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Abstract 

 

This thesis presents theoretical investigations that elucidate experimental observations and test 

theory. 

Firstly, density functional theory (DFT) is used to determine the mechanism for Pd(0) formation 

from the pincer palladacycle, PdSCN, with and without solvent effects. The elucidated mechanism 

involves two key steps, transmetallation and reductive elimination. Transmetallation is computed as 

the rate-determining step and the energy barriers to increase with increasing solvent dielectric 

constant. 

The thermal Claus process is an industrially important method of liquid sulfur production from H2S, 

yet there remain questions of why liquid sulfur is paramagnetic and why H2S persists in recovered 

sulfur. To answer these questions, a suitable computational methodology is established and used to 

investigate the structure and stabilities of cyclic and open chain Sn (n ≤ 5 and 8) on the singlet and 

triplet potential energy surfaces (PESs). All stable cyclic structures are found to have singlet states 

whereas open chain structures, S, S2, S5 and S8 have triplet ground states. These results provide a 

possible explanation for the observed paramagnetism of liquid sulfur. The mechanism for formation 

of hydrogen polysulfanes (HSn+1H) from open chain Sn and singlet H2S is thereafter investigated. In 

all cases the most stable HSn+1H is formed exergonically on the singlet PES. However, in the case 

of Sn clusters with a triplet ground state, the singlet product arises from curve crossing and the 

triplet product is formed endergonically. The instability of the triplet product provides a mechanism 

for the persistence of H2S. 

The DFT correlation functional, LYP, is based on a correlation energy formula derived from the 

Hartree-Fock (HF) second order reduced density matrix and an exponential correlation factor 

obtained by fitting to helium data. In this thesis, the formula is re-parametrised using accurate HF 

densities for helium and hydride and the correlation energy calculated for several atomic systems. 
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1 Introduction 
 

Conventional quantum chemistry methods involve using increasingly sophisticated methods to 

accurately model and/or treat electron-electron correlation interactions, which are essential for 

interpreting chemical processes or predicting the structure of challenging chemical species. As such, 

compounds or processes that are dangerous, difficult or even too expensive to be investigated 

experimentally are conveniently studied using computational quantum chemistry approaches. 

Several studies of the structure, spectroscopy and reactivity of inorganic compounds exist in 

literature.[1–10] Nevertheless, more investigations are still necessary to complement the existing ones 

or add new information in the literature for a better understanding and application of inorganic 

species. This is because the indispensability of inorganic compounds in applications or processes 

ranging from devices, industry, agriculture to biology and the atmosphere cannot be 

overemphasised. For example, inorganic compounds are involved in catalytic applications or 

processes leading to the formation of useful chemical species (e.g., in pharmaceutical industries and 

organic synthesis).[11] In such applications or processes, the active catalytic species is often not 

known.[11] Inorganic clusters are also implicated in sulfur recovery in the modern thermal Claus 

process for desired end uses.[12] This process is known to suffer a daunting hydrogen sulfide 

elimination problem that limits the transportation and application of the sulfur recovered from it.[12–

15] Some of the species and their accompanying spin behaviours that are usually implicated in these 

processes are often elusive to experimental observation. As a result, computational approaches are 

required in the investigation of their structure, stability, spectroscopy, reactivity and to accurately 

model methods which include electron-electron correlation which is critical to understanding 

chemical phenomena.[16–18] 

This computational/theoretical thesis using quantum chemistry methodologies involves the 

elucidation of experimental observations involving some inorganic complexes and modelling of 

methods that include electron-electron correlation. The research will primarily focus on the 

structure, stability and reactivity of transition metal and main group complexes. The outcome of this 
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will contribute towards understanding the structure, stabilities and reactivity of these species for 

better production and applications. The research will then be extended to re-parameterising a 

correlation functional methodology, based on Hartree-Fock theory, to determine high-accuracy 

electron correlation data for atomic systems. The outcome of this will contribute to future quantum 

chemistry methodological developments or improvements. This is because conventional 

computational techniques are often only as good as their underlying approximations, mathematics 

or computational implementations and hence, require continuous review and developments or 

improvements for better performance. 

 

1.1 Computational chemistry 

Computational chemistry deals with a set of techniques that allow the calculation or investigation of 

chemical problems (e.g., molecular geometries, reactivity, spectra and other properties of chemical 

systems) on a computer using a mathematical description of chemistry generally referred to as 

theoretical chemistry.[19,20] As such, the term “computational chemistry” is often used when a 

mathematical method or approximation is sufficiently developed to the point that it is implemented 

in a computer software program for use by practitioners. Such software programs are now often 

used by many with little or no knowledge of its underlying mathematical or theoretical 

principles.[20] In addition, the advent of powerful computers that reduce computation time to 

facilitate simple to higher-level accurate calculations has given computational chemistry an 

overwhelming attraction in recent years for a good description and reproducibility or even 

prediction of experimental findings.[21–23] This has augmented the understanding of chemical 

phenomena and is continuing to help in predicting the results of future experiments. 

Generally, the tools available for use in computational chemistry for the investigation of chemical 

problems are present in two broad classes viz:[19,20] 

1. Molecular mechanics and/or dynamics: based on models of systems (molecules) as a 

collection of balls (atoms) held together by springs (bonds) and is useful for investigating 

fairly large systems like proteins, cholesterol etc. This class depends solely on application 

of the laws of classical mechanics. 

2. Quantum mechanics: based on the Schrödinger equation and provides, in principle, an 

almost exact description of how the electrons in a system (atom or molecule) behave or are 

distributed. The methods in this class may either be wavefunction or density functional 

based. This class is particularly suited for calculation of small (e.g., atoms and small 

molecules) to medium sised systems (e.g., inorganic compounds or clusters). 
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Herein, we will adopt the quantum mechanics approach to perform our calculations as the systems 

under consideration are of small or medium sises. Nevertheless, it should be noted that the 

Schrödinger equation cannot be solved exactly for any system with more than one electron. As a 

result, approximate methods (e.g., ab initio and density functional theory (DFT) methods) and key 

approximations relevant to the work covered in this thesis will be employed. The basic ideas and 

concepts of these methods and approximations will be provided in the theoretical background 

chapter. Some of the approximations common in most computational programs (e.g., Gaussian[24]) 

are the Born-Oppenheimer or fixed nucleus approximation and the Hartree-Fock (HF) theory which 

form the foundation of computational chemistry[16] codes amongst various other approximations on 

electron-electron interactions. 

To test some of these theories and approximations especially with regards to electron correlation 

require small or few particle systems. This is because three-body or few-particle systems are the 

smallest systems in which the electron-electron correlation can be calculated to a high degree of 

accuracy. Three-body systems here refer to any system constituted from three particles, which may 

be a two-electron atom (e.g., helium) or ion (e.g., hydride ion). These two-electron systems and the 

hydrogen molecule have been the laboratory for accurate determination of electron-electron 

correlation data for quantum method developments for decades.[17,25] In this thesis, accurate HF 

wavefunctions of the helium atom and hydride ion are computed and used to re-parameterise a 

correlation energy formula used in DFT. Results obtained from these kinds of calculations will go a 

long way in contributing to or facilitating quantum method developments or improvements. 

 

1.2 Thesis overview 

This thesis presents the computational/theoretical investigation of the structure, stability and 

reactivity of inorganic complexes (pincer palladacycles, sulfur clusters (Sn) and hydrogen 

polysulfanes (HSn+1H)). This is hoped to facilitate an understanding of pincer palladacycles for 

application in catalysis and augment clean sulfur recovery in modern thermal Claus plants as well 

as its transportation and application after recovery. The thesis also presents the re-parametrisation of 

the Colle and Salvetti (CS) correlation formula[26] using accurate HF densities for helium and 

hydride and the computation of correlation energies for several atomic systems using a form of the 

Lee-Yang-Parr (LYP) density correlation functional.[27] 

The theoretical background and the mathematical basis (i.e., the computational and/or chemical 

physics methodologies and approximations) for the description of the chemistry presented in this 

thesis is presented in Chapter 2. Chapter 3 presents the theoretical investigation of the structure and 

reaction mechanisms of the unsymmetrical SCN pincer palladacycle for the formation of Pd(0), 
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using already validated[28] methodology. The Gibbs free energy profiles and energy barriers of Pd(0) 

generation from the species are compared to investigate the reactivity of the pincer palladacycles in 

the absence and presence of a base and in the absence and presence of a solvent. The results are 

used to rationalise the catalytic activity observed experimentally[29] for Suzuki-Miyaura carbon-

carbon (C-C) cross-coupling reactions. The findings of this chapter have been published in the 

Journal of Organometallic Chemistry.[11] The determination of a suitable and/or reliable 

computational methodology for the calculation of the geometry, vibrational frequencies and 

energies of sulfur clusters (Sn) and hydrogen polysulfanes (HSn+1H) is presented in Chapter 4. The 

determined methodology is used to investigate the electronic structure and stability of sulfur 

clusters, presented in Chapter 5 and the reactivity of stable open chains of sulfur clusters with 

hydrogen sulfide, presented in Chapter 6. A manuscript describing the results in Chapter 5 and 6 is 

in preparation. Chapter 7 describes the re-parametrisation of the CS formula using accurate HF 

densities for helium and hydride and the computation of correlation energies for several atomic 

systems using a form of the LYP formula in an in-house code. A manuscript describing the results 

in Chapter 7 has been submitted. Chapter 8 presents the summary and concluding remarks of this 

thesis. 

 

 



 

 

 

 

2 Theoretical Background 
 

This chapter provides the theoretical background and mathematical basis for the description of the 

chemistry and quantum data that will be presented in this thesis. 

2.1 The Schrödinger Equation 

The non-relativistic, time-independent Schrödinger equation is an eigenvalue equation for the 

Hamiltonian operator,[19,20,30,31] the operator for the total energy of a system.[32] The eigenvalue of 

this operator, 𝐸, is the value of the energy of a system and is often called the energy eigenvalue. 

This is the principal piece of information extracted from the Schrödinger equation of a system. 

When atomic or molecular systems are considered, the non-relativistic, time-independent 

Schrödinger equation is generally summarised to the simple-looking form: 

                                                                                  𝐻̂𝜓 = 𝐸𝜓                                                                       (2.1) 

where 𝐻̂ is the Hamiltonian operator, 𝜓 is the normalised wavefunction of the system. The 

wavefunction, 𝜓 contains all the dynamical information that defines a quantum system[30,33] or state 

of the system.[32–34] The Hamiltonian operator is defined as the sum of the kinetic and potential 

energy operators:[20,32,33,35] 

                                                                                 𝐻̂ = 𝑇̂ + 𝑉̂                                                                       (2.2) 

In general, for an 𝑁-particle system, the Hamiltonian operator is written in atomic units (𝑚𝑒 = 𝑒 =

(4𝜋𝜖0)
−1 = ℏ = 𝑎0 = 1) as:[20] 

                                                          𝐻̂ = −
1

2
∑

1

𝑚𝑖

𝑁

𝑖=1

∇𝑖
2 +∑∑

𝑍𝑖𝑍𝑗

𝑟𝑖𝑗

𝑁

𝑖<𝑗

𝑁

𝑖=1

                                                    (2.3) 

indicating that: 
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                                                                         𝑇̂ = −
1

2
∑

1

𝑚𝑖

𝑁

𝑖=1

∇𝑖
2                                                                 (2.4) 

and 

                                                                          𝑉̂ =∑∑
𝑍𝑖𝑍𝑗

𝑟𝑖𝑗

𝑁

𝑖<𝑗

𝑁

𝑖=1

                                                                   (2.5) 

where 𝑚𝑖 is the mass of the 𝑖th particle; 𝑁 is the total number of particles in the system; 𝑍𝑖 and 𝑍𝑗 is 

the charge on the 𝑖th and 𝑗th particle, respectively; 𝑟𝑖𝑗 is the distance between particle 𝑖 and 𝑗 while 

the Laplacian for the 𝑖th particle in Cartesian coordinates (∇𝑖
2)[20,30–35] is expressed as:  

                                                                    ∇𝑖
2 =

𝜕2

𝜕𝑥𝑖
2 +

𝜕2

𝜕𝑦𝑖
2 +

𝜕2

𝜕𝑧𝑖
2                                                             (2.6) 

The Hamiltonian operator for a system with 𝑁-electrons and 𝑀-nuclei is usually expressed in 

atomic units as:[31] 

               𝐻̂ = −
1

2
∑

1

𝑚𝑖

𝑁

𝑖=1

∇𝑖
2 −

1

2
∑

1

𝑚A

𝑀

𝑖=A

∇A
2 −∑∑

𝑍A
𝑟𝑖A

𝑀

A=1

𝑁

𝑖=1

+∑∑
1

𝑟𝑖𝑗

𝑁

𝑖<𝑗

𝑁

𝑖=1

+∑∑
𝑍A𝑍B
𝑟AB

𝑀

A<B

𝑀

A=1

               (2.7) 

with A and B running over the 𝑀-nuclei in the system, 𝑖 and 𝑗 denote the 𝑁-electrons in the system 

while the terms are colour coded for clarity. The red and cyan terms represent the electronic and 

nuclear kinetic energies, respectively. The brown term represents the electron-nucleus potential 

energy; the green term is the electron-electron interaction potential energy while the black term 

represents the nuclear-nuclear interaction potential energy of the system. 𝑚𝑖 is the mass of an 

electron, 𝑚A is the mass of the nucleus A in multiples of the electron mass, 𝑟𝑖𝑗 is the electron-

electron separation between electron 𝑖 and 𝑗, 𝑟AB represents the nuclear-nuclear separation while 𝑍A 

and 𝑍B is the charge on the A and B nucleus, respectively in the system. The Hamiltonian operator 

as given in eq. (2.7) is scarcely ever used in this form in current computational chemistry software 

codes, it is instead simplified to obtain an approximate solution to the Schrödinger equation using 

the Born-Oppenheimer Approximation.[20,35] 

 

2.2 The Born-Oppenheimer Approximation 

The Schrödinger equation cannot be solved exactly analytically for systems with more than one 

electron.[19,20,32,33,35] For many-electron systems, solutions of the Schrödinger equation can be 
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obtained within the Born-Oppenheimer (BO) approximation.[19,32,33,35] This approximation assumes 

that the nuclei are fixed relative to the electrons moving around them in a system.[19,20,31] This 

suggests that the nuclear and electronic motions are treated separately.[20,35] In this regard, the 

Hamiltonian operator in eq. (2.7) reduces, for a system with 𝑁-electrons and 𝑀-nuclei where the 

nuclei are assumed to be stationary, to the electronic Hamiltonian operator: 

                                                 𝐻̂𝑒 = −
1

2
∑

1

𝑚𝑖

𝑁

𝑖=1

∇𝑖
2 −∑∑

𝑍A
𝑟𝑖A

𝑀

A=1

𝑁

𝑖=1

+∑∑
1

𝑟𝑖𝑗

𝑁

𝑖<𝑗

𝑁

𝑖=1

                                      (2.8) 

with the colour coded terms and parameters retaining their meanings as in eq. (2.7). Substituting eq. 

(2.8) into eq. (2.1) yields the electronic energy of the system (𝐸𝑒) since 𝐻̂𝑒 will then operate on the 

electronic wavefunction (𝜓𝑒). As a consequence, the total energy of the system may then be 

obtained by adding the constant nuclear-nuclear repulsion term (𝐸𝑛𝑢𝑐, colour coded black in eq. 

(2.7)) at the end of the calculation,[19,20,35] i.e., 

                                                                            𝐸𝑡𝑜𝑡 = 𝐸𝑒 + 𝐸𝑛𝑢𝑐                                                                 (2.9) 

This suggests that the goal of approximating the solution of the Schrödinger equation in the BO 

approximation is to obtain the electronic energy of a system as a function of the fixed positions of 

the nuclei. From here, only the electronic Schrödinger equation will be considered and the 

subscripts to 𝐻̂𝑒, 𝜓𝑒 and 𝐸𝑒 can be dropped.[31] Because electron-electron interactions are critical in 

the understanding and prediction of chemical behaviour,[17,32,35] it is important to include these 

interactions in electronic structure treatment[32] and method developments.[17,35] These interactions 

are included in increasingly sophisticated electronic structure methods in an attempt to recover the 

energies that systems possess as a result of electron-electron correlation beginning with an average 

treatment at the Hartree-Fock (HF) level.[17,32] The motion of the nuclei in a system (described by 

the cyan term in eq. (2.7)) can be accounted for by considering this entire formulation to be a 

potential energy surface (PES) on which the nuclei move.[20] As such, concepts such as potential 

energy surfaces (PESs)[19,20] and the Hartree-Fock theory (HF)[16,32,35] which form the foundation of 

computational chemistry codes such as Gaussian[24] arise. 

The PES is a plot of a number of different nuclear geometries for a given system as a function of 

energy. As a consequence, fixed nuclear coordinates represent molecular geometry with electrons 

acting as a cloud of negative charge distributed around the positions of nuclei (stationary points). In 

this regard, a minimum energy point on the PES corresponds to a stable structure for a given system 

in that region of configuration space while a maximum energy point corresponds to a first-order or 

higher-order saddle point.[19,20,33,35] To distinguish the types of stationary points on the PES, the 
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second derivatives of the energy with respect to the nuclear coordinates (𝑞) are considered with the 

aid of Hessian matrices.[19,32,35] Mathematically, minima and saddle points differ in that although 

both are stationary points (have zero first derivatives),[19,32,35] 

                                                                                     
𝜕2𝐸

𝜕𝑞2
> 0                                                                    (2.10) 

for a minimum for all 𝑞 and 

                                                                                     
𝜕2𝐸

𝜕𝑞2
< 0                                                                    (2.11) 

for a transition state. For a transition state, eq. (2.10) is obeyed for all 𝑞 along one or more 

directions except along the reaction coordinate where eq. (2.11) holds.[19] Some points on the PES 

have a negative second derivative of the energy with respect to more than one coordinate. These are 

called higher-order saddle points.[19] In practice, once a stationary point has been found in a 

calculation (e.g., geometry optimisation), the nature of that geometry is usually determined by 

calculating the vibrational frequencies of the geometry.[19,35] A minimum energy point on the PES 

has all positive force constants (vibrational frequencies) while a transition state has one negative 

force constant (imaginary frequency)[19,35] and higher-order saddle points on the PES possess more 

than one imaginary frequency.[19,31,35] 

Once the nature of a stationary point for a system has been determined, it is then also possible to 

characterise its equilibrium structure in terms of bond lengths and angles.[32] It is noteworthy that a 

quantum system is never completely at rest,[19,30,32,33] i.e., even in the minimum stationary state, it 

possesses some kinetic energy as it still vibrates. This energy is always positive valued and 

irremovable and is called the zero-point energy (ZPE).[30,32,33] As such, for accurate computational 

energies, thermal corrections and ZPE’s are calculated during frequency calculations at 298.15 K 

and 1 atm and added to the frozen-nuclei energy obtained at the stationary points on the PES.[19,36,37] 

 

2.3 The Variation Principle 

In order to compute the electronic energy of any system, the Hamiltonian operator (𝐻̂) for such a 

system is set up[31] and a trial wavefunction (𝜓𝑡𝑟𝑖𝑎𝑙) is used to generate the expectation value of the 

Hamiltonian to give its energy, 𝐸.[31,32] The system is then subjected to an energy optimising 

procedure that minimises its energy[19,31,32,35] to systematically approach the wavefunction of the 

ground state (𝜓0) of the system.[31] It should be noted that 𝜓0 of the system will give the lowest 



9 
 

 

energy (ground state eigenvalue, 𝐸𝑒𝑥𝑎𝑐𝑡) of the system.[31,32] The expectation value of the un-

normalised trial wavefunction,[19,33,35] is given by the Rayleigh ratio:[32] 

                                                                 〈𝐻̂〉 =
⟨𝜓𝑡𝑟𝑖𝑎𝑙|𝐻̂|𝜓𝑡𝑟𝑖𝑎𝑙⟩

⟨𝜓𝑡𝑟𝑖𝑎𝑙|𝜓𝑡𝑟𝑖𝑎𝑙⟩
                                                            (2.12) 

Nevertheless, when 𝜓𝑡𝑟𝑖𝑎𝑙 is normalised, ⟨𝜓𝑡𝑟𝑖𝑎𝑙|𝜓𝑡𝑟𝑖𝑎𝑙⟩ = 1. The variation principle therefore 

states that:[19,30–32,35] 

                                                                                 〈𝐻̂〉 ≥ 𝐸𝑒𝑥𝑎𝑐𝑡                                                                (2.13) 

where 𝐸𝑒𝑥𝑎𝑐𝑡 (or 𝐸0 in some texts) is the true or exact energy of the ground state[19,30–32,35] of the 

system. This indicates that 〈𝐻̂〉 is an upper bound to 𝐸𝑒𝑥𝑎𝑐𝑡 and that the equality in eq. (2.13) holds 

if and only if 𝜓𝑡𝑟𝑖𝑎𝑙 = 𝜓0.[19,30–32] The significance of this principle is that 𝜓𝑡𝑟𝑖𝑎𝑙 giving the lowest 

〈𝐻̂〉 is the optimum function of the system[32] and gives the best estimate of the ground state energy 

of the system. The variation principle therefore suggests that the average value of every measurable 

property of a system (e.g., energy) can be calculated, at least in principle, by calculating the 

expectation value of the operator.[19] 

 

2.4 Hartree-Fock Theory 

The impossibility of analytic solutions to the electronic Schrödinger equation for poly-electronic 

systems due to the electron-electron interaction term in eq. (2.8) gave rise to the HF approximation 

to enable calculation of many electron wavefunctions and energies.[19] In HF theory, each electron 

in a system of 𝑁-electrons is considered to be moving in the electrostatic field of the nuclei and the 

average field of the other 𝑁 − 1 electrons present in the system.[16,32] The approximation is often 

referred to as the central field approximation.[20,32] The starting point of this theory is to write the 

Hartree wavefunction for an 𝑁-electron system as a product of 𝑁 one electron 

wavefunctions:[19,32,33] 

                                                             𝛹𝑁 = 𝜓1(1)𝜓2(2)𝜓3(3)…𝜓𝑁(𝑁)                                            (2.14) 

where 𝛹𝑁 is the approximated total wavefunction in which 𝜓1 is a function of the coordinates of 

electron 1, 𝜓2 is a function of the coordinates of electron 2 and so on and the functions are called 

the orbitals of the system. 𝛹𝑁 however, does not satisfy the anti-symmetry principle. It is therefore 

required that this wavefunction (𝛹𝑁) must satisfy the Pauli principle, i.e., it must be anti-symmetric 

(change sign under the permutation of any pair of electrons).[19,32,33] For this requirement to be 

satisfied, the Slater wavefunction, composed of both spatial and spin coordinates of the 
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electrons,[19,32] is employed. Using a Slater wavefunction implies that all electrons are 

indistinguishable and each electron is associated with every orbital. The Slater wavefunction uses 

the Slater determinant which for a closed-shell system of electrons is:[19,32,33] 

                  𝛹𝑁 =
1

√𝑁!
|

𝜓1(1)𝛼(1)

𝜓1(2)𝛼(2)
⋮

𝜓1(𝑁)𝛼(𝑁)

𝜓1(1)𝛽(1)

𝜓1(2)𝛽(2)
⋮

𝜓1(𝑁)𝛽(𝑁)

⋯
⋯
⋱
…

𝜓𝑁(1)𝛼(1)

𝜓𝑁(2)𝛼(2)
⋮

𝜓𝑁(𝑁)𝛼(𝑁)

𝜓𝑁(1)𝛽(1)

𝜓𝑁(2)𝛽(2)
⋮

𝜓𝑁(𝑁)𝛽(𝑁)

|              (2.15) 

where 𝜓1(1)𝛼(1) refers to electron 1 with 𝛼-spin (spin up) occupies orbital 𝜓1 and 𝜓1(2)𝛽(2) 

indicates the occupation of orbital 𝜓1 by electron 2 with a 𝛽-spin (spin down) etc. while the initial 

factor on the right hand side of eq. (2.15) ensures that the wavefunction is normalised. Here, a mean 

field approximation will then suggest that the electrons in the system move independently of each 

other and that a Coulomb repulsion will be experienced due to the average field of all other 

electrons in the system. As such, one can then assume that they can be described by a Slater 

determinant and can be minimised using eq. (2.12). Therefore if 𝜓𝑡𝑟𝑖𝑎𝑙 in eq. (2.12) is replaced by 

the total wavefunction (𝛹𝑁) in eq. (2.15), the optimum wavefunction of a system in the sense of 

corresponding to the lowest total energy of the system must satisfy the HF equation:[19,31–33] 

                                                                          𝐹̂𝜓𝑖(1) = 𝜀𝑖𝜓𝑖(1)                                                             (2.16) 

where 𝜀𝑖 is the eigenvalue and 𝐹̂ is the one-electron Fock-operator: 

                                                       𝐹̂ = 𝐻̂𝑐𝑜𝑟𝑒(1) +∑(2𝐽𝑗(1) − 𝐾̂𝑗(1))

𝑁

𝑗=1

                                            (2.17) 

where the one-electron core Hamiltonian operator (𝐻̂𝑐𝑜𝑟𝑒), the Coulomb operator (𝐽, representing 

the Coulombic interaction between electron 1 in orbital 𝑖 and electron 2 in orbital 𝑗) and the 

exchange operator (𝐾̂, which represents a correction to the electrostatic repulsion between the 

electrons in orbital 𝑗) are defined as: 

                                                                𝐻̂𝑐𝑜𝑟𝑒(𝑖) = −
1

2
∇𝑖
2 −∑

𝑍A
𝑟𝑖A

𝑀

A=1

                                                    (2.18) 

                                                       𝐽𝑗(1)𝜓𝑖(1) = {∫𝜓𝑗
∗(2)

1

𝑟12
𝜓𝑗(2)𝑑𝜏2}𝜓𝑖(1)                                (2.19) 

                                                       𝐾̂𝑗(1)𝜓𝑖(1) = {∫𝜓𝑗
∗(2)

1

𝑟12
𝜓𝑖(2)𝑑𝜏2}𝜓𝑗(1)                               (2.20) 
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This minimisation procedure is continued for 𝑁 cycles in an iterative manner, guessing the form of 

the initial wavefunction at the beginning while each cycle adopts the wavefunction of the previous 

one. This goes on until the eigenvalue of 𝐹̂ and 𝜓𝑖 remain unchanged within a chosen convergence 

criterion (i.e., when the solution is self-consistent).[19,31–33] Hence the name, self-consistent field 

(SCF) given to the procedure.[32,33] However, because the Fock operator calculates the energy of 

each spatial orbital, 𝜀𝑖 has the physical meaning of the energy levels of a system.[31,32] To obtain the 

total energy of a system using this procedure, the idea of linear combination of atomic orbitals 

(LCAO) or basis functions is employed.[19,31–33] In this regard, expanding the wavefunction is a set 

of functions: 

                                                                             𝜓𝑖 =∑𝑐𝑗𝑖𝜙𝑗

𝑀

𝑗=1

                                                                 (2.21) 

where 𝑀 represents the total number of basis functions, 𝑐𝑗𝑖’s are the expansion coefficients of the 

𝜙𝑗 (basis functions) of the 𝜓𝑖 (molecular orbital). Eq. (2.21) is then applied to the HF equation (eq. 

(2.16)) to give the Roothaan equation:[19,32,33] 

                                                                 𝐹̂∑𝑐𝑗𝑖𝜙𝑗

𝑀

𝑗=1

(1) = 𝜀𝑖∑𝑐𝑗𝑖𝜙𝑗

𝑀

𝑗=1

(1)                                             (2.22) 

It can be written from eq. (2.22) that:[19] 

                                                                𝜀𝑖 =∑𝑐𝑗𝑖

𝑀

𝑗=1

∫𝜙𝑗(1)𝐹̂𝜙𝑗(1)𝑑𝜏                                                 (2.23) 

which follows from simply multiplying both sides of the HF equation by 𝜓𝑖(1) and integrating over 

all space and spin coordinates (𝑑𝜏) while noting that 𝜓𝑖 is normalised. By applying the Fock 

operator, eq. (2.22) becomes: 

                                         𝜀𝑖 = ∫𝜓𝑖
∗(1)𝐻̂𝑐𝑜𝑟𝑒(1)𝜓𝑖(1)𝑑𝜏 +∑(2𝐽𝑖𝑗(1) − 𝐾𝑖𝑗(1))

𝑁

𝑗=1

                       (2.24) 

where 𝐽𝑖𝑗 and 𝐾𝑖𝑗 are the Coulomb and exchange integrals defined as: 

                                                  𝐽𝑖𝑗 = ∫𝜓𝑖
∗(1)𝜓𝑖(1) (

1

𝑟12
)𝜓𝑗

∗(2)𝜓𝑗(2)𝑑𝜏1𝑑𝜏2                                   (2.25) 

                                                𝐾𝑖𝑗 = ∫𝜓𝑖
∗(1)𝜓𝑗

∗(2) (
1

𝑟12
)𝜓𝑖(2)𝜓𝑗(1)𝑑𝜏1𝑑𝜏2                                   (2.26) 
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It can be written from eq. (2.24) that: 

                                                             𝐻𝑖𝑖 = ∫𝜓𝑖
∗(1)𝐻̂𝑐𝑜𝑟𝑒(1)𝜓𝑖(1)𝑑𝜏                                                (2.27) 

So that eq. (2.24) transforms to: 

                                                            𝜀𝑖 = 𝐻𝑖𝑖 +∑(2𝐽𝑖𝑗(1) − 𝐾𝑖𝑗(1))

𝑁

𝑗=1

                                                (2.28) 

The total energy of the systems in terms of the MO’s can therefore be obtained as;[19] 

                                                   𝐸 = 2∑𝐻𝑖𝑖

𝑁

𝑖=1

+∑∑(2𝐽𝑖𝑗(1) − 𝐾𝑖𝑗(1))

𝑁

𝑗=1

𝑁

𝑖=1

                                        (2.29) 

Supposing that the repulsion energies of electron 1 and electron 2 are added, i.e., the repulsion 

energy of electron 1 on the remaining 𝑁 − 1 (2, 3, 4, …, 𝑁) electrons and the repulsion energy of 

electron 2 on the remaining 𝑁 − 1 (1, 3, 4, … 𝑁) electrons, each repulsion is counted twice.[19] 

Therefore, eq. (2.29) over counts the electron-electron repulsion potential;[19] i.e., 

                                                                      𝐸𝑜𝑣𝑒𝑟𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 = 2∑𝜀𝑖

𝑁

𝑖=1

                                                       (2.30) 

As such, to eliminate the double counting of the repulsion or the superfluous interactions, the sum 

over 𝑁 of the repulsion energy (∑∑(2𝐽𝑖𝑗(1) − 𝐾𝑖𝑗(1))) is subtracted from the right hand side of eq. 

(2.30). Much algebraic manipulations are then performed to eliminate the 𝐽 and 𝐾 over the MO’s so 

as to obtain 𝐸𝐻𝐹 in terms of the 𝑐’s and/or 𝜓𝑖’s (MO’s) as:[19,32] 

        𝐸𝐻𝐹 = 2∑𝜀𝑖

𝑁

𝑖=1

−∑∑(2𝐽𝑖𝑗(1) − 𝐾𝑖𝑗(1))

𝑁

𝑗=1

𝑁

𝑖=1

=∑(𝜀𝑖 + ⟨𝜓𝑖(1)|𝐻̂
𝑐𝑜𝑟𝑒(1)|𝜓𝑖(1)⟩)

𝑁

𝑖=1

          (2.31) 

Alternatively, by multiplying both sides of eq. (2.22) by 𝜙𝑖
∗(1) and integrating over 𝑑𝜏 results in:[32] 

                                         ∑𝑐𝑗𝑖∫𝜙𝑖
∗(1)𝐹̂𝜙𝑗(1)𝑑𝜏

𝑀

𝑗=1

= 𝜀𝑖∑𝑐𝑗𝑖∫𝜙𝑖
∗(1)𝜙𝑗(1)𝑑𝜏

𝑀

𝑗=1

                           (2.32) 

where:[19,32,33] 

                                                                 𝐹𝑖𝑗 = ∫𝜙𝑖
∗(1)𝐹̂𝜙𝑗(1)𝑑𝜏                                                           (2.33) 
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and 

                                                                   𝑆𝑖𝑗 = ∫𝜙𝑖
∗(1)𝜙𝑗(1)𝑑𝜏                                                           (2.34) 

are the Fock and overlap matrices, respectively. Putting eq. (2.33) and eq. (2.34) into eq. (2.32) 

gives the Roothaan-Hall equations:[19,32,33] 

                                                                           ∑𝐹𝑖𝑗𝑐𝑗𝑖

𝑀

𝑗=1

= 𝜀𝑖∑𝑆𝑖𝑗𝑐𝑗𝑖

𝑀

𝑗=1

                                                   (2.35) 

which is one in a set of 𝑀 simultaneous equations (one for each value of 𝑖).[32] The entire set of the 

equations in eq. (2.35) which are primarily aimed at computing the 𝑐𝑗𝑖’s of the basis functions of the 

𝜓𝑖’s (MO’s) can be written as the general single matrix equation:[19,32,33] 

                                                                                 𝐅𝐂 = 𝛆𝐒𝐂                                                                      (2.36) 

where 𝐂 is an 𝑀 ×𝑀 matrix composed of elements 𝑐𝑗𝑖 and 𝜺 is an 𝑀 ×𝑀 diagonal matrix of the 

orbital energies, 𝜀𝑖.
[19,32] The unknown electronic energy levels of the system in eq. (2.35) or eq. 

(2.36) may therefore be found by solving the secular equation:[32] 

                                                                             det|𝐹 − 𝜀𝑖𝑆| = 0                                                             (2.37) 

But eq. (2.37) cannot be solved trivially as 𝐹𝑖𝑗 involves integrals over 𝐽 and 𝐾̂, which are also 

dependent on spatial wavefunctions. Therefore the SCF procedure is adopted instead to obtain the 

𝑐𝑗𝑖’s and/or 𝜀𝑖’s with each iteration (cycle) giving a better value until the convergence criterion is 

achieved.[32] When this is achieved, eq. (2.22) to eq. (2.31) is employed to obtain the total electronic 

energy of the system as an upper bound to its exact energy. 

The above formalism considers only systems in which there are an even number of electrons 

thereby supposing that the spatial components of the spin orbitals are identical for each member of a 

pair of electrons (closed-shell).[31,32] As such, the wavefunction as in eq. (2.15) is called the 

restricted Hartree-Fock (RHF) wavefunction[32] and the overall approximation, the restricted 

Hartree-Fock approximation.[31] This procedure is basically used to describe closed-shell organic or 

inorganic compounds.[31] The wavefunction involved in this approximation is an eigenfunction and 

the HF equations (eq. (2.16) to eq. (2.20)) can be converted to spatial eigenvalue problems by 

integrating over the spin functions and using the orthonormality of the spins.[32] The RHF formalism 

is however, inadequate for describing systems with an odd number of electrons or systems with an 

even number of electrons which are open-shell systems.[31] For such systems, two procedures are 

commonly adopted in their treatment in the HF approximation.[31,32] The first procedure is called the 
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restricted open-shell HF (ROHF) procedure. Here, all the 𝛼 and 𝛽 electrons except those occupying 

open-shell orbitals are forced to occupy the spatial orbitals in pairs. This method is not used in this 

thesis. The second approach is the unrestricted Hartree-Fock (UHF) method in which the 𝛼 and 𝛽 

electrons in a system are not constrained to have the same spatial wavefunction. By relaxing the 

constraint of pair-wise occupation of orbitals, the UHF formalism yields a lower variational energy 

in comparison with the ROHF formalism. However, the disadvantage of the UHF formalism is that 

the UHF wavefunction is not an eigenfunction of the spin operator, 〈𝑆̂2〉, like that of the RHF.[31,32] 

This implies that the total spin angular momentum is not well-defined for the UHF wavefunction.[32] 

Usually, the more the 〈𝑆̂2〉 of the Slater determinant deviates from the 𝑆(𝑆 + 1) value, its true value 

in a system for a state,[31,32] the more the UHF determinant is contaminated by functions from states 

of higher spin multiplicity and the less physically meaningful it gets.[31,35] 𝑆 stands for the spin 

quantum number representing the total spin of the system. 

The HF approach only accounts for about 99 % of the total energy of a system but the 1 % 

unaccounted for[17,35] due to the electron-electron repulsion term is usually very important for 

describing chemical processes.[17,19,35] As a result, great efforts are made to recover the electron-

electron correlation energy of systems computed at this level. This has given rise to many different 

sophisticated electron correlation approaches to solving the Schrödinger equation for many-electron 

systems with the HF approximation usually adopted as the starting point.[17,32,35] The RHF and UHF 

methods are used in this thesis to generate the canonical orbitals of species employed in post HF 

methodologies discussed in 2.5. Also, the RHF method used to generate accurate densities for the 

helium atom and the hydride ion that are then employed in re-parameterising the CS correlation 

formula in Chapter 7. 

 

2.5 Post-Hartree-Fock Methods 

As mentioned in 2.4, the HF ground-state wavefunction is not the ‘exact’ wavefunction of such 

systems notwithstanding how good it may be as the method does not take account of electron 

correlation.[32,38] Nevertheless, it is worth noting that the HF theory accounts for the correlated 

motion of electrons of the same spin (Fermi correlation) but ignores the spin independent correlated 

motion of electrons (Coulomb correlation).[16–18] Consequently, it does not consider the 

instantaneous Coulombic interactions between electrons nor account for the quantum mechanical 

effects on electron distributions since the effect of the 𝑁 − 1 electrons on the electron in question is 

treated as an average. It can therefore be summarised that the HF approximation ignores electron 

correlation - the correlated motion of electrons.[19,32,38] This suggests that even though the HF 
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calculations are adequate for many purposes, there are cases where a better treatment of electron 

correlation is needed. In this regard, the post-Hartree-Fock methods are attempts to treat such 

correlated motion better than they are in the HF procedure, i.e., they are correlated calculations.[19] 

Löwdin defined the energy of the ignored correlated motion of the electrons, 𝐸𝑐, as:[39,40] 

                                                                          𝐸𝑐 = 𝐸𝑒𝑥𝑎𝑐𝑡 − 𝐸𝐻𝐹                                                             (2.38) 

where 𝐸𝑐 is the correlation energy while 𝐸𝑒𝑥𝑎𝑐𝑡 and 𝐸𝐻𝐹 is the exact non-relativistic and HF energy 

of a system, respectively. Three basic approaches exist for treating electron correlation namely:[19] 

1. Explicit use of inter-electronic distances as variables in the Schrödinger equation: this is 

reserved for treatment of atoms and small molecules as it quickly leads to mathematically 

intractable problems; 

2. Treatment of real systems (molecules) as perturbed HF systems and 

3. Explicit inclusion of electronic configurations other than that of the ground state in the 

wavefunction. 

The approaches in 2 and 3 are general but very important as they form the basis of the many-body 

perturbation, coupled-cluster and the configuration interaction procedures.[19] Also, approach 3 

introduces the concept of configuration state functions (CSF’s), which are determinants, for 

equivalent symmetry adapted electronic states that differ only by an electron occupation upon 

promotion from the ground state.[19,31,32] CSF’s are crucial in the formulation of the post-HF 

procedures as will be discussed below. 

 

2.5.1 The Configuration Interaction Method 

The HF method produces a finite set of 2𝑀 spin orbitals which can be ordered energetically from 

the lowest (occupied) to the highest (unoccupied), when a finite basis set expansion is used.[32] 

Assuming the lowest to be occupied by 𝑁 ground state electrons, its HF wavefunction 𝜓𝐻𝐹 can be 

formed leaving a 2𝑀 − 𝑁 set of virtual (unoccupied) orbitals. Consequently, many Slater 

determinants can be formed from the set with 𝜓𝐻𝐹 as one of them for a given system especially 

when electron excitement is involved. As such, it can be written that:[32] 

                               𝜓𝐻𝐹 =
1

√𝑁!
𝑑𝑒𝑡|𝜓1𝜓2…𝜓𝑎𝜓𝑏…𝜓𝑁| = ‖𝜓1𝜓2…𝜓𝑎𝜓𝑏…𝜓𝑁‖                      (2.39) 

where 𝜓𝑎 and 𝜓𝑏 are among the occupied spin orbitals of the 𝜓𝐻𝐹 ground state; normalisation and 

determinant are further simplified and implied by ‖…‖. A singly excited determinant, say 𝜓𝑎
𝑝

, 
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corresponding to one for which a single electron in the occupied orbital 𝜓𝑎 has been promoted to 

the virtual spin orbital, 𝜓𝑝 will be: 

                                                                  𝜓𝑎
𝑝
= ‖𝜓1𝜓2…𝜓𝑝𝜓𝑏…𝜓𝑁‖                                                  (2.40) 

And a determinant representing doubly excited electrons from spin orbitals 𝜓𝑎 and 𝜓𝑏 to spin 

orbitals 𝜓𝑝 and 𝜓𝑞, 𝜓𝑎𝑏
𝑝𝑞

 will be: 

                                                                  𝜓𝑎𝑏
𝑝𝑞
= ‖𝜓1𝜓2…𝜓𝑝𝜓𝑞…𝜓𝑁‖                                                (2.41) 

These determinants can also be formed for multiple excitation of electrons, each of which is called a 

configuration state function (CSF).[32] Eq. (2.39) to eq. (2.41) can be presented diagrammatically as 

in Figure 2.1. 

 

Figure 2.1. Notation for ground and excited state determinants showing promotion of electrons 

whose spin can be 𝛼 or 𝛽. 
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The excited CSF’s are used to approximate excited state wavefunctions or used in a linear 

combination with 𝜓𝐻𝐹 to improve the representation of the ground state or any excited state 

wavefunction.[32] 

In the configuration interaction (CI) procedure, the HF determinant (𝜓𝐻𝐹) is considered as the 

ground state while the excited determinants are approximated as promotion of electrons from the 

ground state to unoccupied/virtual orbitals for treating electron correlation.[19] The exact ground or 

excited state wavefunction for this formalism can therefore be written as a linear combination of all 

possible 𝑁-electron Slater determinants arising from a complete set of spin orbitals in the 

form:[19,32,35] 

              𝜓𝐶𝐼 = 𝑐0𝜓𝐻𝐹 +∑𝑐𝑎
𝑝
𝜓𝑎
𝑝

𝑎,𝑝

+∑ 𝑐𝑎𝑏
𝑝𝑞
𝜓𝑎𝑏
𝑝𝑞

𝑎<𝑏
𝑝<𝑞

+ ∑ 𝑐𝑎𝑏𝑐
𝑝𝑞𝑟
𝜓𝑎𝑏𝑐
𝑝𝑞𝑟

𝑎<𝑏<𝑐
𝑝<𝑞<𝑟

+⋯ =∑𝑐𝐽𝜓𝐽

𝐿

𝐽=0

               (2.42) 

where 𝑐𝑎
𝑝

, 𝑐𝑎𝑏
𝑝𝑞

, … and/or 𝑐𝐽 are the expansion coefficients, the limits in the summation (
𝑎 < 𝑏
𝑝 < 𝑞

,…) 

are to ensure that the sum is over all the unique pairs, unique triplets etc. of spin orbitals in doubly, 

triply etc. excited determinants.[32] When the procedure exhausts all the possible electron excitations 

for a finite basis set, the calculation is considered a full CI calculation.[19,32] Full CI is however, not 

always possible except for very small systems.[35] The 𝑐𝑎
𝑝
, 𝑐𝑎𝑏
𝑝𝑞

, … and/or 𝑐𝐽 in eq. (2.42) and hence 

the energy of a system can either be computed by variational minimisation using eq. (2.12) and 𝜓𝐶𝐼 

as the trial wavefunction or solving the matrix equations:[32] 

                                                                                𝐇𝐂 = 𝛆𝐒𝐂                                                                      (2.43) 

like in eq. (2.36). Here, 

                                                                             𝐻𝑖𝑗 = ⟨𝜓𝑖|𝐻̂|𝜓𝑗⟩                                                              (2.44) 

and 

                                                                                𝑆𝑖𝑗 = ⟨𝜓𝑖|𝜓𝑗⟩                                                                (2.46) 

Some of the common computationally tractable variants of this procedure include; CIS where the CI 

approach involves only single excitations, CID which involves only double excitations, CISD in 

which the CI procedure involves single and double excitations and CISD(T) in which the CI scheme 

involves single, double and perturbative triple excitations etc.[19,31,32,35] The disadvantage of this 

method is that it lacks sise consistency.[19,32,35] Nevertheless, this can be corrected by using the 

Davidson correction:[32,35,41] 

                                                              ∆𝐸𝑄 = (1 − 𝑐0
2)(𝐸𝐶𝐼𝑆𝐷 − 𝐸𝑆𝐶𝐹)                                                  (2.46) 



18 
 

 

which can correct the error significantly.[32] ∆𝐸𝑄 is the estimation of the contribution of the 

quadruply excited determinant (usually denoted by attaching +𝑄 to the methodology,[35] e.g., 

CISD + 𝑄) to the correlation energy, 𝐸𝐶𝐼𝑆𝐷 is the ground state energy computed using CISD and 

𝐸𝑆𝐶𝐹 is the ground state energy associated with 𝜓𝐻𝐹 while 𝑐0 is the 𝜓𝐻𝐹 expansion coefficient 

computed with the CISD procedure.[32,35] Corrections of sise-consistency due to more complicated 

contributions from higher excited determinants have also been proposed in the literature.[42] This 

method gives the basic background to the multi-configurational SCF (MCSCF) methods, e.g., the 

complete active space SCF (CASSCF) discussed in the next section. 

 

2.5.2 The Complete Active Space Self-Consistent Field Method 

The CASSCF approach[38] to recovering the correlation energy ignored by the HF method is a 

variant of MCSCF method, pioneered by Björn Roos.[19,32,35,43] In the MCSCF formalism, both the 

𝑐𝑗𝑖’s of eq. (2.21) and 𝑐𝐽’s of eq. (2.42) are iteratively optimised together with the MO’s making up 

the determinants using eq. (2.12).[19,32,35] In addition, the optimal values of the 𝑐𝑗𝑖’s in eq. (2.21) are 

predetermined by a HF-SCF calculation and used in the formation of excited Slater determinants in 

subsequent CI calculations.[32,35,38] In the CASSCF method, the MO’s are divided into three sets 

viz:[19,32,35,38,43] 

1. Inactive orbitals: lowest energy orbitals that are doubly occupied in all determinants and 

correspond to core orbitals; 

2. Virtual orbitals: very high in energy and are unoccupied in all determinants and 

3. Active orbitals: these orbitals fall in between the virtual and inactive orbitals energetically; 

i.e., they are often some of the highest occupied and lowest unoccupied orbitals. Within 

these MO’s, full CI is performed and the proper symmetry-adapted CSF’s are included in 

the optimisation. 

The active orbitals and electrons are usually chosen manually based on chemistry of the system 

investigated with this approach. These then give rise to all the possible ways of distributing the 

active electrons over the active orbitals to give CSF’s that are included in the CASSCF 

procedure.[19,32,35] The CI wavefunction is then used as the trial wavefunction and iteratively solved 

over the included CSF’s until self-consistency is achieved, i.e., when the determined 𝑐𝐽’s remain 

constant within a chosen convergence criterion. This method will be used in this thesis. 

The post-HF methodologies described so far involve CSF’s arising from electron excitation from 

the 𝜓𝐻𝐹 determinant. Nevertheless, MCSCF wavefunction(s) may also be chosen as reference from 
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which a set of excited CSF’s can be formed for use in a CI calculation.[32,35] When this is the case, 

the methodology is termed multi-reference configuration interaction (MRCI).[35] 

 

2.5.3 Møller-Plesset Many-Body Perturbation Theory 

The post-HF methods described above are non-perturbative approaches[44] to treating the electron 

correlation problem using the HF determinant as the reference wavefunction. The Møller-Plesset 

perturbation theory (MPPT)[45] is one of the commonly employed perturbative approaches to the 

electron correlation problem and is usually carried out from second to fourth-order.[44,46] In this 

theory, the zero-order Hamiltonian of a system (𝐻̂(0) ≡ 𝐻̂𝐻𝐹) composed of 𝑁-interacting electrons 

is selected to be the sum of one-electron Fock operators as:[32,35] 

                                                                              𝐻̂(0) =∑𝐹̂𝑖

𝑁

𝑖=1

                                                                  (2.47) 

with its corresponding eigenvalue, 𝐸0
(0)

 given by the sum of the orbital energies of all the occupied 

MO’s. The Hamiltonian for the perturbation of the system (𝐻̂(1)) which represents the extent to 

which the true Hamiltonian differs from the model one is defined as:[32,33,35,47] 

                                                                            𝐻̂(1) = 𝐻̂ −∑𝐹̂𝑖

𝑁

𝑖=1

                                                           (2.48) 

where 𝐻̂ is the true electronic Hamiltonian of the system. But the HF ground state energy (𝐸𝐻𝐹) 

associated with the normalised ground state wavefunction (𝜓𝐻𝐹) is: 

                                                                      𝐸𝐻𝐹 = ⟨𝜓𝐻𝐹|𝐻̂|𝜓𝐻𝐹⟩                                                             (2.49) 

Putting eq. (2.48) into eq. (2.49) yields: 

                                                             𝐸𝐻𝐹 = ⟨𝜓𝐻𝐹|𝐻̂
(0) + 𝐻̂(1)|𝜓𝐻𝐹⟩                                                   (2.50) 

It can therefore be shown from eq. (2.50) that:[32] 

                                                                    𝐸0
(0)
= ⟨𝜓𝐻𝐹|𝐻̂

(0)|𝜓𝐻𝐹⟩                                                         (2.51) 

                       𝐸(1) = ⟨𝜓𝐻𝐹|𝐻̂
(1)|𝜓𝐻𝐹⟩ = 𝜆

0𝐸0
(0)
+ 𝜆𝐸0

(1)
+ 𝜆2𝐸0

(2)
+ 𝜆3𝐸0

(3)
+⋯                       (2.52) 

where 𝜆𝑖 represents the order of perturbation while 𝐸0
(𝑖)

 stands for correction to the unperturbed 

energy (𝐸0
(0)

) of a system corresponding to the level of perturbation. 
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But[32] 

                                                                        𝐸𝐻𝐹 = 𝜆
0𝐸0

(0)
+ 𝜆𝐸0

(1)
                                                        (2.53) 

 therefore that eq. (2.53) is the first-order correction to the energy of the system and is essentially 

the HF energy of the ground state. Consequently, correction for electron correlation energy will 

therefore begin at the second-order with the choice of 𝐻̂(0) as discussed. This energy correction, 

which is the first contribution to the correlation energy, will only involve a sum over doubly excited 

determinants resulting from promotion of electrons which makes it easier for the electrons to avoid 

one another.[19,32,35] This is the essence of the MPPT.[19] In this regard, the second-order correction to 

the energy of the system will be:[32,35,45] 

                                                         𝐸0
(2)
=
1

4
∑∑

(𝑎𝑏‖𝑝𝑞)(𝑝𝑞‖𝑎𝑏)

𝜀𝑎 + 𝜀𝑏 − 𝜀𝑝 − 𝜀𝑞

𝑣𝑖𝑟𝑡

𝑝<𝑞

𝑜𝑐𝑐

𝑎<𝑏

                                               (2.54) 

where the sum is restricted so that the excited determinant is only counted once.[35] In addition,[32,35] 

                                       (𝑎𝑏‖𝑝𝑞)(𝑝𝑞‖𝑎𝑏) = ⟨𝜓𝑎𝜓𝑏|𝜓𝑝𝜓𝑞⟩ − ⟨𝜓𝑎𝜓𝑏|𝜓𝑞𝜓𝑝⟩                                  (2.55) 

and[19,32] 

(𝑎𝑏‖𝑝𝑞) = ∫𝜓𝑎
∗(1)𝜓𝑏

∗(2)
1

𝑟12
𝜓𝑝(1)𝜓𝑞(2)𝑑𝜏1𝑑𝜏2 −∫𝜓𝑎

∗(1)𝜓𝑏
∗(2)

1

𝑟12
𝜓𝑞(1)𝜓𝑝(2)𝑑𝜏1𝑑𝜏2  (2.56) 

with 𝜓𝑎 and 𝜓𝑏 as the occupied MO’s and 𝜓𝑝 and 𝜓𝑞 as the virtual (unoccupied) MO’s. The MPPT 

with inclusion of the second-order corrections to the energy of the system is designated MP2[19,32,35] 

for short; this level and higher-order corrections[44,46] can be written for short as MPn where n = 2, 

3, 4, 5, … .[32,35] Whereas the MPPT calculations are sise consistent, they are not variational[19,32,35] 

like the full CI method as they do not, in general, give energies that are upper bounds to the exact 

energy.[32] The MPPT (MPn) method is not used in this thesis but is incorporated in the method 

discussed in the next section which is employed in this thesis. 

 

2.5.4 The Coupled Cluster Method 

The coupled cluster (CC) method[48–51] for solving the Schrödinger equation for many electron 

systems in electronic structure incorporates the mathematical features of the many-body 

perturbation theory (MBPT) and higher-electronic state CI methods.[32,35] The CC method is also 

used in this thesis. The basic idea of this theory is to express the correlated wavefunction with an 

exponential ansatz assuming normalisation[19,32,35,48,52] as: 
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                       𝜓𝐶𝐶 = (1 + 𝑇̂ +
𝑇̂2

2!
+
𝑇̂3

3!
+ ⋯)𝜓𝐻𝐹 = (∑

1

𝑘!
𝑇̂𝑖
𝑘

𝑁

𝑖=1

)𝜓𝐻𝐹 = 𝑒
𝑇̂𝜓𝐻𝐹                      (2.57) 

where 

                                                                               𝑇̂ = ∑𝑇̂𝑖

𝑁

𝑖=1

                                                                       (2.58) 

also, 𝑖 = 1, 2, 3,… ,𝑁 and 𝑘 = 0, 1, 2, 3, …, 𝑇̂ and/or 𝑇̂𝑖 are called the cluster or excitation 

operator(s) and are defined for singly, doubly, triply, etc. excitations[32,35,52] as: 

                                                                   𝑇̂1𝜓𝐻𝐹 =∑∑𝑡𝑎
𝑝
𝜓𝑎
𝑝

𝑣𝑖𝑟𝑡

𝑝

𝑜𝑐𝑐

𝑎

                                                            (2.59) 

                                                                𝑇̂2𝜓𝐻𝐹 = ∑∑𝑡𝑎𝑏
𝑝𝑞
𝜓𝑎𝑏
𝑝𝑞

𝑣𝑖𝑟𝑡

𝑝<𝑞

𝑜𝑐𝑐

𝑎<𝑏

                                                          (2.60) 

                                                          𝑇̂3𝜓𝐻𝐹 = ∑ ∑ 𝑡𝑎𝑏𝑐
𝑝𝑞𝑟
𝜓𝑎𝑏𝑐
𝑝𝑞𝑟

𝑣𝑖𝑟𝑡

𝑝<𝑞<𝑟

𝑜𝑐𝑐

𝑎<𝑏<𝑐

                                                    (2.61) 

 the 𝑇̂𝑖 operator acting on 𝜓𝐻𝐹 (the reference wavefunction) generates all the 𝑖th excited Slater 

determinants involved in the system. The 𝑡𝑎
𝑝

, 𝑡𝑎𝑏
𝑝𝑞

, 𝑡𝑎𝑏𝑐
𝑝𝑞𝑟

 etc. are called the excitation amplitudes 

accordingly.[32,35] The effect of 𝑒𝑇̂ on 𝜓𝐻𝐹 is that it leads to eq. (2.59) to eq. (2.61) and the products 

of the 𝑇̂𝑖 operators, e.g., 𝑇̂1𝑇̂1, 𝑇̂1𝑇̂2, 𝑇̂1𝑇̂3, 𝑇̂2𝑇̂3, 𝑇̂1
2, 𝑇̂2

2, 𝑇̂1
3 etc.[32,35,52] Here, for instance, when the 

excitation involves 𝑇̂2𝜓𝐻𝐹, the double-excitation amplitudes (𝑡𝑎𝑏
𝑝𝑞

) appear whereas the product of 

single-excitation amplitudes, 𝑡𝑎
𝑝
𝑡𝑏
𝑞
 results when the excitation involves 𝑇̂1𝑇̂1𝜓𝐻𝐹 or 𝑇̂1

2𝜓𝐻𝐹.[32] One 

can then say that 𝑇̂2𝜓𝐻𝐹 represents a connected double-excitation contribution while 𝑇̂1𝑇̂1𝜓𝐻𝐹 or 

𝑇̂1
2𝜓𝐻𝐹 represents a disconnected double-excitation contribution[32,35] to the total wavefunction of 

the system. Physically, a connected excitation such as 𝑇̂2𝜓𝐻𝐹 corresponds to two interacting 

electrons undergoing simultaneous excitation while a disconnected excitation such as 𝑇̂1𝑇̂1𝜓𝐻𝐹 or 

𝑇̂1
2𝜓𝐻𝐹 corresponds to two non-interacting electrons undergoing simultaneous excitation.[35] 

Therefore for a double-excitation contribution to the total wavefunction of a system, when 𝑇̂1 is 

small, 𝑇̂1
2 will (must) also be small and the most important contribution therefore comes from 𝑇̂2. 

Arising from eq. (2.57), the Schrödinger equation (eq. (2.1)) may be transformed[32,35] as: 

                                                                        𝐻̂𝑒𝑇̂𝜓𝐻𝐹 = 𝐸𝑒
𝑇̂𝜓𝐻𝐹                                                            (2.62) 
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and the energy of the system obtained as:[35] 

                                                                    𝐸𝐶𝐶 = ⟨𝜓𝐻𝐹|𝐻̂𝑒
𝑇̂|𝜓𝐻𝐹⟩                                                          (2.63) 

by multiplying eq. (2.62) from the left by 𝜓𝐻𝐹
∗  and integrating over all space and spin coordinates. 

The amplitudes can be obtained by projecting eq. (2.62) onto the space of the singly, doubly, triply 

etc. excited determinants in a similar manner as in eq. (2.63).[35] This must proceed on the premise 

of expanding the exponential in eq. (2.57) and using the fact that the Hamiltonian operator contains 

only one- and two-electron operators.[35] If all the excitation operators up to 𝑇̂𝑁 are included in eq. 

