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Summary

Systems that are comprised of agents and pairwise interactions between agents

can be studied through the lenses of Network theory. As a general framework, Net-

work Theory has applications in various disciplines, including Statistical Physics,

Economics, and Biology. The interplay between the contact structure of a pop-

ulation and epidemic spreading is one of the most studied research areas in Epi-

demiology, where network based research has offered many breakthroughs in recent

years. Since an individual based description is computationally intractable, as state

spaces scale exponentially with the number of agents modelled, many mathematical

approximations have been developed to describe the system in terms of low dimen-

sional aggregate statistics, such as the average number of infected people. This

thesis is focused on the application of such approximation techniques, in particular

the well known mean-field models, to two key problems in Epidemiology: inference

and epidemic control.
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In the first part of this work, the theme is the inference of network properties

from the observation of outbreaks at a population-level. Typically, readily available

information during an outbreak is (daily) case counts. With this in mind, a new

mean-field like model is introduced to approximate epidemics on networks via Birth-

and-Death processes, whose rates are random variables which depend implicitly on

the structure of the underlying network and disease dynamics. By using Bayesian

model selection, it is possible to recover the most likely underlying network class from

datasets that consist only of discrete-time observations from one single epidemic.

Further, having a description in terms of Birth-and-Death processes allows to study

the large N limit of the process as a one-dimensional Fokker-Planck equation, that

implies an even greater reduction in dimensionality.

In the second part of this thesis more standard mean-field models are adopted

to perform epidemic control. The aim is to reduce the burden of an outbreak on a

target population. Intervention policies may consist of one time interventions either

to minimise the epidemic peak or the final size, or to maximise the average time to

infection. Homogeneous mixing models are a nice tool to showcase how interventions

that achieve such goals can be optimised. A network perspective is introduced to

study the so-called disease-induced herd immunity: in principle, epidemics act like

targeted vaccinations, preferentially immunising higher-risk individuals. This means

that the herd-immunity threshold might be reached at lower levels compared to that

derived from homogeneous mixing models, and this might be relevant for epidemic

control. However, it is shown that the magnitude of this effect depends heavily

on how both the topology of the contact network and the way non-pharmaceutical

interventions are modelled. Finally, epidemic response can be thought of as a feed-

back process, that is, social distancing policies might be deployed depending on

the observed epidemic curve, rather than being pre-determined from theoretical ar-

guments. In this case, the goal is to maintain the epidemic at manageable levels

throughout its course, by tailoring interventions that aim to be as less disruptive

as possible. This possibility is investigated on a high dimensional network model,

by deriving a feedback-loop control action that at its core is based on a mean-field

approximation
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(middle) Erdős-Rényi network, (bottom) Barabási-Albert network.

On the first two columns, two different representations of such net-

works that highlight degree heterogeneity. The first one, known as

Kamada-Kaway, displays nodes in such a way that the higher the

number of links, the more central the place of the node. It is helpful

to recognise the difference between regular networks and Erdős-Rényi.
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(k, âk) curves relative to the N = 2000 case. Scaled version are

obtained by plotting (k/N, 2000
N
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Erős-Rényi networks. . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.8 Same scenario as in figure 3.6, but using the parameters given in the

eighth row of Table 3.1, i.e., the second parameter configuration for

Barabási-Albert networks. . . . . . . . . . . . . . . . . . . . . . . . . 77

3.9 Same scenario as in figure 3.6, but on a 2D lattice with periodic

boundary conditions, using the parameters given in the 10th row of

Table 3.1, i.e., the first parameter configuration for 2D lattices networks. 78



xx List of Figures

3.10 (left) Data generated from a single realisation of an SIS process on
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Chapter 1

Introduction

1.1 Background and thesis overview

Hundreds of years of Epidemiological Research have resulted in a well-developed

theory that embraces Biology, Sociology, Statistics and Network Science. Although

contributions to the theory of epidemics go as far back as 1760, when Bernoulli

developed a model for the growth of a population affected by smallpox Bernoulli

[1766], it was only after the seminal work of Kermack and McKendrick Kermack

and McKendrick [1927] that Epidemiology as a mathematical theory flourished. In

it, the famous Susceptible-Infected-Recovered (SIR) model for infectious diseases

was first introduced and studied. To quote from the introduction of the very same

paper:

“The problem may be summarised as follows: One (or more) infec-

ted person is introduced into a community of individuals, more or less

susceptible to the disease in question. The disease spreads from the af-

fected to the unaffected by contact infection. Each infected person runs

through the course of his sickness, and finally is removed from the num-

ber of those who are sick, by recovery or by death. [...] As the epidemic

spreads, the number of unaffected members of the community becomes re-

duced. Since the course of an epidemic is short compared with the life of

an individual, the population may be considered as remaining constant,

except in as far as it is modified by deaths due to the epidemic disease

itself. In the course of time the epidemic may come to an end. ”

1



2 Chapter 1: Introduction

In its essence, the original SIR model is a system of ordinary differential equations

for three variables S, I, R representing the number of people susceptible to a disease,

infected and infectious, or removed, respectively. Models in which the population

is partitioned into compartments with labels, such as S, I, R, are known as com-

partmental models [Kiss et al., 2017]. Compartmental models are perhaps the most

widely used tools in mathematical modelling of infectious diseases. As the epidemic

progresses, people flow between different compartments, and the name of the model

usually summarises the flow patterns; for example, SIR indicates that the typical

individual is initially susceptible, may become infected/infectious after being in con-

tact with an infected, and eventually recovers.

The key idea in the classical SIR model is that the epidemic is driven by a

non-linear term proportional to both the number of susceptible and infected people,

that approximates the number of contacts at risk between infected and susceptible

individuals. This term gives rise to epidemic curves such as the ones depicted in

figure 1.1. It is perhaps surprising how a simple-yet-ingenious model is still subject

to research, and many insights are found by approaching the same model from novel

perspectives [Britton et al., 2020; Casella, 2021].

The equations that describe the dynamics are the following:

dS

dt
= − β

N
SI,

dI

dt
=

β

N
SI − γI,

dR

dt
= γI, (1.1)

where β, γ > 0, are the per-contact rate of infection and rate of recovery, respectively.

The initial condition is usually set to (S, I, T ) = (N − 1, 1, 0). Note that, at any

given time, we have S(t) + I(t) +R(t) = N .

This dynamical system is quite simple to describe, although an exact closed-

form solution does not exist [Barlow and Weinstein, 2020]. First of all, note that a

condition for the epidemic to happen is I > 0 and dI
dt
> 0, which immediately gives

the following:
β

N
SI − γI > 0→ S

N
>
γ

β
≡ 1

R0

, (1.2)

where R0 is a quantity called basic reproduction number, and is interpreted as the

number of people that will get infected when one typical infected individual is intro-
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Figure 1.1: The SIR model as introduced by Kermack and Mckendrick Kermack and

McKendrick [1927] is a system of differential equations that depends on two parameters,

β and γ, named infection and recovery rate, respectively. The combination of these two

gives rise to R0 = β
γ , a quantity of great importance, that determines the peak and the

final size of the epidemic. On the right, various solutions for different values of R0, when

γ = 1.
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duced into a fully susceptible population. When the proportion of the susceptible

becomes lower than 1
R0

, the number of infected people decreases in time. This phe-

nomenon is referred to as herd-immunity threshold, and, in an uncontrolled epidemic,

it is reached at the peak of the I curve. Figure 1.1 shows different solutions to the

SIR model for different values of R0. Note that when the peak of the epidemic is

reached, as the number of infected people decreases towards 0, some people shall get

infected, a phenomenon known as overshoot. If instead enough people are recovered

at the beginning of the epidemic, so that fewer than N
R0

susceptible are available,

then no outbreak is possible. This is particularly useful when planning a vaccination

campaign ahead of an expected outbreak, such as with the yearly influenza strains -

in the hypothesis that the vaccine confers total immunity from the disease. Another

important analytical result that can be derived from equation (1.1) is the final size

R(∞), that is the cumulative number of infected people expected at the end of the

epidemic, which satisfies the implicit equation

N −R(∞) = S(0) exp

(
− β

Nγ
R(∞)

)
.

The ones reported here are just a few examples of the numerous insights that are

hidden in such a simple model. The interest in epidemic models has been renewed

recently due to the on-going pandemic of Covid-19, with tens of thousands of pa-

pers published during the first months of 2020 [Teixeira da Silva et al., 2021]. It is

remarkable that whilst the mathematical theory of epidemics developed in a wide

variety of directions, it maintained the two key concepts expressed in the paper, i.e.

that the population can be split into compartments with respect to the different

stages of the disease, e.g. susceptible (S), infected (I) and recovered/removed (R),

and that the evolution of the prevalence depends strongly on the number of inter-

actions between those who are susceptible and those who are able to transmit the

disease upon contact. For instance, many deterministic epidemic models akin to the

SIR can be derived from this simple framework, see figure 1.2.

Epidemic models such as the SIR take into account the impact of the popula-

tion’s contact structure through the term S × I, i.e. by explicitly assuming that

everyone is in contact with everyone. To compensate for this assumption, the para-

meter β needs to account both for the probability of transmitting the disease upon

contact and the rate at which contacts happen [Roberts and Heesterbeek, 1993].
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Figure 1.2: Flow diagrams for three different epidemic models, namely SIR, SIS and

SEIR. The boxes on each line represent the number of states an individual can be in.

The forward arrows between boxes represent transitions between different compartments.

The red backward arrows represent ways in which the susceptible people are depleted,

transitioning to the first non-susceptible compartment. In these cases, epidemics are due

to contacts between people in compartments S and I, with rates indicated over the arrows.
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This dual interpretation of β overloads it with meaning, making its interpretation

quite difficult. For this reason, mathematical models able to consider these two char-

acteristics of epidemics separately potentially offer more insights on this dynamics.

Indeed, the knowledge of the network of contacts is so important that a whole branch

of modern Epidemiology is dedicated to describe and model it. Among others, the

role of network science and epidemic models on networks has been prominent since

the late 20th century [Pastor-Satorras et al., 2015]. Networks represent perhaps the

most natural way to describe agents (as nodes) and pairwise interactions between

agents (as edges or links between nodes). Depending on the rules that assign edges

to nodes, an incredibly vast number of networks or contact patterns may be cre-

ated, see figure 1.3 for a few examples. As A.L. Barabási, an eminent researcher

in this field asserts in his book Network Science[Barabási, 2013]: “Networks are

everywhere, from the Internet, to social networks, and the genetic networks that

determine our biological existence”. Indeed, Network Science has revolutionised

not only Epidemiology, but the whole discipline of Complex Systems. Within this

framework, epidemics can be modelled as random processes taking place on top of a

network, in which nodes that carry the disease infect their neighbours through links,

which represent contacts at risks. Figure 1.4 provides a pictorial representation of

this kind of models for a SIR. The delicate interplay between network topology

and spreading processes on top of it is now a well-researched topic [Pastor-Satorras

et al., 2015; Porter and Gleeson, 2016; Kiss et al., 2017]. The network-based rep-

resentation of epidemics continuously evolved to better capture the complex nature

of interactions that most systems exhibit. For instance, most real-world networks

are temporal [Holme and Saramäki, 2012], meaning that contacts between nodes

are a dynamic quantity. Similarly, it proves useful to distinguish between different

types of contacts, and this has led to the introduction of multi-layer networks in

Epidemiology [Kivelä et al., 2014]. It is worth mentioning that often, for real life

applications (such as policy informing) these achievements are made possible thanks

to the availability of large quantity of data, the so-called Big Data [Bansal et al.,

2016] revolution. This has drastically modified the way much research in Complex

Systems is carried out - a sudden change of paradigm with its own challenges [Cai

and Zhu, 2015]. Adopting the point of view of Network Science allows to differen-
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Figure 1.3: Three different networks with the same size and the same average degree 4

but different degree distribution. (top) Regular network, (middle) Erdős-Rényi network,

(bottom) Barabási-Albert network. On the first two columns, two different representations

of such networks that highlight degree heterogeneity. The first one, known as Kamada-

Kaway, displays nodes in such a way that the higher the number of links, the more central

the place of the node. It is helpful to recognise the difference between regular networks

and Erdős-Rényi. In the second column, nodes are placed on a ring and links are straight

lines between nodes. In this one, it is clear that the Barabási-Albert network has hubs,

displayed on the right of the image, while the other two are more homogeneous. This shows

how drawing networks in different ways may help visualising their properties. Finally, the

right column shows the non-normalized degree distributions, that is, the distribution of

the number of neighbours of nodes.
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Figure 1.4: Pictorial representation of a SIR epidemic spreading on a network. There

are three states associated with a node: susceptible (green smiling face), infected (red

coronavirus symbol) and recovered (blue shielded plus). An infected node spreads the

disease to its susceptible neighbours (red links). As time goes by, it might happen that

one susceptible turns into an infected (second panel) and starts infecting, or that an

infected recovers (third panel) and does not contribute to the spreading anymore. Note

how some nodes become shielded from infection, when all their neighbours are recovered.

tiate between the biological characteristics of a pathogen and the topology of the

contact network, in contrast to the so-called mass action models, where all the indi-

viduals are connected to each other (such as the Kermack–McKendrick model). The

extent to which an epidemic invades and spreads in a population depends strongly

on the underlying contact structure, which can be studied and acted upon by policy

makers when needed. In times of Covid-19, questions such as “What is the role of

households and communities in sustaining epidemics?”, “Which groups of people are

likely to be infected early on?”, “Who should get a vaccine first?” are almost every-

day on newspapers. To a good extent, these questions may be answered through

the lens of Network Science. Although nowadays explicit networks may not enter

directly in the most cutting-edge models that govern pandemic response, which are

known as agent-based-models (such as the ones described in [Ferguson et al., 2020;

Siettos and Russo, 2013]), they are often utilised to inform such models, and re-

main a useful conceptual tool for the understanding of the key aspects of contagion

processes. For instance, the rate at which new infection events happen is directly

proportional to the number of contacts between susceptible and infected individuals,

that is the number of links that connect infected nodes to susceptible ones. This
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Figure 1.5: When approaching the study of networks and epidemics, one often starts from

the degree distribution (left panel), followed by clustering, the tendency of nodes to form

triangles - dotted lines (mid) and assortativity, the tendency of nodes to be neighbours of

nodes with similar degree - dashed lines (right).

term in turn depends strongly on the contact structure of the population itself, and

particularly on the number of links in the network and their distribution, called

degree distribution, where the degree of a node is the number of neighbours of that

node.

