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General summary 

This thesis contributes to two inter-related fields of research: bee conservation and bee 

foraging ecology. The first focuses on solitary bee ecology, identifying forage and habitat 

requirements along with educating the general public on aspects of solitary bee behaviour to 

aid in the conservation of the studied species. These results greatly improve our 

understanding of two rare and understudied species of solitary bee in the UK, Eucera 

longicornis, the long-horned bee, and Anthophora retusa, the flower potter bee, along with 

information on the forage requirements of a common and non-native bee species, Colletes 

hederae, the ivy bee, confirming its specialisation and reliance on the plant species Hedera 

helix, common ivy. The information provided by this research on the two rare species is 

currently being used by stakeholders to help conserve populations found on their land. The 

second focuses on how an important but understudied environmental factor, wind, influences 

bee foraging behaviour. Two types of common social bees, honey bees and bumblebees, that 

are major pollinators were studied foraging on both artificial and natural flowers, with 

implications for increasing our understanding of the potential future impacts of climate 

change on bees. Among other things, the wind research has identified a novel part of foraging 

behaviour much influenced by wind, hesitancy to take-off from flowers, which increases at 

higher wind speeds, and results in significant decreases in flower visitation rate. This thesis 

has contributed novel knowledge to our understanding of the foraging ecology of two rare 

bee species in the UK and has identified that having a wide foraging breadth does not 

necessarily mean a species will be common, as was found to the case for A. retsua. Foraging 

behaviour was also found to be influenced by the understudied environmental variable, wind, 

with it being found to reduce the foraging efficiency of honey bees and increase both honey 

bees and bumble bees hesitancy to take off.  

 

Chapter Two studied the population of the rare solitary bee, Anthophora retusa, living at 

Seaford Head in Sussex, one of the 5 sites it is known from in Britain. Results showed that it 

forages on a range of flower species, including the very common Glechoma hederacea 

(ground ivy). The population is small (male population size in 2019 was estimated to be 

around 160 individuals). Transect surveys showed that the species is restricted to a very small 

area, c. 30ha area within the Seaford Head reserve.  
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Chapter Three shows that the two populations of the rare Eucera longicornis found on 

Gatwick Airport land had estimated populations of 300 females and 130 males in 2019, and 

that these populations remained approximately stable over the three years of data collection. 

Eucera longicornis females collected pollen predominantly from species within the Fabaceae 

family, which were highly abundant within the 500m surrounding the aggregations and hence 

are likely to be key to their success.  

Chapter Four confirmed that ivy, Hedera helix is the predominant floral resource for the 

solitary bee, Colletes hederae (ivy bee) in Sussex, with ivy comprising 98% of pollen 

samples collected from females. Female C. hederae activity was synchronised with ivy 

bloom. However, C. hederae females did collect pollen from other plant species before ivy 

was in peak bloom. C. hederae was the most abundant species foraging on ivy, even when 

honeybee hives were present in the local area. 

Chapter Five used artificial flowers and wind generated by fans and found that increasing 

wind speed caused a significant reduction (37%) in flower visits for foraging Apis mellifera. 

This reduction was due to an increase in ‘hesitancy’, the time to take off from a flower once a 

bee had finished probing. The indirect effect of flower movement had no effect on flower 

visitation rate. However, it did cause an increase in flight duration but this was offset by a 

decrease in search time once a bee was on a flower. 

Chapter Six found that when foraging on natural flowers of lavender and marjoram Apis 

mellifera flower visit rate decreased with increasing wind speed due to an increase in 

handling time per flower. The influence of wind speed on flower visit rate differed between 

lavender and marjoram, with a sharper reduction when foraging on marjoram. This was not 

explained by differences in flower movement speed, with flower movement not influencing 

flower visit rate.  

Chapter Seven found that when foraging on lavender, Apis mellifera flower visit rate 

decreased with wind speed, whereas Bombus species flower visit rate was unaffected. 

However, both species did experience an increase in handling time per flower with increasing 

wind speed. Also, the number of Bombus foragers on a patch with wind was significantly 

lower than on a patch where no wind was present, indicating when given the option they will 

choose to forage in lower wind speeds.  

Chapter Eight identified that hesitancy to take off increased with wind speed for both Apis 

mellifera and Bombus species when foraging on seven plant species in naturally varying wind 
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conditions. Hesitancy duration in relation to wind speed did not differ between plant species. 

However, independently of wind speed it did. Bombus hesitancy was found to increase 

significantly more with increasing flower movement when compared to A. mellifera.  
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Chapter One: General Introduction  

1.1 Bee and pollinator biodiversity  

Globally there are an estimated 20,000 species of bee (López-Uribe et al 2017). Insect 

pollinators, including bees, are essential not only for the pollination of approximately 70% of 

angiosperm species (Schoonhoven et al 2005), but also of many crops. Approximately 85% 

of European (Williams 1994) and 70% of the Earth’s (Klein et al 2007) crop species benefit 

from pollination by insects. Although other pollinator groups, such as hoverflies (Syrphidae) 

and beetles (Coleoptera), do contribute, bees (Apoidea) are considered to provide the 

majority of these crop pollination services (Williams 1994, Klein et al 2007). However, as 

discussed by Senapathi et al. (2015a), the ethical, economic, and biological reasons for 

conserving insect diversity extend beyond those species that contribute to cop pollination, 

although these are often not the focus of conservation efforts (Senapathi et al 2015a). For 

example, insect species which may not contribute to the pollination of crops may pollinate 

wildflower species which provide food and shelter for other wildlife, including beneficial 

invertebrates that reduce crop pest abundance (Ditner et al 2013), along with species of birds, 

bats and rodents. 

Although the rate of global insect decline is currently under debate (Thomas et al 2019), there 

is no doubt that many insect species are in decline (Biesmeijer et al 2006, Potts et al 2010, 

Didham et al 2020). For example, 55% of common butterfly species in the Netherlands have 

suffered declines in both abundance and distribution between 1992 and 2007 (Van Dyck et al 

2009), and in Germany a study examining flying insect biomass in protected areas found a 

decline of 76% over 27 years (Hallmann et al 2017). Globally, 25% of bee species have not 

been reported between 2006 and 2015 (Zattara and Aizen 2021). Although globally there is 

an average decline of pollinator diversity and abundance (Potts et al 2010) this trend is not 

necessarily true for all pollinator species at some smaller scales. For example, the 2019 

results of the UK Butterfly Monitoring Scheme indicated it was the best year for butterfly 

species for 20 years, with four species (Chequered Skipper, Orange-tip, Brimstone, and 

Marbled White) having their best year on record. Just over half of UK Butterfly species 

showed higher population levels compared to 2018. However, even with the positive increase 

in many of the UK species, since the 1970s more species have been declining in abundance 

than increasing (JNCC, 2020). 
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In the UK since 1880, 23 bee and flower-visiting wasp species have gone extinct (Ollerton et 

al 2014). However, three new bee species have also recently arrived in Britain. One 

bumblebee species, Bombus hypnorum, and two non-eusocial (solitary) species, Colletes 

hederae and Hoplitis adunca. The latter is restricted to a small area in London (BWARS 

2016), but the other two are now found over much of Britain (Crowther 2017, BWARS 

2017). 

Insects face many challenges, with the potential to act singly, additively or synergistically to 

contribute to declines (Potts et al 2010). Pesticides (Brittain et al 2010, Goulson et al 2015), 

disease (Goulson et al 2015), habitat loss (Potts et al 2010), and climate change (Forrest and 

Chisholm 2016, Soroye et al 2020) have all been identified as significant. Pesticides are 

known to negatively influence both honeybees and wild bees in a variety of ways. For 

example, honeybee colonies in Hungary that had foraged on crops treated with clothianidin 

had lower over winter worker survival (Woodcock et al 2017), and wild bee density has been 

found to be lower in areas surrounding crops treated with neonicotinoids vs untreated crops 

(Rundlöf et al 2015). Exposure to pesticides increases the risk of disease for bee species due 

to their immunosuppression effects (Sánchez-Bayo et al 2016).  

Habitat loss is also a long-term contributor to bee declines (Goulson et al 2008, Brown and 

Paxton 2009, Potts et al 2010). The intensification of farming and changes in farming 

practices since the 1920s has resulted in major losses of semi-natural flower rich habitats 

(Ollerton et al 2014). In the UK, 97% of flower rich grasslands were lost in the 20th Century 

(Howard et al 2003), which has resulted in range contractions of bee species associated with 

this habitat, for example long tongued bumblebees (Goulson et al 2008). Urbanisation also 

poses a risk for bee species. Despite urban areas covering a small portion of the globe (~ 2%, 

Svirejeva-Hopkins et al 2004) they have had detrimental effects on some insect species. For 

example, in a study examining bees and wasps in Belo Horizonte, Brazil, the abundance of 

stingless bees was negatively affected by the increase of buildings and loss of vegetation 

cover associated with urbanisation (Zanette et al 2005). Although urbanisation and land use 

change does negatively affect many bee species, appropriate management of previous 

industrial sites can be used to help species conservation. For example, in the UK, 194 

invertebrate species of conservation importance have been recorded from brownfield sites, 

with 17 of these being priority species within the UK Biodiversity Action Plan (Bodsworth et 

al 2005, Macadam and Bairner 2012). Managed powerline strips in parts of the US were 

found to contain twice as many species compared to the adjacent either oak pine or evergreen 

https://link.springer.com/article/10.1007/s10841-020-00266-8#ref-CR52
https://link.springer.com/article/10.1007/s10841-020-00266-8#ref-CR65
https://link.springer.com/article/10.1007/s10841-020-00266-8#ref-CR31
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forest plots and contained two rare species of solitary bee (Wagner et al 2019). Some urban 

areas in the UK were found to have higher bee species richness compared to farmland 

(Baldock et al 2015) and there was higher reproductive output in bumblebee colonies in 

urban areas than those surrounding agricultural land (Samuelson et al 2018). If managed 

correctly, human modified environments can act as a refuge for some bee and other pollinator 

species (Hunter 2014, Baldock et al 2015, Phillips et al 2020, Tew et al 2021). 

Another emerging challenge for insect species is climate change. Shifting climates can 

disturb the synchrony between pollinator and plant emergence (Wilmer 2012, Kharouba et al 

2018, Inouye 2020) with this disruption even more of an issue for species which rely on a 

limited range of forage (Roberts et al 2011). Climate change can also result in existing ranges 

no longer being suitable due to factors such as warming (Giannini et al 2012). This is being 

seen with many bumblebee species in North America and Europe, with the southern edges of 

species’ ranges contracting further north in response to increasing temperatures, but the 

northern edges failing to expand northwards (Sirois-Delisle and Kerr 2018). This results in 

the shrinking of overall distributions (Kerr et al 2015). Not only is this gradual change in 

climate impacting pollinator species, but also sudden extreme events. For example, in Florida 

in January 2010 there was an extreme cold spell, with temperatures reaching record lows for 

the region (1.6°C). For four years following this extreme drop in temperature, the abundance 

of an introduced tropical bee originating from Mexico, Centris nitida, was significantly 

reduced (Downing et al 2016), with this reduction thought to be correlated with the extreme 

cold event. Extreme storm events, which have been increasing in frequency and severity due 

to changes in climate (Mirza 2003) can also pose a threat to bee species (Goulson and 

Nicholls 2016). For example, high levels of rainfall can cause flooding of rivers, potentially 

destroying the nests of bees in the ground alongside river banks, killing any maturing bees 

contained within (Fellendorf et al 2004).  

1.3 Forage requirements for bees 

Bees require flowers for a source of both nectar and pollen, which are their main or even 

exclusive food and are also used to feed the larvae or provision larval cells. Nectar is the 

main source of carbohydrates for bees, whereas pollen provides proteins, lipids and other 

micronutrients (Vaudo et al 2015). When making foraging decisions bees will consider a 

wide range of information. For example, nectar volume and concentration (Cnaani et al 2006 

and Pyke 2016), floral abundance (Fowler et al 2016), pollen quality (Ruedenauer et al 2016), 
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and flower morphology (Harder 1985). When foraging, bees are not haphazard but integrate 

these information sources to make non-random flower choices (Pyke 1978).  

Some bee species, such as the honeybee, Apis mellifera, are generalists and collect nectar and 

pollen from many species, although each individual forager is usually flower constant on 

each foraging trip, foraging on only one species of flower (Free 1963, Cane and Snipes 

2006). Some species take this specialisation even further and will only ever forage on a 

single, or a narrow group, of plant species. Bee foraging specialisation is generally classified 

into three categories; (a) Monolectic, only collecting pollen from a single plant species (b) 

oligolectic, collecting pollen from a few floral hosts and (c) polylectic, where pollen is 

collected from a wide range of plants (Cane and Snipes 2006). Although these classifications 

are constantly being debated, with the idea of monolecty now often replaced with broad or 

narrow oligolecticy (Cane 2020), they do help describe the different forage requirements of 

bee species.  

Species which are classed as oligolectic, only foraging on a narrow range of plant species 

normally from within the same family or genus, are thought to be at higher risk of decline or 

even extinction (Biesmeijer et al 2006, Hofmann et al 2019). For specialist species, habitat 

change is a major driver for population declines. For example, generalist species tend to be 

more abundant on farmland due to their more flexible forage requirements (Wood et al 2016). 

Ground nesting bees which specialised on pollen from the Larrea family were lower in 

abundance compared to cavity nesting or ground nesting generalists in small desert fragments 

(Cane et al 2006). This was most likely because the availability of their floral resource, 

Larrea, also decreased, meaning small fragments could only support a lower threshold of 

Larrea specialists.   

Although agri-environment scheme wildflower seed mixes are becoming more common 

(Powney et al 2016), a general lack of knowledge regarding the forage requirements of many 

bee species makes the creating of effective mixes difficult (Wood et al 2017). To determine 

the forage requirements and therefore specialisation of a bee species requires the use of 

multiple methodologies. Specialist bees will often visit different plant species for when they 

collect pollen or nectar. Often, even oligolectic species will visit a broader range of flowers 

for nectar than for pollen (Minckley and Roulston 2006). Historically, pollen requirements 

have been determined from pollen masses collected from brood cells (Cane and Snipes 2006). 

However, this does not give an overall picture of the foraging activities of adult bees and 
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their nectar requirements (Ritchie et al 2016). The best way to determine the full spectrum of 

flower usage for a species is likely to be combined analysis of pollen taken from foraging 

adult females, pollen collection from brood cells and floral visitation data from both sexes 

(Cane and Snipes 2006). A combination of methodologies not only results in more 

comprehensive information on forage requirements, but also other foraging behaviours that 

can only be identified from observing foraging behaviour on flower patches, for example, 

foraging locations and the dynamics of inter-specific exploitative competition (Chapter Two, 

Balfour et al 2015, Wignall et al 2019).  

By understanding the habitat requirements of species, such as appropriate forage, effective 

conservation schemes can then be put in place. For example, the introduction of agri-

environmental schemes which promote the planting of wildflower strips designed to attract 

bumblebees are thought to be partially responsible for the increase in some Bombus species’ 

distribution (Powney et al 2016). 

1.4 Solitary bees  

In the UK there are 270 species of bee, with 26 bumblebee species, one honeybee species and 

the remaining are mainly non-eusocial bees. For example, some species from the family 

Halictidae are classified as primitively eusocial (Danforth et al 2019), with the extent of 

social nesting in some of these species varying between high and low elevated populations 

(Danforth et al 2019). Unlike the eusocial honeybee and bumblebee species, species which 

are classed as solitary do not live in large colonies. They often have specific nesting 

requirements, ranging from sloped banks to hollowed out plant stems. Normally, a single 

female will provision her nest with pollen for the developing larvae. They often have short 

flight seasons, usually only a few months (Batra 1984), with the adults dying at the end of 

this time. Offspring will develop and remain in the nest and emerge the following flight 

season as adults. The time of year when adults emerge from the nest (e.g. early spring or late 

summer) will determine the speed of development. For example, Osmia bicornis (the red 

mason bee). With this species, the development of egg to adult occurs during the summer, 

with adults overwintering in a cocoon inside the nest, with emergence in early Spring (around 

April, Wasielewski et al 2013). In comparison, species which emerge in summer or later 

generally overwinter as prepupae and develop into adults in the nest in Spring, ready for the 

summer emergence (Danforth et al 2019). 
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Although each female solitary bee will build and provision her own nest, often multiple 

females will create these nests near one another in aggregations, and in some species multiple 

females will share nest entrances (Batra 1984). With ground nesting species, these 

aggregations can be particularly dense. For example, those of the ivy bee, Colletes hederae 

can contain 300 nests per m2 (Bischoff et al 2005). Solitary bee ecology is highly diverse with 

species often having specific nesting and forage requirements. For example, in Germany 30% 

of bee species are classed as oligolectic (Westrich 1996), including C. hederae, whose 

foraging ecology is studied in Chapter Four.  

Solitary bee species also often have limited flight distances which depend on their body size 

(Gathmann and Tscharntke 2002, Zurbuchen et al 2010a) meaning that their floral and 

nesting requirements need to be provided within a certain distance of their nest. For example, 

the large bodied Hoplitis adunca, which is similar in size to a worker honeybee, is capable of 

foraging at distances of around 1.4km. However, in one study over 50% of females did not 

travel further than 300m from the nest (Zurbuchen et al 2010a). This means habitat loss can 

be particularly detrimental to solitary bee populations. A direct example of how distance to 

forage can negatively affect a population is seen in Williams and Kremen (2007), with female 

Osmia lignaria producing enough offspring to guarantee a sustainable population when nests 

were surrounded by natural habitat with appropriate floral resources, whereas in sites where 

natural habitat was more distant from the nest (in conventional farmland) females were 

unable to produce enough offspring for population persistence. Zurbuchen et al (2010b) 

found that the proportion of brood cells provisioned per time decreased with increasing 

foraging distance for two studied solitary bee species.   

In the UK, the average proportion of 1km2 grid cell occupancy for solitary bees has declined 

by an estimated 32% between 1980 and 2013, compared to an estimated increase of 38% for 

21 species of eusocial bee (Powney et al 2019). There are currently 20 species of bee listed 

the UK Biodiversity Action Plan (UK BAP). Seven of these are bumblebee species, with the 

remaining 13 being non-eusocial solitary bees. Many of the solitary bee species on the list are 

restricted to only a few populations. For example, Anthophora retusa (Chapter Two) is only 

found in five sites all in the south of Britain. Others, such as Eucera longicornis, are slightly 

more common (Chapter Three). However, the range of this species is also now restricted to 

the south of Britain, although historic records state that it used to be located as far north as 

Yorkshire (Falk and Lewington 2015).  
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Although many solitary bee species are in decline, often resulting in small isolated 

populations, one recent colonist is increasing in range and abundance. Colletes hederae, the 

ivy bee, which arrived in southern Britain in Dorset in 2001, has increased its range with 

records of it now being located as far north as Carlise, c. 20km from the Scottish border 

(NBN Atlas). Although the exact reasons for its rapid range expansion are unknown, its 

reliance on a common plant species for forage, ivy, is thought to be a contributing factor 

(Chapter Four).  

1.5 Knowledge gaps on solitary bee conservation 

In the last 600 years 70 insect species have been declared globally extinct (Dunn 2005). 

However, due to missing research on certain insect groups this estimate is thought to be much 

lower than the actual value, with one estimate proposing 44,000 extinctions as a more 

realistic figure (Dunn 2005).  In Europe, 2.4% of bee species are classed as critically 

endangered by the IUCN (Nieto et al 2014). However, again due to limited monitoring, this 

figure is an estimate, as for 57% of European species there is not enough data to evaluate 

their extinction risk (Nieto et al 2014).  

A research bias towards certain taxa is a major issue for understanding bee population trends 

and the responses of different species to habitat and land use change (De Palma et al 2016). 

Some insect groups are heavily researched, with long term monitoring programmes and 

charities using citizen science to obtain large data sets on changing distribution and 

abundance. Examples include the Bumblebee Conservation Trust “Beewalks” scheme, and 

the Butterfly Monitoring Scheme. These programmes have been vital for obtaining data on 

population trends, along with increasing public knowledge on various pollinator species. In 

contrast, a disproportionately low emphasis on solitary bee research compared to eusocial 

bees can be shown with a simple Web of Science search. A search for bumblebees in the title 

or topic identifies 2,558 published journal articles between 2010 and 2021. The same search 

for solitary bees returns half this, with 1,288. This is of course a crude measurement, but it 

highlights a real discrepancy in research, especially when considering that over 90% of global 

bee species are classed as solitary. Similar results are seen for studies on honeybees. Wood et 

al (2020) conducted a similar search using Scopus, searching for papers on 75 genera of bees. 

They found 78.4% of the identified publications were studies on Apis mellifera, meaning that 

for the remaining taxa there was an average of just 1.3 publications per species (Wood et al 

2020). This gap in research makes it difficult to both identify population trends and to 

https://link.springer.com/article/10.1007/s10841-020-00272-w#ref-CR54
https://link.springer.com/article/10.1007/s10841-020-00272-w#ref-CR54
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understand why certain species may be declining. Take the rare solitary bee A. retusa. To 

help conserve the populations in the small number of areas where it is found requires 

knowledge of factors such as its foraging and nesting requirements. However, this 

information is currently scarce (Chapter Two).  

Even the more heavily studied insect groups, such as butterflies, have examples of where a 

lack of knowledge on a species ecology has almost resulted in a species extinction, for 

example, the large blue butterfly (Maculinea arion). For most of its documented history in 

the UK, M. arion populations were in decline (Thomas 1995), with the reasons not entirely 

understood. In 1972, when numbers were critically low, an intensive study on the species 

ecology was conducted to identify the key information needed for its conservation. Although 

the study was too late for the UK population, which became extinct in 1979, the information 

on its ecology was eventually used to help manage reintroduced populations. By 

implementing conservation and management strategies using the ecological information 

gained from the previous research, the UK population has since recovered with the species 

now located in 33 sites in the South of England (CEH 2008). This is a key example 

highlighting how important studies examining the ecological requirements of species are in 

ensuring effective conservation.  

Not only is knowing the ecological requirements of species needed for conservation, but also 

educating the public on the importance of pollinators. This is key to gaining support for 

conservation measures, for example, purchasing bee friendly flowers (Wignall et al 2019), or 

not calling exterminators to remove harmless nesting bees (Appendix A). However, there is 

still little knowledge and research on the 250 solitary bee species in the UK. This lack of 

public knowledge on British bee diversity was highlighted in a survey by Royal Mail, with 

more than half (53%) of participants unable to name a single species of bee (The Guardian 

2015).  

1.6 Impacts of weather on foraging 

Understanding species specific requirements, such as foraging ecology, is an essential part of 

conservation. However, understanding foraging behaviour more generally is also of 

importance both as an essential part of the biology of bees (and most animals) and also 

because of its relevance to conservation. Animals show many adaptations that enhance 

foraging effectiveness and efficiency (Stephens and Krebs 1986, Boyd et al 1997, De Knegt 

et al 2007), and when foraging face many challenges. These include the effects of abiotic 
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variation in their immediate environment (Porter and Tschinkel 1987, Soulsbury et al 2008), 

which can cause dramatic shifts in behaviour. For example, bald eagles do not forage in high 

winds and rain (Elliott et al 2006) and Atlantic salmon will switch from foraging during the 

day to the night in response to cold temperatures (Fraser et al 1995). 

Changes in weather can influence the foraging ecology and behaviour of pollinator species in 

a variety of ways. For example, heavy rainfall will often cause insect foraging to stop 

altogether (Inoue et al 1985, Joshi and Joshi 2010, Lawson and Rands 2019). However, some 

bee species are known to continue foraging in light rainfall, although this may compromise 

their foraging efficiency: Bombus terrestris workers collect less pollen on wet days (Peat and 

Goulson 2005). Honeybees do not forage in temperatures below approximately 10°C 

(Heinrich 1996) and changes in ambient temperatures can influence floral choice (Norgate et 

al 2010). These studies all highlight how influential changes in environmental conditions are 

for foraging bees and their behaviour, and how understanding these changes is becoming ever 

more pressing due to our changing climate. Studies assessing large scale changes to insect 

distribution and abundance in relation to climate change are becoming more common and are 

important. However, it is also important to understand how it influences behaviour on an 

individual level. For example, B. terrestris visitation rate decreases when foraging on Sinapis 

arvensis grown in drought conditions, due to decreased flower size and abundance (Kuppler 

et al 2021). Climate models predict higher global temperatures, droughts (IPCC) and 

increasing wind speeds (Zeng et al 2019). There are many studies examining how the effects 

of temperature and drought may influence bee species (Vogt 1986, Blazyte-Cereskiene et al 

2010, Minckley et al 2013, Soroye et al 2020). However, studies on wind and its impacts on 

behaviour are limited.  

1.7 The effects of wind on foraging bees 

Wind is capable of both helping and hindering foraging animals. For example, the wandering 

albatross benefits from favourable tail and side winds whilst traversing the ocean 

(Weimerskirch et al 2000 & Weimerskirch et al 2002), whereas high winds cause leaf cutter 

ants to collect smaller sized pieces of vegetation when foraging, reducing the amount of food 

a colony can collect (Alma et al 2017). Wind poses significant challenges for many flying 

animals, especially insects, who regularly interact with the unsteady airflow and turbulence 

created by wind (Combes and Dudley 2009) and whose small body size, resulting in a larger 
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surface area to volume ratio, will make increasing wind speed a greater challenge than for 

birds, due to the increased effects of air resistance (Hunter 2007).  

Studies examining the impacts of wind on foraging bees have often focussed on how it 

influences flight mechanics (Crall et at 2013, Ravi et al 2013, Chang et al 2016, Crall et al 

2017) and how it decreases overall foraging activity (Pinzauti 1986, Vicens and Bosch 2000, 

Tuell and Isaacs 2010). For example, bumblebees are known to alter their body orientation in 

response to turbulence caused by wind (Ravi et al 2013) and honeybees will speed up when 

approaching moving obstacles when flying in wind (Burnett et al 2020). Depending on the 

flower species, honeybees can make an estimated 250 and 1446 flower visits per trip 

(Ribbands 1949, Goodwin et al 2011), many of these requiring a bee to fly between 

individual flowers or even plants. Even a small increase in the time taken to travel between 

and land on flowers caused by wind-induced delays would be multiplied hundreds or even 

one thousand times (Couvillon et al 2015) per hour of foraging. The results in Chapters Five, 

Six and Seven examine how increasing wind speed is capable of significantly reducing the 

foraging efficiency of bees foraging on both natural and artificial flowers, and how specific 

foraging behaviours are influenced.  

1.8 The effects of wind on flowers 

Not only does wind directly impact foraging insects, but it is also capable of indirectly 

influencing foraging behaviour through its impacts on flowers. Flowers will sway in the 

wind, with various adaptations and environmental factors influencing the extent of this 

motion (De langre 2008, Warren and James 2008). Flower and leaf movement in wind has 

been suggested as a possible mechanism to reduce damage from insect herbivory and 

pathogens (Yamakazi 2011, Warren 2015) highlighting the challenges flower motion may 

pose for foraging pollinators. However, moderate flower motion has also been found to 

increase pollinator visitation (Warren and James 2008).  

Flowers also have morphological adaptations to make handling by bees easier when moving. 

For example, some plant species have flowers with conical shaped cells on their surface that 

assist flower handling through improved grip (Whitney et al 2009), which is potentially 

beneficial to pollinators in windy conditions when the flower itself is moving (Alcorn et al 

2012). Flowers exhibit a wide range of morphologies which are expected to interact 

differently with wind and pollinators. For example, larger flowers may be easier to see and 

land on and flowers placed on long inflorescences are likely to sway more in windier 
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conditions (Warren and James 2008). Flower morphology is capable of influencing handling 

time in the absence of wind (Balfour et al 2013). However, no studies have examined 

differences in foraging efficiency on different plant species in the presence of wind. The 

effects of plant species and flower movement on the foraging behaviour of bees is covered in 

chapters Six and Eight.  

1.9 Aims and objectives  

Pollinator species are currently experiencing multiple challenges and more work on species 

specific forage requirements, along with how the environment can alter foraging behaviour, 

are needed.  The aims of this thesis are 1) to increase knowledge on the forage requirements 

and behaviour of three solitary bees to aid in their conservation and 2) to understand how 

wind can influence the foraging behaviour of honeybees and bumblebees.  
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Chapter Two: Population assessment and foraging ecology of the rare solitary 

bee Anthophora retusa at Seaford Head Nature reserve. 

2.1 Abstract 

Anthophora retusa is a rare solitary bee which has declined throughout Britain and other 

European countries since the 1990s. It is thought to be restricted to five sites in Britain. 

However, information on these remaining populations is limited. Knowledge on population 

size, habitat and forage requirements and foraging distance, are important for successful 

conservation of the species. The population of A. retusa at the Seaford Head Nature reserve in 

East Sussex was surveyed. Transects within the reserve were conducted and population 

estimates using mark recapture were made for 2018 and 2019. Pollen from foraging females 

was analysed alongside visual sightings to determine forage requirements. The total population 

was estimated to be 91 in 2018 (males and females) with an estimated male population of 167 

in 2019. The most visited flower species by females was Glechoma hederacea (66% of visits) 

but flower preference changed throughout the flight season, shifting to Fabaceae species and 

Iris foetidissima with 16 plant groups identified in pollen samples. Bees were geographically 

restricted to a small area within the reserve (approximately 30ha). Although the exact location 

of nesting sites was not determined with certainty, it is thought nests are in the loess deposits 

at the top of the inaccessible sea cliff face. This project suggests the presence of appropriate 

nesting sites may be limiting A. retusa distribution as they appear to forage on common plant 

species. More research is needed on the exact nesting requirements of the species.  
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2.2 Introduction 

Understanding the ecology of a rare species is vital in devising appropriate conservation 

strategies. Global examples of where this understanding has resulted in conservation success 

stories include the Asiatic lion in the Gir forest (Singh & Gibson 2011) and mountain gorillas 

in Bwindi national park (McNeilage et al 2006). Examples in the UK include the Large Blue 

butterfly (Thomas 1995) and the Eurasian bittern (Brown et al 2012).  

In addition, information on population sizes and trends is required to determine if a species is 

rare, or if a population is small and at risk of extinction (Jackson 2019). Understanding these 

trends is becoming increasingly important in the current ecological climate with declines 

reported in many species globally (Thomas et al 2004; Beebee & Griffiths 2005; Goulson et al 

2008; Winfree et al 2009; Potts et al 2010). Species extinctions begin with the loss of local 

populations. Smaller, isolated populations are at increased extinction risk (Purvis et al 2000), 

especially in species with intermediate mobility (Thomas 2000 & Traill et al 2007) or that have 

specific habitat or resource requirements (Thomas 1995).   

In the last 600 years 70 insect species have been declared extinct globally (Dunn 2005). 

However, this number is thought to be much less than what is expected due to lack of research 

on certain insect groups, with one proposed estimate of 44,000 species extinctions (Dunn 

2005). Globally, pollinator species are in decline (Biesmeijer et al 2006 & Potts et al 2010). In 

Europe, 2.4% of bee species are classed as critically endangered by the IUCN (Nieto et al 

2014). However, again due to limited monitoring, this figure is an estimate, as for 57% of 

European species there is not enough data to evaluate their extinction risk (Nieto et al 2014). 

An example of a bee species thought to have recently gone globally extinct is Bombus franklini. 

It had a narrow distribution, only ever recorded in an area approximately 240 by 110km in 

southern Oregon and northern California in the United States (National Research Council 

2007). For bees, the threat of extinction is not just limited to B. franklini, with four other 

Bombus species in Northern United States being placed on the IUCN at risk list for pollinators 

(National Research Council 2007).  

Globally there are an estimated 20,000 species of bee. Of these, 250 are bumblebees (Goulson 

2008), approximately 300 are stingless bees (Francisco & Arias 2010) and nine are honeybees 

(Koeniger and Koeniger 2000). Most of the remaining c. 19,500 are not eusocial and are often 

called solitary bees. There are many studies examining bumblebee species declines (Goulson 
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et al 2008, Cameron et al 2011, Meeus et al 2011) in the UK and elsewhere. However, studies 

on solitary bee species are minimal.  

In Britain 12 species of bee have gone extinct since 1851, of which 2 were bumblebees, 

although no extinctions have been reported since 1990 (Ollerton et al 2014). However, from 

1980 to 2013 British solitary bees have suffered a 32% decline in average occupancy (Powney 

et al 2019). Declines of both bumblebees and solitary bees in the UK are thought to be due to 

a variety of factors including habitat destruction, intensification of agriculture (Buchmann & 

Ahrne 2005), reduced growing of clover due to the invention and use of nitrogenous fertilizers 

(Ollerton et al 2014) and pesticides (Goulson et al 2015 & Woodcock et al 2017).  

Solitary bees are not only an important component of biodiversity, but also contribute to 

pollination of both crops (Klein et al 2003, Ricketts et al 2004, Greenleaf and Kremen 2006, 

Holzschuh et al 2012) and wild plant species (Ollerton et al 2011, Rollin et al 2013). Solitary 

bees are at risk of local extinctions due to their often-limited foraging distances (Gathmann & 

Tscharntke 2002, Greenleaf et al 2007), specialised nesting (Westrich 1996; Wcislo & Cane 

1996; Zurbuchen et al 2010) and forage requirements (Westrich 1996, Wood et al 2017). 

Determining these requirements, such as plant species on which they forage and where they 

nest, are likely to be important in making habitat management effective.   

Anthophora retusa, the flower potter bee, is a spring- flying (active from April to late June), 

large (forewing length 8.5-10mm, Falk & Lewington 2015) solitary bee. It used to be 

widespread in southern England but since the 1990s it has greatly declined and is now restricted 

to a few sites (Table 1).  It is thought that the species has become regionally extinct in eastern 

England as the last records from previously reported sites in Norfolk and Essex were in the 

early 1970s (Jackson 2019). The sites where it is still found are geographically small (Table 1). 

For example, in Dorset A. retusa are found nesting and foraging in a quarry site of 

approximately 30ha.  

This decline of A. retusa is thought to be due to the intensification of landscape for farming 

and loss of nesting habitat as well as threats from flooding and cliff erosion (Evans and Potts 

2004). It is a UK BAP priority species and is listed as Endangered (Falk 1991). Although 

assigned as Least Concern at the European level by Nieto et al. in 2014, due to it being 

widespread and common in the south of its range, the species has also been red listed in eight 

out of the 20 countries where it is found. Within these eight it is regarded as critically 

endangered in Estonia and endangered in the Czech Republic and the Netherlands, but there is 
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very little information on individual populations. The declines mirror that of some bumblebee 

species (Edwards and Jenner 2008).  

A geographically restricted population of A. retusa was identified at the Seaford Head local 

nature reserve in East Sussex in the 1990s by Edwards and Jenner (2008). The aims of this 

current study were to determine several important ecological parameters for this population. 

First, to determine the population size using mark recapture. Second, to determine their main 

sources of forage using both pollen analysis and observations of individual foragers. And third, 

to identify its foraging range within the study area at Seaford Head using transect surveying of 

bees on flowers.  In addition, this information was used to estimate foraging locations and 

distances travelled when foraging.  
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Table 1: Both historical and current locations of where A. retusa has been identified and the 

date of last recording. Where known, the habitat type and more detailed information on the 

population is described.  

 

 

2.3 Methods 

2.3.1 Study site 

Seaford Head Local Nature Reserve is located east of Seaford town and is bordered to the 

south by chalk sea cliffs and to the east by the Cuckmere River estuary. It is within the 

Sussex Downs Area of Outstanding National Beauty and is jointly owned by Seaford Town 

Council, the National Trust and the East Sussex County Council. The landscape consists of 

County and 

Site 

Last 

recorded 

Status Habitat 

type 

Population description Reference 

East Sussex 

Seaford 

Head 

2020 Confirmed 

Present 

Coastal 

grassland, 

shrubs and 
chalk cliff 

Thought to be nesting in the 

sandy loess deposits on the 

cliff face above chalk. Total 
area where they are observed 

foraging 30ha. 

This study 

Dorset 

Hanson 

Quarry 

2019 Confirmed 

Present 

Heathland Nesting aggregation in wind-

blown sand area on the edge of 

a quarry pit site. Total area 

c.30ha with individuals seen 

foraging at multiple locations 

surrounding the pit. 

Pers. Obvs GH 

Dorset 

Lulworth 

ranges 

2005 Thought to 

be present 

Coastal As the land is occupied by the 

Ministry of Defence surveying 

is difficult. However, bees 

have been found throughout 

the ranges 

Bug life report 

Pers. Comms 

Mike Edwards 

Isle of Wight 

Culver Down 

2002 Thought to 

be present 

Coastal Restricted to a small area of 

coastline, less than 1km radius 

Pers comms. 

Adam Wright 

Bristol 1920 Considered 

lost 

- - Horsley et al 

2013 

Somerset 

Milbourne 

Port 

1839 Considered 

lost 

- - Horsley et al 

2013 

Norfolk 1970 Considered 

lost 

- - Jackson 2019 

Bedfordshire 1946 Considered 

lost 

- - Jackson 2019 

Suffolk 1899 Considered 

lost 

- - Jackson 2019 

Essex 1970 Considered 

lost 

Coastal, 

low 

grassland 

- Jackson 2019 

Hampshire 2000 Status 

unknown 

- - Hampshire 

biodiversity 

action plan 

2000 
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coastal scrub, pasture grazed by sheep and cattle and both grazed and ungrazed grassland rich 

in wildflowers. It is classed as a nature reserve and SSSI (Site of Special Scientific Interest. 

Natural England 1999) due to the presence of nationally rare species, including Anthophora 

retusa, Adscita statices (forester moth) and Seseli libanotis (moon carrot) (Sussex Wildlife 

Trust). There is a diversity of habitat types throughout the reserve. The section of the reserve 

where the survey was conducted consists of a mixture of scrubland and occasionally grazed 

grassland bordered by permanent pasture (Fig 1a). It is the only part of the reserve where the 

cliffs have exposed loess deposits, highly porous silt sediment formed by the accumulation of 

windblown dust (Frechen 2011). The western section is predominately scrubland bordered by 

the Seaford golf course (Fig 1b). The eastern side is low-lying meadow with the Cuckmere 

river flowing through the centre (Fig 1c). 

The total survey area (Fig1a) was 25ha, approximately 30% of the 83ha reserve. Within this, 

land was classified into three habitat types (scrubland, cliff edge and grassland) and 11 fixed 

survey-transect routes were established. The survey area was chosen as a previous study by 

Edwards and Jenner (2008) and surveys conducted by Sussex Wildlife had identified the 

presence of A. retusa along the exposed cliff face and inland within the 25ha survey site. The 

site also ensured multiple habitat types could be included in the survey. Areas were classified 

as scrubland where species such as Crataegus monogyna (hawthorn), Sambucus nigra (elder) 

and Rubus fruticosus (bramble) were dominant and accounted for approximately 10ha with 

four transect walks (Fig 1a). Grassland was defined as areas with minimal or no tree cover, 

more than 100m from the cliff edge with wild flowers or low (less than 1.5m high e.g. Gorse) 

shrubs as the predominant vegetation. This accounted for approximately 10ha and contained 

five transects. The remaining 5ha was classified as cliff edge with wild flowers and grass the 

predominant vegetation and was any area than fell within 100m of the cliff edge and 

contained two transects (Fig 1a). Transects were made along pre-existing paths with adjacent 

flower patches being surveyed.   
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Fig 1: Survey area within the Seaford head nature reserve and all transects walked grouped 

by habitat type. A; the 25ha survey area, B; the western side of the reserve, C; the eastern 

side, D; area outside of the reserve where additional surveys occurred in 2020.  

2.3.2 Mark-recapture and transect-survey walks 

Mark -recapture data were collected 4 May to 18 June 2018 and 15 April to 22 June 2019 as 

these dates covered the period of peak activity for A. retusa (Falk and Lewington 2015). 

Surveys were adjusted to start earlier in 2019 to increase the survey time when males were 

active. Surveys were ideally made every two or three days but due to weather conditions not 

conductive to bee activity, sunny and 12°C or more, this was not always possible. The same 

transect routes were walked each survey day between 10:00 and 15:00 with the order 

randomised each day to minimise both time of day and weather effects on bee activity. 

Routes were walked once per survey day at a consistent speed with the same observer each 

day. 

One challenge in studying A. retusa is that it cannot be differentiated on the wing from the 

very similar looking and abundant A. plumipes (Fig2a, 2b). Therefore, whenever either were 

seen they were caught with an insect net and identified. Females were identified by the colour 

of the hind tibial spur. In A. retusa this is red (Fig 2a) versus black in A. plumipes.  Males of 

the two species could be identified because only A. plumipes has the obvious longer hairs on 

the mid tarsi (Fig 2c). Following species identification, A. plumipes were released. Any A. 
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retusa were released after being marked on the notum with individual colour-dot 

combinations using Revell© water based acrylic paints (Fig 2d, Zurbuchen et al 2010).  

In addition, the flower species each bee was foraging on plus the GPS coordinates were 

recorded. If the bee was female, we attempted to collect a pollen sample. This was done by 

placing the female in a queen marking cage and using a fine toothpick to scrape grains from 

the scopa and the whole body into individual Eppendorf tubes which were frozen until 

analysis. Due to the rarity of the species, destructive sampling to ensure all pollen was 

collected from each female was not appropriate. Care was taken to remove all pollen from a 

female with the same technique of collection, as explained above, for each bee even if pollen 

did not appear to be present, to minimise the risk of only collecting larger or more visible 

grains. Occasionally pollen was not obtained from captured females either due to too few 

grains present or because the female was not collecting pollen. As a result, pollen samples 

were not collected on every survey day.  

Using the GPS coordinates, the mean travel distances between the initial capture location and 

recapture points were calculated (Peakall & Schiestl 2004). If multiple recaptures of the same 

individual occurred (5 individuals in 2019 and 3 in 2018) then the mean distance travelled 

was calculated using the distances from the first capture point to all subsequent capture 

locations. In 2019 a large area of kidney vetch, Anthyllis vulneraria, was located along the 

cliff face. On 31 June, individuals foraging on this patch were caught using a net with a 

telescopic handle, marked and pollen samples taken from females. This was the only day 

where the patch was surveyed as it had not been previously identified and, therefore, to 

maintain a constant survey effort was not added to the survey route. To determine if female 

A. retusa had habitat preferences the average number of captures between the different 

habitat areas and transects were compared.  

 

 

 

. 
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Fig 2: A; Female A. retusa with arrow indicating the red hind tibial spur (Aubert 2013) B; 

Female A. plumipes resting on a leaf (Jones 2013) C; Male A. plumipes with the distinctive 

hairy feet (Owens 2011) which does not occur in in A. retusa D; Paint-dot-marked male A. 

retusa foraging on ground ivy, Glechoma hederacea 

 

Additional surveys were conducted outside of the core 25ha study area to determine if A. 

retusa was present in a nearby location where it has previously been found (Falk pers. 