(2.63), all possible excited determinants will be generated and 𝐸𝐶𝐶 will be equivalent to that of a 

full CI. This is however impossible for all but the smallest systems.[19,32,35] The cluster operator must 

therefore be truncated (reduced) at some level of excitation. When this is done, the calculated 

energy will also be approximate and can include some perturbative contributions to reduce 

computational cost.[19,35] As such, based on the number of terms included in eq. (2.58), the coupled 

cluster doubles (CCD), coupled cluster singles and doubles (CCSD) or coupled cluster singles, 

doubles and triples (CCSDT) procedure may be formed with the following excitation operators:[19] 

                                                                           𝑇̂𝐶𝐶𝐷 = 𝑒
𝑇̂2𝜓𝐻𝐹                                                                  (2.64) 

                                                                      𝑇̂𝐶𝐶𝑆𝐷 = 𝑒
(𝑇̂1+𝑇̂2)𝜓𝐻𝐹                                                             (2.65) 

                                                                  𝑇̂𝐶𝐶𝑆𝐷𝑇 = 𝑒
(𝑇̂1+𝑇̂2+𝑇̂3)𝜓𝐻𝐹                                                         (2.66) 

CCSDT calculations are computationally very demanding except for the smallest systems and so its 

variant, CCSD(T) including the triples contribution in a perturbative fashion is more often 

employed.[19,35] This CC variant (CCSD(T)) is currently, generally speaking, the benchmark for 

calculations on systems of up to moderate sise[19] and is used in this thesis. The CC procedure like 

the MPn approach, is sise consistent but not variational.[19,32,35] Since the singly excited determinants 

in the CC wavefunction (𝜓𝐶𝐶) allow the MO’s to relax in order to describe its multi-reference 

character, the magnitude of the singles amplitude is an indication of how good the 𝜓𝐻𝐹 is as a 

reference function.[35] As such, the 𝒯1 Diagnostic of Lee and Taylor[53,54] is often used to evaluate 

the quality (extent of the multi-configurational and/or multi-reference character) of the 𝜓𝐶𝐶 in 

CCSD or CCSD(T) for a given system.[3,53,54] In essence, this Diagnostic is used to determine the 

reliability of single-reference-based techniques for computing, in addition to the HF energy, the 

electron correlation energies of chemical systems. Consequently, this Diagnostic will be used in this 

thesis to determine the reliability of single-reference methodologies for investigation of sulfur 

species. 
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The 𝒯1 Diagnostic is the Euclidian norm of the vector 𝑡1 amplitudes (for single excitations) divided 

by the square root of the number of correlated electrons in a system, 𝑁:[54] 

                                                                                 𝒯1 =
‖𝑡1‖

√𝑁
                                                                     (2.67) 

Eq. (2.67) was formulated for closed-shell systems[53–55] and is the equation implemented in the 

Gaussian code for the determination of the reliability of single-reference methods for both open and 

closed-shell systems.[56] It is asserted that using this formalism, the threshold for a system that does 

not possess significant multi-reference character is 0.02.[53,54] However, an alternative equation for 

calculating the values of the Diagnostic for open-shell systems that is consistent with the closed-

shell formalism has since been derived.[55] The open-shell formalism was employed to clarify the 

use of the Diagnostic by Schaefer and co-workers.[57] The authors asserted that the threshold for 

open-shell systems should be 0.045 and not 0.02. It has also been argued that the 𝒯1 Diagnostic for 

open-shell reactions (or systems) computed using the closed-shell formalism is likely to be higher 

than the threshold[56] of the formalism developed for the open-shell systems. Furthermore, when 

using the Gaussian code to compute an open-shell species, the 𝒯1 Diagnostic can have values in 

excess of the threshold without significant multi-configurational or multi-reference character.[56] 

 

2.6 Density Functional Theory 

This is an alternative computational technique to the HF or post-HF wavefunction-based 

methods.[19,33,58] Unlike the HF-based approaches, the density functional approach is based on the 

electron probability density instead of the wavefunction of a system. The main advantages of this 

technique over the post-HF methods discussed above are that:[19,32,33] 

1. It is less demanding in terms of computational efforts (computation time and computer 

memory) especially when computations require big basis sets for accurate results and 

2. Its results can agree better with experiments in many instances. 

The density functional theory (DFT) procedure for computing the electronic energy of systems was 

initiated by the work of Hohenberg and Kohn in 1964[59] and that of Kohn and Sham in 1965.[60] In 

this technique, the basic idea is that the energy and all other properties of systems in their ground 

electronic state are determined in terms of their ground state electron probability density, 

𝜌(𝒓).[19,32,34] This is because unlike the wavefunction which is not a physical observable, the 

electron density of a system is a physical observable.[19,31] For a system of 𝑁-electrons, 𝜌(𝒓) 
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represents the total electron density of the system at point 𝒓 in space[32] and is related to the 

wavefunction (one-electron spatial orbitals) of the system as:[60] 

                                                                    𝜌(𝒓) =∑|𝜓𝑖
𝐾𝑆(𝒓)|

2
𝑁

𝑖=1

                                                             (2.68) 

where the sum is over all occupied Kohn-Sham (KS) orbitals, 𝜓𝑖
𝐾𝑆 and 𝜌(𝒓) is known once the KS-

orbitals are computed. Also for the system whose 𝜌(𝒓) is expressed as eq. (2.68), its ground state 

energy is expressed as:[19,31,34,35,59,60] 

                                                     𝐸0 ≤ 𝐸[𝜌] = 𝑇[𝜌] + 𝑉𝑛𝑒[𝜌] + 𝑉𝑒𝑒[𝜌]                                                 (2.69) 

since 𝑉𝑛𝑛[𝜌] (the nuclear-nuclear repulsion functional) will be constant within the BO 

approximation. 𝐸0 is the exact total electronic energy of the system, 𝐸[𝜌] is the total electronic 

energy functional, 𝑇[𝜌] is the kinetic energy functional, 𝑉𝑛𝑒[𝜌] is the nuclear-electron interaction 

functional and 𝑉𝑒𝑒[𝜌] is the electron-electron repulsion functional of the system. The 𝑉𝑒𝑒[𝜌] term of 

eq. (2.69) comprises of the Coulomb functional (𝐽[𝜌]) and exchange-correlation energy functional 

(𝐸𝑋𝐶[𝜌]) parts[31,32,35] and so eq. (2.69) can be re-written as: 

                                                𝐸0 ≤ 𝐸[𝜌] = 𝑇[𝜌] + 𝑉𝑛𝑒[𝜌] + 𝐽[𝜌] + 𝐸𝑋𝐶[𝜌]                                       (2.70) 

where 

                                                            𝑉𝑛𝑒[𝜌] = −∑∑
𝑍A
𝑟𝑖A

𝑀

A=1

𝑁

𝑖=1

𝜌(𝒓1)𝑑𝒓1                                                  (2.71) 

and 

                                                           𝐽[𝜌] =
1

2
∫∫

𝜌(𝒓1)𝜌(𝒓2)

𝑟12
𝑑𝒓1𝑑𝒓2                                                (2.72) 

Nevertheless, treatment of 𝑇[𝜌] in eq. (2.69) is complicated and is replaced instead by 𝑇𝑆[𝜌] which 

was proposed by Kohn and Sham and includes the KS one-electron orbitals[60] with the subscript S 

implying that 𝑇𝑆[𝜌] is calculated from a Slater determinant,[19,31,35] i.e., 

                                           𝐸0 ≤ 𝐸[𝜌] = 𝑇𝑆[𝜌] + 𝑉𝑛𝑒[𝜌] + 𝐽[𝜌] + 𝐸𝑋𝐶[𝜌]                                           (2.73) 

The kinetic energy functional in eq. (2.73), 𝑇𝑆[𝜌] for an 𝑁-electron system is exactly defined 

as:[19,31,32,35] 
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                                                  𝑇𝑆[𝜌] = −
1

2
∑⟨𝜓𝑖

𝐾𝑆(𝒓1)|∇1
2|𝜓𝑖

𝐾𝑆(𝒓1)⟩

𝑁

𝑖=1

                                               (2.74) 

Putting eq. (2.71), eq. (2.72) and eq. (2.74) into eq. (2.73) gives: 

𝐸[𝜌] = −
1

2
∑⟨𝜓𝑖

𝐾𝑆(𝒓1)|∇1
2|𝜓𝑖

𝐾𝑆(𝒓1)⟩

𝑁

𝑖=1

−∑∑
𝑍A
𝑟𝑖A

𝑀

A=1

𝑁

𝑖=1

𝜌(𝒓1)𝑑𝒓1 +
1

2
∫∫

𝜌(𝒓1)𝜌(𝒓2)

𝑟12
𝑑𝒓1𝑑𝒓2

+ 𝐸𝑋𝐶[𝜌]                                                                                                                           (2.75) 

As a consequence, the only unknown term is the 𝐸𝑋𝐶[𝜌] which takes into account all the effects of 

non-classical interactions and consists of the exact correlation energy term, 𝐸𝐶[𝜌] and the exchange 

energy term, 𝐸𝑋[𝜌] and may be written as:[35] 

                               𝐸𝑋𝐶[𝜌] = (𝑇[𝜌] − 𝑇𝑆[𝜌]) + (𝑉𝑒𝑒[𝜌] − 𝐽[𝜌]) = 𝐸𝑋[𝜌] + 𝐸𝐶[𝜌]                          (2.76) 

This is where approximate density functional developments take root as it is the main source of 

error when using DFT.[19,31,32] It should be noted nevertheless, that the contribution of 𝐸𝑋[𝜌] to 

𝐸𝑋𝐶[𝜌] is always bigger than that of 𝐸𝐶[𝜌].
[19] Substitution of eq. (2.68) into eq. (2.75) for the 

electron density and differentiating to vary 𝐸[𝜌] in terms of 𝜓𝑖
𝐾𝑆 (provided they remain 

orthonormal) led to the derivation of the Kohn-Sham equations for one-electron orbitals:[31,60] 

                        {−
1

2
∇1
2 −∑

𝑍A
𝑟A1

𝑀

A=1

+∫
𝜌(𝒓2)

𝑟12
𝑑𝒓2 + 𝑉𝑋𝐶(𝒓1)}𝜓𝑖

𝐾𝑆(𝒓1) = 𝜀𝑖
𝐾𝑆𝜓𝑖

𝐾𝑆(𝒓1)                 (277) 

where 𝜀𝑖
𝐾𝑆 are the Kohn-Sham orbital energies and 𝑉𝑋𝐶(𝒓1) is the exchange-correlation potential 

which is a functional derivative of 𝐸𝑋𝐶[𝜌] defined as:[19,32,33] 

                                                                    𝑉𝑋𝐶(𝒓1) =
𝛿𝐸𝑋𝐶[𝜌(𝒓)]

𝛿𝜌(𝒓)
                                                          (2.78) 

The 𝜓𝑖
𝐾𝑆 are found by applying the Hohenberg-Kohn variational principle with an initial set of trial 

KS-orbitals[32,34] in an iterative and self-consistent manner[32,33] as in eq. (2.12). The choice of 

density functional technique adopted (which determines how 𝐸𝑋𝐶[𝜌] and hence 𝑉𝑋𝐶(𝒓1) is dealt 

with[32,33]) for a given computation is therefore important in determining the accuracy of the result 

so obtained.[35] As a consequence, a systematic method determination by comparison of DFT results 

with experimental findings is critical to the accuracy of computations when DFT methodologies are 

employed for a given investigation. As a consequence, a systematic method determination will be 

performed to obtain suitable DFT functionals to model systems investigated in this thesis. 



26 
 

 

2.6.1 Exchange-Correlation Functionals 

The DFT methodologies that will be employed in this thesis will now be discussed. Numerous 

exchange-correlation functionals for use in DFT are being developed in order to obtain approximate 

forms of the exchange-correlation energy.[32,61–63] The choice of a density functional technique 

adopted for a given computation therefore specifies how the 𝐸𝑋𝐶[𝜌] and hence 𝑉𝑋𝐶(𝒓1) is dealt 

with[32,33] for accurate computational results.[35] 

2.6.1.1 The Local Density Approximation 

The simplest of these approximations is the local density approximation (LDA) which is derived 

from a uniform homogeneous electron gas without accounting for electron spin.[31–33,35,61] This 

suggests that the electron density is distributed all over space of infinite volume for a given 

system.[19,32,64] In this formalism, the 𝐸𝑋[𝜌] component of 𝐸𝑋𝐶[𝜌] is the Slater exchange[31] and is 

approximated as:[35,58,64] 

                                                             𝐸𝑋
𝐿𝐷𝐴[𝜌] = −𝐶𝑋∫𝜌

4 3⁄ (𝒓)𝑑𝒓                                                     (2.79) 

where 𝐶𝑋 is:  

                                                                           𝐶𝑋 =
3

4
(
3

𝜋
)

1
3⁄

                                                                   (2.80) 

There is however no known explicit expression for the correlation part of this formalism.[31] 

Nevertheless, the purely dynamical analytical form of the correlation component in this 

approximation was derived in the low density[65] and high density[66] regions using perturbation 

expansions. Furthermore, the correlation term in this approximation for intermediate densities may 

be determined using quantum Monte Carlo methods when run long enough. This was demonstrated 

by Ceperley and Alder in 1980.[67] The work of Ceperley and Alder have now given rise to various 

analytical expressions that are now widely used, e.g., the Vosko, Wilk and Nusair (VWN)[68] 

correlation functional. This formalism forms the bedrock of almost all approximations currently 

used in DFT[61] with authors continuously presenting improvements in the form of analytical 

expressions of 𝐸𝐶[𝜌] based on sophisticated interpolation schemes.[31,58] The LDA uses spatial 

orbitals in 𝜌(𝒓) (eq. (2.75)) that are spin-paired to ensure electro-neutrality and so behaves fairly 

well for closed-shell systems but not for open-shell systems.[31,32] Generally, this procedure 

underestimates 𝐸𝑋[𝜌] by roughly 10 %.[61,64] It also underestimates ionisation and ground state 

energies but overestimates binding energies and 𝐸𝐶[𝜌].
[32,58] 
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2.6.1.2 The Local Spin Density Approximation 

When the LDA is extended to open-shell systems to allow for occupation of different spatial 

orbitals by different spins, the local spin density approximation (LSDA) is obtained.[19,31] This then 

allows for inclusion of electron density functions for the different spins (𝜌𝛼(𝒓) and 𝜌𝛽(𝒓)).
[19,58] For 

closed-shell systems, the LSDA is equal to the LDA.[19,35,58] Molecular geometries, frequencies and 

electron distribution properties computed using LSDA are fairly reasonable, but it produces rather 

poor dissociation energies.[19] A popular LSDA method is the SVWN (Slater exchange plus 

VWN[68] correlation functional) method.[19,35] Here, 𝐸𝑋[𝜌] is expressed as:[35,58] 

                                               𝐸𝑋
𝐿𝑆𝐷𝐴[𝜌] = −21 3⁄ 𝐶𝑋∫(𝜌𝛼

4 3⁄ (𝒓) + 𝜌𝛽
4 3⁄ (𝒓))𝑑𝒓                                (2.81) 

while 𝐸𝐶[𝜌] is expressed as:[69,70] 

                                                     𝐸𝐶
𝐿𝑆𝐷𝐴[𝜌] = ∫𝜌(𝒓) 𝜖𝐶 (𝜌𝛼(𝒓), 𝜌𝛽(𝒓)) 𝑑𝒓                                        (2.82) 

This procedure also underestimates 𝐸𝑋[𝜌] by roughly 10 %[35,71] but overestimates 𝐸𝐶[𝜌].
[69] In 

molecular systems, electron density is inhomogeneous[32] and so the LDA and LSDA approaches 

become grossly inadequate in treating such systems.[64,69] 

2.6.1.3 The Generalised Gradient Approximation 

To correct these functionals for the inhomogeneity of the electron density in real systems, the 

gradient of the electron density (∇𝜌(𝒓)) is often added to 𝐸𝑋[𝜌] in eq. (2.81) and 𝐸𝐶[𝜌] in eq. 

(2.82).[31,32,35,70] This leads to the popular generalised gradient approximation (GGA) procedures. 

Here, 𝐸𝑋𝐶[𝜌] is expressed as:[31,61] 

                                      𝐸𝑋𝐶
𝐺𝐺𝐴[𝜌𝛼 , 𝜌𝛽] = ∫𝑓 (𝜌𝛼(𝒓), 𝜌𝛽(𝒓), ∇𝜌𝛼(𝒓), ∇𝜌𝛽(𝒓)) 𝑑𝒓                            (2.83) 

where 𝑓 is a function of the densities and their gradients. The 𝐸𝑋[𝜌] component of 𝐸𝑋𝐶[𝜌] in this 

approximation is written as:[31] 

                                 𝐸𝑋
𝐺𝐺𝐴[𝜌𝛼, 𝜌𝛽] = 𝐸𝑋

𝐿𝑆𝐷𝐴[𝜌𝛼, 𝜌𝛽] −∑∫𝑓(𝑠𝜎(𝒓))𝜌𝜎
4 3⁄ (𝒓)

𝜎

𝑑𝒓                          (2.84) 

where 𝜎 = 𝛼 or 𝛽 and 𝑠𝜎(𝒓) is a local inhomogeneity parameter expressed as: 

                                                                         𝑠𝜎(𝒓) =
|∇𝜌𝜎(𝒓)|

𝜌𝜎
4 3⁄ (𝒓)

                                                               (2.85) 

The 𝐸𝐶[𝜌] component of 𝐸𝑋𝐶[𝜌] in the GGA technique is expressed as:[69] 
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                                   𝐸𝐶
𝐺𝐺𝐴[𝜌𝛼 , 𝜌𝛽] = 𝐸𝐶

𝐿𝑆𝐷𝐴[𝜌𝛼, 𝜌𝛽] + ∫
𝑑−1𝑒−Φ𝐶(𝜌)|∇𝜌|2

𝜌4 3⁄
𝑑𝒓                            (2.86) 

where 

                                 𝑑 = 21 3⁄ [(
1 + 𝜁

2
)
5 3⁄

+ (
1 − 𝜁

2
)
5 3⁄

]

1 2⁄

 with  𝜁 = 𝜌𝛼 + 𝜌𝛽                            (2.87) 

and 

                                                          Φ = 1.745𝑓
[𝐶(∞) 𝐶(𝜌)⁄ ]|∇𝜌|

𝜌7 6⁄
                                                     (2.88) 

and the cut-off parameter, 𝑓 = 0.11. A range of GGA methods or calculations can be performed by 

combining the exchange and correlation portions of the 𝐸𝑋𝐶[𝜌].
[19] An example of such functionals 

that is used in this thesis is the Perdew-Burke-Ernzerhof functional[72] whose 𝐸𝑋𝐶[𝜌] may be 

expressed as: 

                                                𝐸𝑋𝐶
𝑃𝐵𝐸[𝜌𝛼, 𝜌𝛽] = 𝐸𝑋

𝑃𝐵𝐸[𝜌𝛼, 𝜌𝛽] + 𝐸𝐶
𝑃𝐵𝐸[𝜌𝛼 , 𝜌𝛽]                                    (2.89) 

where[35,72] 

                                                      𝐸𝑋
𝑃𝐵𝐸[𝜌𝛼, 𝜌𝛽] = 𝐸𝑋

𝐿𝑆𝐷𝐴[𝜌𝛼 , 𝜌𝛽] ∙ 𝐹(𝑠(𝒓))                                        (2.90) 

with 

                                                                           𝑠(𝒓) =
|∇𝜌(𝒓)|

2𝑘𝐹𝜌(𝒓)
                                                               (2.91) 

                                                      𝐹(𝑠(𝒓)) = 1 + 𝜅 −
𝜅

1 +
𝜇𝑠2

𝜅

;  𝜅 = 0.804                                        (2.92) 

                                                                     𝜇 = 𝛽 (
𝜋2

3
) ≃ 0.21951                                                        (2.93) 

and 

                                                     𝐸𝐶
𝑃𝐵𝐸[𝜌𝛼 , 𝜌𝛽] = 𝐸𝐶

𝐿𝑆𝐷𝐴[𝜌𝛼 , 𝜌𝛽] + 𝐻(𝑟𝑠, 𝜁, 𝑡)                                     (2.94) 

where 𝑟𝑠 is the local Seitz radius, 𝜁 is the relative spin polarisation, 

                                           𝐻 = (
𝑒2

𝑎0
)𝛾𝜙3 × ln {1 +

𝛽

𝛾
𝑡2 [

1 + 𝐴𝑡2

1 + 𝐴𝑡2 + 𝐴2𝑡4
]}                                  (2.95) 
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𝐴 =
𝛽

𝛾
[𝑒
−{
𝜖𝐶
𝐿𝑆𝐷𝐴

𝛾𝜙3𝑒2 𝑎0⁄
⁄ }

− 1]

−1

 

𝑡 =
|∇𝜌(𝒓)|

2𝜙𝑘𝑠𝜌(𝒓)
 

𝑘𝑠 = √
4𝑘𝐹
𝜋𝑎0

 

𝑎0 =
ℏ2

𝑚𝑒2
 

𝛾 =
1 − ln 2

𝜋2
≃ 0.031091 

𝜙 is a spin scaling factor, 𝑘𝑠 is the Thomas-Fermi screening wavenumber, 𝛽 ≃ 0.066725. 

2.6.1.4 The Meta-Generalised Gradient Approximation 

Moving on from GGA’s, improvements that allow the exchange and correlation functionals to 

depend on the second derivatives of the electron densities of the spins (∇2𝜌) are formed.[19,35] These 

functionals are called the meta (beyond)-generalised gradient approximation (m-GGA) functionals. 

Here, 

             𝐸𝑋𝐶
𝑚−𝐺𝐺𝐴[𝜌𝛼 , 𝜌𝛽] = ∫𝑓 (𝜌𝛼(𝒓), 𝜌𝛽(𝒓), ∇𝜌𝛼(𝒓), ∇𝜌𝛽(𝒓), ∇

2𝜌𝛼(𝒓), ∇
2𝜌𝛽(𝒓)) 𝑑𝒓            (2.96) 

Nevertheless, functionals that depend on ∇2𝜌 present some computational difficulties.[19] This is 

often overcome by making such functionals to depend instead on the kinetic energy density, 𝜏(𝒓) 

which varies with 𝜌(𝒓) in the same manner as ∇2,[19,73] but is numerically more stable.[35] 𝜏(𝒓) has 

the form:[19,35,73,74] 

                                                                     𝜏(𝒓) =
1

2
∑|∇𝜓𝑖

𝐾𝑆(𝒓)|
2

𝑜𝑐𝑐

𝑖=1

                                                       (2.97) 

and for a single orbital, 𝜏(𝒓) is identical to the Weizsäcker kinetic energy, 𝜏𝑊(𝒓) expressed as:[35,63] 

                                                                         𝜏𝑊(𝒓) =
|∇𝜌(𝒓)|2

8𝜌(𝒓)
                                                              (2.98) 

For such functionals,[63,75] 
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    𝐸𝑋𝐶
𝑚−𝐺𝐺𝐴[𝜌𝛼 , 𝜌𝛽] = ∫𝜌(𝒓) 𝜖𝑋𝐶

𝑚−𝐺𝐺𝐴 × (𝜌𝛼(𝒓), 𝜌𝛽(𝒓), ∇𝜌𝛼(𝒓), ∇𝜌𝛽(𝒓), 𝜏𝛼(𝒓), 𝜏𝛽(𝒓))𝑑𝒓      (2.99) 

Furthermore, for other m-GGA approximations, the 𝐸𝑋𝐶[𝜌] is dependent on semi-local Laplacians 

of the spin densities and kinetic energy density and may be written as:[74] 

            𝐸𝑋𝐶
𝑚−𝐺𝐺𝐴[𝜌𝛼 , 𝜌𝛽] = ∫𝜌(𝒓) 𝜖𝑋𝐶

𝑚−𝐺𝐺𝐴 × (𝜌𝛼 , 𝜌𝛽 , ∇𝜌𝛼 , ∇𝜌𝛽 , ∇
2𝜌𝛼 , ∇

2𝜌𝛽 , 𝜏𝛼 , 𝜏𝛽)𝑑𝒓           (2.100) 

Examples of the m-GGA functionals include the TPSS[75] and the MO6-L.[76] The TPSS is used in 

this thesis. The mathematics and theory behind 𝐸𝑋[𝜌] and 𝐸𝐶[𝜌] in the m-GGA’s exists in the 

literature.[74–76] 

2.6.1.5 The Hybrid-Generalised Gradient Approximation 

An alternative approach to improving the performance of the GGA’s is by adding a percentage of 

the Hartree-Fock exchange energy to their 𝐸𝑋𝐶[𝜌];
[19,35,58] i.e., such functionals combine KS-DFT 

and wavefunction theory.[77] The theory that makes this feasible is the adiabatic connection model 

(ACM):[19,31,35] 

                                                                        𝐸𝑋𝐶 = ∫⟨𝜓𝜆|𝑉𝑋𝐶(𝜆)|𝜓𝜆⟩𝑑𝜆

1

0

                                           (2.101) 

where 𝜆 is the degree of electron-electron interactions. When 𝜆 = 0, only the HF exchange energy 

contributes to 𝐸𝑋𝐶  as the electrons do not interact.[31,35] As 𝜆 → 1, the degree of correlation increases 

and at 𝜆 = 1 the electrons in the system are fully correlated. When 𝜆 = 0 the exact exchange, 𝐾 

term in the HF approximation can be computed if the KS-orbitals are available.[31,35] This is then 

added to a choice GGA 𝐸𝑋𝐶
𝐺𝐺𝐴 to form a new functional. Such functionals that incorporate exact 

exchange are referred to as hybrid functionals (h-GGA’s).[19,31,35,77] Often times, these functionals 

also comprise of a range-separation or range-correction[77,78] and a dispersion correction term to 

treat non-covalent interactions (e.g., 𝜋-𝜋 stacking[79]) and give accurate thermochemical and kinetic 

results.[77,80,81] An example of such functionals used in the present thesis is the 𝜔B97XD.[80] The 

𝐸𝑋𝐶
ℎ−𝐺𝐺𝐴 for this functional is expressed as:[77,80] 

                                      𝐸𝑋𝐶
𝜔𝐵97𝑋𝐷 = 𝐸𝑋

𝐿𝑅−𝐻𝐹 + 𝑐𝑋𝐸𝑋
𝑆𝑅−𝐻𝐹 + 𝐸𝑋

𝐵97 + 𝐸𝐶
𝐵97 + 𝐸𝑑𝑖𝑠𝑝                        (2.102) 

where LR-HF and SR-HF imply long- and short-range HF exchange, respectively. 𝐸𝑋
𝐵97 and 𝐸𝐶

𝐵97 

are the exchange and correlation energies proposed by Becke in 1997.[82] 𝑐𝑋 is the fractional number 

of the short-range operator determined by fitting to accurate experimental or theoretical data and is 

a small constant. 𝜔 is the parameter that controls the partitioning of the inter-electronic distances 
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and is also obtained by fitting to accurate experimental or theoretical data. The X in 𝜔B97XD 

denotes the fraction of the HF exchange in the functional. The D in 𝜔B97XD is the last term in eq. 

(2.102) and represent the dispersion correction included in the functional and is given by:[80] 

  𝐸𝑑𝑖𝑠𝑝 = − ∑ ∑
𝐶6
𝑖𝑗

𝑅𝑖𝑗
6

(

 
1

1 + 𝑎 (
𝑅𝑖𝑗

𝑅𝑟
⁄ )

−12

)

 

𝑁𝑎𝑡𝑜𝑚

𝑗=𝑖+1

𝑁𝑎𝑡𝑜𝑚−1

𝑖=1

= − ∑ ∑
𝐶6
𝑖𝑗

𝑅𝑖𝑗
6 ∙ 𝑓𝑑𝑎𝑚𝑝(𝑅𝑖𝑗)

𝑁𝑎𝑡𝑜𝑚

𝑗=𝑖+1

𝑁𝑎𝑡𝑜𝑚−1

𝑖=1

    (2.103) 

where 𝑁𝑎𝑡𝑜𝑚 is the number of atoms in a system, 𝐶6
𝑖𝑗

 is the dispersion coefficient for atom pair 𝑖𝑗, 

𝑅𝑖𝑗 is the interatomic distance, 𝑅𝑟 is the sum of the van der Waals (vdW) radii of atomic pair 𝑖𝑗. 

The 𝑓𝑑𝑎𝑚𝑝(𝑅𝑖𝑗) reduces at large 𝑅𝑖𝑗 and vanishes quickly at small 𝑅𝑖𝑗 to prevent divergence of the 

undamped vdW potentials. 𝜔B97XD employs 100 % HF exchange for long-range interactions but 

only a small fraction of the exchange for short-range electron-electron interactions. Another 

example of the h-GGA’s used in this thesis is the Coulomb-attenuating method B3LYP (CAM-

B3LYP) functional.[83] This functional comprises of 19 % HF exchange in addition to 81 % B88 

exchange at short-range but 65 % HF exchange and 35 % B88 exchange at long-range. The B88 

exchange was proposed by Becke in 1988.[64] 

2.6.1.6 The Hybrid Meta-Generalised Gradient Approximation 

Analogous functionals to the h-GGA’s having the fraction of the HF exchange added to the m-

GGA’s rather than the GGA’s whilst also depending on ∇𝜌𝜎(𝒓) and ∇2𝜌𝜎(𝒓) and/or 𝜏𝜎(𝒓) are 

termed the hybrid m-GGA’s.[19] These are high level functionals in common routine use.[19] An 

example of this class of functionals used in this thesis is the M11 functional.[78] The 𝐸𝑋𝐶  of this 

functional is expressed as: 

                           𝐸𝑋𝐶
𝑀11 = (

𝑋

100
)𝐸𝑋

𝐻𝐹 + (1 −
𝑋

100
) (𝐸𝑋

𝐿𝑅−𝐻𝐹 + 𝐸𝑋
𝑆𝑅−𝑀11) + 𝐸𝐶

𝑀11                      (2.104) 

where 𝐸𝑋
𝐻𝐹 is the full-range non-local HF exchange with both 𝐸𝑋

𝑆𝑅−𝑀11 and 𝐸𝐶
𝑀11 depending on 𝜌𝜎, 

𝜏𝜎 and 𝑠𝜎 where: 

                                                                𝑠𝜎(𝒓) =
|∇𝜌𝜎(𝒓)|

2(3𝜋2)1 3⁄ 𝜌𝜎
4 3⁄ (𝒓)

                                                    (2.105) 

This functional is especially good in producing atomisation energies, proton affinities, bond 

dissociation energies, barrier heights, non-covalent interactions and charge-transfer electronic 

excitation.[78] It comprises of 100 % HF exchange at long-range (large) electronic separations and 

42.8 % HF exchange at short-range. 
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All these classes of exchange-correlation functional approximations are proposed to form the rungs 

of the Jacob’s ladder with LDA or LSDA forming the lowest rung of the ladder while more 

sophisticated approximations form higher rungs accordingly.[58,63] In this regard, users of DFT make 

their choice as suits their requirements by either going up or down the ladder in search of 

computational precision and efficiency.[58,63] It should be noted however that each higher level of 

sophistication may bring along additional computational costs but may not be complemented by 

higher chemical accuracy.[58,63] 

 

2.7 Accounting for the Effects of Solvation 

The effects of solvents can be accounted for in a computational calculation by employing a 

solvation model.[35,84–89] This can be done in two ways: the explicit and implicit approaches.[19] In 

the explicit approach, actual solvent moieties are placed around the system under consideration 

whereas the implicit approach models the system in the cavity of a continuous medium (a 

continuum) which serves as a uniform polarisable medium with a dielectric constant, 𝜀.[89–91] The 

implicit continuum approaches are so far, the most used and easiest ways of treating solvent 

effects.[19,87,91] The most common class of the implicit approaches often found in computational 

packages in recent years is the polarisable continuum model (PCM)[87,88,90,92] whose formulation 

began in 1981.[84] This model is used to investigate the effects of solvents on reaction energies in 

this thesis. The principal idea behind this class of implicit models is that the solute (system under 

consideration) is placed in a cavity of a solvent medium formed by interlocking vdW sphere radii 

scaled by an empirical factor and the interaction between the solute and the solvent cavity is 

calculated.[90] The solute in these models is usually placed in a solvent cavity that matches their 

shape where the shapes and sises of the cavities define the surface area of the solvent accessible to 

the solute.[19,90] Once in the cavity, the interaction of the solute and the solvent is treated as 

electrostatic polarisation of the solute’s charge distribution by the continuous dielectric field that 

represents the solvent.[90,92] For computational packages like Gaussian,[24] the implemented versions 

of the PCM for computation are the integral equation formalism of PCM (IEF-PCM) of Cancès et 

al.,[93–95] the conductor-like PCM (C-PCM) of Cossi and co-workers[88,96] and the continuous surface 

charge PCM (CSC-PCM) of Scalmani and Frisch.[87] The interaction energies of the solvent-solute 

interactions are usually computed iteratively in the context of the SCF procedure thereby resulting 

in the self-consistent reaction field (SCRF) calculations.[19,35] These formalisms have been 

implemented in computational packages for electronic structure calculations.[19,35,91] In this regard, 

accurate approximations of the solvation Gibbs free energies of systems in comparison with 

experiments[88,96–98] describing the effects of solvents can be obtained from calculations. 
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2.8 Basis Sets 

A common but key factor in obtaining accurate and reliable results in computational quantum 

chemistry calculations is the quality, type and sise of basis set combined with a chosen 

computational method.[19,20,35,99–104] A basis set is a set of atomic or molecular orbitals or 

mathematical functions (basis functions) such as presented in eq. (2.21) expanded in a set of known 

functions which are usually, but not invariably, centred on atomic nuclei for use in a computational 

calculation.[19,32,34,35] There are two broad types of basis functions commonly used in computational 

chemistry calculations:[103] 

1. The Slater-type orbitals (STO’s) and 

2. The Gaussian-type orbitals (GTO’s) 

These are especially employed in Chapter 3 to Chapter 6 of this thesis. Nevertheless, other types of 

basis sets are also possible, e.g., the Laguerre basis sets[17,105,106] used in Chapter 7 of this thesis and 

plane waves.[21] The STO’s[107] have the functional form in terms of polar coordinates as:[35,103] 

                                                   𝜒𝜉,𝑛,𝑙,𝑚(𝑟, 𝜃, 𝜑) = 𝑁𝑌𝑙,𝑚(𝜃, 𝜑)𝑟
𝑛−1𝑒−𝜉𝑟                                         (2.106) 

The GTO’s[108] on the other hand can be written in terms of polar coordinates as:[35,103] 

                                                𝜒𝜉,𝑛,𝑙,𝑚(𝑟, 𝜃, 𝜑) = 𝑁𝑌𝑙,𝑚(𝜃, 𝜑)𝑟
2𝑛−2−𝑙𝑒−𝛼𝑟

2
                                     (2.107) 

where 𝑁 is a normalisation constant and 𝑌𝑙,𝑚(𝜃, 𝜑) are spherical harmonic functions, 𝜉 and 𝛼 are 

the positive-valued orbital exponent occurring in the radial part (𝑒−𝜉𝑟 or 𝑒−𝛼𝑟
2
) of eq. (2.106) and 

eq. (2.107), respectively while 𝑟 is the distance of an electron from an atomic nucleus. 

The GTO’s are inferior to the STO’s due to the dependence on 𝑟2 in the radial part of eq. (2.107) in 

two ways.[103] The first is that an 𝑛 = 1 STO has a cusp (discontinuous derivative) at the nucleus 

just like a 1𝑠 hydrogenic atomic orbital whereas the GTO does not.[31,32,103] This causes the GTO’s 

serious problems in representing proper behaviour near or at atomic nuclei.[32,35,103] The second 

problem is that the GTO’s fall off too rapidly as 𝑟 → ∞ from the nucleus.[19,31,103] As a consequence, 

one requires more GTO’s to achieve certain accuracy comparable to that obtained with 

STO’s.[31,32,103] Nevertheless, the GTO’s are mathematically more tractable and efficient than the 

STO’s as they require less computer time to compute many-centre two-electron integrals, such as 

described by Coulomb and exchange integrals for many electron systems that are notoriously 

difficult to compute with STO’s.[19,31,32,103] As a result, GTO’s are usually used to approximate the 

physically more realistic STO’s, hence making Gaussian functions the most common basis 

functions in electronic structure calculations.[19,31,35] Another major advantage of the GTO’s is that 
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the product of two Gaussian functions at different centres is equivalent to a single Gaussian 

function centred at a point between the two centres.[32] 

 

2.8.1 Gaussian Basis Sets 

As mentioned above, a single Gaussian (GTO) is usually a poor approximation to provide the 

description of an orbital. To circumvent this, several Gaussian functions are combined to form 

contracted Gaussian functions that approximate an STO.[19,32,103] For instance, when three Gaussians 

are combined to approximate the Slater function, the resulting function may be written as STO-3G 

implying that the STO is approximated by 3 GTO’s. Each contracted Gaussian, 𝜒𝑟 consists of 

several primitive Gaussians, g𝑛𝑟, centered on the same atomic nucleus in a system and can be 

expressed for an STO-3G contracted Gaussian as:[19,32,35] 

                             𝜒𝑟 = ∑𝑑𝑛𝑟g𝑛𝑟

𝑘

𝑛=1

= ∑𝑑𝑛𝑟g𝑛𝑟

3

𝑛=1

= 𝑑1𝑟g1𝑟 + 𝑑2𝑟g2𝑟 + 𝑑3𝑟g3𝑟                         (2.108) 

where 𝑑𝑛𝑟 are the contraction coefficients and 𝑘 is the degree of contraction, typically ranging from 

1 to 10. 𝑑𝑛𝑟 and the parameters characterising g𝑛𝑟 are kept constant (fixed) during a calculation. 

The spatial orbitals are therefore expressed as a linear combination of the contracted 

Gaussians:[32,109] 

                                                                      𝜓𝑖(𝒓) = ∑ 𝑐𝑖𝑟𝜒𝑟(𝒓)

𝑘

𝑟=𝑖=1

                                                     (2.109) 

where 𝑐𝑖𝑟 are the unknown coefficients. As such the number of the 𝑐𝑖𝑟 that will be computed in eq. 

(2.109) is greatly reduced leading to reduction in computational time with little loss of accuracy 

when the 𝜒𝑟’s are carefully chosen. 

There is a host of contracted basis sets implemented in computational packages from which users 

usually select the one that suits a given calculation.[19,35] A short description of the basis sets used in 

this thesis is given below. 

2.8.1.1 Minimal Basis Set 

This is the simplest but least accurate type of contracted Gaussian basis set in which one function is 

employed to represent each atomic orbital in elementary valence theory.[31,32] This type of basis set 

contains the smallest (minimum) number of basis functions required for the description of an 

atom.[31,109] An example of this type of basis set is the STO-3G[32,35,110] used in this thesis in 

combination with the HF method to generate and select the canonical orbitals of species for use in 
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CASSCF calculations. This type of basis set is not recommended for consistent and accurate 

calculations of molecular energies but their structure gives room for visualising qualitative aspects 

of chemical bonds.[32,109,110] 

2.8.1.2 Split-Valence Basis Set 

The accurate treatment of electronic structure of chemical systems requires extensive basis sets. 

Such extensive basis sets are found in the form of double-, triple-, quadruple-etc. zeta basis sets, 

which are improvements over minimal basis sets. In the double- and triple-zeta (DZ and TZ) basis 

set for instance, each basis function in the minimal basis set is replaced by two or three sets of each 

basis function to describe an atom, respectively.[32,35] These latter basis sets however double or triple 

the number of the 𝑐𝑖𝑟’s in eq. (2.109) for each computation thereby increasing the computational 

demands of the calculations.[19,32] 

The split-valence basis sets were introduced by Pople and co-workers,[111–114] and are also called the 

Pople-type basis sets.[19,35] They present a compromise between the computational inaccuracy of the 

minimal basis sets and the computational demands of the DZ, TZ, etc.[32] Generally, the split 

valence basis set employs one function for core orbitals and two or three functions for valence 

orbitals.[32,35,110] As such, it is generally denoted as the k-nlmG basis sets where k represents the 

number of the pGTO’s used for in the cGTO that describes the core orbitals while the nl or nlm 

before G (Gaussian) stand for basis functions of a double and triple split valence basis set, 

respectively.[35] The double split valence basis set e.g., 3-21G basis set, for instance, uses one cGTO 

consisting of three pGTO’s to treat the core orbitals while using two cGTO’s, one consisting of 

pGTO’s to describe the outer-valence orbitals and the other comprising two pGTO’s for the inner-

valence orbitals of the system.[19,32,35,110] An example of the k-nlmG basis set is the 6-311G basis set 

which is of TZ quality for the valence electrons with three cGTO’s defined by three, one and one 

pGTO’s. The purpose of splitting the valence shell is to increase the flexibility of basis functions to 

provide a realistic description of orbitals or electron distribution and by so doing lead to consistent 

and accurate computational predictions at less computational effort.[19,32,110] 

2.8.1.3 Polarisation and Diffuse Functions 

Polarisation (basis functions of higher angular momentum other than the occupied atomic orbitals) 

and diffuse functions can be added to the k-nlmG basis sets to improve their flexibility and hence 

performance for better description of orbitals and/or electronic charge or density distribution in a 

system.[35,109,110] The polarisation functions are denoted by either asterisk(s); * (for non-hydrogen 

and helium) and ** (for all atoms) or p-, d- and/or f-functions after the G in the k-nlmG basis sets 

e.g., 6-31G* (or 6-31G(d)), 6-31G** (or 6-31G(d,p)), 6-311G(2df,2pd)) etc. They allow the orbitals 
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to change shape readily to accommodate any anisotropic electronic charge or density distribution in 

a system.[19,20,32] Polarisation functions also bring additional lowering in the total variational energy 

of a system as much as adding another cGTO and leads to more accurate geometries and vibrational 

frequencies.[20] The diffusion functions on the other hand are denoted by + (for non-hydrogen 

atoms) or ++ (for all atoms in the system) before the G in the k-nlmG basis sets, e.g., 6-31+G, 6-

31++G, etc. Basis sets comprising these functions are useful for better description of anions, excited 

systems and hetero-atomic systems with lone-pair electrons.[19,20,109] Basis sets containing diffuse 

functions are known as augmented basis sets and are often also used to treat long-range interactions 

such as vdW interactions[20] in combination with suitable methods. All these functions can be 

combined in one basis set e.g., 6-31+G(d), 6-311++G(2df,2p), 6-311++G(3df,3pd), etc.[35] Split-

valence basis sets incorporating polarisation and diffuse functions are especially used in the present 

thesis for accurate results. 

2.8.1.4 Correlation-Consistent Basis Sets 

The above schemes can be further improved upon by increasing the number of polarisation and/or 

diffuse functions.[19,20,31] In this regard, the correlation-consistent (cc) type of basis sets developed 

by Dunning and co-workers[100,101,115–118] represent another type of such schemes in terms of 

contracted Gaussian functions. These basis sets are designated for example as the cc-pVxZ, aug-cc-

pVxZ, cc-pV(x+d)Z or aug-cc-pV(x+d)Z where aug-cc includes diffuse functions. The p stands for 

polarised and valence (V) x (doubly (D), triply (T), quadruply (Q), quintuply (5) or sextuply (6) 

split) zeta (Z) basis sets. d in cc-pV(x+d)Z and aug-cc-pV(x+d)Z stands for tight higher exponent d-

function useful for recovering core-core and core-valence electron correlation energy.[35,117] This 

type of split-valence basis sets is especially useful when electron correlation energy is to be 

recovered in a calculation and hence are particularly useful for high-accuracy post-HF 

calculations.[19,20,35,117] As such, high-accuracy post-HF calculations performed in this thesis also 

employ the cc-pVxZ or aug-cc-pVxZ basis sets. 

2.8.1.5 Effective Core Potentials (Pseudo-potentials) 

Even with the large non-relativistic split-valence and cc basis sets discussed above, the treatment of 

heavy elements with a large number of core electrons e.g., potassium to krypton or higher atomic 

numbered elements (19 or more electrons) is difficult.[19,20,31,35] This is because when the number of 

core electrons is large, relativistic effects arising from the dependence of the masses of the particles 

on their velocities and spin coupling terms become significant.[19,20,35] To deal with the situation, the 

effective core potential (ECP) or pseudo-potential basis sets which include relativistic effects, 

initially proposed by Hellmann[119] and improved upon by other researchers[120–123] are usually 
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employed.[19,20,31,35] This is done by replacing the core electrons of the heavy systems and their basis 

functions in a calculation with the ECP’s while treating the valence non-relativistic electrons and 

every other light atom in the system with Gaussian functions developed to accompany the ECP’s 

and one of the already discussed basis sets, respectively.[19,20,35,103] Examples of ECP’s in current use 

with computational methodologies are the Los Alamos National Laboratory Double Zeta 

(LanL2DZ)[120,121] and the Stuttgart/Dresden (SDD)[122,123] basis set.[19,103] The ECP’s can either be of 

the minimal or split-valence type.[19,103] In this thesis, the relativistic Stuttgart/Dresden (SDD)[122,123] 

basis set is used to describe palladium with 46 electrons. 

 

2.9 Theory of Atoms in Molecules 

The theory of atoms in molecules was developed by Bader and co-workers.[124–133] This theory 

derives from the mathematical partitioning of systems into regions (basins) relying on the system’s 

electron density (𝜌(𝒓)) that correspond to atoms.[19,35,129,131,134] The theory deals with analysing the 

variation of the electron density function of a system with position (i.e., its topology, a scatterplot of 

𝜌 vs 𝒓 yielding minima, maxima or saddle points) with 𝜌(𝒓) = 𝜌(𝑥, 𝑦, 𝓏).[19,35] This property (𝜌(𝒓)) 

can be derived/computed from the wavefunction of a system.[19,129,133] The basic idea in the topology 

of the electron density function is that local maxima in a system occurs at the nuclear positions in 

the system.[129,134] Elsewhere in a system with defined nuclear configurations, the topological 

properties of 𝜌 are fully mapped out in an associated density gradient vector field, ∇𝜌(𝒓) which 

exhibits trajectories in real space called gradient paths.[127,129] This leads to the concepts of critical 

points (cp’s) in real space; where ∇𝜌(𝒓) = 0.[126,127,129] Consequently, the definition of an isolated 

atom, that in a molecule, a chemical bond and hence molecular structure can be derived from the 

properties of the critical points of charge density in a system.[127] In this regard, an interatomic 

surface 𝑆(𝒓𝒔) separating the basins of two interacting atoms is defined by a two-dimensional 

manifold spanned by an infinite set of the trajectories of ∇𝜌(𝒓) terminating at a cp while their 

interaction line is defined by a unique set of trajectories originating at the cp and terminating at the 

nucleus of a neighbouring atom.[127,130,133] In a state of stable electrostatic equilibrium where the 

atoms are involved in a bond in the usual chemical sense, the atomic interaction line is referred to as 

a bond path and the associated cp, a bond critical point.[129,133] As such, molecular structure is 

defined as the network of bond paths that link neighbouring nuclei in a system.[126–130,133] 

Nevertheless, bond paths do not necessarily imply chemical bonds between interacting species but 

their interaction[135] as in hydrogen bonds[11,136] and π-π interactions[137] in molecular systems. The 

preceding discussion above suggests therefore, that information about the bonding and group of 

atoms in a system can be derived from an analysis of the topology of its electron density. 
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2.9.1 Critical Points 

The topology of 𝜌(𝒓) as mentioned in 2.9 results in minima, maxima or saddle points in space that 

can be observed as the first derivatives of electron density, ∇𝜌(𝒓), the gradient field. All points at 

which ∇𝜌(𝒓) vanishes are called critical points, i.e.,[127,134] 

                                     ∇𝜌(𝒓) = 𝒊
𝜕𝜌

𝜕𝑥
+ 𝒋

𝜕𝜌

𝜕𝑦
+ 𝒌

𝜕𝜌

𝜕𝓏
→ {= 0⃗

 

≠ 0⃗ 
 
(at cp′s and ∞)

  (at other points)
                          (2.110) 

 the local maximum is a type of cp, a nuclear critical point.[19,134] In order to characterise the type 

of cp as a local minimum, maximum or saddle point, requires the second derivatives of 𝜌(𝒓) which 

constitutes a Hessian matrix, A of the 𝜌(𝒓) at each critical point.[127,134] In the neighbourhood of a 

critical point (𝒓𝒄) defined as:[127] 

                                                                            ∇𝜌(𝒓, 𝐗)|𝒓=𝒓𝒄 = 0                                                          (2.111) 

where 𝐗 is a point in space, the gradient path is defined as:[127] 

                                                                            
𝑑𝒓(𝑠)

𝑑𝑠
= 𝐀(𝒓 − 𝒓𝒄)                                                       (2.112) 

where[127,134] 

                                                                  𝐀(𝒓𝒄) = 𝐴𝑖𝑗(𝒓𝒄) = (
𝜕2𝜌

𝜕𝑥𝑖𝜕𝑥𝑗
)
𝒓=𝒓𝒄

                                      (2.113) 

Eq. (2.113) consists of nine second derivatives of 𝜌(𝒓) at 𝒓𝒄. The general solution to eq. (2.112) 

is:[127] 

                                                           𝒓(𝑠) = 𝛼𝐯1𝑒
𝜆1𝑠 + 𝛽𝐯2𝑒

𝜆2𝑠 + 𝛾𝐯3𝑒
𝜆3𝑠                                      (2.114) 

where 𝜆𝑖’s are the eigenvalues of the eigenvectors, 𝐯𝑖’s. These eigenvalues are the diagonal 

elements of 𝐀(𝒓𝒄):
[134] Diagonalisation of 𝐀(𝒓𝒄) is equivalent to the rotation:[134] 𝒓(𝑥, 𝑦, 𝓏) →

𝒓(𝑥′, 𝑦′, 𝓏′) via a unitary transformation constructed from the eigenvalues in eq. (2.114); 𝜆1, 𝜆2 and 

𝜆3, superimposing a new set of axes (𝑥′, 𝑦′, 𝓏′) on the principal curvature axes of the cp.[134] As 

such, a trace of 𝐀(𝒓𝒄) can therefore be expressed as:[134] 

                    ∇2𝜌(𝒓) =

(

 
 
 
 

𝜕2𝜌

𝜕𝑥′2
0 0

0
𝜕2𝜌

𝜕𝑦′2
0

0 0
𝜕2𝜌

𝜕𝓏′2)

 
 
 
 

𝒓=𝒓𝒄

= (

𝜆1 0 0
0 𝜆2 0
0 0 𝜆3

) = 𝜆1 + 𝜆2 + 𝜆3              (2.115) 
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where ∇2𝜌(𝒓) is called the Laplacian of the density and the sign of the 𝜆𝑖’s defines the curvatures 

(nature of cp’s) of the density with respect to the principal axes; 𝑥, 𝑦 and 𝓏, when 𝑥 = 𝑥′, 𝑦 = 𝑦′ 

and 𝓏 = 𝓏′.[127,134] Also, the magnitude of the curvatures at a cp gives an indication of the 

magnitude of 𝜌(𝒓) at such cp compared to that in the atomic basins. The cp’s are therefore 

classified by their rank (𝜔) and signature (𝜎), with a cp labelled by giving values of the rank and 

signature as (𝜔, 𝜎) to represent a particular element of molecular structure. [127,134,138] A cp with 𝜔 =

3 is generally stable energetically while cp’s with 𝜔 < 3 are degenerate and unstable and so the 

appearance of the latter denotes the onset of a change in structure.[127,134,138] As such, the nature and 

definition of a chemical bond and/or molecular structure derives from the properties of a cp with 

𝜔 = 3.[127] The rank of a cp is the number of non-zero curvatures of 𝜌(𝒓) while the signature is the 

algebraic sum of the signs of the curvatures at a cp.[127,134,138] There are basically four significant 

stable cp’s (𝜔 = 3) with each labelled as (𝜔, 𝜎), namely:[127,134,138] 

1. The (3, -3) cp: this is called the nuclear cp (ncp). This cp has three negative curvatures. 

𝜌(𝒓) is a local maximum at 𝒓𝒄; 

2. The (3, -1) cp: this is referred to as the bond cp (bcp) and has two negative curvatures. 

Here, 𝜌(𝒓) is a maximum at 𝒓𝒄 in the plane defined by two axes (𝜆1 and 𝜆2) but a minimum 

at 𝒓𝒄 along the third associated axis (𝜆3) that is perpendicular to the plane defined by the 

first two axes. This cp represents saddle points on a molecular graph; 

3. The (3, +1) cp: this is known as the ring cp (rcp) and possesses two positive curvatures and 

𝜌(𝒓) is a minimum at 𝒓𝒄 in the plane defined by two axes (𝜆1 and 𝜆2) but a maximum at 𝒓𝒄 

along the third associated axis (𝜆3) that is perpendicular to the plane defined by the first two 

axes. 

4. The (3, +3) cp: called the cage cp (ccp) comprises of three positive curvatures and 𝜌(𝒓) is a 

minimum at 𝒓𝒄. 

The number and type of these cp’s that can coexist in a structure is governed by the Poincaré-Hopf 

relationship for isolated molecular structures[127,134,138] expressed as:  

                                                              𝑛𝑛𝑐𝑝 − 𝑛𝑏𝑐𝑝 + 𝑛𝑟𝑐𝑝 − 𝑛𝑐𝑐𝑝 = 1                                               (2.116) 

where 𝑛 is the number of the subscripted type of cp and {𝑛𝑛𝑐𝑝, 𝑛𝑏𝑐𝑝, 𝑛𝑟𝑐𝑝, 𝑛𝑐𝑐𝑝} is the characteristic 

set of the structure in question. When eq. (2.116) is satisfied, it is taken as a confirmation of 

consistency and completeness of the characteristic set of a given system, i.e., confirms that all cp’s 

have been found. 
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2.9.2 Nature and Strength of Chemical Bonds 

There is always one bcp between every two interacting atoms linked by a bond path and 

information about the nature of the interaction is conveyed in the value of ∇2𝜌(𝒓) at the bcp, while 

its strength is indicated by the magnitude of 𝜌(𝒓) at the bcp.[28,35] These indices define the energetic 

stability of a given structure[138] and hence the characterisation and classification of a chemical bond 

is based on the magnitude of 𝜌(𝒓), ∇2𝜌(𝒓) or 𝜆1, 𝜆2 and/or 𝜆3 at the bcp between two interacting 

atoms.[28,134] The extent of concentration or depletion of charge density at a bcp is provided by 

∇2𝜌(𝒓), given in eq. (2.115), where |𝜆1| > |𝜆2| by convention and indicates the nature of a 

bond.[28,134,138] When ∇2𝜌(𝒓) < 0 at a bcp, the value of 𝜌(𝒓) is greater than its average in the 

immediate neighbourhood of 𝒓 signifying that it is concentrated at the bcp and defines a covalent 

bond. When ∇2𝜌(𝒓) > 0 at a bcp, the value of 𝜌(𝒓) is less than its average in the immediate 

neighbourhood of 𝒓 and suggests that it is depleted at the bcp and indicates ionic, hydrogen bonding 

or vdW (i.e., closed-shell) interactions. 

Bond ellipticity (𝜀) defined as:[134,138] 

                                                                 𝜀 =
𝜆1
𝜆2
− 1     (|𝜆1| ≥ |𝜆2|)                                                    (2.117) 

provides a measure of the extent to which the density is preferentially concentrated at a bcp and can 

be used to determine whether a bond is of a sigma (𝜎) or pi (𝜋) character. When 𝜀 = 0, the bond is 

cylindrically symmetrical and is thus a single 𝜎-bond or a triple bond whereas 𝜀 > 0 signifies a 𝜋-

bond. The strength of a chemical bond is reflected in the magnitude of 𝜌(𝒓) at a bcp. Generally, 

𝜌(𝒓) > 0.20 a.u. for covalently bonded atoms and 𝜌(𝒓) < 0.10 a.u. for closed-shell 

interactions.[134] 

An alternative means to characterise the nature and strength of a chemical bond is to compute the 

gradient kinetic (𝐺(𝒓)) and potential energy (𝑉(𝒓)) densities at the bcp between a pair of bonded 

atoms which are related by the virial relationship expressed as:[128,130,134,138] 

                                                               (
ℏ2

4𝑚
)∇2𝜌(𝒓) = 2𝐺(𝒓) + 𝑉(𝒓)                                              (2.118) 

But the point-wise sum of 𝐺(𝒓) and 𝑉(𝒓) yields the total electron density energy (𝐻(𝒓)):[139] 

                                                                         𝐻(𝒓) = 𝐺(𝒓) + 𝑉(𝒓)                                                       (2.119) 

𝐺(𝒓) is always positive while 𝑉(𝒓) is always negative therefore the sign of 𝐻(𝒓) and hence ∇2𝜌(𝒓) 

is always determined by their balance. As such, the value of 𝐻(𝒓), ∇2𝜌(𝒓), 𝜌(𝒓) and the 

delocalisation index (𝛿(A, B))[28,134] or a combination of two of these parameters facilitates the 

determination of the nature and strength of a bond. In this regard, when 𝐻(𝒓) > 0, the bond is of a 
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closed-shell type and when 𝐻(𝒓) < 0, the bond is of a covalent type; covalency is also indicated by 

the value of 𝛿(A, B) which is an independent measure of bond covalency.[28,140] Furthermore, the 

ratio |
𝐻(𝒓)

𝜌(𝒓)
| called the bond degree parameter provides information about the strength of a 

bond.[28,136] 𝐻(𝒓) < 0 signifies that 𝑉(𝒓) dominates and electron density is concentrated at a bcp 

and while 𝐻(𝒓) > 0 indicates that 𝐺(𝒓) dominates and the charge density is depleted at the bcp.[140] 

In addition, 𝐻(𝒓) has a positive sign when 𝐺(𝒓) dominates but a negative sign when 𝑉(𝒓) 

dominates. These parameters are employed to elucidate the nature of the bonding in the complexes 

considered. 

 



 

 

 

 

3 Rationalisation of base-free formation of Pd(0) from 

a novel SCN unsymmetrical pincer palladacycle  
 

This chapter describes the elucidation of the model mechanism of in-situ, base-free Pd(0) formation 

from a novel SCN pincer palladacycle in the gas-phase using density functional theory (DFT). Two 

hypothetical mechanisms of Pd(0) formation have been elucidated to proceed through four main 

steps namely; transmetallation (TM), first de-coordination, reductive elimination (RE) and second 

de-coordination in that order. TM for the base-free mechanisms is the rate-determining step, 

though the process is both energetically and kinetically unfavourable. The two functionals 

employed in the study yield similar energetic profiles and follow the same general patterns in the 

gas and solvent phase even though they differ with respect to the first de-coordination step and the 

product of reductive elimination. The results suggest that the novel pincer complex employed in the 

Pd(0) formation possesses relatively good stability for use as a pre-catalyst in cross-coupling 

reactions. Comparison of the base-free mechanism and the elucidated mechanism with base shows 

that the role of the base in the formation of Pd(0) from the pincer complex (pre-catalyst) is to 

significantly lower the activation energy barrier of TM for the reaction to be initiated. 

3.1 Introduction 

Any palladium compound that incorporates at least one palladium-carbon bond that is intra-

molecularly stabilised by one or two neutral donor atoms, mainly phosphorous (P), sulphur (S), 

oxygen (O) or nitrogen (N), is known as a palladacycle.[28,141–145] A special subclass of this group of 

compounds is the pincer type of palladacycles where two fused rings are incorporated in one 

compound[142] with side arms bearing the same donor atoms/groups e.g., PdNCN, PdSCS, PdPCP; 

symmetrical pincers[28,142,144,146,147] or the less common, different donor atoms/groups e.g., PdSCN, 

PdPCN; unsymmetrical pincers.[28,142,147–152] Some bimetallic palladacycles are also known.[163-167] 

Knowledge of this class of compounds dates back to the 1960’s.[141,143] They are known to possess 
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therapeutic activity against cancer cells,[141,158,159] photo-physical and catalytic properties.[28,141–

143,145,152,160] They have been studied, tested and applied as such over the years.[28,141,158–160] 

The catalytic application of palladacycles has recorded an overwhelming attention from researchers 

in the last few decades since their discovery as catalytically active species in the Heck and Suzuki 

cross-coupling reactions by Herrmann and Beller et al.,[161,162] with a plethora of scholarly articles 

and reviews (Refs. cited herein and more) now available. This is because aromatic carbon-carbon 

(C-C) bond coupling reactions have emerged in recent years as an exceedingly important and facile 

way of preparing complex pharmaceuticals, natural products, optical devices and industrially 

important starting materials.[144,145]  

 

3.1.1 Literature Review 

In 1995, Catellani et al.,[163] in an invited review reported that the use of palladacycles derived from 

norbornene insertion into aryl-palladium bonds followed by cyclisation allowed the selective 

functionalisation of either end of the metallacycle and formation of condensed rings. They went on 

to state that a catalytic process involving Pd(II)/Pd(IV) metallacycle intermediates had been 

achieved. Later in that year, Herrmann and Beller et al.,[161,162] reported for the first time the use of 

palladacycles (furnished from treating Pd(II) acetate with tris(o-tolyl)phosphane in toluene) in the 

Heck and Suzuki C-C coupling reactions as catalysts that were an order of magnitude more active 

and thermally more stable than conventional catalysts. They however, noted that neither the 

cleavage of phosphorous-carbon bond nor deposition of palladium occurred in the catalytic process. 

This led them to suggest the possibility of a Pd(II)/Pd(IV) catalytic process. Ohff et al., 1997[164] 

explored the possibility of catalysis using new, X-ray characterised Pd(II) pincer PCP palladacycles 

(obtained from the reaction of Pd(OCOCF3)2 and corresponding diphosphines in tetrahydrofuran 

(THF) at 80 °C) in the Heck reaction and reported that the complexes exhibited exceptionally high 

catalytic activity. They further observed that the new complexes were extraordinarily thermally 

stable and did not decompose under catalytic conditions to give Pd(0) nor its complex species. They 

then concluded that the studied catalytic process may not have included the Pd(0)/Pd(II) cycle. 

Lagunas et al., 1998[154] described a novel synthetic route and characterised a dimeric PdNCN 

pincer by single-crystal X-ray diffraction for use as a precursor to conducting organometallic 

molecular wires (oligomers and polymers). Also in the same year, Shaw et al.,[165] reported a new 

and very efficient method of separating products of reaction from the catalyst when they used NMR 

characterised palladacycles derived from tri(1-naphthyl)phosphine in the Heck reaction. They 

asserted that the complexes were very active catalysts that followed the Pd(II)/Pd(IV) mechanism in 

the catalytic process. Weissman and Milstein in 1999[166] reported that a thermally stable phosphine-
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free imine palladacycle, an excellent catalyst for the Suzuki cross-coupling, lead to more than 

100000 turnovers with non-activated aryl bromides. Akira Suzuki acknowledged these new 

advances to the coupling reaction of organoboron compounds with organic halides or triflates in 

1999.[167] 

In 2000, Zim et al.,[168] stated that cyclopalladated compounds derived from the ortho-metallation of 

benzylic tert-butylthioethers were excellent catalyst precursors for the Suzuki cross-coupling 

reaction of aryl bromides and chlorides with phenylboronic acid under mild reaction conditions. 

They concluded that a broad range of substrates and functional groups were tolerated in the protocol 

with high catalytic activity attained. Bedford and Cazin in 2001[169] presented simple 

tricyclohexylphosphine adducts of palladium complexes with ortho-metallated N-donor ligands that 

showed the highest catalytic activity yet reported in the Suzuki coupling of aryl chlorides even 

under aerobic conditions. They concluded that the active catalyst (a low-coordinate Pd(0) species) 

that gave this high activity was generated in situ from the adducts in the course of reaction. Also in 

2001, Bedford and Welch[170] reported some phosphinite based palladacycles obtained at reflux 

temperatures in toluene and THF that showed extremely high catalytic activity in the Suzuki 

coupling of both sterically hindered and electronically deactivated aryl bromides especially in the 

presence of one equivalent free ligand. They went on to suggest therefore, that the active catalyst in 

the studied reactions may be a low-coordinate Pd(0) species. Dupont et al., in a microreview stated 

that N, P and S containing palladacycles were emerging as new catalyst precursors and that the 

complexes exhibited thermal and air stability.[143] They went on to assert that the complexes were 

now being successfully exploited in catalytic reactions ranging from classical hydrogenations to 

enantioselective aldol-type condensations. Whitcombe et al., in a review on the advances in the 

Heck chemistry of aryl bromides and chlorides using cyclopalladated complexes as catalysts 

(including pincer type palladacycles) suggested that more mechanistic studies on the reactions be 

performed to reveal the true nature/form of the active catalyst as it was not yet clear whether the 

complexes were engaged in the Pd(0)/Pd(II) or Pd(II)/Pd(IV) catalytic cycle in the reaction 

process.[171] Bedford et al., 2002[172] reported simple mixed palladium complexes which acted as 

catalyst precursors for the Suzuki coupling of aryl chlorides stating that they displayed extremely 

high catalytic activity. Herrmann et al., 2003[153] presented a summary of the applications of 

palladium complexes with phosphorous ligands containing a metallated sp3-carbon centre or with 

N-heterocyclic carbene ligands in C-C and carbon-nitrogen (C-N) coupling reactions of aryl halides 

including results of mechanistic discussions about their role in the catalytic cycle. They concluded 

that although the complexes were efficient pre-catalysts, neither of the phospha-palladacycles 
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underwent cleavage nor did the NHC ligands dissociate from the metal centre in the course of the 

reaction hence, avoiding the generation of Pd(0) particles or palladium black. 

Consorti et al., in 2004 reported low fluorescence emissions from a newly synthesised and 

characterised palladacycle in both solution and solid state ascribing the emissions to excimeric 

emissions due to the rigid and totally flat structure of the complex in solid state confirmed by X-ray 

diffraction.[146] Consorti et al., established new catalysts based on unsymmetrical NCP pincer 

palladacycles for the Heck reaction in 2004.[147] They averred that these new catalytic systems acted 

as a reservoir of the catalytically active Pd(0) species and hence, proposed that the reaction 

followed the Pd(0)/Pd(II) catalytic mechanism. Following this development, Yu et al., 2004[173] 

ruled out the possibility of a Pd(II)/Pd(IV) catalytic mechanism under their reaction conditions 

while using silica-polynorbornene immobilised palladium (II) SCS pincer complex in the Mizoroki-

Heck coupling of iodobenzene and n-butyl acrylate. They asserted that the pincer complexes 

decomposed under reaction conditions by rupture of ligand bonds to generate active Pd(0) 

homogeneous species with no evidence of catalysis by the Pd(II) complexes, thus supporting the 

Pd(0)/Pd(II) catalytic mechanism. Bedford et al., while reviewing the design and application of new 

homogeneous palladium catalysts for the formation of C-C and C-heteroatom bonds stated that 

palladacycles (catalyst precursors) played a significant role as alternative sources that improved 

activity when used in association with bulky electron-rich phosphines and carbenes which increased 

the electron density on the palladium centre(s).[174] Nevertheless, they concluded that very many 

interesting problems and taxing issues in the use of this class of substrates in coupling chemistry 

still needed to be addressed. Yu et al., reiterated that pincer complexes were only pre-catalysts in 

the Heck coupling reactions and that there was no evidence of catalysis by Pd(II)-SCS complex 

when they performed kinetic experiments and poisoning studies with the complex immobilised on 

porous silica and soluble polynorbornene supports in 2005.[175] Later that same year, Sommer et 

al.,[176] reported a similar study with PdPCP complexes that was in complete agreement with the 

findings of Yu et al.[173,175] Also in 2005, Dupont et al., asserted that palladacycles possessed a 

plethora of interesting and useful properties accounting for their increasing applications.[141] The 

authors went on to state that the vast majority of the applications of palladacycles involved an intact 

Pd-C bond. Furthermore, they concluded that in their use as catalytic systems, the Pd(II)/Pd(IV) 

mechanism of catalysis was highly unlikely as solid based catalysts designed for reusability 

probably generate Pd(0) in the course of the reaction, and as such, only act as pre-catalysts. d'Orlye 

and Jutand then reported the in situ formation of a Pd(0) complex from a palladacycle in 

dimethylformamide (DMF) at 80 °C in the absence of reducing agents in an endergonic equilibrium 

and proposed it to have occurred via reductive elimination.[155] 
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de Vries in 2006[156] stated that in all Heck reactions at high temperatures, (irrespective of the nature 

of precursor) palladium catalysts reduced rapidly to Pd(0) with the tendency of forming soluble 

colloids in solution. In addition, he stated that after the completion of the Heck cycle in solution, the 

palladium could either fall back to form colloidal particles or re-enter the catalytic cycle by 

engaging in another oxidative addition. Cardenas et al., performed a computational study at the 

B3LYP/6-31G(d)[LANL2DZ] level of theory to determine the mechanism of the key steps of Pd-

catalysed domino reactions in which a C(sp2)-C(sp2) bond is formed from aryl and alkenyl 

halides.[177] They explored the oxidative addition of these halides to palladacycles to give the Pd(IV) 

intermediates and the transmetallation of the halides between two Pd(II) centres to assert that a 

palladacycle and a Pd(II) complex formed by oxidative addition of the halides to Pd(0). The authors 

then concluded that the oxidative addition of iodoethylene to Pd(0) precursors was much more 

favourable than oxidative addition of the halide to Pd(II) palladacycles while the transmetallation 

between Pd(II) complexes was facile. Phan et al., in that same year noted in a review that research 

had begun shedding light on the transformations that palladium pre-catalysts undergo prior to and 

during catalytic transformations, thereby narrowing the scope of the types of palladium complexes 

that might be regarded as ‘true catalysts’ in the Heck and Suzuki coupling reactions.[144] The authors 

went on to state that there was a likelihood of the decomposition of many pre-formed metal-ligand 

complexes or a mixture of palladium sources and ligands at high temperatures to liberate Pd(0) 

nano-particles. In addition, they stated that the liberated nano-particles would in turn act as 

precursors to dimeric palladium species that would be the true catalysts in an anionic catalytic 

cycle. They then concluded that a Pd(II)/Pd(IV) catalytic cycle was yet to be proven while 

palladacycles have all been shown to operate by a Pd(0)/Pd(II) mechanism over the years.[144] Weck 

and Jones, 2007[178] observed that minimising the costs associated with the Mizoroki-Heck reaction 

by developing high turnover number catalysts or facilitating catalyst recovery and elucidation of the 

true nature of the active catalytic species in the reaction when using various pre-catalysts were the 

two main challenges faced by practitioners of the Heck or other Pd-catalysed coupling reactions. 

