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ABSTRACT

This work concerns the numerical analysis of the Partial Differential Equations (PDEs) with a particular

focus on fully nonlinear PDEs. More specifically, the main goal is to provide a finite element method

to approximate solutions of Isaacs equations, which come from game theory and can be thought of as

generalisation of Hamilton-Jacobi-Bellman (HJB) equations. Both of these classes of problems arise from

the stochastic optimal control problems.

Is is widely known that nonlinear PDEs do not in general admit classical solutions. A way to circumvent

this issue is to use a relaxed definition of derivative leading to the notion of a generalised solution. One such

notion is that of viscosity solution introduced in 1980s by Crandall and Lions. The main idea is to regu-

larise non-smooth functions by using comparison principles and subtractive testing. The theory of viscosity

solutions gave rise to novel numerical methods. A general framework of formulating convergent numerical

schemes for (possibly degenerate) elliptic PDEs was formulated by Barles and Souganidis in 1991. The

main result states that, given a comparison principle depending on the application at hand, a monotone, sta-

ble and consistent numerical scheme converges to the unique viscosity solution of a fully nonlinear problem.

This framework is used throughout this work to formulate convergent numerical schemes.

The main three contributions of the thesis are as follows. First we present a Finite Element Method to

approximate solutions of isotropic parabolic problems of Isaacs type with possibly degenerate diffusions.

Second we design a method of numerically approximating isotropic parabolic Hamilton-Jacobi-Bellman

equations with nonlinear, mixed boundary conditions where Robin type boundary conditions are imposed

via one-sided Dini derivatives. In both cases we prove the convergence of the numerical solution to the

unique viscosity solution. The uniqueness of numerical solution is guaranteed by Howard’s algorithm. The

analysis of the HJB equations with mixed boundary conditions is motivated by option pricing in a financial

setting, which leads to our third contribution. We extend the Heston model of mathematical finance to

permit the uncertain market price of volatility risk and we interpret it as an HJB equation. Finally, we

present a case study investigating the effects of the market price of volatility risk on the option value and its

derivatives.
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Chapter 1

Introduction

Hamilton-Jacobi-Bellman (HJB) equations are fully non-linear partial differential equations (PDEs). They

are derived from the Dynamic Programming Principle, introduced by Richard Bellman, for the solution of

optimal control problems. In general, it can be shown that a solution of a first order HJB equation is a value

function of a deterministic optimal control problem while the value function of its stochastic extension

solves a second order HJB equation. Hamilton-Jacobi-Isaacs (Isaacs in short) equations are also fully

nonlinear PDEs, derived by Rufus Isaacs during the study of two-player zero sum games. Analogously, to

the HJB case, second order Isaacs equations arise from stochastic versions of zero sum games. In fact, one

can think of an HJB equation as a special case of an Isaacs equation, when one of the players’ strategy is

limited to a singular response.

The real life uses of HJB and Isaacs equations are numerous, as one can guess from the fact they

originate in optimal control theory. We present here a non-exhaustive list of areas of application that may

be of interest to the reader. In engineering, they are used to solve problems dealing with optimality in aircraft

navigation [95] and vehicle fuel consumption [32]. Reinforcement learning is an area of machine learning

focused on maximising reward while exploring the environment. One of the steps of the optimisation

process is finding estimate of Q-functions which are in fact solutions of HJB equations [75]. Another area

of application in computer science is the computer vision, for example the shape from shading problem

[100] where the goal is to reconstruct a three dimensional shape from a two-dimensional picture. The

Hamilton-Jacobi type equations also find its direct application in financial mathematics, one example would

be portfolio optimisation [74]. We will also mention several classes of problems which require solving

underlying Hamilton-Jacobi equations. Firstly, we have H∞ methods which often require solving high

dimensional, first order Isaacs equations [51] and which find use for example in robotics [76]. We also have

front propagation theory where moving interfaces are modelled with Hamilton-Jacobi equations [94]. The

applications include fluid dynamics [89] and geology [60]. Finally, we mention the quickly growing field

of mean field game theory [85]. Mean field game theory models N-player games as N → ∞. In such an
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infinite setting optimal behaviour of a single player is still assumed to be governed by an HJB equation.

The applications include modelling crowd motion [83] and macroeconomics [20].

Despite the prevalence of HJB and Isaacs equations and nonlinear PDEs in general in real-life applica-

tions, a generalised notion of solution was not available for a long time. The main problem was that the

nonlinear problems rarely admit classical solutions and weak solutions obtained via multiplicative testing

are rarely guaranteed to be unique. It was not until 1980s that a series of articles ( [86], [26], [24]) laid

ground for a theory of viscosity solutions. They provide a general framework (summarised in [25]) for

dealing with wide range of fully nonlinear problems, including HJB and Isaacs equations. We remark at

this point that they are not the only available relaxation of the notion of solution. For example, in [21] a

notion of minimax solution was introduced, which is in fact equivalent to the viscosity solution for a wide

range of Hamilton-Jacobi problems (see [19]). We also mention a notion of strong solution which satisfies

the differential equation almost everywhere. Given that the underlying problem satisfies Cordes condition,

one can use Miranda-Talenti estimate to prove existence and uniqueness of such solutions. Even though this

notion of a solution is beyond the scope of this dissertation, we inform the reader that a numerical method

converging to the strong solution of a fully nonlinear HJB problems can be found in [104].

Even with the emergence of the theory of viscosity solutions, the formulation of numerical methods for

second order fully nonlinear PDEs still proved to be difficult. The main issue is that uniqueness of solution

is conditional and a numerical scheme has to be designed in a way which allows it to select appropriately

between potential candidate solutions in order to converge to the viscosity solution. It is especially difficult

due to the fact that notion of viscosity solution is based on a comparison principle, instead of variational

one as in the case of weak solutions. A framework which allows to prove the convergence of the numerical

scheme to the unique viscosity solution of a wide class of problems appeared for the first time in [6]. The

main result of that paper states what conditions have to be satisfied by the scheme to be convergent, however

the way in which the numerical scheme is to be constructed is still very much problem dependent.

The aim of this dissertation is to provide a numerical scheme capable of approximating the unique

viscosity solution of Hamilton-Jacobi problems in two novel settings. In both cases we extend the results of

[68] where method of approximating second order possibly degenerate elliptic HJB equation was presented.

We motivate the first case by considering a new Heston model which is an extension of the Black-Scholes

model used for option price evaluation. More precisely, for a stock price S, a variance v and time t, the
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option value V (S,v, t) is expected to solve the following boundary problem

−∂tV −
1
2

(
S2v

∂ 2V
∂S2 +2ρξ vS

∂ 2V
∂S∂v

+ξ
2v

∂ 2V
∂v2

)
−rS

∂V
∂S
− [κ(γ− v)−ξ λ

√
v ]

∂V
∂v

+ rV = 0,

V (S,v,T ) = Λ(S),

V (0,v, t) = Λ(0),

lim
S→∞

∂V
∂S

(S,v, t) = lim
S→∞

∂Λ

∂S
(S),

−rS
∂V
∂S

(S,0, t)−κγ
∂V
∂v

(S,0, t) +

rV (S,0, t)−∂tV (S,0, t) = 0,

lim
v→∞

∂V
∂v

(S,v, t) = 0,

(1.1)

where Λ depends on the pay-off function of a considered option and ρ , ξ , κ , γ , λ are constant parameters.

We then assume λ to be an uncertain parameter and we define linear operators satisfying (1.1) for each

value of λ lying inside of some interval L. After truncating the unbounded domain of (1.1), transformation

of variables and using controls λ : [0,T ]→ L one can show that the optimal option value solves the HJB

equation with the mixed boundary conditions of the form

−∂tv+ sup
α∈A

(Lα v− f α) = 0 in [0,T )×Ω,

−∂tv+ sup
α∈A

(
Lα

∂Ω
v−gα

)
= 0 on [0,T )×∂Ωt ,

sup
α∈A

(
Lα

∂Ω
v−gα

)
= 0 on [0,T )×∂ΩR,

v−g = 0 on [0,T )×∂ΩD,

v− vT = 0 on {T}×Ω,

(1.2)

where we denote families of linear operators on the domain Ω and its boundary by Lα and Lα

∂Ω
, respectively.

Now the main difficulty is to discretise the boundary operators in such a way that the numerical scheme re-

mains consistent with framework of [6]. Another class of problems whose viscosity solution we would like

to approximate are second order Isaacs equations with the non-homogeneous Dirichlet boundary conditions

of the form

−∂tv+ inf
β∈B

sup
α∈A

(L(α,β )v− f (α,β )) = 0 in (0,T )×Ω,

v = g on (0,T )×∂Ω,

v = vT on {T}×Ω.

(1.3)

Here L(α,β ) denotes a linear operator on domain Ω. The main difficulty here is that infsup operator is
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nonconvex and therefore accumulation point of the sequences of numerical solutions is especially difficult

to evaluate on boundary. As a result formulating a meaningful comparison principle for a sequence of

numerical solutions is a demanding task.

Throughout this dissertation the discretisation of PDEs is achieved via Finite Element Methods (FEM)

using P1 elements. The procedure is as follows. We first obtain weak formulation of the differential

equation, using the technique of freezing the coefficient described in [68] to deal with second order terms in

non-divergence form. We then obtain a discretisation of the domain via triangulation satisfying constraint

of strict acuteness. Monotonicity of the scheme is ensured through artificial diffusion. Numerical solutions

are known to exist uniquely due to Howard’s algorithm.

Basic understanding of the Sobolev spaces is assumed throughout this dissertation so the reader not

familiar with this or any other implementation details of the Galerkin type methods is referred to one

of [118, Chapter 3], [40, Chapter 1] or [15, Chapters 0-3]. The main advantage of FEM lies in its flexibility

and applicability to a wide range of problems. Most importantly, the Finite Element approach can be used

on irregularly shaped domains and it can pick up singularities of the solution in crucial parts of the domain

given an appropriate choice of mesh.

In this paragraph we present a general summary of numerical methods used for solving second order

HJB and Isaacs equations. Reader interested in the literature review of the approaches to obtaining numer-

ical approximation of problems (1.2) and (1.3) specifically is referred to the discussion at the beginning

of the chapter dedicated to each of them. We firstly remark that there exists a rich literature on Finite

Difference schemes for HJB problems in non-divergence form. For more recent results we refer reader

to [5], [79], [47] and for summary to [82]. Numerous different approaches exist, including Discontinuous

Galerkin Methods ( [104], [109], [49]) and Finite Element Methods ( [17] for problems admitting classical

solution, otherwise [68], [84], [115]). We also point out that a Semi-Lagrangian method was used in [46]

to solve the Monge-Ampère problem interpreted as HJB equation with a special choice of controls. The

literature regarding Isaacs problems is much more limited. We point to the result on the convergence rates

of the Finite Difference schemes obtained in [18] and later extended to the more general case in [80]. The

convergence of a Semi-Lagrangian scheme was shown in [31] and a Finite Element Method approximation

along with convergence rate estimates can be found in [101]. Additionally, we direct the reader’s attention

to [48] for a detailed description of the Vanishing Moment Method which can be used as an alternative to

Barles-Souganidis framework from [6]. Finally, we recommend the recent review articles [45] and [90] for

an overview of contemporary numerical methods for fully nonlinear PDEs. In the latter, HJB and Isaacs

problems are treated as prototypical convex and nonconvex nonlinear problems, respectively, and a number

of methods for solving them is discussed in a great detail.

The structure of this dissertation is as follows. Each chapter can be read separately, although Chapters 3

and 4 are related to one another as the former provides numerical method used in the latter. We also remark
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that Chapters 3 and 5 are extensions of the method described in [68], however the contributions made in

both of them do not overlap. We now discuss briefly the content of each individual chapter.

In Chapter 2 we take a step back and familiarise the reader with the basic concepts required to carry

out the discretisation of HJB and Isaacs problems which are then used in the subsequent chapters. We

begin by taking a broad look at the fully nonlinear PDEs. A special attention is paid to HJB and Isaacs

equations which we derive from a generic optimal control problems. We then provide alternative definitions

of viscosity solutions and we discuss how a comparison principle leads to the uniqueness of the viscosity

solution for the Dirichlet problem. We then discuss what is meant by a viscosity solution to the generalised

boundary value problem and finally we explain under what conditions a numerical scheme is guaranteed to

converge according to the Barles-Souganidis framework. Readers already familiar with those concepts may

want to skip this chapter.

In Chapter 3 we show a strong uniform convergence of monotone P1 Finite Element Methods to the

viscosity solution of isotropic parabolic Hamilton-Jacobi-Bellman equations with the mixed boundary con-

ditions on unstructured meshes and for possibly degenerate diffusions. Boundary operators, which generally

are discontinuous across face boundaries and type changes, are discretised via a lower Dini derivative. In

time the Bellman equation is approximated through IMEX schemes. Existence and uniqueness of numerical

solutions follows through Howard’s algorithm. We present capabilities of the scheme through the numerical

solution of a Skorokhod problem on a nonconvex domain.

In Chapter 4 we investigate the Heston option pricing model with the uncertain market price of volatility

risk. We reinterpret it as a stochastic optimal control problem and derive the underlying HJB equation with

mixed boundary conditions consistent with the scheme described in Chapter 3. Finally, we perform a case

study whose goal is to investigate the impact of the market price of volatility risk on the option price and its

derivatives.

In Chapter 5 we present a P1 Finite Element scheme converging to the viscosity solution of (1.3). A

pointwise convergence of the envelopes of the numerical solution to the Dirichlet boundary conditions is

proven subject to the condition that construction of specific family of barrier functions is possible. Finally,

we present numerical experiments indicating optimal convergence rates and we show capabilities of the

scheme by approximating the value function of a stochastic two player game with degenerate diffusion.

Chapter 6 is focused on the implementation details of the numerical schemes using the Python interface

to FEniCS Finite Element library. We present the code snippets which author finds instructive and we

discuss how one can solve problems posed in a non-divergence form, which is not the default use case of

FEniCS . Finally, we briefly discuss the performance and benchmark different implementations of the same

numerical task.
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Chapter 2

Concepts of the discretization of

Bellman and Isaacs equations

2.1 Fully nonlinear PDEs and their applications

It is difficult to overstate the importance of the PDEs in the contemporary applied mathematics. It is a basic

tool used for modelling processes in diverse settings, including but not limited to financial mathematics

(portfolio hedging, risk assessment, optimal execution of trades), chemical and biological sciences (pattern

formation, autocatalytic reactions, epidemic dynamics) and physics (fluid dynamics, quantum mechanics).

However, the world is in its nature nonlinear and simplified linear models often fail to describe the complex-

ity of a natural process. This leads to increasing complexity of the proposed models which require obtaining

solutions to the nonlinear PDEs. Even though many advancements in the field were made throughout 20th

century, the nonlinear PDEs are still an area of active research. One of the driving forces of the advance is

access to a rapidly increasing computational power, allowing better methods of numerical approximations

for increasingly complex nonlinear problems. Before delving into the intricacies of the design of numerical

methods we briefly introduce some of the concepts coming from the theory of PDEs which underpin the

essence of this work. We first turn our attention to the notion of nonlinearity and what is understood by a

fully nonlinear PDE.

Let us consider a functional F which encodes a generalised second order partial differential equation.

More explicitly, for a function u(x,y) that is at least twice continuously differentiable we have that

F(x,y,u(x,y),uxx(x,y),uxy(x,y),uyy(x,y)) = 0, (2.1)

for some (x,y) ∈ R2. Note that the functional F could be generalised to include even higher order PDEs

and higher dimensional domains. We refrain from doing that since the main focus of this work is on second
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order PDEs and its current form makes it more convenient to provide concrete examples. We are currently

considering a u that is ”smooth” enough to satisfy the Equation (2.1) in a classical sense. In general,

solutions of nonlinear problems do not satisfy this condition and often we only hope for a solution which

solves the differential problem almost everywhere. In order to be able to search for such a function, a new

relaxed notion of a solution is required. This idea is discussed at length in Section 2.2 but for the time being

we keep a restrictive assumption of u being twice differentiable.

Having defined the generalised PDE operator F we can now return to the discussion of nonlinearity.

Actually, the intuitive notion of linearity coming from linear algebra can be applied in PDE setting as well.

We say that F is linear if, given any number of solutions un of (2.1), their linear combination ∑n cnun where

cn ∈ R is also a solution. More generally, we can divide the PDEs into three general categories as follows.

First, we have linear problems, meaning that F is linear with respect to all derivatives of function u. An

example would be:

a(x,y)
∂ 2u
∂x2 +b(x,y)

∂ 2u
∂x∂y

+ c(x)u(x,y)+d(x) = 0.

Another class of problems are quasi-linear problems. In this case, the differential equation is linear at least

in the highest degree derivative of u, but not necessarily in the lower degree ones. Consider the following

example:

(
∂u
∂x

)2 ∂ 2u
∂x2 +(

∂u
∂x

)2 +d(x) = 0.

In this case the coefficient of the highest order term is a nonlinear function but this choice of F is still linear

with respect to ∂ 2u
∂x2 . Sometimes the related class of semi-linear PDEs is considered in the literature. Those

are defined as quasi-linear PDEs whose highest order coefficient is not u dependent. In other words, the

equation

a(x,y)
∂ 2u
∂x2 +(

∂u
∂x

)2 +d(x) = 0

is semi-linear, while the previous example is not. Finally, we speak of a fully nonlinear equation to empha-

sise that we do not make the assumption of quasi linearity. Nonetheless, most literature does not explicitly

exclude quasi-linear problems from the class of fully nonlinear problems. An example would be:

(
∂ 2u
∂x2 )

2 +d(x,y) = 0.

Having established what it means for a PDE to be fully nonlinear, we now turn our attention to several

areas of application. It is by no means an exhaustive list but rather a visualisation of the scope of the

problems that may require an approximation of a solution to a nonlinear PDE. It is worth noting that no such

a thing as a general theory of the fully nonlinear PDEs exists. In general, approaches to solving a nonlinear

problem will differ depending on the individual type of an equation under consideration. However, it is

often possible (subject to assumptions and limitations) to reformulate equations of one type into equations
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of another type. Hence the types of equations presented here are not to be thought of as classification into

distinct categories but rather labels for types of problems which can be solved with a specifically designed

sets of methods.

We begin by explaining the main focus of this work, namely the problems coming from the optimal

control theory. The main goal of the optimal control is to optimise some objective function associated to a

dynamic system which can be manipulated via controls. By considering the dynamics of a non-deterministic

system which are written in a form of a stochastic PDE and applying the Dynamic Programming Principle

one can derive so-called Hamilton-Jacobi-Bellman (HJB) equation of the form

−∂tv+ sup
α∈A

(−aα(t,x)∆v(t,x)−bα(t,x) ·∇v(t,x)− f α(t,x)) = 0,

where pointwise supremum is taken over the set of available controls A. We defer the details of the deriva-

tion to Section 2.1.1. Considering a similar optimal control problem but with two independent forces

(referred to as players) driving the dynamics of the system, one can formulate so-called Hamilton-Jacobi-

Isaacs (Isaacs in short) equation of the form

−∂tv+ inf
β∈B

sup
α∈A

(
−a(α,β )(t,x)∆v(t,x)−b(α,β )(t,x) ·∇v(t,x)− f (α,β )(t,x)

)
= 0.

Again, a more detailed discussion can be found in Section 2.1.2. We only point out that the Isaacs equation

can be thought of as generalisation of the HJB equation by considering control set B to be a singleton.

The next area of interest are fully nonlinear problems present in financial mathematics. Probably one of

the most known financial equations is the Black-Scholes equation used to evaluate the theoretical value V

of a financial option. Under assumption of constancy of volatility σ of stock price S and risk-free interest

rate r one can estimate V by solving a second order linear PDE of the form

∂tV +
1
2

σ
2S2 ∂ 2V

∂S2 + rS
∂V
∂S
− rV = 0.

Due to the limitations of the original Black-Scholes model many modifications have been considered in-

cluding the so-called Heston model. In the Heston model one considers the evolution of σ in time to be a

mean-reverting process with a long term mean equal to γ and a reversion level equal to κ . We also assume

that it is correlated to the stochastic process which represents evolution of the stock price. Considering the

square of the volatility v, the volatility of volatility ξ and the correlation coefficient ρ we obtain equation

of the form

∂tV +
1
2

(
S2v

∂ 2V
∂S2 +2ρξ vS

∂ 2V
∂S∂v

+ξ
2v

∂ 2V
∂v2

)
− rS

∂V
∂S
− [κ(γ− v)−ξ λ

√
v ]

∂V
∂v

+ rV = 0.

The details of derivation are available for closer inspection in Chapter 4. Note that this is again a linear PDE.
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However, problems like worst case scenario analysis and portfolio optimisation require a fully nonlinear

PDEs to be solved. One example would be making one or more parameters in such a PDE uncertain. One

can then evaluate how the value of a financial asset can be affected by an incorrect approximation of those

parameters. Such a case study is performed in Chapter 4.

We conclude this section with several more examples of nonlinear PDEs to explain the scope of the

problem class. Arising from the problems in optimal transport, geometry, reflector shape design (see [71])

or meteorology(see [11]) we have the Monge-Ampère equations of the general form

det D2u = f (x,u,∇u).

A classical example of the Monge-Ampère problem is the prescribed Gaussian curvature equation where f

takes the form

f = K(x)(1+ |∇u|2)(n+2)/2,

with K(x) being the Gaussian curvature of graph of u at point x. For more details on connection to the

optimal transport see [96] and for an overview of the classical solution theory see [56, Chapter 17]. An-

other example of a nonlinear PDE used in a number of applications, including wavefront propagation and

geometrical optics, is the Eikonal equation of the form

|∇u(x)|= f (x). (2.2)

For a more detailed discussion we refer reader to [27]. We also mention the classical obstacle problem of

the form

min{−∆u(x),u(x)−φ(x)}= 0 (2.3)

which is discussed in more detail in [99] and the infinity Laplacian equation of the form

∆∞u := 〈Du,D2uDu〉= uxiux j uxix j = 0,

which arises in numerous areas of the nonlinear PDE theory as summarised in [7].

We point out that the setting of the Isaacs equation is broad and since many of the equations stated

above are optimisation problems, they can often be reformulated as the Isaacs (or more specifically HJB)

equation. As an example we provide a brief discussion of the Monge-Ampère and eikonal problems, noting

that reinterpreting the obstacle problem in the form presented in (2.3) as HJB problem is trivial. Let us

consider a control set S := {M is a non-negative symmetric matrix | trM = 1}. It was shown in [78] that for

a positive symmetric Hessian and d-dimensional domain there is an equivalence between the solution to the
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HJB equation of the form

sup
A∈S

(
−A : D2u(x)+ f (x) d√detA

)
= 0

and the solution to the Monge-Ampère equation of the form

det D2u(x)−
(

f
d

)d

= 0.

In case of the eikonal equation (2.2) we define the control set A :=
{
~v ∈ R2

∣∣ |~v|= 1
}

and make use of the

fact that Euclidean norm of a gradient can be written as |∇u| = supα∈A (α ·∇u). As a result we obtain an

HJB problem of the form

sup
α∈A

(α ·∇u(x)− f (x)) = 0.

2.1.1 Derivation of Hamilton-Jacobi-Bellman equations

In this section we follow the discussion in [114] to briefly present how the HJB equation arises from optimal

control problems. It is therefore natural to first discuss deterministic optimal control (leading to a first order

HJB equation) and then extend the discussion to a non-deterministic, stochastic case which will lead us to

the formulation of the general second order HJB equation. We remark that throughout this section we make

some strong continuity assumptions which will not hold in general. However, we are considering the case

when the HJB equation has a classical, continuous solution and hence such assumptions are justified.

In optimal control we deal with some system evolving in time whose evolution is in the setting of

this work represented by the Ordinary Differential Equation (ODE) or a system of ODEs. Additionally, it

is possible to influence the behaviour of such system through a time dependent parameter we refer to as

control. In other words, the state of the system at time t and controls are linked by a differential equation.

More explicitly, let t0 < t < ∞ and consider initial state x0 ∈ Rd . Given a compact metric space A we define

A := {α : [t0,T ]→ A |α is measurable}. Then the dynamics of the system are represented by the following

differential equation:  ẋ(t) = bα(t)(t,x(t)) t ∈ (t0,T ],

x(t0) = x0,
(2.4)

where a map α ∈ A is called an admissible control and bα(t) : (t0,T ]×Rd → Rd is a map associated to

it. Note the use of shorthand notation which for a function g allows us to write gα(t) = g(t,α) for any

α ∈ A. The system of equations (2.4) is called control system and its solution under a control α denoted

as xα(t) is a state trajectory. From now on we assume that for a single control, the control system admits

a unique trajectory. Note that in general xα(t) depends on the initial tempo-spatial position so it would be

more accurate to denote it as x(α,t0,x0)(t). However, we drop the t0 and x0 from the subscript for the sake of

brevity.

We are now interested in finding a control which in some sense optimises the response of the control
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system. For this purpose, we require a way to measure the performance of a control. In other words, we

would like to evaluate the cost of the system evolution starting at time t0 with state x0 until termination time

T under state trajectory xα(t). This motivates introduction of the following cost functional:

J (t0,x0,α) :=
∫ T

t0
fα(s)(s,xα(s))ds+ vT (xα(T )), (2.5)

where fα(t) : [t0,T ]×Rd → R is the running cost function and vT : Rd → R is a function representing the

terminal cost of the system. We are now interested in finding a control α̂ ∈ A which minimises (2.5) or

more precisely

J (t0,x0,α̂) = inf
α∈A
J (t0,x0,α). (2.6)

Note that for the remainder of this section we could replace inf in (2.6) with min without affecting the

analysis. We will however refrain from doing so in order to stay consistent with the subsequent chapters

where we work under more restrictive assumptions. Returning to (2.6), if we assume that at least one such

α̂ exists, we refer to it and its corresponding trajectory as optimal. It is also useful to define a function

representing the cost associated to the optimal trajectory xα̂,t0,x0 as follows

v(t0,x0) := J (t0,x0,α̂). (2.7)

We will call such v the value function.

We now turn our attention to the fundamental result allowing the formulation of the HJB equation,

called Dynamic Programming Principle or Bellman’s principle of optimality. It is motivated by the intuitive

observation that for any admissible control α ∈ A, time t ∈ [t0,T ), position x and h < T − t, the value

function v(t,x) is bounded from above by a general, not necessarily optimal running cost between times t

and t +h added to the value function evaluated at time t +h. The following result confirms and refines this

observation.

Theorem 1. Let us assume that for all α ∈ A we have that bα and f α are uniformly continuous, bounded

and Lipschitz continuous in space and time. Then for any time t > t0, time increment h≤ T − t and position

x ∈ Rd we have that

v(t,x) = inf
α∈A

∫ t+h

t
fα(s)(s,xα(s))ds+ v(t +h,xα(t +h)). (2.8)

Proof. We begin the proof by showing that v(t,x) is a lower bound of the right hand side of (2.8). In fact,

by the definition of v and J we have that

v(t,x)≤ J (t,x,α) =
∫ t+h

t
fα(s)(s,xα(s))ds+J (t +h,xα(t +h),α).
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Taking infimum over α yields the required result. We now need to show that v(t,x) is the largest such lower

bound. Due to the continuity of f α and bα we have that for any ε > 0 there exists a control αε ∈ A such

that

v(t,x)+ ε ≥ J (t,x,αε) =
∫ t+h

t
fαε (s)(s,xαε

(s))ds+J (t +h,xαε
(t +h),αε)

≥
∫ t+h

t
fαε (s)(s,xαε

(s))ds+ v(t +h,xαε
(t +h))

≥ inf
α∈A

∫ t+h

t
f α(s)(s,xα(s))ds+ v(t +h,xα(t +h)).

The equation (2.8) follows directly.

Another way to formulate this result is to state that if v is optimal over a whole time interval it is also

optimal over any of its subintervals. Having established the Dynamic Programming Principle we are now

ready to show that the value function of a deterministic optimal control problem is in fact the solution of a

first order HJB equation. We formalise this statement in the following result.

Proposition 1. Assume that for all α ∈ A we have that bα and f α are uniformly continuous, bounded and

Lipschitz continuous in space and time and let vT be bounded and Lipschitz continuous in space. Let us also

assume that control system (2.4) admits a unique value function v ∈C1([0,T ]×Rd). Then v is the solution

of the following first order final value problem

−∂tv(t,x)+ supα∈A (−bα(t,x) ·∇v(t,x)− f α(t,x)) = 0 (t,x) ∈ [0,T )×Rd

v(T,x) = vT (x) x ∈ Rd .

Proof. Fix some α∗ ∈ A and consider a controlA3 α(t)≡ α∗. Using (2.8) we have that for h small enough

v(t,x)− v(t +h,xα(t +h))
h

− 1
h

∫ t+h

t
f α∗(s,xα(s))ds≤ 0.

Using the continuity of v, bα and f α , letting h ↓ 0 and using (2.4) we get that for any initial choice of α∗

0≥−∂tv−bα∗(t,x) ·∇v(t,x)− f α∗(t,x). (2.9)

Note that the above will be also hold true for α∗ for which the supremum of right hand side of (2.9) is

attained. We now prove the inverse of (2.9). By continuity of v, for any positive ε > 0 and h small enough

there exists a control αε(·) ∈ A such that

v(t,x)+hε ≥
∫ t+h

t
fαε (s)(s,xαε (s))ds+ v(t +h,xαε

(t +h)).
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Since we assumed v to be continuously differentiable we have that

−ε ≤ v(t,x)− v(t +h,xαε
(t +h))

h
− 1

h

∫ t+h

t
fαε (s)(s,xαε

(s))ds

=
1
h

∫ t+h

t
−∂tv(s,xαε

(s))−bαε (s)(xαε
(s)) ·∇v(s,xαε

(s))− fαε (s)(s,xαε
(s))ds

≤ 1
h

∫ t+h

t
−∂tv(s,xαε

(s))− sup
α∈A

(bα(xα(s)) ·∇v(s,xα(s))− f α(s,xα(s)))ds.

We now make use of the uniform continuity bα and f α for all α ∈ A and take the limit as h→ 0 to obtain

0≤−∂tv(t,x)+ sup
α∈A

(−bα(t,x) ·∇v(t,x)− f α(t,x)) .

This result combined with (2.9) gives us the required result.

Hence we can obtain the value function of an optimal control problem by solving the related HJB

equation. We remark at this point that assumption of v ∈ C1([0,T ]×Rd) does not hold in general and

depends on the exact formulation of (2.4). In order to generalise this result, we require notion of viscosity

solution which we will introduce in Section 2.2. For the time being, we assume for the simplicity that the

underlying optimal control problem satisfies this restriction.

Note that if we know the value function denoted as v̂, it is also in principle possible to retrieve the

optimal control and the optimal trajectory for each starting time t0 and position x0. The optimal control α̂

is the one for which supremum of supα∈A (−bα(t0,x0) ·∇v̂(t0,x0)− f α(t0,x0)) is attained. We can then use

â, t0,x0 to find the unique solution of (2.4) which is the optimal trajectory.

Having considered a deterministic optimal control problem we now turn our attention to the stochastic

case. Let us consider a standard d-dimensional Brownian motion W defined on a given filtered proba-

bility space satisfying the usual condition. We can then consider the following stochastic extension of a

deterministic controlled system:

 dx(t) = bα(t)(x(t))dt +σα(t)(t,x(t))dW (t) t ∈ (t0,T ],

x(t0) = x0,
(2.10)

where σα(t) : [0,T ]×Rd → Rd×d . We remark at this point that the set of admissible controls A will in

general depend on the filtered probability space on which W is defined. More precisely, given the underlying

sample set Ω and filtration {Ft}t≥0 of the Brownian motion, any admissible control needs to map from

[0,T ]×Ω to A and additionally it needs to be {Ft}t≥0-adapted. Notice as well that given any state trajectory

x(·) we have that for any t > 0 the position x(t) is actually a random variable instead of a fixed point in

space. Thus in order to be able to apply Dynamic Programming Principle we would have to use the fact that
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admissible controls are {Ft}t≥0-adapted and additionally allow the Brownian motion W (·) and underlying

complete probability space to be part of the control. Then using probability measure conditioned upon

filtration generated by the Brownian motion we have that the position x(t) is almost surely deterministic.

This in turn allows us to consider optimal path or cost given a varying control and probability space. Since

the technical details of this process are beyond the scope of this dissertation, the interested reader is referred

to [114] for more details.

Analogously to the deterministic case we can define the expected cost functional

J (t0,x0,α) := E(t0,x0)

{∫ T

t0
f α(s)(s,xα(s))ds+ vT (xα(T ))

}
,

optimal control α̂ such that

J (t0,x0,α̂) = inf
α∈A
J (t0,x0,α)

and the expected value function v such that

v(t0,x0) := J (t0,x0,α̂).

We note at this point that while the derivation of the second order order HJB equation is in spirit similar

to the first order case, the inclusion of the non-deterministic term makes the argument much more techni-

cal. Since the stochastic processes are not the focus of this dissertation, we will present the main results

analogous to the non-deterministic case and for the detailed proofs we refer reader to [114].

Let us assume that for all α ∈ A we have that σα , bα and f α are uniformly continuous in time and

Lipschitz continuous in space.

Theorem 2. For any starting time t0 ≤ T −h and any starting position x0 ∈ Rd we have that

v(x0, t0) = inf
α∈A

E(t0,x0)

{∫ t+h

t0
fα(s)(s,xα(s))ds+ v(t0 +h,xα(t0 +h))

}
. (2.11)

Note that this is the stochastic version of Theorem 1.

