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Summary

The Epoch of Reionization is an important period in studying structure formation and
evolution of our Universe. The first luminous objects, which may have been star-forming
galaxies and quasi-stellar objects, influenced later-day structures formation and evolution.
These bright objects produced enough ultra-violet radiation to alter the nature of the host
and propagated out into the intergalactic medium. These energetic photons transitioned
our Universe from a cold and neutral state to ultimately a hot and ionised state. This
interesting period is one of the least understood epochs in the Universe evolution due
to the lack of direct observations. The redshifted 21-cm signal of neutral hydrogen can
be used as an observable sign of reionisation. The upcoming Square Kilometre Array
telescope will be sensitive enough to detect the 21-cm signal and produce images of its
spatial distribution throughout reionisation.

This research focuses on improving numerical methods and develop new techniques for
understanding and interpreting future observational evidence. Our simulations will play
a crucial role and provide numerical support for the upcoming experiments. We proposed
a new approach that correctly quantifies the effect of local recombinations on the scale
below the large numerical simulation resolution. We present a more general model for the
sub-grid gas clumping, depending on the local density. I improved the latter method with
an empirical stochastic model based on high-resolution N-body simulation results, and
the relevant fluctuations are fully resolved. Moreover, we developed a stable and reliable
convolutional neural network, which can identify neutral and ionised regions from noisy
21-cm image observations. The network can identify the regions of interest with greater
precision and is less sensitive to the limitation of previous methods. We successfully
recover the signal for different instrumental noise levels based on the intensity contrast in
the 21-cm signal and from ionised regions simulation independent pattern.
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Chapter 1

Introduction

1.1 Introduction to Cosmology

The expansion of our Universe was first observed by Hubble (1929), which determined

the velocity-distance relation of extra-galactic nebulae and deduced the nowadays know

Hubble constant H0, the rate at which galaxies are receding from one another (Hubble &

Humason, 1931). It was proven by comparing the observed wavelength λobs of the spectral

lines emitted by these distant objects with the corresponding rest-frame wavelength λref .

1 + z =
λobs

λref
(1.1.1)

This effect is known as the cosmological Doppler redshift, and the redshift z is a pro-

portional factor that quantifies the line of sight velocity of the receding objects. This

expansion means that early in the history of the Universe, the distances between galaxies

were smaller than nowadays. Therefore, based on this evidence, at the time, it was con-

cluded that our Universe started from a single point of infinity density, an initial singularity

known as the Big Bang. However, later observations (e.g. Riess et al., 1998; Perlmutter

et al., 1999; Riess et al., 2007) indicated that the Universe underwent a fast exponential

expansion during its early stage, referred to as the cosmic inflation. This accelerated ex-

pansion of the initial singularity ultimately lays the basis of density perturbation theory

and the subsequent structure formation in our Universe. According to the standard theory

of the Big Bang, the early Universe was extremely hot and dense such that photons were

constantly scattered and remitted by the matter that was kept completely ionised. Nev-

ertheless, the most significant evidence for the theory of the Big Bang was firstly detected

by Penzias & Wilson (1965). By measuring the noise temperature at the zenith with the

6 metres long Holmdel Horn antenna, they measured the residual radiation from the last

scattering surface of the primordial soup. At that stage, the Universe cooled down and



1st September 2021 2

Figure 1.1: The Cosmic Microwave Background observed with the Planck telescope that

shows the full sky temperature fluctuations. Image credits: ESA/Planck (2013)

therefore expanded enough, allowing photons to escape. This period is often called the re-

combination era, it occurred approximately at z ∼ 1100, and the relic radiation is referred

to as the Cosmic Microwave Background (CMB). The discovery is conceivably the most

important revelation of modern cosmology, and yet it was detected almost by accident.

The CMB is isotropic and has a black body spectrum that peak at a temperature today

of about TCMB = 2.726 K. Recent observations improved the first estimation and were

able to detect local fluctuations in the order of δT/T ≈ 10−5. In figure 1.1 we show the

high-resolution full-sky CMB anisotropies provided by Planck space telescope (Ade et al.,

2014), where red and blue areas indicate the over- and under-dense regions, respectively.

The detection of the CMB proved the validity of the cosmological principle on a sufficiently

large scale of a few hundred Megaparsecs1. This assumption considers our Universe as

a perfect fluid, homogeneous (uniform in composition) and isotropic (uniformity in all

directions), with a given density ρ and pressure p.

1.1.1 ΛCDM Cosmology Model

In the second decade of the twenty century, the work of Einstein (1916) provides the found-

ation for general relativity and it explained the commutation between mass and gravity

(e.g. Weinberg, 1972; Wald, 1984; Hartle, 2003). Under the cosmological principle assump-

1In cosmology, the standard unit length is the parsec (pc). It is defined as the distance between the

Earth and an astronomical object with a parallax of one arcsecond, 1 pc = 1 au/tan(1′′) = 3.09 × 1016 m.
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tion, it was formulated that the Friedmann-Lemâıtre-Robertson-Walker (FLRW) metric

provides an exact solution to Einstein general relativity field equations (Friedmann, 1922).

The FLRW metric considers that the physical distance between two points separated by

a distance ds, in hyper-spherical coordinates, is given by (e.g. Peacock, 1998)

ds2 = −c2dt2 + a2(t)
(
dr2 + S2

k(r) dΩ2
)

(1.1.2)

Here, r and t are the radial comoving coordinates and time coordinates, respectively.

Therefore, the positive term on the right-hand side is the three-dimensional metric and

dΩ2 = dθ2 + sin2(θ) dφ2 the differential solid angle. Here a ≡ 1
1+z is the cosmic scale

factor, and it is a time-dependent factor that characterises the universe expansion after

the Big Bang. By definition, the scale factor today is normalised, a(t0) ≡ a0 = 1. The

factor Sk takes into account the spatial curvature contribution, with k = 0 if flat and ±1

for open or closed space, respectively.

Sk(r) =



√
k
−1

sin(r
√
k) , k > 0

r , k = 0√
|k|−1

sin(r
√
|k|) , k < 0

(1.1.3)

With the FLRW metric as the solution of general relativity field equations, we can

derive the Friedman Equation for modelling the evolution of an expanding, homogeneous

and isotropic universe based on its constituents and the scale factor a (e.g. Dodelson, 2003)

H2(t) =

[
ȧ(t)

a(t)

]2

=
8πGρ+ Λ c2

3
− k c2

a2
(1.1.4)

Here H ≡ H(t) is known as the Hubble parameter, G is the gravitational constant, ρ

indicates the energy density of the different components, and Λ is the cosmological con-

stant that raises from the general relativity equations. The latter variable gauges the

vacuum pressure, pΛ = −c2 ρΛ, and it implies the presence of dark energy. Initially, the

cosmological constant was introduced to counterbalance gravitation in order to obtain an

everlasting Universe. However, only long after Hubble’s discovery, in the late 90s, after

precise measurements of supernovae luminosity distance that it started to be considered

as a non-zero value (Riess et al., 1998; Schmidt et al., 1998; Perlmutter et al., 1999). For

a flat geometric universe k = 0, we can define the critical density of the Universe as a

function of the evolving cosmic time, as

ρc(t) =
3H2(t)

8πG
(1.1.5)

It is convenient to express the relative energy density ρi, for the constituent i, as a ratio

of the critical density, equation (1.1.5). Therefore, we can define the dimensionless density
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Table 1.1: Cosmological parameter measured from four different observation experiments.

Parameters WMAP5 Planck (2018) Planck+SNeIa DES3

H0 [km s−1 Mpc−1] 71.90+2.60
−2.70 67.66± 0.42 74.20± 1.40 68.10+0.40

−0.30

Ωb 0.0441± 0.0030 0.0489± 0.0003 0.0402± 0.0004 0.0487+0.0005
−0.0004

Ωm 0.256± 0.012 0.311± 0.005 0.252± 0.003 0.306+0.004
−0.005

ΩΛ 0.742± 0.030 0.698± 0.006 0.748± 0.003 0.715+0.004
−0.005

parameters Ωi ≡ ρi/ρcrit such that the total energy density is constant and
∑

i Ωi = 1.

The standard ΛCDM cosmological model considers three main components that drive the

Universe evolution. These constituents are the matter density Ωm = Ωb +Ωcdm, that itself

is composed of baryonic and collisionless cold dark matter. The radiation component

Ωr, that consider the contribution from photons and relativistic fermions and the dark

energy ΩΛ contribution, that takes into account the vacuum energy. In cosmology is

also convenient to express Friedman equation in term of redshift z ≡ 1
a − 1. Thus, the

equation (1.1.4) is redefined for a flat universe k = 0 as

H(z) = H0

√
Ωr(1 + z)4 + Ωm(1 + z)3 + ΩΛ (1.1.6)

Here H(z = 0) = H0 is the Hubble constant. In equation (1.1.6) the Ωi ≡ Ωi, 0 terms

indicate respectively the present day radiation, matter or Λ density parameter. From

various past and present high-redshift galaxy survey (e.g. Colless et al., 2001), large scale

clusters measurements (e.g. Wong et al., 2019; Abbott et al., 2021) or combination of

CMB and Supernovae observation (Bennett et al., 2013; Riess et al., 2019), it is possible

to derive the density parameters of the Universe today. In table 1.1, we list four different

estimations for the cosmological parameters. From the left column to the far-right we

have the five years observation with the Wilkinson Microwave Anisotropy Probe (WMAP)

(Komatsu et al., 2009), results from the Planck satellite telescope (Aghanim et al., 2020),

a combination between the previous measurements and local cosmology observations by

Riess et al. (2019) and the three years result of the Dark Energy Survey (Abbott et al.,

2021).

If we consider a photon originated at redshift z propagating at the speed of light c,

during the time interval dt, it would have covered the proper distance a(t) dr, considering

the Universe expansion. Thus, we obtain the comoving distance between us and the astro-

nomical event by integrating these contributors. With the help of the Hubble parameter

equation (1.1.6), we have

DC(z) = c

∫ z

0

dz′

H(z′)
(1.1.7)



1st September 2021 5

This relation provides the relative distance between us and the occurring event, at one

given redshift z, considering that the two points in scape were (co)moving with the Hubble

flow.

1.1.2 Structure Formation

The CMB provides the initial condition for the cosmological matter density field. The

measurement conducted by the Cosmic Background Explorer COBE2 first showed that

the CMB radiation was not perfectly isotropic (Mather et al., 1994). Variation in the

density distribution, velocity field and gravitational potential at the last-scattering surface

are among the effects contributing to the origin of these anisotropies. These primordial

inhomogeneities imprinted during the recombination era eventfully amplify and grow under

the gravitational pull, forming the first collapsed structure that eventually hosts the first

luminous astronomical objects. The overdensity δ is opportunely employed to describe

the evolution of the density fluctuations.

δ(x, t) =
ρ(x, t)− ρ̄

ρ̄
(1.1.8)

Here ρ̄ denotes the average matter density of the Universe. At first, the fluctuations in

the underlying matter distribution are small |δ| � 1. Therefore, we can use the linear

perturbation theory applied to the Eulerian and Poisson equations (the former from fluid

mechanics) for an expanding perfect fluid to describe the evolution of small density fluc-

tuations during the cosmic expansion. The combination of the first-order perturbation

equations then yield to the differential equation for density fluctuations evolution with

time
∂2δ(x, t)

∂t2
+ 2H(t)

∂δ(x, t)

∂t
= 4πG ρ̄ δ(x, t) (1.1.9)

Here H is the Hubble parameter, equation (1.1.4). The solution to equation (1.1.9) is a

combination of spatial components and time-dependent growing and decaying modes. In

the case of structure formation the former is dominating on the other one and the solution

is proportional to the growth factor D(a). Therefore, the linear evolution of the matter

overdensity is given as (e.g. Heath, 1977; Peebles, 1980)

δ(x, t) ∝ D(a)

a
=

5 ΩmH
3
0

2

∫ 1

0

da

(a ·H(a))3 (1.1.10)

Here the growth factor is normalised such that D(a0) = 1. Once the overdensity ap-

proaches unity δ ≈ 1, this solution would break down and require a different treatment to

2https://science.nasa.gov/missions/cobe

https://science.nasa.gov/missions/cobe
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further extend the solution to the non-linear regime. For this reason, Zel’Dovich (1970)

developed a solution that instead of considering the Universe as a cosmic fluid, it is repres-

ented as a collection of particles, and their physical trajectory results in (e.g. Bartelmann,

2015)

r(t) = a(t) [x +D(a) · ∇φ(x)] (1.1.11)

The first and second term on the right-hand side indicates the displacement respectively

due to the cosmic expansion and the scalar gravitational potential. This solution is called

the Zel’Dovich approximation. Unfortunately, notwithstanding the improvement from

linear theory, the approximation fails when particle trajectories cross, as the approach

ignores gravitational interaction between particles. Therefore the approximation breaks

down as the structure further collapse and overdensity becomes much larger δ � 1. The

alternative for a complete treatment for later evolution would be to resort to numerical

simulations that decompose the matter distribution into collisionless dark matter particles,

namely the N-body problem. In section 1.4, we explain further the application of N-body

particles simulations in cosmology.

1.1.3 Formation of the First Stars and Galaxies

From the virial theorem, we can derive the mass required by dark matter halos to collapse

under the influence of gravity and form structures. As a consequence of the collapse,

the gas within the halo heats up by either adiabatic compression or shock heating. By

assuming that the absolute magnitude of the gravitational potential energy of the halo

is twice its kinetic energy, we can then derive the characteristic temperature that the

gas reaches during its virialisation at redshift z, namely the virial temperature, here (e.g.

Tegmark et al., 1997)

Tvir ' 2× 103 K
( µ

1.22

)( Mhalo

106 M�

) 2
3
(

1 + z

20

)
(1.1.12)

Where Mhalo is the halo mass, µ is the mean molecular weight of the gas in the halo

normalised by the value for the primordial neutral gas. A cloud of baryonic gas further

collapses into the halo gravitational potential under the condition that it can dissipate

thermal energy. The thermodynamic cooling is expressed in terms of two timescales that

quantify how fast the cloud loses thermal pressure tcool and how fast the gas is collapsing

tff , defined as (e.g. Benson, 2010)

tcool =
3 kB T

2ngas Λ(T,Z)
tff =

√
3π

32Gρgas
(1.1.13)
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Figure 1.2: The cooling function Λ for gas with temperature T and in collisional ionisation

equilibrium. The metallicity Z also play an essential role in the cooling mechanisms. The

solid line indicates the cooling function of the primordial gas Z ≈ 0 and with the dashed

line for gas of solar composition Z = Z�. This figure is taken from Binney & Tremaine

(1987).

Where ρgas, T , ngas and Λ(T,Z) are the density, temperature, number density and cooling

function of the collapsing gas, respectively. The latter variable quantifies the energy lost

over time and volume in a gas cloud of temperature T . Moreover, its efficiency strongly

depends on the metallicity Z of the cloud. For instance, in figure 1.2 we show the cooling

function computed with the Cloudy code (Ferland et al., 1998) for the primordial gas (solid

line) and gas of solar composition, Z = Z� (dashed line). Depending on the temperature of

the gas, the main mechanism for cooling can vary between radiative recombination, colli-

sional ionisations, bound-bound transitions and Bremsstrallung emission or a combination

of these processes. Therefore, depending on the metallicity, temperature, and density, a

cloud of primordial gas can cool faster than its free-fall timescale, tcool < tff , and further

collapse to form the first stars and galaxies. From the computed cooling function for the

primordial gas (solid line in figure 1.2), we can notice that the atomic cooling mechanism

becomes efficient only for temperature T ≥ 104 K. Therefore, only halos with a certain

mass range can host star-forming galaxies. For instance, from equation (1.1.12) we under-

stand that only halos with mass Mhalo ≥ 108M� have virial temperature of Tvir ≥ 104 K

and therefore possibly host star-forming galaxies.
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Figure 1.3: Left panel : The predicted evolution, from observational data, of the UV

luminosity functions at four different redshift, z = 4, 6, 8 and 10. Right panel : The star

formation rate density history derived from the LFs. The SFR model fit observational

data and it is limited to three mass-rate (solid, dashed and dotted line). In both panels,

three different approach on metallicity are considered: constant (Z-const), time evolving

(Z-evo) and a mass related metallicity model (SMC). Both figures are taken from Tacchella

et al. (2018).

These star-forming galaxies supplied enough ionising photons to be considered the

driving sources of reionisation (Robertson et al., 2010; Madau & Dickinson, 2014). There-

fore, meaningful information on the process and duration of reionisation can be derived

from studying the galaxies star formation rate (SFR) history. ρSFR during reionisation

can be provided from the observed IR and rest-frame UV luminosity functions φ (LFs)

of high-redshift galaxies. For this reason, in the past decade, several surveys have been

focusing on measuring the IR and rest-frame UV spectra, such as the Hubble Space Tele-

scope3, the Cluster Lensing And Supernova survey with Hubble4 (CLASH) and the Hubble

Frontier Fields Survey5. Moreover, the upcoming James Webb Space Telescope6 (JWST)

will observe objects at even higher redshift as their visible emission shift to the infrared

wavelength. By integrating the observed LFs for a limiting magnitude (or luminosity), one

can infer the rest-UV luminosity density ρUV (e.g. Tacchella et al., 2018; Finkelstein et al.,

2019), generally this refer to 1′500 Å emission (FUV specific luminosity) but can be defined

explicitly for other UV wavelengths (Bouwens et al., 2014). In figure 1.3, left panel, we

show an example of the predicted evolution of the UV luminosity function over magnitude

3https://hubblesite.org/
4https://archive.stsci.edu/prepds/clash/
5https://frontierfields.org/
6https://www.jwst.nasa.gov/

https://hubblesite.org/
https://archive.stsci.edu/prepds/clash/
https://frontierfields.org/
https://www.jwst.nasa.gov/
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MUV by Tacchella et al. (2018). The observational data are from Bouwens et al. (2016),

Finkelstein et al. (2015), Oesch et al. (2018), Ishigaki et al. (2018) , McLeod et al. (2016)

and extend between redshift z = 4 and 10. Three models that consider different metallicity

models: solid line for a constant value of Z = 0.02Z�, dashed line for evolving metallicity

and a mass related metallicity model by Meurer et al. (1999) (SMC). Its is customary to

associate the specific UV luminosity LUV to the SFR ρSFR by a conversion factor κUV (the

same can be assumed for IR) of the order of magnitude ∼ 1028 erg s−1 Hz−1/(M� yr−1)

(e.g. Madau & Dickinson, 2014; Robertson et al., 2015a) that is sensitive to the stellar pop-

ulation metallicity, binary stars and the Initial Mass Function (IMF). In figure 1.3, right

panel, it shows the SFR history estimated from the UV LF for three lower-luminosity limit

(e.g. MUV = −17 equivalent to SFRlim = 0.3 M�/yr) and the same assumption on the

metallicity. The model fits the UV luminosity functions derived from multi-wavelength

imaging and spectroscopic surveys data, as mentioned above. The rest-UV luminosity

density ρUV is fundamental to understand the evolution of the IGM during reionisation.

When combined with the ionising photon production efficiency ξ, we quantify the total

ionising photons produced by the sources. Meanwhile, when these two quantities are mul-

tiplied with the escape fraction fesc, we can determine the portion of these photons that

effectively escape into the IGM Finkelstein et al. (2019). The result defines the ionising

emissivity and the number of ionising photons produced by stars that actively contribute

to the reionisation of the Universe (see § 1.3.1 for discussion).

The first generation of stars formed under particular conditions when compared to

their modern equivalent. An important physical ingredient for these stars is molecular

hydrogen H2 in the early Universe. The thermodynamic propriety of H2 (rotation and

vibrational lines) allows gas to collapse to temperature of T ∼ 300 K (Saslaw & Zipoy,

1967; Matsuda et al., 1969; Haiman et al., 1996; Abel et al., 2000; Bromm et al., 2002;

Yoshida et al., 2003). Currently, we have no direct observational constraints; however, a

series of models propose that these stars should have formed at z > 10 inside dark matter

collapsed structure of relative small halos, named mini-halos, with a mass between 105 M�

and 108 M� (Bromm et al., 1999; Abel et al., 2001; Yoshida et al., 2003; O’Shea & Norman,

2007). With the current cosmological model, these progenitors, named Population III

(PopIII) stars, would have formed from primordial gas composed primarily of hydrogen

and helium. Therefore, stellar models show that the first generation of stars should be

incredibly massive, with a mass range between M ∼ 20 − 130 M� (Umeda & Nomoto,

2003), short-lived due to their lack of metals and produce most of the UV ionising photons,



1st September 2021 10

thus kick-starting the reionisation process. One main uncertainty is related to the initial

stellar mass function (IMF) of PopIII stars, which is expected to be substantially different

to present-day stars due to the absence of metals in the primordial gas. However, UV and

Lyman-Werner (E ∼ 11.2 − 13.6 eV) radiation can easily dissociate molecular hydrogen.

As a consequence, the radiative feedback of the first PopIII stars either stopped or delayed

the further formation of new sources (Machacek et al., 2001; Sazonov & Sunyaev, 2015).

The supernovae explosion of PopIII stars enriched for the first time the interstellar

medium with metals. Moreover, the expanding SN shock waves can trigger the formation

of the next generation of stars, Population II stars (PopII) (Greif et al., 2010), generally

located in globular clusters (van Albada & Baker, 1973), and with a chemical composition

that has very few elements heavier than the helium (Schlaufman et al., 2018). Likewise,

the SN explosion of PopII stars eventually causes the formation of more recent stars

rich with metals, like our Sun, that is named Population I (PopI) stars. The increase of

metallicity in the IGM due to PopIII (then PopII) SN explosion has the effect of increasing

the efficiency of atomically cooling lines (see figure 1.2, dashed line). This facilitates the

formation of PopII stars that are expected to grow in number substantially more than their

progenitors. Moreover, the injection of metals into the surrounding IGM is considered to

alter the IMF of PopII stars. For lack of observational evidence, this process is still poorly

determined (Maio et al., 2010). Even though PopIII stars have a shorter lifetime and

are relatively fewer than their PopII counterparts, they are able to produce UV photons

more efficiently, mainly due to their extreme mass and their lack of metals which leads

to a higher production of ionising photons per unit star formation (Wilkins et al., 2016;

Mebane et al., 2018).

1.2 Epoch of Reionization

In its initial stage, the Universe was composed of energetic photons that promptly ionise

every atom that recombined. However, because of the cosmic expansion, this primordial

plasma gradually starts to cool down. When the Universe was approximately a thousand

times smaller in size than nowadays, at z ∼ 1100 and temperatures of approximately

3000 K, these energetic photons have lost enough energy and can no more prevent the

formation of neutral atoms, primarily hydrogen and helium. At this point, the primordial

plasma becomes optically thin, and photons are free to travel throughout the Universe

as well as a relatively small fraction of free electrons, less then 10%. In the beginning,

this remanence radiation is rather energetic, with photons in the near-infrared side of the
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electromagnetic spectrum. However, because of the cosmological Doppler redshift, today

their wavelengths move to microwaves range. Thereby this residual radiation is referred

to as the Cosmic Microwave Background (CMB).

Under the influence of gravity, dark matter starts to collapse into high-density regions.

On a large scale, the Universe is believed to be homogeneous. However, on a small scale, the

baryonic matter needs to thermally cool, following the criterion discussed in section 1.1.2,

in order to collapse even further and eventually form the first luminous cosmic objects.

One hundred million years after the Big Bang, approximately at redshift z ∼ 25, these

sources, which may have been star-forming galaxies and quasi-stellar objects (QSOs),

start to produce ionising photons, which over a period of approximately 500 million years

completed the re-ionisation of the Universe—transitioning our Universe from an initially

cold and neutral state to a final hot and ionised state.

This period is also known as the Epoch of Reionization (EoR). It combines a wide

range of physical processes, from cosmology and galaxy formation to radiative transfer

(RT) and atomic physics. It is a process of importance in structure formation since it has

been a direct consequence of creating first structures and ionizing sources, affecting the

formation of the late universe inhabitant.

The commonly agreed picture of EoR considers that the first sources start to inde-

pendently ionise their surrounding neutral gas, creating their so-called ionised bubble or

HII regions in a pre-overlap phase (Choudhury & Ferrara, 2006). Continuing to expand

the mean free path of ionising radiation eventually overlap with nearby companions, such

that over time these initially isolated bubbles form a vast interconnected ionised region

that stretches until ultimately the entire Universe is fully ionised.

1.2.1 Observational Constraint

The Epoch of Reionization is one of the least understood periods in the history of the

Universe due to the lack of direct observations. For example, very little is known about

the history of neutral hydrogen, such as the physics of the ionising sources at high redshifts

z ∈ [6; 12], the stellar initial mass function (IMF), the luminosity function of star-forming

galaxies, the escaping fraction of the ionisation radiation from high-redshift galaxies, and

more. Nowadays, two types of sources are considered the dominant driver: star-forming

galaxies and QSOs, but also more exotic theorised sources should be, at least partially,

included, e.g., decaying dark matter, evaporating primordial black holes (Hansen & Hai-

man, 2004; Avelino & Barbosa, 2004; Mapelli et al., 2006; Chen & Miralda-Escude, 2008).
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Instead, several indirect constraints can probe the reionisation process.

Scattering with CMB photons

Free electron produced during reionisation can interact with cosmic microwave background

(CMB) photons. This constitute one of the major indirect probe of reionisation and is

often referred as secondary anisotropies of the CMB, meanwhile the primary anisotrop-

ies are correlated by the density fluctuations form the last scattered surface. Here we

overview three of the main secondary interactions and their physical processes. In the

first case, free electrons interact via Thomson-scattering with CMB photons. This elastic

interaction does not affect the kinetic energy of both its components. Instead, it dumps

the CMB temperature angular power spectra at the small scales, below the horizon scale

(e.g. Komatsu et al., 2011a; Planck Collaboration et al., 2016). The Thomson-scattering

optical depth can quantify this process depending on the presence of free electrons along

the line of sight, defined as

τe(z) = c σT

∫ z

0

ne(z
′)

(1 + z′)H(z′)
dz′ (1.2.1)

where σT = 6.65× 10−25 cm2 is the Thomson cross section and ne is the electron density

at a given redshift. The CMB temperature fluctuation power spectrum are damped by

an exponentially proportional to the electron optical depth e−2τe . Recent results (e.g.