They then asserted from their study that all pre-catalysts decomposed at high temperature (120 °C) 

to generate the active Pd(0) species that were the true catalysts. They also enumerated the 

techniques for elucidating the nature of the true active Pd species which included; mercury, Hg(0), 

poisoning, kinetic tests, three-phase tests, filtration or split tests and use of soluble and insoluble 

catalyst poisons. da Costa et al., synthesised novel fluorous palladacycles in 2008 and found that 

they were effective catalyst precursors for the Heck reaction of iodobenzene and methyl acrylate in 

DMF.[179] They observed that the catalyst could not be recycled in fluorous solvents and that low 

valent palladium nano-particle species believed to be the true catalysts were present in the reaction 
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medium via transmission electron microscopy (TEM). Thereafter, Kozlov et al., 2008[149] 

synthesised and characterised two pincer SCS palladacycles by X-ray diffraction and reported the 

complexes to show high catalytic activity for the Suzuki cross-coupling of aryl bromides with 

phenylboronic acid. They also stated that the complexes exhibited luminescence at 77 and 300 K. 

Zhang et al., 2009[180] reported the synthesis and characterisation (using spectroscopic techniques 

and single-crystal X-ray diffraction) of five unsymmetrical PCN pincer palladacycles and found 

them to be effective catalysts for the Suzuki and copper-free Sonogashira cross-coupling reactions. 

The authors observed that the complexes were insensitive to air and moisture thereby allowing for 

ease of handling. That same year, Muniz presented evidence of the Pd(II)/Pd(IV) catalytic 

mechanism for the first time in the developing field of Pd catalysis in a mini-review stating that the 

frequently encountered Pd(0)/Pd(II) cycle was characterised by the presence of strong oxidants that 

prevented further oxidation of Pd(II) at a given point in the cycle.[157] He however, observed that the 

stability of Pd(IV) complexes was too low to allow for structure isolation and advanced mechanistic 

studies of the catalysis. Hao et al., 2010[148] reported the synthesis, characterisation (using 

spectroscopic and single-crystal X-ray diffraction techniques) and testing of some symmetrical and 

unsymmetrical pincer palladacycles for the Suzuki coupling of aryl bromides and activated aryl 

chlorides with phenylboronic acid in different media and at different temperatures. The researchers 

suggested from their study that the unsymmetrical pincers showed greater catalytic activity when 

compared with the symmetrical pincer complexes. They also noted that because palladium black 

(agglomerated Pd nano-particles[156]) was generated in the catalytic process, the reactions proceeded 

via the Pd(0)/Pd(II) catalytic cycle and that the pincers were only precursors in the process. Kozlov 

et al., 2011[150] reported synthetic approaches to novel symmetrical and unsymmetrical hybrid 

pincer Pd(II) complexes of the type PdSCE (E = S, N, O) that displayed high to excellent catalytic 

activities in the Suzuki cross-coupling reactions of aryl bromides with phenylboronic acid. They 

observed that the asymmetry of pincer complexes was a factor in its catalytic activity; the higher the 

asymmetry, the greater the activity. This is because the authors found pincer complexes with two 

fused 5,6-membered SCS' and SCN metallacycles to show higher catalytic activity over their 5,5-

membered analogues.[150] Later that year, Selander and Szabo[142] in a review asserted that the 

reduction of Pd(II) to Pd(0) during catalysis in the presence of strong bases at high temperatures 

imposed a limitation on the direct application of pincer palladacycles as catalysts for coupling 

reactions. They went on to suggest that these limitations could be avoided by performing these 

reactions without the redox conditions or diverting the redox to a Pd(II)/Pd(IV) catalytic cycle in 

lieu of the Pd(II)/Pd(0) cycle. These assertions agreed with those held by Muniz[157] in proposing his 

Pd(II)/Pd(IV) catalytic mechanism. They further argued that because of the decomposition of the 



48 
 

 

complexes under catalytic conditions, the advantageous effects of the pincer ligands would not be 

employed in catalytic reactions. Kozlov et al., reported yet another set of PdNCS pincer complexes 

which proved to be excellent pre-catalysts for the Suzuki cross-coupling of electronically varied 

bromoarenes and chloroacetophenone with phenylboronic acid that same year.[151] The researchers 

affirmed that the generation of Pd(0) in the catalytic process was in agreement with previous views 

that the Pd(0)/Pd(II) mechanism of catalysis was the most appropriate cycle for the couplings with 

Pd(0) as the true catalysts in the process. Also in 2011, Fortman and Nolan discussed cross-

coupling reactions that utilised NHC palladacycles as catalysts[145] stating that the catalysts were 

becoming increasingly applicable industrially and in academia. They observed that the development 

of economically viable and efficient catalysts was on going, with excellent catalytic species derived 

by mimicking the Pd-NHC architecture. 

Aleksanyan et al., 2012 reported the synthesis, isolation and characterisation of novel hybrid pincer 

palladacycles with molecular structures: 

 

that demonstrated high activity as pre-catalysts for the Suzuki cross-coupling of phenylboronic acid 

with aryl bromides.[152] The authors found that the release of Pd(0), the catalytically active species, 

and hence catalysis was controlled by steric effects; the greater the steric hindrances, the more facile 

the generation of Pd(0) and so, the lesser the catalytic action. Jin and Lei later that same year 

provided insights into the elementary steps in the Negishi coupling reactions employing 

palladacycles as pre-catalysts, stating that kinetic investigations were one of the most important 

strategies of understanding oxidative addition, transmetallation and reductive elimination in 

mechanistic studies of such reactions.[181] Karami et al., 2012[158] performed synthesis, structural 

characterisation and in-vitro cytotoxicity assays of dinuclear and mononuclear cyclopalladated 

complexes against human cervix carcinoma, colon cancer, leukaemia cancer cell line and human 

breast carcinoma. The authors compared the activity of these complexes against these conditions 

with the activity of cisplatin against same conditions to conclude that they performed better than 
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cisplatin. Kapdi et al., 2013[182] developed an efficient and practical synthetic route to Pd-

(palladacycle)-catalysed intra-molecular C-H bond functionalisation of coumaryl esters affording 

benzofurocoumarins. The authors noted that the palladacycles proved to be efficient catalysts in the 

reaction. Kapdi and Fairlamb, 2014[159] in a review stated that palladacycles or cyclopalladated 

complexes showed promising activity as anti-cancer agents with Pd nano-particle species (resulting 

from these complexes) imparting interesting effects on cancer cell lines. They however, noted that 

this area is only emerging and needs to be explored for more insights into the correlation of the 

water solubility of palladacycles and cytotoxicity as the complexes exhibited better solubility in 

water compared to cisplatin. They asserted that such studies could provide a lead way to the 

discovery of an important and attractive way of treating cancer. Ratti 2014[183] in a review 

highlighted the application of palladacycles as catalysts/catalyst precursors for the Mizoroki-Heck, 

Sonogashira, Suzuki, Stille and Negishi cross-coupling reactions. The author observed that the use 

of magnetic nano-particles as supports for active palladacycles in the catalytic process could be a 

fruitful area of research. Later that year, Font et al.,[184] studied the cyclometallation reactions of 

dinuclear acetato bridged palladacycles from a kinetico-mechanistic perspective to assert that they 

were excellent starting materials in the facile activation of C-H bonds. Kapdi et al., also in 2014 

reported the direct transmetallation between palladacycles and arylboronic acid to afford isolable 

transmetallation products stating that the reaction occurred in less than 30 minutes in THF.[185] The 

authors noted that prolonged reaction times lead to the generation of dinuclear complexes with 

hydroxo and acetoxy bridging ligands. They then concluded that insight into pre-catalyst activation 

for the Suzuki-Miyaura cross-coupling using palladacycles had been gained with the acetate and N-

imidate anions activating the neutral arylboronic acid. 

Chapman et al., 2015[186] described the unusual cyclometallation reaction at palladium that 

proceeded through the functionalisation of vinylic C(sp2)-H bond tethered to an NHC ligand 

concluding that the energetic balance between palladacycle formation and bis-NHC complexation 

was found to be subtle. Roy et al., 2015[160] reported the formation of some palladacycles from 2-

(phenylazo)azobenzene stating that planar complexes were furnished using crystallographic 

analysis. The researchers then computationally studied the obtained complexes for photo-physical 

properties using the time dependent density functional theory at the B3LYP/6-

311+G(d,p)[LANL2DZ] level of theory and natural transition orbital (NTO) analyses to observe 

that the complexes exhibited luminescence in solution at ambient temperature. In addition, they 

concluded that the palladacycles were potential candidates for use as pre-catalysts in the Suzuki-

Miyaura and Heck-type reactions. Rosa et al.,[187] investigated the optimisation of a novel PdNCP 

pincer palladacycle as a catalyst for the Sonogashira coupling reaction using an experimental 
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technique to assess the effects of bases, solvents and reaction temperature on the second step of the 

reaction via the two-factor design. They concluded from the study that temperature was statistically 

significant in relation to the yield of the reaction. Boonseng et al., also in 2015, evaluated the 

accuracy of DFT optimised geometries of symmetrical (PdNCN and PdSCS) pincer palladacycles 

by investigating the performance of eight commonly used density functionals with four different 

combinations of basis sets to reproduce the crystal structures of the complexes.[28] They noted that 

the 𝜔B97XD functional performed best overall but that the PBE and TPSS functionals also 

performed very well and had the advantage of being computationally faster and hence, less 

expensive. The authors, using the Bader’s “Atoms In Molecules (AIM)”[124–133] method to elucidate 

the nature of bonding in the complexes concluded that the distinct differences in bond strength and 

nature of interaction between Pd and the donor atoms in the palladacycles supported their 

thermodynamic stabilities. 

 

3.1.2 Justification of Study 

Some reports[148,150,180,188,189] suggest that unsymmetrical pincer palladacycles possess greater 

catalytic activity than their symmetrical pincer analogues. Dr G.W. Roffe synthesised a range of 

unsymmetrical pincer palladacycles for testing their catalytic activity in the Suzuki-Miyaura 

reactions in the experimental group of Prof. John Spencer at Sussex.[29,190] The X-ray structure of 

one of his novel PdSCN complex, investigated in this chapter, is presented in Figure 3.1. 

 

Figure 3.1. X-ray crystal structure of the novel PdSCN unsymmetrical pincer palladacycle (1) 

investigated in this Chapter. Adapted from Roffe et al., R. Soc. Open Sci. 2016, 3, 150656.[190] 

 

The focus of this chapter is to rationalise the formation of Pd(0), the active catalyst[141–143] in the 

Suzuki-Miyaura cross-coupling reactions from 1 to complement the work of Dr G.W. Roffe.[29] It 

was found from the experimental work of Dr G.W. Roffe[29] that both unsymmetrical and 
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symmetrical pincer palladacycles were good pre-catalysts in the Suzuki-Miyaura carbon-carbon 

cross-coupling reactions.  

 

3.1.3 Aim of Study 

The aim of this Chapter is to elucidate the stepwise mechanism of Pd(0) formation without base 

and/or redox agents for catalysis. The effects of non-polar and polar solvents on the elucidated 

mechanism are also determined. This investigation was performed in parallel with the 

computational investigation of the mechanism of Pd(0) formation with base by Dr G.W. Roffe in 

the Cox group. The solvents were chosen to complement his experimental work in the Spencer 

group. This work has now been published in the Journal of Organometallic Chemistry.[11] 

 

3.2 Computational Details 

All computations were performed using DFT methods as implemented in the Gaussian 09 

package[24] to locate minima and/or transition states[19,36,191,192] of the neutral singlet spin systems 

investigated. The GGA functional, PBE[72,193,194] and the h-GGA functional, 𝜔B97XD[77,80] 

previously validated in the Cox group[28] were employed. The Pd atom was described by the ECP, 

SDD[122,123] which includes a set of f-polarisation functions.[195] Standard basis sets,[99,111–113,196,197] 6-

31+G(d,p) and 6-31++G(d,p), that provide great flexibility without substantial increase in 

computational time[28] were used for C, B, N, O, Cl, S and H for computations at the PBE and 

𝜔B97XD levels of theory, respectively. All the ground state and transition state structures involved 

in the reaction of PdSCN (1) with phenylboronic acid without base were fully optimised at the 

PBE/6-31+G(d,p)[SDD] and 𝜔B97XD/6-31++G(d,p)[SDD] levels of theory without any symmetry 

restrictions.[192,198] These calculations locate the most stable local equilibrium structure of a 

chemical species (atom, ion, molecule or compound) on the PES of the system by changing its 

geometry and electronic structure to obtain a stationary point that corresponds to an energy 

minimum or transition state structure.[19,36,191,192,198–200] Frequency calculations were performed on 

stationary points obtained from the optimisations at 298.15 K and 1 atm to confirm and ascertain 

their nature. The absence of an imaginary frequency indicated a minima and the presence of a single 

imaginary frequency indicated a first-order saddle point (transition state) on the PES.[19,36,191,201,202] 

The connectivity of the transition states to their adjacent minima was confirmed by intrinsic 

reaction coordinate (IRC) calculations.[19,191,201,202] To obtain accurate energy and activation barrier 

height values, single-point energy (SPE) calculations were performed on the optimised geometries 

at the 𝜔B97XD with a larger standard basis set, 6-311++G(2df,2p) and the ECP in the gas phase.[28] 
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ZPE corrections to the electronic energies and thermal corrections to the Gibbs free energies of all 

the species were obtained from the frequency calculations.[19,30,32,36,37] The implicit solvation model 

based on the polarisable continuum model (PCM) of Tomasi and co-workers,[84,90] more 

specifically, the continuous surface charge PCM (CSC-PCM) of Scalmani and Frisch[87] as 

implemented in the Gaussian09 package[24] was employed to obtain the solvent corrected energies. 

Solvent effects on the gas-phase optimised geometries were performed using 𝜔B97XD. The 

solvents used to compute solvent corrected energies of the stationary points obtained at the PBE 

level of theory are toluene (To, 𝜀 =  2.4), tetrahydrofuran (THF, 𝜀 =  7.4) and acetonitrile (AN, 

𝜀 =  35.7). Those used for the calculation of solvent corrected energies of the stationary points 

obtained at the 𝜔B97XD level of theory are o-xylene (o-X, 𝜀 =  2.5) and AN. The DFT methods 

employed can be summarised as 𝜔B97XD/6-311++G(2df,2p)[SDD]//PBE/6-31+G(d,p)[SDD] and 

𝜔B97XD/6-311++G(2df,2p)[SDD]//𝜔B97XD/6-31++G(d,p)[SDD]. A topological analysis of the 

electron density of the species was performed using Bader’s Quantum Theory of Atoms in 

Molecules (QTAIM)[124–133] as implemented in the Multiwfn package.[203] In doing this, the 

𝜔B97XD/6-311++G(2df,2p)[DGDZVP] level of theory was employed in which the all electron 

basis set, DGDZVP[204] was used instead of the SDD[122,123] for the Pd atom to generate the 

wavefunctions of the investigated species. 

 

3.3 Results and Discussion 

3.3.1 Molecular Structure 

The reaction of PdSCN (1, Figure 3.1) with phenylboronic acid to form Pd(0), Scheme 3.1, was 

investigated and the optimised structures are provided in Figure 3.2. For each conformer, a 

frequency calculation was performed at the optimised geometry to confirm that it was minimum and 

their ZPE corrected electronic energies and thermal corrected Gibbs free energies are reported in 

Table 3.1. 

 

Scheme 3.1. Formation of biphenyl product, boric chloride and Pd(0) using a novel unsymmetrical 

pincer palladacycle, 1[29] and phenylboronic acid. 
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The frequency checks in Table 3.1 indicate that all the geometries of the species obtained at the 

PBE/6-31+G(d,p)[SDD] level of theory except 2b (Figure 3.2) correspond to a minimum  

stationary point on the PES. This structure however, optimised upon frequency displacement to the 

same structure as 2a. The energy difference between 2 and 2a and 4 and 4a is ~10 to 16 kJ mol-1. 

In both cases, the most stable conformer, 2 and 4 corresponds to a structure in which the hydrogen-

hydrogen distances are maximised and the ∠OBO angle is closer to the trigonal angle of 120 °[205] 

(Table 3.2). As a consequence, 2 and 4 possess the minimum energies on the PES. 

 

Table 3.1. Zero point corrected electronic energies (EZPC), thermal corrected Gibbs free energies 

(GTC) and frequency checks for negative eigenvector of the gas-phase optimised structures of the 

species of Scheme 3.1. 

Species 
𝐄𝐙𝐏𝐂 / kJ mol-1 𝐆𝐓𝐂 / kJ mol-1 

Frequency Check‡ 
PBE 𝝎B97XD PBE 𝝎B97XD 

1 -4052586.131 -4052575.854 -4052702.507 -4052691.478 + 

2 -1071595.060 -1071589.926 -1071682.851 -1071679.174 + 

2a -1071586.601 * -1071673.255 * + 

2b -1071564.337 * -1071648.132 * - 

3 -3116158.398 -3116144.681 -3116288.195 -3116271.556 + 

4 -1672043.792 -1672042.423 -1672115.807 -1672114.259 + 

4a -1672026.679 * -1672098.860 * + 

5 -335735.8212 -335735.8212 -335779.3835 -335779.3835 + 
‡: - Indicates that the structure is not a minimum due to presence of an imaginary frequency mode; + indicates that the 

obtained structure is in a minimum stationary point on the PES as no imaginary frequency mode is present. * means the 

energies are not computed 

 

Table 3.2. Selected bond angles / ° of the conformational isomers of boronic species (2 and 4). 

 

 

 

 

 

Two conformational isomers of the palladacycle, 1 were found at the same energy on the PES, 

either with the methyl group below or above the plane of the molecule. This finding agrees with 

experimental result of the synthesis of two enantiomeric pincers.[29] Three conformers of the 

biphenyl product were also found basically at the same energy (energy difference between the 

conformers is less than 1.0 kJ mol-1) on the PES depending on the orientation of the pyridyl group. 

Following the findings at this level of theory, only the most stable structures of the species in 

Scheme 3.1 were re-optimised at the 𝜔B97XD/6-31++G(d,p)[SDD] level of theory for the purpose 

of comparison (Table 3.1). As shown in Figure 3.1 and Figure 3.2, the ligand coordinates to the 

Structure OBO / ° BOH / ° CBO/ClBO / ° 
2 117.0 111.2, 113.8 118.4, 124.6 

2a 124.0 115.5, 115.5 118.0, 118.0 

4 120.9 111.3, 113.4 117.7, 121.4 

4a 127.0 115.2, 115.2 116.5, 116.5 
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Pd(II) centre of the pincer complex, 1, through the pyridyl nitrogen atom, the carbon atom of the 

central aryl ring and the sulphur atom of the group, -SMe in a tridentate manner. This is also 

confirmed by the molecular graph of the moiety generated from QTAIM analysis of the structure 

presented in Figure 3.3. 

 

Figure 3.2. The optimised conformational structures of the species in Scheme 3.1; 1 is the 3-D 

view of 1. 
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Figure 3.3. The molecular graph of 1 showing the connectivity of the atoms in its structure via 

bond paths (green solid links), the bcp’s (orange dots) between bonded atoms and rcp’s (yellow 

dots). 

 

The Pd(II) centre adopts a slightly distorted square-planar geometry having the chloride in the 

fourth coordination site to produce a PdSCN pincer complex with two five-membered 

metallacycles. This geometry is as expected for unsymmetrical pincers that generate Pd(0) in-situ 

during catalysis[148,151,152,180] and is buttressed by the results summarised in Table 3.3 and Table 

A.1.1 (see Appendix A.1). Table 3.3 and Table A.1.1 present a summary of key structural 

(geometric) parameters in the palladium-ligand (Pd-L) environment of 1 obtained from experiment 

(X-ray crystallography),[29] and computation in the present work. 

 

Table 3.3. Some experimental[29] and optimised (calculated) bond lengths and angles of 1. 

Bond length 
Value / Å 

Bond Angle 
 Value / °  

Expt. PBE 𝝎B97XD Expt. PBE 𝝎B97XD 

Pd28-N12 2.09(3) 2.07 2.08 C1-Pd28-N12 80.6(14) 80.6 80.5 

Pd28-S23 2.291(8) 2.29 2.31 C1-Pd28-S23 84.9(10) 85.0 85.2 

Pd28-C1 1.95(3) 1.96 1.95 C1-Pd28-Cl29 174.0(11) 177.0 175.8 

Pd28-Cl29 2.423(8) 2.40 2.40 N12-Pd28-S23 165.3(10) 164.3 165.7 

    N12-Pd28-Cl29 98.0(3) 98.3 98.3 

    S23-Pd28-Cl29 96.3(3) 96.4 95.8 
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The pincer complex, 1, displays a nearly linear co-ordination at the Pd(II) centre. The bond angles; 

C1-Pd28-Cl29 measuring 174.0 (11) °,[29] is overestimated to the extent of 3.0 ° at the PBE method 

and 1.8 ° at the 𝜔B97XD level of theory while N12-Pd28-S23 measuring 165.3 (10) °[29] is 

underestimated to the extent of 1.0 ° at the PBE but overestimated by 0.4 ° at the 𝜔B97XD level of 

theory. This is an additional confirmation of the slight distortion of the square-planar geometry of 

the complex around its Pd(II) centre. Furthermore, the dihedral angles (Table A.1.1, in Appendix 

A.1) involving the -SMe group in the Pd-L environment together with the bond lengths and angles 

mentioned above suggest that the geometry of 1 obtained via calculation at the 𝜔B97XD/6-

31++G(d,p)[SDD] level of theory agrees slightly better in comparison with the experimental 

geometry[29] than that obtained at the PBE/6-31+G(d,p)[SDD] level of theory. This is evident in 

Table A.1.1 where PBE either fails to predict the correct sign of the dihedral angle or gives greater 

over or underestimates of the parameter compared to 𝜔B97XD on the overall. Nevertheless, both 

methods performed well in reproducing the geometry of 1 with emphasis on its Pd-L environment 

in good computational time. Both approaches give values of the key structural parameters 

comparable to their experimentally[29] determined values. This finding is in perfect accord with the 

findings of Boonseng et al.[28] The result also, agrees with the reports of Minenkov et al.,[10,206] and 

Waller et al.,[79] that the GGA (e.g., PBE) and h-GGA (e.g., 𝜔B97XD) functionals are better at 

reproducing the geometries of transition metal complexes (with respect to the metal-ligand, M-L, 

environment) especially the hybrids accounting for dispersions such as 𝜔B97XD. 

 

3.3.2 Mechanism of Pd(0) Formation - Reaction Pathway for Scheme 3.1 

Two model mechanisms of in situ Pd(0) formation for the Suzuki C-C cross-coupling reactions 

have been elucidated. These mechanisms are presented in Scheme 3.2 and Scheme 3.3, 

respectively. The main difference between these schemes is that the first de-coordination step 

leading to the formation of Int4 is different depending on the de-coordinating side-arm (-N or -S). 
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Scheme 3.2. Base free, gas-phase mechanism of Pd(0) formation from novel unsymmetrical pincer 

palladacycle (1)[29] computed at the PBE/6-31+G(d, p)[SDD] level of theory. 
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Scheme 3.3. Base free, gas-phase mechanism of Pd(0) formation formation from novel 

unsymmetrical pincer palladacycle (1)[29] computed with 𝜔B97XD/6-31++G(d,p)[SDD]. 

 

The in situ formation of Pd(0) has been thought to presumably occur before catalysis begins in a 

reaction.[151,152,185] Each of the mechanisms as presented is found to involve four main steps namely: 

the transmetallation (TM; TS1-2), the first de-coordination (Dcṉ-1; TS3-4), reductive elimination 

(RE; TS4-5) and a second de-coordination (Dcṉ-2; TS5-6) in that order, respectively. From the 

presented schemes, it is observed that the pre-catalyst activation begins with the non-covalent 

attractive interaction[207] of the reacting species via the weak inter-molecular dispersive forces[152] 
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e.g., hydrogen bonding[208] and π-π interaction.[207] The molecular graphs of Int1 showing these 

weak interactions are presented in Figure 3.4. 

 

Figure 3.4. The molecular graphs of Int1 for Scheme 3.2 and Scheme 3.3 showing the hydrogen 

bonding and π-π interaction (brown linkages) between the reacting species. 

 

Hydrogen bonding occurs between the chloride of 1 and one of the hydrogen of the hydroxyl groups 

of the phenylboronic acid (for both schemes) while π-π interaction occurs between the aryl ring of 

the acid and the central aryl ring of 1 (Scheme 3.3). The Gibbs free energy profiles of Scheme 3.2 

and Scheme 3.3 are presented in Figure 3.5 and Figure 3.6, respectively. It is found from Figure 

3.5 and Figure 3.6, that the weak interactions in Figure 3.4 lead to the stabilisation and 

orientation[207,209,210] of Int1 (intermediate one). The process then proceeds to Int2 (intermediate 

two) through a concerted,[210] four-centred transition state, [198,211] (TS1-2). In this transition state, 

the Pd(II) coordination sphere becomes trigonal bi-pyramidal by incorporation of the phenylboronic 

acid as the chloride assumes an apical position. This is the TM step in which the chloride is cleaved 

from the Pd(II) centre as the organic moiety (aryl ring) of phenylboronic acid is transferred to the 

Pd(II) centre from boron.[209,210] The cleaved Cl− then binds to the formed electron deficient boron 

species to stabilise the system. Figure 3.7 presents the molecular graph of the TM product showing 

the nature of interactions in the TM product. The TM products are initially held together by weak, 

inter-molecular hydrogen bonding[209,210] (Figure 3.7). This occurs between one of the oxygen of 

the boronic chloride and one of the hydrogen atoms of the pyridyl group of the pincer and between 

the chlorine atom of the boric chloride and another hydrogen atom of the pyridyl group of the 

pincer. These hydrogen bonds are soon separated as the reaction proceeds to form Int3 as 

ClB(OH)2 is eliminated. 
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Figure 3.5. The lowest Gibbs free energy profile of the base-free, gas-phase mechanism of Pd(0) 

formation presented in Scheme 3.2; R = Me. 

 

Thus, TM introduces the σ-bonded carbon atom into the coordination sphere[181] of the Pd(II) centre 

of 1. In order to achieve a mutual disposition of the two leaving aryl groups[151,152,185] needed for 

facile formation of a low energy barrier three-centred dissociative transition state (TS4-5),[192,200] the 

RE step, one of the ancillary arms of the ligand de-coordinates in the Dcṉ-1 step via TS3-4. This is 

the essential step for C-C bond formation.[181] It is observed that the Dcṉ-1 and RE steps are 

different for the two DFT methods employed in the investigation as can be seen in the schemes 

arising from them respectively. In Scheme 3.2 (arising from the PBE method), it is found that the 

Dcṉ-1 step (TS3-4) involves the de-coordination of the S atom of the ancillary -SMe group from the 

central Pd(II) of the complex (Int3). For Scheme 3.3, the nitrogen, N atom of the ancillary pyridyl 

group is observed to de-coordinate from the Pd(II) centre of Int3. PBE does not achieve N de-

coordination from Int3 while 𝜔B97XD achieves S de-coordination from Int3 but because the 

generated intermediate does not connect to the RE (TS4-5) at this level, it is omitted from the 

mechanism (Scheme 3.3). This occurrence may be attributed to the peculiarities of the two DFT 

functionals involved. PBE, a GGA comprising of total electron density (𝜌𝜎(𝒓)) and electron density 

gradient (∇𝜌𝜎(𝒓)) tends to possess a better capacity to correctly account for the 𝑟𝑃𝑑−𝑁 coordinate 

(dative) bond but finds it difficult accounting for non-covalent and dispersion-type interactions 

when compared to 𝜔B97XD.[10,212] 
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Figure 3.6. The lowest Gibbs free energy profile of the base-free, gas-phase mechanism of Pd(0) 

formation presented in Scheme 3.3; R = Me. 

 

𝜔B97XD includes Hartree-Fock (X) exchange[77] and an empirical damping dispersion (D)[80,212] to 

account better for oxygen-metal (and by extension, sulphur-metal e.g., 𝑟𝑃𝑑−𝑆, since they are group 

members with sulphur also forming softer Lewis bases than nitrogen[205]) coordinate (dative) bond, 

non-covalent and dispersion-type interactions when compared to PBE.[10,212] 

Furthermore, the de-coordination of ancillary pyridyl arm at the 𝜔B97XD level of theory could also 

be rationalised on the grounds of the trans-influence of the much better σ-donating ability[200,213,214] 

of the -SMe group on the arm. The de-coordination of ancillary -SMe arm at the PBE level of 

theory could be rationalised on the basis of dπ-pπ (Pd-pyridyl) back-bonding with a concomitant 

strengthening[192,215–217] of the 𝑟𝑃𝑑−𝑁 bond unlike the -SMe arm. Hence, the different nature and 

structure of both Int4 and Int5 (intermediate four and five) obtained at the two levels of theory. The 

nature and structure of the stable arenium complex (Int5) having an sp3 (almost tetrahedral) instead 

of an sp2 ipso-carbon obtained at the PBE level of theory from the present study is supported by 

reports of similar stable and isolable intermediates obtained from the experimental studies of van 

Koten and co-workers.[218–220] Thermodynamically stable intermediates of this nature that can 

undergo re-aromatisation (just as Int5 in Scheme 3.2) are crucial either in the formation or cleavage 

of C-C bonds.[219,220] The ipso-carbon of Int5 in Scheme 3.3 is also observed to exhibit a slight 

distortion from the sp2 hybridisation but still retains it probably because of the ability of the 

𝜔B97XD functional to effectively account for non-covalent and dispersion-type interactions.[10,212] 
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Figure 3.7. The molecular graph of Int2 for Scheme 3.2 and Scheme 3.3 showing the hydrogen 

bonding (brown linkages) in the product of transmetallation. 

 

This slight out-of-plane distortion of the ipso-carbon of Int5 in both schemes due to the incipient 

formation of a Pd-C(of central aryl moiety) bond in the presence of the new Caryl-Caryl bond may be 

attributed to the re-organisation of the complex (Int5) to reduce the repulsive steric crowding[198] 

introduced by the in-coming aryl moiety from the phenylboronic acid. The mechanisms (Scheme 

3.2 and Scheme 3.3) again agree at the Dcṉ-2 step that splits into two: a (when the -SMe arm de-

coordinates from the Pd(0)) and b (when the pyridyl arm de-coordinates from the Pd(0)), both 

leading to the formation of Pd(0), the active catalyst[141–143] and the biaryl (biphenyl) product. 

 

3.3.3 Energetics and Concomitant Kinetics of the Pd(0) Formation Pathways 

The Gibbs free energy profiles of Scheme 3.2 and Scheme 3.3 are presented in Figure 3.5 and 

Figure 3.5, respectively. It is worthy of note that these energies are relative to the energy of the 

separated reactants. As can be seen in Scheme 3.2 and Scheme 3.3, (or Figure 3.5 and Figure 3.6) 

respectively, the TM occurs in two steps.[209,210] The first of which is the stabilisation and orientation 

of the reactants by non-covalent and weak dispersive attractive interactions[149,151,152,209,210] that result 

in the formation of Int1 which lies 12.7 and 22.2 kJ mol-1 below the separated reactants, 

respectively. This corresponds to a Cl⋯H hydrogen bond distance of 2.23 Å and 2.29 Å, 
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respectively and an additional aryl-aryl π-π interaction distance of approximately 3.50 Å for 

Scheme 3.3. The second step is the TM itself via a trigonal bi-pyramidal, four-centred transition 

state, (TS1-2)[209–211] in an uphill, endergonic process[33,209,210] with the transition state structure 

located 215.4 and 214.4 kJ mol-1 above the separated reactants, respectively for Scheme 3.2 and 

Scheme 3.3. This corresponds to the computed incipient 𝑟𝑃𝑑−𝐶 (2.22 and 2.24 Å, respectively) and 

𝑟𝐶𝑙−𝐵 (1.87 and 1.86 Å, respectively) formation, 𝑟𝑃𝑑−𝐶𝑙  (3.13 and 3.12 Å, respectively) and 𝑟𝐵−𝐶 

(2.21 and 2.20 Å, respectively) breakage. The 𝑟𝑃𝑑−𝐶 formed in the process is computed as 2.09 and 

2.08 Å while the 𝑟𝐶𝑙−𝐵 is computed as 1.80 and 1.80 Å, respectively. 

The energy barriers for the key steps of the mechanism presented in Scheme 3.2 and Scheme 3.3 in 

vacuum and solvent phase are summarised in Table 3.4 and Table 3.5, respectively. The 

concomitant energy barrier for the TM step is 228.1 and 236.6 kJ mol-1, respectively (Table 3.4 and 

Table 3.5, respectively) with attendant rate constants of 6.8×10-28 and 2.2×10-29 s-1.  

 

Table 3.4. Gibbs free energy barriers (∆G‡) and Gibbs free energy of reaction (∆Gr) computed with 

𝜔B97XD/6-311++G(2df,2p)[SDD]//PBE/6-31+G(d,p)[SDD] in the absence and presence of 

solvent effects. 

Reaction step 
 ∆𝐆‡ / kJ mol-1   

Gas To THF AN 

TM ((∆Gr,TS1−2) − (∆Gr,Int1)) 228.1 231.1 232.7 233.2 

Dcṉ-1 ((∆Gr,TS3−4) − (∆Gr,Int3)) 176.2 170.2 165.1 162.1 

RE ((∆Gr,TS4−5) − (∆Gr,Int4)) 105.0 111.5 118.0 122.0 

Dcṉ-2 ((∆Gr,TS5−6) − (∆Gr,Int5)) 45.5(38.9) 43.7(37.8) 42.2(36.8) 41.5(36.3) 

∆Gr (Products) / kJ mol-1 203.2(202.0) 214.7(213.3) 223.1(222.0) 226.7(225.8) 
TM stands for Transmetallation; Dcṉ-1 for First de-coordination; RE for Reductive elimination and Dcṉ-2 for Second 

de-coordination. To stands for Toluene (𝜀 = 2.4); THF for Tetrahydrofuran (𝜀 = 7.4) and AN for Acetonitrile (𝜀 =
35.7). The values in brackets are for the nitrogen de-coordination path of Dcṉ-2 step. 

  

The rate constants are calculated from the simplified or conventional Eyring’s activated complex 

(transition state) theory:[89,221–223] 

                                                                           𝑘𝑟 = (
𝑘𝐵𝑇

ℎ
) 𝑒

−(
∆𝐺‡

𝑅𝑇 )                                                           (3.1) 

where 𝑘𝑟 = rate constant, 𝑘𝐵 = Boltzmann’s constant (1.381×10-23 J K-1), ℎ = Planck’s constant 

(6.626×10-34 J s), 𝑅 = gas constant (8.314 J mol-1 K-1), 𝑇 = operational temperature (298.15 K) and 

∆G‡ = Gibbs free energy barrier of the process. It is observed from the barriers and rate constants of 

this step that the difference between the two pathways is not significantly large, both energetically 

(8.5 kJ mol-1) and kinetically (6.6×10-28 s-1), thereby giving confidence in the results. It is found that 

Int3 is formed from Int2 in a barrierless process by the elimination of ClB(OH)2 in which the 
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formed 𝑟𝑃𝑑−𝐶 shorten from 2.09 and 2.08 Å in Int2 (of Scheme 3.2 and Scheme 3.3, respectively) 

to 2.09 and 2.08 Å in Int3 (of Scheme 3.2 and Scheme 3.3, respectively). 

 

Table 3.5. Gibbs free energy barriers (∆G‡) and Gibbs free energy change of reaction (∆Gr) 
computed with 𝜔B97XD/6-311++G(2df,2p)[SDD]//𝜔B97XD/6-31++G(d,p)[SDD] without base in 

the absence and presence of solvent effects. 

Reaction step 
 ∆𝐆‡ / kJ mol-1  

Gas o-X AN 

TM ((∆Gr,TS1−2) − (∆Gr,Int1)) 236.6 241.2 244.5 

Dcṉ-1 ((∆Gr,TS3−4) − (∆Gr,Int3)) 177.9 169.2 158.7 

RE ((∆Gr,TS4−5) − (∆Gr,Int4)) 89.0 95.5 103.3 

Dcṉ-2 ((∆Gr,TS5−6) − (∆Gr,Int5)) 42.7(18.8) 40.6(16.2) 37.9(14.3) 

∆Gr (Products) / kJ mol-1 205.5(206.8) 219.2(220.7) 232.0(234.1) 
TM stands for Transmetallation; Dcṉ-1 for First de-coordination; RE for Reductive elimination and Dcṉ-2 for Second de-

coordination. o-X stands for o-xylene (𝜀 = 2.5) and AN for Acetonitrile (𝜀 = 35.7). The values in brackets are for the 

nitrogen de-coordination path of Dcṉ-2 step. 
 

Int3 is located at 95.9 and 99.0 kJ mol-1 above the separated reactants, respectively for Scheme 3.2 

and Scheme 3.3 (or Figure 3.2 and Figure 3.3). The de-coordination of one of its ancillary (-SMe 

or pyridyl in Int3) arms via TS3-4, located at 272.1 kJ mol-1 or 276.9 kJ mol-1 above the separated 

reactants is found to involve an energy barrier of 176.2 or 177.9 kJ mol-1, respectively. It is 

observed that the energy barrier (∆G‡) for the process is similar for both types of ancillary arms 

(differing only by 1.7 kJ mol-1) and hence, DFT methods. The concomitant 𝑘𝑟 for this step is 

8.4×10-19 (Scheme 3.2) and 4.2×10-19 s-1 (Scheme 3.3). The bonds broken in the process, 𝑟𝑃𝑑−𝑆 

(Scheme 3.2) and 𝑟𝑃𝑑−𝑁 (Scheme 3.3), are computed as 2.28 and 2.10 Å, respectively in Int3 and 

2.58 and 2.40 Å, respectively in the transition structure. After formation, Int4 located 159.6 and 

170.2 kJ mol-1 above the separated reactants proceeds to generate Int5 via a low RE energy barrier 

of 105.0 and 89.0 kJ mol-1 with 𝑘𝑟 of 2.5×10-6 and 1.6×10-3 s-1, respectively. During this process, 

the two 𝑟𝑃𝑑−𝐶 bonds are broken in order to form the 𝑟𝐶−𝐶 bond. First, the 𝑟𝑃𝑑−𝐶 bonds being broken 

are computed as 2.00 Å with the central aryl ring, 1.98 Å with incorporated aryl ring (Int4, Scheme 

3.2). For Scheme 3.3, the first broken bonds are computed as 1.99 Å with the central aryl ring, 1.98 

Å with incorporated aryl ring (Int4). These bonds in the transition structures are computed as 1.98 

Å with the central aryl ring, 2.13 Å with incorporated aryl ring (TS4-5, Scheme 3.2) and 1.99 Å 

with the central aryl ring, 2.11 Å with incorporated aryl ring (TS4-5, Scheme 3.3). On the other 

hand, the 𝑟𝐶−𝐶 distance and bond between the aryl moieties in the mentioned species are computed 

as; 3.17 Å in Int4, 2.16 Å in TS4-5 and 1.52 Å in Int5 (Scheme 3.2) and 2.87 Å in Int4, 2.08 Å in 

TS4-5 and 1.50 Å in Int5 (Scheme 3.3). It can therefore be reckoned that the 𝑟𝑃𝑑−𝐶 bonds are 

lengthened in the process while the 𝑟𝐶−𝐶  distance is shortened until the 𝑟𝑃𝑑−𝐶 bonds are broken as 
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the 𝑟𝐶−𝐶 bond is formed. Int5 undergoes either an N- or S- de-coordinating step to generate the 

active catalyst, Pd(0) and the biphenyl product for both methods. Of the two final de-coordination 

steps, the most energetically and kinetically favourable step is the N- de-coordination step as it has 

the lowest energy barrier (38.9 and 18.8 kJ mol-1, TS5-6b of the respective schemes) and highest 𝑘𝑟 

(9.5×105 and 3.2×109 s-1 for the respective schemes) compared to the S- de-coordination step with 

concomitant energy barrier of 45.5 and 42.7 kJ mol-1 (TS5-6a) for the respective schemes with 𝑘𝑟 

of 6.6×104 and 2.0×105 s-1, respectively. 

The overall reaction leading to the formation of Pd(0), the active catalyst[141–143] is found to be 

uphill, endergonic process. These results indicate that the overall energy, ∆Gr of the process is 

202.6 and 206.2 kJ mol-1 between the separated reactants and the products of the respective 

pathways (Figure 3.2 and Figure 3.3). From the preceding, it is found that the transmetallation step 

is the rate determining (slowest) step[28,33,181,224] on the basis of its highest Gibbs free activation 

energy barrier and smallest rate constant[28,89,181,224] for both mechanisms. The results therefore 

indicate that the TM step is energetically extremely demanding and kinetically less favourable such 

that the reacting species would scarcely react on their own.[199,200] 

This situation is even worsened when a solvent field is incorporated to obtain the solvent corrected 

energies for the obtained mechanisms (Table 3.4 and Table 3.5). The pattern of the elucidated 

pathways however, remains the same as in the gas phase.[217] The energy barrier of TM, RE and the 

Gibbs free energy of reaction (∆Gr) increase with increasing solvent static dielectric constant 

(polarity) while the energy barrier for the Dcṉ-1 and Dcṉ-2 steps decrease with increasing solvent 

static dielectric constant. These trends may be explained by contributions of Lewis acid-base or 

electrostatic and non-electrostatic (e.g., cavitation energy and solute-solvent dispersion) interactions 

between the solvent and solute fields to the free energy of the systems.[89,91,221–223] In this regards, 

the field of the solvents move in to stabilise the electron deficient palladium centres in the Dcṉ-1 

and Dcṉ-2 steps via electron density (charge) transfer to the centre (and molecules in general) and 

hence, decreasing their energy barrier from To to o-X to AN. This effect becomes more pronounced 

as the static dielectric constants of the solvents increase.[222] The energy barriers for the TM, RE and 

∆Gr on the other hand increase with solvent static dielectric constant due to their cavitation 

energies.[89,91] Cavitation here refers to the repulsive interaction between solute and solvent fields 

(charges) due to some solute charges lying outside the solute cavity.[19,20,89–91] The cavitation energy 

is therefore, the energy required for producing a cavity in the solvent to contain a solute.[19,20,90,225] 

The result summarised in Table 3.4 and 3.5 also suggests that irrespective of the method used, the 

Gibbs free activation energy barriers of the steps of the elucidated mechanisms and the overall 

Gibbs free energy of reaction are similar and follow the same trends in the gas and solvent phase. In 
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addition, the results reveal that the process will not be spontaneous since it is uphill on the 

overall.[33] This result is a good indication of the stability of the pincer palladacycle[142] used in the 

reaction and may be attributed to the relatively strong tridentate co-ordination mode of the pincer 

complex that renders it relatively stable to high thermal energy.[142] As a consequence of this 

stability, the decomposition of the complex is controlled for optimum catalysis, which ensures a 

broad scope of reaction. This is required because, if the pincer decomposes too fast, catalysis will 

be hindered due to the formation of catalytically inactive palladium black.[148,152,226] It is observed 

that this energy increases with solvent static dielectric constant (solvent polarity). 

 

3.3.4 Comparison with Mechanism Elucidated with Base 

The results presented in 3.3.3 are compared with the mechanism of Pd(0) formation from 1 

involving bases determined in parallel in the Cox group by Dr G.W. Roffe.[29] Table 3.6 

summarises energy barriers of the key steps involved in the two mechanisms. 

 

Table 3.6. Gibbs free energy barriers (∆G‡) and Gibbs free energy of reaction (∆Gr) computed at 

the 𝜔B97XD/6-311++G(2df,2p)[SDD]//𝜔B97XD/6-31++G(d,p)[SDD] level of theory in the 

absence and presence[29] of a base.  

Reaction step 
∆𝐆‡ / kJ mol-1 without base ∆𝐆‡ / kJ mol-1 with base 

Gas o-X AN Gas o-X AN 

TM ((∆Gr,TS1−2) − (∆Gr,Int1)) 236.6 241.2 244.5 97.8 99.7 102.4 

Dcṉ-1 ((∆Gr,TS3−4) − (∆Gr,Int3)) 177.9 169.2 158.7 174.7 172.2 161.7 

RE ((∆Gr,TS4−5) − (∆Gr,Int4)) 89.0 95.5 103.3 88.9 95.4 103.3 

Dcṉ-2 ((∆Gr,TS5−6) − (∆Gr,Int5)) 18.8 16.2 14.3 17.5 14.3 11.8 

∆Gr (Products) / kJ mol-1 206.8 220.7 234.1 120.0 72.4 54.7 
TM stands for Transmetallation; Dcṉ-1 for First de-coordination; RE for Reductive elimination and Dcṉ-2 for Second de-

coordination. o-X stands for o-xylene (𝜀 = 2.5) and AN for Acetonitrile (𝜀 = 35.7). The numbering of the steps are 

taken from Scheme 3.3 but the steps are the same/similar with those in Scheme 3.4 from TM. 
 

The mechanism with base that was computed by Dr G.W. Roffe in parallel with the present work is 

presented in Scheme 3.4. It is observed that the mechanism in Scheme 3.4 has more steps and 

intermediates prior to transmetallation compared to the base-free mechanism presented in Scheme 

3.3. Scheme 3.4 suggests that the base initially attacks the acid to form the boronate species which 

in turn interacts with the pincer complex to from Int1 in agreement with literature[209–211,217] reports. 

It is observed from Scheme 3.4 that Int1 proceeds to an oxidative addition step (TS1-2), the 

product of which enters the TM step (TS3-4). This is also in agreement with literature[217] reports. In 

these literature reports,[209–211,217] only one or two of oxidative addition, TM and RE are usually 

studied, the complete Pd(0) mechanism has not been elucidated before now. Comparatively, it is 

found that from the TM step to Pd(0) formation, the mechanism in Scheme 3.4 is similar to the 
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Scheme 3.4. Base mechanism of Pd(0) formation formation from novel unsymmetrical pincer 

palladacycle (1)[29,190] computed with 𝜔B97XD/6-31++G(d,p)[SDD] by Roffe[29] in the gas phase. 

 

mechanism presented in Scheme 3.3 with respect to number of steps, intermediates and transition 

states.[11] Comparison between the energetics of Scheme 3.3 and Scheme 3.4 is therefore made on 

the basis of the energy barriers for the TM, Dcṉ-1, RE and Dcṉ-2 steps for the respective schemes. 
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The result presented in Table 3.6 is for the most energetically and kinetically favoured mechanism. 

It is observed that the primary role of the base in the elucidated mechanism is to significantly lower 

the activation energy barrier of the TM step[209,210,217] and overall energy of reaction, attributable to 

the presence of Cl−, to facilitate Pd(0) formation for catalysis. This was especially confirmed by the 

catalytic activity of 1 (Figure 3.1) in the Suzuki-Miyaura cross-coupling reaction experiments in 

the presence of a base.[11] It is also observed from Table 3.6 that when the base is present in the 

reaction, the Dcṉ-1 step becomes the rate determining (slowest) step in the reaction in comparison 

with the TM, RE and Dcṉ-2 steps. This is because the energy barrier of the Dcṉ-1 step calculated as 

174.7 kJ mol-1 has an attendant 𝑘𝑟 of about 1.5×10-18 s-1. The energy barriers of the TM, RE and the 

Dcṉ-2 steps are 97.8, 88.9 and 17.5 kJ mol-1, respectively while their rate constants are 4.6×10-5, 

1.7×10-3 and 5.3×109 s-1, respectively. Furthermore, the energy barriers of the TM, Dcṉ-1, RE and 

Dcṉ-2 steps are observed to maintain the trend as discussed above for the mechanism elucidated 

without base (Scheme 3.3 and Figure 3.6) with increasing solvent dielectric constants. The overall 

energy change of the reaction in the presence of a base is noted to decrease with increasing solvent 

polarity (dielectric constants). This is also attributable to the presence of the halide ion.[217] 

 

3.3.5 Comparison with Model Unsymmetrical PdSCN 

To determine electronic and steric effects on the formation of Pd(0) from pincer complexes, the 

results presented in Table 3.5 for the mechanism in Scheme 3.2 is compared with the mechanism 

computed in parallel with the present work in the Cox group using a simple PdSCN by Dr S. 

Boonseng.[227] His results for the key steps of the Pd(0) formation reaction are summarised in Table 

3.7. The PdSCN complex investigated by Dr S. Boonseng is presented in Figure 3.8. Both 

pathways were computed at the same level of theory. 

 

Table 3.7. Gibbs free energy barriers (∆G‡) and Gibbs free energy change of reaction (∆Gr) 
computed at the 𝜔B97XD/6-311++G(2df,2p)[SDD]//PBE/6-31+G(d,p)[SDD] level of theory 

without base[227] 

Reaction step 
∆𝐆‡ / kJ mol-1 

Gas To THF AN 

TM ((∆Gr,TS1−2) − (∆Gr,Int1)) 204.0 210.1 214.5 216.3 

RE ((∆Gr,TS4−5) − (∆Gr,Int4)) 114.7 123.0 131.1 135.8 

Dcṉ-2 ((∆Gr,TS5−6) − (∆Gr,Int5)) 43.4(17.9) 41.8(17.4) 40.7(16.7) 40.2(16.3) 

∆Gr (Products) / kJ mol-1 181.0 194.2 204.9 210.0 
TM stands for Transmetallation; RE for Reductive elimination and Dcṉ-2 for Second de-coordination. To stands for 

Toluene (𝜀 = 2.4); THF for Tetrahydrofuran (𝜀 = 7.4) and AN for Acetonitrile (𝜀 = 35.7). The values in brackets 

are for the nitrogen de-coordination path of Dcṉ-2 step. 
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It is observed that the Dcṉ-1 step is absent in the mechanism[227] summarised in Table 3.7 and that 

transmetallation yields an intermediate with a de-coordinated side-arm directly and so does not need 

the Dcṉ-1 step. It is also noted that for the system in Figure 3.8, (6) there are two pathways leading 

to Pd(0) formation from the TM step: 

1. when TM yields an -NMe2 de-coordinated intermediate and 

2. when it generates an -SMe de-coordinated intermediate. 

 

6 

Figure 3. 8. The The optimised minimum energy structure of the model PdSCN investigated by Dr 

S. Boonseng[227] for Pd(0) formation. 

 

The unsymmetrical pincer complex, 1 investigated in this thesis gives only one pathway as 

presented in Scheme 3.2. This is likely due to a difference in the electronic and steric effects in the 

complexes investigated. With respect to the electronic effects, 1 is a push-pull system[104,228] while 

the PdSCN (6) in Figure 3.8 is not. In terms of steric effects, 6 is less sterically hindered while 1 

much more sterically hindered.[152] 

In terms of the energetic and concomitant kinetics of the two similar pathways emanating from 

pincer 1 and 6, it is observed that the energy barrier for TM in the mechanism involving pincer 1 

(Figure 3.1 and Figure 3.2) is greater than that of pincer 6 by 24.1 kJ mol-1. The energy barrier for 

RE in the mechanism involving pincer 1 (Figure 3.1 and Figure 3.2) is less than that of pincer 6 by 

9.7 kJ mol-1. This result is expected because as steric effects increase, facile formation of Pd(0) for 

catalysis is less favoured.[152] In addition, complexes possessing electron withdrawing group(s) are 

much more labile to the RE of C-C bonds than those bearing electron donating groups.[229–231] It 

should be noted also that TM is favoured by less sterically hindered electron donating groups in 

cross-coupling reactions.[232,233] More so, Ariafard and Yates showed that RE is more favourable for 
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systems with sterically demanding, weakly basic, π-accepting ligands[234] such as the pyridyl group. 

This is because they reduce electron density at the metal centre thereby rendering them electron 

poor.[192] The preceding therefore suggests that the TM involving the pincer 1 (Figure 3.1 and 

Figure 3.2) is less kinetically favoured compared to TM involving pincer 6 (Figure 3.8). 

Furthermore, the RE involving pincer 1 (Figure 3.1 and Figure 3.2) is more kinetically favoured in 

comparison with RE involving pincer 6. The mechanisms of Pd(0) emanating from pincer 1 and 6 

show similar energetic and kinetic behaviours at the Dcṉ-2 step when the -SMe group de-

coordinates but vary significantly when the -NMe2 or pyridyl group de-coordinates. It is observed 

that the energy barrier when the pyridyl group de-coordinates is greater than that arising from the 

de-coordination of the -NMe2 group by ca. 21 kJ mol-1. This may be accounted for by the fact that 

increasing bulkiness and concomitant non-covalent (long-range) interactions contribute additively 

to the binding energy of transition metal systems.[235] Based also on this reasoning, the overall 

Gibbs free energy of the reaction employing pincer 1 (Figure 3.1 and Figure 3.2) is greater than 

that of pincer 6 not minding which arm de-coordinates in the Dcṉ-2 step by ca. 22 kJ mol-1. The 

trend of these energies in solvent field is the same for both pathways as discussed earlier for 

Scheme 3.2 above. 

On the overall, the mechanism employing the less sterically hindered pincer 6 with electron 

donating (-NMe2) group would be favoured over that employing pincer 1 (Figure 3.2) with a 

sterically hindered electron withdrawing side-arm. 

 

3.4 Conclusions 

A rational model base-free mechanism of the active catalyst, Pd(0) formation for the Suzuki cross-

coupling reactions have been elucidated using two DFT methodologies. The elucidated mechanisms 

involve four main steps namely; transmetallation, two de-coordination steps and a reductive 

elimination step. The reductive elimination step lies between the de-coordination steps after the 

transmetallation step, with the transmetallation step as the rate-determining step. The result of the 

calculations indicates that the reaction of interest is an uphill, endergonic (non-spontaneous) process 

that will in fact, scarcely occur without a base. Nevertheless, the results suggest good thermal 

stability of the studied novel pincer palladacycle. This stability is a good index for its use in 

catalysis. This is because, if it decomposes too readily, catalysis will be hindered by the formation 

of the catalytically inactive palladium black.[142,148,152,226] Furthermore, the two functionals used and 

hence elucidated pathways have similar energetic profiles and follow the same general patterns in 

gas and solvent phase even though they differ with respect to the first de-coordination step and 
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product of RE. Comparison of the elucidated base-free mechanism of Pd(0) formation with the 

mechanism of Pd(0) formation elucidated with base shows that: 

1. More steps are involved prior to transmetallation when the base is employed in the reaction 

of pincers with phenylboronic acid, 

2. The primary role of the base in the process is to significantly lower the activation energy 

barrier of transmetallation[209,210] and overall reaction energy in order to facilitate[217] the 

formation of Pd(0), the active catalyst and 

3. The first de-coordination step rather than TM or RE becomes the rate determining step. 

Comparison of the elucidated base-free mechanisms of Pd(0) formation at the PBE/6-

31+G(d,p)[SDD] level of theory employing two different PdSCN pincers; one with a pyridyl and 

the other with -NMe2 side arm bearing the N donor atom beside -SMe with S donor atom, indicates 

that: 

1. The pincer with the -NMe2 side-arm is energetically and kinetically favoured over the 

pincer with the pyridyl side-arm in the formation of Pd(0) and 

2. Sterically less demanding, electron donating ligands favour transmetallation while sterically 

demanding, weakly basic, π-accepting ligands favour reductive elimination. 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

4 Method determination for calculation of sulfur 

clusters and their reactivity with hydrogen sulfide 
 

This chapter describes the determination of an appropriate computational methodology for the 

calculation of the geometry, vibrational frequencies and energies of sulfur clusters (Sn) and the 

species involved in their reaction with hydrogen sulfide (H2S). The optimum method for computing 

the geometry and vibrational frequencies of the species is 𝜔B97XD/6-311++G(2df,2p) while the 

suitable method for calculating the energies of the species of interest is CCSD(T)/aug-cc-pVTZ. 

These methods are determined by comparison of computed geometries (HS2H, S2), bond 

dissociation energies (HS2H) and vibrational frequencies (S2) and singlet-triplet energy splitting for 

S and S2 using different computational methods with experiment. The reliability of these single-

reference methods is tested by the 𝒯1 Diagnostic of singlet, doublet and triplet state sulfur species. 

4.1 Introduction 

Obtaining accurate, cost effective and computationally applicable method(s) for electronic structure 

calculations has been the primary objective of computational chemistry for decades.[236,237] Some 

computational method combinations are known to reproduce experimental geometries or bond 

dissociation energies, but often not both.[236,238,239] Also, the singlet-triplet energy splitting for 

chemical species has remained a challenging property to calculate accurately for many 

computational methods.[19,240] Nevertheless, the combination of the augmented correlation-

consistent type of basis sets (aug-cc-pVxZ, x = D, T, Q, 5 or 6) with the coupled cluster singles, 

doubles and perturbative triples method (CCSD(T)) is usually adopted as the gold standard of 

quantum chemistry for the computation of the thermochemical properties of chemical 

species.[236,241–243] This is because it often gives results within 1 kcal mol-1 of the exact energy (the 

chemical accuracy) of a system whereas the accuracy of most computational methods, especially 

DFT methods, is limited to at best 2 to 3 kcal mol-1.[244–246] However, other theoretical studies in the 
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literature[243,247–250] assert that the standard Pople-type of basis set in combination with DFT methods 

often reproduce experimentally determined geometries and energies at cheaper computational costs. 

It is worthy of note that every chemical species has its peculiarities hence no practical universal 

computational method exists for electronic structure calculations. One general factor that is key in 

obtaining accurate results from a computational study is the quality of basis set combined with a 

chosen method for calculation.[19,20,35,99–102] In this regard, it is believed that higher-order 

polarisation (angular momentum) functions are required for a better description of molecular 

geometries and properties.[20,35,99–101,251] Furthermore, it is asserted that diffuse functions are also 

required in basis sets of choice in a computational calculation for a more accurate and balanced 

description of long-range interactions, relative energies between structures and vertical transition 

energies associated with a chemical species.[20,35,99–101,252]  

The electronic structure and properties of sulfur and sulfur containing species has been widely 

studied using different computational methodologies for many different reasons over the years. 

However, little or no information exists in the literature for a deliberate basis set validation and 

method evaluation in reproducing the molecular geometries and properties of sulfur clusters. 

Nevertheless, a significant number of existing literature reports on other chemical species provide 

useful benchmarking studies, comparing different computational chemistry methods with 

experiment. 

In 1995, Rossi and Truhlar investigated the scaling-all-correlation (SAC) method: 

                                                                      𝐸SAC = 𝐸𝐻𝐹 +
𝐸𝑐 − 𝐸𝐻𝐹

ℱ
                                                        (4.1) 

with different ab initio methods in combination with correlation-consistent and Pople-type of basis 

sets.[247] This method estimates the internuclear distance dependence of the full correlation energy 

of a system on the basis of ab initio calculations. The authors described the numerator of the 

fraction in eq. (4.1) as an estimate of the correlation energy of a system by a single-reference 

method and ℱ as an assumed factor that is independent of the geometry of the system. The authors 

found that the Pople-type basis set, 6-31G** outperformed the correlation-consistent type (cc-

pVDZ) of basis sets in computing the scale factors that gave a quantitative estimate of how well a 

particular level of theory was correlation balanced. Later the same year, Bauschlicher and Partridge 

compared the accuracy of the correlation-consistent type of basis sets with the Pople-type of basis 

sets for the calculation of the atomisation energies of many different chemical species using the 

G2(B3LYP/MP2/CC) level of theory.[248] The authors asserted that the correlation-consistent type of 

basis sets do not have the same type of balance where a simple additive higher-order correction can 

be used to dramatically reduce the error in the atomisation energy of a variety of molecules. 
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Goddard and co-workers investigated the dependencies of basis sets and functionals in DFT to 

establish an optimal method combination for the computation of atomisation energies and reaction 

enthalpies for a set of 44 molecules using gradient-corrected DFT methods in 1997.[253] The authors 

asserted that a similar behaviour was shown by 6-31G(d,p), 6-311G(d,p), cc-pVDZ and cc-pVTZ in 

calculating the atomisation energies and reaction enthalpies of the molecules. They went on to state 

that the most accurate predictions were obtained using the cc-pVTZ basis set. They then concluded 

that there was significant variation in the energies depending on functional and basis set 

combination. Gregory and Jenks employed different computational methods and basis set 

combinations to study the relative energies of vicinal disulfoxides and other sulfinyl radical dimers 

in 2003.[254] The authors asserted that within the limitations of the theoretical model chosen, the 6-

311+G(3df,2p) basis set gave results that were very comparable to the extrapolated aug-cc-pVxZ 

limit. They further stated that the greatest effect among the Pople-type basis sets is that an increase 

in the number of d-polarisation functions stabilises the sulfoxides relative to the sulfenic esters. 

They went on to note that the addition of diffuse functions and an f function to the heavy atoms 

continued this trend but less dramatically. Su et al., in 2004 compared the energetics of large water 

clusters computed with the 6-31G**, 6-311++G** and aug-cc-pVTZ basis sets in combination with 

the X3LYP functional.[249] The authors showed that it was possible to use the functional in 

combination with smaller basis sets while preserving the accuracy in contrast to ab initio methods 

that require large basis sets. Pablo in 2005,[250] investigated the basis set requirements for sulfur 

compounds (SX where X = first or second row atom; SO2 and SO3) in DFT, comparing between 

correlation-consistent, polarisation-consistent and Pople-type basis sets in combination with 

B3LYP. The author asserted that the latter type of basis set gave very good geometries and 

atomisation energies and provided the best cost-results benefits considering that they have much 

fewer basis functions. They stated that the results computed at the 6-311+G(3df,2p) basis set were 

nearly of the aug-cc-pV(T+d) and aug-pc-2 quality. Klein and Zottola compared the ability of DFT 

and ab initio methods in combination with the aug-cc-pVxZ (x = D, T, Q) basis sets to reproduce 

the experimental spectroscopic bond lengths of some metal and non metal hydrides against their 

combination with the 6-311++G(2d,p) in 2006.[243] The authors found that the aug-cc-pVxZ (x = D, 

T, Q) basis sets combined with MP2 or CCSD performed less well than the DFT methods combined 

with the 6-311++G(2d,p) basis set. They then asserted that results produced by the MPW1PW91/6-

311++G(2d,p) level of theory was only rivalled or bettered by combination with aug-cc-pVxZ (x = 

T, Q) at much reduced computational cost. Lastly, Jacquemin and Adamo investigated the basis set 

and functional effects on excited state properties of three bicyclic chromogens as working examples 

in 2012 using four Pople-type basis sets in combination with six DFT functionals.[252] The authors 
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asserted that the diffuse functions were necessary to obtain correct vertical transition energies. They 

also stated that the choice of functional impacted the energies but that difference in the vibrational 

energies between ground and excited states were almost functional and basis set independent. 