Further, years of research led to the realisation that certain properties of the

contact structure, such as degree heterogeneity (how much the number of contacts

varies between nodes), clustering (the propensity of nodes that are neighbours of

a node to be neighbours of each other), and assortativity (who mixes with whom)

have a profound impact on how epidemics spread in a population, see figure 1.5. For

instance, it is well-known that highly connected nodes tend to be infected first during

an epidemic, and have a prominent role in spreading the disease early on [Cohen

et al., 2003; Pastor-Satorras et al., 2003], that clustering reduces the final size of

epidemics [Ritchie et al., 2014, 2015], and that assortativity accelerates the speed at

which epidemics grow [Badham and Stocker, 2010]. All of these breakthroughs are

a direct consequence of the adoption of a network-based point of view.

In general, a stochastic epidemic model with m possible disease states on a net-

work with N nodes can be modelled as a continuous-time Markov chain with mN

states, that is, all the unique combinations of m states among N nodes, and as

many linear differential equations. Although this is in principle easy to encode and

formalise, the numerical complexity of such models implies that exact mathematical

formulations to describe an epidemic process unfolding on a network are intract-

able except in a few, rather exceptional, circumstances. This results in a trade-off

between tractability and complexity that is common to many other areas of Complex
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Figure 1.6: Networks approximate the contact structure of a population that might

experience an outbreak. Network epidemic models are at the basis of both numerical

simulations and theoretical considerations that aim to offer insights on epidemic dynamics.

Systems. These two terms are borrowed from the language of Computer Science,

but their meaning is enriched to comprise the typical situation modellers find them-

selves in, that is, the more features the model has, the less mathematically tractable

it is. Figure 1.6 shows the typical approach to the theoretical study of epidemics on

network is shown: a real-world epidemic is studied by formalising the problem as a

network model with an epidemic process spreading on it. Theory developed on such

models aims at reducing the dimensionality of the problem. The validation of such

theoretical models is usually done by means of simulations of epidemic processes on

networks, which constitute the “ground truth” of epidemic models on networks.

In many cases, the only way to acquire a theoretical understanding of the problem

is to introduce approximations that reduce the dimensionality of the system. In the

case of epidemics on networks, the paradigm is to switch the focus onto relevant

aggregate statistics, such as the number of nodes in each possible state at a given

time, rather than studying their dynamics of individual nodes or of the full system.

These are indeed the quantities that policy makers are interested in and it is therefore

of great importance in the community. Further, readily available estimates are often

given in terms of anonymised, aggregate data, such as the number of new positive

tests each day in a particular country.

There is a number of different techniques used to derive approximate quantit-
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ative results, such as edge-based models [Miller et al., 2012; Wang et al., 2018],

percolation-theory approach [Allard et al., 2009], and finally mean-field, pairwise

and higher-order approximations [Kiss et al., 2017]. Mean-field modeling techniques

are borrowed from Statistical Physics, in particular Ising Models [Dorogovtsev et al.,

2002]. The simplest of this class of models is also the most intuitive one, and relies

on the following consideration: to approximate the number of links between sus-

ceptible and infected nodes, at a first order one considers only the average number

of links per node in the network. This quantity reflects only the most basic property

of the topology, i.e. the average degree. In this setting, each susceptible node has

approximately the same number of neighbours, of which roughly a proportion I
N

is

susceptible, resulting in a system of differential equations similar in form to (1.1),

that is rather naive but surprisingly accurate for a wide variety of cases; nonethe-

less it can be improved, for instance, by considering higher moments of the degree

distribution, or by looking at other topological features of the network - such as clus-

tering [Barnard et al., 2019]. Figure 1.7 shows how the average of many epidemic

simulations is well captured by mean-field models.

Using mean-field models to approximate epidemics on networks is a well-established

research area of Network Science and mathematical Epidemiology, and a vast liter-

ature is available on this topic (see for example [Pastor-Satorras et al., 2015; Kiss

et al., 2017] for a summary of the state of the art). Many mean-field models (some

exact in the large network size limit [Janson et al., 2014]) are able to capture vari-

ous network properties. For example, some only capture the number of edges/links

in the network, others capture the degree heterogeneity but not who mixes with

whom (assortativity), others account for clustering. In this sense all mean-field

models reflect a different level of abstraction from real contact network structures

and make different assumptions. Typically, the goal is to derive (and validate by

means of simulations on explicit networks) relatively low-dimensional systems of or-

dinary differential equations that can be solved numerically and that might elicit

some theoretical results on the underlying system. Theoretical approximations to

the dynamics of epidemics on networks can be used for a vast variety of purposes.

Most notably, the study of the steady-state or final size [N̊asell, 2011], prediction of

the epidemic curve [Szabó-Solticzky et al., 2015], herd-immunity threshold [Britton
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Figure 1.7: Several realisations of SIR epidemics on a network of size 1000 are plotted in

gray. Then, the average is considered and compared against mean-field model (green curve)

and pairwise approximation. The degree distribution of the network is approximately

normal with average 10 and standard deviation 1, the epidemic parameters are τ = 0.016,

γ = 0.07.

et al., 2020] and network inference [Britton and O’Neill, 2002].

1.1.1 Network Inference

The first part of this thesis (Chapters 2,3) focuses on network inference from obser-

vation of epidemics, in particular for Susceptible-Infected-Susceptible (SIS) models.

While theoretical advancements in Epidemiology, and in particular in epidemic

control through vaccination [Holme and Litvak, 2017], describe in great detail how

to act on the contact structure of a population to alter significantly the course of an

epidemic with minimum disruptions, many countries relied on global lockdowns dur-

ing the Covid-19 pandemic. The reason for this can be interpreted in the language

of network science as a lack of detailed knowledge of the network of contacts, which

in turn prevents targeted measures to be put in place. It is therefore of paramount

importance to build up tools for network inference during an on-going outbreak.

This can be done via observation of the epidemic as it unfolds on the network of

contacts. This task is usually [O’Neill and Roberts, 1999; Britton and O’Neill, 2002;
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Gomez Rodriguez et al., 2014] performed when explicit information about nodes

is available. For instance, in [Gomez Rodriguez et al., 2014], the full network of

contacts is reconstructed, provided that one can observe the status of all the nodes

through multiple realisations of the epidemic. When only one outbreak is observed,

but still information about nodes is available, it is possible to infer some generative

parameters of the topology [Britton and O’Neill, 2002].

When explicit information on nodes is not available, only a few models attempt

to assess network properties based only on population-level observations. However,

this is likely the most accessible quantity available during an on-going pandemic

and it is of interest to have a framework that is able to capture information about

the network structure when only daily observations at the level of the population is

available. To achieve this, in Chapter 2 we conjecture that epidemics on networks

may be well approximated by a class of Birth-Death processes, in which rates encode

information on both the network and the disease dynamics. This implies a reduction

from 2N equation to N + 1. This conjecture is validated numerically, and it is

at the basis of a novel scheme for network inference: rather than inferring the

contact structure, we infer the rates of this surrogate model, and use Bayesian model

selection to recover information about the network structure. Elaborating further on

this approximation, in Chapter 3 we explore the behaviour of epidemics on networks

in the thermodynamic limit (N →∞). The idea is to test whether the rates of the

model satisfy the density dependence relation, meaning that we can express the

dynamics of a SIS epidemic on a network as a solution of a one-dimentional Fokker-

Planck equation. Apart from a significant reduction of dimensionality, this PDE can

be used to perform network inference on high dimensional networks, as it is shown

with a fully worked out example. Chapter 2 is based on my first paper, and the

original abstract reads

“Using the continuous-time susceptible-infected-susceptible (SIS) model

on networks, we investigate the problem of inferring the class of the un-

derlying network when epidemic data is only available at population-level

(i.e. the number of infected individuals at a finite set of discrete times

of a single realisation of the epidemic), the only information likely to be

available in real world settings. To tackle this, epidemics on networks
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are approximated by a Birth-and-Death process which keeps track of the

number of infected nodes at population level. The rates of this surrogate

model encode both the structure of the underlying network and disease

dynamics. We use extensive simulations over Regular, Erdős-Rényi and

Barabási-Albert networks to build network class-specific priors for these

rates. We then use Bayesian model selection to recover the most likely

underlying network class, based only on a single realisation of the epi-

demic. We show that the proposed methodology yields good results on

both synthetic and real-world networks.”

Chapter 3 is based on a follow-up paper that has been published in 2020, and the

original abstract reads

“Stochastic epidemic models on networks are inherently high-dimensional

and the resulting exact models are intractable numerically even for mod-

est network sizes. Mean-field models provide an alternative but can only

capture average quantities, thus offering little or no information about

variability in the outcome of the exact process. In this paper we conjecture

and numerically demonstrate that it is possible to construct PDE-limits

of the exact stochastic SIS epidemics on Regular, Erdős-Rényi, Barabási-

Albert networks and lattices. To do this we first approximate the exact

stochastic process at population level by a Birth-and-Death process (BD)

(with a state space of O(N) rather than O(2N)) whose coefficients are

determined numerically from Gillespie simulations of the exact epidemic

on explicit networks. We numerically demonstrate that the coefficients

of the resulting BD process are density-dependent, a crucial condition

for the existence of a PDE limit. Extensive numerical tests for Regular,

Erdős-Rényi, Barabási-Albert networks and lattices show excellent agree-

ment between the outcome of simulations and the numerical solution of

the Fokker-Planck equations. Apart from a significant reduction in di-

mensionality, the PDE also provides the means to derive the epidemic

outbreak threshold linking network and disease dynamics parameters, al-

beit in an implicit way. Perhaps more importantly, it enables the formu-

lation and numerical evaluation of likelihoods for epidemic and network
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inference as illustrated in a fully worked out example.”

1.1.2 Epidemic Control

The second part of this thesis instead focuses on the problem of epidemic control,

which has received a lot of attention because of the ongoing pandemic of Covid-19.

The pandemic played a major role in driving my second and third year of research,

with many projects suspended due to the particular opportunity of researching on

Covid-19 related topics. Epidemic control is perhaps the most debated topic of these

times, with many contributions from researchers from various fields [Teixeira da Silva

et al., 2021]. The main question is which policies should be employed to make sure

(at least) that the healthcare system of a country is not overwhelmed as the epidemic

spreads, possibly without forcing the whole population to undergo and remain into

“full lockdown” more than the necessary. My research in years 2 and 3 focused on

using mean-field approximations to describe how to optimally perform control on

Covid-19 inspired epidemic models.

In Chapter 4, we consider SIR models to explore how the timing of different

short-term non-repeated interventions impacts different quantities related to the

severity of the epidemic, in terms of final size, peak prevalence, and duration. We

find that, depending on which strategy policy makers adopt, the timing of optimal

intervention changes drastically. This investigation is extended to multiple sub-

populations to assess how to adapt interventions in each sub-populations to achieve

optimality. The work in this chapter is based on my most influential paper to date,

and its original abstract reads

“The apparent early success in China’s large-scale intervention to

control the COVID-19 epidemic has led to interest in whether other coun-

tries can replicate it as well as concerns about disease resurgence as China

relaxes the interventions. In this paper we look at the impact of a single

short-term intervention on an epidemic and consider the impact of the

intervention’s timing. To minimize the total number infected, the inter-

vention should start close to the peak so that there is no rebound once the

intervention is stopped. To minimise the peak prevalence, it should start

earlier, allowing two peaks of comparable size rather than one very large
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peak. To delay infections as much as possible (as might be appropriate if

we expect improved interventions or treatments to be developed), earlier

interventions have clear benefit, and waiting until the optimal time gives

only small improvements. In populations with distinct subgroups, syn-

chronized interventions are less effective than targeting the interventions

in each sub-population separately. We do not attempt to determine what

makes an intervention sustainable or not. We believe that is a policy

question, and the answer will depend on the disease severity. If an in-

tervention is sustainable, it should implemented early and kept in place.

Our intent is to offer insight into how best to time an intervention whose

impact on society is too great to maintain beyond a specified duration. ”

In Chapter 5, the topic of disease-induced herd-immunity, as introduced in [Brit-

ton et al., 2020], is extended to include models able to capture more realistic scen-

arios, such as heterogeneity in contacts and clustering. The observation at the basis

of this line of research is that the disease acts on the population like a targeted

vaccine, that preferentially immunises (through infection) high-risk individuals first.

This means that, once interventions are lifted, the residual susceptible population

may not be able to sustain further outbreaks. Although this is true in the context of

mean-field models, when heterogeneity and clustering are in play, the effect may be

more subtle. Contact network properties strongly impact the disease-induced herd

immunity levels, and therefore a proper assessment of such properties proves neces-

sary for policy-making. The original abstract of this work currently under revision

in Bulletin of Mathematics Biology reads

“The contact structure of a population plays an important role in

transmission of infection. Many “structured models” capture aspects of

the contact structure through an underlying network or a mixing mat-

rix. An important observation in unstructured models of a disease that

confers immunity, is that once a fraction 1 − 1/R0 has been infected,

the residual susceptible population can no longer sustain an epidemic. A

recent observation of some structured models is that this threshold can be

crossed with a smaller fraction of infected individuals, because the dis-

ease acts like a targeted vaccine, preferentially immunizing higher-risk
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individuals who play a greater role in transmission. Therefore, a limited

“first wave” may leave behind a residual population that cannot support

a second wave once interventions are lifted. In this paper, we system-

atically analyse a number of well-known mean-field models for networks

and other structured populations to shed further light on some important

questions relevant to the current COVID-19 pandemic. In particular, we

consider the question of herd-immunity under several scenarios. When

modelling interventions as changes in transmission rates, we confirm

that in networks with significant degree heterogeneity, the first wave of

the epidemic confers herd-immunity with significantly fewer infections

than equivalent models with less or no degree heterogeneity. However,

if modelling the intervention as a change in the contact network, then

this effect might become much more subtle. Indeed, modifying the struc-

ture disproportionately can shield highly connected nodes from becom-

ing infected during the first wave and therefore make the second wave

more substantial. We strengthen this finding by using an age-structured

compartmental model parameterised with real data and comparing lock-

down periods implemented either as a global scaling of the mixing matrix

or age-specific structural changes. Overall, we find that results regard-

ing (disease-induced) herd immunity levels are strongly dependent on the

model, the duration of the lockdown and how the lockdown is implemented

in the model.”

Finally, in Chapter 6, the topic of translating control measures derived from

mean-field-like models onto more realistic network-based epidemic stochastic dy-

namics. In particular, we focus not on the problem of eradication, but rather on

the topic of flattening the curve (also known as the hammer and the dance [Pueyo,

2020]), that is bringing the epidemic curve down to acceptable levels via enforce-

ment of social distancing. This allows to gradually relax social distancing measures,

meaning that the population does not have to undergo an indefinite lockdown, but

with the option of reintroducing them if the epidemic becomes too large. The tools

to devise this strategy are borrowed from feedback control theory, a natural candid-

ate to perform the task of keeping a system close to a pre-determined set point. The
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equations of the optimally controlled systems are derived for the simple SIR model.