Proposition 2. Let vT be bounded and Lipschitz continuous in space. Let v ∈C1,2([0,T ]×Rd) be the value

function of the control system (2.13). Then v is a solution of the following first order final value problem.

−∂tv+ supα∈A
(
− 1

2 tr(σα(σα)T )∆v(t,x)−bα(t,x) ·∇v(t,x)− f α(t,x)
)
= 0 (t,x) ∈ [0,T )×Rd

v(T,x) = vT (x) x ∈ Rd .

(2.12)

Note how the introduction of the stochastic terms lead to the emergence of second order terms in HJB

equation (2.12). The exact proof of Proposition 2 can be found in [114, Chapter 4, Proposition 3.5].
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We would like to remind the reader that in Propositions 1 and 2 we made strong assumptions about the

smoothness of the value function v. In the later sections we will investigate how the notion of a solution to

the HJB equation can be relaxed in order to allow solutions which are not continuously differentiable.

2.1.2 Derivation of Isaacs equations

In this section we focus on a model for a two-person, zero-sum differential game. The basic idea is that

two players control the dynamics of some evolving system. One of them tries to maximise, while the

other tries to minimise, a cost functional that depends upon a trajectory. Our task is then to determine an

optimal strategy of each of the players. This is in general a complicated task since strategy of one player

depends largely on the strategy adopted by the other player. The dynamics of the optimal problem in the

deterministic case are then  ẋ(t) = b(α(t),β (t))(x(t)) t ∈ (t0,T ],

x(t0) = x0.
(2.13)

We note that this is analogous to the HJB case but this time with a pair of controls (α,β) ∈ A×B where A

and B are compact metric spaces. We assume that mapping b : Rd ×A×B→ Rd is continuous. We define

the admissible control setsA,B to be all measurable functions mapping from [0,T ] to A and B respectively.

One player chooses α ∈ A and tries to maximise the cost functional while the other player chooses β ∈ B

and tries to minimise the cost functional. Analogously to the HJB case we denote the solution of (2.13) as

x(α,β,t0,x0)(t) and the associated cost functional J (t0,x0,α,β).

The central notion of a well-defined two player game is that of non-anticipating strategy. Informally,

given two almost identical choices of control for one of the players, we expect the other player’s corre-

sponding responses to be also almost identical. More precisely, we define the set of strategies for the first

player as follows

Γ :=
{
α : B →A

∣∣∣ given t > 0 and β, β̂ ∈ B if β (s) = ˆβ (s) a.e. ∀s≤ t then α[β ] = α[β̂ ] a.e. ∀s≤ t
}
.

The set of strategies for the second player is denoted as ∆ and is defined analogously. This naturally leads

us to the definitions of the lower value function

v− := inf
β∈∆

sup
α∈A
J (t0,x0,α,β)

and the upper value function

v+ := sup
α∈Γ

inf
β∈B
J (t0,x0,α,β).

To gain intuition about the meaning of the above definitions one may think about them in terms of a dis-

cretised temporal space. In the first case, the advantage is given to the second player as he responds to the
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actions of the first player and thus has more information at his disposal. The situation is reversed in the

second case. In general, we have that v− ≤ v+. In the specific case that v− = v+ we say that the game has a

value. However, lower and upper value functions may differ significantly.

We will now list some of the properties of the lower and the upper value functions remarking that the

proofs can be found in [41]. Rather than with the technical details we are concerned with pointing out the

analogy to the HJB case which should be apparent.

Firstly, let us assume that for all (α,β ) ∈ A×B we have that b(α,β ), f (α,β ) are uniformly continuous,

bounded and Lipschitz continuous in space and time and vT is bounded and Lipschitz continuous in space.

Then we have the following result regarding the regularity of lower and upper value functions.

Proposition 3. Both v− and v+ are bounded and Lipschitz continuous in time and space

The next result is the equivalent of the Dynamic Programming Principle stated in the previous section

but this time in the Isaacs setting.

Theorem 3. For any starting time t0 ≤ T −h and starting position x0 ∈ Rd we have that

v−(x0, t0) = inf
β∈∆

sup
α∈A

∫ t+h

t0
f (α(s),β (s))(s,x(α,β )(s))ds+ v−(t0 +h,x(α,β )(t0 +h)) (2.14)

and

v+(x0, t0) = sup
α∈Γ

inf
β∈B

∫ t+h

t0
f (α(s),β (s))(s,x(α,β )(s))ds+ v+(t0 +h,x(α,β )(t0 +h)). (2.15)

Consider now the final value problem of the following form

−∂tv+H(∇v,x, t)v = 0 (t,x) ∈ [0,T )×Rd ,

v(T,x) = vT (x) x ∈ Rd .
(2.16)

where either H = H− or H = H+ with

H−(p,x, t) := inf
β∈B

sup
α∈A

(
−b(α,β )(t,x) · p− f (α,β )(t,x)

)

and

H+(p,x, t) := sup
α∈A

inf
β∈B

(
−b(α,β )(t,x) · p− f (α,β )(t,x)

)
.

We will refer to such problems as the upper and lower Isaacs equations. Note that by definition H+(p,x, t)≥

H−(p,x, t) for any choice of (p,x, t) ∈ Rd×Rd× [0,T ). In the case when the equality holds we say that the

Isaacs condition is satisfied.

The following result proves that the solutions of the upper and lower Isaacs equations are indeed the

value function of the underlying optimal control problem. The exact proof can be found in the discussion

following the statement of Corollary 2.5 in [106].
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Proposition 4. Let v− ∈C1(Rd × [0,T )) be a lower value function of the control system (2.13). Then v−

solves (2.16) with H = H−. Similarly, v+ ∈C1(Rd× [0,T )) solves (2.16) with H = H+.

We skip the details of the extension to the stochastic case which lead to the derivation of the second

order Isaacs equation. The proof is analogous to the HJB case with the exception of the stochastic version

of the Dynamic Programming Principles 2.14 and 2.15 which actually require the notion of a viscosity

solution introduced in the next section. Reader interested in the detailed derivation is referred to [52].

2.2 Theory of viscosity solutions

As highlighted in the previous section, in the case of fully nonlinear problems the generalised partial differ-

ential equations of the form

F(x,u,Du,D2u) = 0 in Ω (2.17)

do not always admit classical solutions. Often we are forced to look for a solution among function which

do not admit second or first order differentiation at all points of the domain. Therefore we would like to

relax the notion of a solution in such a manner that the problem still admits the unique solution. One of the

approaches is the idea of the multiplicative testing where integration by parts with smooth test functions

is used to define weak derivatives. Given functions u,v which are locally integrable on an open set U and

infinitely smooth test function φ we say that v is a (first order) weak derivative of u with respect to xi if and

only if ∫
U

u(x)∂iφ(x)dx =−
∫

U
v(x)u(x)dx.

This idea extends to higher order derivatives and thus we no longer require u to be differentiable. It is

easy to sea that by replacing derivatives in (2.17) with their weak counterparts we increase the size of the

potential solution space. This relaxes the notion of a solution and gives us a new set of candidate solutions

to the problem. We refer to them as weak solutions.

However, given even a relatively simple non-linear problem, the notion of a weak solution obtained via

the multiplicative testing is not sufficient. In this setting we may obtain multiple weak solutions which are

almost everywhere classical solution to the problem and yet we do not have a way of selecting the correct

one. In such case it is unclear how to tell apart correct and spurious solutions as we have no control over

the PDE on null sets. Additionally, if the problem is posed in a non-divergence form, the integration by

parts is impossible from purely calculational point of view. Hence we require an alternative method of

obtaining information about the derivatives of non-smooth functions. Such a method is provided through

the notion of viscosity solution, a term first introduced in 1980s in a series of papers by Crandall, Lions

and Ishii. In this section we introduce all the basic notions required to work with viscosity solutions when

designing numerical methods but the reader interested in more comprehensive overview is advised to read
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the summarizing work [25]. Throughout this section we follow this setting quite closely, making departures

when necessary.

In order to define a viscosity solution we first need to restrict the set of allowed differential operators.

While it may seem at first that it limits the scope of the theory, one can see in [25] that it still applies to

a wide range of problems, most importantly including HJB and Isaacs equations. Consider the differential

operator analogous to the one in (2.17) with F : Rd×R×Rd×S(d)→R where S(d) is the set of symmetric

d×d matrices. We will require F to satisfy two additional conditions. Firstly, we have that

F(x,r, p,X)≤ F(x,r, p,Y ) whenever Y ≤ X (2.18)

where by Y ≤ X we mean that X−Y is positive semi-definite. If the above condition is satisfied we say that

F is degenerate elliptic. One may think of such operators as family of PDEs which treat inequality in the

derivatives in a consistent manner. Additionally, we require that

F(x,r, p,X)≤ F(x,s, p,X) whenever r ≤ s. (2.19)

If the above condition is satisfied and if additionally F is degenerate elliptic, we say that F is proper. We

also assume that F is continuous.

The main idea is to use the subtractive instead of the multiplicative testing. We will initially assume u

to be smooth in order to show a connection between a classical and a viscosity solution. Let us consider

a proper differential operator F and assume that u is a classical subsolution of F = 0. We also have an

infinitely smooth test function φ such that u−φ has local maximum at some x̂. Then by basic calculus we

have that Du(x̂) = Dφ(x̂) and D2u(x̂)≤ D2φ(x̂). Using the properties of F we have that

F(x̂,u(x̂),Dφ(x̂),D2
φ(x̂))≤ F(x̂,u(x̂),Du(x̂),D2u(x̂))≤ 0.

Note that this way we express abstract information about the derivatives of u in terms of φ which is smooth.

In order to obtain a similar comparison for non-smooth u we need to relax the notion of the derivatives,

similarly as in the case of the multiplicative testing.

We now allow u to be non-smooth. We first observe that u(x)≤ u(x̂)−φ(x̂)+φ(x) for x in the vicinity

of x̂ and hence, by using Taylor series and letting x→ x̂ we get

u(x)≤ u(x̂)+ 〈p,x− x̂〉+ 1
2
〈X(x− x̂,x− x̂)〉+O((x− x̂)3), (2.20)

for some p ∈ Rd and X ∈ S(d). Note that the vector p and the matrix X could be replaced by Dφ(x) and

D2φ(x) respectively. We also notice that if we allowed u to be smooth then the choice p = Du(x̂) and
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X = D2u(x̂) would be valid as well. Thus we are interested in finding the set of all pairs (p,X) for which

the inequality (2.20) holds. More precisely, we consider region Ω such that x̂ ∈Ω. Then the set of all (p,X)

such that for any sequence xk → x̂ the inequality (2.20) is satisfied, is called the superjet of u at point x̂

and is denoted by J2,+
Ω

u(x). Subjets are defined in an analogous manner but with direction of inequality in

(2.20) reversed. We also remark that there exists an alternative definition of super- and subjets equivalent

to the one presented above. It can be actually shown that

J2,+
Ω

u(x) := {(Dφ(x̂),D2
φ(x̂)) : φ ∈C2(Ω) and u−φ has a local maximum at x̂}.

The subjets are defined analogously but with the maximum replaced by the minimum.

Having defined a relaxed version of the second order derivatives we are now interested in defining the

notion of the viscosity solution of differential problem (2.17).

Definition 1. Let differential operator F be proper and Ω⊂ Rd . Any function u which is upper semicontin-

uous in Ω and satisfies

F(x,u(x), p,X)≤ 0 ∀x ∈Ω and (p,X) ∈ J2,+
Ω

u(x) (2.21)

is called a viscosity subsolution of (2.17). Analogously, any function u which is lower semicontinuous in Ω

and satisfies

F(x,u(x), p,X)≥ 0 ∀x ∈Ω and (p,X) ∈ J2,−
Ω

u(x) (2.22)

is called a viscosity supersolution of (2.17). If a function u is simultaneously a viscosity sub- and superso-

lution of (2.17), then we say it is viscosity solution of (2.17).

Note that using the alternative definition of sub- and superjets we can actually provide an equivalent

definition without explicit mention of the jets. As this definition avoids the technical point of explaining the

notion of jets it is often used in the literature. Hence, for the sake of completeness, we present it here.

Definition 2. We call an upper semi-continuous function (lower semi-continuous) u a viscosity subsolution

(resp., supersolution) of (2.17) if, for any φ ∈C2(R×Rd),

F(x,φ(x),Dφ(x),D2
φ(x))≤ 0 (resp.,≥ 0),

provided that u−φ attains its maximum (resp., minimum) at x ∈Ω. We call u a viscosity solution of (2.17)

if it is simultaneously a viscosity sub- and supersolution of (2.17).

At this point we would also like to point out that there exists an alternative definition of a viscosity

solution which allows a richer set of candidate solutions. More precisely, the potential viscosity solution

is only required to be locally bounded instead of semicontinuous. The alternative definition requires the
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notion of a semicontinuous envelope defined as follows. For a function z : Ω→R the upper semi-continuous

envelope z∗ is

z∗ := limsup
r→0

{u(y) : y ∈Ω and |y− x| ≤ r}

and the lower semi-continuous envelope z∗ is

z∗ := liminf
r→0
{u(y) : y ∈Ω and |y− x| ≤ r}.

Then we may define viscosity solution as follows.

Definition 3. A locally bounded function u is called a viscosity subsolution (resp., supersolution) of (2.17)

if for all φ ∈C2(Ω) and all x ∈ Ω such that u∗−φ (resp., u∗−φ ) has a local maximum (resp., minimum)

at x it holds that

F∗(x,u∗(x),Dφ(x),D2
φ(x))≤ 0 (2.23)

(resp.,

F∗(x,u∗(x),Dφ(x),D2
φ(x))≥ 0). (2.24)

The function u is said to be a viscosity solution of (2.17) if it is both sub- and supersolution of (2.17).

As already mentioned, this definition of a viscosity solution is actually a relaxation of the first two in

the sense that any function that satisfies the first two definitions also satisfies this one, but not the other way

around. Indeed, it is easy to see that a semi-continuous function is locally bounded and its semicontinuous

envelope is the function itself. We also point out that this definition allows us to consider discontinuous

differential operators F . We remark that one has to be mindful of which definition one chooses to employ

and that it remains the same throughout the argument. Failing to do so could potentially lead to erroneous

results. One area where such distinction is important is the idea of comparison principle which we discuss

in the next section.

2.3 Comparison Principle

Having defined the notion of a viscosity solution we would now like to show the uniqueness of the solution

of the problem (2.17). However, in order to build a general theory of such proofs we require one more set of

tools which are referred to as comparison principles. As it was the case with viscosity solutions, we motivate

usefulness of this notion by first considering the case of smooth solutions. Let us consider u,v ∈ C2(Ω)

which are classical sub- and supersolution of (2.17) respectively, meaning that F(x,u(x),Du(x),D2u(x))≤ 0

and F(x,v(x),Dv(x),D2(x)) ≥ 0. Let us also assume that u ≤ v on the boundary of domain Ω denoted as

∂Ω. Let us now consider the function w := u− v and let us assume that it has a local minimum at x̂ ∈ Ω.

By a basic calculus, this implies that Du(x̂) = Dv(x̂) and D2u(x̂)≤D2v(x̂). We can now use the degenerate
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ellipticity of F to obtain the following inequality

F(x,u(x̂),Du(x̂),D2u(x̂))≤ 0≤ F(x,v(x̂),Dv(x̂),D2v(x̂))≤ F(x,v(x̂),Du(x̂),D2u(x̂)). (2.25)

Due to the fact that F is proper we can now conclude that v(x̂) ≥ u(x̂) and therefore w(x̂) ≤ 0 at any local

maximum in Ω. Let us now assume that u≥ v at some point in Ω. However, this a contradiction since due

to the fact that u≤ v on ∂Ω, this would imply a positive local maximum of w(x̂) in Ω. Hence we conclude

that u≤ v in Ω.

We are now interested in providing an analogous result for u,v which are sub- and supersolution in a

viscosity sense. Conceptually, we would like to replace the pairs (Du(x̂),D2u(x̂)) and (Dv(x̂),D2v(x̂)) with

pairs belonging to sub- and superjets respectively. However, for non-differentiable functions there may exist

points where jets are not large enough or even empty. Let us consider a function which is non-differentiable

only on null sets. Then in the neighbourhood of any point at which such a function is non-differentiable,

we can expect points where jets are in fact non-empty. This motivates us to define the closures of the jets

which instead of considering values of (p,X) in a pointwise sense, consider sequences of such pairs for any

sequence xn→ x. Here x could possibly be at a point of non-differentiability and the closure of a jet will be

non-empty even in such a case. More formally, we define the closure of a superjet as

J2,+
Ω u(x) :=

{
(p,X) ∈ Rd×S(d) : ∃(xn, pn,Xn) ∈Ω×Rd×S(d) 3

(pn,Xn) ∈ J2,+
Ω

u(xn) and (xn,u(xn), pn,Xn)→ (x,u(x), p,X)
}
.

Note that for a continuous F , Definition 8 is still valid when jets are replaced with their closures.

We are now ready to present the main result of this section which is a comparison principle for the

Dirichlet problem. Note that it is not possible to formulate a general comparison principle and it needs

to be proven depending on the problem at hand. In this dissertation we only list and motivate necessary

assumptions and present the final result. Reader interested in the exact proof is referred to the discussion

preceding [25, Theorem 3.2] which makes explicit use of the closures of sub- and superjets.

Assumption 1. There exists γ > 0 such that

F(x,r, p,X)−F(x,s, p,X)≥ γ (r− s) for r ≥ s.

Notice the similarities to the condition (2.19). One could think of it as assuming F to be uniformly

proper.

Assumption 2. There exists a function ω : [o,∞) 7→ [0,∞) such that limx↓0 ω(x) = 0 and

F(y,r,α(x− y),Y )−F(x,r,α(x− y),X)≤ ω(α|x− y|2+ |x− y|) (2.26)
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whenever

−3α

I 0

0 I

≤
X 0

0 −Y

≤ 3α

 I −I

−I I

 . (2.27)

Again, note the similarity of (2.26) to (2.18). In fact, it is shown in [25] that former condition implies

the latter. One interpretation is that (2.26) additionally ensures uniform continuity with respect to gradient.

By multiplying (2.27) from the left and from the right by an arbitrary non-zero column vector z we see that

it is actually generalisation of the condition Y ≤ X as it imposes lower bound on the term zT Xz−zTY z apart

from the usual upper bound of 0.

We now state the main result of this section.

Theorem 4. Suppose that a differential operator F is continuous and satisfies Assumptions 1 and 2. Con-

sider Ω to be an open bounded subset of Rd . Let v ∈ LSC(Ω), u ∈ USC(Ω) be a viscosity super- and

subsolution of (2.17) respectively. Let u≤ v on ∂Ω. Then we have that u≤ v on Ω.

Note how the above result proves uniqueness of the viscosity solution. Indeed, assume that there are

two distinct viscosity solutions u and v. Then the comparison principle implies that u ≤ v and v ≤ u and

hence the result follows. The next natural step would be to prove the existence of the viscosity solution

via Perron’s method which is indeed what is done in [25]. However, since our focus in this work is on

the formulation of the numerical methods, an alternative approach is available due to [6]. The main result

included there allows to prove the convergence of a numerical scheme to the unique viscosity solution of

a Boundary Value Problem (BVP) in a very general framework. This approach allows us to bypass many

technical difficulties posed by the study of the original PDE. It is discussed in detail in Section 2.5 but now

we need to explain what is exactly meant by a viscosity solution of a BVP.

2.4 Boundary conditions

Let us consider boundary operator B(x,u(x), p,X). Note that Hessian typically does not occur on the bound-

ary as it conflicts with well-posedness of the problem so in most cases we use a boundary operator of the

form B(x,u(x), p). Let us also consider the BVP of the following form

G(x,u(x),Du(x),D2u(x)) =

 F(x,u(x),Du(x),D2u(x)) in Ω,

B(x,u(x),Du(x),D2u(x)) on ∂Ω.
(2.28)

Note that the above operator is in general discontinuous, and so we can no longer apply Definition 8 even

if we use closures of jets. In order to gain intuition about why it is the case, let us consider a point x ∈ ∂Ω.

Recalling the definition of the closures of superjets, consider two sequences xn,yn such that Ω 3 xn→ x and



23

∂Ω 3 yn→ y. Now pairs of (pn,Xn) which are in a certain sense generated by the sequence xn will satisfy

the inequality F(xn,u(xn), pn,Xn) ≤ 0. Similarly, a sequence (pn,Xn) generated by yn will instead satisfy

B(yn,u(yn), pn,Xn)≤ 0. However when selecting a pair (p,X)∈ J2,+
Ω

u(x) we have no way of knowing which

sequence generated it and hence we can only say that either F(x,u(x), p,X) ≤ 0 or B(x,u(x), p,X) ≤ 0.

This is not sufficient to satisfy the boundary condition in the pointwise sense, at least not in a general case.

Instead we need to make use of Definition 3. We recall the notion of a semi-continuous envelope and use

the fact that upper and lower semi-continuous envelopes of G are defined as follows:

G∗(x,u(x),Du(x),D2u(x)) =

 F(x,u(x),Du(x),D2u(x)) in Ω,

maxF(x,u(x),Du(x),D2u(x)),B(x,u(x),Du(x),D2u(x)) on ∂Ω,

G∗(x,u(x),Du(x),D2u(x)) =

 F(x,u(x),Du(x),D2u(x)) in Ω,

minF(x,u(x),Du(x),D2u(x)),B(x,u(x),Du(x),D2u(x)) on ∂Ω.

Note the presence of min and max operators. This allows us to formulate the following definition of a

viscosity solution of (2.28).

Definition 4. Let differential operators F and B be proper and Ω⊂ Rd . We say that function u is a viscosity

solution of (2.28) if it is a viscosity solution of G = 0 in Ω in the sense of Definition 3.

Note that we could equivalently use the statement of Definition 1 but replace F with G∗, jets with

their closures and Ω with Ω. We once again stress that the general boundary condition B is not imposed

in the strong, pointwise sense since it is not possible in general. Note that since the boundary condition

is considered in a relaxed sense, jets at the boundary may become larger, potentially increasing the set of

candidate solutions. When dealing with Dirichlet boundary conditions it is actually possible to impose them

in the pointwise sense, by assuming the candidate solutions to be contained in a suitable function space.

Note that in this case the pointwise and viscosity approach come with two different interpretations of the

underlying optimal control problem. In the first case, we assume that the trajectory of the system terminates

whenever boundary is reached and the final cost is incurred immediately. In the latter case, evolution of the

system terminates only if it is optimal. Otherwise, the trajectory can return to the interior of the domain.

2.5 Convergence of numerical schemes in the Barles-Souganidis

framework

Having discussed the notion of a solution we want to find, we need to be able to formulate a numerical

scheme that is capable of selecting the viscosity solution among the set of candidate solutions. An ab-

stract framework in which convergence of numerical schemes to viscosity solutions can be guaranteed was

introduced in [6]. In this section we present the main result of this paper.
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Let us consider an arbitrary mesh Th discretising the domain Ω, where h denotes the maximum mesh

element diameter. We will study general numerical schemes of the form S : R+×Ω×R×B(Ω) 7→ R,

(h,x,s,φ) 7→ S(h,x,s,φ) where x is some point in the closure Ω, φ is the numerical approximation of a

viscosity solution and s denotes the function value of the numerical approximation at x, i.e. s = φ(x). Note

that at the moment definition of s introduces redundancy into the notation, but it will actually be useful

later. While noting that for a non-smooth function u the value of operand F(x,u(x),∇u(x),D2u(x)) is not

defined, we conceptually want to formulate conditions for which

S(h,x,u(x),u)≈ hF(x,u(x),∇u(x),D2u(x)).

We will now give abstract definitions of the conditions which have to be satisfied in order to ensure con-

vergence of an abstract scheme S to the unique viscosity solution of (2.28). Recall the notion of ellipticity

of a differential operator F which in a sense preserved ordering in the argument of the Hessian. We would

like a similar “ordering principle” to apply to S. In order to achieve that we introduce the following notion

of a monotone scheme.

Definition 5. A numerical scheme S is monotone if for all h > 0, x ∈Ω, s ∈ R and φ ,ψ ∈ B(Ω)

S(h,x,s,φ)≤ S(h,x,s,θ) whenever φ ≥ θ

Since we want the numerical scheme S to approximate a bounded function it is natural to expect the

numerical solutions to be bounded for each refinement of the mesh. We would like to formalise this notion.

Let us consider a subset Nh of the domain Ω such that ∀r > 0,x ∈ Ω there exists H > 0 such that ∀h ∈

(0,H)B(x,r) ∩Nh 6= /0. In other words, given a ball centred around any point in the domain, if we decrease

h sufficiently there will be a node of the mesh contained inside that ball.

Definition 6. For every h > 0 there exists a solution uh ∈ B(Ω) of

S(h,x,uh(x),uh) = 0 for x ∈ Nh,

with uh|Nh ∈C(Nh) and an upper bound ‖uh‖L∞(Ω) independent of h.

Note that the above definition does not assume the uniqueness of a numerical solution nor the bounded-

ness of all numerical solutions that satisfy the equation. We only require that for every h at least one such

solution exists and hence we can create a sequence of bounded solutions as h decreases.

Conceptually, the consistency means that the schemes needs to be robust with respect to perturbation in

all arguments. Moreover, the largest and smallest accumulation point of the sequence of numerical solutions

has to be contained within upper and lower semicontinuous envelopes of (2.28). We formalise this statement

by the following definition.
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Definition 7. The scheme S is consistent if and only if for all x ∈Ω and φ ∈C∞(Ω)

limsup
h→0,Nh3y→x,ξ→0

S(h,y,φ(y)+ξ ,φ +ξ )/h≤ G∗(x,φ(x),Dφ(x),D2
φ(x)),

liminf
h→0,Nh3y→x,ξ→0

S(h,y,φ(y)+ξ ,φ +ξ )/h≥ G∗(x,φ(x),Dφ(x), D2
φ(x)).

Our final requirement is the existence of a comparison principle.

Assumption 3. If u is a viscosity subsolution and v viscosity supersolution of BVP

G(x,φ(x),Dφ(x),D2
φ(x)) = 0

then u≤ v.

Note that a specific proof of a comparison principle depends on the form of the underlying BVP and its

formulation is in general a non-trivial task.

Having discussed all the building blocks we can now state the main result of this section. The exact

proof can be found in [6, Theorem 2.1].

Theorem 5. Assume that scheme S is monotone and stable. Consider a BVP of the form

G(x,u(x),Du(x),D2u(x)) = 0 for x ∈Ω, (2.29)

which admits a comparison principle and such that S is consistent. Then (2.29) has the unique viscosity

solution u. Moreover, on each compact K ⊂Ω the solutions uh of S converge on Nh uniformly to u as h→ 0:

lim
h→0

sup
x∈Nh∩K

|u(x)−uh(x)|= 0.

Hence if we are able to construct a stable, monotone, consistent scheme and prove a comparison prin-

ciple for a given BVP then, by Theorem 5, this proves convergence of this scheme to the unique viscosity

solution of the BVP.

One final remark is that the original Barles-Souganidis argument treats boundary conditions in a vis-

cosity sense, so in order to consider Dirichlet conditions in the pointwise sense, one needs to adapt the

argument carefully. More precisely, it has to be shown that envelopes of the numerical solution satisfy the

boundary conditions in the pointwise sense. Otherwise, application of a comparison principle may lead to

incorrect results.
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Chapter 3

Finite Element Methods for Bellman

problems with the mixed boundary

conditions

3.1 Introduction

This chapter extends results of [68] with the inclusion of mixed, fully nonlinear boundary conditions. More

explicitly, we consider the numerical solution of HJB equations with mixed boundary conditions of the

form:

−∂tv+ sup
α∈A

(Lα v− f α) = 0 in [0,T )×Ω, (3.1a)

−∂tv+ sup
α∈A

(
Lα

∂Ω
v−gα

)
= 0 on [0,T )×∂Ωt , (3.1b)

sup
α∈A

(
Lα

∂Ω
v−gα

)
= 0 on [0,T )×∂ΩR, (3.1c)

v−g = 0 on [0,T )×∂ΩD, (3.1d)

v− vT = 0 on {T}×Ω. (3.1e)

Here Lα and Lα

∂Ω
denote operators on the domain Ω and its boundary, respectively. The sets ∂Ωt , ∂ΩR and

∂ΩD form a decomposition of ∂Ω. While leaving further details of the notation to the next section, it is

already apparent how the basic fully nonlinear structure of the PDE operator, meaning the left-hand side of

(3.1a), is mirrored in the Robin-type boundary conditions (3.1b) and (3.1c). But there is a crucial, additional

complication of the boundary operators Lα

∂Ω
- they will in general depend on the full gradient ∇v and not

just on the tangential gradient ∇∂Ωv, meaning that Lα

∂Ω
v cannot be evaluated with knowledge of v|∂Ω only.
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Recalling the connection between optimal control and HJB equations, Bellman-type equations as in

(3.1b) naturally arise on sections ∂Ωt of the boundary. Indeed, the boundary condition (3.1b) expresses

the possibility of controlling the particle or agent on the boundary through processes which are implicitly

described by the Lα

∂Ω
. In contrast, Dirichlet conditions (3.1d) are appropriate for those section ∂ΩD of ∂Ω

where the possibility to control may cease in exchange for the reward or cost of gD.

Boundary conditions of type (3.1c) arise from the Skorokhod control problem, which models particle

reflection at the boundary [82, 87, 102]. Moreover, they have recently been used for the numerical solution

of optimal transport problems in the setting of Monge-Ampère equations, where the transport boundary

conditions are examined in Hamilton-Jacobi form [12, 73].

For the author the problem of primary interest is the Heston model of financial interest rates with un-

certain market price of volatility risk discussed in Chapter 4. The Heston equation is most naturally posed

on an unbounded domain, where already with certain market price of volatility risk it appears with mixed

boundary terms corresponding to (3.1b), (3.1c) as well as (3.1d). All those types of boundary conditions

remain when introducing uncertainty and when truncating the domain for the purposes of numerical ap-

proximation.

The aim of this chapter is to introduce a Finite Element Method capable of computing approximations to

viscosity solutions for the aforementioned problems. The presented method permits degenerate diffusions.

Boundary operators may exhibit discontinuities across face boundaries and where the type of boundary

condition changes. A challenge for problems of this type is the discretisation of the first-order directional

derivatives in (3.1b) and (3.1c) which is simultaneously consistent and monotone. On the one hand estab-

lishing monotonicity with an artificial diffusion approximating the Laplace-Beltrami operator of ∂Ω would

not be sufficient because of the normal component in the directional derivatives of (3.1b) and (3.1c). On

the other hand an artificial diffusion approximating the Laplace operator of Ω would not vanish under re-

finement due to different scaling of boundary and domain terms, thus leading to an inconsistent method.

Our formulation is based on the observation that lower Dini directional derivatives exist for all functions in

the P1 approximation space whenever the direction in question points out of the tangent cone of Ω at the

position of interest.

A benefit of the Finite Element approach is that besides L∞ also L2(H1) convergence can be established

on unstructured meshes, as was shown in [67,68] for the Dirichlet problem. The L2(H1) convergence is for

instance important for the above mentioned Heston model discussed in Chapter 4 as Delta hedging requires

knowledge of partial derivatives of the value function.

The numerical analysis of HJB equations with Neumann and Robin conditions encompasses only few

works. First results were provided by the Finite Difference community; we refer to the text book [82].

More recently, the transport boundary conditions of optimal transport were in [12] approximated with a

filtered wide stencil scheme. In [1] a nonlinear Neumann boundary operator is approximated by extending
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the boundary into a strip of positive thickness, allowing the boundary conditions to be treated like a PDE

operator. Within the finite element setting one line of research has developed around the approximation

of Cordes solutions, in [54] with a mixed, non-conforming Finite Element Method while in [73] with a

Discontinuous Galerkin Finite Element Method. Both [54] and [73] concentrate on the linear setting in

non-divergence form. For a general review of the approximation of fully nonlinear equations with other

types of boundary conditions we refer to [45, 90].

The structure of this chapter is as follows. In Section 3.2 we formulate the HJB problem with mixed

boundary conditions. In Section 3.3 we define the numerical method. In Section 3.4 we prove monotonicity

properties of the discretised operators. In Section 3.5 we show the existence and uniqueness of numerical

solutions. In Sections 3.6 and 3.7 we establish consistency and stability, respectively, leading us to our main

result of convergence in Section 3.8. Finally, we present numerical experiments in Section 3.9.

3.2 Mixed initial boundary value Bellman problem

In this section we introduce time-dependent Bellman equations with mixed boundary conditions. We con-

sider a polytope domain Ω ⊂ Rd with d ≥ 2, i.e. a bounded, connected, closed domain, whose interior is

non-empty and whose boundary is formed of flat faces. We allow Ω to be nonconvex. Let Fk denote set of

open k-dimensional faces of Ω contained in ∂Ω.

We consider Dirichlet and Robin boundary conditions on disjoint subsets of boundary ∂Ω. Additionally,

the region of the Robin boundary conditions breaks into two parts, one with and one without time derivative.

We denote those three disjoint regions as ∂ΩD, ∂ΩR and ∂Ωt , respectively. Therefore ∂ΩD∩∂ΩR∩∂Ωt = /0

and ∂ΩD∪∂ΩR∪∂Ωt = ∂Ω.

