P{1H} NMR spectrum, they were accompanied with a large amount of unreacted 4.2d, 

which persisted even after several days. Given the thermal sensitivity of 4.2d, photolytic activation 

was employed to potentially result in either [2+2] cycloaddition (dimerization) or accelerate the 

reaction as a small amount of heat is also given out. Irradiation with a high-pressure Hg lamp resulting 

in a significant increase in the intensity of the resonance at δP 46.3 (Figure 80), though a significant 

amount of 4.2d remained. Multiple other species are present in both the 31P{1H} (Figure 81) and 19F 

NMR spectra, hindering structural assignment, though the species observed at δP −80, has an 

associated doublet of doublets in the 19F NMR spectrum, (JFP = 16 Hz, J = 2 Hz), the coupling from which 

could suggest an interaction from two phosphorus centres, one in closer proximity, though there does 

not appear to be a second phosphorus environment exhibiting mutual coupling with that of δP −80 

(130 Hz, JPF = 16 Hz). Nonetheless, the associated molecular ion peak for the desired product was 

observed (4.6; 480 m/z), alongside that for the dimer of 4.2d (4.7; 548 m/z), which may account for 

the multiplet at δP 46.3, which exhibits an apparently higher order pattern, suggestive of closely 

related but magnetically inequivalent centres. Volatiles could be removed from these species via 

 
 Not observed between 300 and -300 ppm, though the corresponding peak could have been outside of that 
window. 
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static-vacuum distillation, though notably reactions with 1,4-diphenyl-1,3-butadiene are significantly 

less clean than butadiene itself.  

  

 

Figure 80. Dominant species by 31P{1H} NMR (C6D6, 161.72 MHz) for 4.2d + 1,4-diphenyl-1,3-butadiene. 

 

Figure 81. 31P{1H} NMR (C6D6, 161.72 MHz) for 4.2d + 1,4-diphenyl-1,3-butadiene. 

 

 

Figure 82. The products from the 4.2d + 1,4-diphenyl-1,3-butadiene reaction. 
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To further investigate [2+2] cycloadditions, compound 4.2d was reacted with 1 equivalent of 

phenylisocyanate (PhNCO). Under ambient conditions essentially only 4.2d was observed in the 31P 

NMR spectrum, therefore, the reaction mixture was irradiated with a high-pressure Hg lamp. The 

resulting 31P NMR spectrum exhibits five new resonances, the dominant new species being at δP 46.3, 

though a significant amount of 4.2d still remains (Figure 83). The resonance at δP 46.3 has previously 

been observed upon irradiation of 4.2d with other substrates (vide supra), which could suggest this 

species results from 4.2d itself. A molecular ion peak consistent with compound 4.8 (Figure 84) was 

observed by mass-spectrometry (393 m/z), though specifics of the structure remain undetermined. 

Similar attempts to react compound 4.2d with 1-hexyne resulted in an intractable mixture, while with 

furan and carbon monoxide (CO) no reaction was observed. 

 

 

Figure 83. 31P{1H} NMR (C6D6, 161.72 MHz) for 4.2d + PhNCO. 

 

  

Figure 84. Desired product from reacting compound 4.2d with PhNCO. 

 

4.3.2 Coordination Reactions of the Trifluoromethylphosphaalkenes 

Low-coordinate phosphorus species have previously often been stabilised by coordination to the -

W(CO)5 fragment, allowing for isolation and subsequent structural characterisation.214 Therefore 
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compound 4.2d was added to a W(CO)5(THF) solution, though only the tentatively assigned E-isomer 

(δP 161.3) reacted, resulting in a new phosphorus resonance at δP 173 (4.9a; Figure 85). This species 

also exhibits tungsten satellites, with an associated resonance observed in the 19F NMR spectrum (−61 

ppm (15 Hz)), consistent with the formation of [(CO)5WP(TMS)=(OTMS)CF3]. Interestingly, after 

stirring for an hour a new species started to form, characterised by a lower frequency phosphorus 

resonance (δP 162; 4.9b, Figure 86), which ultimately became the only species present after 16 hours, 

again exhibiting an associated resonance in the 19F NMR spectrum (−64 ppm (28 Hz)).  

Compound 4.9a exhibits a slightly larger phosphorus-tungsten coupling (1JPW: 4.9a = 272 Hz, 4.9b = 

260 Hz), but smaller JPF coupling than 4.9b (Δ11 Hz; Table 20), whereas both 4.9a and 4.9b exhibit a 

smaller JPF coupling than 4.2d. This is presumably a result of coordination, which has been reported to 

decrease the magnitude of coupling constants by virtue of the lone pair becoming involved in bonding 

to the metal.210  The extent of the coupling generally depends upon the coordination mode, where 

the lone pair is more intimately involved with bonding to the metal in η1-coordination, relative to η2, 

due to the increased directional interaction in the former and direct P-M bond.117 The coupling 

differences between 4.9a and 4.9b could feasibly result from different coordination modes, with the 

larger P-M coupling for 4.9a potentially the result of η1 coordination,185 where the increased s-contact 

to the metal results in an increased magnitude of P-W coupling at the expense of s-character in the 

internal ligand bonding, reducing JPF interactions, as seen for similar systems such as 

[(F3P)2Mo(CO)4].215,216 However, the differences between 4.9a and 4.9b are subtle and thus further 

evidence would be required to unequivocally confirm which coordination mode is present in each case 

(Figure 87); attempts to isolate these complexes led to decomposition and loss of phosphorus NMR 

signals. 

If the reaction was repeated and solvent immediately removed after the addition of W(CO)5(THF). This 

time a single multiplet is observed at δP 135.8 (4.9c; Figure 88), with a doublet observed in the 19F 

NMR spectrum (JPF = 25 Hz). Unlike 4.9a and 4.9b this species was stable after exposure to vacuum, 

though specifics of the structure of 4.9c remain undetermined, the acquisition of single crystals having 

thus far proven elusive. 

 

 



92 
 

 

Figure 85. Initial 31P{1H} NMR (C6D6 capillary, 161.72 MHz) spectrum of [(CO)5WP(TMS)=(OTMS)CF3. 

 

 

Figure 86. 31P{1H} NMR (C6D6 capillary, 161.72 MHz) spectrum of [(CO)5WP(TMS)=(OTMS)CF3 after 16 hours. 

 

 

Figure 87. Potential coordination modes for 4.9a and 4.9b. 
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Figure 88. 31P{1H} NMR (C6D6, 161.72 MHz) spectrum of 4.2d + W(CO)5(THF) after instantly removing solvent. 

 

Table 20. Selected Spectroscopic data for 4.9a-c. 

 δP (ppm) JPF (Hz) JPW (Hz) δF
a (JPF)b 

4.9a 173 15 272 −61 (15) 

4.9b 162 28 260 −64 (28) 

4.9c 136 25 211 −62 (25) 

a. In ppm. b. In Hz. 

Phosphaalkenes have previously been coordinated to a metal centre in an η2-arrangement and 

subsequently treated with base, resulting in base-induced desilylation to afford the respective 

coordinated phosphaalkyne.217 With this in mind, 4.9b was reacted with an equivalent of LiN(SiMe3)2, 

affording an extremely viscous oil, which upon concentrating formed a sticky film.  The associated 31P 

NMR spectrum exhibits 3 poorly resolved resonances (δP 205, 102, 9.4), though these species have 

not been identified. Compound 4.2d was also reacted with a range of Pt complexes, 

bis(triphenylphosphane)platinum-ethylene yielding no reaction, while 1:1 reactions with 

Pt(COD)MeCl, Pt(dppe)2 or  [Pt(PEt3)Cl2]2 led to decomposition. In the latter two cases only the 

platinum starting material was observed in the 31P NMR spectrum (δP 32 and 11, respectively).218,219 
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Similarly, reactions with [PdCl(allyl)]2 and AuCl(tht) led to the decomposition of compound 4.2d. 

Inconclusive data were obtained from reactions of 4.2d with a range of main-group compounds (i.e. 

I2, Se, MeI) and Lewis acids (see experimental for details). 

 

4.3.3 In-pursuit of Trifluoromethylphosphaalkynes 

Phosphaalkynes are typically synthesised via 1,2-elimination reactions, one of the most common 

examples being base induced desilylation from silylated phosphaalkenes, losing O(SiMe3)2 as a by-

product. With that in mind 4.2d should be ideally suited to afford the corresponding 

trifluoromethylphosphaalkyne (4.1) upon treatment with base (Scheme 31).  

 

 

Scheme 31. Proposed synthetic route to prepare trifluoromethylphosphaalkyne. 

 

Reacting 4.2d with a stoichiometric amount of LiN(SiMe3)2 at ambient temperature results in a broad 

triplet in the 31P NMR spectrum at δF 4 (Figure 89), which resolves into a doublet of doublets at 213 K 

(JPF = 8, 15 Hz; Figure 90), consistent with coupling to two inequivalent fluorine centres. The associated 

fluorine centres are observed in the corresponding 19F NMR spectrum (−90.2, −109.9), Figure 91), in 

a region consistent with precedent alkenic CF2 groups (e.g. F2C=CH2).220 The observation of two  signals 

in the 19F NMR spectrum each exhibiting doublet multiplicity and integrating 1:1, indicates the loss of 

a fluorine atom from the CF3 moiety, which is supported by the observation of trimethylsilylflouride 

(δF 158).221 The higher frequency signal exhibits additional coupling reminiscent of long range P-

methyl coupling as observed due to from the CH3 groups on Si (SiMe3 or OSiMe3) (cf. TMSF), which 

could suggest retention of the TMS-substituent and might be consistent with the formation of a 

phosphaallene 4.10a (Scheme 32).  

 

 
 TMSF integrates 4:1 relative to the proposed product, suggesting multiple things could be occurring in 
solution. 
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Scheme 32. Proposed products from reacting 4.2d with LiN(SiMe3)2 

 

However, no 29Si satellites were visible in the 19F NMR spectrum, similarly, no Si-F coupling was seen 

by 29Si{1H} NMR, though the spectrum was poorly resolved. Alternatively, a intramolecular cyclisation 

could have occurred, which would explain the loss of trimethylsilylfluoride, one possible product being 

phosphirene (4.10b), though the two fluorine atoms would presumably be equivalent, as seen for 

RP=CH-CF2
222 and therefore inconsistent with the coupling observed in the 19F NMR spectrum. Another 

possibility is oxaphosphirane formation (4.10c), the unsaturated -C=CF2 would render the two fluorine 

atoms inequivalent and account for the loss of trimethylsilylfluoride, though it would not account for 

the coupling observed on the higher frequency fluorine resonance and thus further evidence would 

be required to unequivocally confirm specifics of this product. For the reactivity studies this 

unidentified species will be described as compound 4.10. 

 

Figure 89. 31P{1H} NMR (C6D6, 303 K, 161.72 MHz) spectrum from reacting 4.2d with LiN(SiMe3)2. 
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Figure 90. 31P{1H} NMR (C6D6, 213 K, 161.72 MHz) spectrum from reacting 4.2d with LiN(SiMe3)2. 

 

Figure 91. 19F NMR (C6D6, 303 K, 375.87 MHz) spectrum from reacting 4.2d with LiN(SiMe3)2.. 

To confirm the identity of 4.10 more conclusive data such as structural evidence is required, therefore, 

attempts were made to coordinate this product to a metal centre. Firstly, reactions were performed 

with W(CO)5(THF) resulting in the observation of a doublet at 12.5 ppm in the 31P{1H} NMR spectrum, 

exhibiting tungsten satellites (JPW = 272 Hz). Notably, in the proton-coupled spectrum, this appears as  

a doublet of doublets, the magnitude of coupling (JPH = 359 Hz) being consistent with a direct P-H 

bond.223 Unfortunately, attempts to grow crystals of this species were not successful. Similar reactions 

with Fe2(CO)9 or Pt(COD)Cl2 led to its decomposition and reactions with [(Ph3P)2Pt-(η2-C2H4)] resulted 

only in the observation of the platinum starting material. 
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Figure 92. 31P{1H} NMR (C6D6, 161.72 MHz) spectrum of 4.10 + W(CO)5(thf) reaction product. 

 

Though the identity of 4.10 remains to be definitively established, the formation of 4.10a and 4.10b 

may imply the transient formation of the desired trifluoromethylphosphaalkyne (4.1), which 

constitutes a viable intermediate en route to such compounds. Kinetically unstabilised 

phosphaalkynes are known to exhibit limited lifetimes under ambient conditions.205 Therefore 4.2d 

was reacted with LiN(SiMe3)2 at −78 °C (Scheme 33); the NMR-probe was pre-cooled and initial 

analyses were performed at 193 K. The probe was then actively warmed to ambient temperature, 

with the NMR spectra recorded at regular temperature intervals (every 10 °C). At 193 K unreacted 

4.2d is the predominant species observed, alongside the formation of compound 4.10. Additionally, a 

resonance at δP 6 (q, J = 37 Hz; Figure 93) is also observed with an associated doublet in the 19F NMR 

spectrum at δF −72 (37 Hz; Figure 94), the mutual coupling being in the range of precedent 3JPF 

couplings (21-56 Hz),215,224 including unsaturated species such as phosphorane, CF3C(F)=C(F)PBu3 (23 

Hz),225 while smaller than the 2JPF coupling seen for FC≡P (82 Hz);207 these data could be consistent with 

the formation of 4.1, though this species is only observed at temperatures below 253 K and thus this 

cannot be confirmed.   
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Scheme 33. Reacting 4.2d with LiN(SiMe3)2 at room temperature or −78 °C. At room temperature could also be 4.10b or 
4.10c. 

 

Figure 93. 31P{1H} NMR (C6D6, 193K, 161.72 MHz) for Compound 4.2d + LiN(SiMe3)2.at −78 °C. 

 

Figure 94. 19F NMR (C6D6, 193K, 375.87 MHz) associated fluorine resonance for the proposed compound ‘4.1’, obtained 

from reacting 4.2d and LiN(SiMe3)2.at −78 °C.. 

 

The 31P NMR resonances of precedent phosphaalkynes have been observed across a wide range of 

frequencies (98.7 to −69.2 ppm; Table 21),202,226,227,228,229 making their chemical shifts difficult to 

predict. However, a DFT protocol has recently been documented, predicting 31P NMR shifts with 

relative accuracy, typically within a few ppm. 230 In this method the 31P NMR shifts are computationally 

derived from Equation 1, where δ is the chemical shift and σ is the isotropic magnetic shielding 

constant. Therefore, to predict the 31P resonance for compound 4.1, calculations were performed at 
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the PBE0/6-311+g (3d, 3p) level of theory, including a CPCM (C6H6 or CH2Cl2) solvent model; for 

comparison H-C≡P, tBu-C≡P, TMS-C≡P, Me-C≡P, Ph-C≡P and PH3 were calculated using the same 

model. These calculations were performed using a PMe3 secondary reference (δP −62.5), relative to 

85% phosphoric acid in H2O. The results from these calculations are tabulated below (Table 21). 

 

𝛿𝑋 = 𝜎𝑟𝑒𝑓 − 𝜎𝑋 + 𝛿𝑟𝑒𝑓      (1) 

 

Table 21. Experimental and Calculated 31P Chemical Shift (ppm), relative to phosphoric acid of selected phosphaalkynes, 

phosphanes and compound 4.1. 

Compound δExp
a δCalc

b δCalc
c 

H-C≡P -32 -10 -9.0 

tBu-C≡P -69.2 -40.5 -40.5 

TMS-C≡P 98.7 144.3 -144.6 

Me-C≡P -61 -38.1 -41.0 

Ar-C≡P 37.2-32.1 9.4 7.7 

4.1 6 -6.3 -2.0 

PH3 -238 -266.4 -266.3 

PMe3 -62.5 -62.5 (Reference) -62.5 (Reference) 

a. in C6D6. b. with a benzene solvent model. c. with a DCM solvent model. 

 

Although there is significant deviation from the experimental values, the general region of the 

computationally observed resonances are not unreasonable and thus the calculated chemical shift of 

4.1, δP = −6 or −2, could support the experimentally observed species (δP = 6) to indeed be 

trifluoromethylphosphaalkyne (4.1), though further evidence would be required to unequivocally 

confirm this.  

Alternative bases were also explored in the pursuit of compound 4.1 (Scheme 34), for example 

reacting 4.2d with NaOPh at ambient temperature resulted in a doublet of multiplets in the 31P{1H} 

NMR spectrum at 131 ppm, as well as a broad resonance at −52 ppm and a resonance at −58 ppm 

exhibiting a higher order splitting pattern (Figure 95). Attempts to remove the volatiles resulted in a 

viscous oil, which was sparingly soluble in acetone but defied further characterisation. In contrast, 

repeating the reaction with NaOH resulted in two species in the 31P NMR spectrum, a quartet (δP −7.4 

 
 The values presented are adjusted relative to 85% H3PO4 in H2O (δP 0) 
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(7.3 Hz)) and a singlet (δP −25), though after a couple of hours only the singlet remained, with 

trimethylsilyl fluoride, a doublet at δF −128 (J = 54 Hz) and multiple broad signals observed in the 

associated 19F NMR spectrum.  

 

 

Scheme 34. Alternative bases explored and desired reaction products. 

 

Similar reactions with NaOtBu resulted in a doublet of doublets at δP 62.0 (J = 59, 2 Hz; Figure 96), a 

significantly higher frequency than observed from the reactions with LiN(SiMe3)2 (4.10). The 

corresponding 19F NMR spectrum exhibits a doublet (−90.6 ppm) and a doublet of doublets (−106.6 

ppm) (Figure 97), the latter exhibiting JFF and JPF coupling of 56 and 59 Hz respectively, as well as a 

resonance consistent with the loss of trimethylsilyl fluoride (δF 158).221 These data could indicate a 

series of different products, much like for compound 4.10, however, in this instance the higher 

frequency fluorine is presumably not fully resolved. Notably, relative to 4.10 the phosphorus 

resonance is at a higher frequency, which could indicate the substituent at phosphorus is different. 

The observation of a resonance at 1.1 ppm in the 1H NMR spectrum could support this notion, though 

further investigation would be required to identify this product. Upon exposure to vacuum, the 

species observed in the reaction mixture decomposed, resulting in the loss of all phosphorus 

resonances.  

 

 

Figure 95. 31P{1H} NMR (C6D6, 161.72 MHz) for reaction mixture of 4.2d + NaOPh. 
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Figure 96. 31P{1H} NMR (C6D6, 161.72 MHz) for reaction mixture of 4.2d + NaOtBu. 

 

Figure 97. 19F NMR (C6D6, 375.87 MHz) for reaction mixture of 4.2d + NaOtBu. 

In an attempt to trap the transient phosphaalkyne (4.1), the reaction was repeated in the presence of 

[RuHCl(CO)(PPh3)3], which has previously been demonstrated to insert phosphaalkynes into the Ru-H 

bond.231 This was initially attempted by reacting 4.2d with LiHMDS at −78 °C and subsequently adding 

[RuHCl(CO)(PPh3)3], which resulted in a brown precipitate. After filtration the precipitate was analysed 

by 31P NMR, which exhibited only resonances for 4.10, suggesting this was the predominant product. 

In contrast, upon analysing the filtrate by NMR spectroscopy, four sets of doublets and a broad singlet 

were observed in the 31P{1H} NMR spectrum (Figure 98), with the associated 19F NMR spectrum 

exhibiting a singlet resonance at −54.0 ppm, suggesting only one fluorine environment is present. A 

comparable outcome was achieved by transferring the transient trifluoromethylphosphaalkyne (4.1) 
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into a solution of [RuHCl(CO)(PPh3)3] via static-vacuum distillation. This species remained after 

exposure to vacuum, however, efforts to grow crystals resulted in the formation of 

(PPh3)2Ru(X)µ2Cl3Ru(CO)(PPh3)2 (Figure 99) by X-Ray diffraction, the source of which remains unclear.  

 

 

Figure 98. 31P{1H} NMR (C6D6, 161.72 MHz) for 4.2d + [RuHCl(CO)(PPh3)3]. 

 

 

 

Figure 99. Molecular structure of (PPh3)2Ru(X)µ2Cl3Ru(CO)(PPh3)2 with thermal ellipsoids at the 50 % probability level. 
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4.4 Summary 

 A series of trifluoromethylphosphaalkenes, RPC(OSiMe3)CF3, have been successfully synthesised and 

characterised by NMR spectroscopy. Among these, the trimethylsilyl-analogue, 4.d demonstrated the 

highest chemical stability, allowing purification via static-vacuum distillation, while 4.2a and 4.2b 

appear unstable to removal of volatiles and 4.2c slowly converts to a new unidentified species. 

Compound 4.2d was therefore used in reactivity studies, including being reacted with a range of bases 

in an attempt to form trifluoromethylphosphaalkyne (F3C-C≡P; 4.1); at ambient temperature the 

reaction with LiN(SiMe3)2 afforded resonances which indicate a product reminiscent of phosphaallene, 

phosphirene or indeed oxaphosphirane formation (4.10). Alternatively, analysing the reaction mixture 

at −80 °C led to the observation of resonances in the 31P and 19F NMR spectra which could be consistent 

with the formation of 4.1; this is supported by DFT studies, the computed phosphorus shift of 4.1 

being in the same region as the experimental data.  

Attempts to coordinate the trifluoromethylphosphaalkenes and 4.10 to metal centres led to the 

observation of tungsten-pentacarbonyl complexes in situ. In the case of the 

trifluoromethylphosphaalkenes an apparent kinetic product was observed, which is consistent with 

[(CO)5WP(TMS)=(OTMS)CF3]; this is seen to convert to a thermodynamic product which is tentatively 

assigned as the η2-analogue, though the coordination mode has yet to be confirmed. Similar attempts 

with other metal complexes typically resulted in decomposition of the phosphaalkenes, noting the 

sensitivity of the compounds. 
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Chapter 5 – The First Dianionic Diphosphaboracycles 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

“Not all those who wander are lost.” 

--The Lord of the Rings: The Fellowship of the Ring (2001) 
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5.1 Introduction 

Since the discovery of ferrocene in 1951,232 the cyclopentadienyl ligand (Cp; 5.1a) has played a pivotal 

role in developing the field of organometallic chemistry.233 Metal cyclopentadienyl complexes are 

widely used within the fields of catalysis234,235 and molecular magnetism,236 as well as in coordination 

and organometallic chemistry more generally.237 This inspired the development of the dianionic 

systems pentalenide (5.1b) and cyclooctatetranide (5.1c),238,239 which can be used to stabilise both 

mono- and bi-metallic complexes with coordination modes ranging from η8 to η3, thus featuring 

heavily in organometallic chemistry.240 Although mono-anionic heterocyclic derivatives have been 

developed, their use in organometallic chemistry is sparsely reported in comparison to compounds 

5.1a-5.1c.241 These heterocycles are limited to  pyrrolide, imidazolide, 1,2,3-triazolide, along with their 

benzo-fused analogues (Figure 101).  

 

 

Figure 100. Carbocyclic anionic ligands. 

 

Figure 101. Pyrrolide, imidazolide, 1,2,3-triazolide and benzo-fused analogues.241 

 

Much like nitrogenous systems, anionic phosphorus heterocycles are rare in comparison to carbon 

congeners, the first 1,2-diphospholide only being discovered in 1995 (5.2a),242 with reports of 

triphospholide (5.2b),243 tetraphospholide (5.2c) and pentaphospholide (5.2d) following shortly 

afterwards.244,245 More recently, benzo-fused systems have been explored, with examples limited to 

those illustrated in Figure 102. Compounds 5.3a-5.3e have been reported between 2015 and 2018 

and Wright or Hey-Hawkins,246,247,248 and the P3 and P2As derivatives (5.4a-5.b) by Russell and co-

workers.249 Whereas Schulz synthesised a chlorinated aza-diphospha-indane-1,3-diyl (5.5a), which can 

be reduced to access the resonance-stabilized biradical, 5.5b.250  
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Figure 102. Examples of heterocyclic monoanions with their respective counterions not included. 5.2a: R = Ph, Et, 5.2b: R = 
Mes*; 5.4: E = P (5.4a), As (5.4b); 5.5a, 5.5b: R = tert-Butyl hydroperoxide ( tBuBhp). 

 

Notably absent from the aforementioned benzo-fused examples are dianionic ligands, as surprisingly 

no such species are known; moreover, while a range of pnictogen linkages have been accessed 

including P-P, P-N-P and P-P-P, no group 13-group 15 have been reported. Nonetheless, the in silico 

study of the BP2C2H3 and BC2P2H3
2- found that these heterocycles possess significant aromatic 

character,251 similar to that of the Cp- and P5
- ions. The isoelectronic relationship between boroles and 

the cyclopentadienyl cation and the exploitation of the former within catalysis252,253 renders the 

benzo-fused C2P2B2- heterocycles a desirable proposition for organometallic and coordination 

chemistry in general. Herein the development of novel dianionic diphosphaboracycles is reported and 

their reactivity is explored with both main-group compounds and transition-metal complexes. 

 

5.2 Synthesis and Characterisation of [C6H4P2BC6H5]2- 2[Li(solv.)]2+ (solv. = THF, TMEDA)  

The precedent benzofused-1,2-diphospholide 5.4a was accessed via a one pot reaction with 1,2-

bis(phosphino)benzene and nBuLi (4 equiv.), followed by the addition of PCl3 (Scheme 35).249 Unlike 

5.4a, it was previously found that attempts to tetralithiate 1,2-bis(phosphino)benzene and then add 

PhBCl2 did not afford the desired dianionic diphosphaboracycle.254 However, the double 
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deprotonation of 1,2-bis(phosphino)benzene with nBuLi, addition of dichlorophenyl borane and then 

subsequent treatment with a further two equivalents of nBuLi affords compound [5.6].2[Li(THF)1.5]  as 

an intense yellow solid in moderate yield (Scheme 36). 

  

 

Scheme 35. Synthesis of 5.4a.249 

 

Scheme 36. Synthesis of compound [5.6].2[Li(THF)1.5]. 

 

The 31P NMR spectrum of [5.6].2[Li(THF)1.5] displays a single resonance at δP 50.5 (d8-THF), the lack of 

P-H coupling being consistent with the loss of all P-H bonds. In the 1H NMR spectrum, resonances were 

observed for coordinated THF (δH 3.62, 1.77) as well as five aromatic environments, the latter 

integrating consistently for the benzo-backbone and phenyl group, with consistent resonances 

observed in the 13C{1H} NMR spectrum. These data suggest the benzo-fused C2P2B heterocycle has 

formed, which is supported by the corresponding 11B NMR spectrum exhibiting a resonance at δB 69.4, 

consistent with a three-coordinate boron centre.255 

The structure of [5.6].2[Li(THF)1.5] was ultimately confirmed by X-Ray diffraction, identifying 

[5.6].2[Li(THF)1.5] as a polymeric network in the solid state, in which the planar-C2P2B rings are bridged 

by η1-coordination to Li, with alternate units also having an η5-interaction to another lithium ion 

(Figure 103). This η5 coordination results in the boron-bound phenyl group being slightly offset from 

planarity ( = 26.49 °), which contrast those that lack this interaction, wherein the phenyl group is 

completely planar with respect to the C2P2B ring.  

 

 
 Initial synthesis of [5.6].2[Li(THF)1.5] was performed alongside summer student Elinor Canham. 
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Figure 103. Molecular Structure of [5.6].2[Li(THF)1.5] with hydrogen atoms and disorder omitted for clarity; displacement 
ellipsoids at the 50% probability level. Selected bond lengths (Å) and angles (°): P2-B2 1.874(3), B2-C30 1.574(7), P2-C31 

1.797(4), P2-Li2 2.582(12), Li2-O3 1.925(13), C31-C31’ 1.420(6), P3-B3 1.866(2), B3-C23 1.582(5), P3-C22 1.813 (2), P3-Li3 
2.661(5), B3-Li3 2.667(5), C22-Li3 2.517(6), Li3-O4 1.946(5), C22-C22’ 1.418(5). P2-B2-P2’ 111.2(3), C30-B2-P2 124.42(13), 

B2-P2-C31 96.70(18), P2-C31-C31’ 117.71(12), Li2-P2-B2 98.6(3), P2-Li3-P3 96.12(15), P3-Li3-P3’ 68.97(11), O4-Li3-P3 
154.8(3), P3-Li3-B3 121.7(2), C23-B3-P3 123.59(10), B3-P3-C22 95.73(13), B3-Li3-C22 63.44(14), P3-C22-C22’ 117.68(8), Li2-

P3-C22 108.4(3). 

 

In seeking disaggregation of [5.6].2[Li(THF)1.5], the synthesis was repeated in the presence of TMEDA, 

which afforded the monomeric [5.6].2[Li(TMEDA)] (Scheme 37). The hydrocarbon backbone of 

[5.6].2[Li(TMEDA)] exhibit comparable spectroscopic features to those of [5.6].2[Li(THF)1.5], with the 

addition of resonances associated with TMEDA integrating consistently for the formation of 

[5.6].2[Li(TMEDA)].  Notably, the 31P NMR resonance (δP 52.1 (d8-THF)) is at a higher chemical shift 

relative to [5.6].2[Li(THF)1.5], while the boron centre resonates at lower frequency (δB 66.4). 

 

 

Scheme 37. Synthesis of Compound [5.6].2[Li(TMEDA)]. 
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The structure of [5.6].2[Li(TMEDA)] was confirmed by X-Ray diffraction, these data showing the 

monomeric diphosphaboracycle unit coordinating a lithium atom to each face of the C2P2B ring in an 

η5 arrangement (Figure 104) with the boron-bound phenyl group slightly offset from planarity ( = 

8.78 °). The internal geometry of the heterocycle is largely comparably to [5.6].2[Li(THF)1.5], the P-B 

linkage (1.877(2) Å) being consistent with a single bond,256 while, the P-C distances (1.812(2) Å) are 

consistent with precedent singly bonded species, including the neutral cyclic P/B system, 

Mes*P(CH2CH2)2BC6F5 (1.818(3)),257,258 and the C-C lengths are consistent with aromatic C-C bonds (ca 

1.4-1.5 Å).259,260  

 

 

Figure 104. Molecular Structure of [5.6].2[Li(TMEDA)] with the TMEDA disorder omitted for clarity; displacement ellipsoids 
at the 50% probability level. Selected bond lengths (Å) and angles (°): P1-B1 1.877(2), P2-B1 1.883(2), P1-C1 1.812(2), P2-C2 
1.811(2), C1-C2 1.441(3), B1-C7 1.580(3), Li1-P1 2.636(3), Li1-P2 2.664(3), Li1-B1 2.458(4), Li1-C1 2.610(4), Li1-C2 2.638(4), 

Li2-P1 2.636(3), Li2-P2 2.607(3), Li2-B1 2.490(4), Li2-C1 2.528(4), Li2-C2 2.490(4). P1-B1-P2 114.35(11), P1-C1-C2 
118.34(14), P2-C2-C1 118.31(15), P1-Li1-B1 43.07(7), P1-Li1-P2 73.20(8), C1-P1-B1 94.53(9), C2-P2-B1 94.45(9), C1-Li1-C2 

31.87(7), P1-Li2-B1 42.63(7), P1-Li2-P2 43.28(7), C1-Li2-C2 33.35(8), C7-B1-P1 122.80(14), C7-B1-P2 112.80(14). 