Comms) and areas adjacent to the study site. On 28 May 2018, a survey was conducted 

inland from Seaford Head through the Cuckmere valley for approximately 4.5km, ending at 

coordinates 50.791003, 0.156665 (See Appendix B1). In 2020, additional surveys within 

Seaford head reserve were completed. These occurred in the western side which contains 

Seaford golf course (Fig 1b) and the surrounding wetlands to the east on both sides of the 

river (Fig 1c) along with the original 25ha survey area (Fig 1a). Outside of the reserve the 

wetlands on the east side of the river (Fig 1d) ending at coordinates 50.774232, 0.152147 and 

an area where A. retusa were once recorded, High and Over (coordinates 50.789516, 

0.140185, Edwards per comms.) were also surveyed.  
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Each area was visited a total of three times, on days of good weather (above 12°C and dry) 

between May 27 and June 8 2020 during the female foraging period. Mark recapture and 

pollen collection were not conducted during these additional surveys.  

Surveys additional to our study were made by Graeme Lyons of the Sussex Wildlife Trust in 

the western side of the nature reserve in 2016 and 2018 (Fig1b) and inland along the 

Cuckmere river for approximately 2km (2018, Fig1c). 

2.3.3 Population size models and estimates 

To estimate population sizes for males and females in both 2018 and 2019 the POPAN model 

of the Jolly-Seber method for open populations (Schwarz and Arnason 1996) was used in the 

programme “Mark” (version 6.2). Separate models were made for males and females for both 

years as previous work suggests separate models for sexes gives more accurate predictions 

(McKnight & Ligon 2017). Multiple models with different parameter criteria were created. 

The parameter index matrices (PIMs) used in the POPAN method include; Ф (the apparent 

survival rate), p (capture probability), pent (probability of entry into the population) and N 

(super-population size). Each of these PIMs was tested as either time dependent or constant 

and the “Akaike information criterion” (AIC) was used to select the most suitable model. 

Goodness of fit testing was performed to ensure the data met the model assumptions.  

2.3.4 Pollen identification  

Pollen was mounted in glycerine jelly with basic fuchsin to stain individual grains (Wood et 

al 2018). Identification was under light microscope at 400x magnification. Due to the low 

number of pollen grains present in each sample it was possible to count the actual number of 

grains per plant species identified. Identification to species level was attempted. However, 

due to similarities among species within Trifolium, other Fabaceae and Apiaceae these were 

identified to either genus or family level. Samples were grouped by date collected. The 

percentage of pollen grains from each plant species was calculated from the total number of 

grains identified on each sample day. If multiple bees were sampled on a day, the data were 

pooled.  

2.3.5 Flower-abundance transects  

In 2018 the abundance of flower species on each transect was recorded using a modified 

DAFOR vegetation scale (Croxton et al 2005). For each survey day the species present on 

each transect and its abundance on a scale of 0 to five (0: absent; 1: rare; 2: occasional; 3: 
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frequent; 4: abundant and 5: dominant). The overall daily abundance for each species was 

calculated as the average of its abundance across all transects for that day. The average 

abundance during the flowering period was calculated only using dates where the species was 

seen to be in flower on at least one transect. These measures provide information regarding 

when certain species became abundant within the female flight period and which species 

were flowering consistently throughout. Average abundance during the survey period was 

calculated using the average daily abundance for all survey dates. The flower survey dates 

were 20 and 30 May and 5,11 and 18 June 2018 to overlap with female activity. To determine 

differences in plant abundances between habitats, the average abundance of the five most 

visited plant groups by A. retusa females were compared between habitat areas and transects. 

These groups either accounted for more than 20% of flower visits or were over 20% of the 

pollen grains identified.  

2.3.6 Statistical analysis 

To determine if there was a significant difference in when peak activity occurred between 

males and females Mann-Whitney U tests were completed for both years separately due the 

difference in survey start date between years. To test for differences in plant abundance and 

the number of females captures between habitat types and transects Kruskall Wallis tests 

were run. To test for differences between survey years and sexes in distances between capture 

points, t-tests were performed. All statistics were performed using R version 3.4.2. 

 

2.4 Results 

2.4.1 Population estimates  

In 2018 50 males and 42 females were caught and marked on 13 survey days, from 4 May to 

18 June (See Appendix B2) No males were caught after 6 June. The day with the most male 

captures was 5 May, with 10, and 13 June for females, with 12 captures. 

In 2019 there were 19 survey days from 4 May to 13 June. A total of 160 males and 57 

females were caught (See Appendix B3). As in 2018, the day with the highest number of 

male captures was earlier than for females (10 May vs. 6 June). 

In both 2018 and 2019 males were on the wing significantly earlier than females (Mann 

Whitney test U, 2-tailed: 2018, U = 1874.5, P <0.0001; 2019, U = 6777, P <0.0001).   
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To obtain population estimates separate models were run for each year and sex. Using 

goodness of fit testing, models that best fitted the data were chosen. The models used are 

shown in Appendix B4. The estimated ratio of males to females in 2018 was 1.1:1.0. In 2019 

the male population was estimated to be approximately 3.6 times greater than in 2018, 

increasing from 46.8 to 167.1 individuals (Table 2).  

 

Table 2: Gross population estimates for each year and sex calculated using the models 

described in Appendix B4 The total number of individuals caught for each year and sex are 

shown. Due to zero recaptures of females in 2019 a population estimate could not be made. 

However, 57 females were caught that year. 

 

 

 

Fig 3: A; Male and female daily population estimates for 2018; B; Male daily population 

estimates for both 2018 and 2019. Standard error bars are shown. Horizontal lines indicate 

the overall mean of the daily population estimates. There were no daily population estimates 

for females in 2019 because zero recaptures occurred. 

Year Sex Population 

estimate 

±SE Total caught 

2018 F 43.9 4.5 42 

2018 M 46.8 4.2 50 

2019 M 167.1 6.5 160 
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The daily population average for females in 2018 was 5.7 individuals and for males was 7.7 

(Fig 3a). 

In 2019 the male population daily maximum was 71% higher than 2018 and the daily 

minimum was 38% higher (fig 3b). The daily population average for males in 2019 was 17.3. 

2.4.2 Pollen on females 

In 2018 pollen was collected from 14 foraging females across the survey period. Pollen from 

12 different plant species or families was identified. In 2019 pollen was collected from 12 

foraging females with pollen from 14 different species or families identified. Pollen from 

ground ivy, Glechoma hederacea and Fabaceae species were the most common for both 

years. G. hederacea occurred in 64.3% (9/14) of samples and Fabaceae species in 50% (7/14) 

in 2018. In 2019 G. hederacea was present in 66.7% (8/14) and Fabaceae species in 75% of 

samples (9/12, Table 3). Nearly all females had pollen from at least two species or families 

(26/27) and pollen was often identified from plant species that A. retusa females were not 

seen foraging from, such as hawthorn (Crataegus monogyna). On average females were 

carrying pollen from 2.9 species. 
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Table 3: Plant species and families identified in pollen samples collected from foraging 

Anthophora retusa females in 2018 and 2019. All samples were collected from separate 

females. For plant species marked * females were not observed foraging on that species 

during the surveys. The mean number of pollen grains per sample was calculated only from 

samples where the species was present. 

 

2018 2019 

Plant Species Pollen 

present 
on n/14 

bees 

/(%) 

Percentage 

of total 
grains 

collected 

from all 

females for 

year (%) 

Mean 

number of 
grains per 

sample 

(±SE) 

Pollen 

present on 
n/12 bees 

/(%) 

Percentage 

of total 
grains 

collected 

from all 

females for 

year (%) 

Mean number 

of grains per 
sample 

(±SE) 

Glechoma 

hederacea  

9/ (64.3) 32.1 7.0 ± 3.2 8/ (66.7) 34.1 54.6 ± 24.5 

Crataegus 

monogyna* 

5/ (35.7) 13.3 5.2 ± 3.5 2/ (16.7) 0.5 3.0 ± 0.0 

Symphytum 

officinale 

2/ (14.3) 5.1 5.0 ± 4.0 1/ (8.3) 0.1 1.0  

Fabaceae sp. 7/ (50.0) 13.3 3.0 ± 1.2 9/ (75.0) 22.4 31.9 ± 13.7 

Trifolium sp.* 4/ (28.6) 5.1 2.5 ± 1.2 5/ (41.7) 32.5 83.4 ± 80.9 

Echium vulgare 1/ (7.1) 15.3 30.0  1/ (8.3) 1.6 21.0  

Asteraceae sp.* 3/ (21.4) 3.0 2.0 ± 1.0 4/ (33.3) 5.3 17.0 ± 11.4 

Atropa 

belladonna 

2/ (14.3) 9.2 9.0  ± 7.0 1/ (8.3) 0.2 3.0 

Iris foetidissima 2/ (14.3) 2.0 2.0 ± 0.0 1/ (8.3) 0.1 1.0 

Hippophae sp.* 1/ (7.1) 0.5 1.0 - -  

Umbelliferae sp.* 1/ (7.1) 1.0 2.0 1/ (8.3) 0.1 1.0 

Acer 

pseudoplatanus* 

- - - 3/ (25) 2.5 16.0 ± 15.0 

Filipendula 

ulmaria* 

- - - 1/ (8.3) 0.2 3.0 

Rubus fruticosus* - - - 1/ (8.3) 0.2 3.0 

Ranunculus sp.* - - - 1/ (8.3) 0.2 2.0 
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Fig 4: A; Proportions of pollen grains for all plant groups identified in samples in 2018 and 

B; 2019. C; All samples pooled for the year. Numbers above the bars indicate number of bees 

sampled. 

 

In 2018 the four most prevalent plant species identified in pollen samples were C. monogyna, 

G. hederacea, Echium vulgare (viper’s bugloss) and species of Fabaceae (excluding 

Trifolium spp.) (Fig 4a). G. hederacea was present in five out of the seven days sampled and 

species of Fabaceae were present in six. The date when plant species other than the top four 

most common were more prevalent was 30 May, with only 20% of pollen being from the 

Fabaceae and the remaining 80% from Iris foetidissima (stinking iris) and Apiaceae species 

(Fig 4a). 
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In 2019 the three most prevalent plant species identified in pollen samples were G. hederacea 

and species of Fabaceae and Trifolium (T. pratense and T. repens) (Fig 4b) G. hederacea 

pollen was the most common being present in samples from six of the seven days. Other 

plant species were most common on 22 June with E. vulgare comprising 78% of the samples 

and Ranunculus sp. comprising 7% (Fig 4b). 

When pooled over all sample days in 2018 G. hederacea pollen grains comprised most of the 

pollen (33%) followed by E. vulgare (15%), C. monogyna. (13%) and Fabaceae species 

(12%, Fig 4c). In 2019 G. hederacea pollen was the most common (34%) followed by 

Trifolium species (33%) and then Fabaceae species (22%).  

2.4.3 Survey walks 

On 2018 survey walks most females were seen foraging on G. hederacea (63%) followed by 

I. foetidissima (29%, Fig 5c). On seven of the nine survey days all females seen were 

foraging on G. hederacea. Females were only seen foraging on I. foetidissima from 6 June 

(Fig 5a). Data from 2019 females followed a similar pattern, with most females seen foraging 

on G. hederacea (69%), followed by I. foetidissima (20%). All visits to A. vulneraria were 

recorded on 31 May. This was due to a large abundance of A. vulneraria on the cliff face 

being accessed and 0 females seen elsewhere in the study area on this day. A. vulneraria was 

not found elsewhere in the survey area nor was it located in the 2018 surveys. Females were 

first seen visiting I. foetidissima on the same date as the previous year (6 June, Fig 5b).  
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Fig 5: Percentage of females seen foraging on plant species during survey walks for each 

survey day in A; 2018 and B; 2019. May 28 2019 is not shown due to zero female A. retusa 

sightings. C; All sightings pooled for the year. The numbers above the bars indicate the 

number of bees. 

In 2020 an additional 47.1km of survey walks were made outside the core study area. On the 

western side of the Seaford Head reserve (Fig 1c) 15.4km were walked in 4 hours with zero 

A. retusa seen. On the eastern side of the Cuckmere river, in the area of wetlands not within 

the Seaford Head reserve (Fig1d), 16.8km were walked in 4 hours also with zero A. retusa 

seen. In the wetlands located on the western side of the river within the reserve (Fig 1c) 

7.4km were walked in 2 hours. A total of 24 female A. retusa were found within this area all 

foraging either on G. hederaceae (12) or E. vulgare (12). The furthest distance A. retusa was 

found outside of the initial study area was 250m. Beyond this zero A. retusa were located. 

Surveys within the core area in 2020 covered 6km in 4 hours with 26 female A. retusa 

identified. All were foraging on I. foetidissma. Surveys further inland at High and Over, a site 
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where A. retusa have historically been seen, covered 6.6km in 2 hours of surveying with no 

A. retusa identified.  

2.4.4 Flower abundance   

A total of 59 plant species were identified in bloom in the survey area (See Appendix B5). 

The average abundances and flowering periods for the five most visited plant species, either 

through observation or pollen samples, are in table 4. Of these G. hederacea was most 

abundant (mean abundance score 2.4). When including all flower species the most abundant 

on average across the survey period was Ranunculus sp. (Buttercups) (2.5). Although in 

flower throughout the entire survey period the average abundance of G. hederecae decreased 

each survey week, with its peak abundance score of 3.6 (on the first week of floral surveys, 

20 May) declining to 1.4 on the last survey week (18 June,). I. foetidissima, the second most 

visited plant by female A. retusa, followed the opposite trend of not being in flower at the 

beginning of the survey period and reaching peak abundance on the only transect where it 

was found (score of 5) on 11 June.   

Trifolium species (Kruskall- Wallis, χ2=6.2, df=2, P=0.05) and I. foetidissima (Kruskall-

Wallis, χ2 =11.3, df=2, P=0.003) differed in abundance between habitat types. A post hoc 

Dunn’s test showed that Trifolium spp. were significantly more abundant on the coastal 

transects compared to those in the scrub habitat (P=0.02) with no difference in abundance 

between grassland and coastal habitats (P=0.06). I. foetidissima was only identified along a 

single transect in the scrub habitat. When comparing species abundance between transects I. 

foetidissima and Fabaceae abundance differed significantly (I. foetidissima; Kruskall-Wallis, 

χ2=41.7, df=10, P<0.001, Fabaceae;χ2=29.1, df=10, P=0.001) but none of the other plant 

species tested did (See Appendix B6).  
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Table 4: A) The average abundance of the five most visited flower groups, those which were 

either more than 20% of pollen grains or accounted for more than 20% of flower visits by A. 

retusa B) the five most abundant plant species for all plants in the survey area and the dates 

where they were seen flowering. The average abundance was from all transects walked in the 

study area both for the dates when flowering and for the whole study period.  

 

2.4.5 Spatial Distribution 

Given the low numbers of recaptures in 2018, zero recapture of females in 2019 (See 

Appendix B2 and B3) and a non-significant difference in distances between years (t=-0.9, 

p=0.19) and sexes (t=-1.3, p=0.11), distance data were pooled for analysis. The average 

distance between the initial capture and subsequent recaptures was 122 ±21.2m (Fig 6) with 

most observations less than the mean (range 0-486m, mode 0-40m). When an individual had 

multiple recaptures, the mean distance travelled was calculated using the distances from the 

first capture point to all subsequent capture locations. 

 

 

 

 

(A)    

Plant Species Flowering dates Average abundance 

throughout flowering 

period  

Average 

abundance 

throughout study 

period  

Glechoma hederacea 20.05.18-18.06.18 2.4 2.4 

Trifolium sp. (2 species) 20.05.18-18.06.18 0.8 0.8 

Echium vulgaris 11.06.18-18.06.18 1.0 0.4 

Iris foetidissima 30.05.18-18.06.18 0.4 0.3 

Fabacaea spp. (3 species) 20.05.18-11.06.18 0.9 0.9 

 

(B) 

Ranunculus spp. 20.05.18-18.06.18 2.5 2.5 

Glechoma hederacea 20.05.18-18.06.18 2.4 2.4 

Ligustrum vulgare 20.05.18-05.06.18 2.8 1.7 

Veronica chamaedrys 20.05.18-18.06.18 1.7 1.7 

Lotus corniculatus 11.06.18-18.06.18 4.9 1.3 
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Fig 6: Frequency of distances between observations of individually marked bees (males and 

females) in both 2018 and 2019. Distances were calculated from the point of first capture to 

all subsequent captures. The red line indicates the average distance travelled, 122m. N=45 

 

The GPS locations of caught individuals indicate foraging hotspots, especially for females. 

Clusters of females are in areas of either high G. hederacea density, or later in the season, I. 

foetidissima. In Appendix B8 the black rectangle indicates the transect (A1T3) where over 

the two years 43% of female captures occurred. This area accounts for only 5% of the whole 

study site with the average abundance of G. hederacea along the transect route being 3 

(frequent) in 2018. It was the only transect where I. foetidissima was present, with an average 

abundance of 3.3 during its flowering period in 2018. There was a significant difference in 

the number of female captures between transects for both years (2018; Kruskall-Wallis, 

χ2=36.3, df=10, P<0.001, 2019; Kruskall-Wallis, χ2=27.5, df=10, P=0.002). A post hoc 

Dunn’s test showed that transect A1T3 had significantly more female captures compared to 

all other transects for both years. 

However, when examining capture rates between habitat types (scrub, grassland and coastal) 

there was no significant difference in 2018 (Kruskall- Wallis, χ2=0.4, df=2, P=0.81) or 2019 

(ANOVA, F2,8=2.92, P=0.11).  
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A potential nesting area was identified in 2019 as males were seen patrolling along the cliff 

face and a mating pair was found a few meters from the edge. Due to the inaccessibility of 

the cliff face for safety reasons no individuals could be identified. However, females were 

seen flying up from the cliff face and small excavations, possibly nests, could be seen in the 

layers of loess deposits at the cliff edge.   

 

2.5 Discussion 

Our results indicate that the A. retusa population at Seaford Head is very small and 

geographically confined. Mark-recapture indicates that the male population in 2019 (the last 

year of population surveying) was less than 200 individuals, with bees not seen outside of the 

Seaford Head reserve, including in surveys conducted in 2020. The small size of the 

population is unlikely to be because A. retusa forages on rare plants or specialises on a 

narrow range of species, as is the case in some rare bees (Zayed & Packer 2007) and insect 

herbivores (Ellis et al 2019). The plant species that was predominantly used for foraging was 

ground ivy, G. hederacea, which is extremely abundant in the local area and nationally. One 

important missing piece of information in our study is that we were unable to locate and 

study nest sites. However, it is likely that nesting was in windblown, loess deposits of soil 

and sand on top of the chalk, which is vertically exposed at the cliff face (Edwards and Jenner 

2008, Horsley et al 2013). This deposit is an unusual feature of the cliff at Seaford Head and 

is not found, for example, on top of the chalk cliffs of the Seven Sisters and Beachy head, 

which run to the east of Seaford Head (Sussex Wildlife Trust). 

Small isolated populations have a high risk of local extinction due to a wide range of factors 

including habitat loss, weather, demographic stochasticity and genetic influences (Shaffer 

1981, Lande 1993). Coastal erosion is an accelerating process at Seaford Head, with an 

increase from 2-6cm/y-1 from the Holocene to 22-32cm/y-1 in the last 150 years (Hurst et al 

2016). Frequent cliff falls may threaten nesting sites if these occur on the cliff face, for 

example in 2017 50,000 tonnes of cliff fell in one location along the edge (BBC 2017). A fall 

that large could result in a big proportion of nests being destroyed, particularly if they are 

aggregated. Although major cliff falls are a threat to nesting aggregations, erosion is a natural 

and important process for cliff nesting species (Evans & Potts 2004).  

Male population within our survey period reached its peak approximately a month earlier 

than the female peak, indicating that A. retusa emergence is protandrous, a common 
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characteristic of solitary bee species and many other insects (Eickwort & Ginsberg 1980). 

Mark-recapture showed a 255% increase in the estimated gross male population from 2018 to 

2019. This may have been in part due to a longer survey period in 2019, which began earlier 

and therefore encompassed more of the male’s flight period. However, the daily population 

estimates also increased, more than doubling, from an average of 7.7 in 2018 to 17.3 in 2019. 

The change in female population between the two years is unknown because zero females 

were recaptured in 2019. The reason for this is not known. It might be due to the paint marker 

used rubbing off the females as, unlike males, they are involved in nest excavation, 

increasing this chance of removal. However, the same paint brand was used for both years 

and is used in other mark recapture studies (Zurbuchen et al 2010). Another explanation 

could be that, later in the flight season, females were restricting their foraging activity to a 

large patch of A. vulneraria located along the cliff face. Multiple females were seen foraging 

here and were inaccessible for safety reasons. Therefore, if marked it was not possible to 

recapture them. These flowers were not discovered in 2018, therefore it isn’t known if 

females were foraging on them to the same extent. A final explanation could be the 

population is much larger than expected. However, the sex ratio in 2018 was approximately 

even, 1.1:1.0F, which is expected on evolutionary grounds (Fisher 1930). Therefore, a much 

larger female population compared to the male population in 2019 is unlikely.  

Sufficient and appropriate forage is vital for population survival and persistence (Schultz & 

Dlugosch 1999). G. hederacea was the major floral resource for female A. retusa, especially 

at the beginning of their flight season. Over both years a total of 16 different plant species 

and families were identified in pollen samples, with G. hederacea, E. vulgare and Fabaceae 

species being the most common, indicating that A. retusa is polylectic (Müller & Kuhlmann 

2008). In 2018 G. hederacea was the most prevalent pollen (was 34% of all pollen grains 

identified) and in both years was the most popular, representing 73% of all flower visits 

recorded during transects (Fig 5). The second most visited plant species was stinking iris, I. 

foetidissima (23% of flower visits). However, pollen from I. foetidissima was only found in 

12% of samples (3/26 bees) and comprised less than 1% of the total grains identified across 

both years. This perhaps suggests that I. foetidissima is more important as a source of nectar 

than pollen. No males were seen foraging on I. foetidissima. However, there were very few 

males still foraging during the flowering period of this plant species. Female foraging 

preference was flexible, following changes in flower abundance, primarily the reduction of 

G. hederacea and bloom of I. foetidissima. The lack of visual sightings on some of the plant 
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species identified in pollen samples may be due to inaccessibility of certain parts of the 

survey site, with A. retusa foraging on these species in places where surveying was not 

possible (such as through dense scrub or on the very edge of the cliff face). These results 

indicate that the presence of particular flower species may not be as important as forage 

availability from a succession of species across the flight season.  

The location of forage may also be important. Although the number of female captures did 

not differ between habitat types, one transect, in the scrub habitat, did have significantly more 

female captures than all others (see Appendix B8). Surrounding vegetation sheltered this 

transect from the wind. In addition, it contained abundant G. hederacea and later in the 

season was the only transect where I. foetidissima was found. Flower abundance has 

previously been found to influence bee foraging patterns (Goulson 1999, Hegland and Boeke 

2006). Only I. foetidissima and Fabaceae species abundance differed between transects, with 

I. foetidissima abundance also differing on the larger scale of habitat type, along with 

Trifolium species. This lack of a larger scale differences in flower abundance of the most 

visited plant species by A. retusa may explain why the number of female captures did not 

differ between habitats, as the floral composition was relatively similar throughout the survey 

site. The higher number of captures on the single transect with the presence of I. foetidissima 

may indicate its importance as a floral resource.  

These hotspots of A. retusa activity may also be due to individuals travelling only short 

distances to forage and seek mates. Most individuals (male and female) were caught less than 

30m away from their initial capture. Being a large bee species (forewing length 9-10mm for 

females and 8.5-9mm for males, Falk & Lewington 2016) A. retusa should have the ability of 

foraging at moderate to large maximum distances (c. 700m or more), given that foraging 

distance correlates with body size (Gathmann & Tscharntke 2002, Greenleaf et al 2007). 

Hofmann et al 2020 found significantly larger maximum flight distances compared to 

observed average flight distances in six solitary bee species, with maximum estimates up to 7 

times larger. This is thought to be due to average flight distance being context-dependent, 

influenced by factors such as local resource availability (Zurbuchen et al 2010). If there are 

appropriate resources nearby to the nest, then females will reduce their energy expenditure 

and fitness costs by not travelling to flower patches further away (Zurbuchen et al 2010).  

In this study A. retusa were found to have lower average flight distances than their estimated 

maximum, with an average distance of 122m. This agrees with the results found in Hofmann 
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et al 2020. For example, Osmia cornuta, a slightly smaller species than A. retusa, was found 

to have an average foraging distance of 107m with the maximum distance observed being 

724m. The shorter flight distances seen by A. retusa may be due to the species being 

polylectic and that there was abundant forage found throughout the 30ha where they were 

observed in this study. 

As the distances in this study were calculated between site of initial capture and subsequent 

recaptures, low distances may also be due to individuals showing site fidelity.  Honey bees 

and bumblebee species are known to show site fidelity to a rewarding food source (Heinrich 

1976, Comba 1999) where individuals will consistently travel to a patch of flowers even once 

they have finished flowering. A. retusa individuals were often caught either on the same 

patch of flowers or within a few meters as on previous survey days, perhaps indicating a 

similar behaviour.  

Additional surveys outside of the core 25ha identified female A. retusa foraging on either 

large patches of G. hedereceae or E. vulgare within 250m of the original survey area. Beyond 

this point none were seen, perhaps indicating they are restricted to a specific area of the 

reserve (approximately 30ha). A mark recapture study on the rare solitary bee Andrena 

hattorfiana examined small location populations and the movement of individuals between 

them. Most populations contained fewer than 50 females, with the average distance travelled 

between plant patches often less than 50m (Franzén et al 2009), a similar finding to the 

distances seen by foraging A. retusa, with most individuals caught less than 30m from their 

original capture locations. On the western side of the reserve the habitat is predominantly 

scrub, with the Seaford Golf Course located throughout. The scrub is similar in floral 

composition to that found in the core study area, with patches of G. hedereceae present. 

However, the beginning of the scrub habitat where floral resources are most abundant is over 

1km from the potential nesting site, with a large section of arable land between these points. 

In Franzén et al 2009 female A. hattorfiana rarely crossed areas where their pollen plant was 

not located, even if the distance was only 10m. The lack of captures of A. retusa in the areas 

surrounding the reserve indicate that perhaps the population at Seaford head is isolated and 

restricted due to females not wanting to cross patches of land with minimal or no forage 

available.  

Since A. retusa forage on common wildflowers, why is the population at Seaford Head small, 

and why is this one of the few sites where it occurs in Britain? No definitive answer can be 
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given at this stage. Not only are floral resources essential for solitary bees but also 

appropriate nesting habitat (Franzén et al 2009). The population at Seaford head are thought 

to be nesting in loess, the sandy deposits exposed at the top of the cliff face (Edwards and 

Jenner 2008, Steven Falk 2019 pers comms.) with two mating pairs found along the cliff edge 

in 2019. There is little information on the historical populations of A. retusa, therefore 

understanding why they have been lost from other sites in Britain is not possible. The sites 

where they remain and where information is available appear to be mainly coastal and are 

either protected or managed by The National Trust or through nature reserve status (Culver 

Down &Seaford Head) or in an area with little human intervention that harms wildlife 

(Lulworth Ranges, MOD owned,  Dorset Hanson quarry site). The coastal populations have 

access to chalk cliffs, like those at Seaford head, with the population at the Hanson quarry 

site having access to soft, sandy, disturbed banks. Other locations the species is thought to be 

currently found, and where it has been identified in the past, include heathland. Here the soil, 

although not formed from loess, shares similar characteristics such as being free-draining and 

sandy (Pywell et al 1994). More studies on these populations and locating the specific nesting 

aggregations is needed to help understand the nesting requirements and how this may be 

contributing to the species decline. Having preference for nesting sites is seen in other 

solitary bee species. Criteria include moist, compact soil with little or no vegetation 

(Wuellner 1999) or in other species soft soil on south facing slopes (Potts and Willmer 1997). 

These contrasting criteria in different species highlights the importance of understanding the 

species-specific nesting requirements.  

Although there is still more information required on A. retusa, our data highlights the 

importance of conserving coastal habitats and the abundant wild flower species often found 

there. For A. retusa appropriate forage available in early spring, particularly. G. hederacea, 

and later in the species flight season the presence of I. foetidissima and Fabaceae appears to 

be important for the Seaford Head population.  

Conservation success stories, such as for the Large Blue butterfly, with its successful 

reintroduction (Thomas 1995), give hope for rare species like A. retusa and emphasize the 

importance and value of studying local populations and the specific needs of different 

species. With it only found in a few, isolated populations, it is at great risk of extinction in 

Britain. This study has highlighted that more research is required on this species to fully 

understand the cause of its rapid decline and that the conservation of the sites where it is 

currently located is vital for the species survival in Britain.   
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Chapter Three: Population assessment and foraging ecology of nest aggregations 

of the rare solitary bee, Eucera longicornis at Gatwick Airport, and implications 

for their management.  

3.1 Abstract 

Eucera longicornis is a rare solitary bee that is in decline throughout its range in Britain and 

other European countries. Two nest aggregations that had been previously discovered in 2014 

on land owned and managed by Gatwick Airport, Southern England, were studied in 2017, 

2018 and 2019 to obtain information relevant to their conservation. Population estimates 

using mark recapture showed that the larger aggregation had a maximum population estimate 

of 659 individuals in 2018, with the smaller aggregation reaching a maximum population 

estimate of 221 in 2019. In terms of foraging requirements, microscopic analysis of pollen 

samples from females returning from their nests identified a total of 12 plant taxa across all 

years and both aggregations. Fabaceae pollen was present in 100% of samples and on average 

comprised 90% of each sample, indicating that the species is oligolectic. Both nest 

aggregations were on sloping banks of exposed soil arising from land management by the 

airport in 1999. Floral surveys of the landscape indicate that within 100m of both 

aggregations Fabaceae species are the most abundant due to the presence of a legume rich 

wildflower meadow alongside the adjacent river Mole, which was sown by Gatwick Airport. 

Eucera longicornis at Gatwick Airport is an example of how, if managed appropriately, 

industrial areas can provide valuable refuges for rare wildlife. Although no imminent risk of 

the populations going extinct, management and monitoring suggestions are provided to 

ensure these populations persist. 
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3.2 Introduction 

Although the extent to which global insect declines are occurring is currently debated 

(Thomas et al 2019), there is no doubt that at many local scales some insect species are in 

decline (Didham et al 2020). More monitoring and research on population abundance is 

required to fully understand the state of the world’s insects (Montgomery et al 2020). 

Examples of national declines include butterflies in the Netherlands, with 55% of common 

species suffering both declines in abundance and distribution between 1992 and 2007 (Van 

Dyck et al 2009). In the UK, 34/46 butterfly species declined in distribution area between 

1970 and 1999 (Warren et al 2001). 

Bumblebees, one of the best documented and most studied insect groups, have suffered 

ongoing losses in diversity in the UK (Goulson et al 2008) and Europe (Rasmont et al 2015). 

However, bumblebees are not the only groups of bees at risk. Between 1980 and 2013, 

solitary bees suffered an average 32% reduction in range (Powney et al 2019). In the UK, 23 

bee and flower visiting wasp species have gone extinct since the late 1800s, with only two of 

these being bumblebee species (Ollerton et al 2014).  For many solitary bee species, changes 

in landscape structure can be hugely detrimental as they often have specialised nesting, 

(Westrich 1996; Wcislo & Cane 1996; Zurbuchen et al 2010) and forage requirements 

(Westrich 1996, Wood et al 2017) alongside limited foraging ranges (Gathmann & 

Tscharntke 2002, Greenleaf et al 2007). 

Some of the main drivers identified as contributing to insect declines are urbanisation and 

habitat loss due to agricultural intensification (Leather 2017). Despite covering a small area 

of the globe (~2%, Svirejeva-Hopkins et al 2003) urban landscapes have had detrimental 

effects on some insect species. For example, in a study examining bees and wasps in Belo 

Horizonte, Brazil, the abundance of stingless bees was negatively affected by the increase of 

buildings and loss of vegetation cover associated with urbanisation (Zanette et al 2005) and a 

study using allotments in the inner city of Stockholm found bumblebee diversity decreased 

with increasing urbanisation (Ahrne et al 2009).  

However, in the Ahrne et al (2009) study they also identified that allotments with rich flower 

diversity can serve as important alternatives to natural habitats for some bumblebee species. 

This is seen in other studies, with some species readily utilising urban landscapes. Banaszak-

Cibicka & Zmihorski 2012 found that some social bee species that emerged later in the year 

(June-July) were higher in abundance in the city centre compared to the surrounding 
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suburban area. In the UK, bee abundance did not to differ between urban, farmland and 

nature reserves, with bee species richness being higher in urban landscapes compared to 

farmland (Scriven et al 2013, Baldock et al 2015). 

Some human-altered landscapes, such as brownfield sites, can become refuges for wildlife 

once abandoned. For example, in the UK, 194 invertebrate species of conservation 

importance have been recorded from brownfield sites. This includes 50% of rare solitary bees 

(Macadam & Bairner 2012).  

Even in areas of semi-natural habitat where human disturbance is ongoing, management can 

be effective in maintaining, or even promoting, insect biodiversity. Areas under powerlines, 

for example, where regular clearing of forest must take place, were found to have a higher 

species richness and abundance of solitary bee species compared to areas of the same forest 

that have not been cleared (Steinert et al 2020). Sand quarries can also be important habitats 

for many invertebrate species (Buglife 2009) including some nationally rare solitary bee 

species (e.g. Colletes cunicularis Formstone & Howe 2013). Sites often blamed for 

environmental damage, such as airports, can be managed in a way to promote insect 

biodiversity (Kutschbach-Brohl et al 2010) and allow for the nesting of rare ground nesting 

birds (Kershner and Bollinger 1996). On semi-urban sites where rare species are located, it is 

important to conduct population monitoring and gain information on the specific ecological 

requirements of the species, to ensure the correct management scheme is conducted and 

effective (Kershner and Bollinger 1996). 

Eucera longicornis, the long -horned bee, is a rare solitary bee that is a nationally declining 

species in the UK and is listed as a BAP priority species (JNCC 2007). It used to be 

widespread in England and Wales and was present in most of the counties south of 

Oxfordshire, with old records reporting individuals as far north as Yorkshire (Falk and 

Lewington 2017). It is now restricted to mainly southern sites, predominately coastal with a 

few inland populations as far north as Shropshire (Fig 1).  

In 2014 E. longicornis was found to be nesting in a human-altered landscape on land owned 

and managed by Gatwick Airport by Rachel Bicker, the airports’ biodiversity officer, in 2014 

(Rachel Bicker, pers comms). There are two nest aggregations. One in a man -made soil heap 

approximately 200m from the runway, and the other roughly 1km north along the bank of the 

river Mole. Both are on land owned and managed by Gatwick Airport but outside the airport 

perimeter fence. 
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The Gatwick Airport E. longicornis are the subject of this investigation. The aims are to 

determine key information about the Gatwick population that could be used as a baseline for 

population monitoring and to provide information relevant to conservation. We determined 

the population size of each aggregation using mark recapture. We also determined the main 

forage sources through pollen analysis and surveyed floral resources in the surrounding 

landscape.  

 

Fig 1: Current distribution of E. longicornis in the UK taken from the NBN atlas. The black 

star indicates Gatwick Airport, where this study takes place. 

 

3.3 Methods 

3.3.1 Study organism 

E. longicornis is a medium sized solitary bee (fore wing length 9-10.5mm, Falk and 

Lewington 2015), the females slightly larger than the males. Males have the distinctly long 

antennae which give the species its name (Fig 2) and is unique in British bee species. E. 

longicornis is widespread throughout Eurasia, extending as far east as China (BWARS 2012). 

In the UK, adults emerge in May and are usually active until early July, sometimes extending 

into August. Females nest in the ground, normally in bare soil on south facing slopes in 

aggregations alongside other nesting females (Saunders 2014).  
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Fig 2: a: Female E. longicornis with paint mark foraging on Lathyrus pratensis at study site; 

b: Male E. longicornis foraging on Symphytum, showing the trademark long antennae.  

3.3.2 Study Site 

Two aggregations were identified in 2014 on land owned and managed by Gatwick Airport 

(Fig 3) in West Sussex, UK. In 1999, for flood management the nearby river Mole was 

diverted from the eastern side to the western side of a wood near the airport. Meanders were 

created to slow the flow and increase water retention within the floodplain. Raised areas were 

also created to divert water away from important infrastructure. Alongside the river 

wildflowers and legumes were seeded, resulting in a diverse and flower rich meadow. The 

work also resulted in a large amount of soil being taken from the river bed and piled into 

environmental bunds, which created slopes with scant vegetation cover. Natural erosion 

along the river bank also created areas of exposed soil.  

3.3.3 Aggregation 1 

The larger aggregation of E. longicornis is found along a slope about 200 meters north from 

the airport runway, latitude 51.150603 longitude -0.20474334 (Fig 3) and was first 

discovered in the spring of 2014. The aggregation is located on one of the steeply sloped 

mounds created in 1999 from soil excavated during the river Mole diversion.  The mound is 

east facing, sparsely covered in short grass and bramble with patches of exposed soil (Fig 3). 

The aggregation extends over an area of approximately 140m2. The landscape within the 
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surrounding 300m contains manmade structures, such as the runway, but also woodland and a 

wildflower meadow.  

3.3.4 Aggregation 2 

The other aggregation is located on the opposite side of the river, approximately 1km north 

east of aggregation 1 and backing onto Charlwood Park, grid reference latitude 51.159232 

longitude -0.19627099 (Fig 3). It too is on a steeply banked slope, sparsely covered in short 

grass with patches of exposed soil due to natural erosion from walkers, approximately 10m 

from the river and facing south east (Fig 3). In 2018, the second year of data collection, nests 

were seen approximately 20m further along the bank to the west, in the direction of the 

airport. Due its proximity, it was considered to be part of aggregation 2 in both 2018 and 

2019. In these years, the combined area containing nests was 120m2, not including the gap 

between two nesting areas. The landscape within the surrounding 300m is similar to 

aggregation 1, with meadow wildflowers and dense woodland and manmade structures 

consisting of a road and carpark.  

 

Fig 3: Location of the two Gatwick Airport E. longicornis aggregations studied. The yellow 

inner circle shows 100m from the centre of the aggregation, with the outer red circle showing 

500m. The numbers indicate the aggregation. The blue line represents the river Mole. Photos 

on the right are of the banks where the nest aggregations are located (Rachel Bicker 2018) 
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3.3.5 Population estimates using mark recapture 

Population estimates were made in 2017, 2018 and 2019 flight seasons using mark recapture. 

In 2017, data were collected in five study days per aggregation between 10 June and 1 July. 

In 2018 there were 8 study days, between 26 May and 11 July and in 2019 there were 10 

study days between 21 May and 13 July. Field work took place only on days of good weather 

suitable for insect flight with temperatures from 17-30°C and sunny. Due to intermittent 

weather, field work could not always occur at consistent time intervals. Bees were captured at 

the aggregation using an insect net, starting between 10:00 and 11:00am and continued for 

four hours to cover the peak foraging period. An observer would walk through the entire 

aggregation and capture any returning or departing females or patrolling males seen. When 

caught the bee was transferred to a queen marking cage (Pixnor, China) and marked with an 

individual colour combination and pattern (Fig 2) using non- toxic acrylic paint (Revell, 

Germany). If the individual was a female carrying pollen, a small sample would be scraped 

from the scopa on each hind leg and placed in an Eppendorf tube for later analysis. Each 

sample was kept separate, and pollen was collected even if the female was a recapture. The 

bee would then be released.  

3.3.6 Pollen analysis  

From each sample 1mg±0.01mg of pollen was mounted in glycerine jelly with basic fuchsin 

to stain the individual grains. Identification used a compound light microscope at 200x 

magnification. The total number of pollen grains per plant species in the field of vision were 

recorded. Counts were taken from five random points on the microscope slide. The 

proportions of each species per sample were then calculated. Where possible, pollen was 

identified to species level using a reference collection from pollen collected from plant 

species at the study site, alongside a pollen identification book (Sawyer & Pickard 1981). 

However, due to similarities between some species this was not always possible and instead 

was identified to the lowest possible classification. For many Fabaceae this was to family 

level.  

3.3.7 Floral surveys 

In 2018, 4 floral surveys were conducted across the period of maximum female activity (on 

the 20 and 29 June, 4 and 10 July) to determine the availability of floral resources. The land 

within 500m of each aggregation was categorised into the following vegetation types: 

managed grassland (land actively managed by humans and the vegetation is predominately 
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grass); meadows (land minimally managed by humans, vegetation is predominantly tall grass 

with wild flowers); woodland (predominately trees); roadside verges (any land which falls 

directly beside a road). 500m was chosen as it falls near the maximum foraging range of 

female E. longicornis (Saunders 2014) and so is a relevant indication of potential forage.  

Using a 50x50m grid and stratified random sampling, 100m transects in each vegetation type 

were made based on by the area of each land type (Table 1) and the number of replicate land 

type areas available (approximately 1 transect per 1.2ha). Due to access limitations, not all 

the surrounding vegetation could be sampled and, on some days, not all the 100m transects 

could be completed. Along each transect, the number of inflorescences per species were 

estimated. From this the average number of inflorescences per species per 100m was 

calculated both overall and per habitat type. If a foraging E. longicornis was seen during a 

transect it was caught, marked and the coordinates were recorded.  

Within both 100 and 500m of each nest aggregation the percentage cover of each habitat type 

was calculated using Google Earth Pro. Here an additional landscape type, manmade, was 

included. This consisted of areas that were predominately concrete and had very little 

vegetation. These areas were not included in the floral surveys as they were inaccessible (e.g. 

the airport runway) but also would have been devoid of flowers. 

Additional surveys searching for other aggregations in the area were conducted. These 

occurred along the banks of river Mole over 1km from aggregation 2 in both a north west and 

north easterly direction. Suitable sites (a slight slope covered in sparse vegetation) were 

examined for nest holes of appropriate size indicating nesting female E. longicornis or for 

returning females or patrolling males. Suitable banks nearby to aggregation 1 were also 

surveyed. These surveys occurred each year once at the beginning of the survey period to 

identify patrolling males and once again when females began to emerge. An additional survey 

also occurred in June 2020.  
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Table 1: Area of accessible land of each habitat type for each aggregation and the number of 

100m transects per survey date  

Aggregation Vegetation Type Area (ha) Number of transects 

20 June 29 June 04 July 10 July 

1 Managed Land 6.10 5 5 5 5 

1 Woodland 4.53 3 3 3 3 

1 Meadow 5.92 7 7 4 5 

2 Managed land 4.84 4 4 5 4 

2 Woodland 4.61 4 3 4 4 

2 Meadow 3.56 5 5 5 5 

2 Roadside 1.12 1 1 1 1 

 

3.3.8 Data analysis 

Mark-recapture analyses for each aggregation and sex were calculated using the program 

MARK which uses maximum likelihood models to estimate population parameters (Cooch 

and White 2004). Because the data covered most of the flight season population closure was 

not a reasonable assumption as individual births and deaths were likely. Therefore, the open 

population POPAN parameterisation was used to estimate population parameters. POPAN 

calculates the apparent survival rate φ, the probability of capture P, and pent, the probability 

than an animal from the superpopulation enters the subpopulation (the individuals occurring 

in the study). Model assumptions were calculated using the programme RELEASE GOF 

(goodness of fit) within MARK. The most appropriate model was selected using Akaike 

Information Criterion corrected for small sample sizes (AICc, Burnham and Anderson 1998) 

testing whether time dependent (t) or constant (.) parameters were more appropriate for the 

population. To test if sex ratios were biased a binomial test was run on the number of males 

and females caught. To test if there was a difference in the proportions of species present in 

pollen samples a general linear model with a binomial and log link function was used. 