It is convenient to define the notion of a generalised face as the intersection of an ω ′ ∈ Fd−1 and a

region linked to a boundary condition:

F :=
{

ω ⊂ ∂Ω : ω = ω
′∩∂ΩX where ω

′ ∈ Fd−1,∂ΩX ∈ {∂ΩD,∂ΩR,∂Ωt}
}

We assume that the boundary conditions are continuous on each ω; however, discontinuities across (gener-

alised) face boundaries may occur.

We introduce the normed space of piecewise continuous functions

PC(∂Ω,Rk) := {g ∈ L∞(∂Ω,Rk) : g|ω ∈C(ω,Rk) ∀ω ∈ F},

equipped with the L∞(∂Ω,Rk) norm. If k = 1, we simply write PC(∂Ω). We denote the standard inner

product of L2(Ω) and L2(Ω,Rd) by 〈·, ·〉.
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Let A be a compact metric space, α ∈ A and let Lα be a linear operators of the following form:

Lα : Ω×R×Rd×R→ R, (x,q, p,s) 7→ −aα(x)q−bα(x) · p+ cα(x)s.

The interpretation as differential operator follows with q = ∆w(x), p = ∇w(x) and s = w(x) for w ∈C2(Ω).

The mapping

A→C(Ω)×C(Ω,Rd)×C(Ω)×C(Ω),α 7→ (aα ,bα ,cα , f α),

is assumed to be continuous such that the families of functions {aα}α∈A, {bα}α∈A, {cα}α∈A and { f α}α∈A

are equicontinuous. We require that aα(x)≥ 0 for all α ∈ A so that all Lα are degenerate elliptic. Frequently

we abbreviate Lα(x,∆w(x),∇w(x),w(x)) by Lα w(x) and x 7→ Lα w(x) by Lα w.

For α ∈ A the Robin operators Lα

∂Ω
are defined as

Lα

∂Ω
: ∂Ω×Rd×R→ R, (x, p,s) 7→ −bα

∂Ω
(x) · p+ cα

∂Ω
(x)s. (3.2)

with bα

∂Ω
∈ PC(∂Ω,Rd), cα

∂Ω
∈ PC(∂Ω). The abbreviations Lα

∂Ω
w(x) and Lα

∂Ω
w are used analogously to

Lα .

We can now pose the Hamilton-Jacobi-Bellman (HJB) problem, whose numerical solution is the subject

of this chapter:

−∂tv+ sup
α∈A

(Lα v− f α) = 0 in [0,T )×Ω, (3.3a)

−∂tv+ sup
α∈A

(
Lα

∂Ω
v−gα

)
= 0 on [0,T )×∂Ωt , (3.3b)

sup
α∈A

(
Lα

∂Ω
v−gα

)
= 0 on [0,T )×∂ΩR, (3.3c)

v−g = 0 on [0,T )×∂ΩD, (3.3d)

v− vT = 0 on {T}×Ω, (3.3e)

with g ∈ C(∂Ω), gα ∈ PC(∂Ω), vT ∈ C(Ω) and T ∈ (0,∞). The suprema are applied pointwise. An

interpretation of (3.3) in the context of optimal control is given in the Appendix 3.A. Observe that the data

terms gα of the Robin conditions are α-dependent, while the corresponding Dirichlet data g are not. We

assume equicontinuity of mapping

A→ PC(∂Ω,Rd)×PC(∂Ω)×PC(∂Ω), α 7→ (bα

∂Ω
,cα

∂Ω
,gα)

in α ∈ A. Additionally, we require the sign-conditions vT , cα
Ω
, cα

∂Ω
, g, gα ≥ 0. It follows from continuity
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that

sup
α∈A
‖(bα

∂Ω
,cα

∂Ω
,gα)‖L∞(∂Ω,Rd)×L∞(∂Ω)×L∞(∂Ω) < ∞. (3.4)

We require vT to satisfy the Dirichlet boundary conditions on ∂ΩD.

It is useful to formulate the operator used in (3.3) more succinctly as

F(x,q, p,r,s) =



−r+ supα

(
Lα(x,q, p,s)− f α(x)

)
on [0,T )×Ω,

−r+ supα

(
Lα

∂Ω
(x, p,s)−gα(x)

)
on [0,T )×∂Ωt ,

supα

(
Lα

∂Ω
(x, p,s)−gα(x)

)
on [0,T )×∂ΩR,

s−g(x) on [0,T )×∂ΩD,

s− vT (x) on {T}×Ω.

We conclude the section with a definition of a viscosity solution similar to the setting of [6] which will

be used throughout the chapter. To this end, let us consider a bounded function v : [0,T ]×Ω→ R and its

upper and lower semi-continuous envelopes, defined respectively as

v∗(t,x) := limsup
(s,y)→(t,x)

(s,y)∈[0,T ]×Ω

v(s,y)

and

v∗(t,x) := liminf
(s,y)→(t,x)

(s,y)∈[0,T ]×Ω

v(s,y).

We analogously extend the definition of lower- and upper semicontinuous envelopes to F .

Definition 8. A bounded function v is a viscosity supersolution (respectively, subsolution) of (3.3) if, for

any test function ψ ∈C2(R×Rd),

F∗(x,∆ψ(t,x),∇ψ(t,x),∂tψ(t,x),v∗(t,x))≥ 0,

(respectively,

F∗(x,∆ψ(t,x),∇ψ(t,x),∂tψ(t,x),v∗(t,x))≤ 0,)

provided that v∗−ψ attains a local minimum (respectively, v∗−ψ attains a local maximum) at (t,x) ∈

[0,T ]×Ω. Finally, we call v : [0,T ]×Ω→ R a viscosity solution of (3.3) if it is simultaneously a viscosity

sub- and supersolution of (3.3).
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Notice how the above definition is conceptually close to the one in Definition 3, but we are now consid-

ering operators allowing time derivative term. Here the value of

F∗(x,∆ψ(t,x),∇ψ(t,x),∂tψ(t,x),v∗(t,x))

should only depend on ψ’s restriction to [0,T ]×Ω. However, generally for lower-dimensional faces F ∈

Fd−2 one finds test functions ψ,φ ∈C2(R×Rd) with ψ|[0,T ]×Ω
= φ |[0,T ]×Ω

such that ∇ψ(t,x) 6= ∇φ(t,x)

for x ∈ F .

We therefore demand that the coefficient bα

∂Ω
(x) of (3.2) belongs to the tangent cone:

bα

∂Ω
(x) ∈ K(x) ∀α ∈ A,x ∈ ∂Ω. (3.5)

Here, because of the polytopic nature of the domain, we define the tangent cone K(x) as

K(x) :=
{

x′ ∈ Rd∣∣ ∃Λ ∈ (0,∞) ∀λ ∈ [0,Λ] : x+λ x′ ∈Ω
}
,

i.e. x′ is in the cone if there is a line segment from x in the direction of x′ which is contained in Ω. Indeed,

for bα

∂Ω
(x) ∈ K(x)\{0} we observe how

−bα

∂Ω
(x) ·∇ψ(t,x) = ∂−bα

∂Ω
(x)ψ(t,x) = lim

λ→0
λ>0

ψ(t,x)−ψ(t,x+λ bα

∂Ω
(x))

λ
(3.6)

is expressed only referring to ψ on [0,T ]×Ω and thus independently of ψ’s extension to R×Rd . The limit

on the right-hand side of (3.6) is known as the lower Dini derivative of ψ in direction −bα

∂Ω
(x). On smooth

sections of the boundary and at outward pointing corners the requirement (3.5) corresponds to an outflow

condition, while at re-entrant corners (3.5) may permit an inflow term. In that sense, (3.5) is less restrictive

than oblique boundary conditions such as [25, (7.35)]. We remark, however, that strengthened versions such

as [25, (7.35)] may be necessary to ensure the existence of a comparison principle for the initial boundary

value problem of the specific application of interest.

3.3 Numerical scheme

For the discretisation of (3.3) we consider a sequence Vi, i∈N, of piecewise linear, simplicial, shape-regular

finite element spaces. Let Ti be the mesh corresponding to the finite element space Vi. The boundary mesh

Bi consists of the (d−1)-dimensional faces F of elements K ∈ Ti with F ⊂ ∂Ω. We make the assumption

that Bi is subordinate to F , i.e. every open set F∗ such that F∗ ∈ Bi is contained entirely in exactly one

generalised face ω ∈ F .
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Let V g
i ⊂ Vi be the affine subspace of functions which interpolate the Dirichlet boundary data on ∂ΩD

and V 0
i ⊂Vi be the vector subspace of functions which interpolate 0 on ∂ΩD. The nodes of the finite element

mesh are denoted by y`i . Here the index ` ranges over the nodes in the interior first, then the nodes on ∂Ωt ,

then ∂ΩR and finally ∂ΩD. Therefore, y`i ∈ Ω for ` ≤ NΩ
i for some NΩ

i ∈ N denoting number of interior

nodes, y`i ∈ Ω∪ ∂Ωt for ` ≤ Nt
i for some Nt

i ∈ N and, lastly, y`i ∈ Ω∪ ∂Ωt ∪ ∂ΩR for ` ≤ Ni := dimV g
i .

These nodes y`i ∈Ω∪∂Ωt ∪∂ΩR are called non-Dirichlet nodes.

The associated hat functions φ `
i ∈ Vi are chosen so that φ `

i (y
`
i ) = 1 while φ `

i (y
s
i ) = 0 for ` 6= s. Set

φ̂ `
i := φ `

i /‖φ `
i ‖L1(Ω). Therefore, the φ `

i are normalised in the L∞(Ω) norm whilst the φ̂ `
i are normalised in

the L1(Ω) norm.

The mesh size, i.e. the largest diameter of an element, is denoted ∆xi. It is assumed that ∆xi → 0 as

i→ ∞. The uniform time step size is denoted hi with the constraint that T/hi ∈ N. It is assumed that

hi → 0 as i → ∞. Let sk
i be the kth time step at the refinement level i. Then the set of time steps is

Si :=
{

sk
i : k = T/hi, . . . ,0

}
.

We introduce the operator di, which approximates the time derivative on Ω and ∂Ωt but which is 0 on

the remaining boundary. More precisely, we let the `th entry of diw(sk
i , ·) be

(diw(sk
i , ·))` =


w(sk+1

i ,y`i )−w(sk
i ,y

`
i )

hi
`≤ Nt

i ,

0 otherwise.

Observe how (diw(sk
i , ·))` = 0 for nodes y`i ∈ ∂ΩR is consistent with the structure of (3.3c).

For each discretisation of (3.3) we allow a splitting of Lα and Lα

∂Ω
into an explicit and an implicit part.

For each α and for each i, we introduce the explicit operator Eα
Ω,i and the implicit operator Iα

Ω,i such that

Eα
Ω,i : C2(Ω)→C(Ω), w 7→ −āα

Ω,i ∆w − b̄α
Ω,i · ∇w+ c̄α

Ω,i w,

Iα
Ω,i : C2(Ω)→C(Ω), w 7→ − ¯̄aα

Ω,i ∆w − ¯̄bα
Ω,i · ∇w+ ¯̄cα

Ω,i w,

where āα
Ω,i, ¯̄aα

Ω,i, c̄
α
Ω,i, ¯̄cα

Ω,i ∈ C(Ω) and b̄α
Ω,i,

¯̄bα
Ω,i ∈ C(Ω,Rd). Assumption 4 below shows that the explicit

and implicit operators are chosen such that Iα
Ω,i +Eα

Ω,i approximates Lα . Analogously, we introduce non-

negative f α
i ∈C(Ω) which approximate f α .

The discretisations of Eα
Ω,i and Iα

Ω,i are the mappings from Vi to RNi which are given by

(Eα
Ω,iw)` := āα

Ω,i(y
`
i )〈∇w,∇φ̂

`
i 〉+ 〈−b̄α

Ω,i ·∇w+ c̄α
Ω,i w, φ̂ `

i 〉, (3.7a)

(IαΩ,iw)` := ¯̄aα
Ω,i(y

`
i )〈∇w,∇φ̂

`
i 〉+ 〈− ¯̄bα

Ω,i ·∇w+ ¯̄cα
Ω,iw, φ̂

`
i 〉, (3.7b)

(Fα
Ω,i)` :=〈 f α

i , φ̂ `
i 〉, (3.7c)

where ` ranges over all internal nodes, i.e. `≤NΩ
i . For boundary nodes `>NΩ

i we set (Eα
Ω,iw)` = (Iα

Ω,iw)` =
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(Fα
Ω,i)` = 0. Because of the scaling of the φ̂ `

i , integration-by-parts gives for smooth w and large i that

〈∇w,∇φ̂ `
i 〉 ≈ −∆w(x) if x≈ y`i away from the boundary.

Similarly, we define operators Eα

∂Ω,i and Iα
∂Ω,i on the boundary to discretise Lα

∂Ω
as the sum of an explicit

and implicit part. Starting point is the observation that the directional derivative ∂−bα

∂Ω
w is well-defined in

the sense of (3.6) for functions w ∈Vi even though w is in general not continuously differentiable.

For 0 ≤ ` ≤ NΩ
i we set (Eα

∂Ω,iw)` = (Iα
∂Ω,iw)` = (Fα

∂Ω,i)` = 0. More interestingly, for NΩ
i < ` ≤ Ni

ranging over the nodes of the Robin boundary conditions, we define the mappings from Vi to RNi by

(Eα

∂Ω,iw)` := ∂−b̄α

∂Ω,i(y
`
i )

w(y`i )+ c̄α

∂Ω,i(y
`
i )w(y`i ), (3.8a)

(Iα
∂Ω,iw)` := ∂− ¯̄bα

∂Ω,i(y
`
i )

w(y`i )+ ¯̄cα

∂Ω,i(y
`
i )w(y`i ), (3.8b)

(Fα

∂Ω,i)` := gα
i (y

`
i ), (3.8c)

where c̄α

∂Ω,i,
¯̄cα

∂Ω,i,g
α
i ∈ PC(∂Ω) and b̄α

∂Ω,i,
¯̄bα

∂Ω,i ∈ PC(∂Ω,Rd). Here ∂−b̄α

∂Ω,i
and ∂− ¯̄bα

∂Ω,i
are understood as

lower Dini derivatives as in (3.6).

On the Dirichlet boundary the mappings Eα

∂Ω,i, I
α

∂Ω,i and Fα

∂Ω,i implement nodal interpolation. For ` >Ni

we set

(Eα

∂Ω,iw)` := 0, (3.9a)

(Iα
∂Ω,iw)` := w(y`i ), (3.9b)

(Fα

∂Ω,i)` := g(y`i ). (3.9c)

We assume a fully implicit discretisation of the region ∂ΩR; additionally, suppose that ¯̄cα

∂Ω,i is chosen

positive on ∂ΩR, even if cα

∂Ω
= 0.

In summary, we require that the following assumption holds.

Assumption 4. The coefficients satisfy

lim
i→∞

sup
α∈A

(
sup

0≤`≤Ni

∥∥aα −
(
āα

Ω,i(y
`
i )+ ¯̄aα

Ω,i(y
`
i )
)∥∥

L∞(supp φ̂ `
i )

+
∥∥bα −

(
b̄α

Ω,i +
¯̄bα

Ω,i
)∥∥

L∞(Ω,Rd)
+
∥∥cα −

(
c̄α

Ω,i + ¯̄cα
Ω,i
)∥∥

L∞(Ω)

+
∥∥ f α − f α

i
∥∥

L∞(Ω)

)
= 0

and

lim
i→∞

sup
α∈A

(∥∥bα

∂Ω
−
(
b̄α

∂Ω,i +
¯̄bα

∂Ω,i

)∥∥
L∞(∂Ω)

+
∥∥cα

∂Ω
−
(
c̄α

∂Ω,i + ¯̄cα

∂Ω,i

)∥∥
L∞(∂Ω)

+
∥∥ f α − f α

i
∥∥

L∞(∂Ω)
+
∥∥g−gi

∥∥
L∞(∂Ω)

+
∥∥gα −gα

i
∥∥

L∞(∂Ω)

)
= 0.
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We require that the family

{(āα
Ω,i, b̄

α
Ω,i, c̄

α
Ω,i, b̄

α

∂Ω,i, c̄
α

∂Ω,i,
¯̄aα
Ω,i,

¯̄bα
Ω,i, ¯̄cα

Ω,i,
¯̄bα

∂Ω,i,
¯̄cα

∂Ω,i, f α
i ,gα

i )}α∈A

is equicontinuous and depends continuously on α . We impose āα
Ω,i = c̄α

Ω,i = c̄α

∂Ω,i = 0∈R and b̄α
Ω,i = b̄α

∂Ω,i =

0 ∈ Rd as well as ¯̄cα

∂Ω,i > 0 on the restriction to ∂ΩR, i ∈ N.

We define

Eα
i = Eα

Ω,i +Eα

∂Ω,i, Iαi = IαΩ,i + Iα
∂Ω,i, Fα

i = Fα
Ω,i +Fα

∂Ω,i.

We also use the notation Iαi ,Eα
i and Fα

i for the matrix representations of exactly these Iαi ,Eα
i and Fα

i with

respect to the nodal basis {φ `
i }` for the trial functions. Moreover, we assume that the supremum operator is

applied componentwise, i.e. (supα vα)` = supα vα
` for v ∈ Rn. The expression a . b means that there exists

a generic constant C > 0, independent of i and α , such that a≤Cb. Relation a & b is defined analogously.

We can now state the numerical scheme used to approximate the solution of (3.3). We initialise the

scheme by the nodal interpolation of vT so that vi(T, ·) ∈ Vi. Then, in order to find the numerical solution

vi(sk
i , ·) ∈Vi, we proceed inductively over the remaining timesteps k ∈ {T/hi−1, . . . ,1,0}:

−divi(sk
i , ·)+ sup

α∈A

(
Eα

i vi(sk+1
i , ·)+ Iαi vi(sk

i , ·)−Fα
i
)
= 0. (3.10)

We also use an alternative formulation of the numerical scheme. The matrices Ek,w
i , Ik,wi and Fk,w

i are

constructed row-wise out of the matrices Eα
i , Iαi and Fα

i . More precisely, given a node y`i , timestep sk
i and a

function w(sk
i , ·) ∈ H1(Ω), let α̂ be a maximiser of

sup
α∈A

(
Eα

i w(sk+1
i , ·)+ Iαi w(sk

i , ·)−Fα
i
)
`
= 0.

Note that choice of α̂ is not necessarily unique; the analysis is valid for any choice of such α̂ . We also

remark that solving maximisation problems of that form can be approached in multiple ways with differing

computational cost and complexity. In numerical experiments throughout this work we use a method pop-

ular in the literature (see for example [42]) where maximisation is performed by comparing values over a

finite subset of A. Although relatively simple, it poses a problem of choosing discretization of A in such a

way that any error incurred by it is negligible when compared to the approximation error of the numerical

scheme. As pointed out in [69] alternative algorithms may be preferable in general.

Let the `th row of Ek,w
i , Ik,wi and Fk,w

i be equal to the `th row of Eα̂
i , Iα̂i and Fα̂

i , respectively. In a non-

ambiguous case we will omit explicit mention of k and simply write Ew
i , Iwi and Fw

i . We can now reformulate

(3.10) using the newly constructed operators. We initialise the scheme with the interpolant vi(T, ·). Then
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vi ∈Vi for each k ∈ {T/hi−1, . . . ,1,0} and for 0≤ `≤ Nt
i solves

(
(hiI

k,vi
i + Id)vi(sk

i , ·)+(hiE
k,vi
i − Id)vi(sk+1

i , ·)−hiF
k,vi
i

)
`
= 0 (3.11a)

and for each k ∈ {T/hi−1, . . . ,1,0} and for Nt
i < ` solves

(
hiI

k,vi
i vi(sk

i , ·)−hiF
k,vi
i

)
`
= 0, (3.11b)

recalling the implicit discretisation on ∂ΩR∪∂ΩD, enforced through (3.9) and Assumption 4.

For the sake of convenience let us also introduce the operators Îk,vi
i , Êk,vi

i and F̂i which combine spatial

and temporal terms. The `th row of Îk,vi
i , Êk,vi

i and F̂i is equal to that of (hiI
k,vi
i + Id), (hiE

k,vi
i − Id) and hiF

k,vi
i ,

respectively, if ≤ ` ≤ Nt
i . If Nt

i < `, the `th row is equal to (hiI
k,vi
i ), a zero vector and hiF

k,vi
i , respectively.

For a fixed control α , the operators Îαi , Êα
i and F̂α

i are constructed in an analogous manner. Then for all

timesteps sk
i and each node y`i solution vi of (3.11) solves also:

Îk,vi
i vi(sk

i ,y
`
i )+ Êk,vi

i vi(sk+1
i ,y`i )− F̂k,vi

i = 0. (3.12)

Remark 1. To implement the lower Dini derivative ∂−b̄α

∂Ω,i(y
`
i )

w(y`i ) in a computer code, we note that for λ >

0 sufficiently small there is an element K ∈ Ti whose closure contains both y`i and y`i +λ b̄α

∂Ω,i(y
`
i ). Indeed,

choosing λ smaller than the shortest edge length of the mesh achieves this (edge meaning 1-dimensional

face). We then have

∂−b̄α

∂Ω,i(y
`
i )

w(y`i ) =
w(y`i )−w(y`i +λ b̄α

∂Ω,i(y
`
i ))

λ
.

Importantly, because w ∈ Vi is affine on K, even without taking a limit λ → 0 as on the right-hand side of

(3.6) the Dini derivative is obtained exactly.

3.4 Monotonicity

In this section we consider monotonicity properties of the discrete differential operators defined in the

previous section. Monotonicity is crucial for proving the existence of a unique numerical solution of (3.10)

as well as for establishing convergence to the viscosity solution.

Definition 9. Let us consider v ∈ Vi that has a local non-positive minimum at a node y`i . We say that

an operator F satisfies a Local Monotonicity Property (LMP) if for any such v it follows that (Fv)` ≤ 0.

Additionally, the operator F satisfies the weak Discrete Maximum Principle (wDMP) provided that, for any

v ∈Vi, (
Fv
)
`
≥ 0 ∀` ∈ {1, . . . ,Ni} =⇒ min

Ω∪∂ΩR∪∂Ωt
v≥min{min

∂ΩD
v,0}. (3.13)
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We now describe a method for choosing the artificial diffusion coefficients to impose the LMP on the

matrices Iαi and Eα
i . It is based on the assumption of strict acuteness of the mesh. Consider an element

K ∈ Ti with diameter ∆xK . For a bounded function g : Ω→ Rd we define g’s norm on the restriction to K as

|g|K :=
( d

∑
j=1

∥∥∥g j

∥∥∥2

L∞(K)

) 1
2
.

Then by strict acuteness of the meshes we mean that there exists a θ ∈ (0, π

2 ) such that the following holds:

∇φ
`
i ·∇φ

l
i
∣∣
K≤− sin(θ) |∇φ

`
i |K |∇φ

l
i |K ∀`, l ≤ Ni, ` 6= l, ∀K ∈ Ti. (3.14)

We say that the family of meshes {Ti}i is uniformly strictly acute if θ does not depend on i. As discussed

in [16], for d = 2 and d = 3 the angle θ can be interpreted geometrically as π

2 minus the largest angle

between the pairs of (d− 1)-dimensional faces of the element K. For higher dimensions, we refer reader

to [113] where a weakened but sufficient for the sake of our analysis mesh condition and its geometrical

interpretation for arbitrarily large dimension is presented.

3.4.1 The LMP of Eα
Ω,i, E

α

∂Ω,i, E
α
Ω,i and Iα

∂Ω,i

Let the functions ãα
Ω,i, ˜̃aα

Ω,i, c̄
α
Ω,i, ¯̄cα

Ω,i ∈ C(Ω) and b̄α
Ω,i,

¯̄bα
Ω,i ∈ C(Ω,Rd) be given. These functions may be

chosen freely as long as Assumption 4 holds. Conceptually ãα
Ω,i + ˜̃aα

Ω,i ≈ aα is the splitting of the second-

order coefficients into explicit and implicit part without the addition of artificial diffusion. With the addition

of artificial diffusion, the coefficients āα
i and ¯̄aα

i of Assumption 4 are obtained.

Indeed, as b̄α
Ω,i,

¯̄bα
Ω,i, c̄

α
Ω,i, ¯̄cα

Ω,i are bounded, we can select non-negative artificial diffusion coefficients

ν̄
α,`
Ω,i and ¯̄να,`

Ω,i so that we have for all interior nodes y`i and mesh elements K with y`i as vertex that

|b̄α
Ω,i|K +∆xK‖c̄α

Ω,i‖L∞(K) ≤ ν̄
α,`
Ω,i sin(θ) |∇φ̂ `

i |K vol(K),

| ¯̄bα
Ω,i|K +∆xK‖ ¯̄cα

Ω,i‖L∞(K) ≤ ¯̄να,`
Ω,i sin(θ) |∇φ̂ `

i |K vol(K).

(3.15)

Now, choosing āα
Ω,i, ¯̄aα

Ω,i ∈C(Ω) such that

āα
Ω,i(y

`
i )≥max

{
ãα

Ω,i(y
`
i ), ν̄

α,`
Ω,i

}
, ¯̄aα

Ω,i(y
`
i )≥max

{
˜̃aα
Ω,i(y

`
i ), ¯̄να,`

Ω,i

}
, (3.16)

we obtain our splitting of Lα into implicit and explicit part.

Lemma 1. Suppose that the mesh Ti is strictly acute and that (3.15) holds. Then Eα
Ω,i and Iα

Ω,i satisfy the

LMP for all α .

Proof. The argument from [68, Section 8] for the Dirichlet problem carries over unchanged for local minima
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at interior nodes of v from Definition 9. At boundary nodes the LMP is trivially satisfied as Eα
Ω,i and Iα

Ω,i

vanish there.

We now turn to the monotonicity of the discrete boundary operators.

Lemma 2. The operators Eα

∂Ω,i and Iα
∂Ω,i satisfy the LMP for all α .

Proof. Let w∈Vi have a local non-positive minimum at a node y`i ∈ ∂Ωt ∪∂ΩR. Then we find for the lower

Dini derivative ∂−b̄α

∂Ω,i(y
`
i )

w(y`i ) ≤ 0. Also c̄α

∂Ω,i(y
`
i )w(y`i ) ≤ 0 because c(y`i ) ≥ 0. Hence Eα

∂Ω,i admits the

LMP. The argument for Iα
∂Ω,i is analogous.

3.4.2 Monotonicity properties of the Ek,w
i , Êk,w

i , Ik,wi and Îk,wi

Having examined the basic building blocks of the numerical scheme in the previous two subsections, we can

now analyse the monotonicity properties of the derived operators Êk,w
i and Îk,wi as they appear in formulation

(3.12) of the scheme. We summarise the assumptions made so far in the selection of the artificial diffusion

coefficients.

Assumption 5. Suppose that Ti is strictly acute and that (3.15) and (3.16) hold.

First we examine the explicit terms.

Lemma 3. Consider a fixed w : Si×Ω→ R such that w(sk
i , ·) ∈ Vi for all sk

i ∈ Si. Then the operators

v 7→ Ek,w
i v satisfy the LMP and their matrix has non-positive off-diagonal entries. For hi small enough, Êk,w

i

is monotone, i.e. all entries of the matrix representation are non-positive.

Proof. For any i and α , Eα
i = Eα

Ω,i +Eα

∂Ω,i satisfies the LMP because its summands do. Let us consider a

v ∈ Vi that has a local non-positive minimum at a node y`i . There is an α ∈ A such that (Ek,w
i v)` = (Eα

i v)`.

We know (Eα
i v)` ≤ 0 and therefore that v 7→ Ek,w

i v satisfies the LMP.

For j 6= ` the hat function φ
j

i attains a non-positive minimum at y`i . Thus, by the LMP, we have that

(Ek,w
i φ

j
i )` ≤ 0. Hence all the off-diagonal entries of Ek,w

i are non-positive.

Owing to Assumption 1, the discretization on ∂ΩR is fully implicit. Thus the rows of Ek,w
i belonging

to the discretization on ∂ΩR contain only zeros. Similarly, the rows linked to ∂ΩD vanish, see (3.9). All

other rows include a term arising from the time derivative; their structure is (hiE
k,vi
i − Id). Therefore, if hi

is sufficiently small then Êk,w
i is monotone.

Now we turn to the implicit terms.

Lemma 4. Consider a fixed w : Si×Ω→R such that w(sk
i , ·)∈Vi for all sk

i ∈ Si. Then the operators v 7→ Ik,wi v

satisfy the LMP. Moreover, the v 7→ Îk,wi v satisfy the wDMP and their matrix representation restricted to V 0
i

are strictly diagonally dominant M-matrices.
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Proof. Analogously to the proof of Lemma 3, the v 7→ Ik,wi v satisfy the LMP and their off-diagonal entries

are non-positive.

Before showing the wDMP we verify strict diagonal dominance. By construction, v ≡ −1 attains a

non-positive local minimum at each node. Since Ik,wi satisfies the LMP property, we have

0≥
(
Ik,wi v

)
`
=−

(
Ik,wi

)
``
−∑

j 6=`

(
Ik,wi

)
` j
. (3.17)

As the off-diagonal entries of Ik,wi are non-positive, we conclude the weak diagonal dominance of the Ik,wi :

(
Ik,wi

)
``
−∑

j 6=`

∣∣∣∣(Ik,wi

)
` j

∣∣∣∣≥ 0.

The rows of Îk,wi which discretise on Ω and ∂Ωt are equal to the respective rows of the strictly diagonally

dominant matrix hiI
k,w
i + Id.

By Assumption 4 we have ¯̄cα

∂Ω,i > 0 on ∂ΩR. Then

0 >
(
Ik,wi v

)
`
=
(
Îk,wi v

)
`
∀y`i ∈ ∂ΩR. (3.18)

Using the same argument as above, but noting the strict inequality of (3.18) compared to (3.17), we conclude

the strict diagonal dominance for rows linked to ∂ΩR. On ∂ΩD the rows resemble an identity matrix, giving

also strict diagonal dominance. It follows that the Îk,wi are invertible M-matrices because [13, Chapter 6,

Theorem 2.3, (M35)] applies as Îk,wi is a Z-matrix.

Finally, consider a v ∈ Vi with minΩ∪∂Ωt∪∂Ωtv < min{min∂ΩD v,0}. Let y`i be a non-Dirichlet node,

where the negative, global minimum of v is attained. Since Îk,wi is a strictly diagonal dominant M-matrix it

follows that (Îk,wi v)` < 0. Hence Îk,wi admits the wDMP.

3.4.3 Scaling of the artificial diffusion coefficients

In order to achieve convergence of the numerical scheme we expect the artificial diffusion coefficients ν̄
α,`
Ω,i ,

¯̄να,`
Ω,i to vanish in the limit i→ ∞.

Suppose that (3.14) holds uniformly for some θ . In this subsection we suppose ν̄
α,`
Ω,i are chosen quasi-

optimally with regard to (3.15), meaning

ν̄
α,`
Ω,i . sup

{ |b̄α
Ω,i|K +∆xK‖c̄α

Ω,i‖L∞(K)

sin(θ) |∇φ̂ `
i |K vol(K)

∣∣∣ K ⊂ supp φ
`
i

}
(3.19)

¯̄να,`
Ω,i . sup

{ | ¯̄bα
Ω,i|K +∆xK‖ ¯̄cα

Ω,i‖L∞(K)

sin(θ) |∇φ̂ `
i |K vol(K)

∣∣∣ K ⊂ supp φ
`
i

}
. (3.20)

Generally, in implementations of the algorithm quasi-optimally is more easily achieved than optimality.
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Because of shape-regularity of the domain one has |∇φ̂ `
i |K vol(K) & 1

∆xK
. We conclude that quasi-optimal

artificial diffusion coefficients satisfy

O(ν̄α,`
Ω,i ) = O( ¯̄να,`

Ω,i ) = ∆xK . (3.21)

We now turn our attention to the time step restrictions imposed through the quasi-optimality (3.19).

Recall that in order for the explicit operators to be monotone we require all their entries in matrix represen-

tation to be non-positive. This is satisfied trivially for nodes on ∂ΩR ∪ ∂ΩD where we use a fully implicit

scheme. Therefore let us consider non-positivity of the diagonal terms of hiE
α
i − Id on the complement

Ω∪∂Ωt . For y`i ∈Ω this translates into the condition

1≥hi
(
āα

Ω,i(y
`
i )〈∇φ

`
i ,∇φ̂

`
i 〉+ 〈−b̄α

Ω,i ·∇φ
`
i + c̄α

Ω,i φ
`
i , φ̂

`
i 〉
)

and for y`i ∈ ∂Ωt

1≥ hi

(
∂−b̄α

∂Ω,i(y
`
i )

φ
`
i (y

`
i )+ c̄α

∂Ω,i(y
`
i )

)
.

Because

〈∇φ
`
i ,∇φ̂

`
i 〉= O

(
(∆xK)

−2),
〈∇φ

`
i , φ̂

`
i 〉= O

(
(∆xK)

−1),
〈φ `

i , φ̂
`
i 〉= O

(
1
)
,

∂−b̄α

∂Ω,i(y
`
i )

φ
`
i (y

`
i ) = O

(
(∆xK)

−1),
we find hi = O((∆xK)

2) if ‖āα
Ω,i‖∞ > 0. Otherwise if ‖b̄α

Ω,i‖∞ > 0 or ‖b̄α

∂Ω,i‖∞ > 0 we have hi = O(∆xK)

and if āα
Ω,i, b̄α

∂Ω,i and b̄α
Ω,i vanish but not c̄α

Ω,i or c̄α

∂Ω,i, then hi = O(1). If also c̄α
Ω,i = c̄α

∂Ω,i = 0 then there is

no restriction on hi, i.e. fully implicit discretisations are monotone for any hi > 0.