Aghanim et al., 2020) measured this quantity and set the upper limit to τe = 0.0544+0.0070
−0.0081,

which implies that reionisation reaches its mid-point at redshift zmid = 7.68 ± 0.79 and

therefore a fully ionised Universe for z ≈ 6. The example in figure 1.4 shows the influence

of Thomson scattering optical depth on the CMB angular power spectra for the case of

a sudden and fully ionised Universe at redshift zi. The models show that scales l ≥ 100

are affected mainly by high optical depth values (Hu, 1995). Another essential constraint

can be obtained from the CMB polarisation power spectrum. Temperature anisotropies

result from primordial fluctuations, and these eventually polarise the CMB anisotropies

up to the horizon scale, l ∼ 100, at the last scattering surface. Instead, the signal for

larger-scale collapse for larger scale due to the absence of coherent contribution. From

this argument, the detections of a polarised signal at a large scale l < 100 signify CMB

photons Thomson scattering with free-electron produced during reionisation (Rees, 1968).

These new features will peak in the polarisation power spectra at scales corresponding to

the redshift at which reionisation ends l ∝ √zre and its amplitude would be proportional

to the electron optical depth, derived with equation (1.2.1). A third process is the so-

called Sunyaev & Zeldovich (1972) effect (SZ). In the pre-overlap phase of reionisation,
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Figure 1.4: Effect of the optical depth on the CMB temperature (TT) angular power spec-

tra for standard ΛCDM. Here the models consider uniform and sudden fully reionisation

at redshift zi. This figure is taken from Hu (1995).

the high energy free electrons in the hot plasma surrounding the source can interact via

inverse Compton-scattering with the CMB photons. Here, CMB thermal anisotropies

rise at small scale l > 2000 (Mesinger et al., 2012) due to the peculiar motion of hot

ionised gas. This velocity component is a combination of the thermal velocity of the

singular electron, referred as the thermal SZ effect (tSZ) and the collective motion of the

entire cluster, the kinetic SZ effect (kSZ). In the first case, tSZ shifts low-frequency CMB

photons to higher energy distorting the CMB black body spectrum. The latter case gives

a proportional shift in temperatures depending on the cluster velocity while maintaining

its characteristic spectral shape. We can quantify the influence of the kSZ effect on CMB

temperature anisotropies along the line of sight n with the following formula (McQuinn

et al., 2005, e.g.)

∆T

T
(n) = c σT

∫ z

0

ne(z
′) · (n · v(z′))

(1 + z′)H(z′)
e−τe dz′ (1.2.2)

where v indicates the peculiar motion of the cluster hosting free electron and the expo-

nential factor gives the probability of scattering.

Lyman-α Radiation and Absorption lines

Observation of absorption lines in the spectra of distant galaxies or QSOs can tell us of

the state and proprieties of the intergalactic medium (IGM). Neutral hydrogen in the IGM
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along the line of sight, at redshift z, can absorb UV radiation of these distant sources,

with a wavelength of λLyα = 1216 Å (1 + z). The absorption features in QSO spectra

can be divided into two main categories, when the column density of neutral hydrogen

is below NHII . 1017 cm2 this observed feature is known as Lyman-α forest. Meanwhile,

when the scattering with the resonant line becomes so intense that almost all radiation

with wavelengths λ < λLyα is absorbed, this is known as the Gunn-Peterson (GP) effect.

The latter absorption features were predicted in 1965 by Gunn & Peterson (1965). The

magnitude of the absorption depends on the column density of the neutral hydrogen, and

it is quantified by the GP optical depth, defined by (e.g. Choudhury & Ferrara, 2006;

Ferrara & Pandolfi, 2014)

τGP(z) =
1.8× 105

hΩ
1/2
m

(
Ωb h

2

0.02

)(
1 + z

7

)3/2

xHI(z) (1.2.3)

here, approximated for high redshift z � 1, where xHI is the volume fraction of neutral

hydrogen at redshift z. The GP optical depth becomes tremendously large even for ex-

tremely small neutral fraction xHI > 10−3. In figure 1.5 we can see an example of the GP

effect and Lyman-α forest in the spectra of a QSO. The broad peak at λLyα ' 8670 Å

correspond to the Lyα emission from the quasar. This feature is used as an indicator

of the quasar rest frame, and in this case, it corresponds to redshift z ' 6.13 (Becker

et al., 2014). The bluer side of the QSO Lyα emission restframe, λobs < 8500 Å, show

the Lyman-α forest (and other Lyman transitions) as the result of UV photons absorption

in the presence of residual neutral gas along the line of sight. The intense absorption

between wavelength 8400 Å < λobs < 8600 Å create a gap in the spectra with virtually

no flux and is known as the GP trough. The GP optical depth provides the primary

evidence for a highly ionised IGM at an intermediate redshift between z = 2 and 5 (Fan

et al., 2006a; McGreer et al., 2011, 2014). Nevertheless, this method is useful only for

highly ionised IGM as it is necessary a small fraction of neutral hydrogen xHI ∼ 10−3 to

be optically tick τGP ∼ 100 and absorb all photons at wavelength λLyα. The absorption

features decreases in QSOs spectra at redshift z ∼ 6 (Fan et al., 2006b; Greig et al., 2016;

Davies et al., 2018), suggesting that cosmic reionisation is completed at that time. Other

indirect constraints considers the Lyman-α damping wing in high-z quasar spectra (e.g.

Schroeder et al., 2013; Totani et al., 2016; Davies et al., 2018; Greig et al., 2019) and the

number density of galaxies emitting Lyman-α radiation (e.g. Ota et al., 2008; Ouchi et al.,

2010; Konno et al., 2014; Robertson et al., 2015b), since the latter provides an efficient

way to track early star-forming galaxies at high redshift and systems with virtually no

dust. The two main method by which Lyman-α emitting galaxies are detected is either
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Figure 1.5: High-resolution spectrum versus the observed wavelength of quasar ULAS

J1319+0959 obtained with the X-Shooter spectrograph on the Very Large Telescope

(VLT). The broad peak at λLyα ' 8670 Å is the Lyα emission and it places the QSO

at redshift z ' 6.13. The bluer side of the spectra, λobs < 8500 Å, shows absorption lines

due to the presence of residual neutral hydrogen along the line of sight, while the gap in

the spectra at 8400 Å < λobs < 8600 Å is the GP trough. This figure is taken from Becker

et al. (2015).

by narrow-band wavelength imaging centred on the redshifted λLyα or spectroscopy on a

wider redshift range but smaller field of view. Both methods can make use of gravitational

lensing to amplify the faint brightness of galaxies generally at redshift z > 5.

Hyperfine Transition of Neutral Hydrogen: the 21-cm line

The neutral hydrogen ground state is split into two energy levels, the triplet and singlet

state. The electron and nucleus spin interaction changes the atom’s energy state, emitting

a photon with a rest-frame wavelength of λ0 = 21.16 cm and frequency of ν0 = 1.42 GHz.

Transition between these two hyperfine levels is known as the 21-cm signal. Predicted by

van de Hulst (1945) in collaboration with Jan Oort, it was then theoretically computed

to study the structure of the Milky Way. This spin-flip transition has an extremely small

Einstein coefficient A10 = 2.85× 10−15 s−1, which corresponds to a spontaneous emission

lifetime of approximately 107 years. Nevertheless, because of the widespread and abund-

ance of neutral hydrogen in the early universe IGM, this signal will be a unique signature

of EoR (e.g. Madau et al., 1997; Furlanetto et al., 2006).

In radio astronomy is convenient to express the intensity of a signal, observed at a

particular frequency ν, in its equivalent brightness temperature Tb(ν). When a radiation

background (in our case, the CMB) passes through a gas cloud of neutral hydrogen with
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temperature TS, the temperature of the emergent radiation is then

Tb(ν) = TS (1− e−τν ) + TCMB(ν) e−τν (1.2.4)

the first term on the right-hand side quantifies the emission probability of 21-cm photons

from within the cloud. On the other hand, the second term gives the proportion of

incoming radiation transmitted to the cloud. Here τν is the 21-cm optical depth for

diffuse IGM, and by integrating along the entire line of sight, we define the total 21-cm

absorption that has an exact solution expressed as

τν0(z) =
3

32π

h c3A10

kB TS ν2
0

nHI(z)

H(z)
(1.2.5)

where ν0 = 1.42 GHz is the frequency of the 21-cm line and nHI the density distribution

of neutral hydrogen at redshift z.

The quantity measured by radio telescope is the differential brightness temperature

δTb ≡ Tb−TCMB, such that when we assume a small 21-cm optical depth (e.g. Furlanetto

et al., 2006; Mellema et al., 2006b) we have

δTb(z) =
TS − TCMB

1 + z
(1− e−τν ) ≈ 3

32π

h c3A10

kB TS ν2
0

(
1− TCMB

TS

)
nHI(z)

(1 + z)H(z)
(1.2.6)

Here the (1 + z) term at the denominator, after the first equivalence, accounts for the

TCMB decrease due to the Doppler redshift. It is important to notice that δTb can be

arbitrarily positive or negative. The spin temperature is associated with the ratio between

the hydrogen atom number density in the singlet n0 and triplet state n1, and it is given

as (Field, 1958)
n1

n0
= 3 exp

(
−T∗
TS

)
(1.2.7)

A standard approach is to define the spin temperature as a weighed fraction, based on the

different process that can contribute to the evolution of TS, defined as (Field, 1959)

TS =
TCMB + yk Tk + yα Tα

1 + yk + yα
(1.2.8)

For instance, the factor yk accounts for the collisional excitation of the 21-cm signal with

free-electron or other hydrogen atom and its contribution to the increase/decrease of the

gas kinetics temperature Tk. The decoupling of Ly-α radiation by the Wouthyusen-Field

effect (Wouthuysen, 1952) is quantified by the factor yα and the colour temperature Tα.

This process is also called the Lyman-α pumping mechanism due to the fact that photons

transition the atom via photo-excitation to the Ly-α spectral line series, and a 21-cm

photon is induced once the atom decay and return to the ground state. Furthermore,
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Figure 1.6: Top panel : evolution of the spin temperature TS (solid black line) and its

components over redshift. Different thickness of the line indicates the effect of the com-

ponents, from equation (1.2.8), on the spin temperature. Bottom panel : corresponding

evolution of the differential brightness δTb. This figure is taken from Pritchard & Loeb

(2012a)

absorption of CMB photons can alter the spin temperature, and from equation (1.2.6) we

understand that the 21-cm signal is observable only in the case when the spin temperature

differs from the CMB temperature TS 6= TCMB, otherwise the two are indiscernible.

Therefore, the expected 21-cm signal is divided into epochs, represented by cardinal

heating or cooling mechanisms that characterised its evolution. The sign of the differential

brightness δTb depends mainly on the relation between the spin and CMB temperature.

In figure 1.6, we show an example of the evolution of the spin temperature (top panel)

and the consecutive variation on the brightness temperature (bottom panel) from the work

of Pritchard & Loeb (2012a). The former shows the variation of TS (boldface solid line)

for three models, compared to the IGM Tk (boldface dashed line) and the CMB TCMB

temperatures (dotted line). The bottom panel show the corresponding evolution of the

differential brightness for three different source models (solid lines of different thickness)

that regulate the amplitude and position of the peak/trough.

Ab initio, z > 200, Campton scattering between free electron and the CMB photons

keeps the spin temperature coupled to the CMB. At the same time, the Universe is dense

enough such that the collisional coupling between atoms is highly efficient. Therefore
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after recombination, both the gas and spin temperatures are strongly coupled to the

CMB, TS = Tk = TCMB and the differential brightness is close to zero δTb ≈ 0. For

redshift z ≤ 200, the Campton scattering becomes inefficient, such that the gas in IGM

decouple from the CMB and start to adiabatically cool Tk ∝ (1 + z)2. Meanwhile, the

CMB temperature decreases proportionally to redshift, TCMB ∝ (1 + z). Therefore, the

differential brightness becomes for the first time negative δTb ≤ 0 around redshift z ∼ 100

in what is defined as the Dark Ages of reionisation.

As a consequence of the cosmic expansion, the collisional coupling efficiency begins to

decline. At this point, just before star formation becomes significant, the 21-cm signal is

expected to fade again as TS ≈ TCMB. With the formation of the first luminous sources

between redshift z = 20 − 30, Lyman-α continuum radiation is emitted by the sources

that heat the surrounding gas in IGM. As a result, the spin temperature couple back

with the gas kinetic temperature TS → Tk, upon which is still adiabatically cooling. The

differential brightness becomes again predominately negative in what is known as the

Cosmic Dawn. The Experiment to Detect the Global EoR Signature (EDGES, Bowman

et al., 2018) detected an absorption feature in the sky-averaged 21-cm radio signal at

redshift z = 17.2 (νobs = 78 MHz) that is much deeper than expected. This detection put

in discussion the physical processes that have been employed until now. Several works

have proposed alternative models to explain this exceedingly deep absorption, by either

including non-standard physics cooling mechanisms (e.g. Barkana, 2018; Fraser et al., 2018;

Pospelov et al., 2018). Other efforts consider varying the proprieties of dark matter particle

and astrophysical parameters or by including an excess of radio background radiation in

addition to the CMB (e.g. Fialkov et al., 2018; Ewall-Wice et al., 2018; Feng & Holder,

2018).

The appearance of the first luminous object is a direct consequence of the first X-ray

sources, such as SN explosions, neutron stars and black holes (e.g. Nath & Biermann, 1993;

Zaroubi et al., 2007; Mirocha, 2014; Sazonov & Sunyaev, 2015). The radiation produced

by these sources can travel long distances (of a few Mpc in size) before being absorbed by

the neutral gas in the IGM. At this stage, the spin temperature decouples for the last time

from the CMB radiation TS � TCMB as it gets heated and eventually partially ionised by

the X-ray background radiation. Hence, for redshift z < 20, the 21-cm signal is sensitive

to the presence of neutral hydrogen and thus the density fluctuations. Finally, with the

beginning of the Reionisation Era, the UV radiation starts to propagate and ionise the

vast neutral IGM, the 21-cm globally averaged signal start to decline until it becomes
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completely transparent δTb = 0 as a consequence of the decline of neutral hydrogen in the

Universe.

1.2.2 Current & Future Direct Observations

The neutral hydrogen present in the IGM at redshift z emits 21-cm photons with frequency

ν0 = 1.42 GHz. When observed, the 21-cm signal would have redshifted to the radio

band of the electromagnetic spectrum, such that while the observed wavelength increases

to scale of a few metres λobs ∼ 1 − 5 m, the observed frequency shifts to lower values,

νobs ∼ 50− 200 MHz, such that

λobs(z) = λ0 (1 + z) νobs(z) =
ν0

1 + z
(1.2.9)

In principle, we can probe the reionisation process by observing the redshifted signal

produced during the cosmic reionisation, following equation (1.2.6). Various radio experi-

ments, such as Low Frequency Array7 (LOFAR; e.g. van Haarlem et al., 2013), Murchison

Widefield Array8 (MWA; e.g. Tingay et al., 2013) and the Hydrogen Epoch of Reioniz-

ation Array9 (HERA; e.g. DeBoer et al., 2017), have been trying to detect this signal.

Recently, these facilities have provided useful upper limits on the 21-cm power spectrum

(e.g. Mertens et al., 2020; Trott et al., 2020) that have been used to learn the properties

of reionisation (e.g. Ghara et al., 2020; Mondal et al., 2020; Greig et al., 2020a,b). How-

ever, the 21-cm signal during EoR will be highly non-Gaussian and therefore the power

spectrum will not give the full characterisation (e.g. Mellema et al., 2006b; Ichikawa et al.,

2010a; Watkinson & Pritchard, 2015; Majumdar et al., 2018; Giri et al., 2019c). In the

coming years, the Square Kilometre Array10 (SKA) will be built. The low-frequency com-

ponent of the SKA will be sensitive enough to detect the 21-cm signal produced during

EoR and create images of its distribution on the sky (Mellema et al., 2013; Wyithe et al.,

2015; Koopmans et al., 2015). A sequence of multiple 21-cm images from different red-

shifts (or observed frequency) will constitute a three-dimensional set of data known as the

tomographic dataset. This observation will enable direct studies of the sizes and shapes of

ionised/neutral regions during the EoR. For instance, the statistical proprieties of the sig-

nal is often described using the 21-cm power spectrum P21(k) (see section 2.3.4 for results

discussion). The power spectra quantify the amplitude fluctuations in the 21-cm signal

7https://www.astron.nl/telescopes/lofar/
8https://www.mwatelescope.org/
9http://reionisation.org/

10https://skatelescope.org

https://www.astron.nl/telescopes/lofar/
https://www.mwatelescope.org/
http://reionisation.org/
https://skatelescope.org
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Figure 1.7: Slice of a simulated tomographic dataset from our largest fully-numerical

simulation. The redshift evolution of the 21-cm, which is quantified by the differential

brightness δTb observed by radio telescopes. Here, we show the redshift range relevant for

the period of the Reionisation Era. On the y-axis the box size in comoving Megaparsec

(cMpc) for given redshift z and corresponding cosmic time on the x-axis.

as a function of the amplitudes scale 2πk−1. The Fourier transform of the fractional per-

turbation to the brightness temperature δ21(x) ≡
[
δTb(x)− δ̄T b

]
/δ̄T b define the power

spectrum such that

〈
δ̃21(k1) δ̃21(k2)

〉
= (2π)3 δD(k1 + k2)P21(k1)

However the fluctuation in the 21-cm signal are highly non-Gaussian (e.g. Mellema et al.,

2006b; Giri et al., 2019c) in such a way that the power spectra does not provide a full stat-

istical description of the signal. Therefore, modern studies proposed topological descriptor

such as Euler characteristics and Betti numbers (Friedrich et al., 2011; Elbers & van de

Weygaert, 2019; Giri & Mellema, 2021; Kapahtia et al., 2021, e.g.) as an alternative. The

latter method in particular, it provides a more complete statistical description of the size

and shape of the 21-cm regions and the subsequent vast interconnected ionised regions.

In the case of a 3D object the Euler characteristic is defined as a sum of the first three

Betti numbers, defined as χ = No −Nt + Nc, where No is the zeroth term and indicates
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the number of isolated objects, meanwhile the first and second term are the number of

tunnels Nt and cavities Nc, respectively. Giri & Mellema (2021) demonstrated that this

values have a distinctive evolution during the different stages of reionisation, making them

an useful tools to describe the state of the IGM from future SKA tomographic dataset

(see § 3.4.6 for results discussion).

In figure 1.7 top panel, we show an example of a simulated tomographic dataset. The

slice is approximately 700 cMpc wide and, to our knowledge, it is currently the largest fully-

numerical reionisation simulation available. For reference the comoving spatial resolution

is ∆x = 2.381 cMpc, the corresponding angular ∆θ and frequency resolution ∆ν at redshift

z is evaluated with

∆θ =
∆x

DC(z)
∆ν =

ν0H(z) ∆x

c (1 + z)2
(1.2.10)

Here H is the Hubble equation and DC is the comoving distance, equation (1.1.7). In our

case for z = 9 we have ∆θ = 1.22 arcsec and ∆ν = 185.85 kHz. On the redshift/frequency

axis, we can see the evolution of the 21-cm signal. From the appearance of the first

sources, at the early stage of reionisation z ∼ 20, the neutral IGM is heated by X-ray

radiation (e.g. Ross et al., 2019) in order that the kinetic component in the equation (1.2.8)

becomes the dominant term. Thus the parenthesis term in the right-hand side of the

equation (1.2.6) is approximated to unity as TCMB
TS
→ 0. This approach is known as the Spin

Saturated Approximation (see § 1.2.1 for discussion) and is relevant for the Reionisation

Era (Furlanetto et al., 2004). Hence, with this approximation the differential brightness

can be observed for the majority in emission, δTb > 0 mK. Therefore, at high redshift

z > 18, the signal correlates with the high-density regions and is well above δTb > 40 mK.

The ionising fronts from sources then start to ionise their surrounding IGM and the global

signal 〈δTb〉 gradually decreases (the middle panel in figure 1.7). The first regions with a

lack of signal, δTb = 0 mK, start to appear at redshift z ≈ 15, indicating the presence of

ionised hydrogen. At this stage, the fluctuation in the signal reaches the first peak with

〈δTb〉1/2 ∼ 6 mK (bottom panel), signifying that the ionised regions have reached sizes

of a few Mpc and have surpassed the simulation resolution size ∆x. Iliev et al. (2014)

demonstrated how this features becomes typical for large enough simulations (of volumes

size L > 100 Mpc) and its amplitude and redshift-position dependent on the sources

model employed. Over time, these ionised regions grow, at first of a few teens Mpc size,

and eventually for redshift z ≈ 8, they merge with neighbours bubbles into vast regions.

This transition is signed by a first decline in the signal fluctuations, 〈δTb〉1/2 ∼ 3 mK,

and subsequently a second peak up to 〈δTb〉1/2 ∼ 5 mK. Ultimately, for redshift z < 7,



1st September 2021 22

the Universe is entirely ionised and therefore, it appears transparent with virtually no

neutral hydrogen left 〈δTb〉 ∼ 0 mK except inside high density regions on small scales,

below ∼ 2 Mpc in size.

Tomographic images from the SKA telescope will be prone to instrumental restrictions

such as limited resolution (Braun et al., 2019). However, a more concerning problem is

the foreground radio-loud emission as it can contaminate and overcome the feeble 21-cm

reionisation signature. The foreground contamination can be of galactic or extragalactic

origin, it requires substantial knowledge of its physics, and can be up to a few million

times brighter than the 21-cm signal. Moreover, the sensitivity of the SKA telescope

depends on the contrast between the collected 21-cm signal and the antennas noise, as

the instrumental systematics can be from three to up to six orders of magnitude larger

and outshine the reionisation signal. The noise fluctuations σnoise for interferometric radio

telescope is widely studied (e.g. McQuinn et al., 2006; Ghara et al., 2016, 2017) and can

be modelled by a Gaussian field with root-mean-squared (RMS) of

σnoise =

√
2 kB Tsys

Aeff

√
∆ν tint

(1.2.11)

where kB is the Boltzmann constant, Aeff the effective collecting area, tint the correlator

integration time and ∆ν the frequency band (expression on the right in equation (1.2.10)).

The system temperature is defined in function of the observed frequency, such that

Tsys ≈ 60 K( ν
300 MHz)−2.55. In figure 1.8 left panel, we show the distribution of a simu-

lated Gaussian noise field after 1000 hours observation for redshifts z = 7, 8, 9, 10, 11 and

12. The frequency resolution has a redshift dependency ∆ν ∝ (1 + z)−1/2 such that the

noise RMS increases for observations at higher redshift. On the right panel, we show a

714 cMpc slice of the realisation at redshift z = 9 or frequency νobs = 142 MHz, calculated

with equation (1.2.9). As we can see, at this observed frequency the noise reaches tem-

peratures of ±2200 K. In our case, we select the variables of equation (1.2.11) based on

the baseline design of the SKA1-Low core station11. Hitherto, for the case of SKA the

effective collecting area is considered to be the area of the core station (35 m in diameter)

such that Aeff = 962 m2. Other parameters are derived from the same setup, such that

tint = 10 s, Tsys = 404.1 K and frequency resolution is ∆ν = 185.85 kHz, calculated with

equation (1.2.10) for z = 9 and ∆x = 2.381 cMpc.

11SKA1 system baseline design revision 1 (2013):https://www.skatelescope.org/wp-content/

uploads/2013/05/SKA-TEL-SKO-DD-001-1_BaselineDesign1.pdf

https://www.skatelescope.org/wp-content/uploads/2013/05/SKA-TEL-SKO-DD-001-1_BaselineDesign1.pdf
https://www.skatelescope.org/wp-content/uploads/2013/05/SKA-TEL-SKO-DD-001-1_BaselineDesign1.pdf
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Figure 1.8: Simulated noise for SKA telescope. Left panel : noise distribution at different

redshift z = 7, 8, 9, 10, 11 and 12. Right panel : a slice of 714 Mpc per size of the cube

noise at redshift z = 9.

1.3 Theoretical Background

In the presence of radiation, the ionization evolution of the primordial gas is given by a

differential equation, one for every component (e.g. Ferrara & Pandolfi, 2014; Park et al.,

2016). Therefore the evolution of the neutral hydrogen fraction xHI = nHI/nH and ionised

fraction xHII = 1− xHI, where nH = nHI + nHII, is given by balance between the number

of ionising photons and number of ion-electron that recombine into atoms, so

dxHII

dt
= (1− xHII)(Γion + Cion ne)− αB(T )xHII ne

dxHI

dt
= −dxHII

dt

(1.3.1)

For simplicity, we consider only the presence of hydrogen, so only one differential equation

is required to be solved. In the first equation, on the right-hand side, the positive term

indicates the contributors to ionizing the gas. Cion is the term for collisional ionization

with free electron or ions, relevant only for high density regions and important temperature

Tgas � 104 K (Hui & Gnedin, 1997; Shull et al., 2004; Ciardi & Ferrara, 2005). Γion is the

photo-ionization rate, and it represents the total number of ionizing photons per second

per hydrogen atom emitted by the sources.

Γion ≡ 4π

∫ ∞
νHI

σHI(ν)
Jν
h ν

dν (1.3.2)

where νHI is the frequency threshold required to ionize hydrogen, Jν ≡ J(t, r, n̂, ν) is the

angular-averaged specific ionising intensity and σHI the photo-ionization cross section for

hydrogen.

The negative term in equation (1.3.1) expresses the recombination rate of ionised

hydrogen with free electron. Here, hydrogen is the only element that contributes to the
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Figure 1.9: Visual representation of equation (1.3.1) performed with the C2RAY radiative

transfer code. Each panel show a slice of a simulated box with size 714 Mpc per side

at redshift z ≈ 7, when the volume is 90% ionised. Left panel : the hydrogen ionisation

field. Central panel : the volume averaged photo-ionisation rate is the positive term in the

same equation Right panel : the volume averaged recombination rate for a primordial gas

composed of only atomic hydrogen. In each panel we show a slice zoom-in on a region of

size approximately 140 Mpc per side. The simulation volume resolution is of 13.5 Mpc3.

electron number density, hence the electron number density is simply ne = nHII = xHII n̄H.