 

The sodium salt of [5.6]2- was also pursued, employing nBuNa in place of nBuLi. Though the initial 

metalation appeared to proceed, affording a characteristic yellow solution, the addition of PhBCl2 

resulted in a loss of colouration and formation of a precipitate. The precipitate was presumably NaCl, 

as only the regeneration of 1,2-bis(phosphino)benzene was confirmed spectroscopically. Similar 

results were obtained while pursuing potassium analogues. 

In an effort to incorporate a softer metal centre, MgCl2 was added to [5.6].2[Li(THF)1.5], the product 

from which exhibited a broad 31P{1H} resonance at 46 ppm (Figure 105); the broad nature of this 

species could indicate a dynamic equilibrium, albeit VT NMR studies failed to reach the low or high 
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temperature limiting regimes, however, similar behaviour has been observed, for example with 

Mg[P(C6H5)2]2,261,262 as a result of the Schlenk equilibrium.263 The solvent dependence of the Schlenk 

equilibrium has been well documented,264 with the addition of dioxane often employed to drive the 

equilibrium to one side (typically forming R2Mg, RMg in this instance),265 however in this case only 

decomposition was observed. Attempts to elucidate the ‘R2Mg’ structure through the growth of single 

crystals only resulted in the observation of [5.6].2[Li(THF)1.5], which could suggest not simply just 

Schlenk equilibrium is taking place. Attempts to sequester the cation with 12-crown-4 were 

unsuccessful. 

 

 

Figure 105. 31P{1H} NMR (C6D6, 161.72 MHz) spectrum for the product from reaction [5.6].2[Li(THF)1.5] with MgCl2. 

 

To gain further insight into the electronic structure of [5.6]2-, DFT analyses were performed (PBE0/6-

311++G(3d, 3p)); the bond metrics from the optimised structure are in good agreement with the solid-

state. The HOMO is composed of an antisymmetric πPC-orbital which is nodal at boron, while the low-

lying HOMO-1 is comprised of πcc and πBP components; the phosphorus lone pairs are not observed 

until HOMO-2 ([5.6DFT]2-; Figure 106). These data can be compared with those for BC2P2H3
2-,251 for 

which the HOMO was determined to be predominantly associated with boron, with slightly 

contributions from πBP and πPC orbitals, while the HOMO-1 is a πCC-orbital and the HOMO-2 delocalised 

round the whole molecule. These differences presumably arise from the benzo-fused substituent, 

which BC2P2H3
2- does not possess.  
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Figure 106. Frontier molecular orbitals of 5.6DFT at the PBE0/6-311++G(3d,3p) level. 

 

Nucleus-independent chemical shift (NICS) calculations were explored to ascertain the degree of 

aromaticity for [5.6]2-; these were performed at the centres of the benzo and diphosphaborole rings 

(NICS(0)) and 1 Å above / below each ring (NICS(1)). The data were compared against a benzene 

reference computed at the same level of theory. The reference data (−8.3, −10.4) compare well 

against precedent literature,266 affording confidence in the chosen model. Values for the C2P2B ring 

(−5.3, −7.4) and benzo-backbone (−4.1, −6.7) for NICS(0) and NICS(1) respectively, suggest [5.6DFT]2 to 

be aromatic in nature, though notably less so than benzene and indeed the proposed BC2P2H3
2- species 

(−10.5 and −9.2).251 The difference in frontier molecular orbitals and NICS values between 5.6DFT and 

BC2P2H3
2- suggests that the benzo-fused backbone and/or the boron substituent significantly influence 

their aromatic character, presumably with [5.6DFT]2- experiencing poor orbital overlap for the boron-

bound phenyl group as illustrated by the off-set from planarity observed in both the solid state and 

gas phase (in silico). 

 

5.3 The Attempted Synthesis of [{C6H4P2B}2C6H4]4- 4[Li(solv.)]4+ (solv. = THF or TMEDA) 

If the phenyl group of [5.6DFT]2- could be fixed in a planar arrangement, the delocalisation may be 

enhanced, thus affording an extended π-conjugated analogue of [5.6]2-. Therefore, attempts were 

made to bridge two C6H4P2B units via a phenyl group. With this in mind, 1,2-bis(phosphino)benzene 

was deprotonated with nBuLi (2 equiv.), treated with 1,4-Bis(boryldichloride)benzene (0.5 equiv.), 

which was prepared following modified literature procedures (Scheme 38), and then subsequently a 

further two equivalents of nBuLi, affording a yellow solid after workup. The product exhibited an 

AA’BB’ spin system in the 31P{1H} NMR spectrum, with resonances centred at δP −1.0 and δP −44.5, the 

 
 (NICS(0), NICS(1)) 
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associated proton-coupled spectrum clearly displaying P-H coupling. The product was ultimately 

identified to be the previously reported compound [C6H4P2H]2  by single crystal diffraction (5.7; Figure 

107), with which the spectroscopic data agree.267 Compound 5.7 has previously been prepared 

catalytically using CpTi(C4H8)N=PtBu3 and [Cp*2ZrH3]-267,268 at elevated temperatures (75 and 90 °C for 

72 h and 30 min, respectively), however, this would seem to be the first preparation under ambient 

conditions. 

 

 

Scheme 38. Synthesis of 1,4-bis(boryldichloro)benzene and proposed scheme for the preparation of [{C6H4P2B}2C6H4]4- 
4[Li(THF)n]4+. 

 

Figure 107. Molecular Structure of 5.7; displacement ellipsoids at the 50% probability level. 

 

This reaction was repeated in the presence of TMEDA, the product exhibiting a singlet resonance in 

the 31P{1H} NMR spectrum at −127 ppm, which resolved as a doublet of doublets in the proton-coupled 

spectrum; in addition, resonances associated with TMEDA were observed in the 1H NMR and a singlet 

at δLi 0.66 in the 7Li NMR spectrum, all of which match the literature for [C6H4{P(H)}2][Li2TMEDA2] (5.8; 

Figure 108).267  

 

P 

C 
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Figure 108. Structure of [C6H4{P(H)}2][Li2TMEDA2] (5.8). 

5.4 The Attempted Synthesis of [C6H4P2EC6H5]2- 2[Li(THF)1.5]2+ (E = Al, Si). 

Lappert and co-workers previously investigated neutral 1,3-diphospha-2-metallapentanes (Figure 

109),255 incorporating MLn fragments (MLn = ZrCp2, SnMe2, SnR2 or BAr; R = CH(SiMe3)2, Ar = C6H2
tBu3-

2,4,5). Similarly, Wright and Russell have incorporated P, As or Sb into a benzo-fused phosphacycle 

(Scheme 35, vide supra), the products from which show some analogy to [5.6].2[Li(THF)1.5], based on 

these similarities, the development of analogues of [5.6].2[Li(THF)1.5] incorporating main group 

elements seemed a logical target.  

 

 

Figure 109. Lappert and co-workers 1,3-diphospha-2-metallapentanes.255 

 

The aluminium analogue of [5.6].2[Li(THF)1.5] (Scheme 39) was pursued by reacting 1,2-

bis(phosphino)benzene with nBuLi (2 equiv.), followed by the addition of MeAlCl2 and subsequently 

another two equivalents of nBuLi. The product exhibited a very broad 31P NMR resonance, δP −132, at 

significantly lower frequency than that of [5.6].2[Li(THF)1.5] (δP 50.5), exhibiting a 1JPH coupling in the 

31P spectrum (JPH = 204 Hz), inconsistent with the desired product. In contrast, employing Cl2SiPh2 in 

place of MeAlCl2, resulted in a doublet at δP −110 (JPP = 18 Hz), which resolved into a doublet of 

multiplets in the proton-coupled spectrum (JPH = 191 Hz), indicative of a P-H containing species. There 
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was also a broad singlet at δP −130 in the 31P{1H} NMR spectrum. None of the observed resonances 

appear to display JPSi coupling, suggesting a P-Si bond was not formed. 

 

 

Scheme 39. Attempted synthetic route to access the aluminium and silicon Analogues of 5.6.2[Li(THF)1.5]. 

5.5 Electrochemical investigation of [5.6]2- 

As noted (vide supra) a common feature from efforts to prepare analogues of [5.6].2[Li(THF)1.5] has 

been the reformation of 1,2-bis(phosphino)benzene; this is also encountered during efforts to 

coordinate [5.6]2- to transition metals (vide infra; Section 5.6.2). This raises the possibility that [5.6]2- 

may be particularly reducing in nature, and thus not readily stabilised by anything more oxidising than 

Li+ (−3.04 V).269 In order to explore this possibility and probe the electronics of the system more 

generally, cyclic voltammetry studies were conducted on [5.6].2[Li(TMEDA)] in THF solutions at a 

platinum disk working electrode (1 mm) with [nBu4N][PF6] supporting electrolyte.   

Compound [5.6].2[Li(TMEDA)] exhibits a distinctive irreversible oxidative event at Epc = −0.755 V  

relative to the Fc/Fc+ couple (−0.131 V vs SHE)2270 (Figure 110), this event becoming more resolved at 

higher scan rates (Figure 111).  While this is consistent with [5.6].2[Li(TMEDA)] exhibiting an 

appreciably reducing character, this should not be prohibit coordination. Thus, while complexes based 

on Zn2+, Fe3+, and Sn2+ (−0.76, −0.77, −0.14 V),271 may indeed be unstable, less oxidising species (e.g. 

Pt2+, Ru+3, U4+ (+0.73, +0.25, +0.52 V)  should still be viable targets. 

 

 
 Common redox potentials are typically reported relative to the standard hydrogen electrode (SHE), therefore a 
conversion factor (+624 mV) was implemented for the oxidative event. 
 Standard electrode potentials for selected metals as aqueous solutions (25 °C). 
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Figure 110. Cyclic Voltammagram for [5.6].2[Li(TMEDA)] as solution in THF (5 mM) with nBu4NPF6 (0.1 M) supporting 
electrolyte; recorded at 100 mV S-1. 

 

Figure 111. Cyclic Voltammagram for [5.6].2[Li(TMEDA)] as solution in THF (5 mM) with nBu4NPF6 (0.1 M) supporting 
electrolyte; recorded at 300 mV S-1. 
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5.6 Reactivity Studies of [C6H4P2BC6H5]2-
 [Li2(solv.)]2+ (solv. = THF, TMEDA) 

5.6.1 In Pursuit of Phosphorus Functionalisation. 

The solid-state structures for compounds [5.6].2[Li(THF)1.5] and [5.6].2[Li(TMEDA)] suggest there are 

two possible sites for reactivity, viz. the π-system or phosphorus centre. In order to explore the latter, 

compounds [5.6].2[Li(THF)1.5] and [5.6].2[Li(TMEDA)] were reacted with electrophiles based on main 

group elements, including Si, Sn, Pb and I in pursuit of neutral diphosphaboracyclic ligands. 

In an effort to prepare compound 5.9 (Figure 112), [5.6].2[Li(THF)1.5] was reacted with two equivalents 

of TMSCl, NMR analysis of which noted the the formation of a new broad singlet in the 31P NMR 

spectrum, δP −40, appreciably shifted from that of [5.6].2[Li(THF)1.5] (δP 50.5). Notably, this species is 

only observed in situ, attempts to remove volatiles via static-vacuum distillation leading to the 

observation of only 1,2-bis(phosphino)benzene (δP −126),272 which could potentially be a facet of a 

weak P-B bond and the basic nature of phosphorus in this compound, presumably abstracting protons 

from the solvent.  

 

 

Figure 112. The proposed silylated diphosphaborole, C6H4P2(SiMe3)2BPh (5.9). 

 

Attempts to methylate at phosphorus proceeded by reacting [5.6].2[Li(THF)1.5] with two equivalents 

of MeI, however, in this instance a mixture of P-H containing species was observed around δP −124, 

these species being unisolable and short-lived; repeating this reaction with [5.6].2[Li(TMEDA)] 

resulted in the loss of all phosphorus resonances. Alternatively, the preparation of alkylphosphanes 

from silylated phosphane precursors have been reported to afford higher yields as a consequence of 

reduced side product formation.273 Therefore, the proposed compound 5.9 was generated in situ and 

reacted with two equivalents of methyl iodide. However, again only the formation of 1,2-

bis(phosphino)benzene was observed.  

Moving to slightly longer alkanes than methyl, reactions with two equivalents of isopropyl bromide 

and [5.6].2[Li(THF)1.5] were performed, initially resulting in two new broad resonances in the 31P NMR 

spectrum at δP 95.6 and 6.7 respectively (Figure 113), which were no longer observed after exposure 
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to vacuum. Attempts to isolate this species by static-vacuum distillation led to the observation of two 

new doublets instead (Figure 114), both exhibiting a mutual coupling constant of 66 Hz. A singlet was 

observed at δLi 0.4 in the 7Li NMR spectrum, consistent with LiBr formation.274 Nevertheless, this 

species is unlikely to be compound 5.10 (Scheme 40), as if this product had formed the two 

phosphorus centres would presumably exhibit very similar chemical shifts or indeed be equivalent. 

This product was found to decompose over time and no molecular ion peak consistent with 5.10 was 

observed by mass spectrometry.  

 

Figure 113. 31P{1H} NMR (C6D6, 161.72 MHz) spectrum for the reaction of [5.6].2[Li(THF)1.5] with iPrBr. 

 

 

Figure 114. 31P{1H} NMR (C6D6, 161.72 MHz) spectrum for the reaction of [5.6].2[Li(THF)1.5] with iPrBr, after exposure to 
vacuum. 
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Scheme 40. Reaction scheme and desired product from the reaction of [5.6].2[Li(THF)1.5] and iPrBr. 

 

Repeating this reaction with [5.6].2[Li(TMEDA)] in place of [5.6].2[Li(THF)1.5], resulted in the 

observation of a multitude of resonances below  −10 ppm in the 31P{1H} NMR spectrum, though higher 

order coupling was observed for the resonances at δP 53 and −0.7 (Figure 115). Efforts to isolate this 

species led to loss of all phosphorus resonances. Reactions were also performed with benzyl chloride 

which afforded two doublet resonances at δP −22 and −40 respectively, exhibiting a mutual coupling 

(JPP = 120 Hz), though there were also multiple other signals present and attempts to purify this species 

led to the loss of all phosphorus resonances.  

 

 

Figure 115. 31P{1H} NMR (C6D6, 161.72 MHz) spectrum for the reaction of [5.6].2[Li(TMEDA)] with iPrBr. 

 

In an attempt to halogenate the phosphorus centres, compound [5.6].2[Li(THF)1.5] was reacted with 

I2 (Scheme 41), initially resulting in a higher order splitting pattern (Figure 116) reminiscent of that 

seen in Figure 115, though at a different chemical shift. The respective 11B resonance has shifted to 

significantly lower frequency δB 27.8, relative to [5.6].2[Li(THF)1.5] (δP 69.4) and the 7Li NMR spectrum 

exhibits a single resonance at δLi −0.27, consistent with the formation of LiI.275 Interestingly, leaving 

the reaction mixture for longer led to the loss of the higher order 31P{1H} resonances, which are 
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replaced by multiple new species, the major resonances being at δP 74.9 and δP −78.42, exhibiting a 

similar higher order splitting pattern (Figure 117). 

 

 

Scheme 41. Reaction between [5.6].2[Li(THF)1.5] and I2 and the desired product. 

 

 

 

Figure 116 .31P{1H} NMR (C6D6, 161.72 MHz) spectrum for the reaction of [5.6].2[Li(THF)1.5] with I2. 
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Figure 117. 31P{1H} NMR (C6D6, 161.72 MHz) spectrum for the reaction of [5.6].2[Li(THF)1.5] with I2, longer reaction time. 

 

In efforts to bridge the two phosphorus centres, [5.6].2[Li(THF)1.5] was reacted with PhPCl2, however, 

only intractable mixtures were observed. Similar reactions with [5.6].2[Li(TMEDA)] and two 

equivalents of Ph2PCl resulted in apparent decomposition as only the halophosphane starting material 

was observed in the 31P NMR spectrum (δP 82).276 Alternatively, reacting [5.6].2[Li(THF)1.5] with 

Ph2SnCl2 resulted in a sharp singlet resonance in the 31P NMR spectrum at δP −156 (5.11), exhibiting 

119Sn and 117Sn satellites (I = ½, 8.59 %; I = ½, 7.68 % respectively; Figure 118) at significantly lower 

frequency relative to precedent triaryl and trialkyl stannyl phosphanes ([Me3SnPPh2]; δP −56.2, 

[Ph3SnPPh2]; δP −56.6).277,278 Tin-phosphorus couplings of 705 Hz were observed, these being 

consistent with precedent 1JSnP coupling,279,280 though a small trace component is observed as a 

doublet of doublets which is almost coincident with these satelites, the identify of which has not been 

established. The associated 119Sn NMR spectrum, exhibits a corresponding signal to that of δP −156, 

supporting the formation of a P-Sn bond. The 1H NMR spectrum of 5.11 exhibits eight broad features 

in the aromatic region, the smaller resonances integrating consistently for the benzo-fused and boron-

bound phenyl group, a broad resonance is observed in the boron NMR spectrum at δB 77. The 13C{1H} 

NMR spectrum exhibits nine aromatic resonances, though the ipso carbon was unresolved. Compound 

5.11 was isolated as a pale-yellow oil and attempts to crystallise this material were unsuccessful, 

similarly, mass spectrometric analyses were inconclusive. A small trace component is observed as a 

doublet of doublets which is almost coincident with these satellites, the identity of which has not been 

established.  
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Figure 118. 31P{1H} NMR (C6D6, 161.72 MHz) spectrum for the product from reaction 6.2[Li(THF)1.5] with Ph2SnCl2 (5.11). 

 

 

Figure 119.31P{1H} NMR (C6D6, 161.72 MHz) spectrum for the product from reaction [5.6].2[Li(THF)1.5] with Ph2SnCl2 (5.11), 
satellites are overlapping with a trace impurity, exhibiting a doublet of doublets. 
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In seeking similar systems to 5.11 and to try and prepare a solid, rather than an oil, comparable 

reactions were undertaken using tBu2SnCl2. However, in this instance the reaction was not as clean, 

the product exhibiting a multitude of P-H species; nevertheless, a resonance is observed at δP −118 

which appears to display Sn satellites, the magnitude of which (J = 1004, 962 Hz) is much larger than 

observed for 5.11. There is , however, some precedent for such large 1JPSn coupling, for example β-

diketiminatotin(II) dicyclohexylphosphanide (1JPSn = 949 Hz), diphenylphosphanide (1JPSn = 978 Hz; )281 

[Ph*SnP(H)Trip] (Ph* = 2,6-(Trip)2C6H3, Trip = 2,4,6-iPr3C6H2; 1JPSn = 934 Hz) and [Trip2Sn(F)P(H)Ar] (Ar 

= (2,4,6-tBu3C6H2; 1JPSn = 995 Hz).282,283 Similar reactions with two equivalents of nBu3SnCl show multiple 

species by 31P{1H} NMR, though notably there are doublets at δP −140 and −160, both exhibiting a 

coupling of 184 Hz, consistent with P-P interaction.284 The aforementioned analyses were performed 

with the reaction mixture and removal of volatiles under reduced pressure resulted in the loss of some 

impurities (Figure 120), however, the desired species at δP −118 decomposed over time. In contrast, 

reacting [5.6].2[Li(TMEDA)] with Ph2SnCl2 resulted in resonances displaying a similar splitting pattern 

to those seen in reactions with I2 and iPrBr (vide supra); reactions with nBu3SnCl and SnCl4 resulted in 

the loss of all phosphorus resonances. 

 

Figure 120. 31P{1H} NMR (C6D6, 161.72 MHz) spectrum for the product from the reaction of [5.6].2[Li(THF)1.5] with nBu3SnCl 
after removal of volatiles. 

 

Looking to heavier group 14 elements, [5.6].2[Li(THF)1.5] was reacted with PbCl2, resulting in the 

observation of a broad resonance at δP 82 (w1/2 = 11 Hz; Figure 121), with no apparent 209Pb satellites 

(1JPPb (212-470 Hz),285 2JPPb (69 Hz)).286 The aromatic region of the 1H NMR spectrum only displayed 

extremely broad resonances (7.8-6.6 ppm) and attempts to isolate this species only led to 
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decomposition. Repeating the reaction with [5.6].2[LiTMEDA] resulted in the loss of all phosphorus 

resonances. 

 

Figure 121. 31P{1H} NMR (C6D6, 161.72 MHz) spectrum for the product from the reaction of [5.6].2[Li(THF)1.5] with PbCl2. 

 

Figure 122. 31P{1H} NMR (C6D6, 161.72 MHz) spectrum for the product from reaction of [5.6].2[Li(TMEDA)] with Ph2SnCl2. 

 

5.6.2 π-Coordination of [C6H4P2BC6H5]2-  

To investigate [5.6]2- as a potential π-ligand, reactions were performed with a series of different metal 

complexes. Reactions with either [5.6].2[Li(THF)1.5] or [5.6].2[Li(TMEDA)] with Cp2ZrCl2, resulted in a 
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blue colouration and a new 31P resonance (δP 81.6, Figure 123), to higher frequency than the starting 

materials and  which could be consistent with metal coordination; the blue colouration could also 

suggest reduction of the metal as Zr() species are known to be blue, though they are also 

paramagnetic.287 Attempts to remove solvent from this product resulted in an oily film, which 

exhibited a phosphorus resonance consistent with 1,2-bis(phosphino)benzene, with no evidence for 

the apparent metal complex. 

 

Scheme 42.Reaction between [5.6].2[Li(THF)1.5] or [5.6].2[Li(TMEDA)] and Cp2ZrCl2. 

 

Figure 123. 31P{1H} NMR (C6D6, 161.72 MHz) spectrum for the product from the reaction of [5.6].2[Li(THF)1.5] with Cp2ZrCl2. 

Similar reactions were performed with [Cp(Ph2N)ZrCl], with no reaction initially observed with 

[5.6].2[Li(THF)1.5], while after a few days only intractable mixtures were visible by 31P NMR 

spectroscopy. Alternatively, reacting [5.6].2[Li(TMEDA)] with two equivalents of [Cp(Ph2N)ZrCl] 

(Scheme 43) resulted in a single resonance at δP 97.3 (Figure 124), reminiscent of Lappert’s complex, 

[Cp’’2Zr{P(Ph)C6H4PPh}] (Cp’’ = C5H3(SiMe3)2; δP 105).255 In the associated 11B NMR spectrum only a 

singlet resonance was observed (δ −17), which correlates with an impurity occasionally encountered 

in samples of [5.6].2[Li(TMEDA)], which would seem to suggest the loss of boron from the ring. 

Attempts to elucidate the identity of this species via mass-spectrometry or indeed by the growth of 

single crystals were both unsuccessful. Similarly, reacting [5.6].2[Li(THF)1.5] or [5.6].2[Li(TMEDA)] with 

ZrI4 or ZrCl4 resulted in the loss of all phosphorus resonances and the observation of 1,2-

bis(phosphino)benzene. 
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Scheme 43. Reaction between 5.6].2[Li(TMEDA)] and Cp(Ph2N)ZrCl and the desired product. 

 

 

Figure 124. 31P{1H} NMR (C6D6, 161.72 MHz) spectrum for the product from the reaction of [5.6].2[Li(TMEDA)]  with 
Cp(Ph2N)ZrCl. 

Cyclopentadienyl iron complexes have previously been used to coordinate monoanionic 

diphospholides in an η5 arrangement ([(η5-P2C3H3)Fe(η5‐C5H5)]),288,289 therefore, reacting 

[5.6].2[Li(THF)1.5] or [5.6].2[Li(TMEDA)] with two equivalents of [(CpFe(benzene)][PF6] to sandwich 

the diphosphaboracycle between two iron centres seemed a logical target. In both cases a new 

resonance was observed at δP −35.7 as well as the characteristic PF6
- resonance at δP −144 (Figure 

125).290 The associated 11B{1H} NMR spectrum exhibits two broad resonances at δB 29.5 and 23.7 

(Figure 126), suggesting multiple products have formed, the resonances being observed in the lower 

region of 3 coordinate boron species.291 Solvent removal results in a pale brown solid, however, the 

compound instantly starts to decompose to a black solid. Similarly, attempts to purify this product by 

growing crystals, extraction, washing or trituration resulted only in the observation of LiPF6 by X-Ray 

diffraction or 31P NMR (Figure 127). 
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Figure 125. 31P{1H} NMR (C6D6, 161.72 MHz) spectrum for the product from the reaction of compound [5.6].2[Li(THF)1.5] 
with [CpFe(benzene)][PF6]. 

 

Figure 126. 11B{1H} NMR (C6D6, 160.4 MHz) spectrum for the product from the reaction of compound [5.6].2[Li(THF)1.5] with 
[CpFe(benzene)][PF6]. 

 

 

Figure 127. 31P{1H} NMR (C6D6, 161.72 MHz) spectrum from the attempted purification of the reaction of the product from 
reacting [5.6].2[Li(THF)1.5] with [CpFe(benzene)][PF6]. 

 

A range of ruthenium complexes were reacted with [5.6].2[Li(THF)1.5] or [5.6].2[Li(TMEDA)], including 

CpRu(PPh3)2Cl, CpRu(dppe)Cl or Ru(CO)(PCy3)2Cl. However, these reactions all resulted in the recovery 
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of the ruthenium starting material. In contrast, reactions with [Rh(COD)Cl]2, AuCl(tht), AuCl(PPh3), CuI 

or (PPh3)2PtCl2 resulted in intractable mixtures suggesting complete decomposition of both species. 

Similarly, reactions between Rh(Ph)Cl2(PPh3)2
292 and [5.6].2[Li(THF)1.5] or [5.6].2[Li(TMEDA)], resulted 

in the observation of multiple doublets in the 31P{1H} NMR spectrum alongside that for free PPh3 (δP 

−5; Figure 128).293 In the associated 7Li NMR spectrum, a singlet resonance is observed at δLi 0.6 and 

notably no boron resonance was observed in the 11B NMR spectrum. After five hours only the doublet 

at δP 31.7 and δP 21, alongside free PPh3 were present (Figure 129). The removal of volatiles resulted 

only in the observation of the doublet at δP 31.7 and free PPh3, attempts to purify this species and 

elucidate the structure through crystal growth were unsuccessful.  

 

 

Figure 128. 31P{1H} NMR (C6D6, 161.72 MHz) spectrum from the reaction of [5.6].2[Li(THF)1.5] with Rh(Ph)Cl2(PPh3)2. 

 

Figure 129. 31P{1H} NMR (C6D6, 161.72 MHz) spectrum from the reaction of [5.6].2[Li(THF)1.5] with Rh(Ph)Cl2(PPh3)2 after a 
few hours. 
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Reactions with two equivalents of Vaska’s complex, [IrCl(CO)[PPh3)2], and  [5.6].2[Li(THF)1.5], resulted 

in a new species, the 31P NMR spectrum of which exhibiting six resonances (Figure 131); the same 

resonances are observed from the reaction with [5.6].2[Li(TMEDA)]. The 11B NMR spectrum displays 

a single broad resonance at δB 25.3, at significantly lower frequency relative to [5.6].2[Li(THF)1.5], 

though still suggestive of a three-coordinate boron centre and only one boron containing species in 

solution.291  

Attempts to elucidate the number of species present in the 31P NMR spectrum by 1H-13C HMBC, HSQC 

and 1H-31P COSY were inconclusive due to the significant overlap in the aromatic regions of both the 

1H and 13C{1H} NMR spectra. However, the six phosphorus resonances observed in the 31P NMR 

spectrum (Figure 131) integrate consistently for six different environments (1:1:1:1:1:1), thus 

reasonably excluding the formation of product 5.12 or 5.13 (Figure 130), as they would presumably 

exhibit two phosphorus environments if P-Ir-P were aligned perfectly or three environments if they 

aligned in the plane; this would also result in significantly larger coupling due to trans-2JPP 

interaction.294 In comparison, there would presumably be six phosphorus environments for 5.14, 

though this would depend on the orientation. 

 

  

Figure 130. Potential products from the reaction of [5.6].2[Li(THF)1.5] with Vaska's complex. 

 

The highest frequency resonance, δP 23, appears to be coupling to three phosphorus centres resulting 

in a triplet of doublets, the 1:2:1 ratio of the triplet base is reminiscent of an overlapping doublet of 

doublet of doublets suggesting that two of the coupled centres are similar, whilst one is slightly 

different (J = 27Hz, 8 Hz), the magnitude of coupling is consistent with 2Jpp coupling.294,295 If 5.14 has 

formed, this resonance is presumably associated with Pa, the only centre able to experience three 2Jpp 

couplings, two being similar (Pe and Pf) and one different (Pb). The resonance at δP 16 exhibits a doublet 

of doublets multiplicity, exhibiting 2JPP (200 Hz and 28 Hz) consistent with coupling both cis- and trans- 

across the metal, therefore if 5.14 is the product this signal would be associarted with Pc, exhibiting a 
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trans-2JPP coupling with Pb and cis-2JPP coupling with Pd. Although the resonances at δP 9 and −80.6 are 

significantly broad (w1/2 = 53 Hz, 72 Hz respectively) mutual coupling is observed, the magnitude of 

which is consistent with trans-2JPP coupling (170 Hz), therefore these resonances would be associated 

with Pe and Pf, if 5.14 has formed. At δP 6 a broad multiplet is observed (w1/2 = 47 Hz), though no 

coupling can be resolved, this resonance could feasibly be Pb as mutual coupling with Pc (trans-2JPP = 

200 Hz) has not been observed and the poor resolution of the Pb resonance could be a reasonable 

explanation, if 5.14 is the product. Finally, the resonance at δP −66 exhibits a doublet of doublets 

multiplicity (28 Hz, 11 Hz), consistent with coupling to two phosphorus centres, the coupling of which 

suggests they are in notably different environments and therefore could be Pd, experiencing cis- 

coupling with both Pc (28 Hz) and Pb. Based on the spectroscopic data it is reasonable to propose that 

compound 5.14 or a similar structure could have formed, resonances being generally consistent for 

Pa-Pf. Attempts to elucidate this structure through mass spectrometry and X-Ray diffraction were 

unsuccessful.  

 

 

Figure 131. 31P{1H} NMR (C6D6, 161.72 MHz) spectrum from the reaction of [5.6].2[Li(THF)1.5] with Vaska’s complex. 
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5.6.3 Reactivity of [C6H4P2BC6H5]2- 2[LiTHF1.5]2+ and [Mo(NCEt)3(CO)3] 

Molybdenum tricarbonyl complexes, [Mo(L)3(CO)3] (L = labile organic fragment), are often used as 

precursors to π-arene complexes under mild conditions.296 Moreover, reactions between 

[Mo(NCEt)3(CO)3] and 2,4,6-tritertiarybutyl-1,3,5-triphosphabenzene result in the η6 -coordination of 

Mo(CO)3.297 Inspired by this, reactions were performed with compound [5.6].2[Li(TMEDA)] and 

[Mo(NCEt)3(CO)3] (Scheme 44), resulting in a shift in the 31P NMR resonance to δp 8.1 (∆δP = −44), 

which is consistent with Mo-coordination. The 7Li NMR spectrum exhibits a resonance at δLi 0.31 and 

resonances associated with TMEDA and the aromatic fragments were observed, suggesting the 

phosphaboracyclic core is intact and both lithium and TMEDA are associated with the complex. Upon 

exposure to vacuum this species decomposes. However, layering the reaction mixture (C6D6/THF) with 

hexanes resulted in the growth of yellow crystals, the X-Ray diffraction study of which confirmed η5-

coordination of Mo to the diphosphaboracyclic core, with further coordination of Mo fragments to 

each phosphorus lone pair (5.15; Figure 133; Table 22).  