3.5 Existence of numerical solutions

The discrete non-linear problem (3.12) can be solved by a version of Howard’s algorithm discussed in [14].

We now present its formulation in our setting.

Algorithm 1. Given are timestep k ∈ {0, . . . ,T/hi− 1}, solution vi(sk+1
i , ·) ∈ Vi at timestep k+ 1 and an

(arbitrary) choice of α ∈ A. Find w0 ∈Vi such that

Îαi w0 = F̂α
i − Êα

i vi(sk+1
i , ·).

Inductively over m ∈ N, compute wm+1 ∈Vi such that
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Îwm
i wm+1 = F̂wm

i − Êwm
i vi(sk+1

i , ·). (3.22)

To show the convergence of the sequence (wm)m to the solution of (3.10) we appeal to an auxiliary

problem: for some fixed control α ∈ A we consider the linear evolution problem associated to it. More

precisely, we define vα
i : Si → Vi to be such that vα

i (T, ·) = vi(T, ·), the interpolant of vT , and for each

k ∈ {0, . . . ,T/hi−1}

Îαi vα
i (s

k
i , ·)+ Êα

i vα
i (s

k+1
i , ·)− F̂α

i = 0. (3.23)

Notice that vα
i is well-defined due to the invertibility of Îαi .

Theorem 6. There exists a unique numerical solution vi : Si → Vi which solves (3.10) and (3.12). Al-

gorithm 1, provided with the inputs k, vi(sk+1
i , ·) and α , generates a sequence (wm)m which converges

superlinearly to vi(sk
i , ·) as m→ ∞. Moreover, 0≤ vi ≤ vα

i for all α ∈ A.

Proof. For a fixed timestep k, the superlinear convergence of Algorithm 1 to the unique solution vi(sk
i , ·)

is shown in [14, Theorem 2.1] under Assumptions (H1) and (H2) stated therein. Condition (H1) requires

the inverse positivity of the operators Îwm
i , which holds because according to Lemma 4 every Îwm

i is a non-

singular M-matrix. Condition (H2) requires that α ∈ A 7→ −Îαi and α ∈ A 7→ Êα
i vi(sk+1

i , ·)− F̂α
i are contin-

uous, which follows from Assumption 4. Induction over timesteps k gives existence and uniqueness of the

solution vi.

We now show that vi ≥ 0 on Si×Ω by induction over k. Firstly, we notice that vi(T, ·)≥ 0 because we

assumed that vT ≥ 0 on Ω and the same holds for its interpolant. Let us assume vi(sk+1
i , ·) ≥ 0 on Ω for

some sk+1
i ∈ Si. Due to the LMP, all entries of Êvi

i are non-positive and by assumption all entries of F̂vi
i are

non-negative. Therefore, using (3.12) we have that

Îvi
i vi(sk

i , ·) =−Êvi
i vi(sk+1

i , ·)+ F̂vi
i ≥ 0.

We conclude that vi(sk
i , ·)≥ 0 on Ω due to the inverse positivity of Îvi

i .

We now prove the last statement, namely vi ≤ vα
i for all α ∈ A, by induction over k. Consider any α ∈ A.

At time T both vi and vα
i interpolate vT and hence are equal. Let us assume that for some k ≤ T/hi− 1,

vi(sk+1
i , ·)≤ vα

i (s
k+1
i , ·). From (3.10),

Îαi vi(sk
i , ·)≤ F̂α

i − Êα
i vi(sk+1

i , ·).

Now subtracting (3.23) from the above inequality, together with the monotonicity of Êα
i , gives

Îαi

(
vi(sk

i , ·)− vα
i (s

k
i , ·)
)
≤ Êα

i

(
vα

i (s
k+1
i , ·)− vi(sk+1

i , ·)
)
≤ 0.
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Using the inverse positivity of Îαi gives us vi(sk
i , ·)− vα

i (s
k
i , ·)≤ 0 on Ω, as required.

3.6 Consistency

We will assume existence of an elliptic projection Pi, described in [68], with the properties required in the

following assumption.

Assumption 6. There are linear mappings Pi : C(H1(Ω))→ Vi satisfying for all interior hat functions φ̂ `
i ,

`≤ NΩ
i ,

〈∇Piw,∇φ̂
`
i 〉= 〈∇w,∇φ̂

`
i 〉. (3.24)

There is a constant C ≥ 0 such that for every w ∈C∞(Rd) and i ∈ N,

‖Piw‖W 1,∞(Ω) ≤C‖w‖W 1,∞(Ω) and lim
i→∞
‖Piw−w‖W 1,∞(Ω) = 0. (3.25)

To state consistency it is convenient to abbreviate the operator of the numerical scheme as

Fi w(sk
i ,y

`
i ) := Îk,wi w(sk

i ,y
`
i )+ Êk,w

i w(sk+1
i ,y`i )− F̂i (3.26)

for w(sk
i , ·)∈Vi. Note that while Fi is the discrete operator approximating the continuous operator F defined

in section 3.2, the notationally similar F̂i represents the approximation of f w, gw and g as explained at the

end of section 3.3.

Theorem 7. Let ψ ∈C2(R×Rd), sk(i)
i → t ∈ [0,T ) and y`(i)i → x ∈ Ω as i→ ∞. Here sk(i)

i is a time step

and y`(i)i a node of the i-th refinement. Then

limsup
i→∞

FiPiψ(sk(i)
i ,y`(i)i )≤ F∗(x,∆ψ(t,x),∇ψ(t,x),∂tψ(t,x),ψ(t,x)) (3.27)

and

liminf
i→∞

FiPiψ(sk(i)
i ,y`(i)i )≥ F∗(x,∆ψ(t,x),∇ψ(t,x),∂tψ(t,x),ψ(t,x)). (3.28)

Proof. We prove (3.27). The result for (3.28) follows analogously. For ease of notation, the dependence of

k and ` on i is made implicit.

Step 1: Standard Finite Difference bounds ensure that if y`i ∈Ω∪∂Ωt then

lim
i→∞

diPiψ(sk
i ,y

`
i ) = ∂tψ(t,x). (3.29)
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Otherwise, if y`i ∈ ∂ΩR∪∂ΩD then

lim
i→∞

diPiψ(sk
i ,y

`
i ) = 0. (3.30)

Step 2: It is shown in [68, Section 4] that if y`i ∈Ω then

lim
i→∞

(
Eα

i Piψ(s`i , ·)+ Iαi Piψ(sk
i , ·)−Fα

i

)
`
= Lα

ψ(t,x)− f α(x), (3.31)

where convergence to the limit is uniform over all α ∈ A. We remark that the orthogonality (3.24) is used

in this step.

Step 3: Now suppose that y`i ∈ ∂ΩD. Then it follows from (3.25) that

lim
i→∞

FiPiψ(sk
i ,y

`
i ) = ψ(t,x)−g(x). (3.32)

Step 4: Let y`i ∈ ∂Ωt ∪ ∂ΩR. Just like the continuous operators the corresponding first-order terms of

the discrete Robin operators employ the lower Dini derivative, giving consistency directly. Thus with

lim
i→∞

∣∣∣cα

∂Ω
Piψ(t, ·)− ¯̄cα

∂Ω,i Piψ(sk
i , ·)− c̄α

∂Ω,i Piψ(sk+1
i , ·)

∣∣∣= 0, (3.33)

using Assumptions 4 and 6, we conclude that if y`i ∈ ∂Ωt ∪∂ΩR then

lim
i→∞

(
Eα

i Piψ(s`i , ·)+ Iαi Piψ(sk
i , ·)−Fα

i

)
`
= Lα

∂Ω
ψ(t,x)−gα(x). (3.34)

Step 5: Consider the sequence {(sk
i ,y

`
i )}i as specified in the statement of the theorem, in particular

with y`i ∈ Ω. We decompose {(sk
i ,y

`
i )}i into the subsequences of the (sk

i ,y
`
i ) where y`i belongs to Ω, ∂Ωt ,

∂ΩR and ∂ΩD, respectively. Then the conclusions of Steps 1 to 4 above may be applied to the individual

subsequences.

3.7 Stability

In this section we present a lemma which ensures L∞ stability of the numerical scheme (3.12). The stability

statement goes back to the boundedness of a supersolution of the continuous linear problem for a fixed α .
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Let

Fα(x,q, p,r,s) =



−r+Lα(x,q, p,s)− f α(x) on [0,T )×Ω,

−r+Lα

∂Ω
(x, p,s)−gα(x) on [0,T )×∂Ωt ,

Lα

∂Ω
(x, p,s)−gα(x) on [0,T )×∂ΩR,

s−g(x) on [0,T )×∂ΩD,

s− vT (x) on {T}×Ω.

Assumption 7. There exists an α ∈ A and a w(t,x) ∈ C2(R×Rd) which is a strict supersolution of the

associated linear problem. More precisely, there is an ε > 0 such that

Fα(x,∆w(t,x),∇w(t,x),∂tw(t,x),w(t,x))≥ ε

on [0,T ]×Ω.

The assumption is essentially fulfilled if the linear equation

Fα(x,∆ψ(t,x),∇ψ(t,x),∂tψ(t,x),ψ(t,x)) = 2ε (3.35)

is a well-posed problem in a suitable sense. For example, ψ may be a weak solution of (3.35) as in [92,

Chapter 1] which admits a bounded extension to R×Rd . In such cases one may pass to a strict supersolution

in C2(R×Rd) through mollification.

Lemma 5. Let α be as in Assumption 7, sk(i)
i → t ∈ [0,T ) and y`(i)i → x ∈Ω as i→ ∞. Here sk(i)

i is a time

step and y`(i)i a node of the i-th refinement. Then

liminf
i→∞

[
Îαi Piw(sk

i ,y
`
i )+ Êα

i Piw(sk+1
i ,y`i )− (F̂α

i )`

]
≥ ε.

Proof. We use Theorem 7 for a singleton control set A = {α} to cover the linear case. The result now

follows because

(Fα)∗(x,∆w(t,x),∇w(t,x),∂tw(t,x),w(t,x))≥ ε,

owing to Assumption 7.

Theorem 8. The numerical solutions vi are uniformly bounded in the L∞ norm. More precisely, there exists
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a finite constant C > 0 such that

‖vi‖L∞(Si×Ω) ≤C ∀ i ∈ N. (3.36)

Proof. Recall the solution vα
i of the linear problem (3.23). We define

wk
i := Piwα(sk

i , ·),

ṽk
i := wk

i − vα
i (s

k
i , ·).

It is convenient to set

ek
i := Îαi ṽk

i + Êα
i ṽk+1

i = Îαi wk
i + Êα

i wk+1
i − F̂α

i . (3.37)

Because of Assumptions 6 and 7 the wi are uniformly bounded in the L∞ norm. Moreover, 0≤ vi ≤ vα
i due

to Theorem 6. Thus the statement of the theorem is proved once we demonstrate that the vα
i are bounded

from above independently of i. This is equivalent to showing a lower bound for the ṽk
i .

It follows from Lemma 5 that ek ≥ 0 for i larger than some constant M. It is trivial that there exists

a constant C such that the inequality of (3.36) holds for all i ≤M. We therefore may assume w.l.o.g. that

ek ≥ 0 throughout. By possibly modifying w through the addition of a positive constant we can assume that

wT/hi
i = Piw(T, ·)≥ ‖vT (T, ·)‖L∞(Ω)

while maintaining the supersolution property of w because cα
Ω
,cα

∂Ω
≥ 0. This implies ṽT/hi

i ≥ 0, i.e. the

non-negativity at the final time.

Now suppose ṽk+1
i ≥ 0. Then

ṽk
i = (Îαi )

−1(ek
i − Êα

i ṽk+1
i
)
≥ 0

because also (Îαi )
−1 ≥ 0 and −Êα

i ṽk+1
i ≥ 0. Now induction in k completes the proof.

3.8 Convergence

Analogously to the envelopes of functions introduced in Section 3.2 we define envelopes of the numerical

solutions as follows

v∗(t,x) = sup
(sk

i ,y
`
i )→(t,x)

limsup
i→∞

vi(sk
i ,y

`
i ), v∗(t,x) = inf

(sk
i ,y

`
i )→(t,x)

liminf
i→∞

vi(sk
i ,y

`
i )
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where limits are taken over all sequences of nodes in [0,T ]×Ω which converge to (t,x)∈ [0,T ]×Ω. Owing

to Theorem 8, v∗ and v∗ attain finite values. By construction, v∗ is upper and v∗ lower semi-continuous and

v∗ ≤ v∗.

Theorem 9. The function v∗ is a viscosity subsolution and v∗ is a viscosity supersolution.

Proof. Step 1 (v∗ is a subsolution). To show that v∗ is a viscosity subsolution, suppose that w ∈C∞(R×Rd)

is a test function such that v∗−w has a strict local maximum at (s,y) ∈ (0,T )×Ω, with v∗(s,y) = w(s,y).

Note that (s,y) may be on the boundary. Consider a closed neighbourhood B :=
{
(t,x) ∈ (0,T )×Ω :

|t− s|+ |x− y| ≤ δ
}

with δ > 0 such that

v∗(s,y)−w(s,y)> v∗(t,x)−w(t,x) ∀(t,x) ∈ B\ (s,y).

Choose i sufficiently large for B to contain nodes. As in [68] we choose a sequence of nodes {(sk
i( j),y

`
i( j))} j

which maximise vi(sκ

i( j),y
λ

i( j))−Piw(sκ

i( j),y
λ

i( j)) among all nodes (sκ

i( j),y
λ

i( j)) ∈ B and converge to (s,y). It

follows that

vi(sk
i ,y

`
i )−Piw(sk

i ,y
`
i )→ v∗(s,y)−w(s,y) = 0. (3.38)

Moreover, because of (sk
i ,y

`
i )→ (s,y), the neighbours of the (sk

i ,y
`
i ) eventually also belong to B: for i

sufficiently large, we have (sκ
i ,y

λ
i ) ∈ B if κ ∈ {k,k+1} and yλ

i ∈ supp φ̂ `
i , in which case

vi(sκ
i ,y

λ
i )−Piw(sκ

i ,y
λ
i )≤ vi(sk

i ,y
`
i )−Piw(sk

i ,y
`
i )

⇔ Piw(sκ
i ,y

λ
i )+µi ≥ vi(sκ

i ,y
λ
i ),

with µi = vi(sk
i ,y

`
i )−Piw(sk

i ,y
`
i ), and µi→ 0 as i→ ∞ because of (3.38).

Recall that the matrices Eα
i have non-zero off diagonal entries (Eα

i )`λ only if yλ
i ∈ supp φ̂ `

i and that

vi(sk+1
i , ·)≤ Piw(sk+1

i , ·)+µi on supp φ̂ `
i . Therefore, monotonicity of hiE

α
i − Id for all α ∈ A implies that

(
(hiE

α
i − Id)

[
Piw(sk+1

i , ·)+µi

])
`
≤
(
(hiE

α
i − Id)vi(sk+1

i , ·)
)
`
.

Applying the LMP and linearity of Iαi to Piw(sk
i , ·)+µi− vi(sk

i , ·), which has a non-positive local minimum

at y`i , yields (
(hiI

α
i + Id)

[
Piw(sk

i , ·)+µi

])
`
≤
(
(hiI

α
i + Id)vi(sk

i , ·)
)
`
.
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From the definition of the scheme, with γ := supα,i ‖c̄α
i + ¯̄cα

i ‖∞,

0 = −divi(sk
i ,y

`
i )+ sup

α∈A

(
Eα

i vi(sk+1
i , ·)+ Iαi vi(sk

i , ·)−Fα
i

)
`

≥ −di

(
Piw(sk

i ,y
`
i )+µi

)
+ sup

α∈A

(
Eα

i

(
Piw(sk+1

i , ·)+µi

)
+ Iαi

(
Piw(sk

i , ·)+µi

)
−Fα

i

)
`

= −diPiw(sk
i ,y

`
i )

+ sup
α∈A

[(
Eα

i Piw(sk+1
i , ·)+ Iαi Piw(sk

i , ·)−Fα
i

)
`
+µi〈c̄α

i + ¯̄cα
i , φ̂

`
i 〉
]

≥ −diPiw(sk
i ,y

`
i )+ sup

α∈A

(
Eα

i Piw(sk+1
i , ·)+ Iαi Piw(sk

i , ·)−Fα
i

)
`
− γ |µi|

=FiPiw(sk
i ,y

`
i )− γ |µi| . (3.39)

For a fixed i, evaluating FiPiw(sk
i ,y

`
i ) may involve a boundary operator even if (s,y) is internal and vice

versa may involve the PDE operator even if (s,y) belongs to the boundary. Referring to the semi-continuous

envelope F∗, it now follows from (3.39), limi µi = 0 and Theorem 7 that

0≥ liminf
i→∞

FiPiw(sk
i ,y

`
i )

≥ F∗(y,∆w(s,y),∇w(s,y),∂tw(s,y),v∗(s,y)).

Therefore v∗ is a viscosity subsolution.

Step 2 (v∗ is a supersolution). Arguments similar to those above show that v∗ is a viscosity supersolution,

where the principal change to the proof is that one considers w ∈C∞(R×Rd) such that v∗−w has a strict

local minimum at some (s,y) ∈ (0,T )×Ω with v∗(s,y) = w(s,y). With analogous notation, the last line in

(3.39) corresponds to

0≤−diPiw(sk
i ,y

`
i )+ sup

α∈A

(
Eα

i Piw(sk+1
i , ·)+ Iαi Piw(sk

i , ·)−Fα
i

)
`
+ γ |µi| ,

i.e. there is a slight asymmetry in the argument due to the last sign in (3.39). Nevertheless, it is then deduced

that

0≤ F∗(x,∆w(t,x),∇w(t,x),∂tw(t,x),v∗(t,x)).

Thus v∗ is a viscosity supersolution.

The above proof is an adaptation of the Barles-Souganidis argument [6] to the Finite Element setting,

in line with that in [68] but differing in the treatment of the boundary conditions.

Assumption 8. Let v be a lower semi-continuous supersolution and v be an upper semi-continuous subso-

lution. Then v≤ v.
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Figure 3.1: Approximation error of Experiment 1

Theorem 10. One has v∗ = v∗ = v, where v is the unique viscosity solution with v(T, ·) = vT . Furthermore

lim
i→∞
‖vi− v‖L∞((0,T )×Ω) = 0. (3.40)

Proof. Follows as in the proof of Theorem 6.2 in [68].

3.9 Numerical experiments

The first experiment investigates rates of convergence for a known smooth solution. The remaining experi-

ments examine the approximation of solutions with singularities near type changes of boundary conditions

as well as the solution behaviour in the vicinity of nonlinear boundary conditions.

Experiment 1 (Rates for smooth known solution): We consider an IBVP on the square domain

Ω = [−1,1]2 with Robin conditions on the right face ∂Ωt = {1}× (−1,1) and Dirichlet conditions on

the remaining faces ∂ΩD = ∂Ω \ ∂Ωt . We have the control set A = [0,1] and the final time T = 1 for the

system

−∂tv+ sup
α∈A

(
−(α + |x|2/2)∆v+ xvx− f α

)
= 0 in [0,T )×Ω,

−∂tv+ sup
α∈A

(
αvx−gα

)
= 0 on [0,T )×∂Ωt ,

v = 0 on [0,T )×∂ΩD,

v− (1− x2)(1− y2) = 0 on {T}×Ω.

(3.41)

We choose gα and f α such that

v(x,y, t) := t(1− x2)(1− y2)+(1− t)sin(πx)cos
(

πy
2

)
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is the exact solution of (3.41).

The artificial diffusion coefficients are chosen quasi-optimally, cf. Section 3.4.3. The time dependent

Robin boundary condition is treated fully explicitly. The time step size is chosen to ensure monotonicity

while permitting a large time step, leading to O(hi) = O(∆xi). The L2, H1 and L∞ errors at time t = 0,

presented also in Figure 3.1, obey in essence the same rates as those observed previously [68] with Dirichlet

conditions and O(hi) = O(∆xi) scaling:

∆x L2 Rate L∞ Rate H1 Rate

0.1165 1.186e-1 0.98 1.645e-1 0.92 5.089e-1 0.93

0.0583 6.044e-2 0.98 8.960e-2 0.95 2.743e-1 0.94

0.0291 3.072e-2 0.99 4.706e-2 0.97 1.457e-1 0.95

0.0146 1.558e-2 0.99 2.426e-2 0.98 7.696e-2 0.95

0.0073 7.894e-3 1.04 1.234e-2 1.03 4.058e-2 0.96

0.0036 3.806e-3 6.006e-3 2.120e-2

(−1,−1) (0,−1)

(− 1
4 ,− 3

4 )

(0,− 1
2 )
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1

Figure 3.2: Value function of the Skorokhod problem for mesh size ∆x≈ 0.12

Experiment 2 (Skorokhod problem): The second numerical experiment is set on a nonconvex, less

regular domain, which is depicted in Figure 3.2. The stochastic controlled process is subject to a terminal

cost of 10 everywhere apart from ω1 where it is 0. There is no running cost. On ω2 the particle is transported

through a Skorokhod reflection independently of the angle of incidence in the direction of the inner normal

vector. Ultimately, a particle can avoid penalisation only by reaching ω1 before the terminal time T = 1.
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On Ω the particle may only choose between an upwards drift and drift to the right:

−∂tv+ sup
α

(−aα
∆v−bα ·∇v) = 0 in [0,T )×Ω, (3.42a)

−b∂Ω ·∇v = 0 on [0,T )×ω2∪
{( 1

4 ,0
)}

, (3.42b)

v = 0 on [0,T )×ω1, (3.42c)

v = 10 on [0,T )×ω0∪ω3∪
{( 1

2 ,
1
4

)}
, (3.42d)

v = vT on {T}×Ω, (3.42e)

where aα = 0.1(1− x2)α and bα = (−2α,2(α−1))T for α ∈ {0,1}. Moreover, b∂Ω = (1,−1)T and

vT (x) =


10 x ∈Ω\ω1,

0 x ∈ ω1.

(3.43)

Hence when drifting to the right the particle is exposed to Brownian noise, while the equation is degenerate

when the upward drift is selected. The numerical operators are given by

(Eα
Ω,iv)` := ν̄

α,`
Ω,i 〈∇v,∇φ̂

`
i 〉+ 〈−bα ·∇v, φ̂ `

i 〉 (3.44a)

(IαΩ,iv)` := max
(

aα − ν̄
α,`
Ω,i ,0

)
〈∇v,∇φ̂

`
i 〉. (3.44b)

(Eα

∂Ω,iv)` := 0, (3.44c)

(Iα
∂Ω,iv)` :=

v(t,x1,x2)− v(t,x1−λ ,x2 +λ )

λ
. (3.44d)

Figure 3.2 shows the approximation vi at time t = 0 on a coarse mesh. Notice how the introduction of a

Skorokhod type boundary gives the particle starting in the vicinity of ω2 a high probability of reaching the

penalty-free exit zone ω1. The node at ( 1
2 ,

1
4 ) already belongs to the Dirichlet boundary. We observe that

the penalty of 10 in the boundary segment between ω1 and ω2 leads to a layer-like behaviour of the solution

of only one element thickness. The related numerical experiments on finer meshes depicted in Figure 3.3

also exhibit this aspect of the numerical solution.

Experiment 3 (Internal barrier and nonlinear boundary conditions): The third experiment is an

adaptation of the previous one to examine the effect of nonlinear boundary conditions. We break the adap-

tation into two parts.

Part (a) (Internal barrier): The experiment is identical to the previous one with exception of the drift

terms on Ω:

bα(x) =


(
−2α,2(α−1)

)T : |x− 3
8 |> 1

20 ,(
0,2(α−1)

)T : otherwise.
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(a) Skorokhod problem (b) Nonlinear boundary condition

Figure 3.3: Linear and nonlinear boundary conditions on ω2 with ∆x = 0.0035.

This means that the strip of all x with |x− 3
8 | ≤ 1

20 acts as barrier in Ω: Within this strip there is no process

with drift to the right. The only way a particle can cross the strip from the left to the right in order to avoid

penalisation is by adopting α = 1. In this case the particle might cross the barrier by means of diffusion;

however, there is no drift term to aid the crossing.

The construction results in a value function which at first sight resembles a piecewise constant function.

It is close to 10 left of the barrier as the particle is unlikely to reach the penalty-free exit zone ω1. It is

mostly close to 0 right of the barrier; however, reaches 10 at Dirichlet boundary conditions on ω0 as already

indicated in Experiment 2. At the barrier there is an internal layer arising from the possibility of crossing

owing to diffusion.

This description of the value function is matched entirely by the numerical computations with the

scheme of this chapter: see Figure 3.3(a), where the internal layer as well as the boundary conditions

right of the barrier are well resolved.

Part (b) (Nonlinear boundary condition): Now the boundary condition on ω2 is replaced by a nonlinear

operator which corresponds to the choice between the previously used Skorokhod reflection and instanta-

neous transport along the boundary towards the right. In other words, (3.42b) is replaced by

sup{−b0
∂Ω
·∇v,−b1

∂Ω
·∇v}= 0 on [0,T )×ω2∪

{( 1
4 ,0
)}

.

with b0
∂Ω

= (1,−1) and b1
∂Ω

= (−1,−1).

This modification has a striking impact on the behaviour of the controlled system. Now an optimally

controlled particle may drift onto the boundary segment ω2 left of the barrier to be then transported on the

boundary past the barrier. Right of the barrier the control is changed to b0
∂Ω

in order to reflect the particle

into Ω to avoid the penalty at the point ( 1
2 ,

1
4 ) at the end of ω2.
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An approximation of the resulting value function at time 0 is shown in Figure 3.3(b), which illustrates

how this time regions left of the barrier have a value function close to zero since particles located there can

now reach the penalty-free exit zone ω1. Indeed, when computing the solutions for earlier times t < 0, one

observes further growth of the blue region as more time is available to arrive at ω1 before termination.

Experiment 4 (Reflection vs. termination): We consider an IBVP on the same domain, but now with

a nonlinear boundary condition corresponding to a choice between a Skorokhod reflection and termination

of the process in exchange for an oscillatory cost gα :

−∂tv+ sup
α

(−aα
∆v−bα ·∇v) = 0 in [0,T )×Ω,

sup
α

(
−bα

∂Ω
·∇v+ cα

∂Ω
v−gα

)
= 0 on [0,T )×ω3∪

{( 1
4 ,1
)}

,

v = 0 on [0,T )×ω1,

v = 10 on [0,T )×ω0∪ω2∪
{( 1

2 ,
3
4

)}
,

v = vT on {T}×Ω,

where α ∈ {0,1}, vT as in (3.43) and

aα = 0.2(1− x2)(1−α)+0.2(1− x1)α,

bα = (−2α,2(α−1))T , bα

∂Ω
= (α,α)T ,

cα = (1−α), gα =−(10cos(160x1/π +4)(1−α).

Note that compared to the two previous examples the Robin type boundary has moved to ω3 while ω2 is

part of the Dirichlet region with value 10. Both operators Lα now have regions of degeneracy, when either

x1 or x2 is near 1.

The PDE operator on Ω is discretised according to (3.44a)–(3.44b), while the Robin operators are

approximated implicitly, consistent with Assumption 4. The behaviour of the value function v in the vicinity

of ω3 is depicted in Figure 3.4. One observes how troughs of g0 are attained by the value function, while near

peaks of g0 the numerical scheme switches to the reflection principle. Overall the experiment demonstrates

how the framework of the chapter not only allows us to approximate nonlinear Robin conditions, but also

incorporates a nonlinear switching between Robin conditions on the one hand and Dirichlet conditions on

the other hand.

3.A Appendix: Interpretation of the mixed boundary conditions

We briefly sketch in a simplified setting how mixed boundary conditions can arise from an underlying

optimal control problem. For a start we assume here that the solution v of (3.3) is smooth. In optimal control
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Figure 3.4: Value function with nonlinear boundary condition on ω3.

formulations the coefficients cα and cα

∂Ω
are typically either 0 or they all coincide with some constant in

order to model a discounting of cost. We shall assume the former.

We consider a particle, or agent, which occupies the state x(t) ∈Ω at time t ∈ [0,T ]. Its movements are

described by the following rules:

1. Suppose x(t) ∈ Ω, t < T and the control α ∈ A is selected. Then the particle’s immanent movement

is described by the SDE

dx = bα(x)dt +
√

2aα dW, (3.45)

where W is a d-dimensional Brownian motion. While the particle follows (3.45) it is subject to the

cost f α dt.

2. Suppose x(t) ∈ ∂Ω◦D, t < T and the control α ∈ A is selected. Here ∂Ω◦D refers to the interior of ∂ΩD

relative to ∂Ω. Then, in the context of viscosity boundary conditions, the particle may either follow

(3.45) at the running cost f α dt or terminate its movement at a cost of g(x(t)). If instead pointwise

Dirichlet conditions were imposed in Definition 8 then the boundary conditions would correspond to

the guarantee that the particle terminates its movement.

3. Suppose x(t)∈ ∂Ω◦R, t < T and the control α ∈ A is selected. Then the Skorokhod reflection principle

may apply. Indeed, as described in [82, Sections 1.4, 3.1.3, . . . ], upon reaching the boundary the

particle may instantaneously be transported a distance bα

∂Ω
δ where δ > 0 is small. Alternatively,
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because of the context of viscosity boundary conditions, the particle may continue to follow (3.45).

To remain within the scope of [82] we assume gα = 0 on ∂ΩR.

4. Suppose x(t) ∈ ∂Ω◦t , t < T and the control α ∈ A is selected. Then the particle may either move

according to

dx = bα

∂Ω
(x)dt (3.46)

with running cost gα dt or according to (3.45) with running cost f α dt.

5. Suppose t = T and the particle’s movement has not yet terminated at a Dirichlet boundary then the

final time cost vT (x(T )) incurs.

6. Suppose that x(t) ∈ ∂ (∂ΩD)∪ ∂ (∂ΩR)∪ ∂ (∂Ωt), t < T . Here the outer ∂ of ∂ (∂ΩX ) refers to the

boundary of ∂ΩX relative to ∂Ω where X ∈ {D,R, t}. Then the particle’s behaviour may be selected

from multiple of the above scenarios. E.g. if x(t) ∈ ∂ (∂ΩD)∪ ∂ (∂ΩR) then the particle movement

may terminate, the particle may be reflected or it may be transported according to (3.45).

All these possible scenarios occur when representing uncertain market price of volatility risk in a Heston

model found in Chapter 4.

We now link the above description of the particle by means of the value function to the HJB initial

boundary value problem (3.3). Let α : [0,T ]→ A represent a choice of controls for each time s ∈ [0,T ].

Similarly, let ξΩ,ξ∂ΩD ,ξ∂ΩR ,ξ∂Ωt : [0,T ]×Ω→ {0,1} be indicator functions such that suppξ∂ΩX ⊂ ∂ΩX

for X ∈ {D,R, t}, where ∂ΩX is the closure of ∂ΩX relative to ∂Ω. Furthermore,

ξΩ +ξ∂ΩD +ξ∂ΩR +ξ∂Ωt ≡ 1.

Where ξΩ = 1 the particle path x obeys (3.45), where ξ∂ΩD = 1 the particle terminates, where ξ∂ΩR = 1

the particle is reflected and where ξ∂Ωt = 1 the particle follows (3.46). Since the particle terminates where

ξ∂ΩD = 1 we requite ξ∂ΩD(s1,x) = 1⇒ ξ∂ΩD(s2,x) = 1 for s1 ≤ s2. The value function v at (t,x) is the

smallest cost realised among all possible choices for α and ξ = (ξΩ,ξ∂ΩD ,ξ∂ΩR ,ξ∂Ωt ):

v(t,x) = inf
α,ξ

Ext

(∫ τ

t
ξΩ(x(s)) f α(s)(x(s))+ξ∂Ωt (x(s))gα(s)(x(s))ds

+ξ∂ΩD(x(τ))g(x(τ))+ξΩ(x(τ))vT (x(τ))
)
,

where τ is the exit time from [0,T )×Ω of x and Ext the expectation conditional to x(t) = x.

We fix some α,ξ which are not necessarily optimal. Suppose that x(s) ∈ suppξ∂Ωt for a short duration



54

[t, t + ε) 3 s. Then

gα(t)(x(t)) = lim
h→0

1
h

∫ t+h

t
gα(s)(x(s))ds≥− lim

h→0

v(t +h,x(t +h))− v(t,x)
h

=−∂tv(t,x)−∇v(t,x) · ẋ =−∂tv(t,x)−∇v(t,x) ·bα

∂Ω
(x).

Here the first equality follows from continuity, the inequality from the dynamic programming principle, the

second equality from the chain rule and the third from (3.46).

Now, suppose that x(s)⊂ suppξΩ for a short duration [t, t+ε)3 s. Then by a similar argument, detailed

in [82], one finds

f α(t)(x(t))≥−∂tv(t,x)−∇v(t,x) ·bα(x)−aα
∇v(t,x).

On suppξ∂ΩD we find g(x(t))≥ v(t,x(t)) as the minimal cost cannot be more than the cost of termination.

Suppose now that the particle is located at x ∈ suppξ∂ΩR . It cannot be more beneficial for the particle

to be at x+ bα

∂Ω
λ as it will immanently be transported there. Thus v(t,x) ≤ v(t,x+ bα

∂Ω
λ ) and therefore,

with λ → 0,

−bα

∂Ω
(x) ·∇v(t,x)≤ 0.