Then, through the use of mean-field models, a map from the simple SIR to a more

realistic model on networks is defined. This map allows to translate the control as

defined on the original system on a more realistic, stochastic one. This framework

was showed to be robust even when the real system employed faced strong delays

and perturbations, and may prove to be useful to build up an optimal pandemic re-

sponse. This last chapter is based on my most-recent paper, and its original abstract

reads

“Many of the policies that were put into place during the Covid-19

pandemic had a common goal: to flatten the curve of the number of infec-

ted people so that its peak remains under a critical threshold. This letter

considers the challenge of engineering a strategy that enforces such a goal

using control theory. We introduce a simple formulation of the optimal

flattening problem, and provide a closed form solution. This is augmen-

ted through nonlinear closed loop tracking of the nominal solution, with

the aim of ensuring close-to-optimal performance under uncertain con-

ditions. A key contribution of this paper is to provide validation of the

method with extensive and realistic simulations in a Covid-19 scenario,

with particular focus on the case of Codogno - a small city in Northern

Italy that has been among the most harshly hit by the pandemic.”

1.2 Technical Introduction

In this section, I provide an overview of the tools that will be used extensively

through all the chapters of the thesis. To be able to carry out my research, I had

to use a number of tools from Network Science, Dynamical Systems, Epidemiology,

and Statistical Analysis. In figure 1.8, a simple Venn diagram highlights the most

important techniques used in my research.

1.2.1 Networks

A network -or graph- is a pair G = (V, E), in which V is a set of N nodes, and E
is a set of tuples {u, v}, such that u, v ∈ V , called links or edges. In the language
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Figure 1.8: The Venn diagram shows the principal research techniques used in my thesis.

Mathematical models in Epidemiology include SIR/SIS, Stochastic SIS/SIR and Agent

Based Models, whereas tools borrowed from Network Science range from statistical prop-

erties of random networks to algorithms for network generation. Network Epidemiology

emerges at the intersection between the two disciplines. All the techniques presented and

developed in this thesis are part of this multidisciplinary field.
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of Network Science, a population contact structure can be modelled by a network

in which nodes represent people, and links represent contacts between people. In a

realistic scenario, individuals change their contacts in time, but, for simplicity, we

will consider static networks, and interpret the links as persistent contacts among

individuals. Further, we consider undirected networks, such that {u, v} ∈ E ⇐⇒
{v, u} ∈ E , with no multiple edges and no self-links. Given a network G, we define

a matrix G = (gij) of size N ×N such that gij = 1 if node i shares a link with node

j, 0 otherwise, namely Adjacency matrix. Furthermore, gii = 0 and gij = gji.

Although a network is completely described by its adjacency matrix, often full

information about it is completely out of reach. Further, knowing exactly the neigh-

borhood of each node is not always necessary to derive good quantitative results in

Epidemiology. There is a number of mathematical tools apt to summarise the most

important properties of a network. The single most important quantity of interest

is the density of links in the network, that can be summarised by the average num-

ber of links per node, or average degree, that is the expected value of the discrete

probability distribution p(k) of the degrees of the nodes, where the degree of node

i is defined as ki =
∑

j gij. Different degree distributions can lead to very different

epidemics, even if the average degree is constant, as shown in figure 1.9.

The degree distribution allows to describe the neighbourhood of individual nodes.

However, although it may not have a significant effect in all cases [Ritchie et al.,

2014], it is important to study also the properties of such neighbourhoods. Notably,

the most influential quantities in this sense are the clustering coefficient and assort-

ativity. The global clustering coefficient is defined as the number of closed triplets

in a network over the number of all triplets (open and closed), or, in terms of the

adjacency matrix

C =

∑
(i,j,k) gijggkgki∑
i ki(ki − 1)

. (1.3)

This quantity reflects the tendency of nodes that have a common neighbour to be

neighbours of each other. In terms of epidemics, having a high degree of clustering

tends to reduce the spread of the disease. For instance, the value of the rate of trans-

mission needed to generate an epidemic is larger for networks which are clustered

when compared to equivalent networks with no clustering. The other quantity of in-

terest is assortativity. This is formally defined as the Pearson correlation coefficient
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Figure 1.9: (top) Typical paths (t, I(t)) are shown for epidemics on various random

networks of size N = 1000, whose degree distributions (bottom) have the same average. It

is clear that epidemics on networks with heterogeneous degree distribution tend to spread

faster and infect more nodes than in networks with homogeneous degree distribution.

of the degree of nodes connected by a link nodes [Badham and Stocker, 2010], and it

is a quantity that measures the tendency of a node to be neighbour to other nodes

with similar degree. Epidemics on assortative networks tend to grow faster than

epidemics on disassortative networks - networks where nodes of different degrees are

more likely to be connected. Going a step further, one might look at higher-order

joint distributions [Orsini et al., 2015]. Another important quantity is the pres-

ence of communities within the network, that is, subsets of nodes that share more

nodes amongst each other than with the remaining nodes, see figure 1.10. Networks

with well-defined communities may exhibit multiple peaks during an epidemic, as

epidemics reach different communities.

When we analyze a network, we think of it as a well-defined entity. However,

most real-world networks are not fully known or specified, so there must be a degree

of randomness implicit in their description. Then, it is useful to think of networks as

random structures. With this approach, a single network is a random sample from a

more general network class, which is a probability distribution over all the possible

networks in this class. This implies that we can gain insights from a particular
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Figure 1.10: A network with three colour-coded distinct communities (the three coloured

areas), taken from [Lee and Wilkinson, 2019]. Nodes have many stubs connected to

other nodes in the same community, and only a few stubs connecting them to other

communities. A most favoured generative algorithm to generate random networks with

community structure is the so-called Stochastic Block Model [Holland et al., 1983].

network by studying the whole network class and its properties. A few well-known

network models are used extensively in this thesis, and are described in this section.

In terms of numerically generating such networks, Python’s networkx [Hagberg et al.,

2008] was the library of choice through my work. The following three network models

are presented in order of increasing heterogeneity in degree distribution.

Regular Networks

Regular random networks are networks in which each node has exactly the same

number of edges, and are connected randomly. The number of edges per node is

called order; for instance, a regular network of order 3 means a network in which

every node has exactly three neighbours. A network of N nodes with degree k has a

total of Nk
2

edges, so two necessary conditions for a regular network to be realisable

is that Nk is even and N ≥ k. These conditions are also sufficient for regular

networks to exist. Of particular interest is the regular network of order k = N − 1,

in which every node is connected to every other node in the network. This is also

known as the complete network or fully-connected network. Regular networks are

well studied because of their simple degree distribution, which makes them the ideal

benchmark to derive analytical results. Historically, regular networks are known for
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their importance in statistical Physics [Dorogovtsev et al., 2002].

Erdős-Rényi networks

Erdős-Rényi networks [Bollobás, 2001] are perhaps the most known class of random

networks, and many researchers refer to this class with the term random network. In

an Erdős-Rényi network, the degree distribution is binomial B(N−1, p): each unique

pair of nodes is connected with probability 0 < p ≤ 1. It is interesting to notice

that, when p = 1, Erdős-Rényi networks become fully connected, and that in some

sense, for high values of p, Erdős-Rényi networks tend to become similar to Regular

networks. Erdős-Rényi networks have been extensively studied in Epidemiology, as

they offer good degree heterogeneity and depend on only one parameter; they have

therefore become a useful benchmark in many studies [Pastor-Satorras et al., 2015].

Barabási-Albert networks

Although the Erdős-Rényi model produces heterogeneous networks, the binomial

degree distribution does not often reproduce what is observed in real-life networks.

Further, the degree distribution is based on a predefined set of nodes, meaning that

links are added to a pre-existing set of nodes. In many real-world networks that

is hardly the case; rather, networks are ever-evolving structures that are, in many

cases, driven by two concepts: growth and preferential attachment. The former term

means that new nodes are added as time goes by, while the latter means that new

nodes connect more readily to nodes that have more links. These two phenomena

are at the basis of the so-called scale-free networks, which are very common contact

structures in social networks, and explain intuitively why real-world networks have

fat-tailed degree distributions. The Barabási-Albert network model proposes an

algorithm to generate networks with this property [Barabási and Albert, 1999]. One

starts with m + 1 ≤ N nodes that are fully connected to each other. Then, a new

node is added, with m open stubs to be connected to m different nodes already in

the network with probability proportional to their degree ki, so the probability that

a node i gets a new connection is

pi =
ki∑
i ki

.
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New nodes are added with this rule until the desired number of nodes N is reached.

At the end of the algorithm, a few nodes will have a huge number of links (such

nodes are called hubs), whereas the vast majority will have ∼ m links. The degree

distribution of a Barabási-Albert random network can be calculated in the limit

N →∞ and is a power-law P (k) ∼ k−3. Simple modifications of this rule can shift

the power-law exponent of the degree distribution.

Configuration models

The most flexible model for a network, in terms of the degree distribution, is the

configuration model [Barabási, 2013]. For this model, one needs to define a degree

sequence, and assign to each node of the network a degree ki - that is, a number of

open node stubs to be connected at random. In general, this allows for self-loops or

multi-edges, which are to be removed after the generation of the network.

Limitations of using these models

Although these models can reproduce, in terms of the degree distribution, a wide

variety of real-world networks, they have some limitations that need to be clearly

spelled out.

First, as mentioned at the beginning of these sections, these networks are static

both in the number of nodes and in the links, meaning two things (a) there is no

mechanism to remove or add nodes after the network is generated and (b) two nodes

that are neighbours of each-other, remain neighbours forever. In realistic contact

structures, new individuals join communities, and in general people tend to form

and break contacts with others as time goes by. Further, some contacts are more

at risk than others (for example, a student who lives with their family has more

frequent contacts with their relatives than with their friends). This can be at least

partially solved by assigning a weight distribution to the links on the network, and

including the weights into the epidemic models. This means modifying the elements

of the adjacency matrix Gij = (ωij), i, j ∈ [1, N ], with 0 < ωij <∞. Links that are

more important for the dynamics considered will have a higher weight.

In terms of clustering, all the models above tend to have a small global clustering

coefficient. This might be problematic as many real world-networks instead show
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clusters of densely connected connected nodes. In other words, the triangle structure

-that is, three nodes connected to each other- is under-represented in these network

classes. This structure is so common in real contact networks because of the well-

known paradigm: “My friends tend to be friends of each other”.

Another potential issue of these network models is the lack of mesoscopic struc-

tures, such as communities of densely connected nodes. Real world structures, such

as social networks, instead show a strong presence of groups of individuals (such as

families, neighbourhoods, friendships). This has important implications in terms of

the evolution of an epidemic, which in this case might present many different peaks,

associated with outbreaks in different communities [Stegehuis et al., 2016].

Although all of these aspects have potentially important consequences on the

evolution of epidemics on networks, these networks still have their place in the

field; first, because they offer a good range of benchmarks for many modellers;

second, because the degree distribution is by far the most important quantity to be

studied when it comes to epidemic processes; lastly, because, although they do not

take into consideration many real-world characteristics, these models are a major

improvement over mass-actions models, while still allowing us to derive analytical

results which show how the mean degree, variance of the degree distribution and

clustering enters expressions such as R0 and final epidemic size.

1.2.2 Epidemics on Networks

Stochastic models

Many epidemic models start from a stochastic formulation rather than a determ-

inistic one. This is because compartmental models fail to account for statistical

fluctuations that are observed in many real-world epidemics. When a virus has in-

fected very few people, for instance, there is still a non-negligible probability that the

outbreak does not evolve into a sustained epidemic, due to the intrinsic stochastic

nature of disease transmission. Ordinary differential equations (ODE) models in-

stead predict that, as soon as one infected individual is introduced in a fully sus-

ceptible population, and if R0 > 1, epidemics are bound to happen. In reality, a

typical epidemic undergoes two distinct phases: the first one, at the beginning, is

dominated by stochastic fluctuations, in which infection events and recoveries hap-
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Figure 1.11: A typical realisation of an epidemic on a Erdős-Rényi network, with a

focus on the first few events (in the inset), where the stochastic fluctuations dominate.

Parameters are N = 1000, average degree 〈k〉 = 7, τ = 0.5, γ = 1.2.

pen with the same frequency (this is particularly true for epidemic with R0 ∼ 1).

This phase cannot be captured by ODE models. If the stochastic fluctuations bring

the system to a point where the rate of infections events outgrows that of recoveries,

the system enters in a new phase, in which the epidemic sustains itself. ODE models

are able to describe this phase. An example of the different phases of the epidemic

can be found in figure 1.11. In the following, we give examples for SIR models, but

the framework is rather general.

The assumptions behind stochastic epidemic models are:

• the contact structure of the population is a network of size N , described by

the adjacency matrix G;

• each infected individual transmits the disease to their susceptible neighbours

at rate τ = β
N

;

• each infected individuals recovers at constant rate γ independently of other

individuals.

• the process is fully Markovian and it is completely determined by the initial

condition.
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Master equations

The state space in this description consists of all the possible arrangements of m

states over N nodes, that is mN possible states. An exact description requires an

equation for each state. For a SIR model, this is 3N equations needed to describe

how the epidemic evolves at a node level. The resulting Kolmogorov (or master)

equation would be of the form

d

dt
P (X(t) = α) =

∑
β

GαβP(X(t) = β)−
∑
β

GβαP(X(t) = α), (1.4)

whereX(t) is the state of the system at time t, which can take values α ∈ [S0, . . . , S3m ],

and Gαβ is a 3N × 3N constant matrix of (non-negative) rates that determine the

possible transitions among the states of the system. The first term refers to all the

possible ways to transition to a state α from other states, while the second term

refers to possible ways to exit from state α and transition to state β. This equation

can be solved for very modest network sizes, as shown in [Kiss et al., 2017]. However,

realistic systems have a number of nodes that easily goes above the thousands, or

even the tens of millions; it would simply require too much computational capacity

to get numerical solutions. Therefore, instead of focusing on the detailed descrip-

tion of the system, it is more convenient to study aggregate statistics. In particular,

the focus is usually on the expected number of infected nodes in the system. In

more formal terms, we consider a partition of the state space in N(N + 1)/2 dis-

joint sets Cij, with 0 ≤ i, j ≤ N , that include all the states in which i nodes are

susceptible and j infected. Ideally, one would like to give equations for the variables

defined by this new state space, but unfortunately, although the underlying system

is fully Markovian, this property is lost when considering this reduced state space.