Such that,

R ≡ αB(T )x2
HII n̄H (1.3.3)

where αB ∝ T−0.7 is the (temperature-dependent) Case B recombination coefficient. It

indicates the number of electron-proton recoupling per second for hydrogen at temperature

T and ignores recombination to the ground state. The proper mean number density of

neutral hydrogen n̄H ≡ nH(z) at redshift z is defined by the cosmology such as

nH(z) =
Ωb ρc, 0
mp

(1 + z)3 (1.3.4)

The recombination rate directly depends on the fraction of the ionised gas xHII. This

quadratic dependency increases recombination in high-density regions of the IGM and

can significantly alter the duration of reionisation and the morphology of residual neutral

gas (Mao et al., 2019; Bianco et al., 2021b). For every ionised atom that recombines, an

additional photon must be reinvested to ionising it again, resulting in a substantial loss in

the photon budget to keeping the IGM highly ionised.

In figure 1.9 we show three 714 Mpc per side volume slices of a reionisation outputs

simulation computed with a radiative transfer code. This image gives a visual represent-

ation of the three component in equation (1.3.1). On the left panel we have the ionised

field, corresponding to the left hand side. Red and crimson colours indicate highly ionised

hydrogen xHII ≥ 0.8 and blue colour indicates neutral xHII ≤ 0.2, while green/aquamarine
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denotes the transition phase xHII ∼ 0.5. The central panel shows the photo-ionisation rate,

equation (1.3.2), corresponding to the positive term on the differential equation right hand

side. It quantifies the number of ionising photons emitted by the sources and follows their

distribution. As we can see regions with the largest contributions, 〈Γion〉 > 2.5×10−11 s−1,

resides in highly ionised regions. Finally, the right-most panel show the number of recom-

bination per second, equation (1.3.3). The factor corresponds to the negative on the right

hand side of equation (1.3.1), it correlates with the density distributions and achieves

high recombination in the denser regions, 〈R〉 > 100 s−1. Both right hand side quantities

shown in figure 1.9 are averaged on the simulation volume resolution, Vcell = 13.5 Mpc3.

1.3.1 Source Term

Emission of atomic line radiation in IGM can drastically cool the baryonic gas that has

elevated viral temperature down to TIGM ' 104K, allowing the gas to lose thermal energy

and fall into the gravitational potential well of dark matter halos. Therefore, a common

assumption supported by observational evidence is that each dark matter halo hosts a

star-forming galaxy. Hence, the cumulative number of ionizing photon Ṅγ produced by

the sources per hydrogen atom can be estimated based on the hosting halo mass and is

given by (e.g. Furlanetto, 2006a; Choudhury, 2009; Pritchard & Loeb, 2012b)

Ṅγ = ξ
dfcoll

dt
(M > Mmin) (1.3.5)

where ξ is the efficiency factor and fcoll is the fraction of baryonic matter that collapsed

into halos with mass above a certain minimum Mmin.The efficiency factor is defined as

ξ = f∗ fescNi. Here f∗ is the mass fraction of baryonic gas converted into stars. fesc is

the fraction of ionizing photons that escape into the IGM and Ni quantify the number

of ionizing photons produced per atom converted into stars, which depends on the initial

mass function of (IMF) of the stellar population. Here the collapsed fraction fcoll ≡

fcoll(M > Mmin) is defined by (e.g. Monaco, 1997; Haiman & Holder, 2003)

fcoll =
1

ρm

∫ ∞
Mmin

M n(M, z) dM (1.3.6)

where ρm ≡ ρc, 0 ·Ωm is the comoving matter density, M is the halo mass and n(M, z)dM

is the comoving number density of halos with masses within the range (M , M + dM) at

redshift z. The minimum mass for halos that host star-forming galaxies is Mmin, in general

this corresponds to the mass for the viral temperature 104 K at which hydrogen atomic

line emission becomes the main cooling mechanism (see discussion in § 1.1.2). The halo

number density distribution can be acquired from analytical prescriptions derived from
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numerical N-body simulations (e.g. Jenkins et al., 2001; Tinker et al., 2008; Watson et al.,

2013).

for escaping fraction of ionising radiation (Ferrara & Loeb, 2013; Gnedin et al., 2008)

1.3.2 Sub-grid inhomogeneity and Clumping Factor

Depending on how gas density fluctuations vary in space and over time (local degree of

”clumpiness”), the recombinations in the IGM can significantly affect the progress and

nature of the reionization process. For every ionised atom that recombines with a free

electron, an additional ionizing photon should be produced in order to ionize it again and

keep the IGM highly ionised. In this way potentially a substantial portion of the sources

photon budget could be depleted. In equation (1.3.3) we defined the recombination rate

for the case of a pure hydrogen gas. For a region of volume V we can calculate the

volume-weighted averaged recombination rate as

〈R〉V =
1

V

∫
V
αB(T )n2

HII(r) d3r = αB(T )
〈
n2

HII

〉
V

(1.3.7)

This indicates the number of electron-proton recombination per second in the volume.

Here for simplicity, we assumed that the temperature is constant throughout the volume,

and so the atomic recombination coefficient αB can be considered position-independent.

However, it is important to note that this assumption is not justified when the volume V

is large enough to include a considerable amount of radiative sources and these start to

ionise and heat the surrounding IGM.

The volume-weighted averaged recombination rate has a quadratic dependency with

the enclosed ionised gas fraction. This relation can be factorised out by the so-called

Clumping Factor approach, where the volume-averaged of the density squared
〈
n2
〉

is

approximated by the average density squared 〈n〉2 and a proportional term, namely the

clumping factor, defined as (e.g. Gnedin & Ostriker, 1997; Kaurov & Gnedin, 2015)

CHII =
〈n2

HII〉
〈nHII〉2

=
〈x2

HII〉
〈xHII〉2

(1.3.8)

this term is an indicator that gauges how much the gas is agglomerated in structures under

gravitational collapse, hence, it can be considered as an indicator for unresolved (sub-grid)

structures within the volume. Such that equation (1.3.7) becomes

〈R〉V = αB(T )CHII 〈nHII〉2V (1.3.9)

We illustrate with an example the importance of the clumping factor. In figure 1.10,

we consider two volumes with the same amount of enclosed averaged gas density but
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Figure 1.10: Two visual representations of gas in IGM within a few teens Mpc scale cubic

volume. We consider the same enclosed average density (red shadow) in both cases but

with different spatial distributions. Left panel : the gas is uniformly scattered onto space

(generally assumption in simulations). Right panel : the gas is clustered around the high-

density peak. Although these two volumes enfold the same amount of gas, they differ in

the recombination rate due to higher clustered regions in the cubic volume on the right

panel.

different spatial distribution. On the left panel, for uniformly distributed gas the two

quantities
〈
n2

HII

〉
and 〈nHII〉2 are equivalent and therefore the correction term is close to

unity CHII ' 1. This condition is true only at high redshift when density fluctuations are

relatively small or under-dense regions in the late Universe. However, at lower redshift,

as structures formation take part, the gas starts to cluster in higher density regions,

as in figure 1.10 right panel. Consequently, the two terms grows apart
〈
n2

HII

〉
� 〈nHII〉2

resulting in a larger clumping factor up to a few hundreds of magnitude. Although the two

volumes have the same gas density, the latter case will experience a higher recombination

rate since the free electron and proton are locally closer to each other.

Consequently, if not correctly treated, the clumping factor approach can under- overes-

timate the importance of sub-grid inhomogeneities on radiation absorption and recombin-

ation in the IGM, altering the reionisation process and the sources ionising photon budget.

Therefore, the clumping factor can be applied as a correction term in low-resolution sim-

ulations. In chapter 2 we provide a detailed comparison between clumping factor models,

and we present a thorough treatment of the clumping factor approach for the calculation
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of sub-grid inhomogeneities recombination in large reionisation simulations.

1.4 Simulating the Epoch of Reionization

In the absence of direct observation, numerical simulations play a crucial role in under-

standing the reionisation process’s underlying physics. Moreover, reionisation is a process

that occurs on a wide range of scales. For example, the physics of the radiation sinks and

ionising sources occur on a scale between a few parsecs up to a few hundred kpc sizes. On

the other hand, we require large comoving scales ≥ 100 Mpc to account for the abundance

of sources (Iliev et al., 2014) and the long mean free path of soft X-ray photons with

energy Eγ ∼ 0.1 keV − 12 keV (Trümper & Hasinger, 2008). Over the last two decades,

proprieties of IGM at low redshift has been broadly studied through the GP effect (Rauch,

1998; Fan et al., 2006a). Meanwhile, significant progress has been made in modelling and

solving the radiative transfer equation of ionising fronts from point sources (e.g. Ciardi &

Ferrara, 1997; Iliev et al., 2006, 2009; Zahn et al., 2011).

In this chapter, we present the two main numerical approaches employed to simulate

the EoR. We distinguish two main methods, in § 1.4.1 we present the fully-numerical

simulation, and in § 1.4.4 we discuss the semi-numerical alternative.

1.4.1 Fully numerical Approach

Fully numerical simulations provide the most correct and physical approach to study the

reionisation process by precisely solving the equation (1.3.1) for several elements of the

primordial gas (i.e. H I , H II , He I, He II and He III). These simulations can run simul-

taneously N-body and hydrodynamic algorithm to solve the radiative transfer equation for

the collision dynamic of cosmic gas for a better representation of galaxy formation (e.g.

Springel et al., 2005; Rosdahl et al., 2013; Vogelsberger et al., 2014; Weinberger et al.,

2020). In figure 1.11 right panel, and example of a 6 Mpc/h per side slice of the neutral

gas density distribution for a radiation hydrodynamics with adaptive mesh refinement sim-

ulation (RAMSES-RT code: Rosdahl et al., 2013). On the left panel, a zoom-in on a region

of 500 kpc/h show the same density distribution and the position of the dark matter halos

(orange circles).

The wide range of scales combined with the minimum number of particles required to

constrain relevant mass resolution make this method computationally expensive and time-

consuming. Over the years, better performing algorithm and increasing computational

power in high-performance computers exponentially increased the number of particles
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Figure 1.11: Slice example for the RAMSES-RT code at redshift z = 8.892. Left : a zoom

into a region of size 500 kpc/h per side. In blue the neutral hydrogen density distribution

and with orange circles the position of the halos identified with ROCKSTAR halo finder (the

circles radius are not in proportion to the actual size of the halo). Right : the same density

distribution but on a larger region of size 6 Mpc/h per side.

employed in high-resolution N-body simulations. As a reference, in figure 1.12 we show

the increases of particle number employed in high-resolution N-body simulations over the

years of publication.

On the other hand, a computationally cheaper approach consists of separate reionisa-

tion simulations into three steps. At first, we employ N-body simulations to keep track of

the evolving dark matter density ignoring the gas dynamics. Subsequently, we identify the

collapsed structures that host star-forming galaxies with a halo-finder algorithm and apply

radiative transfer (RT) codes to simulate the ionising photon propagation into the neutral

IGM. However, this approach requires an analytical model that assigns the distribution

and hydrodynamic of gas, especially at small scales.

1.4.2 N-body Simulations

Cosmological observations provide constraints on the parameter for the ΛCDM universe

(e.g. Hinshaw et al., 2013; Planck Collaboration et al., 2020; Valentino et al., 2020; Abbott

et al., 2021) and for a prescribed transfer function of the primordial power spectrum,

numerical simulations can generate a random Gaussian filed for density matter distribution

(e.g. Lewis et al., 2000; Hahn & Abel, 2011). The growth of cosmological structure can

then be derived from the first-order Lagrangian perturbation theory (LPT) (Zel’Dovich,
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Figure 1.12: The number of particles in N-body simulations over the year of publication

showing exponential growth, the different symbol indicates the computational algorithm

that implements the particle interactions. This diagram is taken from Springel et al.

(2005). We extended the chart by adding the most recent N-body simulation results that

increased the simulated particle of a few orders of magnitude after 2005.

1970). However, gravitational instability during cosmic expansion increases the amplitude

of density perturbations, and the theory breaks down at small scales and relatively early

redshift (Scoccimarro et al., 1998; White, 2014, 2015). For this reason, the cosmological

initial condition for particles position and velocity are computed with LPT until redshift of

a few hundred, such that N-body simulations can start computing the growth and evolution

of the matter fluctuations from redshifts well after the recombination era (z ∼ 1100).

N-body simulations compute the matter density distributions and the growth of struc-

ture in an expanding universe. To simulate the reionisation history, we require larger

volumes of a few hundred Mpc per side (Iliev et al., 2014) that accounts for the abund-

ance of sources (Trac & Gnedin, 2011) and rare objects like for high-redshift QSOs. It also
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provides a broader range of density, with larger and deeper voids as well as higher overdense

regions. If we consider Npart the total number of N-body particles and Vbox = L3
box the

simulated volume, with side length Lbox in comoving units, the mass resolution depends

on Npart, Vbox and cosmological parameters, defined by

Mpart =
Mbox

Npart
= ρc, 0 Ωm

L3
box

Npart
(1.4.1)

Here, ρc, 0 ≡ ρc(z = 0) is today critical density, calculated with equation (1.1.5). If we

consider a simulation able to compute Npart ∼ 1011 particles, in a volume of Lbox =

500 Mpc per side, the mass particle would then be Mpart ∼ 1.6 × 108 M�. Halo finder

algorithms are then employed to identify density peaks and the N-body particles that are

gravitationally bounded to it, these high density regions are collapsed structures that could

host star-forming galaxies (e.g. Knollmann & Knebe, 2009; Sutter & Ricker, 2010; Rasera

et al., 2010; Behroozi et al., 2012; Harnois-Déraps et al., 2013; Watson et al., 2013). A

minimum of 50 N-body particles are then group together to constitute a dark matter halo

(Knebe et al., 2011). These halos are then employed in Radiative Transfer simulations as

the source term of ionising radiation.

In numerical simulations halos are considered hosting the potential sources of ionizing

radiation (see discussion in § 1.1.2). Therefore, the cumulative number of ionising photon

per hydrogen atom Ṅγ , equation (1.3.5), produced by these sources is related to the halo

mass Mhalo and is defined as

Ṅγ = f∗ fescNi
Mhalo Ωb

ts µmp Ωm
(1.4.2)

where mp the proton mass, µ is the mean molecular weight of the gas and ts is the sources

lifetime. The first three term are the components of the efficiency factor, as presented

in § 1.3.1. The fraction in the right-hand-side gives the number of baryons in the typical

volume per halo particle divided by sources lifetime, derived from equation (1.4.1). Haloes

hosting ionizing sources are named atomically-cooling halos (hereafter ACHs) and can

be further divided into two mass ranges. Haloes with mass above Mhalo ≥ 109M� are

considered high mass halos (HMACHs). These halos are massive enough to continue to

accrete gas from the surrounding IGM, even when this is photo-heated and -ionised by

sources, at temperature several order of magnitude above 104 K. Therefore, their efficiency

factor remains substantially unchanged throughout reionisation. Haloes with mass above

Mhalo ≥ 108M� are considered low mass halos (LMACHs). They are affected by the

radiative feedback, resulting in complete or partial suppression of their star-forming rate

depending on their mass (Dixon et al., 2016).
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Figure 1.13: Example of the density distribution for the CUBEP3M code. Left : for a large

box, with volume of (714 Mpc)3 and coarse-resolution of 1.2 Mpc per side. An inset panel

shows the overdensity field on a zoom-in region of size 80 Mpc per side. Right : overdensity

field for a small, high-resolution simulation, with respectively volume of (9 Mpc)3 and

resolution 7.5 kpc per side.

The computational limitation inevitably restrains the minimum mass of dark matter

halos resolved in our simulations. In the example mentioned above, for Npart ∼ 1011 and

Lbox = 500 Mpc the halos we could find in our simulation would then have mass above

Mhalo ≥ 8×109 M�. This limitation becomes problematic when simulating the larger scale

or cosmic reionisation (> 100 Mpc) since we do not resolve single sources (e.g. galaxies,

stars, QSOs, AGN, etc.), instead halos with masses of several orders of magnitude larger.

Moreover, computing the ionising photon propagation is time-consuming. Therefore, it is

required to further smooth the N-body and halo finder results into coarse grid-mesh (Sha-

piro et al., 1996). This approach requires analytical prescriptions to model the unresolved

(sub-grid) quantities. Several efforts have been made to perform numerical simulations

that combine the astrophysical and physical processes at small scales (≤ 1 Mpc), which

resolve the physics of all known radiation absorbent, with the large scale simulations, of

the typical size of a few hundred comoving Mpc. Some of these prescriptions account for

the sub-grid inhomogeneous recombination in IGM (e.g. Mao et al., 2019; Bianco et al.,

2021b), the number and distribution of low mass halos (Ahn et al., 2015a), the radiative

contribution by QSOs (Ross et al., 2019) to heat the IGM and the effect of radiation

suppression on ionising sources (Dixon et al., 2016). In figure 1.13 we show two slices of

the N-body density distribution of the IGM computed with CUBEP3M code. On the left
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panel, a large volume of (714 Mpc)3 with a coarse spatial resolution of 2.381 Mpc. As a

visual example of the dynamic range in reionisation simulations, the inset panel zooms on

a region of 60 Mpc per side. The red square corresponds to the simulated volume of the

density slice on the right panel, of volume (9 Mpc)3 and with a resolution of 7.5 kpc.

1.4.3 Radiative Transfer Simulation

Radiative Transfer (RT) simulations solve the evolution of the ionizing radiation field.

When a ray passing through a medium of absorbers along the direction n̂, the variation

in the specific intensity Iν ≡ I(t,x,n, ν) changes accordingly to the following differential

equation (e.g. Rybicki & Lightman, 1986; Abel et al., 1999; Gnedin & Abel, 2001)

1

c

∂Iν
∂t

+
n̂ · ∇Iν
ā

− H(t)

c

(
ν
∂Iν
∂ν
− 3 Iν

)
= jν − αν Iν (1.4.3)

where ā ≡ ā(t) = a(t)/aems is the redshift divided with the redshift of the photon emitted

at zems with frequency ν and it takes into account the cosmic expansion. Here jν is

the emission coefficient, defined as the energy emitted per unit time and αν is the mass

absorption coefficient of a gas cloud, also known as opacity coefficient.

This equation describes a seven-dimensional space problem, with two angular coordin-

ates, three-position and one time and frequency. Given the absorption and emission coef-

ficient, we could, in principle, solve exactly equation (1.4.3). However, if we consider NRT

to be the number of radiating sources in our simulation, the direct solution scale with

the number of sources and requires O(N
5/3
RT ) operations per frequency ∆ν and time step

∆t. Therefore, RT codes are often run on post-processed N-body simulations density field

(e.g. Iliev et al., 2006; Trac & Cen, 2007; Mcquinn et al., 2007; Ciardi et al., 2012; Dixon

et al., 2016) and valid approximations can reduce the number of operations to scale close

to linearly and become computationally feasible.

Several application are proposed and studied (Iliev et al., 2009), we can distinguish

ray-tracing methods (e.g. Abel et al., 1999; Mellema et al., 2006a), moment based (e.g.

Aubert & Teyssier, 2008), Monte Carlo approximation (e.g. Ciardi et al., 2001; Ghara

et al., 2018), local depth approximation (e.g. Gnedin & Ostriker, 1997). In this work, we

focus on the approach adopted by the C2RAY simulation (Mellema et al., 2006a; Friedrich

et al., 2012). A photo-conserving radiative transfer code that casts rays for each sources

onto a coarsened density grid. By assuming that the ionizing photon mean free path Rmfp

is much smaller than c∆t (e.g. Gnedin & Abel, 2001), and that all ionizing radiation from

recombination is absorbed locally jν = 0, we can simplify equation (1.4.3) such that

n̂ · ∇Iν = −αν Iν (1.4.4)
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where the solution is

Iν = Iν, 0 e
−

∫
αν(s) ds = Iν, 0 e

−τν (1.4.5)

here the ionizing intensity decreases exponentially by the absorption coefficient αν along

the direction of radiation propagation. Is common to express the solution, equation (1.4.5),

by the optical depth defined as dτν = αν ds, measured along the line of sight.

1.4.4 Semi-Numerical Approach

As we mentioned in the previous chapter, § 1.4.1, fully numerical simulations provide a self-

consistent model of the astrophysical and physical process in reionisation. However, they

are prone to computational limitations. With a series of nuanced approximations, a semi-

numerical approach can increase the computational efficiency and enable the simulation

of large cosmological volume, otherwise unattainable by fully numerical approaches. The

main approach to derive the growth of H II regions is the excursion set formalism. This

method was first applied to reionisation by Furlanetto et al. (2004), based on an analogous

method in the context of galaxy formation (e.g. Bond et al., 1991; Lacey & Cole, 1994) that

employs the Press-Schechter formalism. The basic requirement of ionising sources is that

the total number of photon from sources must leastwise match the amount of hydrogen

atom in their close surrounding IGM (Trac & Gnedin, 2011). Therefore, a spherical region

of the IGM with overdensity δ, radius size R and corresponding mass M = 4π/3 ρc, 0R
3

is considered fully ionised under the following condition:

fcoll(M, δ) > ξ−1 (1.4.6)

Here fcoll is the fraction of gas collapsed to form ionising sources and ξ is the efficiency

factor. In the case of semi-numerical simulations, analytical prescriptions of the halo

number density n(M) are often favoured to halo finder algorithm because of their swiftness

(e.g. Mesinger et al., 2010). In the case of the Press & Schechter (1974) mass function the

collapsed fraction, equation (1.3.6), takes the form

fcoll = erf

[
δcrit(z)√

2σmin

]
(1.4.7)

where δcrit(z) = 1.686/D(z) is the collapse critical density and σmin ≡ σ(Mmin). is the

density fluctuations variance at the halo minimum massMmin to host star-forming galaxies.

Intuitively, radiative sources must produce enough ionising photons to keep the sur-

rounding IGM plasma warm and ionised to avoid gas recombination. Therefore, the

smoothing scale R is established by iterating the radius from a maximum scale Rmax
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down to the mesh-grid size Rcell, until the condition in equation (1.4.6) is satisfied. This

maxima Rmax can be set to the mean free path of the ionising photon, which is the largest

distance that ionising UV photons can travel before being almost entirely absorbed by

the neutral IGM. This quantity can be extrapolated by low redshift observations of Ly-

man limit absorption systems (e.g. Storrie-Lombardi et al., 1994; Miralda-Escude, 2003;

Ribaudo et al., 2011; Prochaska et al., 2015; Shull et al., 2017; Chen et al., 2020a; Becker

et al., 2021; Cain et al., 2021).

1.5 Machine Learning and Neural Networks

Machine learning (ML) is a field of data science that aims to model and understand phys-

ical processes by determining feature patterns from large amounts of data with iterating

updating algorithms. The idea is to mimic the learning process in biological organisms.

The first concept of machine learning started in the field of computational neuroscience.

Several studies formulated different mathematical expressions that explained and imitated,

to some extent, the information processing in biological systems (e.g. McCulloch & Pitts,

1943; Widrow & Hoff, 1960; Rosenblatt, 1962). From these early studies, it was possible

to develop a statistical approach for recognising patterns in data analysis, formulating the

first multilayer perceptron, or nowadays commonly known as neural networks.

A first practical application of machine learning algorithm was performed by the pion-

eering work of Samuel (1959), where he developed a program that progressively increased

its ability to play the board games of draughts. Several other pioneering works further

enhanced the domain of Artificial Neural Network (ANN). As in the case of the self-

optimising algorithm, started by Linnainmaa (1976), which put the basis for the error

back-propagation formalism (Rumelhart & Zipser, 1985) (discussion in § 1.5.2). The work

of Fukushima (1980), later inspired the development of image input neural network (e.g.

Le Cun et al., 1997), we present its conceptual idea in § 1.5.3. At the end of the nine-

teenth century, several other works further improved and modernised ANN with the help

of more complex and performant algorithms (e.g. Hopfield, 1982; Tesauro, 1995; Hochreiter

& Schmidhuber, 1997), based on the nature of the problem. On the other hand, the avail-

ability of vast and more complete datasets standardised the neural network benchmark

(e.g. Deng et al., 2009; LeCun & Cortes, 2010), allowing a better and unbiased comparison

between models.

The scope of this chapter is to provide an overview of the central concept of the

machine learning application. First, we present the basic framework of a neural network
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Figure 1.14: Panel A: Example of the architecture of a fully connected neural network

with two hidden layers. Each circle correspond to a neuron, and the arrow opacity is

proportional to the importance of the weight. Panel B : An illustration that show a

specific neuron inputs (l) based on the previous layer (l− 1) outputs. Here we use a ReLU

activation function σ to illustrate the non-linear step.

in § 1.5.1. Then, in § 1.5.2, we introduce the concept of network optimisation with the back-

propagation algorithm. Here, we consider the supervised learning method, an iterating

training algorithm based on comparison examples between network predictions and inputs

associated with known labelled outputs. Finally, in § 1.5.3 we present the Convolutional

Neural Network (CNN) model for the recognition of topological features in image inputs,

relevant for the results discussed in chapter 3.
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1.5.1 Feed-Forward Neural Network

The general framework of ANN is divided into three parts, an input layer that consists

of a vector x = (x1, · · · , xN0), one or more hidden layers that extrapolate features from

the input data, and finally an output layer ŷ = (y1, · · · , yNM ). The hidden layer is

formed with a group of neurons that elaborates the inputs with a succession of linear

transformation followed by a non-linear operation called the activation function. ANN

can have one or more interconnected hidden layers to form a series of adjoint layers. The

linear transformation is generally a dot product with a matrix of trainable weights W (l) =(
w

(l)
ij

)
∈ RNl×Nl−1 where l = 1, · · · ,M is the index number of hidden layers associated

with each neuron. This operation returns a vector z(l) = (z1, · · · , xNl) employed as input

for the non-linear transformation.

h
(l)
i = σ

(
z

(l)
i

)
= σ

Nl−1∑
j=1

w
(l)
ij · h

(l−1)
j

 (1.5.1)

This equation is referred to as the basic model of a feed-forward network function. Here,

σ is a non-linear function and h(l−1) = (h1, · · · , hNl−1
) is the output of the prior hidden

layer. By definition this would be the input vector in the case of the first step l = 1, such

that x ≡ h(0). Whereas, in the case of the last step l = M this would be the output layer,

ŷ ≡ h(M). In figure 1.14 Panel A we show a schematic example of a neural network, with

an input x ∈ R3, two hidden layers, of dimension h(1) ∈ R5 and h(2) ∈ R4, with a final

scalar output ŷ ∈ R1. The arrow thickness indicates the significance of the weight for

the following hidden states or output. Panel B focus on one neuron and gives a visual

representation of equation (1.5.1).