When and where-ever the choice of α,ξ is optimal, the respective above inequality turns into an equality.

With the compactness of A and the continuous dependence of the coefficients on α , such optimal controls

exist. Therefore, taking suprema over A, one obtains that the value function solves (3.3), at least conceptu-

ally, with boundary conditions in the viscosity sense. We refer here to the viscosity sense because the use of

semi-continuous envelopes in Definition 1 is interpreted as permitting (3.45) as transport law on all of the

closure Ω and as offering at the interfaces between boundary regions multiple boundary operators for the

choice of the optimal strategy, like indicated in scenario 6 of the above list. We note that the choice between

(3.45) and the various boundary operators will in general be subject to some delicate restrictions, arising

from the sub- and superjets. At the boundary these jets are increased in size compared to their counterparts

in the domain interior [25, Remark 2.7].
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Chapter 4

Model and numerical solution of the

Heston equation with the uncertain

market price of volatility risk

4.1 Introduction

The main aim of this chapter is to present an application in finance of the method described in Chapter

3. One of the main challenges in financial mathematics is to determine the fair pricing of options. The

classical tool used for that purpose has been Black-Scholes (BS) model, however it comes with certain

limitations. Due to the non-realistic assumptions on the properties of the market, it fails to reliably predict

the option price behaviour. One of the simplifications underlying the original BS model is the assumption

that the volatility of the stock price is constant. Analysis of the real-life data does not support this statement

and so numerous attempts were made to differently model the behaviour of the volatility in time. One

such approach was proposed in [58] by Heston who modelled the volatility as another, correlated stochastic

process, giving rise to the family of the stochastic volatility models. However this approach does not come

without critiques. One of the main ones has been that it introduces new parameters like volatility of volatility

and market price of volatility risk which may be even more difficult to estimate and predict in practice than

the ones from the classical BS model. For instance, in [58] Heston assumes a linear scaling of the market

price of volatility risk with variance and while there is an evidence of a positive correlation (see [37]) there

does not seem to be a consensus on how to estimate the scaling factor (see [112]). Some authors (see for

example [64], [53] and [81]), for the sake of simplicity and arguing that its impact is not significant, assume

it to be equal to 0. However, this assumption does not seem to hold up in the realistic setting as discussed

for example in [35] and [3]. The attempts of evaluating the market price of volatility in different financial
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settings can be found in [36] and [112] while its impact on option pricing is investigated in [37] and [88]. At

this point it is worth noting that in fact all parameters used in the option pricing calculations are estimates

based on the empirical or the historical data. Errors in those estimates can lead to inconsistent results even

if the model were to be accurate. This inspired approach taken by Avellaneda, Levy & Parás in [2] where

instead of trying to model and predict the behaviour of the parameters, they are assumed to stay within

a given tolerance interval. This allows to manage the risk by considering the worst-case scenario leading

in fact to an optimal control problem involving non-linear PDE as showed in [72]. This approach is used

more specifically in the setting of European options pricing in [23]. In this chapter we aim to take a similar

approach with respect to the market price of volatility risk.

Traditionally pricing of European options was achieved by either obtaining a closed form solution via

analytical means or by simulation using binomial or Monte Carlo methods. However, in the stochastic

volatility setting, the former approach is not always available, especially for more complex options, while

the latter is computationally expensive. The other approach is to solve an associated stochastic PDE nu-

merically. In order to address that issue, a number of numerical methods for option pricing emerged over

the years. In this chapter we focus on European options, but we would like to point out that rich litera-

ture regarding American option pricing exists as well (see for example [119], [22], [62], [116] and [81]).

The most common approach is the use of Finite Difference Methods, for example a High-Order Compact

method in [108] and Alternating Direction Implicit methods in [65] and [38]. Another area of research is

study of Discontinuous Galerkin methods proposed by [61] and recently revisited in [77]. Other areas of

research include wavelet methods [93], Fourier methods [44], spectral methods [97] and radial basis meth-

ods [4]. As for the Finite Element Methods we refer to [103, Chapter 5] and the references therein. Such

methods are discussed in [111] and [59], however no strict convergence results are presented. The main

problem when trying to solve the PDE associated with the uncertain Heston model with stochastic volatility

is that one requires method which can solve fully nonlinear PDEs with mixed boundary conditions. Such a

method in Finite Element setting is provided in Chapter 3. The main advantage of using Finite Elements in

this context is that it allows us to investigate convergence of the gradient. This is of particular importance

in financial setting due to the role derivatives play in hedging a portfolio.

The outline of this chapter is as follows. In Section 4.2 we briefly state the uncertain Heston model

and then show how it can be interpreted as a backward in time stochastic optimal control problem. By

combining the methods of stochastic volatility and uncertain parameters we obtain second order non-linear

PDE modelling the worst and best case scenarios when a range of values of market price of volatility risk

is considered. In Section 4.3 we present a transformation of the Heston equation to the form required by

the numerical scheme in Chapter 3. We also discuss the choice of the boundary conditions and the domain

truncation for the numerical purposes. Finally, in Section 4.4 we present a case study of a long butterfly

option whose main goal is to investigate the impact of the market price of volatility risk on the option price
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and its derivatives.

4.2 The uncertain Heston model

In this section we will consider an extension of the Heston model which includes uncertain parameters,

allowing a reformulation into an optimal control problem. The main goal of the Heston model is to provide

a theoretical estimate of option prices. An option is a financial contract offering its holder an opportunity to

sell (put option) or buy (call option) an underlying asset (throughout this chapter assumed to be a stock) at

a specific strike price K at or before a specific time T ≥ 0. Throughout this chapter we will focus on pricing

of European options, which are options that can only be executed at a predefined point in time. At this

point we are interested in formulating a model which will allow us to determine an option value V which

is fair from the standpoint of both the buyer and the seller. One such choice and the starting point of our

discussion is the Heston model which is a modification of the Black-Scholes model. Both of those models

will require us to make some further assumptions on the underlying assets and on the market.

In the Black-Scholes setting the change in time of the stock price S is assumed to be represented by a

geometric Brownian motion. Considering the Wiener process W1(t), we assume that we can represent the

change of the stock price by the following stochastic differential equation:

dS(t) = µS(t)dt +σS(t)dW1(t). (4.1)

The variable µ in (4.1) represents the drift (trend) and is defined to be an average change of the stock price

S per unit of time. Additionally, we assume it to be constant and known. The volatility σ is the square root

of the non-negative variance v between returns from the same stock. In the classical Black-Scholes model

σ is assumed to be constant but we instead follow [58] and represent it by yet another, correlated Wiener

process W2(t). Then, denoting the volatility of volatility as ξ we obtain the second stochastic differential

equation

dv(t) = κ(γ− v(t))dt +ξ
√

v(t)dW2(t), (4.2)

where we recall that variance v = σ2 is a square of the volatility σ and ξ is assumed to be a known constant.

We denote the correlation coefficient between W1 and W2 as ρ ∈ (−1,1). Note that (4.2) is a mean-reverting

process with a long term mean equal to γ and a reversion level equal to κ.

At this point, we summarise the underlying assumptions of the model. The dividend payouts during the

lifetime of an option are set to be 0. We assume it is possible to lend and borrow any amount of a riskless

asset at a known constant risk-free interest rate r. Moreover, we are allowed to trade any amount, possibly

fractional, of the stock S or an option of value V (t,S,v) at any time 0≤ t ≤ T . We also say that the market

is frictionless, which means that no such transaction generates fees. Lastly, we assume that there is no
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arbitrage possibility by which we mean that it is impossible to achieve an immediate and riskless profit.

Since the stock prices are in general non-deterministic, investment into stocks is inherently risky. Hence,

the main idea of the portfolio management is to limit (or rather hedge) that risk by an appropriate selection

of options, or more generally, financial derivatives. By modelling the change of the stock price S and

the volatility σ as stochastic processes we introduced two sources of randomness into our model and we

need to hedge both of them. In order to do that we consider the portfolio Pπ = Pπ(t) ∈ R containing the

option with value V , a quantity −δ1 of the stock S and a quantity −δ2 of another option with value V
′
,

i.e. Pπ := V − δ1S− δ2V
′
. By hedging the risk with the choice of δ2 = ∂V/∂v

∂V ′/∂v and δ1 = ∂V
∂S + δ2

∂V ′
∂S and

following the argument in [110, Chapter 51] we conclude the following:

∂V
∂ t

+
1
2

vS2 ∂ 2V
∂S2 +Svξ ρ

∂ 2V
∂S∂v

+
1
2

vξ
2 ∂ 2V

∂v2 +(κ(γ− v)−ξ λ
√

v)
∂V
∂v

= 0, (4.3)

for some function λ (S,σ , t) which represents the market price of volatility risk. One now has to face the

problem of choosing the λ . In [58] Heston suggests that it should be λσ with λ ∈ R being a scaling factor,

i.e. in this special case λ has the meaning of a coefficient and not the whole market price of volatility risk

function. At this point one needs to either obtain an estimate of λ based on the empirical data or assume

it to be uncertain. Since there is no agreed upon method of estimating the market price of volatility, one

may argue that any such estimate will be burdened with inaccuracies. We propose a new methodology

to investigate how those estimation errors could affect the projected option price lending ideas from the

uncertain volatility method discussed in [2]. However, instead of the volatility, we will model the market

price of volatility risk as uncertain. In other words, we assume that λ is an unknown parameter contained

in some interval L⊂ R.

For all λ ∈ L we define the linear operators Lλ as

LλV :=−1
2

(
S2v

∂ 2V
∂S2 +2ρξ vS

∂ 2V
∂S∂v

+ξ
2v

∂ 2V
∂v2

)
− rS

∂V
∂S
− [κ(γ− v)−ξ λ

√
v ]

∂V
∂v

+ rV. (4.4)

Consider the set L of all measurable mappings from [0,T ] to L. Then the Heston equation associated to

each control λ ∈ L is

−∂tV (t,S,v)+Lλ(t)V (t,S,v) = 0. (4.5)

In order to make the above problem well-defined we still need to enforce the boundary and the final time
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v
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0
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Ω

∂ΩRt

∂ΩR1

∂ΩD ∂ΩR2

Figure 4.1: Domain Ω of the untransformed Heston problem

conditions. Throughout this chapter, given maturity T , we will use the following boundary conditions

V (S,v,T ) = Λ(S), (4.6)

V (0,v, t) = Λ(0), (4.7)

lim
S→∞

∂V
∂S

(S,v, t) = lim
S→∞

∂Λ

∂S
(S), (4.8)

−rS
∂V
∂S

(S,0, t)−κγ
∂V
∂v

(S,0, t) +

rV (S,0, t)−∂tV (S,0, t) = 0, (4.9)

lim
v→∞

∂V
∂v

(S,v, t) = 0. (4.10)

where Λ is the pay-off function of the option, see Remark 2.

The boundary condition (4.9) for a vanishing variance can be thought of as taking limit v→ 0 in Black-

Scholes’ formula and it is adapted directly from [58]. Notice on the other hand how compared to [58] the

Dirichlet condition for a large volatility was replaced by the Neumann condition. We motivate this decision

by the fact that as the volatility approaches extremely large values, influence of its oscillations on the option

price is expected to be negligible. Thus we impose the change in v direction on this boundary to be 0. In the

literature such approach was adopted for pricing of American options in [22] and [63]. For more discussion

about the boundary conditions in European and American option pricing see [117].

In practice, the implementation of the numerical scheme will require us to truncate the domain. Gener-

ally we choose a rectangular domain Ω. For example, in the setting of the case study presented below we

let S ∈ [1, 100] and v ∈ [0, 3] (see Figure 4.1). For the sake of brevity, we will also define Φλ which we
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will refer to as the Heston operator as follows:

Φ
λV (t,S,v) =



−∂tV (t,S,v)+Lλ(t)V (t,S,v) if (t,S,v) ∈ [0,T )×Ω,

V (t,S,v)−Λ(0) if (t,S,v) ∈ [0,T )×∂ΩD,

(0 1) ·∇V (t,S,v) if (t,S,v) ∈ [0,T )×∂ΩR1 ,

(1 0) ·∇V (t,S,v)− limS→∞
∂Λ

∂S (S) if (t,S,v) ∈ [0,T )×∂ΩR2 ,

−∂tV (t,S,v)− (rS κγ) ·∇V (t,S,v)+ rV (t,S,v) if (t,S,v) ∈ [0,T )×∂ΩRt ,

V (t,S,v)−Λ(S) if (t,S,v) ∈ {T}×Ω.

(4.11)

Remark 2. Notice how the boundary conditions (4.9) and (4.10) are independent of the type of option

under consideration. Therefore, it is relatively easy to select (4.11) describing the payoff of a given option

through the appropriate choice of a function Λ. For example, for a call option with the strike price K one

would need to choose

Λ(S) = max(0,S−K) .

In order to calculate the value of a long butterfly position of width 2a and the strike price K the correct

choice is

Λ(S) = max(0,S− (K−a))−2max(0,S−K)+max(0,S− (K +a)) .

Similarly, to consider the value of a long straddle with the strike price K one requires

Λ(S) = max(0,S−K))−max(0,S−K) .

Since most widely traded options are combinations of basic puts and calls, they can be expressed in an

analogous manner.

Conceptually, we would now like find at each point (t,S,v) of tempo-spatial domain a map λ̂∈ L which

minimises the solution of (4.5) at (t,S,v). We will denote such an optimal solution as V . More precisely,

we want to find V ∈C(Ω) which solves the following optimal control problem

V (t,S,v) := inf
λ∈L
{Vλ(t,S,v) : Φ

λVλ = 0 on [0,T ]×Ω}. (4.12)

We would now like to find V without having to explicitly search through all the λ. In order to achieve that

we will formulate a Hamilton-Jacobi-Bellman (HJB) equation which is uniquely solved by V .

We will consider the case (S,v) ∈ Ω, since the boundary operators are fully linear and hence the argu-

ment follows trivially there due to the continuity of V .
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Now fix (t,S,v) ∈ [0,T )×Ω). Then,

V (t,S,v) =V (T,S,v)−
∫ T

t
∂tV (τ,S,v)dτ (4.13a)

=V (T,S,v)−
∫ T

t
Lλ̂(t)V (τ,S,v)dτ (4.13b)

= Λ(S,v)−
∫ T

t
Lλ̂(t)V (τ,S,v)dτ (4.13c)

= Λ(S,v)−
∫ T

t
sup
λ∈L
LλV (τ,S,v)dτ, (4.13d)

where (4.13d) follows because V is defined as infimum over all λ ∈ L. As L consists of measurable func-

tions, this is obtained by taking the supremum pointwise.

Now subtracting V (t +h,S,v) = Λ(S,v)− ∫ T
t+h supλ∈LLλV (τ,S,v)dτ from (4.13) we obtain

∫ t+h

t
sup
λ∈L
LλV (τ,S,v)dτ =V (t +h,S,v)−V (t,S,v).

After multiplication with 1/h and taking the limit h→ 0 we find that

lim
h→0

1
h

∫ t+h

t
sup
λ∈L
LλV (τ,S,v)dτ = lim

h→0

V (t +h,S,v)−V (t,S,v)
h

= ∂tV (T,S,v).

Assuming that V is a classical solution so that

lim
h→0

1
h

∫ t+h

t
sup
λ∈L
LλV (τ,S,v)dτ = sup

λ∈L
LλV (t,S,v)

we arrive at

−∂tV (t,S,V )+ sup
λ∈L
LλV (t,S,v) = 0. (4.14)

Hence in order to find V we are now required to solve the equation (4.14) subject to the boundary

conditions (4.6)-(4.10). In the following section we will show that this equation can be in fact transformed

into the HJB problem conforming to the setting of Chapter 3 thus allowing us to numerically approximate

the option value V .

4.3 Transformation of the uncertain Heston model

In this section will now perform the transformation of the elliptic operators Lλ to their isotropic form in

order to be consistent with the framework of the numerical method formulated in Chapter 3. Our first goal

is to remove the S dependence of the coefficients. In order to do that we let S = ex. Then

∂V
∂x

= S
∂V
∂S

,
∂ 2V
∂x2 = S2 ∂ 2V

∂S2 +
∂V
∂x

,
∂ 2V
∂S∂v

=
∂ 2V
∂x∂v

.
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′
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′
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Figure 4.2: Domain Ω
′

after the transformation S = ex

Substituting into (4.4) we get

Lλ
1 V (x,v, t) :=− 1

2
v
(

∂ 2V
∂x2 +2ρξ

∂ 2V
∂x∂v

+ξ
2 ∂ 2V

∂v2

)
− (r− 1

2
v)

∂V
∂x
− [κ(γ− v)−ξ λ

√
v ]

∂V
∂v

+ rV. (4.15)

We also need to consider the changes to the boundary conditions. Recall that the boundary condition for

large stock price S in untransformed variables is given by ∂V (S(x),v,t)
∂S

∣∣∣
(S,v)∈∂ΩR2

= limS→∞
∂Λ(S(x))

∂S . We also

have that
∂V
∂S

=
∂V
∂x

∂x
∂S

= e−x ∂V
∂x

,
∂Λ

∂S
=

∂Λ

∂x
∂x
∂S

= e−x ∂Λ

∂x
.

Hence we conclude that the transformed Neumann boundary condition is

∂V (x,v, t)
∂x

∣∣∣
(x,v)∈∂Ω

′
R2

= lim
x→∞

∂Λ(S(x))
∂x

. (4.16)

The boundary conditions on ∂ΩD and ∂ΩR1 remain unchanged, in the final time condition one substitutes

ex for S and the Robin condition on ∂ΩRt is obtained by substituting v = 0 into (4.15). The domain Ω is

transformed into Ω
′

depicted in Figure 4.2. The Heston operator Φ1 in the new coordinates is defined by

Φ
λ
1 V (t,x,v) =



−∂tV (t,x,v)+Lλ(t)
1 V (t,x,v) if (t,x,v) ∈ [0,T )×Ω

′
,

V (t,x,v)−Λ(0) if (t,x,v) ∈ [0,T )×∂Ω
′
D,

(0 1) ·∇V (t,x,v) if (t,x,v) ∈ [0,T )×∂Ω
′
R1
,

(1 0) ·∇V (t,x,v)− limx→∞
∂Λ(S(x))

∂x if (t,x,v) ∈ [0,T )×∂Ω
′
R2
,

−∂tV (t,x,v)− (r κγ) ·∇V (t,x,v)+ rV (t,x,v) if (t,x,v) ∈ [0,T )×∂Ω
′
Rt
,

V (t,x,v)−Λ(S(x)) if (t,x,v) ∈ {T}×Ω
′
.

(4.17)

In order to remove the second order mixed derivative from Lλ
1 we consider the following change of vari-
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ables:

y = x− ρ

ξ
v, z =

√
1−ρ2

ξ
v,

where y ∈ R and z ≥ 0. The domain Ω
′

is transformed into Ω
′′

whose shape in general depends on the

parameters of the numerical experiment. It is depicted in Figure 4.2 with the numerical values of the below

case study.

z

y

(−2.14, 3.7) (2.46, 3.7)

(0, 0) (4.61, 0)

Ω
′′

∂Ω
′′
Rt

∂Ω
′′
R1

∂Ω
′′
D ∂Ω

′′
R2

Figure 4.3: Domain Ω
′′

resulting from change of variables with parameter values ρ = 0.5, ξ = 0.7

We would now like to see how the change of variables affects the Heston operator Φλ
1 . For w defined as

w(y, z, t) :=V (x(y, z), v(y, z), t)

we have that:

∂V
∂x

=
∂w
∂y

,

∂V
∂v

=−ρ

ξ

∂w
∂y

+

√
1−ρ2

ξ

∂w
∂ z

,

∂ 2V
∂x2 =

∂ 2w
∂y2 ,

∂ 2V
∂v2 =

ρ2

ξ 2
∂ 2w
∂y2 −

2ρ
√

1−ρ2

ξ 2
∂ 2w
∂y∂ z

+
1−ρ2

ξ 2
∂ 2w
∂ z2 ,

∂ 2V
∂x∂v

=−ρ

ξ

∂ 2w
∂y2 +

√
1−ρ2

ξ

∂ 2w
∂y∂ z

.

Combining those results with (4.15) we obtain the canonical formulation of every interior Lλ(·) from (4.5)

as required:

Lλ(t)
2 w :=

−ξ
√

1−ρ2

2
z∆w+

(
−r+

κγρ

ξ
+

1
2 ξ −κρ√

1−ρ2
z−λ(t)ρ

√
ξ z√

1−ρ2

)
∂w
∂y

+

(
−κγ

√
1−ρ2

ξ
+κz+λ(t)

√
ξ z
√

1−ρ2

)
∂w
∂ z

+ rw. (4.18)

In order to complete the transformation of the initial boundary value problem, we need to apply the same

change of variables to the boundary and initial conditions. In other words, our aim is now to reformulate

(4.6)-(4.10) accordingly. Since ∂V
∂x = ∂w

∂y , the Neumann boundary condition (4.8) for large stock prices is
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obtained by simply substituting y and z into (4.17) on [0,T )×∂Ω
′
R2

which results in

∂w
∂y

∣∣∣
(y,z)∈∂Ω

′′
R2

= lim
y→∞

∂Λ(S(x(y,z)))
∂y

(4.19)

Under the aforementioned change of variables the Dirichlet boundary condition (4.7) noticing that

limS→0 y =−∞ converts straightforwardly to

w(y, z, t)
∣∣∣
(y,z)∈∂Ω

′′
D

= Λ(0),

while for the Neumann condition (4.10) we use the fact that ∂V
∂v =−ρ

ξ

∂w
∂y +

√
1−ρ2

ξ

∂w
∂ z and limv→∞ z = ∞ to

obtain

(
−ρ

ξ

√
1−ρ2

ξ
) ·∇w = 0.

Analogously to the result in [58], the Robin boundary condition for v→ 0 is obtained simply by substi-

tuting z = 0 into (4.18) which gives

−∂tw+

(
−r+

κγρ

ξ

)
∂w
∂y

+

(
−κγ

√
1−ρ2

ξ

)
∂w
∂ z

+ rw = 0. (4.20)

We summarise the above result by introducing the transformed Heston operator Φ2 defined as follows

Φ
λ
2 w(t,y,z) =



−∂tw(t,y,z)+Lλ(t)
2 w(t,y,z) if (t,y,z) ∈ [0,T )×Ω

′′
,

w(t,y,z)−Λ(0) if (t,y,z) ∈ [0,T )×∂Ω
′′
D,

(−ρ

ξ

√
1−ρ2

ξ
) ·∇w(t,y,z) if (t,y,z) ∈ [0,T )×∂Ω

′′
R1
,

(1 0) ·∇w(t,y,z)− limy→∞
∂Λ(S(x(y,z)))

∂y if (t,y,z) ∈ [0,T )×∂Ω
′′
R2
,

−∂tw(t,y,z)− (r+ κγρ

ξ

−κγ

√
1−ρ2

ξ
) ·∇V + rw(t,y,z) if (t,y,z) ∈ [0,T )×∂Ω

′′
Rt
,

w(t,y,z)−Λ(S(x(y,z))) if (t,y,z) ∈ {T}×Ω
′′
.

(4.21)

We now notice that by replacing the Heston operator Φλ from (4.4) with its transformed version from (4.21)

and following the same argument as in the previous section we obtain an optimal control problem analogous

to (4.14) with the structure conforming to the setting of Chapter 3. Note that it resembles the ”worst-case

scenario” described in [2] but with λ instead of σ taking the role of the uncertain parameter.

4.4 Case Study

Having completed the transformation that allows us to treat the market price of volatility risk as a control

in a HJB problem, we now investigate the effects of this parameter on the price of an option. As a starting
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Figure 4.4: Value of a simple call option at t = 0 with T = 0.5, K = 50 and control set L = [−2.4,−1.6].

point of the discussion, we consider the parameters of the experiment described in [34, Table 11]. Following

this example we choose the final time T = 0.5, the strike price K = 50, the volatility of volatility ξ = 0.7,

the long term volatility mean γ = 0.3, the mean reversion rate κ = 7 and the correlation parameter ρ = 0.5

(rounded from 0.53). Since the risk free rate r is not stated explicitly, we made a choice of r = 0.03.

Recalling that the domain was truncated such that v ∈ [0,3] and S ∈ [1,100], this choice of parameters

results in the transformed domain seen in Figure 4.3. A value function of a call option at time t = 0 under

such choice of parameters and λ = −2.4 can be seen in Figure 4.4. We now turn our attention to a long

butterfly position of width 40 which, as mentioned in Remark 2, is equivalent to choosing

Λ(S) = max(0,S−30)−2max(0,S−50)+max(0,S−70) .
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The resulting Bellman final value problem is

−∂tw+ sup
λ∈L
Lλ

2 w = 0 in (0,T )×Ω
′′
, (4.22a)

w = 0 on (0,T )×∂Ω
′′
D, (4.22b)

(
−ρ

ξ

√
1−ρ2

ξ
) ·∇w = 0 on (0,T )×∂Ω

′′
R1
, (4.22c)

∂w
∂y

= 0 on (0,T )×∂ΩR2 , (4.22d)

−∂tw+

(
−r+

κγρ

ξ

)
∂w
∂y

+(
−κγ

√
1−ρ2

ξ

)
∂w
∂ z

+ rw = 0 on (0,T )×∂Ω
′′
Rt , (4.22e)

w = max

(
0,e

y− ρz√
1−ρ2 −30

)
−

2max

(
0,e

y− ρz√
1−ρ2 −50

)
+

max

(
0,e

y− ρz√
1−ρ2 −70

)
on {T}×Ω

′′
. (4.22f)

Result 1: Value Function Given (4.22) we let L = [−2.4,−1.6]. Note how interval L is centred around

the market price of volatility risk equal to −2 used in [34]. The numerical approximation of the solution to

the HJB problem is performed on the transformed domain Ω
′′

and then the resulting function is cast back

to original domain Ω. The outcome is depicted in Figure 4.5. Moreover, one can see in Figure 4.6(a) that

the numerical method in fact selects different controls as optimal in different areas of the domain. The

difference between the solution of the nonlinear problem compared to the solution of the linear evolution

problem associated to one of the controls can be seen in Figure 4.6(b). This indicates the importance of

using a nonlinear model.

Figure 4.5: Value of a long butterfly position at t = 0 with T = 0.5, K = 50 and control set L = [−2.4,−1.6].
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(a) Selected optimal control, Colors represent con-
trols at the extremes of the control set.

(b) Difference between solutions of a nonlinear prob-
lem and linear evolution problem with a fixed control

Figure 4.6: Measurement of the effect of non-linearity for a long butterfly position at t ≈ 0.39 with T = 0.5,
K = 50 and control set L = [−2.4,−1.6].

Result 2: λ interval testing We now assess the impact of different choices of control sets L on the

option value estimate. In order to do that we consider control sets of increasing diameter and we measure

the difference between the value function Vinf of the worst case scenario and the value function Vsup of the

best case scenario. In practice, those two cases differ by replacing sup operator by inf operator in (4.22a).

The results are shown in Figure 4.7. Firstly, let us point out that our case study confirms the non-trivial

impact of the market price of volatility risk on option price. As indicated by Figure 4.7(a) the option value

of worse and best case scenario can differ up to 16%. Note that in this case control set contains values

ranging between 0 and −2.5, which were found to be used in the literature. Given the evidence (see for

example findings in [3]) that market price of volatility takes negative values, the simplification of taking

λ = 0 may lead to erroneous estimates. On the other hand, the experiments indicate linear correlation,

meaning that in general more negative market prices of volatility risk lead to higher option values. Hence

the worst or the best case scenario is achieved by simply choosing λ on the verge of a control set.

We instead turn our attention to the partial derivatives of option value V , which also known as the deltas.

Since they are used to hedge portfolios, they are of special interest to the financial community and a precise

estimation of their value is especially important. We now investigate the effect of λ on the partial derivative

of the option value with respect to S. As seen in Figures 4.7(b)-4.7(d) the impact of the value of λ on Delta

∂V/∂S is nonlinear in the vicinity of the strike price K. We remark at this point that models which do not

guarantee gradient convergence may in general fail to capture this kind of behaviour.

Result 3: Delta plots In line with the results of the previous experiment, we continue the investigation

of the impact of the market price of volatility risk on the delta values. We again consider the worst and

the best case scenarios for control set L = [−2.5,0.0] at time t = 0. Then we plot differences between the
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(a) Comparison of Vsup and Vinf at (S,v) =
(2.11,2.06)

(b) Comparison of ∂Vsup/∂S and ∂Vinf/∂S at (S,v) =
(53.12,0.75)

(c) Comparison of ∂Vsup/∂S and ∂Vinf/∂S at (S,v) =
(51.76,2.84)

(d) Comparison of ∂Vsup/∂S and ∂Vinf/∂S at (S,v) =
(51.43,0.23)

Figure 4.7: Measurement of effect of a diameter of a control set on the value function and its derivative.
Control sets are symmetrical and centred at −1.25, measurements were made at t = 0
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Deltas ∂Vsup/∂S and ∂Vinf/∂S for all points in Ω at time t = 0. The results for a call option are shown in

Figure 4.8(a) and for a long butterfly option in Figure 4.8(b). Note that since ∂Vmin/∂S and ∂Vmax/∂S are

both of order 1, the graphs represent a relative as well as an absolute error. We conclude that the impact of

the market price of volatility risk on the delta values is significant. In the covered examples, one can expect

up to 6% difference between the scenario where λ is neglected and the one where a realistic estimate is

used.

(a) Call option (b) Butterfly option

Figure 4.8: Comparison of plots of δ (Vsup−Vinf)/δS at time t = 0 with control set [−2.5,0.0]
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Chapter 5

Finite Element Methods for Isaacs

problems

5.1 Introduction

In this chapter we consider a subclass of fully nonlinear Partial Differential Equations (PDEs) called a

second order Hamilton-Jacobi-Isaacs equation (referred to from now on as an Isaacs equation) arising from

the optimal control problems. More explicitly, we consider problems of the form

−∂tv+ inf
β

sup
α

(L(α,β )v− f (α,β )) = 0, (5.1)

where infsup is taken over a family of second order linear differential operators Lα,β . A canonical example

of such problem is a stochastic two player zero-sum game. Since fully nonlinear PDEs do not generally

admit a classical solution, a more relaxed notion of a so-called viscosity solution is required. For a more

detailed overview how the differential games, the notion of a viscosity solution and an Isaacs equation are

related, we refer reader to Chapter 2 and [107].

The conditions which have to be satisfied by a numerical scheme in order to converge to the unique

viscosity solution of an elliptic problem were laid down in [6]. The main difficulty is that the argument

is based on existence of the comparison principle. This is especially problematic in the case of an Isaacs

equation since the infsup operator is neither concave nor convex. The difficult nature of Isaacs equations

is reflected in the challenges apparent in the numerical analysis of these equations. In [101] authors avoid

the issues caused by using viscosity solutions and instead employ integro-differential approach. As a result,

they are able to formulate a Finite Element Method applicable to the uniformly elliptic problems on convex

domains as well as obtain rates of convergence. In [80] author proves an algebraic rate of convergence of

Finite Difference schemes approximating a second order Isaacs problem. The result however is limited to



71

highly regular domains. In [31] one can find a formulation of a family of semi-Lagrangian schemes capable

of dealing with possibly degenerate second order Isaacs equations. Convergence rates are only obtained for

convex case. Also, as is generally the case with semi-Lagrangian schemes, widening of the stencil near the

boundary may lead to the loss of accuracy in those areas of the domain.

As far as author of this dissertation is aware this completes the list of currently available methods for

numerically approximating second order Isaacs problems. We would also like to point out there exists a rich

literature concerning solutions of first order Isaacs equations, often the ones arising in specific applications.

Firstly, let us mention [43] where noting the need for approximating high dimensional problems authors

present a high-order approximation using a Semi-Lagrangian in time and Finite Volume in space discreti-

sation. One field of the application which requires access to numerical approximations of first order Isaacs

equations is the deterministic game theory or more specifically two-player chase problems. We refer reader

interested in methods designed specifically for such class of problems to overview in [42]. Another area

of application is the so-called H∞ method coming from control theory. The relation to an Isaacs problem

is discussed in [105], while the numerical methods focused on solving high dimensional first orders Isaacs

equations arising in H∞ control design are discussed in [8], [51] and [70].

We point out that solving high-dimensional second order PDEs has been recently area of growing in-

terest. Such problems arise for example in finance in portfolio management where each considered asset

increases the dimension of the problem or in applied optimal control problems where dimension of the

problem increases with each agent. The main obstacle when solving such problems is so called curse of di-

mensionality. What is meant by that is that the calculational cost of most of the currently available methods

scales exponentially with the dimension of the problem and also the reciprocal of the required accuracy.

As a result, most of the methods described so far is unfeasible in case of high dimensional problems, espe-

cially so in the case of second order fully nonlinear PDEs. One approach to overcome this issue has been a

quickly expanding field of machine learning which uses deep neural networks to obtain approximations of

solutions to such problems. In that case nonlinearity is usually treated with the deep splitting approximation

method introduced in [9] which approximates solution by solving a series of linear PDEs with separate neu-

ral networks. There exist numerous results suggesting that curse of dimensionality can be indeed overcome

with neural networks be it for HJB problems (see for example [91], [57], [28], [29]) or Isaacs problems

( [98], [66]). It is however worth noting that even though the numerical results suggest that neural networks

possess sufficient expressiveness to overcome curse of dimensionality, the theoretical results are still at best

partial. For an overview of contemporary machine learning methods for partial differential equations we

refer reader to [10]. We also mention another class of approximation algorithm, so called multilevel Pi-

card approximation methods. Interested reader can find review of those in [39], for a result regarding HJB

equations specifically we point to [30].