There is a notable exception, that is fully connected networks. These networks are

symmetric under any relabeling of the nodes, that is the permutation group SN :

all states with i susceptible nodes and j infected can be lumped together. This

allows to define a partition on the set of possible states, say Cij, that groups all

the states with the same number of susceptible and infected nodes. For instance,

CN,0 = {(S, S . . . , S)} includes only the state in which all the nodes are susceptible;

CN−1,1 = {(I, S . . . , S), . . . , (S, . . . I, . . . S) . . . , (S, . . . , S, I)}, instead includes all the

states where all the nodes but one are susceptible. We can now define a new set of
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variables

pij(t) =
∑
k∈Cij

Xk(t),

where k is an index that moves across the elements of Cij, andXk(t) is the probability

of the k-th element. This quantity represents the probability of having i infected

and j susceptible nodes at time t. When the network is fully connected, all the

states that share the same number of infected and susceptible nodes also have the

same rate of transition from or into other states. The reason for this is essentially

that the fully connected network is symmetric under any relabeling of the nodes -

that is, the permutation group, so all the states with a specified number of infected

and susceptible are identical from the point of view of the dynamics. Then, it is

easy to derive an exact Master equation for this particular case

pi,j(t) = τ(i− 1)(j + 1)pi−1,j+1(t) + γ(j + 1)pi,j+1(t)− (τj + γi) pi,j(t), (1.5)

where τ is the per-contact rate of transmission of the disease and γ the rate of

recovery. Without going into the details of the derivation (that can be found in [Kiss

et al., 2017]), the meaning is clear. To get into a state with i susceptible and j

infected nodes, one starts either from i − 1 susceptible and j + 1 infected, and an

infection happens, or from i susceptible and j + 1 infected and a recovery happens.

Once in this state, the probability of exiting comes either from infection events or

from recoveries. Because of the symmetry, it does not matter which node is infected

or susceptible, because the rate at which events happen is determined by the number

of S− I links, i.e. it depends only on i and j in this case. Unfortunately, we cannot

derive an explicit master equation for a general network, the reason being that,

in general, the way infected and susceptible nodes are positioned on the network

determines the number of S − I links, and therefore the rates at which transitions

happen. A reduced master equation for the general network then is completely out

of reach, as its rates would be themselves random variables, that depend on the

topology and on the whole history of the disease.

Not everything is lost though, because if one looks at the expected quantities

[A] =
∑N

i=1 P(xi(t) = A), where P(xi(t) = A) =
∑3N

j=1 P(Sj(t))I(Sj)i=A, and Ix is
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the indicator function, then the following system of equations holds:

[Ṡ](t) = −τ [SI](t),

[İ](t) = τ [SI](t)− γ[I](t),

[Ṙ](t) = γ[I](t), (1.6)

where [SI](t) is the expected number of S − I links in the system at time t, that is

[SI] =
∑N

i=1

∑N
j=1 gijP(xi = S, xj = I), where (gij) is the adjacency matrix of the

network, see [Kiss et al., 2017] for a rigorous derivation. Although the derivation of

this system is not immediate, the meaning is quite important: epidemics are driven

by the term [SI], which describes how many contacts infected nodes have with sus-

ceptible nodes. The problem is that we do not have an expression or an equation

for the term [SI](t). To recap, one starts from an exact system of equations (1.4),

that involves solving mN differential equations. To reduce the dimensionality of the

problem, the focus is shifted on aggregate statistics - i.e. the number of infected and

susceptible at time t, without information on whom is in either state. For the fully

connected network, this reduces to an explicit system of (N + 1) equations. Unfor-

tunately, for the general network, we cannot derive an exact system of equations,

unless we focus on expected values, as in equation (1.6). The problem now is that,

although elegant, to solve it one needs an equation for the value of [SI](t) as well.

There are two options: (1) to approximate [SI] as a function of [S] and [I] only, a

method known as closing the system or (2) to consider a differential equation for

[SI].

Mean-Field models

The problem of approximating the expected value of the S − I links can be ap-

proached from many directions (the book by [Kiss et al., 2017] summarises the state

of the art in this area). Here we briefly explore the method of closures. The goal is

to write an approximate expression for [SI]. If the average degree of the network

is n, the homogeneous mean-field model prescribes that [SI] ∼ n
N−1 [S][I]. The in-

tuition is the following: as a first approximation, we consider that each susceptible

nodes has exactly n neighbours, each one infected with probability [I]
N−1 , therefore
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the closed system becomes:

[Ṡ](t) = − τn

N − 1
[S](t)[I](t),

[İ](t) =
τn

N − 1
[S](t)[I](t)− γ[I](t),

[Ṙ](t) = γ[I](t).

Note how the dynamics at this approximation level is driven by the term τn, that is

the product of a term that accounts for the biological characteristics of the patho-

gen and a term that accounts for the average number of contacts a typical node

has. This means that, in principle, it is not possible to distinguish between a very

transmissible pathogen spreading on a very sparse network and a weaker pathogen

on a denser network, at least in the first order. This approximation ignores both the

degree heterogeneity and any higher order network property. Even on homogeneous

networks, the mean-field model tends to over-estimate [SI](t). This is because of

the epidemic dynamics itself: to become infected, a node needs to have at least

an infected neighbour, meaning that the neighbourhood of an infected node likely

contains other infected nodes, while this approximation implies that infected nodes

are uniformly distributed on the network. In terms of R0, linear stability analysis

around the disease-free state [N, 0, 0] shows that epidemics are possible only when

τnN
N−1 > γ → R0 ' τn

γ
. With respect to the value R0 obtained from eq (1.1), this

expressions explicitly shows how the density of contacts impacts the reproduction

number: denser networks lead to higher values of R0.

To improve on this approximation, we can shift the closure one term further,

that is, deriving equations for the terms [SI](t), [SS](t). Note that the count is

directional, so in principle [IS] and [SI] are two distinct quantities, although their

value is the same. The rigorous derivation can be found in [Kiss et al., 2017]. The

exact equations that [SI], [SS] satisfy are

[ ˙SS](t) = −2τ [SSI](t),

[ṠI](t) = −γ[SI](t) + τ([SSI](t)− [ISI](t)− [SI](t)).

To explain how these terms arise, we can focus on the term [SI](t); the depletion of

S−I links depends is driven by three distinct mechanisms: 1) recovery of the infected

node (−γ[SI]) 2) infection of the susceptible node by the other node (−τ [SI]) 3)
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Figure 1.12: Flow diagrams showing the flux between compartments of singles (left)

and compartments of pairs (right) in the SIR pairwise model (taken from [Kiss et al.,

2017]). On the right, straight arrows denote infections caused by a node within the pair or

from outside the pair (in this case, the rate depends on a triple). Curved arrows indicate

recoveries. The colours refer to the first node status of the pair.



32 Chapter 1: Introduction

infection of the susceptible node by one of its other infected neighbours (−τ [ISI]).

Finally, the rate at which [SI](t) pairs are created is given by infection of either of

the nodes of a [SS] pair by one of their infected neighbours, that is [SSI]. Note

that the term [SSI] is counted directionally, meaning that triples of the form [ISS]

are not part of the term [SSI].

The equation for the pairs involve the triples, then the idea is to make a closure

at that level, as depicted in figure 1.12: start from the total number of edges starting

from susceptible nodes, that is n[S]. The total number of S − I links is [SI], hence

[SI]
n[S]

is the proportion of edges from susceptible to infected. Similarly, for S−S links,

we get [SS]
n[S]

. For the [SSI] triples, iterate this to consider three nodes, i.e. start from

a susceptible node, consider two of its neighbours. The probability that one is

susceptible and the other is infected is, in the first order, [SS][SI]/n2[S]2. Then,

considering that a susceptible node has n(n− 1) different couples of neighbours, we

get that as a first approximation that

[SSI] ' n− 1

n

[SS][SI]

[S]
.

Similarly for the [ISI] triples

[ISI] ' n− 1

n

[SI]2

[S]
.

Putting all the equations together with these closures, we get

[Ṡ] = −τ [SI],

[İ] = τ [SI]− γ[I],

[Ṙ] = γ[I].

[ ˙SS](t) = −2τ [SSI] =
n− 1

n

[SS][SI]

[S]
, (1.7)

[ṠI](t) = −γ[SI] + τ ([SSI]− [ISI]− [SI]) (1.8)

= −γ[SI] + τ

(
n− 1

n

[SS][SI]

[S]
− n− 1

n

[SI]2

[S]
− [SI]

)
, (1.9)

where the explicit dependence on time has been omitted for readability. In this case,

the value of R0 can be found with linear-stability analysis around the disease-free

state, leading to

R0 = τ
(n− 2)

γ
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This expression is different from the previous one, and in general has a lower value.

This means that the “I − I ′′ correlations that mean-field models failed to account,

have an impact in this more refined approximation.

When the network is not homogeneous, we need to break the approximation

down by degree. Instead of considering [S], [I], [S − I] and so on, we need to

consider [Sk], [Ik], that is, the expected number of susceptible and infected nodes

with degree k. Similarly, for the couples [S − I], we need to consider [Sk − Ij],

that is, the couples in which the first node is susceptible and has degree k and the

second node is infected and has degree j. The equations obtained in this way lead

to the so-called heterogeneous mean-field models [Kiss et al., 2017]. Clustering and

assortativity can be considered in this approximations as well, leading to clustered

pairwise models and heterogeneous pairwise models, respectively. Without showing

explicitly the equations for these cases, which are derived in Chapter 5, the ideas

can be briefly summarised in this way. In a clustered network, it is important to

distinguish between closed triples and open triples. This means that the closures for

terms such as [SSI] need to be modified to account for the fact that the third node

might be connected to the first one. To do so, one starts from an S − I link and

consider the (n− 1) other neighbours of the susceptible node. The average number

of those neighbours that are connected to the infected node, if C is the clustering

coefficient as defined in 1.3, is (1−C)(n−1), while the average number of neighbours

not connected to it is C(n−1). For the former, the closure is identical to the original

one, that is [SSI]open = (1 − C)n−1
n

[SS][SI]
[S]

. For the neighbours that are connected

instead, we know that the correlation between [S] and [I] nodes plays an important

role, so we scale the previous quantity with it [SSI]closed = n−1
n

[SS][SI]
[S]

C N [SI]
n[S][I]

; the

intuition is that knowing that the three nodes form a closed triple changes the

probability of the states of the neighbours. Then, the closure for [SSI] becomes:

[SSI] =
n− 1

n

[SS][SI]

[S]
((1− C) + C

N [SI]

n[S][I]
),

and similarly for other closures. Concerning assortativity instead, one can implement

it directly via initial conditions such as [AkBj][0]. This can be done choosing the

heterogeneous pairwise model.

To summarise the state of the art on this topic, It should be clear that one major

problem of epidemics in general, and on networks in particular, is the forbiddingly
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high dimensionality of the system. Tackling this is perhaps one of the main goals

of Mathematical Epidemiology. Mean-field approximations, pairwise models, edge-

based compartmental models [Miller et al., 2012], percolation approaches [Miller,

2016] are just a few approximation methods to handle the dimensionality of the

problem. In this sense, the first part of my thesis (Chapters 2,3) tackles the problem

of dimensionality reduction from a novel perspective. The approach starts from the

master equation (1.4). For a general network, we know that the rates are random

variables that cannot be described exactly without knowing the exact state of the

system. A possible solution to this problem is to define a new master equation, in

which rates of infections are chosen so that the resulting pk(t) approximate that of

the true process. This would provide a master equation that is analogous to that

of Birth-and-Death processes ??. The benefit of this approach with respect to the

method of closures is that, while the latter results in a deterministic trajectory of

the epidemic, the master equation gives the probability distribution of observing k

infected at time t and it is thus able to account for the stochastic fluctuations typical

of the true process. The second part of my thesis (Chapters 4,5,6) instead focuses

on the application the well-known theoretical advancements in this field described

in this section for epidemic control. Linking mean-field models to epidemic control

is a step-up in complexity that is much required in pandemic response, that often

relies either on simpler models such as the SIR or on theoretically intractable agent

based models.

A note on Gillespie simulations on a network

The assumptions described at the beginning of this section allow immediately to

formulate epidemics on networks in terms of algorithms. The reason for intro-

ducing such algorithms now is that all the analysis of mean-field models can be

validated only by means of simulations on a computer, where the assumptions un-

derlying the formulation of epidemic on network are explicitly guaranteed. This

means that simulations are realisations of the true process, and all the theory and

approximations regarding the true process can be tested and numerically validated

on simulations, although their scope is to formalise a set of assumptions about a

real-world system. The most known algorithm to simulate the true process is called
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Gillespie [Gillespie, 1977] (it is not the only one; for instance, the Sellke construc-

tion works even with non-Markov epidemics [Sellke, 1983]). The algorithm follows

directly from the following assumptions: at any given point, we have many concur-

rent processes, recoveries and infections. As soon as an event happens at time t,

thanks to the Markovian property of the process, the next event depends only on

the state of the system at time t. For each infected node one extracts a single sample

from a exp(γ) distribution, which determines the time of the node’s recovery. Then,

for each connection between an infected and a susceptible node, a sample from an

exp(τ) distribution is drawn, which determines the timing of when the susceptible

node turns infected. Then, the event with the earliest sampled time is resolved.

This is interesting, because it is well known that if T1, T2, . . . , Tk are k random

variables exponentially distributed with parameters λ1, λ2, . . . , λk respectively, then

T = min (T1, T2, . . . , Tk) ∼ exp(
∑k

i=1 λi). This offers a compact way to define a

pseudocode: compute all the rates - that is, count how many infected nodes and

how many S − I links there are on the network, extract the time to next event

distributed as exp(τ [S − I] + γI), where [S − I] is the number of S − I links, and

finally select the event at random but proportionally to its rate (the higher the rate,

the larger the probability of getting selected). Then repeat this until there are no

more events possible. Pseudocode 1 shows a simple version of this algorithm. Note

that this is only a version of the Gillespie algorithm that solves all the events at a

node-level, but does not inform on who-infects-who, which may be important for

the modeller. Other (more efficient) versions of the Gillespie algorithm, such as the

event-driven approach, can be found in the Appendix of [Kiss et al., 2017].
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Algorithm 1: Gillespie simulations

Result: Times, Events

A← Adjacency matrix;

X ← list of node states;

X ← X0 initial condition;

R← vector of length X full of zeros;

while no more infected do

for node in X do

if X infected then

R[node] = γ;

end

if X is susceptible then

for neighbour in A.neighbours(node) do

R[neighbour] += τ ;

end

end

else

R[X] =0

end

end

T = random exp(sum(R)) time of next event;

E = random sample(R) extract node that undergoes event with

probability proportional to rate;

X ← update;

Times.append(T );

Events.append(E);

end

return Times,Events ;



Chapter 2

Network Inference from

Population-Level Observation of

Epidemics

2.1 Introduction

Networks are an important tool for modelling systems with many interacting parts

such as epidemics spreading within a population or neuronal activity in the brain.