Statistical tests and graphs were created using R (R core team 2017). 

 

3.4 Results  

3.4.1 Population estimates 

Over all three years a total of 432 females were caught at aggregation 1 and 236 at 

aggregation 2. In 2018 and 2019, 199 males were caught at aggregation 1 and 68 at 
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aggregation 2 (see Appendix C1 and C2). No males were caught in 2017 because the survey 

started after their flight period.  

To obtain population estimates separate models were run for each year and sex. Using 

goodness of fit testing, models that best fitted the data were chosen. The models used are 

shown in Appendix C3. Aggregation 1 was estimated to have a larger population in all years 

and for both sexes (Table 2) and was highest in 2019 at 440 females and 92 males (Table 2). 

For aggregation 2, both female and male estimates were also highest in 2019 at 183 females 

and 55 males (Table 2). 

For aggregation 1 female survival estimates (Phi) ranged between 0.91 and 0.98. For males, 

the highest survival estimate was in 2018, with 0.93 compared to an estimate of 0.36 in 2019 

(See Appendix C4). For aggregation 2, female survival estimates ranged between 0.89 and 

0.95. Again, for males the highest survival estimate was in 2018, with 0.92, compared to an 

estimate of 0.79 in 2019.  

Capture probabilities for females in aggregation 1 ranged from 0.22 to 0.30 and were 

consistent across sample days. For males it ranged between 0.09 and 0.72 and in 2018 was 

time dependent. For aggregation 2, female capture probability ranged between 0.25 and 0.55 

and for males ranged between 0.21 and 0.79.    
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Table 2: Gross mark-recapture population estimates for each year and sex calculated from 

MARK using the models described in Appendix C3 with the sex ratio for that year calculated 

from the number of caught individuals. Total number of individuals caught for each year and 

sex are shown. There are no male estimates for 2017 as data collection began after their flight 

period 

Aggregation Year Sex Total 

caught 

Total 

recaptures 

Gross 

population 

Standard 

Error 

Change 

between 

years 

(%) 

Sex 

Ratio 

(M:F) 

 

1 

 

2017 
 

2018 

 

2019 

 

F 

 

53 

 

14 

 

57.8 

 

10.37 

  

- 

F 116 19 379.5 81.5 147% 1:1.0 

M 121  16 280.2 57.8 -  

F 263 82 440.2 45.0 15% 1:3.4 

M 78 22 91.6 12 -101%  

 

2 

 
2017 

 

 
F 

 
23 

 
7 

 
24.5 

 
5.7 

  
- 

F 106 34 145.7 20.2 142% 1:2.4 

2018 M 43 12 54.8 13.1 -  

F 107 32 182.6 28.4 23%  

2019 M 25 7 37.9 24.4 -37% 1:4.3 

 

The biggest change in population size were large increases from 2017 and 2018 for both 

aggregations (aggregation 1 147%, aggregation 2 142%). However, captures started much 

later in the flight season in 2017 compared to other years (Fig 4). For both aggregations the 

male population decreased between 2018 and 2019 (aggregation 1: -101%, aggregation 2: -

37%).  

For aggregation 1, the sex ratio based on caught individuals did not differ from an expected 

1:1 in 2018 (exact binomial test, P=0.79, 1:0.96). However, was female biased in 2019 (exact 

binomial test, P<0.001, 1:3.4). For aggregation 2 sex ratios were female biased in both 2018 

and 2019 (2018; exact binomial test, P<0.001, 1:2.4, 2019; exact binomial test, P<0.001 

1:4.3, Table 2). 

For both aggregations and all 3 years females reached their peak population estimate in mid -

June (Figure 4). For aggregation 1 the highest daily population estimate was in 2019 

(122.4±8.7, 9 June) versus 2018 for aggregation 2 (49.3± 5.23, 30 May Fig 4). Males 

emerged earlier than females in 2018 and 2019 and at both aggregations (Fig 4). For both 

aggregations male population peaked in late May and reduced throughout the survey period. 
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Both daily population estimates were higher in 2018 than in 2019 (aggregation 1: 99.9±31.1 

vs 21.5 ±8.4, aggregation 2 :19.1 ± 6.4 vs 8.2 ± 3.5). 

 

Fig 4: Daily population estimates for females for all three years and males for 2018 and 2019 

at both aggregations a: females aggregation 1, b: females aggregation 2, c: males aggregation 

1, d: males aggregation 2. Lines indicate the average daily population estimate and standard 

error bars are shown.   

3.4.2 Floral availability  

Floral availability was calculated from the mean percentage of inflorescences for each plant 

species or taxa present throughout the whole survey period. The mean percentage of each 

plant taxon was similar between aggregations (Fig 5) but with Fabaceae species more 

abundant surrounding aggregation 1. The most common plant species identified in surveys in 

aggregation 1 was Trifolium repens with an average of 195±39.1 inflorescences per 100m 

and an average of 18.0%±5.25% of the total inflorescences surveyed. Vicia species and 

Lathyrus pratensis (meadow vetch) had a combined average of 90.7 ±28.2 inflorescences per 

100m. When grouped, all Fabaceae species (including Lotus corniculatus and Trifolium 
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species) on average accounted for 44.3%±7.20% of the inflorescences surveyed. A total of 39 

non-Fabaceae species in bloom were identified in transects surrounding aggregation 1.  

In aggregation 2, Vicia species and L. pratensis had a combined average of 145 ±59.4 

inflorescences per 100m. All Fabaceae species comprised 13.1%±12.3% of the surveyed 

inflorescences. The most common plant species identified in surveys in aggregation 2 was 

also T. repens, with 144±19.2 inflorescences per 100m. A total of 47 non -Fabaceae species 

were identified surrounding aggregation 2.   

 

Fig 5: Relative flower abundance and pollen collected. Mean percentages of inflorescences 

present over the whole survey period for the Fabaceae, the most common plant group 

identified in pollen, and all other species present in the survey area. Also shown are the 

average percentage of pollen from samples collected from females in 2018. a: aggregation 1. 

b: aggregation 2. Standard error bars are shown.  

 

3.4.3 Pollen samples 

Across the three sample years a total of 113 pollen samples were collected from female bees 

at aggregation 1 and 64 from aggregation 2. Fabaceae pollen was present in 100% of samples 

from both aggregations (Table 3). This included pollen from various Vicia, Lathyrus, Lotus 

and Trifolium species. Fabaceae pollen made up over 90% of the pollen grains in every 
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sample for both aggregations (aggregation 1; 95.5±0.75%. aggregation 2; 94.6±0.89%, Fig 

5). The remaining pollen grains were from seven species (Table 3) with bramble, R. 

fruticosus, the most common non- Fabaceae species (aggregation 1; 4.36 ±0.98%, 

aggregation 2; 5.44±0.66%). Fabaceae pollen was present significantly more than other plant 

taxa in pollen samples from both aggregations (aggregation 1: general linear model, 

F1,230=2137, P<0.0001; aggregation 2: F1,132=4370, P<0.0001). For aggregation 1 all samples 

contained pollen from more than one species. With aggregation 2, 97% of samples contained 

pollen from more than one plant group. Two different unknown plant species were identified 

in samples from 2017 and 2019. 

Pollen composition was similar between years. However, for aggregation 1 in 2019 pollen 

from seven plant groups not previously identified in samples was present (Table 3). For a 

breakdown of daily pollen proportions from samples see Appendix C5 and C6. 

 

Table 3: Plant groups identified in pollen samples from female E. longicornis for both 

aggregations for all years.  How many samples each group was present in are shown. - 

indicates the plant group was not present in any samples that year.  * indicates that when 

present the species accounted for less than 1% of the grains in a sample, potentially indicating 

contamination.   

 Aggregation 1 Aggregation 2 

 2017 2018 2019 2017 2018 2019 

Plant Group Present on 

n/19 bees 

(%) 

Present on 

n/25 bees 

(%) 

Present on 

n/69 bees 

(%) 

Present on 

n/14 bees (%) 

Present on 

n/9 bees (%) 

Present on 

n/45 bees 

(%) 

Fabaceae 19/19 (100) 25/25 

(100) 

69/69 (100) 14/14 (100) 9/9 (100) 45/45 (100) 

Trifolium repens 19/19 (100) 24/25 (96) 69/69 (100) 14/14 (100) 8/9 (89) 34/45 (76) 

Lotus 

corniculatus 

19/19 (100) 16/25 (64) 52/69 (75) 11/14 (79) 1/9 (11) 26/45 (58) 

Rubus futicosus 13/19 (68) 15/25 (60) 1/69 (1) - 7/9 (78) 5/45 (11) 

Phacelia 

tanacetifolia 

3/19 (16) 3/25 (12) 1/69 (1) 2/14 (14) - - 

Asteraceae  1/19 (5)* - 2/69 (3)* - - - 

Unknown 1/19 (5) - 1/69 (1) - - 7/45 (16) 

Clematis vitalba - - 3/69 (4) - - 1/45 (2)* 

Trifolium 

pratense 

- - 5/69  (7) - - 1/45 (2)* 

Silene dioicia - - 2/69 (3) - -  

Thypha latifola - - 1/69(1)* - -  
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Filipendula 

ulmaria 

- - 1/69 (1) - -  

 

3.4.4 Landscape composition 

Fabaceae species were most common in meadow habitat, with Vicia species and L. pratensis 

together averaging 208 ± 35.9 inflorescences per 100m compared to 0 in woodland and 

managed grassland surrounding aggregation 1. For aggregation 2 the average per 100m was 

double, with 411 ±97.5 in meadow surveys and low but not zero in woodland 0.13 ±28.2 and 

managed grassland 0.88 ±110.  

The landscape within 100m was 73% meadow and 27% woodland for aggregation 1 and 28% 

meadow, 55% woodland and 17% man made (a carpark) for aggregation 2. Within 500m of 

both aggregations, managed grassland had the greatest area (aggregation 1:36.8%, 

aggregation 2:34.2%, see Appendix C7). 

During the floral surveys one unmarked female and male were caught. The female was 

caught approximately 300m to the South West of aggregation 2 (51.158382, -0.199089) 

within the meadow habitat. The male was caught approximately 700m to the North East of 

aggregation 2 (51.161666, -0.189562), also in the meadow habitat. The female was foraging 

on L. pratensis and the male on T. repens.  

 

3.5 Discussion 

E. longicornis at Gatwick airport is an example of how human intervention and land 

management can aid wildlife conservation of a rare and endangered species. The two nest 

aggregations are both in man-made habitats and appear to have stable female populations of 

reasonable size, so far as this three-year study can reveal. Aggregation 1, the larger, had 

estimated female populations of over 400 in 2019 and 380 in 2018, versus 146 and 183 for 

aggregation 2. Fabaceae species were the main pollen sources for E. longicornis, averaging 

95% of samples. Within 100m of the nest aggregations these Fabaceae species were abundant 

and many were also growing in man-made or altered habitats. 

3.5.1 Population estimates 

Estimates appear to indicate that the populations were approximately stable between 2018 

and 2019 with both populations smaller in 2017. However, surveys in 2017 were for a much 
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shorter period and did not include male estimates due to starting after the period of male 

activity. Males emerged before females, with peak population estimates either in late May or 

early June, compared to middle to late June for females. Earlier emergence of males is 

common in solitary bees and other insects (Wiklund & Fagerstrom 1977) and is generally due 

to mating strategy, with males waiting to mate with newly emerged females.  

Both aggregations had female biased sex ratios in 2019, (aggregation 1, 2019 1:3.4; 

aggregation 2, 2019 1:4.3). In solitary bees, sex ratios have been found to deviate from the 

predicted Fisherian 1:1 ratio (Rosenhiem et al 1996). These deviations are often due to 

differences in parental investment for each sex as well as local mate competition and limited 

egg production (Herre 1985, Rosenhiem et al 1996). Sexual dimorphism is common in 

Hymenoptera, generally with females being larger (Helms 1994). This is true for E. 

longicornis, with males on average weighing 0.048g compared to a female average of 0.066g 

(Saunders pers. comms.). This results in an expected male bias sex ratio in the population, as 

males should be less costly to produce. However, when local resource availability is good this 

can result in investment in the more costly sex to be advantageous (Kim 1999). This is 

because females can allocate more resources to each individual offspring (Peterson et al 

2006). Perhaps the increase of both female populations indicates favourable foraging 

conditions in the areas surrounding the aggregations.  

We are unsure as to why the aggregations in this study have such a high female sex bias, and 

why this bias was not present in aggregation 1 in 2018. Although local mate competition and 

inbreeding can cause female bias (Herre 1985), this seems unlikely to be the case with E. 

longicornis, as mating occurs outside the natal nest and males are seen searching for mates at 

the nest sites. From a conservation perspective, female bias may be advantageous. The males 

present would be sufficient to fertilise the females and the larger number of females would 

boost the number of brood reared, with the effect on effective population size being small 

(Wright 1933).  

 In the Hymenoptera the risk with a highly skewed sex ratio in a population is the reduction 

of the equilibrium number of sex-alleles. However, the population size estimated for E. 

longicornis at Gatwick appear to be greater (>100) than would give cause for concern in 

terms of sex alleles and diploid male production in a species with complementary sex 

determination (Zayed 2004). 
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It is possible that the biased sex ratio is due to the methods used, with females perhaps easier 

to capture than males. However, capture probabilities for males were estimated to be higher 

than for females in 2019. Survival estimates for males in 2019 at both aggregations were 

lower than in 2018 and lower than the female estimates, with a large reduction in survival for 

males in aggregation 1 between years (2018;0.93, 2019;0.36). We are unsure as to why the 

estimated survival rate for males was so much lower in 2019 for aggregation 1. The 

difference in survival between males and females may be due to males not having a nest to 

return to either at night or during times of bad weather (Alves-dos-Santos et al 2009). Males 

also often disperse from the natal nest site (López-Uribe et al 2015) and if not caught before 

this time would not be included in the population estimate. Higher mortality or dispersal rate 

of males could partially explain the female bias sex ratio seen in these populations.  

By placing emergence traps and digging up nests and examining cells the true sex and 

investment ratios could be determined.  

3.5.2 Nest site characteristics 

E. longicornis tends to nest on south facing, soft banks of bare soil or cliff face in the 

locations where it is found (Saunders 2014). In agreement with this, both Gatwick 

aggregations are nesting in sloped banks. Both these nesting sites exist as a result of human 

intervention. At Gatwick Airport, aggregation 1 is nesting on a manmade raised mound of 

excavated soil, and aggregation 2 along the bank of the river Mole (Fig 3). In 1999 Gatwick 

Airport diverted a section of the river to allow the expansion of the airport’s western 

boundary. A new channel to the west of the old course, plus the shortening of a connecting 

western tributary, resulted in the river being moved a few hundred meters to the west of the 

original course. This new channel was altered to meander and allowed the creation of new 

habitats, such as the meadow along the length of the channel (British Airport Authority, 

2004). Through the altering of the river, the bank with aggregation 2 was created. Some of 

the soil excavated during the project was left on Gatwick land to eventually become the heap 

in which aggregation 1 is located. It is unlikely that E. longicornis were present before this 

land management. This an example of how an industrial/commercial area, such as an airport, 

can manage the surrounding landscape in such a way as to create habitats and thereby help 

the conservation of a nationally rare species of wildlife.  

Both nest aggregation sites have little vegetation cover and many patches of bare ground, a 

common characteristic of ground nesting bees (Wuellner 1999, Sardiñas & Kremen 2014). 
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Aggregation 1 has not moved from or expanded its nest location since it was first identified in 

2014 (Rachel Bicker Pers comms). As of 2018, aggregation 2 has extended 20m further along 

the bank from its original location.  

Surveys conducted along the banks of the river Mole and along suitable banks near 

aggregation 1 as part of this project as well as surveys by the Gatwick biodiversity team, have 

not discovered additional nest aggregations. Many species of solitary bees exhibit nest 

philopatry (Yanega 1990, Potts & Willmer 1997) in which newly- emerged females nest at 

their natal nesting site, instead of leaving to nest elsewhere. This will often have selective 

value for a foundress, as the natal nest site was successful enough to produce adults in the 

previous year, and therefore, is likely to be suitable again (Potts & Willmer 1997).  

Limited availability of nest sites is also a reason why females may nest in their natal area 

instead of finding a new site (Batra 1978). However, at Gatwick there appear to be many 

banks of soft, bare soil, like the ones which already contain aggregations close by at both 

aggregations (<10m). If the female population continues to grow and nest density capacity is 

reached, dispersal from these aggregations is possible with new aggregations potentially 

being formed beyond the area surveyed. A male E. longicornis was sighted approximately 

1km from aggregation 2 (Pers comms. Laurie Wright). This male may be from one of the 

aggregations in this study, or potentially a new aggregation not identified. Future surveys 

covering a wider area are required.  

3.5.3 Pollen composition  

Pollen collected from returning females from both aggregations was predominantly Fabaceae 

species which was present in all (113) samples taken from individual females and always 

accounted for more than 90% of the total grains in a sample.  Pollen was identified as 

Trifolium, Lotus, Lathyrus and Vicia species. The most common non Fabaceae species was 

bramble, R. fruticosus which averaged 5%. This narrow familial range of pollen collection 

indicates that E. longicornis is oligolectic (Muller & Kuhlmann 2008) and agrees with 

previous research (Saunders 2014). Visual sightings of males on Symphytum orientale (white 

comfrey), a species of pollen not identified in female pollen loads, indicates a slightly broader 

foraging range than for female pollen collection. Differences in male and female foraging 

preferences are often seen in solitary bee species (Ritchie et al 2016) even in those with a 

narrow diet breadth. This is most likely due to males not needing to collect pollen for cell 

provisioning. In addition, male solitary bees normally emerge earlier than females, as seen in 
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this study, so that the floral composition in the area will be slightly different, influencing 

what species they forage on. 

 

3.5.4 Landscape composition 

Fabaceae pollen sources were most abundant in the meadow habitats for both aggregations, 

and within 100m of aggregation 1 meadow is the predominant habitat type (72%). The 

proximity of the appropriate floral resources to the nesting sites is important as E. longicornis 

is reported to have a foraging range of approximately 500m (Saunders 2014). An abundance 

of good quality forage near to the nesting site helps reduce the costs of foraging and therefore 

potentially increases reproductive output (Zurbuchen et al 2010).  

3.5.5 E. longicornis conservation status 

E. longicornis is in decline in Britain and other parts of its range (Pekkarinen 1997, BWARS 

2012). In Cornwall, a stronghold for the species, there has been a 55% reduction since 1987 

in the number of sites where it is found, from 24 to 11 (Saunders 2014). This is thought to be 

due to a combination of the loss of flowering legumes, increased extreme storm events along 

their coastal sites destroying nests, and a lack of sites containing both early and late flowering 

legume species such as Anthyllis vulneraria and Lathyrus sylvestris (Saunders 2017). 

Fabaceae species often occur in flower rich grasslands, which are declining in the UK 

(Goulson et al 2005). This is due to a variety of factors, predominantly changes in 

agricultural practices. Between early and late 20th century, fodder crops declined by more 

than 55% and were replaced with permanent grassland (Ollerton et al 2014). These changes 

in landscape management have resulted in both a reduction in the range of many of the pollen 

sources E. longicornis rely on, as well as their frequency at a more local scale. For example, 

L. pratensis, a major pollen source for E. longicornis, reduced in frequency by 45% in the 

UK between 1978 and 1998 (Carvell et al 2006). Owing to airports often having semi-natural 

grasslands surrounding runways, they have the potential to provide this much declining 

habitat which contains the floral resources that E. longicornis and other species need. 

3.5.6 Management plans and future research 

Although not known for their wildlife value or biodiversity, if managed correctly airports can 

provide a refuge for some species, as seen with E. longicornis at Gatwick. Another example 

is the presence of rare ground nesting birds at John F. Kennedy (JFK) airport in New York 
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City, USA. The upland sand piper, grasshopper sparrow, and horned lark have all been found 

nesting in the airports semi-natural grassland habitat (Chevalier & Cohen 1997, Kershner and 

Bollinger 1996). A high abundance and diversity of arthropod species have also been 

identified at JFK (Kutschbach-Brohl et al 2010), highlighting that if managed correctly 

airports have the potential to benefit wildlife.  

There are over 60 major airports in the UK (Civil Aviation Authority 2020) and with the 

growing demand for airline travel the size and demand on airports is likely to increase 

(Upham et al 2003). This highlights the importance of surveying airport land for wildlife and 

ensuring the land is managed effectively. Currently, Gatwick Airport’s management of the 

study area involves a single September cut of the meadow around the two aggregations, and 

coppicing of the woodland to help create and maintain compartments for wildflowers (Rachel 

Bicker Pers comms.), which should be continued. Ensuring the woodland surrounding the 

aggregations does not begin to encroach on the meadowland is also essential (Table 4). 

Continued monitoring of the aggregations is recommended and, hopefully, to confirm that the 

existing management is effective. The mark recapture method used in this study is highly 

intensive and therefore, is likely to be impractical for future monitoring of population sizes 

unless additional staff are recruited. However, the population can be monitored in other ways. 

Counts along transect routes, recording number of nest holes at each aggregation site, and 

fixed standardised counts of activity at the aggregations are all potential population 

monitoring methods. For further information on management and monitoring suggestions see 

Table 4. These latter methods require less training but can still give a quantitative measure of 

population size (Bischoff 2003, Larsson & Franzén 2008) that could be compared across 

years to quantify any trends or changes. From what we can see from the current management 

and situation, it appears the two aggregations at Gatwick Airport are not threatened. Both 

have additional unused nesting space nearby and abundant forage and both foraging and 

nesting location are not in danger of becoming unsuitable either from natural or human 

factors. 

Future work on these aggregations could consist of surveys of the surrounding soil banks, 

which are currently not being used as nesting sites, to determine if new nesting aggregations 

are founded. E. longicornis is also a key candidate for citizen science due to the males 

distinctive and unusual appearance, with their long antennae unlike any other native bees to 

the UK. This would make is possible to carry out a large-scale survey of the surrounding area 
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using information from local residents. In 2018 a male was recorded approximately 3km 

South East of the existing aggregations (NBN atlas 2018), perhaps indicating more nesting 

sites in the local area.  

In many cases human changes to the landscape are detrimental to species and biodiversity 

(Winfree et al 2011, Senapathi et al 2015b). However, through effective management 

biodiversity can be maintained and some species can even thrive in these human-altered 

landscapes (Macadam & Bairner 2012, Sirohi et al 2015). Although E. longicornis is in 

decline throughout its range, by monitoring and conserving small populations like those at 

Gatwick, the conservation of this charismatic species may be possible. 
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Table 4: Land management and monitoring suggestions to ensure the continued conservation 

of the two aggregations of E. longicornis on Gatwick land. The suggestion along with the 

desired outcome, how often it should occur, and the number and specialisation of individuals 

needed are shown  

 Habitat Management Suggestions 

Suggestion Outcome Occurrence Individuals required 
End of summer mowing of 

meadow 

Allows for continued 

growth of important 
meadow species (e.g. 

Fabaceae) for E. 

longicornis 

Once a year at the end 

of September 

- 

Coppicing of woodland and 

scrub 

Creates compartments 

for wildflowers to grow 

within woodland. 

Prevents woodland and 

scrub encroachment 

onto the adjacent 

wildflower meadow 

Coppicing of the 

woodland edge 

approximately every 

three to five years and 

inner woodland every 

5-20 years (Royal 

Forestry society) 

- 

Clearing of vegetation on 

existing and potential 

nesting aggregations  

Maintains the short 

grass and bare soil 

preferred by E. 

longicornis for nesting 
and helps maintain 

potential nesting sites.  

Once a year at the end 

of September  

- 

Monitoring Suggestions 
Transect walks in 

surrounding meadow, 

recording the number of 

male and female E. 

longicornis seen 

To determine a 

population estimate for 

both aggregations 

combined 

Once a week for the 

length of the species 

flight season (Mid May 

until end of July) 

One/two individuals 

who are trained and 

able to correctly 

identify E. longicornis 

Counting individuals at 
nesting aggregations 

Calculate a population 
estimate for each 

aggregation separately 

Once a week at each 
aggregation for a fixed 

time period (~1-2 

hours) for the length of 

the species flight season 

One/two individuals 
who are trained and 

able to correctly 

identify E. longicornis 

Counting number of nests at 

each aggregation 

Calculate an estimate of 

the number of females 

at each nesting 

aggregation 

Two/three times a week 

at each aggregation to 

get a weekly average 

for length of the species 

flight season. Would 

take approximately 10-

15 minutes each visit 

One individual who is 

trained and able to 

identify E. longicornis 

and their nest entrances. 

N.B. Some females 

share nest entrances 

(Westrich 1989) so this 

is a less accurate 

method 

Surveys of surrounding 
banks for other nesting 

aggregations 

Identify if there are any 
more nesting 

aggregations near 

existing nest sites 

Once/twice during the 
flight season conduct 

slow transect walks 

along banks adjacent to 

aggregations to identify 

nesting females or 

patrolling males. 

Two/three trained 
individuals, or even 

recruit local naturalists 
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Chapter Four: Phenology of the specialist bee Colletes hederae and its 

dependence on Hedera helix L. in comparison to a generalist, Apis mellifera. 

 

4.1 Abstract 

Colletes hederae, the ivy bee, (Hymenoptera: Colletidae) has undergone large range 

expansions in Europe in recent years, including colonising Britain in 2001 with its original 

distribution limited to Western mainland Europe and the Channel Islands. It is thought to 

specialise on Hedera helix L. (Apiales: Ariliaceae), common ivy. However, some research 

has questioned this dependence. This study quantifies the foraging ecology of C. hederae to 

determine its relationship with ivy in Sussex. We quantified the phenology of ivy bloom, C. 

hederae activity and flower visitation, and pollen collection of females through pollen 

analysis. We also gathered equivalent data on Apis mellifera both as a comparison and to 

assess alternative pollen sources. The phenology of female C. hederae activity was highly 

correlated with and phonologically contained within the ivy bloom period. Pollen analysis 

from C. hederae identified ivy pollen was 98.5% of samples, significantly more than for A. 

mellifera (90%). Two other plant species were identified and more common in C. hederae 

samples when ivy bloom was not at its peak. Surveys of ivy flowers surrounding the 

aggregations found that C. hederae were the most common insect (26%) foraging on ivy. 

Although C. hederae can forage on other species, ivy was found to be an important floral 

resource. The results also suggest the potential for competition with A. mellifera, the only 

other bee present in more than small numbers on H. helix flowers, as although A. mellifera is 

a generalist, in autumn it mainly forages on ivy. 
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4.2 Introduction 

When a species specialises on a single food source it has a total dependence on the 

distribution of this resource across time and space. Herbivores can be specialists or 

generalists in their use of food plants. Specialisation is seen between many insect species and 

their host plants (Kéry et al 2001). For example, Argynis adippe (the high brown fritillary) 

whose larval food plant is predominantly Viola riviniana (common dog violet, Barnett & 

Warren 1995) and Pieris rapae (small white butterfly) whose larvae primarily consume plant 

species from the cabbage family (Davies & Gilbert 1985). However, this level of 

specialisation is rare between adult insect pollinators and their host flowers (Minckley & 

Roulston 2006).  

Unlike other pollinator species such as butterflies and flies which only forage on pollen and 

nectar when in the adult stage, bees also rely on these to feed their larvae (Nicolson 2011). 

Nectar is predominantly an energy source, with pollen providing bees with protein, lipids, 

and minerals which are essential for larval development (Vanderplanck et al 2017). 

Host-pollen specialisation in bees is categorised in three levels (i) polylecty, where bees 

collect pollen from a broad range of flowers, e.g. Apis mellifera (Köppler et al 2007), (ii) 

oligolecty, where pollen is collected from a narrow range of species within a genus or related 

genera e.g. Colletes halophilus (Sommeijer et al 2009) and (iii) monolecty, where bees 

collect pollen from a single plant species e.g. Hesperapis oraria (Davis et al 2020, Müller & 

Kuhlmann 2008).  

The floral composition of a landscape is usually heterogenous both spatially and temporally, 

potentially posing a challenge for bees which are reliant on specific floral hosts. Species 

which do demonstrate a narrow foraging range will have matched phenology with their food 

plants (Minckley et al 1994, González-Varo et al 2016, Ogilvie & Forrest 2017) often with 

emergence of females occurring slightly before the peak floral bloom (Larsson & Franzén 

2008). Cases of complete mismatch between floral host and oligolectic bee species are rare. 

However, sometimes emergence can be slightly out of synchrony with the floral bloom. Here, 

specialists have been seen to adapt and forage on other available species (Westrich 2008, 

Müller & Kuhlmann 2008) resulting in a suggested reclassification of the three pollen 

specialist categories to account for the flexibility often seen in species (Cane & Sipes 2006, 

Müller & Kuhlmann 2008, Cane 2020).  
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Colletes hederae, (Hymenoptera: Colletidae), the ivy bee has previously been suggested as 

being narrowly oligolectic on pollen from Hedera helix L., common ivy (Apiales: 

Ariliaceae), or under one of the proposed changes to the classification system, monolectic 

within the Hedera genus (Cane 2020). However, studies both on museum specimens (Müller 

& Kuhlmann 2008) and live bees (Teppner & Brosch 2015) in Europe have suggested it may 

have a wider diet range. Pollen specialisation is also seen in the closely related C. succinctus 

and C. halophilus species, which specialise on heather species and sea aster respectively 

(BWARS 2011, BWARS 2012).  

Colletes hederae was only described as a new species in 1993. At that time it was known 

only in the Channel Islands, France, Germany, Italy and Croatia (Schmidt and Westrich 

1993). Since then its range has spread and it is now found throughout southern and western 

Europe (Bischoff et al 2005) with its range much smaller than that of its host plant species, H. 

helix. Since its arrival in southern England in 2001, C. hederae has spread throughout Britain. 

It is now recorded in multiple sites in the southern half of Britain and as far north as the 

Yorkshire and Lancashire coasts, 400 km from the first record in Dorset (BWARS, 2019).  

This expansion of an invasive species could potentially place pressure on the native pollinator 

community. This is especially the case for C. hederae as they are active in early autumn and 

forage on the main source of nectar and pollen for most pollinator species active at this time. 

There is growing evidence that Apis mellifera (Hymenoptera: Apidae) can compete with wild 

bee species for floral resources (Hudewenz and Klein 2015, Herbertsson et al 2016) in part 

due to them being generalist foragers (Köppler et al 2007) and living in large colonies. Their 

diverse diet, and the fact that A. mellifera are known to forage heavily on H. helix during the 

autumn (Garbuzov and Ratnieks 2014) mean they make for an ideal comparison between the 

specialist C. hederae, and can help give an indication of the floral resources available in the 

surrounding area as they are able to forage across large distances (Couvillon et al 2014). 

Also, by comparing these two species’ activities on H. helix, it may help identify the potential 

competition posed by C. hederae on A. mellifera and other H. helix visiting insects. 

Colletes hederae are known to have been present on the University of Sussex campus since at 

least 2009 (Garbuzov and Ratnieks 2014). The aim of this investigation was to quantify the 

foraging ecology of C. hederae and to determine its relationship with H. helix (hereafter 

referred to as ivy) in East Sussex, an area of the UK where it has been present for 

approximately 10 years and is now abundant. This was achieved through (i) phenology, 
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comparing C. hederae nesting and foraging activity with the local ivy bloom intensity, (ii) 

pollen analysis using samples collected from foraging females returning to their nests in 

comparison with samples from Apis mellifera hives (iii) surveys of insects visiting ivy 

flowers.     

 

4.3 Methods 

4.3.1 Study Species 

4.3.1.1 Colletes hederae 

Colletes hederae is a medium-sized solitary bee, with females up to 13mm long and males up 

to 10mm (Falk and Lewington 2015). Female ivy bees are very similar to honey bee workers 

in size. Adults are mainly on the wing from late August to mid-October, coinciding with the 

bloom of its host plant, ivy (BWARS). Colletes hederae females nest in densely populated 

aggregations in the ground, with reports of up to 300 nests per m2 (Bischoff et al 2005). A 

single female can produce 18 brood cells in one month of adult activity (Danforth et al 2019). 

Females will collect both nectar and pollen for their brood. 

4.3.1.2 Apis mellifera  

In comparison to C. hederae, Apis mellifera are eusocial and live in large colonies with many 

thousands of individuals (Seeley 2009). They forage all year round, provided floral resources 

are available, and the temperature is above 10°C (Seeley 1989). They collect both pollen and 

nectar from a variety of flower species (Köppler et al 2007). 

4.3.1.3 Ivy 

In Britain there are two species of ivy, H. helix and its tetraploid daughter species H. 

hibernica. Both are common and widespread throughout the UK, except for some parts of 

Northern Scotland, and are almost identical in morphology (McAllister 1990). Due to the 

difficulties in identification, the two species were grouped and classed as ivy. Ivy generally 

grows in shaded, damp locations, and is often found in woodland (Metcalfe 2005). It only 

begins to flower once mature, aged 10 years or more, where the leaves also change from 

being lobed to ovate (Clark 1983). Ivy flowers are pentapetalous and contain an open type 

nectary, which is easily accessible to pollinators (Konarska 2014). Flowers occur in panicles 

of 1-6 umbels, with anthesis occurring 1-2 days before nectar secretion (Metcalfe 2005). 
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4.3.2 Nest Site Aggregations 

Three nest aggregations of C. hederae were studied in September and October 2019. One was 

in the garden of a house in the village of Falmer, East Sussex, approximately 300m from the 

edge of the University of Sussex Campus (50.864189, -0.079073). The second was on the 

University of Sussex campus (50.866395, -0.089911) on a small (c. 115m2) grassy slope and 

the third was located on the edge of the town of Lewes, approximately 5km to the East of 

Falmer (50.880111, -0.000481). The Lewes aggregation consisted of two small aggregations 

(c. 23m2 each) which were present on the front lawn of neighbouring houses. Due to their 

close proximity, 20m apart, they were combined for analysis.   

4.3.3 Pollen collection and analysis 

4.3.3.1 Colletes hederae 

Pollen was collected at all 3 aggregations from foraging females with visible pollen loads 

returning to their nests. Once caught, a bee was transferred to a honey bee queen marking 

cage (Pixnor, China) where using a toothpick pollen was scraped from both hind tibia and 

placed in individual Eppendorf tubes and stored for later analysis. Once pollen was collected, 

bees were released. Between 10-20 samples were collected per week per aggregation. 

Sampling started when females were first returning to their nests with pollen loads until they 

were no longer active at the nesting sites. For the Falmer aggregation this was from 16 

September to 21 October and for the Sussex University (SU Campus) and Lewes 

aggregations this was from 16 September to 7 October.  

For pollen identification, each sample was then placed on a microscope slide and mixed with 

a small volume of glycerine jelly stained with Fuchsin dye. A cover slip with a small grid was 

used allowing the sample to be divided into equally sized quadrats. The section of sample to 

be analysed was chosen at random and the number of pollen grains per plant species within 

each section was counted. Once all the grains within a section were counted, a new quadrat 

would be chosen at random and the process completed until 200 grains had been counted. If 

there were not 200 grains in a sample, the entire sample was analysed. Pollen identification 

and counting occurred using a compound microscope at 400x magnification using both a 

pollen reference collection from flowers surrounding the aggregations and a pollen 

identification guide (Sawyer and Pickard 1981). For each sample, the proportion of each 

species present was calculated. Classification to species level was attempted. However, due 

to similarities between species this was not always possible e.g. Asteraceae species.  
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4.3.3.2 Apis mellifera  

Pollen was also collected from four Apis mellifera colonies in hives at the Onion Field apiary, 

c. 40m from the Falmer aggregation of C. hederae. To collect pollen from A. mellifera hives, 

a standard pollen trap with a 5mm plastic mesh, (E.H Thorne UK) was attached over the 

entrance of each hive.  This mesh results in pollen from returning foragers being knocked 

from the pollen baskets into a tray. Mesh was put into position one day per week from 8:30 to 

17:30 to encompass an entire foraging day on days of good weather for bee flight (above 

10°C and no rain). Each sample comprised the pellets collected from one hive on one day. 

The survey period was 26 August to 28 October with no pollen collected on the week of 21 

October as there was no suitable foraging weather.  

In most cases the daily sample from a hive was large so a sub sample of 50 randomly chosen 

pellets was used. Occasionally (2/25) the sample was less than 50 pellets, and all were 

identified. Occasionally hives returned no pellets (8). Each pellet was of a single colour 

indicating that the pollen was collected from a single plant species. This is expected as A. 

mellifera are flower constant, with almost all foragers visiting only one species of plant per 

foraging trip (Free 1963).  

Pellets were separated by colour and if a colour had more than 10 pellets, then 10 were 

randomly chosen and analysed. If all 10 were the same species, the remaining pellets of that 

colour were tallied together and not examined under the microscope. A small amount from 

each pellet was mounted onto a slide, as for C. hederae, mixed with glycerine jelly stained 

with Fushin dye and examined at 400x under a light microscope using the same quadrat 

system as with C. hederae. Pollen was again identified to species where possible using the 

same pollen identification guide as with C. hederae (Sawyer and Pickard 1981). 

4.3.3 Ivy Bloom Period 

To determine the bloom period of ivy all patches of ivy present within 300m of each 

aggregation were surveyed and the bloom quantified. Foraging range of solitary bees is 

thought to correlate with intertegular (IT) span and body length, which for C. hederae (IT 

span 1.5-2mm, body length 13mm Female, GH Pers obs) indicates a foraging distance of 

500m (Gathmann & Tscharntke 2002, Greenleaf et al 2007). Due to the high local abundance 

of ivy and because bee foraging distances reduce with increased floral resources (Gathmann 

et al 1994 , Gathmann & Tscharntke 2002), 300m was chosen as a practical and ecologically 
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relevant survey distance which would give a good indication of the local ivy flower 

availability surrounding the aggregations.  

Once per week from 9 September to 21 October 2019 fixed survey routes within 300m of 

each aggregation were walked. Mature ivy is often found in abundance along walls, hedges, 

and trees. In order to survey the ivy present was allocated to patches 2m long and 2m high 

and each of these patches was given a score to indicate the proportion of flowers in bloom. 

For practical reasons we had to limit the height surveyed to 2m even though some ivy was 

higher. This ensured that flower assessment was accurate as above 2m it was not possible to 

accurately determine the bloom stage of flowers. Each patch was given a score to determine 

its flowering status: 0) buds only, with no flowers open or all flowers have finished 

blooming; 1) 0-30% of flowers open; 2) 30-80% of flowers open; 3) Peak bloom, 80-100% of 

flowers open (Fig 1). This classification was adapted from Garbuzov & Ratnieks 2014. For 

analysis, the midpoint percentage of flowers open for each patch was determined (e.g. a score 

of 1 indicates 15% of flowers open). The average percentage of open flowers for each survey 

week was calculated as the average of all flower patches for each site.  
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Fig 1: Ivy flowers at different stages of bloom. a) Flowers have not yet opened so would be 

classed as a 0 (Christina Pictures 2016), b) Open flowers. Depending on the number open 

within a patch a score ranging from 1-3 would be given (Nick Upton 2018), c) A patch of 

flowers which would be classified as a 3, full bloom, as more than 80% of flowers are open 

(Alan Fryer 2007),  d) Flowers have ‘gone over’ and berries have formed, a score of 0 (Linda 

Crampton 2017) 

 

4.3.4 Colletes hederae activity at nest aggregation  

Activity was quantified by the number of C. hederae individuals on the wing at each 

aggregation. This was determined by sweeping with the same insect net at each aggregation 

and calculating the average number of male and female C. hederae caught per sweep. Sweeps 

were conducted on days with weather good enough for insect flight (sunny, minimum 

temperature 11°C between 10:00 and 16:00). Three sweeps of the entire aggregation were 

done each day with surveys attempted every day. However, due to weather conditions this 

was not always possible. Bee activity surveys occurred between 9 September until 21 

October as this covers the main period when C. hederae are on the wing (Falk and Lewington 

2015).  
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4.3.5 Insect surveys 

Insects on ivy flowers were surveyed in the village of Falmer and on the University of Sussex 

Campus with identification by eye in the field. Surveys in Falmer were within 300m of the 

Falmer aggregation, with surveys on the University of Sussex Campus occurring between 

500-650m away from the SU aggregation. Within these sites several distinct areas of ivy 

flowers were surveyed, with the specific patches used varying between weeks as areas came 

in and out of bloom. Surveys took place at approximately weekly intervals and corresponded 

with the main ivy bloom from 2 September to 21 October. Counts of insects on flowers were 

made until a total of 100 insects were identified at each of the two study areas. On some 

weeks fewer than 100 insects were counted on the Campus site (n=79, 23 September, n=50 

14 October, n=86 21 October). On a few of the survey weeks data was collected over 

multiple days (5 occasions). Data were collected at times of weather good enough for insect 

flight (temperatures ranged from 10-21°C) between 10:00 and 16:00. All ivy flower visitors 

were identified to the following taxa: 1- Colletes hederae, 2- Apis mellifera, 3- Bombus, 4- 

Apoidea (other bees), 5-Vespula vulgaris, 6-Syrphidae (Hoverflies), 7- Diptera (other flies) 

and 8-Lepidoptera (butterflies). The number of male and female C. hederae was noted, as 

was the proportion of female C. hederae and A. mellifera with visible loads of pollen. 

4.3.6 Statistical analysis 

The relationship between female C. hederae activity at aggregations and ivy bloom intensity 

(percentage of open flowers) was analysed using a generalised mixed effect model (GLMM) 

with a negative binomial distribution and aggregation site as a random factor. The response 

variable was the number of females caught per survey. The predictor variables were 

percentage of open flowers and survey week. Week was included in the model as a quadratic 

function as this was found to best fit the data.  

To test if the average proportion of ivy pollen across the entire survey period differed 

between C. hederae aggregations a Kruskall-Wallis test was run with a follow on post hoc 

Dunn test with Bonferroni correction. To determine if the proportion of ivy pollen present 

changed over time for each C. hederae aggregation, a Chi Square test for heterogeneity was 

run for each aggregation comparing ivy proportions for each survey date. 

