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ABSTRACT

Biased data represents a significant challenge for the proper functioning

of machine learning models, which affects the trustworthiness of deployed

models. These biases are usually introduced by the data generation process,

i.e., data is collected from non-representative samples or is the result of

biased processes. However, these data deficiencies can be very expensive

or even impossible to fix, which makes it desirable to solve the problem on

the algorithmic end. In this work, I consider two different forms of data

bias: labelling bias and sampling bias; investigated under the framework of

algorithmic fairness and evaluated using common fairness metrics. Labelling

bias here refers to a systematic bias, correlated with a sensitive attribute,

which causes the labels in the dataset to differ from the “true” labels; whereas

sampling bias indicates that samples are missing from the training set in

a systematic way, but are still present in the setting where the model is

intended to be deployed. Both biases will make a naively trained model fail to

generalize. I present three approaches to tackling this problem, each relying

on some form of additional knowledge about the data. The first approach,

dealing with labelling bias, is based on implicit, probabilistic target labels

which satisfy certain given statistics. These target labels can be used to

train any likelihood-based model. The second approach deals with strong

spurious correlations in the training data, which can be seen as a specific

form of sampling bias. A bias-free partially-labelled context set is used to

learn an interpretable representation of the data which is invariant to the

spurious correlation and can be assessed qualitatively. The third approach

deals with less extreme cases of sampling bias, but relaxes the assumption of

having labels in the context set, by learning an invariant representation via

distribution matching.
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Part I

P RE L IM INAR I E S

This part covers the introduction, the related work and a sum-

mary of the work presented in part II.



1 I NTRODUCT ION

1.1 Problem statement

In order for machine learning (ML) systems to be used more widely, they have

to become more trustworthy (HLEG AI, 2019). The susceptibility of deep

(artificial) neural networks (NNs) to adversarial attacks has been well docu-

mented, but there are other problems as well. This includes their opaqueness

and their general tendency to take shortcuts; leading to situations where

neural networks do not do ‘what wemeant’, but just what they were explicitly

told to do.

This problem becomes especially severe when the training data is biased

in some way, which, by default, makes the ML system internalise the bias,

or, in some cases, even exacerbate it. Consequently, when applied in the

deployment setting, the system will not behave in the desired way. The topic

of this thesis is dealing with biased data, where the bias is inextricably linked

to a special attribute 𝑠.

1.2 Motivation and aims

Many datasets with person-related features display biases when examined

by common fairness criteria. This can range from relatively harmless biases,

like men being, on average, older than women in the CelebA dataset (Liu

et al., 2015), to more serious ones, like black men being several times less

likely to receive bail than white men in the COMPAS dataset (Angwin et al.,

2016). In the absence of truly ‘fair’ datasets, our methods have to be able to

avoid these biases.

Throughout this thesis, the aim is to learn a model from biased training

data, which gives fair predictions (where ‘fair’ is given by specific definitions)

on an unbiased test set. It is thus not sufficient to simply optimise the cross-

entropy on the training set; we have to change the optimisation target to

achieve our stated goal. While it is possible to extend notions of fairness

beyond classification tasks, the vast majority of work in this area concerns

classification only and that will be the case here as well.
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1.2 motivation and aims

This thesis will discuss two kinds of dataset bias: label bias and sampling
bias. In both cases, we consider a classification problem in which the class

labels 𝑦 need to be predicted from input features 𝑥.
In all cases, there is a special attribute 𝑠 associated with each input. This

attribute can have different meanings: In the setting of label bias, 𝑠 usually
encodes membership in a demographic group, such as gender, but more

generally, it is a feature that should not be used to make predictions for legal

or ethical reasons. (See below for other possible meanings of 𝑠.) In this setting,

we call 𝑠 the sensitive attribute (because it carries sensitive information). We

will often refer to the set of all samples which share a specific sensitive

attribute as one demographic group. In most of the examples, 𝑠 and 𝑦 are

binary variables, but this does not have to be the case. Crucially, however,

the label bias is related to 𝑠 in a very specific way: depending on the value of

𝑠, labels are either flipped from 𝑦 = 0 to 𝑦 = 1 or vice versa, i. e., there is an

error in the labels which is correlated with the sensitive attribute. This could,

for example, be result of societal discrimination of demographic groups.

For sampling bias, there is also a special attribute 𝑠, but it does not neces-
sarily have to denote a sensitive attribute; it can more generally be a spurious
variable which is correlated with the class label 𝑦 in the training set, but is

not truly predictive of 𝑦 in the general case. Alternatively, it might refer to a

natural subgroup of the 𝑦 classes. Sampling bias then means that the train-

ing set is not uniformly sampled from the underlying distribution: Instead,

sampling depends on 𝑠 and 𝑦 ; e. g., there might be almost no samples of 𝑠 = 0
and 𝑦 = 1 in the training set. The effect is that ML models are tempted to

take shortcuts and use 𝑠 as a shorthand for 𝑦.
Figure 1.1 shows a visual representation of the two kinds of dataset bias

discussed here.

The overall goal in all cases is to make the classifier invariant to 𝑠. We can

measure the invariance to 𝑠 directly by computing fairness metrics for the
predictions of the classifier. In contrast to the accuracy metric, these fairness

metrics give a more complete picture of how invariant the classifier is. This

is especially true if evaluation is done on an imbalanced set – for example in

the event that a truly unbiased test set is unavailable. In such cases, accuracy

can be highly misleading, because good performance on the majority class

can hide poor performance on a minority class. Fairness metrics do not suffer

from this problem because they specifically look at the results in the different

subgroups. However, we typically try to evaluate our models on a test set

that is as unbiased as possible, in order for accuracy to be meaningful.

Fairness metrics require a fairness definition, and the fairness definition

with the clearest interpretation in the described setup of label bias and
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1.2 motivation and aims

training data

LB

data sample

label biasLB

LB

Disadvantaged group: Privileged group: 

positive label

negative label

training data

Disadvantaged group: Privileged group: 

SB
SB

SB sampling bias

Figure 1.1: Schematic representation of label bias and sampling bias. Top: the label
bias changes positive labels to negative labels for 𝑠 = 0, and in the
opposite direction for 𝑠 = 1 (though this not always the case). Bottom:
the sampling bias intercepts samples with a positive label from 𝑠 = 0.
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1.2 motivation and aims

sampling bias is demographic parity (DP), also called statistical parity or inde-
pendence. It demands that the predictions ̂𝑦 be independent of the sensitive

attribute 𝑠. So, for binary 𝑠 and 𝑦 :

𝑃( ̂𝑦 = 1|𝑠 = 0) = 𝑃( ̂𝑦 = 1|𝑠 = 1) . (1.1)

There are multiple DP metrics which track how close the predictions are to

satisfying the equality, among them, the difference and the ratio of the terms

on the two sides of the equation.

When talking about unbiased datasets above, we did not specify exactly

what this meant, and that is because the definition thereof can differ from

task to task, but one way to define it is as a balanced dataset where all

combinations of 𝑠 and 𝑦 occur at the same rate:

𝑃(𝑦 = 0, 𝑠 = 0) = 𝑃(𝑦 = 0, 𝑠 = 1) = 𝑃(𝑦 = 1, 𝑠 = 0) = … (1.2)

In such a dataset, we have 𝑦 ⟂ 𝑠, and thus, perfect predictions ( ̂𝑦 = 𝑦) on
this dataset will satisfy ̂𝑦 ⟂ 𝑠 and hence DP. We can conclude that perfect

accuracy on a balanced test set implies demographic parity (the reverse does

not hold). However, if a model’s predictions satisfy DP on a biased dataset,

then they cannot be perfectly accurate with respect to that dataset’s biased

labels anymore, which makes sense because the goal is to be accurate to the

unbiased dataset. This leads to a fairness-accuracy trade-off on biased test

sets.

The other two fairness definitions which are commonly used are equality
of opportunity (EOpp) and equalised odds (EOdds), which do not require the

prediction ̂𝑦 to be independent of 𝑠, but they do require that the model makes

equally high-quality predictions for all values of 𝑠. Concretely, for EOpp, the

true positive rates (TPRs) need to be the same for all demographic groups

(again for binary 𝑠 and 𝑦):

𝑃( ̂𝑦 = 1|𝑦 = 1, 𝑠 = 0) = 𝑃( ̂𝑦 = 1|𝑦 = 1, 𝑠 = 1) , (1.3)

which is also required by EOdds, but EOdds additionally requires the same of

the true negative rates (TNRs):

𝑃( ̂𝑦 = 𝑦 ′|𝑦 = 𝑦 ′, 𝑠 = 0) = 𝑃( ̂𝑦 = 𝑦 ′|𝑦 = 𝑦 ′, 𝑠 = 1) ∀𝑦 ′ . (1.4)

Just like DP, the fairness definitions EOpp and EOdds can help us evaluate how

much a classifier is affected by the bias in the training set.
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1.3 relations to other fields and clarification of terms

1.3 Relations to other fields and clarification of terms

This thesis is principally written from the perspective of algorithmic fairness,

but it touches on other fields as well, like domain shift and causality. Further-
more, the thesis makes use of concepts like transferable representations and
interpretability. I summarise the areas here and discuss their relevance to the

presented work.

A domain shift is, in general, a change in the data distribution between the

training set and the deployment setting; one often talks of a “source domain”

and a “target domain”. Typically, this leads to poor performance of the ML

system in the deployment setting, which necessitates the development of

domain adaptation methods. There are thus strong parallels to the problem of

dataset bias and fairness, but domain shift is more general and has a different

emphasis. In domain shift, it is the whole data distribution that changes,

including the meaning of individual features, whereas in the biased-data

setting (as defined in this thesis), the distribution of training data broadly

matches that of the deployment setting, except for incorrect labels or censored

sampling. Furthermore, the field of algorithmic fairness is characterised

by a focus on special attributes (sensitive attributes) that should not be

used to make predictions; a focus that the problem of domain shift lacks.

Nevertheless, methods developed for domain adaptation can often be adapted

to the problem of biased data: A not insignificant amount of the prior work

discussed in chapter 2 wasmotivated by domain adaptation instead of fairness.

Similarly, it should be possible to adapt fairness methods to tackle domain

shift, however, this has rarely happened.

A related area is transfer learning, which is usually summarised as: learning

on one task and transferring the knowledge to a different task. The transfer

can happen without any additional training (zero shot), or, more commonly,

with fine-tuning on a small (few shot) or large amount of additional data.

Transfer learning is not a direct goal of this thesis, but learning transferable
representations is, which is a much narrower goal. In the context of this

thesis, transferable representations are understood to be representations of

input features that are (ideally) suitable for all tasks that the original data is

suitable for, except for predicting the sensitive/spurious attribute 𝑠. This is in
contrast to representations that are only useful for predicting one specific

target.

The other closely related topic is causality. The argument that a solution

to the dataset bias problem involves causality goes as follows: As mentioned

above, the goal is to ignore the bias in the data and learn the true underlying

structure that is hidden in the data. Often, the most fundamental structure

6



1.4 structure of document

that we can learn is the causal structure of the problem of interest. For

example, if an ML model truly understood what makes someone a good

employee, it would not need to rely on surface characteristics like whether

the applicant’s name sounds foreign. However, the work in this thesis is not

presented under the banner of causality, for several reasons. First, in as far

as the presented methods solve a causal structure problem, they solve a very

limited one; inputs are mapped to outputs, and no detailed exploration of a

potential implicit causal model is performed. Second, the discovered robust

structures are not necessarily causal in nature, in a narrow sense of the word.

This is especially true in image data: For example, while discovering that the

presence of a smile and the gender of the person in a photograph are two

distinct characteristics requires a deep understanding of human faces, it does

not require knowing how smiles and gender are related via cause-and-effect

in the real world.

In the chapter on related work (chapter 2), I discuss several methods that

apply proper causal methods to fairness, but those methods assume that the

true causal structure of the problem is already known, and are not helpful

for discovering such structures. To work properly, they need access to either

Bayesian networks or structural equation models. Neither of which the

methods presented in this thesis can provide.

Finally, a note on the terms “interpretability” and “explainability” in the

context of ML and artificial intelligence: many different definitions have been

proposed (Barredo Arrieta et al., 2020), but no consensus has emerged yet

on what these terms should mean. In the context of this thesis, the term

“interpretable” is applied to information, and is taken to mean that these

pieces of information are provided in a form that is readily understandable

and inspectable by humans. In this sense, a visualisation of an embedding or

representation as an image in the original data domain is interpretable, but a

100-dimensional vector of floating point number is not.

1.4 Structure of document

In chapter 2, I present related work, concentrating on the area of algorithmic

fairness and dataset bias. Chapter 3 summarises themain contributions of this

thesis and describes their relationship to one another. The chapter concludes

with a list of the publications that constitute the main contribution of the

thesis, accompanied by a description of the contributions to the publications,

separated by author. Chapters 4–6 reproduce these publications with minimal

changes. In the final chapter, chapter 7, I present conclusions from the main

work and directions for future work.

7



2 RELATED WORK

2.1 Two views of the dataset bias problem

As alluded to in the introduction, there is a divide in the relevant literature in

how the problem of dataset bias is approached. On the one hand, there is the

“ground-truth-centric” view – expressed through most of the introduction –

that the training set is biased but the deployment setting is not. By deployment
setting I am here referring to the real distribution that will be encountered

by the machine learning system once it is in use.

An instance of this setting has been formalised by Blum and Stangl (2020).

In their formalisation, the training set starts out unbiased, but then, for

samples with 𝑠 = 0, class labels 𝑦 are flipped from 1 to 0 with probability

𝜈. In addition, samples with 𝑠 = 0 and 𝑦 = 0 are dropped with probability

1−𝛽NEG and those with 𝑠 = 0 and 𝑦 = 1 are dropped with probability 1−𝛽POS .
Meanwhile, the test remains unbiased and is the basis for evaluating our

models.

On the other hand, there is the “definition-centric” view that, given some

training data and not necessarily knowing anything about the deployment

setting, we define fairness criteria which a fair classifier should satisfy. Here,

the primary goal is not to correct for the deviation of the training data from

the true distribution, but simply to ensure that the classifier is fair in some

specific sense. By default, a classifier would not be fair in that specific way.

It is left open as to whether this unfairness originates from the training data

or from the algorithm itself. Evaluation is typically performed on a test

set that has all the same biases as the training set, and thus gives rise to a

fairness-accuracy trade-off.

The first works in the field almost exclusively took the definition-centric

view, most of them using demographic parity (DP) (Dwork et al., 2012) as the

fairness criterion.

The boundary between these views is not completely clear-cut. Consider

the case where a biased training set is available, and an unbiased test set is

assumed to exist, but we do not have access to it (Jiang and Nachum, 2020).

Then we might at least know that the unbiased test set satisfies DP. In this

case, testing the classifier for DP is an indication for how well it would fare

on the unbiased test set.

8



2.2 foundations of algorithmic fairness

methods for algorithmic fairness

data de-biasing

dropping
features

additional
synthetic data

fair representations

non-parametric

HSIC MMD

adversarial networks

sample-wise set-wise

post-hoc methods

separate
models

threshold
shifting

change to train-
ing procedure

modified sampling

change to loss

change of optim-
isation target

constrained
optimisation

loss reweighting

Figure 2.1: Taxonomy of fairness methods. The three categories with blue borders
correspond to those categories under which the proposed models in this
thesis fall (see chapter 3 for details). This diagram does not show all the
axes along which methods can vary. In particular, it does not distinguish
between different intended settings.

Furthermore, there is significant overlap in the solutions employed for

the two views: a method developed for one of them can often be adapted to

the other as well. The works discussed in the beginning of this chapter are

mostly taking the definition-centric view. Towards the end, I discuss more

works with the other viewpoint. Figure 2.1 provides a high-level overview of

one possible categorisation of the methods presented here. It can serve as a

map for navigating through this chapter.

2.2 Foundations of algorithmic fairness

This section discusses the publications that lay the ground work for the

algorithmic fairness literature. More recent publications are discussed in

section 2.3.

2.2.1 Precursors

The first published work to address the problem of biases in machine learning

was arguably thework by Pedreshi et al. (2008) with themain focus being data-

mining. Their first fundamental conclusion is that it is not sufficient to remove

the protected attribute (which should not be used as a basis for prediction)

from the data. That is, if the information about, for example, race is removed

9



2.2 foundations of algorithmic fairness

from the data, there is usually enough background information to reconstruct

that attribute. In their context of data mining, they distinguish between

direct and indirect discrimination: the former explicitly uses discriminatory

features in the premise of the rule, while the latter uses features that are

closely associated with discriminatory features1.

2.2.2 Modification of labels for fairness enforcement

Independently of Pedreshi et al. (2008), but with a similar intention, Kamiran

and Calders (2009) considered discrimination in classification tasks. Their

goal is to modify the dataset so that any classifier trained on it will be “fair”; a

condition which is measured with a fairness metric on the test set predictions.

The test set is drawn from the same distribution as the training set. To

demonstrate their method, they use the “German credit dataset” (Dheeru and

Karra Taniskidou, 2017) where the task is to classify people as a good or a

bad credit risk.

The authors formulate the problem as it was later done in other works

on fairness: there is a set of features 𝑥, a binary class label 𝑦 and a special

sensitive attribute 𝑠 which determines the demographic group. The sensitive

attribute 𝑠 is assumed to be binary in the derivation, but does not have to be.

𝑠 = 0 refers to the group vulnerable to discrimination and 𝑠 = 1 to all other

individuals. It is further assumed that one of the class labels is generally

desirable; for example, it might correspond to being accepted for a loan or

being given bail. This class label is referred to as the positive label: 𝑦 = 1.
The authors then define a concrete measure of discrimination (where ̂𝑦

refers to the prediction of a classifier):

𝐷𝑖𝑠𝑐 ∶= 𝑃( ̂𝑦 = 1|𝑠 = 1) − 𝑃( ̂𝑦 = 1|𝑠 = 0) . (2.1)

It is zero when the individuals in both groups have the same chance to get

a positive prediction. Thus, it measures the violation of DP, where 𝐷𝑖𝑠𝑐 = 0
corresponds to satisfying DP.

Their algorithm for de-biasing the dataset comprises two steps. First, a

well-calibrated classifier (Naïve Bayes in the paper) is trained on the data

without the sensitive attribute. This classifier is then used to determine a

ranking for how likely a positive label is for a given individual. The highest

ranked individuals that have label 𝑦 = 0 and are potentially discriminated

1 This is similar to the legal view of direct and indirect discrimination where direct discrimina-
tion is when people with a specific protected characteristic are treated worse, whereas indirect
discrimination is a policy that does not make direct references to a protected characteristic
but disproportionally affects people with a specific characteristic.
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2.2 foundations of algorithmic fairness

against (𝑠 = 0) get “promoted” to 𝑦 = 1 and the lowest ranked individuals

with label 𝑦 = 1 and 𝑠 = 1 get “demoted” to 𝑦 = 0 until the dataset is fair

according to the 𝐷𝑖𝑠𝑐 measure. The idea being that the ranking ensures that

the changes in the dataset happen to the most appropriate candidates (those

closest to the decision boundary); the main goal being a prevention of a

big drop in accuracy of the final classifier on the test set whose distribution

matches the training set.

This work was extended in Calders et al. (2009), where the same discrim-

ination criterion is used as before. They present a different technique based

on giving training examples different weights instead of re-labelling them.

Examples with 𝑦 = 1 and 𝑠 = 0 get higher weight than those with 𝑦 = 0 and

𝑠 = 0. For 𝑠 = 1, those with 𝑦 = 0 get higher weight than those with 𝑦 = 1.
Weighting means that when the training examples are sampled from the

dataset, those with higher weight are used more often. The two approaches

are compared on the Adult/Census Income dataset (Kohavi, 1996) where the

task is to estimate if someone earns more than $50K per year; the sensitive

attribute being sex (“gender” in some publications).

2.2.3 Fair classifiers

Another common approach is to put fairness constraints on the classifier

instead of manipulating the dataset. Calders and Verwer (2010) proposes three

such approaches, which potentially give more control over the prediction

bias than changing the datasets. All three approaches are based on Naïve

Bayes and again aim to enforce DP in the predictions, as defined before. The

first approach shifts the predicted probabilities in a post-processing step

after training the classifier normally. To this end, the sensitive attribute is

treated differently than the other features in the Naïve Bayes model. Instead

of the class being the cause of the sensitive attribute, the sensitive attribute is

regarded as one cause for the class. This is a significant change in perspective

that enables a better intuition about the problem. In this modified Naïve

Bayes, the conditional probability 𝑃(𝑦|𝑠) is then modified in the already

trained model until the discrimination score is below a given threshold. Care

is taken to not distort the predicted distribution too much with respect to the

unfair model. The end result is a model that is (ideally) unbiased but still relies

on the sensitive attribute for predictions. This is unworkable if the sensitive

attributes are not always available when making predictions. Nevertheless,

the algorithm can be considered an improvement over manipulating the

dataset, as the resulting bias can be controlled to a much finer degree.

11
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The second method in Calders and Verwer (2010) is based on training two

separate models for each sensitive attribute. That is, the dataset is split in

two where one half contains all examples with 𝑠 = 0, we call this dataset

𝐷0, and the other half contains all examples with 𝑠 = 1, called 𝐷1. For

prediction, we choose either the model that was trained on 𝐷0 or the one

for 𝐷1, depending on the sensitive attribute of the example. This method

relies on the availability of the sensitive attribute for prediction, like the

previous method. The two models are separately tweaked to produce overall

fair results. In order to minimise the effect on the accuracy, the models are

tweaked the same amount each, but in opposite directions. Conceptually,

having two different Naïve Bayes model depending on the (binary) sensitive

attribute is equivalent to using one Naïve Bayes model in which the sensitive

attribute is connected to all other features. This means that the bias is in all of

the features and not just in the class label. The latter was the assumption of

the previously discussed model. The difference between these assumptions

is not explored in much detail in the paper.

The third method introduces a new latent variable, called 𝐿 in the paper.

𝐿 is intended to be an unbiased target class label that replaces the biased

class label 𝑦 from the training data. 𝐿 can only be estimated and is unbiased

in the sense that it is statistically independent from the sensitive attribute:

𝑃(𝐿|𝑠 = 0) = 𝑃(𝐿|𝑠 = 1). The observed class label 𝑦 then only depends on

the latent label and the sensitive attribute. 𝐿 is found by using expectation

maximisation to iteratively search for a value that maximises the likelihood

of the dataset. The search is restricted by enforcing that 𝐿 must be equal to 𝑦
except when 𝑠 = 0 and 𝑦 = 0 or when 𝑠 = 1 and 𝑦 = 1 because these are the

two cases where we expect discrimination. There is other prior knowledge

that can be incorporated into the search.

The authors present experimental results for the three methods on an

artificial dataset and the Adult/Census Income data that Calders et al. (2009)

used before. The artificial data has biased and also unbiased class labels, the

latter of which are generally not available for real-world datasets, and the

data conforms to the assumptions made for the third model. (The existence of

the unbiased ground-truth labels makes this paper an example of the ground-

truth-centric view.) On both datasets, the two simpler methods outperform

the third method that is based on fair latent class labels; the two first methods

perform approximately equally well.

Kamishima et al. (2012) take a closer look at the ways in which training

data can be biased (or more generally of poor quality) and condense it to

three main causes: prejudice, underestimation and negative legacy.

12
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1. Prejudice: a statistical dependency between the sensitive attribute and

the class label or the (non-sensitive) input features. If the dependency

is with the class label, then the paper calls it indirect prejudice. If it is
with the non-sensitive features, they call it latent prejudice. In line with

Pedreshi et al. (2008), direct prejudice refers to classifiers that make

direct use of the sensitive attribute. Kamishima et al. (2012) do not

consider latent prejudice to be immediately harmful, but it can be a

problem with respect to the protection of personal data and compliance

with laws.

2. Underestimation: non-convergence of machine learning algorithm due

to limited amount of data. This magnitude of this problem can be

estimated by considering the difference between the actual training

sample distribution and the distribution that the machine learning

model has internalised. This is the underlying cause of models that

make predictions that are even more unfair than the dataset.

3. Negative Legacy: sampling bias and wrong labels in the dataset. In

contrast to the problem of prejudice, negative legacy might not be

detectable by analysing the dataset. Sampling bias, meaning that certain

data points simply are missing, and wrong labels can only be corrected

if other sources of information are available.

We see that previous works nearly exclusively dealt with the first of these

issues, prejudice, and more precisely indirect prejudice. Kamishima et al. (2012)

also focus on indirect prejudice; mostly because it is the easiest to deal with,

apart from direct prejudice. They use Logistic Regression (LR) as the basis

for their fair classifier. Their approach to enforcing fairness is qualitatively

different from the previous proposals. Instead of manipulating the dataset or

using explicit algorithm to make a classifier fair, Kamishima et al. (2012) treat

the fairness constraint like a regulariser. A term is added to the objective

function that estimates the mutual information between 𝑦 and 𝑠 and gets

minimised together with the other parts of the objective function. A factor

in front of the regularisation term determines how much to value fairness

over accuracy.

2.2.4 Fairness based on similarity

Nearly all previously discussed papers express some dissatisfaction with

the demographic parity (DP) fairness definition. Thanh et al. (2011) use a

very different fairness metric based on the idea that similar people should

be treated similarly. The setup is still that the training set is biased, only a

13
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different fairness definition is used to judge classifiers. The authors first define

a distance metric which defines a neighbourhood, based on the Manhattan

distance on the z-scores of the attributes. The distance metric is supposed

to be only making use of legally admissible attributes. An individual is

then considered to be unfairly treated if it is classified differently than its

neighbours. More concretely, for any data point we can check how many of

the 𝑘 nearest neighbours have the same class label as that data point. If the

percentage is under a certain threshold then – so the authors argue – there

was discrimination against the individual corresponding to that data point.

In order to create a fair classifier, for this definition of fairness, the authors

propose to pre-process the dataset, similar to Kamiran and Calders (2009)

before, by flipping the class labels of those data points where the class label

is considered wrong or biased. The experiments in the paper show that this

method is successful in reducing the discrimination (according to the given

criterion) for a range of classifiers on the Adult/Census Income dataset.

Dwork et al. (2012) give a more in-depth analysis of the idea of distance-

based fairness and DP. They present explicit detailed criticism of the DP

metric, mainly in the form of several scenarios in which DP is maintained,

but the system treats a lot of individuals very unfairly. In one scenario, the

sensitive attribute carries important information and removing it makes

everyone worse off. Another scenario considers the case of subset targeting,
where there is discrimination against subgroups which are not covered by the

DP metric that only considers the major demographic groups. (This problem

has also been referred to as hidden stratification.) Defining fairness via group

membership will always leave open the possibility of discriminating against

ever smaller subgroups down to the level of individuals.

Based on these considerations, Dwork et al. (2012) argue for individual
fairness instead of group fairness. They propose amethod based on a similarity

metric, but do not give a general recipe to construct such a metric; instead

stating it has to be constructed on a case-by-case basis.

The proposed method is then as follows: a classifier is fair if and only if
the predictive distributions for any two data points are at least as similar

as the two points themselves, according to a given similarity measure for

distributions and a given similarity measure for data points. They call this

condition the Lipschitz condition. The authors propose two practical similarity

measures for distributions that are well-known in the respective literature.

In order to train a fair classifier, the Lipschitz condition is then used as a

constraint for the optimisation.
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2.2.5 Fair representations

Zemel et al. (2013) approach the problem of biased training data more directly

by seeking to transform the features, such that all traces of the sensitive

attribute are removed, while at the same time letting the features still carry

the information required for predicting the class label. This is different from

Kamiran and Calders (2009) where the dataset was transformed as well, but

there, the change was to the labels. The idea of transforming the features

assumes that the main problem with the data are unwanted dependencies

between 𝑠 and the other features (called latent prejudice in Kamishima et al.,

2012), and that the training labels are mostly unproblematic. The intended

result is then that classifiers trained on the transformed data will make

𝑠-invariant predictions ‘by default’, because they do not know about 𝑠.
More specifically, the stated goal of Zemel et al. (2013) is to achieve both

group fairness (in the sense of Demographic Parity) and individual fairness
(in the sense of treating similar people similarly), as Dwork et al. (2012)

did before. Let 𝑧 denote the learned fair representation. The condition for

fairness is then

𝑃(𝑠 = 𝑠′|𝑧 = 𝑧′) = 𝑃(𝑠 = 𝑠′) ∀𝑠′ ∈ {0, 1}, 𝑧′ ∈ ℤ . (2.2)

Zemel et al. (2013) propose tomap the biased inputs 𝑥 to prototypes in the same

space as 𝑥. The probability for being assigned to a particular prototype must

be the same for inputs with 𝑠 = 0 and for 𝑠 = 1. Based on a given distance

function (or similarity measure), inputs are more likely to be assigned to

prototypes that are close-by. The classification task is then based entirely on

the prototypes (the fair representation 𝑧). In their work, a linear model is used

to map the prototypes to the outcomes 𝑦. Aside from the distance function,

the whole model has therefore only two kinds of parameters: the locations

of the prototypes and the weights in the linear model. These parameters

are all optimised together. The objective function consists of three terms:

the first enforcing demographic parity (DP) via the prototype locations, the

second ensuring that the prototypes are close to the inputs and the third

trying to maximise accuracy by adapting the weights of the classifier. The

experiments are done on the German credit dataset, the Adult / Census

Income dataset and a dataset based on the Heritage Health Prize milestone

1 challenge (ForeverData.org, 2015) where the goal is to predict how many

days a given person will spend in the hospital in a year.
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Feldman et al. (2015) try to improve upon the work by Zemel et al. (2013),

focusing on fair representation as well. The authors try to ground their

definition of fairness in U.S. law. They define Disparate Impact (DI) as

𝐷𝐼 =
𝑃(𝑦 = 1|𝑠 = 0)
𝑃(𝑦 = 1|𝑠 = 1)

. (2.3)

With a target of 𝐷𝐼 = 1, this would simply enforce DP. However, based on

some rulings and recommendations of the U.S. legal system, they advocate the

80% Rule, which states that 𝐷𝐼 should not be below 80% (or above 125%). This

means that the acceptance rate of a disadvantaged demographic group should

not be less than 80% of the acceptance rate of the other group. With this

definition, there is an explicit allowed range for small unfairness. Previously,

researchers just tried to get as close as possible to 𝐷𝐼 = 1, without stating

how close is close enough.

For measuring the fairness of the (non-sensitive) input features (disregard-

ing class labels for the moment), the authors define 𝜀-fairness. The features

𝑥 are 𝜀-fair, if any predictor that tries to predict 𝑠 from 𝑥 can only achieve

a balanced error rate that is higher than 𝜀. Feldman et al. (2015) prove that

𝜀-fairness with a suitable 𝜀 is incompatible with violating the 80% rule. That

is, if the sensitive attribute cannot be predicted from the features, then a

classifier trained on that data will automatically be fair (to a certain degree).

For datasets that are extremely unbalanced, the required 𝜀 approaches 1/2

which corresponds to absolutely no information in 𝑥 about 𝑠. Note that the

definitions require that the performance of the best possible classifiers is

known, which is rarely the case. In the paper, a Support Vector Machine (SVM)

classifier is used to measure the 𝜀 for 𝜀-fairness.
In order to create a fair dataset, the authors present an algorithm that

considers every feature individually and shifts the values such that the dis-

tributions 𝑃(𝑧 = 𝑧′|𝑠 = 0) and 𝑃(𝑧 = 𝑧′|𝑠 = 1) are identical (𝑧 refers to the

shifted values, 𝑥 refers to the original values). This shift retains the ordering

of the data points with regard to that feature. This is to ensure that 𝑧 can still

be used to predict 𝑦 (which assumes that 𝑦 and 𝑠 are sufficiently uncorrelated,

so that 𝑧 can at the same time be unpredictive of 𝑠 and predictive of 𝑦). The
method only works on numerical features. The paper contains two other

algorithms for removing unfairness which are not as invasive, meaning some

amount of unfairness remains, but the ability to predict is improved. They

are referred to as Partial Repair algorithms, as opposed to full repair. This is

the fairness-accuracy trade-off that basically all works in this area consider.

Both of the other methods try to preserve the ranking of the data points
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with respect to the individual features while minimising the distance of the

distributions for the different groups.

This work by Feldman et al. (2015) is a step up from the work by Zemel

et al. (2013) because the representation (ideally) is fair with regards to any

machine learning algorithm, not just one particular. Furthermore, theoretical

bounds were proved for the expected bias of a classifier. However, the work

does not take into account individual fairness in any way.

While the algorithms by Feldman et al. (2015) are manually constructed

and explicit, Louizos et al. (2016) use an approach that falls more in the area

of end-to-end learning where fewer hand-crafted algorithms are used. The

method is based on deep variational autoencoders (VAEs), with an encoder

and a decoder that are both modelled as deep neural networks. The encoder

produces the distribution of the latent (fair) representation 𝑧 from the original

features 𝑥 and the sensitive attribute 𝑠. The decoder recovers the distribution

of 𝑥 from 𝑧 and 𝑠. By choosing a factorised prior 𝑃(𝑠)𝑃(𝑧), a separation

between 𝑠 and 𝑧 is encouraged.
This method can be improved further by taking into account the labels

when constructing the fair representation. If this is not done, 𝑧 loses the

ranking information from 𝑥 (see Feldman et al. (2015) above). To this end, a

second latent variable is introduced, ̃𝑧, which encodes the variation in 𝑧 that
is not explained by the class labels 𝑦. 𝑧 is then determined by 𝑦 and ̃𝑧, and
𝑥 is determined by 𝑧 and 𝑠 as before. ̃𝑧 and 𝑠 have independent priors. This

structure ensures that 𝑦 can be predicted from 𝑧. However, this introduces a

new problem: if 𝑦 is correlated with 𝑠, then 𝑧will be as well. To overcome this,

an additional penalty term is introduced that forces 𝑃(𝑧|𝑠 = 0) and 𝑃(𝑧|𝑠 = 1)
to be as close as possible. This is realised with a measure of distance between

distributions called Maximum Mean Discrepancy (MMD).

To test whether 𝑠 can be recovered from 𝑧, a Random Forest model and a

Logistic Regression model were trained to predict 𝑠 from 𝑧. Using MMD for

an additional unfairness penalty, seems to improve fairness. When training

a classifier on 𝑧 to predict 𝑦, there is a small drop in accuracy.

2.2.6 Other fairness criteria

The early literature on fairness in machine learning used only DP and simila-

rity-based fairness to measure the bias in predictions. Kleinberg et al. (2016)

formalised three different group fairness conditions. The authors consider

a scenario where the data points 𝑥 are sorted into bins 𝑏 and each bin is

associated with a prediction score 𝑓 = 𝑃( ̂𝑦 = 1|𝑏) where ̂𝑦 is the predicted

class label and 𝑥 the (non-sensitive) features.
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1. Calibration within groups: If the prediction score for a given bin is 𝑓,
then when considering all the data points with group 𝑠 in the bin, a

fraction of 𝑓 of those should have the class label 𝑦 = 1. In other words,

the prediction score 𝑓 is well calibrated with respect to group 𝑠. This
should be the case for all groups.

2. Balance for the negative class: The true negative rate should be the

same for both groups: 𝑃( ̂𝑦 = 0|𝑦 = 0, 𝑠 = 0) = 𝑃( ̂𝑦 = 0|𝑦 = 0, 𝑠 = 1).

3. Balance for the positive class: The true positive rate should be the

same for both groups: 𝑃( ̂𝑦 = 1|𝑦 = 1, 𝑠 = 0) = 𝑃( ̂𝑦 = 1|𝑦 = 1, 𝑠 = 1).

The first criterion essentially ensures that the predictor works correctly for

both groups. This prevents a classifier from predicting one group correctly

but always returning a negative answer for the other group. The second

and third put emphasis on negative and positive class labels respectively.

In criterion 2, we allow the classifier to mis-classify those data points with

𝑦 = 0, but we want to make sure that the misclassification rate is the same

for both groups. In other words, members of the different groups have the

same chance to get a correct classification if they should receive a negative

classification. The same holds for criterion 3 and positive classifications

(𝑦 = 1).
A plausible question is whether it is possible to achieve all of these criteria

simultaneously. The authors show that a perfect predictor, i. e.one that gives a

score of 𝑃( ̂𝑦 = 1|𝑥) = 1 to data points with 𝑦 = 1 and 𝑃( ̂𝑦 = 0|𝑥) = 1 to those

with 𝑦 = 0, automatically satisfies all three criteria. (The same is in general

not true for DP: if the test set labels exhibit a statistical dependency to 𝑠, then
a perfect predictor does the same.) Furthermore, the authors show that if the

dataset is fair in the sense that it satisfies 𝑃(𝑦 = 1|𝑠 = 0) = 𝑃(𝑦 = 1|𝑠 = 1),
i. e., the base acceptance rate is the same for both classes, then a “random”

classifier which assigns that base rate as the prediction score to all data points

indiscriminately also satisfies all three criteria. For this case, DP is satisfied

as well. The paper provides a proof that those two cases are the only ones

that achieve the three presented guarantees simultaneously. Demographic

Parity can only be achieved simultaneously with these in the second scenario

(“random classifier”). The general case sits between those extremes: the

predictor is not perfect and the test set is not unbiased, and therefore, these

definitions of fairness are not compatible. Note, however, that criterion 2 and

3 are compatible with one another.

The paper’s main contribution is a theorem showing that the three criteria

are in general incompatible, even if we only consider approximations of them.
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The conclusion to draw is that it is remains difficult to choose the appropriate

definition of fairness to judge a classifier.

Hardt et al. (2016) expand on criterion 3 in Kleinberg et al. (2016) and de-

velop a method to enforce it via post-processing. Furthermore, an alternative

criterion is introduced that is the combination of criterion 2 and 3. This

is also the work that gave criterion 3 the name equality of opportunity and

that popularised the name demographic parity. The treatment of fairness by

the authors is explicitly “oblivious”, which here means that only the general

statistics are known about the features 𝑥, the sensitive attributes and the class

labels 𝑦. In particular, there is not enough information available to develop a

similarity measure which could be used to target individual fairness.
In this “oblivious” setting, the authors define their fairness criteria in

terms of statistical independence: equalised odds (EOdds) refers to the case

where ̂𝑦 and 𝑠 are independent conditional on 𝑦. This is equivalent to the

true positive rate and the false positive rate being the same for all groups.