The non-linear operation σ can vary depending on the nature of the problem to solve

(Aurélien, 2019). Historically this was a step or sigmoid function, but a series of alternative

has been proposed in the last decades (e.g. Jarrett et al., 2009; Glorot et al., 2011), that

increased the performance of neural networks (Maas et al., 2013). In figure 1.15 we show

some of the most commons activation functions used today for neural networks. The top

two are a sigmoid and Softmax functions respectively, which take any values and return

a value between 0 and 1, whereas at the bottom, two examples of Rectified Linear Unit

activators (Maas et al., 2013). This last category of activators is largely used today due

to its faster and effective training of complex networks.
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Figure 1.15: Examples of activations functions largely employed in neural networks. Top

left, sigmoid function and top right Softmax. In these two cases, the result y is a value

between 0 and 1. The bottom left, the Rectified Linear Unit function (ReLU), return its

value for x > 0, while 0 for negative terms. Bottom right the Leaky version of a Rectified

Linear Unit (LeakyReLU) with gradient α = 0.1 for negative terms.

1.5.2 Network Training by Error Back-Propagation

The previous section presented the basic structure of the feed-forward network function

and how machine learning models approximate any problem as a sequence of linear and

non-linear transformations, from an input vector x to an output ŷ, characterised by a

series of weight parameters W (l) with index l = 1, · · · ,M , also known as the network

hyper-parameters. In order to train a network in supervised learning, the weights must

be optimised to minimise a certain loss function or error between the network output

prediction ŷ and the actual data y. For illustration purposes, here we consider this to

be the mean squared error (MSE), and we represent all the network parameters with the
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Figure 1.16: An illustration that visualise the loss function L as a hyper-surface in the

multi-dimensional space of the network parameters, in this case, represented by w1 and

w2. The algorithm takes a step η in the direction of the descending gradient to minimise

the network error. This process is repeated until the algorithm finds a global minimum,

for instance, a set of parameters wmin that optimise the network.

variable w, such that

L(w) =
1

N

N∑
i=1

(yi − ŷi(w))2 (1.5.2)

Here N is the number size of a subsample of the data. The loss function can be visualised

as a hyper-surface in the multi-dimensional space of the network hyper-parameters. The

idea is to find a set of weights that correspond to the global minima wmin and therefore

minimise the error. In figure 1.16 we give a visual representation of this parameter space.

An efficient technique for optimising a network model equation (1.5.1) is the so called

error back-propagation (Rumelhart & Zipser, 1985). This method is an iterating updating

process, and it consists of dividing the set of data into subsamples of size N , often referred

to as the batch sample. This method iterates through the data, and for each batch, it

estimates a set of initials weights. Subsequently, the gradient is evaluated, and a step of

length η > 0 in the parameter space is taken toward the descending gradient −η∇wL(w).

The quantity η is known as the learning rate and it quantifies the rate of convergence.

Recent studies propose different methods to optimise the learning speed and avoid the
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convergence being stuck in local minima (Delyon, 2000; Smith, 2017; Patterson & Gibson,

2017). Finally, the weights are updated accordingly for the next step. This process is

repeated until convergence ∇wL(wmin) ≈ 0. At that point, the network is considered

trained and able to represent the data with a certain level of accuracy. Recent works have

investigated alternatives for the gradient descendent algorithm (e.g. Ruder, 2017; Zhang,

2019; Chandra et al., 2019; Gong et al., 2020; Yadav, 2021), and several improvements

have been proposed to increased the efficacy and speed of the convergence.

1.5.3 Convolutional Neural Network

The linear transformation in the feed-forward network model ensures that each neuron

operates its inputs independently and no information is shared with nearby neurons while

this elaborates its output. Therefore, this approach is not optimal for multi-dimensional

data, as in the case of images and audio input signal, where the topological features in

data contain essential proprieties inherent to the underlying physical process.

Convolutional neural networks (CNN) are mainly designed to work on image inputs.

The first work employing CNN was performed by Le Cun et al. (1997). However, their

popularisation and widespread application were possible only after the work of Krizhevsky

et al. (2012), where it presented a network at the ImageNet 2012 Challenge, able to

correctly identify more than a thousand classes of objects in a large set of high-resolution

images and decrease radically the error rate achieved by its predecessors. In the context of

CNN, the data are generally three-dimensional tensors with sizes RH×L×W , where H and

L are the spatial image length in pixels, and W corresponds to the number of feature maps,

stacked together to form groups also known as channels. A few examples can be RGB

colour images (e.g. Long et al., 2014), multi-waveband data or hyperspectral images (e.g.

Wei et al., 2020). Their framework is the same as for the feed-forward network. However,

fully-connected hidden layers are replaced by a series of convolutional and or pooling

layers, with a characteristic features detector kernel filter. Hence, in equation (1.5.1) the

vector input is replaced by an image input. Panle A in figure 1.17 provides an example of

convolution on a 4 × 4 input image, represented as a matrix, with just one feature map

for simplicity. We consider a 3× 3 kernel filter Fc = (fij) ∈ R3×3 of values.

Fc =


f00 f01 f02

f10 f11 f12

f20 f21 f22

 =


0 2 1

4 1 0

1 0 1

 (1.5.3)

The kernel iterates through the feature maps, the element-wise product between the
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Figure 1.17: Example of two possible operations on an input image, represented as a

matrix, in convolutional networks. In Panel A a discrete convolutional and Panel B an

average pooling operation. In both cases, we show in orange the area in the input image

where a 3 × 3 kernel filter (in green and blue, respectively) operates. At the bottom of

each panel, the mathematical expression represented by the operation. We only show the

result of the first index in the output matrix.

filtered area (in orange) and the kernel (in green) is summed up. This procedure is

repeated for each feature map present in an input image. In figure 1.18, we show a few

examples of kernel filters applied on a 512 × 384 pixels RGB image, with three features
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Figure 1.18: An example of four filters applied to a 512× 384 pixels photo of Lichen, the

author’s neighbour’s cat. Panel A: the original image. Panel B : edge detector filters that

emphasises contrast between coloured pixels at the borders of the filtered region. Panel C :

edge detector filters that focuses on the contrast produced by the light reflectance. Panel

D : the image is blurred by a normalised box-linear filter.

maps, respectively red, blue and green channels. In particular, Panel B and C depict two

edge detector filters. In the first case, the filtered image emphasises the contrast between

coloured pixels at the borders of the filter, while in the second case focus on the contrast

produced by the light reflectance in the image. The main difference between convolution

and pooling operations, is that the latter apply a function to the filtered area. The stand-

ard approach considers max-pooling (Sudholt & Fink, 2017; Huang et al., 2018) or average

pooling (He et al., 2015; Oquab et al., 2015) but there are more generalised approaches

depending on the nature of the problem (Christlein et al., 2019; Gholamalinezhad & Khos-

ravi, 2020). In figure 1.17 Panel B, we show an arithmetical average pooling operation,

with a 3 × 3 kernel (in blue) on the same input matrix as in the previous example. In

figure 1.18 Panel D, we show the filter associated with the averaged pooling operation,

also known as a normalised box-linear filter. We apply the pooling operation on the same

512× 384 pixels RGB image, and the resulting image appears blurred.

In the case of CNN, the linear transformation in equation (1.5.1) is substituted by a

discrete convolution or pooling operation. Therefore, based on the example in figure 1.17,
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the weight matrix for the l-th hidden layer with filter Fc takes the form of a Toeplitz

matrix with elements.

W (l) =


f00 f01 f02 0 f10 f11 f12 0 f20 f21 f22 0 0 0 0 0

0 f00 f01 f02 0 f10 f11 f12 0 f20 f21 f22 0 0 0 0

0 0 0 0 f00 f01 f02 0 f10 f11 f12 0 f20 f21 f22 0

0 0 0 0 0 f00 f01 f02 0 f10 f11 f12 0 f20 f21 f22

 (1.5.4)

Here the R4×4 input matrix is flattened to form a R1×16 vector, and the output is then re-

shaped to form a R2×2 matrix. The weight matrix can be generalised for input images with

dimensions H×L×W , and in that case equation (1.5.4) corresponds to a three-dimensional

tensor. Even so, the weight parameters are updated via error back-propagation, with the

same method explained in § 1.5.2.

1.5.4 Examples of Deep Structured Learning Networks

Modern computer vision requires very large networks, with multiple hidden layers and

more than a million trainable weight parameters W (l), to be able to learn patterns and

extrapolate features from complex visual inputs. This type of networks are part of the

broad category of deep structured learning networks and are employed in various fields in

science. In our case, we discuss an application of deep learning networks in the context

of cosmic reionisation, illustrated with figure 1.19. This work was carried out by Gillet

et al. (2019). They developed a CNN intended to extrapolate the astrophysical propriet-

ies (output astrophysics) of the first sources from the 21-cm tomographic dataset (input

layer) produced with a semi-numerical reionisation simulation. In § 1.1.2 and § 1.4.4, we

introduced some of the astrophysical parameters that their network recover, such as ξ

and Tvir, but here, in addition, they consider the soft X-ray emissivity LX and the energy

threshold E0 for X-ray self-absorption in galaxies interstellar medium (ISM).

The input layer consists in a 21-cm tomographic dataset, top panel in figure 1.19,

meanwhile at the bottom the four recovered astrophysical parameters, ξ, Tvir, LX and

E0. We can see that their network is structured in two main parts. The first constitutes

a succession of convolutional and pooling layers. The cyan 3 × 3 grid represents the

iterating kernel filters. The pooling and convolutional operations condensate the input

into an array layer (flattening) that contains a compressed representation of the input

image. This array is known as low-resolution latent space and portrays only the most

relevant features encoded in the image. For this purpose, the contracting path is often

referred to as the encoder. The discussion about the latent space is relevant later for

our result discussion in chapter 3. The second part consists of a fully connected neural



1st September 2021 44

Figure 1.19: Example convolutional neural network from the work of Gillet et al. (2019).

This network is particularly designed to extrapolate astrophysical parameters from simu-

lated 21-cm tomographic dataset and it is a perfect example of how different models can

be combined together to form a deep neural network.

network that takes the latent space as input and returns the astrophysical output following

the same structure of the feed-forward model and back-propagation method presented in

§ 1.5.1 and § 1.5.2 respectively.

The pioneering work of Long et al. (2014) extended the framework of CNNs. It intro-

duced a deep learning network that is able to associate each image pixels with the objects

present in visual inputs. This pixel-wise discernment process is a common problem in the

field of data science and is known as image segmentation. In their work, they defined a

class of networks named auto-encoders. As shown in the previous example, the primary

strategy is to divide the network into two parts. The first constitutes an encoder that
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Figure 1.20: Schematic representation of an auto-encoder employed for image segmenta-

tion. The visual input is first compressed with a series of convolution and pooling opera-

tions that reduce the input to a low dimensional latent space of sizes 10×10 and 21 feature

maps. Then, the result is used to produce a pixel-wise map that distinguishes different

objects in the image. This diagram is taken from Long et al. (2014).

contracts the visual input, resulting in a low dimensional latent space.

Contrary to what we have seen in the previous example, the second part consists of

an expanding path. This process is also named decoder. Its goal is to use the informa-

tion compressed in the low dimensional latent space, extrapolate the most relevant image

features to reconstruct the input image, and organise pixels in groups. Each pixel is then

associated with the different subjects in the picture as faithfully as possible. Analogously

to what we discussed in § 1.5.3 this procedure can be expressed mathematically by vector-

matrix multiplication. However, in this case, a transpose version of the matrix W (l),

equation (1.5.4) would be employed to expand the low dimensional latent space instead of

reducing it. For this reason, this operation is often mentioned as transposed convolution,

sometimes called deconvolution, and up-sampling operation, respectively.

In figure 1.20 we show the architecture of their network and an example applied to

everyday life image. We can see that the 500 × 500 × 3 input image is progressively

compressed to form the latent space with dimension 10 × 10 and 21 feature maps. The

latent space is then up-sampled into a pixel-wise prediction with sizes 500 × 500 × 21.

On the right side of the same figure, the resulting output shows a colour base map that

distinguishes the different subjects presented in the input image.
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1.6 Thesis Outline

The primary project of this thesis is to improve the numerical implementations of the sub-

grid IGM inhomogeneities in vast cosmological simulations with the C2RAY code. Moreover,

we employ an artificial intelligence algorithm to develop a new technique for identifying

H II regions from image observation of the 21-cm signal employed in the upcoming Square

Kilometre Array telescope.

In section 1.4 we provide an overview of the two primary methods employed today for

simulating the epoch of reionisation. Meanwhile, in section 1.5 we introduce the concept

of machine learning and artificial neural networks, the notion of error back-propagation

for self-updating algorithms and the convolutional neural network model for image seg-

mentation.

In chapter 2 we present a new approach that correctly quantifies the effect of local

recombinations on the scale below the large numerical simulation resolution. We then

demonstrated how sub-grid inhomogeneity distribution in IGM alters the reionisation his-

tory and the derived topological summary statistics in simulations.

In chapter 3 we employ the notions on deep neural networks introduced in section 1.5

and apply them to reionisation in order to develop a new technique for the extrapolation

of H II regions from noisy image observations of the 21-cm signal and compare it to

previous methods.

Finally, in chapter 4 we provide concluding remarks and a summary of the work presen-

ted in the thesis.
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Chapter 2

The impact of inhomogeneous

sub-grid clumping on cosmic

reionisation II: modelling

stochasticity

This chapter addresses the problem introduced in section 1.3.2. Here, we study the impact

of unresolved sub-grid inhomogeneity in vast EoR cosmological simulation and compare

various modelling approaches for the gas clumping factor and analyse the effect on the

reionisation process.

The content in this chapter can be found in Bianco et al. (2021b), published on the

MNRAS as is. Ilian T. Iliev defined the theme of the project following the results by Mao

et al. (2019). The author wrote and developed the code to calculate the clumping factor

field from the high-resolution numerical simulation while Iliev ran the RT simulations.

The author then implemented the clumping factor models to C2-Ray code. Sambit K.

Giri provided the Python package tools for the statistical analysis of the RT simulation

outputs, and the author adapted them for our simulations. The author then developed

the code for the analysis of the main EoR quantities. The author made all the figures and

wrote the text with help from Ilian Iliev. Kyungjin Ahn, Sambit K. Giri, Yi Mao, Hyunbae

Park and Paul R. Shapiro provided valuable comments on the methods and results.
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2.1 Introduction

In simulations, the recombination rate R is discrete, averaged on a mesh giving 〈R〉 =〈
αB(T)x2

i n2
〉
, where αB(T ) is the (temperature-dependent) Case B recombination coeffi-

cient, xi is the ionized fraction, n is the number density and for simplicity we assumed pure

hydrogen gas. This indicates the number of electron-proton recombination per second in

a volume, for a given gas chemistry, within each grid cell. Early semi-analytical models

have adopted a common methodology named Clumping Factor Approach, that defines the

averaged recombination rate in terms of a clumping factor C =
〈
n2
〉
/ 〈n〉2, which corrects

for the difference between the cell-averaged 〈n〉2 and the actual value, thereby accounting

for unresolved small-scale (sub-grid) structure in simulations (Gnedin & Ostriker, 1997;

Tegmark et al., 1996; Ciardi & Ferrara, 1997; Madau et al., 1999; Valageas & Silk, 2004).

If not correctly treated, this approach can underestimate the impact of sub-grid inhomo-

geneities on absorption of radiation. In some cases this term is just completely ignored,

i.e.: C = 1 (Onken & Miralda-Escudé, 2004; Kohler et al., 2007), but the more common

and simplistic approaches consist in either a constant global term (Cen, 2003; Zhang et al.,

2007) or a time evolving global term (Iliev et al., 2005; Mellema et al., 2006b; Iliev et al.,

2007; Pawlik et al., 2009), averaged on the entire box volume, also referred as the biased

homogeneous or globally averaged clumping model. Recently we presented our first work

(see Mao et al., 2019, for reference), hereafter Paper I, where we investigated the impact

of a spatially varying, local density dependent sub-grid clumping factor on reionization

observables. In the present paper we extend the discussion and propose a more realistic

and accurate treatment of the Clumping Factor Approach, that takes into account also the

scatter around the mean clumping-density relation observed in high-resolution simulations.

We use a high-resolution N-body simulation of a small volume of side length 9Mpc,

with spatial and mass resolution of approximately 200 pc and 5000 M�, to statistically

describe IGM density fluctuations down to the Jeans mass in the cold, pre-reonization gas

and then to implement these sub-grid density fluctuations into two large volume (714Mpc

and 349Mpc of side length) reionization simulations. By adapting the small-scale sub-

grid to the resolution of larger boxes we then model the correlation between density and

clumping factor, comparing three different models (details in §2.2.3), in order to infer the

clumping factor from the coarse density grid of the large volume, see §2.2.4. Finally we

perform a radiative transfer simulation to study the effect of this sub-grid inhomogeneity

approach on observables of reionization.

This paper is organized as follows. In § 2.2 we present the N-body and radiative
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Table 2.1: N-body simulation parameters. Minimum halo mass is 105M�, 109M� and

109M�, corresponding to 20, 40 and 25 particles, respectively in SB, LB-1 and LB-2. In

all cases the force smoothing length is fixed at 1/20 of the mean inter-particle spacing.

Label Box size Nparticle fine mesh spatial resolution mparticle

SB 9Mpc 17283 34563 260 pc 5.12× 103M�

LB-1 714Mpc 69123 138243 5.17 kpc 4.05× 107M�

LB-2 349Mpc 40003 80003 4.36 kpc 2.43× 107M�

Label Box size RT coarse-grained mesha RT coarse-grained cell sizeb

SB 9Mpc 83 (53%), 133 (50%) 2.381, 1.394Mpc

LB-1 714Mpc 3003 2.381Mpc

LB-2 349Mpc 2503 1.394Mpc

aSB density grid is coarsened to the to the required resolution for the LBs. In the column for SB,

the coarsened mesh size and respective percentage of the overlapping volume for windows mesh function,

calculated with equation (2.2.3).
bSpatial resolution of the RT coarse-grained mesh for SB, for the calculation of equation (2.2.5) and

2.2.6.

transfer (RT) simulation used, the numerical methods, §2.2.2 and our models in §2.2.3.

In §2.2.4 we discuss the realisation of the clumping factor for large volumes from sub-grid

inhomogeneity correlation. In §2.3 we analyse our RT simulation results and look into

how our models influence the basic features of EoR: the reionization history in §2.3.1,

the volume-averaged ionization fraction evolution, the integrated Thompson optical depth

and then the Bubble size distribution in §2.3.3. To better understand the change in

ionization morphology we describe a side-by-side comparison of box slice shot with zoom

§2.3.2. In §2.3.4 we analyse the 21cm signal power spectra and the brightness temperature

distribution. Our conclusions are summarized in §2.4.

2.2 Methodology

2.2.1 Numerical Simulations

We use N-body simulations to follow the evolution of cosmic structures, performed with

the CUBEP3M code (Harnois-Déraps et al., 2013). The code uses particle-particle on short-

range and particle-mesh on long-range to calculate gravitational forces. We use set of

three N-body simulations, whose parameters are summarized in table 2.1.



1st September 2021 50

Our clumping factor modeling is based on small, high resolution volume box (6.3h−1 Mpc=

9 Mpc, 17283 particles, labelled SB in table 2.1). This has sufficient spatial and mass

resolution to resolve the smallest halos that can hold cold, neutral gas. Our main larger-

volume N-body simulation is referred to as LB-1 (500h−1Mpc= 714 Mpc, 69123 ≈ 330 bil-

lion particles). A smaller simulation, LB-2, (244h−1Mpc= 349 Mpc, 40003 = 64 billion

particles) will be used as comparison to analyse possible influence of box size and resolu-

tion in the realisation of sub-grid clumping factor and prove the stability of our method.

For both of the large-volume simulations the minimum halos mass resolved is 109M�,

while halos with 108M� < Mhalo < 109M� are implemented using a sub-grid model

(Ahn et al., 2015a), thereby all atomically-cooling halos (ACHs) with minimum mass

Mhalo & 5× 108M� are included. We are using updated N-body simulations compared to

Paper I, we illustrate this further in §2.5.1.

An on-the-fly spherical overdensity halo finder (Harnois-Déraps et al., 2013; Watson

et al., 2013), with overdensity parameter ∆ = 130, creates an halo catalogues at given

redshift, that is later used as inputs for the radiative transfer simulation. The remaining

particles are categorized as part of the IGM. In this work we do not include any effects

from minihaloes Mhalo < 108M�. Even though these sources could have driven ionization

in the early phase of EoR, their effect on later stage is expected to be minor because of

molecular dissociation by UV background radiation from primordial luminous sources, up

to a point that their contribution is negligible compared to heavier ACHs (Ahn et al.,

2009). Initial conditions are generated using the Zel’dovich approximation and the power

spectrum of the linear fluctuations is given by the CAMB code (Lewis et al., 2000). The

SB N-body simulation starts at redshift z = 300, while LB-1 and LB-2 at z = 150, which

gives enough time to significantly reduced non-linear decaying modes (Crocce et al., 2006),

while at the same time fluctuations are small enough to ensure linearity of density field at

the respective resolutions. The cosmological parameter are based on WMAP 5 years data

observation and consistent with final Planck results, for a flat, ΛCDM cosmology with the

following parameters, ΩΛ = 0.73, Ωm = 0.27, Ωb = 0.044, H0 = 70 km s−1Mpc−1, σ8 = 0.8,

ns = 0.96 and the cosmic helium abundance ηHe = 0.074 (Komatsu et al., 2011b). Our

method is general and can be applied in any cosmological background, but the specific

fitting parameters we provide are based on the above values.

We simulate the Epoch of Reionization using the C2-Ray code (Mellema et al., 2006b),

a photon-conserving radiative transfer (RT) code based on short characteristic ray-tracing.
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The LB-1 and LB-2 N-body simulations provide the IGM density fields and halo catalogues

with masses, velocities, position and other variables, for a total of 76 snapshots, equally

spaced in time (∆t = 11.54 Myr) in the redshfit interval z ∈ [6; 50]. For computational

feasibility, the density grid is coarsened for the radiative transfer simulation to 3003 (LB-

1), and 2503 (LB-2). The high-resolution N-body simulation (SB) data input is initially

interpolated onto a 12003 (SB) grid, which can then be coarsened to the required resolution

as discussed in the next section. These grids correspond respectively to cell sizes of length

2.381Mpc, 1.394Mpc and 7.5kpc. For brevity we will refer to these grids as the sub-grid

volumes for SB, and coarse volumes in LB-1 and LB-2, noted 〈.〉crs. Just as in Paper

I, the interpolation of the particles onto a grid is performed with a Smoothed-Particle-

Hydrodynamic-like method (SPH-like), which then yields coarse-grid density, velocity and

clumping fields (see sect. 2.2 in Paper I for details).

Ionization sources for the radiative transfer simulations are characterised by the ion-

izing photon production rate per unit time Ṅγ , given by

Ṅγ = fγ
Mhalo Ωb

∆tsmpΩ0
(2.2.1)

where mp is the proton mass, Mhalo is the total halo mass within coarse-grid cell, ∆ts =

11.53 Myr, the lifetime of stars set equal to the time between N-body snapshots. fγ is the

efficiency factor, defined as

fγ = f? fescNi (2.2.2)

where f? is the star formation efficiency, fesc is the photons escape fraction and Ni is

the stars ionizing photon production efficiency per stellar atom, it depends on the initial

mass function (IMF) of the stellar population, e.g. for Pop II (Salpeter IMF) Ṅγ ∼ 4000,

the value for f? and fesc are still uncertain, therefore these parameters can be tuned in

order to match the observational constrain that we will discuss in §2.3. Here we adopt

the partial suppression model of (Dixon et al., 2016), whereby for LMACHs located in a

neutral cell the efficiency factor is set to fγ = 8.2, while in an ionized cell (above 10%)

we set fγ = 5 to account for feedback. For HMACHs the efficiency factor has a constant

value of fγ = 5, equivalent to e.g. Ni = 5000, f? = 0.05 and fesc = 0.02.

2.2.2 Coarse-Grid Method

Our clumping factor calculations are based on N-body data and neglect any hydrodynam-

ical effects on the clumping factor. Accounting for the gas pressure provides additional
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smoothing at small scales and therefore our clumping factor values should be considered

as upper limits. Moreover, we are interested in the reionization of the IGM and therefore

exclude the halos from our calculations. The contribution of recombinations inside haloes

is already taken into account in equation (2.2.1) through the photon escape fraction and

should not be counted again.

In order to represent the N-body particles into a regular grid, we adopt the SPH-like

smoothing technique described in §2.2 of Paper I, we refer the readers to e.g. Shapiro et al.

(1996) for more general details on SPH smoothing methods. In LB-1 and LB-2 simulations

we use regular meshes directly produced by the SPH code at the required resolution (the

specific values used here are listed in table 2.1). In the SB simulation we adopt a more

flexible approach, whereby we first produce all quantities on a very fine mesh (here 12003),

which is later coarsened as required in order to approximately match the cell sizes used in

the LB simulations.

A window mesh function smooths the SB mesh-grid on a coarser-grained mesh, with

size defined by equation (2.2.3). The method allows the windows function to overlap.

The percentage of overlap N% is chosen in order to achieve the required resolution size

of the LBs and at the same time obtain a large enough set of coarsened SB data, since

Mesh3
crs−gr gives the total number of data point then interpolated by the clumping models

(see figure 2.1).

Meshcrs−gr =
BoxSizeSB

(1−N%) · ResLB
(2.2.3)

where ResLB is the coarse grained resolution of the large box and BoxSizeSB the box size

of the small box. We employ the SB cell-wise quantities expressed with equations (2.2.4)

and (2.2.7) to compute the parametrization of the correlation models. Hereafter, we will

refer to them as the sub-coarse-grid or SB data, whereas in the case of LBs we name them

RT-mesh grid. In our case we have Meshcrs−gr = 8 with percentage overlap N% = 53% for

714Mpc (LB-1) and Meshcrs−gr = 13 with N% = 50% for 349Mpc (LB-2).