To determine if the proportion of ivy collected differed between A. mellifera and C. hederae 

a Wilcoxon Signed Rank test was performed with percentage of ivy as the dependent variable 

and bee species as the independent. Only pollen collected by A. melifera hives during the 
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same period that female C. hederae were on the wing was used in the comparison (9 

September to 14 October). Pollen collected from C. hederae at the Lewes nest aggregation 

was not compared with A. mellifera because this aggregation was located beyond the foraging 

range of the A. mellifera hives. All graphs were made and tests run using R (R Core team, 

version 3.4.2). 

 

4.4 Results 

4.4.1 Colletes hederae pollen composition  

A total of 203 pollen samples were collected from individual female C. hederae, 101, 40 and 

62 from the nest aggregations at Falmer, Sussex University Campus (SU Campus) and 

Lewes, respectively. Ivy pollen was present in 100% of the samples and on average was 98.5 

± 0.29% SE of the pollen grains counted. In 65% (131/203) of the samples ivy was the only 

species identified. Ivy pollen proportions were high at all three locations. However, there was 

a significant difference between Falmer and Lewes (99.1± 0.22% SE vs 97.3 ±0.76% SE, 

Dunn post hoc test, χ2= 10.40, df=3, P=0.002, Fig 3a). There was no difference between SU 

Campus (98.7±0.60% SE) and Falmer (P=0.84) and Lewes (P=0.70, Fig 2a).  

There was no significant difference between the proportion of ivy pollen in samples across 

weeks for Falmer (χ2 = 1.49, df=5, P=0.91). However, there was for SU Campus (χ2 = 11.9, 

df=3, P=0.007) and Lewes (χ2=15.79, df=3, P=0.001). Figure 3a shows that the lowest 

proportion of ivy in samples for both Lewes and SU Campus were from the week 

commencing 16 September (92% Lewes, 94% SU), at the start of the ivy bloom. After this 

the proportion of ivy pollen present per sample increased to over 98% at both. 

Pollen from four other plant groups were identified (Table 1). Across aggregations, the 

second most abundant was wild clematis, Clematis vitalba (Ranunculales: Ranunculaceae), 

which was present in 21% of samples, 0.89 ± 3.39% SE on average per sample (Table 1). The 

other three groups identified included bramble, Rubus fruticosus L. (Rosales: Rosaceae), 

Asteraceae species and birds foot trefoil, Lotus corniculatus (Fabales: Fabaceae). All pollen 

species identified were from wild flower species. Asteraceae pollen was not observed in 

samples from the SU Campus aggregation and L. corniculatus was only identified in samples 

from Falmer. Rubus fruticosus and C. vitalba were found in samples from all three 

aggregations. 
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Clematis vitalba was also the second most common plant species in samples from Lewes 

(1.65 ± 0.72% per sample, present in 14/62 samples). On the week of 16 September, when 

ivy proportion was at its lowest for Lewes and SU Campus aggregations, the most common 

other pollen identified was C. vitalba. In Lewes it accounted for 8% and in SU Campus it 

accounted for 4% of the pollen identified that week.  

4.4.2 Apis mellifera pollen composition  

A total of 1187 pollen pellets were analysed from 25 sample occasions from 9 days. There 

was no significant difference in the proportion of ivy pollen among the four A. mellifera hives 

(Kruskall Wallis, df=3, P=0.538), all of which were located at Falmer, so they were pooled 

for analysis.  

Ivy was present in 92% (23/25) of the A. mellifera samples and for the whole survey period 

(26 August to10 November) on average per sample was 67% of the pellets identified (Table 

1). The second most abundant pollen type was C. vitalba (10.56 ± 3.27% SE of pellets, Table 

1). When examining the presence of ivy pollen in samples only in the period that overlaps 

with C. hederae pollen foraging (16 September to 14 October) ivy was present in all samples 

and was 90% of pollen pellets identified. Throughout the whole survey period pollen from 

eight other plant groups were also identified (Table 1). Rubus fruticosus was present in more 

samples than C. vitalba but accounted for a smaller proportion of identified pellets (R. 

fruticosus 7.29± 2.48% SE vs C. vitalba 10.56± 3.27% SE). During the period which 

overlapped with C. hederae activity three other plant species were identified in A. mellifera 

samples, C. vitalba, R. fruticosus and a species which was not found in C. hederae samples, 

poppy (Papaver spp., Table 1).  

There was a significant difference in the proportion of ivy pollen in samples between weeks 

for A. mellifera colonies (χ2=277.61, df=8, P<0.0001, Fig3b). The highest proportions were in 

the weeks commencing 7 October and 14 October when it was 100% of pellets. The lowest 

proportion was in the week of 26 August, with on average 25% of pellets being ivy (Fig 3b).  

There was a significantly higher proportion of ivy pollen in C. hederae samples from 16 

September to 14 October from the Falmer and SU aggregations compared to those of A. 

mellifera (Wilcoxon rank sum test, W= 663, P=0.044, 98.9± 0.23% vs 90.8±4.82, Fig 2b). 

Pollen from the Lewes aggregation was not compared with the A. mellifera colonies because 

it was located outside the foraging range of the A. mellifera pollen trap hives (Couvillon et al 

2014). 
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Table 1: Plant species found in pollen samples from Colletes hederae and Apis mellifera. For C. 

hederae data are for all aggregations and for A. mellifera all hives, which were all at the Falmer 

location but also close to the SU campus aggregation. The number of samples where each species was 

present is shown together with the average proportion per sample. Species which were found in both 

C. hederae and A. mellifera samples are in bold. The asterisk, * indicates a potential contamination as 

was only present in one sample. Proportions for both the entire survey period and the period that 

overlaps with C. hederae pollen foraging are shown for A. mellifera. 

Colletes hederae: 16 September – 21 October 
 

Plant Species Present in individual bee 

(C. h) or hive (A. m) per 

week (%) 

Mean proportion  

across samples (%) 

 

SE Standard Error 

(%) 

Hedera sp. 100% (202/202) 
 

98.5% 0.29% 

*Lotus corniculatus  0.5% (1/202) 
 

0.009% 0.009% 

Clematis vitalba 21.3% (43/202) 
 

0.89% 3.39% 

Rubus fruticosus 20.3 (41/202) 
 

0.61% 3.39% 

Asteraceae sp. 1.45% (3/202) 0.02% 0.007 

Apis mellifera: 26 August- 28 October (whole period of ivy bloom) 
 

Hedera sp. 92% (23/25) 67.10% 7.03% 
 

Clematis vitalba  44% (11/25) 10.56% 3.27% 
 

Rubus fruticosus  48% (12/25) 7.29% 2.48% 
 

Papaver sp. 36% (9/25) 5.92% 2.27% 
 

Dahlia sp. 16% (4/25) 1.61% 0.92% 
 

Brassica napus 4% (1/25) 0.32% 0.32% 
 

Phacelia tanacetifolia  4% (1/25) 0.24% 0.24% 

 

Hypericium sp. 4% (1/25) 0.08% 0.08% 
 

Epilobium 4% (1/25) 0.08% 0.08 
 

Unknown 4% (1/25) 2.24% 2.24% 

 

Apis mellifera: 16 September- 21 October (C. hederae foraging period) 
 

Hedera sp. 100% (13/13) 90.80% 4.82% 

 

Clematis vitalba  39% (5/13) 5.83% 3.50% 
 

Rubus fruticosus  15% (2/13) 0.77% 0.53% 
 

Papaver sp. 23% (3/13) 2.62% 1.75% 
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Fig 2: Proportion of ivy pollen in samples between 16 September to 21 October, the period 

Colletes hederae females were foraging for pollen in a) C. hederae samples for each 

aggregation and b) Apis mellifera colonies and the Falmer and SU Campus aggregations. Due 

to no difference in ivy proportion between Falmer and SU Campus these were combined for 

comparison with A. mellifera. Lewes was not compared with A. mellifera due to the 

aggregation being located beyond the foraging range of the A. mellifera hives. * indicates a 

significance of P <0.05 and ** indicates a significance of P<0.001. NS means no significant 

difference between the group was identified.  
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Fig 3: Mean proportions of ivy pollen present in samples for each survey week for a) C. 

hederae and b) A. mellifera. The dashed line shows the average proportion for dates that 

overlap with C. hederae flight for A. mellifera, the solid line shows the same for C. hederae 

and the dotted line shows the average proportion for the entire sample period for A. mellifera 

(26 August to 28 October). For C. hederae only samples from the Falmer aggregation were 

collected for the final two survey weeks due to low levels of activity at the other two 

aggregations (21-28 October) 
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4.4.3 Colletes hederae phenology 

Falmer was the aggregation with the highest sweep counts, averaging 28 males and females 

combined versus 11.7 for Lewes and <1 for SU Campus. Due to the low numbers at SU 

Campus, it was not included in the phenology analysis. For both Falmer and Lewes 

aggregations male activity peaked before females (Fig 4), males were most active on the 

week of 9 September (x̄=68.3 ±27.5 SE), and females on the week of 30 September (x̄=17.9 

±1.98 SE). This peak in female activity corresponded with the peak in ivy bloom, with the 

highest percentage of flowers open (32.3%) also on the week of 30 September. There was a 

significant relationship between female activity and percentage of flower bloom (GLMM, 

F1,61 =37.6, P<0.001). Female activity also significantly changed with week (GLMM, 

F1,59=39.8, P<0.001) following a quadratic pattern. Male activity peaked when on average 

only 20% of flowers were in bloom (Fig 4).  

 

Fig 4: Mean number of C. hederae caught per sweep with an insect net per week. The red 

line indicates the average number of ivy flowers open for the corresponding week. Data has 

been pooled from Lewes and Falmer for both bee activity and flower bloom. No C. hederae 

were caught on the weeks of 14 and 21 October 
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4.4.4 Insects on ivy flowers 

A total of 14 insect groups and 1565 insects were recorded foraging on ivy flowers during the 

survey period (weeks beginning 2 September to 21 October) across the two survey sites (SU 

Campus and Falmer). The most common species was C. hederae which accounted for 25.8% 

(403/1565) of sightings, followed by hover fly species (23.5%, 367/1565) and A. mellifera 

(22.9%, 359/1565). Few other bees were seen. Bumblebees (Hymenoptera: Apidae) 

comprised from 0-3%, with an average of 1% of insects seen per week (Table 2). Only one 

other bee, genus Andrena (Hymenoptera: Andrenideae), was seen throughout the whole 

survey period.  

At the beginning of the survey period the C. hederae seen on ivy flowers were mainly male 

(71% week of 2 September and 80% week of 9 September). Subsequently, the proportion of 

males reduced with females being the most abundant. In the week of 16 September, females 

accounted for 66% of C. hederae seen, then averaged 95% in the remaining survey weeks. 

Initially most females seen did not have visible pollen loads in their scopa (first two survey 

weeks average of 16.7% across sites, Fig 5a). This increased throughout the survey period 

with an average of 88.0% of females with pollen between 16 September and 21 October, 

reaching a peak of 100% by the final week (21 October).  

Colletes hederae sightings reached their peak on the week of 30 September with over 50% of 

insects being C. hederae across both sites (Fig 5b).  This also corresponds with the peak ivy 

bloom and when females were most active at the aggregations (Fig 4). After this week, the 

proportion of C. hederae decreased to 5% by the week of 14 October and 1.5% on the final 

survey week (21 October). Overall, Falmer had a higher proportion of C. hederae compared 

to the campus site (30% vs 21%).  

By contrast, although A. mellifera proportions did fluctuate between 10% and 33%, averaging 

23% per week, they did not show the clear increasing and then decreasing trend seen by C. 

hederae. The proportion of A. mellifera workers collecting pollen was higher later in the 

survey period, with an average of 84% for the last two survey weeks (14 -21 October). Prior 

to this 51% of females were seen collecting pollen (Fig 5a).  
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Table 2: The insect groups identified foraging on ivy during surveys at A) Falmer B) 

Campus. The average weekly proportion for each insect group or species is shown along with 

the total proportion for the whole survey period. Data was collected from a total of 8 samples 

days and N indicates the total number of individuals recorded over the whole survey period. 

A) Falmer   

Species/Group Average weekly Proportion (% 

± SE) 

Total Proportion  

(%) 

Colletes hederae 29.8 ± 7.94  

 

30.1 

N=256 

Apis mellifera 33.4 ± 4.20 

 

31.4 

N=267 

Bombus 1.13 ± 0.35 

 

1.06 

N=9 

Vespula vulgaris 11.6 ± 3.92 

 

10.6 

N=90 

Syrphideae (Hoverflies) 16.44 ± 4.58 

 

18.6 

N=158 

Diptera (Other flies) 7.94 ± 2.38 

 

7.18 

N=61 

Lepitoptera (Butterflies) 

 

1.19 ± 0.53 1.06 

N=9 

B) SU Campus   

Colletes hederae 19.3 ± 5.05 20.6 
N=147 

Apis mellifera 14.6 ± 2.95 12.9 

N=92 

Bombus 0.25 ± 0.25 0.28 
N=2 

Apoidea (other bees) 

 

0.001 ± 0.001 0.14 

N=1 

Vespula vulgaris 25.0 ± 6.07 23.5 
N=168 

Syrphideae (Hoverfly species) 27.8 ± 6.48 29.3 

N=209 

Diptera (Other flies) 12.9 ± 1.09 12.3 
N=88 

Lepidoptera (Butterflies) 1.13 ± 0.99 1.26 

N=9 
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Fig 5: a) Proportion of female A. mellifera and C. hederae which were seen to be carrying 

ivy pollen in their scopa, b) proportion of different insect taxa seen foraging on ivy flowers 

with both SU Campus site and Falmer site combined. At the SU Campus site weeks 23 

September, 14 and 21 October fewer than 100 insects were surveyed. All other weeks 100 

insects were counted at each site. 

 

4.5 Discussion 

Our results show the importance of ivy, to the ivy bee, Colletes hederae. Almost all the 

pollen grains identified from females returning to the nest aggregation were ivy (98.5%). In 

addition, the phenology of female nesting and foraging activity took place exclusively within 

the ivy bloom period with peak activity at the aggregation and on flowers both coinciding 

with peak bloom. In comparison, although honey bees, Apis mellifera, collected a large 

proportion of pollen (90%) from ivy during the same period, this was significantly lower than 

for the C. hederae. In addition, A. mellifera pollen collection on ivy did not show such a tight 

relationship with the ivy bloom as that of the C. hederae.  

4.5.1 Colletes hederae pollen composition  

The foraging behaviour of C. hederae in this study can be considered eclectic oligolecty 

which is defined as 95% or more of the grains collected belong to the same genus and found 

in 95% or more of the pollen loads (Müller & Kuhlmann 2008). Previous work studying 
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pollen from C. hederae females has shown they have a high association with ivy but have 

also highlighted how the proportion of ivy pollen collected can vary, depending on the floral 

resources available. Bischoff et al (2005) sampled 15 pollen loads and 20 cells of C. hederae 

from aggregations in Dirmstein, Germany; all samples were 100% ivy pollen. In contrast, 

Müller & Kuhlmann (2008) examined pollen taken from museum specimens and found that 

only 78% of samples contained pollen from only ivy, and that on average it was 88% of the 

sample. However, inferring diet breadth from museum specimens can, for example with 

Andrena dunninigi, result in higher foraging diversity than is seen in observations or from 

pollen collected from living females (Johnson 1984). The most common other species 

identified in C. hederae pollen samples included C. vitalba and R. fruticosus and for the 

aggregations at Lewes and SU Campus the proportions of these species were significantly 

higher at the beginning of the females flight season. This flexible foraging behaviour is seen 

in many oligolectic species (Bischoff 2003, Ritchie et al 2016, Ogilvie & Forrest 2017) and 

has been previously reported for C. hederae and the closely related C. succinctus (BWARS 

2011). Westrich (2008) identified pollen from multiple species during the first half of C. 

hederae flight period. However, once ivy began to bloom C. hederae began to collect pollen 

solely from ivy (Westrich 2008). In the week where C. hederae samples from the Lewes 

aggregation contained the smallest proportion of ivy (92%), ivy flowers had still not reached 

their peak bloom, with on average patches only having 20% of flowers open. This indicates 

that C. hederae females will collect pollen from other species.  

There was a difference in the proportion of ivy present in samples among the aggregations, 

with bees nesting in Lewes having significantly less (97% vs 99%). The Lewes aggregation 

was in a suburban setting, and although there was a high abundance of ivy (61 two-meter 

patches surveyed) the densest patches were located approximately 150m from the 

aggregation. This is further than for both Falmer (<50m) and SU Campus (100m). This may 

have resulted in individuals reaching other flower species before locating an abundant source 

of ivy.  

4.5.2 Phenology  

Although C. hederae females did gather pollen from other species, our results indicate that 

female activity is highly correlated with and is contained within the ivy bloom period, with 

female activity peaking at the same time as the ivy bloom. By contrast, male activity did not 

synchronise with ivy bloom, peaking when only 20% of flowers were open on average. This 
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is probably due to males not having to collect pollen for larval food, therefore there is less 

reliance on the specific host plant. Males in this study were seen foraging on a range of 

flowers in August before the ivy bloom, including the wild flowers, bristly oxtongue 

(Helminthotheca echioides) and great willowherb (Epilobium hirsutum) and garden flowers, 

Helenium variety Sahin’s Early Flowerer, indicating less floral specialisation. Differences in 

male and female foraging preferences are seen in other oligolectic species (Ritchie et al 2016) 

and may also be due to this reduced synchronisation between males and the main host plant 

species.  

4.5.3 Comparison of pollen composition between C. hederae and A. mellifera  

Colletes hederae pollen samples contained significantly higher proportions of ivy compared 

to A. mellifera, (98% vs 90%). Previous work on ivy has shown its importance to A. mellifera 

colonies in autumn. Garbuzov and Ratnieks (2014) found the similar result of ivy being 89% 

of pollen pellets in the months of September and October. Even when A. mellifera are most 

reliant on ivy, when there is not much else to forage on near the end of autumn, C. hederae 

still collects proportionally more ivy pollen (Fig 3a).  

Individual A. mellifera workers are known to be flower constant (Grant 1950), usually 

foraging on only one species of flower per foraging trip. This was seen in our results with all 

pellets containing only one species of pollen. This is in contrast with C. hederae where only 

65% of samples contained a single species. It has been suggested that whether a bee remains 

constant or not on a foraging trip depends on time and distance between it leaving a flower 

and then encountering another of the same type (Chittka et al 1997). At the beginning and 

end of the ivy bloom period, patches would often have inflorescences where only a few 

flowers were open, with these spread throughout the patch. The two main other sources of 

pollen for C. hederae, C. vitalba and R. fruticosus, often grow along walls and in hedges and 

in wooded areas and were often found nearby or intermingled with ivy, which would 

facilitate multi-species foraging. Often, only a small number of pollen grains from these other 

plant species were found in samples, perhaps indicating collection from only a few flowers. It 

is possible that pollen collection was incidental when the female was primarily collecting 

nectar. However, ivy flowers produce large amounts of nectar, which suggests that other 

flowers do not need to be visited to gather it. However, other species of oligolectic bees have 

been seen to have a wider breadth of diet for nectar other than their host pollen plant (Wcislo 
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and Cane 1996, Cane and Sipes 2006). Surveys of these other plant species would be required 

to identify if females are seen foraging for nectar. 

4.5.4 Insects foraging on ivy flowers 

Colletes hederae was the most numerous insect foraging on ivy flowers across the survey 

period (26%). However, this proportion varied between weeks, depending on the ivy bloom. 

The proportion of A. mellifera each week also fluctuated. However, in contrast to C. hederae, 

A. mellifera proportions did not show any consistent trend with the ivy bloom. With C. 

hederae, the proportion of females collecting pollen increased as more ivy flowers came into 

bloom. This was also the case with A. mellifera, with the proportion collecting pollen 

increasing in the final 3 weeks of the survey period. This increase is most likely due to the 

lack of other available flowers, rather than a specific reliance on ivy, and the need for pollen 

to rear brood and to store. Both A. mellifera and C. hederae collect pollen to feed brood. 

However, C. hederae females must first mate and excavate a nest before they have larvae to 

provision (Schäffler & Dötterl 2011), unlike A. mellifera. Before this point pollen collection 

is not required, but energy from nectar is needed for nest digging and cell building, perhaps 

explaining the low proportions of females in ivy flowers collecting pollen early in the survey 

period.  

There was a difference in the proportion of C. hederae seen foraging on ivy between the sites 

with Falmer having a higher proportion compared to SU Campus (30% vs 21%). The Falmer 

aggregation was the largest of the three in this study. In 2018 it was estimated to have over 

4000 nests, versus only 115 at SU Campus (Hennessy et al 2020). This suggests proximity to 

large nesting sites is an important factor in determining the presence of foraging C. hederae. 

This makes sense as C. hederae have an estimated foraging distance of approximately 500m 

(Greenleaf et al 2007), meaning local densities of both ivy and C. hederae will have a major 

effect on the numbers foraging on a specific patch.    

 4.5.5 Potential for competition  

Colletes hederae has experienced a large geographic range expansion in the last 20 years 

throughout Western Europe (Dellicour et al 2014). This expansion includes Britain, with the 

first sighting of C. hederae in Dorset in 2001 (Cross 2002).  

Colletes hederae is an invasive species to the UK, and as seen with the Falmer aggregation in 

this study, can nest in high densities and be the most abundant insect on ivy flowers. Previous 
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surveys of insects on ivy flowers, completed in 2011 in the same location found C. hederae to 

be only 3% of the total insects recorded (Garbuzov & Ratnieks 2014). The proportion seen in 

this study (26%) is much higher than in 2014, perhaps indicating how quickly this species can 

build up to become extremely abundant, approximately equalling A. mellifera in an area with 

numerous hives. This raises the question as to whether C. hederae may be harmful to native 

species via competition for floral resources. In this study we identified 14 different insect 

groups. Of these, only bees collect pollen to provision nests. Hoverflies (Diptera: Syrphidae) 

consume small amounts of pollen for their own use as an adult (Hickman et al 1995) but 

Vespula vulgaris (Hymenoptera: Vespidae), butterflies (Lepidoptera) and other flies (Diptera) 

consume only nectar (Norris 1936, Larson et al 2001). These taxa will utilise much less of the 

ivy resources compared to C. hederae and A. mellifera. However, competition may still occur 

for nectar resources, as C. hederae will not only collect pollen for developing larvae, but also 

nectar. There was no evidence of antagonistic behaviour between foraging C. hederae and 

other flower visitors to ivy. However, exploitative competition through reduction of resources 

is seen in other systems (Balfour et al 2015, Wignall et al 2020). Evidence of an invasive 

solitary bee influencing a local pollinator species has been seen with introduced Anthidium 

manicatum (wool carder bee), where native Bombus impatiens do not forage on patches 

where A. manicatum are present (Graham et al 2019). However, A. manicatum males are 

highly aggressive, likely actively excluding other foraging insects, which is not seen with C. 

hederae. Although floral resources are relatively limited when C. hederae are active in the 

autumn (Couvillon et al 2014), ivy is highly abundant, and most other bee species are no 

longer active (Goulson 2003), perhaps reducing competition. The number of foraging C. 

hederae on ivy were similar to the eusocial A. mellifera, a species which some research 

suggests is capable of outcompeting wild bees through exploitative competition due to their 

large numbers (Henry and Rodet 2018) but which can itself be outcompeted in this way 

(Balfour et al 2015). Considering the strong dispersal ability of the species, the fact its 

parasites are not yet found in the UK (Dellicour et al 2014) and that females can produce 3x 

as many offspring as the closely related C. halophilus (Danforth et al 2019), an increase in 

abundance and range of the species is likely to continue. This has already been seen in 

Europe, with one study showing that the number of grid cells occupied by the species in 

Europe had increased by 6 to 7 fold between 2001 and 2010 (Dellicour et al 2014). This rapid 

expansion is perhaps surprising, due to the species apparent reliance on a single plant species. 

However, its dependence is on a common plant species and the warmer summers much of 

Europe has experienced over the last few decades may have contributed to the production of 
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more abundant and longer lasting flower stands of ivy as it reproduces vegetatively in colder 

climates (Iversen 1944).   More research is required to understand how the increasing number 

of this invasive species may impact the local pollinator community. This is especially true 

due to the expanding nature of the species throughout Britain, and other parts of its range. 

4.5.6 Conclusion 

In conclusion, ivy pollen has been identified as a crucial floral resource for C. hederae in this 

study. This is shown through the high proportion of ivy pollen collected by females, the 

matched phenology of female activity and ivy bloom intensity, and that C. hederae are the 

most common insect foraging on ivy during their flight season. This study has only focussed 

on three locations all in the South of England, well within the species expanded range. Future 

work in a range of locations is needed to identify if C. hederae foraging patterns are 

consistent throughout where it is found. Also, future research on the potential of competition 

between this invasive and our native species is required to determine what impact, if any, 

their presence is having.  
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Chapter Five: Gone with the wind: Effects of wind on honey bee visit rate and 

foraging behaviour 

 

5.1 Abstract 

Wind is an important yet understudied environmental influence on foraging behaviour. We 

investigated the direct and indirect effects of wind on foraging worker honey bees, Apis 

mellifera. Bees were trained to an array of artificial flowers providing nectar rewards in a 

location sheltered from natural wind. To examine the direct effect, fans produced four 

different wind speeds between 0 and 3 m/s at three different flower spacings: 5 cm (flowers 

touching) and 10 cm and 20 cm (flowers not touching). To examine the indirect effect of 

wind moving flowers, flowers were moved 10 cm at three frequencies between 50 and 110 

cycles per minute at zero wind speed. Foraging behaviours were examined including: number 

of successful flower visits, time flying, search time on a flower and hesitancy to take off. 

Bees visited significantly fewer flowers with increasing wind speed which was caused by a 

significant increase in hesitancy to take-off. This difference in flower visits among wind 

speeds was highest at the 20 cm spacings. Flower movement had no effect on foraging rate 

however there was a significant positive relationship between flower movement and the total 

time flying. This was counterbalanced by a significant reduction in time spent searching for 

the nectary after landing on a flower at the higher flower frequencies. Our results suggest that 

it is the direct effect of wind on hesitancy to take off which has the greatest effect on honey 

bee foraging rate. 
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5.2 Introduction 

Animals show many adaptations that enhance foraging effectiveness and efficiency (Stephens 

and Krebs 1986, Boyd et al 1997, De Knegt et al 2007). Foraging is also affected by many 

environmental factors, which can exert their influence both directly and indirectly. Direct 

examples include the effects of light and temperature on the time of day at which animals 

forage (Fraser et al 1995, Cannell & Cullen 1998, Aublet et al 2009), and can help, hinder or 

even prevent foraging altogether (Radford et al 2001). Indirect examples include light causing 

increased predation risk, with white footed mice ceasing to forage much sooner on clear, lighter 

evenings (Orrock and Danielson 2009). Temperature can cause fluctuations in prey availability, 

forcing bats to travel further to warmer feeding sites (Arbuthnott & Brigham 2007).  

Wind is an important environmental factor that can both help and hinder foraging. The 

wandering albatross benefits from favourable tail and side winds whilst traversing the ocean 

(Weimerskirch et al 2000 & Weimerskirch et al 2002). By contrast, leaf cutter ants walk 55% 

more slowly and are blown off their path more in windy conditions (Alma et al 2016). Wind 

influences flight during migration and travel between foraging sites in birds (Liechti 2006 & 

Wakefield 2009). It can also directly affect foraging decisions and success. Sandwich terns 

decrease their foraging rate with increasing wind speeds (Taylor 1983) and glaucous gulls vary 

their foraging strategy with wind speed to maximise energy gain and minimise risk of injury 

(Gilchrist et al 1998). Wind can also influence foraging indirectly by altering the presence of 

prey. Insect abundance increases near strips of vegetation and woodland as they provide a 

buffer from wind (Whitaker et al 2000) and following summers of high wind speeds barn 

swallows had lower breeding success due to fewer insects (Møller 2013).  

Wind is expected to be especially challenging for flying insects due to their small body size. 

Flight is energetically expensive (Reinhold 1999), and this cost increases with wind speed in 

birds (Tucker and Schmidt- Koenig 1971). With increasing wind speeds energy expenditure 

increased by 30% in euglossine bees due to leg extension to help with stabilisation (Combes et 

al 2009). High wind speeds make landing more difficult and less controlled in bumblebees, 

resulting in higher impact landings (Chang et al 2016). Wind may provide additional challenges 

to flower visiting insects, especially bees, who make many small flights between individual 

flowers or inflorescences, with estimates for honey bees of between 250 and 1446 flower visits 

per trip (Ribbands 1949, Goodwin et al 2011). Even a small increase in the time taken to travel 
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between and land on flowers caused by wind-induced delays would be multiplied hundreds or 

even one thousand times (Couvillon et al 2015) per hour of foraging. 

One indication of the effects of wind on bee foraging is a reduction in the number of foraging 

honey bees present at foraging sites with increasing wind (Pinzauti 1986, Comba 1999, Vicens 

and Bosch 2000). Surprisingly, however, there appear to be no data directly measuring the 

effect of wind speed on the foraging rates of individual bees or how wind may directly or 

indirectly affect foraging, for example by causing flowers to move and to be harder to land on.  

The aim of this study was to determine the effect of wind speed and flower movement on the 

foraging behaviour and rate of flower visits of honey bee workers, Apis mellifera. We used an 

array of artificial flowers and wind generated by fans to decouple the direct effect of wind on 

the bee versus indirect effects caused by wind-induced flower movement. In Experiment 1 we 

used a 2-way design of 4 wind speeds at three flower spacings to investigate the direct effect 

of wind on foraging rate. In Experiment 2 we investigated the indirect effect by moving the 

artificial flowers at different rates to simulate flower movement caused by wind. 

 

5.3 Materials and methods 

5.3.1 Study site and organism 

We studied free flying honey bees (Apis mellifera) foraging on artificial flowers in arrays 

located in the porch of the workshop building beside the main apiary at the Laboratory of 

Apicultural & Social Insects, on the campus of the University of Sussex. The outside walls of 

the porch were covered in clear polycarbonate plastic which resulted in the interior being well 

illuminated but windless. Data were collected in October and November 2017 for experiment 

1 and August 2018 for experiment 2 on days sufficiently warm for flight (10-24°C). All bees 

studied had flown from their hives to feed on artificial flowers of the same design as those 

being used in the experimental arrays, located 1-2m from the porch entrance. This indicated 

their readiness to forage under the prevailing conditions and allowed them to learn how to 

access the sugar solution in the centre of each flower. 

5.3.2 Artificial flower design & construction 

The artificial flowers were based on those used by Grüter et al (2011) and did not move in the 

wind. This allowed us to study the direct effects of wind on bee foraging without any flower 

movement (Experiment 1) or, by manually moving the flowers, to separately assess the indirect 
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effect of flower movement without wind (Experiment 2). The petal area was an eight pointed 

4x4 cm radially symmetrical yellow star with a black cross consisting of two 1 mm black lines 

crossing in the centre and acting as a nectar guide (Fig 1). The flowers were laser printed on 

white paper and laminated with plastic. To create a nectary to hold the sucrose solution, the 

final 5 mm of an Anachem 200 µl plastic pipette tip was fitted into a hole cut where the nectar 

guides crossed until the upper edge was flush with the petal surface. The lower hole was 

plugged with Blue Tack © to prevent syrup placed into the nectary from draining away. The 5 

mm nectary depth was chosen as this is well within the 6.6 mm reach of A. mellifera (Balfour 

et al 2013). The petal part of the flower was elevated on a 10 cm stalk made from half a plastic 

drinking straw. 

5.3.3 Arrangement of flower arrays 

Artificial flowers containing 3 µl of 45-50% sucrose solution were set up on a 65 x 75 cm 

plywood base with three different spacings between neighbouring flowers, measured from the 

centres: 5 cm (flowers touching), 10 cm, and 20 cm apart. The number of flowers per 

arrangement was 42 (5 cm), 20 (10 cm) and 8 (20 cm). We tested different flower spacings as 

bees are known to forage in the most efficient way to reduce foraging costs (Pyke 1979 & Pyke 

1978) with flying being more energetically costly than walking (Heinrich 1975). With one 

spacing giving the option of walking between flowers we were also able to test the hypothesis 

that bees are more likely to walk in higher wind speeds. Having different flower spacings also 

mimics a more natural system, with plant species having a diverse range of distances between 

neighbouring flowers (Balfour et al. in prep). 
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Fig 1: Honey bee foraging on an artificial flower as used in this project. In the middle of the 

black cross (acting as a nectar guide) the end of a pipette tip is inserted flush with the face of 

the flower and contains 3μl of 50% sucrose solution.  

 

5.3.4 Training bees to flowers 

Four hives from the adjoining apiary were trained to the artificial flower patch using a glass 

nectar feeder, a small jar filled with nectar solution, placed on a grooved base where worker 

bees could take syrup (Seeley 1989). This was placed outside the porch, next to filled artificial 

training flowers, and removed when enough bees were attracted to the feeder. When bees had 

located and were foraging successfully from the artificial training flowers located outside the 

porch, they were given access to the experimental set up inside for data collection. This was to 

ensure bees being used in the experiment knew how to access the nectar from the artificial 

flowers so that only foraging behaviour, and not learning, was tested. 

5.3.5 Wind generation 

In experiment 1 each foraging bee was exposed to one of four wind speeds as it foraged on one 

of the arrays. As data collection took place in the sheltered porch there was no external wind. 

Three fans (Olypa H-28401 Electrical 16-Inch Oscillating Pedestal Stand fan) were placed 
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opposite the flower array at a height of 1 m, facing the long side of the array to minimise wind 

variation within the patch.  The wind speeds tested were (0) No wind, (1) Wind speed 1.6-1.9 

m/s, (2) Wind speed 1.9-2.4 m/s (3) Wind speed 2.6-3.0 m/s. Wind speed was adjusted by 

moving fans closer or further away to the patch (1.3 m for wind speed 1, 0.9 m for 2, 0.6 m for 

3) and increasing the speed setting on the fan. Wind speeds were measured using a hand-held 

anemometer (HOLDPEAK 866B Digital Anemometer). During the no wind condition a fan 

was placed facing away from the flowers and turned to setting 1 to act as a control for any non-

wind effects of the fans.  

5.3.6 Experiment 2- Indirect effect of wind on bees 

Experiment 2 investigated the indirect effects of wind through flower movement on bee 

foraging using the same artificial flowers and location as in experiment 1. There was no wind 

and only the 10 cm flower spacing was studied. To cause flower movement the table holding 

the flower array was placed on wheels and manually moved backwards and forwards at 

different frequencies; 0, 50, 80 or 110 cycles per minute, with each cycle being forwards and 

backwards to the initial position. The distance at which the flowers moved was fixed at 5 cm 

either side of the table, which resulted in a total of 10 cm travelled per cycle. The speed of 

movement was controlled using a metronome and the distance was controlled using wooden 

blocks fixed to the floor. Two people would move the table in a smooth and controlled manner. 

110 cycles per minute was chosen as the maximum movement rate as above this bees often 

abandoned the foraging attempt and it became harder to control the movement of the table. The 

lowest movement of 50 cycles per minute was chosen as previous work has found this rate of 

flower movement challenging for flying insects (Alcorn et al 2012).  

5.3.7 Foraging trials on individual bees 

The same method was used in both experiments. A test bee that had been trained on the artificial 

flowers entered the experimental area through the door of the porch which was then closed. 

Once the bee landed on its first flower it foraged without interruption for 90 seconds. The bee 

was then caught, weighed, and marked with a paint dot so that previously tested bees could be 

excluded from subsequent trials. The flowers it had foraged on were then removed and replaced 

with refilled flowers to ensure equal volumes of nectar for each trial and so that no odour 

marking was present on the flowers. Flowers were not replenished during the trial to avoid any 

disturbance to the foraging bee and to mimic a natural ecological system where previously 

visited flowers would have little to no nectar present (Stout & Goulson 2002). Corollas were 
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later washed in water, dried and then reused on subsequent days. The order of the trials was 

chosen randomly to give a minimum of 10 complete trials for each wind speed and movement 

rate combination. If a bee did not forage without interruption for the whole 90 seconds it was 

not included in the analysis.  

5.3.8 Video recordings and decoding 

Each trial was recorded using a Sony HD handheld camera (model HDR-CX115, 24 fps) on a 

tripod 1.5 m from the array ensuring all flowers were in shot. By playing back the videos frame 

by frame on a computer the following information was obtained: number of flowers 

successfully visited (the bee landed on an unvisited flower and was seen to take nectar), total 

time spent flying, time flying per flower (total flight time divided by the number of flower 

visits), probing time per flower (time when the bee was actively seen to be taking syrup, 

identified through the pulsing of the abdomen, divided by number of flowers successfully 

visited), search time per flower (the time a bee spent on a flower before she started probing for 

nectar, divided by flower visits) and hesitancy to take off per flower (the time a bee spent on a 

flower once she had finished probing for nectar before taking off divided by successful flower 

visits). The 5 cm spacing (where flowers were touching) was excluded from the search time 

and hesitancy analysis because bees usually walked between flowers making identifying these 

behaviours unquantifiable in a way consistent with other spacings in which bees always flew 

from flower to flower 

5.3.10 Data analysis and statistical methods 

Statistical tests were performed in R 3.3.3 (R Development Core Team, 2009). For all variables 

both linear, quadratic and general linear models with differing family link functions were tested 

for best fit. Models were compared using AIC values and tested against model assumptions. 

Where possible dependent variables were transformed for normality. For experiment 1 search 

time per flower, probing per flower and hesitancy to take off per flower were log transformed 

and successful flowers and flight timer per flower were square root transformed. For 

experiment 2 all variables except probing per flower were log transformed. Transformations 

were decided by examining the distribution of the data and checking for normality once 

transformed.  

Linear regression models were used to test the following behaviours as dependent variables for 

experiment 1: the square root of number of flowers visited to take nectar, the log of search time 

per flower, log of probing per flower and the square root of flight time per flower. A general 
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linear model with a quasipoisson distribution and log function was used to test the total flight 

duration due to the non-normal distribution of the data. A quadratic model was used to test the 

log hesitancy to take off from a flower. Multiple comparisons between the different flower 

arrangements were made using the general linear hypothesis method with the Tukey contrast 

(Hothorn et al 2008) where appropriate.  

For experiment 2 linear regression models were used to test the number of successful flowers 

visited to take nectar, time probing per flower and the log of the remaining behaviours (search 

time per flower, hesitancy to take off, flight time per flower and total flight time).  

Normality was tested using the Shapiro Wilk test. Wind speed and flower arrangement were 

the explanatory variables for Experiment 1 and flower movement frequency for Experiment 2. 

The interaction between the explanatory variables was included in the all models for 

Experiment 1 and the average of each wind speed range was used, these were: 0, 1.75, 2.15 

and 2.80m/s. 

 

5.4 Results 

5.4.1 Experiment 1 

A total of 124 bees were studied, 10 or 11 in each of the 12 combinations (four wind speeds x 

three flower distances). 

5.4.1.1 Number of flowers successfully visited 

The number of flowers successfully visited in 90 s ranged from one to 13 and was negatively 

correlated with wind speed (linear regression, F1,120=13.98, P<0.001, Fig 2A, R2=0.55)  with a 

37% reduction from Wind 0 to 3 (2.8m/s) when averaged over the three flower spacing’s (Wind 

0; X̄=5.45 ±0.45, Wind 3; X̄=3.73 ±0.50). This reduction was proportionately greater, 77%, for 

the greatest flower distance, 20 cm, versus 17% when flowers were touching. Bees visited 

fewer flowers when they were spaced further apart (linear regression, F2,118=54.8, P<0.001, 

R2=0.43). The interaction between flower spacing and wind speed was not significant (linear 

regression, F2,120=0.455, P=0.642). Tukey post hoc tests show that the number of flowers 

visited significantly differed between all three spacing’s (Table 1). 
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5.4.2.2 Search time per flower 

The time taken to start imbibing nectar following landing averaged 3.14 seconds per flower 

and increased with wind speed (Fig 2B), but not significantly (linear regression F1,72=3.79, 

P=0.054). Neither flower spacing (linear regression F1,71=3.18 P=0.079) nor the interaction 

between spacing and wind speed (linear regression F1,70=1.30, P=0.258) had a significant effect 

on search time (Table 1). 

5.4.1.2 Probing per flower 

There was no effect of wind speed or flower spacing (Fig 2C, linear regression F1,122=0.896, 

P=0.442, F2,120=1.26, P=0.288) or their interaction (F2,118=0.530, P=0.590) on the time a bee 

spent probing for nectar. 

5.4.1.3 Hesitancy to take off per flower 

The hesitancy to take off from a flower ranged from 0.05 to 54 seconds and when examined 

per flower was positively correlated with wind speed (quadratic regression, F1,74=11.32 

P<0.001, Fig 2D).  Between W0 and W3 (2.8m/s) there was a 97% increase in hesitancy to 

take-off  combined across all spacings (Wind 0; X̄=7.59(s) ±1.18, Wind 3; X̄= 22.02(s) ±3.12) 

and when examined per flower this increased to 139% (Wind 0: X̄=2.49(s) ± 0.15, Wind 3: 

13.93(s) ± 2.94). Flower spacing and its interaction with wind speed was not significant 

(quadratic regression F1,73 =0.236 P=0.628; F1,73=0.115, P=0.914) (Fig 2D). 

5.4.1.4 Flight time per flower  

Wind speed did not significantly influence flight time per flower (linear regression 

F1,122=0.267, P=0.607). The interaction between wind speed and flower spacing was not 

significant (linear regression F2,120=2.748, P=0.068), flower spacing alone was (linear 

regression F2,118=61.79, P<0.001, R2=0.49). Tukey post hoc tests showed that flight time per 

flower significantly differed between all spacings (Table 2). The spacing where bees spent the 

least amount of time flying per flower was 5 cm, where on average across all wind speeds bees 

only flew for 0.49 s. This is less than half the amount of time bees flew per flower when 

compared to the 20 cm spacing (Fig 2E). When flowers were touching bees would often walk 

between them instead of fly at all wind speeds, and when only testing the 5 cm spacing there 

was no relationship between wind speed and flight time per flower (general linear model, 

F1,40=2.64, P=0.112). 
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5.4.1.5 Total flight duration 

There was a significant negative relationship between wind speed and total flight duration Fig 

2F, (general linear model, F1,122=5.71, P=0.018). Flower spacing alone also affected the total 

flight duration (general linear model, F2,120=64.78, P <0.0001) with Tukey post hoc tests 

showing this differed between 5 cm spacing and the other two spacings, although not between 

10 cm and 20 cm (Table 2). Total flight duration was five times less for the 5 cm spacing than 

20 cm (means of 4.6vs 23.7 s). The interaction between wind speed and flower spacing was 

not significant (general linear model, F2,118=1.07 P=0.347).  

 

Table 1: Tukey post hoc test results for flower spacing comparisons for number of flowers 

successfully visited, flight time per flower and total flight time. 

 

 

 

Behaviour Comparison 

(cm) 

 

Estimate Std. 