Equality of opportunity (EOpp) is, as mentioned above, the case where just

the true positive rate is the same for all groups. This means that ̂𝑦 and 𝑠
are independent conditional on 𝑦 = 1. One of the main advantages of these

definitions compared to DP is that a perfect predictor satisfies them on any

evaluation set.

In order to construct a fair classifier out of a binary predictor (giving only

hard binary predictions {0, 1}) via post-processing, the output is randomised

in such a way as to remove the bias. If the overall probability for a positive

prediction of the unfair classifier is given by 𝑃( ̂𝑦 = 1|𝑠), then the randomised

probability for the fair positive predictions ̃𝑦 = 1 is given by:

𝑃( ̃𝑦 = 1|𝑥, 𝑠) = ∑
𝑦 ′∈{0,1}

𝑃( ̃𝑦 = 1| ̂𝑦 = 𝑦 ′, 𝑠)𝑃( ̂𝑦 = 𝑦 ′|𝑥, 𝑠) (2.4)

There are 4 free parameters 𝑃( ̃𝑦 = 1| ̂𝑦 = 𝑦 ′, 𝑠 = 𝑠′) with 𝑦 ′ ∈ {0, 1} and
𝑠′ ∈ {0, 1}. As an example, if the unfair predictor predicts ̂𝑦 = 0 for an input

with 𝑠 = 0, then the fair predictor predicts ̃𝑦 = 1 with probability 𝑃( ̃𝑦 =
1| ̂𝑦 = 0, 𝑠 = 0)which might be non-zero. In addition to the fairness condition,

we also want to enforce accuracy. To that end, the authors introduce a loss

function ℓ( ̃𝑦 , 𝑦) that quantifies the cost of predicting the wrong class label.

The final optimisation problem for the 4 free parameters is then to minimise ℓ
under the constraint of EOpp or EOdds and the constraint that the parameters

must be valid probabilities.

For a predictor that outputs a score function, the post-processing step

consists of choosing differing thresholds for 𝑠 = 0 and 𝑠 = 1, such that the

predictions become fair. If 𝑓 is the score, then for a given threshold 𝑡 we
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predict ̂𝑦 = 1 if 𝑓 > 𝑡. The two thresholds (one for each group) are found by

minimising ℓwith the fairness constraints, as before. To satisfy the constraint,

it might be necessary to randomise the result. This is done by using two

constraints per group: if 𝑓 is above both, the result is ̂𝑦 = 1, if it is below both,

̂𝑦 = 0 and if 𝑓 is between the thresholds, then the result is chosen at random.

This method – as well as the one before – requires the sensitive attribute for

all predictions at test time, as it has to choose the right threshold.

The authors prove that with this post-processing, the Bayes optimal (but

biased) classifier becomes the Bayes optimal unbiased classifier.

2.2.7 Balancing datasets with synthetic data

Another way to view the fairness problem is to regard the dataset as missing

certain kinds of samples. This falls under the ground-truth-centric view: the

true data distribution is fair, but our training set only covers a part of it, which

means it looks unbalanced or unfair. An idea to deal with this, is to generate
the missing data, typically with a Generative Adversarial Network (GAN).

Sattigeri et al. (2019) is one such approach. The method is based on a

conditional GAN, that is conditioned on the sensitive attribute 𝑠. The GAN

then produces fake input samples 𝑥𝐹 together with corresponding labels 𝑦𝐹.
In addition to the usual discriminator which tries to distinguish fake 𝑥𝐹 from

real 𝑥 samples, there is another adversary that tries to predict 𝑠 from 𝑦𝐹,
which is opposed by the generator. This is meant to ensure that the labels

of the generated samples have the same distribution for all values of 𝑠, i. e.,
that the generated data distribution is balanced in terms of 𝑠 and 𝑦. There
is also a discriminator that takes both 𝑥𝐹 and 𝑦𝐹 as inputs, and determines

whether this is a plausible pair. Once this GAN has been trained, a classifier

is trained on the generated, balanced data. The expected advantage over

other methods of balancing the dataset is that this method produces a more

realistic distribution, because the adversarial training ensures that the data

“looks real”. However, this reliance on the discriminator also means that

the generated data cannot contain data from unobserved parts of the data

distribution, because such data would very easily be spotted as fake. For

example, if a face image dataset does not contain men with lipstick, then

the GAN will also not produce such samples (even though it knows about

men and it knows about lipstick). Generally, GANs cannot produce something

out of nothing, so if the data is missing certain sectors entirely, it is very

hard to produce samples from this sector that are realistic. This problem

can potentially be ameliorated by pretraining the GAN on diverse, unlabelled

data.
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2.3 Recent developments in algorithmic fairness

This section discusses more recent publications from the fairness literature.

2.3.1 Fair classifiers continued

Following the initial publications, several works refined the ideas that had

been presented there. A very influential work by Zafar et al. (2017b) presents

a more efficient way to train a fair classifier. The authors explicitly discuss

the tension between the two goals of making fair predictions and not making

use of the sensitive attributes at test time. Using sensitive attributes to make

predictions is referred to as Disparate Treatment by the authors. Algorithms

like the one by Calders et al. (2009) use the sensitive attribute during pre-

diction to achieve a very high degree of fairness, but this can have a lot of

problems from a legal perspective and can also easily go wrong. (Making use

of 𝑠 comes close to direct discrimination discussed above.) Thus, Zafar et al.

(2017b) set themselves the goal of achieving fairness while making use of the

sensitive attributes as little as possible, i.e. avoiding Disparate Treatment.

In order to train a fair classifier, Zafar et al. (2017b) use a proxy of the defin-

ition of DP that is easier to optimise during training, namely the covariance

between the sensitive attribute and the predicted score 𝑓:

𝐶𝑜𝑣(𝑠, 𝑓 ) = 𝔼[(𝑠 − ̄𝑠)𝑓 ] − 𝔼[(𝑠 − ̄𝑠)] ̄𝑓 ≈ 1
𝑁

𝑁
∑
𝑖=1

(𝑠𝑖 − ̄𝑠) ⋅ 𝑓𝑖 (2.5)

The authors refer to this as the covariance criterion. The classifier can then

be trained in two ways. The first way is to minimise the loss that enforces

accuracy with the constraint that the covariance criterion is below a certain

threshold. The other way is to minimise the covariance criterion with the

constraint that the accuracy is above a certain threshold. The paper includes

experiments with these techniques with SVM and Logistic Regression (LR)

classifiers on the Adult/Census Income dataset and the Bank marketing

dataset (Dheeru and Karra Taniskidou, 2017). In the Bank marketing dataset,

the task is to predict whether a client will respond to marketing for a term

deposit, based on 20 attributes of the person. The sensitive attribute is age.
The proposed algorithm performs similarly to the best previous algorithms

(similar in fairness and accuracy), notably without making use of the sensitive

attribute for predictions.

In a follow-upwork, Zafar et al. (2017a) adapt their work to avoid “disparate

mistreatment”. Avoiding disparate mistreatment is the same as enforcing

equalised odds (EOdds), as defined in the contemporary work by Hardt et al.
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(2016). As in the previous work, they define a tractable proxy for this measure.

To this end, they first define a function 𝑔 that measures how well the class

label 𝑦 ∈ {0, 1} and the predicted score for a data point 0 ≤ 𝑓 (𝑥) ≤ 1 agree:

𝑔(𝑦, 𝑥) = min (0, (𝑦 − 1
2) ⋅ (𝑓 (𝑥) −

1
2)) (2.6)

Subtracting 1
2 is necessary to centre the values around 0. The proxy for EOdds

is then the covariance between the sensitive attribute and 𝑔. 𝑔 can also be

modified to only take into account cases with 𝑦 = 1 which corresponds to

enforcing equality of opportunity (EOpp). The paper contains experiments

on the ProPublica/COMPAS dataset (Angwin et al., 2016). The task for

this dataset is to predict whether a criminal offender committed another

misconduct or felony within two years, based on personal information that

includes age, gender, race and past criminal history.

Woodworth et al. (2017) also consider EOdds as a fairness definition but

give strong criticism for the post-processing approach from Hardt et al.

(2016). They present examples where finding the optimal (but discriminatory)

predictor in a particular hypothesis class and then correcting it post-hoc

performs poorly. Certain training distributions allow the training of good fair

classifiers from scratch but when doing post-processing on a Bayes-optimal

predictor for this distribution, the result can be a very bad predictor that

gives essentially random predictions. The authors explicitly construct one

such distribution: it corresponds to the case where the sensitive attribute

𝑠 is more predictive of the class label 𝑦 than the features 𝑥, which becomes

an especially severe problem when 𝑠 is only predictive during training time,

but not at test time. See the discussion of Coloured MNIST below for such an

example.

This topic has since received more contributions than can be listed here.

The following is a very short sample. In the direction of Zafar et al. (2017b),

there is for example Quadrianto and Sharmanska (2017), Ustun et al. (2019)

and Lohaus et al. (2020). In the direction of Kamiran and Calders (2012), there

is for example Agarwal et al. (2018) and Roh et al. (2021). In the direction of

Hardt et al. (2016), there is for example Hébert-Johnson et al. (2018).

2.3.2 Fair representations continued

With the emergence of adversarial neural networks, interest was renewed

in creating fair representations. Ganin et al. (2016) can be seen as a direct

precursor: they propose adversarial learning for domain adaptation. Their

method involves learning a shared representation that is invariant to the
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different domains. If we consider demographic groups as different domains,

then this is essentially fair representation learning.

This is the premise of Edwards and Storkey (2016). Four neural networks

are trained in an adversarial setting: the encoder 𝑓 (𝑥) which encodes the

unfair representation 𝑥 into a fair representation 𝑧, the classifier 𝑔(𝑧) which

tries to predict 𝑦 from 𝑧, the decoder 𝑘(𝑧) which tries to reconstruct 𝑥 from 𝑧,
and finally the adversary ℎ(𝑧) which tries to predict 𝑠 from 𝑧. The classifier

𝑔 ensures that 𝑧 contains enough information to predict 𝑦. The decoder 𝑘
ensures that the fair representation contains enough information from 𝑥 and

can be used by other classifiers as well. The sign of the adversary’s loss is

inverted for the gradient of the encoder 𝑓, so that the encoder tries to make

the adversary’s predictions worse. Encoder and adversary should converge

to a point where the adversary can only predict the correct 𝑠 from 𝑧 at chance
level. Assuming that the adversary is powerful enough to detect any trace of 𝑠
in 𝑧, this means that no information about the sensitive attribute 𝑠 remains in

the fair representation 𝑧. Note that there is a tension here between requiring

𝑥 to be reconstructible from 𝑧 and requiring 𝑧 to contain no information about

𝑠, since 𝑥 does contain information about 𝑠.
Beutel et al. (2017) explicitly connect the method presented in Edwards

and Storkey (2016) to various fairness definitions.

Zhang et al. (2018) propose an architecture similar to Edwards and Storkey

(2016), but with the difference that no decoder (and no reconstruction loss)

is used and that the adversary tries to predict 𝑠 from the final output of the

classifier instead of an intermediate representation. The goal is not to learn

a fair representation, but a fair classifier.

Madras et al. (2018) is another, similar approach. One difference to Edwards

and Storkey (2016) is that several fairness criteria are considered: Demo-

graphic Parity, Equality of Opportunity and Equalised Odds are all converted

to adversarial objective functions. Another difference is that the decoder 𝑘
has access to 𝑠 for the decoding: 𝑘 ∶ (𝑍 , 𝑆) → 𝑋; this ensures that there is no

tension between reconstructing 𝑥 and removing 𝑠 from 𝑧. However, the key

contribution of the paper is the objective functions for the adversary. In the

case of Demographic Parity, we take – for each sensitive group separately –

the average absolute difference between what the adversary predicted ℎ(𝑧)
and the true sensitive attribute 𝑠. After computing these two separate aver-

ages, the averages are added and get a negative sign to form the objective

function. For Equalised Odds, the average absolute difference is calculated

on each sensitive group-label combination (𝑠, 𝑦) for 𝑠 ∈ {0, 1} and 𝑦 ∈ {0, 1}
separately. Computing these separate averages is referred to as group nor-
malising in the paper. The authors present a proof for upper bounds on
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unfairness by the optimal adversary when these objective functions are used.

An alternative objective function could be based on cross-entropy – as used

in Edwards and Storkey (2016) – but the authors dismiss this on the grounds

that there are situations in which it leads to wrong results. However, in the

experiments they show that the proposed objective and one objective based

on cross-entropy lead to very similar results.

Based on the weights of the different parts of the loss function (adversarial

loss, classification loss, decoder loss, etc.), different trade-offs can be achieved.

2.4 Fairness via causal reasoning

In this section, I will briefly discuss a view that also falls under the definition-

centric view: in it, the goal is to make decisions that conform to causality-

based notions of fairness. Methods in this category assume that the causal

structure of the task is known, which can then be used to identify unfair path

ways for making decisions. One motivating example is this (DeDeo, 2014):

In college admissions, we might not want to discriminate against prospective

students from poorer backgrounds. If the goal is to admit those students

that have a chance of graduating, then we could employ a machine learning

algorithm to predict graduation rate. One attribute that might turn out to be

predictive of graduation is physical fitness. If this attribute’s causal influence

is through, for example, signalling a character trait such as grit, then this

is an admissible attribute. However, if on the other hand physical fitness is

caused by access to expensive gyms, then it is a signal for high socioeconomic

status which we do not want to use as a criterion. So, depending on what

the causal mechanism is, physical fitness could be a discriminatory or a

non-discriminatory feature.

Kilbertus et al. (2017) is one of the first to use causal graphs to define fair

decisions. In their work, the prediction output ̂𝑦 is a part of the causal graph

that models the data. A simple causal fairness definition would be to disallow

any causal paths between 𝑠 and ̂𝑦. However, instead of considering paths

that start from 𝑠 directly, the authors argue that the observed proxies for 𝑠
are more important. A proxy for 𝑠 is a clearly defined observable quantity

that is significantly correlated with 𝑠. According to the authors, the sensitive

attribute in its pure conceptual formmay influence the prediction directly, but

any observable proxy of it may not. The given reason is that if all influence of

𝑠 on ̂𝑦 was removed, only very few features would remain to make a decision

because usually nearly all features are influenced by 𝑠 in some way.

The concept of removing causal influence can be efficiently expressed

with interventions on the causal graph. An intervention on a variable 𝑣 cuts

24



2.4 fairness via causal reasoning

off all parents of 𝑣 and sets 𝑣 to a specific value, say 𝑣 ′. This is written as

𝑑𝑜(𝑣 = 𝑣 ′). So, for a given proxy 𝑝 (𝑝 ∈ {0, 1}), predictions ̂𝑦 exhibit no proxy
discrimination if

𝑃( ̂𝑦 |do(𝑝 = 0)) = 𝑃( ̂𝑦 |do(𝑝 = 1)) . (2.7)

If this is fulfilled, there is no influence from 𝑠 that is mediated through 𝑝.
There might still be direct influence of 𝑠 on ̂𝑦. The fact that 𝑑𝑜-interventions
are used in the definition means that a causal model is required to evaluate

this criterion; observational data does not suffice.

The paper provides an algorithm that constructs a fair classifier (for the

provided fairness definition) given a structural causal model (Pearl, 2009). The

resulting classifier is fair by construction. However, note that this procedure

does not lead to true individual fairness, because the influence of 𝑝 is only

removed at the population level (except in the case where all descendants of

𝑝 are completely removed). Individual decisions can still be unfair as long as

it balances out overall.

The authors show a number of properties of their method with corres-

ponding proofs. (Though no experiments are included in the paper.) For

example, if the influence of 𝑝 on 𝑥 is additive and linear, any predictor of the

form

𝑔(𝑥 − 𝔼[𝑥|𝑑𝑜(𝑝 = 𝑝′)])

has no proxy discrimination.

A contemporary paper by Kusner et al. (2017) approaches the problem

differently. In this paper, a new fairness criterion which they call “counterfac-

tual fairness” is defined making use of causal reasoning. For the definition,

they assume access to a causal model that can be used to compute counter-
factuals (for example a structural equation model; Kaplan, 2008). This is in

contrast to Kilbertus et al. (2017) who relied on just interventions. (According

to Pearl’s causal hierarchy (Pearl, 2019), counterfactuals require a deeper

level of causal information than interventions.) The causal model depends on

unobserved background variables 𝑈, non-sensitive features 𝑥 and a sensitive

attribute 𝑠. A predictor ̂𝑦 is then counterfactually fair if the following equality

of counterfactual probabilities holds:

𝑃( ̂𝑦𝑠=𝑖(𝑈 ) = 1|𝑥, 𝑠 = 𝑖) = 𝑃( ̂𝑦𝑠=𝑗(𝑈 ) = 1|𝑥, 𝑠 = 𝑖) (2.8)

where 𝑖, 𝑗 ∈ {0, 1} and 𝑖 ≠ 𝑗. The first counterfactual probability is actually not

a real counterfactual: it is just the probability of observing ̂𝑦 = 1 given the

background variables 𝑈, the features 𝑥 and 𝑠 = 𝑖. The second counterfactual

probability is the probability of observing ̂𝑦 = 1 given 𝑈 and 𝑥 and given that
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we had 𝑠 = 𝑗 instead of the actual value 𝑠 = 𝑖. In other words, the criterion

demands this: the prediction would have been the same in the counterfactual

world where the sensitive attribute is 𝑗 instead of 𝑖. In the counterfactual

world, everything that is not causally dependent on 𝑠 is held constant.

Making sure predictions are the same, for the closest world with 𝑠 = 𝑗, is
arguably what Dwork et al. (2012) (see above) did with their idea of treating

similar people similarly (regardless of 𝑠). In this way, counterfactual fairness

is similar to the individual fairness that Dwork et al. (2012) defined. However,

instead of using a similarity metric, a causal model is needed for counter-

factual fairness. The two criteria share some strengths and weaknesses. A

strength is that they are both fair on the individual level, which is not the case

for Demographic Parity and Equality of Opportunity. In Demographic Parity

and Equality of Opportunity, we can achieve fairness by doing “negative”

discrimination on some individuals and “positive” discrimination on others,

as long as those two effects cancel out. This is because those criteria are

defined on groups and not individuals. However, in turn this implies that in-

dividual fairness and counterfactual fairness could not be used to implement

affirmative action (“positive” discrimination for a group) and they rely on

the features 𝑥 being correct.

The authors provide an algorithm to construct a classifier that satisfies

counterfactual fairness. However, constructing the causal model remains

the major weakness of this approach, and is currently only really feasible

for tabular data. As experiments, the algorithm is applied to the Law School

Success dataset (Wightman, 1998). The task is to predict the first year average

grade (FYA) in law school given the GPA before law school and the score

on the entrance exam (LSAT). Also known are race and sex, which are not

supposed to be used to make predictions.

If the given causal model is taken as the true model, then it follows that

the trained fair classifiers are fair by construction. Additionally, two (unfair)

baseline models were trained: one trained on only 𝑥 and the other trained on

𝑥 and 𝑠; those baseline models indeed turn out to be not counterfactually fair.

Chiappa (2019) have a similar approach, but their work by can be seen as

a refinement of Kilbertus et al. (2017). Instead of disallowing influence of

nodes, this work disallows certain paths to influence the outcome. The path

pointing directly from the sensitive attribute to the outcome is not allowed,

but paths via certain variables are allowed. An example for such a permissible

variable comes from the Berkeley admissions dataset (Bickel et al., 1975):

overall, the data shows that women were admitted at lower rates, but this

turned out to be mediated by department choice. Women were applying to

more competitive departments and thus had lower acceptance rates. The
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(a) Training set: one-to-one mapping
between colour and digit class.

(b) Test set: random assignment of
colours.

Figure 2.2: A typical example of the Coloured MNIST dataset.

choice of department 𝐶 is here an admissible variable: the outcome 𝑌 may

depend on it. So, a path from 𝑆 (gender) to 𝑌 via 𝐶 is permissible, and our

fairness definition should reflect this. Counterfactual fairness (Kusner et al.,

2017) would in this case arguably give the wrong answer. In certain simple

cases, path-specific fairness is equivalent to the criterion from Kilbertus et al.

(2017). The problem remains that the causal model needs to be constructed

and permissible variables need to be identified manually.

Many more works have been published in this area (e. g., Kilbertus et al.,

2019; Wu et al., 2019; Creager et al., 2020b), and it remains an active topic.

2.5 Ground-truth-centric view of bias

The fairness-accuracy trade-off which results from fairness constraints like

DP and EOpp has often been seen as a thorny issue. Wick et al. (2019) were

one of the first to argue for a change of perspective to solve this. For example,

the labels of the ProPublica/COMPAS (Angwin et al., 2016) dataset had been

treated as unbiased ground truth in previous work, which the authors call into

question. The simple change they do is evaluating fairness-enforcing models

on actual unbiased test data. In practice, they use simulated datasets such

that unbiased labels can be used for evaluation, which is in contrast to real

data where we do not have access to ground truth labels, and cannot evaluate

on them. The paper considers label bias and “selection bias” (“selecting a

subsample of the data in such a way that happens to introduce unexpected

correlations, say, between a protected attribute and the target label”), which

we previously referred to as sample bias. In their experiments they find,

that enforcing fairness can in some situations improve the accuracy on the

(unbiased) test set.
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Kim et al. (2019) also consider the problem of learning from biased data

(and evaluating on unbiased data). While they do not formulate the problem

as a fairness problem, it is equivalent to enforcing fairness in the presence of

severe sampling bias. Their main motivating example is the Coloured MNIST

dataset; a dataset derived from the MNIST dataset (LeCun et al., 1994). In

this dataset, digits are randomly coloured in the test set, but in the training

set there is a one-to-one correspondence between digit class and colour. (See

figure 2.2 for an example of this dataset.) A naïve classifier will learn to

predict colour instead of digit class. The proposed method is very similar

to Ganin et al. (2016) and Edwards and Storkey (2016), if we think of the

colours as forming different domains (i. e., the red domain contains all red

digits, etc.). The goal is then to learn a domain-independent representation.

The main difference to previous work is an additional entropy loss term in

the adversarial loss.

Arjovsky et al. (2019) tackle a similar problem, but take a very different

approach, which they term “Invariant Risk Minimisation”, contrasted to the

usual approach of Empirical Risk Minimisation (ERM). As with Kim et al.

(2019), the goal is to ignore spurious correlations that only appear in the

very imperfect training set, but not in the test set; and they also perform

experiments on Coloured MNIST. They formalise the problem as one of

different environments 𝑒 ∈ 𝐸, where each environment is a different, biased

view of the same underlying data distribution. The idea is to train a predictor

that is simultaneously optimal for all the environments, with the expectation

that this generalises to the test set. This idea is formulated as a (intractable)

bi-level, constrained optimisation problem, which they approximate with a

tractable regularised optimisation.

As the authors point out, the goal of machine learning should be to identify

natural, deep, robust structures in reality, instead of relying on superficial

correlations. (This dichotomy is sometimes framed as correlation vs causality,
where “causality” takes on a very broad meaning that encompasses any kind

of fundamental structure in reality; see also the discussion of causality in

chapter 1.) Under this view, methods for invariance learning can be framed as

trying to learn a more fundamental structure than the dataset at first seems to

show. By aiming to be invariant to specific environments/subgroups/domains

(denoted by the variable 𝑠), they can be seen asmaking the claim that 𝑠 does not
represent a natural structure, but is merely an artefact of the data generation

process. Furthermore, the ground-truth-centric view of dataset bias can be

understood as aiming to identify the fundamental structures and aiming to

be invariant to everything else. This also fits with Kim et al. (2019)’s work
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on Coloured MNIST: colour is not regarded as the fundamental structure in

the data.

Creager et al. (2020a) build directly on Arjovsky et al. (2019). They aim to

address the limitation that the environments – that one wants to be invariant

to – have to be pre-defined. Their contribution is to infer these environments

instead, based on identifyingwhich environment splits wouldmost negatively

affect an ERM classifier. Their experiments show that this can even improve

upon human-designated environments; experiments are performed on a

synthetic dataset and Coloured MNIST. In contrast to Kim et al. (2019) and

Arjovsky et al. (2019), the authors explicitly point out the connection to

traditional fairness methods.

A conceptually very influential work was Friedler et al. (2016). While

this work does not explicitly present a ground-truth-centric approach to

bias, their concepts of the “construct space” and the “observed space” are

close to the idea of the (biased) training distribution and the true underlying

distribution.

Jiang and Nachum (2020) also formulate their problem this way: in their

setting, the underlying unbiased labels become corrupted by a biased labeller,

which results in a biased training set. Their goal is to train a classifier that

makes correct predictions consistent with the true labels. However, they

treat the true labels as completely unknown and evaluate their models w.r.t.

the common fairness definitions on a test set that is just as biased as the

training set.

Kallus and Zhou (2018) is another more conceptual work. They present

an intuitive model for how sampling bias can enter a training set and how it

can be very hard to correct for such a bias. The paper refers to the process

as systematic censoring, but this is not meant to necessarily imply that this

censoring was a conscious decision by some authority; it can also be an

unintended side effect of an enacted policy. Systematic censoring can arise

any time a screening process prevents observing the outcome for the screened-

out samples. For example, if, historically, a certain demographic group was

screened out from receiving loans, then it was not possible to observe default

rates for this group; and so any historical data on defaulting is useless for

that demographic group. Even if a bank wants to change their policy, it is

hard to correct for the bias in the training set because there is no good data to

learn from. This is a prime example of a ground-truth-centric bias problem,

as defined in the beginning of the chapter.

Finally, as mentioned in the beginning, Blum and Stangl (2020) provide a

formalisation of a setting with label bias and sampling bias and an unbiased

ground-truth test set. They explicitly state not being affected by a fairness-
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accuracy trade-off, because the true distribution in the considered problem

satisfies demographic parity (DP). Their formalised dataset generation process

has multiple steps: First, a small amount of random noise is applied to the

(true) labels; this models general inaccuracies in the labelling process and

does not introduce bias yet. Second, sampling bias is added, by dropping

samples based on what the sample’s 𝑠 and 𝑦 values are. Concretely, only

samples with 𝑠 = 0 are dropped. Finally, labelling bias is added, by flipping

labels for one of the demographic groups (e. g., 𝑠 = 0), in one specific direction

(from 𝑦 = 1 to 𝑦 = 0). The authors show that in this specific situation, an

unbiased classifier (as determined by evaluation on the unbiased test set)

can be recovered by enforcing its predictions to be compatible with equality

of opportunity (EOpp) on the training set. Notably, the fairness constraint

enforced during training (EOpp) is not the fairness constraint satisfied by the

predictions on the unbiased test set (DP). One reason, why enforcing EOpp

works so well here is that the label bias only affects the underrepresented
demographic group, and that the label bias is the direction (𝑦 = 1 to 𝑦 = 0)
that EOpp is most sensitive to. Thus, even in the ground-truth-centric view

of bias, fairness constraints can be very useful.

Maity et al. (2020) provide a similar analysis to Blum and Stangl (2020),

but consider more general dataset biases. Just like Blum and Stangl (2020),

they explicitly reject a fairness-accuracy trade-off, because they evaluate on a

balanced test set. (In the paper this is formulated in terms of the optimal Bayes

classifier satisfying their notions of fairness on the test set.) They show that

the sampling bias (in the training set) that they consider, can be overcome by

enforcing an appropriately chosen risk-based notion of algorithmic fairness;

either a notion they term risk parity (inspired by DP) or conditional risk parity
(inspired by EOdds).

A perceived shortcoming of most methods in this area is that they rely

on annotations for the subgroups. Two papers that tried to circumvent

this problem are Hashimoto et al. (2018) and Nam et al. (2020), both taking

very different routes. The first one tries to be robust with respect to all

possible subgroups down to a certain size. Essentially, the method tackles

the worst-case scenario where the most egregiously misclassified samples

form a subgroup. The second approach is based on the idea that subgroups

are easier to predict than the actual prediction targets. After all, if this were

not the case, then there would not really be a problem. Thus, a classifier is

learned in such a way that it predominantly tries to make “easy” predictions,

that is, samples where the model is very confident receive a higher weight.

The assumption is that this model learns to predict the subgroup (or spurious

attribute), for which no labels are available. A second model is then trained,
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such that those samples are downweighted for which the first model was

very confident; the hope being that by learning the “hard” samples, the model

learns the correct relationship. Both Hashimoto et al. (2018) and Nam et al.

(2020) frame their methods as improving accuracy on an unbiased test set

and do not make references to fairness metrics, but a strong connection to

the fairness literature nevertheless exists.
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3 SUMMARY OF CONTR I BUT IONS

The following is a summary of the main contributions in this thesis. All

presented approaches deal with dataset bias that is closely linked to a special

attribute 𝑠. In terms of Kamishima et al. (2012)’s taxonomy (see section

section 2.2.3), this can be described as tackling negative legacy that is mediated

by prejudice. Furthermore, the approaches all rely on some form of side

information which allows us to overcome dataset bias. This side information

is always significantly easier to obtain than unbiased data.

3.1 Mitigating label bias with target labels

The first work is Kehrenberg et al. (2020a) (chapter 4) which is predomin-

antly concerned with label bias. More precisely, labels 𝑦 are flipped with

a probability and a direction that depends on a sensitive attribute 𝑠. The

main idea is that we make use of pseudo labels (or target labels) to implicitly

learn from a balanced dataset, in which 𝑦 ⟂ 𝑠 holds, and which thus satisfies

demographic parity (DP). This falls under the area of fair classifiers discussed
in section 2.2.3

We can interpret the contributions of this publication in two ways. The

first corresponds to the definition-centric view of dataset bias, and the second

to the ground-truth-centric view.

1. We can say that the classifier should satisfy demographic parity in

its predictions, and learning from a balanced training set is just one

particular way to achieve this. In this view, the pseudo labels have no

deeper meaning and are just a computational trick.

2. We can see the training set as a corrupted version of a true dataset,

which is balanced (𝑦 ⟂ 𝑠), and so, by learning from these pseudo

labels, we are simply approximating the true dataset. However, we do

not actually have access to the true dataset; we only know that it is

balanced. In order to evaluate the trained model, we compute fairness

metrics with respect to DP.

Within the paper, we sometimes jump between these two views.

While the main focus is on label bias, the experiments are performed

on real-world fairness datasets, which also display a significant amount of
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label bias

positive
outcome

negative
outcome

Ideal dataset with Training set with 

Figure 3.1: A diagram of a simple case of label bias, where both the class label 𝑦
and the sensitive attribute 𝑠 are binary. On the left, we have the ideal
(possibly fictional) dataset with the target labels ̄𝑦, where the proportion
of positive outcomes is the same for both demographic groups; and on
the right, the training labels, for which the proportions are not the same.

sample bias (disadvantaged groups are underrepresented). Furthermore, in

addition to the result for DP, we also show that the proposed scheme improves

equality of opportunity (EOpp).

In order to construct the target labels, we use side information about

summary statistics for a balanced training set. This allows us to target

a specific balanced set, instead of just any balanced set. In other words,

rather than just enforcing DP, the method gives control over the target rates

𝑃( ̂𝑦 = 1|𝑠), which are the only fairness-hyperparameters of the model. The

target labels ̄𝑦 represent an uncertain estimate of labels corresponding to a

balanced dataset (one where ̄𝑦 ⟂ 𝑠; see also figure 3.1). The idea is then the

learn a predictor for these target labels instead of the given (biased) training

labels 𝑦. Via the sum rule of probabilities, it is possible to express the model

likelihood in terms of the target labels, such that maximising the likelihood

corresponds to improving the prediction of the target labels.

The requirements for the model are that it outputs probabilities and that

they are well-calibrated – which means that for those samples that the model

predicts a 10% chance of having a positive label (𝑦 = 1) about 10% in fact

have a positive label, and analogously for all other predicted probabilities.

The probabilities are needed for calculating the expected target label, and

the calibration ensures that this expectation is sensible. Thus, we picked

a Gaussian process (GP) model as one model for the experiments, as they

have a reputation for being well-calibrated. However, they come with the

downside that they are (at least in their standard form) not well-suited to

very high dimensional data like images. As such, we also construct a model

based on Logistic Regression (LR).

The method is validated with experiments on the UCI Adult Income dataset

and the ProPublica/COMPAS dataset, which have been mentioned several
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times in chapter 2, and which are the most common tabular fairness datasets.

While both these datasets comprise only tabular data, there is nothing in

principle that stops this method from being used for other kinds of data. The

choice to use these datasets and not others was predominantly made for

easier comparison to baselines, and shorter experiment runtime.

3.2 Overcoming severe sampling bias with a representative

set

In the setting from the above paper (Kehrenberg et al., 2020a), labels were

untrustworthy because they had been flipped; a phenomenon we referred

to as label bias. However, flipping labels is not the only way that labels can

become untrustworthy. Another way is sampling bias, which is the subject

of Kehrenberg et al. (2020b) and Kehrenberg et al. (2021) (chapters 5 and 6).

As an example, consider the scenario where someone wants to create a

classifier to distinguish between sheep and cows, that is supposed to work

anywhere on earth. However, they take a shortcut while creating the dataset

and take all their sheep images from hot and dry countries and all their cow

images from mild and rainy countries. In this case, the dataset is lacking cow

images in dry landscapes, and is lacking sheep from green landscapes; the

dataset exhibits a strong sampling bias. The result is that even though the

labels correctly correspond to cows and sheep, they do not point reliably to

the right target anymore. As background colour is easier to recognise with a

Convolutional Neural Network (CNN) than animal species, the labels have

effectively been turned into landscape labels. In other words, landscape has

become a spurious attribute. In the following, we denote the spurious attribute

with 𝑠, as it takes on a role that is very similar to that of the sensitive attribute

that was also denoted by 𝑠. However, there is a difference in emphasis between

a sensitive and a spurious attribute: the former indicates that the attribute

should not be used for legal or ethical reasons, whereas the latter can be any

attribute that is associated with the class label 𝑦 in an undesired way that

leads to lower quality generalisation.

The method, proposed in the previous paper (chapter 4), is not able to deal

with such a dataset bias as we can easily see: Say, smiling corresponds to

𝑦 = 1 and not smiling to 𝑦 = 0; furthermore, let red hair correspond to 𝑠 = 1,
black hair to 𝑠 = 0, and all other hair colours to 𝑠 = 2. Then, the problem with

the described dataset is, that it mostly consists of samples with 𝑦 = 0 ∧ 𝑠 = 0
and those with 𝑦 = 1 ∧ 𝑠 = 1. If we call 𝑃(𝑦 = 1|𝑠 = 𝑠′) the acceptance rate,

then the problem can be described as one of very different acceptance rates in

the hair colour groups given by 𝑠. This is the problem tackled in the previous
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paper, and yet, if we were to equalise the acceptance rates with the method

there, the result would be very incorrect. The issue is that we would treat

the labels as incorrect, when in truth, they are correct; the problem with the

data being sampling bias.

To deal with sampling bias, a different approach is needed. Indeed, the

problem, as posed, is not solvable in the general case. To make headway with

this problem, we introduce the concept of a representative set. This set is not
subject to the sampling bias, but is unlabelled (with respect to 𝑦) and so does

not by itself suffice for training. However, this set does have labels for the

spurious attribute 𝑠. This allows us to learn an invariant representation, i. e.,
a representation of the input features 𝑥 which is invariant to the spurious

attribute. This kind of representation is equivalent to a fair representation

– as described in section 2.2.5 – which is invariant to a sensitive attribute.

With the invariant representation of the training set, a classifier can then be

trained to accurately predict the class label 𝑦. The invariant representation

cannot be learned from the training set because there, due to the sampling

bias, 𝑠 and 𝑦 are not sufficiently distinguishable.

A parallel to the previous paper is that the method makes use of side

information (in this case the representative set) in order to overcome the bias

in the training set.

The method implementing this general strategy, and presented in Kehren-

berg et al. (2020b) (chapter 5), is based on the idea of null-sampling, which

refers to zeroing out part of an encoding, and then reconstructing the modi-

fied encoding as if it were a normal encoding. In order to apply null-sampling,

an encoding of the input 𝑥 is learned that is split into two parts: 𝑧𝑢, which

has no information about the spurious attribute 𝑠, and 𝑧𝑏, which has all the

remaining information needed to reconstruct 𝑥 that is not contained in 𝑧𝑢.
𝑧𝑢 is ensured to be not predictive of 𝑠 via adversarial training. During null-

sampling, 𝑧𝑏 is zeroed out, and after decoding it, we obtain an invariant

representation in the data domain. The fact that it is in the data domain

makes it interpretable (or inspectable) as defined in chapter 1.

The described method works particularly well with Invertible Neural Net-

works (INNs), as they ensure that no information is lost that is unrelated to 𝑠.
However, the price to pay for using INNs is higher memory requirement and

slower training. Thus, we also present a variant of the method using a VAE,

which does not have the guarantee about preserving information, but also

does not suffer from the increased training cost as much. VAEs are similar to

INNs in that their encoding conforms to a specific probability distribution,

from which we can sample our null-samples. The choice between the two

presented variants is determined by whether the user is willing to accept
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higher training costs for a lower probability of losing information needed for

any prediction tasks. However, the key element is simply any kind of encoder

– producing a split-encoding – whose output can be subjected to adversarial

training, so encoders other than VAEs or INNs will potentially work as well.

We perform experiments on the Coloured MNIST dataset (as described in

section 2.5), which has a one-to-one mapping between the class label (i. e.,

digit) and the spurious attribute (colour) in the training set. As colour is

“easier” to learn, a neural network will learn to predict 𝑠 instead of 𝑦. For

additional experiments on the CelebA dataset (another image dataset) and the

UCI Adult Income dataset (a tabular dataset), we deliberately apply sampling

bias to the training set and then apply our method. For the tabular dataset,

an autoencoder is trained to produce a continuous representation, which is

then fed into the INN or VAE model. Thus, we demonstrate that the method

is general in the sense that it is applicable to both image-based and tabular

datasets and furthermore should be applicable to other modalities as well.