We define the gas clumping factor based on the cell-wise averaged quantities (e.g. Iliev

et al., 2007; Jeeson-Daniel et al., 2014; Mao et al., 2019)

CIGM =
〈n2

IGM, cell〉cell

〈nIGM, cell〉2cell

(2.2.4)

where

〈nIGM, cell〉cell ≡
1

Vcell

∫
cell

nIGM, cell(r) d3r (2.2.5)
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Figure 2.1: Sample correlation between local coarse IGM overdensity and coarse clumping

factor at redshift z = 7.305 for LB-1 resolution (1.394 Mpc cells, top panels) and LB-

2 resolution (2.391 Mpc, bottom). Shown are the coarsened SB N-body data at these

resolutions (black crosses), the IC model (deterministic) fit (red line) and the globally-

averaged clumping factor (horizontal dashed line). The (blue) points with error bars

represent the expected value and standard deviation of the log-normal distribution (see

text) in each overdensity bin. Vertical lines (solid grey) indicate the bin limits, whose sizes

are adjusted so that each bin contains the same number of data points (approximately

∼ 400 (top) and 100 (bottom)). For each figure the right panel shows the log-normal

distribution (solid line) of the clumping within each density bin vs. the actual data (shadow

area), where we include in the legend a short description of the relevant parameters.
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and

〈n2
IGM, cell〉cell ≡

1

Vcell

∫
cell

n2
IGM, cell(r) d3r. (2.2.6)

The mean cell over-density is defined

1 + 〈δ〉cell =
〈nIGM, cell〉cell

nIGM, cell
(2.2.7)

where nIGM is the global average of the IGM number density over the entire box volume

(in this paper, we always refer to quantities in comoving units).

2.2.3 Modeling the Overdensity-Clumping Correlation

In this work we consider several models for the parametrisation of the correlation between

the local coarse overdensity 1 + 〈δ〉cell and the coarse clumping factor CIGM.

I) Biased Homogeneous Subgrid Clumping (BHC)

The simplest approach is to set a constant (redshift-dependent) clumping factor C(z), for

the entire simulation volume (e.g. Madau et al., 1999; Mellema et al., 2006b; Iliev et al.,

2007; Kohler et al., 2007; Raičević & Theuns, 2011). In our case, we evaluate this globally

averaged clumping for every SB simulation snapshot at the appropriate coarse resolution

and then fit it with an exponential function of the form:

CBHC(z) ≡ CIGM = C0 ec1 z+c2 z2 + 1 (2.2.8)

where C0, c1 and c2 are the fitting parameters. We refer to this model as biased homogen-

eous clumping (Paper I) since that volume-averaged value is then multiplied by the local

cell density to obtain the recombination rate, effectively biasing recombinations towards

high-density regions.

II) Inhomogeneous Subgrid Clumping (IC) Model

This model, where the local gas clumping is set based on one-to-one, deterministic relation

with the cell density, was first presented in Paper I. We include it here for comparison

purposes. The relation of the clumping with the overdensity in equation (2.2.4) is fit by a

quadratic function:

log10(CIC(x | zi)) ≡ y = ai x2 + bi x + ci (2.2.9)

where x = log10(1+〈δ〉cell) and y = log10(CIGM), the cellwise quantity from SB simulation.

For each snapshot zi we evaluate the fitting parameters ai, bi and ci using the coarse-grid

field we derived in §2.2.2.
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III) Stochastic Subgrid Clumping (SC) Model

This model, first presented here, aims to account for the natural stochasticity of the

relation between local clumping and overdensity, as observed in full numerical simulations.

This stochasticity is due to various environmental effects beyond the dependence of the

clumping on the local density, and results in a significant scatter around the mean relation

used in the IC model (figure 2.1).

We model this scatter from the simple one-to-one relation by binning the SB coarse-

grained clumping in several (here five) wide bins of overdensity ∆δj. In each bin we fit the

scatter using a log-normal distribution.

P(x | zi , ∆δj) ≡
1

xσij

√
2π

exp

(
−(ln(x)− µij)

2

2σ2
ij

)
(2.2.10)

where x = CIGM. For each snapshot zi and bin ∆δj we evaluate and record the parameters

µij and σij.

A stochastic process is then applied to generate log-normal random values from two

dimensional uniformly distributed variable u1, u2 ∈ [0, 1], by using a modified1 Box-Müller

transformation.

CSC(z, ∆δ|µij, σij) = eµij+σij·
√
−2 ln(u1)·cos(2π u2) (2.2.11)

where µij and σij are the weighed log-normal parameters for LB-1 and LB-2. Finally,

we note that the range of overdensities in the SB simulation is inevitably narrower due

to the smaller volume compared to our target reionization volumes. For data beyond the

SB limits, for high and low densities, we fix the mean value to the one given by the IC

model, while standard deviation is fixed to the one obtained in the closest density bin.

These distributions are then sampled randomly to create realisations of the clumping in

large-volume simulations. A similar approach, but in a different context, has been used

previously by Tomassetti et al. (2014) and Lupi et al. (2018), motivated by observation of

density distribution in giant molecular clouds.

In figure 2.1 we show examples of the resulting parametrization obtained from the three

models at redshift z = 7.305, applied at the LB-1 and LB-2 RT resolutions. We show the

coarse-grained N-body data, along with the BHC and IC models, as well as the mean,

E[X] = eµ+ 1
2
σ2

, and the standard deviation, SD[X] = eµ+ 1
2
σ2
√

eσ2 − 1, of our proposed

log-normal distribution of the stochasticity. On the side plot we show the coarse-data

1A random variable is defined log-normal distributed when the natural logarithm of the variable is nor-

mal distributed. Therefore our modification simply consist in taking the exponential of the transformation.
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Figure 2.2: Realization of clumping factor for LB-1 at different redshift. The horizontal

line (solid black) is the globally averaged clumping factor BHC. In red the one-to-one fit IC.

Blue error barred points represent the expected value and standard deviation of the log-

normal distribution. Vertical lines (grey dashed) indicate the bin limits. The green area

indicates the SC realization estimated by equation (2.2.11). We plot the 38% (0.5σ), 68%

(1σ) and 95% (2σ) confidence interval to highlight the realization distribution. Cross

point are the coarse SB data used to calibrate the model parameters. In the case of

z = 7.305 they correspond to the one of figure 2.1 (left column).
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Figure 2.3: Equivalent explanation given for figure 2.2 but for LB-2. Cross point are

the coarse-data used to calibrate the model parameters. In the case of z = 7.305 they

correspond to the one of figure 2.1 (Bottom panel).
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distribution (shadow histogram) and the resulting log-normal fit (solid line) with brief

description of the density-bin limits and fitting parameters shown in the legend.

2.2.4 Clumping Implementation in Large-Scale Volumes

We used simulations LB-1 and LB-2 as examples of our method for creating large-volume

simulation sub-grid clumping realisation. Results are shown in figure 2.2 and figure 2.3,

respectively. In the figures we show the N-body data upon which the model is based

(black crosses), the volume-averaged clumping factor BHC (black horizontal line), the

one-to-one quadratic fit IC (red solid line), the expectation value E[X] and the standard

deviation SD[X] of the log-normal distribution in each density bin (blue error-bar points)

with the relative bins limits also shown (dashed vertical line). Finally, our SC model

clumping realisation (green area) based on the density field of LB-2 is shown with contours

corresponding to the 95% (outer), 68% (middle) and 38% (inner) confidence interval.

Tables with parameters of the three models used in this paper can be found online2.

The results illustrate the extend to which each subgrid clumping model reproduces the

trends in the direct N-body data throughout the evolution. The BHC (mean-clumping)

model roughly matches the peak of the contours and its evolution over time. The IC

model (quadractic fit) captures well the general trend of the density-clumping relation

and tracks well the highest density of data points. Finally, our new SC model realisation

fully reproduces the data, including the scatter around the mean relation. The contours

trace the majority of the simulation data quite closely, apart from a few outliers. However,

a few things should be noted here.

First, as noted in § 2.2.3, the large volumes generally sample much wider range of

environments than smaller ones used to produce the model, thus inevitably the large-

volume realisation should extrapolate to over-densities outside the range sampled by the

direct N-body data, for both larger and smaller over-densities. Second, again as discussed

above, for statistical reasons we fixed the bin sizes so that they contain same number of

data points, which inevitably results in quite uneven bin widths. These are very narrow

near the peak density of points and are quite wide for extreme values of the over-density.

The combination of these factors yields the ’flairing’ of the realisaion (green) points at

both large and small values of the over-density, and thus possible minor discrepancies

with what we find in simulations. However, only small fraction of the points are in these

regions, as demonstrated by the density of points, and therefore it is unlikely this will

2table for model parameters:

https://users.sussex.ac.uk/~mb756/fig/project1/tables.pdf

https://users.sussex.ac.uk/~mb756/fig/project1/tables.pdf
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Figure 2.4: Comparison of mean clumping values for the three different models,the redshift

evolution of the mean clumping factor for the three models, respectively, shows the range

of the standard deviation. On the bottom plot we show the relative where the left image

is for LB-1 and right for LB-2. On the upper plot we have the dashed black line is BHC,

in red IC and in green SC model, the shadow error in percentage of the difference with

BHC.



1st September 2021 60

affect the results in any significant way. Obviously, the IC model is potentially affected in

a similar way, since the quadratic fit is used beyond the range of the original data points.

As a consistency check, we compare the redshift evolution of the volume average of

the clumping realizations based on the SC and IC models vs. the actual global mean Cglob

based on the simulated data (figure 2.4). The vertical line indicates the redshift at which

the SB simulation was stopped, thus data beyond that is extrapolated. The relative errors

of the mean values (bottom panels) are in agreement within the 6 − 7% for LB-2 (right)

and within 10% for LB-1 (left), throughout the relevant redshift range 6 ≤ z ≤ 30. At

the highest redshifts (z > 30) the errors appear larger, however over that redshift range

the density fluctuations are small and thus all clumping factors converge to 1 and do not

contribute to the recombination rate.

Hence, the local density inhomogeneity does not significantly affect the global averages;

however, we expect that the local clumping factor plays a greater role in the recombin-

ation and ionization at small scales (e.g. on the H II region size distribution, ionized

bubble volume evolution, etc.). The proposed models are roughly consistent with results

of previous papers Park et al. (2016), Iliev et al. (2007) and once our the RT-simulation

are performed we expect to obtain similar confirmation from the work of Iliev et al. (2012).

2.3 Clumping Model Effect on Observational Signature

The sub-grid clumping model employed affects the local IGM recombination rates, which is

then reflected in the derived observable signatures of reionization. In order to understand

and try to quantify the importance of this choice, we perform three RT simulations where

we fix the source production efficiencies of ionizing photons and vary solely the clumping

model. At each time step the precomputed N-body density fields are used to create a

realisation of the corresponding gridded clumping factor, as described in §2.2.3. These

clumping grids are then stored and provided as additional inputs to full radiative transfer

simulations with the C2-RAY code (Mellema et al., 2006a). Specifically, the simulation used

for this section is LB-1.

The simulation redshifts span the range z = 40 to 6, for a total of 125 snapshots.

The corresponding aperture on the sky vary from 3.6 to 4.7 deg per side, and covers

the redshifted 21-cm frequency range from 34 to 202 MHz. The resolution evolves from

43.5 arcmin to 56 arcmin in the spatial direction, and from 0.08 to 0.15 MHz in frequency.
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Figure 2.5: Left plot, the volume-averaged neutral fraction for BHC (solid red), IC (dashed

blue) and SC (solid green) clumping models applied to simulation SB-2. On the right we

show the redshift delay of IC and SC models compared to BHC. As a comparison we

include observational constrains (see legend) from Lyα emitters (cyan circle) (Ota et al.,

2008; Ouchi et al., 2010), Lyα clustering (orange circle) (Ouchi et al., 2010) and from high

redshift quasars spectra (pink) (Davies et al., 2018).

2.3.1 Reionization History

Our results on the reionization histories are presented in figure 2.5 and table 2.2. Perhaps

counter-intuitively, either of the more realistic, density-dependent clumping treatments

(SC and IC) yield somewhat faster evolution and an earlier end of reionization compared

to the BHC model. The former models diverge from BHC around z 6 12, and thereafter

the mean reionization is accelerated with a maximum difference at x̄i = 70%, of ∆z ' 0.3

at z ' 7.5, corresponding to a time difference of approximately 36 Myr. The end of

reionization is delayed by ∆z = 0.1, or 17 Myr. Here there is very little difference between

the SC and IC models. Compared to the observational constraints, all three models

reionize somewhat early, however these constraints are largely upper limits, and with

significant uncertainties. Moreover, our main interest is the relative effect of different

sub-grid clumping models, rather than a faithful reproduction of the constraints.

During reionization, free electrons scatter CMB photons via inverse Compton scat-

tering, suppressing CMB anisotropies on all scales and introducing polarization on large
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Table 2.2: Mean volume-averaged ionized fractions, x̄i, at a reionization milestones: 10%,

30%, 50%, 70% and 90% volume of the gas ionized. The last column zreion lists the end of

reionization, defined as x̄i = 99%. The second section lists the redshift and time differences

with respect to the BSC model.

Model z10% z30% z50% z70% z90% zreion

BHC 11.918 9.533 8.118 7.221 6.721 6.483

IC 11.918 9.611 8.340 7.480 6.905 6.583

SC 11.918 9.611 8.340 7.480 6.905 6.549

∆z 0 0.078 0.222 0.259 0.184 0.1

∆t [Myr] 0 5.8 22.9 34.4 28.9 17.2

Figure 2.6: Thomson scattering optical depth to CMB photons integrated through our

simulations, as labelled. Hown are also the Planck observational constraint (black dashed

line) along with its relative 1-σ confidence interval (violet shaded)

angular sizes. The contribution from free electron can be quantified by the integrated

Thomson scattering optical depth along the line of sight, given by

τe(z) = c σT

∫ z

0

ne(z
′)

(1 + z′)H(z′)
dz′ (2.3.1)

where σT = 6.65× 10−25cm2 is the Thomson cross section, c the speed of light and ne is

the electron density at a given redshift.

In figure 2.6 we plot the volume mean of equation (2.3.1), integrated back in redshift.

In agreement with the global reionization histories, the inhomogeneity-dependent models

are very similar to each other and are slightly optically thicker than the BHC case, due
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to the more advanced reionization in the latter. Regardless of this small difference, all

three cases are in close agreement with the Planck-LFI 2015 results Ade et al. (2014),

which found τe = 0.066±0.016 corresponding to an instantaneous reionization for redshift

zreion = 8.8+1.7
−1.4.

The importance of recombinations throughout reionization could be quantified by the

(dimensionless) mean rate of recombinations per hydrogen atom per Hubble time:〈
Ṅrec

〉
=

〈R〉
tH(z) 〈nH〉 Vcell

= 0.72
αB (1 + z)3

H(z)

ρ̄c,0 Ωb

µH mp
CHII 〈xHII〉2 (2.3.2)

In figure 2.7 (top left) we show the evolution of the mean of this quantity over the

full simulation volume (solid lines), as well as averaged only over the over-dense (dashed

lines) and under-dense (dot-dashed lines) regions. Colours indicate the model used, as per

legend. We also show (bottom left) the relative percentage difference compared to the BHC

model. As could be expected, the number of recombinations grows strongly over time,

starting close to zero, departing from BHC model around z ∼ 12, and then all reaching

∼ 15 at late times, as more and more structures form over time. Although all models

end up at similar values by z ∼ 6, the BHC model lags behind throughout the evolution.

The IC and SC models yield very similar values at all times. The over-/under-dense

volumes yield much higher/lower number of recombinations, respectively, demonstrating

the wide variety of outcomes dependent on the local conditions. Interestingly, the over-

dense average for the BHC model results in very similar recombinations to the full-volume

averages of SC and IC models, showing that at least on average the clumping in these last

models behaves the same way as the over-dense regions in BHC. Overall, the SC model

shows a few percent higher recombination rate (∼ 1 − 5%) compared to the IC model.

This is most likely due to the stochastic nature of the realization process, also related to

the broader scatter in figure 2.4 (shaded areas).

In figure 2.7 (right panels) we compare the (non-equilibrium) photoionization rates Γi

computed during the run by the C2-Ray code. Just as above, all mean photoionization

rates are essentially the same until z ∼ 12, after which the BHC model one rises more

slowly, lagging behind the other two cases by about factor of 2.5 throughout most of the

evolution, eventially catching up by z ∼ 6. The average rates in the overdense regions

are higher than the mean (reflecting the inside-out nature of reionization) by a similar

amount, while the mean photoionization rates in the under-dense regions lag behind by

larger factors, up to several hundred, before again rising steeply and catching up with the

mean by z ∼ 6. Interestingly, the mean rate in BHC overdense regions is again very close

to the whole volume means of IC and SC models. The average values in the under-dense
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Figure 2.7: Evolution of the number of recombinations per hydrogen atom and per Hubble

time throughout reionization (top) and the volume-averaged photoionization rate (bot-

tom). The bottom plots show the relative difference compared to BHC in each case.

Dashed and respectively dashed-dotted lines of the same colour indicate the relative quant-

ity in under-dense and over-dense regions.
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Figure 2.8: The number density evolution of unsuppressed LMACHs (fγ = 8.2). Solid red

line the BHC model, dashed blue line the IC model and in gree the SC model.

regions remain the same for all models until much later, z ∼ 9.5, indicating that the specific

clumping model has little influence before that redshift. At first glance, it seems somewhat

counter-intuitive that reionization proceeds faster in the denity-dependent models IC and

SC, despite their notably higher recombination rates. The reason for this is that in the

former cases also the suppression of low-mass galaxies (LMACHs) due to radiative feedback

is weaker than in the BHC case, as illustrated in figure 2.8. In the BHC case essentially

all such galaxies are suppressed by z ∼ 8.5, while in the density-dependent models the

suppression is slowed down, allowing LMACHs to last longer in high density regions.

This is further clarified in figure 2.9 where we show the number density distribution of

ionized fraction of cells at five different reionization stages, x̄i = 0.1, 0.3, 0.5, 0.7, 0.9,

approximately corresponding to redshift between z ' 12− 6 (see table 2.2). The vertical

line indicates the partial suppression threshold for LMACHs. Early on (x̄i = 0.1) the gas

clumping has yet had very litte effect, due to the still small ionized fraction and the short

time available for recombinations, thus all models yield very similar results, with only BHC

showing slightly fewer highly ionized cells. As reionization progresses (x̄i = 0.3), IC and

SC models remain very similar, while BHC is gaining more ionized cells, and at the same

time it is starting to show a lack of neutral regions. Starting from roughly mid-point of

reionization (x̄i = 0.5), the dearth of neutral cells becomes ever more prominent whereas

the peak of highly ionized cells stays roughly similar for all models. A faint difference

between SC and IC is visible at late times, where slightly more cells remain neutral in SC.
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Figure 2.9: Ionized cell number density at reionization milestone x̄i = 0.1, 0.3, 0.5, 0.7, 0.9,

top to bottom, for model BHC (red), IC (blue) and SC (green). Vertical line (black dashed)

indicates the ionization threshold, xi = 0.1, for partial suppression of LMACHs.
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2.3.2 Reionization Morphology

The globally-averaged quantities discussed above (figure 2.5, 2.6 and 2.7) give an overall

idea of the reionization history. Next step is to understand how the sub-grid gas clumping

model affects the propagation of radiation and the local features of reionization. In fig-

ure 2.10 we show box slice of LB-2 and compare simulation snapshots with similar globally

averaged ionized fraction and the three gas clumping models. From top to bottom row we

have x̄i = 0.3, 0.5, 0.7, 0.9 (in table 2.2 we list the corresponding redshift at which this

occurs and its consequent time delay compared to the BHC model) and from left to right

column we have the different models BHC, IC and SC. Red/crimson regions indicate highly

ionized cells xi > 0.9, in dark blue neutral regions xi < 0.1, and in green/aquamarine the

transition phase xi ≈ 0.5. Within each image we embed a zoom-in region, of 85Mpc per

side, to better appreciate the morphological changes of a randomly selected under-dense

neutral clump, as ionized fronts expand (bluer blob, right column plots).

Our simulations reproduce the general reionization features found in previous simula-

tions (e.g. Iliev et al., 2014). In high density regions LMACH are the first halos to form. In

our simulations they make their first appearance at redshift z = 21, and by z ∼ 12 every

volume element contains at least one ionizing source. At first, a modest number of isolated

sources, highly clustered on small scale but homogeneously distributed on large scale, start

to ionize their surrounding gas, forming small regions of a few Mpc size. The presence

of sub-grid gas clumping slows down the propagation of the I-fronts and yields somewhat

smaller, more fragmented H II regions. Throughout reionization, these HII bubbles grow

and eventually overlap, at which point the ionization process accelerates and many of the

smaller bubbles percolate to much larger connected volumes.

The side-by-side comparison shows some notable differences between BHC and the

two density-dependent models, with the latter starting at a faster pace, with earlier local

percolation, then slowing down compared to the former case. Modest differences appear

between the three models in terms of large scale morphology, with a higher degree of

ioniziation around early sources in the density-dependent models IC and SC (respectively

central and right panel). From around the mid-point of reionization (50% ionization by

volume, second row of images) we can see neighbouring growing regions connecting to

each other and starting to highly ionize the linking filament. At this point, accordingly

to figure 2.9, all cells in BHC have surpassed the threshold limit xi = 0.1 for the partial

suppression of low mass haloes. For IC (middle) and SC (right column) the degree of

ionization around sources is visibly more intense compared to BHC, in fact we can dis-
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Figure 2.10: Box slice comparison of LB-2 ionization fraction for different clumping models.

In red/crimson highly ionized regions xi > 0.9, in green/aquamarine transition xi ≈ 0.5

and in dark blue neutral regions rmxi < 0.1. The zoom-in covers an area of 85Mpc per side

and each pixel represent a volume element of 2.381Mpc per side. We compare slices at same

global average ionization fraction, from top to bottom row we have x̄i = 0.3, 0.5, 0.7, 0.9

(see table 2.2 for corresponding redshifts). From left to right column respectively we show

the models BHC, IC and SC.
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tinguish highly ionized cells clustered around the high density peak, whereas under-dense

regions are kept fairly neutral. This diversity is due to the higher recombination rate in

inhomogeneity dependent model, shown in figure 2.7 (left), that effectively reduces the

number of photons able to escape the cells of origin and spread into the neighbour grid

elements. This is not the case for BHC, to which clumping factor in high density regions

is underestimated and ionizing photons are free to percolate and been absorbed elsewhere

in the surrounding IGM, therefore interconnecting filament cells between sources clearly

appears extended and in a more advanced neutral-ionized transition (blue/aquamarine).

Later on (xi = 0.7, third row of images), ionized regions have grown substantially and

become strongly ionized. A first look suggests similar structure patchiness on large scale,

although from the zoom-in we can observe that BHC has a wider and smoother transition

between the ionized/neutral phases, whereas IC and SC show a narrower front, allowing

more cells that host under-density to stay neutral. When the same transition region dwell

across the three model, density dependent model show more irregularity with occasionally

one or few cells appearing slightly more ionized then their surrounding.

The morphology differences are more evident at late times (xi = 90%, bottom row

of images), whereby HII bubbles connect together to form one vast interconnected highly

ionized region. At this stage the vast ionized IGM in IC and SC show variations that follow

the higher recombinations due to density fluctuations, which is not the case in BHC model

and therefore the same regions appear uniformly highly ionized, x ≈ 1. On the other hand

there are no striking difference between IC and SC, except for small variations, of a few

pixels of size, on the ionized/neutral boundaries. We suspect that this is numeric artefact

due to the stochastic nature of SC. We are developing a more complete clumping model,

that we will present in future work, to exclude this uncertainty.

2.3.3 Bubble Size Distribution

One of the key characteristics of reionization, which directly affects all observables is the

normalized distribution of bubble sizes RdN/dR or volume sizes V 2 dN/dV of ionized

regions (Furlanetto et al., 2004). A number of complementary approaches to calculate

these distributions have been proposed (e.g. Friedrich et al., 2011; Lin et al., 2016a; Giri

et al., 2018a). Here we employ the Mean-Free-Path (MFP) method to calculate RdN/dR,

and the Friends-of-Friends (FOF) algorithm (Iliev et al., 2006) to obtain V 2 dN/dV bubble

size distributions (BSD). For both methods we employ the TOOLS21CM3 python package

3https://github.com/sambit-giri/tools21cm

https://github.com/sambit-giri/tools21cm
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Figure 2.11: Ionized bubble size distribution for simulation LB-2 and the three gas clump-

ing models BHC (red, solid), IC (blue, dashed) and SC (green, solid) at volume averaged

ionized fractions x̄i = 0.3, 0.5, 0.7, 0.9, as labelled. Vertical lines indicate the mean bubble

radius R̄ =
∫

(R dN/dR)dR for the respective models.

for EoR simulations analysis (Giri et al., 2020). In both cases, we apply a threshold value

of xth = 0.9, since we want to highlight differences in distribution of highly ionized regions

that develop around sources.

Results are shown in figure 2.11 and figure 2.12, respectively we see the typical traits of

the percolation process, with volume ranges that roughly corresponding to what is expec-

ted from large simulated box (Iliev et al., 2014). We present our results at four different

reionization milestones, x̄i = 0.3, 0.5, 0.7, 0.9, see table 2.2 for corresponding redshifts. In

the case of MFP-BSD, we calculate the mean bubble size by R̄ =
∫

(RdN/dR) dR, repres-

ented by the corresponding vertical lines for each simulation. The sharp cut-off at small

scales 2.381Mpc, for MFP-BSD, and 13.498Mpc3 for FOF-BSD correspond to the simula-

tion cells size and volume respectively. Early-on (x̄i = 0.3, top left panel, figure 2.11), LB-2

hosts small H II bubbles with radius smaller then 10Mpc. For inhomogeneity-dependent

models IC and SC, distributions present many more highly-ionized regions, indication of

a faster radiation propagation around sources. All three distributions peak at the size

corresponding to one cell. The same trend is confirmed by the topologically-connected

FOF volumes (figure 2.12), which are however typically larger than MFP, with volumes
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Figure 2.12: Ionized volume size distribution for LB-2. In red the result for BHC, in

blue for IC and in green for SC. Distribution represents stages where the volume averaged

ionized fraction is x̄i = 0.3, 0.5, 0.7, 0.9.

between 30− 700 Mpc3 for BHC and a wider distribution for IC and SC, from one cell up

to a few thousand Mpc3.