The main contribution of this chapter is the generalisation of the setting of [68] to Isaacs problems with
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the non-homogenous Dirichlet boundary conditions. Due to the nonconvexity of the Isaacs operator the

solution of a linear evolution problem can no longer be used as a bound of the numerical solution. This

poses problem in terms of establishing stability as well as proving point-wise convergence to the boundary

conditions. We tackle the first problem by considering combinations of linear problem solutions while in

the second case we formulate a framework in which the point-wise convergence to the boundary condition

by the envelopes of numerical solutions can be guaranteed, and which hinges on the existence of the barrier

functions whose properties are discussed in detail. As a result we formulate a convergent Finite Element

Method capable of approximating possibly degenerate second order Isaacs problems with general Dirichlet

boundary conditions on bounded, Lipschitz domains.

This chapter is organised as follows. In Section 5.2 we define the class of the problems under consid-

eration and the underlying assumptions. We also define the notion of a viscosity solution used throughout

the chapter. In Section 5.3 we introduce the discretization in time and space as well the numerical scheme.

In Section 5.4 we prove the monotonicity of the proposed scheme which is a crucial step in proving the

convergence to the unique viscosity solution. In Section 5.5 we introduce the algorithm which solves the

nonlinear discrete problem at each timestep and which guarantees the existence and uniqueness of the nu-

merical solution. We go on to prove the stability of that solution in Section 5.6. In Section 5.8 we discuss

different notions of the boundary condition and introduce the barrier functions which ensure that boundary

conditions can be satisfied in the pointwise sense at least on the part of the boundary. We obtain the main

result and prove the convergence of the numerical solution to the unique viscosity solution of an Isaacs prob-

lem in Section 5.7. Finally, in Section 5.3 we present the numerical experiments verifying the convergence

of the scheme and we show application to a two-player stochastic game.

5.2 Isotropic Isaacs equations

We consider Isaacs equations on bounded Lipschitz domains Ω ∈Rd with d ≥ 2. Let A and B be compact

metric spaces and (α,β ) ∈ A×B. We introduce the linear operators

L(α,β ) : H2(Ω)→ L2(Ω), w 7→ −a(α,β )
∆w−b(α,β ) ·∇w+ c(α,β ) w (5.2)

and data terms f (α,β ),vT ∈C(Ω), g ∈W 1,∞(Rd). We assume that the mapping

A×B→C(Ω)×C(Ω,Rd)×C(Ω)×C(Ω),(α,β ) 7→ (a(α,β ),b(α,β ),c(α,β ), f (α,β ))

is assumed to be continuous such that the families of functions {a(α,β )}(α,β )∈A×B, {b(α,β )}(α,β )∈A×B,

{c(α,β )}(α,β )∈A×B and { f (α,β )}(α,β )∈A×B are equicontinuous. Moreover, a(α,β )(x) ≥ 0 and f (α,β )(x) ≥ 0
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for any (α,β ) ∈ A×B and x ∈Ω. It follows that all Lα,β are degenerate elliptic and that

sup
(α,β )∈A×B

‖(a(α,β ),b(α,β ),c(α,β ), f (α,β ))‖C(Ω)×C(Ω,Rd)×C(Ω)×C(Ω) < ∞.

For any smooth w we define the Hamiltonian

Hw := inf
β∈B

sup
α∈A

(L(α,β )w− f (α,β )),

assuming that the supremum and the infimum are applied pointwise. We wish to study the Isaacs problems

of the following form:

−∂tv+Hv = 0 in (0,T )×Ω, (5.3a)

v = g on (0,T )×∂Ω, (5.3b)

v = vT on {T}×Ω. (5.3c)

Our aim is to construct a Finite Element Method which approximates the viscosity solution of the Isaacs

problem (5.3). We now formalise what is meant by a viscosity solution throughout this chapter. Firstly, let

us reformulate (5.3) as F = 0 where F is the following differential operator

F(x,q, p,r,s) =


−r+ infβ supα

(
−a(α,β ) q−b(α,β ) · p+ c(α,β ) s− f α(x)

)
on [0,T )×Ω,

s−g(x) on [0,T )×∂Ω,

s− vT (x) on {T}×Ω.

Given a bounded function v : [0,T ]×Ω→ R we define its upper and lower semi-continuous envelopes,

respectively as

v∗(t,x) := limsup
(s,y)→(t,x)

(s,y)∈[0,T ]×Ω

v(s,y)

and

v∗(t,x) := liminf
(s,y)→(t,x)

(s,y)∈[0,T ]×Ω

v(s,y).

We analogously extend the definition of lower- and upper semicontinuous envelopes to F .

Definition 10. A bounded function v is a viscosity supersolution (respectively, subsolution) of (3.3) if, for

any test function ψ ∈C2(R×Rd),

F∗(x,∆ψ(t,x),∇ψ(t,x),∂tψ(t,x),v∗(t,x))≥ 0,
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(respectively,

F∗(x,∆ψ(t,x),∇ψ(t,x),∂tψ(t,x),v∗(t,x))≤ 0,)

provided that v∗−ψ attains a local minimum (respectively, v∗−ψ attains a local maximum) and addi-

tionally v∗ (respectively v∗) satisfies the initial conditions and the boundary conditions on ω ⊆ ∂Ω in the

pointwise sense. A function which is simultaneously a viscosity super- and subsolution of (3.3) is called a

viscosity solution.

Note how the above definition is in spirit similar to Definition 3 but it additionally requires that the

solution satisfies the Dirichlet boundary condition in the pointwise sense on the subset ω of the boundary.

5.3 The numerical method

We consider a sequence Vi, i ∈N of piecewise linear shape-regular finite element spaces. Let us denote the

nodes of the finite element mesh by y`i where ` corresponds to the position on the mesh. The associated hat

functions are denoted φ `
i , i.e. φ `

i ∈ Vi such that φ s
i = 1 at the node ys

i , while φ `
i = 0 for all the remaining

nodes y`i , ` 6= s. Set φ̂ `
i := φ `

i /‖φ `
i ‖L1(Ω). Therefore, the φ `

i are normalised in the L∞ norm whilst the φ̂ `
i are

normalised in the L1 norm.

In order to construct a Finite Element Method which is both stable and consistent, care needs to be taken

when imposing the boundary conditions. Due to the more delicate stability properties of Isaacs operators

compared to for instance Bellman operators, on nonconvex domains a nodal interpolant is not suitable to

map the boundary data onto the approximation space. Instead, given w ∈C(H1(Ω)) and letting V 0
i ⊂Vi be

the subspace of functions which satisfy the homogeneous Dirichlet conditions on ∂Ω, we consider linear

mappings Pi which map w into Vi such that for all φ̂ `
i ∈V 0

i

〈∇Piw,∇φ̂
`
i 〉= 〈∇w,∇φ̂

`
i 〉. (5.4)

If we chose Piw such that it interpolates w on the boundary, then Pi becomes the classical elliptic projection

of the Laplacian, so we will refer to Pi as an elliptic projection from now on, see also [68, Section 4].

Assumption 9. There are linear mappings Pi satisfying (5.4) and there is a constant C ≥ 0 such that for

every w ∈C∞(Rd) and i ∈N,

‖Piw‖W 1,∞(Ω) ≤Cw ‖w‖W 1,∞(Ω) and lim
i→∞
‖Piw−w‖W 1,∞(Ω) = 0. (5.5)

It is shown in [33] that (9) holds when Ω is a bounded convex polyhedral domain inRd , d ∈{2,3}, when

the mesh satisfies a local quasi-uniformity condition and when the test functions vanish on the boundary.

To apply the result for nonconvex domains Ω and general w ∈C∞(R×Rd), consider for example a convex
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polyhedral domain B containing Ω and assume there is a locally quasi-uniform mesh on B which coincides

with the original mesh on Ω. Let η be a smooth cut-off function with compact support in B such that

η ≡ 1 on Ω. Then the classical elliptic projection on B, acting on ηw : B→R, has the required properties.

Given this construction for Pi, it is natural to refer to it as an elliptic projection. This construction provides

on nonconvex domains an approximation of the boundary data, which ensures in particular the stability of

numerical solutions.

Let V g
i ⊂Vi be the the subspace of functions which attain Pig on the boundary. We let the index ` range

over the boundary nodes first, in other words, y`i ∈Ω for `≤ Ni := dimV 0
i .

The mesh size, i.e. the largest diameter of an element, is denoted ∆xi. It is assumed that ∆xi → 0

as i→ ∞. The uniform time step size is denoted hi with the constraint that T/hi ∈ N. It is assumed

that hi → 0 as i→ ∞. Let sk
i be the kth time step at the refinement level i. Then the set of time steps is

Si :=
{

sk
i : k = T/hi, . . . ,0

}
.

The time derivative is approximated by di for which we let the `th entry of diw(sk
i , ·) be

(diw(sk
i , ·))` =

w(sk+1
i ,y`i )−w(sk

i ,y
`
i )

hi
.

For the discretisation of L(α,β ) we allow splitting into an explicit and an implicit part. For each pair (α,β )

and for each i, we introduce the explicit operator E(α,β )
i and the implicit operator I(α,β )

i such that L(α,β ) ≈

E(α,β )
i + I(α,β )

i and

E(α,β )
i : H2(Ω)→ L2(Ω), w 7→ −ā(α,β )

i ∆w− b̄(α,β )
i ·∇w+ c̄(α,β )

i w,

I(α,β )
i : H2(Ω)→ L2(Ω), w 7→ − ¯̄a(α,β )

i ∆w− ¯̄b(α,β )
i ·∇w+ ¯̄c(α,β )

i w.

For each i we require a discretisation f (α,β )
i of f (α,β ) which is non-negative and approximates f (α,β ). We

now want to make the conceptual statements L(α,β ) ≈ E(α,β )
i + I(α,β )

i and f (a,b) ≈ f (α,β )
i more precise.

Assumption 10. For all sequences of nodes (y`i )i∈N, where in general `= `(i) depends on i:

lim
i→∞

sup
(α,β )∈A×B

(∥∥a(α,β )−
(
ā(α,β )

i (y`i )+ ¯̄a(α,β )
i (y`i )

)∥∥
L∞(supp φ̂ `

i )

+
∥∥b(α,β )−

(
b̄(α,β )

i + ¯̄b(α,β )
i

)∥∥
L∞(Ω,Rd)

+
∥∥c(α,β )−

(
c̄(α,β )

i + ¯̄c(α,β )
i

)∥∥
L∞(Ω)

+
∥∥ f (α,β )− f (α,β )

i

∥∥
L∞(Ω)

)
= 0.

The coefficients c̄(α,β )
i and ¯̄c(α,β )

i are non-negative and that there exists γ ∈R such that

‖c̄(α,β )
i ‖L∞ +‖ ¯̄c(α,β )

i ‖L∞ ≤ γ, ∀ i ∈N, ∀(α,β ) ∈ A×B. (5.6)
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The family of mappings

{(ā(α,β )
i , b̄(α,β )

i , c̄(α,β )
i , ¯̄a(α,β )

i , ¯̄b(α,β )
i , ¯̄c(α,β )

i , f α
i ,gα

i )}α∈A

is equicontinuous.

The splitting into explicit and implicit part is used to define the numerical operators E(α,β )
i and I

(α,β )
i as

mappings from H1(Ω) to RNi :

(E
(α,β )
i w)` := ā(α,β )

i (y`i )〈∇w,∇φ̂
`
i 〉+ 〈−b̄(α,β )

i ·∇w+ c̄(α,β )
i w, φ̂ `

i 〉, (5.7a)

(I
(α,β )
i w)` := ¯̄a(α,β )

i (y`i )〈∇w,∇φ̂
`
i 〉+ 〈− ¯̄b(α,β )

i ·∇w+ ¯̄c(α,β )
i w, φ̂ `

i 〉, (5.7b)

(F
(α,β )
i )` := 〈 f (α,β )

i , φ̂ `
i 〉, (5.7c)

where ` ranges over all internal nodes, i.e. `≤Ni. When restricted to the domain Vi, the numerical operators

have matrix representations with respect to the nodal bases {φ `
i }`, which we also denote by E

(α,β )
i and I

(α,β )
i .

Throughout the chapter, we will make use of the partial ordering of Rn: for x, y ∈ Rn, we write x ≥ y

if and only if x` ≥ y` for all ` ∈ {1, . . . ,n}. For collections {xα}
α
⊂ Rn and

{
yβ
}

β
⊂ Rn, we define the

operators supα and infβ componentwise:

(
sup

α

xα
)
`
= sup

α

xα
` and

(
inf
β

yβ
)
`
= inf

β

yβ

` .

We can now state the numerical scheme for finding an approximate solution to (5.3). We initialise the

scheme with the elliptic projection vi(T, ·) = PivT . Then, in order to find the numerical solution vi(sk
i , ·) ∈

V g
i , we proceed inductively over the remaining timesteps k ∈ {T/hi−1, . . . ,0}:

−divi(sk
i , ·)+ inf

β∈B
sup
α∈A

(
E
(α,β )
i vi(sk+1

i , ·)+ I
(α,β )
i vi(sk

i , ·)−F
(α,β )
i

)
= 0. (5.8)

If all I(α,β )
i vanish then (5.8) is an explicit scheme, otherwise it is implicit.

To show the existence and uniqueness of numerical solutions, it is useful to provide an equivalent

reformulation of the scheme. For a function w : Si×Ω→ R that satisfies w(sk
i , ·) ∈ H1(Ω) for all sk

i ∈ Si,

let (α`,k
i (w),β `,k

i (w)) ∈ A×B so that α
`,k
i (w) is a maximiser of (5.9a) and β

`,k
i (w) is a minimiser of (5.9b):

sup
α∈A

(
E
(α,β )
i w(sk+1

i , ·)+ I
(α,β )
i w(sk

i , ·)−F
(α,β )
i

)
`
, (5.9a)

inf
β∈B

(
E
(α

`,k
i (w),β )

i w(sk+1
i , ·)+ I

(α
`,k
i (w),β )

i w(sk
i , ·)−F

(α
`,k
i (w),β )

i

)
`

. (5.9b)
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Let Ik,wi and Ek,w
i be the matrices whose `th row at kth time step is equal to that of

I
(α

`,k
i (w),β `,k

i (w))
i and E

(α
`,k
i (w),β `,k

i (w))
i ,

respectively. Also let the `th entry of Fk,w
i be

(
F
(α

`,k
i (w),β `,k

i (w))
i

)
`

.

Notice that control (α`,k
i (w),β `,k

i (w)) is not necessarily unique. The subsequent analysis is valid regardless

of the choice of the control.

We may reformulate the numerical scheme (5.8) with Ek,w
i , Ik,wi and Fk,w

i as follows. Initialise the scheme

with the elliptic projection of vi(T, ·), then for each k ∈ {T/hi−1, . . . ,1,0}, vi solve

(hiI
k,vi
i + Id)vi(sk

i , ·)+(hiE
k,vi
i − Id)vi(sk+1

i , ·)−hiF
k,vi
i = 0. (5.10)

5.3.1 Consistency properties of elliptic projections

We conclude the section with the consistency properties of linear operators for fixed (α,β ) ∈ A×B. The

result is unchanged from the Bellman setting in [68].

Lemma 6. Let w ∈C∞(R×Rd) and let sk(i)
i → t ∈ [0,T ], y`(i)i → x ∈Ω as i→ ∞. Then

lim
i→∞

diPiw(s
k(i)
i , ·) = ∂tw(t, ·) in W 1,∞(Ω). (5.11)

Also we have that

lim
i→∞

(
E
(α,β )
i Piw(s

k(i)+1
i , ·)+ I

(α,β )
i Piw(s

k(i)
i , ·)−F

(α,β )
i

)
`(i)

= L(α,β )w(t,x)− f (α,β )(x), (5.12)

where convergence to the limit is uniform over all (α,β ) ∈ A×B.

Proof. The proof is analogous to the Hamilton-Jacobi-Bellman case described in [68], once control α ∈ A

is replaced by the pair of controls (α,β ) ∈ A×B.

5.4 Monotonicity

Monotonicity properties of the numerical scheme play a crucial role in ensuring convergence to the viscosity

solution.

Definition 11. An operator F : Vi → RNi is said to satisfy the Local Monotonicity Property (LMP) if for

all v ∈ Vi such that v has a non-positive local minimum at the internal node y`i , we have (Fv)` ≤ 0. The
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operator F satisfies the weak Discrete Maximum Principle (wDMP) provided that for any v ∈Vi,

if
(
Fv
)
`
≥ 0 for all ` ∈ {1, . . . ,Ni}, then min

Ω
v≥min{min

∂Ω

v,0}. (5.13)

Suppose an operator F satisfies the LMP and v ∈ Vi has a negative local minimum at an internal node

y`i , then ((F + εId)v)` < 0 for any positive ε . Therefore F + εId satisfies (wDMP) for any positive ε .

Assumption 11. For each (α,β ) ∈ A×B, we assume that E(α,β )
i , restricted to V 0

i , has non-positive off-

diagonal entries. We assume that hi is small enough so that hiE
(α,β )
i − Id is monotone for every (α,β ),

i.e. so that all entries of all hiE
(α,β )
i − Id are non-positive. For each (α,β ) ∈ A×B, we suppose that I(α,β )

i

satisfies the LMP.

The above assumption puts a restriction on the size of a time step since we require hiE
(α,β )
i − Id to be

monotone.

We now turn to the matrices hiI
k,w
i + Id and hiE

k,w
i − Id which will later be used in the proof of the

well-posedness of the scheme (5.10).

Lemma 7. Consider a w : Si×Ω→R so that w(sk
i , ·)∈H1(Ω) for all sk

i ∈ Si. Then, the matrices hiE
k,w
i − Id

are monotone and the matrices of hiI
k,w
i + Id restricted to V 0

i are diagonally dominant M-matrices. For fixed

w, the operators v 7→ Ik,wi v and v 7→ (hiI
k,w
i + Id)v satisfy, respectively, the LMP and wDMP.

Proof. The proof is analogous to that of [68, Lemma 2.3], once control α ∈ A is replaced by the pair of

controls (α,β ) ∈ A×B.

Corollary 1. The non-linear operators w 7→ Ik,wi w and w 7→ (hiI
k,w
i + Id)w satisfy the LMP and wDMP,

respectively. Moreover, w 7→ −(hiE
k,w
i − Id)w is positive: if w≥ 0 then −(hiE

k,w
i − Id)w≥ 0.

5.4.1 Monotonicity through artificial diffusion

Using the method of artificial diffusion as described in [68] one can ensure that E(α,β )
i and I

(α,β )
i satisfy

Assumption 11, provided the meshes are strictly acute.

Let Ti be the mesh corresponding to the finite element space Vi. Given a function g : Ω→ Rd and an

element K of Ti, we denote

|g|K :=
( d

∑
j=1

∥∥g j
∥∥2

L∞(K)

) 1
2
.

We say that the meshes Ti are strictly acute if there exists ϑ ∈ (0,π/2) such that for all i ∈N:

∇φ
`
i ·∇φ

l
i
∣∣
K≤− sin(ϑ) |∇φ

`
i |K |∇φ

l
i |K ∀`, l ≤ dimVi, ` 6= l, ∀K ∈ Ti. (5.14)

Consider a splitting of the form a(α,β ) = ã(α,β )
i + ˜̃a(α,β )

i , bα = b̄α
i + ¯̄bα

i , cα = c̄α
i + ¯̄cα

i and f (α,β ) = f (α,β )
i ,

where all terms are in C(Ω). Choose non-negative artificial diffusion coefficients ν̄
(α,β ),`
i and ¯̄ν(α,β ),`

i such
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Algorithm 1 Howard’s method

Require: η > 0, k ∈ {0, . . . ,T/hi−1}, w ∈V g
i , (α0,β0) ∈ A×B

1: u← w
2: β ← β0
3: while ‖Ψ(α,β )(u,w)‖ ≥ η do
4: α ← α0
5: while ‖Ψ(α,β )(u,w)‖ ≥ η do
6: u←Φ(α,β )(w)
7: α ← argmaxα ′∈AΨ(α ′,β )(u,w)
8: end while
9: u←Φ(α,β )(w)

10: β ← argminβ ′∈BΨ(α,β ′)(u,w)
11: end while
12: return u

that for all K that have y`i as vertex:

(
|b̄α

i |K +∆xK‖c̄α
i ‖L∞(K)

)
≤ ν̄

(α,β ),`
i sin(ϑ) |∇φ̂

`
i |K vol(K), (5.15a)(

| ¯̄bα
i |K +∆xK‖ ¯̄cα

i ‖L∞(K)

)
≤ ¯̄ν(α,β ),`

i sin(ϑ) |∇φ̂
`
i |K vol(K). (5.15b)

Choose ā(α,β )
i and ¯̄a(α,β )

i both in C(Ω) such that ā(α,β )
i (y`i ) ≥ max

{
ã(α,β )

i (y`i ), ν̄
(α,β ),`
i

}
and ¯̄a(α,β )

i (y`i ) ≥

max
{

˜̃a(α,β )
i (y`i ), ¯̄ν(α,β ),`

i

}
. This way we obtain a new splitting of L(α,β ) into implicit and explicit parts

identified with matrices I(α,β )
i and E

(α,β )
i respectively.

It is shown in [68] that (5.15) implies Assumption 11. Moreover, the splittings a(α,β ) = ã(α,β )
i + ˜̃a(α,β )

i ,

b(α,β ) = b̄(α,β )
i + ¯̄b(α,β )

i , c(α,β ) = c̄(α,β )
i + ¯̄c(α,β )

i and f (α,β ) = f (α,β )
i can always be chosen so that also

Assumption 10 holds.

5.5 Wellposedness and a solution algorithm

In this section we address the existence and uniqueness of numerical solutions and propose a method to

compute them.

Theorem 11. There exists a unique numerical solution vi : Si→V 0
i that solves (5.8).

Proof. Fix k and vi(sk+1
i , ·). Then [14, Theorem 5.2] shows the existence and uniqueness of a solution

vi(sk
i , ·) of (5.8), noting the continuity of (α,β )→ I

(α,β )
i follows from Assumption 10 and the monotonicity

from Assumption 11.

The proof of Theorem 5.2 of [14], which we used here, relies on the exact solution of the inner Bellman

equation (5.9a), which is reached by a Howard’s algorithm in the limit. Using these exact solutions of (5.9a)

in an outer Howard loop yields a sequence whose limit is the solution of (5.8).

To ensure the completion of the algorithm in finite time we require a termination criterion for the inner

and outer loop. In Algorithm 1 (Howard’s method) the termination criterion is posed in terms of a tolerance
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η . The statement of the algorithm also refers to

Ψ
(α,β )(u,w) := (hiI

(α,β )
i + Id)u+(hiE

(α,β )
i − Id)w−hiF

(α,β )
i ,

given u,w ∈V G
i and (α,β ) ∈ A×B. Given just w, we let Φ(α,β )(w) be the solution u of Ψ(α,β )(u,w) = 0.

Note that this means that u is updated as a function of β selected during the previous iteration of the outer

loop.

Suppose that ∑` η` < ∞ and that w` is the function returned by Algorithm 1 with η = η`, w = vi(sk+1
i , ·)

and a fixed (α0,β0) ∈ A×B. Then Theorem 5.4 of [14] ensures that the w` exist and converge to the unique

numerical solution vi(sk
i , ·) as `→ ∞.

5.6 Stability

For the Hamilton-Jacobi-Bellman equations one can bound the value function by the solution of any linear

evolution problem associated to a fixed control (α,β ) ∈ A×B. In contrast the value function of an Isaacs

equation may lie in part above and in part below the solution of such a linear problem. Instead combinations

of such linear operators need to be considered in order to bound the value function. This difference between

the Bellman and Isaacs equations extends to the proof of stability of numerical solutions. We begin by

adapting [68, Lemma 3.2].

Lemma 8. One has ‖(hiI
w
i + Id)−1‖∞ ≤ 1 and ‖hiE

w
i − Id‖∞ ≤ 1 for all i ∈N and w ∈Vi, where the norms

are the matrix ∞-norms.

Proof. Define v = ∑
dimVi
`=1 φ `

i ≡ 1, and v0 = ∑
Ni
`=1 φ `

i ∈V 0
i . By Lemma 7, hiI

w
i + Id is an invertible M-matrix

on V 0
i . Thus, (hiI

w
i + Id)−1 ≥ 0 entrywise, so

‖(hiI
w
i + Id)−1‖∞ = max

1≤`≤Ni

Ni

∑
j=1

(hiI
w
i + Id)−1

` j = max
1≤`≤Ni

(
(hiI

w
i + Id)−11

)
`
, (5.16)

where 1 ∈RNi is the vector with all entries equal to 1. Since ∇v≡ 0 (as v≡ 1) we have for each 1≤ `≤ Ni

that

((hiI
w
i + Id)v)` = 1+hi〈 ¯̄c(α

`
i (w),β

`(w))
i , φ̂ `

i 〉 ≥ 1,

where we have used non-negativity of ¯̄cα
i and defined (α`

i (w),β
`(w)) analogously to (α`,k

i (w),β `,k
i (w)) in

(5.9). Moreover, since 1≤ `≤ Ni and Iwi satisfies the LMP,

(
(hiI

w
i + Id)v

)
`
=
(
(hiI

w
i + Id)v0

)
`
+

dimVi

∑
j=Ni+1

(hiI
w
i )` j︸ ︷︷ ︸
≤0

≤
(
(hiI

w
i + Id)v0

)
`
.

Because (hiI
w
i + Id)v≥ 1, we obtain (hiI

w
i + Id)v0 ≥ 1. So, after applying (hiI

w
i + Id)−1 to both sides of this
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inequality, inverse positivity of hiI
w
i + Id gives 1≡ v≥ v0 ≥ (hiI

w
i + Id)−11 on Ω. This inequality and (5.16)

imply ‖(hiI
w
i + Id)−1‖∞ ≤ 1.

One has ‖hiE
w
i − Id‖∞ = max1≤`≤Ni

(
−(hiE

w
i − Id)v0

)
`

because all entries of the matrix hiE
w
i − Id are

non-positive. For each 1≤ `≤ Ni,

(
(hiE

w
i − Id)v

)
`
=
(
(hiE

w
i − Id)v0

)
`
+

dimVi

∑
j=Ni+1

(hiE
w
i )` j ≤

(
(hiE

w
i − Id)v0

)
`
,

so

(−(hiE
w
i − Id)v0)` ≤ (−(hiE

w
i − Id)v)` = 1−hi〈c̄(α

`
i (w),β

`(w))
i , φ̂ `

i 〉 ≤ 1

because c̄(α
`
i (w),β

`(w))
i ≥ 0 where c̄(α

`
i (w),β

`(w))
i is defined analogously to ¯̄c(α

`
i (w),β

`(w))
i above. Therefore,

−(hiE
w
i − Id)v0 ≤ 1. So ‖hiE

w
i − Id‖∞ ≤ 1.

Theorem 12. The numerical solutions vi are uniformly bounded in the L∞ norm:

‖vi‖L∞(Si×Ω) ≤‖PivT‖L∞(Ω)+‖Pig‖L∞(Ω)

+T sup
(α,β )

[(
‖ā(α,β )

i ‖L∞(Ω)+‖ ¯̄a(α,β )
i ‖L∞(Ω)

)
‖g‖W 2,∞(Ω)

+
(
‖b̄(α,β )

i ‖L∞(Ω)+‖ ¯̄b(α,β )
i ‖L∞(Ω)

)
‖Pig‖W 1,∞Ω)

+
(
‖c̄(α,β )

i ‖L∞(Ω)+‖ ¯̄c(α,β )
i ‖L∞(Ω)

)
‖Pig‖L∞(Ω)+‖ f (α,β )

i ‖L∞(Ω)

]
.

Proof. We split the numerical solution into two parts

vi(sk
i , ·) = v0

i (s
k
i , ·)+gi, PivT = v0

T +gi,

where v0
i (s

k
i , ·) ∈V 0

i and gi = Pig ∈V g
i . Then (5.10) becomes

0 =(hiI
k,vi
i + Id)(v0

i (s
k
i , ·)+gi)+(hiE

k,vi
i − Id)(v0

i (s
k+1
i , ·)+gi)−hiF

k,vi
i

or equivalently

v0
i (s

k
i , ·) = (hiI

k,vi
i + Id)−1(hiF

k,vi
i −hi(I

k,vi
i +Ek,vi

i )gi− (hiE
k,vi
i − Id)v0

i (s
k+1
i , ·)

)
.
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Using (5.4), we find

‖(Ik,vi
i +Ek,vi

i )gi‖L∞(Ω) ≤
(
‖ā(α,β )

i ‖L∞(Ω)+‖ ¯̄a(α,β )
i ‖L∞(Ω)

)
‖g‖W 2,∞(Ω)

+
(
‖b̄(α,β )

i ‖L∞(Ω)+‖ ¯̄b(α,β )
i ‖L∞(Ω)

)
‖gi‖W 1,∞Ω)

+
(
‖c̄(α,β )

i ‖L∞(Ω)+‖ ¯̄c(α,β )
i ‖L∞(Ω)

)
‖gi‖L∞(Ω).

Now an application of Lemma 8 and inductive argument over the timesteps complete the proof.

5.7 Sub- and supersolutions and uniform convergence

Recall the definition of the upper and lower semi-continuous envelopes v∗ and v∗ of a function v and consider

their numerical equivalent defined as follows

v∗(t,x) = sup
(sk

i ,y
`
i )→(t,x)

limsup
i→∞

vi(sk
i ,y

`
i ), v∗(t,x) = inf

(sk
i ,y

`
i )→(t,x)

liminf
i→∞

vi(sk
i ,y

`
i ). (5.17)

Owing to Theorem 11 and Corollary 12, v∗ and v∗ attain finite values. By construction, v∗ is upper and v∗

lower semi-continuous and v∗ ≤ v∗.

Theorem 13. The function v∗ is a viscosity subsolution of (5.3a) and v∗ is a viscosity supersolution of

(5.3a).

Proof. We show that v∗ is a subsolution. That v∗ is a supersolution follows analogously up to an asymmetry

in the sign of γ |µi| in (5.20). Suppose that w ∈C∞(R×Rd) is a test function such that v∗−w has a strict

local maximum at (s,y) ∈ (0,T )×Ω, with v∗(s,y) = w(s,y). Then following the argument in [68] there

exists a sequence
{

sk
i ,y

`
i
}

i such that

vi(sk
i ,y

`
i )−Piw(sk

i ,y
`
i )→ v∗(s,y)−w(s,y) = 0 (5.18)

and

vi(sκ
i ,y

λ
i )−Piw(sκ

i ,y
λ
i )≤ vi(sk

i ,y
`
i )−Piw(sk

i ,y
`
i ) ⇔ Piw(sκ

i ,y
λ
i )+µi ≥ vi(sκ

i ,y
λ
i ), (5.19)

where κ ∈ {k,k+1}, yλ
i ∈ supp φ̂ `

i and µi = vi(sk
i ,y

`
i )−Piw(sk

i ,y
`
i ). Notice that µi→ 0 as i→ ∞ because of

(5.18).

As in [68] we conclude that

(
(hiE

(α,β )
i − Id)

[
Piw(sk+1

i , ·)+µi

])
`
≤
(
(hiE

(α,β )
i − Id)vi(sk+1

i , ·)
)
`
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and (
(hiI

(α,β )
i + Id)

[
Piw(sk

i , ·)+µi

])
`
≤
(
(hiI

(α,β )
i + Id)vi(sk

i , ·)
)
`
.

From the definition of the scheme (5.8),

0 =−divi(sk
i ,y

`
i )+ inf

β∈B
sup
α∈A

(
E
(α,β )
i vi(sk+1

i , ·)+ I
(α,β )
i vi(sk

i , ·)−F
(α,β )
i

)
`

≥−di

(
Piw(sk

i ,y
`
i )+µi

)
+ inf

β∈B
sup
α∈A

(
E
(α,β )
i

(
Piw(sk+1

i , ·)+µi

)
+ I

(α,β )
i

(
Piw(sk

i , ·)+µi

)
−F

(α,β )
i

)
`

=−diPiw(sk
i ,y

`
i )

+ inf
β∈B

sup
α∈A

[(
E
(α,β )
i Piw(sk+1

i , ·)+ I
(α,β )
i Piw(sk

i , ·)−F
(α,β )
i

)
`
+µi〈c̄(α,β )

i + ¯̄c(α,β )
i , φ̂ `

i 〉
]

≥−diPiw(sk
i ,y

`
i )+ inf

β∈B
sup
α∈A

(
E
(α,β )
i Piw(sk+1

i , ·)+ I
(α,β )
i Piw(sk

i , ·)−F
(α,β )
i

)
`
− γ |µi| . (5.20)

Using

∣∣∣∣∣ inf
β∈B

sup
α∈A

(
E
(α,β )
i Piw(sk+1

i , ·)+ I
(α,β )
i Piw(sk

i , ·)−F
(α,β )
i

)
`
− inf

β∈B
sup
α∈A

(
L(α,β )w(s,y)− f (α,β )(y)

)∣∣∣∣∣
≤ sup

(α,β )∈A×B

∣∣∣(E(α,β )
i Piw(sk+1

i , ·)+ I
(α,β )
i Piw(sk

i , ·)−F
(α,β )
i

)
`
−
(

L(α,β )w(s,y)− f (α,β )(y)
)∣∣∣ ,

the result of Lemma 6 and the fact that µi → 0 we take the limit i→ ∞ in inequality (5.20) and conclude

that

0≥−∂tw(s,y)+ inf
β∈B

sup
α∈A

(
L(α,β )w(s,y)− f α,β (y)

)
. (5.21)

Hence v∗ is a viscosity subsolution.