Indeed, the intricate interplay of many individual well-defined units can be captured

by the links of a network, and this can be done with an unprecedented level of detail

[Newman, 2003b; Keeling and Eames, 2005; Danon et al., 2010; Porter and Gleeson,

2016; Kiss et al., 2017]. For instance, directed, weighted or temporal links can

all be considered within this modelling paradigm. A main feature of network epi-

demic models is that the topology of the contact structure is treated separately from

the characteristics of the pathogen (such as infectivity and typical recovery time),

in contrast to mass action models such as Kermack–McKendrick [Kermack and

McKendrick, 1927]. The transmission dynamics of epidemic spreading on networks

can be modelled as a continuous time Markov Chain process on a network [Pastor-

Satorras et al., 2015]. Unfortunately, the literature only show few exact results, and

these are mainly related to specific cases or small networks. Therefore, approxima-

tions are often introduced to simplify the exact model and derive quantitative results.

Most notably, well-known and widely used theoretical approaches include mean-field

37
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and higher order approximations [Gomez Rodriguez et al., 2010; Kiss et al., 2017],

edge-based dynamics [Miller et al., 2012; Wang et al., 2018], percolation [Moore and

Newman, 2000; Miller, 2009; Gleeson, 2009] and generating functions [Newman,

2003b; Pastor-Satorras et al., 2015].

These approaches have led to the realisation that the structure of the network

has a profound impact on how diseases invade, spread and how to best control

them. This impact is particularly well understood for degree heterogeneity and

assortativity/disassortativity, and to a lesser extent, for clustering, the propensity

of nodes that share a common neighbour to be connected [Pastor-Satorras et al.,

2015; Kiss et al., 2017].

However, depending on the field of application, the precision to which the un-

derlying network is known can vary greatly, from absolute (when full description is

available) to absent (when a description is entirely lacking). For example, whereas

some technological networks can be mapped out to a great degree of detail, social

networks can be challenging to query [Brugere et al., 2018]. This has resulted in

a significant amount of research aimed to develop methods for link prediction (for

a survey, see [Brugere et al., 2018]). Instead of assuming the availability of expli-

cit information about nodes and edges, these methods rely on ‘observables’ from

dynamical processes taking place on the network, under the assumption that these

provide latent information about the missing underlying network structure. In the

framework of epidemics on networks this suggests that it is possible to get insights

about the structure of the network by observing quantities of interest at node and

perhaps population level. Indeed, the inverse problem of inferring networks from

epidemic data has been the subject of great scrutiny.

In particular, in the context of statistical inference, this task has been approached

by either formulating it as a likelihood optimisation problem [Gomez Rodriguez

et al., 2010; Netrapalli and Sanghavi, 2012; Myers and Leskovec, 2010; Du et al.,

2012; Gomez Rodriguez et al., 2014] or using Bayesian inference [O’Neill and Roberts,

1999; Britton and O’Neill, 2002; Groendyke et al., 2011; Stack et al., 2013; Dutta

et al., 2018]. Compared to maximum likelihood optimisation methods (e.g. inde-

pendent cascade model [Gomez Rodriguez et al., 2010]), the Bayesian inference is

usually based on a smaller number of observations of the epidemic [Britton and
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O’Neill, 2002; Groendyke et al., 2011; Dutta et al., 2018]. However, both network

inference approaches (explicit link inference and inferring parameters of a known net-

work model) lead to good estimates for the network and parameters of the epidemic

dynamics. Moreover, there is an interesting tradeoff between them. The former is

able to identify the adjacency matrix, but requires the observation of a large num-

ber of cascades, whereas the latter can only infer some structural parameters (such

as the probability of a link between two nodes), but relies on fewer observations.

Recently, it has been conjectured [Prasse and Van Mieghem, 2018] that an exact

(link-by-link) reconstruction of networks might not be feasible due to requiring a

subexponentially increasing number of observations and an exponentially increasing

computation time with respect to the number of nodes in the network.

A common feature of the above mentioned work is their reliance on the avail-

ability of detailed data at node level, such as the complete temporal knowledge of

all cascade trees in [Gomez Rodriguez et al., 2010] or the observation of all the

removal/infection times in the Bayesian framework of [Britton and O’Neill, 2002].

However, in most real-world scenarios, such detailed information is unlikely to be

available. A more reasonable expectation is to be provided with population-level

observations, that is, the number of infected nodes in the whole network at various

times. Our aim in this paper is to establish the feasibility of inferring the class

of the underlying network from population-level observations. Whilst a very recent

paper [Ma et al., 2019a] provides an algorithm to infer properties of a given network-

type from prevalence data, we are not aware (for a survey, see [Danon et al., 2010])

of any research that specifically addresses the problem of network class inference

based purely on population-level observations. We do so within the framework of

continuous-time SIS epidemics on networks when only population-level data from a

single realisation of the epidemic are available.

We treat this problem as an inverse problem and adopt a Bayesian approach

which involves the following steps:

(a) propose a parametric forward model that reproduces network/population-level

dynamics and reflects network structure;

(b) build a prior distribution for these model parameters on a network class basis;
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(c) use the posterior measure to identify the most likely network class.

A complete description of the SIS dynamics on a network with N nodes requires

to solve 2N equations, one per possible state. The distribution of population-level

statistics in time can be described via the count of the number of infected nodes

in this dynamics; however, this process scales exponentially with the size of the

network. Here, we take a different route and choose to use a surrogate model

to represent the evolution of the count of infected nodes in the population. A

reasonable candidate for this is a Birth-and-Death process (BD), see [Nagy et al.,

2014], characterised by only N+1 equations and 2(N+1) free parameters, the rates

of infection and recovery, that need to be tuned to best represent the exact model.

Whilst the rates of recovery are network independent and known exactly, the rates

of infection in the surrogate model are more challenging to define.

In this work, the rates of infection in the surrogate model are provided by a simple

parametric model, together with an estimation procedure based on extensive and

detailed simulations of epidemics on three classes of well-known random networks:

Regular, Erdős-Rényi and Barabási-Albert. This procedure leads to distinct rate

models for the three classes of networks. These observations are encapsulated in a

prior distribution for the rates of the BD process.

Finally, when one observes a single epidemic through population-level data, our

prior and forward model can be used within a Bayesian model selection framework

to identify the most likely underlying network class. It is worth noting that this

framework is versatile enough to be used in conjunction with any set of population-

level epidemic data, as it will still output the most likely network class, that is, the

closest class (in terms of heterogeneity of the degree distribution) to that of the true

underlying network.

The paper is structured as follows. In Section 2.2 we describe the BD surrogate

forward model together with a three-parameter model for its rates of infection.

Section 2.3 includes all aspects of the Bayesian approach we used, from building

priors to model selection and model validation/stress testing. We conclude with a

discussion and further research directions in Section 5.5.
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2.2 The forward model

A population of N individuals is considered with the contact structure between indi-

viduals described by an undirected network with adjacency matrixG = (gij)i,j=1,2,...,N

where gij = 1 if nodes i and j are connected and zero otherwise. Self-loops are ex-

cluded, so gii = 0 and gij = gji for all i, j = 1, 2, . . . N . The standard SIS epidemic

dynamics on a network [Kiss et al., 2017] is considered, which is driven by two type

of events: (a) infection and (b) recovery from infection. Infection can spread from

an infected and infectious node (I) to any of its susceptible neighbours (S) and this is

modelled as a Poisson point process with per-link infection rate τ . Infectious nodes

recover at constant rate γ, independently of their neighbours and become susceptible

again. Initialization is made by randomly choosing I0 nodes to be infected at the

initial time, the others being susceptible. The resulting model is a continuous-time

Markov Chain, and to fully specify its state we need an equation for each arrange-

ment of length N with entries being either S or I, resulting in a state space of 2N

elements. While this is easy to formalise and write down theoretically, the numerical

integration of the system becomes intractable even for modest values of N [Simon

et al., 2011; Danon et al., 2010; Simon and Kiss, 2013; Kiss et al., 2017]. This mo-

tivates us to use a surrogate model, offering sufficient flexibility to approximate the

time evolution of the number of infectious nodes in the network.

2.2.1 Birth-and-death approximation of SIS epidemics

We use a BD process, a continuous-time Markov chain with state space {0, . . . , N}
and transitions of unit size, as the surrogate model. The up-jumps or infections are

described by rates ak, that is, the rates of infection in the presence of k infected nodes

and encode the network structure. The down-jumps or recoveries are described by

rates ck = γk. To understand why, we first observe that recoveries are independent

events (since once a node is infected, its status no longer depends on other nodes).

An infected node recovers after a time drawn from an exponential distribution with

rate γ. If k nodes are infected, the first recovery is going to happen according to

the minimum of all recovery times, which is again exponentially distributed with

rate γk. Hence, the transition probabilities of the surrogate process are given by
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the following forward Kolmogorov (or Master) equation:

∀k ∈ {0, . . . , N}, ṗk0,k(t) = ak−1pk0,k−1(t)− (ak + ck) pk0,k(t) + ck+1pk0,k+1(t), (2.1)

together with a−1 = cN+1 = 0 and an initial condition k0 ∈ {0, . . . , N}, with pk0,k(t)

the probability of being in the state with k infected at time t, given initial k0 infected.

The solutions of Eq. (2.1) and the rates of infection will be denoted by pαk0,k and aαk ,

respectively, when the dependence on additional parameters α needs to be enforced.

The quality of the surrogate model, i.e., how well it approximates the exact

model, depends strongly on the choice of infection rates ak. The way ak depends

on k is determined by the underlying network structure. An analytic formula for ak

is only available for the fully connected network, namely: ak = τk(N − k), that is

the number of S-I links (i.e., links connecting susceptible and infected nodes) in the

network multiplied by the per-contact rate of infection τ .

In fact, in a stochastic simulation of the epidemic on a network, the rate of going

from k to k+ 1 infected nodes is exactly τ ×#S-I links. Hence, during a simulation

it makes sense to keep track of the number of infected nodes, the number of S-I

links and the time spent in each respective state. Further important observations

can be made. The number of S-I links is a random variable and given a fixed number

of infected nodes, say k, the number of S-I links can take different values. This is

simply due to the stochasticity in how the infected nodes are laid out in the network.

Thus a plausible choice for the rate ak may be simply the average of the number of

S-I links when there are exactly k infected nodes. However, some states are longer

lived than others and this needs to be accounted for. Combining all the above, an

empirical average rate of infection emerges, that is

âk = τ

∑
i iti,k∑
i ti,k

, 1 ≤ k ≤ N, (2.2)

where ti,k is the lifetime of a state with k infected nodes and i S-I links. We will use

the notation âθ,τ,γk to indicate the resulting estimate given the network class θ ∈ Θ:

Θ := {Reg, E-R, B-A}.

where we use Regular (Reg), Erdős-Rényi (E-R) and Barábasi-Albert (B-A) network

classes. There are a number of reasons for this choice. First, these three classes

are perhaps the most popular random network models, so they provide a good
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benchmark to test our model. Second, they can produce rich topologies in terms of

degree heterogeneity, and therefore allow us to test the flexibility of our framework.

Finally, the absence of higher-order structures (such as communities, or clustering)

enables us to simplify the problem of fitting the (k, ak) curves and thus to focus

more specifically on the problem of network inference.

Hence, we can calibrate the infection rates ak through a statistical analysis based

on stochastic simulations of the SIS epidemics on networks. Namely, for a network

class (with given average degree) and given disease parameters (τ, γ), we run 50

outbreaks on 50 different realisations of the network. We keep track of the states

that the process visits along with the number of infected nodes, number of S-I links

and lifetime of the states. This data feeds into Eq. (2.2) and leads to the value of

âk for all 0 ≤ k ≤ N . To cover the entire range, 0 ≤ k ≤ N , half of the outbreaks

are started from k0 = 5 infected nodes, chosen uniformly at random, and the other

from k0 = N infected nodes. The former allows us to explore the curve up to the

steady state, while the latter, although an artificial scenario, allows us to explore the

curve from the steady state to N . Typical (k, âθ,τ,γk ) curves are shown in Fig. 2.1.

In what follows we assume that these rates are ‘optimal’ and that they lead to a

surrogate model that agrees well with the exact one. This choice is motivated by the

heuristics presented above which is further validated through extensive numerical

simulations for three network classes and a large set of disease parameter values (see

Section 2.3).

2.2.2 Three-parameter model of infection rates

Consistent with results in [Nagy et al., 2014], we notice that, although estimated

âk curves are distinct for different network classes, they all share some common

features: specifically, they all satisfy â0 = âN = 0 and exhibit a single maximum in

[0, N ]. Perhaps the most important features that change between the three distinct

network classes are the flatness and skewness of the âk curves (see Fig. 2.1). It is

clear that high heterogeneity in the degree distribution (i.e. Reg → E-R → B-A,

displaying respectively no → medium → high heterogenity) increases the left skew.

The intuitive reason for these differences in the (k, âk) curves is that epidemics

on such different networks spread with distinct enough characteristics. In scale-free
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â
k
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B-A

Figure 2.1: âk curves (markers) along with the best fits from the C, a, p model

(plain lines) on 12 different combinations of network classes and epidemic para-

meters. Parameters of the simulations considered are, from top to bottom: Reg

(crosses), (〈k〉, τ, γ) = {(12, 1.43, 5.69)(6, 9.46, 4.23)(8, 4.47, 8.62)(13, 1.56, 9.18)}; E-R

(circles), (〈k〉, τ, γ) = {(7, 5.96, 8, 07), (13, 5.8, 9.06), (6, 3.08, 7.61), (16, 0.99, 8.5)}; and B-

A (squares), (〈k〉, τ, γ) = {(6, 3.09, 7.61)(8, 5.99, 7.01)(12, 0.79, 8.96)(16, 2.18, 5.81)}.

networks for example, the most exposed nodes are the hubs, so they get infected

early on. This skews the (k, âk) curve to the left, because once infected these hubs

generate a disproportionately large number of S-I links. On the contrary, when all

nodes have similar degrees, the (k, âk) curves are more symmetric. Concerning E-

R and Reg networks, the most important difference is that the former allows for

some degree heterogeneity, whereas the latter does not. Degree heterogeneity plays

an important role when it comes to disease transmission so it is no surprise that

epidemics on E-R networks can affect a higher proportion of nodes in the initial

stage of an outbreak when compared to epidemics on Reg networks [Kiss et al.,

2017].

This suggests that âk curves could be parametrised with a low dimensional model.