 

4.1.1 Aim of Study 

The aim of this work is to establish an optimum method and basis set combination for the accuracy 

and speed of computing the electronic structure and properties of sulfur clusters and hydrogen 

polysulfanes. This will be achieved by: 

1. Basis set validation to obtain an appropriate basis set to adopt in the study. 

2. Method evaluation and 𝒯1 Diagnostic test to determine the multi-configurational/reference 

character of species of interest. 

3. Complete active space self-consistent field (CASSCF)[38] study of the singlet and triplet 

spin Sn (n = 1, 2) species for further evaluation of method. 

 

4.2 Computational details 

All calculations were performed using Gaussian 09.[24] Initially, the DFT method, 𝜔B97XD[80] (used 

in Chapter 3 of this thesis) and CCSD(T)[44] method, together with a number of Pople[99] and 

Dunning correlation-consistent[100,116,255] basis sets, were employed to test the quality of the 

methodologies in reproducing the experimental geometry and bond dissociation energies of 

disulfane (HS2H). This is because the molecule is the simplest compound that displays many factors 

important for the structure of polysulfur compounds.[256] In doing this, the neutral species in reaction 

(4.1) and (4.2) were fully optimised at the two levels of theory above to locate their energy 

minimum:[36] 

        HS2H (1A) → 2HS (2Π)                                      (4.1) 

                           HS2H (1A) → HS2 (2A”) + H (2A1g)                                   (4.2) 

i.e., singlet spin state species undergoing bond dissociation to produce doublet spin state species. 

Frequency calculations at 298.15 K and 1.0 atm were performed on all the optimised stationary 

points in this Chapter at the method of optimisation to characterise their nature and obtain the 

thermal and ZPE corrections to their equilibrium energies.[19,36,37] The absence of imaginary 

frequencies implies an energy minimum and the presence of a single imaginary frequency implies a 

first-order saddle point.[19,36,37] The DFT vibrational frequencies are uniformly scaled by a factor of 

0.950[257] while unscaled ZPEs and CCSD(T) frequencies are used throughout. The 𝒯1 Diagnostic of 
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Lee and Taylor[3,53,54] was performed on the minimum points of the respective species in reaction 

(4.1) and reaction (4.2) optimised at 𝜔B97XD and CCSD(T) using the CCSD(T)/aug-cc-pVQZ 

level of theory to determine the electron correlation character of the species. The 𝒯1 Diagnostic was 

also calculated for the 𝜔B97XD optimised minimum points of cis- and trans-HS3H and HS4H. The 

geometries of the species in reaction (4.1) and reaction (4.2) were then re-optimised and 

characterised via frequency calculations using the DFT functionals; TPSS, CAM-B3LYP and M11, 

in combination with some basis sets to compare their performance with 𝜔B97XD. In all the 

preliminary calculations, six (6) shared processors on a high performance computer (HPC) cluster 

were employed and %mem = 2GB was adopted for CCSD(T) computations. The performance of 

the optimum method on singlet and triplet spin state structures of the diatomic sulfur, Sn (n = 2) was 

determined. 𝒯1 Diagnostic was also calculated for the optimised singlet and triplet minimum 

stationary point of Sn (n = 2) using CCSD(T)/aug-cc-pVQZ. 

Finally, the singlet and triplet spin Sn (n = 1, 2) species were investigated at the CASSCF[38] level of 

theory using the 6-31G(d) basis set. SPE calculations were performed on atomic sulfur (S) while for 

diatomic sulfur, the optimised geometry of the species at the 𝜔B97XD/6-311++(2df,2p) level of 

theory was used as the starting structure for geometry optimisation, SPE and frequency calculation 

with the CASSCF method. CASSCF frequencies are used un-scaled. The canonical orbitals of the 

species adopted in the CASSCF study from which the active spaces, CAS(n,m: n = number of 

active electrons and m = number of active orbitals) were selected were generated from single-point 

calculations at the HF level of theory in combination with the STO-3G basis set using the pop=full 

keyword. Electron occupancies of the chosen orbitals obtained by examining the diagonal elements 

of the final symbolic one-electron density matrix were used to check the suitability of the active 

orbitals for a good description of the species. When the value of the occupancy is zero, the orbital is 

empty; occupancy of one means the orbital was singly occupied while occupancy of two implies a 

doubly occupied orbital. The composition of the final wavefunction of the systems was evaluated 

by examining the eigenvectors of the CI matrix. 

 

4.3 Results and Discussion 

4.3.1 Validation using HS2H (Geometry and Dissociation Energy) 

4.3.1.1 Basis Set Comparison using 𝝎B97XD and CCSD(T) 

The geometric parameters of HS2H (1A) computed at different basis set combinations with 

𝜔B97XD and CCSD(T) were compared with the experimental geometric parameters of the 

species:[258,259] bond lengths, r(S-H) = 1.342 (2) Å and r(S-S) = 2.056 (1) Å, bond angle, θ(SSH) = 
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97.9 (5) ° and torsion angle, (HSSH) = 90.3 (2) °. For all the methods considered, the computed 

r(S-H), θ(SSH) and (HSSH) are found to fall within the experimental error margins, respectively. 

To corroborate this, for instance, for the bond distances (r(S-S) and r(S-H)), the mean signed error 

(MSE) and mean unsigned error (MUE) analysis[10] for the bond distances is presented in Figure 

4.1. Also included in Figure 4.1 is the CPU time taken for frequency calculation for each 

methodology. Frequency calculation time is used instead of geometry optimisation time, as the 

latter is dependent on the initial guess geometry. 

 

Figure 4.1. Comparison of the MSE and MUE analysis of the computed r(S-S) and r(S-H) of HS2H 

and the CPU time in (in bracket) taken from frequency calculation on the moiety using different 

basis set combinations with 𝜔B97XD and CCSD(T). Geometry optimisation and frequency 

calculations were performed at each methodology, respectively. 

 

MSE is the average deviation of calculation (calc.) from experiment (expt.), eq. (4.2): 

                                                     MSE =
1

𝑁
∑(𝑟𝑖𝑗(𝑐𝑎𝑙𝑐. ) − 𝑟𝑖𝑗(𝑒𝑥𝑝𝑡. ))

𝑁

𝑖,𝑗=1

                                             (4.2) 

while MUE is the absolute deviation from experiment, eq. (4.3): 
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                                                    MUE =
1

𝑁
∑ |𝑟𝑖𝑗(𝑐𝑎𝑙𝑐. ) − 𝑟𝑖𝑗(𝑒𝑥𝑝𝑡. )|

𝑁

𝑖,𝑗=1

                                              (4.3) 

where rij is the bond distance and N is the number of atoms in the molecule (including hydrogen). A 

careful inspection of Figure 4.1 reveals that all the methodologies, except the CCSD(T)/cc-pVDZ 

and CCSD(T)/aug-cc-pVDZ levels of theory, reproduce the experimental geometry of HS2H with 

MSE and MUE’s of the bonded distances within 0.02 Å. The result further suggests that 𝜔B97XD 

is computationally cheaper than the CCSD(T) method for all combinations. The accuracy of 

geometry optimisation and speed of frequency calculation at the 𝜔B97XD/6-311++G(2df,2p) and 

𝜔B97XD/6-311++G(3df,3p) levels of theory is found to be more desirable in comparison to the 

other combinations. This result agrees with that of Klein and Zottola[243] who compared some Pople 

and Dunning-types of basis sets to assert that the Pople-type of basis sets outperformed the 

Dunning-type of basis sets in reproducing the experimental bond lengths of some group 1A metals 

and second row hydrides. Also in agreement with the results of these authors, it is found that all the 

methods and basis sets adopted herein uniformly give reasonable results in reproducing the 

experimentally determined bond angles and torsion angles for the studied moiety. 

A comparison of the calculated bond dissociation energies (D0) resulting from reaction (4.1) and 

reaction (4.2) with the experimentally determined D0 of the species is summarised in Table 4.1.  

 

Table 4.1. Comparison of bond dissociation energies (D0(S-S) & D0(S-H) in kJ mol-1) of HS2H 

computed at some of the methodologies in Figure 4.1 with experiment. Also included is the CPU 

time in seconds taken for frequency calculations. ΔD0 = D0(expt.) - D0(calc.). 

Method D0(S-S) D0(S-H) ΔD0(S-S) ΔD0(S-H) CPU Time 

Experiment[260] 276.1 ± 8.4 292.9 ± 6.3 0.0 0.0 - 

𝜔B97XD/6-31G(d) 245.8 295.0 21.9 4.2 32 

𝜔B97XD/6-31+G(d,p) 242.4 303.8 25.3 -4.6 38 

𝜔B97XD/6-311++G(d,p) 239.8 302.8 27.9 -3.6 46 

𝜔B97XD/6-311++G(2df,2p) 264.8 301.4 2.9 -2.2 93 

𝜔B97XD/6-311++G(2df,2pd) 264.8 302.3 2.9 -3.1 372 

𝜔B97XD/6-311++G(3df,3p) 265.4 301.0 2.3 -1.8 114 

𝜔B97XD/6-311++G(3df,3pd) 265.5 301.7 2.2 -2.5 486 

𝜔B97XD/aug-cc-pVQZ 263.9 301.7 3.8 -2.5 2362 

𝜔B97XD/aug-cc-pV5Z 267.2 301.5 0.5 -2.3 35995 

CCSD(T)/6-311++G(2df,2p) 249.7 298.4 18.0 0.8 21807 

CCSD(T)/6-311++G(2df,2pd) 250.0 305.7 17.7 -6.5 35728 

CCSD(T)/aug-cc-pVTZ 249.6 306.0 18.1 -6.8 67592 

CCSD(T)/aug-cc-pVQZ 261.8 308.0 5.9 -8.8 566010 

CCSD(T)/aug-cc-pV5Z 268.6 308.5 -0.9 -9.3 6154085 
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Figure 4.1 and Table 4.1 reveal that 𝜔B97XD provides both accurate geometries and balanced 

description of D0 when combined with at least 6-311++G(2df,2p) basis set while the largest basis 

sets are required for the CCSD(T) calculation. The best description of D0 for both (S-S) and (S-H) 

bonds of HS2H is found at 𝜔B97XD/aug-cc-pV5Z as it was in good agreement with experiment; 

just 0.5 or 2.3 kJ mol-1 outside the respective experimental error margins of D0 for (S-S) or (S-H). 

4.3.1.2 Density Functionals Comparison using Optimum Basis Sets 

Figure 4.2 presents the comparison of the MSE and MUE analysis of the computed r(S-S) of HS2H 

and the CPU time taken to perform frequency calculation on the moiety using different density 

functionals in combination with the 6-31++G(d,p), 6-311++G(2df,2p) and 6-311++G(3df,3p). 

These basis sets were found to give good geometries at cheap computational expense in Figure 4.1. 

 

Figure 4.2. Comparison of the MSE and MUE analysis of the computed r(S-S) and r(S-H) of HS2H 

and the CPU time in (in bracket) taken from frequency calculation on the moiety using different 

density functional methodologies. 

 

The result in Figure 4.2 suggests that all the methodologies give good geometry for HS2H as the 

computed bond distances are all within experimental margins. Nevertheless, 𝜔B97XD at the 

𝜔B97XD/6-311++G(2df,2p) and 𝜔B97XD/6-311++G(3df,3p) methods are yet more desirable 

methods for calculating the geometries of the sulfur species of interest and/or their reactions. 
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A comparison of experimental D0 with that computed with the DFT/basis set combinations in 

Figure 4.2 is summarised in Table 4.2.  

 

Table 4.2. Comparison of bond dissociation energies (D0) of HS2H in kJ mol-1 computed at various 

DFT methods with experiment, and the CPU time in seconds taken for frequency calculations. ΔD0 

= D0(expt.) - D0(calc.). 

Method D0(S-S) D0(S-H) ΔD0(S-S) ΔD0(S-H) CPU Time 

Experiment[260] 276.1 ± 8.4 292.9 ± 6.3 0.0 0.0 - 

𝜔B97XD/6-31++G(d,p) 242.6 300.4 25.1 -1.2 35 

𝜔B97XD/6-311++G(2df,2p) 264.8 301.4 2.9 -2.2 93 

𝜔B97XD/6-311++G(3df,3p) 265.4 301.0 2.3 -1.8 114 

TPSS/6-31++G(d,p) 243.8 295.4 23.9 3.8 27 

TPSS/6-311++G(2df,2p) 264.6 296.5 3.1 2.7 72 

TPSS/6-311++G(3df,3p) 265.7 296.6 2.0 2.6 64 

CAM-B3LYP/6-31++G(d,p) 223.8 298.6 43.9 0.6 33 

CAM-B3LYP/6-311++G(2df,2p) 244.4 299.9 23.3 -0.7 78 

CAM-B3LYP/6-311++G(3df,3p) 245.5 299.8 22.2 -0.6 80 

M11/6-31++G(d,p) 242.1 304.0 25.6 -4.8 45 

M11/6-311++G(2df,2p) 264.1 304.3 3.6 -5.1 103 

M11/6-311++G(3df,3p) 265.6 303.6 2.1 -4.4 84 

 

The results in Table 4.2 indicate that all the DFT methodologies except CAM-B3LYP performs 

fairly well and in a similar manner considering at least, the DFT/6-311++G(2df,2p) level of theory. 

Taking into account the overall accuracy and computational speed so far, 𝜔B97XD/aug-cc-

pV5Z//𝜔B97XD/6-311++G(2df,2p) method is likely the desirable methodology (for SPE 

calculation//geometry optimisation and frequency calculation, respectively). Nevertheless, the other 

DFT/(basis set) combinations are also good. In addition, the dispersion term in 𝜔B97XD may be 

important in describing other aspects of sulfur chemistry of interest in this thesis like the reactions 

of sulfur species with H2S in which non-covalent interactions may be involved. 

 

4.3.2 Method Evaluation using S and S2 

4.3.2.1 Performance of the Optimum Methodology Determined in 4.3.1 for Geometry of S2 

The triplet ground state and singlet excited state structures of S2 have been experimentally 

determined to have r(S-S) = 1.8892 and 1.8983 Å, respectively.[261] Their vibrational frequencies 

have also been experimentally determined as 726 and 703 cm-1, respectively.[261] S2 belongs to the 

D∞h point group. At the 𝜔B97XD/6-311++G(2df,2p) level of theory, r(S-S) = 1.89 Å was computed 

for both the triplet ground state and singlet excited state. Similarly, the computed vibrational 
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frequencies of the species at this level of theory are 715 and 713 cm-1 for the triplet and singlet state 

S2, respectively. The result suggests a good agreement between the present theoretical methodology 

and experiment. 

4.3.2.2 CASSCF Study of Sn (n = 1, 2): Geometry and Energy Splitting 

The expected electronic configuration for triplet spin state of atomic and diatomic sulfur[30,32,33,262] 

is: S - [Ne]3s23p4 and S2 - [core]4σg
24σu

*25σg
2{2πu

22πu
2}{2πg

*12πg
*1} with 4s0 and 5σu

*06σg
06σu

*0 as 

the immediate virtual orbitals for the species, respectively. The valence orbitals from the generated 

canonical orbitals of both species are presented in Figure 4.3. 

 

                  (a)                 (b) 

Figure 4.3. Valence canonical orbitals for: (a) atomic and (b) diatomic sulfur, based on expected 

electronic configuration. The iso-value for representative orbitals is 0.02. Dotted line above and 

below the presented orbitals represent virtual and core orbitals, respectively. 

 

It is worth noting that S can adopt any of the degenerate valence configurations: 3s23px
23py

13pz
1, 

3s23px
13py

23pz
1 or 3s23px

13py
13pz

2. 

The computed electronic configuration (or Hartree-Fock determinants) of singlet and triplet state S 

and S2 are presented in Figure 4.4. 

y x 
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Figure 4.4. Computed valence electronic configuration of singlet and triplet S and S2 using the HF 

method with a minimal basis set. The order of the orbitals is taken from the output of the code. 

 

The orbitals in Figure 4.3 or Figure 4.4 correspond to the generated canonical orbitals: 6 to 10 for 

S and 11 to 19 for S2. The active space in all cases, CAS(n,m), is chosen from orbitals 6 to 10 for S 

and 13 to 18 for S2. In the notation, CAS(n,m), n denotes the number of active electrons while m 

represents the number of active orbitals. For S, CAS(4,3), CAS(4,4), CAS(6,4) and CAS(6,5) were 

considered.  For S2, CAS(4,4), CAS(8,6), and CAS(12,8) were considered. 

Table 4.3 presents a comparison of the 𝜔B97XD/6-311++G(2df,2p) and CAS(n,m)/6-31G(d) 

optimised geometry and computed vibrational frequencies of singlet and triplet S2 with experiment. 

 

Table 4.3. Equilibrium bond length, r(S-S) / Å and vibrational frequency, ωe / cm-1 of singlet (1Δg) 

and triplet (3Ʃg) S2 computed at 𝜔B97XD/6-311++G(2df,2p) and CAS(n,m)/6-31G(d) compared to 

experiment[261] (Expt.). 

Method re(S-S) 3Ʃg re(S-S) 1Δg ωe (
3Ʃg) ωe (

1Δg) 

Expt. 1.8892 1.8983 726 703 

𝜔B97XD 1.89 1.89 715 713 

CAS(4,4) 1.88 1.88 829 819 

CAS(8,6) 1.95 1.96 677 640 

CAS(12,8) 1.94 1.96 720 632 

 

The results still suggest that the DFT method is better at reproducing the experiment geometry and 

frequencies. Nevertheless, the vibrational frequency of S2 (3Ʃg) computed at the CAS(12,8)/6-

S (3P) 

3px,y 

3s 

3pz 

4s 

UHF/STO-3G 

3pz 

3px,y 

4s 

α β 

3s 

S (1D) 

3pz,y,x 

3s 

4s 

RHF/STO-3G 

S2 (
1Δg) S2 (

3Σg) 

UHF/STO-3G 

2πu 

4σu* 

5σg 

2πg* 

5σu* 

2πu 

4σu* 

5σg 

2πg* 

5σu* 

α β 

4σg 4σg 

2πg(3px,y)* 

4σu* 

5σg 

5σu* 

4σg 

2πu(3px,y) 

RHF/STO-3G 



83 
 

 

31G(d) level is comparable with that computed at the DFT method in relation to their accuracy in 

reproducing its experimental value. 

A summary of the singlet-triplet enthalpy, ∆HST and Gibbs free energy, ∆GST splitting for S and S2 

using single-reference and CAS(n,m)/6-31G(d) methods is presented in Table 4.4.  

 

Table 4.4. Comparison of computed singlet-triplet energy splitting (∆HST and ∆GST) of S and S2 

with the experiment; all CAS(n,m) employ the 6-31G(d) basis set. 

Species Method ∆𝐇𝐒𝐓 / kJ mol-1 ∆𝐆𝐒𝐓 / kJ mol-1 

S 𝜔B97XD/6-311++G(2df,2p) 158.6 161.3 

 𝜔B97XD/aug-cc-pV5Z 158.7 161.4 

 CCSD(T)/aug-cc-pVTZ 128.2 131.0 

 CCSD(T)/aug-cc-pV5Z 125.1 127.8 

 CAS(4,3) 161.7 164.5 

 CAS(4,4) 103.1 105.8 

 CAS(6,4) 164.2 166.9 

 CAS(6,5) 183.0 185.7 

 Experiment[263] 110.5 

    

S2 𝜔B97XD/6-311++G(2df,2p) 93.4 96.1 

 𝜔B97XD/aug-cc-pV5Z 93.3 96.0 

 CCSD(T)/aug-cc-pVTZ 74.1 76.8 

 CCSD(T)/aug-cc-pV5Z 72.1 74.8 

 CAS(8,6) 57.8 (58.0) 60.2 (60.7) 

 Experiment[261,264] 56.2 ± 9.6 

     SPE, CAS(n,m)/6-31G(d)//𝜔B97XD/6-311++G(2df,2p), singlet-triplet energy splitting of S2 are given in bracket. 
 

The result in Table 4.4 suggests that the CASSCF (CAS(4,4) for S and CAS(8,6) for S2) method is 

the most accurate method for computing the singlet-triplet energy splitting of sulfur compounds. 

Nevertheless, CCSD(T) combined with at least the aug-cc-pVTZ basis set may also be employed 

for SPE calculation of Sn or its containing species of interest since its computed, ∆HST and ∆GST for 

S2 is only 8 and 11 kJ mol-1 above experimental margins. 

The CSFs with contributing weights (w ≥ 1.0) of the configuration interaction coefficient (c) to the 

SPE total wavefunction of singlet and triplet S and S2 at CAS(4,4) and CAS(8,6), respectively are 

presented in Figure 4.5. 
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Figure 4.5. CSFs from the computed SPE wavefunctions of singlet and triplet S and S2 using the 

CAS(4,4) and CAS(8,6) (brown regions), respectively: w = c2. 

 

Figure 4.5 suggests that the total wavefunction of singlet S and S2 is made up of more than one 

CSF while that of triplet S and triplet S2 is essentially the HF determinant with (w ≥ 95 %). The 

total wavefunction of singlet S is made up of significant weight contributions (w ≥ 1 %) from CSFs 

corresponding to single and double-electron distributions in addition to its reference HF 

determinant. The CSF (CSF-10) describing the single-electron distribution makes the most 

contribution (w = 49 %) amongst the two higher CSFs to the total wavefunction of S. CSF-35 which 

describes the single-electron distribution in the total wavefunction of triplet S2 on the other hand 

makes negligible contribution (w = 2 %) to its total wavefunction. The contributions of these CSFs 

to the total wavefunction of singlet S provides a possible rationale to the discrepancies between the 

singlet-triplet energy splitting of the species computed using CCSD(T) and CASSCF levels of 
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theory with the DFT method. The total wavefunction of singlet S2 is characterised by higher CSFs 

corresponding to only double-electron distributions in addition to its HF determinant. 

The occupation of CAS(4,4) and CAS(8,6) orbitals in singlet and triplet S and S2, respectively is 

summarised in Table 4.5. 

 

Table 4.5. Occupation of CAS(4,4) and CAS(8,6) in singlet and triplet S and S2 

Species Orbital Occupation  Species Orbital Occupation  

S (3P) 4s 0.008 S2 (3Ʃg) 5σu
* 0.035 

 3pz 1.000  2πg
* 1.034 

 3py 1.000  2πg
* 1.034 

 3px 1.992  5σg 1.965 

    2πu 1.966 

S (1D) 4s 1.000  2πu 1.965 

 3px 0.016    

 3py 1.984 S2 (1Δg) 5σu
* 0.032 

 3pz 1.000  2πg
* 1.056 

    2πg
* 1.056 

    2πu 1.944 

    5σg 1.970 

    2πu 1.944 

 

The data in Table 4.5 reveals that the CASSCF calculations for the respective species indeed 

involve small electronic re-distributions in the course of the computations as discussed above 

especially for singlet S, S2 and triplet S2. 

 

4.3.3 𝓣𝟏 Diagnostic of Species 

The computed 𝒯1 Diagnostic for all the species is less than 0.02 with the exception of HS2, which 

has a value of 0.024. The 𝒯1 Diagnostic of species are presented in Table 4.6. 

 

Table 4.6. 𝒯1 Diagnostic of species computed at the CCSD(T)/aug-cc-pVQZ method. Column a 

uses 𝜔B97XD/6-311++G(2df,2p) stationary points and b CCSD(T)/aug-cc-pVQZ stationary points. 

- Implies not optimised at CCSD(T)/aug-cc-pVQZ. 

Species 

𝒯1 Diagnostic 

a b 

HS2H (1A) 0.0105 0.0115 

H (2A1g) 0.0000 0.0000 

HS (2Π) 0.0116 0.0116 

HS2 (2A”) 0.0236 0.0238 

HS3H (1A) 0.0144 - 

HS4H (1A) 0.0157 - 

S2 (1Δg) 0.0139 (0.0137) - 

S2 (3Ʃg) 0.0184 (0.0179) - 
                                  Values in bracket are computed with CCSD(T)/aug-cc-pVTZ. 
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It has been asserted[57] that the 𝒯1 Diagnostic threshold value for open-shell systems that do not have 

significant multi-reference character should be 0.045 and not 0.02 to avoid misconstrued 

conclusions. It has also been argued that the 𝒯1 Diagnostic for open-shell reactions (systems) 

computed using the closed-shell formalism is likely to be higher than the threshold[56] of the 

formalism developed for open-shell systems. Furthermore, it was suggested[56] that when using the 

Gaussian Code on an open-shell species, the 𝒯1 Diagnostic could have values in excess of their 

upper limits without significant multi-configurational/reference character. 

The CASSCF results (4.3.2.2) suggest that singlet state S and S2 require multi-configurational 

methods, however the 𝒯1 Diagnostic (Table 4.6) suggest that single-reference/determinant methods 

are adequate enough for treating the electronic structure and properties of the species of interest. 

This is because the 𝒯1 Diagnostics are not large enough to suggest significant multi-

configurational/reference character in the species of interest, i.e., all the calculated values are below 

the threshold for both open and closed-shell systems. A similar assertion has been made for S4 (1A1) 

in the literature.[265] Nevertheless, to ensure that the electronic structure of open chain Sn structures 

is properly described, broken symmetry DFT (BS-DFT) calculations will also be performed in 

addition to closed-shell DFT calculations. 

 

4.4 Conclusions 

It is found on the overall from 𝒯1 Diagnostic, comparison with experiment, high-level theoretical 

calculations and previous literature[265–267] that the CCSD(T)/aug-cc-pVTZ//𝜔B97XD/6-

311++G(2df,2p)  method is computationally cheap and reliable for treating the electronic structure, 

vibrational frequencies and singlet-triplet energy splitting of sulfur species of interest. Nevertheless, 

to ensure proper description of the electronic structure of the Sn structures of interest, broken 

symmetry DFT (BS-DFT) calculations will also be performed in addition to closed-shell DFT 

calculations. 

 

 



 

 

 

 

5 The electronic structure and stabilities of open chain 

and cyclic sulfur clusters 
 

This chapter describes the computational investigation of the structure and thermodynamic 

stabilities of open chain and cyclic isomers of the sulfur clusters, Sn (n = 1 - 5 and 8) relative to 

their most stable structures using DFT and CCSD(T). The study reveals that all Sn (n ≤ 4) possess 

open chain ground state structures while Sn (n = 5 and 8) have cyclic ground state structures. It is 

also found that all Sn (n = 3 - 5 and 8) considered have thermally accessible excited cyclic and open 

chain structures with either the same or different spin state. Some open chain structures are 

observed to exist in the singlet and triplet state with similar structures. For S8 and S5, the triplet 

state open chain isomers are found to be more stable than their singlet state analogues. This 

provides a likely explanation for the paramagnetic behaviour of liquid sulfur and the structures 

responsible for the behaviour. The stability studies of open chain structures of Sn suggest that as n 

increases, a switch in stability occurs at S3 and S4: from triplet S2 to singlet S3 and singlet S4 to 

triplet S5 ground state structures, respectively. This suggests the occurrence of two-state reactivity 

in gaseous sulfur and provides an explanation for observations in liquid sulfur. This in turn is likely 

to have implications on the viscosity behaviour of liquid sulfur and processes occurring during 

sulfur recovery in the thermal Claus process. The enthalpies of the triplet state open chains of S8 

relative to its cyclic ground state structure (155 ≤ ∆𝐻298
°  ≤ 166 kJ mol-1) are computed in good 

agreement with the enthalpy of formation of radical sulfur species (154.4 ± 1.7 kJ mol-1) determined 

from temperature dependent electron spin resonance measurements between 153 ≤ T ≤ 700 °C. 

5.1 Introduction 

Sulfur (Sn) is a ubiquitous chemical species. Its indispensability ranges from industry, agriculture 

and biology to the atmosphere.[12,14,268–272] It is widely distributed in nature; occurs in the earth’s 

crust and/or rocks, crude oil, petroleum, coal, natural gas and mineral sulfides.[12,260,269,270,273] In the 
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periodic table, sulfur belongs to the group 16 elements. This group of elements form a range of 

chemical species with variable geometrical structures (allotropes).[274] Sulfur in particular exhibits 

more allotropic forms than any other element in the periodic table, except carbon.[37,269,275] The solid 

cyclic crown-shaped sulfur, S8 is the most stable and abundant allotrope near room 

temperature.[37,272] 

In recent years, the modified thermal Claus process with the overall chemical reaction:[12,269] 

                                      3H2S +
3

2
O2 →

3

8
S8 + 3H2O;       ∆H = −664.0 kJ mol

−1                            (5.1) 

has become the most industrially and commercially attractive way of liquid sulfur production from 

hydrogen sulfide, H2S for desired end uses.[12,14] This process is especially applicable to natural gas, 

coal, petroleum or oil refining which are the main sources of H2S.[12,14] The process suffers a 

daunting H2S elimination problem[13,14,269] due to the equilibrium:[14,276] 

                                                                 H2S + S𝑛 ⇌ H2S𝑛+1    𝑛 ≥ 8                                                      (5.2) 

initially thought to be the reaction:[277,278] 

                                                                   H2S + S𝑛 ⇌ H2S𝑛    𝑛 ≥ 8                                                        (5.3) 

but later modified to the reaction in eq. (5.2). 

Eq. (5.3) was proposed from experimental studies of the viscosity changes of liquid sulfur in the 

absence and presence of H2S, Figure 5.1.[277–279] This initiated a series of experimental and 

theoretical studies[14,276,280–286] aimed at explaining or understanding the reaction in eq. (5.3) and the 

viscosity changes of liquid sulfur. Much of the rapid increase in the viscosity at ca. 160 °C has since 

been attributed to the polymerisation of S8 chains resulting from the rupture of S8 rings.[14,276–278,284] 

However, a number of experimental and theoretical studies[275,287] suggest that liquid and gaseous 

sulfur are made up of an equilibrium between different sises of sulfur species, Sn (n = 2 - 8) which 

may be rings or open chains. Nevertheless, the structure and relative stabilities of singlet and/or 

triplet state open chains of S8 to the most stable singlet state cyclic S8 allotrope are less well known. 

Furthermore, liquid sulfur has been experimentally found to be paramagnetic[275,288] whereas the 

polysulfanes, HSn+1H formed in eq. (5.2) and eq. (5.3) are known from experiments and theoretical 

calculations to be diamagnetic.[258,259,282,289–291] The foregoing reports indicate the complexity and 

anomaly associated with the chemistry of sulfur recovery in the Claus process. As such, the 

question of the relative stability and structure of the lowest energy singlet or triplet open chain Sn 

species in eq. (5.2) to inform the unusual reversibility and influence the quality of recovered 

sulfur[13,14] arises. 
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                       (a)                                                                                   (b) 

Figure 5.1. Change in viscosity of liquid sulfur (Sn) with temperature; (a) in the absence and (b) in 

the presence of hydrogen sulfide. “Reprinted (adapted) with permission from Bacon, Fanelli, J. Am. 

Chem. Soc. 1943, 65, 639–648.[277] Copyright (1943), American Chemical Society.” 

 

Furthermore, the question of whether spin state interplay is involved in the reaction due to different 

spin states of the ground states of the Sn species also becomes important. It is on these grounds that 

this study finds its significance. 

 

5.1.1 Literature Review 

It is worth noting that a significant number of reports: reviews, experimental and theoretical studies 

of sulfur allotropes exist in the literature and will be summarised below. 

Mass spectrophotometric study of equilibrium composition of sulfur vapour was reported in 

1963.[287] The study asserted that measurable amounts of all possible sulfur molecules, Sn (2 ≤ n ≤ 8) 

and detectable amounts of Sn (n = 9 and 10) were present in sulfur vapour between room 

temperature and the boiling point of sulfur (445 °C). The authors further suggested that their high-

temperature experiments were most concordant with the dissociation energy of S2 (4.4 eV ≈ 424.5 

kJ mol-1). The report concluded that the enthalpy change for the reactions; (𝑛
8
)S8 → S𝑛 (n = 2, 3, 4, 

5, 6, 7 and 8) at 400 K was 98.3, 94.1, 85.8, 59.8, 25.9 and 23.8 kJ mol-1, respectively. A few years 

later (1968), the photo-ionisation mass spectrometric study of pure (> 99.999 %) orthorhombic 

sulfur was reported.[292] In this study, the efficiency curves of generated sulfur molecular species 
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were measured. The authors suggested that the ionisation potentials deduced for Sn (n = 2, 3, 5, 6, 7 

and 8) were 903.1 ± 1.9, 934.0 ± 2.9, 829.8 ± 4.8, 868.4 ± 2.9, 836.5 ± 2.9 and 872.2 ± 2.9 kJ mol-1, 

respectively. The authors went on to assert that no evidence of structures other than rings were 

obtained from their studies. No mention of the ionisation potential of S4 was made in this study. The 

authors observed that the ionisation efficiencies of the S4
+ species generated from two different 

sources was identical within experimental margins and so, indicated that the S4 was present but in 

immeasurable amounts. Carleer and Colin published an estimate of the singlet-triplet energy 

splitting for S2 as 56.2 ± 9.6 kJ mol-1 in 1970 from their flash photolysis and flash discharge 

experiments on the moiety.[264] It is mentioned in a 1976 review[293] that the experimental 

dissociation energy of cyclo-octasulfur (cyclic S8) below 150 °C is 133.9 kJ mol-1 but 137.2 kJ mol-1 

at higher temperatures and that the melting point of solid sulfur is 119.6 °C. Furthermore, the 

review asserted that at this temperature (119.6 °C), the composition of the liquid formed was 

unknown but a small concentration of spins was present in the liquid at 150 °C. The review 

concluded that equilibrium composition allowed for the existence of comparable concentrations of 

different sises of sulfur rings and chains in liquid sulfur at boiling temperature and above. In 1977, 

Kao predicted the triplet helical diradical structure of S4 as the most stable S4 structure from his ab 

initio studies of ten different conformational isomers of the species in their singlet and triplet spin 

states.[294] He however noted that the energetic comparison of singlet and triplet state species was 

uncertain because the single determinant theory he employed (Hartree-Fock (HF) method) is known 

to unduly favour triplet states. The cyclic (envelope-like) structure was also predicted from similar 

ab initio studies in the same year to be the most stable structure of S5.[295] 

The photoelectron spectroscopy of the S3 anion together with other sulfur containing anions was 

reported in 1986.[296] The study revealed that the electron affinity of S3 was 201.9 ± 2.4 kJ mol-1. 

The authors further asserted that the S-S bond length in S3 was 1.90 ± 0.05 Å after performing the 

Franck-Condon analysis of their spectra. The report did not mention however, whether the moiety 

was chain-like or cyclic but assumed the bond angle to be ≈ 120 ° suggestive of a bent chain 

structure. Therefore, Rice et al., in the same year investigated the structural isomers of S3 using the 

analytic configuration interaction (CI), self-consistent field (SCF), complete active space self-

consistent field (CASSCF) and multi-reference CI singles and doubles (MRCISD) methods.[297] 

Their SCF and CISD results revealed that the cyclic moiety was more stable than the chain structure 

by 38.9 kJ mol-1 (SCF) and 9.6 kJ mol-1 (CISD), respectively. Their results computed with CASSCF 

and MRCISD in combination with good basis sets on the other hand suggested that the open chain 

S3 moiety was more stable than the cyclic structure by 37.2 kJ mol-1 (CASSCF) and 34.3 kJ mol-1 

(MRCISD), respectively. They concluded that both forms of the species are experimentally 
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accessible. This study somehow closed the gap created by the results of the photoelectron 

spectroscopic studies of S3 anion summarised above. The structure of orthorhombic sulfur (α-S8) 

was refined by Rettig and Trotter using X-ray crystallography in 1987.[298] The authors asserted that 

the ring possessed an average S-S bond length of 2.055 (2) Å, average bond angle of 108.2 (6) ° and 

an average dihedral angle of 98.5 (19) °. 

The first comprehensive theoretical study of the structure and stability of Sn (n = 2 - 13) was 

performed by Hohl et al., in 1988.[274] The study combined a parameter free density functional 

method, molecular dynamics (MD) and simulated annealing techniques to predict the ground state 

geometries of the sulfur species. The study revealed that the ground state structure for: S2 had a 

triplet state; S3 had an open chain (C2v) singlet state but its singlet cyclic (D3h) structure was 15.4 kJ 

mol-1 above the ground state structure and the lowest triplet S3 (C2v) structure was 67.5 to 77.2 kJ 

mol-1 above the ground state structure; S4 had a rectangular (D2h) singlet state with all triplet state 

structures of the species lying well above the D2h structure and that S5 to S13 possessed cyclic singlet 

ground state structures. Although this report was detailed, the ground state structure predicted for S4 

was in contrast to that predicted by Kao[294] thereby leading to a controversy about the ground state 

structure and its spin state for the moiety. The report[274] also did not consider the stability of the 

open chain structures of Sn (n ≥ 5) relative to the cyclic structures. The second detailed theoretical 

study of sulfur clusters was performed in 1990 at the HF, MPn and the quadratic CI technique 

including perturbative triples (QCISD(T)) methods for Sn (n = 2 - 12).[37] The study revealed that d-

type polarisation functions were extremely important in obtaining reliable geometries of Sn species. 

The authors suggested that Sn forms with n ≤ 4 adopted open chain structures while those with n ≥ 5 

preferred cyclic structures. More interestingly, the report suggested that the ground state structure of 

S3 was the singlet C2v structure in agreement with the calculations of Hohl et al.,[274] but was 

inconclusive about the ground state structure of S4 and suggested that the singlet D2h structure of S4 

was not a minimum structure contrary to the report by Hohl et al. Notwithstanding, the study 

computed other forms of S4 as minimum structures in the singlet and triplet state. In addition, 

singlet (Cs) and triplet (C2) state open chain structures were computed in the study to be less stable 

than the cyclic structure of S5, its global minimum, by 41.8 and 69.8 kJ mol-1, respectively. The 

authors however, did not report open chain conformers for Sn (6 ≤ n ≤ 12). 

In 1992, Hassanzadeh and Andrews reported the vibronic absorption spectra of S3 and S4 in solid 

Argon.[299] The authors asserted that S4 showed two distinct electronic absorptions: a broad green 

band centred at 518 nm and a structured red band between 560 and 660 nm. They went on to state 

that the red-absorbing species converted to the green-absorbing one on irradiation with red light and 

that the green absorbing moiety converted to the red-absorbing isomer under green light photolysis. 
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They then assigned the bands to singlet state C2v (open chain, green-absorbing) and Cs (branched 

three membered ring, red-absorbing) structures of S4 on the basis of their CISD calculations. The 

authors further stated that the electronic spectra of S3 showed sharper bands between 350 and 440 

nm. They suggested that the electronic spectrum of S3 was indicative of a singlet state, bent chain 

structure for the moiety. Hunsicker et al., in 1995 reported a density functional, simulated annealing 

and experimental investigation of anions formed from sulfur rings and chains of different sises (Sn, 

1 ≤ n ≤ 9).[300,301] The authors asserted that although ring structures were energetically more stable 

than chain structures, the environment used to generate the larger clusters, n > 7 favoured the chain 

structures. As such, Shimojo et al.,[302] performed an ab initio MD investigation of bond breaking in 

the S8 ring in 1998. The authors asserted that a bond in cyclic S8 is easily broken after an electron is 

excited from the highest occupied molecular orbital (HOMO) of the species to its lowest 

unoccupied molecular orbital (LUMO). The authors argued that bond breaking in cyclic S8 occurred 

to stabilise the anti-bonding states occupied by the excited electron. The vibrational study and 

molecular structure investigation of two S4 isomers in sulfur vapour was reported by Boumedien et 

al., in 1999.[303] The study assigned the green-absorbing (λmax = 530 nm) chain-like S4 moiety to a 

trans (C2h) structure contrary to the assignment by Hassanzadeh and Andrews[299] but assigned the 

red-absorbing (λmax = 560 - 660 nm) isomer to the branched ring structure in agreement with the 

report by Hassanzadeh and Andrews. Shimojo and co-workers again in 2000 published their 

combined DFT and MD simulation of S8 ring rupture in liquid sulfur and subsequent polymerisation 

of the resulting chain species.[304] The authors suggested this time that the chain structures resulting 

from cyclic S8 after electron excitation do not recombine to form cyclic S8 but a long-lived ‘tadpole’ 

structure when electron excitation is stopped. They concluded therefore that photo-induced 

polymerisation occurs in liquid sulfur due to the presence of S8 chains and tadpole structures that 

are close to each other. 

In 2001, Chen et al., reported a DFT (B3LYP) study of the geometric structure and stability of 

neutral sulfur clusters with 3 - 11 sulfur atoms.[305] The authors suggested that in the 68 isomers of 

sulfur clusters for Sn (n = 3 - 11), sulfur atoms could be coordinated one, two and/or three-fold. 

They also asserted that Sn species with three-coordinate sulfur atoms were energetically less stable 

compared to species with one or two-fold coordinated sulfur atoms. They therefore concluded that it 

seemed difficult for sulfur to form cage structures with the involvement of three-fold coordinated 

atoms. Another ab initio study of sulfur clusters, Sn (n = 2 - 12), this time for their structure and 

polarisability was reported in 2001.[306] The study employed the B3LYP and coupled cluster at the 

CCSD(T) level. The authors stated that the binding energy per atom increased with sise of cluster 

and reached the asymptotic limit for a relatively small n value. They also asserted that no defined 
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correlation existed between the polarisability of the species, 〈𝛼𝑛〉, and hardness, η, but that the value 

of the difference, 〈𝛼𝑛〉 − 𝑛〈𝛼1〉, correlated linearly with the atomisation energies of the species. 

They went on to suggest that in sulfur clusters, the polarisability principle does not hold, stating that 

the lone-pair electron polarisability is more diffuse hence more polarisable in cluster than in free 

atoms. They then concluded that pure vibrational effects on the 〈𝛼𝑛〉 were negligible. Also in this 

year, Cioslowski et al., investigated the conformational structures and thermodynamic properties of 

sulfur homocycles at the B3LYP/6-311G* and MP2/6-311G* levels of theory.[307] The authors 

asserted that the S5 ring was confirmed to exist exclusively in a highly fluxional Cs conformation. 

They also suggested that two S6 homocycles were linked via two transition states with the D4d 

structure corresponding to a global energy minimum with the higher energy species possessing a 

C2v symmetry. The authors went on to state that the S7 ring was found to adopt one of the highly 

fluxional Cs conformations that are separated by a substantial energy barrier. They concluded that a 

complete set of S8 conformers consisted of C2v, C2, Cs and possibly a C2h structure in addition to the 

low-energy D4d species that are yet to be uncovered. Steudel and co-workers in 2002[308] adopted ab 

initio calculations at the G3X(MP2) level to examine the structures and energies of isomers of the 

sulfur cluster, S8. The authors asserted that a spiralling chain singlet cluster structure with 8 atoms 

and C2 symmetry was less stable than the crown-shaped structure of S8 (its global minimum) in 

energy by ∆G298
° = 28.3 kJ mol-1 (∆H298

° = 33.3 kJ mol-1). They stated that the less stable structure 

possessed three-coordinate atoms and a rectangular arrangement of four sulfur atoms at the chain-

ends. They went on to suggest that the unusual geometry of the cluster could be rationalised in 

terms of a weak π*-π* bond between two π* orbitals at the chain-ends of the species. A year later, 

Jones and Ballone reported DFT and Monte Carlo studies of the structure and bonding in Sn rings (n 

= 2 - 18) and chains (n = 2 - 10).[309] They asserted that many isomers existed for both types of Sn 

structures (rings and chains). Later this same year, Wong and Steudel reported an ab initio study of 

the structure and spectra of S4 employing the G3X(MP2), CCSD(T) and MRCI/CASSCF levels of 

theory.[310] The authors asserted that the cis-planar (C2v) singlet structure of the species was its 

global minimum while its singlet D2h structure was calculated as a transition state. This was the first 

clear assignment of the global minimum structure for S4. They predicted the stability of various 

singlet state isomers of S4 in the order C2v > C2h > Cs > D2d > D3h. The authors went on to state that 

their calculated electronic absorption spectra at CIS/6-311+G(3df) and vibrational spectra at 

B3LYP/6-31G(2df) indicated that the green-absorbing S4 was its C2v structure in agreement with the 

report of Hassanzadeh and Andrews[299] while the red-absorbing species was the C2h structure of the 

species contrary to the reports by both Hassanzadeh and Andrews[299] and Boumedien et al.[303] Also 

in 2003, Steudel and co-workers in edited books[275,291] presented excellent reviews on solid, liquid 
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and gaseous sulfur species. The authors reiterated that crown-shaped S8 was the most stable 

allotrope of sulfur in solid, liquid and gas phase and that liquid sulfur was paramagnetic. They also 

reiterated that at high temperatures (200 ≤ T ≤ 1000 °C), sulfur vapour was made up of Sn species 

with n = 2 - 10 with some existing as two or more isomers. 

A communication of the first experimental geometry of S3 by means of Fourier transformed 

microwave spectroscopy (FTMS) of a molecular beam was published in 2004.[311] The authors 

asserted that the S-S bond length of the species was 1.917 (1) Å and that its bond angle was 117.34 

(6) °. The structure has a singlet spin state, is bent and has C2v symmetry. This structure is found to 

be in close agreement with the structure of the species that was proposed from photoelectron spectra 

of S3 anion[296] summarised above. The authors of this communication[311] acknowledged the 

important role of previous computational calculations in guiding their observation of the species. 

Later this same year, Wong et al., reported novel isomers of S6 via high-level ab initio molecular 

orbital calculations.[312] The authors asserted that a prism structure of the species essentially made of 

three S2 and connected through a six-center π*-π*-π* interaction was energetically less stable by 

∆G298
° = 41.9 kJ mol-1 (∆H298

° = 52.4 kJ mol-1) than its global minimum (cyclic, chair form). They 

also noted that cyclo-S6 required activation energy of ∆G298 
‡° = 137.8 kJ mol-1 (∆H298 

‡° = 149.7 kJ 

mol-1) for ring opening to occur. They concluded that the prism and singly branched isomers of S6 

were more reactive than its chair form and were potential sources of S2 in chemical reactions 

involving elemental sulfur. The refined singlet structures of S3 and S4 by means of centimeter, 

millimetre and submillimetre FTMS were reported in 2005.[313] In this report, the recommended 

structures of S3 and S4 possess the parameters: S-S bond length, 1.914 (2) Å and bond angle, 117.33 

(5) ° for S3 and S-S bond lengths, 1.898 (5) Å (terminal) and 2.155 (10) Å (central) for S4 while its 

bond angle is 104.2 (2) °. Also in 2005, Francisco et al., published a high-level ab initio study of the 

structure, vibrational spectra and energetics of S3.[314] The authors reported that the S-S bond 

dissociation energy of the moiety was determined to be 254.8 ± 4.2 kJ mol-1. A year later, Francisco 

and co-workers reported yet another ab initio study of S3.[266] The authors calculated the low-lying 

singlet and triplet electronic states of the moiety using the MRCI+Q method. They assigned the 

strong experimentally observed absorption around 395 nm to the 1 1B2 state of the species. They 

also predicted the isomerisation energy of cyclic (D3h) and bent (C2v) singlet state structures of S3 to 

be 18.4 ± 2.1 kJ mol-1. 

Matus et al., studied the electronic structure and energetics of S4 at the CCSD(T) level of theory in 

2007.[265] The authors calculated the geometry of the ground state singlet C2v isomer of the species 

to be in good agreement with its microwave[313] structure. They went on to suggest that the singlet 

D2h isomer of the species was a transition state lying 6.7 kJ mol-1 above the C2v global minimum 
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structure of the moiety and could interchange its long S-S bonds to give the C2v isomer on adjacent 

sides. The authors also stated that S4 had a low-lying triplet state isomer of D2h symmetry that was 

less stable than its C2v singlet structure by 45.2 kJ mol-1. The authors further predicted the bond 

dissociation energy of the species into two triplet state S2 moieties as 95.4 kJ mol-1 and the bond 

energy to form singlet S3 + S (3P) as 267.8 kJ mol-1. Later this same year, Grant et al., reported an 

ab initio (CCSD(T)) study of the energetic properties of S2
𝑥(x = 0, +1, 1).[267] They computed the 

heat of formation of neutral triplet state S2 in the gas phase at 0 K to be 124.7 kJ mol-1 in good 

agreement with its experimental value (128.3 ± 0.3 kJ mol-1) quoted in their report. They also 

calculated the adiabatic ionisation potential (IP) and electron affinity of the species at the same 

temperature to be 904.1 and 162.1 kJ mol-1, respectively. The IP of S2 calculated by these authors 

falls within the limits of the experimentally[292] deduced IP of S2 (903.1 ± 1.9) kJ mol-1. In 2010, 

Maron and co-workers studied the singlet D2h and C2v isomers of S4 using ab initio (MD) and DFT 

methods[251] even though there were a lot of theoretical investigations in the literature on the 

species. They asserted that DFT method combination, BPW91/aug-cc-pVTZ, reproduced the 

relative energy differences computed by Matus et al.,[265] at the CCSD(T)/aug-cc-pVTZ level of 

theory between the isomers. Their findings also predicted the D2h structure of the moiety as a 

transition state rather than a minimum structure. They then stated that the trajectories show that 

symmetric C2v isomers interconvert via the D2h transition structure without producing any three-

dimensional isomers observed with tetraoxygen. Francisco and co-workers performed a kinetic 

study of the S + S2 → S3 reaction by the chaperone mechanism using the CCSD(T)/aug-cc-pVTZ 

method in 2011.[272] The authors proposed that the recombination of sulfur atoms occurred in a 

stepwise manner from elemental sulfur to the most abundant sulfur molecule, S8. They went on to 

suggest that the reaction is possibly a key step in the formation of sulfur aerosols in low-O2 

atmospheres. The authors further noted that the rate constant of the reaction at 298.15 K in Argon 

matrix was determined to be 2.66 × 10-33 cm-6 mol-1 s-1 while its second-order rate constant was 6.47 

× 10-14 cm-3 mol-1 s-1 and its Arrhenius-type rate constant was 6.25 × 10-14 exp[450.15(1 T⁄ −

1 298.15⁄ )] cm-3 mol-1 s-1. In addition, they asserted that the work provided key intermediate 

species for studies of sulfur formation in the modern Venus and Earth atmospheres. Lastly, a 

benchmark ab initio study of the stability of the cuboid singlet (S2)4 supermolecule using different 

levels of theory was reported in 2013.[315] The authors argued that unlike the van der Waals-like 

(O2)4 cluster, (S2)4 was found to be much more chemically bound. The went on to state that their 

best estimate of the decomposition of the cuboid (S2)4 into four triplet S2 moieties was 272 kJ mol-1 

and that the intermolecular distance between the S2 moieties was 2.74 Å. In addition, they asserted 

that the singlet ground state of the species possessed much less multi-configurational (MC) 
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character than its oxygen analogue thereby allowing for reliable treatment of the species around its 

equilibrium geometry at the CCSD(T) level of theory. They concluded however, that further 

MR/MC studies of the species were required to correctly describe its stability as the moiety was 

characterised as a minimum structure at MP2/cc-pVxZ (x = D, T, Q) but a transition state at 

CCSD/aug-cc-pVxZ (x = D, T) level of theory. 

 

5.1.2 Justification of Study 

Although there are a significant number of reports on the structure and stability studies of sulfur 

allotropes (Sn) in the literature, very little mention is made of the stability and structure of the 

excited state isomers of Sn species relative to their ground state structures especially for n ≥ 3. It is 

also important that n at which minimum cyclic Sn clusters begin to form is established. This is 

because experimental structures for open chain n = 2 - 4 previously predicted by theoretical 

calculations are available but theoretical predictions of thermally accessible cyclic S3 and S4 

structures also exist in the literature. Peaks of the S5 cation were observed using mass 

spectroscopy[268] and its neutral structure is predicted to have a cyclic ground state at low-level[37,295] 

and some high-level theory[309] but its experimental structure is yet to be established. All species of 

Sn for at least 6 ≤ n ≤ 8 are known from experiments[268,287,292,298] and theory to have cyclic global 

minimum structures with S8 established as the most stable and abundant form of Sn species in the 

solid, liquid and vapour phase. However, only scanty information is available in the literature on the 

structural variation or similarities of open chain isomers of Sn species in the same or different spin 

states. It is also not clear from the literature available whether a singlet or triplet open chain S8 

species is responsible for the unpaired spins in liquid sulfur above 120 °C giving rise to its 

paramagnetic behaviour at 𝑇 ≥ 153 °C. Nevertheless, it is proposed that open chains of S8 are 

present in liquid sulfur and are responsible for its sudden viscosity change at 159 °C due to their 

self-polymerisation and reaction with other Sn species in the liquid to form polymeric sulfur 

chains.[14,275,277] In addition, industrial sulfur is recovered in liquid form using the thermal Claus 

process and is condensed in the presence of H2S due to the thermodynamic limitations of the 

process.[13,14] Understanding the structural variations or similarities of singlet and triplet states of Sn 

species as well as their stabilities will therefore, go a long way in enhancing the understanding of 

the unusual reactivity of open chain Sn and H2S to form HSn+1H thereby suppressing the viscosity of 

liquid sulfur. 
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5.1.3 Aim of Study 

The aim of the work in this Chapter therefore, is to explore the structure and thermodynamic 

stability of open chain and cyclic Sn isomers using high-level quantum chemistry methodologies. 

The information that will be obtained will be useful in explaining, augmenting the understanding or 

complementing previous observations or predictions on Sn species and the behaviour of liquid 

sulfur. To achieve this aim, the following objectives are outlined: 

1. Determination of the geometries of cyclic and open chain isomers of neutral singlet and 

triplet state sulfur clusters, Sn (n ≤ 5 and 8). 

2. Determination of the thermodynamic stability of the structural isomers relative to their 

global minimum structures and the singlet-triplet energy splitting between key open chain 

Sn structures with the same n. 

3. Determination of the ring opening for structures with cyclic global minimum structures. 

 

5.2 Computational Details 

All the gas phase calculations were performed using the Gaussian 09 package.[24] Geometry 

optimisation of open chain and cyclic neutral singlet and triplet state sulfur clusters Sn (n ≤ 5 and 8) 

were performed at the 𝜔B97XD[80]/6-311++G(2df,2p)[99] level of theory. The nature of the 

stationary points was ascertained by frequency calculations at 298.15 K and 1.0 atm on the 

optimised stationary points using the same level of theory. Minimum points and first-order saddle 

points (transition states) were characterised by no and one imaginary frequencies, respectively.[19,36] 

All frequencies presented here are uniformly scaled by the fundamental scale factor of 0.950.[257,316] 

SPE calculations on the calculated stationary points were then performed at the CCSD(T)[44]/aug-cc-

pVTZ[100,255] level of theory. Topological analysis of the electron density of the pentasulfur ring was 

performed using QTAIM[124–133] as implemented in the Multiwfn package.[203] In  doing this, the 

𝜔B97XD/aug-ccpV5Z level of theory was employed to generate the wavefunction of the species. 

 

5.3 Results and Discussion 

5.3.1 Structures and Energetics of Sn (2 ≤ n ≤ 5 and 8) 

5.3.1.1 Sn (n = 2) 

The gas phase structure, spectroscopic and/or energetic parameters of the sulfur dimer, S2, have 

been studied experimentally[261,264] and theoretically[5,37,266,267,274,309] in the past. The ground state of 

the species is known from experiment to be the 3Σg state[261] just like its O2 analogue. A comparison 

of the calculated structure and vibrational frequency of the ground state and excited singlet state of 
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the dimer with previous calculations and experiment is presented in Table 5.1. The excited singlet 

isomer of the dimer is rarely mentioned in theoretical studies in the literature even though it is 

known from experiments. 

 

Table 5.1. Calculated equilibrium bond length (re) and vibrational frequency (ωe) of triplet and 

singlet state S2 compared to experiment. 

State Method re / Å ωe / cm-1 Ref. 
3Σg HF/3-21G* 1.8680 825 [37] 

 B3LYP/cc-pVDZ 1.9340 702 [306] 

 MD/DFT 1.9400 665 [309] 

 MRCI+Q/aug-cc-pV(5+d)Z 1.8987 720 [266] 

 CCSD(T)/aug-cc-pV5Z 1.8952 729 [267] 

 CCSD(T)/aug-cc-pV(5+d)Z 1.8939 730 [267] 

 𝜔B97XD/6-311++G(2df,2p) 1.89 715 This work 

 Experiment 1.8892 726 [261] 

     
1Δg MRCI+Q/aug-cc-pV(5+d)Z 1.9081 697.0 [266] 

 𝜔B97XD/6-311++G(2df,2p) 1.89 713 This work 

 Experiment 1.8983 703 [261] 

 

The results in Table 5.1 indicate that the adopted method is adequate for the investigation of ground 

and excited states of Sn structures. Although the calculation does not capture the slight increase in 

the bond length of the singlet state S2 structure, there is a reasonably good agreement between the 

results computed using the determined method with experiment and high-level theoretical 

calculations. The excited singlet isomer of the dimer is rarely mentioned in theoretical studies in the 

literature even though it is known from experiments. The results in Table 5.1 further indicate that 

the adopted method is adequate for the investigation of ground and excited states of Sn structures. 

This is because there is very good agreement between the results computed using the method with 

experiment and high-level theoretical calculations. 

Both atomic (S) and diatomic sulfur (S2) were computed to have triplet ground states in agreement 

with experiments.[261,263,264] A summary of the energy difference between their triplet ground and 

singlet excited state is presented in Table 5.2. 

 

Table 5.2. Energy differences (electronic, ΔE, enthalpy, ΔH and Gibbs free energy, ΔG) between 

triplet ground and singlet excited state of atomic and diatomic sulfur computed at the 

CCSD(T)/aug-cc-pVTZ//𝜔B97XD/6-311++G(2df,2p) level of theory. 

Species Δ𝐄 / kJ mol-1 Δ𝐇 / kJ mol-1 Δ𝐆 / kJ mol-1 Expt. / kJ mol-1 

S 128.2 128.2 131.0 110.5[263] 

S2 74.1 74.1 76.8 56.2 ± 9.6[261,264] 
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It is observed that although the energy difference for atomic sulfur differs (≥ 17 kJ mol-1) 

significantly with experiment,[263] it agrees excellently with the ΔH values (127.9, 125.5 and 124.7 

kJ mol-1) computed  at the CCSD(T)/aug-cc-pV(x+d) levels of theory[317] where x = T, Q and 5, 

respectively. The energy difference (ΔH) for diatomic sulfur on the other hand is overestimated by 

at most 11 kJ mol-1 above its experimental[261,264] margins and is also similar with the literature 

values (73.5, 72.4 and 72.0 kJ mol-1)[317] at the same level of theories above. 

5.3.1.2 Sn (n = 3) 

This allotrope of sulfur is calculated to have four minimum geometric structures, presented in 

Figure 5.2. 

 

Figure 5.2. Optimised structural isomers of S3 confirmed as minima: bond lengths are in angstroms 

(Å) and bond angles, enclosed in brackets, are in degrees (°). 2a and 2b are singlet state species 

while 2c and 2d are triplet state S3 moieties. * stands for ∞. 

 

The singlet structure of the allotrope, 2a, is known from experiment[296,311,313] and together with 2b 

have been reported in high-level theoretical studies.[37,266,274,297,305,306,309,314] However, little or no 

mention of 2c and 2d is made in the literature before now. Nevertheless, a non-minimum singlet 

state S3 structure with similar structure to 2d has been reported in literature from theoretical 

calculations for the purpose of comparison and discussion[305] and was also found in the present 

study as a saddle point structure (not shown). 

The vibrational frequencies of the S3 isomers in Figure 5.2 are summarised in Table 5.3. 
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Table 5.3. The vibrational frequencies of the S3 isomers in Figure 5.2. 

Isomer ωe / cm-1 

2a 257 (𝑎1), 597 (𝑎1), 690 (𝑏2) 

2b 449 (𝑏2), 449 (𝑎1), 606 (𝑎1) 

2c 212 (𝑎1), 420 (𝑏2), 600 (𝑎1) 

2d 202 (𝜋𝑢), 419 (𝜎g), 470 (𝜎𝑢), 1199 (𝜋𝑢) 

 

It is found that the computed bond length for 2a agrees with that experimentally estimated (1.90 ± 

0.05 Å)[296] or determined (1.914 ± 0.002 Å).[313] Its bond angle is also in good agreement with its 

experimental[313] value (117.33 ± 0.05 °). Furthermore, the calculated geometries of 2a and 2b agree 

with that computed at the CCSD(T)/aug-cc-pV5Z level of theory (S-S = 1.918 and 2.077 Å and S-

S-S = 117.4 and 60.0 °, respectively) in the literature.[314] The geometry of 2c is found to also agree 

with the structure (S-S = 1.972 Å and S-S-S = 94.3 °) computed at the HF/3-21G* method in the 

literature.[37] No information on 2d has been reported in the literature. The calculated vibrational 

frequencies of 2a are also found to agree with the harmonic frequencies (256 cm-1 (𝑎1), 585 cm-1 

(𝑎1), 681 cm-1 (𝑏1)) calculated[313] at the CCSD(T)/cc-pVTZ level of theory. 

A summary of the energies of the isomers of S3 in Figure 5.2 relative to the energetically most 

stable isomer of the allotrope (2a) is presented in Table 5.4. 

 

Table 5.4. The energies (electronic, ΔE, enthalpy, ΔH and Gibbs free energy, ΔG) of the minimum 

S3 isomers relative to the energies of 2a computed at the CCSD(T)/aug-cc-pVTZ//𝜔B97XD/6-

311++G(2df,2p) level of theory. The electronic energy of 2a is computed as -1193.2044775 a.u. 

Species Spin state* Δ𝐄 / kJ mol-1 Δ𝐇 / kJ mol-1 Δ𝐆 / kJ mol-1 

2a S 0.0 0.0 0.0 

2b S 16.1 15.9 19.1 

2c T 81.2 81.8 77.6 

2d T 237.7 237.4 241.8 

           *S stands for singlet and T for triplet. 

 

The results presented in Table 5.4 indicate that although the singlet open chain 2a structure of S3 is 

the global minimum in agreement with experiment,[311,313] its singlet cyclic 2b and triplet 2c 

conformers may also be thermally accessible. It is observed that the computed ΔG of 2b to 2a 

agrees with previously computed values (18.8, 19.7 and 20.1 kJ mol-1) at the CCSD(T)/aug-cc-

pVxZ (x = T, Q and 5) levels of theory.[314] Furthermore, Raghavachari et al.,[37] computed the 

relative energy (ΔE) of 2c to 2a at the QCISD(T)/6-31G* level of theory as 80.8 kJ mol-1. The 

information presented here is therefore important as the triplet bent (2c) and singlet cyclic (2b) 

structures of S3 are yet to be experimentally established. It is worth noting that the triplet linear (2d) 
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structure of S3 may also be thermally accessed but at greater energetic cost compared to the triplet 

bent (2c) and singlet cyclic (2b) structures of the species. 

5.3.1.3 Sn (n = 4) 

This is the most theoretically studied allotrope of sulfur in the literature. The most comprehensive 

high-level theoretical studies of the structure and stability of S4 in the literature are those of Wong 

and Steudel,[310] Matus et al.,[265]  and Ramírez-Solís et al.[251] The geometric structure of the singlet 

C2v ground state of the species has been experimentally established.[313] The optimised minimum 

geometries of S4 in the present study are presented in Figure 5.3. 

 

Figure 5.3. The optimised structural isomers of S4 confirmed as minima: bond lengths are given in 

angstroms (Å) and bond angles, enclosed in brackets, are given in degrees (°). 3a and 3d-3g are 

singlet state S4 isomers while 3b, 3c, and 3h are triplet state structures of S4. The ordering of the 

structures is based on their stabilities (discussed in Section 5.3.2) 
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The 2S-1S bond length of 3a agrees with experiment (1.898 ± 0.005 Å)[313] while its 1S-4S bond is 

shorter than the experimental value (2.155 ± 0.01 Å)[313] by 0.09 Å. Nevertheless, the latter bond is 

found to agree with the geometry of the structure (2.083 Å) computed at the QCISD/cc-pVTZ level 

of theory.[310] Also, the calculated geometries of other structural isomers of S4 e.g., 3b-3g are found 

to agree very well with their geometries computed at the QCISD/cc-pVTZ level of theory.[310] No 

data on the structure of 3h is found in the previous literature. The calculated vibrational frequencies 

of the S4 structures in Figure 5.3 are summarised in Table 5.5. The calculated vibrational 

frequencies of 3a are found to agree very well with those computed[265] using the CCSD(T)/aug-cc-

pVTZ, CCSD(T)/aug-cc-pV(T+d)Z and the CASSCF/aug-cc-pV(T+d)Z. 