 

 

Scheme 44. Reaction performed to prepare compound 5.15, from [5.6].2[Li(TMEDA)] and [Mo(NCEt)3(CO)3]. 

 

 

Figure 132. Molecular structure of the diphosphaboracycle core of compound 5.15; displacement ellipsoids at the 50% 
probability level. Hydrogen atoms and extended ligation omitted for clarity. The molybdenum atoms coordinated in an η1-

arrangement, also have ligated three carbonyl functionalities and a TMEDA unit. 
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Table 22. Selected bond lengths (Å) and angles (°) for compound 5.15, with estimated standard parentheses. 

Bond Length (Å) 

P1-B1 1.874(7) Mo1-B1 2.578(7) B1-C7 1.584(9) C13-O1 1.225(14) 

P2-B1 1.859(7) Mo1-C1 2.535(6) Mo3-P1 2.6108(16) C14-O3 1.188(9) 

P1-C1 1.802(6) Mo1-C2 2.494(6) Mo2-P2 2.6203(15) O3-Li1 1.912(15) 

P2-C2 1.807(6) Mo1-C13 1.954(9) Mo1-P1 2.6397(16) Li1-O4 1.937(14) 

C1-C2 1.433(8) Mo1-C14 1.894(7) Mo1-P2 2.6211(15) Mo2-N1 2.355(6) 

Bond Angle (°) 

P1-B1-P2 42.08(16) Mo3-P1-Mo1 145.59(6) C1-P1-B1 97.0(3) C14-O3-Li1 154.6(7) 

P1-C1-C2 116.8(4) Mo3-P1-B1 135.15(7) C2-P2-B1 96.8(3) O3-Li1-O4 118.9(7) 

P2-C2-C1 117.7(4) C13-Mo1-C14 86.2(4) C1-Mo1-C2 33.11(19) O3-Li1-O5 112.3(7) 

P1-Mo1-B1 42.08(16) Mo1-C13-O1 160.7(12) C7-B1-P1 121.7(5) O3-Li1-O6 110.9(8) 

P1-Mo1-P2 71.88(5) Mo1-C14-O3 177.6(6) C7-B1-P2 126.5(5) N1-Mo2-N2 77.8(2) 
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Figure 133. Molecular structure of compound 5.15; displacement ellipsoids at the 50% probability level. Hydrogen atoms 
omitted for clarity, the third carbonyl oxygen is present but not included in the asymmetric unit. 

 

Compound 5.15 adopts a polymeric structure in the solid state, where one Mo is bound η5 to the P2BC2 

ring, with each phosphorus centre also being coordinated to an additional Mo centre, stabilised by a 

TMEDA molecule which has transferred from lithium; the lithium atom is associated with the carbonyl 

moieties and a THF molecule, bridging the molybdenum units. The bond lengths about the 
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diphosphacyclic core are comparable to compound [5.6].2[Li(TMEDA)], similarly both of the P-Mo 

bond distances are consistent with a dative bond, comparable with that observed for 2,4,6-

tritertiarybutyl-1,3,5-triphosphabenzene (2.5772(9) Å)297. This structure confirms that the 

diphosphaboracycle can act as a π-ligand with metals other than lithium. 

 

5.6.4 Reactivity Studies with Actinides and Lanthanides 

The f-block elements are known to exhibit notably different reactivity to transition metals, bearing a 

preference for more electronegative elements,298 therefore, to explore the potential of 5.6 as a ligand 

for the f-block, [5.6].2[Li(THF)1.5] and [5.6].2[Li(TMEDA)] were initially reacted with CptttY(BH4)2(THF), 

yttrium being commonly used as a diamagnetic analogue of the lanthanides. These reactions resulted 

in broad singlet resonances at δP 44.8 and 50.5, respectively, with a broad resonance also observed in 

the 11B NMR spectra at δB −26, at somewhat lower frequency relative to the starting material (δB −22); 

interestingly from the reaction with [5.6].2[Li(TMEDA)] there is also a boron resonance consistent 

with [Li][BH4] (δB −40).299 Only very broad resonances are observed in the 1H NMR spectrum, impeding 

analysis, though coordination could have occurred. The removal of solvent resulted in the loss of all 

phosphorus resonances. 

Reactions were then performed with Cp*SmBPh4, generated from Cp*2Sm,300 the product from which 

exhibits only three resonances in the 1H NMR alongside signals associated with TMEDA; the former 

resonances integrate consistently for the Cp* and BPh4 groups. The 31P{1H} NMR spectrum exhibits a 

singlet resonance at δP 48.9 (Figure 134), however, much-like many of the transition metal complexes 

formed, this species was only observed in-situ and attempts to isolate it resulted in the loss of the 

phosphorus resonance. Similarly, only [Li(THF)4][BPH4] was observed by X-Ray diffraction, though this 

does suggest a reaction occurred between Cp*SmBPh4 and [5.6].2[Li(THF)1.5], albeit the other 

products could not be definitely identified. 

 

Figure 134. 31P{1H} NMR (C6D6, 161.72 MHz) spectrum from the reaction of [5.6].2[Li(THF)3] with Cp*SmBPh4. 
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Finally, given the range of oxidation states observed for uranium,301 complexes with [5.6]2- seemed a 

logical target. Reacting compounds [5.6].2[Li(THF)1.5] or [5.6].2[Li(TMEDA)] with UCl4 (e.g. Scheme 

45), initially resulted in a light brown coloured solution; the 1H NMR spectrum for the reaction with 

[5.6].2[Li(THF)1.5] displays a broad resonance across the aromatic region (δH 9.7-8.2). Alternatively, 

the reaction with [5.6].2[Li(TMEDA)] resulted in three aromatic signals as well as resonances 

associated with TMEDA, though a phosphorus resonance was not found. Shortly after mixing the two 

reagents together a green precipitate formed which was no longer soluble in common solvents and 

has defied further analysis and appears to be a common decomposition pathway associated with 

uranium systems.302 

 

Scheme 45. Reaction between [5.6]. 2[Li(TMEDA)] and UCl4, along with the desired product. 
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5.7 Summary 

The first dianionic diphosphaboracycles, [5.6].2[Li(THF)1.5] and [5.6].2[Li(TMEDA)] have been 

synthesised and characterised by heteronuclear NMR spectroscopy and unequivocally confirmed by 

X-Ray diffraction, the latter confirming their polymeric and monomeric structures, respectively. NICS 

calculations suggest the diphosphaboracycles exhibit aromatic character, though are somewhat less  

aromatic than benzene and the hypothetical BP2C2H3 and BC2P2H3
2- species.251  

The reactivity of the diphosphaboracycles with main-group, transition-metal and f-block elements was 

explored, leading to the in situ observation of multiple new species. Attempts to isolate these species, 

generally resulted in the reformation of 1,2-bis(phosphino)benzene or decomposition, therefore, the 

redox chemistry of [5.6].[Li(TMEDA)]2 was investigated, exhibiting a distinctive irreversible oxidative 

event at Epc = −0.755 V relative to the Fc/Fc+ couple, which suggests [5.6].2[Li(TMEDA)] is appreciably 

reducing, though this should not prohibit coordination to all metal centres. 

Reacting [5.6].2[Li(TMEDA)] with [Mo(NCEt)3(CO)3] afforded complex 5.15, in which the dianionic 

charge of the diphosphaboracyclic ring is stabilised by the incorporation of lithium in the structure, 

bridging the respective Mo-CO units and resulting in a polymeric network; this structure unequivocally 

proves the diphosphaboracycle can act as a π-ligand.  
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Chapter 6 – Experimental 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

“Po-tay-toes! Boil ‘em, mash ‘em, stick ‘em in a stew.” 

--The Lord of the Rings: The Two Towers (2002)  
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General Considerations 

Unless otherwise stated all materials were prepared and handled under an inert Ar atmosphere on a 

dual manifold Schlenk line or under catalytically purified dry-nitrogen or dry-argon in an MBraun 

glovebox. Solvents were distilled under dinitrogen from potassium (THF, toluene, benzene, 1,4-

dioxane, DME), sodium-potassium alloy (pentane, hexane, Et2O) or CaH2 (DCM), degassed and stored 

under argon over molecular sieves (diethyl ether, THF, 1,4-dioxane, benzene and DCM) or potassium 

mirrors (pentane, hexane and toluene). Deuterated solvent for NMR spectroscopy were purchased 

from Goss Scientific (Cambridge) or Sigma Aldrich, degassed using the freeze-pump-thaw method and 

heated under reflux over calcium hydride (CDCl3, CD2Cl2) or potassium (d8-THF, C6D6) for 3 days, then 

transferred to Youngs’ ampoules via static vacuum distillation and stored under a nitrogen or argon 

atmosphere in the glovebox.  

Unless otherwise stated, starting materials were used as supplied by Sigma Aldrich, Fluorochem, 

Fisher Scientific, Alfa Aesar or Acros Organics. 2,6-Pyridinedicarbonyl dichloride was recrystallised 

from hot toluene prior to use. Glutaryl chloride, adipoyl chloride, succinyl chloride, and 

dichlorophenylborane were distilled prior to use. Wilkinson’s catalyst (RhCl(PPh3)3) was prepared via 

the inorganic synthesis procedure.303 nBuNa and nBuK were prepared by literature methods.304 

[PtCl2(PhCN)2], [PtCl2(PEt3)]2, M(η4-C8H12)Cl]2 (M=Rh, Ir) were available within the laboratory from 

previous workers.  

Characterisation Details 

All NMR spectra were recorded on a Varian VNMRS 400 MHz (1H 399.5 MHz, 13C 100.46 MHz, 150.81 

MHz, 31P 161.71 MHz, 11B 160.4 MHz,19F 375.87 MHz, 195Pt 85.53 MHz, 29Si 79.37 MHz, 119Sn 148.97 

MHz, 7Li 38.86 MHz) or 600 MHz (1H 599.68 MHz, 13C 150.81 MHz) spectrometer. The spectra were 

referenced to external Me4Si, 85% H3PO4, KPtCl6, SnMe4, CFCl3 or LiCl as appropriate. Carbon spectra 

were assigned with reference to 2D (HSQC, HMBC) spectra, and all heteronuclear NMR spectra were 

recorded at 303 K unless otherwise stated. 

UV-Vis spectra were recorded on either a Thermo Spectronic UV300 or a Perkin Elmer Lambda 265 

instrument. IR spectra were recorded on a Perkin Elmer Spectrum One instrument in the solid state 

or as solution cells. 

Mass spectrometric data were recorded by Dr A. Abdul-Sada of the departmental service. Single 

crystal X-Ray diffraction experiments were performed on an Agilent Xcalibur EoS Gemini Ultra 

diffractometer with CCD plate detector using Cu-Kα (λ = 1.514184 Å) radiation and solved using 

SHELXT305 and SHELXL306 running under Olex2.307 Elemental analyses were performed by Mr Stephen 

Boyer at the London Metropolitan University Service, or by Mikroanalytisches Labor Pascher. 
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Cyclic voltammetry studies were conducted under argon or dinitrogen atmosphere in the glovebox 

using an EmStat3+ Blue potentiostat under computer control at 298 K. Sample concentrations of 10-5 

M (2 cm3 DCM or THF) were used throughout, alongside either 0.1 M [nBu4][PF6] or 0.1M [nBu4][BArF] 

supporting electrolyte concentrations. All experiments were conducted using a standard three-

electrode setup comprising of a platinum disc (1 mm) working electrode, platinum wire counter 

electrode, and a silver wire pseudoreference electrode. Potentials are reported relative to the [FeCp2] 

0/+ redox couple determined by doping samples with ferrocene. 

DFT Calculations were preformed using Gaussian 09, Revision D.01,308 running on the Sussex High 

Performance Cluster. Results were visualised using Gaussview 5.0; orbital contributions and UV/Vis 

spectra were obtained using Gaussum.309 

Synthesis Hazard Information.  

Caution! Silyl-phosphanes are intrinsically pyrophoric and require handling under stringently 

anaerobic and moisture-free conditions. Any glassware which has been in contact with a phosphane 

should be bleached after use to quench residues and prevent stench. The washings from which should 

be collected in a designated waste container to be appropriately disposed of. If a cannula (especially 

filter cannulae) has been used with phosphanes and still smells after cleaning, it should be left in the 

fumehood to vent. Teflon cannulae can be submerged in bleach unlike metal cannulae (corrosion). 

Experimental Details for Chapter 2 

Preparation of P(SiMe3)3 

A suspension of red phosphorus (6.18 g, 200 mmol) and naphthalene (1.25 g, 9.75 mmol) in DME (250 

cm3) was stirred with an overhead stirrer fitted with a PTFE stirrer paddle, the mixture was heated to 

40 °C and sodium chunks (5 x 5 x 5 mm3, 13.8 g, 600 mmol) were slowly added, 3 pieces at a time, over 

2 hours. After all the sodium was added the mixture was heated to reflux and the black suspension 

was left to stir overnight. The reaction mixture was allowed to cool to ambient temperature and 

Me3SiCl (78.7 cm3, 620 mmol) in DME (75 cm3) was added via pressure-equalising dropping funnel 

over a period of 3 hours. The solution was heated to reflux and left to stir overnight. The reaction was 

allowed to cool to ambient temperature and filtered through a bed of Celite® (2 cm) and a porosity 3 

frit. The solvent was removed in vacuo and the yellow oil was transferred to a distillation rig. 

Distillation was performed at 9.2 x 10-1 mbar, 50 °C affording P(SiMe3)3 as a colourless liquid. 

Spectroscopic data conform with literature values.310 Yield: 14.7 g, 30%. 

1H NMR (C6D6): δ = 0.31 (d, CH3, J = 4.47 Hz). 

31P{1H} NMR (C6D6): δ = −252 (s). 
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Synthesis of HP(SiMe3)2 

Adapted from literature procedures.310 Neat P(SiMe3)3 (7.83 g, 31.3 mmol) was treated with MeOH 

(1.26 cm3, 31.3 mmol) and the mixture stirred for 10 h.  Purification by bulb-to-bulb distillation 

afforded HP(SiMe3)2 as a colourless liquid, the identity of which was confirmed by comparison to 

literature data. Yield: 3.88 g, 70%.  1H NMR (C6D6): H 0.68 (d, PH, 1JHP = 187 Hz, 1H); 0.24 (d, SiMe3, JHP 

= 4.2 Hz, 18H).  31P NMR (C6D6): P –236.8 (dm, JHP 187 Hz, 4 Hz). 

Synthesis of MeP(SiMe3)2 

To a cooled (–78 °C) solution of HP(SiMe3)2 (0.727 g, 4.08 mmol) in THF (10 cm3) was added nBuLi (2.07 

M, 2.0 cm3, 4.08 mmol) dropwise over 5 min.  The mixture was stirred at –78 °C for 10 min. then 

allowed to warm slowly to ambient temperature over 45 min with continued stirring.  The mixture 

was cooled to –78 °C prior to dropwise addition of MeI (0.26 cm3, 4.2 mmol) over 10 min, before 

allowing to warm to ambient temperature, resulting in formation of a white precipitate; the 

suspension was stirred for a further 4 h. The mixture was filtered and the THF removed from the 

filtrate under reduced pressure; the residue was extracted with pentane (2 x 10 cm3), filtered and the 

solvent removed under reduced pressure.  The crude product was distilled to purity (2.12 mbar, 32 

°C), affording MeP(SiMe3)2 as a colourless liquid, as confirmed by comparison of spectroscopic data 

with the literature.311  Yield 0.633 g, 81%.  1H NMR (C6D6): H 0.95 (d, PCH3, 2JHP = 1.2 Hz, 3H); 0.19 (d, 

SiMe3, JHP = 4.3 Hz, 18H).  31P{1H} NMR (C6D6): P –196 (s). 

Synthesis of nBuP(SiMe3)2 

To a cooled (–78 °C) solution of HP(SiMe3)2 (3.992 g, 22.4 mmol) in Et2O (40 cm3) was added nBuLi (2.5 

M, 9.0 cm3, 22.5 mmol) dropwise over 5 min.  The mixture was stirred at –78°C for 10 min. then 

allowed to warm slowly to ambient temperature and stir for a further 30 min.  The mixture was cooled 

to –78 °C prior to dropwise addition of 1-chlorobutane (2.34 cm3, 22.4 mmol) over 5 min, before 

allowing to warm to ambient temperature; the suspension was left to stir overnight.  The mixture was 

filtered and the residue washed with Et2O (2 x 5 cm3); the filtrates were, combined, concentrated and 

then triply distilled (40 °C, 2 x 10-2 mbar) to afford nBuP(SiMe3)2 as a colourless liquid  Yield 2.71 g, 52 

%.  1H NMR (C6D6): H 1.57 (br, m, CH2CH2Et 4H); 1.40 (dt, CH2CH2Me, JHH ca 6 Hz, 2H); 0.88 (t, CH3, JHH 

= 6Hz); 0.24 (d, SiMe3, JHP =4.2 Hz, 18H).  31P{1H} NMR (C6D6): P –176.1 (s). 

Synthesis of tBuPH2 

A diethyl ether solution of tBuPCl2 (5 g, 31.45 mmol) was slowly added dropwise to a cooled (−5 °C) 

ethereal suspension (50 cm3) of LiAlH4 (1.4 g, 36.7 mmol) over 15 minutes. The reaction mixture was 
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then allowed to warm to ambient temperature and stir for 2 hours. The reaction flask was cooled to 

0 °C and water was added until effervescence halted, resulting in two distinct layers. The ether layer 

was decanted onto MgSO4, after washing the water layer with Et2O (2 x 10 cm3) the ether extracts 

were also decanted onto the MgSO4.  The solution was filtered and purified via distillation. Diethyl 

ether was removed under argon at 40 °C and tBuPH2 was collected under 5.2 x 10-2 mbar of pressure 

at ambient temperature. 1.82 g of colourless liquid was isolated in 64% yield. The NMR spectroscopic 

data agree with the literature.312 

1H NMR (C6D6): δ = 2.88 (d, 1JHP = 187 Hz, tBuPH2, 2H), 1.10 (d, C(CH3)3, 7.21 Hz, 9H). 

31P NMR (C6D6): δ = −80.35 (t of octets, 1JPH = 187 Hz, JPH = 12 Hz)). 

Synthesis of tBuP(SiMe3)2 

To a cooled (–78 °C) ethereal solution of tBuPH2 (0.159 M, 82 cm3, 13.04 mmol) was added nBuLi (2.5 

M, 11.06 cm3, 27.64 mmol) dropwise over 5 min.  The mixture was stirred at –78°C for 10 min. then 

allowed to warm slowly to ambient temperature and stir for a further 2 h.  The mixture was cooled to 

–78 °C prior to the addition of Me3SiCl (3.7 cm3, 29.0 mmol) over 5 min and stirred for a further 10 

minutes before allowing to warm to ambient temperature; the suspension was left to stir overnight.  

The mixture was filtered and the residue washed with Et2O (2 x 5 cm3); the filtrates were, combined, 

concentrated and distilled (50-55 °C, 2.7 x 10-2 mbar) to afford tBuP(SiMe3)2 as a colourless liquid, as 

confirmed by comparison of spectroscopic data with the literature.313  Yield 2.637 g, 86%.   

1H NMR (C6D6): H 1.31 (d, C(CH3)3, JHP 12 Hz, 9H); 0.31 (d, SiMe3, JHP =4 Hz, 18H).   

31P{1H} NMR (C6D6): P –108.8 (s). 

Synthesis of PhPH2 

PhPCl2 (3.1 cm3, 22.53 mmol) in diethyl ether (15 cm3) was slowly added dropwise to a cooled (−5 °C) 

ethereal solution (25 cm3) of LiAlH4 (1 g, 26.3 mmol) over 15 minutes. The reaction mixture was then 

allowed to warm to ambient temperature and stir for 2 hours. The reaction flask was cooled to 0 °C 

and water was added until effervescence halted, resulting in two distinct layers. The ether layer was 

decanted onto MgSO4, after washing the water layer with Et2O (2 x 10 cm3) the ether extracts were 

also decanted onto the MgSO4.  The solution was filtered and purified via distillation. Diethyl ether 

was removed under Argon at 64 °C and phenyl phosphane was collected under 4.0 x 10-1 mbar of 

pressure at ambient temperature. 1.705 g of colourless liquid was isolated in 69% yield. The NMR data 

agree with the literature.314 
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1H NMR (C6D6): δ = 7.27 (m, aromatic C-H, 2H), 6.99 (m, aromatic C-H, 3H), 3.83 (d, 1JHP = 198.5 Hz, 

PhPH2, 2H). 

31P NMR (C6D6): δ = −124 (t, 1JPH = 199 Hz).  

Synthesis of PhP(SiMe3)2 

To a cooled (–78 °C) solution of PhPH2 (6 g, 32.6 mmol) in THF (25 cm3) was added nBuLi (2.5 M, 27.6 

cm3, 69 mmol) dropwise over 10 min, resulting in formation of a yellow solution.  After 10 min. the 

solution was allowed to warm to ambient temperature stir for a further 2 h.  The mixture was then 

cooled to –78 °C prior to the addition of Me3SiCl (9.2 cm3, 72.4 mmol) over 10 min. and stirred for a 

further 10 minutes before allowing to return to ambient temperature; the suspension was left to stir 

overnight.  The resulting suspension was filtered, concentrated and then purified via bulb-to-bulb 

distillation to afford PhP(SiMe3)2 as a colourless liquid. as confirmed by comparison of spectroscopic 

data with the literature.315  Yield 6.401 g, 77%.   

1H NMR (C6D6): H 7.59 (t, 7 Hz, 2H), 7.10 -7.01 (m, 3H), 0.25 (d, SiMe3, JHP = 5 Hz, 18H).   

31P{1H} NMR (C6D6): P –137.0 (s). 

Synthesis of MesP(SiMe3)2  

To a cooled (–78 °C) solution of MesPH2 (4.05 g, 26.6 mmol) in Et2O (80 cm3) was added nBuLi (2.07 M, 

27.3 cm3, 56.42 mmol) dropwise over 10 min, resulting in formation of a yellow solution.  After 10 

min. the solution was allowed to warm to ambient temperature stir for a further 2 h.  The mixture was 

then cooled to –78 °C prior to the addition of Me3SiCl (7.5 cm3, 59.1 mmol) over 5 min., resulting in 

formation of a yellow precipitate.  The mixture was stirred for a further 10 minutes before allowing to 

return to ambient temperature and stir overnight.  The resulting suspension was filtered and volatile 

components removed from the filtrate under reduced pressure; the product was triply distilled to 

purity, affording MesP(SiMe3)2 as a colourless liquid, as confirmed by comparison of spectroscopic 

data with the literature.316  Yield 3.24 g, 41%.  

 1H NMR (C6D6): H 6.87 – 6.84 (m, 2H), 2.63 (s, CH3, 6H), 2.09 (s, CH3, 3H), 0.28 (d, SiMe3, JHP = 5.8 Hz, 

18H).   

31P{1H} NMR (C6D6): P –162.6 (s).  

Crystal data for C15H29PSi2 (Mw = 296.53 g/mol): monoclinic, P21/c (no. 14), a = 12.2774(2) Å, b = 

24.2123(3) Å, c = 13.4741(2) Å,  = 113.140(2) °, V = 3683.12(11) Å3, Z = 4, T = 100(2) K, μ(CuKα) = 

2.430 mm-1, Dc = 1.069 Mg m-3, 7100 independent reflections, full matrix F2 refinement, R1 = 0.0331 
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on 6594 independent absorption corrected reflections [I > 2σ(I); 2max = 143.2 ), 343 parameters, wR2 

= 0.0895 (all data). 

Synthesis of 5-Iodo isophthalic acid dimethyl ester 

Dimethyl 5-aminoisophthalate (5 g, 24 mmol) was introduced to a cold (0 °C) solution of 6M HCl (56.25 

cm3), then NaNO2 (1.71 g, 25 mmol) in H2O (14.58 cm3) was slowly added resulting a golden solution. 

This golden solution was added to a pre-cooled (0 °C) H2O solution (50 cm3) of KI (5.25 g, 31 mmol), 

followed by DCM (100 cm3) to facilitate stirring. The resulting black solution was left to stir at ambient 

temperature overnight (16 hours). The product was extracted and the aqueous layer washed with 

DCM (2 x 90 cm3). The organic layers were combined and washed with sodium thiosulphate (3 x 50 

cm3), then the resulting organic layer was dried over MgSO4 and concentrated to afford a crude gum-

like red solid. Recrystallisation from hot methanol afforded 3.43 g of pale-yellow/orange solid, 45% 

yield. NMR data agree with the literature.317  

1H NMR ((CDCl3): δ = 8.62 (t, aromatic-iCH, 2JHH = 1.51 Hz, 1H), 8.53 (d, aromatic-oCH, 2JHH = 1.51 Hz, 

2H), 3.95 (s, CH3, 6H). 

Synthesis of 5-Iodoisophthalic acid 

5-Iodo isophthalic acid dimethyl ester (4.8 g, 15 mmol) was dissolved in methanol (200 cm3) and 1M 

NaOH in H2O was added (1.8 g, 45 mmol, 45 cm3 H2O); the resulting mixture was heated to 40 °C for 

12 hours. The solution was allowed to cool to ambient temperature, diluted with H2O (10 cm3) and 

acidified to pH 2-3. The product was extracted into EtOAc (3 x 20 cm3), washed with brine (20 cm3), 

dried over Na2SO4 and concentrated in vacuo, affording 4.13 g of the product as a pale orange solid in 

94% yield. NMR data agree with the literature.318  

1H NMR ((D3C)2SO): δ = 8.59 (br, s, aromatic, 3H), 13.23 (br, OH, 2H). 

Synthesis of 5-Iodoisophthaloyl chloride 

Thionyl chloride (10 cm3) was added to a Schlenk flask containing 5-iodoisophthalic acid (0.172 g, 0.59 

mmol), the flask was fitted with a condenser and brought to reflux for 4 hours before removing the 

volatile components in vacuo, affording 0.165 g of an orange/red oil, 85% yield. NMR data agree with 

the literature.319 

1H NMR (CDCl3): δ = 8.79 (br t, aromatic-iCH, 1H), 8.69 (d, aromatic-oCH, 2JHH = 1.6 Hz, 2H). 
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Synthesis of 5-Tertbutylsophthaloyl chloride 

Thionyl chloride (10 cm3) was added to a Schlenk flask containing 5-tertbutyl isophthalic acid (5 g, 22.5 

mmol), the flask was fitted with a condenser and brought to reflux for 4 hours before removing the 

volatile components in vacuo, affording 5.097 g of colourless solid, 87.4% yield. The NMR spectral data 

agree with the literature.320 

1H NMR (CDCl3): δ = 8.71 (t, iaromatic CH, 2JHH = 1.6 Hz, 1H), 8.41 (d, Paromatic CH, 2JHH = 1.6 Hz, 2H), 

1.42 (s, C(CH3)3, 9H). 

Synthesis of 5-Methylisophthaloyl dichloride  

5-Methylisophthalic acid (2 g, 11.1 mmol) in thionyl chloride (10 cm3) was brought to reflux for 6 hours. 

After cooling, the volatile components were removed under reduced pressure to afford a pale-yellow 

solid. Yield: 2.3 g, 95%.  

1H NMR (CDCl3, 399.5 MHz): δ = 8.67 (br t, aromatic, 1H), 8.21 (br q, aromatic, JHH = 0.78 Hz, 2H), 2.55 

(s, CH3, 3H). 1H NMR (CDCl3, 599.68 MHz): δ = 8.67 (m, aromatic, 1H), 8.21 (m, aromatic, 2H), 2.55 (m, 

CH3, 3H).  

13C{1H} NMR (CDCl3, 150.81 MHz): δ = 167.6 (s, C=O), 140.6 (s, aromatic-Cp) 137.7 (s, aromatic-Cm), 

134.4 ((s, aromatic-Co), 131.4 (s, aromatic-Ci), 21.2 (2, CH3). 

Synthesis of 1,3-Dimethyl 5-phenylbenzene-1,3-dicarboxylate (Suzuki)  

5-Iodo isophthalic acid dimethyl ester (1.22 g, 3.81 mmol), phenyl boronic acid (0.51 g, 4.19 mmol), 

Pd(PPh3)4 (0.22 g, 0.19 mmol) and cesium carbonate (1.36 g, 4.19 mmol) were introduced to a 100 cm3 

round-bottom flask and dissolved in a mixed solvent system of H2O (2 cm3), C7H8 (21 cm3) and Et2O (4 

cm3). The reaction flask was fitted with a condenser, flushed with N2, and heated to reflux for 6 hours. 

The reaction was allowed to cool to ambient temperature before being filtered through celite® and 

concentrated in vacuo, affording a red solid. The crude red solid was eluted through a 30 g column in 

a 0-10 % EtOAc/Hexane solvent system over 14 column volumes obtaining 0.54 g of the desired 

product as a colourless fluffy solid in 52% yield. 

The reaction was monitored by TLC. The NMR spectral data agree with the literature.321 

1H NMR (CDCl3): δ = 8.66 (t, aromatic-iCH, 2JHH = 1.62 Hz, 1H), 8.47 (d, aromatic-oCH, 2JHH = 1.62 Hz, 2H), 

7.66 (dd, aromatic-mCH, 1JHH = 7.52 Hz, 2H), 7.49 (t, aromatic-oCH, 1JHH = 7.52 Hz, 2H), 7.41 (t, aromatic-

pCH, 1JHH = 7.52 Hz, 1H), 3.98 (s, CH3, 6H).  
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Synthesis of 1,1’biphenyl-3,5-dicarboxylic acid 

Methanol (20 cm3) was added to 1,3-dimethyl 5-phenylbenzene-1,3-dicarboxylate (0.54 g, 2 mmol) 

followed by 1M NaOH in H2O (0.24 g, 6 mmol). The solution was heated at 40 °C for 5 hours, acidified 

to pH 2-3 resulting in a colourless precipitate which was collected via filtration, washed with H2O (5 

cm3) and dried in a desiccator overnight. 0.383 g of the colourless solid was isolated in 79% yield. The 

NMR data agree with the literature.322 

1H NMR ((D3C)2SO): δ = 13.36 (s, OH, 2H), 8.46 (s, iCH, 1H), 8.37 s, oCH, 2H), 7.74 (d, mCH, 1JHH = 7.40 

Hz, 2H), 7.53 (t, oCH, 1JHH = 7.40 Hz, 2H), 7.45 (t, PCH, 1JHH = 7.40 Hz). 

Synthesis of 5-Phenylisophthaloyl chloride  

5-Phenylisophthalic acid (2 g, 11.1 mmol) in thionyl chloride (10 cm3) was brought to reflux for 6 hours. 

After cooling, the volatile components were removed under reduced pressure to afford a colourless 

solid. Yield: 0.321 g, 77%. 

 1H NMR (CDCl3, 399.5 MHz): δ = 8.82 (br t, aromatic-Ci, 1H), 8.6 (d, aromatic-Cm, 1JHH = 1.5 Hz, 2H), 

7.65 (d, aromatic-Co, 1JHH = 7.32 Hz, 2H), 7.56-7.42 (m, aromatic-Cm,p, 3H). 