Even though the number of bubbles increase as reionization progress, at x̄i = 0.5

(top right), the MFP-BSD remain similar. However, the FOF-BSD shows a qualitative

transition when the small H II regions start to percolate into much larger, connected one.

Their sizes vary widely, with a broad flat distribution (plateau) at smaller scales (V <

105−106Mpc3). However, BHC and IC also show a bifurcated distribution, with a second

peak at large scales, at 105Mpc3 for BHC and 106Mpc3 for IC, indicating that percolation

process has started (Iliev et al., 2006, 2014; Furlanetto & Oh, 2016a). Compared to BHC,

the IC distribution is shifted toward larger sizes, such that the limit for the plateau and

the percolation cluster are up to one order of magnitude higher. A narrower separation

between these two volume range indicates that the merging of ionized region in BHC has

just started (Iliev et al., 2014; Furlanetto & Oh, 2016a; Giri et al., 2018a), whereas in the

case of IC this process is already ongoing. On the other hand, IC and SC distribution

show similarity at small scale but they differ for larger volumes. The former distribution

shows a constant and continuous range of scales from large volumes V ∼ 106Mpc3 down

to one cell, sign that ionized regions are in principle less interconnected and therefore the



1st September 2021 72

presence of one dominant super cluster has not yet occurred.

During the later stages of the reionization process (x̄i = 0.7, bottom left) this bifurc-

ation of the FOF-BSD continues and strenghtens, with ever more small patches merging

into the large one, while smaller patches become fewer and on average ever smaller. At

this stage the three models present similar volume distributions, whereas their MFP-BSD

varies. BHC distribution starts to show a clear characteristic size peak. Albeit of sim-

ilar shape, the BHC size distribution is clearly shifted to smaller scales, with the average

bubble size smaller by a few Mpc and the distribution peak at scale about a factor of 2

smaller (8 vs 15 Mpc).

Towards late reionization (x̄i = 0.9, bottom right), the volume limit for isolated regions

to grow before merging is further reduced to V ∼ 103 Mpc3, while the percolation cluster

surpass volumes of 108Mpc3 (i.e. close to the full simulation volume) in all the three

cases. In figure 2.11, the sizes distribution in the BHC model has surpassed the other two,

with average radius of 54.84Mpc. IC and SC show again similar distribution but with

an increasing, although still minor, difference in the mean radius. Volume distribution in

figure 2.12 present a similar situation, the only difference between IC and SC consists in

the value of the volume merging limit, with a difference up to 1Mpc3.

2.3.4 21-cm Signal Statistics and Power Spectra

The hyperfine transition of neutral hydrogen redshifed into meter wavelengths is a key ob-

servable of reionization. Its characteristic emission/absorption line has rest-frame wavelength

λ0 = 21.1 cm and corresponding frequency 1.42 GHz. Radio interferometry telescopes

measure the intensity of this signal by quantifying the differential brightness temperature

δTb ≡ Tb − TCMB signal from patches of the sky, given as:

δTb ≈ 28 mK(1 + δ)xHI

(
1− TCMB

TS

)(
Ωbh2

0.0223

)√(
1 + z

10

)(
0.24

Ωm

)
(2.3.3)

here xHI is the fraction of neutral hydrogen and 1 + δ = 〈nN,IGM〉 /n̄N,IGM is the local

IGM overdensity. The differential brightness is characterized by the relation between

the CMB temperature TCMB and spin temperature TS (see e.g. Furlanetto & Oh 2006

and Zaroubi 2012 for extended discussion). Equation 3.2.2 saturates when the neutral

hydrogen decouples from CMB photons and couples with the IGM gas heated by X-ray

sources (e.g. Ross et al., 2019), so that TS � TCMB, which is the approximation we

adopt here. This is known as the heating-saturated approximation where the signal is for

the majority observable in emission, δTb > 0, true only at low redshift z < 15. Thus
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in our simulation the approximated differential brightness is dependent on the density

distribution of the neutral gas and redshift, such that δTb ∝
√

1 + z (1 + δ) xHI.

From the RT and N-body simulation outputs we calculate the differential brightness

coeval cube at each time step. The cube is then smoothed in the angular direction by

a Gaussian kernel with a FWHM of λ0 (1 + z)/B, where B = 2 km corresponds to the

maximum baseline of SKA1-Low core. Smoothing along the frequency axis is done by a

top-hat kernel with the same width and the above Gaussian kernel. SKA1-Low will not

observe the coeval cube. Instead it will observe a lightcone, in which the signal evolves

along the line of sight direction. We construct lightcones from our simulation results

using the method described in Giri et al. (2018a). This method is also implemented in

TOOLS21CM. In figure 2.13 we show the smoothed lightcone for the three different clumping

models, BHC, IC and SC, respectively from top to bottom. This type of data maps the

21-cm differential brightness evolution at the observed frequency νobs = ν0/(1 + z), where

ν0 = 1.42 GHz is the rest frame frequency when the signal was emitted at redshift z.

We then express the comoving box length in corresponding angular aperture of 4.65◦ at

z = 6.583.

Early on, the IGM remains mostly neutral, the average signal largely follows sec-

tion 3.2.2 (δTb > 30 mK) and the fluctuations are driven by the density distribution. The

gas clumping also remains low and therefore at low frequencies, νobs > 120 MHz, there is

no visible difference between simulations. As radiation escapes the host halos, it starts to

form small isolated transparent regions around sources and gradually suppresses the aver-

age signal. The H II regions are still small and thus are smoothed over by the observation

beam. Figure 2.13 shows very similar evolution for the three simulations at frequency

higher then 130 MHz (z < 10), but with different intensity of signal suppression. For

example the appearances of the first transparent regions, due to lack of neutral hydro-

gen, at νobs ' 147 MHz and angular position 3.2◦ and 1.1◦ shows that ionization around

sources are more consistent for the simulation with inhomogeneity dependent clumping.

This is the case even at higher frequency νobs > 180MHz (z < 7), during the final phases

of reionization the morphology and size of the percolation cluster strongly depends on

the clumping model employed by the simulation. BHC model has large regions of feeble

emission ∼ 3 mK that are extensively linked together. The IC model shows the same

morphology but with considerably smaller and more isolated regions of signal. The SC

model, in the other hand, shows a conspicuous lack of signal and regions of emission have

only of a few Mpc size. These differences between models are more clearly observed in



1st September 2021 74

Figure 2.13: Smoothed differential brightness temperature lightcones, the colour map that

shows the smoothed differential brightness ∆Tb intensity as a function of redshifted 21

cm signal frequency νobs and aperture ∆Ω. The angular smoothing is performed by a

Gaussian Kernel with FWHM ∆θ, on frequency direction is done by a top-hat kernel with

same width, we use a baseline of B = 2 km (maximum baseline of the core of SKA1-Low).

The figure shows slice through the simulation and a comparison between BHC (top), IC

(middle) and SC (bottom).

the statistics of the 21-cm differential brightness temperature fluctuations. are significant

variation in the statistics of the differential brightness temperature - rms, PDFs, skewness

and power spectra - shown in figure 2.14, figure 2.15, and figure 2.16.

The low frequency cut-off is chosen for range where differences between models becomes

noticeable. The high density peaks get ionized early, and the corresponding H II regions are

smaller then the interferometer resolution, thus their effect on rms (figure 2.14, top) is to
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Figure 2.14: Differential brightness statistic quantities derived from the lightcones data

smoothed on the core baseline of SKA1-Low (B = 2 km). Plot on top shows the frequency

evolution of the signal root mean squared (RMS). Bottom plot shows the skewness and

an inset panel show the frequency evolution of the averaged differential brightness in

logarithmic scale.

diminish the averaged δTb without increasing fluctuations. At this stage the signal mostly

follows the underlying density field, apart from the peaks and there is little difference

between the models. The observed frequency of the RMS dip indicates the timing at

which HII regions become larger then the interferometry smoothing scale and eventually

start to overlap locally. This is the case at frequency larger then 120 MHz (z ≈ 11). For

the IC and SC models, the turnover occurs earlier and with a steeper slope than the BHC

model, indication that signal fluctuations increase faster and stronger. Moreover the peak

value of the RMS fluctuations varies, in the case of IC and SC models the amplitude is

14% higher, despite having a lower averaged brightness temperature then the homogeneous

case, indicating that the signal is sensitiive to a more physical treatment of the clumping

factor. This is the consequence of a lower clumping factor values in under-dense regions,

consistent with the conclusion in section 2.3.1. The faster propagation of I-fronts, in the
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vast low density regions, leads to a earlier second peak in the RMS of the two former

approaches. In order of appearance at νobs = 165 MHz (z = 7.56) for SC, 169 MHz

(z = 7.34) for IC and slightly later at 176 MHz (z = 7.06) for BHC, respectively when the

average neutral fraction is x̄n = 0.33, 0.28 and 0.25. The subsequent decline is the results

of reionization reaching its final stage, with almost complete ionization.

The averaged 21-cm fluctuations level at different scales is reflected in the power spectra

(figure 2.16), where we compare the results for models BHC, IC and SC at epochs at which

the mean ionization fractions are xi = 0.1, 0.3, 0.5, 0.7, 0.9, as well as around reionization

completion xi = 0.99. At first, the 21-cm signal follows the underlying density distribution

of neutral hydrogen and the power spectra are very similar and approximatively a power

law in all three cases. The flattening of the power spectra is an indication of the expanding

ionized region, shifting the signal toward larger scales while suppressing small structures.

Interestingly, this characteristic appears at the same scale regardless of the clumping model

but modest difference in amplitude of signal. The BHC model yields systematically lower

power at all scales and at all redshifts except close to overlap. The stochastic relation

between local overdensity and clumping factor does not have a large effect throughout

most of reionization, and is noticeable predominantly at small scales later on. The most

significant differences between IC and SC models emerges at the end of reionization (xi =

0.99), where the SC model has less power on all scales, by factor of up to a few. In

fact, at that time the SC model has less power than even the BHC, except at the small

scales k > 0.3Mpc−1. The 21-cm signal fluctuations are strongly non-Gaussian (e.g.

Mellema et al., 2006b; Giri et al., 2019c) and therefore are not fully described by the

power spectra. We therefore also present the 21-cm differential brightness temperature

distribution moments of first (PDFs; figure 2.15) and second order (skewness; figure 2.14,

lower panel). For all the models and all times, 21-cm PDFs are bimodal in nature, which

is a clear signature of non-Gaussianity (e.g. Ichikawa et al., 2010b; Giri et al., 2018b).

Even though all the models show non-Gaussinity, there are significant variations between

models. The SC and IC models are much more non-Gaussian, with many more pixels

at both high low values. Particularly, they show a very strong tail at high values. This

is somewhat stronger for the SC model at all redshifts, indicating that the clumping

scatter yields more high brightness temperature peaks, by factor of a few. The signal

skewness confirms these observations. It is going from negative to positive symmetry at

νobs ' 170 MHz, when the volume ionized fraction is close to xi = 0.6− 0.7 and the RMS

fluctuations reach maximum. Differences between models are noticeable only later, once
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Figure 2.15: Probability distribution functions of the differential brightness temperature at

ionized fractions xi = 0.1, 0.3, 0.5, 0.7 and 0.9, for the three clumping models, as labelled.

the simulation overpass the peak in fluctuations, at frequency larger then 180 MHz. At

this point the skewness increases exponentially.
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Figure 2.16: The effect of clumping factor on the 21-cm power spectra compared at volume

ionization fraction xi = 0.1, 0.3, 0.5, 0.7, 0.9 and 0.99 for the models under study: BHC

(red, solid), IC (blue, dashed) and SC (green, solid).

2.4 Conclusion

Studies of the large scale reionization morphology and its imprint on the observable sig-

natures requires large simulated volumes of a several hundred cMpc per side. Due to

computational limitations which limit the dynamic range, uniformly high resolution can-

not be achieved in such a volume. Therefore no general model of the local recombinations

on scale below the resolution of large numerical simulation exists. Typically a constant

value of clumping factor is used, but recently we presented a more general model (Paper I),

that depends on the local density, and we demonstrated how an over-simplistic treatment

of the clumping factor can have a strong effect on the simulated reionization timescale,

topology and size distributions of the ionized region.

In the current work we extend and improve this method by including an empirical

stochastic sub-grid gas clumping (SC) model (see §2.2.3) based on the results from high-

resolution N-body simulation, where the full range of relevant fluctuations is fully resolved.

Our approach considers a novel parametrization of the correlation between local IGM

overdensity and clumping factor, which take into accounts the scatter due to e.g. tidal

forces. We employ a high resolution N-body simulation SB, of spatial resolution 260 pc

per side, that resolve the Jeans length of the cold IGM and structure evolution on scale

much smaller then the resolution of EoR simulations. The density-binned scatter is then
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modelled with a log-normal distribution. Those distributions are then randomly sampled

to create a realization of the scatter. We then apply our method to the density fields of

larger volumes LB-1 (714Mpc per side) and LB-2 (349 Mpc) to infer its sub-grid clumping

factor (see §2.2.4). Subsequently we post-process the large scale N-body snapshot with

C2Ray radiative transfer cosmic reionization simulation code, in order to present the impact

of various modeling approaches for gas clumping on reionization observables (see §2.3).

We then compare our stochastic model SC with the inhomogeneous clumping model, IC,

which is a simple deterministic density-dependent fit, and a globally redshift dependent

averaged clumping factor BHC, whereby the subgrid gas clumping is independent of the

local density.

We find that density-dependent clumping models, IC and SC, exhibit similar behaviour

for globally averaged quantities, meanwhile there is a tangible difference when compared

to the volume-averaged model BHC. For instance, the reionization history (figure 2.5) is

delayed by as much as ∆z ∼ 0.3 at xi = 0.7 (z ∼ 7.5) and the average neutral fraction

decrease swiftly for z < 10. The evolution of ionized regions in IC and SC models is a bit

faster due to the on average lower gas clumping factor that decreases gas recombination in

the under-dense regions. Meanwhile, as structure formation advance, the higher clumping

factor C > 20 in high-density regions considerably increase the recombination rate, such

that recombination is twice as effective as in the BHC model case for z < 12. We find that

the increase of rate in these regions, due to the different density-dependent gas clumping

approach, is responsible for the divergence in the simulated observables. Despite the fact

that the over-dense medium constitute a minor fraction of the box volume, compared

to the vast under-dense IGM, it is responsible for the majority of recombinations. Our

model and the IC method behave similarly, with only 5% of relative error to each other.

This difference is mainly due to the broad scatter at high density in the clumping-density

correlation plot (figure 2.2). The clumping factor for IGM in the proximity of sources, is

extremely high C ∼ 100 and the introduced stochasticy can extend it to a factor of few

hundreds more. Moreover, the simulated electron scattering optical depth is very similar

in IC and SC models and the choice of the clumping model has little effect on the feedback

of sources.

The density-dependence of the subgrid gas clumping accelerates the propagation of

ionizing fronts in the low density IGM (figure 2.13), By z < 10 (νobs > 130 MHz) the

regions with low 21-cm signal around the sources are more pronounced than in the BHC

case. The differences between the new stochastic approach and the IC model are minor,
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mostly appearing at late times (z < 7, νobs > 175), where the SC scenario presents

considerably less residual neutral gas then the other two models. These last region of

neutral gas are mostly in large voids and distant from any ionizing sources, therefore our

interpretation is that at lower redshift the empirical stochastic model becomes predominant

in under-dense IGM, accelerating the propagation of ionizing radiation in these regions.

Meanwhile, at early stages of reionization the gas recombination in high density region

drives the reionization process, resulting in reduction of the ionizing photons propagating

into the neutral surroundings.

We compared the simulation-derived observables at the same reionization milestones,

xi = 0.1, 0.3, 0.5, 0.7, 0.9. Compared to our previous work, the bubble-size distributions

(based on both mean free path and FOF methods) do not show large variation, as an

indication that the SC model does not increase the recombination rate in a way that

significantly alters the morphology and sizes of the ionized regions. The same conclusion

can be deduced from statistics of the 21-cm differential brightness temperature. As we

demonstrated in Paper I, the density-dependent model increase the amplitude and shift the

fluctuations peak position to lower frequency with a difference of approximately 20 MHz

compared to BHC model, and just a few MHz of difference when compared to the SC

model. Hence, the peak occurs at stage of reionization that differ only of few percentage

x̄n ≈ 0.3 for SC and IC models and 0.25 for BHC.

The PDFs of the redshifted 21-cm distributions show some notable differences between

our models. While all distributions are non-Gaussian, the IC and SC yield significantly

more non-Gaussianity, with long tail of bright pixels, which is very different from the BHC

model. The bright tail is longer for the SC model compared to IC, predicting many more

and brighter pixels at all redshifts.

The power spectra of the 21-cm signal (see figure 2.16) show that in early phase of

reionization, the BHC scenario yields a weaker signal, when compared to density dependent

models on all scales. IC and SC differ somewhat at large scale k < 0.1Mpc−1 for xi =

0.3 − 0.5. This largely disappears by x̄i = 0.7. Towards the final stages of reionization

(xi = 99%) results for three models differ. The IC model predicts the highest signal at all

scales, higher by a feactor of a few compared to SC. The BHC model signal is intermediate

between them for most except the smallest scales.

The results presented here are not intended as a detailed prediction of the reionization

observables, but rather a demonstration that an over-simplistic treatment of the clump-

ing factor can have strong effect on the reionization morphology and thus on simulated
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observables. The widely-used BHC model, overestimates the rate at which the ionized

IGM recombines, and therefore have a strong influence on the timescale of reionization,

morphology of the ionized region and the intensity of the expected 21-cm signal. We

demonstrated that density dependent model takes better account the cumulative effect of

the clumping factor on the gas recombination rate. On the other hand, we have also shown

that accounting for the scatter around the average, deterministic local density-clumping

relation has only modest effects on the reionization morphology and observables, predom-

inantly towards the end of the reionization process. This indicates that the deterministic

IC model is usually sufficient except possibly around and after overlap.

The gas clumping factors presented here should be considered as an upper limit to

the actual clumping since they are derived based on high-resolution N-body simulations

and thus do not capture the photo-ionization feedback that would suppress small-scale

density fluctuations. Consequently it overestimates the recombination rate throughout

reionization. We leave a more realistic approach, that follows the feedback effects, and the

complex physics of the cold gas (T < 104 K) in IGM, for future work.
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Data Availability:

The data and codes underlying this article are available upon request, but can also be re-

generated from scratch using the publicly available CUBEP3M and C2Ray code. The code and

table of parameters for equation (2.2.8), 2.2.9 and 2.2.11 presented in §2.2.3 are available

on the author’s Github page: https://github.com/micbia/SubgridClumping.

2.5 Appendix

2.5.1 Comparison Between Old and New Version of CUBEP3M

In the N-body simulations used in our Paper I (Mao et al., 2019), we employed the version

1 of the CUBEP3M code, the most recent version of the code at the time. Meanwhile in

this paper we employed the updated version 2 of that code, that reduces the error of the

near-grid point interpolation by extending the particle-particle (PP) force calculation for

a particle out to arbitrary number of cells. With the latest version, the user can therefore

choose how far outside the hosting cell the PP-force is active. A detailed discussion of this

update can be found in §7.3 of Harnois-Déraps et al. (2013).

As an illustration of the effect of that change, in figure 2.17, we show the IC model

of the correlation between coarse IGM over-density and coarse clumping factor at z =

7.305 for the SB simulation. In red, the interpolation obtained from N-body simulation

run with first version of the code, in blue, the updated code with PP-force that extend

for 2 neighbour cells. In both cases, we kept the same cosmology, initial condition and

simulation parameters. In the lower panel of the figure, we show the ratio between the two

old and the new result. The result of this more precise gravity forces calculation is that

the gas clumping is somewhat boosted, while the curve retains the same shape, which has

no significant effect on our method and results.

https://github.com/micbia/SubgridClumping
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Figure 2.17: Correlation between local coarse IGM over-density and coarse clumping factor

at redshift z = 7.305 for the SB simulation. In red, the IC model interpolation ran with

the version 1 of the N-body code, with the solid blue line the same quantity but with the

updated code. Lower panel, the ratio between the old and new quantity.
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Chapter 3

Deep learning approach for

identification of H II regions during

reionisation in 21-cm observations

In this chapter, we present SegU-Net, a stable and reliable method for identifying neut-

ral/ionised regions in simulated 21-cm tomographic data images, presented in section 1.2.2,

for the upcoming in SKA-Low radio interferometry telescope.

The content in this chapter can be found in Bianco et al. (2021a), which has been

accepted for publication on the MNRAS as is. The author developed and wrote the

network code and ran the semi-numerical simulation to create the dataset. Sambit K.

Giri provided the Python package tools for the statistical analysis of the outputs, and

the author adopted them to our results. The author implemented the presented deep

learning method to the same package tool, made all the figures and wrote the text with

help from Sambit Giri. Ilian T. Iliev and Garrelt Mellema provided valuable comments

on the methods and results.
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3.1 Introduction

SKA-Low will observe a sequence of 21-cm images from different redshifts that will con-

stitute a three-dimensional set of data known as a tomographic dataset. The evolution

of the 21-cm signal can be seen along the redshift axis. See for example Giri (2019) for

more description about tomographic 21-cm images. The reionization process is driven by

growing H II regions, often referred to as bubbles (e.g. Furlanetto et al., 2004). As the

sources of ionizing photons reside inside them, observing these bubbles and their evolution

will be interesting. Numerous studies have provided various methods to detect and study

properties of H II bubbles (e.g. Datta et al., 2007; Zackrisson et al., 2020; Mason & Gronke,

2020). We can also study the properties of reionization with 21-cm images (Giri et al.,

2018a; Giri et al., 2019a). However, tomographic images from SKA-Low will be prone to

instrumental limitations, such as noise, limited resolution and foreground contamination

(e.g. Koopmans et al., 2015; Ghara et al., 2017). In the field of image processing, methods

that can classify objects or features in images into meaningful segments are known as

‘image segmentation’ methods. Giri et al. (2018a) implemented an image segmentation

method to classify neutral and ionized regions in 21-cm images in the presence of instru-

mental limitations and demonstrated that key properties of reionization can be derived

from such observations.

Artificial intelligence (AI) and deep learning methods are capable of learning patterns

in image data and identifying interesting regions. Image segmentation based on AI is

quite popular in the field of data analysis and has been applied to study objects with

complex visual form contained in big data (Long et al., 2014). In recent years, several

papers made use of machine learning techniques for a range of problems in astrophysics

(e.g. Lee, 2019; Giri et al., 2019b; Yoshiura et al., 2020; Chen et al., 2020b) and cosmology

(e.g. Jeffrey et al., 2020; Sadr & Farsian, 2020; Guzman & Meyers, 2021). In the case

of reionization, several of these methods are aimed to either remove foreground emission

(Li et al., 2019; Makinen et al., 2021; Villanueva-Domingo & Villaescusa-Navarro, 2021),

emulate reionization simulations (e.g. Kern et al., 2017; Schmit & Pritchard, 2018; Jennings

et al., 2018; Cohen et al., 2020; Ghara et al., 2020) or constrain reionization history (e.g.

Shimabukuro & Semelin, 2017; Chardin et al., 2019; Mangena et al., 2020; Shimabukuro

et al., 2020) and its astrophysical inputs (e.g. Sullivan et al., 2017; Gillet et al., 2019;

Hassan et al., 2020).

In this work, we present a new approach for the identification of the distribution of

H II regions in 21-cm images using a deep learning method named U-shaped convolutional
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neural network (U-Net), which is specially designed for image segmentation and feature

extraction (Ronneberger et al., 2015). In our case, we adapt this network for processing

our image data, which are mock observations of the 21-cm signal during the EoR. The

method will segment the images into ionized and neutral regions. We call this framework

SegU-Net.

This paper is organised as follows. In § 3.2 we present how we generate the simulated

data sets used for this work. In § 3.3 we describe the design of our neural network, including

the error estimation. In § 3.4 we discuss its application to our simulated SKA-Low data

sets, considering a range of summary statistics such as the mean ionization fraction, power

spectra and topological quantities such as size distributions and Betti numbers. In § 3.5

we test our framework on various instrumental noise levels, and in § 3.6 we test it on a data

set produced from a fully numerical reionization simulation. We discuss and summarize

our conclusions in § 3.7.

3.2 21-cm Signal

For any deep learning based method, we need a data set containing a sample of all the

possible scenarios, known as the training set. In § 3.2.1, we describe the reionization

simulation code that we use to create the training set. The observable for radio telescopes

observing the 21-cm signal is defined in § 3.2.2. Finally, in § 3.2.3 we give the methodology

we use to mimic the observations expected with SKA-Low.

3.2.1 Reionization Simulation

To train our network, we require a large set of simulations that represent the 21-cm radio

signal for a wide range of redshift during reionization and different assumptions about the

astrophysical sources of ionizing radiation. To do so we employ py21cmFAST, the Python

wrapped version of the semi-numerical cosmological simulation code 21cmFAST (Mesinger

et al., 2010; Murray et al., 2020). The code computes the evolution of the matter density

field using the Zel’dovich approximation (Zel’Dovich, 1970). The ionization field and

the corresponding 21-cm differential brightness temperature are then calculated from the

matter density distribution based on the excursion set formalism (Furlanetto et al., 2004;

Mesinger & Furlanetto, 2007), which considers a region to be ionized when the fraction of

collapsed matter fluctuation exceeds a mass threshold. The ionization fraction xHII(rrr) at
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a position rrr is given as,

xHII(rrr) =


1 if fcoll ≥ 1/ζ

0 otherwise

(3.2.1)

where ζ is the ionizing efficiency of high redshift galaxies and fcoll(Rs, Mmin) is the fraction

of collapsed matter within radius Rs that can form haloes with mass greater than Mmin.

fcoll is calculated at every pixel varying Rs within 0 and Rmfp. The maximum value of

fcoll is used in equation (3.2.1). Rmfp implements the effect of a finite mean free path for

ionizing photons in the ionized IGM.

The cosmological parameters considered in this work are based on WMAP 5 years

data observation (Komatsu et al., 2009) and consistent with Planck Collaboration (2019)

results. We assume a flat ΛCDM cosmology with the following parameters, ΩΛ = 0.73,

Ωm = 0.27, Ωb = 0.046, H0 = 70 kms−1Mpc−1, σ8 = 0.82, ns = 0.96.