Error 

Z value P value 

Number of flowers 

successfully visited  

10--5 -0.621 0.092 -6.729 <0.0001 

20--5 -0.950 0.092 -10.301 <0.0001 

20--10 -0.330 0.093 -3.551 0.001 

Flight per flower (s) 10--5 1.290 0.162 7.948 <0.0001 

20--5 

20--10 

1.701 

0.412 

0.162 

0.163 

10.486 

2.502 

<0.0001 

0.0314 

 

Total flight time (s) 10--5 1.394 0.237 5.891 <0.0001 

20--5 1.634 0.231 7.062 <0.0001 

20--10 0.240 0.143 1.681 0.205 
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Fig 2: Effect of wind speed and flower spacing on honey bee foraging behaviour and 

performances on experimental artificial flowers. The lines show either linear or quadratic 

regression per flower spacing. Error bars show the standard errors and factors in bold are 

significant. For figures A,C,E and F N=124 for B N=74 and D N=77. 
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5.4.2 Experiment 2 

A total of 41 bees were studied, 10 for each 0, 50 and 120 flower array cycles per minute and 

11 for 80. 

5.4.2.1 Number of flowers successfully foraged 

Flower movement had no effect on the number of flowers successfully visited during the 90 

second trials (Fig 3A, linear regression, F1,39=1.70, P=0.20). The lowest was when flowers 

were stationary (mean=6.10 ±0.69), and the highest was at 110 cycles per minute (mean=7.80 

±0.61). 

5.4.2.2 Search time per flower 

As flower movement increased, search time significantly decreased (linear regression, 

F1,39=6.89, P=0.012, Fig 3B). There was a 99% decrease in search time between stationary and 

110 cycles, the highest rate (3.75 ±1.02, 1.26 ±0.18) Between 50 BPM and 110 BPM there was 

a 60% reduction in search time (2.35 ±0.72, 1.26 ±0.18).  

5.4.2.3 Probing per flower 

There was no relationship between probing time per flower and flower movement (linear 

regression, F1,39=0.005, P=0.947, Fig 3C). 

5.4.2.4 Hesitancy to take off per flower 

There was no relationship between hesitancy to take off from a flower and flower movement 

(linear regression F1,39=0.186, P=0.669, Fig 3D). 

5.4.2.5 Flight time per flower 

The flight time per flower significantly increased with flower movement (linear regression 

F1,39=4.654, P=0.037, Fig 3E). Flight per flower was highest at 50 BPM and lowest when 

flowers were stationary (3.41 ±1.49 vs 1.93 ±0.68 s).   

5.4.2.6 Total flight duration 

There was a significant positive relationship between total flight duration and flower movement 

rate (linear regression, F1,39=9.947, P=0.003). There was a 65% increase in total flight duration 

between when flowers were stationary and when they were moving at 110 BPM (12.9 ±8.3 vs 

25.4 ±2.67 s). There was a 54% increase in flight duration between stationary flowers and when 

they were moving at the lowest rate, 50 BPM (Fig 3F). 
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Fig 3: Effect of flower movement on honey bee foraging behaviour and performance on 

experimental artificial flowers. The lines show linear regression and standard error bars and 

values in bold are significant, P<0.05. For all graphs N=41. 
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5.5 Discussion 

Our results show that wind speed, flower spacing and flower movement all influence honey 

bee foraging behaviour. By decoupling the effects of wind and flower movement our results 

suggest that, under the conditions studied, the direct effect of wind on foraging honey bees has 

more of an effect than the movement of the flowers themselves. This is shown by the significant 

reduction in forage rate with increasing wind speeds (Fig 2A) but not with an increasing rate 

of flower movement (Fig 3A). Both wind speed and flower movement were found to influence 

specific honey bee foraging behaviours. Unexpectedly a major effect of increasing wind was 

that honey bees hesitated for significantly longer when taking off from a flower when wind 

speeds were high. This was not the case for increased flower movement. Here, honey bees were 

found to spend significantly less time searching for the nectary once having landed on a flower 

with increased movement (Fig 3B) but did spend longer in flight (Fig 3E, Fig3F). 

5.5.1 Direct effects of wind on honey bee foraging 

The result that bees have a lower foraging rate with increasing wind speeds helps understand 

field based studies which show that in windy patches of flowers fewer bees are seen foraging 

(Pinzauti 1986, Vicens & Bosch 2000, Chapter Seven). Vicens and Bosch (2000) identified 

wind speed as a major environmental factor influencing the number of foraging A. melifera on 

apple trees and found that even when temperature and solar radiation levels were favourable, 

if wind speed was moderate foraging activity would stop. The reduction in the rate of flower 

visits by individual bees means that continuation of foraging might no longer be profitable at 

wind speeds higher than hose tested in this study. This has potentially negative repercussions 

for pollination services. 

The unexpected and novel change in foraging behaviour that appears to have been mainly 

responsible for the reduction in flower visit rates was hesitancy to take off. After they finished 

imbibing nectar, bees took significantly longer to fly away from the flower at higher wind 

speeds (Fig 2D).  There have been studies examining how insects alter flight orientation and 

movement (Ravi et al 2013, Crall et al 2016) with one even examining landing dynamics 

(Chang et al 2016). However, none have quantified difficulties in take-off and how this may 

influence overall foraging performance in honey bees. When initiating take off, flying animals 
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assume the correct body position to produce the most efficient wing angle required for flight 

(Jakobi et al 2018). This positioning will depend on the environmental conditions being 

experienced and as wind speed increases so does air turbulence (Ren et al 2018), making 

achieving the ideal orientation more difficult. Reduced ability to take off in higher wind speeds 

has been examined in other insect species (Haine 1955, Isaacs et al 1999) and may be due to 

this increase in air turbulence. In nature the wind speed varies and occurs in gusts. Possibly 

honey bees were waiting for a pause in the wind to take off, a behaviour observed in the 

parasitic wasp Diachasmimorpha longicaudata where individuals were seen to wait for a break 

in the wind before initiating flight and would increase flight activity in breaks between higher 

wind speeds (Messing et al 1997). Increased take off hesitancy may also be due to more rapid 

decline in body temperature with greater wind cooling. To initiate flight insects must attain a 

species -specific body temperature threshold which will then allow sufficiently rapid flight 

muscle contraction (Pasek 1988, Heinrich 1993). Even a small increase in wind speed can result 

in a significant lowering of body temperature, with the greatest cooling in wind speeds up to 

3m/s (Church 1960 & Digby 1955). The increased hesitancy to take off seen in experiment 1 

may have been due to bees needing longer to warm up the flight muscles required to take off. 

This increase in take-off time due to a decrease in body temperature has been seen in previous 

work examining sucrose concentration and body temperature in honey bees. When sucrose 

solution was less than 30% thoracic body temperatures would drop below that required for 

flight whilst bees were imbibing on the feeders, resulting in increased take off times of up to 

3x compared to concentrations of 40% and above (Waddington 1990). The average ambient 

temperature throughout the study was 14°C, warm enough for flight however low enough to 

have an impact on honey bee thermoregulation (Esch 1988). If the increase in hesitancy seen 

in this project was due to thermal regulation, the same result might not have occurred in warmer 

ambient temperatures. Further experiments are needed to test these hypotheses to explain 

increased take off hesitancy with increased wind speed.  

5.5.2 Indirect effects of wind on honey bee foraging through flower movement 

Flower movement independent of wind speed had no impact on foraging performance, as bees 

visited flowers at a similar rate when flowers were moving or not. Field work on natural flowers 

found a similar result (Warren and James 2008). When stalks were manipulated to alter flower 

movement in the wind, flowers which exhibited moderate mobility had the highest visit rates, 

indicating flower movement is not necessarily a negative factor for flower visiting insects. 

Insects were also found to spend less time on flowers that moved more (Warren and James 
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2008).  This mirrors our results. Honey bees were found to spend significantly less time 

searching for the nectary once having landed on a flower with increased rate of movement, 

resulting in less time spent per flower. Bee target detection is improved with the addition of 

motion and the use of colour cues (Kapustjansky et al 2010) perhaps resulting in improved 

landing accuracy, reducing the time required when on the flower to reach the nectary. Perhaps 

when flowers are moving it makes them easier to see and therefore easier for bees to land closer 

to the target (the nectary). If higher movement rates were examined this effect may change as 

bees might struggle more to land, missing the target. 

Although honey bees spent less time on the surface of flowers with greater flower movement, 

the overall rate of flower visiting did not increase because flight times between flowers 

increased (Fig 3D). Bees may be taking longer to land when flowers are moving faster to 

maintain this landing accuracy. Foraging bumblebees utilise different strategies depending on 

the individual, some favouring accuracy over speed (Chittka et al 2003). When flower 

movement is increased bees may trade off costs and benefits of different parts of the flower 

handling sequence, such as longer flight time but shorter time spent searching for the nectary 

once on the flower. 

The most important behavioural component influencing rate of flower visiting when wind was 

present was the increased hesitancy to take off. However, when flowers were moving this was 

not affected (Fig 3D). The absence of direct wind may make take off easier, or if bees’ body 

temperatures decrease faster in higher winds they may not require the same time to take off in 

its absence.  

Our study only examined honey bees foraging on artificial flowers. Future work could examine 

the same behavioural traits but on natural flowers and study other species to determine if the 

same effects are seen and to also identify if individual insects are better at adjusting to foraging 

in wind than others. Work on the artificial flowers could be continued by combining wind 

speed and flower movement to determine how the combination can influence honey bee 

foraging behaviour, as it would be rare for a bee to experience flower movement without wind. 

The wind speeds examined in this study are lower than the UK average (Statista 2019). 

However meteorological wind speeds are determined at a height of 10m in unsheltered 

locations (Met office 2019). A foraging honey bee would be amongst vegetation. Being close 

to the ground and sheltered would result in slower wind speeds (Crall et al 2017) more like the 

ones used in this study than those reported for the rest of the UK.  
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Bees provide a major ecosystem service through crop pollination, with honey bees accounting 

for approximately half of this service (Kleijn et al 2015). It is predicted that through climate 

change there will be a global increase in wind speed (Hosking et al 2018). This increase in 

windy weather could impact bees’ pollination services in the future. Our study found an 

increase of just 2.75 m/s resulted in a 37% decrease in flower visits. With climate models 

predicting wind speed to increase by 1-5 m/s over the next 100 years in the UK (Robinson et 

al 2017) wind could impose a major reduction in pollination services (Tuell & Isaacs 2010), 

not just in honey bee dominated crops but potentially those pollinated by other species not 

examined in this investigation. This reduction in pollination efficiency is not only detrimental 

to pollination services but also for the bees themselves, as fewer flower visits per flight results 

in less food collected. Although the relationship between food influx into honey bee colonies 

and wind has not been directly examined, previous work has highlighted a reduction in foraging 

activity due to other poor weather conditions (rain and low temperatures) results in less food 

for the colony and a decline in brood production (Riessberger & Crailsheim 1997).  

Bees and the threats they face (Potts et al 2010, Goulson et al 2015) are prevalent in the news 

today, especially in relation to climate change (Kharouba et al 2018,). Our study shows that an 

everyday weather phenomenon, the wind, can have a considerable effect on bee foraging. 

Although little can be done to control or stop the wind, efforts can be made to minimise its 

impact on pollinators. Placing hives in sheltered locations (Hunter 2015) and using natural 

wind breaks (Pinzauti 1986) are just some examples to help reduce the impact of wind on 

foraging honey bees. With climate models predicting increases in wind speeds, understanding 

how we can help pollinators in a changing climate is becoming ever more pressing.  

 

 

 

 

 

 

 



99 
 

Chapter Six: Wind slows play: Increasing wind speed reduces flower visiting rate 

in honeybees   

 

6.1 Abstract 

Wind is an understudied environmental variable capable of having profound impacts upon the 

foraging behaviour of flying organisms. We investigated the effects of wind and temperature 

on Apis mellifera foraging on two plant varieties, Lavandula x intermedia ‘Grosso’ and 

Origanum vulgare to determine how wind influences foraging behaviour and if responses 

differ between the plant varieties. Fans and an artificial wind break were used to generate 

wind speeds from 0-3.5m/s with the following behaviours examined in a minute of foraging: 

number of flower visits, handling time per flower, inter-flower flight duration and proportion 

of flowers walked to. Flower movement was quantified using video footage and imageJ 

tracking software. Bees visited significantly fewer flowers with increasing wind speed on 

both plant varieties, with an average decrease of 38% between the lowest and highest 

windspeeds. However, the reduction was significantly steeper when foraging on O. vulgare. 

The reduction was due to an increase in handling time on both varieties, with inter-flower 

flight duration unaffected. Temperature had no effect on flower visit rate for either plant 

variety. The only behaviour influenced by flower movement was handling time, which was 

found to increase with flower movement. However, this increase did not result in fewer 

flower visits. Our results support previous work on artificial flowers which determined that 

the direct effect of wind on the bee influences foraging efficiency and behaviour more than 

the indirect effect of flower movement.  
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6.2 Introduction 

Animals face many challenges when foraging, including the effects of variation in 

their immediate environment (Porter and Tschinkel 1987, Soulsbury et al 2008), which can 

cause dramatic shifts in behaviour. For example, bald eagles do not forage in high winds and 

rain (Elliott et al 2006) and Atlantic salmon will switch from foraging during the day to the 

night in response to cold temperatures (Fraser et al 1995).  

Wind is an important environmental factor that is capable of influencing foraging behaviour, 

both positively and negatively. Shearwaters take advantage of strong winds to travel to 

feeding locations further away from the nest (De Pascalis et al 2020) whereas high winds 

cause leaf cutter ants to collect smaller sized pieces of vegetation when foraging, reducing the 

amount of food a colony is able to collect (Alma et al 2017). Wind poses significant 

challenges for many flying animals, especially insects, who regularly interact with the 

unsteady airflow and turbulence created by wind (Combes and Dudley 2009) and whose 

small body size, resulting in a larger surface area to volume ratio, will make increasing wind 

speed a greater challenge than for birds, due to the increased effects of air resistance (Hunter 

2007). Wind has been shown to affect the foraging activity of several insect species. For 

example, the number of honeybees foraging on watermelon and apple trees decreased in 

increasing wind speed (Pinzauti 1986, Vicens and Bosch 2000), and bumblebees flew longer 

distances downwind than upwind on windy days (Comba 1999). When flying in wind vs still 

air, energy expenditure for euglossine bees increased by 30% due to increased drag resulting 

from the lowering of the hindlegs for stability (Combes and Dudley 2009). For honey bees 

foraging on artificial flowers, increasing wind speed was found to cause an increase in take-

off hesitation (Hennessy et al 2020).  

The honey bee, Apis mellifera, has been estimated to make between 250 and 1446 flower 

visits per trip (Ribbands 1949, Goodwin et al 2011), many of these requiring a bee to fly 

between individual flowers or even plants. A. mellifera use a combination of passive and 

active changes to body positioning in response to wind, and alter wing beat frequency to 

stabilise body positioning to produce efficient flight (Vance et al 2013, Ravi et al 2016, Crall 

et al 2017). However, it is not only the flight between flowers that can be influenced by wind. 

Flowers themselves sway in windy conditions, potentially making take-off and landing 

harder. A recent experimental study of A. mellifera foraging on artificial flowers in increasing 

winds found that a 2.75m/s increase in wind speed caused a 37% reduction in the mean 
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number of flowers visited when flowers were kept stationary. However, when the artificial 

flowers were moved under zero wind conditions, there was no change in flower visiting rates 

(Hennessy et al 2020). However, this study did not expose insects to the combined effects of 

wind and flower movement.  

Plant species themselves have adaptations to aid pollinators foraging in windy conditions. 

Some have flowers with conical shaped cells on their surface that assist flower handling 

through improved grip (Whitney et al 2009), which is potentially beneficial to pollinators in 

windy conditions when the flower itself is moving (Alcorn et al 2012). However, flower 

movement may also be beneficial to plants. Warren and James (2008) found that flowers 

which had moderate mobility attracted more pollinators than those which were stationary. 

(Wolf & Zerrahn-Wolf 1937) found similar results, with A. mellifera choosing to forage on 

moving versus immobile artificial flowers. Flowers exhibit a wide range of morphologies 

which are expected to interact differently with wind and pollinators. For example, larger 

flowers may be easier to see and land on and flowers placed on long inflorescences are likely 

to sway more in windier conditions (Warren and James 2008). Flower morphology is capable 

of influencing handling time in the absence of wind (Balfour et al 2013). However, no studies 

have examined differences in foraging efficiency on different plant species in the presence of 

wind.  

The aim of this project was to investigate the effects of wind speed, temperature and flower 

movement on A. mellifera foraging behaviour on two different plants. We studied free flying 

honey bees in the laboratory garden as they foraged on hybrid lavender (Lavandula x 

intermedia ‘Grosso’) and wild marjoram (Origanum vulgare). 

 

6.3 Methods 

6.3.1 Flower patches and wind speeds 

We studied free flying Apis mellifera foraging on Lavandula x intermedia ‘Grosso’ 

(lavender) and Origanum vulgare (marjoram) plants in bloom on the campus of the 

University of Sussex. Data collection took place on 6 days between 5 and 27 July, 2018. Two 

160x60cm patches of each plant variety within a larger bed of that variety were marked out 

using bamboo canes, each located in the same garden and approximately 6m apart. We used a 

combination of three fans (Olypa H-28401 Electrical 16-Inch Oscillating Pedestal Stand fan) 
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and a wind break made from bamboo canes supporting plastic mesh to cause winds ranging 

from 0-3.5 m/s. The fans were placed beside the patch and arranged in such a way as to 

ensure near equal windspeed throughout the patch at any particular time. To determine the 

mean wind speed for each bee’s trial a digital omnidirectional hand held anemometer 

(Skywatch Eole, sensitivity 0.1m/s) was placed at the centre of each patch and videoed for 

the entire minute of a trial. The video was played back on a computer and the wind speed was 

noted every 10 seconds. The average was used as the wind speed experienced in that trial. By 

adjusting the fans, we generated a random sequence of wind speeds in three categories: 0-1.5, 

1.5-2.5, 2.5-3.5 m/s. These categories were chosen in part as they were the ranges of wind 

speed obtained by using the available fan settings. In addition, they were realistic in relation 

to common wind speeds in the area, but which were not too high to prevent bee activity 

(Khurana & Sane 2016). Temperature was recorded from the centre of the patch at the end of 

each bee’s foraging trial using a digital thermometer (KTJTM) and was recorded to the nearest 

degree. 

6.3.2 Observing foraging bees in patches 

A trial consisted of observing, by eye, a foraging bee that was in the patch for one minute, 

recording the following behaviours:  

I) Number of flower visits: Number of flowers where a bee landed and was seen to 

probe to take nectar. If multiple flowers were visited on the same inflorescence 

they were treated as separate flower visits.  

II) Mean flower handing time: The total time spent on flowers divided by the number 

of flower visits within the minute of observation. This included time when bees 

walked between flowers, but did not include when they were in flight, and was 

recorded by stopwatch. 

III) Mean duration of inter-flower flights: The total time spent flying between flowers 

divided by the number of individual flights. Time spent flying was also recorded 

by stopwatch. 

IV) Proportion of flowers walked to: Number of times a bee walked to a flower 

divided by total flower visits via walking plus flying. 

After one minute, the bee was caught and marked with a paint pen to ensure that previously 

tested bees were not retested. All time recordings were measured to the nearest 0.01s. 
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6.3.3 Flower movement 

To quantify flower movement in increasing wind speeds, lavender and marjoram flowers 

were videoed with a Sony camera (HDR-CX115) on a tripod at average flower height and 2m 

away from a reference point within the patch, which was marked with a bamboo cane (Fig 1). 

An anemometer was placed within the patch to record wind speed and a fan was placed 

diagonally facing the flowers. Videos, 24 frames per second, were made at a range of wind 

speeds (0-2.3m/s) and were imported into the software imageJ and individual flowers were 

chosen at random from the reference point and their location tracked in each frame for 100 

frames (4 seconds). For each frame the wind speed was also recorded. The average wind 

speed and flower movement (cm/s) were calculated for 30 flowers per plant variety. Because 

movement was observable in 2-dimensions only, longitudinal movement was not 

quantifiable. This method has been used in previous work assessing leaf movement (Kothari 

and Burnett 2017).  

 

Fig 1: A top down view of the experimental set up for recording the flower movement of 

lavender and marjoram plants. The camera was always placed 2m from a reference point 

within the patch of flowers and the anemometer was placed immediately in front of the 

flowers being recorded to ensure the wind speed those specific flowers were experiencing 

was measured. Figure is not to scale. 
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6.3.4 Statistical analysis 

Statistical tests were performed in R 3.3.3 (R Development Core Team 2009). Linear mixed 

effects models were run for each of the observed behaviours with flower patch included as a 

random effect. Models were compared using AIC values and tested against model 

assumptions using the DHARMa package (Hartig 2020). The predictor variables in each 

model included average wind speed, temperature, plant variety and average flower 

movement. Interactions between plant variety and both wind speed and temperature were also 

included. Average flower movement for each plant variety was calculated from three wind 

speed categories, 0-1m/s, 1.1-2m/s, and >2m/s. Due to multicollinearity between average 

wind speed and average flower movement all predictor variables were standardised through 

centering. This was achieved by subtracting each predictor variable’s mean from all 

observations on that variable, meaning the new mean for each predictor variable is zero. 

(Iacobucci et al 2015).  

subtracting a variable’s mean from all observations on that variable in the 

dataset such that the variable’s new mean is zero Handling time and duration of 

inter-flower flight were log transformed to obtain normality and a generalised linear mixed 

effects model with a binomial distribution was used when analysing proportion of flowers 

walked to. A three-way interaction between wind speed, temperature and plant variety was 

tested but was not significant for any behaviour and was therefore removed from the 

analyses. The interaction between wind speed and temperature was also non-significant for 

either plant species and was therefore removed. The interaction between average flower 

movement and wind speed was tested. However, it was never significant and resulted in high 

variance of inflations factors (VIF >10) so was therefore removed from models. A 

Spearman’s rank correlation was run on average wind speed and temperature to determine if 

the two variables were correlated. The final model for each of the behaviours was:  

Behaviour~ Average wind speed*plant variety+ temperature*plant variety +Average flower 

movement+(1| patch) 

To test the influence of wind speed on flower movement, a linear regression was run with 

average flower movement as the dependent variable and average wind speed and plant 

variety as the predictor variables.  
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6.4 Results 

We studied a total of 350 free flying A. mellifera, 190 on lavender and 160 on marjoram. 

Wind speeds ranged from 0-3.5m/s and temperatures from 19 to 28°C. Temperature and wind 

speed were not correlated (rs= -0.023, P=0.670). 

6.4.1 Number of flower visits 

The number of flower visits for A. mellifera foraging on both lavender and marjoram 

significantly reduced with increasing wind speed (F1,344=38.51, P<0.001, Fig 2a). There was 

a 36% decrease from lowest (0-1 m/s) to the highest (2.5 -3.5m/s) wind speeds for lavender, 

and a 41% decrease on marjoram (Table 1). Flower movement has no effect on number of 

flower visits (F1,344=2.68, P=0.102). Temperature had no effect on either lavender or 

marjoram (F1,344=0.29, P=0.585, Fig 2b).  The interaction between plant variety and wind 

speed was significant (F1,344=12.75, P<0.001) with a greater decrease in flower visits with 

increasing wind speed on marjoram (Table 2). Overall, across wind speeds, bees visited 

significantly fewer lavender than marjoram flowers (F1,344=23.26, P=0.034). The interaction 

between plant variety and temperature was not significant (F1,344=0.04, P=0.847).  

6.4.2 Mean flower handling time 

The mean flower handling time significantly increased with wind speed when A. mellifera 

were foraging on either flower variety (F1,344=28.87, P<0.001, Fig 2c). Between low and high 

wind speeds when foraging on lavender, handling time increased by 35%, from 2.68±0.15s to 

3.82±0.16s. For marjoram, handling time increased by 29%, from 1.80 ± 0.12s to 2.40 ±0.20s 

at the highest wind speeds.  

There was a significant difference in handling time between plant varieties independent of 

wind speed (F1,344=22.55, P=0.040) with A. mellifera taking longer on average per flower on 

lavender than marjoram (3.35s ± 0.08s vs 2.07s ± 0.01). Flower movement significantly 

increased handling time on both lavender and marjoram flowers (F1,344 =4.02, P=0.046, Fig 

3). However, this had less of an effect on handling time compared to wind speed for both 

plants (Table 2). Temperature alone and both the two-way interactions between plant variety 

and wind speed and plant variety and temperature were not significant (temperature; 

F1,344=0.002, P=0.968, plant species:*wind speed; F1,344=2.17, P=0.141, plant 

species*temperature; F1,344=0.489, P=0.484, Table 2, Fig 2d). 

6.4.3 Mean duration of inter-flower flight 



106 
 

Perhaps surprisingly, wind speed had no effect on the duration of inter-flower flights on 

either plant variety (F1,344=1.22, P=0.270, Fig 2e, Table 1). Flower movement was also not 

significant (F1,344=0.55, P=0.458) The interaction between temperature and plant variety was 

significant (F1,344=6.51, P=0.011). Temperature alone had a significant effect when A. 

mellifera were foraging on lavender (t=3.05, P=0.003), with mean flight duration increasing 

with temperature, but had no effect when foraging on marjoram (t=-0.50, P=0.617, Fig 2f). 

The interaction between wind speed and plant variety was not significant (F1,344=0.955, 

P=0.329, Table 2).  

6.4.4 Proportion of flowers walked to 

Increasing wind speed had no effect on proportion of flowers walked to on either lavender or 

marjoram (lavender; Z=0.957, P=0.957, marjoram; Z=-1.32, P=0.186, Fig 2g). A. mellifera 

walked to a significantly smaller proportion of flowers when foraging on lavender compared 

to marjoram independent of wind speed and temperature (Z=3.49, P<0.001). No other 

variables significantly influenced proportion of flowers walked to when A. mellifera were 

foraging on either marjoram or lavender (Table 2). 

 

Table 1: The mean responses of all studied foraging behaviours on both plant species at the 

different levels of wind speed. Low wind was classed as speeds between 0-1m/s with high 

classed as 2.5-3.5m/s. Standard errors are given along with the number of honey bees (N) in 

each category for each plant variety. 

 

 

 Lavandula x intermedia ‘Grosso’ Origanum vulgare 

Behaviour Low wind speeds 

0-1m/s 
N=59 

High wind 

speeds 
2.5-3.5m/s 

N=33 

Low wind speeds 

0-1m/s 

N=66 

High wind 

speeds 
2.5-3.5m/s 

N=26 

Number of flower 

visits 

20.53±0.94 14.3 ±1.65 

 

32.03 ±1.14 

 

24.1 ±1.77 

 

Mean flower 

handling time (s) 

2.68 ±0.15 3.82 ±0.20 1.80 ±0.12 

 

2.40 ±0.20 

Mean duration of 

inter-flower flight 
(s) 

1.14 ±0.12 1.19 ±0.10 0.72 ±0.09 0.62 ±0.11 

Proportion of 

flowers walked to 

0.68 ±0.02 0.55 ±0.03 0.80 ±0.02 0.80 ±0.04 
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Fig 2: Bee foraging behaviours of A. mellifera workers foraging for one minute on either 

Lavandula x intermedia ‘Grosso’ or Origanum vulgare. (a-b) Number of flower visits in 

relation to (a): wind speed; (b): temperature; (c-d) mean flower handling time in relation to 

(c): wind speed and (d): temperature, (e-f)  the mean duration  of flight bout in relation to 

wind speed and (f): temperature, (g-h) proportion of flowers walked to in relation to (g): wind 

speed and (h): temperature.  Linear regression lines are shown for a-f and a binomial 

regression line is shown for g and h. R2 values are given for the behaviours tested with linear 

regression models. N=190 for lavender and N=160 for marjoram for all behaviours. 
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Fig 3: Average flower handling time for Apis mellifera in relation to average flower 

movement when foraging on either Lavandula x intermedia ‘Grosso’ (N=190) and Origanum 

vulgare (N=160). 
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Table 2: Final model summary outputs of LMMs, linear mixed effects models for all tested 

behaviours. The effects of wind speed, plant variety, temperature and flower movement and 

the interactions between temperature and plant variety and wind speed and plant variety on 

number of flower visits, mean handling time (log), mean duration of inter flower flight (log) 

and proportion of flowers walked to (where a GLMM with a binomial error structure was run 

and the Z value is given). Bold indicates a significant effect on the response variable. The 

results for both Lavandua x intermedia and Origanum vulgare are shown. 

 
Flower 

visits 

 Lavandula  x intermedia ‘Grosso’  Origanum vulgare 
Fixed effects Estimate SE t P Estimate SE t P 

Intercept 16.22    35.42    

Average wind 

speed 

-1.43 0.67 -2.14 0.033 -3.76 0.33 -11.28 <0.001 

Plant variety 11.43 2.37 4.82 0.034 -11.43 2.37 -4.82 0.034 

Temperature -0.04 0.15 -0.24 0.808 -0.077 0.15 -0.54 0.592 

Average wind 

speed * variety 

-2.33 0.65 -3.57 <0.001 2.33 0.65 3.57 <0.001 

Temperature* 
plant variety 

-0.40 0.21 -0.19 0.846 0.040 0.21 0.19 0.846 

Flower movement -0.41 0.25 -1.63 0.102 -0.41 0.25 -1.64 0.102 

 Mean 

handling 

time 

Intercept 1.21    0.73    

Average wind 

speed 
0.08 0.03 2.63 0.009 0.13 0.02 8.19 <0.001 

Plant variety -0.47 0.10 -4.75 0.040 0.47 0.10 4.75 0.040 

Temperature -0.00 0.01 -0.51 0.610 0.00 0.00 0.48 0.633 

Average wind 
speed *plant 
variety 

0.05 0.03 1.47 0.141 0.05 0.03 -1.47 0.141 

Temperature*plan
t variety 

0.01 0.01 0.70 0.485 -0.01 0.01 -0.70 0.485 

Flower 

movement 

0.02 0.01 2.00 0.46 0.02 0.11 2.00 0.046 

Mean 

duration 

of inter 

flower 

flight  
 

Intercept 0.77    0.49    

Average wind 
speed 

0.05 0.04 1.16 0.246 0.01 0.02 0.43 0.665 

Plant variety -0.28 0.11 -2.40 0.114 0.28 0.11 2.40 0.114 

Temperature 0.03 0.01 3.05 0.003 -0.005 0.01 -0.50 0.617 

Average wind 
speed *plant 
variety 

-0.04 0.04 -0.98 0.329 0.04 0.04 0.98 0.329 

Temperature* 

plant variety 

-0.03 0.01 -2.55 0.011 0.03 0.01 2.55 0.011 

Flower movement -0.01 0.02 -0.74 0.458 -0.01 0.02 -0.74 0.458 

    Z    Z  

Prop. 

flowers 

walked to 
 

Intercept 0.63    2.06 1.36   

Average wind 

speed 

-0.01 0.09 -0.05 0.957 -0.08 -

0.05 

-1.32 0.186 

Plant variety 0.96 0.27 3.49 <0.001 -0.96 0.27 -3.49 <0.001 

Temperature -0.01 0.02 -0.26 0.796 -0.02 0.02 -1.35 0.177 

Average wind 
speed *plant 
variety  

0.05 0.05 0.96 0.337 0.05 0.08 0.59 0.558 

Temperature* 
plant variety 

-0.02 0.03 -0.74 0.458 0.02 0.03 0.72 0.471 

Flower movement -0.05 0.03 -1.53 0.126 -0.05 0.03 -1.53 0.126 
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6.4.5 Flower movement 

Flower movement significantly increased with wind speed for both plant varieties (linear 

regression, F1,58=46.52, P<0.001, Fig 4). The interaction between variety and wind speed was 

also significant (F1,58=5.25, P=0.026), with lavender flowers having a greater increase in 

average movement with wind speed (interaction coefficient estimate: 2.15).  Movement also 

differed significantly between varieties (F1,58=14.70, P<0.001). At the lowest wind speeds (0-

1m/s) lavender flowers had an average speed of 3.18 ±0.14 cm/s and marjoram of 3.79 ±0.14 

cm/s. At higher wind speeds (1.5-2.3m/s) lavender flower movement increased by 100%, to 

9.51 ±0.12 cm/s and for marjoram the increase was 40%, to 5.69 ±0.09 cm/s.  

 

 

Fig 4: Mean speed (cm/s) of Lavandula x intermedia ‘Grosso’ and Origanum vulgare flowers 

in relation to increasing wind speed. Each point is the average flower movement and wind 

speed taken from 100 frames (4 seconds) of video analysed using ImageJ manual tracking 

plugin. Regression lines are shown. 

6.5 Discussion 

The results show that A. mellifera foraging behaviour and efficiency is greatly 

influenced by wind on both lavender and marjoram flowers. In particular, the number of 

flower visits per minute, which is a key measure of foraging performance, significantly 
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decreased with increasing wind speed, with a greater decrease when bees were foraging on 

marjoram (Fig 1a). This decrease in number of flower visits was due to an increase in flower 

handling time on both flower varieties (Fig 1b). Flower movement did not influence flower 

visit rate. However, it did significantly increase handling time (Fig 3).  

There was a significant difference between plant varieties in the reduction in flower visits 

with increasing wind speed, with a greater reduction on marjoram. There was also a 

difference in flower movement speeds in relation to wind between the two plant varieties. 

However, the difference in flower visits does not appear to be due to flower movement, with 

both flower movement alone and its interaction with wind speed not significantly influencing 

the number of flower visits. This agrees with research on honey bees foraging on artificial 

flowers, where wind speed alone caused a reduction in flower visits, but flower movement 

alone did not (Hennessy et al 2020).  

Although flower movement did not influence flower visit rate, it did cause an increase in 

average flower handling time. However, this increase was not large enough to reduce visit 

rate independently of wind speed. Our results cannot indicate what stage of the flower 

handling process is being influenced by flower movement, as it encompassed all the 

behaviours when a bee was on a flower. These include walking between flowers, probing for 

nectar and take off hesitancy. However, previous work on Bombus terrestris found that 

foraging bees will choose flowers with better grip (those that possess conical shaped cells on 

their petals), versus those with smoother petals when flowers were moving, due to the 

increased difficulties of handling flowers (Alcorn et al 2012). Lavender flowers moved 

significantly more with increasing wind speed compared to marjoram flowers, perhaps due to 

flowers being on longer stalks (Warren and James 2008). The fact that flower visit rate 

reduced significantly more on the less mobile marjoram flowers, and that flower movement 

was not found to reduce visit rate, suggests perhaps a combination of differences in flower 

morphology and wind speed are responsible for flower visit reduction seen in increasing 

winds.  

Slight caution should be taken when interpreting the interaction between flower movement 

and wind speed. Flower movement and wind speed are expected to be highly correlated, 

meaning that on slow moving flowers bees will mainly be subject to low wind speeds, and 

vice versa. To fully understand the interaction between wind speed and flower movement and 
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its effects on honeybee foraging behaviour, manipulation experiments may be required to 

separate the two effects.  

Flower handling time increased with wind speed on both plant varieties. This result is 

consistent with previous work (Hennessy et al 2020) which found that A. mellifera foraging 

on artificial flowers visited fewer flowers per minute with increasing wind speeds due to an 

increase in hesitancy to take off from a flower at the end of the visit. In the current study, 

hesitancy was not directly quantified, but would have been included in the flower handling 

time. Although we cannot be sure, it is likely that increased take off hesitancy occurred in this 

study, with bees perhaps spending longer readying themselves for take-off at greater wind 

speeds. In cluttered environments, such as amongst vegetation, the air is often unstable, with 

the presence of vorticial wakes, such as von Karman streets, thereby presenting flight control 

challenges for insects (Jakobi et al 2018, Barnett et al 2020). The position of the body prior to 

take-off is important, as certain body angles affect stability (Vance 2013). Obtaining an 

optimal position before take-off could reduce the in- flight requirements for stability, but with 

a longer time cost when on the flower to reach the correct body position. Previous work on 

cereal aphids found that individuals increase their take off hesitancy in increasing wind 

speeds (Walters et al 1984) and the damselfly Enallagma doubledayi was found to orientate 

itself towards the wind when taking off (Mason 2017). Both these studies show that when 

wind is present there are adaptive shifts in behaviour during the take-off phase that are likely 

increasing take-off hesitancy.  

Perhaps surprisingly, both wind speed and flower movement had no effect on inter-flower 

flight duration. In previous studies wind has been found to influence various aspects of both 

bee flight mechanics and behaviour to compensate for the effects of wind (Riley et al 1999, 

Combes and Dudely 2009, Crall et al 2015, Crall et al 2017). For example, when landing in 

still air bumblebees will decelerate their flight speed on approach to a flower. However, when 

landing in wind their flight speed does not reduce on approach, resulting in a ‘crash landing’ 

(Chang et al 2016). Burnett et al (2020) found that when navigating moving obstacles in still 

air, A. mellifera had slower flight speeds compared to when navigating obstacles in 

headwinds or tailwinds. These alterations to flight speed when flying in wind may help 

explain why flight bout duration was unaffected, as bees perhaps increase their flight speeds 

in response to increasing wind speed.  
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Flower movement also had no effect on flight-bout duration. In previous studies examining 

flower movement, moderately wavy flowers were found to attract more pollinators, including 

honeybees, versus stationary or highly mobile flowers (Warren and James 2008). This 

increased attraction may be due to moving flowers being easier for insects to detect visually. 

Bees are unable to use stereoscopic vision, and instead rely on motion parallax for depth 

perception (Lehrer 1998). This means that moving objects against a stationary background 

are easier to see than still objects (Alcorn et al 2012, Kapustjansky et al 2010). In field 

experiments A. mellifera chose moving versus stationary flowers (Wolf & Zerrahn-Wolf 

1937) and are capable of landing accurately on moving objects by correcting for angular 

deviations on approach (Zhang et al 1990, Burnett et al 2020).  We hypothesise that perhaps 

bees increase their flight speed in response to increasing wind, and although this increase in 

speed may make controlled landings more difficult (Chang et al 2016),  flower movement 

helps negate these difficulties by increasing the ease of seeing and landing on a flower 

(Kapustjansky et al 2010). These factors combined may result in no change in flight duration 

when foraging in increasing wind speeds.   

The proportion of flowers bees walked to was also unaffected both by wind speed and flower 

movement. A. mellifera have highly complex tarsi, giving them a strong grip even on smooth 

surfaces (Brauer 2017). Perhaps this strong grip ensured that neither flower movement nor 

wind speed influenced bees’ abilities to walk between flowers. Future studies could assess the 

impact of wind on bees’ abilities to travel between flowers further by using slow motion 

videos of foraging bees, breaking down the stages of flight to determine how inter-flower 

flight, landing and walking between flowers are influenced by both wind and flower 

movement. Future work could also assess the potential increase in metabolic costs associated 

with foraging in high winds, and the implications this may have on foraging behaviour.  

The only behaviour which temperature was found to influence was the duration of inter 

flower flight, with the effect dependent on plant variety. Flight duration increased with 

increasing temperature when honeybees were foraging on lavender but there was no 

significant correlation when foraging on marjoram. Why this difference exists we cannot 

explain with our data. There are several variables not measured in this study that vary with 

temperature, and these may influence honeybee flight duration. For example, nectar 

availability and its distribution throughout a patch can be indirectly influenced by 

temperature through increased competition, due to higher numbers of competitor foragers in 

better weather conditions (Comba 1999). Although not directly measured in this study, there 
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were other species also foraging on the patches being observed. Indirect competition from 

these other species, especially bumblebees, may cause foraging honeybees to have to fly for 

longer to locate a flower containing nectar (Balfour et al 2015), with increasing temperatures 

perhaps increasing the potential for competition. Another variable not accounted for in this 

study was floral bloom per patch, which is capable of influencing flower visit rate 

(Klinkhamer et al 1989, Ohashi and Yahara 2002). However, data was collected on two 

patches for each plant variety of the same size across the same period, which would reduce 

any differences in the number of flower units present per patch. 

This study has highlighted that even on plant varieties in the same family, A. mellifera 

foraging behaviour in response to wind, a highly variable and relevant environmental factor, 

can be different and that wind can have major and complex effects on honeybee foraging 

behaviour and performance. Increasing wind is capable of significantly reducing foraging 

efficiency, with the rate of reduction influenced by the flower species. This reduction appears 

to be primarily due to the effects of wind on the bee, and less so by the effects of the wind on 

the movement of flowers. However, the exact reason for the reduction is unknown. Future 

work could examine in more detail the entire inter-flower flight process and examine 

separately take-off, flight between flowers and landing, identifying which behaviour is being 

most influenced by wind. Also, by studying a greater variety of plant species there can be a 

better understanding of why differences in foraging response is seen between species. 

Although bees foraging on flowers is one of the most easily seen of all behaviours and wind 

is an ever-changing environmental factor that bees deal with all the time, the interaction 

between bees, flowers, and the wind is surprisingly complex.  
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Chapter Seven: Blowin’ in the wind: Honeybee but not bumblebee flower visiting 

rate is significantly reduced with increasing wind when foraging on lavender 

(Lavandula spp.) 

 

7.1 Abstract 

Wind is an understudied environmental variable factor that affects bee behaviour. We 

examined the effects of increasing wind speed on Apis mellifera and Bombus species foraging 

behaviour on lavender (Lavandula x intermedia ‘Grosso’) and compared differences in 

species’ response. Fans and an artificial wind break were used to generate wind speeds of 0 to 

3.5ms-2 with the following behaviours examined in one minute foraging trials on individual 

bees: number of flower visits, handling time per flower, inter-flower flight duration and 

proportion of flowers walked to. The number of Bombus foragers and the time individual 

foragers spent within a patch with and without wind were determined. A. mellifera flower 

visits significantly decreased with increasing wind speed by 36% from the lowest to highest 

wind speeds due to increasing handling time per flower. However, Bombus flower visiting 

rate and handling time per flower were unaffected. The number of Bombus foragers on a 

patch and the time spent within the patch significantly decreased with wind speed. There 

were significantly more Bombus foragers on neighbouring patches without wind. Our results 

suggest that Bombus species are less affected by wind than honey bees when foraging on 

lavender. Future work examining the responses of pollinator species to wind on a variety of 

plant species is needed to fully understand the causes of these differences and their potential 

implications in nature.  
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7.2 Introduction 

Foraging takes place in a variable environment, with abiotic factors such as temperature, rain 

and light constantly changing and potentially affecting and causes changes in foraging 

behaviour. For example, the Western Australian magpie reduces foraging effort at 

temperatures above 27°C and instead invests time in heat dissipation behaviours (Edwards et 

al 2015). Rain can cause bats to reduce foraging activity due to an increase in energy 

expenditure when flying with wet wings (Voigt et al 2011).  

Wind is an environmental variable which can affect both forager behaviour (Comba 1999, 

Alma et al 2016, Berlincourt et al 2015, Hennessy et al 2020) and forage abundance and 

accessibility (Møller 2013 and Teglhøj 2017). For example, leaf cutter ants reduce their 

walking speed by 55% and are blown off course 28 times more often when foraging in windy 

compared to still conditions (Alma et al 2016). Red deer will forage on lower quality 

resources if located in an area which provides shelter from the wind (Conradt et al 2000). 