 1H NMR (CDCl3, 599.68 MHz): δ = 8.82 (br t, aromatic-Ci, 1H), 8.6 (dd, aromatic-Cm, 1JHH = 1.6 Hz, 2H), 

7.65 (d, aromatic-Co, 1JHH = 7.31 Hz, 2H), 7.54 (t, aromatic-Cm, 1JHH = 7.31 Hz, 2H), 7.49 (t, aromatic-

Cp,7.31 Hz, 1H).  

13C{1H} NMR (CDCl3, 150.81 MHz): δ = 167.6 (s, C=O), 143.8 (s, aromatic-Cp), 137.6 (s, aromatic-Ci), 

135.5 (s, aromatic-Cm), 135.1 (s, aromatic-Cp), 132.4 (s, aromatic-Co), 129.6 (s, aromatic-Co), 129.4 (s, 

aromatic-Ci), 127.4 (s, aromatic-Cm). 

Synthesis of Dimethyl 4-Cyanobiphenyl-3,5-dicarboxylate 

5-Iodo isophthalic acid dimethyl ester ( 2.83 g, 8.85 mmol), 4-cyanophenylboronic acid (1.37 g, 9.29 

mmol), sodium carbonate (3.7 g, 35.49 mmol) and Pd/C (10%, 0.48 g) were combined in a round-

bottom flask flushed with argon and fitted with a condenser. MeOH (60 cm3) was added and the 

mixture was heated at 60 °C for 3 hours. After cooling to ambient temperature the mixture was filtered 

through a porosity 3 frit, the residue on the frit was washed with DCM and EtOH until the filtrate ran 

through clear and then volatile components were removed under reduced pressure. The product was 

extracted into DCM and washed with water (3 x 20 cm3), dried over MgSO4 and concentrated to afford 

a fluffy yellow solid. Yield: 1.31 g, 50%. Confirmed by comparison with literature data.323 

1H NMR (CDCl3): δ = 8.73 (br t, aromatic. 1H), 8.46 (d, aromatic, 2JHH = 1.45 Hz), 2H), 7.78 (s, aromatic, 

4H), 3.99 (s, CH3, 6H). 
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Synthesis of 5-(4-Cyanophenyl)benzene-1,3-dicarboxylic acid  

Dimethyl 4-cyanobiphenyl-3,5-dicarboxylate (1.19 g, 4.01 mmol) was dissolved in MeOH (30 cm3), 

NaOH (0.48 g, 12.09 mml) in water (10 cm3) was added and the mixture was heated to 40 °C for 4 

hours. After cooling to ambient temperature, the reaction mixture was neutralised by addition of acid 

to afford an off-white precipitate which was dried in a desiccator overnight. Yield: 0.93 g, 86%. 

 1H NMR ((D3C)2SO, 599.68 MHz): δ = 13.50 (br, OH, 2H), 8.51 (t, aromatic, 2JHH = 1.45 Hz, 1H), 8.43 (d, 

aromatic, 2JHH = 1.45 Hz, 2H), 7.98 (aromatic, 4H). 

13C{1H} NMR (CDCl3, 150.81 MHz): δ = 166.3 (s, C=O), 142.9 (s, aromatic-Cp), 139.42 (s, CN), 133.1 (s, 

aromatic-Co), 132.3 (s, aromatic-Cm), 131.7 (s, aromatic-Ci), 129.9 (s, aromatic-Co), 128.1 (s, aromatic-

Cm), 118.7 (s, aromatic Ci), 110.1 (s, aromatic-Cp). 

Synthesis of Cyanobiphenyl diacyl chloride 

5-Cyanophenylisophthalic acid (0.6 g, 2.2 mmol) in thionyl chloride (20 cm3) was brought to reflux for 

6 hours. After cooling, the volatile components were removed under reduced pressure to afford a 

pale-orange solid. Yield: 0.43 g, 64%. 

1H NMR (CDCl3): δ = 8.90 (t, aromatic-Ci,2JHH = 1.5 Hz, 1H), 8.59 (d, aromatic-Cm, 2JHH = 1.5 Hz, 2H), 7.85 

(d, aromatic-Co, 1JHH = 8.32 Hz, 2H), 7.77 (d, aromatic-Cm, 1JHH = 8.32 Hz, 2H).  

13C{1H} NMR (CDCl3): δ = 167.1 (s, C=O), 141.9 (s, aromatic-Cp),141.7 (s, CN), 135.6 (s, aromatic-Co), 

135.3 (s, aromatic-Cm), 133.4 (s, aromatic-Ci), 133.3 (s, aromatic-Co), 128.1 (s, aromatic-Cm), 118.2 (s, 

aromatic Ci), 113.4 (s, aromatic-Cp). 

Synthesis of Dimethyl 5-(trimethylsilylethynyl)benzene-1,3-dicarboxylate 

5-Iodo isophthalic acid dimethyl ester (2.3 g, 7.17 mmol), PdCl2(PPh3)2
 (0.253 g, 0.36 mmol) and CuI 

(0.07 g, 0.36 mmol) were introduced to a round-bottom Schlenk and placed under vacuum, next THF 

(39 cm3), trimethylsilylacetylene (1.53 cm3, 10.76 mmol) and triethylamine (1.5 cm3, 10.76 mmol) were 

added and the reaction mixture was stirred for 20 hours. The reaction mixture was concentrated and 

extracted into DCM, the DCM extracts were washed with brine (3 x 25 cm3), dried over MgSO4 and 

voltailes removed under reduced pressure to give 2.594 g of crude material. The crude product was 

purified via column chromatography using a hexane/ethyl acetate solvent system (30:1), affording 

1.68 g of yellow solid, 81% yield. The reaction was monitored by TLC, NMR data agree with the 

literature.324 

1H NMR (CDCl3): δ = 8.60 (t, aromatic-iCH, 2JHH = 1.85 Hz, 1H), 8.29 (d, aromatic-oCH, 2JHH = 1.85 Hz, 2H), 

3.95 (s, CH3, 6H), 0.26 (s, SiMe3, 9H). 
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Synthesis of 1,3-Dimethyl 5-ethynylisophthalate 

Dimethyl 5-(trimethylsilylethynyl)benzene-1,3-dicarboxylate (1.68 g, 5.79 mmol) and K2CO3 (0.16 g, 

1.2 mmol) were dissolved in THF/MeOH (12.8/32 cm3) and stirred for 24 hours, resulting in a dark 

suspension, which was concentrated in vacuo. The solid was extracted into DCM (50 cm3) and washed 

with water (50 cm3). The aqueous layer was washed with DCM (3 x 25 cm3), the organic extracts were 

combined, washed with brine (3 x 25 cm3) and dried over MgSO4. After the removal of volatile 

components a crude light brown solid was collected and purified via sublimation (100 °C, 1 mbar) to 

afford a colourless solid. 0.4 g, 31% yield. NMR data agree with the literature.325 

1H NMR (CDCl3): δ = 8.64 (t, aromatic-iCH, 2JHH = 1.53 Hz, 1H), 8.32 (d, aromatic-oCH, 2JHH = 1.53 Hz, 2H), 

3.96 (s, CH3, 6H), 3.17 (s, CCH, 1H). 

Synthesis of 5-Ethynylisophthalic acid chloride 

Thionyl chloride (10 cm3) was added to a round-bottom flask containing 5-ethynyl isophthalic acid 

(0.18 g, 0.1 mmol), the flask was fitted with a condenser and brought to reflux for 4 hours before 

removing the volatile components in vacuo, affording 0.14 g of beige solid, 64% yield.  

1H NMR (CD2Cl2): δ = 8.76 (br t, aromatic-iCH, 1H), 8.50 (d, aromatic-oCH, 2JHH = 1.6 Hz, 2H), 3.39 (s, 

CCH, 1H). 

Synthesis of 5-Cyanoisophthaloyl chloride 

Thionyl chloride (10 cm3) was added to a round-bottom flask containing 5-cyanoisophthalic acid (1.28 

g, 6.68 mmol), the flask was fitted with a condenser and brought to reflux for 4 hours before filtering 

and removing the volatile components in vacuo, affording 0.576 g of colourless solid, 38 % yield. The 

NMR data agree with the literature.326 

1H NMR (CDCl3): δ = 9.00 (br s, aromatic-iCH, 1H), 8.66 (br s, aromatic-oCH, 2H). 

Synthesis of m-{-C(O)-C6H4-(C(O)PMe)}2 (2.1) 

A diethyl ether solution of isophthaloyl chloride (0.251 g, 1.23 mmol) was added, slowly, to a pre-

cooled (−78 °C) ethereal solution of MeP(SiMe3)2 (0.237 g, 1.23 mmol). During addition the solution 

assumes a yellow colouration. After stirring at −78 °C for 30 min. the mixture was allowed to warm to 

RT and stirred for a further 12 h, whereupon the precipitate was collected by filtration, washed with 

diethyl ether and dried in vacuo, resulting in 0.124 g of a yellow solid in 57% yield. Product identity 

was confirmed by comparison of spectroscopic data with the literature.111  
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1H NMR (C6D6): δ = 1.58 (d, 6H, J = 14.799 Hz) 6.45 (br, 2H), 7.17 (br, 4H), 9.28 (br, 2H).  

31P{1H} NMR (C6D6): δ = 32.7 (s).  

Synthesis of m-{-C(O)-C5N1H4(C(O)PMe)}2 (2.5) 

A diethyl ether solution of 2,6-pyridinedicarbonyl dichloride (0.312 g, 1.5 mmol) was added, slowly, to 

a pre-cooled (−78 °C) ethereal solution of MeP(SiMe3)2 (0.294 g, 1.5 mmol). During addition the 

solution assumes a green-yellow colouration. After stirring at −78 °C for 30 min. the mixture was 

allowed to warm to ambient temperature and stirred for a further 16 h, whereupon the precipitate 

was collected by filtration, washed with diethyl ether and dried in vacuo, resulting in 0.161 g of a 

green-yellow solid in 60% yield. 

 1H NMR (C6D6): δ = 7.2 (d, aromatic oCH, 2JHH = 7.8 Hz, 4H), 6.58 (t, aromatic – pCH, 2JHH = 7.8 Hz, 2H), 

1.63 (d, CH3, 2JPH = 6.2 Hz, 6H).  

13C{1H} NMR (C6D6): δ = 209.1 (d, C(O), 1JCP = 51 Hz), 152.9 (d, aromatic – Cm, 2JCP = 33 Hz), 138.4 (s, 

aromatic –Cp), 124.7 (br t, aromatic –Co, 3JCP = 2 Hz), 3.65 (d, CH3, 1JCP = 8 Hz).  

31P{1H} NMR (C6D6): δ = 30.1 (s).  

IR νCO 1656, 1640 cm-1.  

Anal. Calc. for C16H12N2O4P2: C, 53.63; H, 3.38; N, 7.82. Found: C, 52.89; H, 3.34; N, 7.80. 

X-Ray quality crystals were grown at -29 °C from THF. Crystal Data for C16H12N2O4P2 (Mw = 358.22 

g/mol): orthorhombic, space group Pmmn (no. 59), a = 13.4667(13) Å, b = 12.5171(13) Å, c = 

4.7670(6) Å, V = 803.54(15) Å3, Z = 2, T = 100 K, μ(Cu Kα) = 2.680 mm-1, Dcalc = 1.481 g/cm3, 2552 

reflections measured (9.646° ≤ 2Θ ≤ 134.122°), 778 unique (Rint = 0.0427, Rsigma = 0.0363), which were 

used in all calculations. The final R1 value was 0.0428 (I > 2σ(I)) and wR2 was 0.1215 (all data). 

Synthesis of m-{-C(O)-C6H4(C(O)PPh)}2 (2.4)  

Isophthaloyl chloride (0.5 g, 2.46 mmol) was dissolved in diethyl ether (6 cm3) and slowly added 

dropwise to a pre-cooled (−78 °C) ethereal solution (10 cm3) of PhP(SiMe3)2 (0.627 g, 2.46 mmol) over 

5 minutes yielding a yellow colour change. The yellow solution was stirred for 30 minutes at -78 °C, 

then allowed to warm to ambient temperature and stir for 16 hours leading to a yellow precipitate 

which was filtered, washed with diethyl ether (3 x 5 cm3) and dried in vacuo, initially yielding 0.181 g 

of yellow powder. The solid was dissolved in the minimum amount of DCM and layered with pentane 

resulting in 0.102 g of matt yellow solid isolated in 17% yield.  
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1H NMR (CD2Cl2): δ = Conformation 1: 8.50 (br, aromatic, 1H), 8.03 (br, aromatic, 2H), 7.33 (br, 

aromatic, 5H). Conformation 2: 8.63 (br, aromatic, 1H), 8.21 (br, aromatic, 2H), 7.47 (br, aromatic, 

should be 5H but overlapped by base of other conformer). 

13C{1H} NMR (CD2Cl2): δ = 208.5 (d, C(O), 1JCP = 35 Hz), 140.3 – 127.8 (aromatic region). 

 31P{1H} NMR (C6D6): δ = 30.5 (s). 31P{1H} NMR (CD2Cl2): δ = 32.2 (s). 

 IR νCO 1639 (w) cm-1. 

 HRMS (m/z): Calc. for C28H18O4P2 480.0680 ([M]+). Found 480.0699 ([M]+).  

X-Ray quality crystals were grown at − 29 °C from DCM/Hexane. Crystal Data for C30H22Cl4O4P2 (Mw = 

650.21 g/mol): monoclinic, space group P21/c (no. 14), a = 15.182(3) Å, b = 14.3566(16) Å, c = 

15.409(3) Å, β = 116.03(2)°, V = 3018.1(9) Å3, Z = 4, T = 293(2) K, μ(Cu Kα) = 4.857 mm-1, Dcalc = 

1.431 g/cm3, 9294 reflections measured (8.872° ≤ 2Θ ≤ 142.474°), 5148 unique (Rint = 0.1032, Rsigma = 

0.1162) which were used in all calculations. The final R1 value was 0.0674 (I > 2σ(I)) and wR2 was 

0.2178 (all data). 

Synthesis of m-{-C(O)-C7H6-(C(O)PMe)}2 (2.7) 

A diethyl ether solution of 5-methylisophthaloyl chloride (0.487 g, 2.25 mmol) was added, slowly, to 

a pre-cooled (−78 °C) ethereal solution of MeP(SiMe3)2 (0.432 g, 2.25 mmol). During addition the 

solution assumes a yellow colouration. After stirring at −78 °C for 30 min. the mixture was allowed to 

warm to ambient temperature and stir for a further 16 h, whereupon the precipitate was collected by 

filtration, washed with diethyl ether (3 x 5 cm3), hexanes (3 x 5 cm3), Et2O again (3 x 5 cm3) and dried 

in vacuo, resulting in a yellow solid. Yield: 94 mg, 22%. 

1H NMR (CD2Cl2): δ = 9.34 (br, aromatic-iCH, 2H), 7.33 (br, aromatic-oCH, 4H), 2.23 (s, Ar-CH3, 6H), 1.58 

(d, P-CH3, 2JHP = 2.7 Hz).  

13C{1H} NMR (CD2Cl2): δ = 207.3 (d, C(O), 1JCP = 46 Hz), 141.5 (br t, aromatic-Ci) 138.0 (d, aromatic-Cm, 

2JCP = 37 Hz), 131.97 (d, aromatic-Co, 3JCP = 14 Hz), 131.8 (d, aromatic-CP, 4JCP = 2 Hz), 21.3 (s, Ar-CH3), 

1.9 (d, P-CH3, 1JCP = 4 Hz).  

31P{1H} NMR (CD2Cl2): 34.2 (s). 

31P{1H} NMR (C6D6): 32.3 (s).  

IR νCO 1653 cm-1, 1640 cm-1.  

HRMS (m/z): Calc. for C20H18O4P2 384.0680 ([M]+). Found 384.0691 ([M]+). 
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X-Ray quality crystals were grown at − 29 °C from DCM/Pentane. Crystal Data for C20H18O4P2 (Mw = 

382.27 g/mol): orthorhombic, space group Pmmn (no. 59), a = 13.9090(11) Å, b = 13.0284(10) Å, c = 

4.7978(4) Å, V = 869.42(12) Å3, Z = 2, T = 100.00(10) K, μ(Cu Kα) = 2.481 mm-1, Dcalc = 1.460 g/cm3, 

2495 reflections measured (9.3° ≤ 2Θ ≤ 142.768°), 911 unique (Rint = 0.0587, Rsigma = 0.0611) which 

were used in all calculations. The final R1 value was 0.0682 (I > 2σ(I)) and wR2 was 0.1903 (all data). 

Synthesis of m-{-C(O)-C10H12(C(O)PMe)}2 (2.6) 

To a precooled (−78 °C) ethereal solution (5 cm3) of MeP(SiMe3)2 (0.254 g, 1.32 mmol) was added 5-

tertbutyl isophthaloyl chloride dropwise over 5 minutes in ether (5 cm3), resulting in yellow 

colouration. After stirring for 30 minutes at −78 °C the mixture was allowed to warm to ambient 

temperature and stir for a further 16 hours, whereupon the precipitate was collected by filtration, 

washed with diethyl ether (2 x 5 cm3) and dried in vacuo, affording 65 mg of an intense yellow solid in 

21% yield. 

1H NMR (CDCl3): δ = 9.27 (br, t – can’t resolve coupling, aromatic-iCH, 2H), 7.50 (d, aromatic-oCH, JHH = 

1.4 Hz, 4H), 1.65 (d, CH3, 2JPH = 2.7 Hz, 6H), 1.1 (s, tBu (CH3)3, 18H).  

13C{1H} NMR (CDCl3): δ = 207.2 (d, C(O), 1JCP = 46 Hz), 154.1 (br t, 2 Hz), 137.5 (d, aromatic-Cm, 2JCP =  38 

Hz), 131.2 (t, aromatic-Ci, 3JCP =  14 Hz), 127.5 (dd, aromatic-Co, 3JCP = 2 Hz), 35.2 (s, C(CH3)3), 30.9 (s, 

C(CH3)3), 1.6 (d, CH3, 1JCP = 4 Hz). 

31P{1H} NMR (CDCl3): δ = 36.1 (s).  

31P{1H} NMR (C6D6): δ = 34.5 (s). 

 IR νCO 1657, 1641 cm-1.  

Anal. Calc. for C26H30O4P2: C, 66.64; H, 6.46. Found: C, 66.54; H, 6.52. 

X-Ray quality crystals were grown at − 29 °C from DCM/Pentane. Crystal Data for C26.5H31ClO4P2 (Mw = 

510.90 g/mol): monoclinic, space group C2/c (no. 15), a = 17.3966(3) Å, b = 12.4858(2) Å, c = 

24.2953(4) Å, β = 93.924(2)°, V = 5264.82(15) Å3, Z = 8, T = 293(2) K, μ(Cu Kα) = 2.677 mm-1, Dcalc = 

1.289 g/cm3, 9137 reflections measured (7.294° ≤ 2Θ ≤ 143.39°), 5028 unique (Rint = 0.0202, Rsigma = 

0.0256) which were used in all calculations. The final R1 value was 0.0393 (I > 2σ(I)) and wR2 was 

0.1010 (all data). 

Synthesis of m-{-C(O)-C6H3I -(C(O)PMe)}2 (2.8)  

A diethyl ether solution of 5-Iodoisophthaloyl chloride (1 g, 3 mmol) was cooled to (−78 °C) and 

MeP(SiMe3)2 (0.7 cm3, 3 mmol) was added. During addition the solution assumes a purple colouration, 
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after stirring at −78 °C for 30 min. the mixture was allowed to warm to ambient temperature and 

stirred for a further 16 h, whereupon the precipitate was collected by filtration, washed with diethyl 

ether and concentrated in vacuo. The product was extracted into toluene and dried in vacuo, resulting 

in 0.169 g of an orange-yellow solid in 18.5% yield. 

1H NMR (CD2Cl2): δ = 9.43 (br t, aromatic-iCH, 2H), 7.87 (d, aromatic-oCH, 2JHH = 1.41 Hz, 4H), 1.61 (d, 

P-CH3, 2JHP = 3 Hz, 6H).  

13C{1H} NMR (CD2Cl2): δ = 205.4 (d, C(O), 1JCP = 47 Hz), 139.9 (dd, overlapping aromatic-Co,p, 2JCP = ca2 

Hz), 139.1 (d, aromatic-Cm, 2JCP = 38 Hz), 132.8 ( t, aromatic-Ci, 3JCP = 14 Hz), 1.88 (d, CH3, 1JCP =  5 Hz).  

31P{1H} NMR (CD2Cl2): δ = 36.3 (s).  

31P{1H} NMR (C6D6): δ = 36.1 (s). 

 IR νCO 1640 (br) cm-1.  

HRMS (m/z): Calc. for C18H12O4P2I2 607.8300 ([M]+). Found 607.8306 ([M]+). 

X-Ray quality crystals were grown from the slow evaporation of a saturated benzene solution. Crystal 

Data for C18H12I2O4P2 (Mw = 608.02 g/mol): triclinic, space group P-1 (no. 2), a = 8.9974(5) Å, b = 

10.3834(5) Å, c = 11.7875(5) Å, α = 71.137(4)°, β = 79.100(4)°, γ = 72.531(4)°, V = 988.85(9) Å3, Z = 

2, T = 100.00(10) K, μ(Cu Kα) = 26.698 mm-1, Dcalc = 2.042 g/cm3, 6114 reflections measured (7.968° ≤ 

2Θ ≤ 143.478°), 3745 unique (Rint = 0.0304, Rsigma = 0.0384), which were used in all calculations. The 

final R1 value was 0.0337 (I > 2σ(I)) and wR2 was 0.0927 (all data). 

Synthesis of m-{-C(O)-C12H8 -(C(O)PMe)}2 (2.9)  

A diethyl ether solution of 5-phenylisophthaloyl chloride (0.32 g, 1.1 mmol) was added, slowly, to a 

pre-cooled (−78 °C) ethereal solution of MeP(SiMe3)2 (0.22 g, 1.1 mmol). During addition the solution 

assumes a yellow colouration. After stirring at −78 °C for 30 min. the mixture was allowed to warm to 

RT and stirred for a further 12 h, whereupon the precipitate was collected by filtration, washed with 

diethyl ether and dried in vacuo, resulting in 77 mg of a yellow solid in 26% yield.  

1H NMR (CD2Cl2): δ = 9.46 (s, aromatic-iCH, 2H), 7.71 (s, aromatic-oCH, 4H), 7.34 (t, aromatic-p,o,mCH, 

10H), 1.66 (d, P-CH3, 2JHP = 2.3 Hz, 6H). 1H NMR (C6D6): δ = 9.21 (br, aromatic-iCH, 1H), 7.57 (d, aromatic-

mCH, 2JHH = 1.1 Hz, 2H), 6.94 (t, aromatic-pCH, 1JHH = 7.5 Hz, 1H), 6.87 (t, aromatic-mCH, 1JHH = 7.5 Hz, 

2H), 6.72 (d, aromatic-oCH, 1JHH = 7.53 Hz). 

13C{1H} NMR (CD2Cl2): δ = 207.4 (d, C(O), 1JCP = 46 Hz), 144.3 (s, aromatic-Cp, 138.83 (d, aromatic-Cm, 

2JCP = 37 Hz), 138.8 (s, aromatic-Ci), 132.6 (t, aromatic-Ci, 3JCP = 13 Hz), 129.5 (2 s overlapping, aromatic-

Cm,o), 129.1 (s, aromatic-Co), 127.6 (s, aromatic-Cp), 1.9 (d, P-CH3, 1JCP = 5 Hz).  
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31P{1H} NMR (CD2Cl2): δ = 36.16 (s).  

31P{1H} NMR (C6D6): δ = 35.7 (s). 

 IR νCO 1658, 1639 cm-1.  

HRMS (m/z): Calc. for C30H22O4P2 508.0993 ([M]+). Found 508.0996 ([M]+). 

X-Ray quality crystals were grown from the slow evaporation of a saturated benzene solution. Crystal 

Data for C30.75H22.75O4P2 (Mw = 518.18 g/mol): monoclinic, space group P21/c (no. 14), a = 

12.63370(10) Å, b = 18.1737(2) Å, c = 11.41730(10) Å, β = 97.7110(10)°, V = 2597.72(4) Å3, Z = 4, T = 

100.00(10) K, μ(CuKα) = 1.810 mm-1, Dcalc = 1.325 g/cm3, 24517 reflections measured (8.576° ≤ 2Θ ≤ 

143.576°), 5038 unique (Rint = 0.0217, Rsigma = 0.0152) which were used in all calculations. The 

final R1 value was 0.0481 (I > 2σ(I)) and wR2 was 0.1220 (all data).  

Synthesis of m-{-C(O)-C13H7N1-(C(O)PMe)}2 (2.10)  

To a cooled (−78 °C) solution of 5-(4-cyanophenyl)isophthaloyl chloride (0.316 g, 1.04 mmol) in Et2O 

(5 cm3) was added MeP(SiMe3)2 (1.04 g, 1.04 mmol) resulting in an orange colouration. After stirring 

for 30 minutes at this temperature, the mixture was allowed to warm to ambient temperature and 

stirred for a further 16 hours. At this point the reaction had only proceeded halfway warranting the 

addition of another equivalent of MeP(SiMe3)2 (1.04 g, 1.04 mmol) and stirring for a further 16 hours, 

whereupon the orange precipitate was collected by filtration, washed with Et2O (3 x 10 cm3) and dried 

in vacuo. Yield: 69 mg, 24%.  

1H NMR (C6D6): δ = 9.29 (br, aromatic, 1H), 7.43 (d, aromatic, 2JHH = 1.5 Hz, 2H), 6.82 (d, aromatic, 1JHH 

= 8.5 Hz, 2H), 6.33 (d, aromatic, 1JHH = 8.5 Hz, 2H), 1.66 (d, CH3, 2JHP = 3.1 Hz, 3H).  

13C{1H} NMR (C6D6): δ = 205.9 (d, C(O), 1JCP = 46 Hz), 141.8 (s, CN), 141.4 (s, aromatic-Ci), 138.5 (d, 

aromatic-Co, 2JCP = 38 Hz), 133.4 (t, aromatic-Ci, 3JCP = 13 Hz), 132.5 (s, aromatic-Co), 129.1 (dd, 

aromatic-Cm, 3JCP = 2 Hz), 127.3 (s, aromatic-Cm), 118.2 (s, aromatic-Cp), 112.9 (s, aromatic-Cp), 1.8 (d, 

CH3, 1JCP = 5 Hz). 

 31P{1H} NMR (C6D6): δ = 35.2 (s). 

 IR νCO 1648 (br) cm-1 νCN 2227 cm-1.  

HRMS (m/z): Calc. for C30H22O4P2 558.0898 ([M]+). Found 558.0906 ([M]+). 

 X-Ray quality crystals were grown from layering THF/hexane at ambient temperature. Crystal Data for 

C32.75H21.75N2O4P2 (Mw = 569.21 g/mol): monoclinic, space group I2/a (no. 15), a = 16.7950(6) Å, b = 

19.1020(5) Å, c = 19.2856(5) Å, β = 98.907(3)°, V = 6112.6(3) Å3, Z = 8, T = 99.97(13) K, μ(Cu Kα) = 
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1.607 mm-1, Dcalc = 1.237 g/cm3, 9548 reflections measured (7.056° ≤ 2Θ ≤ 142.842°), 5753 unique 

(Rint = 0.0539, Rsigma = 0.0857) which were used in all calculations. The final R1 value was 0.0786 (I > 

2σ(I)) and wR2 was 0.2401 (all data). 

Attempted synthesis of 5-Ethynyl and 5-Nitrile derivatives  

Alkynyl isophthaloyl chloride (5-ethynyl or 5-Nitrile) was reacted with an equivalent of MeP(SiMe3)2 in 

ether via the typical protocol, unfortunately MePH2 and MeP((H)SiMe3 formation was observed. 

Attempted Oxidations 

Chalocogens  

Compound 2.1 was reacted with an excess of chalcogen (S, Se, Te) and brought to reflux in toluene for 

16 hours, the solution was filtered from the black/yellow precipitate and volatile components 

removed under reduced pressure affording a yellow solid, recovering 2.1 in all cases. 

H2O2: 

Compound 2.1 (50 mg, 0.14 mmol) was dissolved in DCM (5 cm3) and cooled to 0 °C, degassed H2O (ca 

3 cm3) and H2O2 (10 drops) were added and left to stir for 2 hours. Only 2.1 and decomposition 

products were observed.  

m-CPBA: 

Compound 2.1 (8 mg, 0.02 mmol) and m-CPBA (7.76 mg, 0.045 mmol) were introduced to a Schlenk 

flask containing DCM (5 cm3) and wrapped in aluminium foil to exclude light, the mixture was stirred 

for 40 minutes, resulting in a cloudy solution. Et2O (5 cm3) was added, resulting in precipitate 

formation. The solution was filtered from the solid, which was dried in vacuo. No phosphorus signals 

were observed by NMR spectroscopy.  

Exposure to air: 

 A sample of 2.1 in a J Young’s NMR tube was intentionally exposed to air, resulting in a colourless 

precipitate, the precipitate is almost insoluble even after sonication, though the following data were 

obtained after sonication. 

31P NMR (CD2Cl2): δ = 37 (d q, JPH = 554 Hz, 1JPH = 15 Hz). 

1H NMR (CD2Cl2): δ = 8.86 (s, aromatic, 1H), 8.38 (dd, aromatic, J = 31 Hz, J = 7.5 Hz, 2H), 7.95 (s, 

aromatic, 1H), 6.57 (m, aromatic, 1H), 1.5 (dd, CH3, 1JHP = 15 Hz, 6H), 1.67 (d, J = 554 Hz, 1 H). 
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Coordination Chemistry 

Synthesis of [Rh(η4-C8H12)Cl{3-C(O)-C6H4-(C(O)PMe)}2] 

[Rh(η4-C8H12)Cl]2 ( 0.088 g, 0.18 mmol) was dissolved in DCM (5 cm3) and added to m-{-C(O)-C6H4-

(C(O)PMe)}2 (0.064 g, 0.18 mmol) in DCM (5 cm3), resulting in a red solution, next hexane was added 

resulting in a fine precipitate which was filtered, washed and dried in vacuo. 28.5 mg, 26% (crude 

yield) was obtained. This solid was dissolved in the minimum amount of DCM and layered with hexane 

(1:3) yielding red crystals suitable for diffraction. 

1H NMR (CD2Cl2): δ = 10.59 (br, aromatic, 2H), 7.59 (br, aromatic, 4H), 7.32 (t, aromatic, 7.18 Hz, 2H), 

5.78 (br, COD, 2H), 3.74 (br, COD, 2H), 2.50 (br, COD, 4H), 2.16 (br, COD, 4H), 1.91 (d, CH3PRh, J = 6.05 

Hz, 3H), 1.69 (br, CH3P, 3H). 

31P NMR (CD2Cl2): δ = 50.3 (d, CH3PRH, 1JP-RH = 135 Hz), 32.3 (s, CH3P).  