Lemma 9. The sub and supersolutions v∗ and v∗ satisfy

v∗(T, ·) = v∗(T, ·) = vT on Ω. (5.22)

Proof. The proof is identical to the Hamilton-Jacobi-Bellman case described in [68] once control α ∈ A is

replaced by the pair of controls (αvi(`),β vi(`)) ∈ A×B similarly as in the proof of Lemma 8.

Assumption 12. Let v be a lower semi-continuous supersolution with v(T, ·) = vT . Similarly, let v be an

upper semi-continuous subsolution with v(T, ·) = vT . Let max(−∂tv+Hv,v−g(t,x)) ≥ 0 for all (t,x) ∈

[0,T ]×∂Ω and let min(−∂tv+Hv,v−g(t,x))≤ 0 for all (t,x) ∈ [0,T ]×∂Ω. Then v≤ v.

Theorem 14. One has v∗ = v∗ = v, where v is the unique viscosity solution of equation (5.3) with v(T, ·) =
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vT . Furthermore

lim
i→∞
‖vi− v‖L∞((0,T )×Ω) = 0. (5.23)

Proof. The proof is identical to the Hamilton-Jacobi-Bellman case described in [68].

5.8 Boundary conditions

The Dirichlet conditions for Isaacs equations are most commonly imposed in one of two ways: either in the

classical sense, by requiring that the solution attains the Dirichlet data at all points or in the viscosity sense

meaning that the solution is a sub- and supersolution defined through subtractive testing.

For the proof of the stability of the scheme we assume the existence of two families of barrier functions

(ζy,ε)ε>0 and (ξy,ε)ε>0 corresponding to the sets of super- and subsolutions respectively. They will be used

in order to prove that the envelopes of the numerical solutions satisfy the Dirichlet boundary conditions in

a pointwise sense in the boundary region ω . This ω also appears in the comparison principle provided with

Assumption 12, where ω characterises the set on which the boundary conditions are imposed pointwise.

Let s = ϑsk
i +(1−ϑ)sk+1

i ∈ [sk
i ,s

k+1
i ] lie between two time steps, ϑ ∈ [0,1]. Then we interpret vi(s, ·)

as the linear interpolant between vi(sk
i , ·) and vi(sk+1

i , ·):

vi(s, ·) = ϑvi(sk
i , ·)+(1−ϑ)vi(sk+1

i , ·). (5.24)

Assumption 13. Let ω ⊆ ∂Ω. Let us assume the following:

1. Family of upper barriers

For each y∈ω there exists a family of smooth barrier functions (ζy,ε)ε>0 such that for all ε , t ∈ [0,T ]

and i > 0, a minimiser over {t}×Ω of vi−Piζy,ε lies on {t}×∂Ω. Let qt,y,ε be a minimiser of g−ζy,ε

over {t}×∂Ω. Then, limε→0 qt,y,ε = y and limε→0 ζy,ε(t,y)−ζy,ε (t,qt,y,ε)≥ 0.

2. Family of lower barriers

For each y∈ω there exists a family of smooth barrier functions (ξy,ε)ε>0 such that for all ε , t ∈ [0,T ]

and i > 0, a maximiser over {t}×Ω of vi−Piξy,ε lies on {t}×∂Ω. Let rt,y,ε be a maximiser of g−ξy,ε

over {t}×∂Ω. Then, limε→0 rt,y,ε = y and limε→0 ξy,ε(t,y)−ξy,ε (t,rt,y,ε)≤ 0.

Note that a minimiser (maximiser) over {t}×Ω of vi−Piζy,ε (resp.,vi−Piξy,ε) is necessarily attained

at a time node since vi−Piζy,ε (resp.,vi−Piξy,ε) is piecewise linear in time. In order to understand the

connection between convergence of the envelopes to the boundary conditions and the barrier functions let

us consider the following example.



85

Example 1. We study a one-dimensional test problem with the homogenous boundary conditions:

−∂tu+Lu−1 = 0, in (0,T )× (0,1),

u =


x−1 x 6= 0

0 x = 0,
on {T}× [0,1],

where Lu = ∇u. In order to find solution we use a fully implicit numerical scheme with artificial diffusion.

The exact solution of −ut −υ∆u+∇u−1 = 0, interpreting υ as the artificial diffusion coefficient, is:

vυ(t,x) = x−1− 1

−1+ e
1
υ

+
e

1−x
υ

−1+ e
1
υ

.

For a fixed υ we can choose ∆x small enough such that the numerical solution ṽυ with artificial diffusion υ

and uniform mesh with meshsize ∆x satisfies ‖ṽυ − vυ‖W 1,∞ < υ . We note that vυ attains its minimum at

xmin = 1+υ log

 1

υ

(
e

1
υ −1

)


with minimal value equal to

vυ(t,xmin) =
1

1− e
1
υ

+υ

1+ log

 1

υ

(
e

1
υ −1

)
 .

In particular, it follows that xmin→ 0 and vυ(t,xmin)→−1 as υ→ 0. Since ‖ṽυ − vυ‖W 1,∞ <υ , we conclude

that the sequence of numerical solutions ṽυ has the upper semi-continuous envelope

v∗(t,x) =


x−1 x 6= 0,

0 x = 0.
(5.26)

However, since v∗ has a discontinuity at 0, there cannot exist a C∞ barrier function as described in As-

sumption 13. As we decrease υ , vυ and hence ṽυ can have arbitrarily large gradient in the vicinity of the

boundary. As a result, for any barrier function ζ there exists i for which minimum of Piζy,ε− ṽυ does not lie

on the boundary for all ε > 0. Note that we can construct both upper and lower barrier functions at x = 1,

e. g. ζ1 = x2 and ξ1 = (x−1)2.

Lemma 10. Given Assumption 13, we have v∗(t,x) = v∗(t,x) = g(t,x) for all (t,x) ∈ [0,T ]×ω .

Proof. We focus on the case of v∗(t,x) as the other case follows analogously. Let y ∈ ω . By Assumption

13 we have that

lim
ε→0

rt,y,ε = y.
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Consider a sequence (sk
i ,y

`
i )→ (t,y) as i→ ∞. We have that

limsup
i→∞

vi(sk
i ,y

`
i ) = lim

i→∞
Piξy,ε(sk

i ,y
`
i )+ limsup

i→∞

[vi(sk
i ,y

`
i )−Piξy,ε(sk

i ,y
`
i )]

≤ξy,ε(t,y)+ limsup
i→∞

sup
z∈∂Ω

[vi(sk
i ,z)−Piξz,ε(sk

i ,z)]

=ξy,ε(t,y)+ limsup
i→∞

sup
z∈∂Ω

[Pig(sk
i ,z)−Piξy,ε(sk

i ,z)]

=ξy,ε(t,y)+ limsup
i→∞

sup
z∈∂Ω

[
Pig(t,z)−Piξy,ε(t,z)

+
(

Pig(sk
i ,z)−Pig(t,z)

)
−
(

Piξy,ε(sk
i ,z)−Piξy,ε(t,z)

)]
(a)
=ξy,ε(t,y)+ limsup

i→∞

sup
z∈∂Ω

[Pig(t,z)−Piξy,ε(t,z)]

=ξy,ε(t,y)+ limsup
i→∞

sup
z∈∂Ω

[(g(t,z)−ξy,ε(t,z))

+(Pig(t,z)−g(t,z))− (Piξy,ε(t,z)−ξy,ε(t,z))]

(b)
=ξy,ε(t,y)+ limsup

i→∞

sup
z∈∂Ω

[g(t,z)−ξy,ε(t,z)]

(c)
=ξy,ε(t,y)+g(t,rt,y,ε)−ξy,ε(t,rt,y,ε), (5.27)

where we get (a) due to Lipschitz continuity of g and ξy,ε in time, (b) due to L∞ convergence of Pig(t,z) and

Piξy,ε(t,z) as i→∞ and (c) due to the definition of rt,y,ε . By Assumption 13 we have that limε→0 ξy,ε(t,y)−

ξy,ε (t,rt,y,ε)≤ 0 for any t ∈ [0,T ], so we can conclude that

limsup
i→∞

vi(sk
i ,y

`
i )≤ g(t,y), (5.28)

as ε → 0. The proof concludes by completing a similar calculation for liminfi→∞ vi(sk
i ,y

`
i ). This gives us:

g(t,y)≥ limsup
i→∞

vi(sk
i ,y

`
i )≥ liminf

i→∞
vi(sk

i ,y
`
i )≥ g(t,y),

and the final result follows.

5.9 Construction of barrier functions

In order to justify Assumption 13 we now present settings for the construction of barrier functions. First,

we introduce a method for ensuring the existence of barrier functions for the simpler case of uniformly

parabolic operators on a convex domain for fully implicit numerical schemes. After that we show the

extension to general IMEX schemes and allow non-convex domains as well as degenerate operators.

We will focus on constructing lower barrier functions ξ , since the argument for upper barrier functions

ζ is symmetric and follows by changing the direction of inequalities and exchanging sup and inf operators
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where required.

5.9.1 Barrier functions for uniformly parabolic equations on convex domains

We assume the existence of a function ξ ∈ {w ∈W 1,∞([0,T ]×Ω) : ∆ξ ∈ L∞} which solves

−λ∆ξ = M+ γ1‖∇ξ‖L∞(Rd ,Ω)+ γ2‖ξ‖∞ on Ω, (5.29a)

ξ = g on ∂Ω, (5.29b)

where

γ1 := sup
(sk

i ,y
`
i )→(t,x)

(α,β )∈A×B

‖b̄(α,β )
i + ¯̄b(α,β )

i ‖∞, γ2 := sup
(sk

i ,y
`
i )→(t,x)

(α,β )∈A×B

‖c̄(α,β )
i + ¯̄c(α,β )

i ‖∞

and

λ := inf
i∈N

(α,β )∈A×B

ā(α,β )
i + ¯̄a(α,β )

i , M := max
{

λ‖vT‖∞, sup
i,α,β

F
(α,β )
i (y`i )+1

}
.

The Dirichlet boundary conditions of (5.29b) are imposed in the strong sense. Because g does not depend

on time it is clear that ξ is constant in t. We shall therefore often write ξ (x) instead of ξ (t,x). The function

ξ is used as barrier for all y ∈ ω and ε > 0: ξy,ε := ξ .

We assume in this subsection that Ω is convex. Then, as outlined below Assumption 9, we can construct

Pi so that Piξ interpolates ξ on the boundary. Furthermore, we require for the construction of this section

that ∆vT ∈ L∞(Ω) and vT = g on ∂Ω.

To show that a maximum of

vi(sk
i , ·)−Piξ (x)

over sk
i ×Ω is attained on the boundary for all sk

i we use that the hiI
k,vi
i + Id are M-matrices. Hence it is

enough to prove that

(
(hiI

k,vi
i + Id)(Piξ − vi(sk

i , ·))
)
`
≥ 0 ∀`≤ Ni. (5.30)

Fully implicit numerical scheme

For the sake of clarity, we begin with a fully implicit numerical scheme of the form

(hiI
k,vi
i + Id)vi(sk

i , ·)− vi(sk+1
i , ·)−hiF

k,vi
i = 0. (5.31)

Recall how (αk,`
i (vi),β

k,`
i (vi)) ∈ A×B is a pair of controls such that α

k,`
i (vi) is a maximiser of (5.9a) and

β
k,`
i (vi) is a minimiser of (5.9b) for w = vi. Noting that −〈∆ξ , φ̂ `

i 〉= 〈∇Piξ ,∇φ̂ `
i 〉 is positive due to (5.29),
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we find that

(
(hiI

k,vi
i + Id)(Piξ )

)
`

= (Piξ )`−hi ¯̄a(α
vi(`),β vi(`))

i (y`i )〈∆ξ , φ̂ `
i 〉

+hi〈− ¯̄b(α
vi(`),β vi(`))

i ·∇Piξ + ¯̄c(α
vi(`),β vi(`))

i Piξ , φ̂
`
i 〉

= (Piξ )`−hi ¯̄a(α
vi(`),β vi(`))

i (y`i )〈∆ξ , φ̂ `
i 〉

+hi〈− ¯̄b(α
vi(`),β vi(`))

i ·∇ξ + ¯̄c(α
vi(`),β vi(`))

i ξ , φ̂ `
i 〉

+hi〈− ¯̄b(α
vi(`),β vi(`))

i ·∇(Piξ −ξ )+ ¯̄c(α
vi(`),β vi(`))

i (Piξ −ξ ), φ̂ `
i 〉

≥ (Piξ )`+hi〈−λ∆ξ − γ1‖∇ξ‖∞− γ2‖ξ‖∞, φ̂
`
i 〉

−hi (γ1‖∇Piξ −∇ξ‖∞ + γ2‖Piξ −ξ‖∞)

(5.29)
= (Piξ )`+hiM−hi (γ1‖∇Piξ −∇ξ‖∞ + γ2‖Piξ −ξ‖∞) .

Furthermore, there is a î ∈N such that for all i≥ î.

sup
i

γ1‖∇Piξ −∇ξ‖∞ + γ2‖Piξ −ξ‖∞ ≤ 1

Assuming i≥ î for the remainder of the section, and using the definition of M

(
(hiI

k,vi
i + Id)(Piξ )

)
`
≥ (Piξ )`+hi sup

j,α,β

F
(α,β )
j (y`j).

Recall that ξ (x) = ξ (sk
i ,x) = ξ (sk+1

i ,x). With the numerical scheme (5.31) we obtain

(
(hiI

k,vi
i + Id)(Piξ − vi(sk

i , ·))
)
`
≥ (Piξ )`− vi(sk+1

i ,y`i ). (5.32)

Because both (Piξ )` and vi(sk
i ,y

`
i ) interpolate g on ∂Ω, it follows Piξ−vi(sk

i , ·)∈V 0
i . Owing to the M-matrix

property of hiI
k,vi
i + Id,

(Piξ )`− vi(sk+1
i ,y`i )≥ 0 (5.33)

thus implies condition (5.30). Hence, by induction, (5.30) holds for all k as soon as (5.33) is shown at the

final time sk+1
i = T .

From (5.29) we know that −λ∆ξ ≥M. Then, using vi(T, ·) = PivT and λ > 0,

〈∇
(
Piξ

T − vi(T, ·)
)
,∇φ̂

`
i 〉=−〈∆(ξ − vT ), φ̂

`
i 〉

≥ 〈M/λ +∆vT , φ̂
`
i 〉 ≥M/λ −‖∆vT‖∞.
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The definition of M ensures that M
λ
≥ ‖∆vT‖∞. Using M-matrix property of the discrete Laplacian formed

with respect to the nodal basis {φ̂ `
i }` we obtain (5.33) at the final time.

At this point we proved that the maximum of vi(sk
i , ·)−Piξ lies on the boundary as required. It remains

to show that for t ∈ [0,T ] we can select a maximiser rt,y,ε of g−ξy,ε over {t}×∂Ω such that limε→0 rt,y,ε = y

and limε→0 ξy,ε(t,y)− ξy,ε (t,rt,y,ε) ≤ 0. Because ξ attains g on whole the boundary, rt,y,ε := y is already

such a choice.

IMEX numerical schemes

We now extend the above argument to general numerical schemes as defined in (5.10). Choosing γ1,γ2,λ

and M as above, the inequality (5.32) generalises in the IMEX setting to

(
(hiI

k,vi
i + Id)(Piξ − vi(sk

i , ·))
)
`
≥−

(
(hiE

k,vi
i − Id)(Piξ − vi(sk+1

i , ·))
)
`
.

According to Lemma 7 we have −(hiE
k,vi
i − Id)≥ 0. Therefore, if

Piξ − vi(sk+1
i , ·))≥ 0

implies (5.30). At this point the induction of the previous subsection can be adapted to show that maxima

are attained on the boundary. Setting rt,y,ε := y completes the construction.

5.9.2 Barrier functions for degenerate equations and general domains

We now want to remove the two main assumptions of section 5.9.1, namely the requirements that the

differential operator is uniformly parabolic and that the domain is convex.

We form ω of the y for which it is possible to ensure the existence of strict supersolutions in the follow-

ing sense: for all ε > 0 one can find a ξy,ε satisfying

sup
α

−a(α,β )
∆ξy,ε −b(α,β )·∇ξy,ε + c(α,β )

ξy,ε − f (α,β ) ≥ ε on Ω (5.34)

for all β ∈C(Ω;A) as well as

sup
ε>0

(‖∆ξy,ε‖+
∥∥ξy,ε

∥∥
W 1,∞(Ω)

)< ∞

and

vT −ξy,ε ≤−2ε on Ω\By(δ (ε)), (5.35a)

vT −ξy,ε ≤− ε on Ω∩By(δ (ε)), (5.35b)

vT (y)−ξy,ε(y)>−2ε, (5.35c)
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where By(δ (ε)) is the ball centred at y with radius δ (ε)> 0, which in turn is a positive parameter depending

on ε . Observe that vT |∂Ω = g|∂Ω and therefore (5.35) also provides control on the boundary, due to g and

ξy,ε being time independent. It ensures that the maximum of y− ξy,ε is attained in the vicinity of y and is

non-positive. We can view (5.34) as generalisation of (5.29a) because ξ of (5.29a) is a strict supersolution

of L(α,β )w− f (α,β ) = 0 for all α ∈ A, β ∈ B.

In light of Assumptions 9 and 10, we may choose î such that

C1(î)(‖∆ξy,ε‖+
∥∥ξy,ε

∥∥
W 1,∞(Ω)

)+C2 sup
i≥î

∥∥Piξy,ε −ξy,ε
∥∥

W 1,∞(Ω)
≤ ε. (5.36)

where

C1(î) := sup
(α,β )∈A×B

i≥î

(
sup
`

∥∥a(α,β )−
(
ā(α,β )

i (y`i )+ ¯̄a(α,β )
i (y`i )

)∥∥
L∞(supp φ̂ `

i )

+
∥∥b(α,β )−

(
b̄(α,β )

i + ¯̄b(α,β )
i

)∥∥
L∞(Ω,Rd)

+
∥∥c(α,β )−

(
c̄(α,β )

i + ¯̄c(α,β )
i

)∥∥
L∞(Ω)

+
∥∥ f (α,β )− f (α,β )

i

∥∥
L∞(Ω)

)
and

C2 := max
{

1, sup
(α,β )
i∈N

‖ā(α,β )
i + ¯̄a(α,β )

i ‖∞ +‖b̄(α,β )
i + ¯̄b(α,β )

i ‖∞ +‖c̄(α,β )
i + ¯̄c(α,β )

i ‖∞

}
.

Recall the definition of (αk,`
i (w),β k,`

i (w)) ∈ A×B in (5.9). For the sake of readability, we write β̂ in

place of β
k,`
i (Piξy,ε−vi) and α̂ in place of α

k,`,β̂
i (Piξy,ε−vi) in this section, i.e. α̂ and β̂ are optimal choices

when evaluating the numerical operator at Piξy,ε − vi.

Then the numerical method, applied to Piξ
k+1− vi with the control of the infimum frozen at Piξy,ε − vi,

returns at the node y`i

(
(hiI

(α̂,β̂ )
i + Id)(Piξy,ε − vi(sk

i , ·))+(hiE
(α̂,β̂ )
i − Id)(Piξy,ε − vi(sk+1

i , ·))
)
`

=hi
(
−(ā(α̂,β̂ )

i (y`i )+ ¯̄a(α̂,β̂ )
i (y`i ))〈∆ξy,ε , φ̂

`
i 〉−〈(b̄

(α̂,β̂ )
i + ¯̄b(α̂,β̂ )

i ) ·∇Piξy,ε , φ̂
`
i 〉

+ 〈(c̄(α̂,β̂ )
i + ¯̄c(α̂,β̂ )

i )Piξy,ε − f (α̂,β̂ )
i , φ̂ `

i 〉
)

≥ hi 〈−a(α̂,β̂ )
∆ξy,ε −b(α̂,β̂ ) ·∇ξy,ε + c(α̂,β̂ )

ξy,ε − f (α̂,β̂ ), φ̂ `
i 〉−hi ε

≥0.

We conclude with Lemma 7 that

Piξy,ε − vi(sk+1
i , ·)≥ 0 (5.37)



91

implies, for `≤ Ni,

(
(hiI

(α̂,β̂ )
i + Id)(Piξy,ε − vi(sk

i , ·))
)
`
≥
(
−(hiE

(α̂,β̂ )
i − Id)(Piξy,ε − vi(sk+1

i , ·))
)
`
≥ 0.

Because unlike in the case of subsection 5.9.1 the functions Piξy,ε−vi(sk
i , ·) do not vanish on the bound-

ary we need to extend this result to the case when Ni < ` ≤ dimVi. Owing to (5.36) and (5.35b) we know

that (5.37) also holds on the boundary for all time steps sk+1
i . Furthermore, (5.35b) implies that (5.37) is

satisfied on all of Ω at the final time sk+1
i = T . In summary we have the induction step that if (5.37) on Ω

then Piξy,ε − vi(sk
i , ·)≥ 0 on Ω and the induction base to guarantee that the maximum of

vi(sk
i , ·)−Piξ (x)

over sk
i ×Ω is attained on the boundary for all sk

i .

It remains to show that for t ∈ [0,T ] we can select a maximiser rt,y,ε of g−ξy,ε over {t}×∂Ω such that

limε→0 rt,y,ε = y and limε→0 ξy,ε(t,y)−ξy,ε (t,rt,y,ε)≤ 0. The former holds because of (5.35a) and (5.35c),

while the latter follows from (5.35b).

Similarly we assume the existence of strict subsolutions in the following sense: For all y ∈ ω and ε > 0

one can find a ζy,ε satisfying

inf
β

−a(α,β )
∆ζy,ε −b(α,β )·∇ζy,ε + c(α,β )

ζy,ε − f (α,β ) ≤−ε on Ω

for all α ∈C(Ω;A) as well as

sup
ε>0

(‖∆ζy,ε‖+
∥∥ζy,ε

∥∥
W 1,∞(Ω)

)< ∞

and

vT −ζy,ε ≥ 2ε on Ω\By(δ (ε)),

vT −ζy,ε ≥ ε on Ω∩By(δ (ε)),

vT (y)−ζy,ε(y)< 2ε.

5.10 Numerical experiments

In this section we present two numerical experiments showing the viability and an interesting use case of the

presented method. In the first experiment, we analyse convergence rates of a fully nonlinear second order

Isaacs problem with a known solution and we confirm at least linear convergence in L2, L∞ and H1 norms.

In the second experiment we calculate the value function of a stochastic tag-chase game with asymmetric

velocities and vanishing diffusion on a nonconvex domain.
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Isaacs problem with the exact solution

We start by considering a problem with a manufactured solution in order to have a look at the rates of con-

vergence. Let us consider a spatial domain Ω inR2 which is an equilateral triangle with vertices (±
√

3, 1
2 )

and (0,1). We will study the following Isaacs problem:

−vt − inf
β∈[ 1

4 ,
1
2 ]
{β
√

x2 + y2

T − t +1
∆v+

1
2

1√
T − t +1

|∇v|}=−1
2

√
x2 + y2

(T − t +1)3/2 . (5.38)

We can see that (5.38) is indeed an Isaacs problem by using the fact that Euclidean norm of the gradient

may be defined alternatively as

|∇v|= sup
{α∈R2:|α|=1}

{α ·∇v}.

One can now verify through a direct calculation that the function

v(x,y, t) = exp

−
√

x2 + y2

T − t +1

+

√
x2 + y2

T − t +1

solves (5.38) exactly. Our numerical scheme still requires the boundary and final-time data which we obtain

by interpolation of the exact solution v. The numerical solution is then acquired for the time interval [0,1).

We split the scheme in such a way that the advection term is treated explicitly. Note that in order to

ensure the monotonicity of the scheme we may need to introduce some diffusion into explicit terms. In

order to improve the rate of convergence it was done locally, i.e. on a node-wise basis. In case the naturally

occurring diffusion at the node is not sufficient, we introduce the artificial diffusion. This approach leads

to higher values of the artificial diffusion around the origin where degeneracy of the differential operator

occurs, while for the majority of nodes in the mesh it is zero or almost zero. We choose the largest timestep

guaranteeing the monotonicity of the method which leads to O(hi) = O(∆xi). If any amount of the diffusion

is left after ensuring the monotonicity of explicit operators, it is treated implicitly.

The stability of the scheme is reflected on Figure 5.1 which plots errors at t = 0 for different mesh sizes.

The rates of convergence are as follows:

∆x L∞ Rate L2 Rate H1 Rate

0.4330 1.364e-02 0.66 7.062e-03 0.96 6.792e-02 0.91

0.2165 1.040e-02 0.91 3.695e-03 0.78 3.737e-02 0.98

0.1083 5.715e-03 1.01 2.361e-03 0.93 1.899e-02 1.01

0.0541 2.838e-03 1.07 1.266e-03 1.02 9.391e-03 1.03

0.0271 1.330e-03 1.10 6.234e-04 1.06 4.581e-03 1.03

0.0135 6.034e-04 1.11 2.941e-04 1.07 2.223e-03 1.03

0.0068 2.708e-04 1.374e-04 1.082e-03
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Figure 5.1: Approximation error of Experiment 1

The Tag-Chase Game with random noise

Imagine two players moving on R2 plane. One player is the pursuer (we will denote him by P) and tries

to catch the other one, who is the evader (we will denote him by E). The pursuer moves with speed vP

while the evader moves with speed vE . Both of them are allowed to choose their direction freely. In other

words, their sets of admissible controls are the unit circle. Additionally, some choices of a direction for

the pursuer and the evader may be subject to a random noise behaving like a standard Brownian motion.

Having specified the setting we are able to formulate the dynamics explicitly as follows



dxP
1 = (vP)1 sin(β )dt +σ

(α,β )
P (xP

1 )dW(1,P)

dxP
2 = (vP)2 cos(β )dt +σ

(α,β )
P (xP

2 )dW(2,P)

dxE
1 = (vE)1 sin(α)dt +σ

(α,β )
E (xE

1 )dW(1,E)

dxE
2 = (vE)2 cos(α)dt +σ

(α,β )
E (xE

2 )dW(2,E),

where α,β ∈ [−π,π] and α is the direction chosen by the evader, while β is the direction chosen by the

pursuer. Additionally, we assume that

WP := {WP(t) = (W(1,P)(t),W(2,P)(t)), t ≥ 0},

WE := {WE(t) = (W(1,E)(t),W(2,E)(t)), t ≥ 0},

are two R2-valued, mutually independent standard Wiener processes. We reduce this 4-dimensional prob-

lem to a 2-dimensional one by allowing the origin of the coordinate system to move along with the pursuer.
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In this case our dynamics are


dx̂1 = ((vP)1sin(β )− (vE)1 sin(α))dt +σ (α,β )(x̂1)dŴ1

dx̂2 = ((vP)2cos(β )− (vE)2 cos(α))dt +σ (α,β )(x̂2)dŴ2,

(5.39)

where σ (α,β )(x̂i) =

√
σ
(α,β )
P (xP

i ))
2 +(σ

(α,β )
E (xE

i ))
2 and Ŵ is an R2-valued standard Wiener process satis-

fying

σ
(α,β )(x̂i)Ŵi(t) = σ

(α,β )
P (xP

i )Wi,P(t)−σ
(α,β )
E (xE

i )Wi,E(t), t ≥ 0, i = 1,2.

The pursuer catches the evader (and thus wins the game) if they manage to reduce their distance from

the evader to some value r ∈ R. The evader wins the game when they manage to increase the distance to

pursuer to some given R > r or if they manage to avoid the capture before some time T . Note that in this

case the spatial domain of the problem becomes Ω := B(0,R)\B(0,r).

Mathematically, the evader receives the pay-out of 1 whenever they win the game and receive zero

otherwise. Let p(α,β ,x, t) be the probability that the path (x̂1, x̂2) intersects ∂B(0,r) before either time T is

reached or the path intersects ∂B(0,R), assuming that (x̂1(t), x̂2(t)) = x and that (x̂1, x̂2) admits (5.39) with

the α,β appearing in the arguments of p.

Then 1− p is the expected pay-out to the evader:

J (α,β ,x, t) := 1− p(α,β ,x, t)

The value function is then

v(x, t) := inf
β

sup
α

J (α,β ,x, t)

and it solves the following second order Isaacs equation

−∂tv−a(α,β )
∆v(x, t)+ inf

β

sup
α

{b(α,β ) ·∇v(x, t)}= 0 in (0,T )×Ω,

v =


1 : ‖x̂‖R2 = R

0 : ‖x̂‖R2 = r
on (0,T )×∂Ω,

v = 1 on {T}×Ω.

where a(α,β ) := 1
2 tr(σ (α,β ) · (σ (α,β ))T ) and bα,β :=

 (vP)1sin(β )− (vE)1 sin(α)

(vP)2cos(β )− (vE)2 cos(α)

.

We now assume that the pursuer is faster than the evader when moving in the horizontal direction.

Moreover we assume that there is no diffusion in the lower part of the domain, while the diffusion in the

upper part of the domain scales with the vertical position x2. This corresponds to the following choice of
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Figure 5.2: The value function at t = 0 for asymmetric velocities and the diffusion vanishing in the lower
part of Ω

the diffusion and advection coefficients:

b(α,β ) =

41sin(β )−0.5sin(α)

cos(β )− cos(α)


a(α,β ) = max{x2,0}.

The numerical approximation of the value function solving the Isaacs problem (5.40) with this choice of

coefficients can be found in Figure 5.2. Note the asymmetric nature of the graph, due to the different speeds

of the pursuer and the evader in the horizontal direction as well as the effect of the stochastic component of

the equation in the upper part of the domain.
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Chapter 6

Discretization of the fully nonlinear

equations in FEniCS

The aim of this section is twofold. Firstly, it is to share the experience gained during the years of using

FEniCS library (more information available at [50]) and to facilitate the learning process of anyone wishing

to use it in research. This goal is achieved is by briefly introducing the workflow of a FEniCS project

as well as presenting a number of generic solutions to common problems which are not readily available

through standard FEniCS API. Some of those can be found dispersed through the discussion boards and

pieces of documentations while the others are personally written by the author and collected for the reader’s

convenience. The other goal is to share some of the implementation details of the numerical schemes

presented in this work and to give some hints to anybody wishing to reproduce the results. We would like

to indicate that the problems discussed in this work are posed in a non-divergence form which is not a

setting FEniCS was created for. Therefore it is sometimes unavoidable to directly access and edit the values

of the assembled matrices which is in general ill-advised if one wants to keep efficiency at mind. The

usual solution in the standard case is to reformulate a problem in such a way that the assembled matrices

can be used right away. Therefore author finds it instructive to show how can one proceed when such a

reformulation is not an option.

6.1 Mesh creation and processing

Mesh creation in Gmsh

Mesh creation using Gmsh is relatively easy. One needs to define a geometry using the geometric entites

such as points and lines, define the planes or volumes inside the lower dimensional contours and finally

define the mesh. For a more complicated use cases we refer to the Gmsh documentation [55]. The main
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difficulty in our case is that we require the mesh to be strictly acute and there is no way to enforce it directly.

The simplest solution for 2D meshes is to use Frontal-Delaunay meshing algorithm as it usually results in

a strictly acute mesh. However, it is not always the case, especially when one tries later to refine the mesh

via element splitting. In some cases it may be necessary to manipulate mesh nodes coordinates by hand.

Therefore it is important to include some kind of test within your code that makes sure that strict acuteness

condition is satisfied.

Conversion to xdmf format

By default dolfin-convert command provided by DOLFIN library converts meshes to xml format, which

is inefficient both in terms of access time and space. More modern solution is to use xdmf format. One

way to convert a msh file is to write a python script using meshio package. It is however worth noting that

FEniCS expects meshes to be saved in a certain form that was typically provided by dolfin-convert. This is

unfortunately not the case with the default meshio conversion. One needs to do some fine tuning depending

on the specifics of your mesh and types of elements used in the Finite Element formulation. One way to

avoid this headache, at a cost of computing time, is to simply first convert meshes from msh to xml format

using DOLFIN and then from xml to xdmf format using meshio. Beneath we present a short bash script to

achieve just that for all msh files in the current folder.

1 #!/usr/bin/env bash

2 ls -1 ${1}*.msh | xargs -n 1 bash -c 'dolfin-convert "$0" "${0%.*}.xml" && meshio-convert

"${0%.*}.xml" "${0%.*}.xdmf"'

3 rm ${1}*.xml

Usage in FEniCS

After the mesh is in the correct form both from a mathematical and computational point of view, its use in

FEniCS is relatively easy. First we create a new instance of Mesh class, load the mesh into it and it is ready

to use.

1 mesh = Mesh()

2 with XDMFFile(mesh_filepath) as f:

3 f.read(mesh)

Although it is not directly connected with meshes we would also like to discuss saving functions to xdmf

file at this point. Let us say we are solving a parabolic, backwards in time problem, initialised by the
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interpolation of the final time data. This is one way to initialise the output file.

1 file = XDMFFile(save_directory)

2 file.parameters['rewrite_function_mesh'] = False

3 v = interpolate(exact_solution, V)

4 file.write(v, T)

Note the usage of 'rewrite_function_mesh' parameter. This assumes that the underlying mesh does not

change and hence there is no need to save the mesh data at every time step, thus saving time and disk space.