 

Table 5.5. The vibrational frequencies of the S4 isomers in Figure 5.3. 

Isomer ωe / cm-1 

3a 123 (𝑎1), 210 (𝑎2), 328 (𝑏2), 420 (𝑎1), 630 (𝑏2), 663 (𝑎1) 

3b 21 (𝑎2), 118 (𝑎1), 265 (𝑏2), 278 (𝑎1), 628 (𝑏2), 641 (𝑎1) 

3c 24 (𝑎𝑢), 99 (𝑏𝑢), 195 (𝑎g), 434 (𝑎g), 595 (𝑏𝑢), 604 (𝑎g) 

3d 86 (𝑎𝑢), 126 (𝑏𝑢), 237 (𝑎g), 514 (𝑎g), 614 (𝑏𝑢), 639 (𝑎g) 

3e 171 (a), 217 (a), 334 (a), 403 (a), 555 (a), 640 (a) 

3f 195 (a), 294 (a), 443 (a), 443 (a), 468 (a), 520 (a) 

3g 236 (a), 236 (a), 258 (a), 470 (a), 695 (a), 698 (a) 

3h 178 (a), 182 (a), 221 (a), 454 (a), 476 (a), 630 (a) 

 

The optimised structures of the first-order saddle-points of S4 are presented in Figure 5.4. 

 

Figure 5.4. Optimised geometries of the first-order saddle-points of S4: bond lengths are given in 

angstroms (Å) and bond angles, enclosed in brackets, are in degrees (°). 4a and 4c are singlet state 

while 4b is a triplet state species. 

 

4a and 4c are computed to be connected to isomers with similar structures as 3a and 3f (differing 

only in the connection or position of their atoms), respectively on their adjacent sides. 4b on the 

other hand is found to be connected to isomers with similar structures as 3b (differing only in the 

connection of their atoms), respectively on its adjacent sides. Contrary to the present calculations, it 

2.47

1.88

(90.0)

4a (D2h)

2.74

1.88

(90.0)

4b (D2h)

2.12

(90.0)

4c (Cs/D4h)



103 
 

 

is found that 4b was computed as a minimum structure at the CCSD(T)/aug-cc-pV(T+d)Z level of 

theory.[265] The present calculation of the structure of 4b at the CCSD/6-311++G(2df,2p) level of 

theory also optimised as a first-order saddle-point. The geometries of 4a and 4b are found to differ 

by 0.011 to 0.06 Å in comparison to those computed at the CCSD(T)/aug-cc-pV5Z and 

CCSD(T)/aug-cc-pV(Q+d)Z levels of theory.[265] The calculated imaginary frequency modes for 4a, 

4b and 4c are 215i cm-1, 153i cm-1 and 162i cm-1, respectively. The geometries of singlet and triplet 

state D∞h S4 (not presented) are calculated to be second-order saddle-points. 

In the present study, 11 structures (Figure 5.3 and Figure 5.4) of the species have been computed. 

Three of these are transition structures (4a-4c) and eight are minimum structures (3a-3h). The 

structures are ranked on the basis of their nature (minimum or transition state structures) and Gibbs 

free energies. It is found that the singlet C2v structure of the species is the global minimum in 

agreement with experiment.[313] The relative energies of the optimised structures of S4 are 

summarised in Table 5.6. 

 

Table 5.6. The energies (electronic, ΔE, enthalpy, ΔH and Gibbs free energy, ΔG) of S4 structures 

relative to the energy of 3a computed at the CCSD(T)/aug-cc-pVTZ//𝜔B97XD/6-311++G(2df,2p) 

level of theory. The electronic energy of 3a is computed as -1590.9537159 a.u. 

Nature Species Spin state ΔE / kJ mol-1 ΔH / kJ mol-1 ΔG / kJ mol-1 

Min. 

3a S 0.0 0.0 0.0 

3b T 35.2 36.8 26.9 

3c T 42.8 44.4 34.8 

3d S 36.4 37.1 35.0 

3e S 54.7 54.6 53.7 

3f S 56.2 55.6 56.2 

3g S 108.8 108.2 107.8 

3h S 195.6 196.1 190.8 

TS 

4a S 5.4 3.7 9.3 

4b T 30.6 30.1 29.2 

4c S 85.9 83.8 87.0 
 Min. and TS denotes minimum and transition state, respectively while S stands for singlet and T for triplet. 

 

It is found that a triplet C2v structure of S4 (3b) is the next lowest-energy minimum structure of the 

species considering its ∆G298
°  values relative to the singlet C2v isomer (3a) of the species. The triplet 

(3c) and singlet (3d) C2h isomers of the allotrope are found to lie just above the triplet C2v (3b) 

isomer of the species by 8 kJ mol-1. This indicates that these isomers of S4 may thermally be 

accessed given that all the structures lie within ∆G298
°  ≈ 40 kJ mol-1 of the ground state. The cyclic 

isomers of the species (3e and 3f) may also be accessed with similar but higher energetic costs 
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(∆G298
°  ≈ 55 kJ mol-1) compared to 3b-3d (∆G298

°  ≈ 30 kJ mol-1) from 3a. Likewise, 3g and 3h are 

high-energetic (∆G298
°  > 100 kJ mol-1) isomers of the species relative to 3a. The transition structure, 

4a, is determined to be just ∆G298
°  = 9.3 kJ mol-1 (or ∆E298

° = 5.4 kJ mol-1) above 3a in perfect 

agreement with previous calculations at the CCSD(T)/aug-cc-pVTZ level of theory.[265,310] This 

implies that the energy barrier to inter-conversion between two iso-structural isomers similar in 

structure with 3a is not significant. This is also true for inter-conversion between two iso-structural 

isomers of 3b via a low-energy transition structure for which the PES is essentially flat, of ∆G298
°‡

 = 

2.3 kJ mol-1. The relative energies discussed above for 3b-3g are also found to agree with previous 

calculations at the CCSD(T)/aug-cc-pVTZ//QCISD/cc-pVTZ level of theory.[310] 3h however, has 

not been reported in the literature before now. The relative energy (∆E298
° ) of 4c on the other hand 

was computed previously at the QCISD(T)/6-31G* level of theory to be  96 kJ mol-1. The present 

calculations differ from this energy for 4c with a smaller basis set by 10 kJ mol-1. Inter-conversion 

between two iso-structural isomers similar in structure to 3f via this transition state structure will 

therefore, encounter an energy barrier of ∆G298
°‡

 = 30.8 kJ mol-1. 

5.3.1.4 Sn (n = 5) 

The optimised minimum structures of S5 are presented in Figure 5.5. 

The experimental structure of this sulfur allotrope is yet to be published. Nevertheless, it is 

predicted from the experimental observations of Berkowitz et al.,[287,292] that the cyclic conformer of 

the species is the most stable isomer of the species. It is found that 5a is a non-planar ring structure 

with Cs symmetry. The bond angles of the ring are: 1S-2S-3S = 99.2 °, 5S-1S-2S = 101.5 ° and 2S-

3S-4S = 91.6 ° while its dihedral angles are 5S-1S-2S-3S = 39.3 °, 2S-1S-5S-4S = 0.0 ° and 2S-3S-

4S-5S = 63.0 °. 
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Figure 5.5. The confirmed minimum energy geometries of S5: bond lengths are given in angstroms 

(Å). 5a and 5c-5f are singlet state whereas 5b and 5g are triplet state isomers. 
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In addition, the molecular graph of 5a with the values of the 𝜌(𝒓) and ∇2𝜌(𝒓) in a.u. at the bcp’s 

and rcp is: 

 

The computed values of the 𝜌(𝒓) and ∇2𝜌(𝒓) at the bcp’s (orange dots) and rcp (yellow dot) for this 

structure (5a) suggest that the electron density in the system is concentrated at the bcp’s and is 

slightly delocalised over the ring. Furthermore, the bonds (solid green lines) in the system are all of 

covalent nature (all have ∇2𝜌(𝒓) < 0)[134,138] and their strength and hence, bond length vary with the 

values of the 𝜌(𝒓); the higher the value of 𝜌(𝒓), the shorter the bond length. 

A summary of the vibrational frequencies of the isomers of S5 in Figure 5.5 is presented in Table 

5.7 while the bond and dihedral angles of 5b-5g are summarised in Table A.1.2. 

 

Table 5.7. Calculated vibrational frequencies of the S5 isomers in Figure 5.5. 

Isomer ωe / cm-1 

5a 62 (𝑎′′), 231 (𝑎′), 283 (𝑎′), 285 (𝑎′′), 387 (𝑎′′), 390 (𝑎′), 435 (𝑎′), 505 (𝑎′), 511 (𝑎′) 
5b 27 (a), 50 (b), 125 (a), 223 (b), 229 (a), 399 (b), 428 (a), 574 (b), 578 (a) 

5c 51 (𝑎′′), 120 (𝑎′), 163 (𝑎′′), 180 (𝑎′), 280 (𝑎′), 452 (𝑎′), 490 (𝑎′), 585 (𝑎′), 611 (𝑎′) 
5d 87 (a), 97 (b), 186 (a), 229 (b), 313 (a), 367 (b), 495 (a), 623 (b), 653 (a) 

5e 102 (a), 130 (a), 239 (a), 278 (a), 372 (a), 376 (a), 461 (a), 514 (a), 650 (a) 

5f 45 (𝑎′′), 94 (𝑎′), 185 (𝑎′′), 289 (𝑎′), 290 (𝑎′′), 339 (𝑎′), 448 (𝑎′), 553 (𝑎′), 588 (𝑎′) 
5g 15 (𝑎′′), 113 (𝑎′), 151 (𝑎′′), 208 (𝑎′), 261 (𝑎′), 285 (𝑎′), 477 (𝑎′′), 562 (𝑎′), 631 (𝑎′) 

 

The optimised structures of the first-order saddle-points of S5 are presented in Figure 5.6. These 

transition structures are found to possess similar imaginary vibrational frequencies namely: 66i cm-1 

and 64i cm-1, respectively. 
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Figure 5.6. Optimised geometries of the first-order saddle-points of S5: bond lengths are given in 

angstroms (Å). 6a is a singlet transition state while 6b is a triplet transition state of S5. 

 

The structure of the most stable isomer of S5 has not been experimentally established. The global 

minimum structure of the species is computed to be its cyclic Cs structure (5a, Figure 5.5) with 

singlet ground state in agreement with previous theoretical[37,305,309] studies. The computed energies 

of the structures of S5 (Figure 5.5 and Figure 5.6) relative to its energetically most stable 

conformer (5a) are presented in Table 5.8. 

 

Table 5.8. The energies (electronic, ΔE, enthalpy, ΔH and Gibbs free energy, ΔG) of the structures 

of S5 relative to the energy of its most stable structure, 5a computed at the CCSD(T)/aug-cc-

pVTZ//𝜔B97XD/6-311++G(2df,2p) level of theory. 

Nature Species Spin state ΔE / kJ mol-1 ΔH / kJ mol-1 ΔG / kJ mol-1 

Min. 

5a S 0.0 0.0 0.0 

5b T 96.2 98.4 87.5 

5c S 114.7 115.9 111.2 

5d S 125.3 126.1 124.9 

5e S 131.3 131.5 131.0 

5f S 184.5 185.8 181.1 

5g T 189.2 191.2 179.8 

TS 
6a S 1.0 -1.2 6.0 

6b T 223.9 222.4 222.6 
           Min. and TS denotes minimum and transition state, respectively while S stands for singlet and T for triplet. 

 

The structures of S5 (Figure 5.5 and Figure 5.6) are also ranked on the basis of their nature 

(minimum or transition structures) and Gibbs free energies in Table 5.8. The iso-energetic 

structures, 5b and 5c, are computed as the next lowest-energy (∆G298
°  ≈ 86 kJ mol-1 less stable than 

5a) minimum structures of S5. All other minimum geometries of S5 (Table 5.9, Figure 5.5) are 

significantly (∆G298
°  > 100 kJ mol-1) less stable than its global minimum structure, 5a. It is observed 

that the triplet open chain S5 species (5b) is thermodynamically more stable than its singlet state 
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counterpart (5d) by ∆G298
°  = 23.7 kJ mol-1. In addition, it is found that the transition structure, 6a, is 

essentially iso-energetic with 5a (∆G298
°  = 6.0 kJ mol-1 or ∆E298

° = 1.0 kJ mol-1 above 5a). All other 

structures (first or higher-order saddle-points) of S5 are calculated to lie within 113 ≤ ∆G298
°  ≤ 464 

kJ mol-1 above 5a. 

It is clear from the structural and energetic information discussed so far that S5 is the first allotrope 

of sulfur to form a global minimum cyclic structure, even though the possibility of thermally 

accessing a local minimum cyclic structure exists for S3 and S4. 

5.3.1.5 Sn (n = 8) 

This is asserted to be the most common and abundant allotrope of sulfur[12,268–270,275,298] in the solid, 

liquid and gaseous state. The allotrope is established from experiments[275,298] to have a singlet 

ground state and a cyclic D4d (crown-shaped) structure. Nevertheless, other cyclic structures of the 

species have been suggested to exist from theoretical studies.[307] Also, it is believed that the 

reactivity of the open chain species formed by this sulfur allotrope are responsible for the sudden 

change in the viscosity of liquid sulfur at 159 °C.[275,277] Furthermore, the open chains of this species 

are implicated in the paramagnetism of liquid sulfur but the structure of the species giving rise to 

this phenomenon still unknown. Consequently, the structures of some cyclic and open chain 

isomers of neutral S8 in the singlet and triplet state have been computed. 

The optimised singlet state minimum cyclic structures of S8 are presented in Figure 5.7. 

 

Figure 5.7. Optimised minimum energy geometries of the cyclic isomers of S8: bond lengths are 

given in angstroms (Å). All these cyclic structures are singlet state species. 
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No triplet ground state minimum cyclic structure was found in the present study. These structures of 

S8 have also been calculated previously at the B3LYP/6-31G(2df) level of theory.[308] However, the 

average experimental S-S bond length (2.055 ± 0.002 Å)[298] of 7a is found to be reproduced 

excellently (2.06 Å) in the present study compared to previous calculation of the parameter (2.08 

Å).[308] Also, an MP2/6-311G* calculation of the structure yielded an S-S bond length of 2.075 

Å.[307] The optimised bond angle θ(SSS) = 107.8 ° and dihedral angle τ(SSSS) = 99.0 °) of 7a are 

also within ± 0.5 ° of experiment (108.2 ± 0.6 and 98.5 ± 0.2 °, respectively).[298] It is found that the 

computed bond lengths of 7b-7e are generally within 0.013 to 0.129 Å of the values computed with 

B3LYP/6-31G(2df) for similar structures of S8 reported.[308] 

Seven minimum open chain isomers of S8 were computed. Four of the isomers are triplet spin 

species and three are singlet spin species. The optimised geometrical structures of open chain 

minima of S8 are presented in Figure 5.8. 

A singlet state open chain structure similar to triplet state isomer 8b in Figure 5.8 has been 

reported[308] in the literature from B3LYP/6-31G(2df) calculations but was not found in the present 

investigation. The singlet state structure 8e was found instead. Also, an open chain isomer of S8 

similar in structure to 8c and 8f was reported as the immediate product of S8 ring rupture from a 

combined DFT and MD simulation of the process after 263 fs.[304] However, neither the spin state 

nor the structural parameters of the species were specified. As may be seen in Figure 5.8, the 

structures of 8b and 8e, 8c and 8f and 8d and 8g are similar, even though each structure in each pair 

of similar structures possess different spin states. 

 



110 
 

 

 

Figure 5.8. Optimised minimum energy geometries of the triplet (8a-8d) and singlet (8e-8g) state 

open chain isomers of S8: bond lengths are given in angstroms (Å). 
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Figure 5.9. Optimised geometries of the triplet state first-order saddle-points of S8. Bond lengths 

are given in angstroms (Å). 

 

The imaginary vibrational frequencies of 9a and 9b are calculated as 326i cm-1 and 192i cm-1, 

respectively. The linear (D∞h) structures of S8 (not shown) were calculated to be fifth and sixth-

order saddle-points with triplet and singlet spin states, respectively. 

The structure of the most stable isomer of S8 is widely believed[305,308,309] and has been 

experimentally established[298] as the singlet ground state cyclic structure, 7a (Figure 5.7). This 

structure is also found to be the global minimum structure of the species in the present calculations. 

The computed energies of S8 structures (Figure 5.7, Figure 5.8 and Figure 5.9) relative to 7a are 

presented in Table 5.9. The structures are also ranked in a similar fashion as with structures of S4 

and S5. It is observed that 7b and 7c are found to possess a similar energy (∆G298
°  = 33 ± 1 kJ mol-1) 

above 7a even though their geometries are not similar (see Figure 5.7). Wong et al.,[308] asserted 

that the next local minimum cyclic structures of S8, 7b and 7c were ∆G298
°  = 28 and 30 kJ mol-1, 

respectively above 7a at the G3X (MP2) level of theory. The present result is in good agreement 

with these literature values. 7d and 7e (Table 5.10, Figure 5.7) on the other hand, are ∆G298
°  > 60.0 

kJ mol-1 less stable than 7a in contrast to the stability of the species in the same report,[308] wherein 

their stabilities relative to 7a is underestimated by 23.6 and 17.5 kJ mol-1, respectively in 

comparison to the present work. This is likely due to the varying degree of electron correlation 

accounted for in the methodologies adopted in the literature[308] computations. The present results 

suggest that the cyclic conformers of S8 may be thermally accessible in sulfur vapour or sulfur melts 

as it is widely believed.[275,307] The minimum triplet open chain isomers of S8 (8a-8d, Figure 5.8) 

are found to be essentially iso-energetically less stable (∆G298
°  = 139 ± 3 kJ mol-1) than 7a while the 

minimum singlet open chain isomers of S8 (8e-8g, Figure 5.8) are at least ∆G298
°  = 155 kJ mol-1 

above 7a. It is found that 8e and 8f have similar energies (only differing by ∆G298
°  = 8 kJ mol-1). 
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Table 5.9. The energies (electronic, ΔE, enthalpy, ΔH and Gibbs free energy, ΔG) of the structures 

of S8 relative to the energy of its most stable structure, 7a computed at the CCSD(T)/aug-cc-

pVTZ//𝜔B97XD/6-311++G(2df,2p) level of theory. 

Nature Species Spin state ΔE / kJ mol-1 ΔH / kJ mol-1 ΔG / kJ mol-1 

Min. 

7a S 0.0 0.0 0.0 

7b S 35.5 35.7 32.1 

7c S 39.0 39.4 34.0 

7d S 69.1 69.4 64.7 

7e S 105.5 105.8 100.0 

8a T 152.9 155.9 136.3 

8b T 155.6 158.9 136.8 

8c T 158.6 162.2 136.8 

8d T 162.6 166.1 142.2 

8e S 157.3 157.4 154.8 

8f S 169.2 170.1 163.1 

8g S 205.1 206.6 200.6 

TS 
9a T 228.6 230.4 216.1 

9b T 273.0 274.4 265.3 
Min. and TS denotes minimum and transition state, respectively while S stands for singlet and T for triplet. 7a to 7e are 

cyclic structures, 8a to 8g are open chain structures. 

 

This suggests that both structures of the species may be accessible from 7a given ∆G298
°  = 158 ± 5 

kJ mol-1 via a possible spin-flip mechanism. A comparison of the stabilities of the open chain 

isomers of S8 gives the ∆GST,298
°  = 18.0 kJ mol-1 between 8b and 8e and ∆GST,298

°  = 26.3 kJ mol-1 

between 8c and 8f. A similar structure to 8c and 8f was reported as the immediate products of S8 

ring rupture from DFT-MD simulation of the process after 263 fs.[304] The information in Table 

5.10 therefore suggests that 7a requires, on average, at least ∆G298
°  = 158 ± 5 kJ mol-1 to rupture to 

an open chain structure on the singlet PES from which the more stable triplet analogue may be 

accessed via a favourable spin-flip. These observations may be true as it is widely believed that 

sulfur melts at 120 °C[277,279] leading to the formation of other ringed structures or open chain 

species and polymeric structures between 120 and 159 °C.[277–279,284,291] 9a and 9b are found to lie at 

∆G298
°  > 200 kJ mol-1 above 7a. 

 

5.3.2 Ring Opening Reaction of Sn (n = 5 and 8): Implications for Liquid Sulfur 

The computed singlet PES for the ring opening reaction of S5 and S8 are presented in Figure 5.10 

and 5.11, respectively. 
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Figure 5.10. The singlet PES of the ring opening reaction of S5. The free energies are obtained from 

geometry optimisation at 𝜔B97XD/6-311++G(2df,2p) and SPE calculation (in brackets) at the 

CCSD(T)/aug-cc-pVTZ//𝜔B97XD/6-311++G(2df,2p) level of theory. 

 

It is found that for both structures, S5 and S8, the ring opens to one of their computed open chain 

conformers (5d for S5 and 8f for S8) in the preceding sections on the singlet PES. 

The result in Figure 5.10 indicates that the ring opening reaction of the cyclic structure of S5 (5a) is 

an endergonic (uphill, ∆G298
°  = 110 kJ mol-1) process with an activation energy barrier of ∆G298

°  = 

137 kJ mol-1. This suggests that the ring will likely persist even above the melting point of sulfur 

(120 °C). Nevertheless, once the structure is ruptured, the product will undergo a possible spin flip 

process to the more stable triplet open chain structure, 5b or 5c. Spin flip processes are asserted to 

be achievable through thermally activated delayed fluorescence especially for systems with small 

singlet-triplet energy gaps or via spin-orbital coupling.[318] In the same vein, spin flip is asserted to 

be favoured by heating that results from increasing temperature.[319] It is found that the singlet-

triplet energy gap between 5d and 5b or 5c is ∆GST,298
° ≤ 25 kJ mol-1. It is therefore reckoned that a 

spin flip may be possible after ring rupture of 5a. 
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Figure 5.11. The singlet PES of the ring opening reaction of S8. The free energies are obtained from 

geometry optimisation at 𝜔B97XD/6-311++G(2df,2p) and SPE calculation (in brackets) at the 

CCSD(T)/aug-cc-pVTZ//𝜔B97XD/6-311++G(2df,2p) level of theory. 

 

The PES for the S8 ring opening process is observed to be essentially flat between the ring opening 

transition state and product of the process (Figure 5.11), which lie ∆G298
°  < 8 kJ mol-1 apart at both 

levels of theory. Nevertheless, the initial ring opening barrier > 200 (or 160) kJ mol-1. This suggests 

that the ring structure will persist even at high energies and most likely provides explanation to the 

assertions that it is the most stable structure in the gaseous, liquid and solid states.[275,291,320,321] As 

discussed above, the triplet open chain isomers of both allotropes are more stable relative to their 

global minimum structures compared to their singlet open chain analogues and by extension, the 

ring opening transition states on this PES. As sulfur melts at 120 °C[277,279] producing ringed and/or 

open chain structures which undergo polymerisation between 120 and 159°C,[277–279,284,291] the 
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results of these calculations indicate further that the thermal accessibility of both singlet and triplet 

open chain structures of S5 and S8 (Figure 5.5 and 5.8) is possible. Furthermore, it is found that the 

computed relative enthalpy for the open chain S8 triplet species (8c) from singlet cyclic S8 (7a), is 

∆H298
°  = 162 kJ mol-1 while that of the open chain S8 singlet species (8f) is ∆H298

°  = 170 kJ mol-1 

(Table 5.9). This suggests greater stability for the triplet species (8c) compared to its singlet state 

analogue (8f) even though their enthalpies from 7a are similar, differing only by 8 kJ mol-1. As 

such, 8c and 8f may both be thermally accessible from 7a given ∆H298
°  = 165 ± 5 kJ mol-1. The 

computed enthalpy for the triplet species, 8c is found to agree better with the enthalpy of formation 

of radical sulfur species (154.4 ± 1.7 kJ mol-1)[322] determined from temperature dependent ESR 

measurements between 153 ≤ T ≤ 700 °C. Experiments such as this are reported to be spin state 

dependent.[240] The ring opening reaction together with the structure and stability analysis above 

provides a possible explanation for the paramagnetic behaviour and structural information of the 

species responsible for this behaviour in liquid sulfur. This is because the product of ring rupture, 

especially for S8, can exist in both triplet (8c) and singlet (8f) spin states (Figure 5.8). The ring 

opening process as computed for S8 correlates very well with the DFT-MD simulation[302,304] of the 

process. The authors however suggested that it was unlikely for the ring structure to reconstruct 

from the resulting open chain structure in the process. They went on to state that the formation of a 

tadpole species similar in structure to 8e (Figure 5.8) was more likely from the chain structure[304] 

contrary to the present finding. No information is available in the literature about the ring opening 

reaction of S5 for comparative purposes. 

The structures of the transition states for ring rupture of S5 and S8 are presented in Figure 5.12 and 

the imaginary vibrational frequencies of the species are 103i cm-1 and 109i cm-1, respectively. 

 

Figure 5.12. Optimised geometries of the singlet state first-order saddle-points of S5 and S8 ring 

rupture: bond lengths are given in angstroms (Å). 
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It is observed that the structure of the ring opening transition state for S8 is similar to the product of 

the process for the species. The only significant difference between the structures is the bond 

distance between the atoms undergoing bond breaking to form the open chain S8 species. This 

distance (1S-8S) is longer in the open chain S8 produced in the process by 0.6 Å compared to the 

same bond distance in the transition structure. The transition structure for the ring opening process 

of S5 is not planar while the product of the process is a planar, Cs structure. Nevertheless, their bond 

distances, except for 1S-5S, are similar (see structure of ring opening transition state, Figure 5.12 

and 5d, Figure 5.5). 

 

5.3.3 Stability of Low-Energy Singlet and Triplet Open Chains of Sn (n ≤ 5 and 8) 

The stability of low-energy, minimum singlet and triplet state open chain species of Sn (n ≤ 5 and 8) 

is presented in Figure 5.13. 

 

Figure 5.13. The stability of low-energy singlet and triplet state open chain species of Sn (n ≤ 5 and 

8): singlet-triplet energy splitting of the species. Values in brackets are experimentally determined 

for S[263] and S2.[261,264] 

 

It is observed that except for S3 and S4, all other open chain forms of sulfur considered have a triplet 

ground state. It is known from experiments[275,287,291,292] that liquid and sulfur vapour comprises 

sulfur complexes, Sn (n ≤ 10) which may possess cyclic or open chain structures. It has also been 
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shown from experiments that all Sn (n ≤ 4) possess open chain[261,263,313] structures while S8 is 

determined to possess a cyclic ground state structure.[298] Information on the stability and structure 

of the low-energy open chain structures of these species is important, as it is crucial to the 

understanding of the viscosity behaviour of liquid sulfur, sulfur recovery and reactions in the 

thermal Claus process. This is because the species are widely believed to be present in liquid sulfur 

and hence, influencing the paramagnetic and viscosity behaviour[275,277,279] of the liquid and its 

reactivity with hydrogen sulfide to suppress both behaviours.[14,275,277–279] The results of the present 

computations show in agreement with experiments that Sn (n ≤ 4) possess open chain structures 

while S8 has a cyclic ground state structure. The results also suggest that excited state open chain 

forms of the species considered are thermally accessible relative to their ground state structures 

(cyclic or open chain). The calculations also reveal S5 to have a cyclic ground state structure with 

thermally accessible excited state open chain structures. More so, the result in Figure 5.13 indicates 

that the interplay of spin states (curve crossing or “two-state reactivity”[323]) is likely to be a key 

factor in the viscosity behaviour of (reactivity in) liquid sulfur. 

 

5.3.3.1 Broken Symmetry Calclculations on Singlet Open Chains of Sn (n ≤ 5 and 8) 

To further describe the geometries and energetics of the singlet state open chain structures in 

Figure 5.13, broken symmetry (BS) calculations were performed using the UCCSD(T)/aug-cc-

pVTZ//U𝜔B97XD/6-311++G(2df,2p) on all the singlet state structures, S𝑛 (𝑛 ≤ 5 and 8) in Figure 

5.13. The singlet state structure for S4 and S5 (similar to 3a (Figure 5.3) and 5c (Figure 5.5)) 

optimised using the BS-DFT methodology is presented in Figure 5.14. 

 

Figure 5.14. The BS-DFT optimised geometry of singlet state S4 and S5 confirmed as minima: bond 

lengths are given in angstroms (Å) and bond angles, enclosed in brackets, are given in degrees (°). 
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Figure 5.14 suggests that the inner r(S-S) for S4 computed using the BS-DFT is found to be 0.11 Å 

longer than the same bond computed using the restricted DFT (RDFT-(𝜔B97XD/6-

311++G(2df,2p))) approach (3a, Figure 5.3). This provides better agreement with its experimental 

value[313] (inner r(S-S) = 2.155 ± 0.01 Å) than that for 3a, Figure 5.3. BS-DFT also gives longer 

inner r(S-S) for singlet state open chain S5. The inner r(S-S) of S5 computed using BS-DFT is found 

to be 0.07 Å longer than the same structure computed using the RDFT method. For S2, S3 and S8, 

the BS-DFT geometry and that computed using the restricted DFT (RDFT) are in full agreement. 

A comparison of the singlet-triplet energy splitting for the structures in Figure 5.13 computed using 

BS and CCSD(T)/aug-cc-pVTZ//𝜔B97XD/6-311++G(2df,2p) is presented in Table 5.10. 

 

Table 5.10. The singlet-triplet energies (enthalpy, ΔHST and Gibbs free energy, ΔGST) for the open 

chain Sn (n ≤ 5 & 8) structures in Figure 5.13 using CCSD(T)/aug-cc-pVTZ//𝜔B97XD/6-

311++G(2df,2p) and BS calculation at UCCSD(T)/aug-cc-pVTZ//U𝜔B97XD/6-311++G(2df,2p) 

level of theory. Also included are the experimental values for S[263] and S2.[261,264] 

Species 
CCSD(T)//RDFT  UCCSD(T)//BS-DFT 

Expt. / kJ mol-1 
∆𝐇𝐒𝐓 / kJ mol-1 ∆𝐆𝐒𝐓 / kJ mol-1 ∆𝐇𝐒𝐓 / kJ mol-1 ∆𝐆𝐒𝐓 / kJ mol-1 

S 128.2 131.0  38.2 40.9 110.5 

S2 74.1 76.8 25.2 27.9 56.2 ± 9.6 

S3 81.8 77.6 67.6 65.7  

S4 36.8 26.9 26.8 20.5  

S5 17.5 23.7 9.0 15.9  

S8 7.9 26.3 7.9 26.3  

 

The result summarised in Table 5.10 suggests that the energy splitting computed using BS 

calculation is ~20 kJ mol-1 below the experimental error limit for S2 while the calculation 

employing CCSD(T)/aug-cc-pVTZ//𝜔B97XD/6-311++G(2df,2p) gives values that are only ~10 kJ 

mol-1 above the experimental error margin. For longer Sn open chains, it is observed that both 

CCSD(T)/aug-cc-pVTZ//𝜔B97XD/6-311++G(2df,2p) and BS give energy splitting that are similar; 

differing by 13 ± 1 kJ mol-1 (for S3), 10 or 6 kJ mol-1 (for S4), ~8 kJ mol-1 (for S5) or ~0 kJ mol-1 

(for S8). Furthermore, it is found that in all cases, regardless of whether the BS-DFT or RDFT is 

employed to investigate the singlet state open chain structures, the relative stabilities summarised in 

Figure 5.13 remain unchanged. Nevertheless, for S, S2 and S5, the singlet state single 

point/structure computed using BS-DFT is more stable than that using RDFT by 90, 50 and 8 kJ 

mol-1, respectively. For S3 and S4, the BS-DFT structures are computed to be less stable by at most 

14 and 10 kJ mol-1, respectively. 

It was shown in 4.3.2.2 that singlet states of S and S2 possessed multi-configurational character. 

Therefore in addition to the BS calculations, single point CAS(n,m)/6-31G(d)//HF/STO-3G 
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calculations (using CAS(4,3), CAS(4,5) and full valence (CAS(18,12))) were also performed on the 

RDFT optimised singlet (2a (1A1) Figure 5.2) and triplet (2c (3A2) Figure 5.2) state structures of S3. 

This is performed to confirm whether thiozone possesses multi-configurational or diradical charater, 

as ozone (O3, 1A1 and 3A2), its valence iso-electronic system, is known to possess multi-

configurational and partial diradical character.[19,324–326] The valence configuration of the singlet 

ground state S3 (1A1) computed using HF/STO-3G is …8𝑎1
26𝑏2

29𝑎1
210𝑎1

27𝑏2
23𝑏1

28𝑏2
211𝑎1

22𝑎2
2 with 

the unoccupied orbitals: 4𝑏1
012𝑎1

09𝑏2
0. A summary of the CSF’s and their contributing weights and 

configurations making up the total wavefunction of thiozone (S3) for the CAS(n,m) employed is 

presented in Table 5.11. 

 

Table 5.11. The contributing configuration state function (CSF) with weight (w) ≥ 1 % and 

electronic configuration in the computed total CAS(n,m)/6-31G(d) wavefunction of thiozone (S3). 

In all cases, the UHF/STO-3G canonical orbitals of thiozone are employed. Occupation of the 

orbitals by single electrons with spin up are denoted 𝛼 while those with spin down are denoted 𝛽. 

State CAS(n,m) CSF w / % 8𝑎1 6𝑏2 9𝑎1 10𝑎1 7𝑏2 3𝑏1 8𝑏2 11𝑎1 2𝑎2 4𝑏1 12𝑎1 9𝑏2 

1A1 

(4,3) 1 79.2        2 2 0   

 6 11.1        0 2 2   

 4 9.7        𝛼 2 𝛽   

(4,5) 28 87.7        2 0 0 0 2 

 1 10.7        2 2 0 0 0 

(18,12) 1 87.1 2 2 2 2 2 2 2 2 2 0 0 0 

 21 5.8 2 2 2 2 2 2 2 0 2 0 2 0 

                

State CAS(n,m) CSF w / % 8𝑎1 6𝑏2 9𝑎1 3𝑏1 10𝑎1 7𝑏2 11𝑎1 2𝑎2 8𝑏2 4𝑏1 9𝑏2 12𝑎1 

3A2 

(4,3) 1 100.0        2 𝛼 𝛼   

(4,5) 1 99.1        2 𝛼 𝛼 0 0 

(18,12) 708 86.9 2 0 2 2 2 2 2 2 𝛼 𝛼 2 0 

 497 6.6 2 𝛼 2 2 2 2 2 2 𝛼 0 2 0 

 

The result presented in Table 5.11 indicates that both states of S3 investigated possess multi-

configurational character on the basis of the contributing CSF weights and electronic configurations 

in the total CAS(n,m) wavefunction of the systems. The result further suggests that S3 (1A1) also 

possesses a diradical character in addition to its multi-configurational character. In addition, it was 

found that when the CAS(n,m) calculations are performed using HF canonical orbitals for S3 (1A1) 

with the same active spaces as in Table 5.11, the sole contributing CSF’s to its total CAS(n,m) 

wavefunction are CSF-1 (…11𝑎1
22𝑎2

24𝑏1
012𝑎1

09𝑏2
0, w ≈ 87 %) and CSF-3 

(…11𝑎1
22𝑎2

04𝑏1
212𝑎1

09𝑏2
0, 6 ≤ w ≤ 13 %) for all the CAS(n,m). This is also indicative of the 

system possessing multi-configurational character. The computed results discussed here therefore 

suggest that S3 (1A1), just like the singlet state of S, S2 (4.3.2.2) and O3 (1A1),[19,324–326] is a multi-
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configurational system with partial diradical character. In addition, S3 (3A2), like O3 (3A2),[324] is also 

computed to possess multi-configurational character when CAS(18,12) is employed. For the 

CAS(n,m) considered, the multi-configurational character is defined by CSF’s corresponding to 

double-electron distribution and/or a diradical CSF with 6 ≤ w ≤ 13 % or w ≈ 87 % contribution 

to the total wavefunction of the system. 

A summary of the thermally corrected singlet-triplet energy splitting for S3 and O3 using 

CCSD(T)//DFT and CAS(n,m) calculations is presented in Table 5.12 for comparative purposes. 

The valence configuration of O3 (1A1) computed with HF/STO-3G and used to form the active 

spaces used in the CAS(n,m) calculations is: …3𝑎1
22𝑏2

24𝑎1
25𝑎1

21𝑏1
23𝑏2

24𝑏2
26𝑎1

21𝑎2
22𝑏1

07𝑎1
05𝑏2

0. 

 

Table 5.12. The singlet-triplet energy splitting (enthalpy, ΔHST and Gibbs free energy, ΔGST) of S3 

and O3 using CCSD(T)/aug-cc-pVTZ//𝜔B97XD/6-311++G(2df,2p) and CAS(n,m)/6-31G(d). 

CAS(n,m) employ canonical orbitals for 1A1 generated using RHF/STO-3G (or UHF/STO-3G for 

values in brackets). 

System Methodology ∆𝐇𝐒𝐓 / kJ mol-1 ∆𝐆𝐒𝐓 / kJ mol-1 

S3 

CCSD(T)//DFT 81.8 77.6 

CAS(4,3) 91.7 (89.1) 87.5 (84.9) 

CAS(4,5) 89.7 (89.5) 85.5 (85.4) 

CAS(18,12) 100.1 (95.2) 96.0 (91.0) 

O3 

CCSD(T)//DFT 105.4 101.9 

CAS(4,3) 82.6 (91.0) 79.2 (87.5) 

CAS(4,5) 88.7 (95.0) 85.5 (91.5) 

CAS(18,12) 125.7 (118.6) 122.2 (115.1) 

MRMP*/aug-cc-pVTZ//CAS(18,12)/aug-cc-pVTZ[324] 86.8 

CAS(18,12)/[4s3p2dlf][327] 139.9 

CASPT2(18,12)/[4s3p2dlf][327] 92.6 

CASPT2(g2)(18,12)/[4s3p2dlf][327] 111.9 

Experiment[328] 113.9 
*MRMP stands for multi-reference Møller-Plesset perturbation calculation. 

 

Table 5.12 suggests that the energy splitting between S3 (1A1) and S3 (3A2) computed using 

CAS(4,3) and CAS(4,5) are only ~10 kJ mol-1 higher than the values computed using 

CCSD(T)//DFT. The energy splitting computed using CAS(18,12)/6-31G(d) on the other hand is 13 

kJ mol-1 above CCSD(T)//DFT values when UHF is used to generate the canonical orbitals of S3 

(1A1), otherwise, it is 18 kJ mol-1 higher than the CCSD(T)//DFT values. In all cases, S3 (1A1) is 

always computed to be more stable than S3 (3A2) as presented in Figure 5.13. In addition, the 

energy difference between S3 (1A1) calculated using canonical orbitals generated with RHF and 

UHF is found to be ≤ 5 kJ mol-1 for all CAS(n,m). 
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The results of the present computation of the structure and energies of 1A1 and 3A2 states of O3 also 

indicate that the 1A1 state of ozone is its ground state while its 3A2 state is an excited state that is 

less stable than its ground state structure. This finding is in agreement with experimental[328] and 

high-level theoretical[324,327] investigations of the low-lying electronic states of ozone which suggest 

that the 1A1 state is its ground state while the 3A2 state is its next lowest excited state. The low-lying 

electronic states of O3 considered in these investigations[324,327,328] are: 3A2, 3B2, 3B1, 1A1, 1A2, 1B1 

and/or 1B2. The result summarised in Table 5.12 for O3 suggests that CCSD(T)//DFT gives a 

reasonable description of the energy splitting between the lowest lying states of the system while 

the CAS(18,12)/6-31G(d) gives a more reliable description of the system. The energy splitting of O3 

computed using CCSD(T)//DFT is at most 12 kJ mol-1 below its experimental value while that 

computed using CAS(18,12)/6-31G(d) incorporating UHF canonical orbitals of the system is ≤ 5 kJ 

mol-1 above the experimental value. Going by this finding, the description of the 1A1 and 3A2 states 

of S3 using CCSD(T)//DFT is reasonable as it is a valence iso-electronic system with ozone. 

Therefore, the results discussed above and summarised in Table 5.12 further suggests that even 

though the CAS(n,m) calculation offers a more rigorous description of S3 (1A1), CCSD(T)//DFT 

gives a reasonably balanced description of the energies. 

In summary, a comparison of the results computed using CCSD(T)//DFT, BS and/or CAS(n,m) 

indicate that both closed and open shell (multi-configurational or diradical) singlet state structures 

of open chain S𝑛 (𝑛 ≤ 5) are likely to co-exist and be thermally accessed in gaseous and/or liquid 

sulfur. In addition, it is found that even though CAS(n,m)//DFT gives a more rigorous/reliable 

description of S𝑛 (𝑛 ≤ 3) (discussed here and in 4.3.2.2), CCSD(T)//DFT gives a reasonable 

description and will be used to describe the chemistry in the next chapter. 

 

5.4 Conclusions 

The structures and thermodynamic stabilities of open chain and cyclic ground and excited state of 

sulfur S𝑛 (𝑛 ≤ 5 and 8) species have been investigated using high-level quantum theory 

methodologies. It is found in agreement with experiments[261,263,313] that all sulfur clusters S𝑛 (𝑛 ≤

4) possess open chain ground state structures while S8 has a cyclic ground state structure. The 

global minimum structure of S5 is also found to be cyclic, indicating that it is the first sulfur 

allotrope to form a cyclic ground state. It is observed that excited state open chain isomers of all S𝑛 

considered are thermally accessible. Some of these open chain isomers may exist in the singlet and 

triplet state with similar geometric structures. The results indicate that both closed and open shell 

(multi-configurational or diradical) singlet state structures of open chain S𝑛 are likely to co-exist in 

gaseous and/or liquid sulfur. It is found that even though CAS(n,m)//DFT gives a more reliable 
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description of open shains of S𝑛, CCSD(T)//DFT gives a reasonable description of the systems and 

will be used to describe the chemistry in the next chapter. For species with cyclic global minimum 

structures, it is found that their triplet state open chain structures are more stable than their singlet 

state analogues even though ring opening for the species occurs on the singlet PES. A likely 

explanation for this may be that the triplet state structures for such species may be thermally 

accessed via their higher energy singlet state analogues through favourable spin flip processes. This 

stability of the triplet state open chain structures especially for S8 over their singlet state analogues 

provides a possible explanation for the paramagnetic behaviour[275,288,322] of liquid sulfur and the 

possible S8 structures responsible for the behaviour. The switch in stability of the most stable open 

chain species at S3 and S4 suggests the participation of “two-state reactivity” in liquid and gaseous 

sulfur. This in turn may have implications on the viscosity behaviour of (the reactivity in) liquid 

sulfur above its melting point and processes occurring during sulfur recovery in the thermal Claus 

process. 



 

 

 

 

6 Formation of hydrogen polysulfanes from sulfur 

clusters (Sn, n ≤ 5 & 8) and hydrogen sulfide  
 

In this chapter, the CCSD(T)/aug-cc-pVTZ//𝜔B97XD/6-311++G(2df,2p) method is used to describe 

the reaction of open chain sulfur clusters, Sn (n ≤ 5 and 8) with H2S on the singlet and triplet PESs 

to generate HSn+1H. The study reveals that branched and unbranched HSn+1H are only formed in 

the course of the reaction(s) on the singlet PES. It is found that the unbranched HSn+1H are always 

formed in exergonic processes while the branched HSn+1H may be formed in either an exergonic or 

endergonic process. It is also found that the unbranched HSn+1H may be obtained via a direct (from 

reaction complex) or an indirect (through the branched species) reaction route. The results further 

reveal that the product of reaction on the triplet PES in all cases may best be described as weakly 

attracted doublet state species depending on n and are always formed in endergonic processes. In 

addition, it is found that the exergonicity of the reverse of the triplet PESs may provide an 

explanation for the observed residual H2S in sulfur recovered in the thermal Claus process. It is 

observed that unbranched HSn+1H (n ≥ 2) can exist in more than one conformational structure with 

general r(S-S) = 2.059 ± 0.003 Å and r(S-H) = 1.342 Å. Furthermore, the rotational barrier for 

transforming one isomer to another for a given unbranched HSn+1H is found to fall between 20 and 

32 kJ mol-1 regardless of its sise. The forward and backward rotational energy barriers to 

transform one unbranched isomer to another are found to differ by at most 5 kJ mol-1. This 

indicates that the different isomers of the species will undergo rapid interconversions at room 

temperature thereby making their isolation difficult. 

6.1 Introduction 

It has been established in Chapter 5 that minimum energy singlet and/or triplet state open chain 

structures of Sn are thermally accessible from, or are, the global minimum structures. 

Spectroscopically accessible minimum energy structures of Sn (n ≤ 8) are commonly produced in 
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the modified thermal Claus process with the overall chemical reaction,[12,269,275] summarised in 

reaction (5.1). This process has become the most industrially and commercially attractive way of 

liquid sulfur production from H2S for desired end uses[12,14] in recent years. The process is especially 

applicable to natural gas, coal, petroleum or oil refining which are its main sources of H2S.[12,14] 

However, it is known from experiments[13,14] that industrial liquid sulfur is condensed under small 

partial pressures of H2S which in turn lead to high levels of residual H2S in the liquid product (Sn) 

obtained in the thermal Claus process. This situation has prompted strict industrial guidelines 

stipulating that residual H2S must be removed prior to the transportation of the recovered liquid 

sulfur or its solidification and application[14,15] as it may lead to pollution that is harmful to body 

organs.[273] 

As a consequence of the small partial pressures of H2S in the thermal Claus plants, sulfur recovery 

in the process suffers a daunting H2S elimination problem[13,14,269] due to the equilibrium in eq. 

(5.2),[14,276] where the Sn is believed to be open chain species. Furthermore, liquid sulfur which 

contains mostly open chain Sn species has been experimentally found to be paramagnetic[275,288] 

whereas the hydrogen polysulfanes (HSn+1H) formed in reaction (5.2) are known from experiments 

and theoretical calculations to be diamagnetic.[258,259,282,289–291] An understanding of the mechanism 

and nature of species involved in reaction (5.2) is therefore fundamental, as it may provide insights 

into the H2S elimination[12–14,269] or temperature control difficulties[12] presently encountered in 

sulfur recovery plants. The reactivity of open chain sulfur species with H2S and spin state interplay 

is therefore investigated to provide insights into the difficulties of H2S elimination from Sn 

recovered in the thermal Claus process.[13,14,273] To do this, the singlet and triplet PESs of the Sn-H2S 

reaction (5.2) for n ≤ 5 & 8 are characterised; i.e., detailed mechanisms and energetics of HSn+1H 

formation on the singlet and triplet PESs are determined. 

 

6.1.1 Review of Literature 

The formation of polysulfanes (or persulfides) was first proposed by Bacon and Fanelli in 1943 

from their experimental study of the viscosity changes of liquid sulfur in the absence and presence 

of H2S (Figure 5.1).[277] The authors suggested that in heating sulfur containing oil, the compounds 

may form from direct action of sulfur on hydrocarbons or by reaction between nascent H2S and 

sulfur. They went on to assert that the persulfides, H2Sn were not particularly stable to heat but that 

H2S2 boils with little decomposition at about 75 °C. They also asserted that the formation of H2Sn 

had a suppressing effect on the sudden viscosity changes of liquid sulfur at 160 °C. This lead 

Fanelli to further experimentally investigate the modifying effect of H2S on the viscosity of liquid 

sulfur between 120 and 445 °C at atmospheric pressure in 1949.[278] The author suggested from his 
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study that H2S reacts with sulfur to form the persulfides by the chemical reaction in eq. (5.3). He 

attributed the reactivity in eq. (5.3) to the formation of S8 chains above 160 °C as a result of the 

rupture of S8 rings which are predominant below 160 °C. The author asserted that hydrogen atoms 

took the terminal positions of the formed sulfur chains in liquid sulfur with generic structure in 

Figure 6.1;  

 

Figure 6.1. The generic structure of persulfides with terminal hydrogen atoms. 

 
to inhibit their polymerisation into long sulfur chains at increasing temperature. The authors then 

asserted that the formation of the persulfides in turn suppressed the viscosity of liquid sulfur. 

Rubero reported a further experimental study of the viscosity reducing effect of H2S on liquid sulfur 

in 1964.[285] The author suggested that the solubility/reactivity of H2S in liquid sulfur was a function 

of temperature and pressure. He also noted that the suppressing effect of H2S on the viscosity of 

liquid sulfur was extremely strong above 158 °C. 

Eq. (5.3) was modified to eq. (5.2) in 1966 by Wiewiorowski and Touro from their experimental 

and theoretical consideration of the chemical equilibrium in eq. (5.3).[276] The authors asserted that 

the enthalpy and entropy changes involved in the formation of HSn+1H from sulfur chains and H2S 

were ΔH = -30,900 cal mol-1 and ΔS = -25.7 cal deg-1 mol-1. Later this same year, Hyne et al., 

studied the nuclear magnetic resonance (NMR) of HSn+1H in molten sulfur.[282] The authors 

reiterated that the dissolution and/or reactivity of H2S in molten sulfur resulted in the formation of 

HSn+1H and that the so formed polysulfanes appeared to be mainly higher members of the 

homologous series with n ≥ 5. They also asserted that shorter chain HSn+1H (n ≤ 4) species may be 

formed as transient intermediates in the formation of the higher members of the HSn+1H species. In 

1968, Muller and Hyne reported the proton NMR (1H-NMR) and infrared (IR) study of hydrogen 

bonding (H-bonding) in sulfanes (H2Sn).[329] The authors asserted that the position of the proton 

signals in the NMR spectrum of the species was dependent on sulfur chain length, HSn+1H 

concentration and temperature. They also noted that the position and appearance of the SH-

absorption bands of the HSn+1H in the IR provided evidence of the existence of sulfane-solvent 

interactions. They then concluded that the species participated in H-bonding and suggested that a 

special type of intra-molecular H-bonding may be operative in H2S3. In addition, the authors found 

that the Raman and IR vibrational frequencies of the r(S-H) bonds for concentrated short-chain 

HSn+1H (n = 1 to 4) solutions were observed at 2498 to 2510 cm-1. In the following year, the authors 

reported an NMR study of the thermal decomposition of HSn+1H (n = 2 and 3) at ca. 70 °C in the 

(S)n 

S 
H H 

S 
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absence of oxygen.[330] They asserted that H2S and elemental sulfur (Sn) were the ultimate 

decomposition products of the species. They however demonstrated that the species do not 

decompose directly to H2S and Sn but rather form a variety of sulfane intermediates. The authors 

then suggested a free-radical pathway for the decomposition of the species and/or formation of 

elemental Sn from sulfanes. In this same year, Wieser et al., reported the vibrational spectra and 

force field of HSn+1H (n = 2 and 3).[290] The authors asserted that both HS3H and HS4H had the C2 

symmetry on the basis of their IR and Raman spectra, temperature and concentration dependence. 

They went on to suggest that the derived valence force field for the species provided a least squares 

fit between the observed and calculated frequencies for both molecules simultaneously. 

Furthermore, the authors noted that the vibrational frequencies of the r(S-H) bonds for the species 

occurred at 2505 to 2540 cm-1 in dilute solutions. Also, Winnewisser reported the high resolution 

measurement of the IR absorption of HSSH between 2490 and 2650 cm-1 in 1970 using a vacuum 

grating spectrograph.[331] The author asserted that the high resolution spectrum of v1 and v5 of HSSH 

could be analysed as that of a true symmetric top molecule. 

The composition of crude sulfane oil and identification of sulfanes (H2Sn) from HS9H to HS35H was 

reported by Hahn in 1985.[332] The author asserted that the position of the 1H-NMR signals of the 

compounds depended on the sulfur chain length and sulfane concentration in benzene solution. He 

went on to suggest that under proper conditions, all sulfanes in a mixture are characterised by well-

resolved NMR signals showing a downfield shift with increasing sulfur chain length. The author 

also noted that the shift differences between the higher homologues (n > 8) remain nearly constant, 

thus allowing the assignment of the signals up to H2S35 and the determination of the complete 

sulfane distribution in crude oils. Later, Grein calculated the cis- and trans-rotational energy 

barriers for HSSH at the SCF/4-31G level of theory to be 33.6 kJ mol-1 and 23.2 kJ mol-1, 

respectively.[333] Also the same year, Dixon et al.,[334] reported the barriers to internal rotation of 

HSSH calculated at the SCF and CI-SD in combination with the DZ+P basis set of the form 

(11s7p1d/4s1p)/[6s4p1d/2s1p] to be 31.4 ± 0.6 and 20.9 ± 0.6 kJ mol-1 for the cis- and trans-

barriers, respectively with the error margins as the corrections for the difference in zero-point 

energies. In 1986, Hahn and Altenbach reported the synthesis of the silylsulfanes, (MePh2Si)2Sn 

(2 ≤ 𝑛 ≤ 5) by reacting MePh2SiSNa with iodine or chlorosulfanes, SmCl2 (1 ≤ 𝑚 ≤ 3) in toluene 

solution.[335] The authors asserted that the compounds proved to be a convenient source for the 

generation of sulfanes H2Sn and deuterosulfanes D2Sn of definite chain length, 2 ≤ 𝑛 ≤ 5. Mauer et 

al., reported the detection of gas-phase trisulfane, HSSSH and its rotational absorption spectrum 

using the Cologne free-space-cell millimetre-wave spectrometer in 1988 for the first time.[336] The 

authors asserted that the molecule had no symmetry axis and so must be tightly locked in one 
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conformation. Based on their spectroscopic data, the authors assigned this conformation as the cis-

conformation. The structure of cis-trisulfane is illustrated in Figure 6.2. 

 

Figure 6.2. The cis-conformational structure of trisulfane. 

 

In 1989, Herbst and Winnewisser used a variety of millimetre-wave and IR spectral data on the 

internal rotation of HSSH to derive its torsional barrier heights as 33.5 ± 1.1 and 23.8 ± 0.2 kJ mol-1 

(cis- and trans-barriers, respectively).[337] The synthesis of HSSH from the cracking distillation of 

raw sulfane mixtures in a rotary evaporator and structure of the molecule was reported by Hahn et 

al., in 1991.[258] The authors determined the geometric parameters of the species from microwave 

spectroscopy as: r(S-S) = 2.0564 Å, r(S-H) = 1.3421 Å, τ(HSSH) = 90.34 ° and θ(SSH) = 97.88 ° 

for the first time. Later the same year, Behrend et al., reported a more refined molecular structure of 

HSSH from its rotational spectra measured in the millimetre-wave and far IR region with the 

following geometrical parameters: r(S-S) = 2.0564 (1) Å, r(S-H) = 1.3421 (2) Å, τ(HSSH) = 90.3 

(2) ° and θ(SSH) = 97.88 (5) °.[259] The authors claimed that the bond lengths and angles, as given, 

represent a partial equilibrium structure since contributions from the torsional motions of the 

molecule were removed. Pelz et al.,[338] reanalysed the torsional potentials of HOOH and HSSH by 

fitting their calculated rotational constants to their observed values and the dependencies of their 

structural parameters on torsional angles in 1993. The authors asserted that internal rotation 

tunneling in the complexes occurred predominantly through the trans- rather than cis-configuration. 

They went on to suggest that upon passage through the cis- or trans-position, the internuclear S-S 

(O-O) distances increased by 0.1642 Å (0.0486 Å) while the θ(SSH) (θ(OOH)) closed by 3 ° 

compared to their equilibrium values. They also noted that the trans- barrier for HSSH was 24.4 kJ 

mol-1 and 4.6 kJ mol-1 for HOOH. This trans-barrier for HSSH agrees with that determined by 

Herbst and Winnewisser.[337] Later this same year, trans-HSSSH was detected and characterised in a 

mixture of cis- and trans-HSSSH using millimetre-wave and Fourier transformed IR (FTIR) 

spectroscopy together with ab initio calculations at the MP2/TZ+P and QCISD/TZ+P levels of 

theory by Liedtke et al.[289] The authors noted that the observed rotational constants in MHz were 

trans-HSSSH: A = 14098.89744 (42); B = 2750.15137 (15); C = 2371.69779 (14) and cis-HSSSH: 

A = 14103.20962 (25); B = 2752.75945 (11); C = 2373.86989 (12). They went on to suggest that 

the intensity alternation of trans-HSSSH was characteristic of asymmetric top rotors with C2-
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rotational symmetry. They also asserted that the calculated energy barrier of internal rotation from 

trans- to cis-HSSSH was 35 kJ mol-1. In 1994, Mittler et al., reported another FTIR spectrum of the 

HSSH molecule in the r(S-H) stretching region.[339] The authors asserted that the origin of the v5 

band in the gas-phase for the species was determined to be 2559 (89) cm-1. 

Drozdova et al., reported the ab initio investigation of the structures, energies, torsional barriers and 

vibrational spectra of three rotational isomers (rotomers) of tetrasulfane (HSSSSH) at the MP2/6-

311G** level of theory in 1995.[340] They asserted from their calculations that the rotomers were 

energetically identical and had identical vibrational wavenumbers. They also noted that upon 

rotation about the central bond of the species, the torsional barriers were found to be 32 kJ mol-1 

(cis-barrier) and 26 kJ mol-1 (trans-barrier). They went on to assert that the geometries of the two 

torsional transition states with τ(SSSS) = 0 ° and 180 ° may be explained by hyperconjugation 

between the lone pairs at the terminal sulfur atoms and the σ* molecular orbital of the central r(S-S) 

bond of the species. Yamada et al., reported the anomalous K-type doubling observed in the 

millimetre and submillimetre-wave spectra of HSSH in the Ka = 2 and 3 states in 1996.[341] The 

authors discussed the anomaly by applying the second-order perturbation theory to the Watson’s S-

reduced Hamiltonian. They then predicted that the anomaly does not occur for the levels Ka ≥ 4. In 

1997, Steudel et al., reported the ab initio study of the stability of various disulfanes (RSSR, R = H, 

Me, Pr, All), their branched isomers (R2SS) and related isomerisation transition states using 

different levels of theory.[342] The authors asserted that at the MP2/6-311G** level of theory, H2SS 

was 143 kJ mol-1 less stable than HSSH and that the species were separated by an activation energy 

barrier of 210 kJ mol-1. The authors stated that when much higher levels of theory were used, the 

results were only slightly changed and that at the same level of theory, Me2SS was 84 kJ mol-1 less 

stable than MeSSMe with the isomerisation transition state between the latter species lying 340 kJ 

mol-1 above MeSSMe. They therefore suggested that the thermal isomerisation of HSSH or 

MeSSMe may be excluded and that H2SS and Me2SS should be kinetically stable toward 

unimolecular isomerisation at low temperatures. They went on to propose that the bimolecular 

decomposition of Me2SS to Me2S and S2 was exothermic but spin-forbidden in the case of triplet S2 

and endothermic but spin-allowed when singlet S2 was formed. In addition to the structural 

descriptions of sulfanes considered by these authors, the structural definitions in Figure 6.3 may be 

made for the series, HSn+1H (n ≥ 2). Also in 1997, Liedtke et al., published the molecular structure 

of cis- and trans-HSSSH from the rotational spectra of the species obtained from microwave and 

millimetre-wave spectroscopy.[343] The authors asserted that the geometrical parameters of the 

molecules were: r(S-S) = 2.0530 (1) Å, r(S-H) = 1.3435 (14) Å, θ(SSS) = 106.919 (3) °, θ(SSH) = 
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97.37 (15) °, θ(SSS-SSH) = 90.82 (16) ° for cis-HSSSH and r(S-S) = 2.0539 (4) Å, r(S-H) = 1.3435 

(14) Å, θ(SSS) = 107.02 (2) °, θ(SSH) = 97.2 (7) °, θ(SSS-SSH) = 87.7 (4) ° for trans-HSSSH. 

 

                                (a)                 (b)                 (c) 

Figure 6.3. Structural definitions of HSn+1H (n ≥ 2): (a) linear and terminal HSn+1H, (b) linear but 

non-terminal HSn+1H and (c) non-linear but terminal HSn+1H with respect to the sulfur chain and 

position of H-atoms, respectively. (a) may also be described as unbranched HSn+1H while (b) and 

(c) may also be described as branched HSn+1H. 

 

They also suggested that the spectra of the species showed no effect of internal rotation in 

agreement with their previous ab initio calculation[289] of the energy barrier. Wong et al., reported 

the ab initio study of the protonation of various isomers of sulfur molecules, Sn (2 ≤ 𝑛 ≤ 8) at the 

G3X(MP2) level of theory in 2004.[271] The authors asserted that smaller cations, [HS𝑛]
+ (2 ≤ 𝑛 ≤

4) were all chainlike with the hydrogen atom at the Sn chain end. They also noted that the singlet 

chain-like structures of [HS𝑛]
+ (2 ≤ 𝑛 ≤ 8) with the hydrogen terminating the chain at one end 

were more stable than the corresponding triplet chains. They went on to suggest that the protonation 

of neutral sulfur molecules will always occur at the atom of highest negative charge. The authors 

also stated that the r(S-H) bond of the protonated species were calculated between 1.35 and 1.39 Å. 

In 2005, Gargurevich presented in a review article, the major chemical paths in the combustion of 

H2S and formation of Sn by molecular growth under conditions typical of the Claus furnace.[344] The 

author asserted that HSSH (or H2S2) seemed to have an important role in the combustion of H2S 

while the higher molecular weight linear H2Sn species had only a minor role in the combustion of 

H2S. Zhou et al., in 2008 reported the theoretical study of hydrogen abstraction and sulfur insertion 

in the reaction of H2S with atomic sulfur at the multi-reference configuration interaction (MRCI) 

level of theory.[345] The authors asserted that the presence of an intersystem crossing enabled the 

formation of SH + SH on the singlet PES via S atom insertion, which bypassed the triplet energy 

barrier (19 kJ mol-1) to H-abstraction. They however stated that the H-abstraction route will be 

competitive at higher temperatures due to a higher Arrhenius pre-exponential factor in comparison 

to that of the S atom insertion route. They went on to suggest that with a slightly higher transition-

state barrier than that of the H-abstraction channel, the production of S2 + H2 is less favourable due 

to proceeding via intersystem crossing and insertion. They also noted that the formation of HSS + H 

was energetically unfavourable relative to SH + SH but that the recombination channels producing 
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H2SS or the more stable HSSH were expected to occur under collisional stabilisation conditions at 

high pressures. Later this year, Marriott et al.,[14] suggested the possibility that some of the 

vibrational IR absorptions of H2Sn molecules may arise from radical/doublet species (e.g., HS𝑛) 

formed from partial termination of diradical sulfur chains with hydrogen atoms. The authors made 

this observation after considering the vibrational IR spectra of sulfanes in the literature[290,329,339] 

while investigating the solubility/reactivity of H2S in the liquid sulfur recovered from the Claus 

process using a new FTIR technique. A year later, Zhou et al., reported the characterisation of the 

PES for the H2/S2 system at the full valence MRCI+Davidson/aug-cc-pV(Q+d)Z level of theory 

using geometries optimised at the MRCI/aug-cc-pVTZ level of theory.[346] The authors considered 

reactions occurring entirely on the singlet and triplet PES as well as those involving an intersystem 

crossing. They asserted that of the SH recombined on the singlet surface, the stabilisation of HSSH 

occurs at the low-pressure limit at 1 bar but has a rate comparable to that of forming another major 

set of products (H2S + S) via an intersystem crossing at temperatures below 1000 K. They went on 

to note that at higher temperatures, HSS + H become the dominant products. They also suggested 

that for the reaction, H2S + S, the presence of an intersystem crossing will allow for the formation 

of the singlet excited adduct H2SS and that most of the adduct will rearrange and stabilise as HSSH 

under atmospheric conditions. The authors also observed that while the formation of H2S + S or 

S2 + H2 via an isomerisation or intersystem crossing, respectively were minor product channels, 

their rates were significantly higher than those of the corresponding direct triplet channels except at 

elevated temperatures. Hill and Butcher employed high level, coupled cluster and MRCI+Davidson, 

calculations to probe the properties of triplet excited states of a series of small molecules with two 

or more adjacent heteroatoms including disulfane, HSSH in 2014.[3] They predicted that HSSH, just 

like most of the investigated molecules, had a bound lowest triplet excited state that is either a (π*, 

σ*), (σ*, π*) or a Rydberg state. That is to say that the triplet state is formed by excitation of an 

electron from a doubly occupied pi anti-bonding orbital to an empty sigma anti-bonding orbital, (π*, 

σ*) or from a doubly occupied sigma anti-bonding orbital to an empty pi anti-bonding orbital (σ*, 

π*). The last category is the occupation of Rydberg type orbitals, which lie higher in energy than 

the anti-bonding orbitals in natural orbital analysis and their occupation numbers are typically small 

(0.01).[3] The authors also asserted that the heteroatom-heteroatom bond dissociation enthalpies 

(BDEs) of the triplet states ranged from very small values (e.g., as predicted for H2O2 or F2) to 

BDEs around 33 to 38 kJ mol-1 and so should allow for the experimental observation of the triplet 

state of HSSH or H2NF. 
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6.1.2 Justification of Study 

It appears however from the available literature (summarised above) that only limited work to 

determine the mechanism of the reaction or spin state interplay in the S𝑛 + H2S reaction for eq. 