For the main experiments, we focus on image datasets, because they are

easiest to visualise in a document.

3.3 Overcoming sampling bias with an unlabelled deploy-

ment set

A shortcoming of the approach from the previous publication (Kehrenberg

et al., 2020b) is its reliance on a representative set which has labels for the

spurious attribute 𝑠. As discussed, it is necessary to make use of some kind of

side information, but perhaps we can relax some requirements. In particular,

while it is already easier to collect data without 𝑦 labels (but with 𝑠 labels),
it is even easier to collect data without any label. Thus, requiring only

an unlabelled context set would improve the applicability of the method.

Kehrenberg et al. (2021) (chapter 6) presents an approach based on that idea.

The setting is very similar to the previous publication (Kehrenberg et al.,

2020b): the training set suffers from severe sampling bias, but we have access

to a (mostly) unbiased deployment set (similar to but not quite identical to the

previously discussed representative set). The idea is that the deployment set

corresponds to the setting in which the model is meant to be deployed. The

change from the previous setting is that this additional set may be completely

unlabelled, but in exchange, we have some stronger requirements for the

training set: The holes left by the sampling bias may not be so numerous as

to make 𝑠 and 𝑦 completely indistinguishable. For example, in the previous

work, the example of Coloured MNIST had a training set where there was a

strict one-to-one mapping of colour and digit; but this kind of blending of 𝑠
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and 𝑦 into one is not the focus of this paper. Instead, the focus is on a setting

where the training set lacks certain combinations of 𝑠 and 𝑦, which results

in poor predictions for these combinations on the test set (or deployment

setting) where those combinations do occur. We refer to these missing

combinations as subgroup bias or missing subgroups, depending on whether a

given 𝑠 value appears in the training set at all. The label 𝑠 plays here a similar

role to the spurious attribute in the previous publication, but as there is a

change in emphasis, we refer to 𝑠 as subgroup label1 instead. The difference

between a spurious attribute and a subgroup label is that the former is mostly

characterised via its confusion with the prediction target, whereas the latter

refers to natural groups in the data which have differing levels of annotation

quality which affects the classification performance on these subgroups.

However, in both cases, the goal is to make the model output invariant to

the 𝑠 label, i. e.the classification performance should be independent of the

subgroup.

As in the previous paper, the first step is to train a neural network to pro-

duce an invariant representation. The second step is then to train a classifier

on said representation. The invariant representation is trained by performing

distribution matching between the training set and the deployment set.

The distribution matching is realised with adversarial networks which

compare batches of samples, in order to try to distinguish data drawn from

the training set and the deployment set. This process requires balanced

batches as an inductive bias, because the network will only learn the intended

difference between training and deployment set, if the drawn batches exhibit

this difference. For example, if batches drawn from Coloured MNIST differ

not in colour but in digit class, then distribution matching will learn to change

digit shapes. Balancing batches from the training set is easily possible with

the available labels, but those are not available for the deployment set, so we

use clustering techniques to identify the different groups in the deployment

set, and then draw samples for the batches at an equal rate from all clusters.

It is important to note here that imperfections in the clustering are not a

problem as long as the batches show on average the intended difference

between training and deployment set.

The absolutely essential elements for this method are the encoder (also

referred to as ‘de-biaser’) that encodes both, samples from the training set and

samples from the deployment set, to a splittable representation; the adversary

that tries to identify, from one part of the split representation, which dataset

the given samples originated from; and some kind of reconstruction loss

to ensure the splittable representation represents the input data well. The

1 This terminology is inspired by the subclass concept in Sohoni et al. (2020).
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following elements are in theory optional, but are needed for the method

to work with real-world data: clustering and sampling to ensure that the

training batches are balanced in specific ways; subdivision of the batches

into bags; and the aggregation of the adversarial loss over the bags. Roughly

speaking, these elements strengthen the supervision signal for the invariance

learning.

Experiments are performed on the same datasets as in the previous papers:

Coloured MNIST, UCI Adult Income and CelebA. Again, these datasets were

chosen, because image data is easy to visualise, and because demonstrating

the method on tabular data provides evidence for the generality.
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4.1 Abstract

The issue of fairness in machine learningmodels has recently attracted a lot of

attention as ensuring it will ensure continued confidence of the general public

in the deployment of machine learning systems. We focus on mitigating

the harm incurred by a biased machine learning system that offers better

outputs (e.g. loans, job interviews) for certain groups than for others. We

show that bias in the output can naturally be controlled in probabilistic

models by introducing a latent target output. This formulation has several

advantages: first, it is a unified framework for several notions of group

fairness such as Demographic Parity and Equality of Opportunity; second, it

is expressed as a marginalisation instead of a constrained problem; and third,

it allows the encoding of our knowledge of what unbiased outputs should be.

Practically, the second allows us to avoid unstable constrained optimisation

procedures and to reuse off-the-shelf toolboxes. The latter translates to the

ability to control the level of fairness by directly varying fairness target rates.

In contrast, existing approaches rely on intermediate, arguably unintuitive,

control parameters such as covariance thresholds.

4.2 Introduction

Algorithmic assessment methods are used for predicting human outcomes

in areas such as financial services, recruitment, crime and justice, and local

government. This contributes, in theory, to a world with decreasing human

biases. To achieve this, however, we need fair machine learning models that
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take biased datasets, but output non-discriminatory decisions to people with

differing protected attributes such as gender and marital status. Datasets can

be biased because of, for example, sampling bias, subjective bias of individuals,

and institutionalised biases (Olteanu et al., 2019; Tolan, 2019). Uncontrolled

bias in the data can translate into bias in machine learning models.

There is no single accepted definition of algorithmic fairness for automated

decision-making but several have been proposed. One definition is referred

to as statistical or demographic parity. Given a binary protected attribute

(e.g. married/unmarried) and a binary decision (e.g. yes/no to getting a loan),

demographic parity requires equal positive rates (PR) across the two sensitive

groups (married and unmarried individuals should be equally likely to receive

a loan). Another fairness criterion, equalised odds (Hardt et al., 2016), takes

into account the binary decision, and instead of equal PR requires equal true

positive rates (TPR) and false positive rates (FPR). This criterion is intended to

be more compatible with the goal of building accurate predictors or achieving

high utility (Hardt et al., 2016). We discuss the suitability of the different

fairness criteria in the discussion section at the end of the paper.

There are many existing models for enforcing demographic parity and

equalised odds (Calders et al., 2009; Kamishima et al., 2012; Zafar et al.,

2017a,b; Agarwal et al., 2018; Creager et al., 2019). However, these existing

approaches to balancing accuracy and fairness rely on intermediate, unintu-

itive control parameters such as allowable constraint violation 𝜖 (e.g. 0.01)
in Agarwal et al. (2018), or a covariance threshold 𝑐 (e.g. 0 that is controlled

by other parameters 𝜏 and 𝜇 – 0.005 and 1.2 – to trade off this threshold and

accuracy) in Zafar et al. (2017a). This is related to the fact that many of

these approaches embed fairness criteria as constraints in the optimisation

procedure (Quadrianto and Sharmanska, 2017; Zafar et al., 2017a,b; Donini

et al., 2018).

In contrast, we provide a probabilistic classification framework with bias

controlling mechanisms that can be tuned based on positive rates (PR), an

intuitive parameter. Thus, giving humans the control to set the rate of positive

predictions (e.g. a PR of 0.6). Our framework is based on the concept of a

balanced dataset and introduces latent target labels, which, instead of the

provided labels, are now the training label of our classifier. We prove bounds

on how far the target labels diverge from the dataset labels. We instantiate

our approach with a parametric logistic regression classifier and a Bayesian

non-parametric Gaussian process classifier (GPC). As our formulation is

not expressed as a constrained problem, we can draw upon advancements

in automated variational inference (Bonilla et al., 2016; Krauth et al., 2017;
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Gardner et al., 2018) for learning the fair model, and for handling large

amounts of data.

The method presented in this paper is closely related to a number of

previous works, e.g. Calders and Verwer (2010) and Kamiran and Calders

(2012). Proper comparison with them requires knowledge of our approach.

We will thus explain our approach in the subsequent sections, and defer

detailed comparisons to section 4.5 (Related Work).

4.3 Target labels for tuning group fairness

We will start by describing several notions of group fairness. For each in-

dividual, we have a vector of non-sensitive attributes 𝑥 ∈ 𝒳, a class label

𝑦 ∈ 𝒴, and a sensitive attribute 𝑠 ∈ 𝒮 (e.g. racial origin or gender). We focus

on the case where 𝑠 and 𝑦 are binary. We assume that a positive label 𝑦 = 1
corresponds to a positive outcome for an individual – for example, being

accepted for a loan. Group fairness balances a certain condition between

groups of individuals with different sensitive attributes, 𝑠 versus 𝑠′. The term

̂𝑦 below is the prediction of a machine learning model that, in most works,

uses only non-sensitive attributes 𝑥. Several group fairness criteria have been

proposed (e.g. Hardt et al., 2016; Chouldechova, 2017; Zafar et al., 2017a):

equality of positive rate (Demographic Parity):

𝑃( ̂𝑦 = 1|𝑠) = 𝑃( ̂𝑦 = 1|𝑠′) (4.1)

equality of accuracy:

𝑃( ̂𝑦 = 𝑦|𝑠) = 𝑃( ̂𝑦 = 𝑦|𝑠′) (4.2)

equality of true positive rate (Equality of Opportunity):

𝑃( ̂𝑦 = 1|𝑠, 𝑦 = 1) = 𝑃( ̂𝑦 = 1|𝑠′, 𝑦 = 1) . (4.3)

Equalised odds criterion corresponds to Equality of Opportunity (4.3) plus

equality of false positive rate.

The Bayes-optimal classifier only satisfies these criteria if the training data

itself satisfies them. That is, in order for the Bayes-optimal classifier to satisfy

demographic parity, the following must hold: 𝑃(𝑦 = 1|𝑠) = 𝑃(𝑦 = 1|𝑠′), where

𝑦 is the training label. We call a dataset for which 𝑃(𝑦, 𝑠) = 𝑃(𝑦)𝑃(𝑠) holds, a
balanced dataset. Given a balanced dataset, a Bayes-optimal classifier learns

to satisfy demographic parity and an approximately Bayes-optimal classifier

should learn to satisfy it at least approximately. Here, we motivated the

importance of balanced datasets via the demographic parity criterion, but it

is also important for equality of opportunity which we discuss in Section 4.3.1.
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In general, however, our given dataset is likely to be imbalanced. There

are two common solutions to this problem: either pre-process or massage the

dataset to make it balanced, or constrain the classifier to give fair predictions

despite it having been trained on an unbalanced dataset. Our approach takes

parts from both solutions.

An imbalanced dataset can be turned into a balanced dataset by either

changing the class labels 𝑦 or the sensitive attributes 𝑠. In the use cases that

we are interested in, 𝑠 is considered an integral part of the input, representing

trustworthy information and thus should not be changed. 𝑦, conversely, is
often not completely trustworthy; it is not an integral part of the sample

but merely an observed outcome. In a hiring dataset, for instance, 𝑦 might

represent the hiring decision, which can be biased, and not the relevant

question of whether someone makes a good employee.

Thus, we introduce new target labels ̄𝑦 such that the dataset is balanced:

𝑃( ̄𝑦 , 𝑠) = 𝑃( ̄𝑦)𝑃(𝑠). The idea is that these target labels still contain as much

information as possible about the task, while also forming a balanced dataset.

This introduces the concept of the accuracy-fairness trade-off: in order to be

completely accurate with respect to the original (not completely trustworthy)

class labels 𝑦, we would require ̄𝑦 = 𝑦, but then, the fairness constraints

would not be satisfied.

Let 𝜂𝑠(𝑥) = 𝑃(𝑦 = 1|𝑥, 𝑠) denote the distribution of 𝑦 in the data. The target

distribution ̄𝜂𝑠(𝑥) = 𝑃( ̄𝑦 = 1|𝑥, 𝑠) is then given by

̄𝜂𝑠(𝑥) = (𝑃( ̄𝑦 = 1|𝑦 = 1, 𝑠) + 𝑃( ̄𝑦 = 0|𝑦 = 0, 𝑠) − 1) ⋅ 𝜂𝑠(𝑥)

+ 1 − 𝑃( ̄𝑦 = 0|𝑦 = 0, 𝑠) (4.4)

due to the marginalisation rules of probabilities. The conditional probability

𝑃( ̄𝑦 |𝑦 , 𝑠) indicates withwhich probabilitywewant to keep the class label. This

probability could in principle depend on 𝑥which would enable the realisation

of individual fairness. The dependence on 𝑥 has to be prior knowledge

as it cannot be learned from the data. This prior knowledge can encode

the semantics that “similar individuals should be treated similarly” (Dwork

et al., 2012), or that “less qualified individuals should not be preferentially

favoured over more qualified individuals” (Joseph et al., 2016). Existing

proposals for guaranteeing individual fairness require strong assumptions,

such as the availability of an agreed-upon similarity metric, or knowledge of

the underlying data generating process. In contrast, in group fairness, we

partition individuals into protected groups based on some sensitive attribute

𝑠 and ask that some statistics of a classifier be approximately equalised across

those groups (see (4.1)–(4.3)). In this case, 𝑃( ̄𝑦 |𝑦 , 𝑠) does not depend on 𝑥.
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Returning to equation 4.4, we can simplify it with

𝑚𝑠 ∶= 𝑃( ̄𝑦 = 1|𝑦 = 1, 𝑠) + 𝑃( ̄𝑦 = 0|𝑦 = 0, 𝑠) − 1 (4.5)

𝑏𝑠 ∶= 1 − 𝑃( ̄𝑦 = 0|𝑦 = 0, 𝑠) , (4.6)

arriving at ̄𝜂𝑠(𝑥) = 𝑚𝑠 ⋅ 𝜂𝑠(𝑥) + 𝑏𝑠. 𝑚𝑠 and 𝑏𝑠 are chosen such that 𝑃( ̄𝑦 , 𝑠) =
𝑃( ̄𝑦)𝑃(𝑠). This can be interpreted as shifting the decision boundary depending

on 𝑠 so that the new distribution is balanced.

As there is some freedom in choosing 𝑚𝑠 and 𝑏𝑠, it is important to consider

what the effect of different values is. The following theorem provides this

(the proof can be found in the Supplementary Material):

Theorem 4.1. The probability that 𝑦 and ̄𝑦 disagree (𝑦 ≠ ̄𝑦) for any input 𝑥 in
the dataset is given by:

𝑃(𝑦 ≠ ̄𝑦 |𝑠) = 𝑃 (|𝜂(𝑥, 𝑠) − 1
2 | < 𝑡𝑠) (4.7)

where

𝑡𝑠 = |
𝑚𝑠 + 2𝑏𝑠 − 1

2𝑚𝑠
| . (4.8)

Thus, if the threshold 𝑡𝑠 is small, then only if there are inputs very close to

the decision boundary (𝜂𝑠(𝑥) close to 1
2 ) would we have ̄𝑦 ≠ 𝑦. 𝑡𝑠 determines

the accuracy penalty that we have to accept in order to gain fairness. The

value of 𝑡𝑠 can be taken into account when choosing𝑚𝑠 and 𝑏𝑠 (see section 4.4).

If 𝜂𝑠 satisfies the Tsybakov condition (Tsybakov et al., 2004), then we can give

an upper bound for the probability.

Definition 4.1. A distribution 𝜂 satisfies the Tsybakov condition if there

exist 𝐶 > 0, 𝜆 > 0 and 𝑡0 ∈ (0, 12 ] such that for all 𝑡 ≤ 𝑡0,

𝑃 (|𝜂(𝑥) − 1
2 | < 𝑡) ≤ 𝐶𝑡𝜆 . (4.9)

This condition bounds the region close to the decision boundary. It is a

property of the dataset.

Corollary 4.1.1. If 𝜂(𝑥, 𝑠) = 𝑃(𝑦 = 1|𝑥, 𝑠) satisfies the Tsybakov condition in
𝑥, with constants 𝐶 and 𝜆, then the probability that 𝑦 and ̄𝑦 disagree (𝑦 ≠ ̄𝑦) for
any input 𝑥 in the dataset is bounded by:

𝑃(𝑦 ≠ ̄𝑦 |𝑠) < 𝐶 |
𝑚𝑠 + 2𝑏𝑠 − 1

2𝑚𝑠
|
𝜆
. (4.10)

Section 4.4 discusses how to choose the parameters for ̄𝜂 in order to make

it balanced.
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4.3 target labels for tuning group fairness

4.3.1 Equality of Opportunity

In contrast to demographic parity, equality of opportunity (just as equality of

accuracy) is satisfied by a perfect classifier. Imperfect classifiers, however, do

not by default satisfy it: the true positive rate (TPR) is different for different

subgroups. The reason for this is that while the classifier is optimised to have

a high TPR overall, it is not optimised to have the same TPR in the subgroups.

The overall TPR is a weighted sum of the TPRs in the subgroups:

TPR = 𝑃(𝑠 = 0|𝑦 = 1) ⋅ TPR𝑠=0 + 𝑃(𝑠 = 1|𝑦 = 1) ⋅ TPR𝑠=1 . (4.11)

In datasets where the positive label 𝑦 = 1 is heavily skewed toward one

of the groups (say, group 𝑠 = 1; meaning that 𝑃(𝑠 = 1|𝑦 = 1) is high and

𝑃(𝑠 = 0|𝑦 = 1) is low), overall TPR might be maximised by setting the

decision boundary such that nearly all samples in 𝑠 = 0 are classified as 𝑦 = 0,
while for 𝑠 = 1 a high TPR is achieved. The low TPR for 𝑠 = 0 is in this

case weighted down and only weakly impacts the overall TPR. For 𝑠 = 0,
the resulting classifier uses 𝑠 as a shorthand for 𝑦, mostly ignoring the other

features. This problem usually persists even when 𝑠 is removed from the

input features because 𝑠 is implicit in the other features.

A balanced dataset helps with this issue because in such datasets, 𝑠 is not
a useful proxy for the balanced label ̄𝑦 (because we have 𝑃( ̄𝑦 , 𝑠) = 𝑃( ̄𝑦)𝑃(𝑠))
and 𝑠 cannot be used as a shorthand. Assuming the dataset is balanced in

𝑠 (𝑃(𝑠 = 0) = 𝑃(𝑠 = 1)), for such datasets 𝑃(𝑠 = 0|𝑦 = 1) = 𝑃(𝑠 = 1|𝑦 = 1)
holds and the two terms in equation 4.11 have equal weight.

Here as well there is an accuracy-fairness trade-off: assuming the uncon-

strainedmodel is as accurate as its model complexity allows, adding additional

constraints like equality of opportunity can only make the accuracy worse.

4.3.2 Concrete algorithm

For training, we are only given the unbalanced distribution 𝜂𝑠(𝑥) and not

the target distribution ̄𝜂𝑠(𝑥). However, ̄𝜂𝑠(𝑥) is needed in order to train a fair

classifier. One approach is to explicitly change the labels 𝑦 in the dataset, in

order to construct ̄𝜂𝑠(𝑥). We discuss this approach and its drawback in the

related work section (section 4.5).

We present a novel approach which only implicitly constructs the balanced

dataset. This framework can be used with any likelihood-based model, such

as Logistic Regression and Gaussian Process models. The relation presented

in equation 4.4 allows us to formulate a likelihood that targets ̄𝜂𝑠(𝑥) while
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only having access to the imbalanced labels 𝑦. As we only have access to

𝑦, 𝑃(𝑦|𝑥, 𝑠, 𝜃) is the likelihood to optimise. It represents the probability that

𝑦 is the imbalanced label, given the input 𝑥, the sensitive attribute 𝑠 that is
available in the training set and the model parameters 𝜃 for a model that is

targeting ̄𝑦. Thus, we get

𝑃(𝑦 = 1|𝑥, 𝑠, 𝜃) = ∑
̄𝑦∈{0,1}

𝑃(𝑦 = 1, ̄𝑦 |𝑥, 𝑠, 𝜃)

= ∑
̄𝑦∈{0,1}

𝑃(𝑦 = 1| ̄𝑦 , 𝑥, 𝑠, 𝜃) 𝑃( ̄𝑦 |𝑥, 𝑠, 𝜃) . (4.12)

As we are only considering group fairness, we have 𝑃(𝑦 = 1| ̄𝑦 , 𝑥, 𝑠, 𝜃) =
𝑃(𝑦 = 1| ̄𝑦 , 𝑠).

Let 𝑓𝜃(𝑥, 𝑦 ′) be the likelihood function of a given model, where 𝑓 gives the

likelihood of the label 𝑦′ given the input 𝑥 and the model parameters 𝜃. As

we do not want to make use of 𝑠 at test time, 𝑓 does not explicitly depend on

𝑠. The likelihood with respect to ̄𝑦 is then given by 𝑓: 𝑃( ̄𝑦 |𝑥, 𝑠, 𝜃) = 𝑓𝜃(𝑥, ̄𝑦);
and thus, does not depend on 𝑠. The latter is important in order to avoid

direct discrimination (Barocas and Selbst, 2016). With these simplifications,

the expression for the likelihood becomes

𝑃(𝑦 = 1|𝑥, 𝑠, 𝜃) = ∑
̄𝑦∈{0,1}

𝑃(𝑦 = 1| ̄𝑦 , 𝑠) 𝑃( ̄𝑦 |𝑥, 𝜃) . (4.13)

The conditional probabilities, 𝑃(𝑦| ̄𝑦 , 𝑠), are closely related to the conditional

probabilities in equation 4.4 and play a similar role of “transition probabilities”.

Section 4.4 explains how to choose these transition probabilities in order to

arrive at a balanced dataset. For a binary sensitive attribute 𝑠 (and binary

label 𝑦), there are 4 transition probabilities (see Algorithm 1 where 𝑑 𝑠=𝑗̄𝑦=𝑖 ∶=
𝑃(𝑦 = 1| ̄𝑦 = 𝑖, 𝑠 = 𝑗)):

𝑃(𝑦 = 1| ̄𝑦 = 0, 𝑠 = 0), 𝑃(𝑦 = 1| ̄𝑦 = 1, 𝑠 = 0) (4.14)

𝑃(𝑦 = 1| ̄𝑦 = 0, 𝑠 = 1), 𝑃(𝑦 = 1| ̄𝑦 = 1, 𝑠 = 1) . (4.15)

A perhaps useful interpretation of equation 4.13 is that, even though we

do not have access to ̄𝑦 directly, we can still compute the expectation value

over the possible values of ̄𝑦.
The above derivation applies to binary classification but can easily be

extended to the multi-class case.
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Algorithm 1 Fair learning with target labels ̄𝑦

Input: Training set 𝒟 = {(𝑥𝑖, 𝑦𝑖, 𝑠𝑖)}𝑁𝑖=1, transition probabilities 𝑑 𝑠=0̄𝑦=0, 𝑑 𝑠=0̄𝑦=1,
𝑑 𝑠=1̄𝑦=0, 𝑑 𝑠=1̄𝑦=1

Output: fair model parameters 𝜃
1: Initialise 𝜃 (randomly)
2: for all 𝑥𝑖, 𝑦𝑖, 𝑠𝑖 do
3: 𝑃 ̄𝑦=1 ← ̄𝜂(𝑥𝑖, 𝜃) (e.g. logistic(⟨𝑥, 𝜃⟩))
4: 𝑃 ̄𝑦=0 ← 1 − 𝑃 ̄𝑦=1
5: if 𝑠𝑖 = 0 then
6: 𝑃𝑦=1 ← 𝑑 𝑠=0̄𝑦=0 ⋅ 𝑃 ̄𝑦=0 + 𝑑 𝑠=0̄𝑦=1 ⋅ 𝑃 ̄𝑦=1
7: else
8: 𝑃𝑦=1 ← 𝑑 𝑠=1̄𝑦=0 ⋅ 𝑃 ̄𝑦=0 + 𝑑 𝑠=1̄𝑦=1 ⋅ 𝑃 ̄𝑦=1
9: end if

10: ℓ ← 𝑦𝑖 ⋅ 𝑃𝑦=1 + (1 − 𝑦𝑖) ⋅ (1 − 𝑃𝑦=1)
11: update 𝜃 to maximise likelihood ℓ
12: end for

4.4 Transition probabilities for a balanced dataset

This section focuses on how to set values of the transition probabilities in

order to arrive at balanced datasets.

4.4.1 Meaning of the parameters

Before we consider concrete values, we give some intuition for the transition

probabilities. Let 𝑠 = 0 refer to the protected group. For this group, we

want to make more positive predictions than the training labels indicate.

Variable ̄𝑦 is supposed to be our target proxy label. Thus, in order to make

more positive predictions, some of the 𝑦 = 0 labels should be associated with

̄𝑦 = 1. However, we do not know which. So, if our model predicts ̄𝑦 = 1
(high 𝑃( ̄𝑦 = 1|𝑥, 𝜃)) while the training label is 𝑦 = 0, then we allow for the

possibility that this is actually correct. That is, 𝑃(𝑦 = 0| ̄𝑦 = 1, 𝑠 = 0) is not 0.
If we choose, for example, 𝑃(𝑦 = 0| ̄𝑦 = 1, 𝑠 = 0) = 0.3 then that means that

30% of positive target labels ̄𝑦 = 1may correspond to negative training labels

𝑦 = 0. This way we can have more ̄𝑦 = 1 than 𝑦 = 1, overall. On the other

hand, predicting ̄𝑦 = 0 when 𝑦 = 1 holds, will always be deemed incorrect:

𝑃(𝑦 = 1| ̄𝑦 = 0, 𝑠 = 0) = 0; this is because we do not want any additional

negative labels.

For the non-protected group 𝑠 = 1, we have the exact opposite situation. If

anything, we have too many positive labels. So, if our model predicts ̄𝑦 = 0
(high 𝑃( ̄𝑦 = 0|𝑥, 𝜃)) while the training label is 𝑦 = 1, then we should again

allow for the possibility that this is actually correct. That is, 𝑃(𝑦 = 1| ̄𝑦 =
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0, 𝑠 = 1) should not be 0. On the other hand, 𝑃(𝑦 = 0| ̄𝑦 = 1, 𝑠 = 1) should be

0 because we do not want additional positive labels for 𝑠 = 1. It could also be

that the number of positive labels is exactly as it should be, in which case we

can just set 𝑦 = ̄𝑦 for all data points with 𝑠 = 1.

4.4.2 Choice of parameters

A balanced dataset is characterised by an independence of the label ̄𝑦 and the

sensitive attribute 𝑠. Given that we have complete control over the transition
probabilities, we can ensure this independence by requiring 𝑃( ̄𝑦 = 1|𝑠 = 0) =
𝑃( ̄𝑦 = 1|𝑠 = 1). Our constraint is then that both of these probabilities are

equal to the same value, which we will call the target rate PR𝑡 (“PR” as positive
rate):

𝑃( ̄𝑦 = 1|𝑠 = 0) != PR𝑡 and 𝑃( ̄𝑦 = 1|𝑠 = 1) != PR𝑡 . (4.16)

This leads us to the following constraints for 𝑠′ ∈ {0, 1}:

PR𝑡 = 𝑃( ̄𝑦 = 1|𝑠 = 𝑠′) = ∑
𝑦
𝑃( ̄𝑦 = 1|𝑦 , 𝑠 = 𝑠′) 𝑃(𝑦 |𝑠 = 𝑠′). (4.17)

We call 𝑃(𝑦 = 1|𝑠 = 𝑗) the base rate PR𝑗𝑏 which we estimate from the training

set:

𝑃(𝑦 = 1|𝑠 = 𝑖) =
number of points with 𝑦 = 1 in group 𝑖

number of points in group 𝑖
. (4.18)

Expanding the sum, we get

PR𝑡 = 𝑃( ̄𝑦 = 1|𝑦 = 0, 𝑠 = 𝑠′) ⋅ (1 − PR1𝑏) + 𝑃( ̄𝑦 = 1|𝑦 = 1, 𝑠 = 𝑠′) ⋅ PR1𝑏 .
(4.19)

This is a system of linear equations consisting of two equations (one for each

value of 𝑠′) and four free variables: 𝑃( ̄𝑦 = 1|𝑦 , 𝑠) with 𝑦, 𝑠 ∈ {0, 1}. The two

unconstrained degrees of freedom determine how strongly the accuracy will

be affected by the fairness constraint. If we set 𝑃( ̄𝑦 = 1|𝑦 = 1, 𝑠) to 0.5, then

this expresses the fact that a train label 𝑦 of 1 only implies a target label ̄𝑦 of

1 in 50% of the cases. In order to minimise the effect on accuracy, we make

𝑃( ̄𝑦 = 1|𝑦 = 1, 𝑠) as high as possible and 𝑃( ̄𝑦 = 1|𝑦 = 0, 𝑠), conversely, as
low as possible. However, the lowest and highest possible values are not
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always 0 and 1 respectively. To see this, we solve for 𝑃( ̄𝑦 = 1|𝑦 = 0, 𝑠 = 𝑗) in
equation 4.19:

𝑃( ̄𝑦 = 1|𝑦 = 0, 𝑠 = 𝑗) =
PR𝑗𝑏

1 − PR𝑗𝑏
(
PR𝑡
PR𝑗𝑏

− 𝑃( ̄𝑦 = 1|𝑦 = 1, 𝑠 = 𝑗)) . (4.20)

If PR𝑡/PR𝑗
𝑏 were greater than 1, then setting 𝑃( ̄𝑦 = 1|𝑦 = 0, 𝑠 = 𝑗) to 0 would

imply a 𝑃( ̄𝑦 = 1|𝑦 = 1, 𝑠 = 𝑗) value greater than 1. A visualisation that shows

why this happens can be found in the Supplementary Material. We thus

arrive at the following definitions:

𝑃( ̄𝑦 = 1|𝑦 = 1, 𝑠 = 𝑗) = {
1 if PR𝑡 > PR𝑗𝑏
PR𝑡

PR𝑗
𝑏

otherwise.
(4.21)

𝑃( ̄𝑦 = 1|𝑦 = 0, 𝑠 = 𝑗) = {
PR𝑡−PR

𝑗
𝑏

1−PR𝑗
𝑏

if PR𝑡 > PR𝑗𝑏

0 otherwise.
(4.22)

Algorithm 2 shows pseudocode of the procedure, including the computation

of the allowed minimal and maximal value.

Once all these probabilities have been found, the transition probabilities

needed for equation 4.13 are fully determined by applying Bayes’ rule:

𝑃(𝑦 = 1| ̄𝑦 , 𝑠) =
𝑃( ̄𝑦 |𝑦 = 1, 𝑠)𝑃(𝑦 = 1|𝑠)

𝑃( ̄𝑦 |𝑠)
. (4.23)

Choosing a target rate. As shown, there is a remaining degree of freedom

when targeting a balanced dataset: the target rate PR𝑡 ∶= 𝑃( ̄𝑦 = 1). This is
true for both fairness criteria that we are targeting. The choice of targeting

rate affects how much 𝜂 and ̄𝜂 differ as implied by Theorem 4.1 (PR𝑡 affects
𝑚𝑠 and 𝑏𝑠). ̄𝜂 should remain close to 𝜂 as ̄𝜂 only represents an auxiliary

distribution that does not have meaning on its own. The threshold 𝑡𝑠 in
Theorem 4.1 (equation 4.8) gives an indication of how close the distributions

are. With the definitions in equation 4.21 and equation 4.22, we can express

𝑡𝑠 in terms of the target rate and the base rate:

𝑡𝑠 = {
1
2
PR𝑠

𝑏−PR𝑡
PR𝑡

if PR𝑡 > PR𝑗𝑏
1
2
PR𝑡−PR𝑠

𝑏
1−PR𝑡

otherwise.
(4.24)

This shows that 𝑡𝑠 is smallest when PR𝑠𝑏 and PR𝑡 are closest. However, as PR𝑠𝑏
has different values for different 𝑠, we cannot set PR𝑠𝑏 = PR𝑡 for all 𝑠. In order

to keep both 𝑡𝑠=0 and 𝑡𝑠=1 small, it follows from equation 4.24 that PR𝑡 should
at least be between PR0𝑏 and PR

1
𝑏 . A more precise statement can be made when
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we explicitly want to minimise the sum 𝑡𝑠=0+𝑡𝑠=1: assuming PR0𝑏 < PR𝑡 < PR1𝑏
and PR1𝑏 <

1
2 , the optimal choice for PR𝑡 is PR

1
𝑏 (see Supplementary Material

for details). We call this choice PR𝑚𝑎𝑥𝑡 . For PR0𝑏 >
1
2 , analogous statements

can be made, but this is of less interest as this case does not appear in our

experiments.

The previous statements about 𝑡𝑠 do not directly translate into observable

quantities like accuracy if the Tsybakov condition is not satisfied, and even if

it is satisfied, the usefulness depends on the constants 𝐶 and 𝜆. Conversely,
the following theorem makes a generally applicable statement about the

accuracy that can be achieved. Before we get to the theorem, we introduce

some notation. We are given a dataset𝒟 = {(𝑥𝑖, 𝑦𝑖)}𝑖, where the 𝑥𝑖 are vectors

of features and the 𝑦𝑖 the corresponding labels. We refer to the tuples (𝑥, 𝑦)
as the samples of the dataset. The number of samples is 𝑁 = |𝒟 |.

We assume binary labels (𝑦 ∈ {0, 1}) and thus can form the (disjoint) subsets

𝒴 0 and 𝒴 1 with

𝒴 𝑗 = {(𝑥, 𝑦) ∈ 𝒟 |𝑦 = 𝑗} with 𝑗 ∈ {0, 1} . (4.25)

Furthermore, we associate each sample with a classification ̂𝑦 ∈ {0, 1}. The
task of making the classification ̂𝑦 = 0 or ̂𝑦 = 1 can be understood as sorting

each sample from𝒟 into one of two sets: 𝒞 0 and 𝒞 1, such that 𝒞 0 ∪𝒞 1 = 𝒟
and 𝒞 0 ∩ 𝒞 1 = ∅.

We refer to the set 𝒜 = (𝒞 0 ∩ 𝒴 0) ∪ (𝒞 1 ∩ 𝒴 1) as the set of correct (or

accurate) predictions. The accuracy is given by acc = 𝑁−1 ⋅ |𝒜|.

Definition 4.2.

𝑟𝑎 ∶=
|𝒴 1|
|𝒟 |

=
|𝒴 1|
𝑁

(4.26)

is called the base acceptance rate of the dataset 𝒟.

Definition 4.3.

̂𝑟𝑎 =
|𝒞 1|
|𝒟 |

=
|𝒞 1|
𝑁

(4.27)

is called the predictive acceptance rate of the predictions.

Theorem 4.2. For a dataset with the base rate 𝑟𝑎 and corresponding predictions
with a predictive acceptance rate of ̂𝑟𝑎, the accuracy is limited by

acc ≤ 1 − | ̂𝑟𝑎 − 𝑟𝑎| . (4.28)

Corollary 4.2.1. Given a dataset that consists of two subsets 𝒮0 and 𝒮1
(𝒟 = 𝒮0 ∪ 𝒮1) where 𝑝 is the ratio of |𝒮0| to |𝒟 | and given corresponding

52



4.4 transition probabilities for a balanced dataset

Algorithm 2 Targeting a balanced dataset

Input: target rate PR𝑡, biased acceptance rate PR𝑖𝑏
Output: transition probabilities 𝑑 𝑠=𝑖̄𝑦=𝑗
1: if PR𝑡 > PR𝑖𝑏 then
2: 𝑃( ̄𝑦 = 1|𝑦 = 1, 𝑠 = 𝑖) ← 1
3: else
4: 𝑃( ̄𝑦 = 1|𝑦 = 1, 𝑠 = 𝑖) ← PR𝑡

PR𝑖
𝑏

5: end if
6: if j=0 then
7: 𝑃( ̄𝑦 = 0|𝑦 = 1, 𝑠 = 𝑖) ← 1 − 𝑃( ̄𝑦 = 1|𝑦 = 1, 𝑠 = 𝑖)
8: 𝑑 𝑠=𝑖̄𝑦=0 ←

𝑃( ̄𝑦=0|𝑦=1,𝑠=𝑖)⋅PR𝑖
𝑏

1−PR𝑡
9: else if j=1 then

10: 𝑑 𝑠=𝑖̄𝑦=1 ←
𝑃( ̄𝑦=1|𝑦=1,𝑠=𝑖)⋅PR𝑖

𝑏
PR𝑡

11: end if

acceptance rates 𝑟0𝑎 and 𝑟1𝑎 and predictions with target rates ̂𝑟0𝑎 and ̂𝑟1𝑎 , the
accuracy is limited by

acc ≤ 1 − 𝑝 ⋅ | ̂𝑟0𝑎 − 𝑟0𝑎 | − (1 − 𝑝) ⋅ | ̂𝑟1𝑎 − 𝑟1𝑎 | . (4.29)

The proofs are fairly straightforward and can be found in the Supplement-

ary Material.

Corollary 4.2.1 implies that in the common case where group 𝑠 = 0 is

disadvantaged (𝑟0𝑎 < 𝑟1𝑎 ) and also underrepresented (𝑝 < 1
2 ), the highest

accuracy under demographic parity can be achieved at PR𝑡 = 𝑟1𝑎 with

acc ≤ 1 − 𝑝 ⋅ (𝑟1𝑎 − 𝑟0𝑎 ) . (4.30)

However, this means willingly accepting a lower accuracy in the (smaller)

subset 𝒮0 that is compensated by a very good accuracy in the (larger) subset

𝒮1. A decidedly “fairer” approach is to aim for the same accuracy in both

subsets. This is achieved by using the average of the base acceptance rates

for the target rate. As we balance the test set in our experiments, this kind of

sacrificing of one demographic group does not work there. We compare the

two choices (PR𝑚𝑎𝑥𝑡 and PR𝑎𝑣𝑔𝑡 ) in section 4.6.