The influence of wind on birds, both in relation to migration and foraging, has been 

quantified for many species (Åkesson and Hedenstrom 2000, Erni et al 2002, De Pascalis 

2020). However, less is known about the effects of wind on flying insect foraging behaviour, 

even though wind should be especially challenging to insects due to their small body size, 

leading to a larger surface area to volume ratio. We would expect that the small size of 

insects will affect their flying ability not just via effects of head, side or tail winds, but also 

by increasing any effects due to unsteady airflow, including buffeting and turbulence 

(Combes and Dudley 2009). Studies on wind and flying insects have often focused on how it 

effects flight mechanics (Crall et al 2017, Ravi et al 2013) or how it reduces foraging activity 

(Pinzauti 1986, Vicens and Bosch 2000). One study, which examined the effects of 

increasing wind on specific foraging behaviours of Apis mellifera found that the flower 

visiting rates decreased with increasing wind speed due to an increase in the hesitancy to 

take-off from a flower (Hennessy et al 2020). However, this study was on artificial flowers 

and did not examine the interaction between flower movement and wind speed. 

It is often noted that the pollinator community changes depending on weather conditions 

(Tuell and Isaacs 2010, Vicens and Bosch 2000, Brittain et al 2013). Honeybees, Apis 

mellifera, are regarded as the dominant pollinators of many of our food crops and some 

flowers (Rader et al 2013). However, they tend not to forage below 10°C and in windy 

conditions (Pinzauti 1986). This can create a pollination deficit for certain plant species 
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during times of bad weather (Vicens and Bosch 2000). Bumblebee species, on the other hand, 

are capable of foraging at lower temperatures (e.g. 3°C, Steltzer & Chittka 2010) and are 

often seen foraging in wind (Vicens and Bosch 2000, Brittain et al 2013). This may be due to 

them possessing thermoregulatory abilities which allow them to maintain a thoracic 

temperature many degrees above ambient temperature when in flight (Heinrich 1975). 

Bumblebees have been found to increase their approach speed when landing in windy 

conditions (Chang et al 2016) and will make longer downwind flights on windy days (Comba 

1999). However, how these shifts in behaviour influence flower visits on real flowers is not 

known.  

The aim of this project was to investigate and compare the effects of wind speed and 

temperature on A. mellifera and Bombus terrestris/lucorum foraging behaviour when 

foraging on Lavandula x intermedia ‘Grosso’. As well as studying the species behavioural 

responses, the number of Bombus foragers in patches of Lavandula x intermedia ‘Grosso’ 

with and without wind, along with how long foragers spent within these patches was also 

determined.  

 

7.3 Methods 

We studied free flying Apis mellifera and Bombus terrestris/lucorum foraging on Lavandula 

x intermedia ‘Grosso’ (lavender) plants in bloom on the campus of the University of Sussex. 

Data collection took place on 17 days between July 5 and 27, 2018. Three 160x60cm patches 

of lavender within a larger bed (10x10m) were marked out using bamboo canes. Using a 

combination of three fans (Olypa H-28401 Electrical 16-Inch Oscillating Pedestal Stand fan) 

and a wind break made from bamboo poles and plastic mesh we produced winds ranging 

from 0-3.5 ms-1. The fans were positioned to cause a near equal distribution of wind speed 

throughout each patch. To determine the wind experienced by each study bee, during each 

trial, a digital omnidirectional anemometer (Skywatch Eole) was placed at the centre of each 

patch and videoed for the entire minute of bee observation. The video was played back on a 

computer and the wind speed every 10 seconds was noted. The average speed was then used 

as the wind speed experienced by the bee being studied in that trail, with wind speed recorded 

to the nearest 0.01 second. Wind speeds were randomly selected within three categories: 0-

1.5, 1.5-2.5, 2.5-3.5 ms-1. Temperature was also recorded at the centre of the patch at the end 

of each trial using a digital thermometer (KTJTM) to the nearest 0.01 degree. 
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7.3.1 Observations of foraging bees in patches of flowering lavender 

A trial began when a bee flew into a study patch and was then observed for one minute to 

record the following behaviours: 

I) Number of flower visits: Number of flowers where a bee was seen to take nectar 

or collecting pollen. A flower was recorded both when flown to or when walked 

to. If a bee visited multiple flowers on the same inflorescence each was considered 

a visit. 

II) Mean flower handing time: The total time spent on flowers divided by the number 

of flower visits within the minute of observation. Time was recorded using a stop 

watch. 

III) Mean inter-flower flight time: The total time spent flying divided by the number 

of individual flights. Time was also recorded using a stopwatch.  

IV) Proportion of flowers walked to: Number of times a bee walked to a flower 

divided by total flower visits 

When the subject bee had been observed for one minute she was caught and marked with a 

paint dot to ensure the same bee was not studied twice. In addition, B. terrestris/lucorum bees 

were weighed as they can vary in body size. A. mellifera were not weighed as workers are 

similar in size. Due to difficulties in catching individual bees, not all were successfully 

weighed or marked.  

7.3.2 Number of foragers in patches 

To identify the relationship between increasing wind speed and forager activity on lavender, 

three 120x90cm patches of lavender in an existing bed (10x10m) were marked, 120cm apart, 

using bamboo canes. Three fans (Olypa H-28401 Electrical 16-Inch Oscillating Pedestal 

Stand fan) were placed surrounding one of the patches to produce wind, and a digital 

omnidirectional anemometer (Skywatch Eole) and digital thermometer (KTJTM) were placed 

at the centre of the patch to record wind speed and temperature. One patch never experienced 

artificial wind. The other two patches were alternated between artificial wind or no artificial 

wind every half hour. Counts occurred every 10 minutes, with the number of Bombus 

foragers recorded along with the wind speed and temperature within each patch. A total of 59 

counts were made over three days, from August 1 to August 3, 2018. A. mellifera were not 

included as few were present. Although counted separately, Bombus species were pooled for 

analysis due to low numbers of some species.  
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7.3.3 Time spent within a patch 

Using the same lavender patches for forager counts the time a forager spent within a patch 

with and without wind was recorded. A bee was chosen at random when she entered an 

experimental patch. She would be timed using a stopwatch from when she landed on a flower 

to when she exited the patch (which was defined as when she had flown outside of the 

bamboo perimeter). Data were collected from 70 Bombus foragers. Again, due to the small 

numbers of some Bombus species, data were pooled for analysis.  

7.3.4 Statistical analysis  

Statistical tests were performed in R 3.3.3 (R Development Core Team 2009). Linear 

regression models were run for each of the observed behaviours with linear, quadratic and 

general linear models with differing link functions tested for best fit. Models were compared 

using Log likelihood or the R2 value and tested against model assumptions using the 

DHARMa package (Hartig 2020). The independent variables in each model included average 

wind speed (ms-1), temperature (°C) and insect species. Interactions between wind speed and 

temperature, bee species and wind speed and bee species and temperature were also included. 

Weights for 32 B. terrestris/lucorum foragers were collected. Models including weight as an 

independent variable were run, but weight never had a significant effect and, therefore, was 

excluded from the final models. Number of flower visits was log transformed and handling 

time was square root transformed. For inter-flower flight duration and proportion of flowers 

walked to general linear models were run with quasipoisson link functions. To test if 

temperature and average wind speed were correlated a Spearmans rank correlation was run. 

Due to multicollinearity between the predictor variables, they were standardised by 

subtracting the mean from each observed value (Iacobucci et al 2016). The data on honey bee 

foraging behaviour was used in a previous study (Chapter six, Hennessy et al in submission). 

The number of Bombus foragers on a patch in relation to wind speed was investigated with a 

linear regression model in which total number of bees was the dependent variable with wind 

speed (ms-1) and temperature (°C) and the interaction between them were the predictor 

variables. A paired Wilcoxon-signed rank test was also run to determine if the number of 

foragers present on a patch was significantly different between patches when wind was or 

was not present within the same sample period. 
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In addition, the time a forager spent within a patch in relation to wind speed was investigated 

using linear regression, with wind speed as the only predictor variable and time spent within a 

patch log transformed. 

7.4 Results 

7.4.1 Foraging behaviour of Apis mellifera and Bombus terrestris/lucorum on Grosso 

lavender. 

A total of 190 A. mellifera and 62 B. terrestris/lucorum foragers were studied foraging on 

lavender. Wind speeds ranged from 0-3.56ms-1 and temperatures between 19 -28°C. The 

average weight of a B. terrestris/lucorum forager was 0.29 ± 0.01mg, N=32. There was no 

correlation between wind speed and temperature (r=0.007, P=0.907) 

7.4.1.1 Number of flower visits 

Wind speed significantly reduced the number of flower visits for A. mellifera (linear 

regression, t1,245=-8.78, P<0.001) but not for B. terrestris/lucorum (linear regression, t1,245=-

1.79, P=0.077, Fig 1a). A. mellifera visited 36% fewer flowers per minute at the highest wind 

speeds (>2.5m ms-1) compared to the lowest (0-1 ms-1), 14.3± 0.46, N= 35 vs 20.5 ± 0.94, 

N=59. The interaction between wind speed and bee species was significant (linear regression, 

F1,245=9.14, P=0.003) as was the interaction between temperature and insect species (linear 

regression, F1,245=36.01, P<0.001). Number of flower visits for B. terrestris/lucorum 

significantly increased with temperature (linear regression, t1,245=6.05, P<0.001, Fig 1b), with 

a 38% increase from 22.81 ± 2.62 N=16 to 33.42 ± 1.86, N=26 (19 vs 27°C). Temperature 

had no effect on A. mellifera flower visits (linear regression, t1,245=-1.95, P=0.052). The 

interaction between wind speed and temperature was not significant (linear regression, 

F1,245=0.02, P=0.891) for either species. 

7.4.1.2 Flower Handling time 

Wind speed significantly increased handling time for A. mellifera (linear regression, 

t1,245=9.82, P<0.001) but not for B. terrestris/lucorum (linear regression, t1,245=2.01, P=0.50, 

Fig 1c). However, the interaction between wind speed and insect species was also significant 

(linear regression, F1,245=9.00, P<0.001). At the highest wind speeds (>2.5 ms-1) A. mellifera 

handling time per flower averaged 3.82s ± 0.16s, N=35 compared to 2.70s± 0.08s, N=59 

when there was no to little wind (0-1 ms1), a 34% increase. The interaction between bee 

species and temperature was significant (linear regression, F1,245=60.89, P<0.001), with B. 
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terrestris/lucorum handling time following a quadratic trend with temperature (quadratic 

regression, t1,245=7.14, P<0.001, Fig 1d). The highest mean handling times at the lowest and 

highest temperature (19°C: 2.59 ± 0.27s, N= 16, 27°C:1.75 ± 0.21s, N=26) with the lowest 

mean handling time at mid-range temperatures (24°C: 1.25 ± 0.30s, N=13). A. mellifera 

handling time was unaffected by temperature (linear regression, t1,245=-1.12, P=0.266). The 

interaction between temperature and wind speed was not significant (F1,245=1.03, P=0.310). 

7.4.1.3 Flight bout duration 

Flight bout duration did not vary significantly with wind speed for either A. mellifera or B. 

terrestris/lucorum (linear regression, F1,245=0.07, P=0.785, Fig 1e). Neither the interaction 

between wind speed and temperature nor wind speed and bee species were significant 

(F1,245=0.36, P=0.550, F1,245=0.35, P=0.557). However, the interaction between bee species 

and temperature was (F1,245=10.96, P<0.001). Flight bout duration significantly increased 

with temperature for A. mellifera (t1,245=3.78, P<0.001) but no effect was seen for B. 

terrestris/lucorum (t1,245=-1.53, P=0.128, Fig 1f). Mean A. mellifera flight bout duration 

increased by 59% between the lowest and highest temperatures (19°C: 0.91 ± 0.12s, N=31, 

28°C: 1.67 ± 0.25s, N=5). 

7.4.1.4 Proportion of flowers walked to 

The interaction between wind speed and insect species was significant (GLM, F1,245=6.04, 

P=0.015), with wind speed alone significantly reduced the proportion of flowers walked to 

for A. mellifera (t1,245= -2.64, P=0.009) but having no effect on B. terrestris/lucorum (t1,245= 

0.90, P=0.371). A. mellifera walked less between flowers compared to B. terrestris/lucorum 

in increasing wind speeds (Fig 1g). At the highest wind speeds, 2.5-3ms-1, A. mellifera flew 

to 60% of flowers versus 83% for B. terrestris/lucorum. The interaction between insect 

species and temperature was also significant (GLM, F1,245=5.63, P=0.015). However, 

temperature alone was not significant for either species (A. mellifera: t1,245= -1.81, P=0.072. 

B. terrestris/lucorum: t1,245= 1.57, P=0.012). B. terrestris/lucorum walked to more flowers 

with increasing temperature whereas A. mellifera walked to fewer (Fig 1h). Between the 

lowest and highest temperatures (19 and 28°C) A. mellifera walked between flowers 75% less 

compared to B. terrestris/lucorum foragers, who walked 15% more.  
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Fig 1: Foraging behaviours of A. mellifera and B. terrestris/lucorum workers foraging for a 

minute on either Lavandula x intermedia ‘Grosso’. a-b Number of flower visits in relation to 

a: wind speed, b: temperature, c-d mean duration of flight bout in relation to c: wind speed 

and d: temperature, e-f mean duration of flight bout in relation to e: wind speed and f: 

temperature, g-h the proportion of flowers walked to in relation to g: wind speed and h: 

temperature.  Linear regression lines are shown with r2 values. N=190 for A. mellifera and 

N=62 for B. terrestris/lucorum for all behaviours 
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7.4.2 Number of Bombus foragers on Lavandula x intermedia ‘Grosso’ with and without 

wind 

Wind speed ranged from 0-3.3ms-1 and temperature ranged between 18-27°C with a total of 

158 individual bees included in the analysis. Due to the high number of zeros for individual 

species all species were pooled, with a total of five Bombus species recorded. 

Increasing wind speed significantly reduced the number of foragers within a patch (GLM, 

F1,156=34.84, P<0.001, Fig 2a), while increasing temperature significantly increased the 

number of foragers (GLM, F1,155=22.88, P<0.001, Fig 2b). The average number of foragers in 

a patch with little or no wind (0-1ms-1) was 4.38 ± 0.25, N=107, 59% more compared to 

higher wind speeds (>2ms-1), where the average was 2.38 ± 0.51, N=26. The interaction 

between temperature and wind speed did not significantly influence the number of foragers 

present in a patch (GLM, F1,154=0.26, P=0.613).  

There was a significant difference in the number of Bombus spp. foragers in a patch that was 

experiencing wind vs the adjacent patch in the same sampling period where no artificial wind 

was present (Paired Wilcoxon-Signed rank test, V=945, P<0.001). The average number of 

Bombus foragers in a patch with no wind was 4.43 ± 0.26, N= 99, compared to 2.46 ± 0.34, 

N= 59, in a patch experiencing wind (Fig 2c). 

7.4.3 Time spent in patch 

Data on time spent in patch were collected from 70 individual bees in wind speeds ranging 

from 0-3ms-1. The time spent foraging in a patch significantly decreased with wind speed 

(linear model, F1,68=7.36, P=0.008, Fig 2d). When no wind was present the average time 

spent foraging in a patch was 49.4 ±8.84(s), N=25. This decreased by 99% to 16.77± 5.09(s), 

N=8 at the highest wind speeds (2.5-3ms-1). 
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Fig 2: The number of foragers in a patch of Lavandula x intermedia ‘Grosso’ in relation to a: 

wind speed (ms-1) , b: temperature (°C) and c: the presence or absence of wind on the patch 

and d: the time (s) foragers spent within a patch in relation to wind speed. Lines shown are 

regression lines with the r2 value. 

 

7.5 Discussion 

Our results indicate that both wind speed and temperature affect bee foraging, but that the 

effects differ between honeybees and bumblebees. For example, A. mellifera flower visiting 

rate was significantly reduced with increasing windspeed, with a reduction of 36% from the 

lowest (0ms-1) to highest wind speeds (>2.5ms-1). However, in B. terrestris/lucorum flower 

visiting rate was unaffected by wind speed.  

The reduction in flower visiting rate with increasing wind speed in A. mellifera matches 

previous research. Hennessy et al (2020) found a 37% decrease when wind speed increased 

from 0 to 2.75ms-1 when A. mellifera were foraging on stationary artificial flowers. In the 

current study the reduction in A. mellifera was due to an increase in flower handling time. 

Average handling time for A. mellifera increased from 2.70 to 3.82 seconds per flower 
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between low (0-1ms-1) and high (>2.5ms-1) wind speeds. In Hennessy et al (2020), the 

reduction in flower visits was due to foragers taking longer to take off from a flower 

(“increased hesitancy”).  Although take off time was not directly examined in this current 

study, handling time incorporated all activities whilst a bee was on a flower, including take-

off, probing and walking between flowers. We can hypothesise that the increased handling 

time with wind may be due to A. mellifera taking longer to take-off from a flower. 

By contrast, for B. terrestris/lucorum both the flower visiting rate and handling time per 

flower were unaffected by wind speed. Although we cannot explain the exact reasons why 

the effects of wind are different between honeybees and bumblebees, we hypothesise that 

body size may be a factor. In our study, B. terrestris/lucorum average weight was 290mg 

compared to c. 129mg for the average A. mellifera forager (see Otis 1982). Air resistance is 

more of an issue for lighter animals (Hunter 2007) as they have a greater surface area to 

volume ratio. Being larger may make behaviours, such as take-off, easier in higher winds.  

Although being larger may help with taking off in higher wind speeds, it could make 

navigating moving obstacles more difficult. This current study found that whilst foraging on 

lavender in increasing wind, A. mellifera flew to proportionally more flowers compared to B. 

terrestris/lucorum. Previous research has shown that larger B. terrestris take longer to 

complete foraging trips in cluttered environments with no wind due to difficulties in 

manoeuvrability and avoiding collisions (Crall et al 2015). A. mellifera have been found to 

adopt a different strategy. When foraging in wind and navigating through moving obstacles 

they tend to increase their flight speed, to reduce the amount of time spent in these 

unfavourable conditions (Burnett et al 2020). These different strategies may explain why A. 

mellifera tended to fly between flowers more in wind compared to B. terrestris/lucorum when 

foraging on lavender. 

However, and perhaps surprisingly, the inter-flower flight time was unaffected by wind speed 

for both bee groups.  The methods by which bees stabilise themselves in flight in response to 

wind is well studied for both Bombus spp. and A. mellifera. They use a combination of 

passive and active changes to body positioning in response to the forces combined with wing 

beat frequency changes to stabilise body positioning (Ravi et al 2016 and Crall et al 2017). 

These adjustments presumably allow bees to fly between flowers efficiently, even in windy 

conditions. Wind also indirectly affects foraging bee movements by causing flowers to 

‘sway’. Lavender flowers sway more at higher wind speeds (Hennessy et al in press). 
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However, previous work on both artificial and real flowers has found that flower movement 

can improve landing accuracy (Kapustjansky et al 2010) and flowers which move in the wind 

are also generally more attractive than those which are stationary (Warren and James 2008). 

This may be because movement of objects against a stationary background aids visual 

detection by bees (Lehrer and Srinivasan 1992). Perhaps some increased flower movement in 

wind makes landing easier, negating any in-flight challenges, such as being blown off course, 

which would otherwise increase flight time between flowers.    

Although B. terrestris/lucorum foraging rate on lavender was unaffected by wind speed, 

increasing temperature resulted in an increased flower visiting rate. This was due to a 

decrease in handling time, except at the highest temperatures (27°C) where handling time 

began to increase again. This could be due to a variety of factors. Bumblebees generally take 

off faster from flowers in warmer temperatures (Heinrich 1975). However, this increase in 

take-off speed may be negated by difficulties in extracting nectar at higher temperatures as it 

becomes more viscous and harder to extract (Corbet 1979, Nardone et al 2013).  

The number of Bombus foragers on a lavender patch decreased with increasing wind speed 

(Fig 2a). The wind was localised on a single patch of lavender, with neighbouring patches not 

experiencing wind. There were significantly more Bombus foragers on a patch without wind 

versus with wind at the same time, perhaps due to bees choosing to forage on the wind free 

patches. Bumblebees make foraging decisions based on profitability (Cnaani et al 2006) and 

although the number of flower visits was unaffected by wind, flying in windy conditions 

requires more energy (Wolf et al 1999). Therefore, it is likely when a choice is available 

individuals will travel to a patch where it is less windy. Not only were there fewer foragers in 

higher winds, but bees also spent less time foraging. If by continuing to forage in a windy 

patch the energy lost is higher than the energy gained, then it would make sense for foragers 

to leave and try to find a less windy patch, such as one in a sheltered position. When foraging 

A. mellifera and Bombus species expend approximately half the energy gained through nectar 

collection (Balfour et al 2015, Balfour et al 2021). In other words, small energy gains or 

reductions in costs may well be worth having given such a tight energetic tightrope, such as 

by locating a more sheltered patch. 

The significant reduction in flower visits by A. mellifera seen in this study may help explain 

why their foraging activity is reduced in windy conditions (Pinzauti 1986, Javorek et al 2002, 

Tuell and Isaac 2010). Honeybees make an estimated 250 to 1446 flower visits per foraging 
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trip depending on the plant species being foraged (Goodwin et al 2011 and Ribbands et al 

1949), meaning a 36% reduction in visits per minute could have a significant impact in 

energetic returns, making not foraging potentially the more profitable decision. This is 

especially the case if other insect species foraging on the same plant are less affected by 

wind, increasing the potential for competition and reducing energy returns even further 

(Balfour et al 2015). Studies examining forager activity in natural wind conditions have 

shown that A. mellifera are particularly sensitive to increasing wind speed, with forager 

activity and flower visit rate more severely affected compared to other wild bee species 

(Vicens and Bosch 2000, Brittain et al 2012). Although this current study is limited in that we 

have only examined two bee groups foraging on lavender, the results indicate that there are 

differences the responses of different bee species to wind. Often wind speeds will be above 

the maximum seen in this study (3.56ms-1) and if certain bee species foraging efficiency is 

reduced, it may be possible for other pollinators to fill the pollination deficit if they are less 

affected by increasing wind. For example, in apple orchards with high pollinator diversity 

high winds (>2.5ms-1) did not cause a reduction in overall flower visits, whereas in orchards 

with low diversity number of visits significantly declined (Brittain et al 2012). 

Our study has identified that B. terrestris/lucorum are less affected by wind than A. mellifera 

when foraging on lavender. The reduction in flower visitation rate by A. mellifera was due to 

an increase in flower handling time, with flight between flowers unaffected, highlighting how 

bee species’ responses to wind are complex. Factors such as differences in body size likely 

play a role in a species’ ability to forage in wind. However, other non-physical aspects, such 

as competition between species, may also be contributing (Vicens and Bosch 2000, Brittain et 

al 2012, Balfour 2015). Global wind speeds are currently increasing (Zeng et al 2019). By 

understanding species specific responses to increasing wind speeds measures, such as 

providing biodiverse habitats (Brittain et al 2012) can potentially be put in place to help 

buffer the reduction of activity seen with bee species like honeybees. More work on a range 

of pollinator species is required to fully understand the mechanisms that cause these 

differences in behaviour, and to also determine if these responses are universal when foraging 

on different plant species.  
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Chapter Eight: Wind beneath my wings: Increasing wind speed causes increased 

hesitancy to take-off in foraging honeybees and bumblebees  

 

8.1 Abstract 

Wind is an environmental factor which can affect flying insects. Previous research showed 

that increasing wind caused an increase in take-off hesitancy for honey bees foraging on 

artificial flowers. This study determined whether take off hesitancy occurs when bees forage 

on natural plants. Honey bees and bumble bees foraging on seven plant species were video 

recorded across a range of wind speeds. Hesitancy to take-off from a flower was quantified, 

this was the time between when a bee stopped probing for nectar to when it took flight. 

Hesitancy increased with increasing wind speed by an average of 50% for both bee types. 

Flower movement in increasing wind speed was also quantified by video recording flowers of 

the study species in a range of wind speeds. Bumble bee hesitancy increased more with 

increasing flower movement when compared to honey bees. Flower movement alone did not 

significantly influence hesitancy times for either honey bees or bumblebees. This is the first 

study to show that increasing wind speeds can cause an increase in take off hesitancy in 

nature and affect the foraging performance of two important pollinators, honey bees and 

bumble bees. Foraging bees on average can visit up to 20 flowers per minute, meaning any 

increase in handling time, even if small, could potentially result in a significant reduction in 

flower visit rate. 
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8.2 Introduction 

When foraging, animals encounter an array of factors that can influence behaviour and 

efficiency. These factors can be biotic, such as competition (Grand and Dill 1999, Balfour et 

al 2015, Wignall et al 2020) and predation risk (Lima et al 1985, Jones and Dornhaus 2011, 

Bonnot et al 2012) and abiotic such as temperature (Fraser et al 1993, Edwards et al 2015, 

Funghi et al 2019), rainfall (Radford et al 2001, Chard et al 2017, Farji-Brener 2018) and 

wind (Alma et al 2016, Lane et al 2019, Hennessy et al 2020). 

Wind is a particularly important factor for flying animals. It varies more rapidly than other 

abiotic conditions (often within seconds) and has considerable energy (Stull 1988). Wind can 

also vary across a range of spatio-temporal scales and is known to affect the efficiency, 

behaviour and energetics of flying animals (Tucker and Schmidt-Koenig 1971, Alerstam 

1979, Wolf 1999, Chapman et al 2010). Take-offs and landings are often influenced by wind 

(McMillan 1940, Cone 1964, Chang et al 2016). For example, when landing at the nest in 

strong wind conditions, cliff landing auks fail 60% of attempts (Shepard et al 2019), and 

strong winds generally decrease birds propensity to take-off for migration events (Liechti 

2006). Take off is also an energetically expensive part of flight (Weimerskirch et al 2000), 

with power equivalent to many times the body weight of the animal required (Alexander 

2003). Although wind can make take-off more difficult, it can also reduce the energetic costs 

associated with it (Clay et al 2020), with increasing wind speed found to cause a reduction in 

take-off duration for some bird species (Kogure et al 2016).  

Take-off in relation to wind speed for flying insects is less studied than for birds. When 

foraging, bees, can visit 10-20 flowers per minute (Couvillon et al 2015), with many take-offs 

required to travel between individual flowers and inflorescences. Although increasing wind 

can reduce the take-off energy cost in birds, insects operate on a much smaller scale. Smaller 

animals have lower maximal lift and higher drag, reducing the aerodynamic efficiency of 

small wings (Roderick et al 2017). Air resistance is also more of an issue for lighter animals 

(Hunter 2007) as they have a greater surface area to volume ratio. These factors mean that 

increasing wind may not only make sustaining flight harder for flying insects (Wolf 1999) but 

may also influence take-off. 

Previous work studying wind and insect flight has mainly focused on wing dynamics during 

flight (Willmott and Ellington 1997, Ravi et al 2016, Burnett 2020), how wind decreases 

foraging activity (Pinzauti 1986, Tuell and Isaacs 2010) and how landing can be impacted 
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(Chang 2016). The few studies that have examined take-off behaviour have highlighted how 

take-off activity decreases in increasing wind speeds (Walters and Dixon 1984), with 

individuals often waiting for a lull in the wind to initiate flight (Messing et al 1997). 

Increasing wind speed has also been found to reduce foraging performance in honey bees 

both foraging on natural and artificial flowers (Hennessy et al in press, Hennessy et al 2020), 

due to an increase in handling time. Hennessy et al (2020) found that this increase in overall 

flower handling time was due to greater take off hesitancy, that is taking longer to take-off 

from a flower in increasing wind. However, this previous study used stationary artificial 

flowers. To our knowledge, there has been no work examining if take off hesitancy also 

occurs on natural flowers.  

In Hennessy et al (2020) the direct effects of wind on the bee and the indirect effects of wind 

on flower movement were studied separately. Flowers can sway in the wind, with various 

factors, such as stalk length, influencing movement (Warren and James 2008). Flower 

surfaces also have a variety of cell structures, some that even improve pollinator grip 

(Whitney and Federle 2013). Studies have shown that bumble bees will choose plant species 

that have easier to grip flowers when foraging on moving plants (Whitney et al 2009), 

highlighting that flower movement does influence foraging ability. However, how it 

influences take-off is not known.  

The aim of this study is to determine whether honey bees (Apis mellifera) and bumble bees 

(Bombus sp.), which are both important pollinators, have increased take-off hesitancy with 

increasing wind speed when foraging on a range of plant species, and to make comparisons 

between the 2 bee types and the seven flower species studied. In addition, flower movement 

was also quantified to determine if this also influences take-off hesitancy.  

8.3 Methods 

8.3.1 Chosen plant species  

We studied free flying Apis mellifera and Bombus species foraging on a range of plant 

species growing wild under natural wind conditions. Plant species were chosen to ensure that 

a variety of flower morphologies were studied. Seven different plant species were studied 

from six families. Rubus fruticosus (bramble), Cirisium arvense (creeping thistle), Centaurea 

scabiosa (greater knapweed), Echium vulgare (vipers bugloss), Jacobaea vulgaris (ragwort), 

Trifoliuim repens (white clover) and Melilotus officinalis (yellow sweet clover).  
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Study patches were chosen to have exposure to wind along with patch size to be large enough 

to have many foraging insects to avoid repeat recordings on the same insect, or alternatively, 

there were multiple smaller patches within 50m. Each plant species was studied at one 

location. Data collection occurred on both windy and still days without rain and in 

temperatures above 15°C. Data collection occurred on 25 days between 16 June and 29 

August 29 2020. 

8.3.2 Video recording bees 

A multi directional anemometer (Skywatch Eole) was placed on a tripod within the study 

patch at average flower height for the species being studied. A Sony camera (HDR-CX115) 

was attached to a tripod to video record anemometer wind speed. When a suitable foraging 

bee was seen it was recorded by a second video camera (Sony HDR-CX115) held by the 

observer at 24 frames per second. The behaviour being examined was the hesitancy to take-

off from a flower. This was defined as the time between when the forager finished either 

probing for nectar or collecting pollen on a flower to taking flight 

Inflorescences with multiple flowers close together, on which bees would walk between 

flowers, were treated as a single flower. This was the case for J. vulgaris, C. arvense and C. 

scabiosa. However, when flowers were further apart on the same inflorescence and bees flew 

between them, each flower was treated separately. This was the case for all other plant 

species studied. If a bee walked between flowers it would be video recorded until it took 

flight. 

When a bee was sighted foraging within the study patch, the camera recording the 

anemometer would be turned on and the wind speed from when a bee started foraging on a 

flower to when she took off would be recorded. This allowed the video to be viewed to note 

the wind speed on take-off  

Only one take-off per bee was recorded. It was not possible to capture and paint mark bees to 

totally exclude the possibility of studying the same bee twice. However, to reduce the chance 

every 10 minutes the focal plants would be changed. If the same bee was videoed twice, it 

would have been a separate visit to a flower under a different wind condition.  

The temperature (±1°) was recorded after each bee recording using a thermometer (KTJ) 

placed at average flower height. 
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8.3.3 Video playback 

Videos were imported into the software MPEG streamclip. This programme allowed the 

recording to be played frame by frame and the hesitancy to take off from a flower to be 

accurately quantified. This was calculated from when a bee stopped probing for nectar, which 

was defined as the first frame when the bee visibly began to pull the tongue away from the 

nectary, or when she stopped collecting pollen, which was defined as when she was no longer 

seen to be rubbing the body and or scopa, when the mouthparts were no longer to be seen 

moving, or when the antennae were no longer bent and actively contacting the flower. 

Behaviours which were not included as either probing for nectar or collecting pollen were 

walking around the flower with no signs of rubbing the body for pollen collection with the 

antennae raised, and cleaning of the tongue. Take-off was recorded from the first frame 

where no body parts (e.g. feet) were touching the flower and the bee was therefore fully in 

flight. Whether the bee was foraging for pollen or nectar was also recorded. 

The bee species recorded were Apis mellifera (honey bee), Bombus terrestris/lucorum, which 

were combined due to difficulties in identification in the field and Bombus lapidarius. These 

were the only bumble bees sufficiently abundant for the study. Some data were collected on 

Bombus pascorum. However, because the sample size was very low this species was removed 

from the study.   

8.3.4 Quantifying flower movement  

To quantify flower movement across wind speeds, flowers from all study species were 

videoed with a Sony camcorder (HDR-CX115) on a tripod placed at average flower height 

2m away from a reference point within a study patch, which was marked with a bamboo pole. 

An anemometer was placed within the patch at flower height to measure wind speed. To 

ensure the same flower, or inflorescence in the three species where an inflorescence was 

treated as a flower, was not studied twice, multiple patches within the same location were 

recorded. Flowers were selected to ensure flowers from a range of heights were analysed. 

Videos were taken in natural wind speeds from 0-6.5ms-1 and recorded at 24 frames per 

second. Videos were imported into the software imageJ and individual flowers were chosen 

at random from the reference point and their location tracked in each frame for 100 frames (4 

seconds). For each frame the wind speed was also recorded. The average wind speed and 

flower movement (cms-1) was calculated for each flower, with 30 flowers per plant species. 
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Due to the footage not being recorded in 3-dimensions. movement was calculated on the 

horizontal (x) and vertical (y) plane, with longitudinal (z) movement ignored. This method 

has been used in previous work assessing leaf movement (Kothari and Burnett 2017). 

8.3.5 Statistical analysis 

Statistical tests were performed in R 3.3.3 (R Development Core Team 2009). A linear 

regression model was run with hesitancy at take-off log transformed as the dependent 

variable. A generalised linear mixed effects model with location as a random effect was 

tested. However, location did not explain significantly more of the variance and so was 

dropped from the model. A mixed effects model was also tested with plant species as a 

random error. However, when comparing model fit using the DHARMa (Hartig 2019) 

package the linear model was the best fit and therefore used for the analysis. To determine if 

flower movement influenced hesitancy duration, average flower movement for each plant 

species was calculated from three wind speed categories, when wind speed ranged from 0-

1ms-1, 1.1-3 ms-1, and above 3ms-1. These values were then matched with bees which had 

experienced wind speeds at take off within the same categories. Plant species, wind speed at 

take-off, bee group, temperature and flower movement were predictor variables. The 

interactions between plant species and wind speed, plant species and temperature, plant 

species and bee group, average movement and bee group and average movement and 

temperature were also included. The interaction between temperature and wind speed was 

found to be non-significant and so was removed. Nectar or pollen collection alone and its 

interaction with wind speed were included in the models but also found to never be 

significant so were removed. The interaction between bee group and wind speed was not 

significant so was removed form the final model. To account for multicollinearity in the 

model all predictor variables were centred by subtracting the mean from each observed value 

(Iacobucci et al 2016). All values with a variance inflation factor (VIF) value of <3 were 

retained in the full model (Zuur et al 2010). There was no significant difference in hesitancy 

to take-off between B. terrestris/lucorum and B. lapidarus, nor was the interaction between 

wind speed and bee species significant, therefore both species were grouped for analysis. The 

final model was: 

Log(Hesitancy duration)~ Average flower movement*Wind speed + Average flower 

movement*Temperature + Average flower movement*Bee group+ Plant Species*Bee group 

+ Wind speed *Plant Species 

https://onlinelibrary.wiley.com/doi/full/10.1111/icad.12463#icad12463-bib-0087
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To determine if flower movement was influenced by wind speed a linear regression was run 

with average flower movement log transformed as the dependent variable. Average wind 

speed and plant species were the predictor variables. The interaction between average wind 

speed and plant species was also included. 

 

Table 1: Plant species included in study and where they were located in Sussex, England. For 

plant species where multiple spaced apart patches were used plants were within 50m 

Plant species Location of data collection Grid Reference 

Rubus fruticosus  Sheepcote Valley  TQ 34022 04961 

Cirisium arvense Stanmer Park  TQ 34157 08771 

Centaurea scabiosa Brighton Racecourse TQ 33570 05756 

Echium vulgare University of Sussex campus TQ 34281 09709 

Jacobaea vulgaris Brighton Racecourse  TQ 33378 05723 

Trifoliuim repens Falmer Village TQ 38876 21714 

Melilotus officinalis Sheepcote Valley TQ 34075 05399 

 

 

8.4 Results 

Data were collected from a total of 827 A. mellifera and 898 B. terrestris/lucorum and B. 

lapidarius foragers across the 7 plant species. Wind speed at take-off ranged from 0-6.5ms-1 

and temperatures from 16.5-38C.  

Hesitancy to take off significantly increased with increasing wind speed for both bee groups 

(LM, F1,1696=71.61, P<0.001, Fig 1a), with an average increase of 50%, 0.19s, for both honey 

bees and bumble bees between the lowest (0-1ms-1) and highest (3-5ms-1) wind speeds. 

Hesitancy to take off was significantly different between the two bee groups independently of 

wind speed, with honey bees on average more hesitant (LM, F1,1696=64.39, P<0.001). Across 

wind speeds, average hesitancy for honey bees was 0.40 ± SE 0.01s compared to 0.32 ± SE 

0.01s for bumble bees.  

The interaction between plant species and wind speed was not significant (F6,1696=1.24, 

P=0.284, Appendix E3-4). For A. mellifera average hesitancy across all plant species at low 

wind speeds (0-1ms-1) was 0.36 ± SE 0.02s, N=355. This increased by 44% at the highest 
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wind speeds (3-5ms-1) to 0.52 ± SE 0.05s, N=63. For Bombus species hesitancy increased by 

56% between the same wind speed categories (0.27 ± SE 0.02s, N=372 vs 0.42 ± SE 0.04s, 

N=92).  

The interaction between bee group and plant species was significant (LM, F6,1696=5.87, 

P<0.001, Fig 1b). Rubus fruticosus (bramble) was the plant species where average hesitancy 

per flower was highest for A. mellifera, X̄ =0.51 ± SE 0.05s, with Bombus average hesitancy 

being 49% lower. For Bombus, average hesitancy was highest on knapweed, X̄ =0.39 ± SE 

0.02s with A. mellifera hesitancy 14% higher, X̄ =0.45 ± SE 0.03s. When foraging on the 

same plant species hesitancy to take-off significantly differed between bee groups on bramble 

(t=6.91, P<0.001, A. mellifera X̄= 0.51 ±  SE 0.05s vs Bombus X̄= 0.31 ± SE 0.02s) and 

vipers bugloss (t=8.59, P<0.001, A. mellifera X̄= 0.47 ± SE 0.02s vs Bombus X̄= 0.30 ± SE 

0.01s). For all other plant species comparisons see Appendix E1.   

Hesitancy was significantly affected by temperature (LM, F1,1696=8.27, P=0.004), with 

hesitancy decreasing with increasing temperature for both bee groups.  

The interactions between bee group and wind speed (LM, F1,1696=0.08, P=0.775) and 

temperature and plant species (LM, F6,169 6= 1.39, P=0.215) did significantly influence 

hesitancy to take off. 

The interaction between flower movement and bee group was significant (LM, F1,1696=10.77, 

P=0.001 Fig 1c). Flower movement alone was not significant for either Bombus species (t=-

0.219, P=0.827) nor A. mellifera (t=0.416, P=0.677, Appendix E2). Bombus hesitancy 

increased more with flower movement compared with A. mellifera (Fig 1c). Flower 

movement ranged from 0.15cms-1, with bramble in wind speeds of <1ms-1, to 32cms-1 with 

Jacob vulgaris (ragwort) in wind speeds >3ms-1. Bombus average hesitancy increased from 

X̄= 0.27 ±0.02s, N=82 at an average flower movement of 0.15cms-1, to X̄ =0.34 ±0.03s, 

N=45 at an average flower movement of 16.34cms-1. For A. mellifera, at the same average 

flower movement hesitancy decreased from X̄ =0.48 ±0.05s, N=72 to X̄ =0.44 ±0.04s N=50. 

8.4.1 Flower movement in increasing wind 

Increasing wind speed significantly increased flower movement (F1,224=141.9, P<0.001, Fig 

2). The interaction between plant species and wind speed was significant (F7,244=3.50, 

P=0.001) as was plant species alone (F7,224=67.21 P<0.001). The plant species with the 

highest increase in movement speed was ragwort. At the lowest wind speeds (0-1ms-2) the 
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average flower movement was 7.91±028 cms-1, which increased by over 300% to 32.2±1.57 

cms-1 at wind speeds between 3-5ms-1, and by over 600% to 56.78 ±2.92cms-1 at the highest 

wind speeds (over 5ms-1). Centaurea scabiosa (knapweed) was the only plant species where 

flower movement did not significantly increase with increasing wind speed (t=0.41, 

P=0.684), with a 5% increase in flower movement between the lowest (0-1ms-1) and highest 

wind speeds (3-5ms-1).   

 

Fig 1: A: Hesitancy (s) to take off from a flower in relation to increasing wind speed at take-

off (ms-1) when foraging on all plant species, with linear regression lines and the 

corresponding R2 value shown. N=827 for A. mellifera and N=898 for Bombus species. B: 

Hesitancy to take off for both A. mellfiera and Bombus species in relation to the plant species 

being foraged. The three asterisks signify where a significant difference (P<0.001) between 

bee groups was found when both were foraging on the same species. For a full table of 

significances see Appendix E1 C: Hesitancy to take off in relation to flower movement when 

plant species flower movements were calculated from three wind categories (<1ms-1, 1.1-

3ms2, 3.1-5ms-1). 



137 
 

Fig 2: Logged average flower movement (cms-1) against mean wind speed (ms-1) for all 

studied plant species. Standard error bars are shown and the R2 value was 0.72. Average 

flower movement was taken from 30 flowers for each plant species from 100 frames of 

footage.  Dashed lines indicate standard error bars. 
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8.5 Discussion 

Our results show that hesitancy to take-off increases with increasing wind speed for bumble 

bees, Bombus species, and honey bees, A. mellifera. Averaged across plant species hesitancy 

per flower increased by 44% for honey bees and 55% for bumble bees from low (<1ms-1) to 

high (3-5ms-1) wind speeds. The effect of wind speed did not vary between the plant species 

being foraged. However, hesitancy to take-off independently of wind speed did. 

Increased hesitancy to take-off in increasing wind speeds occurred in a previous study on 

honey bees. However, this used artificial flowers with wind generated by fans (Hennessy et al 

2020). The current study is the first to show it occurs when bees are foraging on real flowers 

in natural wind. It is unclear why hesitancy increased with wind speed. However, when 

foraging, bees must make decisions on which flower to visit next, with variables such as 

nectar concentration (Hodges 1981, Williams 1997), predation risk (Dukas 2001, Jones and 

Dornhaus 2011) and local competition (Baude et al 2011, Balfour et al 2015, Wignall et al 

2020) all influencing flower choice. Research has shown that honey bees can also detect and 

use wind direction as a cue for foraging decisions (Ravi et al 2016). Bumble bees have also 

been found to complete more downwind flights in windier conditions (Comba 1999), 

showing that they can incorporate wind into their foraging choices. When making these 

decisions pollinators must trade-off speed and accuracy (Chittka et al 2009). More complex 

foraging decisions, such as choosing between two similar coloured flowers, often result in 

longer decision times (Chittka and Spaethe 2007). By waiting to take-off from a flower, 

perhaps more information on wind direction and speed can be obtained, potentially 

minimising the risk of being blown in the wrong direction. Future work could determine if 

there is a relationship between flight direction and wind direction in windy conditions. 