In some cases, for example when using mesh adaptive methods one would set this parameter to true. One

useful feature of xdmf files is that they allow to save multiple functions to a single output file. The example

showing how to save the value function v and the optimal control α at time t is shown below. Note that

v and control variables should be defined outside the algorithm loop and their values should be updated

without assigning new objects to them. Otherwise xdmf file will not be saved correctly, since FEniCS API

function differentiates between functions based on their ID set on creation, not the variable name.

1 file.write_checkpoint(

2 v, 'value_func', t, XDMFFile.Encoding.HDF5, True)

3 control.vector()[:] = alpha

4 file.write_checkpoint(

5 control, 'control', t, XDMFFile.Encoding.HDF5, True)

6.2 Useful recipes

The aim of this section is to provide the reader with simple but not immediately obvious solutions to

some common problems one may encounter when dealing with the problems in a non-divergence form in

FEniCS . Note that in all code snippets, the objects from FEniCS library are assumed to be imported either

by * import (not recommended as it my lead to hard to resolve naming conflicts) or directly. For all the

following examples we assume that the mesh has been loaded and function spaces are defined. We also

have NumPy and SciPy packages imported. Namely, we assume that at the top of each script we have the

following

1 import numpy as np

2 import scipy as sp

3 from dolfin import *
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4 mesh = Mesh()

5 with XDMFFile(mesh_filepath) as f:

6 f.read(mesh)

7 # we only consider Lagrange P1 elements

8 V = FunctionSpace(mesh, 'CG', 1)

9 w = TrialFunction(V)

10 u = TestFunction(V)

Selecting the boundary nodes

Let us say we wish to obtain the indices of all the boundary nodes. This can be done using the following

piece of code:

1 bc = DirichletBC(V, Constant(0), 'on_boundary')

2 boundary_node_indices = bc.get_boundary_values().keys()

This strategy could be used to verify whether you correctly marked the boundary nodes of your domain.

Let us assume we have created a subregion of a boundary with a particularly difficult geometry which looks

like this:

1 class CustomSubdomain(SubDomain):

2 def inside(self, x, on_boundary):

3 return complicated_logical_statement

You now wish to test whether you made a mistake in complicated logical statement. This could be done as

follows:

1 #use your custom subdomain to mark the boundary edges of the mesh

2 boundary_markers = MeshFunction('size_t', mesh, 1)

3 boundary_markers.set_all(99)

4 CustomSubdomain().mark(boundary_markers, 1)

5 #set up Dirichlet BC on customain subdomain

6 bc = DirichletBC(V, Constant(0), boundary_markers, 1)

7 #Compute positions of nodes contained in subdomain

8 dof_indices = bc.get_boundary_values().keys()

9 dof_coordinates = mesh.coordinates()[dof_to_vertex_map(V)]
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10 for index in dof_indices:

11 print(dof_coordinates[index])

The above code simply prints to the console the coordinates of the nodes that were marked as belonging

to the custom subdomain, which should be enough to perform an ’eye test’. For a more robust testing

you could compare those with a list of coordinates of boundary nodes taken directly from the mesh file.

However, remember that in this case the coordinate values will only be correct up to some tolerance. We

also remark that even though we are using the term ’boundary nodes’, FEniCS actually marks edges as

belonging to the boundary, not single nodes. So if the boundary subdomain does not mark any boundary

nodes even though it detects nodes lying in it, this may be due to the fact that there is only one such node

or that those nodes are not connected by the mesh edges.

Assembling lumped mass matrix

Let us say that we wish to perform the mass lumping of a mass matrix. Even though it is not possible to do

it directly in the form language we can use the following trick.

1 mass_form = w * u * dx

2 mass_action_form = action(mass_form, Constant(1))

3 MM_terms = assemble(mass_action_form)

4 # if needed we can now perform additional operations on the terms of lumped mass matrix

5 MM = assemble(mass_form)

6 MM.zero()

7 MM.set_diagonal(MM_terms)

Note that the matrix MM has a sparsity pattern allowing us to perform algebraic operations with other

matrices assembled on the same function space. This would not be possible if we started by creating a

diagonal matrix.

Instantiating DOLFIN matrices/vectors

In this recipe we present several methods of instantiating DOLFIN matrices and vectors. In the below code

values of all three vectors will be exactly the same, given that dim is number of the nodes in the mesh.

1 zero_vector_size_dim = Vector(mesh.mpi_comm(), dim)

2 vector_fixed_dimension = assemble(u*dx)

3 vector_fixed_dimension.zero()

4 function = interpolate(Constant(0), V)
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5 vector = function.vector()[:]

6 matrix1 = assemble(w*u*dx)

7 empty_vector = Vector(mpi_comm(), 0)

8 empty_vector = matrix1.init_vector(empty_vector, 1)

Note how in the above piece of code we instantiated matrix by assembling what is basically a mass matrix.

This step is unavoidable because FEniCS does not provide a direct way of manipulating sparsity pattern

of a matrix - one would have to construct a new PETSc matrix, using petsc4py. Note that instantiating

matrix directly e.g. with Matrix() or PETScMatrix() returns an interface whose underlying petsc4py array

is not assembled. Thus there is no way of populating it with correct values without actually using petsc4py

directly. Luckily, sparsity pattern depends on the connectivity of the mesh and will generally be the same

for every assembled matrix through the form language. Therefore you can assemble any matrix and simply

make a shallow copy of it in one of the following ways.

1 matrix2 = matrix1.copy()

2 matrix3 = Matrix(matrix2)

The next step would be to actually set the values of the newly constructed matrix. A method of doing it is

discussed in the next recipe.

Reading and setting values of DOLFIN matrices

Let us say we want to access a specific value of the assembled DOLFIN matrix. For meshes with small

number of vertices you can simply use matrix.array() which returns a dense copy of underlying sparse

data. For larger matrices this approach should be avoided or is outright impossible as it would cause

memory overflow. Instead, FEniCS offers access to sparse data through matrix.getrow(i) method which

returns an object containing two NumPy arrays. The first one contains column indices of non-zero terms

and the second one contains the raw data. In the below example this method is used to set all non-zero

terms of a matrix in a given row to a given constant.

1 def set_const_rows(mat, node_indices, const):

2 for row_ind in node_indices:

3 row = mat.getrow(row_ind)

4 mat.set([[const]*len(row[1])], [row_ind], row[0])

5 mat.apply('insert')
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If we instead wanted to iterate through all rows of a DOLFIN matrix or even multiple matrices at the same

time consider the following generator.

1 def getrows(*args, ignore=None):

2 '''Generates rows of input matrices one-by-one. Works only for matrices of

3 the same dimension, supports generic dolfin and PETSc formats.'''

4 if ignore is None:

5 ignore = set()

6 if all(map(lambda x: isinstance(x, Matrix), args)):

7 def getter(A, i): return A.getrow(i)

8 dim = args[0].size(0)

9 elif all(map(lambda x: isinstance(x, PETScMatrix)

10 or isinstance(x, Mat), args)):

11 def getter(A, i): return A.getRow(i)

12 dim = args[0].getSize()[0]

13 else:

14 raise Exception("Unsupported or non-matching matrix format."

15 "All matrices should be in the same format."

16 "Supported formats: Matrix, PETScMatrix")

17

18 for i in range(dim):

19 if i in ignore:

20 continue

21 if len(args) == 1:

22 yield (getter(args[0], i), i)

23 else:

24 yield (map(getter, args, [i]*len(args)), i)

Note that the above code allows to iterate both through generic DOLFIN matrices and their PETSc imple-

mentation. This could be easily extended to any other backends as well by implementing the additional

alternative definitions of getter and dim . The implementation for a single matrix is different since un-

packing tuples of length 1 is often counter-intuitive and getting rows of a single matrix is the most common

use case. Be advised that iterating through DOLFIN matrices is in general slow and if you find yourself

doing it frequently it may be worthwhile to consider using petsc4py or NumPy instead. This way you can

access the underlying CSR data directly.

L1 normalisation of vectors and matrices

This next recipe’s usefulness depends on the specific numerical scheme being used but it gives an example

of how getrows() function could be used.
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1 l1_norm = assemble(u*dx)

2

3 def l1_normalise(operator, l1_norm):

4 if isinstance(operator, Vector):

5 operator[:] = [operator[i] / l1_norm[i]

6 if l1_norm[i] else 0.0 for i in range(operator.size())]

7 return

8 for row, row_ind in getrows(operator):

9 vals = []

10 for pos in range(len(row[0])):

11 vals.append(row[1][pos] / l1_norm[row_ind]

12 if l1_norm[row_ind] else 0.0)

13 operator.set([vals], [row_ind], row[0])

14 operator.apply('insert')

Matrix multiplication of DOLFIN matrices

This is a short but rather insightful recipe that shows how to obtain the product of two DOLFIN matrices.

Similar approach can be taken in order to perform any matrix operation available in petsc4py.

1 def matmult(A, B):

2 C = as_backend_type(A).mat().__mul__(as_backend_type(B).mat())

3 return todolfin(C, B)

4

5 def todolfin(A, B):

6 A_d = B.copy() # A_d is dolfin matrix

7 for Arow, row_num in getrows(A):

8 A_d.set([Arow[1]], [row_num], Arow[0])

9 A_d.apply('insert')

10 return A_d

Although it may be tempting to return something like Matrix(PETScMatrix(C)) from matmult function,

this approach to author’s knowledge is incredibly unstable and often results in segmentation fault errors.

The presented solution of copying data over to an existing matrix row by row, although admittedly slower,

results in a much more stable behaviour.
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Checking monotonicity of an operator

We now present two alternative versions of confirming the monotonicity of an explicit operator - one using

PETSc matrices, the other one using SciPy matrices.

1 def check_monotonicity_petsc(A, ignore=None):

2 for row, row_ind in getrows(A, ignore):

3 if np.any(row[1] > 0):

4 raise Exception(f"Positive Term In row {row_ind}")

5

6 def check_monotonicity_scipy(A, ignore=None):

7 if ignore is not None:

8 check_indices = list(set(range(E.shape[0])) - ignore)

9 check = E[check_indices]

10 else:

11 check = E

12 if np.any(check.data > 0):

13 raise Exception("Positive Term In Explicit Operator")

Checking diagonal dominance of an operator

This recipe is very similar to the previous one but this time we are confirming the monotonicity properties

of implicit matrices.

1 def implicit_check_petsc(A, ignore):

2 for row, row_ind in getrows(A):

3 if row_ind in ignore:

4 continue

5 indices = row[0]

6 data = row[1]

7 diag_pos = np.where(indices == row_ind)[0][0]

8 diag_val = data[diag_pos]

9 for pos, x in enumerate(data):

10 if diag_val * x > 0.0 and pos != diag_pos:

11 raise Exception(f"Wrong sign in implicit matrix row {row}")

12 if 2*diag_val <= sum(data):

13 raise Exception(

14 "Implicit matrix is not strictly diagonally dominant")

15

16 def check_implicit_scipy(A):

17 nonzero = A.astype(bool).sum(axis=1)
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18 sumsigns = np.abs(A.sign().sum(axis=1))

19 if np.any(sumsigns != np.abs(2 - nonzero)):

20 row = np.where(sumsigns != np.abs(2 - nonzero))[0][0]

21 raise Exception(

22 f'Wrong sign in impicit matrix row: {row}'

23 )

24

25 D = np.abs(A.diagonal())

26 D = D.reshape(-1, 1)

27 S = np.sum(np.abs(A), axis=1) - D

28 if not np.all(D > S):

29 row = np.where(D <= S)[0][0]

30 raise Exception(f'Matrix is not diagonally dominant - see row: {row}')

Error calculation

This recipe calculates L∞, L2 and H1 distance between exact solution provided by the user and some

DOLFIN function. Note that while L∞ error only considers values at the nodes, L2 and H1 errors are cal-

culated by projecting provided function onto a higher dimensional space. Thus for a precise measurement,

the exact function has to be defined in a space of dimension at least degree_rise higher than the provided

solution.

1 def error_calc(v, v_e, mesh, mesh_name, save_dir='errors.json'):

2 try:

3 with open(save_dir, 'r') as f:

4 errors = json.load(f)

5 except FileNotFoundError:

6 errors = {}

7 new_errors = {}

8 v_int = interpolate(v_e, FunctionSpace(mesh, 'CG', 1))

9 new_errors['Linf'] = norm(v.vector() - v_int.vector(), 'linf')

10 new_errors['L2'] = errornorm(v_e, v, mesh=mesh, degree_rise=3)

11 new_errors['H1'] = errornorm(

12 v_e, v, norm_type='H1', mesh=mesh, degree_rise=3)

13 errors[mesh_name] = new_errors

14 with open(save_dir, 'w') as f:

15 json.dump(errors, f)

Note that this recipes allows to calculate the errors for multiple meshes within a single experiment, recording

all of them in a json file.
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6.3 Implementation details

In this section we discuss some of the implementation details of the numerical schemes discussed in Chap-

ters 3 and 5.

Calculating minimal timestep

Recall that our numerical method requires explicit operators E(α,β )
i to be monotone which is guaranteed by

choosing a small enough timestep h. In general, we want to be able to set the number of timesteps ourselves

but the code should correct it in case the chosen number of timesteps was too small. We would also like to

be informed what is the minimal required number of timesteps for a given experiment for future reference.

This is all accomplished by the following code we will discuss piece by piece.

Firstly, during the assembly of the explicit operators E we perform the following at each iteration.

1 diag_vec = Vector(mesh.mpi_comm(), dim)

2 E.get_diagonal(diag_vec)

3 h_ab = get_min_timestep(diag_vec, MM_terms,boundary_nodes_list)

4 h_min = min(h_ab, h_min)

The get_min_timestep function is implemented as follows:

1 def get_min_timestep(diag, MMdiag, ignore):

2 timestep = float('inf')

3 for i in range(diag.size()):

4 if i in ignore or diag[i] <= 0:

5 continue

6 timestep = min(MMdiag[i]/diag[i], timestep)

7 return timestep

After the loop finishes we can simply calculate the minimal number of timesteps with

minM = int(T/h_min) + 1 where T denotes the final time. We also would like to have a way of calcu-

lating the number of timesteps ourselves. This is one possible implementation which simply reads the value

from a json file.

1 M = get_number_of_timesteps(file_path, mesh_name)

2

3 def get_number_of_timesteps(file_path, mesh_name):

4 try:
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5 with open(file_path) as f:

6 minM = json.load(f)

7 M = minM[mesh_name]

8 except (FileNotFoundError, KeyError):

9 print('Warning: timestep data not found, setting M to None')

10 M = None

11 return M

Another possible implementation of get_number_of_timesteps function would be to fix the ratio between

the mesh size and the time step for the sake of convergence testing. Having calculated both minimal and

custom number of timesteps we can now compare them and save to the json file for future reference.

1 if not M or M < minM:

2 M = minM

3 try:

4 with open(filename, 'r') as f:

5 minM_dict = json.load(f)

6 except FileNotFoundError:

7 minM_dict = {}

8 minM_dict[mesh_name] = M

9 with open(filename, 'w') as f:

10 json.dump(minM_dict, f)

Calculating the directional derivative at the boundary

Below we present one possible way to calculate and set the values of the directional derivatives at the

boundary nodes as required by the scheme described in Chapter 3.

1 coords = mesh.coordinates()[dof_to_vertex_map(V)]

2 def set_directional_derivative(self, operator, region, nodes, control,

3 time=None):

4 for j in self.par.regions[region]:

5 adv_x = self.par.robin_adv_x[j](control)

6 adv_y = self.par.robin_adv_y[j](control)

7 lin = self.par.robin_lin[j](control)

8 if time:

9 adv_x.t = time

10 adv_y.t = time

11 lin.t = time
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12 b = (interpolate(adv_x, self.V),

13 interpolate(adv_y, self.V))

14 c = interpolate(lin, self.V)

15 for n in nodes:

16 # node coordinates

17 x = coords[n]

18 # evaluate advection at robin node

19 b_x = np.array([b[0].vector()[n], b[1].vector()[n]])

20 # denominator used to calculate directional derivative

21 # denom = self.lamb*np.linalg.norm(b_x)

22 if np.linalg.norm(b_x) > 1:

23 lamb = 0.01*self.mesh.hmin()/np.linalg.norm(b_x)

24 else:

25 lamb = 0.01*self.mesh.hmin()

26 # position of first node of the stencil

27 x_prev = x - lamb * b_x

28 # Find cell containing first node of stencil and get its

29 # dof/vertex coordinates

30 try:

31 cell_ind = self.mesh.bounding_box_tree(

32 ).compute_entity_collisions(Point(x_prev))[0]

33 except IndexError:

34 raise Exception(

35 "Boundary advection outside tangential cone")

36 cell_vertices = self.mesh.cells()[cell_ind]

37 cell_dofs = vertex_to_dof_map(self.V)[cell_vertices]

38 cell_coords = self.mesh.coordinates()[cell_vertices]

39 # calculate weight of each vertex in the cell (using

40 # barycentric coordinates)

41 A = np.vstack((cell_coords.T, np.ones(3)))

42 rhs = np.append(x_prev, np.ones(1))

43 weights = np.linalg.solve(A, rhs)

44 dof_to_weight = dict(zip(cell_dofs, weights))

45 # calculate directional derivative at each node using

46 # weights to interpolate value of numerical solution at

47 # x_prev

48 row = operator.getrow(n)

49 indices = row[0]

50 data = row[1]

51 for dof in cell_dofs:

52 pos = np.where(indices == dof)[0][0]

53 if dof != n:

54 data[pos] = - dof_to_weight[dof] / lamb

55 else:
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56 c_n = c.vector()[dof]

57 # make sure reaction term is positive adding artificial

58 # constant if necessary

59 if not c_n and n in self.robin_nodes:

60 c_n = min(lamb, 1E-4)

61 data[pos] = (1-dof_to_weight[dof]) / lamb + c_n

62 # this part is to avoid rounding errors while subtracting and

63 # dividing for small lambdas

64 sum_data = sum(data)

65 if sum_data < 0 and sum_data > -1E-6:

66 pos = np.where(indices == n)[0][0]

67 data[pos] += 1E-6

68 operator.set([data], [n], indices)

69 operator.apply('insert')

Howard’s algorithm

This piece of code shows an implementation of a single step of Howard’s algorithm used in numerical

approximation of an Isaacs problem.

1 solver = PETScKrylovSolver('gmres', 'sor')

2 def Howard_outer(v, alpha):

3 # v coresponds to v^{k+1}

4 alpha = [0]*dim

5 ell = 0 # iteration counter

6 while ell < howmaxit:

7 ell += 1

8 how, alpha = Howard_inner(alpha, beta)

9

10 # Create list of vectors (I*v^k+E*v^{k+1} -F) under different controls

11 sphow = np.array(how[:])

12 spv = np.array(v.vector()[:])

13 Ev = [[Exp.dot(spv) for Exp in Exp_b_list]

14 for Exp_b_list in Elist]

15

16 multlist = np.empty(

17 [csize_beta, csize_alpha, dim])

18 for ind_b in range(csize_beta):

19 for ind_a in range(csize_alpha):

20 multlist[ind_b][ind_a] = \

21 (spIlist[ind_b][ind_a].dot(sphow) +
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22 Ev[ind_b][ind_a] -

23 Flist[ind_b][ind_a])

24

25 # Loop over vectors of values of (I*v^k+E*v^{k+1} -F) at each node and

26 # record control which optimises each of them

27 next_ctr = np.argmin(np.max(multlist, axis=1), axis=0)

28 return (how, next_ctr)

29

30 def Howard_inner(self, alpha, beta):

31 # v coresponds to v^{k+1}, save it to numpy array

32 spv = np.array(v.vector()[:])

33

34 Ev = {b: [Ea.dot(spv) for Ea in Elist[b]] for b in set(beta)}

35 # construct RHS under input control alfa

36 rhs = self.v.vector().copy()

37 rhs[:] = [Flist[beta[i]][a][i]

38 - Ev[beta[i]][a][i]

39 for i, a in enumerate(alpha)]

40 # initialise vector with correct dimension to store solution

41 how = self.v.vector().copy()

42

43 # initalise matrix with a suitable sparsity pattern

44 lhs = Ilist[0][0].copy()

45 # construct implicit matrix under control (alfa, beta)

46 for i, a in enumerate(alpha):

47 lhs.set([Ilist[beta[i]][a].getrow(i)[1]],

48 [i], Ilist[beta[i]][a].getrow(i)[0])

49 lhs.apply('insert')

50

51 # solve linear problem to get next iterate of u

52 for bc in dirichlet_bcs:

53 bc.apply(lhs, rhs)

54 self.solver.solve(lhs, how, rhs)

55

56 # Create list of vectors (I*v^k+E*v^{k+1} -F) under different controls

57 spw = np.array(how[:])

58 multlist = np.empty([csize_alpha, dim])

59 Iw = {b: [Ia.dot(spw) for Ia in spIlist[b]]

60 for b in set(beta)}

61

62 for ind_a, _ in enumerate(ctrset_alpha):

63 for j in range(dim):

64 multlist[ind_a][j] = Iw[beta[j]][ind_a][j] + Ev[beta[j]][ind_a][j] -

Flist[beta[j]][ind_a][j]
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65

66 # Loop over vectors of values of (I*v^k+E*v^{k+1} -F) at each node and

67 # record control which optimizes each of them

68 next_ctr = [np.argmax(vector) for vector in zip(*multlist)]

69

70 return (how, next_ctr)

Outside of this function one could perform convergence check and see if the distance between the current

and the previous iteration of how is smaller than the prescribed tolerance. If not, updated value of alpha

can be used in the next step of Howard’s algorithm. From author’s experience, this algorithm converges

quickly to the required solution and it is often enough to hard code the number of iterations (determined by

testing, usually around 5) and forego the tolerance check as done inside Howard_inner function.

6.4 Comparison of the linear algebra libraries

Having shared the actual FEniCS code we would like to briefly justify some of the implementation choices.

The discussion will be rather high level and experience-based but may offer an insight to those wishing to

improve the performance of their code or at least provide the idea how to start benchmarking it. The main

theme of this section is a comparison of the performance of petsc4py and SciPy sparse matrices when per-

forming different tasks. We use FEniCS as a tool to process meshes and assemble the discretised operators

on which experiments are performed. This will hopefully give a rough idea of how one can pick and choose

between different backends in order to speed the code up.

Transformation from DOLFIN matrix to SciPy matrix and vice versa

Transforming DOLFIN matrices to both NumPy / SciPy and petsc4py formats is relatively easy and fast. it

can be done in the following way.

1 def toscipy(A):

2 mat = as_backend_type(A).mat()

3 csr = csr_matrix(mat.getValuesCSR()[::-1], shape=mat.size)

4 return csr

Note that in order to instantiate SciPy matrix we are first creating petsc4py matrix. However, transforming

back to DOLFIN matrix may be costly. For that reason it may be worthwhile to keep copies of both formats

at the same time and use different matrices for different purposes. This also comes at a memory cost and
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Figure 6.1: A simple benchmark measuring runtime. Implementations in different backends were all tested
against the same PDE

needs to be done with caution. Any potential improvements should be confirmed by at least rudimentary

testing.

Performance testing

Each of the formats was created with a specific purpose in mind and therefore they should be used ac-

cordingly. The multidimensional NumPy arrays are great for quickly accessing operators assembled under

different controls. Also the fact that broadcasting works even for sparse SciPy matrices makes it a good

format for checking if assembled matrices satisfy the structural conditions, e.g. if they are monotone. On

the other hand, using petsc4py we have a guarantee that the sparsity pattern of matrices will always remain

unchanged which is crucial when constructing operators consisting row-wise from other previously assem-

bled operators. With petsc4py we also have a fine-grained control over the linear solver which affects the

performance greatly.

We now consider a simple benchmark (see Figure 6.1) performed by author at the early stage of code

development. It compares three different implementations of the same program. The comparison here

is made between implementation in petsc4py, NumPy /SciPy and a combination of the two approaches.

Approximately similar amount of time was spent on each implementation so the learning curve of each

library may also be the factor in the final result.

The main take away here is not that petsc4py is the slowest. In our use case where we access,edit and

construct operators constantly, broadcasting and multi-dimensional arrays offered by NumPy /SciPy give

it an edge even if the matrix operations and linear solvers are not as optimised. The main conclusion is

that the hybrid approach where we performed some actions using SciPy matrices and others using petsc4py

matrices may be the best. This will differ based on the problem at hand but if performance is a concern
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then code should always be tested. Beyond a simple benchmarking as presented above author suggests using

cProfile module on different implementations of the same program in order to get a breakdown of the time

spent in different parts of the code. One then can pick parts of the implementations which are the fastest

and put them together in a single piece of code. However, it is worth remembering that overhead caused

by transitioning between the data types may outweigh any performance boost. Lastly, author recommends

fine-tuning of functionalities using timeit module. We present several examples below.

First test shows how important it is to regularly check the performance of new versions of code. After

experiencing a tremendous slowdown of the program after making seemingly no changes to a function

assembling right hand side of the linear system, an effort was made to find the cause. We now present the

minimal working example. In Jupyter Notebook let us define:

1 from dolfin import (assemble, dx, UnitSquareMesh, FunctionSpace, TestFunction,

interpolate, Constant)

2 import numpy as np

3

4 mesh = UnitSquareMesh(1000, 1000)

5 V = FunctionSpace(mesh, 'CG', 1)

6 u = TestFunction(V)

7 rhs = interpolate(Constant(0),V)

Let us now consider the output of the two following cells.

1 %%timeit

2 np.array(assemble(rhs*u*dx))

7.98 s ± 60.7 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

1 %%timeit

2 np.array(assemble(rhs*u*dx)[:])

371 ms ± 13.8 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

Quite surprisingly constructing NumPy array from a slice of a DOLFIN vector seems to be an order of

magnitude faster compared to using a raw DOLFIN vector. It has to do with the fact that the slice operator

applied to a DOLFIN vector actually returns the underlying NumPy array and hence data copying is much

more efficient.

Let us now measure the performance of some of the recipes which were implemented both in SciPy and

petsc4py. Let us assume that we have defined functions getrows , toscipy , check_monotonicity_scipy and

check_monotonicity_petsc as previously. In Jupyter Notebook we define
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1 from dolfin import (assemble, dx, UnitSquareMesh, FunctionSpace, TestFunction,

TrialFunction, Matrix, as_backend_type)

2 from scipy.sparse import csr_matrix

3 import numpy as np

4

5 mesh = UnitSquareMesh(1000, 1000)

6 V = FunctionSpace(mesh, 'CG', 1)

7 u = TestFunction(V)

8 w = TrialFunction(V)

9 matrix = assemble(u*w*dx)

10 matrix_size = matrix.size(0)

and then we consider the following cells and their evaluations.

1 %%timeit

2 check_monotonicity_petsc(matrix)

7.56 s ± 105 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

1 %%timeit

2 check_monotonicity_scipy(toscipy(matrix))

32.8 ms ± 444 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)

1 %%timeit

2 check_monotonicity_petsc(matrix, ignore=set(range(matrix.size(0)//2)))

3.83 s ± 134 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

1 %%timeit

2 check_monotonicity_scipy(toscipy(matrix), ignore=set(range(matrix.size(0)//2)))

336 ms ± 14 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

1 %%timeit

2 check_monotonicity_petsc(matrix, ignore=set(range(matrix.size(0))))

114 ms ± 3.8 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
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1 %%timeit

2 check_monotonicity_scipy(toscipy(matrix), ignore=set(range(matrix.size(0))))

294 ms ± 14.8 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

As expected direct iteration through the rows of petsc4py matrix is inefficient compared to direct access

to underlying data paired with broadcasting available to SciPy matrix. We finish this section with a result

which is often forgotten by beginners, namely that standard loops should be avoided when dealing with

NumPy /SciPy matrices. We now consider an alternative implementation of check_monotonicity_scipy

function

1 def check_monotonicity_scipy2(E, ignore=None):

2 i = 0

3 if ignore is None:

4 ignore = set()

5 for i in range(E.shape[0]):

6 if i in ignore:

7 continue

8 row = E.getrow(i)

9 if np.any(row.data > 0):

10 i += 1

and run the following cell.

1 %%timeit

2 check_monotonicity_scipy2(toscipy(matrix))

1min 3s ± 2.08 s per loop (mean ± std. dev. of 7 runs, 1 loop each)

As we can see the performance is significantly worse even when compared to petsc4py matrix. This should

be an emphatic argument against using loops when dealing with NumPy /SciPy arrays.

This concludes the section about benchmarking. If performance is still an issue, author’s recommenda-

tion is to directly use low-level C or C++ code. However, this is beyond the scope of this chapter whose

sole focus is FEniCS Python interface.
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Chapter 7

Conclusions

The main goal of this dissertation was to extend the formulation and design of P1 Finite Element Methods

to two novel settings, namely to approximate the unique viscosity solution of the second order Hamilton-

Jacobi-Bellman equations with fully nonlinear mixed boundary conditions and the second order Isaacs

equation with the homogeneous Dirichlet boundary conditions. We now briefly summarise the contributions

of each of the chapters, not including the introductory Chapter 2.

In Chapter 3 we provided the first Finite Element Method which can approximate the viscosity solution

of the Hamilton-Jacobi-Bellman equation with fully nonlinear mixed boundary conditions in considerable

generality on possibly nonconvex, non-smooth domains. We remind the reader that for the problems of

this type a challenge is posed by the discretisation of the first order directional derivatives in (3.1b) and

(3.1c). On the one hand establishing monotonicity with an artificial diffusion approximating the Laplace-

Beltrami operator of ∂Ω would not be sufficient because of the normal component. On the other hand,

an artificial diffusion approximating the Laplace operator of Ω would not vanish under refinement due to

different scaling of boundary and domain terms, thus leading to an inconsistent method. This was achieved

by discretising the boundary differential operators via lower Dini derivative which ensured that the scheme

stayed monotone and consistent. As a result we obtained a method which works on the unstructured meshes

and for possibly degenerate diffusions. This allowed us to treat nonlinear problems arising from stochastic

optimal control like for example the Skorokhod problem on nonconvex domain.

In Chapter 4 we presented a novel model of the uncertain market price of volatility risk in extension

of Heston’s equation, which takes the form of a Hamilton-Jacobi-Bellman equation with mixed boundary

conditions. This together with findings of Chapter 3 provided a viable method of option value estimation in

the setting of the uncertain market price of volatility risk. Additionally, thanks to this formulation one can

easily assume any of the parameters to be uncertain and take some confidence interval around the estimated

value of parameter to be the control set of optimisation problem. One can then proceed and calculate the

value function of the worst case scenario, which may be of interest to the financial community given that the



117

parameter has a nonlinear impact on the option value or its derivatives. In this chapter we chose the market

price of volatility risk as the uncertain parameter due to relative shortage of information about it in the

existing literature. We then conducted a case study on butterfly option and confirmed that the option value

scales linearly with the market price of risk and the magnitude of the impact is non-trivial. Additionally, we

found some evidence that the market price of volatility risk may have non-trivial nonlinear impact on the

financial derivatives under certain conditions.

In Chapter 5 we provided a novel Finite Element Method for solving the second order Isaacs equation

with degenerate anisotropic diffusion on possibly nonconvex domains. We extended the results of [68] to

obtain a discretisation of linear operators projecting the non-homogeneous Dirichlet data and satisfying

the monotonicity conditions required for Howard’s algorithm to converge to the unique solution. Due to

the nonconvexity on infsup operators we no longer could use that solutions of linear evolution problems

associated to each control are an upper bound for the numerical solution. Despite that, we proved the

stability of the scheme, using that at least one such control exists and making the necessary adaptation to

accommodate the non-homogeneous boundary conditions. The convergence to the boundary conditions

remained a difficult problem but we provided the reader with a framework that assures convergence of the

envelopes of the numerical solution to the boundary data. The result is subject to the existence of a family

of barrier functions on the boundary. As a consequence a class of comparison principles was introduced

which allows to flexibly combine the pointwise and the viscosity boundary conditions. The convergence

rates were investigated in a numerical experiment. We also studied a numerical approximation of a value

function of an asymmetric, stochastic tag-chase game with degenerate diffusion. To author’s knowledge

this is one of the few currently formulated numerical methods proven to work for a second order Isaacs

problem and the first one which can simultaneously deal with unstructured meshes, nonconvex domain and

degenerate ellipticity.

In Chapter 6 we provided some of the implementation details of the presented methods. The focus was

on providing the advice for researchers interested in implementing numerical methods for problems in the

non-divergence form in FEniCS . We discussed a general workflow in a standard FEniCS project, with the

special attention paid to creating, transforming and loading the meshes. We also showed pieces of code

used by author to solve specific, reoccurring problems, especially having to do with manually manipulating

the discretised operators. We finished the chapter with a quick discussion about code performance, how it is

influenced by the choice of linear algebra backend and how preliminary benchmarking may be performed.

As far as author is aware, most of the written material regarding FEniCS is rather outdated and none of it

discusses problems in non-divergence form. Thus hopefully this chapter will be a valuable contribution to

some of the readers.



118

Bibliography

[1] Y. ACHDOU AND M. FALCONE, A semi-Lagrangian scheme for mean curvature motion with

nonlinear Neumann conditions, Interfaces and Free Boundaries, 14 (2012), pp. 455–485, https:

//doi.org/10.4171/IFB/288.
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[21] M. CHAPERON, Lois de conservation et géométrie symplectique, Comptes rendus de l’Académie
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