4.4.3 Conditionally balanced dataset

There is a fairness definition related to demographic parity which allows

conditioning on “legitimate” risk factors ℓ when considering how equal the
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demographic groups are treated (Corbett-Davies et al., 2017). This cleanly

translates into balanced datasets which are balanced conditioned on ℓ:

𝑃( ̄𝑦 = 1|ℓ = ℓ′, 𝑠 = 0) != 𝑃( ̄𝑦 = 1|ℓ = ℓ′, 𝑠 = 1) . (4.31)

We can interpret this as splitting the data into partitions based on the value of

ℓ, where the goal is to have all these partitions be balanced. This can easily be

achieved by our method by setting a PR𝑡(ℓ) for each value of ℓ and computing

the transition probabilities for each sample depending on ℓ.

4.5 Related work

There are several ways to enforce fairness in machine learning models: as a

pre-processing step (Kamiran and Calders, 2012; Zemel et al., 2013; Louizos

et al., 2016; Lum and Johndrow, 2016; Chiappa, 2019; Quadrianto et al., 2019),

as a post-processing step (Feldman et al., 2015; Hardt et al., 2016), or as

a constraint during the learning phase (Calders et al., 2009; Zafar et al.,

2017a,b; Donini et al., 2018; Dimitrakakis et al., 2019). Our method enforces

fairness during the learning phase (an in-processing approach) but, unlike

other approaches, we do not cast fair-learning as a constrained optimisation

problem. Constrained optimisation requires a customised procedure. In Goh

et al. (2016), Zafar et al. (2017b), and Zafar et al. (2017a), suitable majorisation-

minimisation/convex-concave procedures (Sriperumbudur and Lanckriet,

2009) were derived. Furthermore, such constrained optimisation approaches

may lead to more unstable training, and often yield classifiers with both

worse accuracy and more unfair (Cotter et al., 2018).

The approaches most closely related to ours were given by Kamiran and

Calders (2012) who present four pre-processing methods: Suppression, Mas-
saging the dataset, Reweighing, and Sampling. In our comparison we focus on

methods 2, 3 and 4, because the first one simply removes sensitive attributes

and those features that are highly correlated with them. All the methods

given by Kamiran and Calders (2012) aim only at enforcing demographic

parity.

The massaging approach uses a classifier to first rank all samples according

to their probability of having a positive label (𝑦 = 1) and then flips the labels

that are closest to the decision boundary such that the data then satisfies

demographic parity. This pre-processing approach is similar in spirit to our

in-processing method but differs in the execution. In our method (section

4.4.2), “ranking” and classification happen in one step and labels are not

explicitly flipped but assigned probabilities of being flipped.
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The reweighting method reweights samples based on whether they be-

long to an over-represented or under-represented demographic group. The

sampling approach is based on the same idea but works by resampling instead

of reweighting. Both reweighting and sampling aim to effectively construct

a balanced dataset, without affecting the labels. This is in contrast to our

method which treats the class labels as potentially untrustworthy and allows

defying them.

One approach in Calders and Verwer (2010) is also worth mentioning.

It is based on a generative Naïve Bayes model in which a latent variable

𝐿 is introduced which is reminiscent to our target label ̄𝑦. We provide a

discriminative version of this approach. In discriminative models, parameters

capture the conditional relationship of an output given an input, while in

generative models, the joint distribution of input-output is parameterised.

With this conditional relationship formulation (𝑃(𝑦| ̄𝑦 , 𝑠) = 𝑃( ̄𝑦 |𝑦 ,𝑠)𝑃(𝑦 |𝑠)/𝑃( ̄𝑦 |𝑠)),

we can have detailed control in setting the target rate. Calders and Verwer

(2010) focuses only on the demographic parity fairness metric.

4.6 Experiments

We compare the performance of our target-label model with other existing

models based on two real-world datasets. These datasets have been previously

considered in the fairness-aware machine learning literature.

4.6.1 Implementation

The proposed method is compatible with any likelihood-based algorithm. We

consider both a nonparametric and a parametric model. The nonparametric

model is a Gaussian process model, and Logistic regression is the parametric

counterpart. Since our fairness approach is not being framed as a constrained

optimisation problem, we can reuse off-the-shelf toolboxes including the

GPyTorch library by Gardner et al. (2018) for Gaussian process models. This

library incorporates recent advances in scalable variational inference includ-

ing variational inducing inputs and likelihood ratio/REINFORCE estimators.

The variational posterior can be derived from the likelihood and the prior.

We need just need to modify the likelihood to take into account the target

labels (Algorithm 1).
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4.6.2 Data

We run experiments on two real-world datasets. The first dataset is the Adult

Income dataset (Dheeru and Karra Taniskidou, 2017). It contains 33,561 data

points with census information from US citizens. The labels indicate whether

the individual earns more (𝑦 = 1) or less (𝑦 = 0) than $50,000 per year. We

use the dataset with either race or gender as the sensitive attribute. The

input dimension, excluding the sensitive attributes, is 12 in the raw data;

the categorical features are then one-hot encoded. For the experiments,

we removed 2,399 instances with missing data and used only the training

data, which we split randomly for each trial run. The second dataset is

the ProPublica recidivism dataset. It contains data from 6,167 individuals

that were arrested. The data was collected when investigating the COMPAS

risk assessment tool (Angwin et al., 2016). The task is to predict whether

the person was rearrested within two years (𝑦 = 1 if they were rearrested,

𝑦 = 0 otherwise). We again use the dataset with either race or gender as the

sensitive attributes.

4.6.3 Balancing the test set

Any fairness method that is targeting demographic parity, treats the training

set as defective in one way: the acceptance rates are not equal in the training

set and this needs to be corrected. As such, it does not make sense to evaluate

these methods on a dataset that is equally defective. Predicting at equal

acceptance rates is the correct result and the test set should reflect this.

In order to generate a test set which has the property of equal acceptance

rates, we subsample the given, imbalanced, test set. For evaluating demo-

graphic parity, we discard datapoints from the imbalanced test set such that

the resulting subset satisfies 𝑃(𝑠 = 𝑗|𝑦 = 𝑖) = 1
2 for all 𝑖 and 𝑗. This balances

the set in terms of 𝑠 and ensures 𝑃(𝑦, 𝑠) = 𝑃(𝑦)𝑃(𝑠), but does not force the

acceptance rate to be 1
2 , which in the case of the Adult dataset would be a

severe change as the acceptance rate is naturally quite low there. Using the

described method ensures that the minimal amount of data is discarded for

the Adult dataset. We have empirically observed that all fairness algorithms

benefit from this balancing of the test set.

The situation is different for equality of opportunity. A perfect classifier

automatically satisfies equality of opportunity on any dataset. Thus, an

algorithm aiming for this fairness constraint should not treat the dataset as

defective. Consequently, for evaluating equality of opportunity we perform

no balancing of the test set.
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Table 4.1: Accuracy and fairness (with respect to demographic parity) for various
methods on the balanced test set of the Adult dataset. Fairness is defined
as PR𝑠=0/PR𝑠=1 (a completely fair model would achieve a value of 1.0). Left:
using race as the sensitive attribute. Right: using gender as the sensitive
attribute. The mean and std of 10 repeated experiments.

Algorithm Fair → 1.0 ← Accuracy ↑

GP 0.80 ± 0.07 0.888 ± 0.007
LR 0.83 ± 0.06 0.884 ± 0.007
SVM 0.89 ± 0.06 0.899 ± 0.004
FairGP (ours) 0.86 ± 0.07 0.888 ± 0.006
FairLR (ours) 0.90 ± 0.06 0.874 ± 0.009
ZafarAccuracy 0.67 ± 0.17 0.808 ± 0.016
ZafarFairness 0.81 ± 0.06 0.879 ± 0.009
Kamiran and Calders (2012) 0.87 ± 0.07 0.882 ± 0.007
Agarwal et al. (2018) 0.86 ± 0.08 0.883 ± 0.008

Fair → 1.0 ← Accuracy ↑

0.54 ± 0.05 0.900 ± 0.006
0.52 ± 0.03 0.898 ± 0.003
0.49 ± 0.05 0.913 ± 0.004
0.87 ± 0.09 0.902 ± 0.007
0.93 ± 0.04 0.886 ± 0.012
0.77 ± 0.08 0.853 ± 0.017
0.74 ± 0.11 0.897 ± 0.004
0.96 ± 0.03 0.900 ± 0.004
0.65 ± 0.04 0.900 ± 0.004

4.6.4 Method

We evaluate two versions of our target label model1: FairGP, which is based

on Gaussian Process models, and FairLR, which is based on logistic regression.

We also train baseline models that do not take fairness into account.

In both FairGP and FairLR, our approach is implemented by modifying

the likelihood function. First, the unmodified likelihood is computed (corres-

ponding to 𝑃( ̄𝑦 = 1|𝑥, 𝜃)) and then a linear transformation (dependent on 𝑠)
is applied as given by equation 4.13. No additional ranking of the samples is

needed, because the unmodified likelihood already supplies ranking informa-

tion.

The fair GP models and the baseline GP model are all based on variational

inference and use the same settings. During training, each batch is equi-

valent to the whole dataset. The number of inducing inputs is 500 on the

ProPublica dataset and 2500 on the Adult dataset which corresponds to

approximately 1/8 of the number of training points for each dataset. We

use a squared-exponential (SE) kernel with automatic relevance determin-

ation (ARD) and the probit function as the likelihood function. We optim-

ise the hyper-parameters and the variational parameters using the Adam

method (Kingma and Ba, 2015) with the default parameters. We use the

full covariance matrix for the Gaussian variational distribution. The logistic

regression is trained with RAdam (Liu et al., 2020) and uses L2 regularisation.

For the regularisation coefficient, we conducted a hyper-parameter search

over 10 folds of the data. For each fold, we picked the hyper-parameter which

achieved the best fairness among those 5 with the best accuracy scores. We

1 The code can be found on GitHub: https://github.com/predictive-analytics-lab/
ethicml-models/tree/master/implementations/fairgp.
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Figure 4.1: Accuracy and fairness (demographic parity) for various target choices.
(a): Adult dataset using race as the sensitive attribute; (b): Adult dataset
using gender. Centre of the cross is the mean; height and width of the
box encode half of standard derivation of accuracy and disparate impact.

then averaged over the 10 hyper-parameter values chosen in this way and

then used this average for all runs to obtain our final results.

In addition to the GP and LR baselines, we compare our proposed model

with the following methods: Support Vector Machine (SVM), Kamiran &
Calders (Kamiran and Calders, 2012) (“reweighing” method), Agarwal et
al. (Agarwal et al., 2018) (using logistic regression as the classifier) and several

methods given by Zafar et al. (2017a,b), which include maximising accuracy

under demographic parity fairness constraints (ZafarFairness), maximising

demographic parity fairness under accuracy constraints (ZafarAccuracy),
and removing disparate mistreatment by constraining the false negative rate

(ZafarEqOpp). Every method is evaluated over 10 repeats that each have

different splits of the training and test set.

4.6.5 Results for Demographic Parity on Adult dataset

Following Zafar et al. (2017b) we evaluate demographic parity on the Adult

dataset. Table 4.1 shows the accuracy and fairness for several algorithms.

In the table, and in the following, we use PR𝑠=𝑖 to denote the observed

rate of positive predictions per demographic group 𝑃( ̂𝑦 = 1|𝑠 = 𝑖). Thus,

PR𝑠=0/PR𝑠=1 is a measure for demographic parity, where a completely fair

model would attain a value of 1.0. This measure for demographic parity is

also called “disparate impact” (see e.g. Feldman et al., 2015; Zafar et al., 2017a).

As the results in Table 4.1 show, FairGP and FairLR are clearly fairer than the

baseline GP and LR. We use the mean (PR𝑎𝑣𝑔𝑡 ) for the target acceptance rate.

The difference between fair models and unconstrained models is not as large

with race as the sensitive attribute, as the unconstrained models are already

quite fair there. The results of FairGP are characterised by high fairness and
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for 10 repeats. (a): PR𝑠=0 vs PR𝑠=1 using race as the sensitive attribute;
(b): PR𝑠=0 vs PR𝑠=1 using gender.
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Figure 4.3: Predictions with different target acceptance rates (demographic parity)
for 10 repeats. (a): disparate impact vs accuracy on Adult dataset using
race as the sensitive attribute; (b): disparate impact vs accuracy using
gender.

high accuracy. FairLR achieves similar results to FairGP, but with generally

slightly lower accuracy but better fairness. We used the two step procedure

of Donini et al. (2018) to verify that we cannot achieve the same fairness

result with just parameter search on LR.

In fig. 4.1, we investigate which choice of target (PR𝑎𝑣𝑔𝑡 , PR𝑚𝑖𝑛𝑡 or PR𝑚𝑎𝑥𝑡 )

gives the best result. We use PR𝑎𝑣𝑔𝑡 for all following experiments as this

is the fairest choice (cf. section 4.4.2). The fig. 4.1(a) shows results from

Adult dataset with race as sensitive attribute where we have PR𝑚𝑖𝑛𝑡 = 0.156,
PR𝑚𝑎𝑥𝑡 = 0.267 and PR𝑎𝑣𝑔𝑡 = 0.211. PR𝑎𝑣𝑔𝑡 performs best in term of the trade-

off.

Fig. 4.2(a) and (b) show runs of FairLR where we explicitly set a target

acceptance rate, PR𝑡 ∶= 𝑃( ̄𝑦 = 1), instead of taking the mean PR𝑎𝑣𝑔𝑡 . A perfect

targeting mechanism would produce a diagonal. The plot shows that setting

the target rate has the expected effect on the observed acceptance rate. This

tuning of the target rate is the unique aspect of the approach. This would

be very difficult to achieve with existing fairness methods; a new constraint

would have to be added. The achieved positive rate is, however, usually a

59



4.6 experiments

0.7 0.8
TPRs=0/TPRs=1

0.62

0.64

0.66

0.68

Ac
cu

ra
cy

(a) sensitive: race

0.7 0.8 0.9
TPRs=0/TPRs=1

0.62

0.64

0.66

0.68

Ac
cu

ra
cy

(b) sensitive: gender
LR
ZafarEqOpp, τ=5.0, μ=1.2
Kami,an μ Ca&de,s LR
Aga,1a& LR
ou,s, PRt=0.3
ou,s, PRt=0.4
ours, PRt=0.5
ours, PRt=0.6
ours, PRt=0.7
SVM

Figure 4.4: Accuracy and fairness (with respect to equality of opportunity) for various
methods on ProPublica dataset. (a): using race as the sensitive attribute;
(b): using gender. A completely fair model would achieve a value of 1.0
in the x-axis. See fig. 4.5(a) and (b) on how these choices of PR setting
translate to TPR𝑠=0 vs TPR𝑠=1.

bit lower than the targeted rate (e.g. around 0.15 for the target 0.2). This is

due to using imperfect classifiers; if TPR and TNR differ from 1, the overall

positive rate is affected (see e.g. Forman (2005) for discussion of this).

Fig. 4.3(a) and (b) show the same data as fig. 4.2 but with different axes. It

can be seen from this fig. 4.3(a) and (b) that the fairness-accuracy trade-off is

usually best when the target rate is close to the average of the positive rates

in the dataset (which is around 0.2 for both sensitive attribute).

4.6.6 Results for Equality of Opportunity on ProPublica dataset.

For equality of opportunity, we again follow Zafar et al. (2017a) and evaluate

the algorithm on the ProPublica dataset. Aswe did for demographic parity, we

define a measure of equality of opportunity via the ratio of the true positive

rates (TPRs) within the demographic groups. We use TPR𝑠=𝑖 to denote the

observed TPR in group 𝑖: 𝑃( ̂𝑦 = 1|𝑦 = 1, 𝑠 = 𝑖), and TNR𝑠=𝑖 for the observed

true negative rate (TNR) in the same manner. The measure is then given by

TPR𝑠=0/TPR𝑠=1. A perfectly fair algorithm would achieve 1.0 on the measure.

The results of 10 runs are shown in fig. 4.4 and fig. 4.5. Fig. 4.4(a) and (b)

show the accuracy-fairness trade-off; fig. 4.5(a) and (b) show the achieved

TPRs. In the accuracy-fairness plot, varying PR𝑡 is shown to produce an

inverted U-shape: Higher PR𝑡 still leads to improved fairness, but at a high

cost in terms of accuracy.

The latter two plots make clear that the TPR ratio does not tell the whole

story: the realisation of the fairness constraint can differ substantially. By

setting different target PRs for our method, we can affect TPRs as well,

where higher PR𝑡 leads to higher TPR, stemming from the fact that making

more positive predictions increases the chance of making correct positive
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Figure 4.5: Fairness measure TPR𝑠=0 vs TPR𝑠=1 (equality of opportunity) for different
target PRs (PR𝑡). (a): on dataset ProPublica recidivism using race as the
sensitive attribute; (b): using gender.

predictions. Fig. 4.5 shows that our method can span a wide range of possible

TPR values. Tuning these hidden aspects of fairness is the strength of our

method.

4.7 Discussion and conclusion

Fairness is fundamentally not a challenge of algorithms alone, but very

much a sociological challenge. A lot of proposals have emerged recently for

defining and obtaining fairness in machine learning-based decision making

systems. The vast majority of academic work has focused on two categories

of definitions: statistical (group) notions of fairness and individual notions of

fairness (see Verma and Rubin (2018) for at least twenty different notions of

fairness). Statistical notions are easy to verify but do not provide protections

to individuals. Individual notions do give individual protections but need

strong assumptions, such as the availability of an agreed-upon similarity

metric, which can be difficult in practice. We acknowledge that a proper

solution to algorithmic fairness cannot rely on statistics alone. Nevertheless,

these statistical fairness definitions can be helpful in understanding the

problem and working towards solutions. To facilitate this, at every step, the

trade-offs that are present should be made very clear and long-term effects

have to be considered as well (Kallus and Zhou, 2018; Liu et al., 2019).

Here, we have developed a machine learning framework which allows

us to learn from an implicit balanced dataset, thus satisfying the two most

popular notions of fairness (Verma and Rubin, 2018), demographic parity

(also known as avoiding disparate treatment) and equality of opportunity (or

avoiding disparate mistreatment). Additionally, we indicate how to extend the

framework to cover conditional demographic parity as well. The framework

allows us to set a target rate to control how the fairness constraint is realised.

For example, we can set the target positive rate for demographic parity to be
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0.6 for different groups. Depending on the application, it can be important to

specify whether non-discrimination ought to be achieved by more positive

predictions or more negative predictions. This capability is unique to our

approach and can be used as an intuitive mechanism to control the realisation

of fairness. Our framework is general and will be applicable for sensitive

variables with binary and multi-level values. The current work focuses on

a single binary sensitive variable. Future work could extend our tuning

approach to other fairness concepts like the closely related predictive parity

group fairness (Chouldechova, 2017) or individual fairness (Dwork et al.,

2012).

Furthermore, as currently formulated, the approach is only compatible

with likelihood-based models (which covers neural networks). However, the

only real requirement is reasonably-well calibrated probabilities from the

used model, which are needed to compute the expected target labels. Thus,

future work could extend it to other kinds of models, like SVMs, for which

solutions exists to transform the output to a probability; the most common

being Platt scaling (Platt, 1999), which applies a logistic transformation with

two free parameters to the output of the SVM. The free parameters have

to be estimated by iterating over the whole training set. The remaining

(substantial) challenge is then to integrate the loss computed from these

probabilities into the training of the SVM.
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4.8 Appendix

4.8.1 Proof of Theorem 1

Let 𝜂(𝑥, 𝑠) = 𝑃(𝑦 = 1|𝑥, 𝑠) be the distribution of the training data. Let

̄𝜂(𝑥, 𝑠) = 𝑚𝑠 ⋅ 𝜂(𝑥, 𝑠) + 𝑏𝑠, where

𝑚𝑠 = 𝑃( ̄𝑦 = 1|𝑦 = 1, 𝑠) − 𝑃( ̄𝑦 = 1|𝑦 = 0, 𝑠)

= 1 − 𝑃( ̄𝑦 = 0|𝑦 = 1, 𝑠) − 𝑃( ̄𝑦 = 1|𝑦 = 0, 𝑠) (4.32)

𝑏𝑠 = 𝑃( ̄𝑦 = 1|𝑦 = 0, 𝑠) (4.33)

So, ̄𝜂(𝑥, 𝑠) = 𝑃( ̄𝑦 = 1|𝑥, 𝑠). Let 𝑦 denote the hard labels for 𝜂: 𝑦 = 𝕀 [𝜂 > 1
2]

and ̄𝑦 be the hard labels for ̄𝜂: ̄𝑦 = 𝕀 [ ̄𝜂 > 1
2].

Theorem 4.3. The probability that 𝑦 and ̄𝑦 disagree (𝑦 ≠ ̄𝑦) for any input 𝑥 in
the dataset is given by:

𝑃(𝑦 ≠ ̄𝑦 |𝑠) = 𝑃 (|𝜂(𝑥, 𝑠) − 1
2 | < 𝑡𝑠) (4.34)

where

𝑡𝑠 = |
𝑚𝑠 + 2𝑏𝑠 − 1

2𝑚𝑠
| . (4.35)

Proof. The decision boundary that lets us recover the true labels is at 1
2

(independent of 𝑠). So, for the shifted distribution, ̄𝜂, this threshold to get

the true labels would be at 1
2 ⋅ 𝑚𝑠 + 𝑏𝑠 (it depends on 𝑠 now). If we however

use the decision boundary of 1
2 for ̄𝜂, to make our predictions, ̄𝑦, then this

prediction will sometimes not correspond to the true label, 𝑦 ≠ ̄𝑦. When does

this happen?

Let 𝑑𝑠 be the new decision boundary: 𝑑𝑠 = 1
2 ⋅ 𝑚𝑠 + 𝑏𝑠. There are two

possibilities to consider here: either 1
2 < 𝑑𝑠 or

1
2 > 𝑑𝑠 (for 𝑑𝑠 =

1
2 , the decision

boundaries are the same and nothing has to be shown). The problem, 𝑦 ≠ ̄𝑦,
appears then exactly when the value of ̄𝜂 is between the two boundaries:

if 𝑑𝑠 >
1
2 : 𝑑𝑠 > ̄𝜂(𝑥, 𝑠) > 1

2 (4.36)

if 𝑑𝑠 <
1
2 : 𝑑𝑠 < ̄𝜂(𝑥, 𝑠) < 1

2 (4.37)
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Expressing this in terms of 𝜂 and simplifying leads to (if 𝑚𝑠 is negative, then

the two cases are swapped, but we still get both inequalities):

if 𝑑𝑠 >
1
2 :

1
2
> 𝜂(𝑥, 𝑠) >

1 − 2𝑏𝑠
2𝑚𝑠

(4.38)

if 𝑑𝑠 <
1
2 :

1
2
< 𝜂(𝑥, 𝑠) <

1 − 2𝑏𝑠
2𝑚𝑠

(4.39)

This can be summarised as

|𝜂(𝑥, 𝑠) − 1
2
| < |1

2
−
1 − 2𝑏𝑠
2𝑚𝑠

| . (4.40)

Let 𝑡𝑠 denote the term on the right side of this inequality (i.e. the “threshold”

that determines whether 𝑦 = ̄𝑦 or not). Then

𝑡𝑠 = |1
2
−
1 − 2𝑏𝑠
2𝑚𝑠

| = |
𝑚𝑠 + 2𝑏𝑠 − 1

2𝑚𝑠
| . (4.41)

So, we have: |𝜂(𝑥, 𝑠) − 1
2 | < 𝑡𝑠 = |𝑚𝑠+2𝑏𝑠−1

2𝑚𝑠
|. This leads directly to the statement

we wanted to prove:

𝑃(𝑦 ≠ ̄𝑦 |𝑠) = 𝑃 (|𝜂(𝑥, 𝑠) − 1
2
| < 𝑡𝑠) . (4.42)

4.8.2 Finding minimal 𝑡𝑠

We express 𝑡𝑠 in terms of PR𝑠𝑏 and PR𝑡.

𝑡𝑠 = {
1
2
PR𝑠

𝑏−PR𝑡
PR𝑡

if PR𝑡 > PR𝑗𝑏
1
2
PR𝑡−PR𝑠

𝑏
1−PR𝑡

otherwise.
(4.43)

Without loss of generality, we assume PR0𝑏 < PR1𝑏 . As mentioned in the main

text, PR𝑡 should be between PR0𝑏 and PR1𝑏 to minimise both 𝑡𝑠. If that is the
case, then we get

𝑡𝑠=0 =
1
2
PR𝑡 − PR0𝑏
1 − PR𝑡

(4.44)

𝑡𝑠=1 =
1
2
PR1𝑏 − PR𝑡

PR𝑡
. (4.45)

If we further assume PR1𝑏 < 1
2 , then we also have PR𝑡 <

1
2 and thus PR𝑡 <

1 − PR𝑡. This implies that the denominator of 𝑡𝑠=1 is smaller and that, in turn,
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𝑡𝑠=1 grows faster. This faster growth means that when minimising 𝑡𝑠=0 + 𝑡𝑠=1,
we have to concentrate on 𝑡𝑠=1. The minimum is then such that 𝑡𝑠=1 is 0, i.e.

PR𝑡 = PR1𝑏 .

4.8.3 Proof of Theorem 2

We are given a dataset𝒟 = {(𝑥𝑖, 𝑦𝑖)}𝑖, where the 𝑥𝑖 are vectors of features and

the 𝑦𝑖 the corresponding labels. We refer to the tuples (𝑥, 𝑦) as the samples
of the dataset. The number of samples is 𝑁 = |𝒟 |.

We assume binary labels (𝑦 ∈ {0, 1}) and thus can form the (disjoint) subsets

𝒴 0 and 𝒴 1 with

𝒴 𝑗 = {(𝑥, 𝑦) ∈ 𝒟 |𝑦 = 𝑗} with 𝑗 ∈ {0, 1} . (4.46)

Furthermore, we associate each sample with a classification ̂𝑦 ∈ {0, 1}. The
task of making the classification ̂𝑦 = 0 or ̂𝑦 = 1 can be understood as putting

each sample from𝒟 into one of two sets: 𝒞 0 and 𝒞 1, such that 𝒞 0 ∪𝒞 1 = 𝒟
and 𝒞 0 ∩ 𝒞 1 = ∅.

We refer to the set 𝒜 = (𝒞 0 ∩ 𝒴 0) ∪ (𝒞 1 ∩ 𝒴 1) as the set of correct (or

accurate) predictions. The accuracy is given by acc = 𝑁−1 ⋅ |𝒜|. From the

definition it is clear that 0 ≤ acc ≤ 1.

Definition 4.4.

𝑟𝑎 ∶=
|𝒴 1|
|𝒟 |

=
|𝒴 1|
𝑁

(4.47)

is called the acceptance rate of the dataset 𝒟.

Definition 4.5.

̂𝑟𝑎 =
|𝒞 1|
|𝒟 |

=
|𝒞 1|
𝑁

(4.48)

is called the target rate of the predictions.

Theorem 4.4. For a dataset with the acceptance rate 𝑟𝑎 and corresponding
predictions with a target rate of ̂𝑟𝑎, the accuracy is limited by

acc ≤ 1 − | ̂𝑟𝑎 − 𝑟𝑎| . (4.49)

Proof. We first note that by multiplying by 𝑁, the inequality becomes

|𝒜 | ≤ 𝑁 − ||𝒞 1| − |𝒴 1|| . (4.50)
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We will choose the predictions ̂𝑦 that achieve the highest possible accuracy

(largest possible 𝒜) and show that this can never exceed 1 − | ̂𝑟𝑎 − 𝑟𝑎|. As the

set 𝒴 1 contains all samples that correspond to 𝑦 = 1, we try to take as many

samples from 𝒴 1 for 𝒞 1 as possible. Likewise, we take as many indices as

possible from 𝒴 0 for 𝒞 0.

We consider three cases: ̂𝑟𝑎 = 𝑟𝑎, ̂𝑟𝑎 < 𝑟𝑎 and ̂𝑟𝑎 > 𝑟𝑎. The first case is trivial;

we have |𝒞 1| = |𝒴 1| and thus are able to set 𝒞 1 = 𝒴 1, 𝒞 0 = 𝒴 0 and achieve

perfect accuracy (acc ≤ 1).
For ̂𝑟𝑎 < 𝑟𝑎, we have |𝒞 1| < |𝒴 1| and thus have more samples available

with 𝑦 = 1 than we would optimally need to select for 𝒞 1. There are two

terms to consider that make up the definition of 𝒜: 𝒞 0 ∩ 𝒴 0 and 𝒞 1 ∩ 𝒴 1.

The intersection of these two terms is empty because 𝒞 0 ∩ 𝒞 1 = ∅. Thus,

|𝒜| = |(𝒞 0 ∩ 𝒴 0) ∪ (𝒞 1 ∩ 𝒴 1)| = |(𝒞 0 ∩ 𝒴 0)| + |(𝒞 1 ∩ 𝒴 1)| . (4.51)

Selecting samples from 𝒴 1 for 𝒞 0 will only decrease the first term, so for

maximum accuracy, it is fine to take as many samples from𝒴 1 for𝒞 1. Taking

all available samples from 𝒴 1 such that 𝒞 1 ⊃ 𝒴 1, there is still space left

in 𝒞 1 which we will have to fill with samples with 𝑦 = 0. Thus, we have

𝒞 1 ∩ 𝒴 1 = 𝒴 1. For 𝒞 0, we have enough 𝑦 = 0 such that 𝒞 0 ⊂ 𝒴 0 and

𝒞 0 ∩ 𝒴 0 = 𝒞 0. This is the largest we can make these intersections. Putting

everything together:

|𝒜 optimal | = |(𝒞 0 ∩ 𝒴 0)| + |(𝒞 1 ∩ 𝒴 1)| = |𝒞 0| + |𝒴 1|

= 𝑁 − |𝒞 1| + |𝒴 1| = 𝑁 − (|𝒞 1| − |𝒴 1|) . (4.52)

For ̂𝑟𝑎 > 𝑟𝑎, the roles of 𝒞 0 and 𝒞 1 are reversed and thus, the signs in the

equation are inverted:

|𝒜 optimal | = 𝑁 − (|𝒴 1| − |𝒞 1|) . (4.53)

This proves the claim.

Corollary 4.4.1. Given a dataset that consists of two subsets 𝒮0 and 𝒮1
(𝒟 = 𝒮0 ∪ 𝒮1) where 𝑝 is the ratio of |𝒮0| to |𝒟 | and given corresponding
acceptance rates 𝑟0𝑎 and 𝑟1𝑎 and predictions with target rates ̂𝑟0𝑎 and ̂𝑟1𝑎 , the
accuracy is limited by

acc ≤ 1 − 𝑝 ⋅ | ̂𝑟0𝑎 − 𝑟0𝑎 | − (1 − 𝑝) ⋅ | ̂𝑟1𝑎 − 𝑟1𝑎 | . (4.54)

Example 4.1. We consider the case where 𝑆0 (which could for example be all

data points for female individuals) makes up 30% of the dataset; so 𝑝 = 0.3.

66



4.8 appendix

0.0 0.2 0.4 0.6 0.8 1.0
target rate t

0.4

0.5

0.6

0.7

0.8

0.9

ac
cu

ra
cy

 u
pp

er
 b

ou
nd

p = 0.3, r0
a = 0.1, r1

a = 0.5
p = 0.5, r0

a = 0.1, r1
a = 0.5

Figure 4.6: Achievable accuracy for different target values.

Further, we say that for 𝑆0 we have an acceptance rate of 10% (𝑟0𝑎 = 0.1) and
for 𝑆1, 50% (𝑟1𝑎 = 0.5). If we then set both target rates to the same value 𝑡
( ̂𝑟0𝑎 = ̂𝑟1𝑎 = 𝑡), with 𝑡 = 0.3, then the highest accuracy that can be achieved is

0.8 or 80%.

Fig 4.6 shows the achievable accuracy for different values of 𝑡 in blue: We

can see that we can achieve the highest accuracy for 𝑡 = 𝑟1𝑎 = 0.5, namely

88%. The plot in orange shows the achievable accuracy for 𝑝 = 0.5, i.e., when

the two subsets have the same size. In this case, all target rates between 𝑟0𝑎
and 𝑟1𝑎 give equal results, namely 80%.

4.8.4 Illustration of restrictions on PR

We start by setting a target rate 𝑟𝑡:

𝑃( ̄𝑦 = 1|𝑠 = 0) != 𝑟𝑡 and 𝑃( ̄𝑦 = 1|𝑠 = 1) != 𝑟𝑡 (4.55)

This leads us to the following constraint for 𝑠′ ∈ {0, 1}:

𝑟𝑡 = 𝑃( ̄𝑦 = 1|𝑠 = 𝑠′) = ∑
𝑦
𝑃( ̄𝑦 = 1|𝑦 , 𝑠 = 𝑠′)𝑃(𝑦 |𝑠 = 𝑠′) (4.56)

For 𝑃(𝑦|𝑠 = 𝑠′) we will put in the value at which we want our constraint

to hold. We use 𝑟 𝑗𝑏 to denote the base rate 𝑃(𝑦 = 1|𝑠 = 𝑗) which we estimate

from the training set. Plugging this in, we are left with

𝑟𝑡 = 𝑃( ̄𝑦 = 1|𝑦 = 0, 𝑠 = 0) ⋅ (1 − 𝑟0𝑏 ) + 𝑃( ̄𝑦 = 1|𝑦 = 1, 𝑠 = 0) ⋅ 𝑟0𝑏 (4.57)

𝑟𝑡 = 𝑃( ̄𝑦 = 1|𝑦 = 0, 𝑠 = 1) ⋅ (1 − 𝑟1𝑏 ) + 𝑃( ̄𝑦 = 1|𝑦 = 1, 𝑠 = 1) ⋅ 𝑟1𝑏 . (4.58)

This is a system of linear equations with two equations and four free variables.

There is thus still considerable freedom in how we want our constraint to be

realised. The freedom that we have here concerns how strongly the accuracy

will be affected.
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Figure 4.7: Illustration of demographic parity with target labels. In the situation in
the upper part, 𝑃( ̄𝑦 = 1|𝑦 = 1) cannot be set to 1, because there are more
samples with 𝑦 = 1 than there are ̄𝑦 = 1. In the situation in the lower
part, 𝑃( ̄𝑦 = 1|𝑦 = 1) can be set to 1.

If we set 𝑃( ̄𝑦 = 1|𝑦 = 1, 𝑠) to 0.5, then we express the fact that a train label

of 1 only implies a target label of 1 in 50% of the cases. In order to minimise

the effect on accuracy, we make 𝑃( ̄𝑦 = 1|𝑦 = 1, 𝑠) as high as possible and

𝑃( ̄𝑦 = 1|𝑦 = 0, 𝑠) as low as possible.

We solve for 𝑃( ̄𝑦 = 1|𝑦 = 0, 𝑠 = 𝑗):

𝑃( ̄𝑦 = 1|𝑦 = 0, 𝑠 = 𝑗) =
𝑟 𝑗𝑏

1 − 𝑟 𝑗𝑏
(
𝑟𝑡
𝑟 𝑗𝑏
− 𝑃( ̄𝑦 = 1|𝑦 = 1, 𝑠 = 𝑗)) . (4.59)

However, we can set 𝑃( ̄𝑦 = 1|𝑦 = 0, 𝑠 = 𝑗) to 0 only if that does not imply

𝑃( ̄𝑦 = 1|𝑦 = 1, 𝑠 = 𝑗) will be greater than 1. This would happen if 𝑟𝑡/𝑟 𝑗𝑏 were

greater than 1.

Figure 4.7 illustrates this. In the upper part of the figure, we have 𝑟𝑡/𝑟 𝑗𝑏 less
than 1. This means, the target positive rate is less than the base positive

rate, and implies that the positive rate has to be lowered somehow. This

is accomplished by mapping some of the 𝑦 = 1 samples to ̄𝑦 = 0. Thus,
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𝑃( ̄𝑦 = 1|𝑦 = 1, 𝑠 = 𝑗) is less than 1, and 𝑃( ̄𝑦 = 0|𝑦 = 1, 𝑠 = 𝑗) greater than 0.

In the lower part of the figure, we have the opposite case; essentially, ̄𝑦 and 𝑦
swap places. Here, 𝑃( ̄𝑦 = 1|𝑦 = 1, 𝑠 = 𝑗) = 1 is possible.
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5.1 Abstract

We propose to learn invariant representations, in the data domain, to achieve

interpretability in algorithmic fairness. Invariance implies a selectivity for

high level, relevant correlations w.r.t. class label annotations, and a robust-

ness to irrelevant correlations with protected characteristics such as race or

gender. We introduce a non-trivial setup in which the training set exhibits

a strong bias such that class label annotations are irrelevant and spurious

correlations cannot be distinguished. To address this problem, we introduce

an adversarially trained model with a null-sampling procedure to produce

invariant representations in the data domain. To enable disentanglement, a

partially-labelled representative set is used. By placing the representations

into the data domain, the changes made by the model are easily examinable

by human auditors. We show the effectiveness of our method on both image

and tabular datasets: Coloured MNIST, the CelebA and the Adult dataset.

5.2 Introduction

Without due consideration for the data collection process, machine learning

algorithms can exacerbate biases, or even introduce new ones if proper control

is not exerted over their learning (Holstein et al., 2019). While most of these

issues can be solved by controlling and curating data collection in a fairness-

conscious fashion, doing so is not always an option, such as when working

with historical data. Efforts to address this problem algorithmically have

been centred on developing statistical definitions of fairness and learning
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models that satisfy these definitions. One popular definition of fairness used

to guide the training of fair classifiers, for example, is demographic parity,
stating that positive outcome rates should be equalised (or invariant) across
protected groups.

In the typical setup, we have an input 𝑥, a sensitive attribute 𝑠 that repres-
ents some non-admissible information like gender and a class label 𝑦 which

is the prediction target. The idea of fair representation learning (Zemel et al.,

2013; Edwards and Storkey, 2016; Madras et al., 2018) is then to transform

the input 𝑥 to a representation 𝑧 which is invariant to 𝑠. Thus, learning from

𝑧 will not introduce a forbidden dependence on 𝑠. A good fair representation

is one that preserves most of the information from 𝑥 while satisfying the

aforementioned constraints.