(5.2) has been done. Nevertheless, a significant number of experimental studies on the suppressing 

effect of H2S on the viscosity of liquid sulfur is readily available in the literature.[14,277–279,285,286,291] 

Furthermore, the available literature suggests that the linear and terminal HSn+1H (Figure 6.1 and 

Figure 6.3) is the most studied/reported structural conformation of hydrogen polysulfanes. In 

addition, all the terminal HSn+1H and branched HSn+1H in the available literature are singlet state 

species. As a result, the mechanisms of formation of linear and terminal HSn+1H in the gas-phase for 

Sn (n ≤ 5 & 8) on the singlet and triplet PES will be investigated. This will go a long way in 

providing an understanding of the mechanism and nature of species and the spin state interplay 

involved in reaction (5.2). This study is therefore likely to provide insights into the H2S elimination 

difficulties[12–14,269] presently encountered in the modern thermal Claus process. 

 

6.1.3 Aim of Study 

This study is aimed at exploring the S𝑛 + H2S reaction in eq. (5.2) using computational quantum 

chemistry methodologies to provide insights into the persistence of H2S in sulfur recovered in the 

thermal Claus process. This will be provided using the optimum computational methodology 

determined in Chapter 4. This is because most of the species involved in the reaction may only be 

accessed via computational methodologies, as they may be elusive to observation by experimental 

techniques. To achieve this aim, the objectives are: 

1. To elucidate the reaction mechanism(s) for the S𝑛 + H2S (n ≤ 5 & 8) on the singlet and 

triplet PESs using reaction (5.2) as a basis. 

2. To determine the energetics of the elucidated mechanisms. 

3. To provide a possible explanation for the source of residual H2S in sulfur recovered in the 

thermal Claus process based on the findings. 

 

6.2 Computational Details 

DFT at the 𝜔B97XD[80]/6-311++G(2df,2p)[99] level of theory as implemented in the Gaussian 09 

package[24] was initially employed to study the S𝑛 + H2S reaction for n ≤ 5 & 8. Using this method, 

the neutral geometries of species in eq. (5.2) and the resulting intermediate and product species 

were optimised on the singlet and triplet PESs in the gas phase. In all cases, the singlet ground state 

of H2S was considered. The nature of the optimised stationary points on the PESs was characterised 



132 
 

 

by frequency calculations at 298.15 K and 1.0 atm at the same level of theory. Minima were 

confirmed by absence of imaginary frequencies while the presence of an imaginary frequency 

confirmed first-order saddle points (transition states).[36,37] Thermal and ZPE corrections to the 

equilibrium energies of the stationary points were also obtained from the frequency calculations. 

The vibrational frequencies of the considered species were uniformly scaled by a factor of 

0.950[257,316] while unscaled ZPEs were used throughout. The connectivity of the transition states to 

their adjacent minima was confirmed by eigenvector following calculations.[36,201,202] SPE 

calculations were thereafter, performed on the optimised geometries at the CCSD(T)[44]/aug-cc-

pVTZ level of theory to obtain accurate energies. The method is summarised as CCSD(T)/aug-cc-

pVTZ//𝜔B97XD/6-311++G(2df,2p). All the energies discussed/presented herein are computed at 

this level of theory. Topological analysis of the electron density of species was performed using 

QTAIM[124–133] as implemented in the Multiwfn package.[203] In  doing this, the 𝜔B97XD/aug-cc-

pV5Z was employed to generate the wavefunctions of the investigated species. 

 

6.3 Results and Discussion 

The formation of the linear and terminal (unbranched) HSn+1H on the singlet PES from H2S and Sn 

(reaction (5.2)) is found to occur directly or indirectly depending on Sn. 

 

6.3.1 Direct Formation of Linear and Terminal HSn+1H 

The direct formation of linear and terminal (unbranched) HSn+1H from H2S and singlet Sn is found 

to occur only when Sn (2 ≤ n ≤ 4) is involved and the calculated singlet PESs are presented in 

Figure 6.4. The computed reaction mechanisms are presented in Scheme A.2.2 (path a) (S2 + H2S), 

Scheme A.2.3 (path a) (S3 + H2S), and Scheme A.2.4 (S4 + H2S) of Appendix A.2. The reaction is 

computed to proceed via three steps namely: co-ordination, 1,3 H-atom shift (for Sn, n = 2) or H-

atom abstraction (for Sn, n = 3 and 4) and formation of linear and terminal HSn+1H. 

It is found that for all the reactions involving Sn (2 ≤ n ≤ 4) that lead to the direct formation of 

unbranched HSn+1H, Int1, the co-ordination step is formed in an endergonic process with similar 

reaction energies, ΔGr = 23 ± 3 kJ mol-1 (Figure 6.4). The energy barrier (ΔG‡) to generate the 

linear and terminal HSn+1H from Int1 via TS1 is found to increase with n from 65 kJ mol-1 for S2 to 

82 and 87 kJ mol-1 for S3 and S4, respectively. Nevertheless, the energy barrier for n = 3 and 4 differ 

by only 5 kJ mol-1. Thus, the energy barrier for H-atom shift (when S2 reacts) is significantly (ca. 20 

kJ mol-1) lower than that of H-atom abstraction (when S3 or S4 reacts). The overall reaction for the 

direct formation of linear and terminal HSn+1H is found to be exergonic in all cases with the 

exergonicity of the reaction decreasing with increasing n from ΔGr = -101 kJ mol-1 for S2 to -42 and 
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-46 kJ mol-1 for S3 and S4, respectively. The results in Figure 6.4 suggest that the direct formation 

of the unbranched polysulfanes will be kinetically stabilised and thermodynamically less favourable 

as the Sn increases in sise (i.e., as n increases). 

 

Figure 6.4. The combined singlet Gibbs free energy profiles (PESs) for the direct formation of 

linear and terminal (unbranched) HSn+1H from the reaction of Sn (2 ≤ n ≤ 4) with H2S. 

 

6.3.2 Indirect Formation of Linear and Terminal HSn+1H 

Here, the formation of a linear but non-terminal (when Sn (𝑛 ≤  3) reacts with H2S) or non-linear 

but terminal HSn+1H (when Sn (n = 5 or 8) reacts with H2S) is found to occur prior to the formation 

of the linear and terminal HSn+1H. The indirect process is found to occur for all the Sn considered 

except S4. 

The calculated singlet PESs for the indirect formation of linear and terminal HSn+1H from Sn (𝑛 ≤

3) and H2S are presented in Figure 6.5 while the computed reaction mechanisms are presented in 

Scheme A.2.1 (S + H2S), Scheme A.2.2 (path b) (S2 + H2S) and Scheme A.2.3 (path b) (S3 + H2S) 

of Appendix A.2. 
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Figure 6.5. The combined singlet PES for the indirect formation of linear and terminal HSn+1H 

from the reaction of Sn (n ≤ 3) with H2S: path a leads to trans-HS3H while path b leads to cis-HS3H. 

 

The indirect routes involving Sn (𝑛 ≤ 3) are found to result in the prior formation of the linear but 

non-terminal HSn+1H (for S2 or S3) or the branched disulfane previously reported in the literature[342] 

(for Sn, n = 1). It is found that the indirect reaction involving S2 or S3 proceeds by the formation of 

the reaction complex (Int1) in an uphill process with similar reaction energy of ΔGr = 25 kJ mol-1. 

This is followed by the formation of the linear but non-terminal HSn+1H (Int2″) which is 7 and 128 

kJ mol-1 for S2 and S3, respectively above the reactants. For S2, Int2″ is found to be formed from 

Int2′ via rotational isomerisation. The energy barrier to generate Int2″ via 1,2 H-atom shift (TS1) 

is computed as ΔG‡ = 76 and 153 kJ mol-1 for S2 and S3, respectively. For S, the branched disulfane 

is formed from the reactants in an exergonic (ΔGr = -192 kJ mol-1) and barrier-free process. The 

linear and terminal HSn+1H is formed in an exergonic process of ΔGr = -314, -101 and -40 kJ mol-1 

for the indirect reaction involving S, S2 and S3, respectively. The energy barrier to generate the 

unbranched HSn+1H from its branched isomer via a 1,2 (for S and S2) or 1,3 (for S3) H-atom shift is 
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computed as 70 kJ mol-1 for S, 80/86 kJ mol-1 (to trans-/cis-products) for S2 or 16 kJ mol-1 for S3. 

The computed electronic energy barrier (71 kJ mol-1) to generate the unbranched HS2H from the 

branched HS2H in the reaction involving S is found to be underestimated by only 5 kJ mol-1 in 

comparison with the literature value[345] computed at the MRCI+Davidson/aug-cc-pV(Q+d)Z level 

of theory. The computed stability of the stationary points in the reaction involving S in terms of 

electronic energy suggests that the linear and terminal HSn+1H is more stable than its branched 

isomer by 121 kJ mol-1. This is also found to be within 5 kJ mol-1 of the value computed[345] at the 

MRCI+Davidson/aug-cc-pV(Q+d)Z level of theory. 

The computed singlet PESs for the reaction involving the open chain Sn (n = 5 and 8) are presented 

in Figure 6.6 while their mechanisms of reaction are summarised in Scheme A.2.5 and Scheme 

A.2.6 of Appendix A.2.  

 

Figure 6.6. The singlet PESs for the indirect formation of linear and terminal (unbranched) HSn+1H 

from the reaction of Sn+H2S reaction; n = 5 (green) and 8 (black). Also included is the formation of 

the weak complex, HS3H⋯S3, path ii of the S5+H2S reaction; path i of this reaction produces the 

unbranched HSn+1H. 

 

The reaction involving S5 and S8 to form the unbranched HSn+1H is found to proceed by the 

formation of the reaction complex (Int1) which is 20 kJ mol-1 above the reactants for both systems. 

Figure 6.6 and the elucidated reaction mechanisms for the process involving S5 and S8 suggest that 
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the branched HSn+1H is generated via the reaction complex (Int1) in an exergonic process of ΔGr = 

-35 and -10 kJ mol-1, respectively. The H-atom abstraction (TS1) barrier to the formation of the 

branched HSn+1H is computed as ΔG‡ = 70 and 96 kJ mol-1 for the reaction involving S5 and S8, 

respectively. It is observed that Int2 (branched HSn+1H) transforms to the unbranched HSn+1H in an 

exergonic process of ΔGr = -113 and -108 kJ mol-1 via a 1,2 HS-group migration transition state 

(TS2) with ΔG‡ = 136 and 119 kJ mol-1 for the reaction involving S5 and S8, respectively. In 

addition, it is found that the branched HSn+1H for the process involving S5 can also lead to the 

formation of the weakly bound complex, HS3H⋯S3 (dissociation into component moieties is 

computed as ΔG = 18 kJmol-1) in an exergonic process of ΔGr = -27 kJmol-1 via H-atom 

abstraction, TS2-ii. The energy barrier to generate this complex from the Int2 (branched HSn+1H) in 

the indirect reaction of S5 and H2S is computed as ΔG‡ = 78 kJ mol-1. This suggests that Int2 in the 

process involving S5 is kinetically stable to HS-group migration (TS2-i) but labile to H-atom 

abstraction even though the formation of the unbranched HSn+1H from the moiety via the HS-group 

transfer is thermodynamically more facile. 

In summary, the indirect route of unbranched HSn+1H formation is found to proceed via: 

1.  co-ordination of reactants for n > 1, 

2. branched HSn+1H formation, 

3. H-atom shifts (1,2 shifts for reactions involving Sn, n = 1 and 2 but 1,2 and 1,3 shifts for 

reactions involving Sn, n = 3) and 

4. formation of the unbranched HSn+1H for reactions involving Sn, n ≤ 3. 

For S5 and S8, it proceeds via the co-ordination of reactants, H-atom abstraction, branched HSn+1H 

formation and HS-group transfer to form the unbranched HSn+1H. It is also found that in all the 

elucidated indirect reactions, the unbranched HSn+1H is always more stable than the branched 

(linear but non-terminal or non-linear but terminal) HSn+1H. 

 

6.3.3 Triplet State Reaction of Sn and H2S 

The computed triplet PESs for the reaction of the considered Sn and H2S are presented in Figure 6.7 

while their mechanisms of the reaction are presented in Scheme A.3.1 to Scheme A.3.6 of 

Appendix A.3. The triplet PESs in Figure 6.7 suggest that the reaction of Sn with H2S on the triplet 

PES proceed in three steps namely: co-ordination, H-atom abstraction and formation of the triplet 

state product of reaction for the considered Sn species. The coordinated complex (Int1) is formed 

from the reactants in an endergonic process of ΔGr = 18, 18, 22, 23, 24 and 31 kJmol-1 for the 

reactions involving S, S2, S3, S4, S5 and S8, respectively. 
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Figure 6.7. The triplet PESs for the reaction of Sn (n ≤ 5 and 8) with H2S: the r(S-S) of all the S⋯S 
bonds is > 2.06 Å, the normal[269,293,298] r(S-S) and the r(S-H) of all the S⋯H is > 1.34 Å. 

 

The H-atom abstraction transition state (TS1) is also calculated to be formed in an endergonic 

process and is located above Int1 at ΔGr = 42, 153, 65, 92, 79 and 93 kJ mol-1 for the process 

involving S, S2, S3, S4, S5 and S8, respectively. Furthermore, the triplet product for all the reactions 

involving the considered Sn species is generated in an endergonic process of 25, 149, 58, 102, 93 

and 103, respectively from the reactants. Nevertheless, there is no clear trend in the overall reaction 

energies on the triplet PES for the species considered unlike the trends obtained for the singlet state 

reactions of the Sn species with H2S as n increases. It is found that the energy barrier to generate the 

product of reaction and the overall reaction energy for the triplet process involving S is within 3 kJ 

mol-1 of the values computed at the MRCI+Davidson/aug-cc-pV(Q+d)Z level of theory.[345] 

A QTAIM analysis was performed to determine the nature of the bonding in of the triplet products 

and their molecular graphs are presented in Figure 6.8. On the basis of Figure 6.8, the product of 

reaction on the triplet PES in all cases may best be described as weakly attracted doublet state 

species of the form: HS⋯S𝑛H, SH⋯S𝑛H or [HS]⋯ [S𝑛H] depending on the n. 
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Figure 6.8. Molecular graphs for the product of reactions of Sn (n ≤ 5 and 8) with H2S on the triplet 

PES. The values of 𝜌(𝒓) and ∇2𝜌(𝒓) at the bcp’s on the bond paths between the fragments of the 

triplet products are in a.u. 
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This is because the magnitude of the 𝜌(𝒓) and ∇2𝜌(𝒓) at the bcp’s (orange dots) along the bond 

paths between the fragments suggests that electron density is depleted at the bcp’s; 𝜌(𝒓) < 0.1 a.u. 

and ∇2𝜌(𝒓) > 0 in all cases. These values indicate that the interactions are weak, non-covalent 

interactions.[134,138] Furthermore, the computed dissociation energy, ΔGr = ([G([HS] + [S𝑛H])] −

[G([HS]⋯ [S𝑛H])]) of the respective products into their constituent doublet species is: 3, 13, 20, 

16, 20 and 19 kJ mol-1 for the triplet state Sn+H2S process involving S, S2, S3, S4, S5 and S8. Hill and 

Bucher[3] computed the r(S-S) BDE of triplet state C2h disulfane HS⋯SH as ΔHr = 35 kJ mol-1 at 

the CCSD(T)/aug-cc-pVQZ level of theory. It is found that the that the BDE of the triplet state C2h 

disulfane HS⋯SH, with an r(S-S) = 2.492 Å formed from triplet S and singlet H2S, computed at the 

CCSD(T)/aug-cc-pVTZ level of theory in this study is in excellent agreement with the results of 

Hill and Bucher. The triplet state C2v disulfane has also been reported to exist but less stable in 

comparison to its C2h analogue.[3,345] Only the triplet state, C2h disulfane was found to be involved in 

the triplet state reaction between S and H2S probably because it is more stable compared to its C2v 

analogue. 

 

6.3.4 Singlet-Triplet PESs for the Reaction of Sn and H2S 

The singlet-triplet PESs for the S𝑛 +H2S (n ≤ 5 and 8) reactions are presented in Figure 6.9 to 

Figure 6.14, respectively. 

Comparatively, it is found that the thermodynamically most stable and ultimate reaction products lie 

on the singlet PES for the considered S𝑛 + H2S reactions and are always generated from the 

reactants in a downhill process. Furthermore, it is found that the product of the triplet state reactions 

using eq. (5.2) as a basis is always generated in an uphill process. This implies that the reverse of 

the singlet state reactions will always be endergonic processes while that of the triplet state 

reactions will always be exergonic processes. The exergonicity of the reverse of the triplet PESs 

may therefore provide an explanation for the observed residual H2S in sulfur recovered from natural 

gas or crude oil etc.,[13–15] in the thermal Claus process. Except for the PESs in Figure 6.12 (for the 

reactions involving S4), the singlet and triplet curves for the S𝑛 + H2S reactions are found to cross. 

This occurrence indicates the likelihood of the participation of “two-state reactivity”[323] in the 

reactions to favour the formation of the singlet state reaction product(s), HSn+1H. “Two-state 

reactivity” has been asserted to act as a means to low energy paths to otherwise difficult processes 

while spin inversion junctions are asserted to act as rate bottlenecks and mechanistic distributors in 

product formation.[323] Spin inversion and/or “two-state reactivity”[323] is therefore likely to affect 

the thermochemistry of the S𝑛 + H2S reaction(s). In addition, it is found that more than one 

conformational isomer of unbranched HSn+1H may be accessed from these reactions, especially for 
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the reactions involving Sn (2 ≤ n ≤ 5 and 8) on the singlet PES. Finally, the thermodynamically 

more stable HSn+1H species are always computed to form on the singlet PES whereas the 

thermodynamically more stable reactants may lie on the triplet or singlet PES depending on n and 

the electronic structure of the species. 

 

Figure 6.9. The singlet (black) and triplet (red) PESs for the reaction of Sn (n = 1) with H2S. 
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Figure 6.10. The combined singlet (black, with channel i and ii corresponding to the direct and 

indirect routes to the unbranched HSn+1H) and triplet (red) PESs for the reaction of Sn (n = 2) with 

H2S. Channel ii on the singlet PES leads to two different conformational isomers of the unbranched 

HS3H: path a of the channel produces the trans- while path b generates the cis- isomer of the 

species. 
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Figure 6.11. The combined singlet (black, with channel i and ii corresponding to the direct and 

indirect routes to the unbranched HSn+1H) and triplet (red) PESs for the reaction of Sn (n = 3) with 

H2S. The unbranched HS4H formed in channel i and ii on the singlet PES are different 

conformational isomers of the species. 
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Figure 6.12. The singlet (black) and triplet (red) PESs for the reaction of Sn (n = 4) with H2S. 
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Figure 6.13. The singlet (black) and triplet (red) PESs for the reaction of Sn (n = 5) with H2S. 
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Figure 6.14. The singlet (black) and triplet (red) PESs for the reaction of Sn (n = 8) with H2S. 

 

6.3.5 Conformational Isomerism in Singlet State Unbranched HSn+1H 

The results discussed above suggest that the structure of the unbranched HSn+1H computed to form 

via the direct route is always different from that formed via the indirect route of the S𝑛 + H2S 

reaction(s). The products of reaction exemplify this, for instance, for S2 and S3 (Figure 6.10 and 

Figure 6.11) when the reaction proceeds in more than one route. This observation is therefore 

suggestive of the existence of structural variation in the polysulfane(s) (unbranched HSn+1H, n ≥ 2) 

formed in the S𝑛 + H2S reaction(s); i.e., one structure of the species may undergo isomerisation to 

one or more other isomers. This is in line with the experimental observation of more than one 

conformational structure for polysulfanes, such as HS3H with two conformational isomers[289,343] 

and the computation of three conformational isomers of HS4H.[340] Such structures may include 

helical (C2) structures (e.g., (d) in Figure 6.15) especially when n ≥ 3.[291,347] 
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Figure 6.15. The optimised conformational structures of the unbranched HSn+1H formed in the 

direct; (a, C1/C2) and (c, C1) and indirect; (a, C1/C2), (b, C1) and (d, C1/C2) reaction routes of the 

reaction of S2 and S3 with H2S. Bond lengths are in angstroms (Å). 

 

As such, one or more conformational isomer(s) of the unbranched HSn+1H were computed to exist 

between the first unbranched reaction product and the helical (C2) structure of the species especially 

for unbranched HSn+1H with n ≥ 3. Only the conformational structure of HS2H (as in Figure 6.5) 

was found in the S + H2S reaction. Also, only the two isomers (Figure 6.15 (a, C1/C2) and (b, C1)) 

were computed for HS3H in agreement with experimental[343] observations. The computations 

suggest that there are three structural isomers for unbranched HS4H, HS5H and HS6H (Figure 6.16) 

and seven conformational structures for unbranched HS9H (Figure 6.17). It should be noted 

however, that the structures in Figs. 6.16 and 6.17 optimised as C1 structures. 

It is found that all the isomers of each of the unbranched HSn+1H with the same n possess similar 

formation energies relative to their reactants. The isomers of HS3H, HS4H, HS5H, HS6H and HS9H, 

are computed to be formed in exergonic processes of ΔGr = -101.0, -41.2 ± 1.2, -45.0 ± 2.0, -112.0 

± 1.0 and -110.0 ± 2.0 kJ mol-1, respectively. The results discussed here imply that unbranched 

HSn+1H (n ≥ 3) exist as mixtures of non-helical and helical conformers with similar thermodynamic 

stabilities per series. 

The rotational barriers between the respective isomers of HS3H, HS4H, HS5H, HS6H and HS9H are 

summarised in Table 6.1. 
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Figure 6.16. The optimised conformational structures of the unbranched HSn+1H: HS4H (top), HS5H 

(middle) and HS6H (bottom). The isomers are presented in order of their connectivity the transition 

states along reaction path. Bond lengths are in Å. 

 

The data in Table 6.1 suggests that regardless of the sise of the unbranched polysulfane(s), the 

rotational barrier for transforming from one isomer to another for a given unbranched polysulfane 

falls between 20.0 and 32.0 kJ mol-1. This observation agrees with reports in the literature[333,334,340] 

which suggest that calculated torsional barriers to internal rotation for HSSH and HSSSH are 

calculated between 20.0 and 35.0 kJ mol-1, with the cis-barrier always higher than the trans-barrier. 
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Figure 6.17. The conformational structures of the unbranched HS9H; conformers are presented in 

order of their connectivity to the transition states along reaction path. Bond lengths are in Å. 

 

Table 6.1. The forward (reverse) rotational barriers (ΔG‡ / kJ mol-1) between the isomers of 

unbranched HSn+1H: HS3H, HS4H, HS5H and HS6H  and HS9H.  

Species 𝚫𝐆(𝐚)
‡

 𝚫𝐆(𝐛)
‡  𝚫𝐆(𝐜)

‡  𝚫𝐆(𝐝)
‡  𝚫𝐆(𝐞)

‡  𝚫𝐆(𝐟)
‡  

HS3H 23.4 (23.4)      

HS4H 25.7 (25.8) 29.7 (28.7)     

HS5H 27.0 (26.8) 26.6 (23.1)     

HS6H 24.3 (24.7) 29.9 (27.5)     

HS9H 23.6 (26.9) 25.2 (25.6) 21.9 (21.9) 29.1 (29.2) 31.1 (26.4) 27.7 (29.0) 
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Furthermore, Drozdova et al.,[340] computed the torsional barriers to rotation about the central S-S 

bond of HSSSSH as 32.0 (cis-barrier) and 26.6 kJ mol-1 (trans-barrier) at the MP2/6-311G** level 

of theory. The only experimental data available for internal rotation barriers in HSn+1H species are 

those for HSSH: 33.5 ± 1.1 and 23.8 ± 0.2 kJ mol-1 (cis- and trans-barriers respectively)[337] and 

24.4 kJ mol-1 (trans-barrier).[338] The results in Table 6.1 indicate that it will be difficult to separate 

the different structures of the respective homologous series of unbranched polysulfanes at room 

temperature as their interconversions will occur rapidly. This is because the rotational energy 

barriers to the isomerisation of a given isomer of unbranched polysulfane to another and vice versa 

are similar, differing only by at most 5.0 kJ mol-1. 

Another interesting feature of the Sn and SH units in the unbranched HSn+1H worthy of note is that 

the r(S-S) in all the species are of similar length, 2.06 ± 0.01 Å while all the r(S-H) are 

approximately 1.34 Å. 

 

6.4 Conclusions 

The reaction of open chain sulfur clusters, Sn (n ≤ 5 and 8) with H2S to generate hydrogen 

polysulfanes (HSn+1H) has been investigated using the CCSD(T)/au-cc-pVTZ//𝜔B97XD/6-

311++G(2df,2p) level of theory on the singlet and triplet PESs. The study reveals that the HSn+1H 

species are formed only on the singlet PES while the products of reaction on the triplet PES may 

best be described as weakly attracted species of the form: HS⋯S𝑛H, SH⋯S𝑛H or [HS]⋯ [S𝑛H] 

depending on n. It is found that both branched and unbranched HSn+1H may be formed in the 

reaction process on the singlet PES with the unbranched species always thermodynamically more 

stable than their branched analogues. The unbranched HSn+1H are found to always form in 

exergonic processes from the respective reaction complexes (direct route) or their branched 

analogues (indirect route), whereas the branched HSn+1H are generated in either endergonic or 

exergonic processes from the reaction complexes. This indicates that there is a possibility of 

experimentally observing branched HSn+1H in addition to their unbranched analogues as they are 

either generated in a downhill process or at a relatively low energetic cost. It is observed that in 

most cases, the product on the singlet PES is generated from a likely participation of “two-state 

reactivity”[323] in the course of reaction. The reaction products on the triplet PES on the other hand 

are all computed to be formed in endergonic processes: i.e., the triplet PES of the reactions is either 

energetically unfavourable or relatively flat. This implies that the reverse of the singlet state 

reactions will always be endergonic processes while that of the triplet state reactions will always be 

exergonic processes. The exergonicity of the reverse of the triplet PESs may therefore provide an 

explanation for the observed residual H2S in sulfur recovered from natural gas or crude oil[13–15,260] 
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etc. in the thermal Claus process. This is because the thermodynamically more stable HSn+1H are 

always formed on the singlet PES whereas the thermodynamically more stable reactants may lie on 

the triplet or singlet PES depending on n and the electronic structure of the Sn species. It is observed 

that only the reaction involving S4 does not produce a branched HSn+1H. The overall reaction energy 

for the formation of unbranched HSn+1H on the singlet PES is found to decrease from ΔGr  = -314 

kJ mol-1 when Sn (n = 1) reacts through -101 kJ mol-1 when S2 reacts to -41 kJ mol-1 when S3 reacts 

after which it increases gradually to -108 and -113 kJ mol-1 when S5 and S8 react, respectively. This 

study suggests that unbranched HSn+1H with n ≥ 2 formed in these reactions may exist in more than 

one structural conformation. It also reveals that regardless of the sises of the unbranched HSn+1H, 

the rotational barrier for transforming from one isomer to another for a given unbranched HSn+1H 

falls between 20.0 and 32.0 kJ mol-1. Furthermore, the results indicate that the forward and 

backward rotational energy barrier for transforming one isomer of an unbranched HSn+1H to another 

may differ by, at most 5.0 kJ mol-1. This indicates that their separation at room temperature will be 

difficult, as their interconversions will occur rapidly. Finally, the study reveals that the r(S-S) in all 

the unbranched HSn+1H species are very similar: 2.06 ± 0.01 Å. 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

7 Electron correlation of atomic systems using a re-

parameterised Colle and Salvetti formula 
 

This chapter describes the re-parametrisation of the Colle and Salvetti (CS) correlation formula 

using the least squares fitting procedure in combination with accurately computed 25-term 

Laguerre-based Hartree-Fock (HF) wavefunctions for the helium atom and the hydride ion. 

Detailed determination and analysis beginning with fitting to helium atom HF densities reveals that 

the optimum constants for fitting to helium atom densities are; 𝑎 = 0.01628, 𝑏 = 0.18438, 𝑐 =

0.57594 and 𝑑 = 0.80562. These values are found to be similar to the CS constants. The results 

further suggest that the optimum constants for fitting to the hydride ion densities are; 𝑎 = 0.02578, 

𝑏 = 0.10943, 𝑐 = 1.49357 and 𝑑 = 1.22388. Application of the hydride fitting constants to a 

form of the Lee-Yang-Parr (LYP) correlation functional in combination with standard HF 

wavefunctions for several atomic systems suggests that resulting correlation energies are only 

accurate for the hydride ion. This implies that fitting to the accurately computed hydride ion 

densities does not improve the correlation energies nor account for the long range low density 

behaviour for atomic systems, especially anions. Nevertheless, the correlation energies of anions in 

particular are found to be especially accounted for by the fitting constants optimised from fitting to 

the helium atom densities. It may therefore be reckoned that long range correlation, characteristic 

of anionic systems, is accounted for by fitting to the computed helium atom densities. Finally, the 

results reveal that the variation of the approximated 𝐻(𝛽,𝑊) function proposed by CS with 

nucleus-electron distance follows a decay pattern similar to that of intracule densities with inter-

electronic distance for the helium atom and hydride ion, respectively. A discernible link between the 

variation of the two functions is however, yet unknown. 

7.1 Introduction 

The Lee-Yang-Parr (LYP) correlation functional[27] is one of the widely used[348–351] inexpensive 

computational approaches in DFT to treat the spin independent correlated motion of electrons 
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(Coulomb correlation).[16–18] This motion of electrons is ignored by the HF theory.[16,18] The HF 

theory accounts only for the correlated motion of electrons of the same spin (Fermi correlation) via 

the anti-symmetry of the HF wavefunction.[16–18] The energy of the ignored correlated motion of the 

electrons in a system, 𝐸𝑐, as defined by Löwdin,[39,40] is a measure of the error in the HF method, 

i.e., the difference between the exact, non-relativistic energy of a system and its energy computed at 

the HF level of theory. This is summarised as 𝐸𝑐 = 𝐸𝑒𝑥𝑎𝑐𝑡 − 𝐸𝐻𝐹, where 𝐸𝑐 is the correlation 

energy,  𝐸𝑒𝑥𝑎𝑐𝑡 is the exact, non-relativistic energy (or fully correlated energy[16–18]) and 𝐸𝐻𝐹 is an 

upper bound to the 𝐸𝑒𝑥𝑎𝑐𝑡 of the system thereby making 𝐸𝑐 always negative. Computing 𝐸𝑒𝑥𝑎𝑐𝑡 

however is computationally demanding except for small systems[352–360] which is why approximate 

approaches to compute the 𝐸𝑐 of a system such as the Colle and Salvetti (CS)[26] formula become 

important. The LYP correlation functional is based on the approximate correlation energy formula 

derived by Colle and Salvetti (CS).[26] This formula has however been criticised over the years for a 

variety of reasons.[351,361–364] Nevertheless, the CS correlation formula and the LYP correlation 

functional is still, very successful in computing the correlation energies of systems, especially 

neutral atoms, atomic cations and small molecules.[26,27,351] However these formulae were not 

extensively tested on atomic or molecular anionic systems. It is noteworthy that the correlation 

energy of a system controls most of its chemical properties.[364] There is therefore room for 

improvement of the CS correlation formula to also account for the 𝐸𝑐’s of atomic anionic systems. 

To achieve this, a first step could be to understand the physics captured or re-adjustment of the 

parameters in the model.[351] When this is done, it is likely to enhance the robustness of the formula 

in predicting 𝐸𝑐’s for a wide range systems. 

 

7.1.1 The Colle and Salvetti Correlation Energy Formula: Review of Literature 

The approximate expression for computing the correlation energy, 𝐸𝑐 of closed-shell systems 

derived by CS in 1975, beginning from a correlated wavefunction of the systems is expressed as:[26] 

𝐸𝑐 = −
1

2
∫𝑃2HF(𝑹,𝑹)(∫

𝑃2HF(𝒓𝟏, 𝒓𝟐)

𝑃2HF(𝑹,𝑹)
(2exp(−𝛽

2𝑟2) (1 − Φ(𝑹) (1 +
𝑟

2
))

− exp(−2𝛽
2𝑟2) (1 − Φ(𝑹) (1 +

𝑟

2
))

2

)
𝑑𝒓

𝑟
)𝑑𝑹                                                       (7.1) 

where 𝑃2HF(𝒓𝟏, 𝒓𝟐) is the HF two-electron density matrix without spin calculated at point 𝒓𝟏 and 

𝒓𝟐, 𝑟 = |𝒓𝑖 − 𝒓𝑗| and 𝑹 =
(𝒓𝑖 + 𝒓𝑗)

2
⁄ . To formulate this expression, CS started from the 

knowledge of the 𝑃2HF(𝑹,𝑹) and 𝜌1(𝑹) ≡ 𝜌(𝑹) = 𝜌, i.e.,  the HF two-electron and one-electron 

density matrices, respectively. These density matrices are related by: 
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                                                                      𝑃2HF(𝑹,𝑹) =
1

2
𝜌(𝑹)2                                                             (7.2) 

CS calculated these matrices by employing the HF method and the HF wavefunctions of atomic 

systems derived by Clementi.[365,366] CS formed the 𝜌(𝑹) of a given system by using the system’s 

Clementi HF wavefunction[365,366] through the expression:[367] 

                                                             𝜌(𝑹) ≡ 𝜌1(𝑹) = ∑𝑛𝑖 ∙ |𝜓𝑖(𝑹)|
2

𝑁 2⁄

𝑖=1

                                               (7.3) 

where 𝑁 is the number of electrons in the system and 𝑛𝑖 represents the occupancy of each spatial 

orbital (𝜓𝑖). CS wrote the correlated wavefunction for a closed-shell system as:[26] 

                                 Ψ(𝒙1, 𝒙2, … , 𝒙𝑁) = ΨHF(𝒙1, 𝒙2, … , 𝒙𝑁)∏(1 − 𝜑(𝒓𝑖 , 𝒓𝑗))

𝑖>𝑗

                            (7.4) 

 where 𝒙𝑖, 𝑖 = 1, 2, … ,𝑁 indicates the spatial and spin coordinates of electron 𝑖, 𝒓𝑖 represents all the 

spatial coordinates of electron 𝑖 and ΨHF(𝒙1, 𝒙2, … , 𝒙𝑁) is the 𝑁-electron HF determinant. The 

latter is written as:[32,368] 

                                ΨHF(𝒙1, 𝒙2, … , 𝒙𝑁) = (
1

𝑁!
)
1 2⁄

det|𝜓1(𝒙1)𝜓2(𝒙2)…𝜓𝑁(𝒙𝑁)|                          (7.5) 

These spatial orbitals are expanded in terms of basis functions, χ𝑖 (or 𝜙𝑗 as used in eq. (2.21)) in the 

Roothaan-Hartree-Fock[366,369–371] method as:[19,32] 

                                                                             𝜓𝑖 =∑𝑐𝑖𝑗χ𝑖

𝑀

𝑖=1

                                                                    (7.6) 

with χ𝑖 denoting the 𝑖𝑡ℎ basis function, 𝑐𝑖𝑗 as the orbital expansion coefficients and 𝑀 representing 

the overall number of basis functions of the orbitals. The basis functions are defined as:[366] 

                                                       χ𝑖 ≡ χ𝑝𝜆𝛼(𝑟, 𝜃, 𝜙) = 𝑅𝜆𝑝(𝑟)𝑌𝜆𝛼(𝜃, 𝜙)                                               (7.7) 

where 𝜆 ≡ 𝑙 and 𝛼 ≡ 𝑚𝑙, 𝑌𝜆𝛼(𝜃, 𝜙) is the spherical harmonics in complex form while 𝑅𝜆𝑝(𝑟) is the 

radial part of the basis functions.  𝑅𝜆𝑝(𝑟) is defined as:[366,371] 

                                            𝑅𝜆𝑝(𝑟) = [(2𝜂𝜆𝑝)!]
−1 2⁄

(2𝜉𝜆𝑝)
𝜂𝜆𝑝+1 2⁄ 𝑟𝜂𝜆𝑝−1𝑒−𝜉𝜆𝑝𝑟                                (7.8) 

where 𝜂𝜆𝑝 ≥ 𝜆 + 1 is an index for the principal quantum number, 𝑝 denotes the 𝑝𝑡ℎ basis function 

of symmetry 𝜆, 𝜉𝜆𝑝 is the orbital exponent chosen to give the best energy, 𝑟 is the separation of an 

electron from an atomic nucleus. 

CS defined 𝜑(𝒓𝑖 , 𝒓𝑗), the correlation factor in eq. (7.4) as: 

                                               𝜑(𝒓𝑖 , 𝒓𝑗) = exp(−𝛽
2𝑟2) (1 − Φ(𝑹) (1 +

𝑟

2
))                                      (7.9) 
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The authors approximated Φ(𝑹) by 
√𝜋𝛽

1+√𝜋𝛽
 while computing 𝛽 from the exclusion volume 

(Coulomb hole) via the Wigner’s formula[372,373] as:[26] 

                                                      𝛽 = (
√𝜋

√𝓀𝑒
3

) ∙ 𝜌(𝑹)1 3⁄ = 𝑞 ∙ 𝜌(𝑹)1 3⁄                                                (7.10) 

where 𝓀𝑒 represents the average number of electrons in the volume and 𝑞 is a proportionality 

constant. CS determined 𝑞 as 2.29 for the helium atom. To simplify eq. (7.1), CS made the 

approximation: 

∫
𝑃2HF(𝒓𝟏, 𝒓𝟐)

𝑃2HF(𝑹,𝑹)
(2exp(−𝛽

2𝑟2) (1 − Φ(𝑹) (1 +
𝑟

2
)) − exp(−2𝛽

2𝑟2) (1 − Φ(𝑹) (1 +
𝑟

2
))

2

)
𝑑𝒓

𝑟

=
4𝜋

𝜌(𝑹)
𝐻(𝛽,𝑊)                                                                                                             (7.11) 

in which: 

                                                           𝐻(𝛽,𝑊) = 𝑎
1 + 𝑏𝑊exp

(−𝑐 𝛽⁄ )

1 + 𝑑 𝛽⁄
                                                    (7.12) 

where:[26,363] 

                                    𝑊(𝑹) = 0.7628 ∙ 𝜌(𝑹)−8 3⁄ ∙ [∇𝒓
2𝑃2HF (𝑹 +

𝒓

2
, 𝑹 −

𝒓

2
)]
𝒓=0
                         (7.13) 

and ∇𝒓
2𝑃2HF is the Laplacian of the two-electron density matrix. The authors asserted that by finding 

the function, 𝐻(𝛽,𝑊) one may compute the correlation energy of a closed-shell system as:[26] 

                                                     𝐸𝑐 = −𝑎𝜋∫𝜌(𝑹)
1 + 𝑏𝑊𝑒

(−𝑐 𝛽⁄ )

1 + 𝑑 𝛽⁄
𝑑𝑹                                              (7.14) 

where 𝑑𝑹 = 𝑅2 sin(𝜃) 𝑑𝜃𝑑𝜙𝑑𝑟 with 0 ≤ 𝜃 ≤ 𝜋 and 0 ≤ 𝜙 ≤ 2𝜋.[34,367,374] As such, only the 𝜌(𝑹) 

and constants 𝑎, 𝑏, 𝑐 and 𝑑 are necessary to compute the correlation energy for a given system. CS 

determined eq. (7.12) by numerically integrating the left hand side (LHS) of eq. (7.11) at different 

distances within 0.3 ≤ 𝑅 ≤ 2 a.u.[26,349] from the nucleus of the helium atom. To determine eq. 

(7.12), CS formed 𝜌(𝑹) from the Clementi HF wavefunction of the helium atom[365,366] and applied 

it to eq. (7.11). They then fitted the 𝐻(𝛽,𝑊) function to the result of the integration thereby 

arriving at the values of 𝑎, 𝑏, 𝑐 and 𝑑 as; 𝑎 = 0.01565, 𝑏 = 0.173, 𝑐 = 0.58 and 𝑑 = 0.8.[26] 

CS went on to derive an analogous formula to eq. (7.14) for open-shell systems in 1979[375] by 

developing the 𝑃2HF(𝒓1, 𝒓2) in eq. (7.1) up to second order. The expression for open-shell systems 

written as:[375] 
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                                  𝐸𝑐 = −2𝜋∫
𝑃2HF(𝑹,𝑹)

𝛽3
(𝑎(

1 + 𝑏𝑊exp
(−𝑐 𝛽⁄ )

1 + 𝑑 𝛽⁄
))𝑑𝑹                                 (7.15) 

where 𝑎 = 0.18794, 𝑏 = 0.173, 𝑐 = 0.58 and 𝑑 = 0.8.[375] Cohen et al., in 1980[376] derived a CS-

type formula by imposing the Schrödinger equation via the quantum density matrix hierarchy 

equations. The authors stated that by solving the equation for the helium atom, they obtained the 

same functional form as CS. In 1983, CS reported a detailed analysis of the methods in eq. (7.14) 

and eq. (7.15), outlining their advantages over the configuration interaction techniques.[377] To 

summarise, CS asserted that eq. (7.14) and eq. (7.15) were computationally less time demanding, 

easier to use and produced the same level of accuracy in calculating the total electronic energies of 

ground and excited states of systems. They also stated that the methods allowed evaluation of the 

contribution to the total correlation energy from different electronic shells. Three years later, Cohen 

et al.,[378] again showed that using the CS formula, the correlation energies of systems could be 

computed from a Slater determinant developed for computing the exact density of crystals by 

applying the method to the beryllium atom. 

Eq. (7.14) was converted to the correlation energy functional of the electron density by Lee Yang 

and Parr (LYP) in 1988.[27] This, they expressed as:  

𝐸𝑐 = −𝑎∫
1

1 + 𝑑𝜌−1 3⁄
{𝜌 + 2𝑏𝜌−2 3⁄ [𝐶𝐹𝜌

5 3⁄ − 2𝑡𝑊 + (
1

9
𝑡𝑊 +

1

18
∇2𝜌)] exp−𝑐𝜌

−1 3⁄
} 𝑑𝑹  (7.16) 

Eq. (7.16) was formulated from eq. (7.14) by setting:[27] 

                                      [∇𝒓
2𝑃2HF (𝑹 +

𝒓

2
, 𝑹 −

𝒓

2
)]
𝒓=0

= 𝜌(𝑹)[𝑡HF(𝑹) − 2𝑡𝑊(𝑹)]                           (7.17) 

where the local HF kinetic energy density (𝑡HF(𝑹)) and the Weizsacker kinetic energy density 

(𝑡𝑊(𝑹)) are defined as: 

                𝑡HF(𝑹) =
1

8
∑
|∇𝜌𝑖(𝑹)|

2

𝜌𝑖(𝑹)
𝑖

−
1

8
∇2𝜌(𝑹) = 𝑡TF(𝑹) + (

1

9
𝑡𝑊 +

1

18
∇2𝜌(𝑹))                   (7.18) 

                                                          𝑡𝑊(𝑹) =
1

8

|∇𝜌(𝑹)|2

𝜌(𝑹)
−
1

8
∇2𝜌(𝑹)                                                  (7.19) 

respectively. The Thomas-Fermi kinetic energy density is defined as 𝑡TF(𝑹) = 𝐶𝐹𝜌
5 3⁄ =

(
3

10
(3𝜋2)2) ∙ 𝜌5 3⁄  where 𝐶𝐹 is a constant; ∇2𝜌(𝑹) is the Laplacian of the one-electron density 

matrix. LYP determined the constants in eqn. (7.16) as:[27] 𝑎 = 0.04918, 𝑏 = 0.132, 𝑐 = 0.2533 

and 𝑑 = 0.349. Eq. (7.14) and eq. (7.16) rely on the correlation factor, 𝜑(𝒓𝑖 , 𝒓𝑗) that satisfies the 

electron-electron cusp condition and the constants, 𝑎, 𝑏, 𝑐 and 𝑑.[16,26,27] In 1989, Miehlich et al.,[379] 

compared the performance of the Becke 1988 correlation functional (B88)[380] and the LYP 
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functional by using them to compute the correlation energies of the first-row atoms, ions and 

molecules. It is worth noting that the B88 correlation functional is a uniform electron gas (UEG) 

functional[380] while the LYP is not.[348] They found that correlation contributions to ionisation 

energies, electron affinities and dissociation energies obtained by the two models were comparable 

to other density functionals.[379] The authors also reported similar correlation energies for the 

systems considered using the two formalisms with the LYP performing better in most cases. CS 

again in 1990 generalised eq. (7.1) to treat electron correlation in systems with many-determinant 

wavefunction.[381] The authors asserted that the generalised method resulted in energies that were 

only a few tenths of the milli-hartree (10−4 a.u.) less accurate in comparison to the experimental, 

non-relativistic electronic energies for atomic and diatomic systems. Later this same year, Flocco et 

al.,[382] tested the limits of the validity of the CS formalism eq. (7.14), by applying same to a series 

of helium and beryllium iso-electronic ions and reported that the approximation breaks down for 

sufficiently high nuclear charge, 𝑍. Then in 1991, Moscardó and San-Fabián deduced an 

approximate CS-type functional from a wavefunction within the correlation factor approach.[383] 

The authors stated that the functional omitted terms that depended on the gradient of the density but 

included inhomogeneity effects and showed the simplicity of local density functionals without spin. 

They also suggested that the functional stressed the validity of the expression adopted by CS for 

building the correlation factor. The authors then concluded that their functional therefore provides 

an avenue for gaining insights into the deficiencies of functionals resulting from a perspective of the 

Hohenberg and Kohn (HK) theorem. Later that same year, the authors showed that the limitations in 

functionals derived from the HK theorem were due to the absence of non-local two-body effects.[384] 

They therefore stated that a complete description of the two-body problem required the 

incorporation of the two-electron density. The authors then used simple approximations to 

incorporate two-body density explicitly into equations of the density functional and concluded that 

their behaviour was improved considerably. 

In 1997, Tsuneda and Hirao[364] asserted that all the previously proposed CS-type correlation 

methods, CS[26] and LYP,[27] do  not obey the distinct treatment of paired-spin and unpaired-spin 

correlations due to fitting to the helium atom, a paired-spin system. This led the authors to propose 

a new, spin-polarised CS-type dynamical correlation functional that satisfies this condition to treat 

paired and unpaired-spin electron correlation in systems.[364] This, they summarised for paired-spin 

as: 

                            𝐸𝑐
𝜎1𝜎2 = −∫(

𝜌𝜎1
1 3⁄

𝐾𝜎1
+
𝜌𝜎2
1 3⁄

𝐾𝜎2
)

3
0.04488

1 + (
0.7826
𝛽𝜎1𝜎2

)
𝑑3𝑹      for 𝜎1 ≠ 𝜎2                        (7.20) 
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and for unpaired spin as: 

                                                𝐸𝑐
𝜎𝜎 = −0.07614∫(

𝜌𝜎

𝐾𝜎
3)𝑊𝜎𝜎𝑑

3𝑹                                                       (7.21) 

where 

                                                        𝛽𝜎𝜎′ = 𝑞new
𝜎𝜎′

𝜌𝜎
1 3⁄ 𝜌

𝜎′
1 3⁄
𝐾𝜎𝐾𝜎′

𝜌𝜎
1 3⁄ 𝐾𝜎 + 𝜌𝜎′

1 3⁄ 𝐾𝜎′
                                                      (7.22) 

and 

                                                        𝑊𝜎𝜎 =
[∇𝒓
2𝑃2HF
𝜎𝜎 (𝑹 +

𝒓
2 , 𝑹 −

𝒓
2)]𝒓=0

𝜌(𝑹)2𝛽𝜎𝜎(𝑹)
2

                                              (7.23) 

The authors asserted that 𝑞new
𝜎𝜎′  determined the correlation length in a system while 𝐾𝜎 is a constant 

determined from Becke’s exchange functional[64] as 𝐾𝜎 = [3 (
3

4𝜋
)
1 3⁄

+ 2𝜁
𝑥𝜎
2

1+6𝜁𝑥𝜎 sinh
−1 𝑥𝜎

]; 𝑥𝜎 =

|∇𝜌𝜎| 𝜌𝜎
4 3⁄⁄  and 𝜁 = 0.0042 a.u. They determined that for unpaired-spin using a beryllium 

wavefunction, 𝑞new
𝜎𝜎′ = 2.60 while for paired-spin using a helium atom wavefunction, 𝑞new

𝜎𝜎′ = 2.68.  

The authors then suggested that the new method gave good results for the total correlation energies 

of atomic systems in both excited and ground state, thus leading to an accurate estimation of the 

energy difference between two states. Tsuneda and Hirao also noted that the constants, 𝑎, 𝑏, 𝑐 and 𝑑 

in the CS correlation potential factor, i.e., the 𝐻(𝛽,𝑊) function (eq. (7.12)), were positive fitting 

parameters and went on to determine same using the least squares fitting (LSF) procedure.[364] Two 

years later, Tsuneda et al.,[363] reported the one-parameter CS-type correlation functional: 

                                𝐸𝑐
OP = −∫𝜌𝛼𝜌𝛽

1.5214𝛽𝛼𝛽 + 0.5764

𝛽𝛼𝛽
4 + 1.1284𝛽𝛼𝛽

3 + 0.3183𝛽𝛼𝛽
2 𝑑3𝑹                                    (7.24) 

where 𝛽𝛼𝛽 is defined as in eq. (7.22) with the subscript as 𝛼 ≡ 𝜎 and 𝛽 ≡ 𝜎′. To propose this 

functional (eq. (7.24)), the authors argued that the CS formula, eq. (7.14) could be separated into 

two expressions: 

                                                      𝐸𝑐
𝑛𝑜 𝑊 = −𝑎𝜋∫𝜌(𝑹)

1

1 + 𝑑 𝛽⁄
𝑑3𝑹                                                 (7.25) 

and 

                                                        𝐸𝑐
𝑊 = −𝑎𝜋∫𝜌(𝑹)

𝑏𝑊𝑒
(−𝑐 𝛽⁄ )

1 + 𝑑 𝛽⁄
𝑑𝑹                                                 (7.26) 

They suggested then that eq. (7.26) was not necessary in computing the correlation energies of 

systems as it led to increase in the 𝐸𝑐’s of light atoms and decrease in the 𝐸𝑐’s of atoms heavier than 

carbon. However, eq. (7.24) as formulated gave good correlation energies for atoms heavier than 
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carbon but wrong energies for atoms lighter than carbon when they used it to compute the 

correlation energies of He to Ar.[363] This same year, Singh et al., analysed the CS formula to assert 

that:[361] 

1. The formula is not normalised. 

2. The corresponding Coulomb hole structure is inaccurate. 

3. The formula violates the Coulomb hole sum rule. 

4. The Coulomb component of the Kohn-Sham (KS) correlation potential in the formula is 

inaccurate and so the KS correlation potential is erroneous. 

5. The Coulomb correlation and correlation-kinetic-energy components of the KS correlation 

energy are in error. 

The authors then concluded that the physics of the electron correlation described by the formula 

was inaccurate therefore, results obtained by the CS formula or those based on it are not well 

founded. 

In 2000, Caratzoulas and Knowles reported a critical review of the CS model (eq. (7.14)) after 

applying the formalism to two-electron problem and comparing with a variational wavefunction.[362] 

They found that the Coulomb hole was too short ranged in agreement with the earlier report of the 

inaccuracies associated with the Coulomb hole in the formalism by Singh et al.[361] Caratzoulas and 

Knowles therefore asserted that the CS model was biased towards regions of large electron density 

while neglecting pair correlations that are long ranged. They went on to note that the correlation 

energy per electron was found to be singular at the nucleus and that the error due to neglect of the 

single-particle operators was of the order of magnitude of the correlation energy itself. The authors 

concluded that the CS model predicts inaccurate pair correlations and should be used with great 

care. Tao et al., in 2001[385] suggested that the most fundamental approximation in the CS model, 

eq. (9) in the CS paper:[26,349] 

                    𝐸 = 𝐸HF +
1

2
∫𝑃2HF(𝒓𝟏, 𝒓𝟐)(𝜙

2(𝒓𝟏, 𝒓𝟐) − 2𝜙(𝒓𝟏, 𝒓𝟐)) ×
1

𝑟12
𝑑𝒓𝟏𝒅𝒓𝟐                     (7.27) 

gave rise to 25 % of the true correlation of a UEG and not 100 % as previously believed. The 

authors went on to state that while short-range correlations were described surprisingly well by the 

CS approach, important long-range correlations were not accounted for by the model. Cohen and 

Handy in 2001 mentioned that even though the LYP functional is one of the most often used 

correlation functional, it is not a UEG functional, is designed for unlike-pair (opposite-spin) 

correlation but gives zero correlation energy for hydrogen atom correctly.[348] These observations 

agree with those made by Tsuneda and Hirao.[364] It is noteworthy that for UEG functionals, the key 

is that parameterisations involve simulations such that:[348] 
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                                                          𝐸tot = 𝑇𝑠[𝜌] + 𝐸x[𝜌] + 𝐸𝑐[𝜌]                                                         (7.28) 

where the total energy of a system, 𝐸tot is deduced from the simulations, while the kinetic energy 

functional, 𝑇𝑠 and the exchange energy functional, 𝐸x[𝜌] are analytically known. The authors[348] 

went on to assert that the major error of the LYP approach is that its form gives zero correlation 

energies for like-spin (parallel-spin) correlation while also over appropriating correlation 

contributions to the unlike-spin. In 2002, Handy and Cohen examined the CS derivation of the LYP 

functional in detail while searching for a justifiable form for a molecular dynamic correlation 

functional.[349] The authors argued that the reasonable expression for correlation energy for this 

formalism: 

                           𝐸𝑐 = ∫𝑃2HF(𝒓𝟏, 𝒓𝟐)(𝜙
2(𝒓𝟏, 𝒓𝟐) − 2𝜙(𝒓𝟏, 𝒓𝟐)) ×

1

𝑟12
𝑑𝒓𝟏𝒅𝒓𝟐                            (7.29) 

where 2𝜙 is the dominant term, should account for paired-spin correlation. The authors therefore 

combined this argument and others made in their paper to formulate a four parameter generalised 

gradient correlation functional, CS1. They suggested that this functional performed nearly as well 

as the LYP functional. They went on to state that unlike the LYP functional, CS1 had two 

identifiable terms for opposite-spin and two identifiable terms for parallel-spin correlation. They 

concluded that it may not be possible to find a local functional that was significantly more accurate 

for chemistry applications than the commonly used generalised gradient approximation (GGA) 

functionals. Later this same year, Imamura et al.,[350] investigated the behaviour of the CS model 

using helium as a case study. They analysed the correlation hole and energy contributions to reveal 

that correlation effects were not taken into account appropriately due to missing kinetic correlation. 

They also stated that the simplified form of the CS model, eq. (7.14) also had some problems. The 

authors then addressed these issues by constructing a new CS-type correlation functional based on 

𝑃2HF that included correlation effects and kinetic energy via an adiabatic connection formula. 

Furthermore, the authors asserted that the opposite and parallel-spin correlations were treated 

independently. They also suggested that their functional reproduced accurate correlation energies 

for the atoms, hydrogen to argon. 

In 2003, Sancho-García and Moscardó[386] examined the behaviour of the CS formalism for strongly 

correlated systems with negligible non-dynamic effects. The authors used the CS model in 

conjunction with a multi-configurational wavefunction and were able to accurately reproduce multi-

reference coupled-cluster results for automerisation of cyclobutadiene. They also asserted that they 

were able to provide the correct energy profiles for dissociating diatomic molecules. They then 

suggested that the results confirmed the quality of the CS model for complicated chemical problems 

even though it did not satisfy some known exact properties. Ragot and Cortona modified the CS 
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formalism to explicitly include the kinetic contribution to the correlation energy in 2004.[387] The 

authors achieved this by applying a many-electron wavefunction and including correlation effects 

through the Jastrow factor (used by CS): 

                                           𝑓(𝒓1, 𝒓2) = [1 − Φ(𝑹) (1 +
𝑟12
2
)] exp(−𝛽(𝑹)

2𝑟12
2 )                                    (7.30) 

By applying eq. (7.30) to a UEG, they re-wrote the equation as: 

                                                    𝑓(𝑟12) = [1 − Φ(1 +
𝑟12
2
)] exp(−𝛽

2𝑟12
2 )                                            (7.31) 

they derived an analytical expression for the kinetic correlation energy. Thereafter, they deduced an 

expression for the total correlation energy of systems. They suggested that unlike the CS approach, 

the parameters entering their expressions were determined analytically therefore leading to a 

satisfactory agreement with the Perdew and Wang[388] correlation energy functional based on UEG. 

Two years later, Moscardó et al.,[389] studied the CS correlation factor by comparing the behaviour 

of three different correlation functionals. The authors used the three functionals to analyse the: i.) 

normalisation, ii.) sum rule, iii.) Coulomb hole, iv.) correlation energy integrand and v.) the Wigner 

exclusion hole. They then noted that the correlation factor proposed by CS was very good for 

modelling electron correlation in atoms. They also suggested that the limitations in the CS model 

were mainly due to inadequate use of the first mean value theorem of integral calculus. Then in 

2007, Moscardó[390] applied the CS wavefunction model to the UEG model using different levels of 

approximations. He asserted that contrary to previous assertions by Tao et al.,[385] the CS formalism 

was able to semi-quantitatively reproduce the properties of the UEG. He went on to state that the 

requirement for this outcome was the choice of the parameter, 𝑞, entering the CS wavefunction. The 

author also put forward a simple functional for the correlation energy and asserted that the results 

obtained from its application to the UEG were reasonable. He concluded that the CS wavefunction 

remained a good option to build the correlation component of an 𝑁-electron system in an 

approximate way. Later this same year, Pittalis et al., suggested a remedy for the inability of the 

exchange-correlation functionals to reproduce the degeneracy of different ground states of open-

shell atoms.[391] To do this, the authors presented an analysis of the problem by investigating 

functionals that explicitly depended on the KS orbitals. They then went beyond the exact-exchange 

approximation by adding correlation in the form of the CS model to show how current-dependent 

terms enter the CS expression and evaluated their relevance. The authors concluded that very good 

description of the degeneracy of ground states for atoms of the first and second row was obtained. 

In 2008, Imamura et al., proposed a CS-type electron-nucleus correction in the nuclear orbital and 

molecular orbital theory.[392] The authors suggested that the correction was designed to correct the 

cusp condition for the electron-nucleus interaction. Furthermore, they asserted that since the 
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correction is expressed in terms of the electron and nucleus densities, the evaluation was 

computationally feasible. Also in this same year, Pittalis et al.,[393] derived a local CS-type 

approximation for the correlation energy in two-dimensional (2-D) electronic systems by 

considering a Gaussian approximation for the pair density. The authors introduced an ad hoc 

modification of the CS model and claimed that it better accounted for both long-range correlation 

and the kinetic energy contribution to the correlation energy. They also asserted that their functional 

was local and depends parametrically on the number of electrons in a system. They went on to 

apply the formulated functional to the UEG and a set of 2-D quantum dots covering a wide range of 

electron densities. They then suggested that in all their test cases, they found an excellent agreement 

between their results and the exact correlation energies. Handy published a paper in 2009 titled; the 

importance of the CS paper for computational DFT.[351] In this paper, the author showed the 

importance of the CS model (eq. (7.1) and eq. (7.14)) in the development of modern computational 

DFT. To do this, the author discussed several topics but most importantly the development of the 

LYP dynamic correlation functional from the CS model. In doing so, he asserted that the method 

and allied models could be improved by re-adjusting the value of the four constants; 𝑎, 𝑏, 𝑐 and 𝑑 in 

eq. (7.12) by fitting to atomic correlation energies of helium to argon. It is worthy of note that 

Tsuneda and Hirao also determined the values of these constants by means of the LSF procedure by 

fitting to the helium atom data.[364] 

In 2010, Ragot[394] derived the one-electron reduced density matrix underlying their earlier derived 

model[387] in closed form. He alluded that the density matrix was parameter-free by construction but 

not 𝑁-representable due to the approximations used in the Ragot-Cortona[387] approach. The went 

on to assert that the resulting density matrix formally corrected the short- and long-range 

expansions. Udagawa et al., proposed an electron-nucleus CS-type correlation functional for 

multicomponent DFT in 2014.[395] They demonstrated that the functional quantitatively reproduced 

the quantum mechanical effects of protons and the effective potential energy curve for the H2 

molecule. They then asserted that the strategy employed to develop the functional could be applied 

as a recipe to deduce new functionals for the potentials of other particle interactions such as the 

electron-positron and electron-muon interaction since it was derived without unphysical 

assumptions. Three years later, Yang et al., formulated the electron-proton correlation functional, 

epc17 by extending the CS formalism and implemented it within the nuclear-electronic orbital 

(NEO) framework.[396] The authors asserted that the NEO-DFT (epc17) method efficiently produced 

accurate proton densities and is promising for diverse applications. A year later in 2018, Brorsen et 

al., asserted that multicomponent DFT allows the consistent quantum mechanical treatment of both 

electrons and nuclei.[397] The authors derived yet another electron-proton functional denoted epc18 
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using a different form for the parameter interpreted as representing the correlation length for 

electron-proton interaction. They then asserted that epc18 performed similarly to epc17 in 

predicting 3-D proton densities and affinities. Then in 2019, Patra and Samal constructed CS-type 

energy functionals for dynamical correlation for 2-D quantum systems.[398] The authors assessed the 

proposed functionals through parabolic quantum dot systems to compare exact correlation energies 

along with self-consistent results. They then asserted that the computed correlation energies agreed 

well with reference results having minimum errors. 

In all the available literature summarised above, no rational re-adjustment or re-determination of the 

constants in eq. (7.12) has been reported. There is also, little or no correlation energies for anions 

(atomic or molecular) computed when testing CS or allied functionals as almost all the reported 

correlation energies are for neutral atoms or cations. It is on these grounds that this work finds its 

significance. 