The departure from the fundamental assumption of homogeneous random mixing in

epidemiological and ecological models has led to a myriad of models where bi-linear

transmission terms proportional to ∼ I × S or ∼ I × (N − I) have been replaced

by non-linear infection terms such as IpSq [Liu et al., 1986; Hethcote and van den
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Driessche, 1991; Roy and Pascual, 2006]. In particular it is noted that, in the context

of classical compartmental and mean-field models, such terms can be inferred from

the number of S-I links taken from simulation and that they can lead to more exotic

model behaviours. In the same spirit, we put forward the following model for the

rates:

∀k ∈ {0, . . . , N}, ak := a
(C,a,p)
k = Ckp (N − k)p

(
a

(
k − N

2

)
+N

)
, (2.3)

where the three parameters C, a and p offer flexibility to adapt to various networks

and epidemics of different severity. This choice is motivated by the heuristic thinking

of how the epidemic unfolds on the network. The parameter C > 0 gives a general

scaling, dealing with different infection intensities, a ∈ [−2, 2] helps to shift the peak

from the centre (e.g. a < 0 shifts the peak to the left), and p > 0 allows for different

flatnesses (smaller p values leading to flatter curves). Note that, when a = 0, the

model results in a particular case of the previously mentioned non-linear models.

Immediately, one can note that this model fulfils a number of desirable properties:

(a) it is low dimensional/parsimonious, (b) the model satisfies a0 = aN = 0 by

construction, (c) it includes the complete network when ak = τk(N −k) and finally,

(d) it has a single maximum within [0, N ].

The C, a, p values are obtained using a non-linear least-square fit (using a particle

swarm algorithm [Kennedy and Eberhart, 1995]):

e(C, a, p;S) =
∑

k,
∑
i ti,k>0

(
a
(C,a,p)
k − âk

)2
. (2.4)

Fig. 2.1 showcases the flexibility of the model in fitting âk curves coming from

different network classes and confirms our observations about the rates being more

left-skewed with increasing heterogeneity in node degree.

In the same figure, curves based on the (C, a, p) model are compared to the (k, âk)

curves. Systematic numerical investigations (not all plots shown) demonstrate that

the proposed parsimonious three-parameter model fits the (k, âk) curves well for

all considered network classes, particularly Reg and E-R. For B-A networks small

discrepancies between the (k, âk) curves and the (C, a, p) model are possible.
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2.2.3 Dataset

Proving that the behaviour of the exact system of 2N equation is well approximated

by our proposed system of (N + 1) ordinary differential equations (2.1) is still an

open question. Therefore, the validations that we provide in this paper are entirely

based on extensive numerical simulations. Here, we discuss briefly the synthetic

dataset S underpinning those numerical validations. For each network class, we

varied the average degree (5 ≤ 〈k〉 < 20). This covers a large number of scenarios

and the networks remain relatively sparse. Regarding the epidemic parameters, we

varied the infection and recovery rates ((τ, γ) ∈ (0, 10]×(0, 10]). Values for the rates

were chosen via Latin hypercube sampling [McKay et al., 1979]. By doing so, we

could observe many unique scenarios, providing a solid base upon which to test our

methods.

However, there may be situations where the epidemic does not spread. Indeed,

the behaviour of an epidemic is determined by the characteristics of both the network

class and epidemic dynamics. The former includes quantities such as the average

degree and higher-order moments, the latter includes per-link infection and recovery

rates. All of this is captured by the reproduction number [Kiss et al., 2017], R0,

which is the number of secondary infections caused by a typical infectious individual

introduced into a fully susceptible population:

R0 =
τ

γ + τ

〈 k2 − k 〉
〈 k 〉 . (2.5)

If R0 ≤ 1 the infection will die out. However, if R0 > 1, then an outbreak is

expected. Since R0 depends directly on the sampled network and disease parameters,

we accepted only situations where 1 < R0 ≤ 10. This led to 360 valid choices

(network class, 〈k〉, τ, γ), with 120 per network class. For all the 360 scenarios, data

from the simulations were used to determine network class- and disease-parameter

specific infection rates âθ,τ,γk and the corresponding (C, a, p) models.

2.2.4 Numerical validation of the forward model

To validate our claim that the BD process is a good approximation of the true

epidemic behaviour, we numerically integrated the master equation (2.1) with rates

ak = âk and ck = γk, where âk are the estimated rates via Eq. (2.2), for all 360
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scenarios in S. The master equation was also numerically integrated with rates given

by the (C, a, p) model. The expected number of infected nodes from the numerical

solution of both master equations was then compared to the average number of

infected nodes based on simulations. Four representative examples of epidemics

for each network class are shown in Fig. 2.2. For the vast majority of the tested

cases (not all shown), the agreement between simulation and the (C, a, p) model is

good to excellent. It is worth noting that, in the case of B-A networks there are

a few parameter combinations where the agreement between the master equation

with the rates given by the (C, a, p) model and simulation results is poorer, see

Fig. 2.2(c). This is despite the seemingly small discrepancy between (k, âk) curve and

the corresponding (C, a, p) model (not shown). However, the master equation with

the âk-rates still leads to good agreement with simulations as shown in Fig. 2.2(c)

(markers versus continuous line). Even so, it is reassuring to see that even when

the agreement between the master equation with the (C, a, p) model breaks down,

the agreement with the âk holds. In [Nagy et al., 2014], a similar surrogate model

was used and the authors obtained good agreement between the BD model and

simulations for an even wider range of network classes. This gives us confidence

that the surrogate model is a viable model.
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Figure 2.2: Average number of infected nodes from simulations (markers) and the nu-

merical solutions of system (2.1) with rates ak given either by the raw data âk (continuous

curve) or by the (C, a, p) model (dotted curves), with initial condition k0 = 5. Three

network classes are reported, each with N = 1000 nodes, from left to right, ordered by

increasing heterogeneity, from Reg (a) and E-R (b) to B-A (c) networks. Networks and

epidemic parameters are the same as in Fig. 2.1.
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2.3 Bayesian inference of network class from single

epidemics

In the framework presented so far, we proposed a surrogate model which approx-

imates the evolution of the total number of infected nodes in a SIS epidemic on a

network. The rates of infection in this forward model (i.e. âk) are parametrised by

a three-parameter model (C, a, p) as detailed in equation (2.3). Early investigation

shows that the (k, âk) curves (thus the associated C, a, p triple) are distinct across

the three different network classes that we considered. Hence, one may expect that

discrete observations taken from a single epidemic spreading on a unknown network

carry sufficient information to identify its most likely class.

We consider the following task: to infer the most likely network class, given

one set of discrete-time observations of one realisation of the true process on a

network. To do so, we adopt the (C, a, p) model to approximate the true process

at a population level. Then, the likelihood of the observed data can be written in

terms of the solution operator of a Birth-and-Death model of rates (C, a, p) and γ.

Since the task is to infer the most likely network class rather than the actual (C, a, p)

triplet, we set up a Bayesian framework where priors over different network classes

are built by fitting the (k, âk) rates of the surrogate model on many realisations of

the true process over different network classes and epidemic parameters. In figure 2.3

a simple scheme to describe the inference model is provided.

To be more precise, we consider a population-level dataset y = (k1, . . . , kn) where

kj ∈ {0, . . . , N} for any j = 1, . . . , n is the number of infected nodes in the network

at time tj ∈ [0, T ], and we define the vector s = (t1, . . . , tn). Our objective is to

predict the class θ ∈ Θ of the underlying network from y. Figure 2.4 illustrates 10

distinct data sets for each of the three network classes. These data are obtained

directly from Gillespie simulations [Gillespie, 1976, 1977] of the SIS epidemic on the

respective networks. Observations are taken at regular times from the start of the

epidemic to the point where the quasi steady-state is approached.

For each value of θ (that is a network class), we build a distribution π0,θ over

the parameters C, a, p based on offline simulations of SIS epidemics for a range of

networks in each given class θ (see Section 2.3.1). By looking at the outcomes
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Figure 2.3: Scheme of the inference framework. The groud truth is a SIS process on a

randomly generated network, simulated through the Gillespie algorithm [Gillespie, 1977].

At each event, we record the number of S− I links and the number of infected nodes I(t).

We repeat the simulation many times, possibly starting from I(t = 0) = N , to characterise

how the S − I links are distributed for each I on a given network class. From this, by

using the forward model and the (C, a, p) function, we can build priors over different

network classes θ. When a new dataset comes in, in the form of discrete population-

level observations of an outbreak, we can infer the probable network class thorugh the

likelihood (2.6).
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Figure 2.4: 3 examples on different network classes of 10 average epidemic paths, taken

from dataset S. Continuous curves represent the evolution of infectious counts and dots

the observations y. Network and epidemic parameters for each panel are, from left to

right, Regular (a) with 〈k〉 = 17, τ = 2.62, γ = 4.03, Erdős-Rényi (b) with 〈k〉 = 13,

τ = 5.80, γ = 9.06, and Barabási-Albert (c) with 〈k〉 = 6, τ = 8.16, γ = 8.23. In each

realisation, k0 = 5 randomly selected nodes are infected at the beginning of the epidemic.

of our simulations, we observe that, for our chosen set of candidate classes Θ, the

distributions π0,θ(C, a, p), θ ∈ Θ, cluster in distinct regions of the (C, a, p) parameter

space. This is necessary for the inference to work, and it contributes to the validation

of our model of choice for the rates âk. Assuming a non-informative uniform prior

for θ, we derive a prior distribution π0(C, a, p, θ) in the form of a mixture:

π0(C, a, p, θ) =
1

3
π0,θ(C, a, p).

Our objective is the prediction of the underlying network θ given the data (y, s),

which will be done using the posterior distribution π(θ|y, s) obtained by Bayes’ rule:

π(θ|y, s) =

∫
π(C, a, p, θ|y, s)dCdadp

∝
∫
LC,a,p(y, s)π0(C, a, p, θ)dCdadp,

∝
∫
LC,a,p(y, s)π0,θ(C, a, p)dCdadp,

(2.6)

where, given C, a, p, the likelihood LC,a,p can be expressed in terms of the solution

operator of the forward model discussed above (see Section 2.2). This Bayesian

classification methodology is also known as model selection, where the model is a

particular class of networks. Once we have computed the posterior distribution

π(θ|y, s) (see Section 2.3.2), we simply pick the most likely underlying network class

(Maximum a posteriori estimator for θ given the data (y, s)).
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Figure 2.5: Estimated C, a, p values from the dataset S (360 points in total, each coming

from a unique combination of (network class, 〈k〉, τ , γ)). From left to right, we observe

three distinct regions corresponding to Barabási-Albert (triangles),Erdős-Rényi (squares)

and Regular networks (circles) networks.

2.3.1 Prior distributions for each network class

In this work, we consider prior distributions for each network class as a different

density π0,θ over the C, a, p space. To do this, we use the very same dataset that

was used for numerical validation (see Section 2.2). Given the C, a, p values of

each network class (see Fig. 2.5), we choose 100 triples to estimate a probability

distribution and leave 20 for testing. The (C, a, p) values associated with the training

scenarios are used to infer three Gaussian kernel density estimators [Pedregosa et al.,

2011] to be used as prior distributions. The bandwidth of these estimators is set by

10-fold cross-validation.

2.3.2 Numerical method for posterior marginals computa-

tions

Finally, to predict the underlying network class given a dataset (y, s), we need to

compute the three marginals given in equation (2.6) (one per network class) and this

is done by Monte-Carlo estimation. As already mentioned, the likelihood LC,a,p(y, s)
can be obtained using the forward operator associated with equation (2.1). Indeed,
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given a (C, a, p)-triple, the likelihood of a dataset (y, s) is given by:

LC,a,p(y, s) =
n−1∏
i=1

pC,a,pki,ki+1
(ti+1 − ti),

using the fact that the BD process is time homogeneous. We choose to compute each

term pC,a,pki,ki+1
(ti+1− ti) where 1 ≤ i ≤ n− 1 using the algorithm introduced in [Craw-

ford et al., 2014], allowing BD transition probabilities to be computed individually.

This represents a significant reduction in computational time, when compared to

matrix exponential since we are working with a network of size N = 1000 nodes.

Once we have an efficient numerical method to compute the likelihood, we use

the corrected Arithmetic Mean estimator, recently introduced in [Pajor, 2017] for

the Monte-Carlo estimation of all marginals. Let A be a given subset of the (C, a, p)

space, then it follows that:∫
LC,a,p(y, s)π0,θ(C, a, p)dCdadp =

πθ,0(A)

πθ|(y,s)(A)

∫
A

LC,a,p(y, s)πA,θ(C, a, p)dCdadp,

(2.7)

where πA,θ is the prior density of network class θ, conditional on θ ∈ A. Each

marginal is then estimated using the following procedure:

1. Find

(C∗, a∗, p∗) = arg max
C,a,p

(
logLC,a,p(y, s) + log πθ,0(C, a, p)

)
.

This is done via a combination of global/local optimisation routines.

2. Sample the distribution πθ(C, a, p|y, s) using a Random-Walk Metropolis-Hastings

algorithm starting from (C∗, a∗, p∗) and denote the samples by (Ci, ai, pi)1≤i≤K

with K = 500.

3. Let H be the Fisher information evaluated at (C∗, a∗, p∗) and let d(C, a, p) be

defined as

d(C, a, p) := 〈(Ci, ai, pi)− (C∗, a∗, p∗), H [(Ci, ai, pi)− (C∗, a∗, p∗)]〉 .

We then take A := {(C, a, p)|d(C, a, p) ≤ r} where r = max1≤i≤K d(Ci, ai, pi).

This choice was already suggested in [Pajor, 2017]. In particular, it leads to

πθ|(y,s)(A) ≈ 1, which simplifies the right-hand-side of equation (2.7).
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4. Use a Gaussian distribution N ((C∗, a∗, p∗), H−1) to estimate both πθ,0(A) and

the integral term on the right-hand-side of equation (2.7) by importance

sampling.

Our complete Python implementation of this routine is available online 1.

2.3.3 Network class inference

In this section, we provide numerical results assessing the overall quality and applic-

ability of our approach. We start by inferring networks from a testing dataset, where

all data are simulated from either Regular, E-R or B-A networks, see Section 2.3.3.

We then consider networks outside of our framework, namely synthetic networks

with negative binomial degree distributions (Section 2.3.3) and real-world networks

(Section 2.3.3). In all cases, we provide posterior probabilities for each network class

across independent repetitions of the datasets to quantify uncertainty.

Inference based on the testing set

During the construction of the prior, we deliberately set aside 60 estimated (C, a, p)

values to build a test set (20 per network class taken at random), meaning that they

were not used in the calibration of the prior. In this section, we use this set to check

if we can infer the known underlying network class.

The inference was performed as follows. For each of the (C, a, p) parameters

in the testing set, we used the known underlying network and disease parameters

(network class, 〈k〉, τ , γ) to simulate a dataset (y, s) with Gillespie’s algorithm. We

only generated a single network from the appropriate class and simulated a single

epidemic. However, we generated 10 independent datasets, as shown in Fig. 2.4,

and ran our inference model on each of them separately. The second step was to

compute the 3 posterior probabilities corresponding to the different network classes,

as detailed earlier. We thus obtained 3 posterior probabilities for each of the 60

elements in our test set and predicted the most likely underlying network class. To

assess the uncertainty due to data sampling, we considered the results across all the

independent datasets.