Crystal Data for C26H26ClO4P2Rh (Mw = 602.77 g/mol): monoclinic, space group P21/n (no. 14), a = 

9.2257(5) Å, b = 20.1926(11) Å, c = 13.9484(7) Å, β = 106.546(6)°, V = 2490.9(2) Å3, Z = 4, T = 293(2) K, 

μ(CuKα) = 8.009 mm-1, Dcalc = 1.607 g/cm3, 9255 reflections measured (7.93° ≤ 2Θ ≤ 143.15°), 4735 

unique (Rint = 0.0413, Rsigma = 0.0521) which were used in all calculations. The final R1 value was 0.0681 

(I > 2σ(I)) and wR2 was 0.2002 (all data). 

Synthesis of [Ir(η4-C8H12)Cl{3-C(O)-C6H4-(C(O)PMe)}2] 

[Ir(η4-C8H12)Cl]2 (0.094 g, 0.14 mmol) was dissolved in DCM (5 cm3) and added to m-{-C(O)-C6H4-

(C(O)PMe)}2 (0.1 g, 0.28 mmol) resulting in a red solution, next hexane (5 cm3) was added resulting in 

a fine precipitate which was filtered, washed and dried in vacuo. 0.04 g of impure product was 

isolated. This solid was dissolved in the minimum amount of DCM and layered with hexane (1:3) 

yielding 0.011 g of red crystals suitable for diffraction, 8% yield. 

1H NMR (CD2Cl2): δ = 10.55 (s, aromatic CCHC, 2H), 7.58 (t, aromatic CCHCHCHC, 1JHH = 9.92 Hz, 4H), 

7.33 (t, aromatic CCHCHCHC, 1JHH = 7.62 Hz, 2H), 5.53 (s, COD, 2H), 3.26 (s, COD, 2H), 2.47 (br, m, COD, 

2H), 2.29 (br, m, COD, 2H), 4.57 (br, m, COD, 2H), 1.92 (d, Ir-PCH3, J = 6.64 Hz, 3H), 1.83 (quin, COD, J 

= , 2H), 1.66 (s, PCH3 ,3H). 

31P{1H} NMR (CD2Cl2): δ = 43.2 (s, (M-P(Me)R2) and 32.97 (s, MePR2). 

Crystal Data for C26H26ClIrO4P2 (M =692.06 g/mol): monoclinic, space group P21/n (no. 14), a = 

9.2079(4) Å, b = 20.2526(8) Å, c = 13.8415(6) Å, β = 106.501(5)°, V = 2474.91(19) Å3, Z = 4, T = 293(2) 

K, μ(CuKα) = 12.925 mm-1, Dcalc = 1.857 g/cm3, 9121 reflections measured (7.964° ≤ 2Θ ≤ 143.508°), 
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4717 unique (Rint = 0.0283, Rsigma = 0.0334) which were used in all calculations. The final R1 value was 

0.0262 (I > 2σ(I)) and wR2 was 0.0745 (all data). 

Synthesis of [{Pt(PEt3)Cl2}2{3-C(O)-C6H4-(C(O)PPh)}2] 

[Pt(PEt3)Cl2]2 (31 mg, 0.04 mmol) were dissolved in the minimum amount of THF and added dropwise 

to solid (m-{-C(O)-C6H4(C(O)PPh)}2) (19 mg, 0.04 mmol), resulting in a straw coloured solution which 

was concentrated in vacuo. 25.2 mg (50% crude yield) of crystals resulted from the slow evaporation 

of DCM, however, they were only microcrystalline.  

1H NMR (CD2Cl2): δ = 1.15 (br, PCH2CH3), 1.94 br, PCH2CH3), (9-7.45 br,m aromatic CH’s). 

31P NMR (CD2Cl2): δ = 40.8 (d, 2JP-P 425 Hz, 1JP-Pt 1406 Hz, PPh), 16.5 (d, 2JP-P 425 Hz, 1JP-Pt 1406 Hz, PEt3). 

10.7 [Pt(PEt3)Cl2]2 (5%). 

Phosphaalkenes 

Synthesis of {RPC(OSiMe3)}2C6H4 (R= tBu, Mes) 

RP(SiMe3)2 (R = tBu, Mes) was reacted with half an equivalent of isophthaloyl chloride in ether, 

resulting in a yellow colouration. Reaction aliquots were analysed via NMR spectroscopy, indicating 

phosphaalkene formation, ca 16 hours were required for complete conversion. Attempts to isolate via 

vac-transfer, distillation and trituration all led to decomposition or unidentified species which could 

be dimeric formation, commonly observed for phosphaalkenes. 

31P{1H} NMR (d6-DMSO capillary): δ = 197 (tBu). 

31P{1H} NMR (C6D6 capillary): δ = 153 (Mes). 

Synthesis of [(CO)5WP(Mes)C(OSiMe3)}2C6H4]  

In situ generated {MesPC(OSiMe3)}2C6H4 was reacted with W(CO)5(THF) generated via literature 

procedure, retaining its yellow colour, NMR analysis suggests tungsten coordination, though attempt 

to isolate the complex led to decomposition. 

31P{1H} NMR (C6D6 capillary): δ = 110 (s, JPW = 255 Hz) 

Nitrogenous Analogues of the Diphosphametacyclophanes 

Synthesis of N,N-Diphenylisophthalamide 

Aniline (0.91 cm3, 10 mmol) was added dropwise to isopthaloyl chloride (1.012 g, 5 mmol) dissolved 

in pyridine (5 cm3), resulting in a light-pink coloured solution. After 30 minutes DCM (15 cm3) was 

added to facilitate stirring, after a further 90 minutes more DCM (15 cm3) was added and the resultant 
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precipitate was filtered via Buchner funnel resulting in 1.318 g of colourless solid in 83% yield. 

NMR spectral data agrees with the literature.327 

1H NMR ((D3C)2SO): δ = 7.69 (t, 1JHH = 8.10 Hz, 1H), 8.14 (dd, 1JHH = 7.84 Hz, 2H), 8.55 (s, 1H), 10.43 (s, 

2H), 7.81 (d, 1JHH = 7.53 Hz, 4H), 7.37 (t, 1JHH = 8.32 Hz, 4H), 7.12 (t, 1JHH = 7.72 Hz, 2H). 

Synthesis of N,N′-Diphenylpyridine-2,6-dicarboxyamide  

Aniline (0.91 cm3, 10 mmol) was added dropwise to pyridine-dicarbonyl-dichloride (1.02 g, 5 mmol) 

dissolved in pyridine (5 cm3), resulting in a slight exotherm, the solution also turned more viscous and 

obtained a brown colouration. After 20 minutes DCM (15 cm3) was added to facilitate stirring, after a 

further 90 minutes more DCM (15 cm3) was added and the resultant precipitate was filtered via 

Buchner funnel resulting in 1.168 g of colourless solid in 74% yield. 

NMR data agrees with the literature.327 

 1H NMR ((D3C)2SO): δ = 11.02 (S, 2H), 8.41 (d, 1JHH = 7.93 Hz, 2H), 8.31 (t, 1JHH = 8.27 Hz, 1H), 7.93 (d, 

1JHH = 8.27, 4H), 7.45 (t, 1JHH = 8.27 Hz, 4H), 7.20 (t, 1JHH = 7.93 Hz, 2H). 

Synthesis of {C6H4C(O)NC(O)C6H5}2 (2.21) 

N,N-Diphenylisopthalamide (0.198 g, 0.625 mmol) was suspended in THF (ca 20 cm3), nBuLi (2.5M in 

hexanes, 0.5 cm3, 1.25 mmol) was added and stirred for 1 hour at RT resulting in a cloudy orange 

solution. The reaction mixture was heated to reflux and benzoyl chloride (0.18 cm3, 1.25 mmol) was 

added and brought to reflux for 4 hours. 

Water (150 cm3) was added, followed by MeOH (20 cm3) resulting in a yellow precipitate which was 

filtered. The yellow solid was washed with MeOH (30 cm3) and dried under vacuum resulting in 0.257 

g, 78% yield. 

1H NMR (CD2Cl2): δ = 8.02 (s, aromatic 4, 1H), 7.80 (dd, aromatic 

2,1JHH = 1.69 Hz, 1JHH = 7.83 Hz, 2H), 7.66 (d, aromatic 7, 1JHH = 7.32 

Hz, 4H), 7.5 (t, aromatic 1, 1JHH = 7.4Hz, 1H), 7.35 (m, aromatic 13, 

8, 14 and 9, 12H), 7.12 (d, aromatic 12 , 1JHH = 7.49 Hz, 4H). 

13C{1H} NMR (CD2Cl2): δ = 173.8 (5 C=O), 172.5 (10 C=O), 148.5 (6 

NC(CH)5), 135.6 (3), 135.2 (11), 133.3 (2), 133.1 (1), 130.5 (4), 

130.2 (13), 129.7 (7), 129.5(8), 129.2 (4), 128.5 (9), 128.4 (12) Assigned using HSQC for assistance. 

LRMS-EI m/z: 524 [M]+.   

X-Ray quality crystals were grown at ambient temperature from the slow evaporation of DMF. Crystal 

Data: C34H24N2O4 (Mw = 524.55 g/mol): monoclinic, space group P21/c (no. 14), a = 9.1759(4) Å, b = 
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23.9133(8) Å, c = 13.1029(5) Å, β = 107.400(4)°, V = 2743.55(19) Å3, Z = 4, T = 293(2) K, μ(CuKα) = 

0.676 mm-1, Dcalc = 1.270 g/cm3, 14012 reflections measured (7.394° ≤ 2Θ ≤ 122.272°), 4203 unique 

(Rint = 0.0441, Rsigma = 0.0380) which were used in all calculations. The final R1 value was 0.0504 (I > 

2σ(I)) and wR2 was 0.1477 (all data). 

Attempted synthesis of m-{-C(O)-C6H4-(C(O)NPh)}2  

Triethylamine (0.305 cm3, 2.190 mmol) was added dropwise to a pre-cooled ethereal solution of 

isopthaloyl chloride (0.222 g, 1.095 mmol), aniline (0.1 cm3, 1.095 mmol) was added after a few 

minutes and left to stir for 30 minutes before warming to RT. The product produced 

diphenylisophthalamide (36), the [Cl]-[HNEt3]+ salt and some very small impurities in the aromatic 

region. 

Attempted synthesis of m-{-C(O)-C6H4-(C(O)NPh)}2 

N,N-Diphenylisophthalamide was reacted with another equivalent of isophthaloyl chloride using both 

triethylamine and nBuLi over a range of temperatures to try to make a nitrogen macrocycle, 

unfortunately in all cases only starting material was recovered.  

Attempted synthesis of m-C(O)-C6H4-(C(O)NPhC(O)CH2CH2CH2C(O)NPh 

N,N-Diphenylisopthalamide (0.198 g, 0.625 mmol) was suspended in THF (ca 20 cm3), nBuLi (2.5M in 

hexanes, 0.5 cm3, 1.25 mmol) was added and stirred for 1 hour at RT resulting in a cloudy orange 

solution. The reaction mixture was heated to reflux and Glutaryl chloride (0.08 cm3, 0.625 mmol) was 

added and brought to reflux for 4 hours. Water (150 cm3) was then added, followed by MeOH (20 cm3) 

resulting in brown solid which was isolated via filtration.  

LRMS (m/z): 316. 

 

Experimental Details for Chapter 3 

Synthesis of [Pt(PEt3)Cl2]2 

PtCl2 (1.19 g, 4.48 mmol) and PEt3 (0.6 cm3, 4.07 mmol) was brought to reflux for 3 hours in 4-

chlorotoluene (15 cm3). The solvent was removed under reduced pressure to afford a brown solid. 

Product was dissolved in DCM and filtered through Celite®, the solid was washed till the filtrate ran 

clear. Solvent was removed under reduced pressure and the product was recrystallised from DCM to 

afford bright yellow crystals. Crystals were washed with DCM (5 cm3) and dried under vacuum. Yield: 

0.635 g, 41%. Product was confirmed by comparison of spectroscopic data with the literature.219  
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1H NMR (CDCl3): δH = 1.82 (m, CH2, 2H), 1.23 (dt, CH3, 1JHH = 7.6 Hz, 2JHP = 18.1 Hz, 3H). 

31P{1H} NMR (CDCl3): P = 10.2 (s, 1JPtP  3845 Hz).   

Synthesis of 1-Methylphosphinane-2,6-dione (3.2a) 

To a cooled (–78°C) solution of MeP(SiMe3)2 (1.01 g, 5.25  mmol) in Et2O (5 cm3) was added glutaryl 

chloride (0.7 cm3, 5.25 mmol).  After stirring for 30 minutes at this temperature, the mixture was 

allowed to warm to ambient temperature and stir for a further 16 hours. The mixture was filtered and 

the Et2O removed from the filtrate under reduced pressure.  The product was purified by distillation 

(60 °C, 5 x 10-3 mbar) affording 3.2a a colourless liquid.  Yield: 0.337 g, 45%.  

NMR (CDCl3, 303 K): 

1H NMR: δH = 2.75 (br, CH2, 4H, unresolved), 2.36 (br, CHH, 1 H, unresolved), 1.92 (br, CHH, 1 H, 

unresolved), 1.44 (s, CH3, 3H). 

13C{1H} NMR: δC = 220.6 (d, C(O), 1JCP = 43 Hz), 44.5 (d, CH2, 2JCP = 29 Hz), 18.1 (d, CH2, 3JCP = 3 Hz), 1.0 

(d, CH3, 1JCP = 9 Hz).  

31P NMR: δP = 39.5 (qnt, JPH = 7.3 Hz).   

31P{1H} NMR (C6D6; 303 K): P = 36.9 (s). 

NMR (C7D8):  

1H NMR (303 K): δH = 2.06 (br, CH2, 4H, unresolved), 1.54 (br, CHH, 1 H, unresolved), 1.26 (s, CH3, 3H), 

1.00 (br, CHH, 1 H, unresolved).  

 1H NMR (238 K): δH = 1.99 (m, CH2, 2H), 1.86 (m, CH2, 2H) , 1.38 (br, CHH, 1 H), 1.29 (s, CH3, 3H), 0.80 

(br, CHH, 1 H).   

13C{1H} NMR (303 K): δ = 218.5 (d, C(O), 1JCP = 42 Hz), 44.0 (d, CH2, JCH = 29 Hz), 17.8 (d, CH2, 3JCP = 3 Hz), 

0.67 (d, CH3, 1JCP = 9 Hz). 

31P{1H} NMR (303 K): δP = 36.6 (s).   

IR (THF): νCO 1739 (w), 1668 (s) cm-1. 

EI HRMS (m/z): Calc. for C6H9O2P 144.0340 ([M]+). Found 144.0337 ([M]+). 

Synthesis of 1-nButylphosphinane-2,6-dione (3.2b) 

As for 3.2a using nBuP(SiMe3)2 (0.25 g, 1.08 mmol) and 0.14 cm3 (1.08 mmol) glutaryl chloride.  Purified 

by distillation (85-90 °C, 1.3 x 10-2 mbar).  Yield: 0.089 g, 44%.  1H NMR (C6D6): δH = 2.08 (m, CH2 Butyl 
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2H, overlapping CH2 (ring) 4H), 1.57 (m, CH2 (ring) 1H), 1.51 (m, CH2 butyl, 2H), 1.31 (br. Unres, CH2 

(ring) 1H), 1.28 (sextet CH2 (butyl), 1JHH = 7.40 Hz, 2H), 0.81 (t, CH3, 1JHH = 7.40 Hz, 3H).   

13C{1H} NMR (C6D6): δC = 219.3 (d, C(O), 1JCP = 42 Hz), 44.4 (d, CH2 (ring), 2JCP = 29 Hz),  29.2 (d, CH2 

(butyl),   1JCP = 13 Hz), 24.3 (d, CH2 (butyl), 2JCP =  12 Hz), 18.9 (d, CH2 (butyl), 3JCP = 8 Hz), 17.8 (d, CH2 

ring, 3JCP = 3 Hz), 13.7 (s, CH3). 

31P{1H} NMR (C6D6): δP = 47.7 (s). 

IR (THF): νCO 1768 (w), 1660 (s) cm-1.   

EI HRMS (m/z): Calc. for C9H15O2P 186.0810 ([M]+). Found 186.0818 ([M]+). 

Synthesis of 1-tButylphosphinane-2,6-dione (3.2c)   

As for 3.2a using tBuP(SiMe3)2 (0.295 g, 1.26 mmol) and 0.16 cm3 (1.26 mmol) glutaryl chloride.  After 

removal of volatile components from the filtrate, the residue was washed with cold hexane (5 cm3, 0 

°C) and dried in vacuo, yielding 3.2c as a wax-like white solid.  Yield: 0.092 g, 40%. 

1H NMR (CDCl3): δ = 2.67 (q, CH2, J = 6.2 Hz, 4H), 2.09 (br, CH2, 2H), 1.34 (d, J = 13.6 Hz, 9H).   

13C{1H} NMR (C6D6): δC = 218.8 (d, C(O) 1JCP = 48 Hz), 45.8 (d, CH2, 2JCP = 27 Hz), 34.5 (d, C(CH3)3, 1JCP = 

12 Hz), 28.1 (d, CH3, 2JCP = 8 Hz), 17.7 (d, CH2, 3JCP = 3 Hz).  

31P{1H} NMR (C6D6): δP = 68.2 (s).  

IR (THF): νCO 1736 (w), 1655 (s) cm-1.   

EI HRMS (m/z): Calc. for C9H15O2P 186.0810 ([M]+). Found 186.0795 ([M]+). 

Synthesis of 1-Phenylphosphinane-2,6-dione (3.2d) 

As for 3.2a using PhP(SiMe3)2 (1.039 g, 4.1 mmol) and 0.52 cm3 (4.1 mmol) glutaryl chloride.  The 

solvent was removed under reduced pressure, affording a white solid, which was dried in vacuo.  Yield: 

0.750 g, 91%. 

1H NMR (CD2Cl2): δH = 7.40-7.55 (m, aromatic, 5H), 2.86 (br, CH2, 4H), 2.22 (br, CH2, 2H).   

13C{1H} NMR (CD2Cl2): δC = 218.5 (d, CO, 1JCP = 44 Hz), 137.1 (d, Co, 2JCP = 18 Hz), 131.7 (d, Cp, 4JCP = 3 Hz), 

129.5 (d, Cm, 3JCP = 9 Hz), 126.9 (s, Ci), 45.6 (d, CH2, 2JCP = 31 Hz), 18.4 (d, CH2, 3JCP = 3 Hz). 

  31P{1H} NMR: δP(CD2Cl2) = 52.5 (s); P(C6D6) = 49.2 (s). 

 IR (THF): νCO 1737 (w), 1667 (s) cm-1.   

EI HRMS (m/z): Calc. for C11H11O2P 206.0497 ([M]+). Found 206.0486 ([M]+). 
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Crystal data for C11H11O2P (Mw = 206.17 g/mol): orthorhombic, Pna21 (no. 33), a = 14.2522(3) Å, b = 

5.97643(12) Å, c = 12.0658(2) Å, V = 1027.73(3) Å3, Z = 4, T = 173(2) K, μ(CuKα) = 2.134 mm-1, Dcalc = 

1.332 Mg m-3, 1817 independent reflections, full matrix F2 refinement, R1 = 0.0588 on 1736 

independent absorption corrected reflections [I > 2σ(I); 2max = 134.0 ), 127 parameters, wR2 = 0.1635 

(all data). 

Synthesis of 1-Mesitylphosphinane-2,6-dione (3.2e)   

As for 3.2a using MesP(SiMe3)2 (0.05 g, 0.169 mmol) and 0.021 cm3 (0.169 mmol) glutaryl chloride.  

After removal of volatile components from the filtrate, the residue was extracted into pentane (3 x 10 

cm3), the extracts combined and the solvent removed under reduced pressure, affording 2e as a 

colourless solid, dried in vacuo.  Yield: 0.014 g, 33%. 

1H NMR (C6D6): δH = 6.71 (br s, aromatic C-H, 2H), 2.27 (q, CH2CH2CH2, 1JHH = 6.8 Hz, 4H), 2.22 (s, CH3, 

6H), 2.01 (s, CH3, 3H), 1.41 (br m, CH2CH2CH2, 2H).  

13C{1H} NMR (C6D6): δC = 217.0 (d, C(O), 1JCP = 41 Hz), 145.8 (s, aromatic), 142.0 (d, aromatic, JCP 2 Hz), 

129.8 (d, aromatic, 7 Hz), 121.0 (aromatic, from HMBC), 45.2 (d, CH2CH2CH2, 2JCP = 34 Hz), 23.9 (d, CH3, 

3JCP = 13 Hz), 21.2 (s, CH3), 18.1 (CH2CH2CH2, 3JCP = 2 Hz).   

31P{1H} NMR (C6D6): δP = 31.3 (s).  

 IR (THF): νCO 1738 (w), 1659 (s) cm-1.   

EI HRMS (m/z): Calc. for C14H17O2P1 248.0966 ([M]+). Found 248.0960 ([M]+). 

Crystal data for C14H17O2P (Mw = 248.24 g/mol): monoclinic, P21/c (no. 14), a = 10.8705(3) Å, b = 

9.7423(2) Å, c = 11.9167(2) Å,  = 93.452(2), V = 1259.83(5) Å3, Z = 4, T = 100(2) K, μ(CuKα) = 1.828 

mm-1, Dcalc = 1.309 Mg m-3, 2407 independent reflections, full matrix F2 refinement, R1 = 0.0344 on 

2237 independent absorption corrected reflections [I > 2σ(I); 2max = 143.4 ), 157 parameters, wR2 = 

0.0915 (all data). 

Synthesis of 1-Methylphosphepane-2,7-dione (3.3a)  

To a cooled (–78 °C) solution of MeP(SiMe3)2 (0.199 g, 1.03  mmol) in Et2O (5 cm3) was added adipoyl 

chloride (0.15 cm3, 1.03 mmol).  After stirring for 30 minutes at this temperature, the mixture was 

allowed to warm to ambient temperature and stir for a further 16 hours. The mixture was filtered 

through an alumina plug, washing with Et2O (5 x 5 cm3), then concentrated under reduced pressure 

to afford 3a as a colourless oil.  Yield: 0.02 g, 12%.  
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 1H NMR (CDCl3): δH = 2.81 (br, CH2, 4H), 1.61 (br, CH2, 4H), 1.53 (d, CH3, 2JHP = 2.0 Hz, 3H).   

1H NMR (C6D6): δH = 2.26 (br, CH2, 4H), 1.50 (br, CH2, 2H), 1.36 (d, CH3, 2JHP = 1.95 Hz, 3H), 1.30 (br, CH2, 

2H).   

13C{1H} NMR (C6D6): δC = 217.3 (d, C(O), 1JCP = 48 Hz), 48.0 (d, 2 x CH2, 2JCP = 35 Hz), 22.5 (d, 2 x CH2, 3JCP 

= 3 Hz), 1.8 (d, CH3, 1JCP = 6 Hz).   

31P{1H} NMR (C6D6): δP = 39.7 (s).  

IR (THF): νCO 1659 (s) cm-1 (symm not observed). 

 EI HRMS (m/z): Calc. for C7H11O2P 158.0497 ([M]+). Found 158.0495 ([M]+). 

Synthesis of 1-nButylphosphepane-2,7-dione (3.3b)  

As for 3.3a, using nBuP(SiMe3)2 (0.38 g, 1.4 mmol) and 0.2 cm3 (1.4 mmol) adipoyl chloride.  Yield: 0.09 

g, 31%.   

1H NMR (C6D6): δH = 2.27 (br, CH2 (ring), 4H), 2.16 (m, CH2 (butyl), 2H), 1.51 (m, CH2 (butyl), 2H), 1.40 

(br. Unresolved, CH2 (ring), 4H), 1.33 (sextet, CH2 (butyl), J = 7.2 Hz, 2H), 0.83 (t, CH3, 1JHH 7.2 Hz, 3H).   

13C{1H} NMR (C6D6): δC = 218. 5 (d, C(O), 1JCP = 48 Hz), 47.7 (d,CH2 ring, 2JCP = 32 Hz), 28.7 (d, CH2, 1JCP = 

15 Hz), 24.4 (d, CH2, 2JCP = 13 Hz), 22.4 (d, CH2 ring, 3JCP = 3 Hz), 19.3 (d, CH2, 3JCP = 7 Hz), 13.9 (s, CH3).  

31P NMR (C6D6): δP = 48.9 (apparent nonet, JPH = 6 Hz).   

IR (THF): νCO 1736 (w), 1657 (s) cm-1. 

EI HRMS (m/z): Calc. for C10H17O2P 200.0966 ([M]+). Found 200.0980 ([M]+). 

Synthesis of 1-tButylphosphepane-2,7-dione (3.3c).  

As for 3.3a, using tBuP(SiMe3)2 (0.330 g, 1.4 mmol) and 0.2 cm3 (1.40 mmol) adipoyl chloride. After 

stirring overnight, the mixture was filtered and the solvent removed under reduced pressure.  The 

crude product was extracted into cold hexane (10 cm3) and the extracts stripped of volatile 

components then dried in vacuo, affording 3.3c as a colourless solid.  Yield: 0.114 g, 40%. 

1H NMR (CDCl3): δH = 2.74 (br, CH2, 4H), 2.08 (br, CH2, 4H), 1.29 (d, 2JHP = 13.24 Hz, 9H).  

13C{1H} NMR (CDCl3): δC = 221.7 (d, C(O), 1JCP = 50 Hz), 48.0 (d, CH2, 2JCP = 27 Hz), 34.5 (d, C(CH3)3, 1JCP = 

13 Hz), 27.8 (d, C(CH3)3, 2JCP = 9 Hz), 22.6 (d, CH2 3JCP = 4 Hz). 

31P{1H} NMR: δP(CDCl3) = 62.3 (s). P(C6D6) = 60.9. 

IR (THF): νCO 1736 (w), 1652 (s) cm-1.  
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HRMS (m/z): Calc. for C10H17O2P 200.0966 ([M]+). Found 200.0863 ([M]+). 

Synthesis of 1-Phenylphosphepane-2,7-dione (3.3d)  

As for 3.3c, using PhP(SiMe3)2 (0.27 g, 1.1 mmol) and 0.15 cm3 (1.1 mmol) adipoyl chloride.  Yield: 

0.025 g, 11%. 

1H NMR (CDCl3): δ = 7.57-7.35 (m, aromatic, 5H), 2.93 (br, CH2, 4H), 2.20 (br, CH2, 4H). 

13C{1H} NMR (CDCl3): δC = 218.3 (d, C(O), 1JCP = 47 Hz), 137.0 (d, Ci, 1JCP = 19 Hz), 131.1 (d, Cm, 3JCP = 3 

Hz), 128.9 (d, Co, 2JCP = 9 Hz), 127.5 (s, Cp), 47.6 (d, CH2, 2JCP = 34 Hz), 22.8 (d, CH2, 3JCP = 4 Hz). 

31P{1H} NMR (CDCl3): δP = 52.2 (s); P(C6D6) = 49.0.   

IR (THF): νCO 1735 (w), 1665 (s) cm-1. 

HRMS (m/z): Calc. for C12H13O2P 220.0653 ([M]+). Found 220.0650 ([M]+). 

Synthesis of cis-[PtCl2(Ph)P{C(O)(CH2)3C(O)}] (3.4) 

Dichloromethane solutions (5 cm3) of 3.2d (20 mg, 0.049 mmol) and [Pt(PEt3)Cl2]2 (37 mg, 0.049 mol) 

were combined and stirred for 16 h.  The resulting yellow solution was concentrated under reduced 

pressure, affording a yellow solid that was recrystallised from DCM/pentane.  Yield: 24 mg, 83% yield. 

1H NMR (CD2Cl2): δH = 7.72 (m, aromatic, 2H), 7.64 (m, aromatic, 1H), 7.54 (dt, aromatic, JHH = 7.40 Hz, 

2H), 3.47 (m, CH2 (ring) 2H), 2.80 (m, CH2 (ring) + CHH, 3H), 1.90 (m, CHH, 1 H), 1.81 (dq, CH2 (PEt3), JPH 

10.2 Hz, JHH 7.7 Hz, 6H), (dt, CH3 (PEt3), JPH 18.1 Hz, 1JHH = 7.7 Hz, 9H). 

13C{1H} NMR (CD2Cl2): δC = 208.8 (dd, C(O), 1JCP = 6 Hz, 1 Hz), 136.1 (d, Cm, 3JCP = 10 Hz, JPtC 33 Hz), 133.9 

(d, Cp, 4JCP = 3 Hz), 129.6 (d, Co, 2JCP = 11 Hz), 121.0 (d, Ci, 1JCP = 55 Hz), 45.7 (d, CH2, 2JCP = 38 Hz), 18.1 

(d, JCP = 1.6 Hz, CHH), 16.1 (d, CH2 (PEt3), 1JCP = 40 Hz, JPtC 35 Hz), 8.5 (d, CH3 (PEt3), 2JCP = 3 Hz, JPtC 25 

Hz). 

31P{1H} NMR (CD2Cl2): δ = 26.8 (d, R2PhPPt, 2JPP = 15 Hz, JPtP = 3413 Hz), 9.0 (d, PtPEt3, 2JPP = 15 Hz, J(PtP) 

= 3166 Hz). 

195Pt NMR (CD2Cl2): δP = –4432 (dd,1JPtP = 3410, 3164 Hz).  

IR (THF): νCO 1717, 1694 cm-1.   

Anal. Calc. for C17H26Cl2O2P2Pt: C, 34.59; H, 4.44. Found: C, 34.62; H, 4.49. 

Crystal data for C17H26Cl2O2P2Pt (Mw = 590.31 g/mol): orthorhombic, P212121 (no. 19), a = 7.4569(9) Å, 

b = 10.591(2) Å, c = 26.251(4) Å, V = 2073.2(6) Å3, Z = 4, T = 173(2) K, μ(CuKα) = 16.553 mm-1, Dcalc = 
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1.891 Mg m-3, 3724 independent reflections, full matrix F2 refinement, R1 = 0.1055 on 1793 

independent absorption corrected reflections [I > 2σ(I); 2max = 136.4 ), 172 parameters, wR2 = 0.3003 

(all data). 

Synthesis of [(η4-C8H12)RhCl(Ph)P{C(O)(CH2)3C(O)}] (3.5).  

3.2d (30 mg, 0.14 mmol) and [Rh(η4-C8H12)Cl]2 (35 mg, 0.07 mmol) were combined in DCM (ca 5 cm3), 

instantly assuming a red colouration. Concentrated under reduced pressure and red crystals were 

grown from DCM/pentane. Yield: 24 mg, 38%. 

NMR (CD2Cl2, 303 K): 

1H NMR: δH = 7.76 (m, aromatic-oCH, 2H), 7.57 (m, aromatic-pCH, 1H), 7.51 (m, aromatic-mCH, 2H), 4.49 

(unresolved, COD, 3H), 3.25 (unresolved, CH2, 2H), 2.75 (br s, no coupling resolved, COD, CH2, 3H), 

2.43 (unresolved, COD, CH2, 5H), 2.09 (unresolved, COD, CH2, 5H). 

31P{1H} NMR: δP = 49.2 (s, w1/2 = 4 Hz). 

13C{1H} NMR: δC = 214.4 (d, C(O), 1JCP = 6 Hz), 136.4 (d, Co, 2JCP = 11 Hz), 132.3 (d, Cp, 4JCP = 2 Hz), 129.2 

(d, Cm, 3JCP = 11 Hz), 129.0 (s, Rh-C=C), 123.2 (d, Ci, 1JCP = 40 Hz), 45.5 (d, (CH2)2, 2JCP = 33 Hz), 31.3 (br s, 

COD-saturated backbone, w1/2 = 28 Hz), 28.4 (s, COD-saturated backbone),17.9 (s, CH2). 