 

7.1.2 Justification of Study 

It is proposed that the CS models can be improved upon by re-determining the constants, 𝑎, 𝑏, 𝑐 and 

𝑑 in eq. (7.12) using a fitting procedure. In addition, it has been asserted that the CS model fails to 

account for important long-range correlations.[362,385] It was mentioned that the LSF approach was 

used to determine the constants while fitting to the helium atom density.[364] However, no report 

exists in the available literature for addressing the long-range correlation behaviour nor rational 

and/or systematic determination of the constants by fitting to anionic densities. It is in this regard 

that this work hopes to capture the long-range correlation behaviour by rational and systematic 

fitting to the hydride ion HF densities. The HF wavefunction for the hydride ion is likely to possess 

properties that will represent the long-range behaviour asserted to be lacking[362,385] in the CS 

formalism. This is because the density and Coulomb hole curves arising from accurate HF and fully 

correlated wavefunctions for the helium atom and hydride ion reveal that the densities die out faster 

for the helium atom than the hydride ion. This is summarised in the density and Coulomb hole 

distributions with inter-electronic separation in Figure 7.1 for the helium atom and hydride ion as 

reported by Cox et al.[18] The Coulomb hole curves in Figure 7.1 were calculated as ∆𝐷(𝑟) =

𝐷FC(𝑟) − 𝐷HF(𝑟).
[18] It can also be seen from Figure 7.1 that the Coulomb hole and density of the 

helium atom is less diffuse in comparison to that of the hydride ion. It is therefore reasonable to 

conclude that the Coulomb hole for the helium atom represents very well the short-range[362] 

correlation behaviour while that for the hydride ion is likely better to capture the long-range 

correlation behaviour. Hence, the 𝛽 parameter for these systems will also be different; likewise, the 

fitting constants; 𝑎, 𝑏, 𝑐 and 𝑑. 
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Figure 7.1. Variation of the intracule densities, 𝐷𝑖(𝑟) with inter-electronic distance 𝑟 = 𝑟12 for: (a) 

the helium atom and (b) the hydride ion. Blue dashed lines are for densities computed with the fully 

correlated method (𝐷FC(𝑟)) and green dotted lines represent densities computed with the HF 

method (𝐷HF(𝑟)). Also included is the Coulomb hole (shaded portion) for the systems, respectively 

(red solid lines); the inset in (a) is a secondary Coulomb hole. Adapted from Baskerville, King, 

Cox, R. Soc. Open Sci. 2019, 6, 181357.[18] 

 

7.1.3 Aim of Study 

The aim of the work presented in this chapter is to re-parameterise eq. (7.12) in the CS formalism 

using the HF densities for the helium atom with an accurate helium wavefunction and test the 

workability of the in-house implementation of the formula using the determined constants. The HF 

density for the hydride ion will then be used to determine the constants in eq. (7.12) with the hope 

of capturing the long-range correlation behaviour in the CS model. To do this, the objectives are: 

1. Accurate Laguerre-based HF wavefunction will be computed for the helium atom and the 

hydride ion.[16] 
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2. The wavefunctions will be used to compute the densities required to determine the 

constants, 𝑎, 𝑏, 𝑐 and 𝑑 in eq. (7.12) for the helium atom or hydride ion via the LSF[399,400] 

procedure. 

3. The determined constants in combination with Koga et al.,[401] HF wavefunctions for 

systems will be used to compute the correlation energies of several atomic systems 

including anions. 

 

7.2 Computational Details 

All computations presented in this chapter were performed using an in-house Python and/or 

Maple[402] code. 

 

7.2.1 The Laguerre-Based HF Wavefunctions for Helium Atom or Hydride Ion 

The singlet ground state of the helium atom and hydride ion within the fixed nucleus approximation 

are computed using an accurate in-house implementation of the HF method using a Laguerre-based 

wavefunction.[16,18] Here, the HF wavefunction (also in eq. (2.14)) is taken as:[16,18,19,32] 

                                                                  𝜓HF(𝑟1, 𝑟2) = 𝜓(𝑟1 )𝜓(𝑟2 )                                                      (7.32) 

where the required anti-symmetry of the total wavefunction is embedded in the spin part which has 

been integrated out. 𝜓(𝑟𝑖 )  has the form:[16,18] 

                           𝜓(𝑟𝑖 ) = 𝑒
−(
1
2
)𝐴𝑟𝑖∑𝐶(q)𝐿q(𝐴𝑟𝑖)

∞

q=0

(≅ ∑ 𝑐q𝑖𝜙q

𝑀−1

𝑞=0

) ,       𝑖 = 1 or 2                     (7.33) 

where 𝐴 is treated as a non-linear variational parameter (NLP) and is introduced to increase the 

convergence for a given basis set sise. The infinite sum is solved in truncated form with 𝑀 basis 

functions 𝜙q (χ𝑖 as used in eq. (7.6)) taken to be the normalised Laguerre functions, 𝑒−𝑥 2⁄ 𝐿q(𝑥) of 

degree (or order) q. These Laguerre functions are defined from 0 to ∞ as:[16,17,105,106] 

                     ∫ 𝑒−𝑥[𝐿q(𝑥)]
2
𝑑𝑥

∞

0

≡ ∫ 𝑒−𝑥𝐿p(𝑥)𝐿q(𝑥)𝑑𝑥

∞

0

= 𝛿pq = {
1
0

(when p = q)

(when p ≠ q)
                   (7.34) 

where 𝛿pq is the Kronecker delta. The two-electron system lies in the plane of the two axes of a 

right-handed system with the third axis perpendicular to the plane of the two-electron system.[106] 

As such, the internal coordinates are chosen to be the inter-particle distances, 𝑟1, 𝑟2 and 𝑟12. The 𝑟𝑖’s 

are therefore obtained by choosing the translationally invariant Cartesian coordinates of the 

particles:[16,106] 
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                       𝑡1 = (𝑥𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛1 − 𝑥𝑛𝑢𝑐𝑙𝑒𝑢𝑠)        and         𝑡2 = (𝑥𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛2 − 𝑥𝑛𝑢𝑐𝑙𝑒𝑢𝑠)                 (7.35) 

to be: 

                                                   𝑟𝑖 = |𝑡𝑖|      𝑖 = 1, 2      and    𝑟12 = |𝑡2 − 𝑡1|                                       (7.36) 

To evaluate the internal coordinate part of the Jacobian, the Cartesian coordinates are transformed 

via:[16,105] 

                                                              𝑑𝑥1
3𝑑𝑥2

3 = 8𝜋2𝑟1𝑟2𝑟12𝑑𝑟1𝑑𝑟2𝑑𝑟12                                             (7.37) 

By so doing, the integration is over 𝑑𝑟1𝑑𝑟2𝑑𝑟12 as the 𝑟12 in the Jacobian is easily cancelled by the 

1

𝑟12
 in two-electron integrals. For systems considered, the 𝜓(𝑟𝑖 ) are independent of the angle as they 

have 1S ground state. This wavefunction is chosen to complement work in the Cox group on fully 

correlated systems. 

For these two-electron atoms, i.e., systems having the form {𝑒1
− 𝑒2

− 𝑚𝑁
𝑍+}, the general form of the 

non-relativistic, time independent Schrödinger equation in its simplest form[106] is expressed as in 

eq. (2.1); 𝐻̂𝜓 = 𝐸𝜓. In the fixed nucleus approximation (i.e., the mass of the nucleus, 𝑚𝑁 = ∞), 

the Hamiltonian for these systems, 𝐻̂ is a sum of the kinetic and potential energy terms expressed in 

atomic units (𝑚𝑒 = 𝑒 = (4𝜋𝜖0)
−1 = ℏ = 𝑎0 = 1) as:[16,17] 

                                                  𝐻̂ = −
1

2𝑚1
∇1
2 −

1

2𝑚2
∇2
2 −

𝑍

𝑟1
−
𝑍

𝑟2
+
1

𝑟12
                                           (7.38) 

where 𝑟𝑖, 𝑖 = 1, 2 are the nucleus-electron distances, 𝑟𝑖𝑗 denotes the inter-electron distances, 𝑚𝑖 = 1 

represents the masses of the electrons while the 𝑍 stands for the nuclear charge. As discussed in 

Chapter 2, the HF equations have the form 𝐹̂𝜓𝑖(1) = 𝜀𝑖𝜓𝑖(1) where: 

𝐹̂ = 𝐻̂𝑐𝑜𝑟𝑒(1) +∑(2𝐽𝑗(1) − 𝐾̂𝑗(1))

𝑁

𝑗=1

,   𝐻̂𝑐𝑜𝑟𝑒(1) = −
1

2𝑚1
∇1
2 −

𝑍

𝑟1
 

The core Hamiltonian is solved using the series solution method[17] by substituting eq. (7.33) into 

the HF equations and solving (𝐻̂𝑐𝑜𝑟𝑒 − 𝐸)𝜓 = 0. Here, the Laguerre recurrence relations:[16,17,105] 

                                   𝑥𝐿q(𝑥) = −(q + 1)𝐿q+1(𝑥) + (2q + 1)𝐿q(𝑥) − q𝐿q−1(𝑥)                          (7.39) 

                                                           𝑥𝐿q
′ (𝑥) = q𝐿q(𝑥) − q𝐿q−1(𝑥)                                                      (7.40) 

                                                        𝑥𝐿q
′′(𝑥) = (𝑥 − 1)𝐿q

′ (𝑥) − 𝑞𝐿q(𝑥)                                                  (7.41) 

are employed to eliminate all the derivatives and powers of the variables 𝑟𝑖 arising from 𝐻̂𝑐𝑜𝑟𝑒 and 

the overlap.[16,106] The primes denote the derivatives (first (′) and second (′′) derivatives) with 
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respect to 𝑥.[105] This leads to a 5-term[105] recursion relation between the 𝐶(𝑞) in eq. (7.33) 

summarised as:[16,17] 

                                                                      ∑ 𝑅𝛼(q)𝐶(q + 𝛼)

+2

𝛼=−2

= 0                                                    (7.42) 

This is used to form a sparse secular determinant that is solved in truncated form to give the 

eigenvalues.[403] This recursion relation represents a set of linear equations for determining 𝐶(𝑞) 

and the vanishing of their determinant gives the hydrogen-like core energy eigenvalues of the 

systems. These one-electron terms are very fast to calculate using the series solution method 

explicitly.[16–18] The recursion relation is calculated once and then used to determine the 𝑀2 matrix 

elements for a given matrix sise, 𝑀 (which in the present work is 𝑀 = 25, i.e., a 25-term 

wavefunction). It is not possible to use this method for the two-electron integrals arising from 𝐽 and 

𝐾̂, as they give rise to terms that do not satisfy the Laguerre orthogonality condition (eq. (7.34)). 

Nevertheless, these integrals are analytically solved by exploiting the properties of the Laguerre 

polynomials, 𝐿q(𝑥) defined as:[16,17] 

                                        𝐿q(𝑥) =
1

q!
𝑒𝑥

𝑑q

𝑑𝑥q
(𝑥q𝑒−𝑥) = ∑(−1)q𝑖 (

q

q𝑖
)
𝑥q𝑖

q𝑖!

q

q𝑖=0

                                   (7.43) 

To do this, the integral is converted to perimetric coordinates, 𝓏𝑖 (Figure 7.2): 

 

Figure 7.2. Inter-particle 𝑟𝑖 (a) and perimetric 𝓏𝑖 (b) coordinate systems used for unit charged two-

electron atoms; the circle inside the system represented by (b) gives rise to the perimetric 

coordinates as the subdivisions of the sides of a triangle. In atomic system, 𝑟1 and 𝑟2 are the 

nucleus-electron separation while 𝑟12 is the electron-electron separation. Similarly, 𝓏1 and 𝓏2 are 

the electron coordinates while 𝓏3 involves the nuclear coordinate. “Reprinted (Adapted) from 

Advances in Quantum Chemistry, 77, H. Cox, A.L. Baskerville, The Series Solution Method in 

Quantum Chemistry for Three-Particle Systems, Copyright (2018), 40[17] with permission from 

Elsevier.” 
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where 𝓏𝑖 = 𝑟𝑗 + 𝑟𝑘 − 𝑟𝑖 with {𝑖, 𝑗, 𝑘} denoting the cyclic permutation of {1, 2, 12} such that; 

                                                                          𝓏1 = 𝑟2 + 𝑟12 − 𝑟1                                                             (7.44) 

                                                                          𝓏2 = 𝑟1 + 𝑟12 − 𝑟2                                                             (7.45) 

                                                                          𝓏3 = 𝑟1 + 𝑟2 − 𝑟12                                                             (7.46) 

to give independent integration domains where: 

                                                                                 𝑟𝑖 =
𝓏𝑗 + 𝓏𝑘

2
                                                                (7.47) 

When this is done, the internal coordinate part of the Jacobian is evaluated by transforming the 

Cartesian coordinates to the inter-particle and then to the perimetric coordinates, i.e.,[16,105] 

         𝑑𝑥1
3𝑑𝑥2

3 = 8𝜋2𝑟1𝑟2𝑟12𝑑𝑟1𝑑𝑟2𝑑𝑟12 =
𝜋2

4
(𝓏2 + 𝓏3)(𝓏3 + 𝓏1)(𝓏1 + 𝓏2)𝑑𝓏1𝑑𝓏2𝑑𝓏3         (7.48) 

The polynomials in eq. (7.43) are then solved using the standard integral:[17] 

                                                            ∫ 𝑥𝑛𝑒−𝑎𝑥d𝑥

∞

0

= 𝛤(𝑛 + 1)𝑎−𝑛−1                                                  (7.49) 

The sum of the one-electron and two-electron matrix elements is then used to form the Fock 

matrices to solve the Fock equations as a generalised eigenvalue problem to determine the HF 

energy and the coefficients of the new wavefunction. 

 

7.2.1.1 Quality of Wavefunction and Expectation Values 

The quality of the wavefunction obtained by solving the HF equations using a wavefunction of the 

form in eq. (7.33) can be assessed by computing various expectation values that satisfy the virial 

and cusp conditions.[16–18] The virial condition depends on the entire space of the system while the 

cusp condition defines the behaviour of the wavefunction at the singularities of the Coulomb 

potential where two or more particles coalesce.[17,106] As such, good energies and cusps suggest 

good wavefunctions.[17] 

7.2.1.1.1 The Virial Condition 

For particles interacting via Coulomb forces, if the Hamiltonian describing the system in which they 

interact is 𝐻̂ = 𝐾̂ + 𝑉̂, where the expectation value of the Hamiltonian for the system is 〈𝐻̂〉 ≡ 𝐸 =

〈𝐾̂〉 + 〈𝑉̂〉, i.e., the sum of the expectation values of the kinetic and potential energy operators, the 

virial theorem for the Coulomb potential is:[18,106,404] 



168 
 

 

                                                                                   
〈𝑉̂〉

〈𝐾̂〉
= −2                                                                    (7.50) 

As such, the factor 𝜂 can be defined for these systems as:[16,18,404] 

                                                                          𝜂 =
〈𝑉̂〉

〈𝐾̂〉
+ 2 = 0                                                                (7.51) 

The extent to which this equation is satisfied determines the quality of the wavefunction.  

7.2.1.1.2 The Cusp Condition 

For coalescing two-body Coulomb systems, the potential energy becomes singular (discontinuous) 

but must remain self-adjoint and bounded.[405] This change in the potential energy is compensated 

for by the kinetic energy at the singularity.[405] For such systems, the exact value of a two-particle 

cusp, 𝜈𝑖𝑗 is defined as:[406,407] 

                                                                       𝜈𝑖𝑗 = 𝑍𝑖𝑍𝑗
𝑚𝑖𝑚𝑗

𝑚𝑖 +𝑚𝑗
                                                              (7.52) 

The ratios of the cusps are determined by the gradient of the wavefunction at coalescence 

as:[406,408,409] 

                                                           𝜈𝑖𝑗 = 〈𝜈̂𝑖𝑗〉 =

⟨𝜓 |𝛿(𝒓𝑖𝑗) (
𝜕

𝜕(𝒓𝑖𝑗)
)| 𝜓⟩

⟨𝜓|𝛿(𝒓𝑖𝑗)|𝜓⟩
                                         (7.53) 

where 𝛿(𝒓𝑖𝑗) is the two-particle Dirac delta function, used to evaluate the effect of correlation and 

gives the probability of 𝒓𝑖𝑗 = 0 for each value of 𝑟 (e.g., Figure 7.1) along the radial distance of the 

electrons from the nucleus.[18,410] The exact value of the electron-electron cusp is 𝜈12 = 𝜈21 = −0.5 

but for HF calculations, 𝜈12 = 𝜈21 = 0 while the value of the nucleus-electron cusp is 𝜈31 = 𝜈32 =

−𝑍.[16,411] The difference between the computed value of the cusps and its exact value (eq. (7.52)) 

gives an indication of the quality of a wavefunction. It should be noted nevertheless that good cusps 

cannot guarantee good energies as the energies depend on the entire space whereas the cusp values 

are point based.[17,106] Therefore, good energies and good cusps are required to guarantee that a 

wavefunction is of high quality. 

 

7.2.2 Standard HF Wavefunctions for Helium Atom or Hydride Ion 

The standard HF wavefunctions determined by Clementi et al.,[365,366] and/or Koga et al.,[401] are 

used to form the 𝜌(𝑹) of systems with two or more electrons in order to compute their correlation 

energies. In order to form the standard HF wavefunctions for the systems of interest in this thesis, 

eq. (7.6) is re-written as: 
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               𝜓𝑖 = 𝜓𝑝𝜆𝛼 = ∑𝑐𝑝𝜆𝛼 [([(2𝜂𝜆𝑝)!]
−1 2⁄

(2𝜉𝜆𝑝)
𝜂𝜆𝑝+1 2⁄

𝑟𝜂𝜆𝑝−1𝑒−𝜉𝜆𝑝𝑟)𝑌𝜆𝛼(𝜃, 𝜙)]

𝑀

𝑝=1

        (7.54) 

where 𝑐𝑝𝜆𝛼 are the orbital expansion coefficients, 𝜆 ≡ 𝑙 (the angular momentum quantum number 

and gives the symmetry of the function/orbital), 𝛼 ≡ 𝑚𝑙 and 𝑀 represents the overall number of 

basis functions. 𝑌𝜆𝛼(𝜃, 𝜙) are the normalised spherical harmonics of the basis functions in complex 

form (its angular part) and are always kept constant in the course of a computation.[16,366,371] Every 

other symbol retains its meaning as in 7.1.1. To form these wavefunctions, the 𝑐𝑝𝜆𝛼’s and 𝜉𝜆𝑝’s are 

then extracted from the atomic function tables of Clementi[366,371] or Koga et al.,[401] and 

incorporated for the expansion of 𝜓𝑝𝜆𝛼 as in eq. (7.54). Once this expansion (eq. (7.54)) is 

performed for the respective orbitals of a given system, its complete wavefunction on the basis of 

eq. (7.5) is computed by incorporation of the result of eq. (7.54). The expansion in eq. (7.54) is 

illustrated below by application of the 𝑐𝑝𝜆𝛼’s and 𝜉𝜆𝑝’s taken from the Clementi atomic function 

tables[371] for neutral helium and boron atoms. This same notation/format is used in the Koga et al., 

atomic functions tables.[401] Figure 7.3 is an annotation to explain the components of typical atomic 

function tables. 
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Figure 7.3. Annotation of the atomic function tables for neutral helium and lithium atoms: At the 

top of each atomic function table is a summary of the name of the system, its electronic 

configuration, its spin state, its total HF energy (T.E), its potential energy (P.E), its kinetic energy 

(K.E) and its virial term (V.T). D+01 or D+02 represents × 101 or × 102, respectively.“Reprinted 

(Adapted) from Atomic Data and Nuclear Data Tables, 14, E. Clementi, C. Roetti, Roothaan-

Hartree-Fock atomic wavefunctions Basis functions and their coefficients for ground and certain 

excited states of neutral and ionised atoms, Z ≤ 54, Copyright (1974), 302[371] with permission from 

Elsevier.” 

 

The 𝑐𝑝𝜆𝛼’s and 𝜉𝜆𝑝’s taken from the Clementi atomic function tables[371] for the neutral helium atom 

(with electronic configuration, 1s2) comprising five basis functions for the 1s orbital of the atom 

(i.e., 𝑝 = 1, 2, … , 5) corresponding to each 𝑝 of the χ𝑝𝜆𝛼 are presented in Table 7.1. 

 

Table 7.1. The orbital expansion coefficients and exponents corresponding to the respective basis 

function of the 1s orbital of helium atom.[371] 

𝒑 𝛘𝒑𝝀𝜶 𝒄𝒑𝝀𝜶 𝝃𝝀𝒑 

1 1𝑠 0.76838 1.41714 

2 1𝑠 0.22346 2.37682 

3 1𝑠 0.04082 4.39628 

4 1𝑠 -0.00994 6.52699 

𝑴 = 5 1𝑠 0.00230 7.94252 

 

orbital energy 

cpλα’s ξλp’s 

χpλα’s 

overall symmetry of 

basis function 

type of orbital 
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For the basis functions in Table 7.1, 𝜂𝜆𝑝 = 1. The 1s orbital of helium therefore can be written 

upon inclusion of the 𝑐𝑝𝜆𝛼’s and 𝜉𝜆𝑝’s in Table Table 7.1 in in eq. (7.54) as: 

 

For the neutral boron atom having the electronic configuration, 1𝑠22𝑠22𝑝1, the 𝑐𝑝𝜆𝛼’s and 𝜉𝜆𝑝’s 

taken from the Clementi atomic function tables[371] for the atom for the 1s, 2s and 2p orbitals of the 

atom with six, six and four basis functions corresponding to each 𝑝 of the χ𝑝𝜆𝛼 for the respective 

orbitals are presented in Table 7.2. 

 

Table 7.2. The orbital expansion coefficients and exponents corresponding to the respective basis 

function of the 1s, 2s and 2p orbitals of boron atom.[371] 

𝒑 𝛘𝒑𝝀𝜶 
𝝃𝝀𝒑 𝟏𝒔 𝟐𝒔 

𝛘𝒑𝝀𝜶 
𝟐𝒑 

𝟏𝒔 & 𝟐𝒔 𝒄𝒑𝝀𝜶 𝒄𝒑𝝀𝜶 𝝃𝝀𝒑 𝒄𝒑𝝀𝜶 

1 1𝑠 4.44561 0.92705 -0.19484 2𝑝 0.87481 0.53622 

2 1𝑠 7.91796 0.07780 -0.01254 2𝑝 1.36992 0.40340 

3 2𝑠 0.86709 0.00088 0.06941 2𝑝 2.32262 0.11653 

4 2𝑠 1.21924 -0.00200 0.75234 2𝑝 5.59481 0.00821 

5 2𝑠 2.07264 0.00433 0.31856    

𝑴 = 6  2𝑠 3.44332 0.00270 -0.12642    

 

It is noteworthy that the 𝜉𝜆𝑝 are the same for the same 𝑝𝑡ℎ basis function for a given orbital 

symmetry, regardless of its principal quantum number, i.e., each corresponding 𝑝𝑡ℎ basis function 

of 𝑠-symmetry will have the same 𝜉𝜆𝑝 and every corresponding 𝑝𝑡ℎ basis function of 𝑝-symmetry 

will possess the same 𝜉𝜆𝑝. This is exemplified by the exponents of the 𝑝𝑡ℎ basis functions in the 1𝑠 

and 2𝑠 columns of Table 7.2. Therefore, putting the 𝑐𝑝𝜆𝛼’s and 𝜉𝜆𝑝’s in Table 7.2 into eq. (7.54), 

the orbital expansion for the respective orbitals of the neutral boron atom will be: 
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The spherical harmonics for the basis functions of 𝑠-symmetry are:[16,32,371] 

                                                                       𝑌0,0(𝜃, 𝜙) =
1

2
(
1

𝜋
)
1 2⁄

                                                          (7.59) 

while those for the basis functions of 𝑝-symmetry are:[32,371] 

                                                            𝑌1,0(𝜃, 𝜙) =
1

2
∙ (
3

𝜋
)
1 2⁄

∙ cos 𝜃                                                      (7.60) 

 

7.2.3 Formation of the One-Electron Densities of Atomic Systems from HF Wavefunctions 

The total electron density (𝜌(𝑹)) for a given system is computed in this thesis as the sum of the 

product of the occupation number of an orbital and the square of that orbital for all the orbitals in 

the system. This may be summarised mathematically in general as:[19,32,367,368] 

                     𝜌(𝑹) = ∑ 𝑛𝑖 ∙ |𝜓𝑖(𝑹)|
2

𝑁𝑜𝑐𝑐

𝑖=1

= 𝑛𝑖 ∑𝜓𝑖
∗𝜓𝑖

𝑁𝑜𝑐𝑐

𝑖=1

= 𝑛𝑖∑∑∑ 𝑐𝑟𝑗
∗ 𝑐𝑠𝑗χ𝑟

∗χ𝑠

𝑁𝑜𝑐𝑐

𝑖=1

𝑀

𝑠=1

𝑀

𝑟=1

                     (7.61) 

where 𝑁𝑜𝑐𝑐 is the number of orbitals occupied by the 𝑁-electrons in the system. For a closed-shell 

system, 𝑁𝑜𝑐𝑐 =
𝑁

2
 and 𝑀 is the overall number of basis functions in the system. For the helium atom 

and hydride ion with two electrons and one spatial orbital expressed for e.g., for the helium atom in 

eq. (7.55) and an electronic configuration of 1𝑠2, eq. (7.61) becomes:  
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                                                                        𝜌(𝑹) = 2 ∙ |𝜓1𝑠(𝑹)|
2                                                          (7.62) 

For the helium atom and hydride ion, our computed Laguerre-based HF wavefunction for the 

respective system is also applicable in eq. (7.62). For lithium with three electrons, 2 spatial orbitals 

(1𝑠 and 2𝑠) and an electronic configuration of 1𝑠22𝑠1, its electron density is computed as: 

                                                         𝜌(𝑹) = 2 ∙ |𝜓1𝑠(𝑹)|
2 + 1 ∙ |𝜓2𝑠(𝑹)|

2                                           (7.63) 

For boron with five electrons, 3 spatial orbitals; 1𝑠, 2𝑠 and 2𝑝, expressed in eq. (7.56) to eq. (7.58), 

respectively, the total one-electron density of the system is computed as: 

                                       𝜌(𝑹) = 2 ∙ |𝜓1𝑠(𝑹)|
2 + 2 ∙ |𝜓2𝑠(𝑹)|

2 + 1 ∙ |𝜓2𝑝(𝑹)|
2
                              (7.64) 

 These densities are then used to form the two-electron HF density matrices on the basis of eq. (7.2) 

for the respective systems. 

 

7.2.4 Fitting Procedure 

7.2.4.1 Fitting to the Helium Atom and Testing of the CS Formula and LYP Functional 

To determine the constants (𝑎, 𝑏, 𝑐, 𝑑) in eq. (7.12) and use the determined constants to test the 

reproducibility of atomic correlation energies, the relevant CS equations (eq. (7.11), eq. (7.12) and 

eq. (7.14)) and a form of the LYP expression for correlation energy (eq. (7.16)) discussed in 7.1.1 

were implemented in in-house Maple and Python codes. First, a 25-term Laguerre-based HF 

wavefunction was computed for the helium atom as described in 7.2.1 by using a 25 × 25 

determinant of the form in eq. (7.33) to solve the HF equations (𝐹̂𝜓𝑖(1) = 𝜀𝑖𝜓𝑖(1)). To do this, the 

electronic and nuclear charge of the system, the guess NLP, A = 2, method (RHF, as 

implemented[16,17]), spin multiplicity (2𝑆 + 1 = 1) and mass of the nucleus set to infinity were 

specified in the input for optimisation. This code uses Maple for the one-electron integrals and 

Python and C++ for the two-electron integrals to form the Fock matrices. The computed 

wavefunction was employed to compute the electron density (𝜌(𝑹)) of the system as described in 

7.2.3. The computed 𝜌(𝑹) was then used to form the two-electron density of the atom (𝑃2HF(𝑹,𝑹)) 

on the basis of eq. (7.2). This was initially performed using a Maple code to test the formula and 

later implemented in an in-house Python code. Both densities were then employed to perform the 

numerical integration of the left-hand-side (lhs) of eq. (7.11) to obtain the ‘exact’ value of the 

equation for the system within 0.3 ≤ 𝑅 ≤ 2 a.u. using the in-house Python code. This range was 

determined earlier[349] from the first table in the CS[26] paper. 
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The function, 𝐻(𝛽,𝑊) on the right-hand-side (rhs) of eq. (7.11) was then fitted to the results of the 

numerical integration using an implementation of the simple, least squares fitting algorithm[399,400] to 

obtain the calculated value (𝐻(𝛽,𝑊)Calc.) for the atom. The fitting constants in eq. (7.12) were then 

determined by optimisation, first using different optimisation methods to minimise the square of the 

error: 

                                             𝑆𝑞𝑢𝑎𝑟𝑒 𝑒𝑟𝑟𝑜𝑟 =∑(𝐸𝑥𝑎𝑐𝑡 − 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑)2                                         (7.65) 

where 𝐸𝑥𝑎𝑐𝑡 refers to the result of the numerical integration of the lhs of eq. (7.11) and 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 

stands for the value of the rhs of eq. (7.11) obtained from the fitting procedure. The optimisation 

methods initially explored to determine the constants in eq. (7.12) are the: scipy.optimise 

least_squares,[412–417] BOBYQA,[418,419] Nelder-Mead[420,421] and conjugate gradient (CG)[422] 

methods. In this step, the optimisers were tested for consistency by varying the guess values of the 

constants and tolerance for successful termination of calculation, with and/or without boundary 

constraints. Constraints are either imposed on the constants or not for the scipy.optimise 

least_squares method while no constraints are imposed when the BOBYQA, Nelder-mead or CG 

method is employed. The most consistent optimiser and optimum tolerance were then used to 

determine the constants under different conditions. To do this, different guess values of the 

constants were first adopted and the optimisation performed within 0.3 ≤ 𝑅 ≤ 2 a.u. Thereafter, 

suitable guess values were employed and the optimisation was performed with different ranges of 

𝑅. In all these computations, 𝑞 = 2.29 as determined by CS in their 1975 paper[26] was employed. 

The optimised constants in each optimisation were then applied to the implemented form of LYP 

expression for correlation energy (eq. (7.16)) in combination with the Koga et al.,[401] HF 

wavefunctions for H-, He, Li+, Be, B+ and Ne to compute the correlation energies of the systems. 

These systems were chosen to validate the implementation of the CS formulae against the results of 

CS[26] and to test how well the formalism reproduces the correlation energy of the hydride ion. The 

computed correlation energies are also compared to their exact values[16] or their fixed nucleus non-

relativistic experimental estimates.[423,424] 

7.2.4.2 Fitting to the Hydride Ion and Testing of the CS Formula and LYP Functional 

The procedure described in 7.2.4.1 was repeated but using the computed 25-term Laguerre-based 

HF wavefunction for the hydride ion to determine new 𝑎, 𝑏, 𝑐 and 𝑑 parameters. The most stable 

optimiser and optimum tolerance determined in 7.2.4.1 were used to determine the new 𝑎, 𝑏, 𝑐 and 

𝑑, which were then used to compute the corresponding correlation energies of some closed-shell 

systems. To do this, different guess values of the constants were first adopted and the optimisation 
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performed within 0.3 ≤ 𝑅 ≤ 2 a.u. Thereafter, suitable guess values were employed and the 

optimisation was performed with different ranges of 𝑅. In addition to 𝑞 = 2.29 for He, 𝑞 for H- was 

also determined and used in the calculations. To do this, the computed Laguerre-based HF 

wavefunction for H- was used to form 𝜌(𝑹) and 𝑃2HF(𝑹,𝑹). 𝛽 for H- was then computed from the 

exponential term of the correlation energy in eq. (7.1) by setting the correlation energy of the 

system to the exact value[16] and varying 𝑞 until the equation was satisfied. 𝑞 for H- was thereafter 

computed from the expression for 𝛽, eq. (7.10). This resulted in an optimised value of 𝑞 = 1.93985 

for the hydride ion. 

The optimised constants in each optimisation were then applied to the implemented form of the 

LYP expression for correlation energy (eq. (7.16)) in combination with the Koga et al.,[401] HF 

wavefunctions for H-, He, Li+, Be, B+ and Ne to compute the correlation energies of the closed-shell 

systems. The computed correlation energies were compared to the results of CS[26] and their exact 

values[16] or fixed nucleus non-relativistic experimental estimates.[423,424] 

 

7.2.5 Correlation Energies of Atomic Systems using Fitting Constants and HF 

Wavefunctions  

The optimised constants (𝑎, 𝑏, 𝑐, 𝑑) determined in the present work and those determined by CS[26] 

were applied to the implemented form of the LYP expression for correlation energy (eq. (7.16)) in 

combination with the Koga et al.,[401] HF wavefunctions for several atomic systems (including 

anions) to compute the correlation energies of the systems. The computed correlation energies were 

then compared to their exact values[16] and/or their fixed nucleus non-relativistic experimental 

estimates.[423,424] 

 

7.3 Results and Discussion  

7.3.1 Testing the Implementation of the CS Formulae and LYP Functional 

To validate our implementation of the CS equations (eq. (7.14)) and the form of the LYP expression 

for the correlation energies (eq. (7.16)) for closed-shell systems, the reproducibility of the CS 

results[26] for the correlation energies of He, Li+, Be, and B+ was initially tested in a Maple code and 

later, He, Li+, Be, B+ and Ne in an in-house Python code. To do this, the CS constants; 𝑎 =

0.01565, 𝑏 = 0.173, 𝑐 = 0.58, 𝑑 = 0.8 and Clementi[366] HF wavefunctions for He, Li+, Be, and 

B+ were employed in the Maple code while the CS constants and the Koga et al.,[401] HF 

wavefunctions for He, Li+, Be, B+ and Ne were employed in the in-house Python code. The 

computed correlation energies of He, Li+, Be, B+ and Ne, are summarised in Table 7.3. The CS 
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values,[26] the exact values[16] and the fixed-nucleus, non-relativistic experimental estimates[423,424] of 

the correlation eneries of these systems are also included in Table 7.3. 

The results in Table 7.3 suggest that our implementation of the CS formula and the LYP expression 

for the correlation energies of closed-shell systems is accurate. This is because the computation of 

correlation energies for some of the closed-shell systems tested by CS using the implemented 

expressions in combination with different HF wavefunctions for the systems reproduced the results 

of CS. It should be noted that CS employed the Clementi wavefunctions in obtaining their results. 

 

Table 7.3. The correlation energies (𝐸𝑐 / a.u.) of some closed-shell systems computed with an 

implementation of the CS formula, 𝐸𝑐
CS (eq. (7.14)) in Maple code and the CS and a form of the 

LYP functional, 𝐸𝑐
LYP (eq. (7.16)) in an in-house Python code. Calculations in the Maple code 

employ the Clementi[366] HF wavefunctions of the systems (like CS) while that in the Python code 

employ the Koga et al.,[401] HF wavefunctions. Also included are literature values of the correlation 

energies. 

System 
𝑬𝒄
𝐂𝐚𝐥𝐜. / a.u. (Maple) 𝑬𝒄

𝐂𝐚𝐥𝐜. / a.u. (Python) 
𝑬𝒄
𝐂𝐒[26] 𝑬𝒄

𝐄𝐱𝐚𝐜𝐭[16] or 𝑬𝒄
𝐄𝐱𝐩𝐭.[423,424] / a.u. 

𝑬𝒄
𝐂𝐒 𝑬𝒄

𝐂𝐒 𝑬𝒄
𝐋𝐘𝐏 

He -0.041560 -0.041560 -0.041560 -0.0416 -0.042044 
Li+ -0.043883 -0.043884 -0.043884 -0.0438 -0.043498 
Be -0.092602 -0.092596 -0.092596 -0.0926 -0.09434 
B+ -0.105961 -0.105959 -0.105959 -0.106 -0.11134 
Ne  -0.375313 -0.375313 -0.374 -0.39047 

 

7.3.2 Accuracy of the Calculated Laguerre-based HF Wavefunctions  

The computed HF energy, 𝐸HF
Calc.He = −𝟐.𝟖𝟔𝟏 𝟔𝟕𝟗 𝟗𝟗𝟓 𝟔𝟏𝟐 𝟐38 877 a.u. for the 25-term 

Laguerre-based HF wavefunction of the helium atom computed using the method[16,17] described in 

7.2.1 is found to be accurate to 10−13 a.u. in comparison to the ‘exact’ value of 

−𝟐.𝟖𝟔𝟏 𝟔𝟕𝟗 𝟗𝟗𝟓 𝟔𝟏𝟐 𝟐𝟏 a.u. in the literature.[425] For the hydride ion, the energy is 𝐸HF
Calc.H− =

−𝟎.𝟒𝟖𝟕 𝟗𝟐𝟗 𝟕𝟑𝟒 𝟑𝟕0 831 313 a.u. and is accurate to 10−11 a.u. in comparison to the most 

accurate literature value, −𝟎. 𝟒𝟖𝟕 𝟗𝟐𝟗 𝟕𝟑𝟒 𝟑𝟕𝟐 a.u.[426] A summary of the computed expectation 

values of the nucleus-electron distances and their Dirac delta functions in atomic units, virial factor, 

NLP (𝐴) used to improve convergence and the two-body cusp values for these wavefunctions are 

summarised in Table 7.4. The values in Table 7.4 are accurate to the number of digits presented. 

This was determined by comparing the computed values against the convergence data in the 

supplementary information of the papers by Cox and co-workers.[16,18] It is worthy of note that 

〈𝑟1〉 = 〈𝑟2〉 due to the symmetry of the calculated wavefunctions. 

The properties of the computed Laguerre-based HF wavefunctions in Table 7.4 further ascertains 

the accuracy of the wavefunctions especially the value of the virial factor and two-body cusps for 

the respective wavefunctions. 
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Table 7.4. Properties of the computed Laguerre-based HF wavefunction for He and H-. 

Property 𝜓HF
He 𝜓HF

H− 

〈𝑟1〉 0.927 273 404 731 49 2.503 959 63 
〈𝑟12〉 1.362 124 383 676 07 3.739 274 00 

〈𝛿(𝑟1)〉 1.797 959 1 0.154 59 
〈𝛿(𝑟12)〉 0.190 603 997 806 5 0.012 983 476 397 

𝐴 6.192 708 2.013 386 

𝜂 −1.092 × 10−22 2.287 × 10−20 

𝜈31 −1.999 999 8 −1.000 005 

 

The value of 𝜂 in both calculations is close to zero, the exact value,[16,18,404] while 𝜈31 ≈ −2 for the 

helium atom and 𝜈31 ≈ −1 for the hydride ion, i.e., −𝑍[16,18] for the systems. These values of the 

virial and cusp conditions for the computed Laguerre-based HF wavefunctions for the helium atom 

and the hydride ion are indicative of the accuracy (quality) of the wavefunctions and are a 

considerable improvement (~10−6 a.u.) over the results of Clementi[366] and Koga et al.[401]  The 

accuracy of this computation is also an improvement on the results reported earlier by Cox and co-

workers[16] who used a 20 × 20 determinant to compute the Laguerre-based HF wavefunction for 

the helium atom and its iso-electronic series. 

 

7.3.3 Comparison of the Fitting of 𝑯(𝜷,𝑾)𝐂𝐚𝐥𝐜. and 𝑯(𝜷,𝑾)𝐂𝐒 to the Numerically 

Integrated Results (Exact Data) 

The computed Laguerre-based HF wavefunction for the He atom was used to form 𝜌(𝑹) and 

𝑃2HF(𝑹,𝑹) for the atom. These were then employed to numerically integrate the lhs of eq. (7.11). A 

fit of the 𝐻(𝛽,𝑊) function to the numerically integrated (exact) results within 0.01 ≤ 𝑅 ≤ 4 a.u. 

was then performed using the scipy.optimise least_squares[412–417] fitting procedure. In doing this, no 

boundary conditions were imposed while the guess values were set at 𝑎 = 𝑏 = 𝑐 = 𝑑 = 0.1 and the 

tolerance at 10−6. The boundary constraints were imposed in order to open up more space for the 

optimiser and to reduce the influence of outlier residuals on the optimisation/solution[412–415] to 

explore the possibility of reproducing the CS constants. 

The variation of the calculated 𝐻(𝛽,𝑊) function (𝐻(𝛽,𝑊)Calc.) with 𝑅 was then compared with 

that of the CS 𝐻(𝛽,𝑊) function (𝐻(𝛽,𝑊)CS), computed using the CS constants in the same range 

of 𝑅. A plot of the variation of the numerically integrated (exact) results, 𝐻(𝛽,𝑊)Calc. and 

𝐻(𝛽,𝑊)CS arising from the computed Laguerre-based HF helium atom densities with 𝑅 within 

0.01 ≤ 𝑅 ≤ 4 a.u. is presented in Figure 7.4. 
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Figure 7.4. Variation of the 𝐻(𝛽,𝑊) function with 𝑅 for the helium atom within 0.01 ≤ 𝑅 ≤ 4 a.u. 

using a tolerance of 10−6. The red dots represent the numerically integrated (exact) result; blue 

curve represents the calculated function (𝐻(𝛽,𝑊)Calc.) while the yellow curve is a plot of the CS 

function, 𝐻(𝛽,𝑊)CS. 

 

The results in Figure 7.4 suggests that the calculated function has an almost exact (accurate) fit to 

the ‘exact’ data while the CS function gave a poor fit. This is especially noticeable with the position 

of the curve maxima and when 𝑅 ≥ 2 a.u. The maximum of the ‘exact’ data curve is found to be 

located at 𝑅 ≈ 0.2 a.u. while that of the CS function curve is found at 𝑅 ≈ 0.4 a.u. The calculated 

𝐻(𝛽,𝑊) function (𝐻(𝛽,𝑊)Calc.) in Figure 7.4 led to the fitting constants, 𝑎 = 0.01212, 𝑏 =

0.03163, 𝑐 = 0.11764 and 𝑑 = 0.74324 which are found to be quite different from the CS 

constants, 𝑎 = 0.01565, 𝑏 = 0.173, 𝑐 = 0.58 and 𝑑 = 0.8. Applying the optimised constants to the 

implemented form of the LYP expression for closed-shell systems led to the correlation energy for 

He, Li+ and Be as -0.042353 a.u., -0.048845 a.u. and -0.084308 a.u., respectively. These correlation 

energies are found to be in error by 0.7 %, 12.3 % and 10.6 % for He, Li+ and Be, respectively in 

comparison with the exact[16] and experimentally estimated[423,424] values. The CS constants led to 

the correlation energies; -0.041560 a.u., -0.043884 a.u. and -0.092596 a.u. for He, Li+ and Be with 
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errors of 1.2 %, 0.9 % and 1.8 %, respectively. This suggests that a poor fit of the 𝐻(𝛽,𝑊) function 

is preferable to obtain good constants for accurate correlation energies for non-helium systems. It is 

also found from Figure 7.4 that the calculated curve and the CS curve possess a somewhat similar 

fit to the ‘exact’ data between 𝑅 ≈ 0.3 a.u. and 𝑅 = 2 a.u. This range was determined earlier[349] 

from the first table in the CS[26] paper to be where CS fitted the 𝐻(𝛽,𝑊) function to their 

numerically integrated results to obtain the fitting constants. It may therefore be reckoned that 

relaxing the fit (by varying the tolerance) and focusing optimisation within 0.3 ≤ 𝑅 ≤ 2 a.u. or 

varying the range, tolerance limits and/or sundry conditions may improve the accuracy of the 

optimised fitting constants with respect to the accuracy of the correlation energies they generate. 

 

7.3.4 Validation of Optimiser and Tolerance  

Four optimisation methods; the BOBYQA,[418,419] Nelder-Mead,[420,421] CG[422] and the 

scipy.optimise least_squares[412–417] and the effect of tolerance limit on the optimised constants are 

investigated. In each case, the corresponding correlation energies for H-, He, Li+, Be, B+ and Ne are 

computed using the optimised constants and the implemented form of the LYP expression for 

closed-shell systems (eq. (7.16)). In addition, the energies are compared with their exact values (in 

green),[16] fixed nucleus non-relativistic experimental estimates (in blue)[423,424] or those computed 

by CS.[26] Furthermore, in each case, the Koga et al.,[401] HF wavefunctions are employed in the 

computation of the correlation energies of the systems. 

In Table 7.5, a summary of the effect of the tolerance limit on the fitting constants optimised using 

the BOBYQA method within 0.3 ≤ 𝑅 ≤ 2 a.u. using a total of 80 points, 𝑞 = 2.29 and the 

computed Laguerre-based HF wavefunction for the helium atom is presented. The CS values of the 

constants are used as the guess values in the optimisation.  

The results presented in Table 7.5 suggest that the constants computed using BOBYQA method 

with a tolerance of 10−2 and 10−3 are essentially the same even when the code is run more than 

once. However, the output becomes inconsistent when a tolerance of 10−4 is employed to compute 

the constants with BOBYQA. This is reflected by the values in red for running the code three times 

with a tolerance of 10−4. It is found that the consistent values of the optimised constants are close 

to those of CS for 𝑎 and 𝑑 but different for 𝑏 and 𝑐 by 0.09931 and 0.01412, respectively. The 

correlation energies of the systems corresponding to the consistent/reproducible constants in Table 

7.5 are found to be better or worse than the CS values by 0.3 to 0.8 % in comparison with the 

computed exact[16] or experimentally estimated[423,424] values except for hydride ion. For the hydride 

ion, the computed correlation energy is in error by 21.6 %. Nevertheless, the results indicates that a 

lower tolerance leads to improved helium atom and non-helium systems except the hydride ion.
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Table 7.5. Effect of tolerance on fitting constants (𝑎, 𝑏, 𝑐, 𝑑) optimised using the BOBYQA method. Guess values are in bold under the constants. 

Correlation energies in green are the calculated exact values[16] while those in blue are experimentally estimated.[423,424] The optimised constants in 

red are inconsistent (i.e., not reproducible) for the tolerance. 

Tolerance 

𝒂 𝒃 𝒄 𝒅 𝑬𝒄 / a.u. 

0.01565 0.173 0.58 0.8 
H- He Li+ Be B+ Ne 

-0.039821 -0.042044 -0.043498 -0.09434 -0.11134 -0.39047 

1×10-2 0.01570 0.18712 0.67931 0.79963 -0.031209 -0.041808 -0.043657 -0.091882 -0.105430 -0.377327 

1×10-3 0.01570 0.18712 0.67931 0.79963 -0.031209 -0.041808 -0.043657 -0.091882 -0.105430 -0.377327 

1×10-4 0.01481 0.16098 0.67691 0.78600 -0.030447 -0.041864 -0.044624 -0.089737 -0.102460 -0.355381 

1×10-4 0.01502 0.16436 0.67640 0.79959 -0.030473 -0.041892 -0.044610 -0.090086 -0.102997 -0.359217 

1×10-4 0.01282 0.08799 0.56554 0.72706 -0.028979 -0.042070 -0.046806 -0.085830 -0.096608 -0.308201 

CS[26] 0.01565 0.173 0.58 0.8  -0.0416 -0.0438 -0.0926 -0.106 -0.374 
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The effect of the tolerance limit on the fitting constants optimised using the Nelder-Mead method 

within 0.3 ≤ 𝑅 ≤ 2 a.u. using a total of 80 points, 𝑞 = 2.29 and the computed Laguerre-based HF 

wavefunction for the helium atom is summarised in Table 7.6. In a similar manner as in Table 7.5, 

the CS values of the constants are used as the guess values of the constants in the optimisation. 

It is observed from the results in Table 7.6 that the Nelder-Mead method is only stable when the 

tolerance is 10−2. The output for the constant, 𝑐 (in red) is found to be negative for tolerances ≥

10−3 thereby leading to infinite (unreliable/undesirable) correlation energies for the considered 

systems. It is observed that the optimised constants at tolerance of 10−2 are similar to the CS values 

by 0.0008 for 𝑎, 0.00153 for 𝑏, 0.0607 for 𝑐 and 0.07119 for 𝑑. However, although the helium fit is 

slightly better than with respect to the corresponding correlation energy of the system, the optimised 

constants do not improve on the CS results. 
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Table 7.6. Effect of tolerance on fitting constants (𝑎, 𝑏, 𝑐, 𝑑) optimised using the Nelder-Mead method. Guess values are in bold under the 

constants. Correlation energies in green are the computed exact values[16] while those in blue are experimentally estimated.[423,424] The optimised 

constants in red are unreliable for the same tolerance as the expected constants do not have negative values. 

Tolerance 

𝒂 𝒃 𝒄 𝒅 𝑬𝒄 / a.u. 

0.01565 0.173 0.58 0.8 
H- He Li+ Be B+ Ne 

-0.039821 -0.042044 -0.043498 -0.09434 -0.11134 -0.39047 

1×10-2 0.01485 0.17147 0.64070 0.72881 -0.031314 -0.041778 -0.043782 -0.091434 -0.104150 -0.363587 

1×10-3 0.01139 0.01014 -0.29068 0.70802       

1×10-4 0.01139 0.01014 -0.29068 0.70802       
1×10-5 0.01139 0.01014 -0.29068 0.70802       

CS[26] 0.01565 0.173 0.58 0.8  -0.0416 -0.0438 -0.0926 -0.106 -0.374 
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The results computed using the CG method[422] within 0.3 ≤ 𝑅 ≤ 2 a.u. employing a total of 80 

points, 𝑞 = 2.29 and the computed Laguerre-based HF wavefunction for the helium atom are 

summarised in Table 7.7. 

For this method, it is found that stable constants are computed for the tolerances 10−2 to 10−5 but 

not for tolerances ≥ 10−6. It is found that for a tolerance of 10−2, no optimisation is performed by 

the CG method, i.e., the method returns the CS constants as the optimum values. It is also observed 

that the method generates constants with values close to the CS constants when the tolerance is 

10−3 and 10−4 especially with respect to 𝑏, 𝑐 and 𝑑. The constants, 𝑎 and 𝑏 computed at a tolerance 

of 10−5 differ from the CS values by 0.0019 and 0.05898, respectively while 𝑐 and 𝑑 are essentially 

the same as those of CS. For the constants at 10−2, the corresponding computed correlation 

energies are the same with those computed by CS for He, Li+, Be, B+ and Ne. It is observed that as 

the tolerance is increased, the accuracy of the correlation energies corresponding to the optimised 

constants is slightly improved for H-, He, Be, B+ and Ne from 10−2 to 10−4 in comparison to the 

exact[16] or estimated[423,424] values. The accuracy of the corresponding energy for Li+ on the other 

hand is found to decrease for the same tolerance range. At a tolerance of 10−5, only the correlation 

energy of He corresponding to the optimised constants is accurate (0.1 % error) in comparison to 

exact[16] value. The CG method is found to show better promise of giving good results so far. For 

this reason, the optimisation using this method was re-run with the guess value for all the constants 

set to 0.01. The result is presented in Table 7.8. 
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Table 7.7. Effect of tolerance on fitting constants (𝑎, 𝑏, 𝑐, 𝑑) optimised using the CG method. Guess values are in bold under the constants. 

Correlation energies in green are the computed exact values[16] while those in blue are experimentally estimated.[423,424] The optimised constants in 

red are inconsistent (i.e., not reproducible) for the tolerance. 

Tolerance 

𝒂 𝒃 𝒄 𝒅 𝑬𝒄 / a.u. 

0.01565 0.173 0.58 0.8 
H- He Li+ Be B+ Ne 

-0.039821 -0.042044 -0.043498 -0.09434 -0.11134 -0.39047 

1×10-2 0.01565 0.17300 0.58000 0.80000 -0.030724 -0.041560 -0.043884 -0.092596 -0.105959 -0.375313 

1×10-3 0.01581 0.17299 0.58000 0.80000 -0.031040 -0.041988 -0.044336 -0.093547 -0.107048 -0.379165 

1×10-4 0.01581 0.17299 0.58000 0.80000 -0.031040 -0.041988 -0.044336 -0.093547 -0.107048 -0.379165 

1×10-5 0.01375 0.11402 0.61486 0.78382 -0.029226 -0.042069 -0.046380 -0.087352 -0.099024 -0.326655 

1×10-6 0.01181 0.04777 0.21614 0.63663 -0.028715 -0.042142 -0.047520 -0.085275 -0.094816 -0.289380 

1×10-6 0.01172 0.04247 0.17626 0.63817 -0.028535 -0.042136 -0.047671 -0.084882 -0.094337 -0.286527 

1×10-6 0.01174 0.04137 0.17487 0.64661 -0.028441 -0.042148 -0.047764 -0.084767 -0.094258 -0.286166 

CS[26] 0.01565 0.173 0.58 0.8  -0.0416 -0.0438 -0.0926 -0.106 -0.374 
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Table 7.8. Effect of tolerance and guess values on fitting constants (𝑎, 𝑏, 𝑐, 𝑑) optimised using the CG method. Guess values are in bold under the 

constants. Correlation energies in green are the calculated exact values[16] while those in blue are experimentally estimated.[423,424] The optimised 

constants in red are inconsistent (i.e., not reproducible) for the tolerance. 

Tolerance 
𝒂 𝒃 𝒄 𝒅 

𝑬𝒄 / a.u. 

H- He Li+ Be B+ Ne 

0.01 0.01 0.01 0.01 -0.039821 -0.042044 -0.043498 -0.09434 -0.11134 -0.39047 

1×10-2 0.00669 0.01904 0.00975 0.01241 -0.037777 -0.038225 -0.038295 -0.079547 -0.079986 -0.208824 

1×10-3 0.00888 0.07475 0.00687 0.02594 -0.038353 -0.037933 -0.037648 -0.092971 -0.093880 -0.276405 

1×10-4 0.01107 0.05824 0.14372 0.45130 -0.030686 -0.041769 -0.045630 -0.087193 -0.095444 -0.289399 

1×10-4 0.01239 0.02350 0.27823 0.86003 -0.026696 -0.042433 -0.049658 -0.082925 -0.093257 -0.281741 

1×10-4 0.01226 0.04958 0.22283 0.69797 -0.028304 -0.042260 -0.048008 -0.085720 -0.095727 -0.294727 

CS[26] 0.01565 0.173 0.58 0.8  -0.0416 -0.0438 -0.0926 -0.106 -0.374 
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For this optimisation, the CG method also becomes inconsistent and the consistent values are 

neither better nor similar constants to the CS constants. Application of the consistent optimised 

constants in the computation of the correlation energies is found to favour the H- in comparison to 

the exact value (error of 5.1 % for constants obtained with tolerance of 10−2 and for constants 

optimised with tolerance of 10−3, the error is 3.7 %). The error in the computed 𝐸𝑐 for constants 

optimised with tolerance of 10−2 and 10−3 is found to be: He (9.1 and 9.8 %), Li+ (12.0 and 13.4 

%), Be (15.7 and 1.5 %), B+ (28.2 and 15.7 %) and Ne (46.5 and 29.2 %), respectively. It may 

therefore be reckoned that the values of the CS constants or values in the neighbourhood of the CS 

constants are to be sought as the guess values in the calculations upon comparison of the results in 

Table 7.7 against those in Table 7.8. 

The optimisation using scipy.optimise least_squares, within 0.3 ≤ 𝑅 ≤ 2 a.u. with a total of 80 

points, 𝑞 = 2.29 and the computed Laguerre-based HF wavefunction for the helium atom without 

constraints is summarised in Table 7.9. 
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Table 7.9. Effect of tolerance and guess values on fitting constants (𝑎, 𝑏, 𝑐, 𝑑) optimised using the scipy.optimise least_squares method without 

boundary constraints. Guess values are in bold under the constants. Correlation energies in green are the computed exact values[16] while those in 

blue are experimentally estimated.[423,424] The optimised constants in red are unreliable as the expected constants do not have negative values. 

Tolerance 
𝒂 𝒃 𝒄 𝒅 

𝑬𝒄 / a.u. 

H- He Li+ Be B+ Ne 

0.01565 0.173 0.58 0.8 -0.039821 -0.042044 -0.043498 -0.09434 -0.11134 -0.39047 

1×10-2 0.01565 0.17300 0.58000 0.80000 -0.030724 -0.041560 -0.043884 -0.092596 -0.105959 -0.375313 

1×10-3 0.01580 0.17299 0.58000 0.80000 -0.031025 -0.041969 -0.044315 -0.093504 -0.106999 -0.378990 

1×10-4 0.01580 0.17299 0.58000 0.80000 -0.031025 -0.041969 -0.044315 -0.093504 -0.106999 -0.378990 

1×10-5 0.01374 0.11427 0.61519 0.78348 -0.029219 -0.042045 -0.046344 -0.087318 -0.098987 -0.326609 

1×10-6 0.01138 0.01110 -0.26234 0.70095       
1×10-7 0.01138 0.01111 -0.26210 0.70094       

CS[26] 0.01565 0.173 0.58 0.8  -0.0416 -0.0438 -0.0926 -0.106 -0.374 
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The results presented in Table 7.9 are similar to those computed using the CG method (Table 7.7) 

differing only in the fact that in Table 7.9, the constant, 𝑐 becomes negative for tolerances ≥ 10−6 

while in Table 7.7, the method becomes inconsistent for tolerances ≥ 10−4. 

The optimisation using scipy.optimise least_squares,[412–417] within 0.3 ≤ 𝑅 ≤ 2 a.u. with a total of 

80 points, 𝑞 = 2.29 and the computed Laguerre-based HF wavefunction for the helium atom with 

constraints is presented in Table 7.10. The boundary constraints imposed on the constants are 

(−1 ≤ 𝑎 ≤  5), (0 ≤ 𝑏 ≤  5), (0 ≤ 𝑐 ≤  5) and (0 ≤ 𝑑 ≤  5). 

It is found that the results presented in Table 7.10 for tolerances 10−2 to 10−6 are similar to those 

summarised in Table 7.9 for tolerances 10−2 to 10−5 but differ for tolerances ≥ 10−7 for which all 

the optimised constants are both consistent and positive valued. It is observed that the optimised 

constant, 𝑐 tends to a negative at a tolerance of 10−10. Also, the constants optimised with boundary 

constraints are all consistent, regardless of the number of times the code is run and the tolerance 

used within  10−2 ≤ tolerance ≤ 10−10. The results further suggest that tolerances ≤ 10−6 give 

constants that are similar to those of CS while tolerances of 10−7 to 10−9 give constants that differ 

with those of CS especially for 𝑎 and 𝑏 and a tolerance of 10−10 give different values for all the 

constants in comparison with CS constants. It is noteworthy that Handy and Cohen[349] asserted that 

the sensitivities of the constants was in the order 𝑎 > 𝑏 > 𝑐 > 𝑑. It is therefore not very surprising 

that 𝑎 and 𝑏 are being more sensitive in our computations. The authors also suggested that the 

accuracy of 𝑎 was especially vital for accuracy of the corresponding correlation energies for a given 

set of the constants. It is observed that the accuracy of the corresponding energies for the optimised 

constants in comparison with the exact[16] or estimated[423,424] values decreases (6 ≤ error ≤ 31 %) 

for constants optimised with tolerances ≥ 10−7 except for He. For He, the computed value 

approaches the exact value (error ≤ 0.2 %). 

It can therefore be reckoned that the LSF procedure using the scipy.optmise least_squares method 

with boundary restrictions and a tolerance of 10−6 is the optimum method for computation of the 

constants in eq. (7.12) as all the other methods are found to be inconsistent or gave poor correlation 

energies for other systems. As a consequence, this method has been employed to investigate the 

effect of variation of the range of 𝑅 and guess values on the value of the optimised constants. In 

addition, corresponding correlation energies are investigated to determine whether their accuracy 

will be increased when compared to the exact[16] or estimated[423,424] values. The tolerance, 10−6 is 

chosen as a compromise for accuracy of the correlation energies of all the systems under 

consideration. 



189 
 

 

 

 

 

 

Table 7.10. Effect of tolerance and guess values on fitting constants (𝑎, 𝑏, 𝑐, 𝑑) optimised using the scipy.optimise least_squares method with 

boundary constraints. Guess values are in bold under the constants. Correlation energies in green are the calculated exact values[16] while those in 

blue are experimentally estimated.[423,424] 

Tolerance 
𝒂 𝒃 𝒄 𝒅 

𝑬𝒄 / a.u. 

H- He Li+ Be B+ Ne 

0.01565 0.173 0.58 0.8 -0.039821 -0.042044 -0.043498 -0.09434 -0.11134 -0.39047 

1×10-2 0.01565 0.17300 0.58000 0.80000 -0.030724 -0.041560 -0.043884 -0.092596 -0.105959 -0.375313 

1×10-3 0.01580 0.17299 0.58000 0.80000 -0.031025 -0.041969 -0.044315 -0.093504 -0.106999 -0.378990 

1×10-4 0.01580 0.17299 0.58000 0.80000 -0.031025 -0.041969 -0.044315 -0.093504 -0.106999 -0.378990 

1×10-5 0.01580 0.17299 0.58000 0.80000 -0.031025 -0.041969 -0.044315 -0.093504 -0.106999 -0.378990 

1×10-6 0.01580 0.17299 0.58000 0.80000 -0.031025 -0.041969 -0.044315 -0.093504 -0.106999 -0.378990 

1×10-7 0.01394 0.12153 0.61088 0.78554 -0.029369 -0.041970 -0.046049 -0.087830 -0.099679 -0.331702 

1×10-8 0.01375 0.11437 0.61517 0.78353 -0.029221 -0.042045 -0.046340 -0.087325 -0.098997 -0.326681 

1×10-9 0.01375 0.11437 0.61517 0.78353 -0.029221 -0.042045 -0.046340 -0.087325 -0.098997 -0.326681 

1×10-10 0.01145 0.02481 0.00000 0.65724 -0.027643 -0.042004 -0.048159 -0.083180 -0.092483 -0.277043 

CS[26] 0.01565 0.173 0.58 0.8  -0.0416 -0.0438 -0.0926 -0.106 -0.374 
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7.3.5 Effect of Guess Values, Variation of 𝑹, Number of Points with 𝑹 and Tolerance on 

Fitting Constants for Helium Atom 

Here, the scipy.optimise least_squares[412–417] method is used to compute the fitting constants to 

investigate the effects of different guess values of the constants, different ranges of 𝑅 and different 

tolerance limits on the optimised constants. In each case, the corresponding correlation energies for 

H-, He, Li+, Be, B+ and Ne are computed using the optimised constants and the implemented form 

of the LYP expression for closed-shell systems (eq. (7.16)). In addition, the energies are compared 

with their exact values (in green),[16] fixed nucleus non-relativistic experimental estimates (in 

blue)[423,424] or those computed by CS.[26] Furthermore, in each case, the Koga et al.,[401] HF 

wavefunctions are employed in the computation of the correlation energies of the systems. 

 

7.3.5.1 Effect of Guess Values on Fitting Constants for Helium Atom within 𝟎. 𝟑 ≤ 𝑹 ≤ 𝟐 a.u. 

A summary of the effect of guess values on the constants optimised using the scipy.optimise 

least_squares method with a total of 80 points, 𝑞 = 2.29, a tolerance of 10−6, the computed 

Laguerre-based HF wavefunction for the helium atom and boundary constraints is presented in 

Table 7.11. 