As unlabelled data is much more freely available than labelled data, it is

of interest to learn the representation in an unsupervised manner. This will

allow us to draw on a much more diverse pool of data to learn from. While

annotations for 𝑦 are often hard to come by (and often noisy; see Kehrenberg

et al., 2020a), annotations for the sensitive attribute 𝑠 are usually less so, as

𝑠 can often be obtained from demographic information provided by census

data. We thus consider the setting where the representation is learned from

data that is only labelled with 𝑠 and not 𝑦. This is in contrast to most other

representation learning methods. We call the set used to learn the represent-

ation the representative set, because its distribution is meant to match the

distribution of the deployment setting (and is thus representative).

Once we have learnt the mapping from 𝑥 to 𝑧, we can transform the

training set which, in contrast to the representative set, has the 𝑦 labels

(and 𝑠 labels). In order to make our method more widely applicable, we

consider an aggravated fairness problem in which the training set contains

a strong spurious correlation between 𝑠 and 𝑦, which makes it impossible

to learn from it a representation which is invariant to 𝑠 but not invariant
to 𝑦. Non-invariance to 𝑦 is important in order to be able to predict 𝑦. The
training set thus does not match the deployment setting, thereby rendering

the representative set essential for learning the right invariance. From hereon,

we will use the terms spurious and sensitive interchangeably, depending on

the context, to refer to an attribute of the data we seek invariance to. We can

draw a connection between learning in the presence of spurious correlations

and what Kallus and Zhou (2018) call residual unfairness. Consider the Stop,

Question and Frisk (SQF) dataset for example: the data was collected in New

York City, but the demographics of the recorded cases do not represent the

true demographics of NYC well. The demographic attributes of the recorded

individuals might correlate so strongly with the prediction target that the two
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are nearly indistinguishable. This is the scenario that we are investigating:

𝑠 and 𝑦 are so closely correlated in the labelled dataset that they cannot be

distinguished, but the learning of 𝑠 is favoured due to being the “path of

least resistance”. The deployment setting (i.e. the test set) does not possess

this strong correlation and thus a naïve approach will lead to very unfair

predictions. In this case, a disentangled representation is insufficient; the

representation needs to be explicitly invariant solely with respect to 𝑠. In our

approach, we make use of the (partially labelled) representative set to learn

this invariant representation.

While there is a substantial body of literature devoted to the problems

of fair representation-learning, exactly how the invariance in question is

achieved is often overlooked. When critical decisions, such as who should

receive bail or be released from jail, are being deferred to an automated

decision making system, it is critical that people be able to trust the logic of

the model underlying it, whether it be via semantic or visual explanations.

We build on the work of Quadrianto et al. (2019) and learn a decomposition

(𝑓 −1 ∶ 𝑍𝑠 × 𝑍¬𝑠 → 𝑋) of the data domain (𝑋) into independent subspaces

invariant to 𝑠 (𝑍¬𝑠) and indicative of 𝑠 (𝑍𝑠), which lends an interpretability

that is absent from most representation-learning methods. While model

interpretability has no strict definition (Zhang and Zhu, 2018), we follow

the intuition of Adel et al. (2018) – a simple relationship to something we can
understand, a definition which representations in the data domain naturally

fulfil.

Whether as a result of the aforementioned sampling bias or simply because

the features necessarily co-occur, it is not rare for features to correlate with

one another in real-world datasets. Lipstick and gender for example, are two

attributes that we expect to be highly correlated and to enforce invariance

to gender can implicitly enforce invariance to makeup. This is arguably the

desired behaviour. However, unforeseen biases in the data may engender

cases which are less justifiable. By baking interpretability into our model (by

having representations in the data domain), though we still have no better

control over what is learned, we can at least diagnose such pathologies.

To render our representations interpretable, we rely on a simple trans-

formation we call null-sampling to map invariant representations in the data

domain. Previous approaches to fair representation learning (Edwards and

Storkey, 2016; Louizos et al., 2016; Beutel et al., 2017; Madras et al., 2018)

predominantly rely upon autoencoder models to jointly minimise recon-

struction loss and invariance. We discuss first how this can be done with

such a model that we refer to as cVAE (conditional VAE), before arguing

that the bijectivity of invertible neural networks (INNs) (Dinh et al., 2014)
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makes them better suited to this task. We refer to the variant of our method

based on these as cFlow (conditional Flow). INNs have several properties

that make them appealing for unsupervised representation learning. The

focus of our approach is on creating invariant representations that preserve

the non-sensitive information maximally, with only knowledge of 𝑠 and not

of the target 𝑦, while at the same time having the ability to easily probe what

has been learnt.

Our contribution is thus two-fold: 1) We propose a simple approach to

generating representations that are invariant to a feature 𝑠, while having the

benefit of interpretability that comes with being in the data domain. We call

our model NIFR (Null-sampling for Interpretable and Fair Representations).
2) We explore a setting where the labelled training set suffers from varying

levels of sampling bias, demonstrating an approach based on transferring

information from a more diverse representative set, with guarantees of the

non-spurious information being preserved.

5.3 Background

5.3.1 Learning fair representations.

Given a sensitive attribute 𝑠 (for example, gender or race) and inputs 𝑥, a fair

representation 𝑧 of 𝑥 is then one for which 𝑧 ⟂ 𝑠 holds, while ideally also being

predictive of the class label 𝑦. Zemel et al. (2013) was the first to propose the

learning of fair representations which allow for transfer to new classification

tasks. More recent methods are often based on variational autoencoders

(VAEs) (Kingma and Welling, 2014; Edwards and Storkey, 2016; Louizos et al.,

2016; Beutel et al., 2017). The achieved fairness of the representation can be

measured with various fairness metrics. These measure, however, usually

how fair the predictions of a classifier are and not how fair a representation

is.

The appropriate measure of fairness for a given task is domain-specific (Liu

et al., 2019) and there is often not a universally accepted measure. However,

Demographic Parity is the most widely used (Edwards and Storkey, 2016;

Louizos et al., 2016; Beutel et al., 2017). Demographic Parity demands ̂𝑦 ⟂ 𝑠
where ̂𝑦 refers to the predictions of the classifier. In the context of fair rep-

resentations, we measure the Demographic Parity of a downstream classifier,

𝑓 (⋅), which is trained on the representation 𝑧, i.e. 𝑓 ∶ 𝑍 → �̂�.
A core principle of all fairness methods is the accuracy-fairness trade-off.

As previously stated, the fair representation should be invariant to 𝑠 (→
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fairness) but still be predictive of 𝑦 (→ accuracy). These desiderata cannot,

in general, be simultaneously satisfied if 𝑠 and 𝑦 are correlated.

The majority of existing methods for fair representations also make use

of 𝑦 labels during training, in order to ensure that 𝑧 remains predictive of 𝑦.
This aspect can, in theory, be removed from the methods, but then there is

no guarantee that information about 𝑦 is preserved (Louizos et al., 2016).

5.3.2 Learning fair, transferrable representations

In addition to producing fair representations, Madras et al. (2018) want to

ensure the representations are transferrable. Here, an adversary is used to

remove sensitive information from a representation 𝑧. Auxiliary prediction

and reconstruction networks, to predict class label 𝑦 and reconstruct the

input 𝑥 respectively, are trained on top of 𝑧, with 𝑠 being ancillary input to

the reconstruction.

Also related is Creager et al. (2019) who employ a FactorVAE (Kim and

Mnih, 2018) regularised for fairness. The idea is to learn a representation

that is both disentangled and invariant to multiple sensitive attributes. This

factorisation makes the latent space easily manipulable such that the different

subspaces can be freely removed and composed at test time. Zeroing out the

dimensions or replacing them with independent noise imparts invariance to

the corresponding sensitive attribute. This method closely resembles ours

when we use an invertible encoder. However, the emphasis of our approach

is on interpretability, information-preservation, and coping with sampling

bias - especially extreme cases where | supp(𝑆𝑡𝑟 × 𝑌𝑡𝑟)| < | supp(𝑆𝑡𝑒 × 𝑌𝑡𝑒)|.
Attempts were made by Quadrianto et al. (2019) prior to this work to learn

fair representations in the data domain in order to make it interpretable and

transferable. In their work, the input is assumed to be additively decompos-

able in the feature space into a fair and unfair component, which together

can be used by the decoder to recover the original input. This allows us to

examine representations in a human-interpretable space and confirm that the

model is not learning a relationship reliant on a sensitive attribute. Though

a first step in this direction, we believe such a linear decomposition is not

sufficiently expressive to fully capture the relationship between the sensitive

and non-sensitive attributes. Our approach allows for the modelling of more

complex relationships.
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5.3.3 Learning in the presence of spurious correlations

Strong spurious correlations make the task of learning a robust classifier

challenging: the classifier may learn to exploit correlations unrelated to the

true causal relationship between the features and label, and thereby fail to

generalise to novel settings. This problem was recently tackled by Kim et al.

(2019) who apply a penalty based on the mutual information between the

feature embedding and the spurious variable. While the method is effective

under mild biasing, we show experimentally that it is not robust to the range

of settings we consider.

Jacobsen et al. (2019) explore the vulnerability of traditional neural net-

works to spurious variables – e.g., textures, in the case of ImageNet (Geirhos

et al., 2019) – and propose a INN-based solution akin to ours. The INN’s

encoding is split such that one partition, 𝑧𝑏 is encouraged to be predictive of

the spurious variable while the other serves as the logits for classification of

the semantic label. Information related to the nuisance variable is “pulled

out” of the logits as a result of maximising log 𝑝(𝑠|𝑧𝑛). This specific approach,

however, is incompatible with the settings we consider, due to its requirement

that both 𝑠 and 𝑦 be available at training time.

Viewing the problem from a causal perspective, Arjovsky et al. (2019)

develop a variant of empirical risk minimisation called invariant risk minim-

isation (IRM). The goal of IRM is to train a predictor that generalises across

a large set of unseen environments; because variables with spurious correl-

ations do not represent a stable causal mechanism, the predictor learns to

be invariant to them. IRM assumes that the training data is not iid but is

partitioned into distinct environments, 𝑒 ∈ 𝐸. The optimal predictor is then

defined as the minimiser of the sum of the empirical risk 𝑅𝑒 over this set.

In contrast, we assume possession of only a single source of labelled, albeit
spuriously-correlated, data, but that we have a second source of data that is

free of spurious correlations, with the benefit being that it only needs to be

labelled with respect to 𝑠.

5.4 Interpretable Invariances by Null-Sampling

5.4.1 Problem Statement

We assume we are given inputs 𝑥 ∈ 𝒳 and corresponding labels 𝑦 ∈ 𝒴.

Furthermore, there is some spurious variable 𝑠 ∈ 𝒮 associated with each

input 𝑥 which we do not want to predict. Let 𝑋, 𝑆 and 𝑌 be random variables

that take on the values 𝑥, 𝑠 and 𝑦, respectively. The fact that both 𝑦 and
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Pre-training

Encoding

(a) cFlow model.

Pre-training

Encoding

one-hot

recon loss

(b) cVAE model.

Figure 5.1: Training procedure for our models. 𝑥: input, 𝑠: sensitive attribute, 𝑧𝑢:
de-biased representation, 𝑥𝑢: de-biased version of the input in the data
domain. The red bar indicates a gradient reversal layer, and 0 the null-
sampling operation.

𝑠 are predictive of 𝑥 implies that 𝐼 (𝑋 ; 𝑌 ), 𝐼 (𝑋 ; 𝑆) > 0, where 𝐼 (⋅; ⋅) is the

mutual information. Note, however, that the conditional entropy is non-zero:

𝐻(𝑆|𝑋) ≠ 0, i.e., 𝑆 is not completely determined by 𝑋.
The difficulty of this setup emerges in the training set: there is a close

correspondence between 𝑆 and 𝑌, such that for a model that sees the data

through the lens of the loss function, the two are indistinguishable. Further-

more, we assume that this is not the case in the test set, meaning the model

cannot rely on shortcuts provided by 𝑆 if it is to generalise from the training

set.

We call this scenario where we only have access to the labels of a biasedly-

sampled subpopulation an aggravated fairness problem. These are not un-

common in the real-world. For instance, in long-feedback systems such

as mortgage-approval where the demographics of the subpopulation with

observed outcomes is not representative of the subpopulation on which the

model has been deployed. In this case, 𝑠 has the potential to act as a false (or

spurious) indicator of the class label and training a model with such a dataset

would limit generalisability. Let (𝑋 tr , 𝑆tr , 𝑌 tr ) then be the random variables

sampled for the training set and (𝑋 te , 𝑆te , 𝑌 te) be the random variables for

the test set. The training and test sets thus induce the following inequality

for their mutual information: 𝐼 (𝑆tr ; 𝑌 tr ) ≫ 𝐼 (𝑆te ; 𝑌 te) ≈ 0.
Our goal is to learn a representation 𝑧𝑢 that is independent of 𝑠 and trans-

ferable between downstream tasks. Complementary to 𝑧𝑢, we refer to some

abstract component of the model that absorbs the unwanted information

related to 𝑠 as ℬ, the realisation of which we define with respect to each of
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the two models to be described. The requirement for 𝑧𝑢 can be expressed via

mutual information:

𝐼 (𝑧𝑢; 𝑠)
!= 0 . (5.1)

However, for the representation to be useful, we need to capture as much

relevant information in the data as possible. Thus, the combined objective

function:

min
𝜃

𝔼𝑥∼𝑋[− log 𝑝𝜃(𝑥)] + 𝜆𝐼 (𝑓𝜃(𝑥); 𝑠) (5.2)

where 𝜃 refers to the trainable parameters of our model 𝑓𝜃 and 𝑝𝜃(𝑥) is the
likelihood it assigns to the data.

We optimise this loss in an adversarial fashion by playing a min-max game,

in which our encoder acts as the generative component. The adversary is an

auxiliary classifier 𝑔, which receives 𝑧𝑢 as input and attempts to predict the

spurious variable 𝑠. We denote the parameters of the adversary as 𝜙; for the
parameters of the encoder we use 𝜃, as before. The objective from equation 5.2

is then

min
𝜃∈Θ

max
𝜙∈Φ

𝔼𝑥∼𝑋[log 𝑝𝜃(𝑥) − 𝜆ℒ𝑐(𝑔𝜙(𝑓𝜃(𝑥))); 𝑠)] (5.3)

whereℒ𝑐 is the cross-entropy between the predictions for 𝑠 and the provided

labels. In practice, this adversarial term is realised with a gradient reversal

layer (GRL) (Ganin et al., 2016) between 𝑧𝑢 and 𝑔 as is common in adversarial

approaches (Edwards and Storkey, 2016).

5.4.2 The Disentanglement Dilemma

The objective in equation 5.3 balances the two desiderata: predicting 𝑦 and

being invariant to 𝑠. However, in the training set (𝑋 tr , 𝑆tr , 𝑌 tr ), 𝑦 and 𝑠 are so

strongly correlated that removing information about 𝑠 inevitably removes

information about 𝑦. This strong correlation makes existing methods fail

under this setting. In order to even define the right learning goal, we require

another source of information that allows us to disentangle 𝑠 and 𝑦. For

this, we assume the existence of another set of samples that follow a similar

distribution to the test set, but whilst the sensitive attribute is available, the

class labels are not. In reality, this is not an unreasonable assumption, as,

while properly annotated data is scarce, unlabelled data can be obtained in

abundance (with demographic information from census data, electoral rolls,

etc.). Previous work has also considered treated “unlabelled data” as still
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having 𝑠 labels (Wick et al., 2019). We are restricted only in the sense that the

spurious correlations we want to sever are indicated in the features. We call

this the representative set, consisting of𝑋 rep and 𝑆rep . It fulfils 𝐼 (𝑆rep ; 𝑌 rep) ≈ 0
(or rather, it would, if the class labels 𝑌 rep were available).

We now summarise the training procedure; an outline for the invertible

network model (cFlow) can be seen in fig. 5.1a. First, the encoder network 𝑓
is trained on (𝑋 rep , 𝑆rep), during the first phase. The trained network is then

used to encode the training set, taking in 𝑥 and producing the representation,

𝑧𝑢, decorrelated from the spurious variable. The encoded dataset can then

be used to train any off-the-shelf classifier safely, with information about

the spurious variable having been absorbed by some auxiliary component

ℬ. In the case of the conditional VAE (cVAE) model, ℬ takes the form of the

decoder subnetwork, which reconstructs the data conditional on a one-hot

encoding of 𝑠, while for the invertible network ℬ is realised as a partition of

the feature map 𝑧 (such that 𝑧 = [𝑧𝑢, 𝑧𝑏]), given the bijective constraint. Thus,

the classifier cannot take the shortcut of learning 𝑠 and instead must learn

how to predict 𝑦 directly. Obtaining the 𝑠-invariant representations, 𝑥𝑢, in the

data domain is simply a matter of replacing theℬ component of the decoder’s

input for the cVAE, and 𝑧𝑏 for cFlow, with a zero vector of equivalent size.

We refer to this procedure used to generate 𝑥𝑢 as null-sampling (here, with

respect to 𝑧𝑏).
Null-sampling resembles the annihilation operation described in Xiao et al.

(2018), however we note that the two serve very different roles. Whereas

the annihilation operation serves as a regulariser to prevent trivial solutions

(similar to Jaiswal et al., 2018), null-sampling is used to generate the invariant

representations post-training.

5.4.3 Conditional Decoding

We first describe a VAE-based model similar to that proposed in Madras et al.

(2018), before highlighting some of its shortcomings that motivate the choice

of an invertible representation learner.

The model takes the form of a class conditional 𝛽-VAE (Higgins et al.,

2017), in which the decoder is conditioned on the spurious attribute. We

use 𝜃𝑒𝑛𝑐, 𝜃𝑑𝑒𝑐 ∈ 𝜃 to denote the parameters of the encoder and decoder sub-

networks, respectively. Concretely, the encoder component performs the

mapping 𝑥 → 𝑧𝑢, while ℬ is instantiated as the decoder, ℬ ≔ 𝑝𝜃𝑑𝑒𝑐(𝑥|𝑧𝑢, 𝑠),
which takes in a concatenation of the learned non-spurious latent vector 𝑧𝑢
and a one-hot encoding of the spurious label 𝑠 to produce a reconstruction of

the input �̂�. Conditioning on a one-hot encoding of 𝑠, rather than a single
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value, as done in Madras et al. (2018) is the key to visualising invariant rep-

resentations in the data domain. If 𝐼 (𝑧𝑢; 𝑠) is properly minimised, the decoder

can only derive its information about 𝑠 from the label, thereby freeing up 𝑧𝑢
from encoding the unwanted information while still allowing for reconstruc-

tion of the input. Thus, by feeding a zero-vector to the decoder we achieve

�̂� ⟂ 𝑠. The full learning objective for the cVAE is given as

ℒcVAE =𝔼𝑞𝜃𝑒𝑛𝑐(𝑧𝑢,𝑏|𝑥)
[log 𝑝𝜃𝑑𝑒𝑐(𝑥|𝑧, 𝑏) − log 𝑝𝜃𝑑𝑒𝑐(𝑠|𝑧𝑢)]

− 𝛽𝐷𝐾𝐿(𝑞𝜃𝑒𝑛𝑐(𝑧𝑢|𝑥)‖𝑝(𝑧𝑢))
(5.4)

where 𝛽 is a hyperparameter that determines the trade-off between recon-

struction accuracy and independence constraints, and 𝑝(𝑧𝑢) is the prior im-

posed on the variational posterior. For all our experiments, 𝑝(𝑧𝑢) is realised
as an Isotropic Gaussian. Fig. 5.1b summarises the procedure as a diagram.

While we show this setup can indeed work for simple problems, as Madras

et al. (2018) before us have, we show that it lacks scalability due to disagree-

ment between the components of the loss. Since information about 𝑠 is only
available to the decoder as a binary encoding, if the relationship between

𝑠 and 𝑥 is highly non-linear and cannot be summarised by a simple on/off

mechanism, as is the case if 𝑠 is an attribute such as gender, off-loading in-

formation to the decoder by conditioning is no longer possible. As a result, 𝑧𝑢
is forced to carry information about 𝑠 in order to minimise the reconstruction

error.

The obvious solution to this is to allow the encoder to store information

about 𝑠 in a partition of the latent space as in Creager et al. (2019). However,

we question whether an autoencoder (AE) is the best choice for this setup,

with the view that an invertible model is the better tool for the task. Using

an invertible model has several guarantees, namely complete information-

preservation and freedom from a reconstruction loss, the importance of

which we elaborate on below.

5.4.4 Conditional Flow

Invertible Neural Networks. Invertible neural networks are a class of

neural network architecture characterised by a bijective mapping between

their inputs and output (Dinh et al., 2014). The transformations are designed

such that their inverses and Jacobians are efficiently computable. These

flow-based models permit exact likelihood estimation (Rezende and Mo-

hamed, 2015) through the warping of a base density with a series of invertible
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transformations and computing the resulting, highly multi-modal, but still

normalised, density, using the change of variable theorem:

log 𝑝(𝑥) = log 𝑝(𝑧) +∑ log |det (
dℎ𝑖
ℎ𝑖−1

)| , 𝑝(𝑧) = 𝒩 (𝑧; 0, 𝕀) (5.5)

where ℎ𝑖 refers to the outputs of the layers of the network and 𝑝(𝑧) is the

base density, specifically an Isotropic Gaussian in our case. Training of the

invertible neural network is then reduced to maximising log 𝑝(𝑥) over the
training set, i.e. maximising the probability the network assigns to samples

in the training set.

The Benefits of Bijectivity. Using an invertible network to generate

our encoding, 𝑧𝑢, carries a number of advantages over other approaches.

Ordinarily, the main benefit of flow-based models is that they permit exact

density estimation. However, since we are not interested in sampling from

themodel’s distribution, in our case the likelihood term serves as a regulariser,

as it does for Jacobsen et al. (2018). Critically, this forces the mean of each

latent dimension to zero enabling null-sampling. The invertible property

of the network guarantees the preservation of all information relevant to

𝑦 which is independent of 𝑠, regardless of how it is allocated in the output

space. Secondly, we conjecture that the encodings are more robust to out-of-

distribution data. Whereas an autoencoder (AE) could map a previously seen

input and a previously unseen input to the same representation, an invertible

network sidesteps this due to the network’s bijective property, ensuring all

relevant information is stored somewhere. This opens up the possibility of

transfer learning between datasets with a similar manifestation of 𝑠, as we

demonstrate in section 5.7.8.

Under our framework, the invertible network 𝑓 maps the inputs 𝑥 to a

representation 𝑧𝑢: 𝑓 (𝑥) = 𝑧. We interpret the embedding 𝑧 as being the

concatenation of two smaller embeddings: 𝑧 = [𝑧𝑢, 𝑧𝑏]. The dimensionality

of 𝑧𝑏, and 𝑧𝑢, by complement, is a free parameter (see section 5.7.4 for tuning

strategies). As 𝑓 is invertible, 𝑥 can be recovered like so:

𝑥 = 𝑓 −1([𝑧𝑢, 𝑧𝑏]) (5.6)

where 𝑧𝑏 is required for equality of the output dimension and input dimension

to satisfy the bijectivity of the network – we cannot output 𝑧𝑢 alone, but have
to output 𝑧𝑏 as well. In order to generate the pre-image of 𝑧𝑢, we perform

null-sampling with respect to 𝑧𝑏 by zeroing-out the elements of 𝑧𝑏 (such

that 𝑥𝑢 = 𝑓 −1([𝑧𝑢, 0])), i.e. setting them to the mean of the prior density,

𝒩 (𝑧; 0, 𝐼 ).
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Figure 5.2: Performance of our model for different targets (mixing factor 𝜂 = 0). Left:
Smiling as target, right: high cheekbones. DP diff measures fairness with
respect to demographic parity. A perfectly fair model has a DP diff of 0.

How can we be sure that 𝑧𝑢 contains enough information about 𝑦? The

importance of the invertible architecture bears out from this consideration.

As long as 𝑧𝑏 does not contain the information about 𝑦, 𝑧𝑢 necessarily must.

We can raise or lower the information capacity of 𝑧𝑏 by adjusting its size; this

should be set to the smallest size sufficient to capture all information about 𝑠,
so as not to sacrifice class-relevant information. Section 5.7.3 explores the

effects of the size further.

5.5 Experiments

We present experiments to demonstrate that the null-sampled representa-

tions are in fact invariant to 𝑠 while still allowing a classifier to predict 𝑦 from

them. We run our cVAE and cFlow models on the coloured MNIST (cMNIST)

and CelebA dataset, which we artificially bias, first describing the sampling

procedure we follow to do so for non-synthetic datasets. As baselines we

have the model of Kim et al. (2019) (Ln2L) and the same CNN used to eval-

uate the cFlow and cVAE models but with the unmodified images as input

(CNN). For the cFlow model we adopt a Glow-like architecture (Kingma

and Dhariwal, 2018), while both subnetworks of the cVAE model comprise

gated convolutions (Oord et al., 2016), where the encoding size is 256. For
cMNIST, we construct the Ln2L baseline according to its original description,

for CelebA, we treat it as an augmentation of the baseline CNN’s objective

function. Detailed information regarding model architectures can be found

in sections 5.7.1 and 5.7.4.1

5.5.1 Synthesising Dataset Bias

For our experiments, we require a training set that exhibits a strong spurious

correlation, together with a test set that does not. For cMNIST, this is easily

satisfied as we have complete control over the data generation process. For

1 The code can be found at https://github.com/predictive-analytics-lab/nifr.
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Figure 5.3: Performance of our model for the target “smiling” for different mixing
factors 𝜂. DP diff measures fairness with respect to demographic parity.
A perfectly fair model has a DP diff of 0, thus the closer to top-left the
better it is in terms of we accuracy-fairness trade-off. Only values 𝜂 = 0
and 𝜂 = 1 correspond to the scenario of a strongly biased training set.
The results for 0.1 ≤ 𝜂 ≤ 0.9 are to confirm that our model does not harm
performance for non-biased training sets.

CelebA and UCI Adult, on the other hand, we have to generate the split from

the existing data. To this end, we first set aside a randomly selected portion of

the dataset from which to sample the biased dataset The portion itself is then

split further into two parts: one in which (𝑠 = −1∧𝑦 = −1)∨(𝑠 = +1∧𝑦 = +1)
holds true for all samples, call this part 𝒟𝑒𝑞, and the other part, call it 𝒟𝑜𝑝𝑝,

which contains the remaining samples. To investigate the behaviour at

different levels of correlation, we mix these two subsets according to a mixing

factor 𝜂. For 𝜂 ≤ 1
2 , we combine (all of) 𝒟𝑒𝑞 with a fraction of 2𝜂 from 𝒟𝑜𝑝𝑝.

For 𝜂 > 1
2 , we combine (all of)𝒟𝑜𝑝𝑝 and a fraction of 2(1− 𝜂) from𝒟𝑒𝑞. Thus,

for 𝜂 = 0, the biased dataset is just 𝒟𝑒𝑞, for 𝜂 = 1 it is just 𝒟𝑜𝑝𝑝 and for 𝜂 = 1
2

the biased dataset is an ordinary subset of the whole data. The test set is

simply the data remaining from the initial split.

5.5.2 Evaluation protocol

We evaluate our results in terms of accuracy and fairness. A model that

perfectly decouples its predictions from 𝑠 will achieve near-uniform accuracy

across all biasing-levels. For binary 𝑠/𝑦we quantify the fairness of a classifier’s

predictions using demographic parity (DP): the absolute difference in the

probability of a positive prediction for each sensitive group.
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Figure 5.4: Accuracy of our approach in comparison with other baseline models on
the cMNIST dataset, for different standard deviations (𝜎) for the colour
sampling.

(a) Samples from the cMNIST
training set, 𝜎 = 0.

(b) 𝑥𝑢 null-samples from the
cFlow model.

(c) 𝑥𝑏 null-samples from the
cFlow model.

Figure 5.5: Sample images from the coloured MNIST dataset problem with 10 pre-
defined mean colours. (a): Images from the spuriously correlated sub-
population where colour is a reliable signal of the digit class-label. (b-c):
Results of running our approach realised with cFlow on the cMNIST
dataset. The model learns to retain the shape of the digit shape while
removing the relationship with colour. A downstream classifier is now
less prone to exploiting correlations between colour and the digit label
class.

5.5.3 Experimental results

We report the results from two image datasets. cMNIST, a synthetic dataset,

is a good starting point for evaluating our model due to the direct control

we have over the biasing. CelebA, on the other hand, is a more practical and

challenging example. We also test our method on a tabular dataset, the Adult

dataset.

cMNIST. The coloured MNIST (cMNIST) dataset is a variant of the MNIST

dataset in which the digits are coloured. In the training set, the colours have

a one-to-one correspondence with the digit class. In the test set (and the rep-

resentative set), colours are assigned randomly. The colours are drawn from

Gaussians with 10 different means. We follow the colourisation procedure

outlined by Kim et al. (2019), with the mean colour values selected so as to be

maximally dispersed. The full list of such values can be found in section 5.7.5.
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We produce multiple variants of the cMNIST dataset corresponding to differ-

ent standard deviations 𝜎 for the colour sampling: 𝜎 ∈ {0.00, 0.01, ..., 0.05}.
For this specific dataset, we can establish an additional baseline by simply

grey-scaling the dataset which only leaves the luminosity as spurious inform-

ation. We also evaluate the model, with all the associated hyperparameters,

from Kim et al. (2019). The only difference between the setups is the dataset

creation, including the range of 𝜎 values we consider. Our versions of the

dataset, on the whole, exhibit much stronger colour bias, to the point of the

mapping the digit’s colour and class being bijective. Fig. 5.4 shows that the

model significantly underperforms even the naïve baseline, aside from at

𝜎 = 0, where they are on par.

Inspection of the null-samples shows that both the cVAE and cFlow model

succeed in removing almost all colour information, which is supported quant-

itatively by fig. 5.4, and qualitatively by fig. 5.5. While the cVAE outperforms

cFlow marginally at low 𝜎 values, performance degrades as this increases.

This highlights the problems with the conditional decoder we anticipated

in section 5.4.3. The lower 𝜎, and therefore the variation in sampled col-

our, is, the more reliably the 𝑠 label, corresponding to the mean of RGB

distribution, encodes information about the colour. For higher 𝜎 values, the

sampled colours can deviate far from the mean and so the encoder must

incorporate information about 𝑠 into its representation if it is to minimise the

reconstruction loss. cFlow, on the other hand, is consistent across 𝜎 values.

CelebA. To evaluate the effectiveness of our framework on real-world

image data we use the CelebA dataset (Liu et al., 2015), consisting of 202,599

celebrity images. These images are annotated with various binary physical

attributes, including “gender”, “hair colour”, “young”, etc, from which we

select our sensitive and target attributes. The images are centre cropped and

resized to 64 × 64, as is standard practice. For our experiments, we designate

“gender” as the sensitive attribute, and “smiling” and “high cheekbones” as

target attributes. We chose gender as the sensitive attribute as it a common

sensitive attribute in the fairness literature. For the target attributes, we chose

attributes that are harder to learn than gender and which do not correlate

too strongly with gender in the dataset (“wearing lipstick” for example being

an attribute too closely correlated with gender). The model is trained on

the representative set (normal subset of CelebA) and is then used to encode

the artificially biased training set and the test set. The results for the most

strongly biased training set (𝜂 = 0) can be found in fig. 5.2. Our method

outperforms the baselines in accuracy and fairness.
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(a) Original images. (b) 𝑥𝑢 null-samples from the
cFlow model.

(c) 𝑥𝑏 null-samples from the
cFlow model.

Figure 5.6: CelebA null-samples learned by our cFlow model, with gender as the
sensitive attribute. (a) The original, untransformed samples from the
CelebA dataset (b) Reconstructions using only information unrelated to 𝑠.
(c) Reconstruction using only information related to ¬𝑠. The model learns
to disentangle gender from the non-gender related information. Note
that some attributes like skin tone seem to change along with gender
due to the correlation between the attributes. This is especially visible in
images (1,1) and (3,2). Only because our representations are produced in
the data-domain can we easily spot such instances of entanglement.

We also assess performance for different mixing factors (𝜂) which corres-

pond to varying degrees of bias in the training set (see fig. 5.3). This is to

verify that the model does not harm performance when there is not much

bias in the training set. For these experiments, the model is trained once on

the representative set and is then used to encode different training sets. The

results show that for the intermediate values of 𝜂, our model incurs a small

penalty in terms of accuracy, but at the same time makes the results fairer
(corresponding to an accuracy-fairness trade-off). Qualitative results can be

found in fig. 5.6 (images from cVAE can be found in section 5.7.7).

To show that our method can handle multinomial, as well as binary, sensit-

ive attributes, we also conduct experiments with 𝑠 = hair colour as a ternary

attribute (“Blonde”, “Black”, “Brown”), excluding “Red” because of the paucity

of samples and the noisiness of their labels. The results for these experiments

can be found in section 5.7.3.

Results for the UCI Adult dataset. The UCI Adult dataset consists of

census data and is commonly used to evaluate models focused on algorithmic

fairness. Following convention, we designate “gender” as the sensitive attrib-
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Figure 5.7: Results for the Adult dataset. The 𝑥-axis corresponds to the difference
in positive rates. An ideal result would occupy the top-left.

ute 𝑠 and whether an individual’s salary is $50,000 or greater as 𝑦. We show

the performance of our approach in comparison to baseline approaches in fig.

5.7. We evaluate the performance of all models for mixing factors (𝜂) 0 and

1. Results shown in fig. 5.7 show that we match or exceed the baseline. In

terms of fairness metrics, our approach generally outperforms the baseline

models for both of 𝜂. Detailed results can be found in section 5.7.3.

We also did experiments to show that the encoder transfers to other tasks.

These transfer-learning experiments can be found in section 5.7.8.

5.6 Conclusion

We have proposed a general and straightforward framework for producing

invariant representations, under the assumption that a representative but

partially-labelled representative set is available. Training consists of two

stages: an encoder is first trained on the representative set to produce a

representation that is invariant to a designated spurious feature. This is then

used as input for a downstream task-classifier, the training data for which

might exhibit extreme bias with respect to that feature. We train both a VAE-

and INN-based model according to this procedure, and show that the latter

is particularly well-suited to this setting due to its losslessness. The design

of the models allows for representations that are in the data domain and

therefore exhibit meaningful invariances. We characterise this for synthetic

as well as real-world datasets for which we develop a method for simulating

sampling bias.

Acknowledgements

This work was in part funded by the European Research Council under the

ERC grant agreement no. 851538. We are grateful to NVIDIA for donating

GPUs.

86



5.7 appendix

Table 5.1: INN architecture used for each dataset.

Dataset Levels Level depth Coupl. chan. Input to discr.

UCI Adult 1 1 35 Null-samples
cMNIST 3 16 512 Encodings
CelebA 3 32 512 Encodings

5.7 Appendix

5.7.1 Model Architectures

For both cMNIST and CelebA we parameterise the coupling layers with the

same convolutional architecture as in Kingma and Dhariwal (2018), consisting

of 3 convolutional layers each with 512 filters of, in order, sizes 3×3, 1×1, and
3 × 3. Following Ardizzone et al. (2019), we Xavier initialise all but the last

convolutional layer of the 𝑠 and 𝑡 sub-networks which itself is zero-initialised

so that the coupling layers begin by performing an identity transform. We

used a Glow-like architecture (Kingma and Dhariwal, 2018) (affine coupling

layers together with checkerboard reshaping and invertible 1×1 convolutions)
for the convolutional INNs. Table 5.1 summarises the INN architectures used

for each dataset.

For the image datasets each level of the cVAE encoder consists of two

gated convolutional layers (Oord et al., 2016) with ReLU activation. At each

subsequent level, the number of filters is doubled, starting with an initial

value 32 and 64 in the case of CelebA and cMNIST respectively. In the case

of the Adult dataset, we use an encoder with one fully-connected hidden

layer of width 35, followed by SeLU activation (Klambauer et al., 2017). For

both cMNIST and CelebA, we downsample to a feature map with spatial

dimensions 8 × 8, but with 3 and 16 channels respectively. For the Adult

dataset, the encoding is a vector of size 35. The output layer specifies both

the parameters (mean and variance) of the representation’s distribution. In

all cases the KL-divergence is computed with respect to a standard isotropic

Gaussian prior. Details of the encoder architectures can be found in table 5.2.

The loss pre-factors were sampled from a logarithmic scale; without proper

balancing the networks can exhibit instability, especially during the early

stages of training.
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Table 5.2: cVAE encoder architecture used for each dataset. The decoder architecture
in each case mirrors that of its encoder counterpart through use of trans-
posed convolutions. For the adult dataset we apply ℓ2 and cross-entropy
losses to the reconstructions of the continuous features and discrete fea-
tures, respectively.

Dataset Initial channels Levels 𝛽 Recon. loss

UCI Adult 35 – 0 ℓ2 + CE
cMNIST 32 4 0.01 ℓ2
CelebA 32 5 1 ℓ1

5.7.2 Instructions for potential users

The first question a potential user has to ask themselves is whether the

method is a good fit: is the problem that the user faces one of strong spurious

correlation and is there non-spurious data available that has labels for the

spurious variable? To investigate the first part of the question, the user

should first try to train a standard neural network classifier and observe the

test-set performance. Furthermore, one should check whether the spurious

variable can be removed with data augmentations alone.

If the features of the data are categorical instead of continuous, it is best

to first produce a continuous representation with an autoencoder. This step

only has to be done once at the beginning.

The next question is whether to use the cFlow or cVAE variant of the

method. For initial experiments, we would recommend the cVAE model as it

is quicker to train, andwill lead to shorter feedback cycles when validating the

code. If the computational budget allows it, we would recommend switching

to the cFlow model once cVAE is working as it provides better guarantees

regarding the retention of information from the input data.

For choosing the network architecture, the only advice we have is to

look at what architectures other people have used for similar data. Note,

however, that encoder-decoder architectures usually differ in someways from

classification architectures, due to their different goals: the goal of the former

is primarily to compress and disentangle, while the latter aims to discard
information unrelated to the prediction task. As such, certain layer types,

like pooling layers and batch normalisation, are only suitable for classifiers

and not encoder-decoders. For the INN architecture, the most import advice

is to keep in mind that each individual layer is much less expressive than

non-invertible layers, and so the number of layers required in INNs is much

higher. However, the number also should not be too high or the model will

overfit. It is likely that the architecture needs to be adapted during training.
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See also section 5.7.4 and the code we published alongside this paper to get

inspiration for architectures.