3.2.2 Differential Brightness Temperature

Radio interferometry based telescopes record the differential brightness temperature δTb

while observing the redshifted 21-cm signal. δTb depends on position on the sky rrr and

redshift z and can be given as (e.g. Mellema et al., 2013),

δTb(rrr, z) ≈ 27xHI(xxx, z)
(
1 + δb(rrr, z)

)(1 + z

10

) 1
2
(

1− TCMB(z)

Ts(rrr, z)

)
(

Ωb

0.044

h

0.7

)(
Ωm

0.27

)− 1
2

mK (3.2.2)

where xHI, δb, TCMB and Ts are neutral fraction, baryon density contrast, CMB temper-

ature and spin temperature respectively.

Previous studies have shown that our Universe will be heated before reionization begins

(e.g. Pritchard & Furlanetto, 2007; Ross et al., 2017, 2019). Therefore we assume Ts �

TCMB throughout this work, which is known as the spin saturated approximation and

is relevant at lower redshift z . 12 (e.g. Furlanetto et al., 2004; Furlanetto, 2006b). In

the spin saturated approximation scenario, the differential brightness signal is always in

emission (δTb ≥ 0 mK) and locations with δTb = 0 mK correspond to H II regions.

3.2.3 Mock 21-cm Observation

In order to train SegU-Net for application to actual observations, we need a training set

of mock observations. We create these mock observations by simulating the δTb using

the methods described in previous sections and adding instrumental effects, such as the
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Table 3.1: The parameters used in this study to model the telescope properties.

Parameters Values

System temperature 60( ν
300MHz)−2.55 K

Effective collecting area 962 m2

Declination -30◦

observation hour per day 6 hours

Signal integration time 10 seconds

absence of zero baselines, limited resolution and noise. We follow the methods in Ghara

et al. (2017) and Giri et al. (2018a) for mimicking the expected effects of SKA1-Low.

We consider a simulation volume of (256 Mpc)3 and an intrinsic resolution of ∆x =

2 Mpc for simulating the signal. This intrinsic resolution corresponds to an angular aper-

ture of ∆θ = 0.777 arcmin and a frequency depth of ∆ν = 0.124 MHz along the line of

sight at z = 7. As an example, in figure 3.1, we show a coeval cube slice of the neutral

fraction field and δTb field in the top left and bottom left panels, respectively. These

slices are taken from the epoch when the universe was about 50 per cent ionized. For

each δTb coeval cube, we assume one axis as the line of sight or frequency direction and

subtract the mean signal from each frequency channel, such that this could be considered

as a sub-volume from the 3D tomographic data set. We consider this simulation as our

reference throughout the results analysis in §3.4, its astrophysical parameters are given in

table 3.2. We simulate the instrumental noise using the method given in Giri et al. (2018a)

and implemented in Tools21cm1 (Giri et al., 2020). We change the noise seed for each new

member of the training set so that the network is trained on different noise realisations and

we list our assumed parameters for the telescope setup in table 3.1. In the top right panel

of figure 3.1, we show a slice from the simulated noise cube produced from 1000 hours

of observation with SKA1-Low at simulation resolution. When we add this noise to our

simulated signal at the simulation resolution, we cannot discern any feature of the signal

as the noise is several orders of magnitude higher than the signal. Therefore we reduce the

resolution of the noisy signal in the field-of-view direction by smoothing with a Gaussian

kernel with full-width at half maximum (FWHM) of λ0(1+z)/B, where B is the maximum

baseline. For example, B = 2 km corresponds to a resolution of 2.905 arcmins at redshift

z ≈ 7 and 3.631 arcmins at redshift z ≈ 9 respectively. In the frequency direction we

reduce the resolution by convolving with a top-hat bandwidth filter of a width matching

1A python package for EoR simulations analysis. https://github.com/sambit-giri/tools21cm

https://github.com/sambit-giri/tools21cm
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Figure 3.1: Top left : the neutral hydrogen fraction at simulation resolution. Green con-

tours indicate the boundary between neutral and ionized regions after reducing the resol-

ution to an observation with a maximum baseline of B = 2 km and matching frequency

resolution. Bottom left : the 21-cm signal at simulation resolution. Top right : The 21-cm

signal plus noise realisation at simulation resolution for an observing time of 1000 hours.

To mimic the effect of the lack of a zero baseline, the mean signal has been subtracted.

Bottom right : The noisy 21-cm image after smoothing to the resolution to an observation

with a maximum baseline of B = 2 km and matching frequency resolution. This is an

example of a smoothed box slice used during the network training. The solid black line

shows the same contour as in the top left panel.

the FWHM of the angular smoothing in comoving units. This width corresponds to 0.462

MHz at redshift z ≈ 7 and 0.551 MHz at redshift z ≈ 9 respectively. In the bottom right

panel of figure 3.1 we show a slice from our noisy signal at this reduced resolution. At this

resolution, the smallest H II regions seen in the top left panel of figure 3.1 can no longer

be discerned. However, we can still identify the larger H II regions.

To illustrate what we can achieve with these images, we apply the same smoothing
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Table 3.2: Astrophysical parameters used for our fiducial simulation.

Parameters Values

ζ 39.204

Rmfp 12.861 Mpc

Tmin
vir 3.46× 104 K

to the neutral fraction field and apply a threshold of xth = 0.5 to label neutral/ionized

regions. We refer to the smoothed and then binarised neutral fraction field as the ground

truth. We use this field to compare the accuracy of the recovered binary field throughout

our paper. We want to point out that this is different from the ground-truth of the

original reionization simulation as the limited resolution of the radio telescope will limit

the observation of small scale features. Then, we over-plot the boundaries of these ionized

regions, the neutral fraction slice and signal slice in top-left and bottom-right panels of

figure 3.1 respectively.

Training and Testing Set

For our training set, we randomly sample the astrophysical simulation parameters by

a normal distribution, such that the ionizing efficiency of high-redshift galaxies ζ is

sampled with N ∼ (52.5, 20), the mean free path of ionizing photons Rmfp with N ∼

(12.5 Mpc, 5 Mpc) and the (logarithmically-spaced) minimum virial temperature for halos

to host star-forming galaxies Tmin
vir with N ∼ (4.65, 0.5). The choice of these values is

such that for a majority of the samples most of the reionization history (xV
HI from 0.9 to

0.1) falls within the redshift interval 9 to 7. The redshift is randomly sampled with a

uniform distribution U ∼ [7, 9]. The initial conditions of the cosmological density field

are changed for each simulation. This helps us avoid the impact of cosmic variance on

our trained model. With the list of all the parameter values, we produce 10,000 mock

observations of the 21-cm signal. Out of these mock observations, we use 15 per cent as

the so-called network validation set. This validation set is used during the training method

to provides an unbiased evaluation of the network model fit.

Eventually, we will use SegU-Net on actual 21-cm image observations. Here we rely

on an additional 300 mock observations as the testing or prediction set. Just as for the

training set, the parameter values are randomly chosen. We call this the ‘random’ testing

set. The training process is blind to the prediction set. Apart from the above testing set,

we create an additional simulation with fixed values of astrophysical parameters (given
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in table 3.2). We have chosen these values such that between z = 9 and 7 reionization

proceeds from xV
HI ≈ 0.9 to 0.1. We call this set the ‘fiducial’ testing set. Since the signal

evolves as reionization progresses in this testing set, it better mimics the upcoming 21-

cm observations. With this testing set, we will test SegU-Net’s capability to capture the

evolution of structures and recover the binary field from untrained data in § 3.4.

Fully-Numerical Simulations Testing Set

To train SegU-Net, we relied on 21cmFAST for creating the training set. However, our

Universe may not exactly be described by this semi-numerical code. If our neural network

has learnt to find structures in 21cmFAST simulations only, then we cannot use it for SKA

observations. To ensure that the neural network is not over-fitted, we consider a different

reionization simulation code to build the mock observations.

We first simulate the matter density field and track the evolution of cosmic structures

by using the CUBEP3M N -body code (Harnois-Déraps et al., 2013). The simulation is carried

out in a volume of (349Mpc)3 with 64 billion particles. Dark matter haloes down to a

mass of 109M� is found at various redshift using the spherical average halo-finder (Watson

et al., 2013), meanwhile haloes with masses between 108 and 109M� are implemented with

a sub-grid method (Ahn et al., 2015b). We use the same cosmology that is given in § 3.2.1.

We then employ the C2RAY radiative transfer (RT) code (Mellema et al., 2006b) to

simulate the cosmic reionization. C2RAY requires the matter density field in a 3D grid.

Therefore the distribution N -body particles are put in 3D grids with a smoothed particle

hydrodynamic method (e.g. Shapiro et al., 1996; Mao et al., 2019). This grid has spatial

resolution of ∆x = 2.1 Mpc and a 1663 mesh-grid. Sources ionizing photon production

rate per unit time is proportional to the mass of the hosting halo Mhalo such that.

Ṅγ = fγ
Mhalo Ωb

∆tsmp Ωm
(3.2.3)

where mp is the proton mas and ∆ts = 11.53 Myr is the stars lifetime. The efficiency factor

of sources is defined as fγ = f? fescNi where f? is the star formation efficiency, fesc is the

photons escape fraction and Ni is the stars ionizing photon production efficiency per stellar

atom. The efficiency factor for halos with masses Mhalo < 109M� is set to fγ = 2. For

the the lower mass halos it is initially set to fγ = 8.2. When their environment becomes

ionized (above 10 percent), their efficiency is reduced to fγ = 2 to account for radiative

feedback. C2RAY outputs the hydrogen ionization field at a time interval of 11.5 million

years. For more details on the RT and N -body simulations methods, see ? and Bianco

et al. (2021b). We derive the differential brightness temperature δTb from the ionization
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Figure 3.2: Right panel : An example of a smoothed cube slice from the C2RAY simulation

on the right employed to test the stability and reliability of the network. This slice

is for z = 8.06 and corresponds to a volume-averaged neutral fraction of xV
HI = 0.38.

As for the training set, at simulation resolution, we subtracted the mean signal in the

frequency direction from the differential brightness temperature. We then added simulated

instrumental noise for the observed time of 1000 hours and smoothed the signal with

the same baseline as SKA1-Low. Left panel : the binary field recovered with our neural

network. In red/blue, the prediction performed with our network and the green contour

shows the boundary between neutral and ionized region. The same contour is shown with

a solid black line on the right panel for comparison.

field and the density using section 3.2.2. We select four outputs, which are at redshifts

z = 7.96, 8.06, 8.17, 8.28, 8.40, 8.52, 8.64, corresponding to a volume averaged neutral

fraction of xV
HI = 0.17, 0.29, 0.42, 0.57, 0.70, 0.81, 0.90, respectively. The simulated δTb

from these epochs are converted into mock observations using the procedure outlines in

§ 3.2.3. We use these mock observations as a testing set.

The right panel of figure 3.2 shows a slice of the calculated δTb for redshift z = 8.06

(xV
HI = 0.38 at simulation resolution). Similar to the bottom right panel of figure 3.1, we

add the instrumental noise corresponding to a 1000 h observation and smooth the signal

to a resolution corresponding to a maximum baseline B = 2 km. The black contours

correspond to the boundary between neutral and ionized regions. These boundaries are

derived from the simulated neutral fraction field at the same resolution as the δTb data

set.
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3.3 U-Net for 21-cm Image Segmentation

Here we describe our machine learning method for identifying ionized and neutral regions

in noisy 21-cm images and our approach to estimate the uncertainty of its results in § 3.3.1

and § 3.3.2 respectively.

3.3.1 Our Network, SegU-Net

Our segmentation network2 is based on the U-Net framework first introduced by Ronneber-

ger et al. (2015). U-Net consists of two likewise symmetric paths, an encoder operator

that contracts the image and a decoder operator that expands the extracted features. The

encoder corresponds to a classical convolutional neural network (CNN). This CNN aims

to reduce the size of the input image in such a way that only information of the most

interesting features remains. A series of concatenated convolution operations (layers) re-

turns a low dimensional latent space (or latent vector) that contains information about

these extracted features. In Appendix 3.8.1 we provide a visual representation of the low

dimensional latent space for the example case of a sphere. We show a schematic repres-

entation of the U-Net in figure 3.3. The left part of the U-shape in the diagram and the

bottom layer represents the encoder and the low dimensional latent space respectively. For

a detailed discussion of CNNs, we refer the reader to Mehta et al. (2019), and for examples

of employing CNNs to infer cosmological and astrophysical parameters in the context of

reionization to Gillet et al. (2019) and Hassan et al. (2020). In our case, the information in

the latent space (or latent vector) of U-Net (bottom layer) is expanded by a decoder into

a binary map of the same size as the input image. The right part of the U-shape of the

diagram in figure 3.3 represents the decoder. The decoder gradually increases the spatial

resolution of the latent vector with an up-sampling operation (transposed convolution)

until we obtain the same dimension of the input image. After each up-sampling step, the

output is combined with the corresponding encoder layer with the same dimension. We

illustrate this further in Appendix 3.8.2 with an example.

Even though each of our image data sets is 3D, SegU-Net is trained on 2D slices. We

identify structures in 3D image data by running on every slice along the third axis. Tests

show that the method is not sensitive to the choice of the third axis. When compared

to a neural network trained on 3D data, we found that our approach is computationally

less expensive without loss of accuracy. Therefore the U-Net architecture described in this

work is only applied to 2D image data. The structure of the encoder layers consists of

2https://github.com/micbia/SegU-Net

https://github.com/micbia/SegU-Net
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Figure 3.3: Schematic representation of SegU-Net network architecture. The orange arrow

indicates a 2D convolutional layer, followed by batch normalization and ReLU activation.

Pooling operations followed by dropout layer are indicated with green arrows. The blue

arrow indicates an up-sampling layer by transposed 2D convolutional layer and with a red

arrow the closing layer, a 2D convolution followed by a sigmoid activation function. The

descending path on the left side divides the resolution of the image after each pooling

operation and doubles the channel dimension after each convolution. On the other hand,

the expansion path doubles the spatial dimension at each up-sampling operation and

decreases the channel dimension after concatenation with its counterpart layer in the

descending path.

two convolutional blocks followed by a 2D max-pooling layer (MaxPool) of size 2x2 and

a 5 per cent rate dropout layer (Drop). This regularization technique randomly shuts

down a portion of the layer neurons to avoid over-fitting (Hinton et al., 2012; Srivastava

et al., 2014). The convolutional block (ConvBlock) consists of a 2D convolution layer

(Conv2D) with 3x3 kernel size. We add a layer that normalizes the previous input layer

over the batch sample to avoid over-fitting (BN) (Ioffe & Szegedy, 2015) and as an activ-

ation function we employ a Rectified Linear Unit (ReLU) activator (Jarrett et al., 2009;

Glorot et al., 2011), ConvBlock=Conv2D+BN+ReLU. This layer structure is repeated for a

total of four levels (Encoder-Level). At each step, the dimension of the input image is

halved by the max-pooling operation. The number of feature channels is doubled by the

convolutional layer, Encoder-Level=2*ConvBlock+MaxPool+Drop. The decoder structure

is somewhat similar to the encoder. We replace the pooling operation with a transposed

2D convolution (TConv2D) (Dumoulin & Visin, 2016; Zeiler & Fergus, 2013), that has an

opposite scaling effect on the resolution and channel size. This layer output is then con-

catenated (CC) with the corresponding encoder level to preserve the features extracted
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in the contracting path. This step is followed by a dropout layer and two convolutional

blocks, Decoder-Level=TConv2D+CC+Drop+2*ConvBlock. The final output consists of a

2D convolutional layer followed by a sigmoid activation. Our network has a total of 23

2D convolutional layers distributed on four down- and up-sampling scaling levels and a

bottom layer, for a total of approximately 2.5 million trainable parameters. In figure 3.3,

we show our best performing network and label the shape of the output from each inter-

mediate hidden layer of this network. More details are provided in Appendix 3.8.1 and

3.8.2.

During our training process, the hyperparameters of the network are learnt by minim-

izing a loss function. We employ the balanced cross-entropy (BCE) (Salehi et al., 2017),

L(y, ŷ) = − 1

N

N∑
i=0

(β yi log10(ŷi) + (1− β)(1− yi)log10(1− ŷi)) (3.3.1)

where yi ∈ {0; 1} is the pixel-wise ground truth, ŷi the predicted value, N the batch

size, which is our case is of size 32 and the parameter β = 1
N

∑N
i=0(1− yi) is the average

volume ionised fraction of the batch. In our context, at early/late stage of reionization

the statistical weight of the ionized/neutral pixels are under-represented. This situation is

known in data science as a problem affected by “class unbalanced” data. To deal with this

we use the above loss function which has been shown to be well suited for segmentation

problems that are affected by class unbalanced data (Cui et al., 2019). We further used

the Adaptive Moment Estimator Adam (Kingma & Ba, 2014), an optimized stochastic

gradient descent algorithm for error minimization. The initial learning rate, the step size

of the rate of convergence that minimizes the loss function, is set to 10−3. We trained the

network using 2 GPUs, and it took approximately 1,500 wall clock hours.

3.3.2 Uncertainty Estimation On SegU-Net

One of the main drawbacks of machine learning is that it is unable to quantify uncertainties

and confidence intervals for its predictions, and only recently attempts have been made

(Charnock et al., 2020; Hortúa et al., 2020) to include error estimation. However, this has

not yet been generally implemented for U-Nets. Additionally, if not well optimized, neural

networks are prone to over-fitting and tend to be biased. Therefore, we have developed

an error estimation procedure to be used during the prediction process. This procedure

gives our network additional power by providing a pixel by pixel error map.

Image manipulations, such as zooming, shifting along an axis, flipping axes and rota-

tion along an axis, are commonly performed on 2D or 3D image training data to increase
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Figure 3.4: Slice comparison of the binary field, in blue ionized regions and in red neutral.

Left panel : binary field recovered by the Super-Pixel method. Central panel : binary

field recovered by our neural network. Green lines indicate the true separation between

ionized/neutral regions, derived from a smoothed version of the simulated neutral hydrogen

distribution. Right panel : the per-pixel error as calculated by SegU-Net. The color-bar

indicates the intensity of the network uncertainty.

the number of samples (Simonyan & Zisserman, 2015; Szegedy et al., 2015). This technique

is known as time-test augmentation (TTA) of data (Perez & Wang, 2017; Wang et al.,

2020). Here we use this approach to estimate the error on the final result. We perform

several copies (∼ 100) of the same sample during the prediction process through image

manipulations. These manipulated copies are then independently processed by SegU-Net.

Each of the recovered binary fields is transformed back. We calculate the final result as

the average of these fields and the per-pixel standard deviation to estimate the error for

each pixel.

An example of the pixel per pixel error map can be seen in figure 3.4 (right-most

panel). We will discuss this figure further in § 3.4.1. This simple method provides our

neural network with an uncertainty estimation for each labelled pixel.

3.4 Results

Once the network is trained, we want to estimate how well it recovers the binary field from

noisy 21-cm images. To do so, we include in our analysis the state-of-the-art Super-Pixel

method presented in Giri et al. (2018a). The Super-Pixel method is based on an advanced

image processing technique called the Simple Linear Iterative Clustering (SLIC) (Achanta

et al., 2012). SLIC groups similar pixels in images into “super-pixels”. These Super-

Pixels are then classified into neutral and ionized ones to get the final map containing
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the identified features. In previous studies, this method has been shown to be superior

compared to other methods, such as putting a simple threshold to the mean signal (e.g.

used in Kakiichi et al., 2017), the k-means method (e.g. used in Giri et al., 2018a) or the

maximum deviation method (e.g. used in Gazagnes et al., 2021). The Super-Pixel method

proves to be quite efficient in recovering the binary fields from noisy 21-cm images. The

summary statistics extracted from those are accurately reproducing the ones obtained

using the simulation data sets. As shown by Giri et al. (2018a), the choice for the number

of super-pixels depends on the simulation box size and resolution. In our case, we tested for

a few values between 500 and 7000. We noticed that above the value of 5000, the algorithm

becomes more computationally expensive without yielding a substantial increase in the

segmentation accuracy. Hence we employ 5000 super-pixels.

3.4.1 Visual Comparison

To start, we show a visual comparison of slices in figure 3.4. We compare the predicted

binary field recovered by the Super-Pixel method (left-most panel) and SegU-Net (central

panel) with the ground truth (green contours in both panels). As explained in § 3.2.3

the ground truth is the boundary of ionized regions extracted from the simulation neutral

fraction field at the same resolution by putting a threshold of 0.5. The red and blue

pixels represent neutral and ionized pixels, respectively. In the right-most panel, we show

the pixel-error estimated from SegU-Net with a colour bar. The error is determined by

calculating the standard deviation of the same pixel from the different version of the same

mock observation produced with TTA (see § 3.3.2).

SegU-Net shows better precision in recovering shapes of the ionized regions compared

to the Super-Pixel method. As expected, most of the network uncertainty is located

at the boundaries of neutral regions or between two large ionized bubbles when these

are percolating, and the gap is getting narrower. This uncertainty has a direct bearing

on small neutral islands of a few Mpc scale, residing in vast ionized regions. Moreover,

larger uncertainties, σstd ≥ 0.25 are located around narrow ionized regions protruding

into large neutral regions (e.g. in figure 3.4 right-most panel, at coordinates x ∼ 140 Mpc

and y ∼ 125 Mpc). This behaviour suggests that the uncertainty mainly depends on the

contrast between the local neutral and ionized regions. The network selects regions in the

image based on the largest gradient in the 21-cm signal intensities to recover the binary

field. Therefore, we expect larger uncertainties for reionization scenarios in which the

contrast in the 21-cm intensities are relatively small.
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Figure 3.5: Left panel : the Matthews correlation coefficient rφ of the recovered binary

field for the prediction set, against its volume-averaged neutral fraction. Error-bar indic-

ates the network confidence interval, and colours indicate the redshift of the simulated

coeval cube. On the inset panel, we show the distribution of the training set (blue his-

togram) against the volume average neutral fraction. Right panel : comparison of the

same correlation coefficient for recovery performed on the fiducial simulation with our

neural network (blue circle line) and the Super-Pixel method (orange square line). We

also include the result from the test on the C2RAY simulation, from left to right, red-

shift z = 7.96, 8.06, 8.17, 8.28, 8.40, 8.52, 8.64 corresponding to a volume-averaged neut-

ral fractions of xV
HI = 0.17, 0.29, 0.42, 0.57, 0.70, 0.81, 0.90. The violet dots with rel-

ative confidence intervals are predictions performed with SegU-Net for these cases and

the green squares are the corresponding results from the Super-Pixel method. Horizontal

dashed lines in both panels indicate the overall average rφ coefficient for the entire data set

and the fiducial simulation respectively, in blue for SegU-Net and orange for Super-Pixel

method.

3.4.2 Correlation Coefficient

To compare the predicted ionized fields from the 21-cm images mathematically, we use

the Matthews correlation coefficient (MCC) (also known as rφ coefficient) defined as:

rφ =
NTP ·NTN −NFP ·NFN√

(NTP +NFP)(NTP +NFN)(NTN +NFP)(NTN +NFN)
, (3.4.1)

whereNTP andNTN are the total numbers of neutral and ionized pixels recovered correctly,

respectively. NFP is the total numbers of pixels incorrectly guessed as neutral and NFN is

the total numbers of pixels incorrectly guessed as ionized. In our case, a positive/negative

result corresponds to the neutral/ionized case since the quantity 1 in our binary fields
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Table 3.3: Summary of the Matthews correlation coefficient score (in per cent) of our two

test sets for the two feature identification methods.

SegU-Net Super-Pixel

redshift random set fiducial random set fiducial

z ≤ 7.75 88.9% 91.7% 63.7% 62.6%

z ≥ 8.25 85.3% 90.1% 60.7% 71.8%

7 ≤ z ≤ 9 87.1% 91.2% 62.0% 69.5%

indicates the neutral condition and 0 the ionized. Thus, MCC is a useful metric to correlate

binary fields. In figure 3.5 we show the MCC estimated from the fields segmented into

ionized and neutral regions in our testing sets. In the left panel, we provide a scatter

plot of MCC values against the reionization history (xv
HI) for the ‘random’ testing set. We

indicate the redshift of the realization by the colour of the points and respective confidence

interval with an error bar. We show the number of samples in our training set at a different

neutral fraction in an inset panel. After a first attempt, we realized that to overcome the

unbalanced class problem requires a better representation of the early (xv
HI ≈ 1) and late

stages of reionization (xv
HI ≈ 0). For this reason, we increased the number of training

samples for these stages. Therefore the distribution of samples against neutral fraction

has a bimodal shape with peaks at approximately xv
HI ≈ 0.1 and 0.9.

As a result, the rφ value for the overall prediction data set (figure 3.5, left panel)

is about 87 per cent for SegU-Net (blue dashed line) and 62 per cent in the case of

the Super-Pixel method (orange dashed line). The noise level increases with redshift.

Therefore the score is slightly less accurate for redshift z ≥ 8.25 with an 85 per cent

accuracy, meanwhile higher for lower redshift z ≤ 7.75 with 88 per cent. In the future,

we consider increasing the proportion of the training data with high redshift to decrease

this performance dissimilarity. The same trend is present in the case of the Super-Pixel

method, with an accuracy of 60 per cent and 63 per cent, respectively.

In the right panel of figure 3.5, we compare the MCC values from SegU-Net (blue line

with circles) with that from the Super-Pixel method (orange line with squares) for our

‘fiducial’ simulation. As we already know from Giri et al. (2018a), the Super-Pixel method

performs best for xV
HI ≈ 0.5 and deteriorates towards earlier and later stages of reionization.

The reason for this behaviour is that during these stages, structures are usually smaller

and, therefore, more difficult to identify. With SegU-Net we are able to overcome this

problem by employing a specifically designed BCE loss function (equation (3.3.1)) during
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Figure 3.6: Left panel : Comparison of the simulated neutral fraction against the recovered

one. Error-bar and color-bar are the same as figure 3.5. Right panel : The same comparison

for the ‘fiducial’ simulation. We also include the results from C2RAY simulation. The

redshift of C2RAY simulation are z = 7.96, 8.06, 8.17, 8.28, 8.40, 8.52, 8.64 corresponding

to a volume averaged neutral fraction of xv
HI = 0.17, 0.29, 0.42, 0.57, 0.70, 0.81, 0.90. The

violet dots with relative confidence interval are predictions performed with SegU-Net and

green squares are with the Super-Pixel method.

the validation process after each training epoch. Therefore, the average rφ value for the

‘fiducial’ simulation is about 91 per cent for SegU-Net (blue dashed line) and 70 per cent

in the case of the Super-Pixel method (orange dashed line). In table 3.3, we summarise

the rφ score for the two test sets.