1https://github.com/BayIAnet/NetworkInferenceFromPopulationLevelData

https://github.com/BayIAnet/NetworkInferenceFromPopulationLevelData
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The quality of the inference is shown by the confusion matrix (Table 2.1), which

provides the averaged posterior probabilities along with their standard deviation

for each of the possible outcomes. The level of accuracy achieved in our tests is

remarkable, with a score as high as 95% for Barabási-Albert, and a minimum of

79% for Erdős-Rényi. This also shows that there can be a moderate confusion

between the Regular and Erdős-Rényi network classes, as their characteristics are

quite similar w.r.t. (C, a, p) values (see Fig. 2.5) whereas Barabási-Albert is rarely

miss-classified. Further, the standard deviations show that these scores are stable

across different data realisations, suggesting that our approach is consistent.

True/Predicted Regular Erdős-Rényi Barabási-Albert

Regular 85.5% (7.9%) 14.5% (7.9%) 0.0% (0.0%)

Erdős-Rényi 21.5% (10.7%) 78.5% (10.7%) 0.0% (0.0%)

Barabási-Albert 0.0% (0.0%) 5.0% (5.0%) 95.0% (5.0%)

Table 2.1: Averaged confusion matrix based on the test dataset (standard deviation is

brackets).

To get a more precise description of the classification results, we computed the

average posterior probability for each of the 60 test elements, see Fig. 2.6. This

revealed that the average posterior probability varies within each of the network

class, probably due to differences in network or disease parameters. In some sense,

this shows that for some network and disease parameters, the similarity between

Regular and Erdős-Rényi is significant. For example, when the epidemic spreads

fast and infects many nodes early on, the structure of the network is less important

as the infection will be transmitted on. This means that the average degree is more

important than the degree distribution. Nevertheless, our inference methodology

returns a good classification in most cases. In fact, these tests show that our ap-

proach can successfully recover the network class from as little as 21 observations of

a single epidemic.

Finally, we detail specificity and sensitivity for the 10 repetitions of the classific-

ation, offering per network class and global statistics in Fig. 2.7. We note that each

marker has 10 occurrences but in some cases these are superimposed. Here again,

one can see the stability and high efficiency of our approach for Barabási-Albert,
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Figure 2.6: Average posterior probability over the 60 tests (20 per network class and 10

realisations).
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per-network levels.
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Inference of synthetic networks

We have shown that our methodology performs well when applied to the data gener-

ated on the networks that it was trained on. In this Section, we consider alternative

network types for two reasons: (a) to stress-test the classification by using net-

works whose degree distributions do not come from the models used to build priors,

and (b) to study the extent to which it can distinguish between different levels of

heterogeneity in degree distribution.

To do this, we generated three synthetic networks using the configuration model [New-

man et al., 2001] and a negative binomial degree distribution with parameters (p, n):

∀k ∈ {0, n}, P (k) =

(
k + n− 1

k

)
pk(1− p)n−k, (2.8)

where p is the probability of success and n the number of failures. This choice is

motivated by both the simplicity and the flexibility of this distribution. The average

degree in all three networks was identical (i.e. fixed at 〈k〉 = 6) but with different

levels of heterogeneity depending on the variance, see Fig. 2.8(a). To avoid the

possibility of having disconnected components, the degree distributions were shifted

so that the minimum was greater or equal to 3. Here, the degree distributions were

chosen to exhibit different levels of heterogeneity, from low to a level comparable

to those achieved in B-A networks. We then ran 10 independent epidemics with

parameters γ = 1 and τ = 0.5, starting from 5 infected nodes. As in Section 2.3.3,

the inference was based on a dataset with 21 equally-spaced observations of the

number of infected nodes. The results are shown in Fig. 2.9, and confirm that our

inference scheme is able to distinguish between networks with high/low levels of

degree heterogeneity. In particular, by looking at Fig. 2.8(a) it is reasonable to

expect that the first and third networks are going to be classified as E-R and B-A

networks, respectively. Indeed, Fig. 2.9 shows that the first network in Fig. 2.8(a)

is identified as E-R 80% of the time, whereas the third network in Fig. 2.8(a) is

correctly classified as B-A for every single epidemic realisation.

When the degree distribution of the test network is such that its variance falls

between typical variances observed in E-R and B-A networks (see the second network

in Fig. 2.8-a) our results are more sensitive to the individual realisation of the

epidemic. However, even in this case, the network is identified to the closest type in
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Figure 2.8: Degree distributions, ordered by variance, of three single negative bi-

nomials (a) following equation (2.8) and of the three real networks (b) used for

the stress test. For (a), the average degree is 〈k〉 = 6 for all networks. From

low to high variance we have σ = 8 (Negbin 0), σ = 40 (Negbin 1), σ =

120 (Negbin 2). The values of (p, n) are (0.23, 20), (0.85, 1), (0.95, 0.3), respectively.

For (b) the basic metrics of these networks are {〈k〉, σ2,Assortativity,Clustering} =

{2.53, 5.24, 0.102, 0.02}, {2.77, 40,−0.21, 0.04}, {12.30, 268.90,−0.08, 0.09}, respectively.
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Figure 2.9: Posterior probabilities for the 10 repetitions on each synthetic network.

terms of degree distribution. Moreover, heuristically at least, the B-A network seems

to be favoured, which seems reasonable upon inspecting the degree distribution of

the test network.
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Inference of real-world networks

Finally, the last test we conducted was based on real world networks, which can

exhibit higher-order structure beyond degree heterogeneity. We chose three real

networks: the first is labelled euroroads and is part of the KONECT collection

[Kunegis, 2017], the second and third, bio-grid-mouse and fb-messages, are part

of the network data repository Networkrepository [Ryan and Nesreen, 2015]. The

euroroads is an infrastructure network, bio-grid-mouse is a protein-protein network

whilst fb-messages is based on the interactions of an online community of students

at University of California. In Fig. 2.8(b) the degree distributions of these networks

are shown. To keep the number of nodes equal to N = 1000, we only considered

the largest connected component, and then, where necessary, removed peripheral,

low-degree nodes such that the resulting network was still connected.

In line with Section 2.3.3, we fixed γ = 1, and ran 10 distinct epidemics on

each network in order to generate data for the inference. Values for the infection

parameter were τ = {1.5, 2.5, 0.4} for euroroads, bio-grid-mouse and fb-messages,

respectively. The posterior probabilities obtained from our approach are reported

in Fig. 2.10 and are in line with our expectations based on the inspection of the

respective degree distributions: the infrastructure network is very homogeneous,

whilst the other two are scale-free, and hence correctly classified as B-A.

euroroads bio-grid-mouse fb-messages
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
o
st

er
io

r
p
ro

b
a
b
il
it

ie
s

Reg

E-R

B-A

Figure 2.10: Posterior probabilities for the 10 repetitions on each real-world network.
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2.4 Discussion

In this paper, we proposed a new inference scheme that uses population-level in-

cidence data at discrete regular times to infer the most likely network class over

which the epidemic has initially spread. This is a challenging task because the exact

epidemic model on a given network is forbiddingly high-dimensional meaning that

even a numerical solution is out of reach. The key to carry out the inference is the

approximation of the exact epidemic model by a BD process, whose rates not only

encode the structure of the networks but also allow us to distinguish between the

different network classes through a parsimonious three-parameter model. Whilst

we have successfully numerically validated this surrogate model over a number of

network classes and different values of disease parameters, with further evidence

in [Nagy et al., 2014], a mathematical characterisation of the relation between the

exact and this surrogate model remains an open problem.

Our analysis has focused on three classes of random networks: Regular, Erdős-

Rényi and Barabási-Albert. This choice is motivated by the fact that such classes

are well-known, simple to describe (depending only on one parameter) while differ-

ing in terms of degree heterogeneities. For each network class, the rates of infection

in the corresponding BD approximation was obtained by using the time-weighted

mean of S-I link counts. Despite these rates being network class-dependent, they

all share some common features. This in turn allowed us to propose a parsimoni-

ous three-parameter model (C, a, p) that works across all network classes and, at

the same time, can capture the differences in the rates of the approximating BD

process. In addition to being robust to different values of τ , γ and average degree,

these parameters exhibit a clear distinction between the three different network

classes when plotted in the 3-dimensional (C, a, p) space. This knowledge is then

encoded into prior distributions, constructed using kernel density estimators over

the (C, a, p) space. Our Bayesian model selection procedure then consists in the

numerical estimation of the relative marginal probabilities. Our results show that

the inference scheme has good specificity and sensitivity, despite the simplicity of

the model. These encouraging results lead to a number of questions and remarks.

First of all, our choice of classes of random networks means that the main feature of

the networks is their degree heterogeneity. We have yet to consider more complex
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Figure 2.11: (Left) (k, âk) curves based on Erdős-Rényi networks with 〈k〉 = 5, τ = 1.793,

γ = 3.785 and N = 500, 1000, 2000, 4000. (Right) Scaled (k, âk) curves relative to the

N = 2000 case. Scaled version are obtained by plotting (k/N, 2000N âk).

networks, such as those exhibiting clustering or community structure. This would

certainly lead to (k, âk) curves of different shapes, potentially having other features

such as multiple peaks for networks with multiple communities, and thus requiring

either a more sophisticated or non-parametric model. Nevertheless, considering epi-

demics in terms of an approximate BD process appears to be a powerful approach

if a tractable likelihood is desired. Moreover, once the most likely network class has

been identified, one could continue and estimate τ , γ and the average degree.

We have used a fixed number of nodes (N = 1000) in all our numerical exper-

iments. We do not expect major changes when the number of nodes is different.

Preliminary numerical tests, see Fig. 2.11, suggest that there is a good degree of uni-

versality such that the (k, âk) curves only differ by a scaling factor when the number

of nodes changes, all other parameters being fixed. In this respect, our methodology

could easily be adapted by directly considering the scaled epidemic (on [0, 1]) and

repeating our tests for different values of N . Fortunately, our numerical method

[Crawford and Suchard, 2012] scales well with N , since the transition probabilit-

ies in the likelihood are computed individually (with deeper continued fractions).

The question of the limiting behaviour in the limit of large N can also be further
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Figure 2.12: Behaviour of C, a, p when 〈k〉 increases for regular networks (circles)

and Erdős-Rényi (crosses), all other parameters being equal. The maximum value of 〈k〉
explored is 〈k〉 = 50. τ = 1, γ = 5. The fully-connected limit, reached when 〈k〉 = N − 1,

is C = 1
N , a = 0, p = 1; however, even at 〈k〉 = 50, we can see how un-identifiability

emerges between regular and Erdős-Rényi networks.

investigated.

An interesting open question is that of the extent to which different network fam-

ilies are mapped onto distinct regions in the C, a, p space if networks are weighted,

i.e., if the adjacency matrix has entries of magnitude 0 ≤ gij ≤ 1. While a compre-

hensive answer to this query would require extensive simulations beyond the scope

of this paper, there are a couple of points worth making. First, we already see

that Regular and Erdős-Rényi classes are only really distinguishable when networks

are sparse. If we keep τ, γ fixed and increase the average degree 〈k〉, we observe

that both tend to the fully-connected network limit, where C = τ
N

, a = 0, p = 1.

This is because the fully-connected network can be seen both as a regular network

with degree 〈k〉 = N − 1 and as an Erdős-Rényi with p = 1, see figure 2.12. This

means that there is some degree of un-identifiability when network classes generate

networks that are topologically almost identical to one another. Further, any un-

weighted network can be seen as a weighted fully-connected network, with weights

either 0 or 1. For instance, an Erdős-Rényi network is a weighted complete network

such that the element gij has weight 0 with probability p, 1 otherwise. With this

consideration in mind, the question can be rephrased as: is it possible to use this

framework to infer the weight distribution over a fully-connected network? Our con-
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jecture is that the answer is yes. Provided that the weight distributions are distinct

enough and the k, ak curves can be captured by a model such as the C, a, p, we do

expect to find similar scenarios to those shown by figure 2.5.

So far, we have used discrete data taken on a regular time grid covering the epi-

demic from its early stage (a few infectious nodes) up to its steady state. Increasing

the frequency of data or restricting data to the very beginning of the epidemic are of

significant practical interest. In the former case, one expects the discrete likelihood

to converge to the simpler continuous one, enabling faster and easier analysis. In

the latter case, it would lead to a model that does not require describing the whole

epidemic as we currently do. Focusing on the initial stages of the epidemic, the

most critical period in many cases, and upon solving a potential un-identifiability

problem, such an approach could have an important real-world impact, making it

possible to predict and control more accurately yet-to-be epidemics.

Finally, the proposed inference scheme could be improved by using more soph-

isticated models for the infection rates and by learning a larger number of different

network classes, leading to a wide portfolio of data which can then be used for estim-

ation. Of course, there is a trade-off in terms of what we can infer about networks

using population-level discrete data. We cannot infer individual links for example

but this is to be expected since the data we use for inference is not at the link-

or node-level. Nevertheless, we believe that our approach could have practical im-

plications, as the inference scheme is based on the kind of data that is most likely

to be available in real-world scenarios (e.g. the number of infected people every

day or week). Where such data is available but little is know about the contact

pattern, our inference scheme may be able to provide some high-level information

about the properties of the network which in turn could be exploited in the planning

or implementation of control, in particular during the early stages of an epidemic.
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Chapter 3

PDE limits of stochastic SIS

epidemics on networks

3.1 Introduction

An epidemic is a complex phenomenon that arises from a pathogen spreading over

the contact structure of a population. Similar spreading phenomena occur in various

disciplines, from biology and social sciences to engineering. Unsurprisingly, much

modelling effort has been put into studying spreading processes on networks, as they

offer a natural framework to mimic real-life contact patterns [Brauer and Castillo-

Chavez, 2012] and the important heterogeneities within these. The use of networks

is extremely intuitive with each individual encoded as a node, and all its contacts (to

other individuals) as links. Unfortunately, the resulting exact probabilistic model

does not scale well with the size of the network, N . Even when relatively simple

models, such as susceptible-infected (SI) or susceptible-infected-susceptible (SIS),

are considered, the exact model has 2N equations, which quickly becomes intractable.

To address the difficulty posed by high dimensionality, mathematical descriptions

often focus on population-level statistics (e.g. expected number of infected people

at any given time). This has led to a number of so-called mean-field models [Kiss

et al., 2017; Porter and Gleeson, 2016; Pastor-Satorras et al., 2015], offering a good

first approximation of the evolution of some population-level or averaged quant-

ities. These include pairwise models based on moment closure techniques [Keel-

ing, 1999; Kiss et al., 2017], effective-degree [Lindquist et al., 2011], edge-based-

63
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compartmental [Miller et al., 2012] models and even PDE models [Silk et al., 2014].