Temperature significantly decreased hesitancy duration for both bumble bees and honey bees. 

When in flight, both groups are able to maintain a higher body temperature compared to the 

ambient temperature through their flight metabolism (Heinrich 1974). When not in flight, 

such as when foraging from a flower, a bee’s body temperature will begin to reduce. In order 

to initiate take-off the thorax must be a certain temperature, which can be maintained when 

on a flower by shivering (Waddington 1990). When foraging in warmer temperatures, the 

time required to reach this thoracic take-off temperature is less, decreasing hesitancy duration 

(Heinrich 1974 and Waddington 1990). 
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Although the effects of wind speed did not differ between plant species, hesitancy to take-off 

independent of wind speed did (Fig 1b, Appendix F1). In other words, bees took longer to 

take off from some flowers more than others. Hesitancy to take-off differed between bee 

groups, with honey bees on average taking longer to take-off than bumble bees. However, the 

only two plant species where hesitancy to take-off was significantly different between the bee 

groups were E. vulgare and R. fruticosus, with bumble bees taking off faster than honey bees 

on both. Faster handling times by bumble bees has been seen in other plant systems (Free 

1968; Heinrich 1979; Willmer et al 1994; Balfour 2013). For example, Balfour et al (2013) 

found that bumble bees were 3 times faster on lavender (Lavandula sp.) compared to honey 

bees, this was in part due to their longer tongues allowing them to not have to place their 

heads as deep into the corolla tube, resulting in faster handling times. This difference in 

tongue length may explain why bumble bees had significantly lower hesitancy times on E. 

vulgare compared to honey bees in our study, as E. vulgare has a long corolla tube similar to 

lavender (Corbet 1978). The differences in hesitancy seen between the other plant species in 

our study are harder to explain. Many variables not examined have the potential to influence 

handling, and potentially hesitancy duration. For example, nectar concentration (Harder 1986, 

Waddington 1990), flower orientation and complexity (Laverty 1994, Giovanetti and Aronne 

2013, Wang et al 2014) and the shape of cells on the petal surface which provide grip 

(Whitney et al 2009, Alcorn et al 2012). Future work could examine floral traits and how 

these may influence take off hesitancy and why it varies between bumble bees and honey 

bees.   

We did examine flower movement in increasing wind and found that it significantly 

increased in relation to wind speed and varied across plant species. Flower movement has 

previously been found to be an attractive trait for pollinators, with moderately ‘wavy’ flowers 

attracting more pollinators than those which were stationary (Wolf & Zerrahn-Wolf 1937, 

Warren and James 2008). Hesitancy duration in relation to wind speed, perhaps surprisingly, 

did not differ between the bee groups. However, hesitancy in response to flower movement 

did. Bumble bee hesitancy duration increased more with flower movement when compared 

with honey bees (Fig 1c). The reason why there is a difference in response between the two 

bee groups is unclear. Plant species are known to have different flower surface structures, 

some providing better grip than others (Papiorek et al 2014), with foragers choosing species 

with better grip when flowers are moving (Alcorn et al 2012). Honey bees have highly 

complex tarsi, allowing a strong grip even on smooth surfaces (Brauer et al 2017). However, 
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bumble bees have small tarsal pads in comparison to their body size, making their grip less 

secure (Whitney et al 2009). This possible relationship between increased grip and flower 

structure may result in honey bees being less affected by flower movement compared to 

bumble bees. The effects of flower movement seen in this study must be taken with some 

caution. Increasing flower movement is correlated with increasing wind speed, meaning bees 

will rarely experience low wind speeds on fast moving flowers, making it hard to disentangle 

the effects of wind or the effects of movement. In Hennessy et al (2020), artificial flowers 

were moved in the absence of wind, with the hesitancy duration of foraging honey bees 

unaffected. This agrees with results seen in this current study. However, to fully disentangle 

the effects of wind speed and flower movement similar manipulation studies on natural plants 

is required.   

Wind is an environmental variable capable of influencing many aspects of the bee foraging 

process. Previous work has highlighted its impacts on flight mechanics (Ravi et al 2013, Crall 

et al 2017, Burnett 2020), flight orientation (Comba 1999, Riley et al 1999) and landing 

abilities (Chang 2016). This study has identified an aspect of natural bee foraging behaviour 

not previously recognised in nature, an increase in hesitancy to take-off with increasing wind 

speed. Why this hesitancy occurs, we cannot yet explain. However, considering foraging bees 

can visit up to 20 flowers a minute (Couvillon 2015) it has the potential to significantly 

reduce bee flower visit rate (Hennessy et al 2020) and therefore the energetic returns of a bee 

during a foraging bout. Both honey bees and bumble bees walk an energetic tight rope, with 

individuals using about half the energy of the nectar they gather purely for foraging (Balfour 

et al 2021). Honey bees often do not forage on days with high wind (Tuell and Isaacs 2010). 

This is most likely due to the decrease in flower visits when foraging in windy conditions 

(Hennessy et al in press, Hennessy et al 2020) potentially making foraging unprofitable. 

Honey bees and bumbles are important pollinator species, responsible for the pollination 

services of many crop and wild plant species (Klein et al 2007, Klein et al 2018). 

Understanding how pollinator species respond to changes in wind speed is potentially 

important, especially as wind speeds are predicted to increase (Zeng et al 2019). More work 

on a range of pollinator species is needed to fully understand not only how wind can 

influence individual foraging efficiency, but also potentially the pollinator community (Tuell 

and Isaacs 2010, Brittain et al 2013) and its implications for pollination services.  

For honey bees, it does not seem to be due to the indirect effects of wind causing an increase 

in flower movement, which was seen for nearly all plant species in this study. When averaged 
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across wind speeds, there were differences in take-off times between plant species, indicating 

that flower morphology can influence this behaviour independently of wind speed. Increased 

hesitancy and increasing wind speeds have the potential to influence the foraging efficiency 

of honey bees and bumble bees on a range of plant species. Future work could investigate 

what causes this increase in take-off time, whether it is seen in other pollinator species, and if 

plants located in particularly windy locations, such as along coasts, have adaptations to 

combat the influence of wind on visiting pollinators. 
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Chapter Nine: General Discussion 

9.1 Population estimates of two rare solitary bee species 

In Chapters Two and Three key information was identified on the foraging ecology and 

population sizes of two rare species of solitary bee, Anthophora retusa and Eucera 

longicornis. As both population size and the spatio-temporal changes in population size are 

some of the most important predictors in determining extinction risk, their accurate 

estimation is vital for conservation biology (Murray et al 2009). For A. retusa the population 

located at Seaford head is thought to be one of the strongest of the species in the UK 

(Edwards and Jenner 2008). However, prior to the estimates in Chapter Two there had been 

no quantitative assessments of the population. The results in Chapter Two indicate the male 

and female population was approximately 100 individuals in 2018, with an equal sex ratio, 

and a male population of 160 individuals in 2019. Low population sizes increase local 

extinction risk due both stochastic and human-mediated deterministic factors (e.g. habitat 

change, Frankham 2002). Low population sizes can also be of an increased risk to 

Hymenoptera due to their complementary sex determination system (Zayed and Packer 2005, 

Zayed 2009). In small populations the chances of matched matings, resulting in sterile males, 

is increased (Zayed 2009), which significantly increases a populations extinction risk. There 

was an increase in the estimated male population between 2018 and 2019. However, two 

years of data collection is not enough to gauge if the population is increasing in size. Due to 

natural variation in population growth, insect populations commonly experience large annual 

fluctuations (Schultz and Hammond 2003). Future work should continue to assess the size of 

the population to determine changes in trends, especially as the low population estimates 

obtained in Chapter Two indicate this population is at risk.  

The population estimates of Eucera longicornis at Gatwick were conducted at two 

aggregations, and unlike the A. retusa population the sex ratios were not equal in the final 

year of surveying. This is a surprising result, especially as the ratios were female biased. 

Sexual dimorphism is common in the Hymenoptera, with females generally being larger 

(Helms 1994), making them more costly to produce. When local resource availability is good, 

this can result in it being beneficial to produce the more costly sex (Kim 1999) due to females 

being able to allocate more resources to each individual offspring (Peterson et al 2006). The 

female bias seen with in the E. longicornis aggregations may be an indication of good quality 

resources located nearby to the aggregations.  
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Population estimates using techniques such as mark recapture are useful and are often used in 

studies on insects and other species (Saul 1987, Larsson and Franzén 2008, Cooper et al 

2015). However, they are highly time consuming and not always possible. Other appropriate 

methods include survey walks, which were found to be highly correlated to estimates 

obtained through mark recapture when used on a population of the solitary bee Andrena 

hattorfiana (Larsson and Franzén 2008). Continued monitoring of the E. longicornis 

populations is recommended to determine if the habitat management being put in place is 

effective.   

9.2 Foraging ecology  

The viability and extinction risk of a population is not only determined by the population 

size, but also by the quality of the habitat where it is found, along with the chances of 

immigration or emigration from other populations (Franzén and Nilsson 2009). To determine 

if a habitat is of suitable quality, the requirements of the species must be known. These 

include both nest and forage requirements. For A. retusa and E. longicornis, through surveys 

of both bees on flowers and through analysing pollen collected from females, a detailed 

account of forage requirements was obtained. Perhaps surprisingly, considering the rarity of 

the species, A. retusa was found to have a wide range of forage species, including the 

common Glechoma hederacea (ground ivy). It is often reported that species with a narrow 

diet breadth are more at risk of decline (Hofmann et al 2020). For example, in England 96 

bee species have been classed as threatened or vulnerable (Falk 1991), with 29 (30%) of these 

pollen specialists (Pekkarinen 1998). The rarity of A. retusa does not seem to be due to the 

narrow diet breadth. 

E. longicornis appears to be a species which does follow this pattern. Pollen analysis of 

returning females indicates the species has a narrow diet, predominantly consisting of species 

from the Fabaceae family. This is consistent with work on other E. longicornis populations 

(Saunders 2014), indicating it is not specific to the Gatwick aggregations. This narrow diet 

breadth may help explain the species’ general decline. Fabaceae species are common in 

flower rich grasslands, which are declining in the UK (Goulson et al 2005). Between early 

and late twentieth century, flower rich grasslands declined by more than 55% and were 

replaced with permanent grassland (Ollerton et al 2014). These changes in landscape 

management have resulted in both a reduction in the range of many of the pollen sources E. 

longicornis rely on, as well as their frequency at a more local scale. For example, L. 

https://link.springer.com/article/10.1007/s10841-020-00266-8#ref-CR39
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pratensis, a major pollen source for E. longicornis, reduced in frequency by 45% in the UK 

between 1978 and 1998 (Carvell et al 2006).  

However, being a specialist does not necessarily put you at risk of population or distribution 

decline. Colletes hederae, the ivy bee, has experienced a rapid range expansion across Europe 

since it was first identified as a species in 1991 (Dellicour et al 2014). In Chapter Four, C. 

hederae pollen samples were found to contain on average 98.5% of pollen from Hedera, ivy 

species, indicating it is highly specialised on the plant. Since its arrival in the UK in 2001, 

where it was first sighted in Dorset, C. hederae has spread as far north as Carlisle (NBN 

2020). The rapid expansion of this specialist bee highlights how if the resource you specialise 

on is common, then being a specialist does not necessarily increase the risk of decline. C. 

hederae also emerges in late autumn when competition from other pollinator species is 

reduced. In Chapter Four it was found to be the most common forager on ivy plants, being 

even more common than the eusocial honeybee. The species is also thought to have good 

dispersal abilities and a high reproductive rate (Bischoff et al 2005). 

Solitary bee species often have small foraging ranges, meaning they require a high density of 

resources per unit area (Cresswell et 2000). For A. retusa, although the exact foraging range 

could not be calculated, by using the locations of recapture events, an estimate of how far 

individuals travel during a foraging bout could be calculated. Most recaptures occurred 

within 30m, with an average distance of 122m. For E. longicornis, no marked individuals 

were caught when conducting surveys of the local habitat. However, an unmarked male was 

caught c. 500m away from the nearest aggregation. Both these distances indicate the 

importance of high-quality and abundant forage close to the nesting sites. For E. longicornis, 

both aggregations had a high abundance of Fabaceae species, their main pollen source, within 

100m of the nest aggregations throughout their flight season. An abundance of good quality 

forage near to the nesting site helps reduce the costs of foraging and therefore potentially 

increases reproductive output (Zurbuchen et al 2010b), perhaps helping to explain the high 

female sex bias seen in the aggregations.  

For A. retusa, the abundance of forage changed throughout its flight season. Most notably, G. 

hederae began to reduce, with species such as Iris foetidissima, stinking iris, and Echium 

vulgare, vipers bugloss, becoming more abundant. A. retusa would switch their foraging 

behaviour, foraging on the more abundant species. This was also seen in Chapter Four with 

https://link.springer.com/article/10.1007/s10841-020-00266-8#ref-CR11
https://link.springer.com/article/10.1007/s10841-020-00266-8#ref-CR67
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C. hederae. When ivy was not yet at its peak, females would collect pollen from other 

species. This shifting of foraging patterns is seen with many bee species (Ogilvie et al 2014).  

9.3 Explanations for changes in abundance 

The reasons for the decline of E. longicornis in the UK are most likely due to a reduction in 

habitat and the food plants which they specialise on. The expansion of C. hederae both in 

mainland Europe and the UK is most likely due to it foraging on a common and highly 

abundant plant species. So why is A. retusa so rare? The fact that A. retusa are flexible in 

their foraging habits indicates that perhaps nesting requirements are a limiting factor to their 

distribution. Some solitary bee species require specific nesting requirements, such as certain 

materials or substrates (Franzén et al 2007). Although the exact nest site of A. retusa at 

Seaford Head was not determined, it is most likely that they are nesting in the loess deposits 

on the cliff face (Edwards and Jenner 2008, Horsley et al 2013). There is little information on 

where they nest in the other sites where they are found. However, many of the remaining 

populations are coastal, with access to chalk cliffs. More research is required on their nesting 

requirements to determine the impact this may be having on their distribution.   

Although studying individual populations of a species is important to contribute to the 

general knowledge of a species distribution, abundance and behaviour, there are limitations to 

the methods used in this thesis. By focussing on a single population of a species, conclusions 

regarding how the local habitat may influence aspects of behaviour, such as foraging, cannot 

be made. As is seen with C. hederae both in Chapter Four in this thesis and in previous 

studies (Teppner & Brosch 2015) local floral availability can influence the foraging habits of 

bee species. As mentioned previously, details on nesting characteristics can also not be 

determined from only studying individuals in one location.  However, detailed information on 

population size can be, which may not be possible if multiple sites are studied. For A. retusa 

and E. longicornis, where studies on the species in the UK are rare, even single population 

studies are important as they widen our limited knowledge both on the abundance of the 

species, but also their forage and habitat requirements.  

9.4 Effects of wind on foraging ecology 

Chapters Two through Four provide valuable information on two rare and one common 

species of solitary bee. They highlight the importance of effective monitoring of populations 

and identifying the requirements of species to aid in conservation. However, not only is 

identifying habitat and forage requirements important for conservation, but also 

https://link.springer.com/article/10.1007/s10841-020-00272-w#ref-CR16
https://link.springer.com/article/10.1007/s10841-020-00272-w#ref-CR41
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understanding the foraging behaviour of species and how this can be influenced by the 

environment. Many environmental factors are known to influence both the distribution 

(Classen et al 2015, Kerr et al 2015) and behaviour (Vicens and Bosch 2000, Peat and 

Goulson 2005, Kuppler et al 2021) of bee species. Global wind speeds are currently 

increasing (Zeng et al 2019), and extreme weather events, including storms, are predicted to 

increase in frequency (Mirza 2003). Because of this changing climate, understanding how 

these extreme events may impact bees, such as by studying the impacts of wind speed on 

their foraging behaviour, is becoming more important for their conservation. 

9.5 Hesitancy to take off 

Previous work has shown that with increasing winds one often sees a reduction in honeybee 

foraging (Vicens and Bosch 2000, Tuell and Issacs 2010, Brittain 2013). However, studies 

examining how wind influences the foraging efficiency of bees, perhaps explaining why this 

reduction is seen, are few.  

Increasing wind was found to significantly reduce the number of flower visits of foraging 

honeybee workers both when foraging on artificial flowers (Chapter Five) and on real flowers 

in the field (Chapters Six and Seven). Chapter Five identified the cause for this reduction; 

bees were more hesitant to take off from a flower in higher wind speeds, resulting in longer 

handling times. This is the first time the idea of ‘hesitancy’ has been identified in foraging 

bees. Previous work has shown how wind is able to alter flight mechanics and decisions made 

during flight. For example, Burnett et al (2020) showed that honeybees will fly faster towards 

moving obstacles when travelling in windy conditions, whereas they will slow down when 

flying in still air. Work studying how wind influences take off in insects is limited, often 

examining it in relation to migration events (Chapman et al 2015), or how to improve the 

take-off abilities of micro aerial vehicles (Nguyen et al 2016). The work in Chapter Five was 

completed on artificial flowers, which poses the question, does hesitancy to take off occur in 

nature? The results in Chapter Eight suggest it does, with hesitancy to take off increasing 

with wind speed for both honeybees and bumblebees when foraging on a range of plant 

species. The response of honeybees and bumblebees to increasing wind did not differ. This is 

perhaps surprising given the results in Chapter Seven, where increasing wind speed caused an 

increase in handling time for honeybees foraging on lavender, but no effect on bumblebees. 

This may be due to the wind speeds experienced in Chapter Seven, which only reached a 

maximum speed of 3.56ms-1, compared to 6.5ms-1 in Chapter Eight. Perhaps, due to 
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bumblebee species’ larger size, it requires higher wind speeds for effects to be seen (Hunter 

2007).  

In Chapter Five, the increase in hesitancy resulted in a reduction in flower visitation rate. 

This reduction in flower visits potentially reduces the amount of nectar an individual bee can 

collect in a given unit of time. Bees make foraging decisions based on profitability (Cnaani et 

al 2006, Balfour et al 2021), so this reduction in flower visits may help explain why 

honeybees tend not to forage in high winds speeds. Again, however, this reduction was seen 

when honeybees were foraging on artificial flowers. Would the same result be true in nature 

on real flowers? When foraging on lavender and marjoram honeybee handling time per 

flower significantly increased with increasing wind speed and this increase resulted in a 

significant reduction in flower visitation rate. Handling time per flower included all 

behaviours which occur on the flower (take off, collecting pollen or nectar as well as walking 

between flowers). Hesitancy to take off appears to be an important component of the foraging 

process, capable of significantly influencing the foraging efficiency of bees.   

9.6 Indirect effects of wind 

When comparing honeybees foraging on lavender and marjoram, flower visit rate 

significantly decreased with increasing wind speed for both species. However, there was a 

difference in the extent of the reduction. Independently of wind speed, differences in flower 

morphology are capable of influencing visitation rate; for example, the length of the corolla 

tube (Inouye 1980, Balfour et al 2013), nectar concentration (Mallinger and Prasifka 2017) 

and flower density (Ohashi and Yahara 2002). However, how these variables interact with 

wind to influence foraging efficiency is unknown. Not only is wind capable of influencing 

foraging behaviour directly, but also indirectly via the movement of flowers. In Chapter Five 

the direct and indirect effects of wind were separated, with flower movement found to have 

no significant effect on flower visitation rate. This result suggests that when working 

independently, wind speed has more of an impact on foraging rate than flower movement. 

However, in nature it is unlikely a bee would experience one without the other. Therefore, 

how does the interaction between flower movement and wind influence foraging behaviour? 

The extent of movement is dependent on the plant species due to differing plant morphology 

(Chapters Six and Eight, Yamazaki 2011, Warren and James 2008). For example, in Chapter 

Eight the plant species which was found to move the most in wind was Jacobaea vulgaris 

(ragwort), most likely due to its long stems and top-heavy flowers. Lavender flowers were 
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also found to move more with increasing wind speed compared to marjoram, and when 

examining the effects of this flower movement it was found to not influence flower visitation 

rate. Previous studies examining flower movement, and its effects on insect foraging 

behaviour, have found it can be beneficial, both in relation to the insect and the plant. For 

example, increased leaf movement is thought to be beneficial by reducing herbivory and 

damage by pathogens (Yamazaki 2011 and Warren 2015). For insects, moderate flower 

mobility has been found to attract more pollinators compared to less mobile flowers or those 

with high mobility (Warren and James 2008). This increased attraction may be due to moving 

flowers being easier to detect, with honeybees previously shown to choose moving artificial 

flowers verses stationary ones (Wolf & Zerrahn-Wolf 1937). When foraging on moving 

artificial flowers, in Chapter Five, honeybees did spend less time searching for the nectary 

once they had landed. This may have been due to increased landing accuracy on mobile vs 

stationary flowers, as has been seen with bumblebees (Kapustjansky et al 2010).  

Natural flower movement in wind was also found not to influence hesitancy to take off in 

honeybees and bumblebees. However, bumblebees’ hesitancy did increase more with 

increasing flower movement when compared with honeybees (Chapter Eight). This 

difference in response between bumblebees and honeybees, in relation to flower movement, 

may be due to their abilities to grip. Both bumblebees and honeybee have tarsal claws which 

aid in gripping to surfaces. Due to bumblebees’ larger body size, they have blunter claws, 

which provide less grip compared to those of a honeybee (Pattrick 2018). The difficulties in 

gripping onto a flower surface can alter flower choice in bumblebees. Foraging Bombus 

terrestris were shown to choose flowers with conical shaped cells on their surface, which 

provide better grip, over flowers with smoother surfaces when flowers were moving 

(Whitney et al 2009), indicating lack of grip is potentially detrimental to foraging efficiency.  

9.7 Future research ideas 

This thesis has attempted to increase our understanding of wind and how it influences the 

foraging behaviour and ability of honeybees and bumblebees. It is an environmental variable 

highly capable of not only influencing flight mechanics (Pinzauti 1986, Comba 1999, Crall et 

al 2017, Ravi et al 2013) but also their foraging behaviour and efficiency. Considering that 

wind speeds are projected to increase, more work is needed to fully understand the complex 

interactions between pollinators, wind, and plants. Future work could address flower 

morphology, such as the structure of petals, and how this influences species abilities to forage 
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in windy conditions. Work on how other pollinator species respond to wind is also needed, as 

their responses could be very different. Some species continue to forage in windy conditions, 

even once honeybees have stopped (Brittain et al 2013). This reduction in honeybees has 

been found to influence the foraging behaviour of the still present other species (Tuell and 

Issac 2010, Brittain et al 2013) perhaps due to a release of competition as honeybees and 

bumblebees are capable of outcompeting solitary bee species (Wignall et al 2020). 

Understanding how wind, and other environmental variables, influence the pollinator 

community is an area of research worth investigating.  

Conclusion 

This thesis has contributed novel knowledge on the foraging ecology of three solitary bee 

species along with how an understudied environmental variable, wind, influences foraging 

behaviour of both honey bees and bumble bees. Information from the studies on A. retusa and 

E. longicornis are currently being used by landowners to ensure their land is managed in such 

a way as to help conserve the populations of these species located on their property. Chapter 

Four is the first study of C. hederae and its foraging ecology in England and provides 

important information regarding a non-native species and its potential interactions with our 

native pollinators. Although less directly linked with conservation, understanding how our 

bee species’ foraging may be influenced by wind is becoming more important with future 

climate predictions of increasing wind speeds and storm events, with work from this thesis 

identifying the novel behaviour of hesitancy to take off in wind. The work from this thesis 

has contributed novel research and findings both to the area of solitary bee conservation and 

to bee foraging behaviour and ecology.  
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Appendix A- Stinging risk and sting pain of the Ivy bee, Colletes hederae 

A1.1 Abstract 

The ivy bee, Colletes hederae was first detected in Britain in 2001 and is now abundant in 

many locations. Ivy bee ground nesting aggregations can occur in public areas and cause 

concern about stinging risk. Here we assess that risk. The likelihood of being stung or 

collided with when in an active aggregation was low, with only 1 sting in 10 hours of activity 

(standing, walking, “gardening”) by a human subject. Collisions were low at 6 per hour. The 

ivy bee sting is frequently unable to penetrate human skin. Only half were able to sting the 

fingertips and 75% the inner forearm when a bee was held against these areas. Pain was 

scored using a modified Starr/Schmidt scale. Ivy bee stings were significantly less painful 
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than those of honey bee workers Apis mellifera, with similar scores to a nettle sting, Urtica 

dioica. Pain subsided after 10 minutes with weals smaller than both honey bees and nettles. 

The ivy bee venom sac was c. 39% the volume of that of a worker a honey bee. The sting is 

similar in size to the worker honey bee sting and barbs could not be seen at 35X 

magnification. We conclude that the ivy bee is not a danger to the public. They rarely sting 

people active in a nest aggregation area, have a sting that is frequently unable to penetrate 

human skin and that causes minimal pain for a short duration, comparable to that of a nettle 

sting. Nettle stings are generally considered to be annoying and unpleasant, but not 

dangerous. 
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A1.2 Introduction  

Female Aculeata, bees, wasps and ants in the order Hymenoptera, possess a sting (Branstetter 

et al. 2017), although in some groups such as the Formicinae ants (Blum & Hermann 1978) 

and Meliponini bees (Kerr & Lello 1962, Shackleton et al 2015) the sting has been 

evolutionarily lost. Males do not have a sting, as it is part of the female reproductive system 

(Van Marle & Piek 1986). The stings of female Hymenoptera vary widely in the pain they 

cause to humans. Starr (1985) and Schmidt et al (1984) categorized sting pain on a scale from 

0 to 4. The sting of the honey bee, Apis mellifera, is given a score of 2, or “painful”. The 

honey bee is a common insect and, from personal experience, many people know that its 

sting can cause considerable pain. Similarly, yellowjacket wasps and European hornets score 

2. A score of 4 is “traumatically painful”, with three species noted: the bullet ant Paraponera 

clavata, the social wasp Synoeca septentrionalis and the tarantula hawk wasp Pepsis formosa. 

A score of zero is “no penetration” and a score of 1 is “so slight as to constitute no real 

deterrent”. The ranking of sting pain has been continued by Schmidt, who developed the 

well-known Schmidt Sting Pain Index (1990, 2016). 

The ivy bee, Colletes hederae, is a ground nesting solitary bee that was only identified as a 

distinct species in 1993 from individuals caught in Germany and Croatia (Bischoff et al 

2005). It recently colonized Britain from continental Europe with the first record in 2001 

from Langton Matravers, Dorset (Roberts & Vereecken 2010), a few kilometres from the 

south coast. An ongoing mapping project by the UK interest group BWARS (Bees, Wasps & 

Ants Recording Society) showed that by 2017 there were many records from the southern 

third of Britain, with some as far north as the Yorkshire and Lancashire coasts, 400 km from 

the first record (BWARS 2018). 

The ivy bee can be very common at British sites and in other European countries (Kuhlmann 

2018) with individuals forming large nesting aggregations both in Britain and continental 

European populations (Bischoff et al 2005, Falk & Lewington 2015, BWARS 2018; Fig 1a, 

Fig1e; see Results). In the UK, ivy bees are on the wing from August to November, but most 

abundant in September and early October (personal observations). Ivy bees can frequently be 

seen foraging on ivy flowers alongside honey bees and many other insects (Fig 1a-c) 

(Garbuzov & Ratnieks 2014), where they probably go unrecognized by the general public as 

a distinct species. However, their aggregations of ground nests can be noticeable and even 

alarming due to the large numbers of bees seen “swarming” above the nests. These include 
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females leaving and returning from foraging trips and also many males flying just above 

ground level and on the ground searching and grappling for mates. The nests, with entrance 

holes and small piles of excavated soil, can also be conspicuous (Fig 1f). Although there are 

many species of ground-nesting bees in Britain (Falk & Lewington 2015), having large 

numbers of ground nesting bees active in autumn is a new phenomenon. This has resulted in 

members of the public becoming concerned for their safety and that of their children and 

contacting pest control officers of local councils and local grounds keepers (personal 

communication from  Mr. Joseph Arnold, Animal Control Officer, Lewes District Council 

and East Sussex and Horstead Garden Services, East Sussex) sometimes with demands for 

control or elimination. The ivy bee is approximately the same size as the honey bee, and quite 

similar in colour. This can also result in the neighbours of beekeepers commenting that some 

of the beekeeper’s bees have moved into their garden, and would they like them returned 

(FR, personal observation). 

Is the sting of the ivy bee a danger to the public? The BWARS website notes that although 

female ivy bees can sting they do not sting people and that “C. hederae is all but completely 

safe with children and pets”. Given that there is some public concern, here we systematically 

asses the danger. First, we quantified the rate at which a person present in an active nest 

aggregation is stung or bumped into by ivy bees. Second, we determined the ability of the ivy 

bee sting to penetrate human skin. Third we quantified the pain caused by the sting and the 

duration and size of the weal or swelling caused and how these compared to stings of worker 

honey bees and stinging nettles (Urtica dioica). Stinging nettles are common in the UK. Most 

people have first-hand experience of being stung by them. As the nettle sting is considered 

more annoying than painful and is not a safety issue, it is a useful benchmark for an 

innocuous sting whereas the honey bee  representing a painful sting. In addition, we 

compared the size of the sting and venom sac of ivy and honey bees as a step in identifying 

any morphological factors that may influence sting penetration and pain. 

 

A1.3 Methods 

A.3.1 Aggression within nest aggregations 

Two nest aggregations were studied in detail. Aggregation 1 was found in a garden in the 

village of Falmer, Sussex, close to the University of Sussex campus (Fig 1e). Aggregation 2 

was smaller and on the University of Sussex campus (US Arts). Due to its larger size and 
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higher density of nests (Table 1), more time was allocated to aggregation 1 in determining the 

potential danger of being stung by ivy bees. 

In aggregation 1, three 3 x 3m squares with nests at densities typical for the aggregation were 

studied. In the smaller aggregation 2, two 3 x 3m squares were studied. Within each square 

the number of nests was determined by counting the entrance holes/soil excavation piles. A 

square was then allocated to either “standing” or “walking” for 20 minute periods. In 

aggregation 1 a third activity, “gardening” was also made. Standing consisted of an observer 

standing still in one square but moving to a new part every 5 minutes. Walking was 

continuous around a square at a normal speed. For gardening the observer was on their knees, 

patting the grass and mimicking certain gardening behaviours. As ivy bee aggregations can 

occur in flower beds, lawns, and beside foot paths (Fig1e -f), these three activities were 

intended to mimic what people could be doing within them.  

Every five minutes the number of flying bees was estimated by swiping an insect net twice 

across the whole square at close to ground level, where the bees were most abundant. The 

captured bees were then counted, sexed and released. Throughout each 20 minute period the 

number of times a bee collided with the head or body of the observer, or if the observer was 

stung, were recorded. The number of collisions and stings were also measured with the 

observer standing just outside the aggregation, 1-2 meters from the last nest on that side of 

the aggregation. Here data were collected in 30 minute periods for a total of two hours. Data 

were collected in good weather, when bee flight activity was occurring (temperatures> 15°C, 

sunny, little or no wind,10:30-16:00, 27 September to 15 October 2018). 

A1.3.2 Sting penetration: fingertip and inner forearm  

Data on sting penetration were collected on 9 October, 2015. Female ivy bees foraging on ivy 

flowers on the University of Sussex campus and in the neighbouring village of Falmer were 

captured. Each of the three observers (FR, KS & NB) then held, for approximately 20 

seconds, one bee between thumb and index finger in such a way that the bee could flex its 

abdomen to sting, or attempt to sting, a fingertip. We observed whether the bee everted her 

sting and if the sting was able to penetrate the flesh. The bee, still held between thumb and 

finger, was then placed in contact with the skin of the inner forearm, which is generally softer 

but less pain sensitive than the fingers (Smith 2014), for 20 seconds, and the sting test 

repeated. Due to the lack of aggression from ivy bees, stings had to be induced by directly 

holding an individual against the skin. 
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A1.3.3 Sting effect: pain level and weal size 

In 2018 the pain of ivy bee, honey bee and nettle stings were scored using a modified 

Starr/Schmidt scale (Starr 1985, Schmidt 1990); 2: the pain of a typical honey bee sting; 1.5: 

less painful but still definitely painful; 1: borderline between painful and an irritable or mildly 

unpleasant sensation; 0.5: can be felt as irritating, but definitely not painful; 0.25: borderline 

between able to feel something versus nothing; 0: no sensation. Although given numbers, 

these pain levels are categorical, not numerical. The size and duration of any weals caused 

were also measured.  Pairs (n=7) of ivy bee and honey bee stings were administered to a 

single subject (FR) by a second person (GH) with one sting on each inner forearm within 2 

minutes. 

The order of sting presentation was randomised. The subject was blind to the species of bee 

that was stinging each forearm for the initial observation (0 minutes). The subject however 

was not blind at later observations because the effects of honey bee and ivy bee sings are very 

different. Bees were collected immediately before (<5 minutes) stinging at nest entrances 

from a nearby aggregation or from the entrance of a hive at the laboratory. This ensured that 

only older honey bees with a full venom reservoir were used (Nouvian et al 2016).  

To administer an ivy bee sting, the bee was held between thumb and index finger and the 

abdomen pressed gently against the subject’s forearm for 20seconds. This generally resulted 

in the bee stinging, sometimes making several closely spaced venom injections. In a few 

cases a bee did not sting, so a second bee was used. The process for administering honey bee 

stings was similar. When a honey bee stung the subject, the detached sting apparatus was left 

in the arm for 20 seconds before being scraped away. The subject’s reaction (pain, and weal 

size) was recorded at intervals (0, 2 ,5 ,10, 30, 60 minutes and 3, 6, 12, 24 hours). The weal 

was defined as the area surrounding the sting site where there was swelling or reddening of 

the skin or both. The length and width of this area was measured to 1mm using a ruler. One 

pair of stings was administered per day, except for one occasion where one round was 

administered in the morning and another three hours later. In this case distinct areas of the 

forearm were used.  

Nettle stings were administered to two subjects (GH & FR) from stinging nettle plants, 

Urtica dioica, found locally. This allowed comparison between pain from ivy bee stings to a 

very common sting that almost everyone in the UK experiences because nettle plants are very 

widespread and abundant. Nettle stings are generally considered to be non-harmful and both 
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adults and children are often stung. A small piece of stem or leaf with stinging hairs was cut 

from a freshly picked nettle stem. This was rubbed on the forearm of the subject in such a 

way as to ensure only a single sting was administered, although in one trial two stings 

occurred. In this case, only one of the weals was used for measurements. Stings were applied 

to both forearms on three days per subject. Pain and weal size were recorded as with the bee 

stings. The area of the weal was not always circular, so was approximated to an ellipse 

(length/2*width/2)*π.  

All subjects used to investigate sting penetration and pain gave written consent to be used in 

the study. Due to all subjects being authors of the paper ethical approval was not sought.  

A1.3.4 Sting size: comparing ivy bee and honey bee 

To quantify sting length and venom sac size females were collected from nest or hive 

entrances and dissected on the collection day. Each bee was pinned under water, ventral side 

up for honey bees and dorsal side up for ivy bees, to assist removing the sting and observing 

the venom sac in situ in the ivy bee. The following morphological measurements were made: 

sting length, base of sting width, middle of sting width, length and width of the venom sac. 

The volume of the venom sac was calculated as 4/3π x (length/2) x (width/2)2 as venom sacs 

were roughly spheroid in shape. We used a Euromex Steroblue dissection microscope fitted 

with an eye piece reticule (sensitvity±0.007mm). 

To compare body sizes, female ivy bees and worker honey bees foraging on ivy were 

captured, placed in a vial and weighed in the field using a GEM20 smart weight scale, 

sensitivity 0.001g. 

A1.3.5 Statistics 

To determine if the number of collisions per bee (collisions divided by the total number of 

bees caught per five-minute sweep) was significantly different between activities, a general 

linear model with a Tweedie distribution was used to control for zero inflation of the data. To 

compare sting lengths a t-test was used. To compare the width of the base of the stinger and 

venom sac volume Mann-Whitney U tests were used as the data were not normally 

distributed. Comparisons between ivy bee, honey bee and nettle sting pain and weal area 

were made using Mann-Whitney U tests at 0, 10, 30 and 60 minutes and 3, 12 and 24 hours 

after stinging. Bee weights were compared using a t-test. All statistical tests were completed 

in R 3.5.1 (R core team 2017).  
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Fig 1: a) female ivy bee, b) male ivy bee, c)  honey bee, all foraging on ivy, d) BWARS 2017 

distribution map of the ivy bee in Britain, e) Aggregation 1,Falmer, the largest of the 

aggregations studied and in the lawn of a village house, f) noticeable excavation  produced by 

nesting ivy bees in a flower bed 

 

A1.4 Results 

A1.4.1 Description of aggregations 

Aggregation 1 was 350m2 with an estimated 4000 nests, c. 12 per m2. Aggregation 2 was 

64m2 with an estimated 120 nests at 2 nests per m2. Ivy bee activity was highest at 

aggregation 1, with an average of 19 bees per swiping, versus only 3 at aggregation 2 (Table 

1). 

 

 



189 
 

Table 1: Estimated numbers of nests for the 3 study aggregations on or near to the University 

of Sussex campus (US). Also shown are total bees caught over the entire study period for the 

two main aggregations and the percentage of females and males. The mean number is from 

the 5 swipe nettings (n=155) made every 5 minutes during all observer activities at the 

aggregation. 

 

A1.4.2 Risk of being stung whilst in an aggregation when bees were active 

The observer was only stung once while carrying out the walking activity, across all 3 

activities for 10 hours in total. Figure 2 shows that the number of collisions was low, with an 

average across activities of 0.02 per bee, or 6 bees per hour across both aggregations 

combined and 8 per hour in aggregation 1, the larger aggregation. There was no significant 

difference between the different activities and how often a collision occurred per bee 

(General linear model, F(2,152)=2.73, P=0.07; Fig 2). No collisions occurred when the observer 

stood 1m outside aggregation 1 for a total of 2 hours. 

Aggregation Size 

(m2) 

Estimated 

number 

of nests 

Total females 

(%) 

Total 

males (%) 

Mean 

number 

females 

per 

swiping 

Mean 

number 

males per 

swiping 

1-Falmer 350 4,150 2330 (85%) 400 (15%) 16.1 2.8 

2-US Arts 64 115 167 (97%) 5 (3%) 3.3 0.1 

3-US Lab 21 43 - - - - 
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Fig 2: Number of collisions with human observer in the aggregation per number of bees 

active (calculated as number of collisions divided by the total number of bees caught in the 

swipe nettings). Data combined for both collisions to observer head and body across both 

aggregations (Falmer and US Arts) are shown (number of 5 minute observation periods=155) 

 

A1.4.3 Sting penetration   

In the 2015 tests, almost all ivy bees held between thumb and finger everted their sting 

(31/32, 97%), but only half were able to penetrate the fingertip skin (16/31, 52%) and sting. 

There were differences among the 3 observers in the number of bees able to penetrate 

(Observer FR 1/12; KS 7/10; NB 8/10). Fisher’s Exact Tests with Bonferroni correction 

shows that FR was stung less often than either KS (p = 0.0186) or NB (p = 0.0045), but that 

KS and NB were stung equally (p = 1).  For stings to the forearm, observer FR was again 

stung less (6/10), but not significantly less than either KS (9/10) or NB (8/10) (total 23/30, 

77%, Fisher’s exact test with Bonferroni correction p=0.430).    

A1.4.4 Sting pain 

Direct comparisons of honey bee and ivy bee sting pain indicate that the initial pain level of a 

honey bee sting is significantly higher than an ivy bee (Mann Whitney U, p= 0.001, 
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dcohen=2.87). All honey bee stings scored 2 on the modified Schmidt/Starr pain scale 

compared to 1 or less for ivy bees (Fig 3a-b). Honey bee stings were significantly more 

painful than ivy bee stings for up to three hours (Mann Whitney U, 10 minutes p=0.004, 

dcohen= 1.96, 30 minutes p=0.001, dcohen=2.87, 3 hours p=0.001, dcohen=2.87) but not for longer 

durations (Mann Whitney U, 12 hours p=0.48, dcohen= 0.03, 24 hours p=0.35, dcohen=0.20). 

Nettle sting pain and weal size were not significantly different between the two subjects (t. 

test, t(98)=1.25, p=0.215, dcohen=0.263, t(98)=0.172, p=0.864, dcohen=0.394) and so were 

combined. There was no difference in pain score for ivy bee and nettle stings at any time 

point (Fig3c, Mann Whitney U, 0 minutes p=0.448, dcohen=0.130, 10 minutes p=0.433, 

dcohen=0.078, 30 minutes p=0.248, dcohen=0.316 3, 12 and 24 hours p=0.484, dcohen=0.212) 

with all stings of both species being scored 0 at 12 and 24 hours.  

Weal size was significantly larger for the honey bee compared to the ivy bee for the first 12 

hours (Mann Whitney U 10 minutes p=0.001 dcohen=1.25, 30, 60 minutes and 3 hours p= 

0.001, dcohen=2.87 and 12 hours p=0.03, dcohen=1.13). Nettle stings also caused larger weals 

than ivy bee stings for the first 3 hours (Mann Whitney U 10 minutes p=0.023, dcohen=1.026, 

30 minutes p= 0.005, dcohen=1.43, 3 hours p=0.011, dcohen=1.23, 12 hours p= 0.075, 

dcohen=0.70). Ivy bee stings caused the least amount of red, on average, across all time periods 

(2.73mm2) followed by stinging nettle (31.2mm2) with both much less than honey bee 

(1053.6mm2). For honey bee stings, weal area was greatest three hours after stinging 

(1638mm2). Weals reached an average  
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maximum of 11.72mm2 for the ivy bee 10 minutes after stinging. The maximum average for 

the common nettle was at 30 minutes, 96.4mm2.  

Fig 3: Sting pain duration starting with the initial sting and continuing for 24 hours. Scores 

were made using a modified Schmidt/Starr pain scale and are categorical (categories are 2, 

1.5, 1, 0.5, 0.25, 0) Lines display median pain rank through time. Size of circle relates to 

number of stings. Significances are reported in text. 
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Fig 4: Weal area caused by a sting for the three study species. Standard error bars are shown. 