The results in Table 7.11 further supports the suggestion that guess values close to the CS or the 

same as CS constants are to be sought in the optimisation of the constants in eq. (7.12). It is found 

that the constants optimised from the set of parameters labelled x give more accurate correlation 

energies for the same systems than the CS constants even though the optimised constants are similar 

to those of CS. For these systems, the error is found to be 0.3 % for He, 0.8 % for Li+, 0.6 % for Be, 

2.3 % for B+ and 0.1 % for Ne. CS computed the errors as 1.0 % for He, 0.7 % for Li+, 1.5 % for 

Be, 5.0 % for B+ and 0.5 % for Ne.[26] The guess values, x are therefore employed for further 

computations. 
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Table 7.11. Effect of guess values on fitting constants (𝑎, 𝑏, 𝑐, 𝑑) optimised using the scipy.optimise least_squares method with boundary 

constraints; y, x and z represent guess values of the constants. For y, 𝑎 = 𝑏 = 𝑐 = 𝑑, for x, 𝑎 = 0.08, 𝑏 = 0.16, 𝑐 = 0.58 and 𝑑 = 0.8 while for z, 

𝑎 = 0.01565, 𝑏 = 0.173, 𝑐 = 0.58 and 𝑑 = 0.8. Correlation energies in green are the computed exact values[16] while those in blue are 

experimentally estimated.[423,424] 

 

𝒂 𝒃 𝒄 𝒅 

𝑬𝒄 / a.u. 

y H- He Li+ Be B+ Ne 

-0.039821 -0.042044 -0.043498 -0.09434 -0.11134 -0.39047 

1 0.01569 0.28411 0.60474 0.33582 -0.042545 -0.040740 -0.034021 -0.110765 -0.122509 -0.450919 

0.1 0.00979 0.09145 0.13064 0.12144 -0.038209 -0.040475 -0.040267 -0.095487 -0.098888 -0.293880 

0.01 0.00636 0.01021 0.01000 0.01006 -0.037365 -0.037860 -0.037954 -0.077177 -0.077536 -0.198723 

x 0.01628 0.18438 0.57594 0.80562 -0.031406 -0.041937 -0.043850 -0.094865 -0.108785 -0.390922 

z 0.01580 0.17299 0.58000 0.80000 -0.031025 -0.041969 -0.044315 -0.093504 -0.106999 -0.378990 

CS[26] 0.01565 0.173 0.58 0.8  -0.0416 -0.0438 -0.0926 -0.106 -0.374 
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7.3.5.2 Effect of Variation of 𝑹 on Fitting Constants for Helium Atom 

The results computed using the scipy.optimise least_squares method with 𝑅𝑖𝑛𝑖𝑡𝑖𝑎𝑙 ≡ 𝑅𝑖 = 0.3 a.u., 

𝑅𝑓𝑖𝑛𝑎𝑙 ≡ 𝑅𝑓 = 2, 3,… , 8 a.u., a total of 80 points, 𝑞 = 2.29, a tolerance of 10−6, the computed 

Laguerre-based HF wavefunction for the helium atom and boundary constraints is presented in 

Table 7.12. 

The results in Table 7.12 suggests that extending 𝑅𝑓 beyond 2 a.u. does not improve the constants 

nor lead to improved accuracy of the corresponding correlation energies of the systems computed. 
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Table 7.12. Effect of extension of 𝑅𝑓 beyond 2 a.u. but fixing 𝑅𝑖 at 0.3 a.u on fitting constants (𝑎, 𝑏, 𝑐, 𝑑) optimised using the scipy.optimise 

least_squares method with boundary constraints. Guess values are in bold under the constants. Correlation energies in green are the calculated 

exact values[16] while those in blue are experimentally estimated.[423,424] 

𝑹𝑖 𝑹𝑓 

𝒂 𝒃 𝒄 𝒅 𝑬𝒄 / a.u. 

0.08 0.16 0.58 0.8 
H- He Li+ Be B+ Ne 

-0.039821 -0.042044 -0.043498 -0.09434 -0.11134 -0.39047 

0.3 2 0.01628 0.18438 0.57594 0.80562 -0.031406 -0.041937 -0.043850 -0.094865 -0.108785 -0.390922 

0.3 3 0.01550 0.17485 0.57682 0.80371 -0.030257 -0.040869 -0.043101 -0.091342 -0.104577 -0.371472 

0.3 4 0.01142 0.01474 0.52983 0.85630 -0.025205 -0.040263 -0.047217 -0.077391 -0.086964 -0.259390 

0.3 5 0.01487 0.17153 0.57742 0.80317 -0.029141 -0.039516 -0.041796 -0.087949 -0.100638 -0.356045 

0.3 6 0.01483 0.17129 0.57747 0.80312 -0.029089 -0.039458 -0.041743 -0.087793 -0.100455 -0.355294 

0.3 7 0.01482 0.17117 0.57748 0.80310 -0.029068 -0.039435 -0.041723 -0.087729 -0.100379 -0.354972 

0.3 8 0.01481 0.17109 0.57749 0.80309 -0.029053 -0.039418 -0.041708 -0.087683 -0.100326 -0.354753 

CS[26] 0.01565 0.173 0.58 0.8  -0.0416 -0.0438 -0.0926 -0.106 -0.374 
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A summary of the results computed with the scipy.optimise least_squares method using 𝑅𝑖 =

0.3, 0.25, 0.20,… , .0.0 a.u., 𝑅𝑓 = 2 a.u., a total of 80 points, 𝑞 = 2.29, a tolerance of 10−6, the 

computed Laguerre-based HF wavefunction for the helium atom and boundary constraints is 

presented in Table 7.13. 

It is observed from the results in Table 7.13 that extending the range of 𝑅 by decreasing 𝑅𝑖 from 

0.3 to 0.0 a.u. in steps of 0.05 a.u. does not lead to improved accuracy of the corresponding 

correlation energies for the systems computed. The optimum constants remain those optimised 

within 0.3 ≤ 𝑅 ≤ 2 a.u., when the corresponding correlation energies are compared with the exact 

and estimated values. Nevertheless, the accuracy of the corresponding correlation energies for the 

H- and B+ are increased with increasing range from 𝑅𝑖 = 0.25 to 0.05 a.u. but declines sharply at 

𝑅𝑖 = 0.0 a.u. 
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Table 7.13. Effect of increasing the range of 𝑅 by decreasing 𝑅𝑖 in steps of 0.05 from 0.3 to 0.0 a.u. but fixing 𝑅𝑓 at 2 a.u on fitting constants 

(𝑎, 𝑏, 𝑐, 𝑑) optimised using the scipy.optimise least_squares method with boundary constraints. Guess values are in bold under the constants. 

Correlation energies in green are the computed exact values[16] while those in blue are experimentally estimated.[423,424] 

Ri Rf 

a b c d 𝑬𝒄 / a.u. 

0.08 0.16 0.58 0.8 
H- He Li+ Be B+ Ne 

-0.039821 -0.042044 -0.043498 -0.09434 -0.11134 -0.39047 

0.3 2 0.01628 0.18438 0.57594 0.80562 -0.031406 -0.041937 -0.043850 -0.094865 -0.108785 -0.390922 

0.25 2 0.01636 0.18555 0.57588 0.80575 -0.031503 -0.042004 -0.043872 -0.095161 -0.109145 -0.392773 

0.2 2 0.01648 0.18724 0.57573 0.80594 -0.031680 -0.042151 -0.043955 -0.095703 -0.109798 -0.395934 

0.15 2 0.01670 0.18995 0.57543 0.80627 -0.031989 -0.042417 -0.044117 -0.096649 -0.110933 -0.401345 

0.1 2 0.01639 0.17928 0.57727 0.80392 -0.031847 -0.042785 -0.044942 -0.096131 -0.110137 -0.393274 

0.05 2 0.01660 0.17963 0.57730 0.80385 -0.032235 -0.043286 -0.045453 -0.097298 -0.111480 -0.398233 

0.0 2 0.01185 0.02239 0.58768 0.80238 -0.027006 -0.042327 -0.049163 -0.081599 -0.091527 -0.273903 

CS[26] 0.01565 0.173 0.58 0.8  -0.0416 -0.0438 -0.0926 -0.106 -0.374 
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The constants optimised with the scipy.optimise least_squares method using 𝑅𝑖 = 0.0 a.u., 𝑅𝑓 =

1, 2,… , 8 a.u., a total of 80 points, 𝑞 = 2.29, a tolerance of 10−6, the computed Laguerre-based HF 

wavefunction for the helium atom and boundary constraints are summarised in Table 7.14. 

Inspection of the results summarised in Table 7.14 reveal that the value of the constants are 

generally not improved and there is no discernible trend in the value of the optimised constants with 

increasing 𝑅𝑓 from 1 to 5 a.u. Nevertheless, the values of the optimised constants within 0.0 ≤ 𝑅 ≤

6 a.u. are very similar to the CS values. These values become less similar to the CS values for 𝑅𝑓 ≥

7 a.u. The corresponding correlation energies computed within 0.0 ≤ 𝑅 ≤ 6 a.u. are found to have 

errors of; 1.7 % for He, 0.5 % for Li+, 2.3 % for Be, 5.3 % for B+ and 4.3 % for Ne in comparison 

with the exact or experimental estimates. This suggests that the energies are less accurate than the 

CS values by about 0.5 % for He, Be and B+ but are of similar accuracy as CS values. 

As a result of the similarity of the optimised constants and allied correlation energies for the 

constants optimised within 0.0 ≤ 𝑅 ≤ 6 a.u., the variation of the calculated 𝐻(𝛽,𝑊) function and 

the CS 𝐻(𝛽,𝑊) function with 𝑅 is ploted to further investigate their similarity. To do this, a plot of 

the integrated (exact) results, calculated and CS 𝐻(𝛽,𝑊) function arising from the computed 

Laguerre-based HF helium densities against 𝑅 within 0.0 ≤ 𝑅 ≤ 6 a.u. is presented in Figure 7.4. 
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Table 7.14. Effect of increasing the range of 𝑅 by increasing 𝑅𝑓 in steps of 1 a.u. but fixing 𝑅𝑖 at 0.0 a.u on fitting constants (𝑎, 𝑏, 𝑐, 𝑑) optimised 

using the scipy.optimise least_squares method with boundary constraints. Guess values are in bold under the constants. Correlation energies in 

green are the calculated exact values[16] while those in blue are experimentally estimated.[423,424] 

𝑅𝑖 𝑅𝑓 
a b c d 𝑬𝒄 / a.u. 

0.08 0.16 0.58 0.8 
H- He Li+ Be B+ Ne 

-0.039821 -0.042044 -0.043498 -0.09434 -0.11134 -0.39047 

0.0 1 0.01177 0.01559 0.58567 0.80652 -0.026915 -0.042450 -0.049478 -0.081433 -0.091289 -0.271322 

0.0 2 0.01185 0.02239 0.58768 0.80238 -0.027012 -0.042335 -0.049172 -0.081615 -0.091545 -0.273957 

0.0 3 0.01161 0.02427 0.57804 0.80715 -0.026319 -0.041238 -0.047886 -0.079648 -0.089380 -0.268150 

0.0 4 0.01116 0.00854 0.56924 0.82233 -0.025391 -0.040419 -0.047340 -0.077187 -0.086529 -0.255611 

0.0 5 0.01112 0.00523 0.57443 0.81574 -0.025499 -0.040625 -0.047611 -0.077370 -0.086672 -0.254989 

0.0 6 0.01559 0.17256 0.57760 0.80302 -0.030532 -0.041350 -0.043695 -0.092140 -0.105448 -0.373505 

0.0 7 0.01554 0.17266 0.57768 0.80290 -0.030434 -0.041211 -0.043544 -0.091840 -0.105106 -0.372329 

0.0 8 0.01552 0.17244 0.57772 0.80285 -0.030403 -0.041180 -0.043520 -0.091746 -0.104995 -0.371836 

CS[26] 0.01565 0.173 0.58 0.8  -0.0416 -0.0438 -0.0926 -0.106 -0.374 
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Figure 7.5. Variation of the 𝐻(𝛽,𝑊) function with 𝑅 for the helium atom within 0.0 ≤ 𝑅 ≤ 6 a.u. 

using a tolerance of 10−6. The red dots represent the exact numerically integrated result; blue curve 

represents the approximated function (𝐻(𝛽,𝑊)Calc.) while the yellow curve is a plot of the CS 

function, 𝐻(𝛽,𝑊)CS. 

 

It is observed that the approximated and CS 𝐻(𝛽,𝑊) function overlay each other almost exactly 

with only a marginal difference around their maximum. This is likely the region that is sensitive and 

that is reflected in sensitivity of the value of constant 𝑎. Even though the calculated curves look 

similar, the corresponding optimised constants within this range of 𝑅 give slightly less accurate 

corresponding correlation energies especially for He, Be and B+. This may be attributed to the 

behaviour around the maximum of the approximated curve or sensitivity of its constant 𝑎 in 

agreement with the assertion by Handy and Cohen.[349] 

In summary, it is found on the overall that increasing the range of 𝑅 does not necessarily improve 

the optimised constants nor the correlation energies resulting from application of the optimised 

constants to the implemented form of the LYP exression for correlation energies. 
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7.3.5.3 Effect of Variation of the Number of Points with 𝑹 on the Fitting Constants for 

Helium 

The constants computed with the scipy.optimise least_squares method using 𝑅𝑖 = 0.3 a.u., 𝑅𝑓 =

2, 3,4,… , 8 a.u., a total of 80, 120, 160, …, 320 points, 𝑞 = 2.29, a tolerance of 10−6, the computed 

Laguerre-based HF wavefunction for helium and boundary constraints are summarised in Table 

7.15. 

The results summarised in Table 7.15 suggest that increasing the number of points with increasing 

𝑅𝑓 decreases the accuracy of constant 𝑎 and hence, the accuracy of the corresponding correlation 

energies even though the value of constant 𝑏, 𝑐 and 𝑑 is essentially unchanged on the overall. 

It is found that the most accurate constants in general considering the accuracy of the corresponding 

correlation energies are 𝑎 = 0.01628, 𝑏 = 0.18438, 𝑐 = 0.57594 and 𝑑 = 0.80562. These 

constants are computed in the range, 0.3 ≤ 𝑅 ≤ 2 a.u. with a total number of points, 𝑅num = 80, a 

tolerance of 10−6 and guess values: 𝑎 = 0.08, 𝑏 = 0.16, 𝑐 = 0.58 and 𝑑 = 0.8. The accuracy of 

the correlation energies computed by applying these optimised constants is found to be slightly 

higher than the CS values in comparison with exact values[16] or fixed nucleus non-relativistic 

experimental estimates.[423,424] 

 

 

 



200 
 

 

 

 

 

 

 

Table 7.15. Effect of increasing number of points (𝑅num) with 𝑅𝑓 but fixing 𝑅𝑖 at 0.3 a.u on fitting constants (𝑎, 𝑏, 𝑐, 𝑑) optimised using the 

scipy.optimise least_squares method with boundary constraints. Guess values are in bold under the constants. Correlation energies in green are the 

calculated exact values[16] while those in blue are experimentally estimated.[423,424] 

𝑹𝐧𝐮𝐦 𝑹𝒇 
a b c d 𝑬𝒄 / a.u. 

0.08 0.16 0.58 0.8 
H- He Li+ Be B+ Ne 

-0.039821 -0.042044 -0.043498 -0.09434 -0.11134 -0.39047 

80 2 0.01628 0.18438 0.57594 0.80562 -0.031406 -0.041937 -0.043850 -0.094865 -0.108785 -0.390922 

120 3 0.01563 0.17830 0.57610 0.80456 -0.030377 -0.040863 -0.042965 -0.091735 -0.105088 -0.374870 

160 4 0.01559 0.18804 0.57369 0.80740 -0.029884 -0.039729 -0.041404 -0.090357 -0.103686 -0.374374 

200 5 0.01548 0.18682 0.57395 0.80725 -0.029717 -0.039569 -0.041285 -0.089843 -0.103075 -0.371611 

240 6 0.01543 0.18619 0.57410 0.80711 -0.029649 -0.039509 -0.041247 -0.089633 -0.102823 -0.370414 

280 7 0.01541 0.18578 0.57420 0.80700 -0.029621 -0.039492 -0.041245 -0.089544 -0.102713 -0.369829 

320 8 0.01539 0.18548 0.57427 0.80693 -0.029605 -0.039485 -0.041249 -0.089490 -0.102647 -0.369453 

CS[26] 0.01565 0.173 0.58 0.8  -0.0416 -0.0438 -0.0926 -0.106 -0.374 
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7.3.5.4 Effect of Variation of Tolerance within 𝟎. 𝟑 ≤ 𝑹 ≤ 𝟐 a.u. on the Fitting Constants for 

Helium 

The results of optimisation of constants within 0.3 ≤ 𝑅 ≤ 2 a.u. using a total of 80 points, 𝑞 =

2.29, 10−2 ≤ tolerance ≤ 10−10, the computed Laguerre-based HF wavefunction for helium and 

boundary constraints are summarised in Table 7.16. 
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Table 7.16. Effect of variation of tolerance within 0.3 ≤ 𝑅 ≤ 2 a.u. on fitting constants (𝑎, 𝑏, 𝑐, 𝑑) optimised using the scipy.optimise least_squares 

method with boundary constraints. Guess values are in bold under the constants. Correlation energies in green are exact values[16] while those in 

blue are experimentally estimated.[423,424] 

Tolerance 
a b c d 

𝑬𝒄 / a.u. 

H- He Li+ Be B+ Ne 

0.08 0.16 0.58 0.8 -0.039821 -0.042044 -0.043498 -0.09434 -0.11134 -0.39047 

1×10-2 0.01658 0.18432 0.57595 0.80560 -0.031971 -0.042694 -0.044645 -0.096570 -0.110739 -0.397915 

1×10-3 0.01658 0.18432 0.57595 0.80560 -0.031971 -0.042694 -0.044645 -0.096570 -0.110739 -0.397915 

1×10-4 0.01628 0.18438 0.57594 0.80562 -0.031406 -0.041937 -0.043850 -0.094865 -0.108785 -0.390922 

1×10-5 0.01628 0.18438 0.57594 0.80562 -0.031406 -0.041937 -0.043850 -0.094865 -0.108785 -0.390922 

1×10-6 0.01628 0.18438 0.57594 0.80562 -0.031406 -0.041937 -0.043850 -0.094865 -0.108785 -0.390922 

1×10-7 0.01629 0.18437 0.57595 0.80562 -0.031411 -0.041943 -0.043857 -0.094879 -0.108800 -0.390975 

1×10-8 0.01629 0.18437 0.57595 0.80562 -0.031411 -0.041943 -0.043857 -0.094879 -0.108800 -0.390975 

1×10-9 0.01376 0.11418 0.61896 0.78763 -0.029183 -0.042047 -0.046373 -0.087261 -0.098947 -0.326549 

1×10-10 0.01376 0.11418 0.61896 0.78763 -0.029183 -0.042047 -0.046373 -0.087261 -0.098947 -0.326549 

CS 0.01565 0.173 0.58 0.8  -0.0416 -0.0438 -0.0926 -0.106 -0.374 
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On inspection of the result in Table 7.16, it is found that there is no discernible trend in the value of 

the constants optimised in this range of 𝑅. It is also observed that tolerances of 10−4 to 10−6 all 

give the same constants. The corresponding correlation energies of the optimised constants for these 

tolerances are found to have smaller errors than the CS values in comparison with the exact 

values[16] and/or fixed non-relativistic experimental estimates.[423,424] In addition, it is found that the 

optimised constants at tolerances ≥ 10−9 lead to highly accurate correlation energies for only 

helium (error = 0.0 %) but inaccurate energies (error ≥ 6.6 %) for every other system considered. 

On the basis of the results considered so far, the optimum optimised constants for fitting to helium 

atom are 𝑎 = 0.01628, 𝑏 = 0.18438, 𝑐 = 0.57594 and 𝑑 = 0.80562. The errors for the 

corresponding correlation energies of the investigated closed-shell systems in comparison with 

exact and/or estimated values are: 21.1 % for H-, 0.3 % for He, 0.8 % for Li+, 0.6 % for Be, 2.3 % 

for B+ and 0.1 % for Ne. The CS constants are 𝑎 = 0.01565, 𝑏 = 0.173, 𝑐 = 0.58 and 𝑑 = 0.8. 

Their corresponding correlation energies are found to have the errors: 1.1 % for He, 0.7 % for Li+, 

1.8 % for Be, 4.8 % for B+ and 4.2 % for Ne. The computed constants in the present work therefore 

offer higher accuracy for computation of correlation energies. 

A plot of the behaviour of the exact results, calculated and CS 𝐻(𝛽,𝑊) function arising from the 

computed Laguerre-based HF helium densities against 𝑅 corresponding to the optimum constants 

and the most accurate constants for helium is presented in Figure 7.6. 

It is observed that the approximated and CS function curves corresponding to the optimum 

constants are poorly fitted to the exact data. For the fitting in Figure 7.6b, the approximated 

function has a better fit than that of the CS to the exact data. It may therefore be reckoned that for a 

robust set of constants, the poor fit is desirable as accurate fitting results in constants that lead to 

accurate correlation energies for only the helium atom. 

It is worth noting that the constants optimised by fitting the 𝐻(𝛽,𝑊) function to the numerically 

integrated helium data do not give good correlation energy for the hydride ion including the 

optimum and best constants. For this system, it is found that the smallest error is 20 %. On the basis 

of Figure 7.1 and this result, it may considered to this extent that the CS formalism does not 

account for the long range low density behaviour of the hydride ion in agreement with literature 

assertions[362,385] of this anomaly. One may therefore expect that the optimum constants for fitting to 

the hydride ion data will not fall in the same range of 𝑅 as those of the helium atom as the HF 

densities in the form of the the ‘exact’ data for the hydride ion is likely to have a larger radial extent 

than the helium atom just as in Figure 7.1. 
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Figure 7.6. Variation of the 𝐻(𝛽,𝑊) function with 𝑅 for the helium atom within 0.3 ≤ 𝑅 ≤ 2 a.u. 

using a tolerance of: (a) 10−6 and (b) 10−10. The red dots represent the exact numerically 

integrated result; blue curve represents the approximated function (𝐻(𝛽,𝑊)Calc.) while the yellow 

curve is a plot of the CS function, 𝐻(𝛽,𝑊)CS. 

 

(a)  

(b)  
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The determination of the optimum constants for fitting to the hydride ion data is therefore 

considered next in an attempt to account for the long range low density behaviour asserted to be 

lacking[362,385] in the CS model. 

 

7.3.6 Fitting Constants for the Hydride Ion 

Following a detailed rational search for the optimum fitting constants for the hydride ion, only the 

summary of computed results consisting of the effect of the constant q and the most accurate results 

for the system are presented in this section. All other computational results with respect to the 

hydride ion are summarised in Appendix A.4. Just as in the preceeding sections, the corresponding 

correlation energies are computed for each set of optimised constants using the implementation of a 

form of the LYP functional (eq. (7.16)) and the Koga et al.,[401] HF wavefunctions. In addition, the 

exact[16] or fixed nucleus non-relativistic experimentally estimated.[423,424] correlation energies of the 

respective closed-shell systems are employed to test the accuracy of the CS model for the optimised 

constants. 

 

7.3.6.1 Effect of 𝒒, Guess Constant Values and Boundary conditions on the Fitting Constants 

for the Hydride Ion 

Table 7.17 presents a summary of the optimised fitting constants for the fitting to the hydride ion 

density using different guess values and 𝑞 = 1.93985 for H-, determined in 7.2.4.2 in addition to 

𝑞 = 2.29 (that was derived from He), is employed within 0.3 ≤ 𝑅 ≤ 2 a.u. with a total of 80 points 

and a tolerance of 10−6. To do this, the scipy.optimise least_squares approach with and without 

boundary constraints and the computed 25-term Laguerre-based HF wavefunction for the hydride 

ion were employed. 

The results summarised in Table 7.17 suggest that for the fitting to the computed hydride ion 

densities, the fitting constants optimised using 𝑞 = 1.93985 without boundary constraints are more 

promising regardless of the guess values of the constants. This is observed especially in the 

accuracy of the corresponding computed correlation energies for the hydride ion, as the fitting to the 

hydride ion densities necessarily has to reproduce its correlation energy for it to be accurate. 

Consequently, 𝑞 = 1.93985, no boundary constraints and guess constants; 𝑎 = 0.01, 𝑏 = 0.17, 𝑐 =

0.58 and 𝑑 = 0.8 are employed for further optimisations. 
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Table 7.17. Effect of 𝑞 and boundary conditions on fitting constants (𝑎, 𝑏, 𝑐, 𝑑) from fitting to the hydride ion densities optimised using the 

scipy.optimise least_squares method within 0.3 ≤ 𝑅 ≤ 2 a.u. and a total of 80 points employing. Four sets of guess values for the constants are 

employed. Correlation energies in green are the calculated exact values[16] while those in blue are experimentally estimated.[423,424] 

𝑞 
Boundary 

Constraints 

a b c d 𝑬𝒄 / a.u. 

0.01 0.17 0.58 0.8 
H- He Li+ Be B+ Ne 

-0.039821 -0.042044 -0.043498 -0.09434 -0.11134 -0.39047 

2.29 
None 0.01192 0.01245 0.59148 0.81792 -0.027123 -0.043003 -0.050256 -0.082323 -0.092308 -0.273698 

Imposed 0.01448 0.16992 0.58001 0.79997 -0.028515 -0.038717 -0.040993 -0.085943 -0.098300 -0.346921 

1.93985 
None 0.02424 0.05184 0.57460 1.06007 -0.040209 -0.066294 -0.078578 -0.133492 -0.153613 -0.501289 

Imposed 0.02518 0.16962 0.58008 0.79990 -0.043261 -0.056425 -0.057048 -0.130171 -0.151967 -0.586863 

𝑞 
Boundary 

Constraints 

a b c d 𝑬𝒄 / a.u. 

0.08 0.16 0.58 0.8 
H- He Li+ Be B+ Ne 

-0.039821 -0.042044 -0.043498 -0.09434 -0.11134 -0.39047 

2.29 
None 0.01213 0.01610 0.58565 0.83945 -0.027090 -0.043056 -0.050363 -0.082710 -0.092882 -0.276985 

Imposed 0.01456 0.17234 0.57766 0.80557 -0.028471 -0.038595 -0.040805 -0.085974 -0.098404 -0.348573 

1.93985 
None 0.02424 0.05172 0.57190 1.05947 -0.040210 -0.066293 -0.078580 -0.133511 -0.153628 -0.501259 

Imposed 0.02518 0.16962 0.58008 0.79990 -0.043261 -0.056425 -0.057048 -0.130171 -0.151967 -0.586863 

𝑞 
Boundary 

Constraints 

a b c d 𝑬𝒄 / a.u. 

0.0 0.0 0.0 0.0 
H- He Li+ Be B+ Ne 

-0.039821 -0.042044 -0.043498 -0.09434 -0.11134 -0.39047 

2.29 
None 0.01291 0.02565 0.31483 0.90661 -0.026936 -0.043195 -0.050750 -0.084612 -0.095397 -0.289874 

Imposed 0.01078 0.00000 0.00000 0.68435 -0.027422 -0.042336 -0.048939 -0.080006 -0.088925 -0.257075 

1.93985 
None 0.02376 0.04490 0.40860 1.01330 -0.040225 -0.066185 -0.078557 -0.134356 -0.154074 -0.497619 

Imposed 0.01708 0.00000 0.00000 0.64042 -0.041105 -0.064741 -0.075509 -0.122592 -0.136820 -0.398235 

𝑞 
Boundary 

Constraints 

a b c d 𝑬𝒄 / a.u. 

0.1 0.1 0.1 0.1 
H- He Li+ Be B+ Ne 

-0.039821 -0.042044 -0.043498 -0.09434 -0.11134 -0.39047 

2.29 
None 0.01314 0.03321 0.64235 0.94579 -0.026945 -0.043308 -0.050848 -0.084349 -0.095402 -0.292125 

Imposed -0.00257 2.19488 0.00000 0.74790 -0.033042 -0.057841 -0.071552 -0.037741 -0.038065 0.090153 

1.93985 
None 0.02442 0.05706 0.69480 1.08267 -0.040180 -0.066266 -0.078401 -0.132567 -0.152811 -0.502181 

Imposed -0.00341 1.63468 0.00000 0.50639 -0.052276 -0.088344 -0.107345 -0.056646 -0.057905 0.124745 
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7.3.6.2 Effect of Simultaneous Variation of 𝑹𝒊 and 𝑹𝒇 on the Fitting Constants for the 

Hydride Ion 

The optimum fitting constants for the hydride ion were computed by varying both initial and final 

values of 𝑅 simultaneously to increase the range of 𝑅. These values were obtained by using the 

scipy.optimise least_squares approach without boundary conditions, a total of 80 points, a tolerance 

of 10−6 and the computed 25-term Laguerre-based HF wavefunction for the hydride ion. The guess 

constant values employed for this optimisation were 𝑎 = 0.01, 𝑏 = 0.17, 𝑐 = 0.58 and 𝑑 = 0.8.  

The result of this optimisation is presented in Table 7.18. 

It is found that for all the computed fitting constants in Table 7.18, the only system whose energy is 

reproduced correctly is the hydride ion whose correlation energy is within 1 % of its exact value. 

The correlation energies for all other systems are ≥ 28.3 %  less accurate in comparison with the 

exact or experimentally estimated values. For the hydride ion in particular, the optimum fitting 

constants are computed as 𝑎 = 0.02578, 𝑏 = 0.10943, 𝑐 = 1.49357 and 𝑑 = 1.22388. These 

constants are optimised for the system within 0.1 ≤ 𝑅 ≤ 6 a.u. This range of 𝑅 for the hydride is 

different from the range of 𝑅 within which the optimum fitting constants were optimised for the 

helium atom as anticipated. 

A plot of the integrated results, approximated and CS 𝐻(𝛽,𝑊) functions arising from the computed 

Laguerre-based HF hydride ion densities against 𝑅 corresponding to the optimum constants for the 

system is presented in Figure 7.7. It is observed from Figure 7.7 that the 𝐻(𝛽,𝑊)Calc. is very 

accurately fitted to the exact data while the 𝐻(𝛽,𝑊)CS which uses the values of the CS constants is 

very poorly fitted to the exact data. As observed for helium in 7.3.2, the excellent accuracy of the 

fitting for 𝐻(𝛽,𝑊)Calc. in Figure 7.7 is a likely reason for the poor performance of the optimised 𝑎, 

𝑏, 𝑐 and 𝑑 in the computation of correlation energies for non-hydride systems. As summarised in 

Table A.4.4 of Appendix A.4, varying the tolerance to lower the accuracy of the fit does not 

improve the optimised constants nor the corresponding correlation energies in general. 
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Table 7.18. Effect of increasing the range of 𝑅 by varying both initial and final values of 𝑅 on fitting constants (𝑎, 𝑏, 𝑐, 𝑑) optimised for the hydride 

ion using the scipy.optimise least_squares method without boundary restrictions. Correlation energies in green are exact values[16] while those in 

blue are experimentally estimated.[423,424] 

𝑅𝑖 𝑅𝑓 
a b c d 𝑬𝒄 / a.u. 

0.01 0.17 0.58 0.8 
H- He Li+ Be B+ Ne 

-0.039821 -0.042044 -0.043498 -0.09434 -0.11134 -0.39047 

0.3 2 0.02424 0.05184 0.57460 1.06007 -0.040209 -0.066294 -0.078578 -0.133492 -0.153613 -0.501289 

0.25 3 0.02459 0.05341 0.57757 1.08198 -0.040170 -0.066383 -0.078764 -0.133929 -0.154301 -0.505553 

0.2 4 0.02563 0.05660 0.58325 1.14862 -0.040053 -0.066739 -0.079506 -0.135287 -0.156364 -0.517216 

0.15 5 0.02685 0.05868 0.59372 1.23223 -0.039905 -0.067271 -0.080624 -0.136895 -0.158759 -0.529557 

0.1 6 0.02578 0.10943 1.49357 1.22388 -0.039825 -0.065826 -0.076525 -0.125969 -0.145885 -0.511579 

0.05 7 0.02600 0.10401 1.52715 1.25014 -0.039689 -0.066248 -0.077529 -0.126829 -0.146837 -0.511384 

0.0 8 0.02537 0.09131 1.59038 1.22461 -0.039516 -0.066498 -0.078397 -0.127192 -0.146827 -0.500849 

 

 

 

 

 



209 
 

 

 

Figure 7.7. Variation of the 𝐻(𝛽,𝑊) function with 𝑅 for the hydride ion within 0.1 ≤ 𝑅 ≤ 6 a.u. 

using a tolerance of 10−6. The red dots represent the exact numerically integrated result; blue curve 

represents the approximated function (𝐻(𝛽,𝑊)Calc.) while the yellow curve is a plot of the CS 

function, 𝐻(𝛽,𝑊)CS. 

 

In order to visualise the behaviour of the 𝐻(𝛽,𝑊) at long range for both system, the ‘exact’ data of 

the systems is plotted against 𝑅 in Figure 7.8. 

The plots in Figure 7.8 reveals that the 𝐻(𝛽,𝑊) function has a shorter radial extent for the helium 

atom (Figure 7.8(a)) and a larger radial extent for the hydride ion (Figure 7.8(b)) as it decays faster 

for the helium atom (at ~ 5 𝑎0) but slower for the hydride ion (~ 13 𝑎0). This is similar to the 

behaviour captured in Figure 7.1. However, in Figure 7.1, the densities are physically meaningful 

whereas the 𝐻(𝛽,𝑊) function does not have a physical interpretation. In addition, the functions are 

plotted against inter-electronic and nucleus-electron distances, respectively and so are not directly 

comparable. So far therefore, no discernible link exists between the Figure 7.8 and Figure 7.1 

except that the two functions decay in a similar manner. Thus, the 𝐻(𝛽,𝑊) function is likely to 

have captured the long range low density behaviour of the hydride ion. Nevertheless, it is not very 

clear why the constants determined for the hydride ion are not accurate when other correlation 



210 
 

 

energies are computed. A possible explanation is that the hydride ion is predicted to be unbound at 

the HF level.[16,18] This is likely to be the reason for the success of the determined helium 

parameters in reproducing accurate correlation energies for neutral and cationic atomic systems. It 

may therefore be reckoned that a bound atomic anion, e.g., 𝑍𝐶
HF[16] may perform better. 

In the next section, the optimum constants for these species are used to compute the correlation 

energies for several atomic systems including atomic anions to determine which of the two sets of 

constants better reproduces their correlation energies. 
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Figure 7.8. Variation of the exact numerically integrated result with 𝑅 for the: (a) helium atom 

within 0.0 ≤ 𝑅 ≤ 8 a.u. and (b) hydride ion within 0.0 ≤ 𝑅 ≤ 16 a.u. using a tolerance of 10−6. 

 

(a)  

(b)  
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7.3.7 Correlation Energies of Atomic Systems using Optimum Fitting Constants for the 

Helium Atom and the Hydride Ion  

A summary of the correlation energies computed using the CS constants (CS Fit), optimum 

computed fitting constants for helium atom (He Fit) and optimum computed fitting constants for 

the hydride ion (H- Fit) is presented in Table 7.19. The respective constants are: 𝑎 = 0.01565, 𝑏 =

0.173, 𝑐 = 0.58 and 𝑑 = 0.8 for CS Fit, 𝑎 = 0.01628, 𝑏 = 0.18438, 𝑐 = 0.57594 and 𝑑 =

0.80562 for He Fit and 𝑎 = 0.02578, 𝑏 = 0.10943, 𝑐 = 1.49357 and 𝑑 = 1.22388 for H- Fit. 

 

Table 7.19. Correlation energies of atomic systems computed using the CS Fit, He Fit and H- Fit 

constants in combination with the respective Koga et al.,[401] HF wavefunctions. Correlation 

energies in green are the computed exact values[16] while those in red[427] and blue[423,424] are 

experimentally estimated. 

System 

Anions 

𝑬𝒄
𝐂𝐚𝐥𝐜. / a.u. 

𝑬𝒄
𝐋𝐢𝐭. / a.u. 

Absolute Error / % 

CS Fit He Fit H- Fit ∆CS Fit ∆He Fit ∆H- Fit 

H- -0.030724 -0.031398 -0.039821 -0.039821 22.8 21.2 0.0 

Li- -0.070081 -0.071349 -0.098827 -0.073 4.0 2.3 35.4 

B- -0.136152 -0.140800 -0.172398 -0.145 6.1 2.9 18.9 

C- -0.167977 -0.174568 -0.210922 -0.183 8.2 4.6 15.3 

N- -0.237865 -0.247407 -0.303009 -0.265 10.2 6.6 14.3 

O- -0.299123 -0.311267 -0.389259 -0.331 9.6 6.0 17.6 

F- -0.354303 -0.368911 -0.469486 -0.400 11.4 7.8 17.4 

Cations        

Li+ -0.043884 -0.043838 -0.076518 -0.043498 0.9 0.8 75.9 

Be+ -0.058123 -0.059085 -0.087871 -0.04737 22.7 24.7 85.5 

B+ -0.105959 -0.108756 -0.145873 -0.11134 4.8 2.3 31.0 

C+ -0.144020 -0.148939 -0.191051 -0.13880 3.8 7.3 37.6 

N+ -0.175908 -0.182818 -0.230547 -0.16661 5.6 9.7 38.4 

O+ -0.202159 -0.210769 -0.265414 -0.19423 4.1 8.5 36.6 

F+ -0.276579 -0.288051 -0.372880 -0.26109 5.9 10.3 42.8 

Neutrals        

He -0.041560 -0.041925 -0.065821 -0.042044 1.2 0.3 56.6 

Li -0.050302 -0.050877 -0.078798 -0.04533 11.0 12.2 73.8 

Be -0.092596 -0.094840 -0.125958 -0.09434 1.8 0.5 33.5 

B -0.128190 -0.132305 -0.166631 -0.12485 2.7 6.0 33.5 

C -0.160596 -0.166654 -0.205565 -0.15640 2.7 6.6 31.4 

N -0.188301 -0.196106 -0.241497 -0.18831 0.0 4.1 28.3 

O -0.261061 -0.271775 -0.342863 -0.25794 1.2 5.4 32.9 

F -0.321662 -0.334827 -0.431658 -0.32453 0.9 3.2 33.0 

Ne -0.375313 -0.390819 -0.511537 -0.39047 3.9 0.1 31.0 

Average % Error     6.3 6.7 35.7 

 

The results summarised in Table 7.19 suggest that the optimum fitting constants for the helium 

atom give more accurate correlation energies for the atomic anions in comparison with the exact or 

experimental estimates except for the hydride ion as indicated by the percent errors. The CS 
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constants are found to give better correlation energies for the cationic and neutral atomic systems 

except for B+, He, Be and Ne for which the computed constants for helium outperforms the results 

of CS. This suggests that long range, low density behaviour which is characteristic of anionic 

systems (due to their diffuse densities) is likely accounted for by the CS model, especially through 

our computed fitting constants for the helium atom. Moscardó et al.,[389] had earlier asserted that the 

correlation factor proposed by CS was very good for modelling electron correlation in atoms. 

Therefore, the CS results for neutral systems is expected. Moscardó[390] also suggested that contrary 

to previous assertions by Tao et al.,[385] the CS formalism was able to semi-quantitatively reproduce 

the properties of the UEG. He went on to state that the requirement for this outcome was the choice 

of the parameter, 𝑞, entering the CS wavefunction. The optimised parameters/constants employed in 

computing correlation energies of the anionic systems in this work are likely in agreement with this 

assertion, i.e, varying 𝑞 improved the results slightly. 

In summary, the accuracy of the computed constants from fitting to accurate helium atom HF 

densities do not improve on the constants computed by CS as reflected in the average % errors in 

Table 7.19. The fitting to the hydride ion data does not improve the accuracy of the computed 

correlation energies for non-hydride systems, including other anionic systems. 

 

7.4 Conclusions 

The Colle and Salvetti (CS)[26] correlation formula has been re-parameterised using the least squares 

fitting procedure in combination with an accurately computed 25-term Laguerre-based Hartree-

Fock (HF) wavefunction for the helium atom or hydride ion. The helium fitting was to test if the 

quality of the wavefunction used in the fitting procedure improved the resulting correlation 

energies. The fitting to the hydride wavefunction, which has not been tried previously, was an 

attempt to account for long range correlation asserted[362,385] to be missing in the model. It is found 

from detailed determination and analysis of the fitting parameters that the optimum parameters 

computed from fitting to the helium atom densities are 𝑎 = 0.01628, 𝑏 = 0.18438, 𝑐 = 0.57594 

and 𝑑 = 0.80562. These values are found to be similar to those computed by CS and that they arise 

from a low tolerance fit to the ‘exact’ data. The constants are found to offer slightly greater 

accuracy than those of the CS for correlation energies of atomic anions using a form of the Lee-

Yang-Parr (LYP)[27] density correlation functional. Nevertheless, the CS constants give better 

correlation energies for most neutral and atomic cations. In computing correlation energies for the 

atomic systems using a form of the LYP density functional, the Koga et al.,[401] HF wavefunctions 

for atomic systems are employed to form the HF densities of the respective system. The optimum 

constants computed from fitting to the hydride ion densities are; 𝑎 = 0.02578, 𝑏 = 0.10943, 𝑐 =
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1.49357 and 𝑑 = 1.22388. The result of computation of correlation energies using these derived 

constants in the implemented form of the LYP density functional in combination with Koga et 

al.,[401] HF wavefunctions for atomic systems suggests that they are only accurate for the hydride 

ion. As such, it may be reckoned that long range correlation is accounted for by the optimum 

constants from fitting to helium atom densities as they lead to accurate correlation energies for 

atomic anions. The results reveal that to obtain optimum fitting constants from fitting to helium HF 

densities that give good correlation energies, guess values in the neighbourhood of the CS 

constants, boundary constraints and low tolerance are required. This is because it is found that all 

guess values outside the neighbourhood of the CS constants lead to inaccurate optimised constants 

and by extension, correlation energies. For the fitting to hydride HF densities, the boundary 

constraints are not required and the fit must be tight. In addition, the results reveal that fitting to the 

hydride ion does not improve the correlation energies of non-hydride systems, including anions. 

Finally, it is found that the plot of the 𝐻(𝛽,𝑊) function against nucleus-electron distance, 𝑅 

follows a similar decay pattern as the plot of intracule densities against inter-electronic distance for 

helium atom and hydride ion, respectively. 

 

 

 

 

 

 

 



 

 

 

 

8 Summary of thesis and concluding remarks 
 

It has been the focus of this thesis to use computational quantum chemistry methodologies to 

elucidate the structure, stability and reactivity of some inorganic complexes and electron correlation 

in atomic systems. To do this, density functional theory (DFT) and/or coupled cluster (CCSD(T)) 

theory, the quantum theory of atoms in molecules (QTAIM) and/or the polarisable continuum 

model (PCM) were employed. 

The theoretical background and mathematical basis of the chemistry used or described in this thesis 

is summarised in Chapter 2. Here, the principles or approximations behind the computational 

quantum chemistry methodologies employed to investigate the chemistry covered in this thesis are 

discussed. In Chapter 3, the theoretical investigation of the structure and reaction mechanisms of 

the unsymmetrical SCN pincer palladacycle for the formation of Pd(0), using already validated[28] 

DFT methodology, QTAIM and PCM is presented. Analysis of the energy profiles of the elucidated 

reaction mechanisms reveals that Pd(0) formation from pincer palladacycles involve four main steps 

namely: a transmetallation step (TM), two de-coordination steps and a reductive elimination step 

(RE) with TM and RE as the key steps. The results also suggest that the process requires a base to 

occur. The results were used to rationalise the catalytic activity observed experimentally[29] for 

Suzuki-Miyaura carbon-carbon (C-C) cross-coupling reactions and the findings were published in 

the Journal of Organometallic Chemistry.[11] Chapter 4 summarises the determination of a suitable 

and/or reliable computational methodology for the calculation of the geometry, vibrational 

frequencies and energies of sulfur clusters (S𝑛) and hydrogen polysulfanes (HS𝑛+1H). The 

determined methodology, CCSD(T)/aug-cc-pVTZ//𝜔B97XD/6-311++G(2df,2p) and QTAIM are 

used to investigate the electronic structure and stability of cyclic and open chain S𝑛 (𝑛 ≤ 5 and 8) 

(Chapter 5) and the reactivity of stable open chains of sulfur clusters with hydrogen sulfide (H2S) 

(Chapter 6). This methodology is determined by analysing the performance of different DFT 

methods and CCSD(T) in combination with different basis sets in reproducing the experimental 
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geometry, vibrational frequencies and energies of sulfur species in comparison with multi-

configurational (complete active space) self-consistent field (CASSCF) calculations. In addition, the 

suitability and/or reliability of the methodology, a single-reference methodology, is ascertained via 

the 𝒯1 Diagnostic test[54] of Lee and Taylor. In Chapter 5, it is found that all S𝑛, 𝑛 ≤ 4 have open 

chain ground state structures while S𝑛, 𝑛 = 5 and 8 have cyclic ground state structures with S5 as 

the first allotrope of sulfur to form a cyclic ground state structure. Allotropes of sulfur with singlet 

state, cyclic global minimum structures (S5 and S8) are found to possess a more stable triplet state 

open chain structure even though their ring opening reactions occur on the singlet PES. This 

suggests that triplet state open chain structures of sulfur may be thermally accessed via higher 

energy singlet state open chain structures via favourable spin flip or inter-system crossing. This 

finding provides an explanation for the experimentally observed paramagnetism[288] of liquid sulfur. 

Furthermore, some of the sulfur allotropes possess open chain isomers with singlet and triplet spin 

state having similar structures that are thermally accessible from one another. Also, open chain 

structures of S, S2, S5 and S8 are computed to have triplet spin ground states while open chain 

structures of S3 and S4 are found to have singlet spin ground states. The open chains of S𝑛 are found 

to be a key factor in liquid and/or gaseous sulfur reactions/phenomena in the absence 

(viscosity/paramagnetism) and presence (HS𝑛+1H formation) of H2S. The existence of some of the 

open chains in the singlet and triplet state and the fact that a switch in relative stability of the open 

chains of S𝑛 occurs at S3 and S4 is indicative of the involvement of spin state interplay in sulfur 

systems. 

In Chapter 6, the mechanisms for formation of HS𝑛+1H from the reaction of open chains of sulfur 

and singlet H2S are summarised. It is found that thermodynamically stable branched and 

unbranched HS𝑛+1H are only formed on the singlet PES with the unbranched HS𝑛+1H found to be 

more stable. The thermodynamically more stable unbranched HS𝑛+1H are either formed directly or 

indirectly from the reactants depending on the sise of 𝑛. Indirect formation of unbranched HS𝑛+1H 

is found to involve the prior formation of the branched analogue. In all cases, the 

thermodynamically stable unbranched HS𝑛+1H formed in the reaction of S𝑛 with H2S on the singlet 

PES are generated via curve crossing (except for the reaction of S4 with H2S) in exergonic 

processes. The products of reaction on the triplet PES are found to be weakly attracted species and 

are always formed in an endergonic process. The reverse of the triplet PES is found to be exergonic 

while that of the singlet PES is endergonic. The instability of the triplet PES is found to provide a 

mechanism for the persistence of H2S in sulfur recovered in the thermal Claus process. A 

manuscript describing the results in Chapter 5 and 6 is in preparation. Chapter 7 describes the 

systematic re-determination of the fitting parameters in the Colle and Salvetti (CS) correlation 
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formula[26] using accurately computed Laguerre-based HF wavefunction for He and H−. The 

determined new fitting parameters are employed in a form of the Lee-Yang-Parr (LYP) density 

correlation functional[27] to compute the correlation energies of several atomic systems in an in-

house code. This is an attempt to explicitly capture the long-range correlation behaviour in H− via 

the new fitting parameters in order to improve the accuracy of the functional in computing the 

electron correlation energies of systems. Analysis of the results in this chapter suggests that 

accurate fitting of the CS formula to the data obtained using the computed Laguerre-based He 

wavefunction over a fairly large radial extent does not give good fitting parameters for the accurate 

computation of correlation energies of systems other than He. Nevertheless, it is found that a 

relaxed fitting to the data obtained using the computed Laguerre-based He wavefunction over a 

short radial extent gives reasonably accurate correlation energies for all atomic systems investigated 

even though the accuracy of the CS results is not improved in general. Furthermore, it was found 

that fitting to the data obtained using the computed Laguerre-based H− wavefunction only lead to 

accurate electron correlation energy for H− and does not improve the accuracy of the CS formula or 

the LYP functional. A manuscript describing the results in Chapter 7 has been submitted. 
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Appendix A.1 

 

Additional structural data for PdSCN (1) and S5 

 

Table A.1.1. Some experimental[29] and optimised (calculated) dihedral angles of PdSCN. 

Dihedral Angle 
 Value / Å  

Expt. PBE 𝝎B97XD 

C3-C2-C1-Pd28 173(2) -177.3 176.8 

C20-C2-C1-Pd28 -9(4) 5.1 -5.2 

C5-C6-C1-C2 1(4) -1.4 0.2 

C10-C6-C1-C2 -176(3) 177.8 179.7 

C5-C6-C1-Pd28 -177(2) 178.2 -177.2 

C10-C6-C1-Pd28 6(3) -2.5 2.4 

C1-C2-C20-S23 20(4) -19.3 9.2 

C3-C2-C20-S23 -162(2) 163.2 -172.9 

C16-C15-N12-Pd28 178(3) 178.3 -178.9 

C11-C10-N12-Pd28 -179.1(19) -178.4 179.0 

C6-C10-N12-Pd28 0(4) 2.0 -0.9 

C2-C20-S23-C24 85(3) 133.2 96.0 

C2-C20-S23-Pd28 -20(3) 21.9 -8.2 

 

The dihedral angles involving the -SMe group in the Pd-L environment together with the bond 

lengths and angles in Table 3.3 (Section 3.3.1) suggest that both approaches give values of the key 

structural parameters comparable to their experimentally[29] determined values. 
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Table A.1.2. Calculated bond angles (θ) and dihedral angles (τ) of the structures of S5 (5b and 5c) 

compared to literature values at the HF/3-21G*[37] level of theory. Also included in this table are the 

calculated θ and τ of the remaining structures of S5 (5d-5g, Figure 5.5 in Section 5.3.1.4). 

Structure Parameter 
Value/° 

This work Ref. [37] 

5b θ(1S-2S-3S) 109.9 107.7 

 θ(2S-3S-4S) 103.4 104.6 

 τ(1S-2S-3S-4S) 75.2 81.6 

5c θ(1S-2S-3S) 107.8 108.0 

 θ(2S-3S-4S) 102.0 104.7 

 θ(3S-4S-5S) 108.0 107.8 

 τ(1S-2S-3S-4S) 0.0  

 τ(2S-3S-4S-5S) 180.0  

5d θ(1S-2S-3S) 113.9  

 θ(2S-3S-4S) 68.1  

 τ(1S-2S-3S-4S) 106.5  

5e θ(1S-2S-3S) 82.3  

 θ(2S-1S-4S) 82.7  

 θ(2S-1S-5S) 112.3  

 θ(2S-3S-4S) 88.4  

 τ(1S-2S-3S-4S) -37.0  

 τ(2S-1S-4S-3S) -35.1  

 τ(5S-1S-2S-3S) 146.2  

5f θ(1S-3S-4S) 111.5  

 θ(3S-4S-5S) 111.1  

 τ(4S-2S-3S-1S) 103.3  

 τ(2S-3S-4S-5S) 32.9  

5g θ(1S-3S-4S) 104.7  

 θ(3S-4S-5S) 104.4  

 τ(4S-2S-3S-1S) 104.6  

 τ(2S-3S-4S-5S) 45.7  

 

The additional structural data (the bond and dihedral angles of 5b-5g) in Table A.1.2 is presented to 

support the discussion in Section 5.3.1.4. 

 



 

 

Appendix A.2 

 

Singlet state reaction mechanisms for 𝐒𝒏 +𝐇𝟐𝐒 (n ≤ 5 

and 8) reactions 

 

 

 

 

 

 

 

 

 

Scheme A.2.1. Reaction mechanism for the singlet S + H2S reaction. 

 

All the given bond distances in Appendix I are in angstrom (Å) and are greater than 2.060 Å for the 

r(S-S) a 1.342 Å for the r(S-H). The same is true for all the given bond distances in Appendix A.3. 
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Scheme A.2.2. Reaction mechanism for the singlet S2 + H2S reaction. Int2b and Int3b are labelled 

as Int2′ and Int2′′ in the text for this reaction. Also, TS2b is labelled as TS2 while TS3b-I and 

TS3b-II are collectively labelled as TS1′ in the text for this reaction. 
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Scheme A.2.3. Reaction mechanism for the singlet S3 + H2S reaction. Int1a and Int1b are 

collectively labelled as Int1 while Int2b is labelled as Int2′′ in the text for the S3-H2S reaction. 

Also, TS2b is labelled as TS1′ in the text for this reaction. 
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Scheme A.2.4. Reaction mechanism for the singlet S4 + H2S reaction. 
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Scheme A.2.5. Reaction mechanism for the singlet S5 + H2S reaction. TS2a and TS2b are 

collectively labelled as TS2 while Int2 is labelled as Branched HSn+1H in the text for this reaction. 
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Scheme A.2.6. Reaction mechanism for the singlet S8 + H2S reaction. Int2 is labelled as Branched 

HSn+1H in the text for this reaction. 
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Appendix A.3 

 

Triplet state reaction mechanisms for 𝐒𝒏 +𝐇𝟐𝐒 (n ≤ 5 

and 8) reactions 

 

 

 

 

 

 

 

 

 

 

Scheme A.3.1. Reaction mechanism for the triplet S + H2S reaction. 
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Scheme A.3.2. Reaction mechanism for the triplet S2 + H2S reaction. 
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Scheme A.3.3. Reaction mechanism for the triplet S3 + H2S reaction. 
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Scheme A.3.4. Reaction mechanism for the triplet S4 + H2S reaction. 
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Scheme A.3.5. Reaction mechanism for the triplet S5 + H2S reaction. 
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Scheme A.3.6. Reaction mechanism for the triplet S8 + H2S reaction. 
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Appendix A.4 

 

Optimised constants for fitting to helium atom and 

hydride ion with corresponding correlation energies for 

some closed-shell systems 

 

This Appendix summarises further details of the results of fitting constants/parameters optimisation 

for the helium atom and the hydride ion to support the discussion in 7.3.6 and 7.3.5. In each case, 

the corresponding correlation energies computed for each set of optimised constants using the 

implemented form of LYP correlation energy functional and the Koga et al.,[401] HF wavefunctions 

are tabulated. In addition, the calculated exact[16] and fixed nucleus non-relativistic experimentally 

estimated[423,424] correlation energies of the respective system are compared with the computed 

values to determine the accuracy of the computed values.. 

The constants optimised with the scipy.optimise least_squares method while varying 𝑅𝑖 and 𝑅𝑓 

simultaneously using a total of 80 points, 𝑞 = 2.29, a tolerance of 10−6, the computed Laguerre-

based HF wavefunction for the helium atom and boundary constraints are summarised in Table 

A.4.1. 

On the overall, the results summarised in Table A.4.1 suggests that extending the range of 𝑅 does 

not improve the accuracy of the optimised fitting constants as the accuracy of the correlation 

energies corresponding to the constants are not improved. 

 

 

 

 

 

 

 



234 
 

 

 

 

 

 

 

Table A.4.1. Effect of increasing the range of 𝑅 by varying both ends of 𝑅 on fitting constants (𝑎, 𝑏, 𝑐, 𝑑) optimised for the helium atom using the 

scipy.optimise least_squares method without boundary restrictions. Correlation energies in green are exact values[16] while those in blue are 

experimentally estimated.[423,424] 

Ri Rf 

A b c d 𝑬𝒄 / a.u. 

0.08 0.16 0.58 0.8 
H- He Li+ Be B+ Ne 

-0.039821 -0.042044 -0.043498 -0.09434 -0.11134 -0.39047 

0.3 2 0.01628 0.18438 0.57594 0.80562 -0.031406 -0.041937 -0.043850 -0.094865 -0.108785 -0.390922 

0.25 3 0.01556 0.17545 0.57680 0.80377 -0.030354 -0.040969 -0.043185 -0.091634 -0.104922 -0.372963 

0.2 4 0.01500 0.17116 0.57700 0.80363 -0.029403 -0.039893 -0.042211 -0.088760 -0.101562 -0.359186 

0.15 5 0.01510 0.17200 0.57759 0.80303 -0.029595 -0.040108 -0.042404 -0.089313 -0.102205 -0.361780 

0.1 6 0.01520 0.17197 0.57767 0.80293 -0.029788 -0.040370 -0.042682 -0.089892 -0.102866 -0.364101 

0.05 7 0.01534 0.17215 0.57771 0.80287 -0.030068 -0.040740 -0.043066 -0.090735 -0.103833 -0.367600 

0.0 8 0.01552 0.17244 0.57772 0.80285 -0.030398 -0.041173 -0.043512 -0.091730 -0.104976 -0.371769 

-0.05 9 0.01550 0.17204 0.57772 0.80286 -0.030374 -0.041160 -0.043513 -0.091657 -0.104887 -0.371279 

-0.1 10 0.01123 0.01572 0.58673 0.80156 -0.025772 -0.040592 -0.047283 -0.077864 -0.087267 -0.259290 

CS[26] 0.01565 0.173 0.58 0.8  -0.0416 -0.0438 -0.0926 -0.106 -0.374 
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A summary of the fitting constants for fitting to the hydride ion density computed with the 

scipy.optimise least_squares method without boundary constraints by varying 𝑅𝑓 to increase the 

range of 𝑅 while keeping 𝑅𝑖 = 0.3 a.u., using a total of 80 points, a tolerance of 10−6 and the 

computed 25-term Laguerre-based HF wavefunction for H- is presented in Table A.4.2.  

The results in this table suggest that extending the range of 𝑅 improves the accuracy of the 

attendant optimised constants as can be seen in the corresponding correlation energy for the hydride 

ion. Here, the best range of 𝑅 is found to be 0.3 ≤ 𝑅 ≤ 6 a.u. 
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Table A.4.2. Effect of variation of 𝑅𝑓 on fitting constants (𝑎, 𝑏, 𝑐, 𝑑) from fitting to the hydride ion densities optimised using the scipy.optimise 

least_squares method, 𝑞 = 1.93985 a.u., tolerance of 10−6 and a total of 80 points. Guess constants are in bold. Correlation energies in green are 

exact values[16] while those in blue are experimentally estimated.[423,424] 

𝑅𝑖 𝑅𝑓 
a b c d 𝑬𝒄 / a.u. 

0.01 0.17 0.58 0.8 
H- He Li+ Be B+ Ne 

-0.039821 -0.042044 -0.043498 -0.09434 -0.11134 -0.39047 

0.3 2 0.02424 0.05184 0.57460 1.06007 -0.040209 -0.066294 -0.078578 -0.133492 -0.153613 -0.501289 

0.3 3 0.02461 0.05362 0.58029 1.08324 -0.040169 -0.066383 -0.078761 -0.133924 -0.154308 -0.505756 

0.3 4 0.02630 0.06123 0.59008 1.18516 -0.040034 -0.066763 -0.079528 -0.135959 -0.157502 -0.526082 

0.3 5 0.02883 0.07130 0.59728 1.33458 -0.039891 -0.067275 -0.080555 -0.138818 -0.161975 -0.555062 

0.3 6 0.02925 0.13114 1.28975 1.42111 -0.039803 -0.065678 -0.075961 -0.127950 -0.150048 -0.554385 

0.3 7 0.03333 0.14971 1.23090 1.66994 -0.039688 -0.065941 -0.076250 -0.130047 -0.154109 -0.596372 

0.3 8 0.03879 0.16459 1.15815 1.99770 -0.039579 -0.066351 -0.076951 -0.133174 -0.159603 -0.646177 
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The computed fitting constants for fitting to the hydride ion density employing the scipy.optimise 

least_squares method without boundary constraints by varying 𝑅𝑖 to increase the range of 𝑅 while 

keeping 𝑅𝑓 = 2 a.u., a total of 80 points and a tolerance of 10−6 is presented in Table A.4.3. This 

optimisation employs the computed 25-term Laguerre-based HF wavefunction for the hydride ion 

was employed. 

The results in Table A.4.3 suggest that extending the range of 𝑅 by decreasing 𝑅𝑖 in steps of 0.05 

a.u. from 0.3 a.u. does not improve the accuracy of the attendant optimised constants in general as 

can be seen in the corresponding correlation energy for the hydride ion. 
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Table A.4.3. Effect of variation of 𝑅𝑖 on fitting constants (𝑎, 𝑏, 𝑐, 𝑑) from fitting to the hydride ion densities optimised using the scipy.optimise 

least_squares method, 𝑞 = 1.93985 a.u., tolerance of 10−6 and a total of 80 points. Guess constants are in bold. Correlation energies in green are 

exact values[16] while those in blue are experimentally estimated.[423,424] 

𝑅𝑖 𝑅𝑓 
a b c d 𝑬𝒄 / a.u. 

0.01 0.17 0.58 0.8 
H- He Li+ Be B+ Ne 

-0.039821 -0.042044 -0.043498 -0.09434 -0.11134 -0.39047 

0.3 2 0.02424 0.05184 0.57460 1.06007 -0.040209 -0.066294 -0.078578 -0.133492 -0.153613 -0.501289 

0.25 2 0.02428 0.05204 0.57222 1.06221 -0.040206 -0.066298 -0.078590 -0.133567 -0.153720 -0.501903 

0.2 2 0.02411 0.05104 0.57120 1.05230 -0.040219 -0.066270 -0.078536 -0.133355 -0.153383 -0.499661 

0.15 2 0.02357 0.04826 0.57318 1.02097 -0.040260 -0.066151 -0.078300 -0.132602 -0.152235 -0.492584 

0.1 2 0.02239 0.04274 0.58064 0.95110 -0.040368 -0.065806 -0.077617 -0.130833 -0.149587 -0.477210 

0.05 2 0.01999 0.03238 0.59655 0.80192 -0.040687 -0.064821 -0.075676 -0.126876 -0.143732 -0.445531 

0.0 2 0.01629 0.01408 0.60613 0.56524 -0.041394 -0.062666 -0.071652 -0.119815 -0.133318 -0.392320 
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The results of optimisation of constants within 0.1 ≤ 𝑅 ≤ 6 a.u. (the optimum range, Table 7.18) 

using a total of 80 points, 𝑞 = 1.93985, 10−2 ≤ tolerance ≤ 10−10 and the computed Laguerre-

based HF wavefunction for hydride ion without boundary constraints are summarised in Table 

A.4.4. 

The result in Table A.4.4 also indicates that increasing or decreasing the tolerance for the 

optimisation in the optimum range of 𝑅 does not improve the accuracy of the attendant optimised 

fitting constants. 
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Table A.4.4. Effect of variation of tolerance within 0.1 ≤ 𝑅 ≤ 6 a.u. on fitting constants (𝑎, 𝑏, 𝑐, 𝑑) optimised using the scipy.optimise 

least_squares method without boundary constraints, 𝑞 = 1.93985 a.u. and a total of 80 points. Guess values are in bold. Correlation energies in 

green are exact values[16] while those in blue are experimentally estimated.[423,424] 

Tolerance 
a b c d 

𝑬𝒄 / a.u. 

H- He Li+ Be B+ Ne 

0.01 0.17 0.58 0.8 -0.039821 -0.042044 -0.043498 -0.09434 -0.11134 -0.39047 

1×10-2 0.02333 0.16971 0.58007 0.79990 -0.040072 -0.052255 -0.052825 -0.120571 -0.140763 -0.543684 

1×10-3 0.01996 0.04307 0.59587 0.80867 -0.039924 -0.062951 -0.073012 -0.124411 -0.141269 -0.445273 

1×10-4 0.01938 0.02080 0.59860 0.81029 -0.039687 -0.064162 -0.075554 -0.124397 -0.140693 -0.428967 

1×10-5 0.02764 0.05750 0.60296 1.29472 -0.039766 -0.067794 -0.081754 -0.138033 -0.160369 -0.535711 

1×10-6 0.02578 0.10943 1.49357 1.22388 -0.039825 -0.065826 -0.076525 -0.125969 -0.145885 -0.511579 

1×10-7 0.02577 0.10959 1.49643 1.22339 -0.039824 -0.065820 -0.076510 -0.125933 -0.145837 -0.511459 

1×10-8 0.02577 0.10959 1.49643 1.22339 -0.039824 -0.065820 -0.076510 -0.125933 -0.145837 -0.511459 

1×10-9 0.02577 0.10959 1.49644 1.22339 -0.039824 -0.065820 -0.076510 -0.125933 -0.145837 -0.511459 

1×10-10 0.02577 0.10959 1.49644 1.22339 -0.039824 -0.065820 -0.076510 -0.125933 -0.145837 -0.511459 
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