During training, the user should mostly keep an eye on two variables:

the reconstruction loss and the degree of invariance of 𝑧𝑢 w.r.t. 𝑠, which can

either be gleaned from looking at reconstructions of 𝑧𝑢 or from computing

the accuracy of a downstream classifier trained on 𝑧𝑢. The information

inherent in the reconstruction loss can also be obtained by looking at full

reconstructions of 𝑧. If the reconstruction loss does not go down during

training, some possible reasons are: the dimension of the representation is

too small, the reconstruction loss weight is too small or the network just

needs to be trained for longer. If the degree of invariance does not increase

during training, some possible reasons are: the network is not expressive

enough (e. g. not deep enough) to disentangle 𝑧𝑢 and 𝑧𝑏, the adversary is not

powerful enough, the adversarial loss weight is too small or the network just

needs to be trained for longer.

For INN training, there is the additional complication that it can become

non-invertible due to numerical problems (e. g. division by zero). If this

happens, the losses will quickly diverge and further training will become

pointless. See section 5.7.6 for some ways of preventing this.

5.7.3 Additional results

Detailed results for UCI Adult dataset. This census data is commonly

used to evaluate models focused on algorithmic fairness. Following conven-

tion, we designate “gender” as the 𝑠 and whether an individual’s salary is

$50,000 or greater as 𝑦. We show the performance of our approach in com-

parison to baseline approaches in figure 5.8. We evaluate the performance

of all models for mixing factors (𝜂) of value {0, 0.1, ..., 1}. Results shown in

figure 5.8 show that whilst our model fails to surpass the baseline models in

terms of accuracy for the balanced case (and those close to it), we match or

exceed the baseline as 𝜂 moves the dataset to a more imbalanced setting. In

terms of fairness metrics, our approach generally outperforms the baseline

models regardless of 𝜂.

Multinomial sensitive attributes. In addition to binary sensitive attrib-

ute 𝑠, we also investigate multinomial 𝑠 in the CelebA dataset. First, we do

experiments with hair colour, where 𝑠 has three possible values: blond hair,

brown hair and black hair. The other experiment is with a combination of

age and gender, where 𝑠 has four possible values, each of which is a combin-

ation of a gender and an age: Young/Female, Young/Male, Old/Female and
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Figure 5.8: Results for the Adult dataset. The 𝑥-axis corresponds to the difference
in positive rates. An ideal result would occupy the top-left.
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Figure 5.9: For hair colour, 𝑠 takes on the values Blond, Brown and Black. For
age+gender, 𝑠 takes on the values Young/Female, Young/Male, Old/Female
and Old/Male.

Old/Male. To evaluate the fairness for multinomial 𝑠, we use the Hirschfeld-

Gebelein-Rényi Maximum Correlation Coefficient (HGR) (Mary et al., 2019)

that is defined on the domain [0, 1] and gives HGR(𝑌 , 𝑆) = 0 iff 𝑌 ⟂ 𝑆 and 1 if

there is a deterministic function to map between them. Results can be found

in figure 5.9.

Investigation into the size of 𝑧𝑏. In the cFlow model, the size of 𝑧𝑏 is
an important hyperparameter which can affect the result significantly. Here

we investigate the sensitivity of the model to the choice of 𝑧𝑏 size. Table 5.3

shows accuracy and fairness (as measured by DP diff ) for different sizes of 𝑧𝑏.
The results show that both too large and too small 𝑧𝑏 is detrimental. However,

they also show that the model is not overly sensitive to this parameter: both

sizes 5 and 10 achieve nearly identical results.
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Table 5.3: Results on the CelebA dataset with different sizes of 𝑧𝑏.

|𝑧𝑏| |𝑧𝑏|/|𝑧| Accuracy DP diff

1 0.0082% 0.60 0.63
3 0.0245% 0.60 0.63
5 0.0410% 0.84 0.12
10 0.0820% 0.84 0.12
30 0.2442% 0.74 0.23
50 0.4070% 0.68 0.27

Table 5.4: Additional fairness metrics for the experiments on the CelebA dataset
(fig. 5.3 from the main text). TPR diff. refers to the difference in true
positive rate. TNR diff. refers to the difference in true negative rate. Left:
𝜂 = 0. Right: 𝜂 = 1.

Method Accuracy DP diff TPR diff TNR diff

cFlow 0.83 0.10 0.15 0.25
cVAE 0.82 0.05 0.09 0.18
CNN 0.61 0.63 0.70 0.64
Ln2L 0.52 0.00 0.00 0.00

Method Accuracy DP diff TPR diff TNR diff

cFlow 0.82 0.33 0.28 0.21
cVAE 0.81 0.16 0.10 0.05
CNN 0.67 0.75 0.66 0.76
Ln2L 0.51 0.08 0.06 0.09

Additional fairness metrics. In addition to DP diff, we report here the

result from other fairness measures. These results are from the same setup as

those reported in the main paper. We report the difference in TPRs between

the two groups (male and female), which corresponds to a measure of Equality

of Opportunity, and the difference in TNRs between the two groups.

5.7.4 Optimisation Details

All our models were trained using the RAdam optimiser (Liu et al., 2020) with

learning rates 3 × 10−4 and 1 × 10−3 for the encoder/discriminator pair and

classifier respectively. A batch size of 128 was used for all experiments.

We now detail the optimisation settings, including the choice of adversary,

specific to each dataset. Details of the cVAE and cFlow architectures can be

found in table 5.2 and table 5.1, respectively.

UCI Adult. For this dataset our experiment benefited from using null-

samples as inputs to the adversary of the cFlow model. Unlike for the image

datasets, we found a single adversary to be sufficient. This was realised as a

multi-layer perceptron (MLP) with one hidden layer, 256 units wide. The INN

performs a bijection of the form 𝑓 ∶ ℝ𝑛 → ℝ𝑛. However, the adult dataset is

composed of mostly discrete (binary/categorical) features. To achieve good

performance, we found it necessary to first pre-process the inputs with a

pretrained autoencoder, using its encodings as the input to the cFlow model,
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as well as to the adversary. The learned representations were evaluated with

a logistic regression model from scikit-learn (Pedregosa et al., 2011), using

the standard settings. All baseline models were trained for 200 epochs. The

Ln2L (Kim et al., 2019) and MLP baselines share the architecture of the cVAE’s

encoder, only with a classification layer affixed.

Coloured MNIST. Each level of the architecture used for the downstream

classifier and naïve baseline alike consists of two convolutional layers, each

with kernel size 3 and followed by Batch Norm (Ioffe and Szegedy, 2015) and

ReLU activation. For the Ln2L baseline, we use an a setup identical to that

described in Kim et al. (2019). Each level has twice the number of filters in

its convolutional layer and half the spatial input dimensions as the last. The

original input is downsampled to the point of the output being reduced to a

vector, to which a fully-connected classification layer is applied.

To allow for an additional level in the INN (the downsampling operations

requiring the number of spatial dimensions to be even), the data was zero-

padded to a size of 32 × 32. The cVAE and cFlow models were trained for 50

and 200 epochs respectively, using ℓ2 reconstruction loss for the former. The

downstream classifier and all baselines were trained for 40 epochs. For both

of our models, an ensemble of 5 adversaries was applied to the encodings,

with each member taking the form of a fully-connected ResNet, 2 blocks in

depth, with SeLU activation (Klambauer et al., 2017). The adversaries were

reinitialised independently with probability 0.2 at the end of each epoch.

While the adversaries could equally well take null-samples as input, as done

for the Adult dataset, doing so requires the performing of both forward

and inverse passes each iteration, which, for the convolutional INNs of the

depths we require for the image datasets, introduces a large computational

overhead, while also showing to be the less stable of the two approaches in

our preliminary experiments.

CelebA. The downstream classifier and naïve baseline take the same form

as described above for cMNIST, but with an additional level with 32 filters

in each of its convolutions at the top of the network. For this dataset we

adapt the Ln2L model by simply considering it as an augmentation the naïve

baseline’s objective function, with the entropy loss applied to the output of

the final convolutional layer. These models were again trained for 40 epochs,

which we found to be sufficient for convergence for the tasks in question.

The cVAE and cFlow models were respectively trained for 100 epochs and 30

epochs, using ℓ1 reconstruction loss for the former. Compared with cMNIST,

the size of the adversarial ensemble was increased to 10, the reinitialisation
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probability to 0.33, but no changes were made to the architectures of its

members.

The Pitfalls of Adversarial Training. Adversarial learning has become

one of the go-to methods for enforcing invariance in fair representation

learning (Ganin et al., 2016) with MMD (Louizos et al., 2016) and HSIC (Quad-

rianto et al., 2019), being popular non-parametric alternatives. Ganin et al.

(2016) proposed adversarial learning for domain adaptation problems, with

Edwards and Storkey (2016) soon after making this and learning a repres-

entation promoting demographic parity. The adversarial approach carries

the benefits of being both efficient and scalable to multi-class categorical

variables, which many sensitive attributes are in practice, whereas the non-

parametric methods only permit pair-wise comparison.

However, when realised as a neural network, the adversary is both sensit-

ive to the values of the inputs as well as their ordering (though exchangeable

architectures, such as Zaheer et al. (2017) do exist, but which sacrifice ex-

pressiveness). Thus, it can happen that the representation learner optimises

for the surrogate objective of eluding the adversary rather than the real

objective of expelling 𝑠-related information. Moreover, the non-stationarity

of the dynamics can lead to cyclic-equilibria, irrespective of the capacity of

the adversary.

When working with a partitioned latent space, this behaviour can be

averted by instead encouraging 𝑧𝑏 to be predictive of 𝑠, acting as a kind of

information “sink“, as in Jacobsen et al. (2018). However, this does not have

the guarantee ofmaking 𝑧𝑢 invariant to 𝑠 - there are oftenmany indicators for 𝑠,
not all of which are needed to predict the label perfectly. Training the network

to convergence before taking each gradient step with the representation

learner is one way one to attempt to tame the unstable minimax dynamics

(Feng et al., 2019). However, this does not prevent the emergence of the

aforementioned cyclicity.

We try to mitigate the aforementioned degeneracies by maintaining a

diverse set of adversaries, as has shown to be effective for GAN training

(Durugkar et al., 2017), and by decorrelating the individual trajectories by

intermittently re-initialising them with some small probability following

each iteration.

Tuning the Partition Sizes. There are several ways of ensuring that the

size of 𝑧𝑏 is sufficient to capture all s dependencies, but minimal enough that

information unrelated to s is maximally preserved We adopt the straight-

forward search strategy of, starting from some initial guess, calibrating the
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Table 5.5: Mean RGB values (in practice normalised to [0, 1]) parameterising the
Multivariate Gaussian distributions from which each digit’s colour is
sampled in the biased (training) dataset. In the representative and test
sets, the colour of each digit is sampled from one of the specified Gaussian
distributions at random.

Digit Colour Name Mean RGB

0 Cyan (0, 255, 255)
1 Blue (0, 0, 255)
2 Magenta (255, 0, 255)
3 Green (0, 128, 0)
4 Lime (0, 255, 0)
5 Maroon (128, 0, 0)
6 Navy (0, 0, 128)
7 Purple (128, 0, 128)
8 Red (255, 0, 0)
9 Yellow (255, 255, 0)

value according to accuracy attained by a classifier trained to predict 𝑠 from
𝑧𝑏 on a held-out subset of the representative set, which is measured whenever

the adversarial loss plateaus. If the accuracy is above chance level then that

suggests the size of the 𝑧𝑏 partition, |𝑧𝑏|, needs to be increased to accommod-

ate more information about 𝑠. If the accuracy is found to be at chance level

then are two possibilities: 1) |𝑧𝑏| is already optimal; 2) |𝑧𝑏| is large enough

that it fully contains both information 𝑠 as well as that of a portion of 𝑦. If
the former is true, then perturbations around the current value allow us to

confirm this; if the latter is true then decreasing the value was indeed the

correct decision.

5.7.5 Synthesising Coloured MNIST

We use a colourised version of MNIST as a controlled setting investigate

learning from biased data in the image domain. In the biased training set,

each digit is assigned a unique mean RGB value parameterising the mul-

tivariate Gaussian from which its colour is drawn. These values were chosen

to be maximally dispersed across the 8-bit colour spectrum and are listed

in table 5.5. By adjusting the standard deviation, 𝜎, of the Gaussians, we

adjust the degree of bias in the dataset. When 𝜎 = 0, there is a perfect and

noiseless correspondence between colour and digit class which a classifier

can exploit. The classifier can favour the learning of the low-level spurious

feature over those higher level features constituent of the digit’s class. As the

standard deviation increases, the sampled RGB values are permitted to drift

further from the mean, leading to overlap between the samples of the colour
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(a) Original images. (b) 𝑥𝑢 null-samples gener-
ated by the cVAE model.

(c) 𝑥𝑏 null-samples generated
by the cVAE model.

Figure 5.10: CelebA null-samples learned by our cVAE model, with gender as the
sensitive attribute. (a) The original, untransformed samples from the
CelebA dataset (b) Reconstructions using only information unrelated to
𝑠. (c) Reconstruction using only information related to ¬𝑠. The model
learns to disentangle gender from the non-gender related information.
Compared with the cFlow model, there is a severe degradation in re-
construction quality due to the model trying to simultaneously satisfy
conflicting objectives.

distributions and reducing their reliability as indicators of the digit class. In

the test and representative sets alike, however, the colour of each sample is

sampled from one of the 10 distributions randomly, such that colour can no

longer be leveraged as a shortcut to predicting the digit’s class.

5.7.6 Stabilising the Coupling layers

Heuristically, we found that applying an additional nonlinear function to the

scale coefficient of the form

𝑠 = 𝜎(𝑓 (𝑢)) + 0.5 (5.7)

greatly improved the stability of the affine coupling layers. Here, 𝜎 is the

logistic function, which we shift to be centred on 1 so that zero-initialising 𝑓
results in the coupling layers initially performing an identity-mapping.
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(a) Original images. (b) 𝑥𝑢 null-samples gener-
ated by the cFlow model.

(c) x𝑏 null-samples generated
by the cFlow model.

Figure 5.11: CelebA null-samples learned by our cFlow model, with gender as the
sensitive attribute. (a) The original, untransformed samples from the
CelebA dataset (b) Reconstructions using only information unrelated to
𝑠. (c) Reconstruction using only information related to ¬𝑠. The model
learns to disentangle gender from the non-gender related information.
Attributes such as makeup and hair length are also often modified in the
process (prime examples framed with red) due to inherent correlations
between them and the sensitive attribute, which the interpretability of
our representations allows us to easily identify.

5.7.7 Qualitative Results for CelebA

Learning a representation alongside its inverse mapping, be it approximate

or exact, enables us to probe the behaviour of the model that produced it,

and any biases it may have implicitly captured due to entanglement between

the sensitive attribute and other attributes present in the data. We highlight

a few examples of such biases manifesting in the cFlow model’s CelebA

null-samples in fig. 5.11. In these cases, makeup and hair style have been

inadvertently modified during the null-sampling due to the tight correlation

between these two attributes and the sensitive attribute, gender, to which

we had aimed to make our representations invariant. Additionally, in all

highlighted images, the skin tone has changed: from male to gender-neutral,

the skin becomes lighter and from female to gender-neutral, the skin becomes

darker; in the change from male to gender-neutral, glasses are also often

removed. As the model cannot know that the label is meant to only refer

to gender, and not to these other (correlated) attributes, the links cannot be

disentangled by the model. However, the advantage of our method is that we
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can at least identify such biases due to the interpretability that comes with

the representations being in the data domain.
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(a) Performance on cMNIST test data after pre-training on
the mixed NIST dataset.

(b) Test data input to the
cFlow model.

(c) 𝑥𝑢 null-samples generated
by the cFlow model.

(d) Test data input to the
cVAE model.

(e) 𝑥𝑢 null-samples generated
by the cVAE model.

Figure 5.12: Results for the transfer learning experiments in which the represent-
ative set consists of colourised samples from EMNIST, KMNIST, and
FashionMNIST, while the downstream dataset remains as cMNIST. (a)
Quantitative results for different 𝜎-values. (b-c) Qualitative results for
the cFlow model. (d-e) Qualitative results for the cVAE model. The
qualitative results provide comparisons of the images before (left) and
after (right) null-sampling. Note that for some of the cVAE samples, the
clarity of the digits has clearly changed due to null-sampling, serving
as an explanation for the non-increasing downstream performance.

5.7.8 Transfer Learning

For our method, we require a representative set which follows the same

distribution as that observed during deployment. Such a representative set

might not always be available. In such a scenario, we can resort to using
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a set that is merely similar to that in the deployment setting and leverage

transfer learning.

One of the advantages of using an invertible architecture over conventional,

surjective ones that we stressed in the main text is its losslessness. Since the

transformations are necessarily bijective, the information contained in the

input can never be destroyed, only redistributed. This makes such models

particularly well-suited, in our minds, for transferring learned invariances:

even if the input is unfamiliar, no information should be lost when trying to

transform it. This works as long as only the information about 𝑠 ends up in

the 𝑧𝑏 partition. If 𝑠 takes a form similar to that which we pre-trained on, and

can thus be correctly partitioned in the latent space, by complement we have

the information about ¬𝑠 stored in the 𝑧𝑢 partition, without presupposing

similarity to the ¬𝑠 observed during pre-training.

Transferring from mixed-NIST to MNIST. We test our hypothesis by

comparing the performance of the cFlow and cVAE models pre-trained on

a mixture of datasets belonging to the NIST family, colourised in the same

way as cMNIST, while the downstream train and test sets remain the same

as in the original cMNIST experiments. Specifically, we create this represent-

ative set by sampling 24,000 images (to match the cardinality of the original

representative set) from EMNIST (letters only) (Cohen et al., 2017), Fashion-

MNIST (Xiao et al., 2017) and KMNIST (Clanuwat et al., 2018), in equal

proportion. We use the same architectures for the cVAE and cFlow models as

we did in the non-transfer learning setting. In terms of hyperparameters, the

only change made was to the KL-divergence’s pre-factor, finding it necessary

to increase it to 1 to guarantee stability.

The results for the range of 𝜎 values are shown in fig. 5.12a. Unsurprisingly,

the performance of both models suffers when the representative and test

sets do not completely correspond. However, the cFlow model consistently

outperforms the cVAE model, with the gap increasing as the bias decreases.

Although some colour information is retained in the cFlow null-samples,

symptomatic of an imperfect transfer, semantic information is almost entirely

retained as well. Conversely, the cVAE is very much flawed in this respect;

as can be seen in the bottom row of fig. 5.12a, for some samples, semantic

information is degraded to the point of the digit’s identity being altered. As

a result of this semantic degradation, the performance of the downstream

classifier is curtailed by the noisiness of the digit’s identity and is relatively

unchanging across 𝜎-values, in contrast to the monotonic improvement of

that achieved on the cFlow null-samples.
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6.1 Abstract

Machine learning models are typically trained to optimise global metrics

such as average classification accuracy. Hidden stratification arises when

the trained models have high average performance over classes but exhibit

highly variable performance across different hidden subgroups. In this paper,

we consider the setting where the hidden stratification has zero class-labelled

data for some subgroups. As an illustration, we have digit images labelled

as “two” or “four”, each class comprises “green” and “purple” subgroups.

Challengingly, in the training data, twos can be any colour, but all fours are

green. Without additional knowledge, it is impossible to directly control

the discrepancy of the classifier’s statistics for the hidden subgroups. We

develop a disentanglement algorithm that decomposes a data representation

into a component that captures the subgrouping factors and a component

that is invariant to them based on unlabelled (deployment) data. We cluster

the unlabelled data, and equalise the cluster sizes to form “perfect bags”

with respect to class and subgroup information. We cast the problem of

disentangling as one of distribution matching and propose an adversarial

learning approach. Unlike sample-based models, we advance a discriminator

to assign scores at the level of bags of samples, with a bag being deemed

authentic if was drawn from the unbiased distribution. We evaluate our

approach on several classification benchmarks and show that it is indeed

possible to account for zero-label hidden stratification.
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6.2 Introduction

Machine learning has been deployed in safety-critical applications such as

medicine (e.g. Dunnmon et al., 2019), and socially important contexts such as

the allocation of healthcare, education, and credit (e.g. Hurley and Adebayo,

2017; Raghavan et al., 2020). Efficiency can be improved, costs can be reduced,

and personalisation of services and products can be greatly enhanced – these

are some of the drivers for the widespread development and deployment of

machine learning algorithms.

Algorithms such as classifiers, however, are trained from large amount

of labelled data, and are typically trained to optimise global metrics such

as average classification accuracy. In many real-world classification tasks,

each labelled class consists of multiple semantically distinct subclasses, or

subgroups. For example, the “dog” class label can have finer-grained intra-

class variations, such as “dog indoor” and “dog outdoor”. This finer-grained

subgrouping information is typically unavailable/unlabelled (e.g. Nam et al.,

2020; Sohoni et al., 2020). The standard training process brings about two

inter-connected challenges: a) classifiers often under-perform on important

hidden subgroups (hidden stratification) (Oakden-Rayner et al., 2020; Sohoni

et al., 2020); and b) systematic bias (Kallus and Zhou, 2018) affects whether or

not entire collections of data points appear in the training dataset, and can

make the classifier unprepared for treating those subgroups in the eventual

deployment setting (residual bias).
We are interested in hidden stratification in which, for some of the sub-

groups, labelled training data is only available with a certain outcome, or

labelled training samples are not available at all, due to systematic bias. This

can be seen as a strong sampling bias. For instance, data on loan defaults can

only be collected on those loan applicants who were approved in the past

(Kallus and Zhou, 2018). Here a loan decision policy specifies whether an

individual will be included in the training dataset. Individuals can be thought

of as belonging to a specific subgroup such as “married” or “not married” and

systematic bias produced by a historical decision policy may result in the “not

married” subgroup having poor, or altogether non-existent, representation.

We formalise this stratification problem as a data setting where a decision

policy can lead to one or more subgroups having no labelled data.

To address the problem of subgroup bias, this paper focuses on learning

subgroup-invariant representations in the presence of zero-label stratification.

These representations can then be used to train a classifier that generalises

to the deployment setting which does not exhibit the bias of the training

set. To learn the representation, a form of supervision is needed. Our source
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of supervision is motivated by the observation that we want to deploy our

classifier to the eventual real-world population. A deployment set will contain

data points from all subgroups. We thus consider the setting where unlabelled
data is available for learning representations that disentangle the subgroup

membership from the class membership. We note, however, that the test set

could be used for this purpose in a transductive setting.

We aim to convert our unlabelled data into a collection of perfect bags
(Kleinberg et al., 2016; Chouldechova, 2017), i. e. sample sets in which the

class label 𝑦 and subgroup label 𝑠 are independent (i. e. 𝑦 ⟂ 𝑠). Making use

of the terminology from multiple-instance learning, our batches comprise

a certain number of bags which are a collection of samples. We will then

use these perfect bags as the inductive bias for learning the disentangled

representations. The disentangling procedure is thus in a sense supervised.
How can we construct these perfect bags in the absence of any labelled data?

We assume that the number of subgroups is known a priori1. We then apply

unsupervised k-means clustering, or a semi-supervised clustering based on

rank statistics; the latter allows incorporating annotations from the training

data when forming the clusters. Once the clusters have been found, we can

sample from each cluster at an equal rate to form balanced (i. e. perfect) bags
and use them as input for learning a disentangled representation. We cast

the problem of disentangling as one of distribution matching and propose an

adversarial learning approach. In the standard GAN setting, the discriminator

assigns a score to each sample corresponding to the perceived probability

that it was drawn from the true data distribution, and not the generator’s.

In contrast, we train a discriminator to assign scores at the level of bags

of samples, with a bag being deemed authentic if it was drawn from the

originally unbiased distribution and not the de-biased one (with the de-biaser

playing the role of the generator). To do so, we take inspiration from set-

classification and multiple-instance learning and equip the discriminator

with a learnable attention mechanism to model interdependencies between

samples in a bag.

Specifically, our paper provides the following contributions:

1. An example of systematic bias leading to one or more subgroups having

zero labelled data.

2. Applying clustering methods to the task of transforming an unlabelled
dataset into perfect bags.

1 Relaxing this assumption represents a clear avenue for future work. We elaborate this in the
limitation and intended use sec. 6.4.3.
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3. Theoretical and experimental justification that the disentangling model

with the perfect bag as an inductive bias provides a well-disentangled

representation, where one component captures the subgrouping factors

and another component is invariant to them.

4. A new parametric approach to disentangling that combines elements

from adversarial learning and set-classification to guide an encoder

network towards the goal of producing encodings invariant to the

source distribution and thereby the subgroup factors in which source

distributions differ.

6.3 Related work.

We describe related work in two areas: zero-shot learning and semi-supervi-

sed learning.

6.3.1 On zero-shot learning.

The setting with incomplete training data, where we aim to account for

seen and unseen outcomes is also known as generalised zero-shot learning.
Traditionally, zero-shot learning transfers knowledge from classes for which

we have training data to classes for which we do not, via auxiliary know-

ledge, e.g. via prototype examples (Larochelle et al., 2008), intermediate class

description such as semantic attributes (Lampert et al., 2009; Xian et al., 2018),

word2vec embeddings (Bucher et al., 2019). Our method similarly uses a

collection of perfect bags as a source of auxiliary knowledge but in contrast

to generalised zero-shot learning, our perfect bag is an unlabelled pool of

data, where class descriptions are unknown.

6.3.2 On semi-supervised learning.

Wick et al. (2019) proposed a semi-supervised method that can successfully

harness unlabelled data to correct for the selection bias and label bias in the

training data. The unlabelled data, despite not containing the class label 𝑦, is
labelled in terms of the subgroup label 𝑠. Our setting is significantly harder

because there is no label information about 𝑦 and 𝑠 in the perfect bag.
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Figure 6.1: The main components involved in our proposed disentangling method,
𝑓𝑦 (debiaser) and ℎ (discriminator). The debiaser is trained to produce
encodings, 𝑧𝑦 of the data that are invariant to the source dataset and
thereby the subgroups identifying it. In order to determine whether a bag
of encodings originates from the training set or the deployment set, the
discriminator performs an attention-weighted aggregation over the bag
dimension to model interdependencies between the samples. In the case
of Coloured MNIST where purple fours constitute the missing subgroup,
the discriminator can identify an encoding of a bag from the training set
by the absence of such samples so long as colour information is detectable
in 𝑧𝑦, serving as an error signal for the debiaser.

6.3.3 On disentangled representations learning.

Locatello et al. (2019a) suggested that disentanglement in representation

learning may be a useful property to remove algorithmic bias when subgroup

information is not observed. In order for disentangled representations to

reduce algorithmic bias without the knowledge of subgroup label 𝑠, they have

to assume that the class label 𝑦 and the subgroup label 𝑠 are independent,

i.e. 𝑦 ⟂ 𝑠. Though, in many real-world tasks, the variable 𝑠 is correlated

with the variable 𝑦, and therefore unsupervised methods are not suitable

(Jaiswal et al., 2018, 2019). Indeed, experiments in Locatello et al. (2019a)

were wholly done with procedurally generated synthetic datasets involving

2D and 3D shapes. Without some supervision or inductive bias, disentangled

representation methods would not solve the issue of algorithmic fairness

with invisible demographics (Locatello et al., 2019b). Locatello et al. (2020)

suggest that that it is possible to learn disentangled representations with

contrasting pairs that share at least one of the underlying factors but differ in

some. Here, the difference between the pairs acts as the supervision signal.
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Figure 6.2: Illustration of distribution matching. In this example, the training set is
lacking purple 4’s. By enforcing the subspace 𝑧𝑦 to have the same distri-
bution for both the training and deployment set, the model is encouraged
to learn a representation that is invariant to colour (or 𝑠 in general.) For
this to work, it is crucial that the bags be approximately balanced (perfect
bags).

6.4 Methodology

6.4.1 Theoretical background

In this section, we first formalise the problem of hidden stratificationwith zero

data (zero-label stratification) and the related issue of algorithmic bias. We

then theoretically motivate the idea of perfect bags for reducing algorithmic

bias, and their use as an inductive bias for disentanglement.

Zero-label stratification and algorithmic bias. Let 𝑆 denote a set

of discrete-valued subgroup labels of the associated domains 𝒮. 𝑋, with

the associated domain 𝒳, represents other attributes of the data. Let 𝒴
denote the space of class labels for a classification task; 𝒴 = {0, 1} for binary
classification or 𝒴 = {1, 2, … , 𝐶cls} for multi-class classification. For ease of

exposition, we assume that we have multiple sources Ω of samples, one for

each combination of class-label 𝑦 and subgroup-label 𝑠. That is, we have:

Ω𝑦=𝑦 ′,𝑠=𝑠′ , ∀𝑦 ′ ∈ 𝒴, ∀𝑠′ ∈ 𝒮 , (6.1)

where, for example, the source Ω𝑦=0,𝑠=0 supplies all data points with class

label 𝑦 = 0 and subgroup label 𝑠 = 0. As in a standard supervised learning

task, we have access to a labelled training set 𝒟𝑡𝑟 = {(𝑥𝑖, 𝑠𝑖, 𝑦𝑖)}, that is used
to learn a model 𝑀 ∶ 𝒳 → 𝒴. 𝒟𝑡𝑟 is composed of several sources, but lacks

samples from some of the sources:

∃𝑦 ′ ∈ 𝒴, ∃𝑠′ ∈ 𝒮 ∶ 𝒟𝑡𝑟 ∩ Ω𝑦=𝑦 ′,𝑠=𝑠′ = ∅. (6.2)

For example, we might be missing samples from two sources: Ω𝑦=0,𝑠=0 and

Ω𝑦=1,𝑠=0. In binary classification, this corresponds to no labelled data for the

subgroup label 𝑠 = 0, a setting we refer to as missing subgroup (MS). Other

times, we may observe a one-sided (negative) outcome for the subgroup label
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𝑠 = 0 (i. e., we have 𝒟tr ∩ Ω𝑦=1,𝑠=0 = ∅), giving rise to a setting we refer to as

subgroup bias (SB).
Once the model 𝑀 is trained, we deploy it to the diverse real-world data.

That is, it will encounter data which has overlap with all sources. If the model

relies only on the incomplete training set, it is to be expected that the model

will misclassify the subgroups with zero training data. The model becomes

biased against those subgroups, leading to unexpectedly poor performance

when it is deployed.

We propose to alleviate the issue of bias against missing subgroups by

mixing labelled data with unlabelled data that is usually much cheaper to

obtain (Chapelle et al., 2006). In this paper, we refer to this set of unlabelled
data as the deployment set2 𝒟𝑑𝑒𝑝 = {(𝑥𝑖)}. This deployment set has overlap

with all sources:

𝒟𝑑𝑒𝑝 ∩ Ω𝑦=𝑦 ′,𝑠=𝑠′ ≠ ∅ ∀𝑦 ′ ∈ 𝒴, ∀𝑠′ ∈ 𝒮 . (6.3)

Importantly, the deployment set has no information about class labels 𝑦 or

the subgroup labels 𝑠.

Relation to algorithmic fairness. Training set bias also affects what has

been termed algorithmic fairness, which is commonly expressed in terms of

the predicted class ̂𝑦 of a machine learning model 𝑀. We adopt a statistical

notion of algorithmic fairness in which outcomes are balanced under certain

conditions between groups of data points with different subgroup labels.

Several statistical bias measures have been proposed (Kamiran and Calders,

2012; Hardt et al., 2016; Chouldechova, 2017; Zafar et al., 2017a; Raghavan

et al., 2020) (shown below for the case where 𝑠 and 𝑦 are binary):

𝑃( ̂𝑦 = 1|𝑠 = 0) = 𝑃( ̂𝑦 = 1|𝑠 = 1) (6.4)

𝑃( ̂𝑦 = 1|𝑠 = 0, 𝑦) = 𝑃( ̂𝑦 = 1|𝑠 = 1, 𝑦) (6.5)

𝑃(𝑦 = 1|𝑠 = 0, ̂𝑦) = 𝑃(𝑦 = 1|𝑠 = 1, ̂𝑦) (6.6)

(6.4) is equality of positive rate; (6.5) is equality of true positive/negative

rate; (6.6) is equality of positive/negative predicted value. Generally, these

statistical notions can be expressed in terms of different (conditional) inde-

pendence statements between the involved random variables (Barocas et al.,

2019): ̂𝑦 ⟂ 𝑠 (equation 6.4), ̂𝑦 ⟂ 𝑠 | 𝑦 (equation 6.5), and 𝑦 ⟂ 𝑠 | ̂𝑦 (equation 6.6).

If our training set has no positive outcome for the subgroup label 𝑠 = 0,
i.e. Ω𝑦=1,𝑠=0 = ∅, the true positive rate for this subgroup will suffer, and

2 In our experiments, we report accuracy and bias metrics on another independent test set
instead of on the unlabelled data that is available at training time.
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therefore we will likely not be able to satisfy, among others, equality of true

positive rate. In the experimental section, we use metrics based on these

equalities to quantify how strongly the predictions are affected by the dataset

bias.

Perfect bag. We call a sampled set for which 𝑦 ⟂ 𝑠 holds, a perfect bag

(Kleinberg et al., 2016; Chouldechova, 2017). Such sets are also very desirable

when training algorithmically fair classifiers (see the sampling method in

Kamiran and Calders, 2012). Ideally, we would like to sample our deployment

dataset as perfect bags. However, the deployment set is unlabelled and is

unlikely to be perfect in practice. Instead, we pursue learning under zero-label

systematic bias as learning disentangled representations with a collection

of approximately perfect bags (produced with clustering techniques, see

section 6.4.2). We show that the disentangling procedure is robust enough

to work with this relaxation, but that performance scales with how well the

deployment set is balanced.

Disentangled representation. Disentanglement-learning aims to find

a factorised representation of a data point 𝑥 through mapping functions 𝑓𝑖
such that 𝑓𝑖(𝑥) = 𝑧𝑖 where 𝑧1, 𝑧2, … , 𝑧𝑝 are 𝑝 distinct (independent) factors

of variations, which together form 𝑥. We can formalise this intuitive defini-

tion using group and representation theories (Higgins et al., 2018), or using

structural causal models (Suter et al., 2019). Specifically for this paper, we

would like to split the data representation into two factors as 𝑓𝑦(𝑥) = 𝑧𝑦 and

𝑓𝑠(𝑥) = 𝑧𝑠 where 𝑧𝑦 contains factors that are relevant for 𝑦-prediction and

𝑧𝑠 contains factors related to the subgroup label 𝑠. Since 𝑠 is correlated with

the class label 𝑦, we need annotations of the undesired nuisance variable 𝑠
(Jaiswal et al., 2018, 2019) to be successful in using disentanglement learning

methods for zero-label stratification. We have some annotations of subgroup

label 𝑠 in the training set 𝒟𝑡𝑟 = {(𝑥𝑖, 𝑠𝑖, 𝑦𝑖)}, however, crucially, due to system-

atic bias, this set is missing certain subgroups. We have all subgroups in the

deployment set 𝒟𝑑𝑒𝑝 = {(𝑥𝑖)}, though, the challenge is that the subgrouping

information is unavailable or hidden at the deployment time. In the following

section, we show that we can still leverage the deployment set for learning

the disentangled representations.

Disentanglement with a collection of perfect bags. Our framework

for learning the disentangled representations comprises four core modules:

1) encoder functions 𝑓𝑦 and 𝑓𝑠 (which share weights) that embed 𝑥 into 𝑧𝑦 and
𝑧𝑠, respectively; 2) a decoder function 𝑔 that learns the approximate-inverse
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Figure 6.3: Visualisation of our method’s solutions for the CelebA dataset, with“smil-
ing females” as the missing subgroup. Column 1 shows the original
images from 𝑥 from the deployment set of CelebA. Column 2 shows
plain reconstructions generated from 𝑥recon = 𝑔(𝑓𝑦(𝑥), 𝑓𝑠(𝑥)). Column 3
shows reconstruction with zeroed-out 𝑧𝑠: 𝑔(𝑓𝑦(𝑥), 0), which effectively
visualises 𝑧𝑦. Column 4 shows the result of an analogous process where
𝑧𝑦 was zeroed out instead.

mapping of 𝑓𝑦 and 𝑓𝑠: 𝑔 ∶ (𝑧𝑦, 𝑧𝑠) → �̃� ; 3) predictor functions ℓ𝑦 and ℓ𝑠 that
predict 𝑦 and 𝑠 from 𝑧𝑦 and 𝑧𝑠 respectively, and 4) a discriminator function ℎ
that classifies a given bag of samples embedded in 𝑧𝑦 as deriving from the

deployment set or the training set; this marks a significant departure from the

typical GAN discriminator, which takes as input batches of data and yields a

prediction for each sample independently of the other samples in the batch.

Fig. 6.1 shows our framework. Formally, given bags ℬ𝑡𝑟 from the training

set, and balanced (i.e. approximately perfect – see section 6.4.2 for details

on how this can be practically achieved) bags ℬperf from the deployment
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set, we first define, for notational convenience, the loss with respect to the

encoder networks, 𝑓𝑦 and 𝑓𝑠 as

ℒenc(𝑓𝑦, 𝑓𝑠, ℎ)

= ∑
𝑥∈ℬ𝑡𝑟⋃ℬperf

𝐿recon(𝑥, 𝑔(𝑓𝑦(𝑥), 𝑓𝑠(𝑥)))

+ ∑
𝑥∈ℬ𝑡𝑟

𝜆1𝐿sup(𝑦 , ℓ𝑦(𝑓𝑦(𝑥))) + 𝜆2𝐿sup(𝑠, ℓ𝑠(𝑓𝑠(𝑥)))

− 𝜆3(log ℎ({𝑓𝑦(𝑥)|𝑥 ∈ ℬperf })

+ log ℎ({𝑓𝑦(𝑥)|𝑥 ∈ ℬ𝑡𝑟})), (6.7)

where 𝐿recon and 𝐿sup denote the reconstruction loss, and supervised loss,

respectively, and 𝜆1, 𝜆2 and 𝜆3 are positive pre-factors. The overall objective,

encompassing 𝑓𝑦, 𝑓𝑠, and ℎ can then be formulated in terms of ℒenc as

min
𝑓𝑦,𝑓𝑠

max
ℎ

ℒtotal = ℒ𝑒𝑛𝑐(𝑓𝑦, 𝑓𝑠, ℎ) . (6.8)

Aside from being computed over a bag of samples, our adversarial loss differs

from that the standard one in that both of its constituent terms are dependent

on 𝑓𝑦 (the encoder is responsible for producing the “real” and “fake” samples);

we allow the gradient to flow through both of these terms, finding that

adding a stop-gradient to log ℎ({𝑓𝑦(𝑥)|𝑥 ∈ ℬperf }) drastically reduced the

convergence-rate and stability of the algorithm.