Significances are reported in text 

 

A1.4.5 Comparison of sting morphology  

A total of 10 honey bees and 14 ivy bees were dissected. Ivy bee stingers were significantly 

longer (mean=2.45± 0.08 mm) than those of worker honey bees (mean=2.06 0±0.04 mm) (t. 

test, t(22)=-3.97, p=0.0006, dcohen=1.74, Fig 5a) but narrower at the base (Wilcoxon signed 

rank, W=79.5, p=0.002, dcohen=2.99 ). There was no difference in the middle width of stings 

between the two species (t. test, t(22)= -1.63, p=0.12, dcohen=0.47). Honey bee stings have 

easily visible barbs at the tip (Fig6c), whereas any barbs present on the ivy bee sting were not 

visible at 35x magnification. The ivy bee sting is curved (Fig6d). Honey bee venom sacs 

were 89% larger than ivy bees (honey bee x̅= 0.886mm3±0.112, ivy bee x̅=0.342mm3±0.156), 

a significant difference (Wilcoxon signed rank, W=80, p=0.003, dcohen=1.31, Fig 5c).  When 

dissecting out honey bee venom sacs they would easily leave the body along with the sting 

due to autotomy (Fig6a). Ivy bee venom sacs did not (Fig6b) and when removed were easily 
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broken. Foraging ivy bee females were significantly heavier than foraging worker honey bees 

(x̅ =116.7 ±3.37mg versus x̅=87.8 ± 2.32mg, t test, t23=-6.33, p<0.0001 dcohen=2.72).   

Fig 5: Morphometric parameters of the ivy bee and honey bee stings; a) length of sting from 

base to tip, b) width of base of sting, c) volume of venom sac. Whiskers indicate 1.5x IQR                           
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Fig 6: Images of the stinging apparatus for honey bee workers and ivy bee. a) the honey bee 

venom sac attached to the sting, b) the venom sac for the ivy bee, still located inside the 

body, c) the barbed honey bee sting and d) the longer and more curved sting of the ivy bee 

 

A1.5. Discussion 

Our results clearly show that the ivy bee poses little risk to the public. Being stung is rare and 

the sting will often not penetrate human skin. If it does, the pain is minimal, much less than 

that of a honey bee sting and similar to that of a stinging nettle. The weal produced is also 

small, even slightly smaller than from a nettle sting.  

 When a person carried out activities within an ivy bee aggregation, collisions with 

flying bees were infrequent. Even in the largest study aggregation, with an estimated 4000 

nests, only eight collisions occurred per hour. These collisions appeared to be accidental, not 

aggressive, in contrast to the actively aggressive defensive behaviours exhibited by honey 

bees near their nests or hives. When defending their colony honey bees are well known for 

flying towards an intruder, often buzzing around the head and purposefully making physical 

contact (Collins and Kubasec 1982). Activity type (walking, standing, gardening) did not 

significantly affect the likelihood of a collision, indicating that increasing observer activity 
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levels (e.g. standing<walking) does not affect ivy bee defensive behaviour, nor does it appear 

to increase incidental collision rate.   

Being stung was even less frequent, with the observer receiving only one sting in the 10 

hours spent within the aggregations. Again, this is much less than for honey bees, with one 

study showing that within 30 seconds of a synthetic alarm pheromone being released adjacent 

to a hive, honey bees had stung the intruder a total of 10 times (Collins et al 1982).  

 Even when clearly attempting to sting, by curving the abdomen and everting the stinger, ivy 

bee stings have a limited ability to penetrate human skin. Most tested bees, 97%, attempted to 

sting when held between finger and thumb but only 51% of attempts were successful in 

penetrating fingertip skin. When stinging the inner forearm individual ivy bees were more 

successful, with 75% of these resulting in a sting, perhaps due to the skin being thinner and 

therefore easier to penetrate (Fruhstorfer et al 2000, Sandby-Moller et al 2003). Honey bee 

workers would sting immediately and were always successful. When ivy bees were placed 

against a forearm they took longer to deliver a sting than honey bees. Often, they would miss 

due to having to curl the body, potentially to increase the penetration power (Herman 1971, 

Hermann & Gonzalez 1986).  

When directly comparing ivy bee to honey bee stings, ivy bee stings were always ranked as 

significantly less painful, even though the subject (FR) has been stung 10-20 thousand times 

by honey bee during bee keeping activities but had never been stung by an ivy bee prior to 

this investigation. As such, the subject was almost certainly less sensitive to honey bee stings 

than non-beekeepers, which reinforces the fact that he reported honey bee stings as more 

painful. The pain from an ivy bee sting always lasted less than 10 minutes and only resulted 

in a small weal. Honey bee stings resulted in weals almost 400 times larger in area when 

averaged over the 24 hour time period (Fig 4, Fig S1). The pain caused by an ivy bee sting 

was very similar to that of a stinging nettle (Fig 3a) but resulted in a weal approximately 12 

times smaller (Fig 4). As stinging nettles are not considered to be a danger to the public, the 

same attitude should probably be adopted for ivy bees. 

How does the ivy bee sting compare to other solitary bees? Schmidt 2016 tested and ranked 

the pain of eight solitary bee species, with most ranking 0.5-1.5, except for two Xylocopa bee 

species, which are as large as bumblebees, ranking 2 and 2.5  The ivy bee, with its initial 

sting pain never being ranked above 1 (Fig3b), follows the trend of solitary bee species stings 

generally being less painful than honey bees. This suggests that the honey bee sting is more 
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painful because it is used in nest deference against large enemies including vertebrates. 

Solitary bee nests are probably not often consumed by vertebrate predators, which are the 

main target for defensive invertebrate stings, (Herman 1971, Schmidt 2014) as they lack large 

food reserves.  

The lack of requirement for an effective defensive sting may also be a contributing factor in 

the morphological differences between ivy bee and honey bee stings. Venom sac volume was 

only 39% of the honey bee workers, despite female ivy bees being 20% heavier. The average 

area of ivy bee induced weals over the 24 hours after stinging was only 0.26% of the from 

honey bee stings, suggesting that perhaps ivy bee venom is not as potent as honey bee venom, 

or that the entire contents of the venom sac are not injected. Honey bees release 

approximately 90% of their venom sac within 20 seconds of stinging (Schumacher et al 1994) 

and the entire sting apparatus becomes detached through autotomy, resulting in the bee’s 

death. This is not the case with ivy bees, meaning they are able to sting multiple times. This 

ability to sting more than once may also result in less venom injected per sting, as has been 

reported in Vespidae wasps (Bilo 2005).  

Although the pain from an ivy bee sting is low, there is still the potential for an allergic 

reaction, however no known allergic reaction to an ivy bee sting has been reported so far. For 

an allergy to manifest an individual must first be sensitised to the venom via exposure (Galli 

et al 2008). Our study shows that being stung once is a rare occurrence, indicating a very low 

risk of being stung twice. Cross over in allergic response to different insect species does 

occur, for example between honey bees and bumblebees (Stapel & Raadt 1998). However, 

these groups are more closely related phylogenetically, suggesting a greater possible overlap 

in venom composition and allergic cross over response (Kazuma et al 2017; Rybak-

Chmielewska & Szczêsna 2004), more than would be expected with the more distantly 

related ivy bee (Branstetter et al 2017).  

Overall our results are reassuring in terms of public safety. It would seem that the 

colonisation of Britain by a new bee species, which is now common and nests close to places 

where people live and are active, is not a danger. Ivy bees rarely sting, and any sting- induced 

pain subsides rapidly and is comparable to the pain of a nettle sting. It seems that ivy bees 

can coexist safely with humans with minimal risks to safety and that improved education and 

awareness of this would be beneficial. The ivy bee may look superficially like a honey bee 

worker, and is of similar size, but its sting is far less painful and rarely delivered.  
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Appendix B- Chapter two 

B1: Route for the additional survey completed on 28 May in 2018. Route length was 

approximately 4.5km and started and ended at coordinates 50.791003, 0.156665. 
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B2: The number of males and females caught for each survey day in 2018 and the number of 

recaptures. 

Date Males Caught Females Caught Male 

Recaptures 

Female 

Recaptures 

04.05.2018 9 2 - - 

05.05.2018 10 0 3 0 

08.05.2018 8 0 1 0 

11.05.2018 5 3 1 0 

15.05.2018 5 0 2 0 

17.05.2018 4 4 3 0 

20.05.2018 4 1 1 0 

23.05.2018 3 4 0 0 

05.06.2018 1 4 0 1 

06.06.2018 1 4 0 2 

11.06.2018 0 6 0 2 

13.06.2018 0 12 0 0 

18.06.2018 0 2 0 0 

Total 50 42 11 5 

 

B3: The number of males and females caught for each survey day in 2019 with the number of 

recaptures for each day. There were no female recaptures for any of the survey days in 2019. 

Date Males Caught Females Caught Male 

recaptures 

Female 

recaptures 

15.04.19 3 1 - - 

18.04.19 12 0 0 0 

23.04.19 14 1 0 0 

26.04.19 11 0 2 0 

29.04.19 14 5 1 0 

01.05.19 19 3 6 0 

03.05.19 15 4 2 0 

06.05.19 17 3 3 0 

10.05.19 19 6 6 0 

13.05.19 7 8 4 0 

15.05.19 9 2 4 0 

18.05.19 9 4 2 0 

20.05.19 4 3 2 0 

25.05.19 6 1 2 0 

28.05.19 0 0 0 0 

31.05.19 0 4 0 0 

06.06.19 1 9 0 0 

14.06.19 0 1 0 0 

22.06.19 0 2 0 0 

Total 160 57 43 0 
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B4: The models used for each year and sex to calculate population estimates are in bold 

alongside the alternative models not used. Due to no female recaptures in 2019 no population 

estimates were possible. Ф (the apparent survival rate), p (capture probability), pent 

(probability of entry into the population) and N (super-population size). 

Year Sex Model No. of 

parameters 

AIC Deviance 

2018 M Φ{.},p{t},pent{t} 19 196.15 -56.66 

2018 M Φ{t},p{.},pent{t} 26 218.94 -90.92 

2018 M Φ{t},p{t},pent{t} 36 432.62 -93.44 

2018 F Φ{.}, p{t}, pent{t} 22 202.74 -50.85 

2018 F Φ{.}, p{.}, pent{t} 10 109.5 -68.10 

2018 F Φ{t}, p{.}, pent{t} 9 141.02 -33.03 

2019 M Φ{.}, p{.}, pent{t} 14 506.21 -313.5 

2019 M Φ{t}, p{t}, pent{t} 37 511.72 -373.95 

2019 M Φ{.}, p{t}, pent{t} 31 525.10 -341.09 

 

B5: All plant species identified in the survey. The flowering period relates to the dates when 

a single flower was seen on one or more transects. The average abundance was from all 

transects walked in the study area both for the dates when flowering and for the whole study 

period. Flower surveys occurred on five days. 

 

Plant Species Flowering Dates Average 

abundance 

throughout study 

period 

Average 

abundance 

throughout 

flowering period 

Agrimonia 18.06.18 0.13 0.64 

Anagallis arvensis 11.06.18 0.04 0.18 

Armeria maritima 30.05.18-11.06.18 0.49 0.82 

Atropa belladonna 20.05.18-30.05.18 0.88 0.88 

Bellis perennis 05.06.18-18.06.18 0.47 0.59 

Bryonia 11.06.18-18.06.18 0.20 0.33 

Carduus nutans 11.06.18 0.09 0.09 

Centaurea scabiosa 11.06.18-18.06.18 0.13 0.32 

Centaurium erythraea 18.06.18 0.07 0.36 

Chamaenerion angustifolium 18.06.18 0.04 0.18 

Cirsium arvense 11.06.18-18.06.18 0.27 0.69 

Cirsium dissectum 11.06.18-18.06.18 0.24 0.59 

Cirsium palustre 18.06.18 0.02 0.09 

Convolvulus arvensis 11.06.18-18.06.18 0.16 0.64 

Crataegus monogyna 20.05.18 0.55 2.75 

Cynoglossum officinale 20.05.18-18.06.18 1.04 1.05 
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Daucus carota 18.06.18 0.02 0.09 

Digitalis 18.06.18 0.04 0.18 

Echium vulgare 11.06.18-18.06.18 0.45 1.04 

Filipendula vulgaris 18.06.18 0.16 0.36 

Galium mollugo 18.06.18 0.05 0.27 

Geranium robertianum 18.06.18 0.04 0.18 

Glaucium flavum 30.05.18-11.06.18 0.09 0.15 

Glechoma hederacea 20.05.18-18.06.18 2.48 2.48 

Helminthotheca echioides 20.05.18-18.06.18 0.37 0.37 

Hippocrepis comosa 18.06.18 0.02 0.09 

Hyacinthoides sp. 20.05.18 0.08 0.38 

Hypericum perforatum 18.06.19 0.13 0.64 

Iris foetidissima 30.05.18-18.06.18 0.33 0.41 

Lapsana 18.06.18 0.04 0.18 

Lathyrus pratensis 20.05.18-05.06.18 1.13 1.88 

Leucanthemum vulgare 18.06.18 0.04 0.18 

Ligustrum ovalifolium 20.05.18-18.06.18 1.99 1.99 

Lonicera 11.06.18-18.06.18 0.20 0.50 

Lotus corniculatus 11.06.18-18.06.18 1.27 3.18 

Malva moschata 18.06.18 0.05 0.27 

Medicago lupulina 18.06.18 0.09 0.45 

Myosotis 20.05.18-18.06.18 0.69 0.70 

Oenanthe crocata 20.05.18-11.06.18 0.66 0.82 

Pentaglottis sempervirens 18.06.18 0.05 0.27 

Polygala serpyllifolia 11.06.18-18.06.18 0.09 0.23 

Primula veris 20.05.18 0.13 0.63 

Prunella vulgaris 11.06.18-18.06.18 0.33 0.89 

Ranunculus 20.05.18-18.06.18 2.51 2.51 

Rosa canina 05.06.18-18.06.18 0.13 0.21 

Rubus fruticosus 05.06.18-18.06.18 0.74 1.18 

Silene dioica 20.05.18-18.06.18 0.70 0.70 

Silene latifolia 20.05.18-05.06.18 0.16 0.26 

Silene vulgaris 11.06.18-18.06.18 0.14 0.36 

Solanum dulcamara 18.06.18 0.04 0.18 

Stellaria media 20.05.18-18.06.18 1.10 1.10 

Taraxacum 20.05.18-18.06.18 0.72 0.72 

Thymus polytrichu 11.06.18-18.06.18 0.47 1.18 

Trifolium pratense 20.05.18-18.06.18 0.43 0.42 

Trifolium repens 20.05.18-18.06.18 1.09 1.09 

Ulex europaeus 20.05.18-05.06.18 0.25 0.41 

Veronica chamaedrys 20.05.18-18.06.18 1.69 1.69 

Vicia cracca 11.06.18-18.06.18 0.04 0.09 

Vicia sativa 20.05.18-11.06.18 0.23 0.29 
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B6: The mean number of females caught and the mean abundance of the five main flower 

groups per transect from surveys conducted in 2018. Average abundance of flower groups 

was calculated only from dates when species were in flower  

Transect Mean 

female 
capture 

2018 

Mean 

female 
capture 

2019 

Mean 

Glechoma 
hederacea 

abundance 

(% ±SE) 

Mean 

Fabaceae 
species 

abundance 

(% ±SE) 

Mean 

Trifolium 
species 

abundance 

(% ±SE) 

Mean Iris 

foetidissima 
abundance 

(% ±SE) 

Mean 

Echium 
vulgare 

abundance 

(% ±SE) 

A1T1 0.11±0.11 0.31±0.13 32 ± 20.6 22 ± 13.6 20 ± 12.6 0 8.0 ± 4.90 

A1T2 0 0.46±0.14 56 ± 7.48 0 24 ± 16.0 0 0 

A1T3 3.11±1.23 1.08±0.33 60 ± 10.95 0 0 44 ± 19.4 0 

A1T4 0 0.08±0.08 36 ± 7.48 47 ± 8.0 18 ± 8.0 0 4 ± 4 

A2T1 0.22±0.15 0.46±0.18 72 ± 10.2 77 ± 10.9 12 ± 12.0 0 28 ± 17.4 

A2T2 0.22±0.15 0.23±0.12 48 ± 4.90 49.9± 16.1 12 ± 12.0 0 16 ± 7.48 

A3T1 0.11±0.11 0.23±0.23 28 ± 15.0 56 ± 16.0 8.0 ± 8.0 0 4.0 ± 4.0 

A3T2 0 0 48 ± 15.0 36 ± 22.3 8.0 ± 8.0 0 18 ± 9.17 

A3T3 0 0.08±0.08 60 ± 8.94 62 ± 4.90 8.0 ± 8.0 0 24 ± 14.7 

A3T4 0.33±0.17 0.46±0.22 24 ± 11.7 56 ± 14.70 6.0 ± 6.0 0 16 ± 11.7 

A3T5 0.22±0.15 0.46±0.31 60 ± 10.95 32 ± 13.60 22 ± 5.83 0 0 

 

 

 

B7: The average flower abundance of the 5 most visited flower species by A. retusa by 

survey date.  The most visited flower species were those which either accounted for 20% of 

the pollen collected or 20% of the flower visits) by survey. 
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B8: Map of GPS locations where both male (blue) and female (red) A. retusa were caught in 

2018 and 2019. The location of a potential nest site on the cliff edge identified in 2019 is 

displayed with as a black pentagon. The black rectangle indicates a ‘hotspot’ of female 

activity. Black dashed lines show the transect routes and each is labelled. A1 indicates 

transect is in the scrub habitat, A2 is coastal and A3 grassland.  
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Appendix C- Chapter three  

C1: The number of males and females caught and the recapture number for Aggregation 1 

per sampling day for all years. Total caught and re-caught for that year are shown. No males 

were caught in 2017 due to survey occurring outside of male flight period. 

Year Date Females 

caught 

Female 

recaptures 

Male caught Male 

recaptures 

 

 
2017 

13 June 5 0 - - 

14 June 11 1 - - 

20 June 13 3 - - 

30 June 13 4 - - 

1 July 11 6 - - 

Total 53 14 - - 

 
 

 

 
2018 

26 May 3 0 55 0 

1 June 3 0 43 7 

10 June 16 2 11 3 

15 June 19 0 8 4 

22 June 26 8 4 2 

28 June 27 3 0 0 

6 July 13 3 0 0 

11 July 9 3 0 0 

Total 116 19 121 19 

 
 

 

 

 
2019 

21 May 0 0 23 0 

27 May 11 0 38 9 

1 June 26 0 12 8 

9 June 31 4 5 5 

17 June 32 8 0 0 

21 June 29 8 0 0 

27 June 29 9 0 0 

1 July 23 7 0 0 

4 July 27 11 0 0 

8 July 27 18 0 0 

11 July 28 17 0 0 

Total 263 82 78 22 
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C2: The number of males and females caught and the recapture number for Aggregation 2 

per sampling day for all years. Total caught and re-caught for that year are shown. No males 

were caught in 2017 due to survey occurring outside of male flight period. 

Year Date Females 

caught 

Female 

recaptures 

Male caught Male 

recaptures 

 

 

2017 

15 June 3 0 - - 

16 June 8 0 - - 

21 June 5 3 - - 

2 July 5 2 - - 

4 July 2 2 - - 

Total 23 7 - - 

 

 
 

 

2018 

25 May 2 0 17 0 

4 June 9 0 10 1 

8 June 21 3 5 3 

12 June 13 2 6 3 

21 June 17 5 5 5 

26 June 21 11 0 0 

04 July 19 9 0 0 

8 July 4 4 0 0 

Total 106 34 43 12 

 

 

 
 

 

2019 

23 May 4 0 17 0 

30 May 19 1 3 3 

5 June 12 1 1 4 

11 June 11 2 4 0 

20 June 9 3 0 0 

24 June 11 4 0 0 

28 June 13 4 0 0 

2 July 6 3 0 0 

5 July 6 2 0 0 

9 July 9 5 0 0 

13 July 7 7 0 0 

Total 107 32 25 7 
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C3: Models used to calculate population estimates for both aggregations and all years. 

Models for each sex were calculated separately and model assumptions were tested using 

goodness of fit. Models were chosen based on AIC values and deviance. Due to sampling 

later in the flight season in 2017 no male captured occurred.  

Aggregation 1     

Year Sex Model No. of 

parameters 

AIC Deviance 

2017 F Phi{.}, p{.},pent{t} 6 110.9 -71.7 

2018 M Phi{.},p{t},pent{t} 8 151.8 -192.8 

F Phi{.},p{.},pent{t} 10 181.6 -307.2 

2019 

 

M Phi{.},p{.},pent{t} 5 133.4 -70.8 

F Phi{.},p{.},pent{t} 11 578.1 -628.1 

Aggregation 2     

2017 F Phi{.},p{.},pent{t} 6 64.1 -5.42 

2018 M Phi{.},p{t},pent{t} 9 122.4 -26.9 

F Phi{.},p{.},pent{.} 7 250.3 -172.1 

2019 M Phi{.},p{.},pent{t} 6 66.5 -31.0 

F Phi{.},p{.},pent{t} 10 271.5 -190.1 

      

 

C4: Real parameter estimates of acceptable Jolly-Seber (POPAN) models: apparent 

survival (Phi), capture probability (p) and entrance probability (pent) are presented. For 2017 

due to only female recaptures both aggregation 1 and 2 are presented in the same table. For 

2018 and 2019 model outputs are presented separately for each aggregation showing both 

female and male model parameters.  

 

1- 2017 Females 

a) Aggregation 1 b) Aggregation 2 

 95% Confidence 

Interval 

 95% Confidence 

Interval 

Parameter Estimate SE Lower Upper Parameter Estimate SE Lower Upper 

Phi1 0.98 0.03 0.82 1.00 Phi1 0.89        0.05        0.75        0.95                           

p1 0.30 0.09 0.15 0.51 p1 0.55    0.21        0.18       0.87                           

Pent 1 0.23    0.194      0.03        0.72                           Pent1 0.57    0.57        0.20       0.87                           

Pent2 0.25        0.20        0.04        0.73                           Pent2 0    0        0 1.00                           

Pent3 0.16        0.18       0.01        0.73                           Pent3 0.17  0.17        0.05        0.46                           

N 55.50       9.11        44.2        82.6                           N 20.9     20.9        16.9        41.9    
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2- 2018 Aggregation 1 

a) Females b) Males 
 95% Confidence 

Interval 

 95% Confidence 

Interval 

Parameter Estimate SE Lower Upper Parameter Estimate SE Lower Upper 

Phi1 0.91        0.03        0.83        0.96                           Phi1 0.93 0.044 0.78 0.98 

p1 0.20        0.08        0.09        0.96                           p1 0.20 0.06 0.11 0.34 

     p2 0.10 0.07 0.02 0.33 

     p3 0.09 0.09 0.01 0.43 

     p4 0.09 0.12 0.00 0.60 

Pent 1 0.03        0.03        0        0.24                           Pent1 0.77 0.06 0.64 0.86 

Pent2 0.24        0.08        0.12        0.43                                

Pent3 0.20        0.08        0.08        0.40                                

Pent4 0.17        0.08       0.07       0.39                                

Pent5 0.27        0.09        0.14        0.48                                

N 287.30       69.40       192.38        477.70                           N 236.07 51.47 167.39 380.34 

3- 2019 Aggregation 1 

a) Females b) Males 
 95% Confidence 

Interval 

 95% 

Confidence 

Interval 

Parameter Estimate SE Lower Upper Parameter Estimate SE Lower  Upper 

Phi1 0.94 0.00 0.92 0.96 Phi1 0.36 0.066 0.25 0.50 

p1 0.22 0.03 0.16 0.28 p1 0.72 0.14 0.40 0.91 

Pent1 0.24 0.07 0.13 0.39 Pent1 0.53 0.08 0.37 0.68 

Pent2 0.17 0.07 0.08 0.35 Pent2 0.01 0.05 0 0.98 

Pent3 0.13 0.07 0.05 0.33      

Pent4 0.08 0.07 0.01 0.35      

Pent5 0.10 0.06 0.03 0.30      

Pent6 0.04 0.06 0.00 0.43      

Pent7 0.05 0.05 0.00 0.29      

Pent8 0.05 0.04 0.01 0.24      

N 379.81 36.85 319.68 466.02 N 69.32 9.96 59.61 105.16 

4- 2018 Aggregation 2 

a) Females b) Males 
 95% 

Confidence 

Interval 

 95%  

Confidence  

Interval 

Parameter Estimate SE Lower Upper Parameter Estimate SE Lower Upper 

Phi1 0.95 0.01 0.92 0.97 Phi1 0.92 0.03 0.84 0.96 

p1 0.27 0.05 0.18 0.39 p1 0.21 0.08 0.00 0.39 

     p2 0.25 0.11 0.09 0.52 

     p3 0.42 0.19 0.13 0.77 

     p4 0.49 0.28 0.10 0.90 

Pent1 0.24 0.09 0.10 0.46 Pent1 0.67 0.10 0.46 0.83 

Pent2 0.38 0.10 0.20 0.59      

Pent3 0.20 0.10 0.07 0.47      

Pent4 0.13 0.10 0.02 0.46      
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N 125.22 16.03 101.86 166.83 N 51.63 11.44 38.47 87.94 

5- 2019 Aggregation 2 

a) Females b) Males 
 95% Confidence 

Interval 

 95%  

Confidence  

Interval 

Parameter Estimate SE Lower Upper Parameter Estimate SE Lower Upper 

Phi1 0.93 0.01 0.90 0.95 Phi1 0.82 0.04 0.72 0.89 

p1 0.25 0.05 0.16 0.37 p1 0.79 0.25 0.16 0.99 

Pent1 0.43 0.11 0.23 0.65 Pent1 0.13 0.09 0.03 0.41 

Pent2 0.06 0.11 0.00 0.68 Pent2 0.03 0.04 0.00 0.35 

Pent3 0.10 0.09 0.02 0.43 Pent3 0.15 0.07 0.06 0.35 

Pent4 0.07 0.07 0.01 0.40      

Pent5 0.10 0.08 0.02 0.38      

Pent6 0.10 0.07 0.02 0.34      

Pent7 0.03 0.04 0.00 0.36      

N 149.18 22.12 116.73 206.26 N 30.69 8.06 26.47 72.66 
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C5: Proportions of pollen grains for the most common plant species per day for aggregation 

1. a; 2017, b; 2018, c; 2019 and d; the proportion of each species in pollen samples for the 

year. Other comprises plant species which overall accounted for less than 5% of samples. 

Numbers above the bars indicate number of bees sampled. Fabaceae spp. does not include L. 

corniculatus and T. repens 
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C6: Proportions of pollen grains for the most common plant species per day for aggregation 

2. a; 2017, b; 2018, c; 2019 and d; the proportion of each species in pollen samples for the 

year. Other comprises plant species which overall accounted for less than 5% of samples. 

Numbers above the bars indicate number of bees sampled. Fabaceae spp does not include L. 

corniculatus and T. repens 
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C7: The composition of the surrounding landscape of the two aggregations, a; within 100m, 

b; within 500m. For definition of habitat types see methods.  
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Appendix D: Chapter Seven   

 

D1: Final model summary outputs of both linear models and general linear models for both 

Apis mellifera and Bombus terrestris/lucorum. The effects of wind speed, bee species, 

temperature and the interactions between temperature and bee species, wind speed and bee 

species and wind speed and temperature on (a) number of flower visits (log), (b) mean 

handling time (square root transformed), (c) mean duration of inter flower flight and (d) 

proportion of flowers walked to. Bold indicates a significant effect on the response variable.  

 

 

 

(a) Flower 

visits 

 Bombus terrestris/lucorum Apis mellifera 

Fixed effects Estimate SE t P Estimate SE t P 

Intercept 1.51    1.22    

Wind speed -0.03 0.01 -1.79 0.077 -0.06 0.01 -8.78 <0.001 

Bee species -0.29 5.39 -19.56 <0.001 0.29 0.01 19.65 <0.001 

Temperature -0.02 0.00 6.05 <0.001 -0.01 0.00 -1.95 0.052 

Wind speed *bee 

species 

0.04 0.02 -2.36 0.019 0.04 0.02 2.36 0.019 

Temperature* 

Bee species  

-0.03 0.01 -5.85 <0.001 0.03 0.01 5.95 <0.001 

Wind speed* 

temperature 

0.00 0.00 1.30 0.20 0.00 0.00 1.30 0.20 

(b) Mean 

handling time 

Intercept 1.14    1.82    

Wind speed 0.05 0.03 2.01 0.050 0.13 0.01 9.82 <0.001 

Bee species 0.677 0.04 17.56 <0.001 -0.68 0.04 -17.46 <0.001 

Temperature2  0.02 0.00 7.14 <0.001 0.00 0.00 -1.12 0.266 

Average wind 

speed *bee 

species 

0.08 0.03 2.67 0.09 -0.08 0.03 -2.67 0.008 

Temperature*bee 

species 

-0.02 0.00 -6.32 <0.001 0.02 0.00 6.32 <0.001 

Wind speed* 

temperature 

0.00 0.00 -1.61 0.108 0.00 0.00 -1.61 0.108 

(c) Mean 

duration of 

inter flower 

flight  

 

Intercept -0.35    0.14    

Average wind 

speed 

0.00 0.12 0.04 0.966 0.00 0.02 0.19 0.848 

Bee species 0.48 0.11 4.38 <0.001 -0.56 0.03 -1.68 0.098 

Temperature -0.05 0.03 -1.53 0.128 -0.08 0.02 3.78 <0.001 

Average wind 

speed *bee 

species 

0.00 0.12 0.01 0.991 0.02 0.03 0.63 0.526 

Temperature*bee 

species 

0.12 0.04 3.38 <0.001 0.35 0.01 -2.55 0.012 

Wind speed* 

temperature 

-0.02 0.02 -1.32 0.189 -0.02 0.02 -1.32 0.189 

(d) Proportion 

of flowers 

walked to 

 

Intercept -0.31    -0.48    

Average wind 

speed 

0.03 0.04 0.90 0.371 -0.05 0.02 -2.64 0.009 

Bee species -0.17 0.04 -4.38 <0.001 0.17 0.04 4.38 <0.001 

Temperature 0.02 0.01 1.57 0.117 -0.02 0.01 -1.81 0.072 

Average wind 

speed *bee 

species 

-0.09 0.04 -2.01 0.048 0.09 0.04 2.01 0.048 

Temperature*bee 

species 

-0.03 0.01 -2.36 0.019 0.03 0.01 2.36 0.019 

Wind speed* 

temperature 

0.00 0.01 0.26 0.799 0.00 0.01 0.26 0.799 
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Appendix E: Chapter Eight 

 

E1: Pairwise comparisons conducted using the emmeans function from the emmeans package 

in R (Lenth et al 2019) of hesitancy durations for Apis mellifera and Bombus species when 

foraging on the seven studied plant species. Significant differences are indicated in bold.  

Contrast Ratio SE t ratio P value 

C. arvense Apis / C. scabiosa Apis 0.780 0.0625 -3.099 0.1068 

C. arvense Apis / E. vulgare Apis 0.614 0.0429 -6.981 <0.0001 

C. arvense Apis / J. vulgaris Apis 0.841 0.0846 -1.72 0.9089 

C. arvense Apis / M. oficinalis Apis 0.947 0.0942 -0.548 1 

C. arvense Apis / R. fruticosus Apis 0.639 0.0546 -5.245 <0.0001 

C. arvense Apis / T. repens Apis 0.921 0.0799 -0.951 0.9996 

C. arvense Apis / C. arvense Bombus 1.067 0.0802 0.865 0.9999 

C. arvense Apis / C. scabiosa Bombus 0.868 0.0602 -2.048 0.7367 

C. arvense Apis / E. vulgare Bombus 1.061 0.0726 0.87 0.9999 

C. arvense Apis / J. vulgaris Bombus 0.913 0.0979 -0.845 0.9999 

C. arvense Apis / M. oficinalis Bombus 0.916 0.1047 -0.77 1 

C. arvense Apis / R. fruticosus Bombus 1.029 0.0769 0.388 1 

C. arvense Apis / T. repens Bombus 1.233 0.1594 1.619 0.9414 

C. scabiosa Apis / E. vulgare Apis 0.787 0.0635 -2.965 0.1521 

C. scabiosa Apis / J. vulgaris Apis 1.078 0.0871 0.933 0.9997 

C. scabiosa Apis / M. oficinalis Apis 1.214 0.1001 2.352 0.5159 

C. scabiosa Apis / R. fruticosus Apis 0.819 0.0833 -1.967 0.7883 

C. scabiosa Apis / T. repens Apis 1.18 0.1234 1.587 0.9496 

C. scabiosa Apis / C. arvense Bombus 1.368 0.1092 3.927 0.0068 

C. scabiosa Apis / C. scabiosa Bombus 1.112 0.0772 1.533 0.9616 

C. scabiosa Apis / E. vulgare Bombus 1.361 0.0978 4.284 0.0016 

C. scabiosa Apis / J. vulgaris Bombus 1.171 0.1208 1.53 0.9622 

C. scabiosa Apis / M. oficinalis Bombus 1.174 0.1302 1.446 0.9763 

C. scabiosa Apis / R. fruticosus Bombus 1.32 0.1066 3.436 0.0392 

C. scabiosa Apis / T. repens Bombus 1.58 0.2102 3.441 0.0385 

E. vulgare Apis / J. vulgaris Apis 1.369 0.141 3.054 0.1209 

E. vulgare Apis / M. oficinalis Apis 1.542 0.1549 4.308 0.0014 

E. vulgare Apis / R. fruticosus Apis 1.04 0.086 0.47 1 

E. vulgare Apis / T. repens Apis 1.499 0.1255 4.839 0.0001 

E. vulgare Apis / C. arvense Bombus 1.738 0.1281 7.494 <0.0001 

E. vulgare Apis / C. scabiosa Bombus 1.413 0.0959 5.089 <0.0001 

E. vulgare Apis / E. vulgare Bombus 1.728 0.1111 8.509 <0.0001 

E. vulgare Apis / J. vulgaris Bombus 1.487 0.1587 3.721 0.0148 

E. vulgare Apis / M. oficinalis Bombus 1.491 0.169 3.523 0.0294 

E. vulgare Apis / R. fruticosus Bombus 1.676 0.1223 7.076 <0.0001 

E. vulgare Apis / T. repens Bombus 2.007 0.2608 5.363 <0.0001 

J. vulgaris Apis / M. oficinalis Apis 1.126 0.0946 1.411 0.9808 
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J. vulgaris Apis / R. fruticosus Apis 0.759 0.0948 -2.206 0.6252 

J. vulgaris Apis / T. repens Apis 1.095 0.1409 0.704 1 

J. vulgaris Apis / C. arvense Bombus 1.269 0.1252 2.412 0.4719 

J. vulgaris Apis / C. scabiosa Bombus 1.031 0.0931 0.343 1 

J. vulgaris Apis / E. vulgare Bombus 1.262 0.117 2.508 0.4027 

J. vulgaris Apis / J. vulgaris Bombus 1.086 0.1183 0.757 1 

J. vulgaris Apis / M. oficinalis Bombus 1.089 0.128 0.723 1 

J. vulgaris Apis / R. fruticosus Bombus 1.224 0.1252 1.976 0.7827 

J. vulgaris Apis / T. repens Bombus 1.466 0.2159 2.595 0.344 

M. oficinalis Apis / R. fruticosus Apis 0.674 0.0818 -3.248 0.0699 

M. oficinalis Apis / T. repens Apis 0.972 0.121 -0.225 1 

M. oficinalis Apis / C. arvense Bombus 1.127 0.1106 1.218 0.995 

M. oficinalis Apis / C. scabiosa Bombus 0.916 0.0817 -0.982 0.9995 

M. oficinalis Apis / E. vulgare Bombus 1.121 0.1023 1.25 0.9936 

M. oficinalis Apis / J. vulgaris Bombus 0.965 0.1066 -0.326 1 

M. oficinalis Apis / M. oficinalis Bombus 0.967 0.1135 -0.285 1 

M. oficinalis Apis / R. fruticosus Bombus 1.087 0.1088 0.835 0.9999 

M. oficinalis Apis / T. repens Bombus 1.302 0.1895 1.812 0.8708 

R. fruticosus Apis / T. repens Apis 1.442 0.1267 4.167 0.0026 

R. fruticosus Apis / C. arvense Bombus 1.671 0.1505 5.704 <0.0001 

R. fruticosus Apis / C. scabiosa Bombus 1.359 0.1181 3.527 0.029 

R. fruticosus Apis / E. vulgare Bombus 1.662 0.145 5.823 <0.0001 

R. fruticosus Apis / J. vulgaris Bombus 1.43 0.1761 2.908 0.1752 

R. fruticosus Apis / M. oficinalis Bombus 1.434 0.1846 2.8 0.2252 

R. fruticosus Apis / R. fruticosus Bombus 1.612 0.1419 5.424 <0.0001 

R. fruticosus Apis / T. repens Bombus 1.931 0.2573 4.935 0.0001 

T. repens Apis / C. arvense Bombus 1.159 0.1058 1.615 0.9423 

T. repens Apis / C. scabiosa Bombus 0.942 0.084 -0.668 1 

T. repens Apis / E. vulgare Bombus 1.153 0.1024 1.6 0.9464 

T. repens Apis / J. vulgaris Bombus 0.992 0.1255 -0.063 1 

T. repens Apis / M. oficinalis Bombus 0.994 0.131 -0.042 1 

T. repens Apis / R. fruticosus Bombus 1.118 0.0994 1.254 0.9934 

T. repens Apis / T. repens Bombus 1.339 0.1792 2.179 0.6447 

C. arvense Bombus / C. scabiosa Bombus 0.813 0.0594 -2.835 0.2078 

C. arvense Bombus / E. vulgare Bombus 0.995 0.0688 -0.079 1 

C. arvense Bombus / J. vulgaris Bombus 0.856 0.0952 -1.399 0.9821 

C. arvense Bombus / M. oficinalis Bombus 0.858 0.1015 -1.294 0.9911 

C. arvense Bombus / R. fruticosus Bombus 0.965 0.0716 -0.485 1 

C. arvense Bombus / T. repens Bombus 1.155 0.1481 1.125 0.9977 

C. scabiosa Bombus / E. vulgare Bombus 1.223 0.0816 3.024 0.1308 

C. scabiosa Bombus / J. vulgaris Bombus 1.053 0.1008 0.539 1 

C. scabiosa Bombus / M. oficinalis Bombus 1.056 0.1093 0.522 1 

C. scabiosa Bombus / R. fruticosus Bombus 1.187 0.0913 2.223 0.6127 

C. scabiosa Bombus / T. repens Bombus 1.421 0.1875 2.662 0.302 

E. vulgare Bombus / J. vulgaris Bombus 0.861 0.0938 -1.377 0.9844 

E. vulgare Bombus / M. oficinalis Bombus 0.863 0.0998 -1.276 0.9922 
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E. vulgare Bombus / R. fruticosus Bombus 0.97 0.0612 -0.484 1 

E. vulgare Bombus / T. repens Bombus 1.162 0.1476 1.178 0.9964 
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E2: Final model summary outputs of the linear models for both Apis mellifera and Bombus 

species testing the effects of wind speed, plant species, temperature, bee group and flower 

movement and the interactions between wind speed * plant species, wind speed*bee group, 

plant species*bee group and bee group*flower movement on logged hesitancy duration. Bold 

indicates a significant effect on the response variable.  

 Apis mellifera Bombus spp. 

 Estimate Std. 

Error 

t P Estimate SE t  P  

(Intercept) -1.315 0.055 -24.053 <0.001 -1.380 0.057 -24.233 < 0.001 

Average flower 

movement 

0.004 0.009 0.416 0.677 -0.002 0.008 -0.219 0.827 

Wind speed 0.064 0.0382 1.679 0.093 0.064 0.038 1.679 0.093 

Temperature -0.018 0.005 -3.417 <0.001 -0.018 0.005 -3.417 0.001 

Bee group -0.065 0.075 -0.865 0.387 0.065 0.075 0.865 0.387 

Plant species C. 

scabiosa 

0.251 0.080 3.132 0.002 0.209 0.073 2.879 0.004 

Plant species E. 

vulgare 

0.489 0.070 6.974 <0.001 0.007 0.069 0.103 0.918 

Plant species J. 

vulgaris 

0.177 0.101 1.753 0.080 0.160 0.111 1.434 0.152 

Plant species M. 
oficinalis 

0.060 0.099 0.606 0.544 0.158 0.118 1.343 0.179 

Plant species R. 

fruticosus 

0.450 0.086 5.232 <0.001 0.037 0.074 0.493 0.622 

Plant species T. repens 0.086 0.087 0.986 0.324 -0.141 0.129 -1.098 0.272 

Average flower 

movement * Wind 

speed 

-0.009 0.004 -2.124 0.034 -0.009 0.004 -2.124 0.034 

Average flower 

movement* 

Temperature 

-0.001 0.001 -1.341 0.180 -0.001 0.001 -1.341 0.180 

Average flower 
movement * Bee 

group 

-0.005 0.009 -0.568 0.570 0.005 0.009 0.568 0.570 

Bee 

group*Plant.Species 

C. scabiosa 

-0.041 0.105 -0.393 0.694 0.041 0.105 0.393 0.694 

Bee 

group*Plant.Species 

E. vulgare 

-0.482 0.097 -4.992 <0.001 0.482 0.097 4.992 <0.001 

Bee 

group*Plant.Species J. 

vulgaris 

-0.018 0.137 -0.128 0.899 0.018 0.137 0.128 0.898 

Bee 

group*Plant.Species 

M. oficinalis 

0.099 0.143 0.686 0.493 -0.099 0.144 -0.686 0.493 

Bee 

group*Plant.Species 

R. fruticosus 

-0.413 0.112 -3.685 <0.001 0.413 0.112 3.685 <0.001 

Bee 

group*Plant.Species T. 

repens 

-0.227 0.150 -1.512 0.131 0.227 0.150 1.512 0.131 
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Wind speed*Plant 

Species C. scabiosa 

0.061 0.045 1.353 0.176 0.061 0.045 1.353 0.176 

Wind speed*Plant 

Species E. vulgare 

0.048 0.046 1.039 0.230 0.048 0.046 1.039 0.299 

Wind speed*Plant 

Species J. vulgaris 

0.115 0.065 1.772 0.077 0.115 0.065 1.772 0.077 

Wind speed*Plant 

Species M. oficinalis 

0.152 0.067 2.279 0.023 0.152 0.067 2.279 0.023 

Wind speed*Plant 

Species R. fruticosus 

0.019 0.055 0.343 0.732 0.019 0.055 0.343 0.732 

Wind speed*Plant 
Species T. repens 

0.085 0.062 1.372 0.170 0.085 0.062 1.372 0.170 

 

 

 

E3: Bombus species hesitancy to take off (s) in relation to wind speed (ms-1) separated by 

plant species being foraged. Regression lines are shown, and each point is an individual bee. 

N=898 
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E4: Apis mellifera hesitancy to take off (s) in relation to wind speed (ms-1) separated by plant 

species being foraged. Regression lines are shown, and each point is an individual bee. 

N=827 
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