NMR (CD2Cl2, 193 K): 

1H NMR: δH = 7.74 (m, aromatic-oCH, 2H), 7.61 (m, aromatic-pCH, 1H), 7.53 (m, aromatic-mCH, 2H),  

5.59 (br s, COD, 2H), 3.36 (s, COD, 2H), 3.14 (m, CH2, 2H), 2.90 (m, CH2, 1H), 2.69 (m, CH2, 2H), 2.4 (br 

t, COD, 4H), 2.12 (br d, COD, 2H), 2.03 (m, COD, CH2, 2H, 1H). 

31P{1H} NMR: δP = 55.7 (d, 1JPRh = 137 Hz). 

Crystal Data for C19H23O2PClRh (Mw = 452.70 g/mol): monoclinic, space group P21/c (no. 14), a = 

10.0696(2) Å, b = 14.1423(3) Å, c = 13.0777(2) Å, β = 104.991(2)°, V = 1798.98(6) Å3, Z = 4, T = 

293(2) K, μ(CuKα) = 9.950 mm-1, Dcalc = 1.671 g/cm3, 6400 reflections measured (9.092° ≤ 2Θ ≤ 

143.36°), 3436 unique (Rint = 0.0246, Rsigma = 0.0356) which were used in all calculations. The 

final R1 value was 0.0509 (I > 2σ(I)) and wR2 was 0.1426 (all data). 

Synthesis of [W(CO)5(L)] 

In a typical procedure, a THF solution (2 cm3) of 3.2a (20 mg, 0.14 mmol) was combined with excess 

of [W(CO)5(THF)] (ca 0.1 M, 2.8 cm3, ca 0.28 mmol) and the mixture stirred for 16 h.  The volatile 

components were removed under reduced pressure and the crude product extracted first into Et2O (5 
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cm3) then, following concentration of the extract, into cold pentane (5 cm3, 0 °C).  Removal of the 

solvent afforded 3.6a as a pale-yellow solid.  Yield: 23 mg, 35%.   

1H NMR (C6D6): δH = 2.40 (ddd, CH2, 2JCP = 16.2 Hz, 12.2, 4.8 Hz, 2H), 1.97 (tdd, CH2, 2JCP = 15,3, 5.7, 3.4 

Hz, 2H), 1.40 (d, CH3, 1JCP = 8 Hz, 3H), 1.18 (m, CH2, 1H), 0.62 (m, CH2, 1H). 

13C{1H} NMR (C6D6): δC = 214.8 (d, C(O), 1JCP = 3 Hz), 197.9 (d, W(CO)trans,2JCP = 22 Hz, 1JCW = 149 Hz), 

195.4 (d, W(CO)cis, 2JCP =  6 Hz, 1JWC = 125 Hz), 42.3 (d, CH2, 2JCP = 36 Hz), 17.8 (d, CH2, 3JCP = 3 Hz), 9.0 

(d, CH3, 1JCP = 29 Hz).  

31P{1H} NMR (C6D6): δP = 20.7 (s, 1JWP = 202 Hz).  

IR(THF) ν/cm-1: 2076, 1946, 1933 [WCO], 1702, 1685 [CO].  

Anal. Calc. for C11H9O7PW: C, 28.23; H, 1.94. Found: C, 28.55; H, 2.17.  

Crystal data for C11H9O7PW (Mw = 460.00 g/mol): monoclinic, P21/n (no. 14), a = 6.89715(9) Å, b = 

12.94011(18) Å, c = 15.8307(2) Å,  = 101.0523(13) °, V = 1386.69(3) Å3, Z = 4, T = 173(2) K, μ(CuKα) = 

16.818 mm-1, Dc = 2.242 Mg m-3, 2671 independent reflections, full matrix F2 refinement, R1 = 0.0204 

on 2620 independent absorption corrected reflections [I > 2σ(I); 2max = 143.2 ), 182 parameters, wR2 

= 0.0508 (all data). 

Synthesis of 3.6b.  

From 3.2b (13 mg, 0.07 mmol).  Obtained as a yellow oil.  Yield: 18 mg, 50%.   

1H NMR (C6D6): δH = 2.34 (ddd, CH2(ring), J = 16.3, 12.09, 4.2 Hz, 2H), 2.06 – 1.96 (m x 2, CH2 (butyl) + 

CH2 (ring), 4H), 1.25 (m, CH2 (butyl), 2H), 1,22 (m, CHH, 1H), 1.01 (sextet, CH2, 2JHH = 7.47 Hz, 2H), 0.79 

(m, CHH, 1H), 0.67 (t, CH3, 2JHH = 7.36 Hz, 3H).   

13C{1H} NMR (C6D6): δC = 214.8 (d, C(O), 1JCP = 4 Hz), 197.9 (d, WCOtrans, 1JCP = 21 Hz, JWP = 148 Hz),  195.4 

(d, WCOcis, 2JCP = 6 Hz, 1JWC = 125 Hz), 43.1 (d, CH2 (ring), 2JCP = 33 Hz), 28.9 (d, CH2 (butyl), 3JCP = 7 Hz), 

26.3 (d, CH2 (butyl), 1JCP = 23 Hz), 24.2 (d, CH2 (butyl), 2JCP = 13 Hz), 17.6 (d, CH2 (ring), 3JCP = 3 Hz), 13.4 

(s, CH3).  

 31P{1H} NMR (C6D6): δP = 33.1 (s, 1JWP = 202 Hz). 

 IR(THF) ν/cm-1: 2075, 1953, 1950, 1942 [WCO], 1683, 1660 [CO].   

Anal. Calc. for C14H15O7PW: C, 32.97; H, 2.96. Found: C, 33.15; H, 3.17.   
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Synthesis of 3.6c.  

From 3.2c (35 mg, 0.19 mmol).  Yield: 60 mg, 62%.  

1H NMR (C6D6): δH = 2.29 (ddd, CH2 J = 16.5, 11.5, 4.3 Hz, 2H), 1.95 (dddd, CH2, J = 16.6, 9.9, 6.7. 3.4 Hz, 

2H), 1.15 (m, CH2, 1H), 1.14 (d, C(CH3)3, J = 15.3 Hz, 9H), 0.90 (m, CH2, 1H).   

13C{1H} NMR (C6D6): δC = 215.8 (d, C(O), 1JCP = 8 Hz), 197.2 (d, WCOtrans, 2JCP = 22 Hz, JPW 146 Hz), 196.0 

(d, WCOcis, 2JCP = 6 Hz, 1JWC = 125 Hz), 44.1 (d, CH2, 2JCP  = 30 Hz), 37.9 (d, C(CH3)3, 1JCP = 14 Hz), 27.6 (d, 

C(CH3)3, 2JCP = 2 Hz) ), 16.9 (d, CH2, 3JCP = 3 Hz). 

31P{1H} NMR (C6D6): δP = 51.3 (s, 1JWP = 207 Hz). 

IR(THF) ν/cm-1: 2075, 1942, 1934 [WCO], 1676, 1655 [CO].  

Anal. Calc. for C14H15O7PW: C, 32.97; H, 2.96. Found: C, 32.84; H, 3.15. 

Crystal data for C14H15O7PW (Mw = 510.08 g/mol): orthorhombic, Pbca (no. 61), a = 12.3442(2) Å, b = 

12.5495(2) Å, c = 21.9424(4) Å, V = 3399.18(10) Å3, Z = 8, T = 173(2) K, μ(CuKα) = 13.786 mm-1, Dcalc = 

1.993 Mg m-3, 3219 independent reflections, full matrix F2 refinement, R1 = 0.0301 on 2866 

independent absorption corrected reflections [I > 2σ(I); 2max = 143.4 ), 211 parameters, wR2 = 0.0852 

(all data). 

Sythesis of 3.6d.   

From 3.2d (31 mg, 0.15 mmol). Yield: 20 mg, 25%. 

1H NMR (C6D6): δH = 7.58 (m, Ph, 2H), 6.97 (m, Ph, 3H), 2.35 (ddd, CH2, J = 16.5, 11, 4 Hz, 2H), 2.03 

(dddd, CH2, J = 16.5, 11, 7, 3.5 Hz, 2H), 1.19 (m, CHH, 1H), 0.87 (dtt, CHH, J = 14, 11, 3.5 Hz, 1H).  

13C{1H} NMR (C6D6): δC = 213.2 (d, C(O), 1JCP = 5 Hz), 197.8 (d, WC(O)trans, 1JCP = 23 Hz, , 1JWC = 148 Hz), 

195.7 (d, WCOcis, 1JCP = 6 Hz,  1JWC = 125 Hz), 133.1 (d, Co, 2JCP = 10 Hz),  Hz), 131.5 (d, Cp, 4JCP = 3 Hz), 

129.3 (d, Cm, 3JCP = 10 Hz), 127.2 (d, Ci
, 1JCP = 40 Hz), 43.2 (d, CH2, 2JCP = 34 Hz), 17.1 (d, CH2, 3JCP = 3 Hz). 

31P{1H} NMR (C6D6): δP = 28.9 (1JPW = 214 Hz).  

IR(THF) ν/cm-1: 2076, 1949 (br) [WCO], 1688 (br) [CO] cm-1. 

Anal. Calc. for C16H11O7PW: C, 36.25; H, 2.09. Found: C, 36.02; H, 1.87. 

Crystal data for C16H11O7PW (Mw = 530.06 g/mol): monoclinic, P21/n (no. 14), a = 11.0044(3) Å, b = 

9.7434(3) Å, c = 32.7494(10) Å,  = 91.882(3) °, V = 3509.51(18) Å3, Z = 4, T = 100(2) K, μ(CuKα) = 

13.364 mm-1, Dcalc = 2.004 Mg m-3, 6635 independent reflections, full matrix F2 refinement, R1 = 0.0672 
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on 5673 independent absorption corrected reflections [I > 2σ(I); 2max = 143.6 ), 463 parameters, wR2 

= 0.1678 (all data). 

Synthesis of [W(CO)5(3.3b)] (3.6)  

A THF solution (2 cm3) of 3.3b (15 mg, 0.075 mmol) was combined with excess of [W(CO)5(THF)] (ca 

0.1 M, 3.0 cm3, ca 0.30 mmol) and the mixture stirred for 16 h.  The volatile components were removed 

under reduced pressure and the crude product extracted into Et2O (5 cm3); the extract was passed 

sequentially through four plugs of Celite®, then the solvent removed under reduced pressure to afford 

3.7 as a pale-yellow solid.  Yield: 3 mg, 13%.   

1H NMR (C6D6): δH = 2.54 (br m, CH2 (ring), 2H), 2.09 (br m, CH2 (ring), 2H), 2.01 (m, PCH2, 2H), 1.32 (m, 

CH2 (ring), 2H), 1.30 (m, CH2 (butyl), 2H), 1.14 (br m, CH2 (ring), 2H), 1.06 (Sextet, -CH2CH2CH3, 1JHH = 

7.40 Hz, 2H), 0.70 (t, CH3, 1JHH = 7.40 Hz).   

13C{1H} NMR (C6D6): δC = 215.7 (d, C(O), 1JCP = 3 Hz), 198.0 (d, WC(O), 1JCP = 23 Hz, 1JCW 147 Hz), 195.8 

(d, WCO, 1JCP = 6Hz, 1JWC = 125 Hz), 44.2 (d, CH2 2JCP = 37 Hz), 27.8 (d, CH2, 3JCP = 3 Hz), 27.6 (d, CH2, 1JCP 

= 22 Hz), 24.2 (d, CH2, 2JCP = 13 Hz), 24.0 (s, CH2), 13.4 (s, CH3).  

31P{1H} NMR (C6D6): δP = 39.2 (s, 1JWP = 216 Hz).   

IR(THF) ν/cm-1: 2075, 1951, 1946, 1938 [WCO], 1691, 1678 [CO].  

EI MS [M]+ Calc. for C15H17O7PW 522 (77), 523 (55), 524 (100), 525 (17), 526 (85), 527 (15); Found 522 

(70), 523 (47), 524 (100), 525 (21), 526 (83), 527 (15). 

 

Experimental Details for Chapter 4 

Synthesis of tBuP=C(OSiMe3)CF3 (4.2a) 

To a cooled (–78 °C) solution of tBuP(SiMe3)2 (0.185 g, 0.79  mmol) in Et2O (5 cm3) was added TFAA 

(0.11 cm3, 0.79 mmol).  After stirring for 30 minutes at this temperature, the mixture was allowed to 

warm to ambient temperature and stirred for a further 16 hours. A reaction aliquot was taken to 

ensure no starting material remained. Attempts to purify product via static vacuum distillation led to 

decomposition.  

31P{1H} NMR (C6D6): δP = 211.5 (q, 3JPF = 47 Hz).  

19F NMR (C6D6): δP = −68.3 (d, 3JFP = 47 Hz). 
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Synthesis of MesP=C(OSiMe3)CF3 (4.2b) 

As for 4.2a using Mes(SiMe3)2 (0.102 g, 0.084 mmol) and 0.012 cm3 (0.084 mmol) TFAA. 

31P{1H} NMR (C6D6): δP = 228.4 (q, 3JPF = 38 Hz).  

19F NMR (C6D6): δP = −69.4 (d, 3JFP = 38 Hz). 

Synthesis of PhP=C(OSiMe3)CF3 (4.2c) 

As for 4.2a using Ph(SiMe3)2 (0.102 g, 0.084 mmol) and 0.012 cm3 (0.084 mmol) TFAA. Static vacuum 

distillation removed solvent and by-products. A dimeric species starts to form from initial synthesis. 

Phosphaalkene: 

31P{1H} NMR (C6D6): δP = 168.2 (q, 3JPF = 46 Hz).  

19F NMR (C6D6): δP = −70.6 (d, 3JFP = 46 Hz). 

Dimer: 

31P{1H} NMR (C6D6): δP = 31.0 (septet, 3JPF = 13 Hz).  

19F NMR (C6D6): δP = −75.4 (d, 3JFP = 13 Hz). 

Synthesis of Me3SiP=C(OSiMe3)CF3 (4.2d) 

As for 4.2a using P(SiMe3)3 (2 cm3, 6.89 mmol) and 0.96 cm3 (6.89 mmol) TFAA. Static vacuum 

distillation led to purification, by the removal of solvent and by-products, affording a yellow liquid, 

4.2d. Stored in the glovebox freezer. Yield: 1.538 g, 81%. 

1H NMR (C6D6): δH = E-isomer: 0.2 (d, (CH3)3Si-P-, J = 4Hz), 0.16 (poorly resolved q, P=C(OSi(CH3)3), 0.91 

Hz). 

13C{1H} NMR (C6D6): δC = E-isomer: 189.2 (qd, P=C), 120.9 (q, 1JCF = 280 Hz, CF3), 0.6 (q, OSi(CH3)3, 2 Hz), 

-0.03 (d, (CH3)3Si-P-, 8.43 Hz). 

31P{1H} NMR (C6D6): δP = 161.3 (q, E-isomer, 3JPF = 39 Hz), 153.6 (br, Z-isomer, poorly resolved coupling) 

19F NMR (C6D6): δP = −67.1 (d, E-isomer, 3JFP = 39 Hz), −66.9 (br s, Z-isomer). 

29Si NMR (C6D6): δSi = 26.4 (d, JSiP = 4 Hz), 24.0 (s), 6.99 (s), -0.54 (dq, JSiP = 43 Hz, JSiF = 3 Hz) .  
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Me3SiP=C(OSiMe3)CF3 (4.2d) + LiN(SiMe3)2 at ambient conditions (4.10) 

An ethereal solution of LiN(SiMe3)2 (0.065 g, 0.386 mmol) was added to compound 3d (0.106 g, 0.386 

mmol) in diethyl ether (5 cm3) at −78 °C, resulting in an orange colouration. After 10 minutes, the 

solution was allowed to warm to ambient temperature and concentrated resulting in a brown solid. 

NMR (C6D6, 303 K): 

1H NMR: δH = 0.18 (br d, TMS-P), 0.02 (br s, OTMS). 

13C{1H} NMR: δC = 154 (ddd, P=C, 25 Hz, 278 Hz), 116.5 (ddd, CF2, J = 44 Hz, 43Hz, 3Hz), 33.7 (s), 30.4 

(s), 27.4 (s), 14.8 (s),   3.37 (d, J = 7 Hz), 2.2 (s), 0.36 (dd, J =  19 Hz, 1 Hz), 0.56 (dd, J = 4 Hz, 1 Hz).  

31P{1H} NMR: δP = 4.12 (broad triplet). 

19F NMR: δP = −90.2 (dd, 3JPF = 15 Hz, 1JFF = 79 Hz), −109.9 (dd, 8, 79 Hz) 

NMR (C6D6, 213 K): 

31P{1H} NMR: δP = 3.71 (dd, JPF = 8, 15 Hz). 

Potential Synthesis of 4.1, F3C-C≡P (4.1) 

Compound 4.2d was added to a J Young’s NMR tube (63 mg, 0.23 mmol) and dissolved in a few drops 

of d8-THF and cooled to −78 °C. Next an ethereal solution (0.6 cm3) of LiN(SiMe3)2 (38.4 mg, 0.23 mmol) 

was added. The cooled Young’s NMR tube was placed into a pre-cooled NMR probe (−80 °C) and 

analysed, from −80 °C to ambient temperature, observing decomposition above −20 °C. 

31P{1H} NMR: δP = 6.0 (q, 3JPF = 37 Hz). 

19F NMR: δP = −71.7 (d, 3JFP = 37 Hz). 

Compound 4.10 and 4.2d were also present. 

Me3SiP=C(OSiMe3)CF3 (4.2d) + NaOPh 

Compound 4.2d (0.1 g, 0.36 mmol) was dissolved in C6D6 (0.6 cm3) and NaOPh (42.3 mg, 0.36 mmol) 

was added, resulting in an intense-red colouration, which consequently turned dark red.   

31P{1H} NMR:  δP = 131 (dm), −52 (br s), −58 (br s). 

Me3SiP=C(OSiMe3)CF3 (4.2d) + NaOtBu 

Compound 4.2d (20 mg, 0.073 mmol) was dissolved in C6D6 (0.6 cm3) and NaOtBu (7 mg, 0.073 mmol) 

was added, resulting in an orange colouration.   
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31P{1H} NMR: δP = 62.0 (dd, J = 1.54 Hz, JPF = 59 Hz). 

19F NMR: δP = −90.6 (d, JFF = 56 Hz), −106.6 (dd, JFF = 56 Hz, JFP = 59 Hz). 

Me3SiP=C(OSiMe3)CF3 (4.2d) + Butadiene 

Compound 4.2d (21 mg, 0.077 mmol) was introduced to a J. Young’s NMR tube and dissolved in C6D6 

(0.6 cm3) and a freeze-pump-thaw cycle was performed. Next the NMR tube was connected to a 

cooled (−5 °C) cannister of butadiene via a piece of T-junction tubing. The butadiene was allowed to 

fill the tubing apparatus (ca 1 bar) and then allowed to diffuse into the NMR tube. After 5 days, 20% 

of 4.2d still remained, static-vacuum distillation was performed. 

Reaction Ampoule (remains after vacuum applied): 

31P{1H} NMR: δP = 161.3 (q, 4.2d - E-isomer, 3JPF = 39 Hz), 153.6 (br s, 4.2d - Z-isomer, poorly resolved 

coupling), −62.8 (q, 3JPF = 18 Hz), -66.9 (q, 3JPF = 19 Hz), −76.1 (q, 3JPF = 13 Hz), −77.5 (q, 3JPF = 10 Hz). 

19F NMR: δP = −66.9 (br s, 4.2d - Z-isomer), −67.1 (d, 4.2d - E-isomer, 3JFP = 39 Hz), −76.1 (br m), −77.7 

(dm, 3JFP = 19 Hz), −78.6 (d, 3JFP = 13 Hz).  

Destination Ampoule (where the volatile components were collected): 

31P{1H} NMR: δP = 161.3 (q, 4.2d - E-isomer, 3JPF = 39 Hz), 153.6 (br s, 4.2d - Z-isomer, poorly resolved 

coupling), −62.8 (q, 3JPF = 18 Hz), −76.1 (q, 3JPF = 13 Hz). 

EI-MS m/z: 328 [M]+. 

Me3SiP=C(OSiMe3)CF3 (4.2d) + 1,4-Diphenyl-1,3-Butadiene 

Compound 4.2d (30 mg, 0.11 mmol) was introduced to a J. Young’s NMR tube and dissolved in C6D6 

(0.6 cm3) and 1,4-diphenyl-1,3-butadiene (23 mg, 0.11 mmol) was added, after 1 week and almost no 

reaction the sample was irradiated by a high-pressure Hg lamp for 16 hours. Then transferred to an 

ampoule and volatile components removed under reduced pressure, resulting in a beige oil.  

31P{1H} NMR: δP = 46.3 (m), 44.75 (m), 44.9 (br s), 43.7 (br s), −79.5 (dq, JPP = 130 Hz, JPF 16 Hz). 

19F NMR: δF = −70.6 (d, 25 Hz), −71.5 (d, 22 Hz), −73.9 (d, 23 Hz), −74.5 (d, 22 Hz), −75.2 (d, 21 Hz), 

−75.9 (dd, JPF = 16 Hz, JFF = 2 Hz). 

EI-MS m/z: 548 [M]+ (2+2/dimerisation product). 480[M]+ (4+2 product). 
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Me3SiP=C(OSiMe3)CF3 (4.2d) + PhNCO 

Compound 4.2d (25 mg, 0.09 mmol) was introduced to a J. Young’s NMR tube and dissolved in C6D6 

(0.6 cm3) and phenylisocyanate (9.98 µl, 0.09 mmol) was added, after essentially no reaction for a 

couple of days, the sample was irradiated by a high-pressure Hg lamp. Volatile components were 

removed under reduced pressure, resulting in an orange oil.  

31P{1H} NMR: δP = 46.3 (m), 44.7 (m), 44.9 (br s), 43.7 (br s). 

19F NMR: δF = −70.6 (d, 25 Hz), −71.5 (d, 22 Hz), −73.9 (d, 23 Hz), −74.5 (d, 22 Hz), −75.2 (d, 21 Hz), 

−76.2 (s). 

EI-MS m/z: 393 [M]+. 

Me3SiP=C(OSiMe3)CF3 (4.2d) + Furan 

Compound 4.2d (30 mg, 0.11 mmol) was introduced to a J. Young’s NMR tube and dissolved in C6D6 

(0.6 cm3) and Furan (7.95 µl, 0.11 mmol) was added. No reaction occurred, even after a week only 

4.2d observed. 

Me3SiP=C(OSiMe3)CF3 (4.2d) + 1-Hexyne 

Compound 4.2d (20 mg, 0.07 mmol) was introduced to a J. Young’s NMR tube and dissolved in C6D6 

(0.6 cm3) and 1-Hexyne (8.4 µl, 0.07 mmol) was added, resulting in a dark yellow colouration.  

31P{1H} NMR: δP = Intractable mixture of peaks. 

Me3SiP=C(OSiMe3)CF3 (4.2d) + CO 

Compound 4.2d (20 mg, 0.07 mmol) was introduced to a J. Young’s NMR tube and dissolved in C6D6 

(0.6 cm3) and a freeze-pump-thaw cycle was performed. The NMR tube was connected to a cannister 

of CO via T junction tubing and the gas filled the tubing apparatus (ca 1 bar) and was then allowed to 

diffuse into the NMR tube. No reaction occurred. 

Me3SiP=C(OSiMe3)CF3 (4.2d) + [RuHCl(CO)(PPh3)3] 

LiN(SiMe3)2 (62.2 mg, 0.37 mmol) was added to a pre-cooled (−78 °C) ethereal solution of 4.2d (0.102 

g, 0.37 mmol) and stirred for 30 minutes at this temperature. Next the reaction mixture was 

transferred cold into a DCM solution of [RuHCl(CO)(PPh3)3] (0.354 g, 0.37 mmol) and stirred cold for 1 

h then allowed to warm to ambient temperature and volatile components were removed under 

reduced pressure. The resulting crude product was washed with hexane (20 cm3) and vigorously 
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stirred before filtration, resulting in a pale brown solid and an orange-brown filtrate which were dried 

and concentrated under reduced pressure.  The filtrate was identified as 4.10 and PPh3 (−5 ppm).  

Solid: 

31P{1H} NMR: δP = 50.8 (d, JPP = 40 Hz), 47.6 (d, JPP = 40 Hz), 41.0 (d, JPP = 25 Hz), 39.4 (br s), 38.5 (d, JPP 

= 25 Hz). 

19F NMR: δP = −54.0 (s). 

The same result was observed when transferring the contents of the initial reaction into a solution of 

[RuHCl(CO)(PPh3)3] via vac-transfer.  

Me3SiP=C(OSiMe3)(CF3){CH2CH}2 + W(CO)5(THF) 

An NMR sample of Me3SiPC(OSiMe3)(CF3){CH2CH}2 (0.077mmol; in 0.6 cm3 C6D6) was added to a THF 

solution of W(CO)5(THF) (0.1 M, 4 cm3) and concentrated under reduced pressure.   

31P{1H} NMR: δP = −40.7 (q, 3JPF = 7 Hz, 1JPW 238 Hz). 

19F NMR: δP = −74.2 (br s), −75.2 (br, s). 

Me3SiP=C(OSiMe3)CF3 (4.2d) + W(CO)5(THF) 

An NMR sample of 4.2d (8 mg, 0.029 mmol) in C6D6, was added to W(CO)5(THF) (0.1 M, 4 cm3) resulting 

in an orange colouration. If analysed at this stage, only 4.9a was observed (η1 coordination). After this 

point 4.9b starts to form (η2 coordination), and after 16 hours is the only species present. Alternatively, 

if solvent is instantly removed after addition, compound 4.9c is afforded. 

Initial – 4.9a: 

31P{1H} NMR: δP = 172 (q, 3JPF = 15 Hz, 1JPW 272 Hz). 

19F NMR: δP = −61.0 (d, 3JFP = 15 Hz). 

After 16 hours – 4.9b: 

31P{1H} NMR: δP = 162 (q, 3JPF = 29 Hz, 1JPW 260 Hz). 

19F NMR: δP = −74.2 (br s), −75.2 (br, s). 

If solvent is instantly removed – 4.9c: 

31P{1H} NMR: δP = 136 (q, 3JPF = 25 Hz, 1JPW 214 Hz). 

19F NMR: δP = −74.2 (br s), −75.2 (br, s). 



171 
 

Me3SiP=C(OSiMe3)CF3 (4.2d) + Fe(CO)5 

Fe(CO)5 (0.05 cm3, 0.34 mmol) was added dropwise to a THF solution of 4.2d (47 mg, 0.17 mmol).  

η2-[(CO)5WP(TMS)=(OTMS)CF3] + LiN(SiMe3)2 

To a solution of 4.9b (generated in-situ , 0.1 mmol) in THF, was added LiN(SiMe3)2 (16.7 mg, 0.1 mmol), 

resulting in an orange colouration. 4.9b still initially present so left to stir for 48 hours. Viscous 

polymeric film formed after the removal of solvent. 

31P{1H} NMR: δP = 205 (br s), 102 (t, J = 5 Hz, JPW = 287 Hz), 9.7 (q, JPF = 11 Hz) . 

Dimer of PhPC(OSiMe3)CF3 (4.2c) + W(CO)5(THF) 

Only the proposed ‘dimer’ of 4.2c reacts with W(CO)5(THF). 

After full conversion to the proposed ‘dimer’ of 4.2c (δP 31), which begins to form immediately after 

the formation of 3c, W(CO)5(THF) (0.1 M, 4 cm3) was added. After stirring for 16 hours, volatile 

components were removed under reduced pressure, resulting in a dark brown solid. 

31P{1H} NMR: δP = 47.8 (septet, JPF = 4 Hz, 1JPW 242 Hz). 

19F NMR: δP = −71.4 (d, JFP = 4 Hz). 

Me3SiP=C(OSiMe3)CF3 (4.2d) + (Ph3P)2Pt-C2H4 

(PPh3)2Pt-C2H4 (69 mg, 0.08 mmol) was added to an ethereal solution of 4.2d (0.08 mmol) and left to 

stir for 16 hours. Only starting material peaks were observed.  

Me3SiP=C(OSiMe3)CF3 (4.2d) + (η4-C8H12)PtMeCl 

Compound 4.2d (32 mg, 0.12 mmol) and (η4-C8H12)PtMeCl (21 mg, 0.06 mmol) were dissolved in THF, 

resulting in an intense red colouration.  

 31P{1H} NMR: δP = −25 (s). 

Me3SiP=C(OSiMe3)CF3 (4.2d) + Pt(dppe)2 

Pt(dppe)2 (94 mg, 0.1 mmol) was added to a d8-THF NMR sample of 4.2d (26 mg, 0.1 mmol), only 

Pt(dppe)2 was observed in the 31P NMR. 

31P{1H} NMR: δP = 32 (1JPtP = 3732 Hz).218 
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Me3SiP=C(OSiMe3)CF3 (4.2d) + [Pt(PEt3)Cl2]2 

[Pt(PEt3)Cl2]2 (31 mg, 0.04 mmol) was added to a d2-DCM sample of 4.2d (22 mg, 0.08 mmol), only the 

resonance for [Pt(PEt3)Cl2]2 was observed. 

31P{1H} NMR: δP = 11 (s, 1JPPt = 3840 Hz).219 

Me3SiP=C(OSiMe3)CF3 (4.2d) + [PdCl(allyl)]2 

Compound 4.2d (20 mg, 0.07 mmol) and [PdCl(allyl)]2 (13.3 mg, 0.04 mmol) were introduced to a J. 

Youngs’ NMR tube and dissolved in C6D6, no 31P NMR resonances were observed.   

Me3SiP=C (OSiMe3)CF3 (4.2d) + Se 

Compound 4.2d (15 mg, 0.06 mmol) and Se (43 mg, 0.06 mmol) were introduced to a J. Young’s NMR 

tube and dissolved in d2-DCM then heated to 90 °C, however, 4.2d decomposes with heat (previously 

observed by variable temperature NMR). Repeating the reaction without heating still resulted in the 

loss of 4.2d resonances and no observation of new species. 

Me3SiP=C(OSiMe3)CF3 (4.2d) + Se in the presence of NEt3 

Compound 4.2d (15 mg, 0.055 mmol) and Se (43 mg, 0.055 mmol) were introduced to a J. Young’s 

NMR tube and dissolved in d2-DCM, next a couple of drops of NEt3 were added. 

31P{1H} NMR: δP = −24.6 (s), −112.8 (s), −113.2 (s). 

Me3SiP=C(OSiMe3)CF3 (4.2d) + I2 

Compound 4.2d (10 mg, 0.036 mmol) and I2 (9.3 mg, 0.036 mmol) were introduced to a J. Young’s 

NMR tube and dissolved in C6D6, resulting in a yellow colouration, the unidentified species were only 

present in-situ and were not stable after exposure to vacuum. 

31P{1H} NMR: δP = 228.6 (s), 176.4 (q, 3JPF = 51 Hz), 173.2 (s), 101.8 (s), 81.2 (m), 64.1 (dd, J = 7 Hz, 106 

Hz), 62.1 (d, J = 11 Hz), -7.8 (d, J = 7 Hz). 