Eq. (6.8) is computed over batches of bags and the discriminator is trained to

map a bag of data points from the training set and the deployment set to a bin-

ary label: 1 if the bag is judged to have been sampled from the deployment set,

0 if from the training set. Since the task is a set-classification one, we require

that the function it defines respects the exchangeability of the bag dimension

– that is, the discriminator’s predictions should take into account dependen-

cies between samples in a bag but should be invariant to the order in which

they appear, i. e. we have ℎ({𝑓𝑦(𝑥𝑖)}ℬ𝑏=𝑖) = ℎ({𝑓𝑦(𝑥𝑖)}ℬ𝑏=𝜋(𝑖)) for all permuta-

tions 𝜋. To make the entirety of the function ℎ – composed of sub-functions

ℎ1(ℎ2(ℎ3...))) – have this property, requires only the innermost, sub-function,

𝜌 in the chain to have it. While there are a number of choices when it comes

to defining 𝜌, we choose a weighted average 𝜌 = 1
ℬ ∑𝑖({attention(𝑓𝑦(𝑥𝑖))}

ℬ
𝑏=𝑖),

with weights computed according to a learned attention mechanism. The

idea of using an attention mechanism for set-wise classification has been

previously successfully explored by Ilse et al. (2018) and Lee et al. (2019);

we use the gated attention mechanism proposed by Ilse et al. (2018) in the

experiments, but also tried out the scaled dot-product attention per Vaswani

et al. (2017), as the bag-wise pooling layer of our discriminator. The result
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of 𝜌 is then processed by a series of fully-connected layers, following the

DeepSets (Zaheer et al., 2017) paradigm, which ultimately computes a single

prediction for a given bag of samples.

Our goal is that 𝑧𝑦 is invariant to the subgroup 𝑠. However, what the

adversarial loss actually enforces is that 𝑧𝑦 has the same distribution for

the bags from the deployment set and the bags from the training set. To

ensure that the network learns the correct task, it is crucial that subgroup

membership is the only differing factor between the two types of bags. The

first step towards this goal is that bags from the deployment set are balanced

(or perfect): all combinations of 𝑠 and 𝑦 appear at the same rate. The second

step is that, in the bags from the training set, the possible values of 𝑦 have

to appear at the same rate, because 𝑦 is meant to be preserved; thus, 𝑃(𝑦tr =
0) = 𝑃(𝑦tr = 1) = …. Finally, within the classes, subgroups should appear

at equal rate: 𝑃(𝑠tr = 0|𝑦tr = 𝑦 ′) = 𝑃(𝑠tr = 1|𝑦tr = 𝑦 ′) = …. For example,

if the bag size is 4, 𝑌 and 𝑆 are binary, and the combination (𝑦 = 1, 𝑠 = 0)
is missing, then each bag should contain 2 samples of (𝑦 = 1, 𝑠 = 1) and
1 sample each of (𝑦 = 0, 𝑠 = 0) and (𝑦 = 0, 𝑠 = 1) (see also fig. 6.2). This

ensures that the bags from the training set only differ in those samples from

the deployment bags, where a subgroup is missing. To guide the network

towards the desired solution, we supplement this implicit constraint with

the explicit constraint that 𝑧𝑦 be predictive of 𝑦, which we achieve using a

linear predictor 𝑙. Whenever we have dim(𝒮 ) > 1 we can also impose the

same constraint on 𝑧𝑠, but with respect to 𝑠. With these conditions met, to

fool the discriminator, the encoder must separate out information pertaining

to 𝑆 into the space 𝑧𝑠 not part of the discriminator’s input, leaving only

subgroup-unrelated information in 𝑧𝑦.
In the missing subgroup scenario, the disentangling supervision is weaker.

Thus, for this case, we restrict the amount of information that can be encoded

in 𝑧𝑠 by setting its dimensionality equal to ⌈log2(dim(𝒮 ))⌉; e. g., in the case

of binary 𝑠, we restrict 𝑧𝑠 to be one-dimensional. Additionally, 𝑧𝑠 can be

discretised with a straight-through estimator of the gradient (Bengio et al.,

2013).

Note that as long as the model sees the different 𝑠-𝑦-combinations at the

right proportions, disentangling can (to an extent) also be achieved without

the bag-wise loss (i. e., when the bag size is set to 1). The model then has

to learn an implicit prior for which 𝑠-𝑦-combinations to expect in the two

different sets – training set and deployment set. However, in our preliminary

experiments we found this sample-wise approach to work much more poorly

than using a bag-wise loss. For those experiments, the batch was balanced

in the same way as described above for the bags, but the batch was not
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subdivided into bags and there was no attention or aggregation method

applied to the batch: the loss was just computed per sample. From the

poor performance, we inferred that the sample-wise loss lacks the necessary

context to easily differentiate between the two datasets.

Our contribution to the disentanglement problem is thus two-fold: i) the

use of the difference between two distinct sets as the supervision signal,

and ii) the use of a bag-wise loss (where the bags are sampled to represent

their corresponding data distribution in an idealised way) which allows the

model to contrast the two sets more easily. Together, they form the idea of

disentangling with “perfect bags”.

As mentioned in section 6.3.3, Locatello et al. (2020) learned to disentangle

from non-i.i.d. pairs which share at least one underlying factor. In our

scenario, constructing the pairs each out of one sample from the training

set and one sample from the deployment set would satisfy this requirement

if we allow the ‘underlying factor’ to be quite abstract (see also the section

below for a discussion of this). However, constructing the pairs each out of

two bags instead of two samples makes the analysis much clearer: bags from

the training and deployment set are constructed such that they both have the

same distribution of 𝑦 values (a uniform distribution over 𝑦), but they differ

in the distribution of 𝑠 values. Thus, the shared factor is the one concerning

the prediction target 𝑦, and the differing factor is the one concerning 𝑠.

Disentanglement guarantees. Under Shu et al. (2020)’s framework, our

disentanglement supervision corresponds to match pairing: We observe

samples from a pair of distributions (deployment set and training set). As an

example, we consider coloured MNIST with two classes (digits 2 and 4) and

two subgroups (colours purple and green), where the training set is lacking

the combination of digit 4 and colour purple. Sample pairs from the two

distributions have a shared underlying factor: 2’s can be purple and green.

The pairs also have a factor that differs: in the training set, a 4 can only

be green; in the deployment set, it can have both colours. Theorem 1 in

(Shu et al., 2020) guarantees then that a (sufficiently powerful) disentangling

encoder will produce a disentangling that is consistent with respect to the

shared factor and restricted with respect to the changing factor. In our case,

𝑧𝑦 will capture the shared factor and 𝑧𝑠 the changing factor. For the invariant

representation, we drop 𝑧𝑠, which can be seen as setting this value to 0; as

𝑧𝑠 has guaranteed restrictiveness, the effect of changing 𝑧𝑠 is restricted to

changing the corresponding factor, which in the example refers to whether

or not 4’s can be purple.
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Figure 6.4: Results from 30 repeats for the Coloured MNIST dataset with two digits,
2 and 4, with subgroup bias for the colour ‘purple’: for purple, only the
digit class ‘2’ is present. Left: Accuracy. Right: Positive rate ratio.
For the Ranking clustering, the clustering accuracy was 96% ± 6%; for
K-means it was 64% ± 10%.

6.4.2 Implementation

Our proposed framework, demonstrated in fig. 6.1, entails two steps: 1)

sample perfect bags from an unlabelled deployment set, and 2) produce

disentangled representations using perfect bags for adversarial distribution-

matching.

Constructing approximately perfect bags via clustering. We cluster

the data points from the deployment set into 𝐾 = dim(𝒴) ⋅ dim(𝒮 ) number

of clusters, i.e. the number of data sources Ω𝑦,𝑠. We use the k-means clus-

tering algorithm, and a recently proposed method based on rank statistics

(Han et al., 2020). The cluster assignments can then be used to evenly strat-

ify the deployment set into perfect batches, to be used by the subsequent

disentangling phase.

As a result of clustering, the data points in the deployment set 𝒟dep are

labelled with cluster assignments 𝒟dep = {(𝑥𝑖, 𝑐𝑖)}, 𝑐𝑖 = 𝐶(𝑧𝑖). We balance

𝒟dep so that all clusters have equal size to form a perfect bag , and use it as a

supervision signal for the disentangling step.
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Figure 6.5: Results from 30 repeats for the Coloured MNIST dataset with two digits, 2
and 4, with a missing subgroup: the training dataset only has green digits.
Left: Accuracy. Right: Positive rate ratio. For the Ranking clustering,
the clustering accuracy was 88% ± 5%; for K-means it was 72% ± 16%.

Clustering requirements. For constructing the perfect bags, the corres-

pondence between the clusters and the class-labels/subgroup-label pairs does

not need to be known. The clustering is only needed for drawing an equal

number of samples from each cluster for each bag of samples. In our experi-

ments, we provide an analysis with unsupervised k-means clustering where

we do not use annotations from the training set as side information, even for

the known groups. When clustering with the training labels (such as with

the rank statistics approach), we use the information that they provide to

ensure samples from the known subgroups are clustered together with others

with the same label.

Clustering guarantees. By leveraging the feature space of deep mod-

els, previous research has shown that semantically meaningful clusters can

be discovered without the need for ground-truth annotations (for example

Gansbeke et al., 2020; Han et al., 2020; Oakden-Rayner et al., 2020; Sohoni

et al., 2020). Sohoni et al. (2020) recently provided a “clustering guarantee”

when assuming access to ground truth class labels 𝑦 and using clustering

within each class to generate approximate subgroups 𝑠. Even with infinite

data, accurate identification of the subgroups is unfortunately impossible.

Instead, Sohoni et al. (2020) showed that the error in their quantity of interest,

classification loss for each subgroup, can be bounded by the total variation
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Figure 6.6: Results from 30 repeats for the Coloured MNIST dataset with three digits:
‘2’, ‘4’ and ‘6’. Four combinations of digit and colour are missing: green
2’s, blue 2’s, blue 4’s and green 6’s. Left: Accuracy. Right: Hirschfeld-
Gebelein-Rényi maximal correlation (Rényi, 1959) between 𝑆 and 𝑌.

estimation error in the mixture-of-Gaussians case. Our primary goal is to

ensure good construction of perfect bags. We can adapt the analysis of Sohoni

et al. (2020) to bound the error of our quantity of interest, aggregate statistics
of the approximated perfect bag for each subgroup. We can subsequently

apply the union bound to take into account that we have a fully-unlabelled

setting.

6.4.3 Limitation and intended use

Although having zero labelled examples for some subgroups is not uncommon

due to the effects of systematic bias, we should make a value-judgement on

the efficacy of the dataset with respect to a task. We can then decide whether

or not to take corrective action as described in this paper.

A limitation of the presented approach is that, for constructing the perfect

bags used to train the disentangling algorithm, we have relied on knowing

the number of clusters a priori, something that, in practice, is perhaps not

the case. Removing this dependency through automatic determination of

the number of clusters would generalise our method further but this line of

research is challenging and extends beyond the scope of the current paper.

One difficulty is that we need to ensure that the small but salient clusters are

correctly identified. The cluster formed by an underrepresented subgroup
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Figure 6.7: Results from 10 repeats for the CelebA dataset with the subgroup bias set-
ting. The task is to predict “smiling” vs “non-smiling” and the subgroups
are based on gender. The subgroup “female” is missing samples for the
“smiling” class. Left: Accuracy. Right: Positive rate ratio.

can be easily overlooked by a clustering algorithm in favour of larger but

less salient clusters (which may be sub-clusters of other, larger, subgroups).

6.5 Experiments

We perform experiments using image and tabular datasets: Coloured MNIST

(Kim et al., 2019), CelebA (Liu et al., 2015) and Adult Income3 (Dheeru and

Karra Taniskidou, 2017) that are publicly available. To validate the first step of

creating the perfect bags, we compare the performance of our disentangling

model when paired with each of four different balancing methods: 1) with

clustering via rank statistics (Ranking); 2) with clustering via k-means (K-

means); 3) without balancing, when the deployment set𝒟𝑑𝑒𝑝 is used as is (No

bal.); 4) with balancing done using the ground-truth class and subgroup

labels (Perfect) that would in practice be unobservable; this provides insight

into what can be achieved under ideal conditions and how sensitive the

method is to imperfections in the bag-balancing.

To validate the disentangling step, we compare with three other baselines.

In all cases, the training set is balanced in the same fashion required for our

method. This is similar in effect to the sampling method proposed by Kamiran

and Calders (2012) but with those samples with the same class label as the

missing sources upsampled, based on knowledge of dim(𝒮 ). We denote a

classifier trained with cross-entropy loss on this data as ERM. The second of

the aforementioned baselines is DRO (Hashimoto et al., 2018), which functions

without subgroup labels by minimising the worst-case training loss over all

3 Results for Adult Income dataset and discussion can be found in the supplementary material.
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possible groups that are above a certain minimum size; along with a variant

of it, gDRO (Sagawa et al., 2019), that exploits subgroup label information but

is then only applicable when dim(𝒮𝑡𝑟) > 1. Third, we have the LfF model

proposed by Nam et al. (2020) that works by reweighting the cross-entropy

loss of a classifier using the predictions of a purposely biased sister network.

6.5.1 Coloured MNIST

The MNIST dataset (LeCun et al., 1998) consists of 70,000 (60,000 designated

for training, 10,000 for testing) images of grey-scale hand-written digits. We

colour the digits following a similar procedure to that outlined by (Kim et al.,

2019), randomly assigning each sample one of ten distinct RGB colours. Each

source is then a combination of digit-class (class label) and colour (subgroup

label). We use no data-augmentation aside from symmetrically zero-padding

the images to be of size 32x32. We create imbalance in both 𝐷𝑑𝑒𝑝 and 𝐷𝑡𝑟 by

sub-sampling the remaining sources; we do this to render a more realistic

setting in which the deployment set is not innately balanced and demands

preliminary clustering to construct approximately perfect bags. The sub-

sampling proportions used for each set of experiments can be found in the

appendix.

We begin by considering a binary, 2-digit, 2-colour, variant of the dataset

with 𝑌 = {2, 4} and 𝑆 = {green, purple}. For this variant we explore both

the SB (subgroup bias) and MS (missing subgroup) settings. To simulate the

SB setting, we set Ω𝑦=4,𝑠=purple to be the missing source. To simulate the

MS setting, where we have training data for only a single subgroup, we set

both Ω𝑦=’two’,𝑠=𝑝𝑢𝑟𝑝𝑙𝑒 and Ω𝑦=’four’,𝑠=𝑝𝑢𝑟𝑝𝑙𝑒 to be the missing sources (i.e. 𝐷𝑡𝑟
consists of only green digits).

Fig. 6.4 shows the results for the SB setting. We see that the performance

of our method directly correlates with how balanced the bags are, with the

ranking of the different clustering methods being Perfect > Ranking > No

bal. > K-means. Even without balancing (No bal.) our method greatly

outperforms the baselines methods, which all exhibit similar performance

to one another in terms of both accuracy and PR ratio (positive rate ratio).

The PR ratio is given by 𝑃( ̂𝑦=1|𝑠=1)/𝑃( ̂𝑦=1|𝑠=0); it quantifies how invariant the

classifier output ̂𝑦 is to the subgroups. The optimal value is 1.

Fig. 6.5 shows that the problem of missing subgroups is harder to solve.

Again we see that poor clustering (in the case of K-means) is detrimental

to the disentangling procedure, though for all balancing strategies the IQR

is significantly higher than observed in the MS setting, along with there

being a number of extreme outliers. The median, however, remains high,
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which is reflective of the “hit-or-miss” performance of the method under

these conditions, but where the number of hits far outweighs the number

of misses. Visualisation of the reconstructions with 𝑧𝑦 zeroed-out suggest

that misses often mostly occurred due to the semantic information being

concentrated in 𝑧𝑠 while 𝑧𝑦 is left to contain only residual information, even

when 𝑧𝑠 was set to be one-dimensional and binarised. We leave it to future

work to explore how to better offset such degeneracies.

To investigate how an increase in the number of classes affects disen-

tangling of classes and groups, we look to a 3-digit, 3-colour variant of the

dataset in the SB setting where four sources are missing from 𝐷𝑡𝑟. Results for

this configuration are shown in fig. 6.6. We see that the performance of No

bal. is quite close to that of Perfect, we suspect this is because balancing

is less critical with the increased number of subgroups strengthening the

training signal. As the PR ratio is not a suitable metric for non-binary 𝑆, we

instead quantify the invariance of the predictions to the subgroup with the

HGR maximal correlation (Rényi, 1959).

6.5.2 CelebA

To demonstrate ourmethod can be used tomitigate biased decisionmaking for

real-world computer vision problems, we consider the CelebA dataset (Liu et

al., 2015) comprising over 200,000 images of different celebrities. The dataset

comes with per-image annotations of attributes related to visual appearance,

emotion, gender, age. We predict the smiling attribute as the class label and

use the binary attribute, gender, as the subgroup label. Here, we consider an

SB setting, where “smiling females”, Ω𝑠=0,𝑦=1, constitutes a missing source.

Since the dataset exhibits natural imbalance in 𝑆 ×𝑌, we perform no additional

sub-sampling of either the training set or the deployment set, as we did for

Coloured MNIST. Fig. 6.7 shows the model trained with a perfectly balanced

deployment set Perfect outperforms No bal., indicating that this natural

imbalance is sufficiently strong to somewhat disrupt the disentangling pro-

cedure and is something to be potentially remedied through clustering. We

did not use the clustering approach for CelebA, as the attributes “smiling” and

“gender” are not the most salient; more work is needed on the clustering side

to discover all semantically meaningful clusters. Nonetheless, our method,

with or without the artificial balancing, yields much better accuracy than

that of ERM. Furthermore, we show qualitative results of the disentangling in

fig. 6.3, and note a clear separation of subgroup-relevant information from

subgroup-irrelevant information.
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6.6 Conclusion

We have highlighted the problem that systematic bias can result in one or

more subgroups having zero labelled data, and by doing so hope to have

stimulated serious consideration for it (even if to be dismissed) when planning,

building, evaluating and regulating machine learning systems. We propose

a two-step approach for addressing the resulting zero-label stratification

problem. First, we construct perfect bags from an unlabelled deployment

set via clustering. Second, we learn a disentangled representations using the

perfect bags for adversarial distribution-matching. We empirically validate

our framework on the Coloured MNIST, CelebA and Adult Income datasets,

and find evidence that it is possible to maintain high performance on the

subgroups with zero training data. We analyse our approach using the

disentanglement calculus of Shu et al. (2020) that relies on the notions of

restrictiveness and consistency, and show that we can derive some guarantees.

We presented our approach in the context of biased data, but it could be used

as a general-purpose method for learning disentanglements as long as the

factors can be expressed by contrasting two data subsets; that is, the data will

be disentangled into two factors, the first of which corresponds to the aspect

that is common in the two sets, and the second corresponding to the one

that differs. The method thus does not compete directly with unsupervised
disentanglement, but is potentially more widely applicable than to only

fairness problems.

However, it is not really accurate to say that we found a new “fairness-

based” way to learn disentanglements. Rather, it is the opposite way: we

found a new disentanglement-based fairness method. In order to achieve the

goal of fairness, we used building blocks (like adversarial training) which

happen to also be used in disentanglement learning. And thus, it is not

surprising that the method does in fact work by disentangling, but it was

just the choice of tools which would get the job done that produced this

outcome. The fairness aspect only acted as the motivator, and did not in itself

contribute to the solution.

Another take-away from our work concerns the general disentangling

setup described in Locatello et al. (2020) – i. e. using pairs that share at least

one underlying factor but also differ in some. For our work, we found it

advantageous to do this pair matching not on the level of samples, but on

the level of bags (i. e., small, specially-sampled sets of samples). It is possible

that other disentangling problems would benefit from a similar switch in

perspective that identifies not the samples but some other structure as the

natural way to construct the pairs for the disentangling.
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Future work includes further restricting the amount of information that

can be encoded in the bias factor, and the limitations that we mentioned in

sec. 6.4.3. Furthermore, the literature on clustering can potentially provide

further insights on theoretical guarantees for clustering. This was not a focus

in this paper as the disentangling aspect is more crucial to the approach.

6.7 Appendix

6.7.1 Results for Adult Income

Figures 6.8 and 6.9 show results from our method on the Adult Income dataset

Dheeru and Karra Taniskidou, 2017. This dataset is a common dataset for

evaluating fair machine learning models. Each instance in the dataset is

described by 14 characteristics including gender, education, marital status,

number of work hours per week among others, along with a label denoting

income level (≥$50K or not). We transform the representation into 62 real

and binary features along with the subgroup label 𝑠. The dataset is naturally

imbalanced with respect to gender: 30% of the males are labelled as earning

more than $50K per year (high income), while only 11% of females are labelled

as such. For further details on the dataset construction, see section 6.7.2.

Following standard practice in algorithmic fairness, e.g. Zemel et al. (2013),

we consider gender to be the subgroup label 𝑠.
We study the following two settings. 1) subgroup bias: we have labelled

training data for males (𝑠 = 1) with both positive and negative outcomes,

but for the group of females (𝑠 = 0), we only observe the one-sided negative

outcome, so the source Ω𝑦=1,𝑠=0 is missing; 2) missing subgroup: we have

training data for males with positive and negative outcomes, but do not have

labelled data for females, i.e.both Ω𝑦=1,𝑠=0 and Ω𝑦=0,𝑠=0 are missing.

As before, Ranking, k-means, No bal. and Perfect refer to our method

with different procedures for constructing (approximately) perfect bags. As

baseline methods, we have ERM (standard empirical risk minimisation with

balanced batches), DRO (Hashimoto et al., 2018), gDRO (Sagawa et al., 2019)

and ERM (LD) which is the same model as ERM, but trained on the labelled

deployment set, in addition to the training set.

In both settings, we observe the same order as for the other dataset in

terms of accuracy: Perfect (with ground truth labels for balancing) achieves

the highest performance, followed by Ranking, then No bal., and finally k-

means. However, for themissing subgroup setting, Ranking and Perfect are

almost identical and the former performs better in terms of de-biasing metrics.

This decreased reliance on balancing can be explained by the additional
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Figure 6.8: Results for the Adult Income dataset with subgroup bias, for the binary
classification task of predicting whether an individual earns >$50,000
with a binary subgrouping based on gender. ERM (LD) refers to a
model based on ERM (empirical risk minimisation), trained on a labelled
deployment set; thus not suffering from bias in the training set. Top left:
Accuracy. Top right: Positive rate ratio. Bottom left: True positive
rate ratio. Bottom right: True negative rate ratio. For the Ranking

clustering, the clustering accuracy was 69.7% ± 0.3%; for K-means it was
43% ± 3%.
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Figure 6.9: Results for the Adult Income dataset with a missing subgroup, for the
binary classification task of predicting whether an individual earns
>$50,000 with a binary subgrouping based on gender. ERM (LD) refers
to a model based on ERM (empirical risk minimisation), trained on a
labelled deployment set; thus not suffering from bias in the training
set. Top left: Accuracy. Top right: Positive rate ratio. Bottom left:
True positive rate ratio. Bottom right: True negative rate ratio. For
the Ranking clustering, the clustering accuracy was 60.4% ± 0.8%; for
K-means it was 44% ± 3%.

120



6.7 appendix

supervision that comes with having two sources missing instead of one - in

order for the discriminator to distinguish between bags from the deployment

set and bags from the training set, the former need only contain one of the

two missing sources.

Generally, we observe a high variance in the results. This is not attributable

to our method, however, with the baselines exhibiting the same behaviour,

but rather to the fact that the Adult Income dataset is a very noisy dataset

which, at the best of times, allows only about 85% accuracy to be attained (see

also Agrawal et al., 2020). The problem is that samples vary widely in how

informative they are. This, coupled with our artificially biasing the dataset

to be even more biased (as subgroup bias and missing subgroup), makes the

achievable performance very dependent on which samples the classifier gets

to see, which varies according to the random seed used for the data set split.

6.7.2 Dataset Construction

Coloured MNIST biasing parameters. To simulate a real-word setting

where the data, labelled or otherwise, is not naturally balanced, we bias the

Coloured MNIST training and deployment sets by downsampling certain

colour/digit combinations. The proportions of each such combination re-
tained in the subgroup bias (in which we have one source missing from the

training set) and missing subgroup (in which we have two sources missing

from the training set) are enumerated in table 6.1 and 6.2, respectively. For

the 3-digit-3-colour variant of the problem, no biasing is applied to either the

deployment set or the training set (the missing combinations are specified in

the caption accompanying figure 6.14); this variant was experimented with

only under the subgroup-bias setting.

Table 6.1: Biasing parameters for the training (left) and deployment (right) sets of
Coloured MNIST in the subgroup bias setting.

Combination Proportion retained

training set deployment set

(y = 2, s = purple) 1.0 0.7
(y = 2, s = green) 0.3 0.4
(y = 4, s = purple) 0.0 0.2
(y = 4, s = green) 1.0 1.0

Adult Income. For the Adult Income dataset, we do not need to apply any

synthetic biasing as the dataset naturally contains some bias wrt 𝑠. Thus, we

instantiate the deployment set as just a random subset of the original dataset.
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Table 6.2: Biasing parameters for the training (left) and deployment (right) sets of
Coloured MNIST in the missing subgroup setting.

Combination Proportion retained

training set deployment set

(y = 2, s = purple) 0.0 0.7
(y = 2, s = green) 0.85 0.6
(y = 4, s = purple) 0.0 0.4
(y = 4, s = green) 1.0 1.0

Explicit balancing of the test set is needed to yield meaningful evaluation,

however, namely in the penalising of biased classifiers, but need be taken in

doing so. Balancing the test set such that

|{𝑥 ∈ 𝑋 |𝑠 = 0, 𝑦 = 0}| = |{𝑥 ∈ 𝑋 |𝑠 = 1, 𝑦 = 0}|

and |{𝑥 ∈ 𝑋 |𝑠 = 0, 𝑦 = 1}| = |{𝑥 ∈ 𝑋 |𝑠 = 1, 𝑦 = 1}| (6.9)

where for both target classes, 𝑦 = 0 and 𝑦 = 1, the proportions of the

groups 𝑠 = 0 and 𝑠 = 1 are made to be the same, is intuitive, yet at the

same time precludes sensible comparison of the accuracy/fairness trade-

off of the different classifiers. Indeed, with the above conditions, a majority

classifier (predicting all 1s or 0s) achieves comparable accuracy to the fairness-

unaware baselines, while also yielding perfect fairness, by construction. This

observation motivated us to devise an alternative scheme, where we balance

the test set according to the following constraints

|{𝑥 ∈ 𝑋 |𝑠 = 0, 𝑦 = 0}| = |{𝑥 ∈ 𝑋 |𝑠 = 0, 𝑦 = 1}|

=|{𝑥 ∈ 𝑋 |𝑠 = 1, 𝑦 = 1}| = |{𝑥 ∈ 𝑋 |𝑠 = 1, 𝑦 = 0}| . (6.10)

That is, all subsets of 𝒮 × 𝒴 are made to be equally sized. Under this new

scheme the accuracy of the the majority classifier is 50% for the binary-

classification task.

6.7.3 Optimisation

The hyperparameters and architectures for the Autoencoder (AE), Predictor

and Discriminator subnetworks used for the experiments with all datasets

are detailed in Table 6.3. All networks are trained using the Adam optimiser

(Kingma and Ba, 2015).

For the Coloured MNIST and CelebA datasets, the baseline CNN, DRO, and

LfF (in the case of the former) models use an architecture identical to that of
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Table 6.3: Selected hyperparameters for experiments with Coloured MNIST, Adult
and CelebA datasets.

Coloured MNIST Adult CelebA
2-dig SB / 2-dig MS / 3-dig SB

Input size 3 × 32 × 32 61 3 × 64 × 64

Autoencoder

Levels 4 1 5
Level depth 2 1 2
Hidden units / level [32, 64, 128, 256] [61] [32, 64, 128, 256, 512]
Activation GELU GELU GELU
Downsampling op. Strided Convs. – Strided Convs.
Reconstruction loss MSE Mixed1 MSE
Learning rate 1 × 10−3 1 × 10−3 1 × 10−3

Clustering

Batch size 256 1000 –
AE pre-training epochs 150 100 –
Clustering epochs 100 300 –
Self-supervised loss Cosine + BCE Cosine + BCE –
U (for ranking statistics) 5 3 –

Distribution Matching

Batch size 1/32/14 64 32
Bag size 256/8/18 32 8
Training iterations 8k/8k/20k 5k 15k
Encoding (𝑧) size2 128 35 128
Binarised 𝑧𝑠 ✗ /✓ /✓ ✗ ✗

𝑦-predictor weight (𝜆1) 1 0 1
𝑠-predictor weight (𝜆2) 1 0 0
Adversarial weight (𝜆3) 1 × 10−3 1 1
Stopgradient (∇𝜃ℎ𝜓(𝑓𝜃(𝑋 dep)) = 0) ✗ ✓ ✗

Predictors

Learning rate 3 × 10−4 1 × 10−3 1 × 10−3

Discriminator

Attention mechanism3 Gated Gated Gated
Hidden units pre-aggregation [256, 256] [32] [256, 256]
Hidden units post-aggregation [256, 256] – [256, 256]
Embedding dim (for attention) 32 128 128
Activation GELU GELU GELU
Learning rate 3 × 10−4 1 × 10−3 1 × 10−3
Updates / AE update 1 3 1
1 Cross-entropy is used for categorical features, MSE for continuous features.
2 |𝑧| denotes the combined size of 𝑧𝑠 and 𝑧𝑦, with the former occupying ⌈log2(𝒮 )⌉ dimensions,
the latter the remaining

dimensions.
3 The attention mechanism used for computing the sample-weights within a bag. Gated refers
to gated attention proposed by

Ilse et al., 2018.
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the encoder with two exceptions: 1) max-pooling being used for spatial down-

sampling instead of strided convolutions; 2) the final convolutional layer is

followed by a global average pooling layer followed by a fully-connected

classification layer. For evaluating our method, we simply train a linear clas-

sifier on top of 𝑧𝑦; this is sufficient due to linear-separability being enforced

during training by the 𝑦-predictor. For the Adult Income dataset, we use an

MLP made up of a single hidden layer – 35 units in size – followed by a SELU

activation (Klambauer et al., 2017), as both both the downstream classifier for

our method, and as the network architecture of the baselines. All baselines

and downstream classifiers alike were trained for 60 epochs with a learning

rate of 1 × 10−3 and a batch size of 256.
Since, by design, we do not have labels for all subgroups the model will

be tested on, and bias against these missing subgroups is what we aim to

avoid, properly validating, and thus conducting hyperparameter selection

for models generally, is not straightforward. We can use estimates of the

mutual information between the learned-representation and 𝑠 and 𝑦 (which

wewish tominimise w.r.t. to the former, maximise w.r.t. the latter) to guide the

process, though optimising the model w.r.t. these metrics obtained from only

the training set does not guarantee generalisation to the missing subgroups.

We can, however, additionally measure the entropy of the predictions on the

encoded test set and seek to maximise it across all samples, or alternatively

train a discriminator of the same kind used for distribution matching as a

measure the shift in the latent space between datasets. We use the latter

approach (considering, the learned distance between subspace distributions,

accuracy, and reconstruction loss) to inform an extensive grid-search over

the hyperparameter space of our model.

For the DRO baseline, we allowed access to the labels of the test set for

the purpose of hyperparameters selection, performing a grid-search over

multiple splits to avoid overfitting to any particular instantiation. Specifically,

the threshold (𝜂) parameter for DRO was determined by a grid-search over the

space {0.01, 0.1, 0.3, 1.0}. The same procedure was carried out for selecting

the model capacity constant (𝐶) of the related gDRO baseline.

In addition to the losses stated in the distribution matching objective,

ℒ, in the main text, we also regularise the encoder by the ℓ2 norm of its

embedding, multiplied by a small pre-factor, finding this to work better than

more complex regularisation methods, such as spectral normalisation (Miyato

et al., 2018), for stabilising training.
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Figure 6.10: Example sample-wise attention maps for bags of CelebA (left) and Col-
oured MNIST (right) images sampled from a balanced deployment set.
The training set is biased according to the SB setting where for CelebA
“smiling females” constitute the missing source and for Coloured MNIST
purple fours constitute the missing source. The attention weights are
used during the discriminator’s aggregation step to compute a weighted
sum over the bag. The attention-weight assigned to each sample is
proportional to the lightness of its frame, with black signifying a weight
of 0, white a weight of 1. Those samples belonging to the missing sub-
group are assigned the highest weight as they signal from which dataset
(training vs. deployment) the bag containing them was drawn from.

6.7.4 Visualisations of results

Figures 6.10 and 6.11 show some additional visualisations for our results. For

details, see the captions.

6.7.5 Code

The code will be published at the following URL: https://github.com/

predictive-analytics-lab/fair-dist-matching. Instructions on how

to run them can be found in the README.md.

6.7.6 Additional metrics

Figures 6.12, 6.13, and 6.15 show the true positive rate (TPR) ratio and the

true negative rate (TNR) ratio as additional metrics for Coloured MNIST

(2 digits) and CelebA. These are computed as the ratio of TPR (or TNR) on

subgroup 𝑠 = 0 over the TPR (or TNR) on subgroup 𝑠 = 1; if this gives a

number greater than 1, the inverse is taken. Similarly to the PR ratio reported

in the main paper, these ratios give an indication of how much the prediction

of the classifier depends on the subgroup label 𝑠.
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(a) Different reconstructions on the
training set. Corresponding to:
original, full reconstruction, re-
construction of 𝑧𝑦, reconstruction
of 𝑧𝑠.

(b) Different reconstructions on the
deployment set. Corresponding
to: original, full reconstruction,
reconstruction of 𝑧𝑦, reconstruc-
tion of 𝑧𝑠.

Figure 6.11: Visualisation of our method’s solutions for the Coloured MNIST data-
set, with purple as the missing subgroup. In each of the subfigures
6.11a and 6.11b: Column 1 shows the original images from 𝑥 from the
respective set. Column 2 shows plain reconstructions generated from
𝑥recon = 𝑔(𝑓𝑦(𝑥), 𝑓𝑠(𝑥)). Column 3 shows reconstruction with zeroed-out
𝑧𝑠: 𝑔(𝑓𝑦(𝑥), 0), which effectively visualises 𝑧𝑦. Column 4 shows the result
of an analogous process where 𝑧𝑦 was zeroed out instead.

Figure 6.14 shows metrics specific to multi-valued 𝑠 (i. e., non-binary 𝑠).
We report the minimum (i.e. farthest away from 1) of the pairwise ratios

(PR/TPR/TNR ratio min) as well as the largest difference between the raw

values (PR/TPR/TNR diff max) . Additionally, we compute the Hirschfeld-

Gebelein-Rényi (HGR) maximal correlation (Rényi, 1959) between 𝑆 and 𝑌,
serving as a measure of dependence defined between two variables with

arbitrary support.

6.7.7 Clustering with an incorrect number of clusters

We also investigate what happens when the number of clusters is set in-

correctly. For 2-digit Coloured MNIST, we expect 4 clusters, corresponding

to the 4 possible combinations of the binary class label 𝑦 and the binary

subgroup label 𝑠. However, there might be circumstances where the correct

number of clusters is not known; how does the batch balancing work in this

case? We run experiments with the number of clusters set to 6 and to 8, while

otherwise not changing any part of the method. It should be noted that this

is a very naïve way of dealing with an unknown number of clusters. There

are methods specifically designed for identifying the right number of clusters

(Hamerly and Elkan, 2003; Chazal et al., 2013), and that is what would be

used if this situation came up in practice.
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Figure 6.12: Results from 30 repeats for the Coloured MNIST dataset with two digits,
2 and 4, with subgroup bias for the colour ‘purple’: for purple, only the
digit class ‘2’ is present. Top left: Accuracy. Top right: Positive rate
ratio. Bottom left: True positive rate ratio. Bottom right: True
negative rate ratio. For the Ranking clustering, the clustering accuracy
was 96% ± 6%; for K-means it was 64% ± 10%. For an explanation of
Ranking (8) and K-means (8) see section 6.7.7.
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Figure 6.13: Results from 30 repeats for the Coloured MNIST dataset with two digits,
2 and 4, with a missing subgroup: the training dataset only has green
digits. Top left: Accuracy. Top right: Positive rate ratio. Bottom
left: True positive rate ratio. Bottom right: True negative rate ratio.
For the Ranking clustering, the clustering accuracy was 88% ± 5%; for
K-means it was 72% ± 16%. For an explanation of Ranking (8) and
K-means (8) see section 6.7.7.
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Figure 6.14: Results from 30 repeats for the Coloured MNIST dataset with three
digits: ‘2’, ‘4’ and ‘6’. Four combinations of digit and colour are missing:
green 2’s, blue 2’s, blue 4’s and green 6’s. First row, left: minimum of
all positive rate ratios. First row, right: maximum of all positive rate
differences. Second row, left: minimum of all true positive rate ratios.
Second row, right: maximum of all true positive rate differences.
Third row, left: minimum of all true negative rate ratios. Third row,
right: maximum of all true negative rate differences.
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Figure 6.15: Results from 10 repeats for the CelebA dataset with the subgroup bias
setting. The task is to predict “smiling” vs “non-smiling” and the sub-
groups are based on gender. The subgroup “female” is missing samples
for the “smiling” class. Left: True positive rate ratio. Right: True
negative rate ratio.