3.4.3 Average Neutral Fraction

After identifying the ionized regions, we can determine the volume-averaged neutral frac-

tion xv
HI, which quantifies the reionization history. In figure 3.6 we show the volume-

averaged neutral fraction xv
HI,predicted as calculated from the recovered binary fields ex-

tracted by the two methods. In the left panel we show the xv
HI, predicted from the SegU-Net

outputs against the true volume-averaged neutral fraction xv
HI, true for our ‘random’ test-

ing set. The colour of the points indicates the redshifts. The black dashed line indicates

xv
HI, predicted = xv

HI, true. Except for a few points, all the points lie on or near the black

dashed line.

In the right panel of figure 3.6 we compare the results of xV
HI, predicted derived with the

Super-Pixel method (orange line with squares) and SegU-Net (blue line with circles) for

our ‘fiducial’ simulation. Again, the black dashed line represent xV
HI, predicted = xV

HI, true.
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In the case of our neural network all results lie within the half standard deviation (0.5-σ)

of the true value (gray dashed lines). With Super-Pixel method, this is true only from

xV
HI ≈ 0.5 to 0.85. The recovered neutral fraction is either underestimated at xV

HI > 0.6 or

largely overestimate for xV
HI < 0.4.

3.4.4 Size Distributions

From the 3D tomographic data that will be produced with the upcoming SKA experiment,

we will be able to study the size distribution of neutral or ionized region during the EoR.

ionized regions are often called bubbles and whereas neutral regions are referred to as

islands. The Bubble and Island size distributions (BSDs and ISDs) are useful to derive

the properties of reionization and its evolution (Xu et al., 2017; Giri et al., 2019a). Several

approaches were presented to calculate this distribution (Lin et al., 2016b; Kakiichi et al.,

2017; Giri et al., 2018a). In this work, we employ the Mean-Free-Path method (MFP;

Mesinger & Furlanetto, 2007; Giri et al., 2018a) to calculate the size distribution (RdN
dR )

of recovered neutral (ISD) and ionized field (BSD). Previous works have demonstrated

that this method should be preferred since the calculated size distributions are almost

unbiased (Lin et al., 2016b; Giri et al., 2018a).

In the left and right columns of figure 3.7 we show the ISDs, respectively BSDs of the

binary fields recovered with SegU-Net (blue line) and Super-Pixel method (orange line)

compared to the ground truth (black dashed line). The Super-Pixel method performs

best when the simulation is halfway through the reionization process xv
HI = 0.5 (central

panel). However, it is considerably less accurate compared to SegU-Net. We show the

relative difference with the ground truth in the plots below the ISDs and BSDs. The blue

shaded region shows the error on each of the size distributions determined by SegU-Net.

In both the ISD and BSD case, the main difference between the two recovered distribution

occurs at the earlier xv
HI = 0.8 (top) and later xv

HI = 0.2 (bottom) stages of reionization.

SegU-Net shows a relative difference of a few per cent while the distributions determined

from the Super-Pixel segmentations show relative differences up to 10 per cent for large

sizes.

3.4.5 Dimensionless Power Spectra

The dimensionless power spectrum of the neutral field is defined as ∆2
x x = k3Px x(k)/2π2,

where Px x is the auto-power spectrum that quantifies the fluctuations due to the distri-

bution of neutral regions. These fluctuations contribute to the 21-cm power spectrum



1st September 2021 102

Figure 3.7: Left column: the size distribution of neutral regions (ISD). Right column:

the size distribution of ionized region (BSD). Rows from top to bottom represents early

(xv
HI = 0.8), middle (xv

HI = 0.5) and late (xv
HI = 0.2) stages of reionization respectively.

On each panel, we show the size distributions from the binary fields of the ‘fiducial’

simulation recovered by SegU-Net (blue line) and its respective confidence interval (blue

shadow). Black dashed lines and orange lines give the size distributions of the ground

truth and binary field recovered by the Super-Pixel method. At the bottom of each size

distribution panel, we show the relative deviation from the true binary field distribution.

that is observed with radio interferometric telescopes. See for example Furlanetto et al.

(2006) and Lidz et al. (2007) for descriptions of the fluctuations of the 21-cm signal. In

this section, we study the ∆2
x x estimated from the neutral fields recovered from various
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methods.

In figure 3.8, we consider the ‘fiducial’ simulation at three stages of reionization, which

are xV
HI = 0.8 (top panel), xV

HI = 0.5 (central panel) and xV
HI = 0.2 (bottom panel). At

the mid-point of reionization (central panel), the Super-Pixel method performs well at

large scales k < 0.2 Mpc−1 with a relative difference within 25 per cent for lower k-values.

The ∆2
x x of the neutral field recovered by the Super-Pixel method at early and late times

have the correct shape but differ in magnitude. The ∆2
x x of the neutral field recovered by

SegU-Net match the ground truth well at all three stages of reionization. The network

maintains a maximum difference compared with the ground truth, of a few tens of per

cent at all scales. For k . 0.5 Mpc−1, the network uncertainty interval grows to 25-50 per

cent relative difference.

3.4.6 Betti Numbers

During reionization ionized bubbles form, grow and connect with each other to form a

complex topology (Furlanetto & Oh, 2016b). Various studies have proposed topological

descriptors for this distribution, such as Euler characteristics (e.g. Friedrich et al., 2011)

and Betti numbers (Elbers & van de Weygaert, 2019; Giri & Mellema, 2021; Kapahtia et al.,

2021). Giri & Mellema (2021) pointed out that Betti numbers contain more information

compared to the Euler characteristics. Therefore in this section we study the zeroth β0,

first β1 and second β2 Betti number (Betti, 1870) of the binary 3D maps recovered by the

two feature identification methods.

β0, β1 and β2 describe the number of isolated ionizing regions, tunnels and isolated

neutral regions, respectively. In the top, middle and bottom panels of figure 3.9, we show

the β0, β1 and β2 values estimated from the recovered binary fields of our ‘fiducial’ model

at xV
HI between 0.1 and 0.9. The black, blue and orange curves represent the Betti numbers

calculated from the ground truth, recovered field with SegU-Net and Super-Pixel method,

respectively. In line with the results for the other quantities discussed above, we find that

the topology recovered with SegU-Net is much closer to the ground truth than the one

recovered by the Super-Pixel method.

3.5 Tests on Different Instrumental Noise levels

We have trained and tested SegU-Net for one specific noise level, corresponding to the

theoretically expected noise for tobs = 1000 h with the current design of SKA-Low. How-

ever, in practice, the noise level may differ from this, either because the observing time or
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Figure 3.8: Dimensionless power spectra of the neutral field from the fiducial simulation as

recovered by our network (blue line) and its respective confidence interval (blue shadow).

Compared at early, middle and late stage of reionization (from top to bottom xV
HI =

0.8, 0.5, 0.2) with the same quantity derived from the ground truth (black dashed line)

and the Super-Pixel method (orange line). At the bottom of each panel, we show the

relative difference compared to the ground truth for both cases, the network and Super-

Pixel method.
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Figure 3.9: Comparison of the topology of the identified regions with Betti numbers

estimated from the original neutral field (black dashed line), the SegU-Net (blue line with

circles) and the Super-Pixel method (orange line with squares), for the case of our ‘fiducial’

simulation. The top, middle and bottom panels give β0, β1 and β2 respectively. The Betti

numbers recovered with SegU-Net matches the ground truth better than those recovered

with the Super-Pixel method.
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Figure 3.10: Left panel : the Matthews correlation coefficient rφ of the recovered binary

field against its volume-averaged neutral fraction. We compare the prediction set for a high

noise level (tobs = 500h, green line with squares) and low noise level (tobs = 1500h, red

line with triangles) against the noise level employed during the training (tobs = 1000h,

blue line with squares). Horizontal dashed lines of the respective colour represent the

MCC average score of the reference simulation. Right panel :, the evolution of the MCC

score for increasing observation time for a set of mock observations with volume-averaged

neutral fraction of xV
HI = 0.2 (z = 7.310), 0.5 (z = 8.032) and 0.8 (z = 8.720), respectively

in blue, orange and green color. In the same panel, an inset plot shows the signal-to-noise

ratio (SNR = σ21/σnoise) of 21-cm images at a resolution corresponding to a maximum

baseline of 2 km we achieve for different observation times.

telescope design is different from our assumptions or simply because the theoretical noise

level is not achieved due to complications with the calibration. Therefore, it is important

to test to which extent the performance of our network is sensitive to the noise level in

the actual data. To change the noise level we choose different observing times, one shorter

(tobs = 500 h) and one longer (tobs = 1500 h). The former case corresponds to a noise

level
√

2 higher than used in the training set and the latter to a noise level which is
√

2/3

lower. In the left panel of figure 3.10, we show the rφ coefficient of the recovered binary

field against the volume-averaged neutral fraction xV
HI. We compare the prediction on the

reference simulation for the higher (tobs = 500 h, green line with squares) and lower noise

case (tobs = 1500 h, red line with triangles) with the one using the noise level employed

during the training and validation process (tobs = 1000 h, blue line with circles). It is evid-

ent from the plot that although the noise level does impact the accuracy of the results, we

still achieve approximately the same level of precision as in our test case, as commented

in § 3.4.2. In fact, the overall average accuracy, indicated with horizontal dashed lines in
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figure 3.10, on the simulation of reference is 89 per cent for the higher noise case (green

dashed line) and slightly better, 92 per cent, for the lower noise case (red dashed line). In

both cases, there is a drop in performance down to 88 per cent accuracy during the early

stages of reionization xV
HI > 0.7, due to the redshift dependency of the simulated noise.

We also want to test how far we can push our SegU-Net trained on data with tobs =

1000 h instrumental noise to identify structures in the presence of a higher or lower noise

level. In the right panel of figure 3.10, we plot the rφ coefficient at different observation

times tobs, for three different stages of reionization in our reference simulation, namely for

volume-averaged neutral fractions xV
HI is 0.2 (blue line with squares), 0.5 (orange line with

circles) and 0.8 (green line with triangles), corresponding to redshift z = 7.310, 8.032 and

8.720. This plot shows that our network performs well for tobs & 500 h, where rφ & 0.85.

The spike in the curve for xV
HI = 0.8 at tobs = 1000 h is due to the fact that this is the

noise level for which the network was trained.

To put our noise level into perspective, the inset plot in the right panel of figure 3.10

shows the signal-to-noise ratio (SNR) achieved for different observation times. The SNR

is defined as σ21/σnoise (e.g. Kakiichi et al., 2017), where σ21 and σnoise are the standard

deviations of the 21-cm signal and noise respectively at the resolution corresponding to

a maximum baseline of 2 km. From this we conclude that a good performance, with the

same accuracy as the ‘random’ testing set (rφ & 0.85), requires a SNR& 3.

3.6 Tests on a Fully Numerical Simulation

We applied our network to mock δTb cubes calculated with the C2RAY code, presented

in § 3.2.3, with a spatial resolution close to the 21cmFAST simulations employed in the

training process, 2 Mpc. In order to obtain the same level of noise per pixel. A visual

comparison of the recovered binary field, similar to the results in § 3.4.1, is shown in

figure 3.2. In the left panel, the red/blue colour indicates the network prediction

We go through the same process presented in § 3.4. The rφ score with SegU-Net is

represented by the violet dots with error-bars on the right panel of figure 3.5, from left

to right we have redshift z = 7.96, 8.06, 8.17, 8.28, 8.40, 8.52 and 8.64 corresponding to a

universe with volume-averaged neutral fraction of xV
HI = 0.17, 0.29, 0.42, 0.57, 0.70, 0.81

and 0.90, green squares represent the score obtained with the Super-Pixel method. As we

can see, our neural network is performing with similar accuracy as for the prediction set

of semi-numerical simulations as discussed in § 3.4.1. For xV
HI ≈ 0.55 SegU-Net performs

slightly better than the Super-Pixel method. The Super-Pixel method shows a drop in
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accuracy at the late (xV
HI < 0.5) and early (xV

HI > 0.8) stages of reionization. We do the

same comparison with the recovered volume-averaged neutral fraction xV
HI, in figure 3.6

right panel, the green error-bar points are the same data as mentioned above. As we can

see, also for the C2RAY simulation, SegU-Net recovered quantity resides within the 0.5-σ

confidence interval (violet dots with error-bars). For the Super-Pixel results, this is true

only for xV
HI = 0.57, 0.70 and 0.81, with approximately the same precision as SegU-Net in

the case of xV
HI = 0.57 and slightly better results for xV

HI = 0.70.

3.7 Discussion & Conclusions

This work has developed a convolutional neural network based on the U-Net architecture,

which can be used to segment redshifted 21-cm image observations into neutral and ionized

regions. We have shown that this application of deep learning provides a fast and stable

method that significantly improves the identification of ionized/neutral regions during the

epoch of reionization over previously proposed methods. To train our network, we employ

a large set of simulated mock observations of the 21-cm signal.

Our image segmentation network, SegU-Net, also contains an uncertainty estimator.

This uncertainty estimator is a simple but efficient application of the test-time augmented

(TTA) technique. With this uncertainty estimator, our network can create a pixel by pixel

error map during the prediction process. The pixel by pixel error map can later be used

to determine the error in any quantity derived from the segmentation.

Once the network has been trained, the binary field’s extraction is swift. In our

case for simulations of volume (256 Mpc)3 and mesh-grid of 1283, a run in serial on a

Intel® Core�i7-6500U CPU @ 2.5 GHz processor and using a 16 Gigabytes of RAM takes

between 5 to 10 seconds. Including the pixel-error map calculation increases the computing

time to approximately 10 minutes. For comparison, the Super-Pixel method typically

requires several minutes to extract the binary field, where the actual time depends on

the image pixel resolution and the number of Super-Pixels employed. The computational

speed of our network thus makes it particularly useful as a component in a Bayesian

statistical inference framework to perform EoR parameter estimation using tomographic

statistics (e.g. Gazagnes et al., 2021).

We compare the accuracy of our approach with a feature finding method from the field

of image processing, the so-called Super-Pixel method, which Giri et al. (2018a) showed to

be superior over simple thresholding methods. The results show that our neural network

can identify neutral regions in the mock observations at least as well and often much better
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than the Super-Pixel method. We show a visual comparison and the resulting pixel per

pixel error map tested on our ‘fiducial’ model. This error map gives valuable insight into

the parts of the image that are hard to recover and helps us check for over-fitting.

We studied the accuracy of a range of derived quantities from the recovered bin-

ary fields, comparing the performance of SegU-Net with the Super-Pixel method. These

quantities are the volume-averaged ionization fraction — the evolution of which provides

the reionization history, the size distribution of the ionized (BSD) and neutral (ISD) re-

gions, the dimensionless power spectra of the recovered binary fields and the three Betti

numbers, which quantify the topology of the segmented data sets. For all quantities, we

find that the SegU-Net results are more accurate than the Super-Pixel results, especially

for the early and late stages of reionization, where the Super-Pixel method often struggles

to produce accurate results.

Machine learning methods generally are sensitive to the properties of the training set.

Therefore, we tested SegU-Net on input data with different properties than the training

set. First, we analysed the performance on data sets with different noise levels than

the network was trained. We found that SegU-Net yields accurate results for data sets

in which the noise level is characterised by an observing time of tobs > 500h, which

approximately corresponds to an SNR & 3. Second, we applied the network to mock

observations calculated from the results of a fully numerical reionization simulation, rather

than the semi-numerical simulations used to train the network. We find that SegU-Net

achieves the same level of accuracy when applied to this data set and therefore is not

sensitive to the type of simulation employed during the training process.

We want to point out that similar efforts are being made by Gagnon-Hartman et al.

(2021). They focus on reconstructing the segmented maps of ionized and neutral regions

in the context of foreground mitigation using the foreground avoidance method (e.g. Liu

& Tegmark, 2011; ?), and also consider the possibility of doing so with instruments that

are not optimised for imaging such as HERA. We include the effect of instrumental noise

and study in great detail the summary statistics of the reconstructed binary maps and

the dependency of the results on the noise level. In the future, we will extend our study

to include the impact of foreground mitigation strategies while recovering the summary

statistics.

Here we assumed the spin temperature to be saturated (TS � TCMB). However,

it is possible to have such a scenario where this assumption fails, especially during the

time when reionization starts. In the future, we will evolve our SegU-Net to identify



1st September 2021 110

H II regions in such scenarios. Even though our network is built to identify H II regions,

U-Net architecture can be trained to identify any interesting feature. Before reionization

started, the luminous sources heated the IGM and left its impact on the 21-cm signal

(e.g. Ross et al., 2017, 2019). The U-Net architecture can also be trained to identify these

heated regions.

Acknowledgements

The authors would like to thank Leon Koopmans for useful discussions and comments.

We also acknowledge helpful discussion with Adrian Liu and collaborators. MB is sup-

ported by PhD Studentship from the Science and Technology Facilities Council (STFC)

and appreciates the Oskar Klein Center at Stockholm University for hospitality during

the completion of this work. This work was possible thanks to the STFC Long Term

Attachment (LTA) travel grant. ITI is supported by the Science and Technology Facilities

Council (grant numbers ST/I000976/1 and ST/T000473/1) and the Southeast Physics

Network (SEPNet). GM is supported in part by the Swedish Research Council grant

2020-04691. We acknowledge PRACE for awarding us access to the KAY facility hosted

by the Irish Centre for High-end Computing (ICHEC) and the GALILEO hosted by the

Super Computer Application and Innovation (SCAI) in collaboration with the CINECA

consortium. The authors gratefully acknowledge the Gauss Centre for Supercomputing

e.V. (www.gauss-centre.eu) for partly funding this project by providing computing time

through the John von Neumann Institute for Computing (NIC) on the GCSSupercom-

puter JUWELS at Juelich Supercomputing Centre (JSC). The deep learning implementa-

tion was possible thanks to the application programming interface of Tensorflow (Abadi

et al., 2015) and Keras (Chollet et al., 2017). The algorithms and image processing tools

operated on our data were performed with the help of NumPy (Harris et al., 2020), SciPy

(Virtanen et al., 2020) and scikit-image packages (van der Walt et al., 2014). All figures

were created with mathplotlib (Hunter, 2007).

Data Availability

The data underlying this article is available upon request, and can also be re-generated

from scratch using the publicly available 21cmFAST, CUBEP3M, C2RAY and Tools21cm code.

The SegU-Net code and its trained network weights are available on the author’s GitHub

page: https://github.com/micbia/SegU-Net.

https://github.com/micbia/SegU-Net


1st September 2021 111

Figure 3.11: Test SegU-Net on a spherical ionized region. Left panel : slice through the

input image. The colour map shows the differential brightness temperature, and the

black contour shows the boundary between neutral and ionized regions. Right panel : the

recovered binary field with SegU-Net. The green contour represents the same boundary

again. The identified neutral and ionized regions are indicated in red and blue, respectively.

3.8 Appendix

3.8.1 SegU-Net Hidden Layer Outputs

We test SegU-Net to see if it can recover the binary field for a simple case, namely a single

spherical neutral region. We assume a uniform density field at z = 8.032 and calculate the

differential brightness temperature with section 3.2.2, adding noise corresponding to tobs =

1000 h and reducing the resolution to correspond to a maximum baseline of B = 2 km.

In figure 3.11, we show the input image of the sphere (left panel) and the corresponding

recovered binary field by SegU-Net (right panel). The black contour in the left panel and

the green contour in the right panel show the true boundary of the sphere. For this test

SegU-Net achieves an accuracy of 98 per cent.

In figure 3.12 we show the output of the bottom hidden layer of SegU-Net, which is

the last layer of the left part of the U-shaped in figure 3.3. The colour coding is such that

blue correspond to negative, red to positive and white to zero values. This output gives a

visual representation of the low dimensional latent space of our network encoder. In our

case, this consists of 256 images, where each corresponds to a convolutional kernel and

contains information about the image’s extracted features. The encoder path contracts

the input image from an original mesh size of 1282 down to 82. The information contained

in the latent space is then expanded by SegU-Net decoder into a binary map of the same
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Figure 3.12: Visual representation of SegU-Net’s low dimensional latent space (bottom

layer), which contains information about the extracted features of our test input image.

size as the input image (see right panel of figure 3.11).

3.8.2 Skip Connection Between Encoder and Decoder Levels

The main advantage of a U-shaped network is that it overcomes the bottleneck limita-

tion encountered by auto-encoder networks (a classical encoder/decoder architecture) by

adding interconnections between the descending (encoder) and ascending (decoder) paths

(Long et al., 2014; Ronneberger et al., 2015). These connections allow feature representa-

tions to pass through the bottleneck (bottom layer) and avoid loss of information due to

contraction.

In figure 3.13, we show a visual example of interconnections between the encoder (left
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Figure 3.13: Example of skip connection between encoder and decoder levels. The top

panel shows the architecture of our network. The bottom panels display the output of

three hidden layers. On the left (green dashed line), a convolutional block (ConvBlock)

output is interconnected with the output of the second to last up-sampling operation

(central panel, red dashed line). The right-most panel shows the result of the merge after

a convolution block (black dashed line).

part of the U-shape) and the decoder (right part). The top panel shows a schematic

representation of our network architecture, and the bottom part displays a visual output

of three hidden layers for the test case of a sphere. The left-most panel (connected by a

green dashed line) shows the output of the second convolutional block in the encoder’s

second level. This block consists of 32 kernels with a mesh size of 642. At this level,

the shape and form of the input image are still visible. The centre panel (connected by

a red dashed line) shows the result of the second to last up-sampling operation of the

decoder. The number of kernels and mesh size match with the corresponding encoder

layers. The skip connection merges the encoder and decoder-level output for a total of 64
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images with mesh 642. The right-most panel (connected with a black dashed line) shows

the concatenation after a convolutional block. The effect of the up-sampling operation is

still visible.
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Chapter 4

Thesis Conclusion

This thesis focused on improving state of the art for numerical simulations employed for

the Epoch of Reionisation. To our knowledge, we provided the most accurate treatment

of the local atomic recombination in the largest reionisation simulation to date.

We then direct our attention to improve the methodical approach employed for inter-

preting results in numerical simulations that could be employed for future and ongoing

21-cm observations. With the application of advanced deep learning methods, we obtained

the most accurate approach to date.

4.1 Summary of Results

In chapter 2, we presented an empirical stochastic model for the sub-grid gas clumping.

With this project, we continued the discussion started by our collaborator Mao et al.

(2019), which presented a local density-dependent deterministic model for the sub-grid

gas clumping. Here, we based our model on the results from a high-resolution numerical

simulation, which fully resolve all relevant fluctuations. Our model reproduces well both

the mean density-clumping relation and its scatter. Then, we applied our stochastic model

and created a large-volume realisation (714 Mpc along each side) of the clumping field.

For comparison, we reproduced the same field with a mean clumping factor model and

the deterministic model. Finally, we used these in radiative transfer simulations of cosmic

reionisation and compared our empirical approach with a mean clumping factor model

and the deterministic model.

Our results show that the simplistic mean clumping model delays reionisation com-

pared to local density-dependent models, despite producing fewer recombinations overall.

This trend is due to the very different spatial distribution of clumping, resulting in much
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higher photo-ionisation rates in the latter cases. Moreover, the density-dependent model

indirectly affects the lifetime of low mass atomically cooling halos. This is because the high-

density regions are more resilient to getting ionised due to the enhanced recombination

rate. In summary, the primary conclusion of this first part of the thesis is that density-

dependent models of the clumping factor are preferable to oversimplified treatment, as

sub-grid recombinations play a crucial role in large scale reionisation simulations.

The main focus of the project presented in chapter 3 was to provide a stable a reliable

method for future neutral/ionised region identification in tomographic images from SKA1-

Low. To do so, we developed a deep learning network, named SegU-Net, trained on a vast

set of simulated tomographic images, produced with the semi-numerical code 21cmFAST.

The results show that our network is capable of segmenting simulated 21-cm image data

into meaningful features (ionised and neutral regions) with greater accuracy compared to

previous methods. We can estimate the ionisation history from noisy mock observations

of SKA with an observation time of 1000 hours with more than 87 per cent accuracy. The

size distributions and Betti numbers of the recovered field have a relative difference of

only a few per cent from the values derived from the original smoothed and then binarised

neutral fraction field. Moreover, its stability is demonstrated by successfully recover 21-cm

signal for different levels of instrumental noise. Perhaps the most interesting result is that

the deep learning approach obtains the same level of accuracy for images with a lower

signal-to-noise ratio than the one used for the training.

In conclusion, we find that the deep learning approach is independent of the simulations

code used while training the network. Instead, it learns the simulation independent pattern

of the ionised regions by comparing the gradient in the 21-cm signal intensities to identify

these regions.
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Harnois-Déraps J., Pen U. L., Iliev I. T., Merz H., Emberson J. D., Desjacques V., 2013,

Monthly Notices of the Royal Astronomical Society, 436, 540 31, 49, 50, 82, 91

Harris C. R., et al., 2020, Nature, 585, 357–362 110

Hartle J. B., 2003, American Journal of Physics, 71, 1086 2

Hassan S., Andrianomena S., Doughty C., 2020, Monthly Notices of the Royal Astronom-

ical Society, 494, 5761–5774 85, 93

He K., Zhang X., Ren S., Sun J., 2015, Deep Residual Learning for Image Recognition

(arXiv:1512.03385) 42

Heath D. J., 1977, Monthly Notices of the Royal Astronomical Society, 179, 351 5

Hinshaw G., et al., 2013, The Astrophysical Journal Supplement Series, 208, 19 29

Hinton G. E., Srivastava N., Krizhevsky A., Sutskever I., Salakhutdinov R. R., 2012

(arXiv:1207.0580) 94

Hochreiter S., Schmidhuber J., 1997, Neural Computation, 9, 1735 35

Hopfield J. J., 1982, Proceedings of the National Academy of Sciences, 79, 2554 35
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