Me3SiP=C(OSiMe3)CF3 (4.2d) + F3B-OEt2 

F3B-OEt2 (0.03 cm3, 0.28 mmol) was added to an ethereal solution of compound 4.2d (76 mg, 0.28 

mmol). 

After exposure to vacuum no species remained. 

31P{1H} NMR: δP = 62.5 (t, J = 16 Hz), 57.0 (q, 1JPF = 20 Hz), 29.9 (q, J = 19 Hz) , 20 (s), 12.4 (s)  
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Me3SiP=C(OSiMe3)CF3 (4.2d) + BPh3 

Compound 4.2d (0.187 g, 0.68 mmol) and BPh3 (0.165 g, 0.68 mmol) were introduced to an ampoule, 

dissolved in Et2O (ca 10 cm3) and left to stir overnight. The sample was then concentrated under 

reduced pressure. 

31P{1H} NMR: δP = 46.2 (m), −7.8 (q, J = 7 Hz), −26 (s), −111 (m), −148.9 (quartet of multiplets). 

After vacuum: 

31P{1H} NMR: δP = −26 (s). 

SiMe3P=C(OSiMe3)CF3 (4.2d) + AlPh3 

AlPh3 (9.4 mg, 0.036 mmol) was added to a C6D6 solution of compound 4.2d (10 mg, 0.036 mmol).  

31P{1H} NMR: δP = 161.3 (q, 4.2d - E-isomer, 3JPF = 39 Hz), 153.6 (br s, 4.2d - Z-isomer, poorly resolved 

coupling), 74.6 (s), −30.0 (s), −69.7 (d, J = 42.6 Hz). 

After Vacuum: 

31P{1H} NMR: δP = −30.0 (s), −59.3 (dd, J = 39.6, 3 Hz), −70.0 (d, J = 43 Hz). 

Phosphaallene, phosphirene or oxaphosphirane (4.10) + W(CO)5(THF) 

Compound 4.10 (25 mg, 0.15 mmol) was added to a solution of W(CO)5(THF) (0.1 M, 4 cm3), resulting 

in a dark red colouration.  

Aliquot: 

31P{1H} NMR: δP = 11.0 (m), 4.1 (m). 

Concentrated: 

31P{1H} NMR: δP = 12.6 (d, J = 7, 261 Hz) 

Compound 4.10 + (Ph3P)2Pt-C2H4 

Compound 4.10 (20 mg, 0.12 mmol) and (PPh3)2Pt-C2H4 (90 mg, 0.12 mmol) were combined in a 

Schlenk flask and THF (ca5 cm3) was added. 

Compound 4.10 + (η4-C8H12)PtCl2 

Compound 4.10 (14 mg, 0.08 mmol) and Pt(η4-C8H12)Cl2 (32 mg, 0.08 mmol) were combined in a 

Schlenk flask and dissolved in Et2O/THF solvent mixture and stirred for 2 hours. 
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No species were observed in the NMR spectra. 

Compound 4.10 + AuCl(tht) 

Compound 4.10 (0.23 mmol) and AuCl(tht) (38.5 mg, 0.23 mmol) were combined in a J. Young’s NMR 

tube, C6D6 was added. Intractable mixture was observed by NMR spectroscopy. 

 

Experimental Details for Chapter 5 

Synthesis of 1,2-Bis(phosphino)benzene 

To a pre-cooled (−78 °C) THF solution of LiAlH4 (5.4 g, 143.5 mmol) and Me3SiCl (18.2 cm3, 143.5 mmol), 

a THF solution of 1,2-Bis(dimethoxyphosphoryl)benzene (7 g, 23.79 mmol) was slowly added dropwise 

resulting in exotherm, the reaction mixture was allowed to warm to ambient temperature after 

addition and stir for a further 16 hours. The reaction mixture was cooled to 0 °C and de-gassed water 

was slowly added dropwise until effervescence stopped, next a NaOH solution (1 M in H2O; 40 cm3) 

was added facilitating separation of the two sovent layers. The organic layer was extracted and dried 

over MgSO4, the product solution was then filtered into a distillation rig and fractional distillation was 

performed to remove the solvent and then subsequently purify the product (55 °C, 3 x 10-1 mbar) as a 

colourless liquid. Yield: 1.48 g, 44%. 

1H NMR (C6D6): δ = 7.2 (quintet, J = 4 Hz, 2H), 6.8 (dd, J = 4 Hz, 5.5 Hz, 2H), 4.0 (higher order pattern, 

PH2, 2H), 3.5 (Higher order pattern, PH2, 2H). 

31P{1H} NMR (C6D6): δ = −125.9 (s). 

In agreement with the literature.272  

Synthesis of [C6P2BC6H5]2- 2[Li(THF)1.5] ([5.6].2[Li(THF)1.5]) 

To a THF solution (ca 10 cm3) of 1,2-bis(phosphino)benzene (0.35 cm3, 2.71 mmol) was added nBuLi 

(2.5 M, 2.17 cm3, 5.43 mmol) effecting yellow colouration. After stirring for 2 hours, the yellow 

solution was slowly added to neat dichlorophenylborane (0.35 cm3, 2.71 mmol), resulting in an 

exothermic reaction. After a further 2 hours nBuLi (2.5 M, 2.17 cm3, 5.43 mmol) was added dropwise 

and the resultant mixture left to stir for 3 hours. Volatile components were removed under reduced 

pressure, product extracted into diethyl ether (20 cm3) and washed with hexane (3 x 40 cm3), to afford 

an intense yellow solid. Yield: 0.53 g, 48%. 
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1H NMR (C4D8O): δ = 7.96 (d, J = 7.27 Hz, 2H), 7.89 (sextet, J = 2.79 Hz, 2H), 6.96 (t, J = 7.28 Hz, 2H), 

6.83 (t, B-Arp, J = 7.28 Hz, 1H), 6.46 (unresolved, 2H), THF signals (don’t integrate correctly but clearly 

different to solvent peaks). 

13C{1H} NMR (C4D8O) δ = 163.8 (dd, P-C, 1JPC = 26 Hz), 152.3 (B-Ari, identified from HMBC), 134.2 (t, B-

Arm
, 4JPC = 12 Hz), 131.7 (t, P-CC 2JPC = 14 Hz), 127.1 (s, B-Aro), 125.0 (s, B-Arp), 117.3 (br t, P-CCC, 3JPC = 

5 Hz), 67.9 (m, O(CH2CH2)2), 25.8 (m, O(CH2CH2)2). 

31P{1H} NMR (C4D8O): δ = 50.5 (s). 

11B NMR (C4D8O): δ = 69.4 (br s). 

7Li NMR (C4D8O): δ = −0.48 (br s). 

Crystal Data for C24H32BLi2O3P2 (Mw = 455.12 g/mol): monoclinic, space group P2/c (no. 13), a = 

11.8623(2) Å, b = 13.6299(3) Å, c = 15.4811(3) Å, β = 101.215(2)°, V = 2455.22(8) Å3, Z = 4, T = 

100.00(10) K, μ(CuKα) = 1.776 mm-1, Dcalc = 1.231 g/cm3, 9110 reflections measured (7.598° ≤ 2Θ ≤ 

143.47°), 4707 unique (Rint = 0.0171, Rsigma = 0.0232) which were used in all calculations. The final R1 

value was 0.0614 (I > 2σ(I)) and wR2 was 0.1703 (all data). 

Synthesis of [C6P2BC6H5]2- 2[Li(TMEDA)]2+ ([5.6].2[Li(TMEDA)]) 

TMEDA (0.25 cm3, 3.26 mmol) and 1,2-bis(phosphino)benzene (0.21 cm3, 1.63 mmol) were dissolved 

in THF (ca 5 cm3) and nBuLi (2.5 M, 1.3 cm3, 3.26 mmol) was added dropwise resulting in a yellow 

colouration. Stirred for 2 hours then dichlorophenylborane (0.21 cm3, 1.63 mmol) was added 

dropwise, red colouration observed before reverting back to yellow. After 3 hours TMEDA/nBuLi (0.25 

cm3, 3.26 mmol/2.5 M, 1.3 cm3, 3.26 mmol) were added, reaction mixture exhibiting a red colouration. 

After 2 hours volatile components were removed under reduced pressure, extracted into ether, 

extracted into THF (leaving behind Li powder) and washed twice with hexane (3 x 30 cm3). Affording 

a pale-yellow solid. Yield: 0.303 g, 39%. 

1H NMR (C4D8O): δ = 8.02 (d, B-Arm, 1JHH = 7.35 Hz, 2H), 7.95 (br s, P-CCH, 2H), 7.00 (t, B-ArHo, 1JHH = 

7.35 Hz, 2H), 6.87 (t, B-ArHP, 1JHH = 7.40 Hz, 1H), 6.51 (br s, P-CCCH, 2H), 2.28 (s, (CH2)4, 8H), 2.11 (s, 

(CH3)8, 24H). 

13C{1H} NMR (C4D8O) δ =  163.4 (dd, P-C, 1JPC = 26 Hz), 134.2 (t, B-Arm
, 4JPC = 12 Hz), 132.1 (t, P-CC 2JPC = 

14 Hz), 127.2 (s, B-Aro), 125.2 (s, B-Arp), 117.6 (br t, P-CCC, 3JPC = 5 Hz), 58.8 (s, (CH2)4), 46.2 (s, (CH3)8). 

31P{1H} NMR (C4D8O): δ = 52.1 (s). 

11B NMR (C4D8O): δ = 66.4 (br s). 
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7Li NMR (C4D8O): δ = −0.17 (s). 

Anal. Calc. for C24H41B1 Li2N4P2: C, 61.04; H, 8.75; N, 11.86. Found: C, 60.02; H, 8.66; N, 11.3. 

Crystal Data for C24H41BLi2N4P2 (Mw = 472.24 g/mol): triclinic, space group P-1 (no. 2), a = 9.1053(4) Å, 

b = 11.0882(5) Å, c = 14.6123(6) Å, α = 80.603(3)°, β = 88.369(4)°, γ = 74.447(4)°, V = 1402.00(11) Å3, Z 

= 2, T = 99.9(4) K, μ(Cu Kα) = 1.525 mm-1, Dcalc = 1.119 g/cm3, 9226 reflections measured (8.388° ≤ 2Θ 

≤ 143.582°), 5325 unique (Rint = 0.0182, Rsigma = 0.0270) which were used in all calculations. The final 

R1 value was 0.0489 (I > 2σ(I)) and wR2 was 0.1235 (all data). 

Attempted Synthesis of [C6P2BC6H5]2- 2[Na(THF)1.5] 

nBuNa (0.248 g, 3.1 mmol) was introduced to a Schlenk flask and dissolved in THF. Next, 1,2-

bis(phosphino)benzene (0.1 cm3, 0.77 mmol) was slowly added dropwise resulting in an intense yellow 

colouration. After 2 hours the reaction mixture was slowly added to Cl2BPh (0.1 cm3, 0.77 mmol), 

resulting in a white suspension. After a further 2 hours another 2 equivalents of nBuNa was added. 

After stirring for a further 4 hours the volatile components were removed under reduced pressure 

and the product was extracted into ether. 1,2-bis(phosphino)benzene was observed by 31P NMR. 

Similar attempts using NaH, potassium equivalents and attempts to perform ion exchange reactions 

also only resulted in recovery of 1,2-bis(phosphino)benzene.  

Attempted synthesis of C6H4P2(H)2BPh 

To a THF solution (ca 10 cm3) of 1,2-bis(phosphino)benzene (0.35 cm3, 2.71 mmol) was added nBuLi 

(2.5 M, 2.17 cm3, 5.43 mmol) resulting in a yellow colouration. After stirring for 2 hours, the yellow 

solution was slowly added to neat dichlorophenylborane (0.35 cm3, 2.71 mmol), resulting in exotherm.  

Synthesis of 1,4-bis(di-nbutoxy)boryl-phenylene 

Benzene-1,4-diboronic acid (5.2 g, 31.48 mmol) was introduced into a distillation rig along with 1-

butanol (35 cm3) and heated to 90-92 °C for 2 hours, after which time the temperature was increased 

to 140 °C and the reaction was placed under vacuum (1.58x10-2 mbar) removing the volatile 

components from the light-brown viscous oil. Yield: 9.65 g, 79%. 

1H NMR (C6D6): δ = 8.1 (s, aromatic, 1H), 7.8 (s, aromatic, 2H), 7.7 (s, aromatic, 1H), 4.0 (s, O-

CH2CH2CH2CH3, 8H), 1.54 (d, O-CH2CH2CH2CH3, JHH = 5 Hz, 8H), 1.36 (t, O-CH2CH2CH2CH3, JHH = 6 Hz, 8H), 

0.85 (m, O-CH2CH2CH2CH3, 12 H). Consistent with the literature.328 

11B NMR (C6D6): δ = 28.2 (s). 
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Synthesis of 1,4-Bis(boryldichloride)benzene 

PCl5 (3.28 g, 15.76 mmol) was added to a CCl4 (20 cm3) solution of 1,4-bis(di-nbutoxy)boryl-phenylene 

(1.545 g, 3.96 mmol) and brought to reflux for 16 hours. A precipitate formed which was collected by 

filtration and dried in vacuo, affording a colourless solid which was purified by sublimation. Yield: 

0.458 g, 48%. 

1H NMR (C6D6): δ = 7.9 (s). 

11B NMR (C6D6): δ = 55.2 (s).  

In agreement with the literature.329 

1,2-Bis(phosphino)benzene + 1,4-Bis(boryldichloride)benzene (5.7) 

nButyllithium (2.5 M, 0.17 cm3, 0.42 mmol) was added dropwise to a THF (5 cm3) solution of 1,2-

Bis(phosphino)benzene (0.03 cm3, 0.2 mmol) and stirred for 2 hours. Next 1,4-

bis(boryldichloride)benzene (25 mg, 0.1 mmol) was dissolved in THF (5 cm3) and the yellow reaction 

mixture was slowly added dropwise resulting in an orange colouration. After a further 2 hours, another 

2 equivalents of nbutyllithium (2.5 M, 0.17 cm3, 0.42 mmol) was added and stirred for 4 hours. The 

reaction mixture was concentrated and extracted into diethyl ether. Resulting in a yellow solid. 

Initially the 31P NMR spectrum displayed a multitude of species, however, after drying under reduced 

pressure for 8 hours, the dominant resonances were consistent with the formation of 5.7.  

31P{1H} NMR (C6D6): δ = −1.05 (higher order coupling, 5.7), −44.5 (higher order coupling, 5.7), −55.9 

(m), −125.8 (s). 

1,2-Bis(phosphino)benzene + 1,4-Bis(boryldichloride)benzene + TMEDA (5.8) 

TMEDA (0.13 cm3, 0.835 mmol) and nButyllithium (2.5 M, 0.34 cm3, 0.835 mmol) were added dropwise 

to a THF (15 cm3) solution of 1,2-Bis(phosphino)benzene (0.05 cm3, 0.418 mmol) and stirred for 2 

hours. Next 1,4-bis(boryldichloride)benzene (25 mg, 0.1 mmol) was dissolved in THF (5 cm3) and the 

yellow reaction mixture was slowly added dropwise resulting in a red colouration. After a further 2 

hours, another two equivalents of TMEDA (0.125 cm3, 0.835 mmol) and nbutyllithium (2.5 M, 0.17 cm3, 

0.415 mmol) was added and stirred for 4 hours. The reaction mixture was concentrated to a crude 

orange oily solid, which was then extracted into diethyl ether. The crude product was then washed 

with hexanes (3 x 10 cm3) and dried in vacuo affording an orange-yellow solid.  Multiple species 

present in the 31P NMR spectrum, though 9 was identified and later confirmed by X-Ray diffraction.  
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31P{1H} NMR (C6D6): δ = 256 (dd, J = 11, 501 Hz), 6.0 (dd, J = 84, 265 Hz), −20.2 (d, J = 319 Hz), −33.7 (d, 

J = 214 Hz), −52 (dd, J = 89, 269 Hz), −67.5 (dd, J = 210, 318 Hz), −105 (d, J = 79 Hz), −127 (s (5.8, P-H 

species) −128 (d, J = 69 Hz). 

Attempted Synthesis of [C6P2AlCH3]2- 2[Li(THF)1.5] 

nButyllithium (2.5 M, 0.62 cm3, 1.55 mmol) was added dropwise to a THF (10 cm3) solution of 1,2-

Bis(phosphino)benzene (0.05 cm3, 0.42 mmol), resulting in a yellow colouration, the mixture was then 

stirred for 2 hours. Next MeAlCl2 (1 M, 0.78 cm3, 0.8 mmol) was dissolved in THF (5 cm3) and the yellow 

reaction mixture was slowly added dropwise resulting in a grey/pale-black colouration. After a further 

2 hours, another 2 equivalents of nbutyllithium (2.5 M, 0.17 cm3, 0.42 mmol) was added and stirred 

for 4 hours before the reaction mixture was concentrated and extracted into ether. 

31P NMR (C6D6): δ = −131 (dm, JP-H = 212 Hz), −133 (dm, JPH = 208 Hz). 

7Li{1H} NMR (C6D6): δ = 1.3 (s). 

Attempted Synthesis of [C6P2Si(C6H5)2]2- 2[Li(THF)1.5] 

nButyllithium (2.5 M, 0.62 cm3, 1.6 mmol) was added dropwise to a THF (10 cm3) solution of 1,2-

Bis(phosphino)benzene (0.05 cm3, 0.42 mmol), resulting in a yellow colouration, the mixture was then 

stirred for 2 hours. Next Ph2SiCl2 (0.16 cm3, 0.8 mmol) was dissolved in THF (5 cm3) and the yellow 

reaction mixture was slowly added dropwise resulting in a red colouration, which slowly turned pale-

yellow. After a further 2 hours, another two equivalents of nbutyllithium (2.5 M, 0.17 cm3, 0.42 mmol) 

was added and stirred for 4 hours before the reaction mixture was concentrated and extracted into 

ether. 

1H NMR (C6D6): δ = 8.0 (br d, J = 29 Hz, 4H), 7.8 (br d, J = 33 Hz, 3H), 6.9 (br s, 2H), 6.8 (br s, 2H), 4.4 (d, 

P-H, J = 187 Hz).  

31P{1H} NMR (C6D6): δ = −110.7 (d, J = 18 Hz), −126 (s), −130.4 (br s). 

31P NMR (C6D6): δ = −110.7 (dm, JPH = 187 Hz), −126 (higher order pattern, consistent with 1,2-

bis(phosphino)benzene), −130.4 (br s). 

Attempted Synthesis of [C6P2B-F]2- 2[Li(THF)1.5] 

nButyllithium (2.5 M, 0.62 cm3, 1.55 mmol) was added dropwise to a THF (10 cm3) solution of 1,2-

Bis(phosphino)benzene (0.05 cm3, 0.42 mmol), resulting in a yellow colouration, the mixture was then 

stirred for 2 hours. Next BF3.OEt2 (0.1 cm3, 0.8 mmol) was slowly added dropwise resulting in a 

colourless solution. After a further 2 hours, another two equivalents of nbutyllithium (2.5 M, 0.17 cm3, 
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0.42 mmol) was added, resulting in a red colouration and the solution was stirred for another 4 hours 

before the reaction mixture was concentrated. 

Only 1,2-bis(phosphino)benzene was observed by 31P NMR. 

[C6P2BC6H5]2- 2[Li(THF)1.5]2+ ([5.6].2[Li(THF)1.5]) + TMSCl (5.9) 

Compound [5.6].2[Li(THF)1.5] (12 mg, 0.029 mmol) was dissolved in a mixed C6D6/protio-THF solvent 

system and Me3SiCl (7.5 µl, 0.059 mmol) wad added resulting in a pale-yellow solution. Any attempts 

to purify this product led to only the observation of 1,2-bis(phosphino)benzene, including just from a 

freeze-degas-thaw cycle. 

1H NMR (C6D6): δ = 7.6 (s, 2H), 7.2 (s, 2H), 7.1 (s, 1H), 0.25 (s, 6H), 0.0 (s, 4H), −0.1 (s, 8H). 

31P{1H} NMR (C6D6): δ = −39.8 (s). 

[C6P2BC6H5]2- 2[Li(THF)1.5]2+ ([5.6].2[Li(THF)1.5]) + TMSCl + MeI 

Compound 5.10 was generated in situ (0.03 mmol) and MeI (3.7 µl, 0.059 mmol) was added. Observing 

only the regeneration of 1,2-bis(phosphino)benzene by 31P NMR. 

[C6P2BC6H5]2- 2[Li(THF)1.5]2+ ([5.6].2[Li(THF)1.5]) + MeI 

Compound [5.6].2[Li(THF)1.5] (12 mg, 0.03 mmol) was dissolved in a mixed C6D6/protio-THF solvent 

system and MeI (3.7 µl, 0.06 mmol) was added resulting in the formation of white precipitate. No 

phosphorus resonances were observed by NMR.  

[C6P2BC6H5]2- 2[Li(TMEDA)]2+ ([5.6].2[Li(TMEDA)]) + MeI 

Compound [5.6].2[Li(TMEDA)] (11 mg, 0.02 mmol) was dissolved in a mixed C6D6/protio-THF solvent 

system and MeI (2.93 µl, 0.05 mmol) was added resulting in the formation of a colourless precipitate. 

Only observed the observation of multiple P-H species and 1,2-bis(phosphino)benzene by 31P NMR. 

[C6P2BC6H5]2- 2[Li(THF)1.5]2+ ([5.6].2[Li(THF)1.5]]) + PhPCl2 

Compound [5.6].2[Li(THF)1.5] (20 mg, 0.05 mmol) was dissolved in a mixed C6D6/protio-THF solvent 

system and an excess of PhPCl2 was added, some colourless precipitate started to form. Observation 

of PhPCl2 and an intractable mixture of resonances by 31P NMR. 

[C6P2BC6H5]2- 2[Li(TMEDA)]2+ ([5.6].2[Li(TMEDA)]) + Ph2PCl 

Compound [5.6].2[Li(TMEDA)] (30 mg, 0.06 mmol) was dissolved in a mixed C6D6/protio-THF solvent 

system and PhPCl2 (0.02 cm3, 0.13 mmol) was added resulting in a pale-yellow colouration. 
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1H NMR (C6D6): δ = 7.4 (s), 2.2 (s, TMEDA, CH2), 2.1 (s, TMEDA, CH3). 

31P{1H} NMR (C6D6): δ = 82.1 (s, PhPCl2), −15.2 (s). 

[C6P2BC6H5]2- 2[Li(THF)1.5]2+ ([5.6].2[Li(THF)1.5]) + H2 

Compound [5.6].2[Li(THF)1.5] (10 mg, 0.03 mmol) was introduced into a J. Young’s NMR tube and 

dissolved in a mixed C6D6/protio-THF solvent system, next a freeze-pump-thaw cycle was performed. 

The NMR tube was then connected to a H2 gas cylinder via T-junction tubing and H2 was allowed to fill 

the tubing apparatus (ca 1 bar) and diffuse into the NMR sample. 

1H NMR (C6D6): δ = Broad aromatic region, 2.15 (s, TMEDA-CH2), 2.05 (s, TMEDA-CH3). 

31P{1H} NMR (C6D6): δ = −126 (s, 1,2-bis(phosphino)benzene).  

11B{1H} NMR (C6D6): δ = −14.9 (s). 

[C6P2BC6H5]2- 2[Li(TMEDA)]2+ ([5.6].2[Li(TMEDA)]) + H2 

Compound [5.6].2[Li(TMEDA)] (12 mg, 0.02 mmol) was introduced into a J. Young’s NMR tube and 

dissolved in a mixed C6D6/protio-THF solvent system, next a freeze-pump-thaw cycle was performed. 

The NMR tube was then connected to a H2 gas cylinder via T-junction tubing and after evacuating the 

tubing, H2 was allowed to fill the tubing apparatus (ca 1 bar) and then the NMR cap was opened 

allowing the diffusion of H2 into the NMR sample. No reaction occurred. 

[C6P2BC6H5]2- 2[Li(THF)1.5]2+ ([5.6].2[Li(THF)1.5]) + CO 

Compound [5.6].2[Li(THF)1.5] (10 mg, 0.03 mmol) was introduced into a J. Young’s NMR tube and 

dissolved in a mixed C6D6/protio-THF solvent system, next a freeze-pump-thaw cycle was performed. 

The NMR tube was then connected to a CO gas cylinder via T-junction tubing and after evacuating the 

tubing, CO was allowed to fill the tubing apparatus (ca 1 bar) and then the NMR cap was opened 

allowing the diffusion of CO into the NMR sample. The solution instantly turned colourless, and a 

precipitate formed. 

1H NMR (C6D6): δ = Broad aromatic region. 

31P{1H} NMR (C6D6): δ = −126 (s, 1,2-bis(phosphino)benzene).  

11B{1H} NMR (C6D6): δ = No visible resonances. 

7Li{1H} NMR (C6D6): δ = 0.2 (s). 
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[C6P2BC6H5]2- 2[Li(THF)1.5]2+ ([5.6].2[Li(THF)1.5]) + iPrBr 

Compound [5.6].2[Li(THF)1.5] (12 mg, 0.03 mmol) was dissolved in a mixed C6D6/protio-THF solvent 

system and iPrBr (5.5 µl, 0.06 mmol) was added. A freeze-pump-thaw cycle was performed on the 

NMR sample followed by a static-vacuum-distillation. 

Before vacuum-transfer: 

1H NMR (C6D6): δ = 8.24 (s, 1H), 7.91 (d, 5.3 Hz, 5H), 7.74 (br m, 3H), 7.66 (s, 3H), 7.01 (d, 24.5 Hz, 8H), 

6.88 (s, 4H), 6.72 (s, 1H). 3.97 (br m, 8H), 2.43 (br m, 3H), 1.15 (br m, 15H). 

31P{1H} NMR (C6D6): δ = 95 (s), 49.1 (s), 6.8 (s). 

After vacuum-transfer: 

1H NMR (C6D6): δ = 7.91 (s, 1H), 7.76 (s, 2H), 7.66 (s, 3H), 7.30 (br m, 6H), 6.95 (s, 3H), 6.81 (s, 2H), 

intractable mixture in the alkyl region. 

31P{1H} NMR (C6D6): δ = −29.7 (d, JPP = 65 Hz), −123.6 (d, JPP = 65 Hz).  

11B{1H} NMR (C6D6): δ = −5.45 (s). 

7Li{1H} NMR (C6D6): δ = 0.40 (br s). 

[C6P2BC6H5]2- 2[Li(TMEDA)]2+ ([5.6].2[Li(TMEDA)]) + iPrBr 

Compound [5.6].2[Li(TMEDA)] (12 mg, 0.02 mmol) was dissolved in a mixed C6D6/protio-THF solvent 

system and iPrBr (4.8 µl, 0.06 mmol) was added.  

31P{1H} NMR (C6D6): δ = 52.9 (higher order pattern, J = 84 Hz, 110 Hz), −0.58 (higher order pattern, J = 

84 Hz, 110 Hz). 

[C6P2BC6H5]2- 2[Li(THF)1.5]2+ ([5.6].2[Li(THF)1.5]) + Benzyl Chloride 

Compound [5.6].2[Li(THF)1.5] (12 mg, 0.03 mmol) was dissolved in a mixed C6D6/protio-THF solvent 

system and benzyl chloride (6.8 µl, 0.06 mmol) was added. A freeze-pump-thaw cycle was performed 

on the NMR sample followed by a static-vacuum-distillation. 

31P{1H} NMR (C6D6): δ = −21.6 (d, JPP = 145 Hz), −39.7 (d, JPP = 125 Hz), as well as multiple unidentified 

species. 
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[C6P2BC6H5]2- 2[Li(THF)1.5]2+ ([5.6].2[Li(THF)1.5]) + I2 

Compound [5.6].2[Li(THF)1.5] (25 mg, 0.61 mmol) was introduced to a J. Young’s NMR tube and 

dissolved in C6D6 along with a few drops of protio-THF. Next I2 (39 mg, 0.15 mmol) was added resulting 

in a dark colouration. Observed only intractable mixtures by 31P NMR. 

[C6P2BC6H5]2- 2[Li(TMEDA)]2+ ([5.6].2[Li(TMEDA)]) + I2 

Compound [5.6].2[Li(TMEDA)] (40 mg, 0.09 mmol) was dissolved in d8-THF (0.6 cm3) and I2 (53.9 mg, 

0.21 mmol) was added, resulting in a dark colouration.  

31P{1H} NMR (C4D8O): δ = 17.8 (d, JPP = 26 Hz), 4.9 (d, JPP = 26 Hz). 

[C6P2BC6H5]2- 2[Li(THF)1.5]2+ ([5.6].2[Li(THF)1.5]) + GaCl3 

Compound [5.6].2[Li(THF)1.5] (10 mg, 0.03 mmol) was dissolved in a mixed C6D6/protio-THF solvent 

system and GaCl3 (9 mg, 0.05 mmol) was added. No phosphorus resonances were observed. 

[C6P2BC6H5]2- 2[Li(TMEDA)]2+ ([5.6].2[Li(TMEDA)]) + GaCl3 

Compound [5.6].2[Li(THF)1.5] (12 mg, 0.03 mmol) was dissolved in a mixed C6D6/protio-THF solvent 

system and GaCl3 (9 mg, 0.05 mmol) was added, resulting in a pale-yellow colouration. No phosphorus 

resonances were observed. 

[C6P2BC6H5]2- 2[Li(TMEDA)]2+ ([5.6].2[Li(TMEDA)]) + Glutaryl Chloride 

Compound [5.6].2[Li(THF)1.5] (10 mg, 0.02 mmol) was dissolved in a mixed C6D6/protio-THF solvent 

system and glutaryl chloride (2.3 µl, 0.02 mmol) was added, resulting in a dark, viscous material, 

presumably polymerised. No phosphorus resonances were observed. 

[C6P2BC6H5]2- 2[Li(TMEDA)]2+ ([5.6].2[Li(TMEDA)]) + Adipoyl Chloride 

Compound [5.6].2[Li(TMEDA)] (10 mg, 0.02 mmol) was dissolved in a mixed C6D6/protio-THF solvent 

system and adipoyl chloride (2.7 µl, 0.02 mmol) was added, resulting in a green, viscous material, 

presumably polymerised. No phosphorus resonances were observed. 

[C6P2BC6H5]2- 2[Li(THF)1.5]2+ ([5.6].2[Li(THF)1.5]) + MgCl2 

Compound [5.6].2[Li(THF)1.5] (12 mg, 0.03 mmol) and MgCl2 (2.8 mg, 0.03 mmol) were dissolved in a 

mixed C6D6/protio-THF solvent system. 

1H NMR (C6D6): δ = 8.08 (m, 4H), 7.03 (t, JHH = 7.4 Hz, 2H), 6.80 (t, JHH = 7.4 Hz, 1H), 6.62 (m, 2H) 

31P{1H} NMR (C6D6): δ = 46.1 (br s, w1/2 = 23.3 Hz). 
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7Li NMR (C6D6): δ = −1.1 (s). 

11B{1H} NMR (C6D6): δ = 67.1 (s). 

Attempts to remove solvent or drive the equilibrium by 1,4-dioxane addition led only to 

decomposition. Similarly, attempts to grow crystals of this species resulted only in the observation of 

[5.6].2[Li(THF)1.5]. 