The results can be found in figures 6.12 and 6.13. Bags and batches are

constructed by drawing an equal number of samples from each cluster. Un-

surprisingly, the method performs worse than with the correct number of

clusters. When investigating how the clustering methods deal with the lar-

ger number of clusters, we found that it is predominantly those samples

that do not appear in the training set which get spread out among the ad-

ditional clusters. This is most likely due to the fact that the clustering is

semi-supervised, with those clusters that occur in the training set having

supervision. The overall effect is that the samples which are not appearing

in the training set are overrepresented in the drawn bags, which means it

is easier for the adversary to identify where the bags came from, and the

encoder cannot properly learn to produce an invariant encoding.
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7 D I SCUS S ION AND FUTURE WORK

In this thesis, I have presented three approaches for dealing with dataset

bias. The first one deals with a form of label bias and the other two with

forms of sampling bias; in both cases the bias is linked to a special attribute 𝑠
of the data. With the first approach, the user specifies target rates that can

be used to tune the method to the desired outcome. The method is flexible

and easy to integrate with existing algorithms. The second approach uses a

partially-labelled representative set to learn an interpretable and invariant

representation. The user can directly observe in what way the data was

changed to make it invariant to the spurious correlation that is present in the

training data. The third approach in many ways builds upon the second one;

a set similar to the representative set is needed but there is no requirement

for labels nor for balance of subgroups. However, in the training set, the

relationship between the class label 𝑦 and subgroups 𝑠 may not be as close

to a one-to-one mapping of 𝑦 and 𝑠 as in the second approach. From these

simple starting points, an invariant representation is learned that can be used

to train unbiased classifiers.

The remainder of this chapter is split into three parts: In section 7.1, I

discuss some of the limitations of the presented methods to keep in mind,

and the goals that can be achieved by applying the methods. Section 7.2 is

about ways in which the work could be extended, and section 7.3 discusses

the broader perspective of this topic, including a wider discussion of the

future of the field.

7.1 Limitations and intended use

The presented work by no means covers all possible biases, but it contributes

to a growing literature that tries to tackle this problem. One could ask if there

is one method that is able to cover all possible dataset biases, but I think there

is a strong argument to be made that no general method can exist, because

it is, e. g., not possible to describe in general what is spurious information

and what is relevant information. Nevertheless, finding methods that are

more generally applicable is a worthy goal. One immediate avenue for future

work is the combination of label bias correction and sampling bias correction.
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For example, it might be possible to leverage an unlabelled context set for

correcting label bias as well.

It also should be mentioned here that compared to training straightfor-

ward, bias-unaware classifiers, the sampling-bias-targeting methods (i. e., the

second and the third method) incur additional costs in terms of computing

resources, training time and human labour. The label-bias-targeting method

(i. e., the first one) only impacts the computation of the loss and does not

require additional training data, so it has a negligible impact on training

cost. The second method is the most costly as the training of INNs requires

a large amount of memory and compute because INNs only transform the

(very high-dimensional) inputs and never perform anything like the lossy

compression that other neural network do. Furthermore, the method requires

additional data with 𝑠 labels. Still, if the additional training cost enables the

use of data that was previously unusable due to strong spurious correlations,

then it can still be worthwhile, and it is also important to keep in mind

that a model can be trained once and then used millions of times. This has

to be decided on a case-by-case basis, and unfortunately means that these

de-biasing methods will likely not be use prophylactically, but only if there

is an explicit expectation of harm otherwise.

In any case, correcting dataset bias remains a challenging topic and one

that is increasingly relevant to today’s machine learning applications. Any

cutting-edge ML system will have to deal with imperfect data, especially if the

collected data is human-related. The possible effects of these imperfections

in the data are certainly highly undesirable: a photo-tagging service might

only work for a certain kind of person; a speech recognition system might

only work for a certain kind of dialect. If, in these situations, sufficient

representative (but unlabelled) data is available, then the methods presented

here can be used to try and correct the problem.

Now, one possible objection here is: if those datasets are of such poor

quality, then maybe we should not train any ML model on these and should

not use them to make automated decisions. While this question is mostly

beyond the scope of this document, let me offer some thoughts on this: It is

true that even after the application of de-biasing techniques, the resulting

models still should not be fully trusted, but they can still ease the burden of

tedious manual labour; similar to an email spam filter which is not perfect,

but still very useful. Or, put another way, it is always important to check what

the realistic alternative is; we should not compare a model to a non-existing

perfect ideal, but to the actual solution that would be used instead. One could

imagine a hybrid approach where an automated system makes preliminary

decisions, but random samples are reviewed by humans and decisions can
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always be challenged. Ideally, the model itself would tell us about decisions

it is uncertain about.

Moreover, two of the three methods presented in this thesis require access

to (unlabelled) unbiased data, which is used during the training process. The

remaining method requires summary statistics of the unbiased target dataset.

So, the criticism that we are only learning from biased data does not apply

here. This should allow us to be more confident in the predictions produced

by those methods, because the methods learn from additional, unbiased

information.

The last limitation to mention is that throughout the thesis, the assump-

tion is made that all relevant ‘demographic groups’ (or ‘environments’ or

‘subgroups’) are known, or at least that it is known how many groups there

are. This goes back to the argument above that no completely general method

can exist to solve dataset bias; there has to be some inductive bias in order

to be able to learn anything. There have been attempts in the literature to

address this, like Hashimoto et al. (2018) (see section 2.5), which only requires

knowledge of a lower bound on the size of groups in the given data. Such an

assumption could potentially replace the assumption of knowing the number
of groups (as we assume for the third method presented). The other direction

to go in is to give up on groups altogether and try to enforce individual
fairness. However, this has its own set of problems; the foremost of which

is requiring a sensible distance function. Given these issues, it is likely not

possible to remove all bias everywhere (though that should not discourage

us from trying to).

A topic that was left out of the thesis is data augmentation, which refers

to the practice of modifying copies of the samples in the training set with

pre-defined transformations, which do not change the “semantic content”,

such that more samples are available for training. For image data, typical

transformations are rotations, crops, mirroring, Gaussian noise, and slight

colour modifications. If chosen right, data augmentation alone can solve the

problems presented in this thesis: grey-scaling is a transformation that is

sometimes used for image data, and works quite well on the Coloured MNIST

problem (though not perfectly well, because even as shades of grey, the

colours are distinguishable). However, this only works because the spurious

feature is so simply here (after all, Coloured MNIST is mostly intended to be

a simple toy dataset). Grey-scaling would not help with real-world datasets

like CelebA. Furthermore, even if a simple transformation would be able to

remove the spurious feature, knowing which transformation will accomplish

this is not always as obvious as with Coloured MNIST, and may require

special domain knowledge (like signal processing for audio data). Thus, the
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goal for the presented methods here was to make them applicable to any

kind of data, without requiring knowledge of the specific details of how the

bias manifests itself in the data, and without requiring knowledge of which

data augmentations can be applied. However, this is not a recommendation

against data augmentations; if you have reason to believe that augmentations

will help, there is no reason not to use them.

7.2 Potential extensions

In general, it would be desirable to have more theoretical bounds on per-

formance. This would likely involve specifying the requirements for the

algorithms more precisely. The method based on target labels would fur-

thermore benefit from better-calibrated probability outputs. Gaussian pro-

cess (GP) classifiers show generally good calibration, but cannot be easily

applied in domains where deep neural networks are used. On the other hand,

neural networks are known to be overconfident (especially when using ReLU

activations; Hein et al., 2019), so to apply the proposed method to images

directly is not straightforward. The other two proposed methods would be-

nefit from improved adversarial training procedures. Training these models

is not straightforward as the losses have to be balanced and in some cases,

the update schedule needs to be changed. Both the calibration of neural

networks and the stability of adversarial training are issues that are widely

recognised in the ML community, so there is hope that progress will be made

on these.

Another potential extension of this work is to extend it to other modalities.

The experiments were all performed on either tabular or image data — the

reason predominantly being ease of visualisation — so working with audio

(especially speech) or text could present new, interesting challenges.

Furthermore, as it currently stands, the ML practitioner has to know the

bias in the data very well in order to choose a method to correct it. It would

be desirable to have a simple algorithm for deciding which method to use. A

related limitation is that the dataset bias considered in this thesis is assumed

to be linked to a special attribute 𝑠. While 𝑠 can be very high-dimensional

and is not limited to, say, binary attributes, this nevertheless represents a

restriction that excludes large areas of dataset biases.

A potential – very ambitious – extension would be to try to learn to auto-

matically detect biases: i. e. an algorithm that can recognise biases without

asking a human operator. The question is then, where can an ML algorithm

learn about all possible biases? Given the complexity of human values

(Yudkowsky, 2011), it will not be possible to compress knowledge of all
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biases down to a compact representation. Essentially, the only way is to learn

them all individually, one by one. This could potentially be done with models

like GPT-3 (Brown et al., 2020), which are trained on enormous amounts of

text data, such that they conceivably have learned a lot about what human

writers consider to be biases. There is then perhaps a way to extract what

such a model knows about biases (it could be as easy as a text prompt which

asks “is it okay to discriminate based on gender?”), which would allow us to

check whether those biases exist in our data. Of course, this assumes that

humans agree amongst themselves what biases are – otherwise the model

might be very unreliable – which seems like quite a risky assumption to

make. Furthermore, prevalent ethics have change over the course of human

history, and are likely to change in the future as well. The ideal solution

would be to predict which ethics humans will adopt in the future, after they

thought about it even more, which is the goal of coherent extrapolated voli-
tion (Tarleton, 2010), but has large technical hurdles. There are also other

potential problems with unsupervised models like GPT-3; some of which are

discussed below.

7.3 Broader perspective

An important issue is the communication between human and machine.

The methods presented in this thesis have all strived to make it easy for

human operators to understand what is going on: the method in chapter 4 is

configured with simple statistics; the method in chapter 5 produces invariant

images that can be inspected; and the method in chapter 6 has the same

capability (though it is not part of the core functionality). However, this

is only a beginning. It is still not easy to notice that a given dataset has

problems, and currently, machines on their own cannot notice the problem

(see above). Thus, it is important that machines get feedback early and often,

to keep them aligned with human goals. Applied to the problem of dataset

bias, this could mean visualising correlations in the dataset, or routinely

producing invariant representations to show what the network thinks it is

meant to learn.

One area of machine learning that has recently seen increased interest is

unsupervised learning, and the latter two chapters make use of it to some

degree. The exciting promise of unsupervised learning in general is that

labour-intensive labelling is not needed and so vast amounts of existing,

unlabelled data can be put to good use. One could ask the question whether

bias-correcting methods are still needed, with access to so much data. It

could be that, while the data is certainly not perfect, there is so much of it
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that the biased parts “cancel each other out”. However, recent investigations

into the GPT models (Radford et al., 2018, 2019; Brown et al., 2020) do not

seem to support this (Khalifa et al., 2021). One reason for this might be the

way these models are trained at the moment: they maximise the probability

assigned to the next token. Thus, such a model has to account for the wide

array of human opinions and assign a non-zero probability to all of them. So,

when asked to summarise a text (Stiennon et al., 2020), GPT does not give

the best summary; rather, it gives a summary that an average person might

have written. However, with the help of a very high-quality labelled dataset

(that was expensive to create), it was possible to finetune GPT to actually

produce very good summaries. I suspect this pattern of learning the basics

in an unsupervised fashion, and then finetuning with high-quality labels,

will continue in the future. With these massive models, it is, more than ever,

crucial to build tools to make the biases within the models transparent. Given

the black-box nature of neural networks, this represents a major challenge.

It was mentioned before that an ML model should be judged by how useful

it is, how it stacks up to realistic alternatives, and not whether it is perfect.

However, one has to be careful not to take this philosophy too far. Namely,

one should avoid giving up and saying, “why should AI need to be fair if

humans tend to be biased anyhow?” The faults of humans has little to do

with the question of what we expect of machines. If one of our machines

will affect many of our fellow humans, then I think we would not want it to

be harmful. Should we make the machine artificially biased so that humans

do not need to feel too guilty about their own biases? I believe this to be

folly. We should always strive to do the best we can and that means making

machines as unbiased as possible.
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Dudıḱ and Hanna M. Wallach (2019). ‘Improving Fairness in Machine

Learning Systems:What Do Industry Practitioners Need?’ In: Proceedings of
the 2019 CHI Conference on Human Factors in Computing Systems, CHI 2019,
Glasgow, Scotland, UK, May 04-09, 2019, p. 600. doi: 10.1145/3290605.
3300830.

Hurley, Mikella and Julius Adebayo (2017). ‘Credit scoring in the era of big

data’. In: Yale Journal of Law and Technology 18, pp. 148–216.

Ilse, Maximilian, Jakub M. Tomczak and Max Welling (2018). ‘Attention-

based Deep Multiple Instance Learning’. In: International Conference on

142

https://doi.org/10.1109/CVPR.2019.00013
https://doi.org/10.1109/CVPR.2019.00013
https://doi.org/10.1145/3290605.3300830
https://doi.org/10.1145/3290605.3300830


bibliography

Machine Learning (ICML). Vol. 80. Proceedings of Machine Learning Re-

search, pp. 2132–2141.

Ioffe, Sergey and Christian Szegedy (2015). ‘Batch Normalization: Acceler-

ating Deep Network Training by Reducing Internal Covariate Shift’. In:

International Conference on Machine Learning (ICML). Vol. 37. JMLR Work-

shop and Conference Proceedings, pp. 448–456.

Jacobsen, Jörn-Henrik, Jens Behrmann, Richard S. Zemel and Matthias Bethge

(2019). ‘Excessive Invariance Causes Adversarial Vulnerability’. In: Inter-
national Conference on Learning Representations (ICLR).

Jacobsen, Jörn-Henrik, Arnold W. M. Smeulders and Edouard Oyallon (2018).

‘i-RevNet: Deep Invertible Networks’. In: International Conference on Learn-
ing Representations (ICLR).

Jaiswal, Ayush, Rex Yue Wu, Wael Abd-Almageed and Prem Natarajan (2018).

‘Unsupervised Adversarial Invariance’. In: Advances in Neural Information
Processing Systems (NeurIPS), pp. 5097–5107.

Jaiswal, Ayush, Rex Yue Wu, Wael AbdAlmageed and Premkumar Natarajan

(2019). ‘Unified Adversarial Invariance’. In: arXiv preprint arXiv:1905.03629.
Jiang, Heinrich and Ofir Nachum (2020). ‘Identifying and Correcting Label

Bias inMachine Learning’. In: The 23rd International Conference on Artificial
Intelligence and Statistics, AISTATS 2020, 26-28 August 2020, Online [Palermo,
Sicily, Italy]. Vol. 108. Proceedings of Machine Learning Research, pp. 702–

712.

Joseph, Matthew, Michael J. Kearns, Jamie H. Morgenstern and Aaron Roth

(2016). ‘Fairness in Learning: Classic and Contextual Bandits’. In: Advances
in Neural Information Processing Systems (NIPS), pp. 325–333.

Kallus, Nathan and Angela Zhou (2018). ‘Residual Unfairness in Fair Ma-

chine Learning from Prejudiced Data’. In: International Conference on Ma-
chine Learning (ICML). Vol. 80. Proceedings of Machine Learning Research,

pp. 2444–2453.

Kamiran, Faisal and Toon Calders (2009). ‘Classifying without discriminating’.

In: Computer, Control and Communication, 2009. IC4 2009. 2nd International
Conference on. IEEE, pp. 1–6.

– (2012). ‘Data preprocessing techniques for classification without discrim-

ination’. In: Knowledge and Information Systems 33.1, pp. 1–33.
Kamishima, Toshihiro, Shotaro Akaho, Hideki Asoh and Jun Sakuma (2012).

‘Fairness-aware classifier with prejudice remover regularizer’. In: Joint
European Conference on Machine Learning and Knowledge Discovery in
Databases. Springer, pp. 35–50.

Kaplan, David (2008). Structural equationmodeling: Foundations and extensions.
Vol. 10. Sage Publications.

143



bibliography

Kehrenberg, Thomas, Zexun Chen and Novi Quadrianto (2020a). ‘Tuning

Fairness by Balancing Target Labels’. In: Frontiers in Artificial Intelligence
3, p. 33. doi: 10.3389/frai.2020.00033.

Kehrenberg, Thomas, Myles Bartlett, Oliver Thomas and Novi Quadrianto

(2020b). ‘Null-sampling for Interpretable and Fair Representations’. In:

European Conference on Computer Vision (ECCV). Glasgow, UK. doi: 10.

1007/978-3-030-58604-1.

Kehrenberg, Thomas, Viktoriia Sharmanska, Myles Bartlett and Novi Quadri-

anto (2021). ‘Learning with Perfect Bags: Addressing Hidden Stratification

with Zero Labeled Data’.

Khalifa, Muhammad, Hady Elsahar and Marc Dymetman (2021). ‘A Dis-

tributional Approach to Controlled Text Generation’. In: International
Conference on Learning Representations (ICLR).

Kilbertus, Niki, Philip J. Ball, Matt J. Kusner, Adrian Weller and Ricardo

Silva (2019). ‘The Sensitivity of Counterfactual Fairness to Unmeasured

Confounding’. In: Proceedings of the Thirty-Fifth Conference on Uncertainty
in Artificial Intelligence, UAI 2019, Tel Aviv, Israel, July 22-25, 2019. Vol. 115.
Proceedings of Machine Learning Research, pp. 616–626.

Kilbertus, Niki, Mateo Rojas-Carulla, Giambattista Parascandolo, Moritz

Hardt, Dominik Janzing and Bernhard Schölkopf (2017). ‘Avoiding Dis-

crimination through Causal Reasoning’. In: Advances in Neural Information
Processing Systems (NIPS), pp. 656–666.

Kim, Byungju, Hyunwoo Kim, Kyungsu Kim, Sungjin Kim and Junmo Kim

(2019). ‘Learning Not to Learn: Training Deep Neural Networks With

Biased Data’. In: IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pp. 9012–9020. doi: 10.1109/CVPR.2019.00922.

Kim, Hyunjik and Andriy Mnih (2018). ‘Disentangling by Factorising’. In:

International Conference on Machine Learning (ICML). Vol. 80. Proceedings
of Machine Learning Research, pp. 2654–2663.

Kingma, Diederik P. and Jimmy Ba (2015). ‘Adam: A Method for Stochastic

Optimization’. In: International Conference on Learning Representations
(ICLR).

Kingma, Diederik P. and Prafulla Dhariwal (2018). ‘Glow: Generative Flow

with Invertible 1x1 Convolutions’. In: Advances in Neural Information
Processing Systems (NeurIPS), pp. 10236–10245.

Kingma, Diederik P. and Max Welling (2014). ‘Auto-Encoding Variational

Bayes’. In: International Conference on Learning Representations (ICLR).
Klambauer, Günter, Thomas Unterthiner, Andreas Mayr and Sepp Hochreiter

(2017). ‘Self-Normalizing Neural Networks’. In: Advances in Neural Inform-
ation Processing Systems (NIPS), pp. 971–980.

144

https://doi.org/10.3389/frai.2020.00033
https://doi.org/10.1007/978-3-030-58604-1
https://doi.org/10.1007/978-3-030-58604-1
https://doi.org/10.1109/CVPR.2019.00922


bibliography

Kleinberg, Jon, Sendhil Mullainathan and Manish Raghavan (2016). ‘Inher-

ent trade-offs in the fair determination of risk scores’. In: arXiv preprint
arXiv:1609.05807.

Kohavi, Ron (1996). ‘Scaling up the accuracy of Naive-Bayes classifiers: a

Decision-Tree Hybrid’. In: Knowledge Discovery and Data Mining. Vol. 96,
pp. 202–207.

Krauth, Karl, Edwin V. Bonilla, Kurt Cutajar and Maurizio Filippone (2017).

‘AutoGP: Exploring the Capabilities and Limitations of Gaussian Process

Models’. In: Proceedings of the Thirty-Third Conference on Uncertainty in
Artificial Intelligence, UAI 2017, Sydney, Australia, August 11-15, 2017.

Kusner, Matt J., Joshua R. Loftus, Chris Russell and Ricardo Silva (2017).

‘Counterfactual Fairness’. In: Advances in Neural Information Processing
Systems (NIPS), pp. 4066–4076.

Lampert, Christoph H., Hannes Nickisch and Stefan Harmeling (2009). ‘Learn-

ing to detect unseen object classes by between-class attribute transfer’.

In: 2009 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR 2009), 20-25 June 2009, Miami, Florida, USA, pp. 951–958.
doi: 10.1109/CVPR.2009.5206594.

Larochelle, Hugo, Dumitru Erhan and Yoshua Bengio (2008). ‘Zero-data learn-

ing of new tasks’. In: AAAI Conference on Artificial Intelligence.
LeCun, Yann, Léon Bottou, Yoshua Bengio and Patrick Haffner (1998). ‘Gradi-

ent-based learning applied to document recognition’. In: Proceedings of the
IEEE 86.11, pp. 2278–2324.

LeCun, Yann, Corinna Cortes and Christopher J. C. Burges (1994). The MNIST
database of handwritten digits.

Lee, Juho, Yoonho Lee, Jungtaek Kim, Adam R. Kosiorek, Seungjin Choi

and Yee Whye Teh (2019). ‘Set Transformer: A Framework for Attention-

based Permutation-Invariant Neural Networks’. In: International Conference
on Machine Learning (ICML). Vol. 97. Proceedings of Machine Learning

Research, pp. 3744–3753.

Liu, Liyuan, Haoming Jiang, Pengcheng He,Weizhu Chen, Xiaodong Liu, Jian-

feng Gao and Jiawei Han (2020). ‘On the Variance of the Adaptive Learning

Rate and Beyond’. In: International Conference on Learning Representations
(ICLR).

Liu, Lydia T., Sarah Dean, Esther Rolf, Max Simchowitz and Moritz Hardt

(2019). ‘Delayed Impact of Fair Machine Learning’. In: Proceedings of the
Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI
2019, Macao, China, August 10-16, 2019, pp. 6196–6200. doi: 10.24963/
ijcai.2019/862.

145

https://doi.org/10.1109/CVPR.2009.5206594
https://doi.org/10.24963/ijcai.2019/862
https://doi.org/10.24963/ijcai.2019/862


bibliography

Liu, Ziwei, Ping Luo, XiaogangWang and Xiaoou Tang (2015). ‘Deep Learning

Face Attributes in the Wild’. In: 2015 IEEE International Conference on
Computer Vision, ICCV 2015, Santiago, Chile, December 7-13, 2015, pp. 3730–
3738. doi: 10.1109/ICCV.2015.425.

Locatello, Francesco, Gabriele Abbati, Thomas Rainforth, Stefan Bauer, Bern-

hard Schölkopf and Olivier Bachem (2019a). ‘On the Fairness of Disen-

tangled Representations’. In: Advances in Neural Information Processing
Systems (NeurIPS), pp. 14584–14597.

Locatello, Francesco, Stefan Bauer, Mario Lucic, Gunnar Rätsch, Sylvain Gelly,

Bernhard Schölkopf and Olivier Bachem (2019b). ‘Challenging Common

Assumptions in the Unsupervised Learning of Disentangled Representa-

tions’. In: International Conference on Machine Learning (ICML). Vol. 97.
Proceedings of Machine Learning Research, pp. 4114–4124.

Locatello, Francesco, Ben Poole, Gunnar Raetsch, Bernhard Schölkopf, Olivier

Bachem and Michael Tschannen (July 2020). ‘Weakly-Supervised Disentan-

glement Without Compromises’. In: International Conference on Machine
Learning (ICML). Vol. 119. Proceedings of Machine Learning Research,

pp. 6348–6359.

Lohaus, Michael, Michaël Perrot and Ulrike von Luxburg (2020). ‘Too Re-

laxed to Be Fair’. In: International Conference on Machine Learning (ICML).
Vol. 119. Proceedings of Machine Learning Research, pp. 6360–6369.

Louizos, Christos, Kevin Swersky, Yujia Li, MaxWelling and Richard S. Zemel

(2016). ‘The Variational Fair Autoencoder’. In: International Conference on
Learning Representations (ICLR).

Lum, Kristian and James Johndrow (2016). ‘A statistical framework for fair

predictive algorithms’. In: arXiv preprint arXiv:1610.08077.
Madras, David, Elliot Creager, Toniann Pitassi and Richard S. Zemel (2018).

‘Learning Adversarially Fair and Transferable Representations’. In: Inter-
national Conference on Machine Learning (ICML). Vol. 80. Proceedings of
Machine Learning Research, pp. 3381–3390.

Maity, Subha, Debarghya Mukherjee, Mikhail Yurochkin and Yuekai Sun

(2020). ‘There is no trade-off: enforcing fairness can improve accuracy’. In:

arXiv preprint arXiv:2011.03173.
Mary, Jérémie, Clément Calauzènes andNoureddine El Karoui (2019). ‘Fairness-

Aware Learning for Continuous Attributes and Treatments’. In: Interna-
tional Conference on Machine Learning (ICML). Vol. 97. Proceedings of

Machine Learning Research, pp. 4382–4391.

Miyato, Takeru, Toshiki Kataoka, Masanori Koyama and Yuichi Yoshida

(2018). ‘Spectral Normalization for Generative Adversarial Networks’. In:

International Conference on Learning Representations (ICLR).

146

https://doi.org/10.1109/ICCV.2015.425


bibliography

Nam, Jun Hyun, Hyuntak Cha, Sungsoo Ahn, Jaeho Lee and Jinwoo Shin

(2020). ‘Learning from Failure: Training Debiased Classifier from Biased

Classifier’. In: Advances in Neural Information Processing Systems (NeurIPS).
Vol. 33, pp. 20673–20684.

Oakden-Rayner, Luke, Jared Dunnmon, Gustavo Carneiro and Christopher

Ré (2020). ‘Hidden stratification causes clinically meaningful failures in

machine learning for medical imaging’. In: ACM CHIL ’20: ACM Conference
on Health, Inference, and Learning, Toronto, Ontario, Canada, April 2-4, 2020
[delayed], pp. 151–159.

Olteanu, Alexandra, Carlos Castillo, Fernando Diaz and Emre Kıcıman (2019).

‘Social Data: Biases, Methodological Pitfalls, and Ethical Boundaries’. In:

Frontiers in Big Data 2, p. 13.

Oord, Aäron van den, Nal Kalchbrenner, Lasse Espeholt, Koray Kavukcuoglu,

Oriol Vinyals and Alex Graves (2016). ‘Conditional Image Generation with

PixelCNN Decoders’. In: Advances in Neural Information Processing Systems
(NIPS), pp. 4790–4798.

Pearl, Judea (2009). Causality. Cambridge university press.

– (2019). ‘The seven tools of causal inference, with reflections on machine

learning’. In: Communications of the ACM 62.3, pp. 54–60.

Pedregosa, F. et al. (2011). ‘Scikit-learn: Machine Learning in Python’. In:

Journal of Machine Learning Research 12, pp. 2825–2830.

Pedreshi, Dino, Salvatore Ruggieri and Franco Turini (2008). ‘Discrimination-

aware data mining’. In: Proceedings of the 14th ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM, pp. 560–568.

Platt, John (1999). ‘Probabilistic outputs for support vector machines and

comparisons to regularized likelihood methods’. In: Advances in large
margin classifiers 10.3, pp. 61–74.

Quadrianto, Novi and Viktoriia Sharmanska (2017). ‘Recycling Privileged

Learning and Distribution Matching for Fairness’. In: Advances in Neural
Information Processing Systems (NIPS), pp. 677–688.

Quadrianto, Novi, Viktoriia Sharmanska and Oliver Thomas (2019). ‘Dis-

covering Fair Representations in the Data Domain’. In: IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 8227–8236. doi:
10.1109/CVPR.2019.00842.

Radford, Alec, Karthik Narasimhan, Tim Salimans and Ilya Sutskever (2018).

‘Improving language understanding by generative pre-training’.

Radford, Alec, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei and Ilya

Sutskever (2019). ‘Language Models are Unsupervised Multitask Learners’.

Raghavan, Manish, Solon Barocas, Jon M. Kleinberg and Karen Levy (2020).

‘Mitigating bias in algorithmic hiring: evaluating claims and practices’. In:

147

https://doi.org/10.1109/CVPR.2019.00842


bibliography

FAT* ’20: Conference on Fairness, Accountability, and Transparency, Bar-
celona, Spain, January 27-30, 2020, pp. 469–481.

Rényi, Alfréd (1959). ‘On measures of dependence’. In: Acta Mathematica
Academiae Scientiarum Hungarica 10.3-4, pp. 441–451.

Rezende, Danilo Jimenez and Shakir Mohamed (2015). ‘Variational Inference

with Normalizing Flows’. In: International Conference on Machine Learning
(ICML). Vol. 37. JMLR Workshop and Conference Proceedings, pp. 1530–

1538.

Roh, Yuji, Kangwook Lee, Steven Euijong Whang and Changho Suh (2021).

‘FairBatch: Batch Selection for Model Fairness’. In: International Conference
on Learning Representations (ICLR).

Sagawa, Shiori, PangWei Koh, Tatsunori B Hashimoto and Percy Liang (2019).

‘Distributionally robust neural networks for group shifts: On the import-

ance of regularization for worst-case generalization’. In: arXiv preprint
arXiv:1911.08731.

Sattigeri, Prasanna, Samuel C. Hoffman, Vijil Chenthamarakshan and Kush R.

Varshney (2019). ‘Fairness GAN: Generating datasets with fairness proper-

ties using a generative adversarial network’. In: IBM Journal of Research
and Development 63.4/5, 3:1–3:9. doi: 10.1147/JRD.2019.2945519.

Shu, Rui, Yining Chen, Abhishek Kumar, Stefano Ermon and Ben Poole (2020).

‘Weakly Supervised Disentanglement with Guarantees’. In: International
Conference on Learning Representations (ICLR).

Sohoni, Nimit Sharad, Jared Dunnmon, Geoffrey Angus, Albert Gu and Chris-

topher Ré (2020). ‘No Subclass Left Behind: Fine-Grained Robustness in

Coarse-Grained Classification Problems’. In: Advances in Neural Informa-
tion Processing Systems (NeurIPS).

Sriperumbudur, Bharath K. and Gert R. G. Lanckriet (2009). ‘On the Conver-

gence of the Concave-Convex Procedure’. In: Advances in Neural Informa-
tion Processing Systems (NIPS), pp. 1759–1767.

Stiennon, Nisan et al. (2020). ‘Learning to summarize with human feedback’.

In: Advances in Neural Information Processing Systems (NeurIPS). Vol. 33,
pp. 3008–3021.

Suter, Raphael, Ðorðe Miladinovic, Bernhard Schölkopf and Stefan Bauer

(2019). ‘Robustly Disentangled Causal Mechanisms: Validating Deep Rep-

resentations for Interventional Robustness’. In: International Conference
on Machine Learning (ICML). Vol. 97. Proceedings of Machine Learning

Research, pp. 6056–6065.

Tarleton, Nick (2010). ‘Coherent extrapolated volition: A meta-level approach

to machine ethics’. In: Machine Intelligence Research Institute.

148

https://doi.org/10.1147/JRD.2019.2945519


bibliography

Thanh, Binh Luong, Salvatore Ruggieri and Franco Turini (2011). ‘k-NN

as an implementation of situation testing for discrimination discovery

and prevention’. In: Proceedings of the 17th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, San Diego, CA, USA,
August 21-24, 2011, pp. 502–510. doi: 10.1145/2020408.2020488.

Tolan, Songül (2019). ‘Fair and Unbiased Algorithmic Decision Making: Cur-

rent State and Future Challenges’. In: arXiv preprint arXiv:1901.04730.
Tsybakov, Alexander B et al. (2004). ‘Optimal aggregation of classifiers in

statistical learning’. In: The Annals of Statistics 32.1, pp. 135–166.
Ustun, Berk, Yang Liu and David C. Parkes (2019). ‘Fairness without Harm:

Decoupled Classifiers with Preference Guarantees’. In: International Confer-
ence on Machine Learning (ICML). Vol. 97. Proceedings of Machine Learning

Research, pp. 6373–6382.

Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin (2017). ‘Attention

is All you Need’. In: Advances in Neural Information Processing Systems
(NIPS), pp. 5998–6008.

Verma, Sahil and Julia Rubin (2018). ‘Fairness definitions explained’. In: 2018
IEEE/ACM International Workshop on Software Fairness (FairWare). IEEE,
pp. 1–7.

Wick, Michael L., Swetasudha Panda and Jean-Baptiste Tristan (2019). ‘Un-

locking Fairness: a Trade-off Revisited’. In: Advances in Neural Information
Processing Systems (NeurIPS), pp. 8780–8789.

Wightman, Linda F (1998). ‘LSAC National Longitudinal Bar Passage Study’.

In: LSAC Research Report Series.

Woodworth, Blake E., Suriya Gunasekar, Mesrob I. Ohannessian and Nathan

Srebro (2017). ‘Learning Non-Discriminatory Predictors’. In: Proceedings
of the 30th Conference on Learning Theory, COLT 2017, Amsterdam, The
Netherlands, 7-10 July 2017. Vol. 65. Proceedings of Machine Learning

Research, pp. 1920–1953.

Wu, Yongkai, Lu Zhang, Xintao Wu and Hanghang Tong (2019). ‘PC-Fairness:

A Unified Framework for Measuring Causality-based Fairness’. In: Ad-
vances in Neural Information Processing Systems (NeurIPS), pp. 3399–3409.

Xian, Yongqin, Christoph H Lampert, Bernt Schiele and Zeynep Akata (2018).

‘Zero-shot learning—A comprehensive evaluation of the good, the bad and

the ugly’. In: IEEE Transactions on Pattern Analysis and Machine Intelligence
41.9, pp. 2251–2265.

Xiao, Han, Kashif Rasul and Roland Vollgraf (2017). ‘Fashion-mnist: a novel

image dataset for benchmarking machine learning algorithms’. In: arXiv
preprint arXiv:1708.07747.

149

https://doi.org/10.1145/2020408.2020488


bibliography

Xiao, Taihong, Jiapeng Hong and Jinwen Ma (2018). ‘DNA-GAN: Learning

disentangled representations from multi-attribute images’. In: ICLR work-
shop.

Yudkowsky, Eliezer (2011). ‘Complex Value Systems in Friendly AI’. In: Arti-
ficial General Intelligence, pp. 388–393.

Zafar, Muhammad Bilal, Isabel Valera, Manuel Gomez-Rodriguez and Krishna

P. Gummadi (2017a). ‘Fairness BeyondDisparate Treatment &Disparate Im-

pact: Learning Classification without Disparate Mistreatment’. In: Proceed-
ings of the 26th International Conference on World Wide Web, WWW 2017,
Perth, Australia, April 3-7, 2017, pp. 1171–1180. doi: 10.1145/3038912.
3052660.

– (2017b). ‘Fairness Constraints: Mechanisms for Fair Classification’. In:

Proceedings of the 20th International Conference on Artificial Intelligence and
Statistics, AISTATS 2017, 20-22 April 2017, Fort Lauderdale, FL, USA. Vol. 54.
Proceedings of Machine Learning Research, pp. 962–970.

Zaheer, Manzil, Satwik Kottur, Siamak Ravanbakhsh, Barnabás Póczos, Ruslan

Salakhutdinov and Alexander J. Smola (2017). ‘Deep Sets’. In: Advances in
Neural Information Processing Systems (NIPS), pp. 3391–3401.

Zemel, Richard S., YuWu, Kevin Swersky, Toniann Pitassi and Cynthia Dwork

(2013). ‘Learning Fair Representations’. In: International Conference on Ma-
chine Learning (ICML). Vol. 28. JMLR Workshop and Conference Proceed-

ings, pp. 325–333.

Zhang, Brian Hu, Blake Lemoine and Margaret Mitchell (2018). ‘Mitigating

Unwanted Biases with Adversarial Learning’. In: Proceedings of the 2018
AAAI/ACMConference on AI, Ethics, and Society. AIES ’18. NewOrleans, LA,

USA, pp. 335–340. isbn: 9781450360128. doi: 10.1145/3278721.3278779.

Zhang, Quanshi and Song-Chun Zhu (2018). ‘Visual interpretability for Deep

Learning: a survey’. In: Frontiers of Information Technology & Electronic
Engineering 19.1, pp. 27–39.

150

https://doi.org/10.1145/3038912.3052660
https://doi.org/10.1145/3038912.3052660
https://doi.org/10.1145/3278721.3278779

	Abstract
	Declaration
	Acknowledgements
	Contents
	Acronyms
	Nomenclature
	Glossary

	 Preliminaries
	1 Introduction
	1.1 Problem statement
	1.2 Motivation and aims
	1.3 Relations to other fields and clarification of terms
	1.4 Structure of document

	2 Related work
	2.1 Two views of the dataset bias problem
	2.2 Foundations of algorithmic fairness
	2.3 Recent developments in algorithmic fairness
	2.4 Fairness via causal reasoning
	2.5 Ground-truth-centric view of bias

	3 Summary of contributions
	3.1 Mitigating label bias with target labels
	3.2 Overcoming severe sampling bias with a representative set
	3.3 Overcoming sampling bias with an unlabelled deployment set
	3.4 List of publications and author contributions


	 Publications
	4 Paper 1: Tuning Fairness by Balancing Target Labels
	4.1 Abstract
	4.2 Introduction
	4.3 Target labels for tuning group fairness
	4.4 Transition probabilities for a balanced dataset
	4.5 Related work
	4.6 Experiments
	4.7 Discussion and conclusion
	4.8 Appendix

	5 Paper 2: Null-sampling for Interpretable and Fair Representations
	5.1 Abstract
	5.2 Introduction
	5.3 Background
	5.4 Interpretable Invariances by Null-Sampling
	5.5 Experiments
	5.6 Conclusion
	5.7 Appendix

	6 Learning with Perfect Bags: Addressing Hidden Stratification with Zero Labelled Data
	6.1 Abstract
	6.2 Introduction
	6.3 Related work.
	6.4 Methodology
	6.5 Experiments
	6.6 Conclusion
	6.7 Appendix


	 Conclusion
	7 Discussion and future work
	7.1 Limitations and intended use
	7.2 Potential extensions
	7.3 Broader perspective

	 Bibliography