[C6P2BC6H5]2- 2[Li(THF)1.5]2+ ([5.6].2[Li(THF)1.5]) + Ph2SnCl2 (5.11) 

Compound [5.6].2[Li(THF)1.5] (12 mg, 0.03 mmol) and Ph2SnCl2 (10 mg, 0.03 mmol) were introduced 

to a J. Young’s NMR tube and dissolved in C6D6 along with a few drops of protio-THF, colourless 

precipitate formed. The solution was filtered through a glass pipette and solvent removed under 

reduced pressure. 

1H NMR (C6D6): δ = 8.2 (s, 1H), 7.87 (s, 2H), 7.76 (s, 2H), 7.58 (s, 2H), 7.33 (s, 5H), 7.21 (s, 5H), 6.94 (s, 

20H), 6.64 (s, 5H). 

13C{1H} NMR (C6D6) δ = 137.9 (s), 137.6 (d, J = 34.1 Hz), 136.4 (s), 135.3 (s), 132.1 (s), 128.8 (s), 128.6 

(s), 128.5 (s), 128.3 (s), 128.1 (s). 

31P{1H} NMR (C6D6): δ = −155.7 (s, 1JP
119

Sn = 705 Hz). 

7Li NMR (C6D6): δ = No resonances observed. 

11B{1H} NMR (C6D6): δ = 76.5 (s). 

119Sn{1H} NMR (C6D6): δ = 719 (d, JSnP = 705 Hz). 

[C6P2BC6H5]2- 2[Li(TMEDA)]2+ ([5.6].2[Li(TMEDA)]) + Ph2SnCl2 

Compound [5.6].2[Li(TMEDA)] (12 mg, 0.03 mmol) and Ph2SnCl2 (8.8 mg, 0.03 mmol) were introduced 

into a J. Young’s NMR tube and dissolved in C6D6 along with a few drops of protio-THF.  

1H NMR (C6D6): δ = 8.25 (m, 7H), 8.17 (d, J = 8.4 Hz, 8H), 8.07 (m, 2H), 7.97 (m, 4H), 7.71 (m, 1H), 7.49 

(m, 4H), 7.09 (m, 27H), 6.88 (m, 5H), 6.51 (d, J = 7.2 Hz, 1H). 

31P{1H} NMR (C6D6): δ = 15.7 (higher order pattern), −127.2 (higher order pattern), −155.7 (s, same 

species as seen in the reaction with [5.6].2[Li(THF)1.5]. 

[C6P2BC6H5]2- 2[Li(THF)1.5]2+ ([5.6].2[Li(THF)1.5]) + tBu2SnCl2 

Compound [5.6].2[Li(THF)1.5] (10 mg, 0.03 mmol) and tBu2SnCl2 (7.4 mg, 0.03 mmol) were introduced 

to a J. Young’s NMR tube and dissolved in C6D6 along with a few drops of protio-THF. 
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31P{1H} NMR (C6D6): δ = −118 (s, 1JP
119

Sn = 1004 Hz, 1JP
117

Sn 962 Hz) as well as multiple P-H species. 

[C6P2BC6H5]2- 2[Li(THF)1.5]2+ ([5.6].2[Li(THF)1.5]) + nBu3SnCl 

Compound [5.6].2[Li(THF)1.5] (10 mg, 0.03 mmol) and nBu3SnCl (16 mg, 0.05 mmol) were introduced 

to a J. Young’s NMR tube and dissolved in C6D6 along with a few drops of protio-THF, resulting in a 

colourless precipitate. 

31P{1H} NMR (C6D6): δ = −59 (s), −140 (d, JPP = 184 Hz), −160 (d, JPP = 184 Hz), along with multiple 

unidentified species between −139 to −161. The resonance at −59 is lost when exposed to vacuum, 

though the doublets remain. 

[C6P2BC6H5]2- 2[Li(TMEDA)]2+ ([5.6].2[Li(TMEDA)]) + nBu3SnCl 

Compound [5.6].2[Li(TMEDA)] (10 mg, 0.02 mmol) and nBu3SnCl (16 mg, 0.04 mmol) were introduced 

to a J. Young’s NMR tube and dissolved in C6D6 along with a few drops of protio-THF, resulting in a 

colourless precipitate. No resonances observed in the 31P NMR. 

[C6P2BC6H5]2- 2[Li(THF)1.5]2+ ([5.6].2[Li(THF)1.5]) + SnCl4 

Compound [5.6].2[Li(THF)1.5] (12 mg, 0.03 mmol) was introduced to a J. Young’s NMR tube and 

dissolved in C6D6 along with a few drops of protio-THF, SnCl4 was added. All phosphorus resonances 

lost, however, TMEDA resonances now have 119Sn satellites, consistent with the formation of 

[TMEDA.SnCl2].330 

1H NMR (C6D6): δ = 3.02 (s, TMEDA-CH2,2JSnH = 47 Hz, 8H), 2.75 (s, TMEDA-CH3, 2JSnH = 48 Hz, 24H). 

[C6P2BC6H5]2- 2[Li(THF)1.5]2+ ([5.6].2[Li(THF)1.5]) + PbCl2 

Compound [5.6].2[Li(THF)1.5] (10 mg, 0.03 mmol) and PbCl2 (13.6 mg, 0.05 mmol) were introduced 

into a J. Young’s NMR tube and dissolved in C6D6 along with a few drops of protio-THF, resulting in a 

red colouration.  

31P{1H} NMR (C6D6): δ = 82.3 (s). 

[C6P2BC6H5]2- 2[Li(TMEDA)]2+ ([5.6].2[Li(TMEDA)]) + PbCl2 

Compound [5.6].2[Li(TMEDA)] (10 mg, 0.02 mmol) and PbCl2 (11.8 mg, 0.04 mmol) were introduced 

into a J. Young’s NMR tube and dissolved in C6D6 along with a few drops of protio-THF, resulting in a 

black colouration. No resonances were observed in the 31P NMR spectrum. 
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 [C6P2BC6H5]2- 2[Li(TMEDA)]2+ ([5.6].2[Li(TMEDA)]) + Cp2ZrCl2 

Cp2ZrCl2 (9.9 mg, 0.03 mmol) was added to Compound [5.6].2[Li(TMEDA)] (8 mg, 0.02 mmol) dissolved 

in C6D6 along with a few drops of THF, resulting in a blood-red colouration.  

31P{1H} NMR (C6D6): δ = 81.6 (s). 

7Li NMR (C6D6): δ = 0.6 (s). 

[C6P2BC6H5]2- 2[Li(THF)1.5]2+ ([5.6].2[Li(THF)1.5]) + Cp(Ph2N)ZrCl 

Compound [5.6].2[Li(THF)1.5]] (12 mg, 0.03 mmol) and Cp(Ph2N)ZrCl (25 mg, 0.06 mmol) were 

introduced into a J. Young’s NMR tube and dissolved in C6D6 along with a few drops of protio-THF, 

resulting in a red colouration. Only starting materials observed by NMR. 

[C6P2BC6H5]2- 2[Li(TMEDA)]2+ ([5.6].2[Li(TMEDA)]) + Cp(Ph2N)ZrCl 

Compound [5.6].2[Li(TMEDA)] (13.7 mg, 0.03 mmol) and Cp(Ph2N)ZrCl (25 mg, 0.06 mmol) were 

introduced into a J. Young’s NMR tube and dissolved in C6D6 along with a few drops of protio-THF, 

resulting in a red colouration. After an hour the solution was light brown/orange in colour. Transferred 

to an ampoule and volatile components removed under reduced pressure. 

31P{1H} NMR (C6D6): δ = 97.2 (s). 

7Li NMR (C6D6): δ = 0.01 (br s), −1.1 (s). 

11B NMR (C6D6): δ = −17 (impurity sometimes seen in [5.6].2[Li(TMEDA)]. 

[C6P2BC6H5]2- 2[Li(THF)1.5]2+ ([5.6].2[Li(THF)1.5]) + CptttY(BH4)2(THF) 

Compound [5.6].2[Li(THF)1.5] (10 mg, 0.03 mmol) and CptttY(BH4)2(THF) (10.4 mg, 0.03 mmol) were 

introduced into a J. Young’s NMR tube and dissolved in C6D6 along with a few drops of protio-THF. 

31P{1H} NMR (C6D6): δ = 44.8 (s). 

7Li NMR (C6D6): δ = −1.1 (s). 

11B{1H} NMR (C6D6): δ = 68.9 (br), −26.3 (s). 

All phosphorus resonances lost if exposed to vacuum. 

[C6P2BC6H5]2- 2[Li(TMEDA)]2+ ([5.6].2[Li(TMEDA)]) + CptttY(BH4)2(THF) 

Compound [5.6].2[Li(TMEDA)] (10 mg, 0.021 mmol) and CptttY(BH4)2(THF) (9.0 mg, 0.02 mmol) were 

introduced into a J. Young’s NMR tube and dissolved in C6D6 along with a few drops of protio-THF. 
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31P{1H} NMR (C6D6): δ = 50.4 (s). 

11B{1H} NMR (C6D6): δ = −26.4 (s), −39.0 (s)  

All phosphorus resonances lost if exposed to vacuum. 

[C6P2BC6H5]2- 2[Li(TMEDA)]2+ ([5.6].2[Li(TMEDA)]) + TiCl2 

Compound [5.6].2[Li(TMEDA)] (12 mg, 0.03 mmol) and TiCl2 (3 mg, 0.03 mmol) were introduced into 

a J. Young’s NMR tube and dissolved in C6D6 along with a few drops of protio-THF. No phosphorus 

resonances were observed by 31P NMR spectroscopy. 

Synthesis of [CpFe(benzene)][PF6] 

Ferrocene (2 g, 10.8 mmol) was dissolved in benzene (10 cm3) in a 50 cm3 round-bottom flask fitted 

with a condenser. Next, AlCl3 (4 g, 30.0 mmol), Al powder (0.3 g, 11.12 mmol) and H2O (0.2 cm3) were 

added and the reaction mixture was brought to reflux for 45 minutes. The reaction mixture was 

allowed to cool to room-temperature and then further cooled in ice (0 °C), next ice-cold water (25 

cm3) was added and the aqueous layer was extracted and diluted to 50 cm3. KPF6 (2.5 g, 13.58 mmol) 

was added and left to stir for 10 minutes, the crude-product was then filtered and washed with 

ethanol, H2O and diethyl ether, then dissolved in CH3CN (10 cm3) and CCl4 (3 cm3) was added, the 

acetonitrile was removed under reduced pressure and the product was collected by filtration as a 

green solid which was dried for 16 hours by blowing compressed air over the solid.  

[C6P2BC6H5]2- 2[Li(THF)1.5]2+ ([5.6].2[Li(THF)1.5]) + CpFe(benzene)][PF6] 

Compound [5.6].2[Li(THF)1.5] (10.4 mg, 0.16 mmol) and CpFe(benzene)][PF6] (17.5 mg, 0.05 mmol) 

were introduced into a J. Young’s NMR tube and dissolved in C6D6 along with a few drops of THF. 

Concentrated to a light brown solid. 

31P{1H} NMR (C6D6): δ = −35.7 (s), −143.9 (septet, JPF = 705 Hz, PF6). 

11B{1H} NMR (C6D6): δ = 29.9 (s), 23.0 (s), −4.9 (s).  

If exposed to vacuum the species observed slowly disappear 

[C6P2BC6H5]2- 2[Li(TMEDA)]2+ ([5.6].2[Li(TMEDA)]) + CpFe(benzene)][PF6] 

Compound [5.6].2[Li(TMEDA)] (75 mg, 0.16 mmol) and CpFe(benzene)][PF6] (110 mg, 0.32 mmol) 

were introduced into a Schlenk flask and dissolved in THF. Concentrated to a light brown solid. 

31P{1H} NMR (C6D6): δ = −35.3 (s), −60.8 (s), −143.9 (septet, JPF = 705 Hz, PF6). 
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11B{1H} NMR (C6D6): δ = 22.5 (s).  

7Li NMR (C6D6): δ = −0.2 (s).  

If exposed to vacuum the species observed slowly disappear. 

[C6P2BC6H5]2- 2[Li(THF)1.5]2+ ([5.6].2[Li(THF)1.5]) + CpRu(PPh3)2Cl 

Compound [5.6].2[Li(THF)1.5] (10 mg, 0.03 mmol) and CpRu(PPh3)2Cl (35.6 mg, 0.05 mmol) were 

introduced into a J. Young’s NMR tube and dissolved in C6D6 along with a few drops of protio-THF. 

Only CpRu(PPh3)2Cl was observed by NMR spectroscopy. 

[C6P2BC6H5]2- 2[Li(TMEDA)]2+ ([5.6].2[Li(TMEDA)]) + CpRu(PPh3)2Cl 

Compound [5.6].2[Li(TMEDA)] (10 mg, 0.03 mmol) and CpRu(PPh3)2Cl (35 mg, 0.05 mmol) were 

introduced into a J. Young’s NMR tube and dissolved in C6D6 along with a few drops of protio-THF. 

Only CpRu(PPh3)2Cl was observed by NMR. 

[C6P2BC6H5]2- 2[Li(THF)1.5]2+ ([5.6].2[Li(THF)1.5]) + CpRu(dppe)Cl 

Compound [5.6].2[Li(THF)1.5] (6.7 mg, 0.02 mmol) and CpRu(dppe)Cl (20 mg, 0.03 mmol) were 

introduced into a J. Young’s NMR tube and dissolved in C6D6 along with a few drops of protio-THF, 

black colouration (CpRu(PPh3)2Cl is black). No reaction occurred. 

 

[C6P2BC6H5]2- 2[Li(TMEDA)]2+ ([5.6].2[Li(TMEDA)]) + CpRu(dppe)Cl 

Compound [5.6].2[Li(TMEDA)] (5.2 mg, 0.01 mmol) and CpRu(dppe)Cl (3.3 mg, 0.01 mmol) were 

introduced into a J. Young’s NMR tube and dissolved in C6D6 along with a few drops of protio-THF, 

pale-black colouration (CpRu(PPh3)2Cl is black). No reaction occurred. 

[C6P2BC6H5]2- 2[Li(THF)1.5]2+ ([5.6].2[Li(THF)1.5]) + Rh(CO)(PCy3)2Cl 

Compound [5.6].2[Li(THF)1.5] (10 mg, 0.03 mmol) and CORh(PCy3)2Cl (35 mg, 0.05 mmol) were 

introduced into a J. Young’s NMR tube and dissolved in C6D6 along with a few drops of protio-THF. No 

reaction occurred. 

[C6P2BC6H5]2- 2[Li(TMEDA)]2+ ([5.6].2[Li(TMEDA)]) + Rh(CO)(PCy3)2Cl 

Compound [5.6].2[Li(TMEDA)] (10 mg, 0.02 mmol) and CoRh(PCy3)2Cl (30.5 mg, 0.04 mmol) were 

introduced into a J. Young’s NMR tube and dissolved in C6D6 along with a few drops of protio-THF. No 

reaction occurred. 
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[C6P2BC6H5]2- 2[Li(THF)1.5]2+ ([5.6].2[Li(THF)1.5]) + AuCl(tht) 

Compound [5.6].2[Li(THF)1.5] (12 mg, 0.03 mmol) and AuCl(tht) (18.85 mg, 0.06 mmol) were 

introduced into a J. Young’s NMR tube and dissolved in C6D6 along with a few drops of protio-THF. No 

phosphorus resonances observed in the 31P NMR spectrum. 

[C6P2BC6H5]2- 2[Li(TMEDA)]2+ ([5.6].2[Li(TMEDA)]) + AuCl(tht) 

Compound [5.6].2[Li(TMEDA)] (20 mg, 0.04 mmol) and AuCl(tht) (27 mg, 0.09 mmol) were introduced 

into a J. Young’s NMR tube and dissolved in C6D6 along with a few drops of protio-THF. No phosphorus 

resonances observed in the 31P NMR spectrum. 

[C6P2BC6H5]2- 2[Li(TMEDA)]2+ ([5.6].2[Li(TMEDA)]) + AuCl(PPh3) 

Compound [5.6].2[Li(TMEDA)] (10 mg, 0.02 mmol) and AuCl(PPh3) (21 mg, 0.04 mmol) were 

introduced into a J. Young’s NMR tube and dissolved in C6D6 along with a few drops of protio-THF. No 

phosphorus resonances observed in the 31P NMR spectrum. 

 [C6P2BC6H5]2- 2[Li(TMEDA)]2+ ([5.6].2[Li(TMEDA)]) + CuI 

Compound [5.6].2[Li(TMEDA)] (10 mg, 0.02 mmol) and CuI (8 mg, 0.04 mmol) were introduced into a 

J. Young’s NMR tube and dissolved in C6D6 along with a few drops of protio-THF. No phosphorus 

resonances were observed by 31P NMR spectroscopy. 

[C6P2BC6H5]2- 2[Li(TMEDA)]2+ ([5.6].2[Li(TMEDA)]) + (Ph3P)2PtCl2 

Compound [5.6].2[Li(TMEDA)] (12 mg, 0.03 mmol) and (PPh3)2PtCl2 (21 mg, 0.03 mmol) were 

introduced into a J. Young’s NMR tube and dissolved in C6D6 along with a few drops of protio-THF. 

Only PPh3 observed by 31P NMR. 

Synthesis of PhRhCl2(PPh3)2 

RhCl(PPh3)3 (1.23 g, 1.33 mmol) and PhHgCl (0.430 g, 1.37 mmol) were introduced into a round-bottom 

flask fitted with a condenser and charged with argon. Next the reagents were dissolved in THF (40 

cm3) and brought to reflux for 3 hours resulting in a red/orange colouration and the observation of 

mercury at the bottom of the reaction vessel. The solution was filtered through Celite® affording a red 

solution which was concentrated until orange solid started to form (ca 10 cm3), then ethanol (60 cm3) 

was added and the solution was removed by filtration and volatile components were removed under 

reduced pressure. The resulting solid was washed with Et2O (10 cm3) and dried in vacuo resulting in a 

matt orange solid. In agreement with the literature.292 Yield: 0.43 g, 38 %. 
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1H NMR (CD2Cl2): δ = 7.5 (s, PPh3, 15H), 7.3 (s, PPh3, 15H), 6.8 (br s, aromatic (Rh-PhP, 1H) 6.65 (br s, 

aromatic (Rh-Ph), 2H), 6.5 (br s, aromatic (Rh-Ph), 2H). 

31P{1H} NMR (CD2Cl2): δ = 20.8 (d, 2JPP = 102 Hz). 

[C6P2BC6H5]2- 2[Li(THF)1.5]2+ ([5.6].2[Li(THF)1.5]) + PhRhCl2(PPh3)2 

Compound [5.6].2[Li(THF)1.5] (12 mg, 0.03 mmol) and PhRhCl2(PPh3)2 (22.8 mg, 0.03 mmol) were 

introduced into a J. Young’s NMR tube and dissolved in C6D6 (0.6 cm3) along with a few drops of protio-

THF.  

Initial NMR: 

1H NMR (C6D6): δ = 7.6 (br d, J = 29.6 Hz), 7.3 (s), 7.0 (s), 6.8 (br s), 6.8 (br s). 

31P{1H} NMR (C6D6): δ = 40.4 (d, J = 146 Hz), 37.5 (d, J = 150 Hz), 31.8 (apparent doublet, J = 163 Hz), 

23.0 (d, J = 106 Hz), 21.1 (d, J = 106 Hz), −5.3 (s, PPh3). 

7Li NMR (C6D6): δ = 0.7 (s).  

NMR after a few hours: 

1H NMR (C6D6): δ = 7.6 (br s), 7.3 (s), 7.1 (s), 6.8 (br s), 6.8 (br s). 

31P{1H} NMR (C6D6): δ = 31.8 (apparent doublet, J = 163 Hz), 23.0 (d, J = 106 Hz), 21.0 (d, J = 104 Hz), 

−5.2 (s, PPh3). 

NMR after removal of solvent: 

1H NMR (C6D6): δ = 7.6 (br d, J = 29.6 Hz), 7.3 (s), 7.0 ( br s). 

31P{1H} NMR (C6D6): δ = 31.8 (apparent doublet, J = 163 Hz), −5.2 (s, PPh3). 

This reaction was also run on a larger scale, though the same result occurred. 

[C6P2BC6H5]2- 2[Li(TMEDA)]2+ ([5.6].2[Li(TMEDA)]) + PhRhCl2(PPh3)2 

Compound [5.6].2[Li(TMEDA)] (12 mg, 0.03 mmol) and PhRhCl2(PPh3)2 (19.7 mg, 0.03 mmol) were 

introduced into a J. Young’s NMR tube and dissolved in C6D6 (0.6 cm3) along with a few drops of protio-

THF. The same result was observed as when [5.6].2[Li(THF)1.5] and PhRhCl2(PPh3)2 were reacted.  
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[C6P2BC6H5]2- 2[Li(THF)1.5]2+ ([5.6].2[Li(THF)1.5]) + PhHgCl 

Compound [5.6].2[Li(THF)1.5] (12 mg, 0.03 mmol) and PhHgCl (18.4 mg, 0.06 mmol) were introduced 

into a J. Young’s NMR tube and dissolved in C6D6 (0.6 cm3) along with a few drops of protio-THF. All 

phosphorus resonances were lost. 

[C6P2BC6H5]2- 2[Li(TMEDA)]2+ ([5.6].2[Li(TMEDA)]) + PhHgCl 

Compound [5.6].2[Li(TMEDA)] (12 mg, 0.03 mmol) and PhHgCl (15.9 mg, 0.05 mmol) were introduced 

into a J. Young’s NMR tube and dissolved in C6D6 (0.6 cm3) along with a few drops of protio-THF. All 

phosphorus resonances were lost. 

[C6P2BC6H5]2- 2[Li(THF)1.5]2+ ([5.6].2[Li(THF)1.5]) + HgI2 

Compound [5.6].2[Li(THF)1.5] (10 mg, 0.02 mmol) and HgI2 (22.3 mg, 0.05 mmol) were introduced into 

a J. Young’s NMR tube and dissolved in C6D6 (0.6 cm3) along with a few drops of protio-THF. Resulted 

in a very pale-yellow colouration, essentially colourless and a green precipitate started to form which 

would not dissolve in any common solvents. No phosphorus resonances were observed. 

[C6P2BC6H5]2- 2[Li(TMEDA)] ([5.6].2[Li(TMEDA)]) + HgI2 

Compound [5.6].2[Li(TMEDA)] (10 mg, 0.02 mmol) and HgI2 (19.25 mg, 0.04 mmol) were introduced 

into a J. Young’s NMR tube and dissolved in C6D6 (0.6 cm3) along with a few drops of protio-THF. 

Resulted in a yellow precipitate which would not dissolve in any common solvents. No phosphorus 

resonances were observed. 

[C6P2BC6H5]2- 2[Li(THF)1.5]2+ ([5.6].2[Li(THF)1.5]) + Vaska’s complex [IrCl(CO)[PPh3)2] 

 IrCl(CO)[PPh3)2 (138.8 mg, 0.196 mmol) and compound [5.6].2[Li(THF)1.5] (40 mg, 0.098 mmol) were 

introduced into a Schlenk flask and dissolved in a mixed solvent system of benzene/THF, upon the 

addition of THF a red colouration was observed. The mixture was stirred for 10 minutes and 

concentrated under reduced pressure; the product was then extracted into Et2O.  

1H NMR (C6D6): δ = 7.6 (br s), 7.4 (br s), 7.3 (br s), 7.1 (s), 7.0 (s), 6.9 (br s), 6.9 (s), 6.7 (s), 6.2 (s), 5.8 

(s). 

13C{1H} NMR (C6D6) δ =  139.7 (d, J = 33 Hz), 136.9 (s), 135.5 (s), 135.3 (d, J = 11 Hz), 135.0 (s), 134.8 (d, 

J = 12 Hz), 134.7 (d, J = 12 Hz), 134.2 (s), 133.8 (d, J = 19 Hz), 133.5 (d, J = 12.5 Hz), 131.9 (d, J = 52 Hz), 

129.7 (d, J = 12 Hz), 129.0 (d, J = 15 Hz), 128.6 (s), 128.3 (d, J = 6.5 Hz), 127.0 (d, J = 10 Hz), 126.7 (s), 

126.4 (d, J = 10 Hz), 124.1 (s), 123.6 (m), 122.0 (br d, J = 7 Hz) 
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31P{1H} NMR (C6D6): δ = 22.7 (td, JPP = 9 Hz, JPP = 27 Hz), 16.1 (dd, JPP = 28 Hz, JPP = 200 Hz), 9.1 (br d, JPP 

= 170 Hz), 6.5 (m), −65.6 (dd, JPP = 11 Hz, JPP = 28 Hz), −80.8 (br t, JPP = 170 Hz).  

11B NMR (C6D6): δ = 25.3 (s). 

7Li NMR (C6D6): δ = 1.29 (shouldering peak), 0.62 (s). 

[C6P2BC6H5]2- 2[Li(TMEDA)]2+ ([5.6].2[Li(TMEDA)]) + [Mo(NCEt)3(CO)3] (15) 

Compound [5.6].2[Li(TMEDA)] (22 mg, 0.05 mmol) and [Mo(NCEt)3(CO)3] (16.1 mg, 0.05 mmol) were 

combined in a J. Young’s NMR tube and dissolved in C6D6 (0.6 cm3) along with a few drops of protio-

THF. Upon exposure to vacuum this species decomposes, however, yellow crystals were grown from 

laying the reaction mixture with hexane.  

1H NMR (C6D6): δ = 8.45 (s), 7.72 (d, J = 7.32 Hz), 7.47 (br m), 7.02 (t, J = 6.80 Hz), 6.67 (m), 2.20 (s, 

TMEDA-CH2), 2.09 (s, TMEDA-CH3), 1.90 (q, THF, J = 8.10 Hz), 0.85 (t, THF, J = 8.10 Hz).  

31P{1H} NMR (C6D6): δ = 8.1 (s). 

7Li NMR (C6D6): δ = 0.3 (s). 

Crystal Data for C43H63BLi2N6P2 (Mw = 1198.44 g/mol): triclinic, space group P21/c (no. 14), a = 

11.81600(10) Å, b = 31.3936(5) Å, c = 15.3079(2) Å, α = 90°, β = 108.5450(10)°, γ = 90°, V = 5383.56(12) 

Å3, Z = 4, T = 99.9(4) K, μ(Cu Kα) = 1.525 mm-1, Dcalc = 1.479 g/cm3, 29708 reflections measured (7.892° 

≤ 2Θ ≤ 143.4°), 9742 unique (Rint = 0.0699, Rsigma = 0.0526) which were used in all calculations. The final 

R1 value was 0.0659 (I > 2σ(I)) and wR2 was 0.1751 (all data). 

[C6P2BC6H5]2- 2[Li(THF)1.5]2+ ([5.6].2[Li(THF)1.5]) + YbI2 

Compound [5.6].2[Li(THF)1.5]] (10 mg, 0.03 mmol) and YbI2 (10.5 mg, 0.03 mg) were introduced into a 

J. Young’s NMR tube and dissolved in C6D6 (0.6 cm3), along with a few drops of protio-THF.  No reaction 

occurred. 

 [C6P2BC6H5]2- 2[Li(TMEDA)]2+ ([5.6].2[Li(TMEDA)]) + YbI2 

Compound [5.6].2[Li(TMEDA)] (10 mg, 0.02 mmol) and YbI2 (9 mg, 0.02 mg) were introduced into a J. 

Young’s NMR tube and dissolved in C6D6 (0.6 cm3), along with a few drops of protio-THF.  No reaction 

occurred. 

Synthesis of Cp*SmBPh4 

Cp*2Sm (100 mg, 0.24 mmol) was introduced into a J. Young’s ampoule and dissolved in benzene (20 

cm3). To this solution [Et3NH][BPH4] (101 mg, 0.24 mmol) was slowly added and stirred for 30 minutes, 
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resulting in a dark blue/green solution. The solution was filtered, and volatile components were 

removed under reduced pressure, resulting in a dark blue solid, as per literature procedure.300 Yield: 

83.1 mg, 57 %. 

1H NMR (C6D6): δ = 0.23 (s), -2.93 (s). 

11B NMR (C6D6): δ = 27.1 (s). 

[C6P2BC6H5]2- 2[Li(TMEDA)]2+ ([5.6].2[Li(TMEDA)]) + Cp*SmBPh4 

Compound [5.6].2[Li(TMEDA)] (15 mg, 0.03 mmol) and Cp*SmBPh4 (39.1 mg, 0.06 mmol) were 

combined in a J. Young’s NMR tube and dissolved in C6D6 (0.6 cm3) along with a few drops of protio-

THF, resulting in a brown colouration and a colourless precipitate, the solid was removed by filtration. 

1H NMR (C6D6): δ = 7.4 (s, 14H), 6.9 (s, 15 H), 6.8 (s, 6H), 2.2 (s, TMEDA – CH2, 8H), 2.02 (s, TMEDA – 

CH3, 24H). 

31P{1H} NMR (C6D6): δ = 48.9 (br s). 

[C6P2BC6H5]2- 2[Li(THF)1.5]2+ ([5.6].2[Li(THF)1.5]) + UCl4 

Compound [5.6].2[Li(THF)1.5] (12 mg, 0.03 mmol) and UCl4 (11.2 mg, 0.03 mmol) were introduced into 

a glass vial and placed in the glovebox freezer (−37 °C). Next pre-cooled THF (−37 °C) was added slowly 

to the reaction mixture resulting in a dark brown colouration. Attempts to grow crystals of the reaction 

product resulted only in a green insoluble precipitate. 

[C6P2BC6H5]2- 2[Li(TMEDA)]2+ ([5.6].2[Li(TMEDA)]) + UCl4 

Compound [5.6].2[Li(TMEDA)] (12 mg, 0.03 mmol) and UCl4 (9.7 mg, 0.03 mmol) were introduced into 

a glass vial and placed in the glovebox freezer (−37 °C). Next pre-cooled THF (−37 °C) was added slowly 

to the reaction mixture resulting in a light brown colouration. Attempts to grow crystals of the reaction 

product resulted only in a green insoluble precipitate. 
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Miscellaneous Supplementary Data 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

“Certainty of death. Small chance of success. What are we waiting for?” 

--The Lord of the Rings: Return of the King (2003) 
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The following structures were collected in the duration of this PhD, though not used within the 

thesis. 

 

 

S 1. Molecular structure of trans-[Ru(dppe)2(C≡CC6H4Me)(C≡P)]; displacement ellipsoids at the 50% probability level. 
Hydrogen atoms and solvent of crystallisation omitted for clarity. 

 

 

S 2. Molecular structure of trans-[Ru(dppe)2(CO)(C≡P)]·OTf; displacement ellipsoids at the 50% probability level. Hydrogen 
atoms, counter-ion and solvent of crystallisation omitted for clarity. 
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S 3. Molecular structure of [Cp*Ru(dppe)P(Cl)2CH2Si(Ph)CH2)]·BF4; displacement ellipsoids at the 50% probability level. 
Hydrogen atoms omitted for clarity. 

 

 

S 4. Molecular structure of [AuCl(Ph)P{C(O)(CH2)3C(O)}]; displacement ellipsoids at the 50% probability level.  

 

 

S 5. Molecular structure of {(CH3)3SiOC(O)}2C12H4(CH3CO2)O; displacement ellipsoids at the 50% probability level 
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