All such mean-field models share a number of caveats [Roberts et al., 2015]. For

example, (i) in general the agreement between these and the exact stochastic model

breaks down close to the epidemic threshold, (ii) there are very few cases where it

is possible to prove mathematically that the mean-field model is the limit of the

exact stochastic process (this has only been done for SIR epidemics and configur-

ation networks [Decreusefond et al., 2012; Janson et al., 2014]) and (iii) they give

no estimate of the variability observed in the exact process. It is also well-known

that such mean-field models only work for a limited class of networks; epidemics on

clustered networks are not well-understood, except for idealised clustered networks,

i.e. networks with non-overlapping triangles or other clustering-inducing subgraphs.

There are ongoing efforts to try to understand and answer rigorous mathematical

questions when it comes to analyse or approximate dynamical processes on networks,

see [Rempala et al., 2019] for a recent summary. Progress in this area is usually

achieved by bringing in and combining results and techniques from different areas

of mathematics. One particularly promising prospect for SIS epidemics on networks

is to consider them as Birth-and-Death (BD) processes. In a recent paper [Di Lauro

et al., 2020a], we conjectured and confirmed numerically that SIS epidemics are well

captured by BD processes, whose rates encode characteristics of both the network

structure and the epidemic dynamics. This was tested on Regular, Erdős-Rényi and

Barabási-Albert networks. This choice was motivated by the intuition that epidemic

spread is driven by the ‘birth’ of new infected nodes. However, this occurs at a rate

which is proportional to the number of S-I (active) links, and these are readily

observable during explicit stochastic simulations of the epidemic on networks.

In this paper we build on the above observation and take the next natural step,

that is, to consider the large N limit of the BD process, i.e., the one-dimensional

PDE (Fokker-Planck equation). We extend the repertoire of network models and

consider Regular, Erdős-Rényi and Barabási-Albert networks and 2D lattices with

periodic boundary conditions and show that the resulting rates in the BD process

are density-dependent such that the limit is well defined in the sense of [Kampen,

2007]. We compute the rates numerically and also provide a parametric form for

them (with the exception of the lattice). We show that the resulting PDE agrees
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Figure 3.1: Schematic illustration of various approximations of the exact stochastic SIS

epidemics on networks. The PDE limit comes as a result, and further confirms the validity,

of the Birth-Death approximation conjectured in [Di Lauro et al., 2020a].

well with the output of explicit simulations of stochastic epidemics on networks.

The existence of the PDE limit has multiple advantages. First, it reduces further

the dimensionality of the system. Second, it gives us the opportunity to compute

an epidemic threshold even in an implicit form. Finally, it provides the means

to get a handle on the variability of the stochastic process with the solution of

the PDE providing a likelihood that can be computed cheaply and efficiently for

inference purposes. Finally, the good agreement between the PDE and the exact

process provides further evidence that the BD model may indeed serve as a valid

approximation of the exact process (the relation between the exact, BD and PDE-

limit model is illustrated in figure 3.1) and that a formal proof of this observation

may be possible.

This paper is structured as follows. In Section 3.2 we briefly outline the Birth-

and-Death approximation of SIS epidemics as in [Di Lauro et al., 2020a]. In Sec-

tion 3.3 we numerically test and prove that the conditions for the existence of the

PDE limit, as N →∞, are met for different network topologies and epidemic para-

meters. We then show that the solutions of the partial differential equations agree

well with the empirical distributions based on simulations of the true process. In

Section 3.4 we draw some conclusions and outline further research directions.
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3.2 Methods

3.2.1 Birth-and-Death Approximation of SIS Epidemics

We briefly describe the model proposed in [Di Lauro et al., 2020a] which conjec-

tured that exact stochastic SIS epidemics on networks can be approximated by BD

processes. A standard SIS model on an undirected unweighted network G with N

nodes is considered, where each node is either susceptible (S) or infected (I). Infected

nodes spread infection to their neighbours with constant per-link rate τ and recover

with rate γ (independently of the network). This stochastic process results in a

continuous time Markov chain on a state space of cardinality 2N , which forbids ana-

lysis even for relatively small values of N . Instead, we consider the population-level

count of infected nodes, defined as k(t) =
∑N

i=1 Ii(t), where Ii is an indicator func-

tion equal to 1 if node i is infected at time t and 0 otherwise. k(t) ∈ [0, N ], where

k(t) = 0 indicates the state where no infection is present in the network. Given the

stochasticity of the process, k(t) is itself a random variable taking values on state

space of cardinality (N + 1). This reduction in dimensionality makes computations

much more tractable. We note that each time an infection/recovery occurs, the

value of k(t) changes by discrete jumps of size ±1, respectively. This has led to

the conjecture [Di Lauro et al., 2020a] that the population-level count process can

be approximated by a Birth-and-Death process, governed by the following master

equation:

ṗk(t) = ak−1pk−1(t) + ck+1pk+1(t)− (ak + ck)pk(t), (3.1)

where pk(t) is the probability of having k infected nodes at time t, ck = γk is the

global recovery rate when k nodes are infected, and ak is the rate at which the

population goes from k to k + 1 infected individuals.

The approximation is exact in the case of complete or fully connected networks,

where the ak rates are given by the expression ak = τk(N − k). In the general

case, the ak’s are random variables themselves, since the rates at which infections

happen are the product of τ times the total number of S − I links in the network,

a random variable itself that reflects the topology of the network and the way in

which the epidemic positions the k infected nodes on the network. This means that

the epidemic at population-level is not Markovian, making an exact treatment much
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more difficult and still out of reach.

However, by using the master equation, we can recast this process as a Markovian

one using a suitable approximation of each rate ak. A natural proposal is a quant-

ity that captures the average rate of infection, weighted by the time spent in the

observed states, that is:

ak =
τ
∑

ξk
ξktξk∑

ξk
tξk

, (3.2)

where ξk are the observed counts of the number of S-I links on the network when

k infected nodes are present and tξk is the lifetime of this particular state. This

quantity is responsible for driving the epidemic: The higher the number of S-I links,

the larger the rate of generating more infected nodes. The ak’s can be obtained by

averaging over many realisations of the epidemic on different realisations of networks

from the same family. This can also be interpreted as averaging out stochasticity at

link-level and transferring it to population-level. Hence, the variability in epidemic

paths will be due to the stochasticity of the master equation itself, guaranteeing

the Markov property of the Birth-Death process. The solution of equation (3.1)

with these proposed rates has been shown to be in excellent agreement with the

average from many simulations for various network models and epidemic paramet-

ers [Di Lauro et al., 2020a].

3.2.2 Fokker Planck equation as a limit of the Birth-Death

process

Master equation (3.1) can be used as a starting point to build its continuous (in

space) limit, i.e., the Fokker-Planck equation [Gardiner, 2004; Kiss et al., 2017].

The idea is to approximate the solution pk(t) by considering it as a discretisation of

a continuous function f(t, x) in the interval [0, 1], defined as

f

(
t, x =

k

N

)
= pk(t).

For the large N limit to exist, it is known [Kiss et al., 2017; Kurtz, 1970; Ethier

and Kurtz, 2009; Nagy et al., 2014; Batkai et al., 2013] that the rates of the master

equation need to satisfy the following density-dependence condition (with a slight
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abuse of notation):

a(k)

N
= A

(
k

N

)
,

c(k)

N
= C

(
k

N

)
, (3.3)

where A and C are not necessarily the same functions as a and c. It is worth noting

that condition (3.3) is not guaranteed to hold for every network model, and must

therefore be validated on networks of interest.

In the density-dependent case, it can be shown [Kiss et al., 2017; Nagy et al.,

2014; Batkai et al., 2013] that f(t, x) satisfies the following forward Fokker-Planck

equation:

∂tf(t, x) =
1

2N
∂xx
(
σ2(x)f(t, x)

)
− ∂x

(
µ(x)f(t, x)

)
, (3.4)

with initial condition f(0, x) = δ(x − x0), where the diffusion coefficient σ2(x) and

the drift µ(x) are related to the ak and ck rates via:

σ2(x) =
1

N
(A(x) + C(x)),

µ(x) = A(x)− C(x). (3.5)

Boundary conditions are naturally emerging from two considerations: (1) if the

process hits k = 0 at some time (disease-free state) it will stay there forever, and (2)

the number of infected nodes cannot be greater than N at any given time. In this

framework, such physical constraints translate naturally into Dirichlet and Robin

boundary conditions:f(t, x = 0) = 0, absorption in x = 0,

1
2
∂x(σ

2(x)f(t, x))|x=1 − (µ(1)f(t, 1) = 0, reflection in x = 1.

Fokker-Planck equations of this kind have been extensively studied numerically, es-

pecially in the biological context of population random genetic drifts [Duan et al.,

2018; Chen et al., 2014; Applegate, 2013; Cacio et al., 2012], as well as analyt-

ically [Feller, 1954; Trabelsi and Naouara, 2017; Kovacevic, 2018]. In particular,

in [Kovacevic, 2018], this equation is studied in the limit of large t to character-

ise the so-called quasi-steady state [Méléard and Villemonais, 2012; Collet et al.,

2013] (where the only steady state possible is absorption at 0), whereas in [Cacio

et al., 2012; Chen et al., 2014] various numerical schemes to solve such equations

are employed and compared in terms of numerical instabilities and performance. In

Appendix 3.6 we describe our numerical scheme of choice, which is an adaptation

of a finite volume method (FVM) scheme already described in [Chen et al., 2014].
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Networks 〈k〉 τ γ R0

9 1 6 1.28

Regular 7 2.5 8 1.66

8 3.5 7 2.65

8 1 5 1.50

Erdős-Rényi 10 1 4.5 2.44

7 4 7 2.90

10 0.9 3.5 2.12

Barabási-Albert 4 2 5 3.72

18 0.55 6.2 5.38

4 1.2 2 1.12

2D lattice 4 2 2 1.5

4 8 2 2.4

Table 3.1: Values of network and epidemic parameters for the benchmark scenarios

chosen to test the PDE limit of large networks. R0 has been computed on networks of size

N = 10000 via the formula R0 = 〈k2−k〉
〈k〉

τ
τ+γ , as described in [Kiss et al., 2017].

3.3 Results

3.3.1 Validation of the density dependence condition

In order to use eq. (3.4) we need to verify that the rates of the BD process satisfy

condition (3.3). Recoveries are independent of the network, therefore, the condition

is automatically satisfied as the expression for these rates is ck = γk. Infection

rates, instead, need to be inspected more closely, as their values are dependent

on the topology of the network. As an example, even fully-connected networks

with ak = τk(N − k) violate condition (3.3). This can be corrected by requiring

that τ scales as τ/N = ct in the limit of large N . This case is well-known in

the literature [Gray et al., 2011; Allen, 2017], albeit in a SDE formulation, so we

limit our treatment of it to reporting the exact Fokker-Planck equation for the fully

connected network, i.e.

∂tf(t, x) =
1

2N
∂xx [(βx(1− x) + γx) f(t, x)]− ∂x

[
(βx(1− x)− γx) f(t, x)

]
,
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Figure 3.2: Typical realisations of SIS epidemics on (a) Regular, (b) Erdős-Rényi, (c)

Barabási-Albert and (d) 2D lattice networks, for the parameter values shown in Table 3.1

and with N = 1000 (for the lattice, this number is 1024). In each panel 10 realisations

of the epidemics are plotted,. The parameters used to generate such networks are also

reported in Table [3.1], higher prevalence corresponds to higher values of R0.

where β = τ
N2 .

Since degree heterogeneity and higher-order stucture in networks have a marked

effect on epidemics we explore Regular, Erdős-Rényi and Barabási-Albert networks

and lattices. To test the scaling hypothesis, the infection rates, based on eq. (3.2),

are computed on different networks and for different values of N (typically from

N = 102 to N = 105 with slight variations for lattices). The resulting (k, ak) curves

are plotted in figures 3.3 (Regular) and 3.4 (Erdős-Rényi) (see also figures 3.11

and 3.12 corresponding to Barabási-Albert networks and lattices, respectively, in

Appendix 3.7). Using eq. (3.3), these rates are rescaled and plotted again in the

same figures confirming that they define a universal rate.

In figure 3.5, the universal curves (based on the highestN explored) are compared
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for the four different network types in order to highlight how the topology of the

network impacts the shape of the (k, ak) curves. As expected on a lattice, the

ak’s grow linearly with k. On all other networks, the curves are parabola-like but

higher degree heterogeneity leads to a more pronounced left skew in the location

of the maximum point of the rate curve. This is because nodes with many links

are likely to be infected early on in the epidemic, meaning that even for low k

values ak can be high (if a hub is infected then this leads to many new S-I links)

compared to networks with milder degree heterogeneity. Once most of the highly

connected nodes are infected (typically only a small proportion of N), the epidemic

will unfold on the less well connected nodes, therefore fewer links, and thus the

parabola decreases early on as shown by the left skew. We note that some variability

between the scaled (k, ak) curves emerges and this is likely due to finite size effects

where stochastic variability is accentuated. However, the difference is so small that

the Fokker-Planck equation and its solution appear insensitive to the exact choice

of the universal rates.

3.3.2 Comparing PDE and simulations

Since the limit of large N is of interest, it is beneficial to have a continuous function

that fits the discrete ak rates (3.2). In [Di Lauro et al., 2020a], the following three-

parameter model was proposed:

a
(C,α,p)
k = Ckp

(
N − k

)p(
α

(
k − N

2

)
+N

)
. (3.6)

This model can be fitted to the ak curves via a least-square approach, by minimizing

the following cost:

e =
∑

k,
∑
tξk>0

(a
(C,α,p)
k − ak)

2
. (3.7)

In [Di Lauro et al., 2020a], we showed that this approach leads to good agreement

with simulations from different network classes, in particular, Regular and Erdős-

Rényi networks. The fit for Barabási-Albert networks is acceptable and the fit breaks

down for lattices.

In the following, we make use of this function to model the infection rates of

master equation (3.1). However, using a simple function to model the complexity of
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Figure 3.3: Scaling for regular networks using parameters given in the first row of

Table (3.1). (a) Unscaled (k, ak) curves for values of N ranging from N = 100 to N =

100000. Each curve is obtained by simulating 10000 realisations of the epidemic across

50 realisations of the network, half of the epidemics starting from k0 = 1, the other half

from k0 = N . (b) Corresponding scaled rate (k, akN ) curves. The scaling hypothesis can be

checked by noticing that the higher the values of N , the closer the scaled curves get to the

limiting universal curve. As N increases, the differences between scaled rates decrease. In

the inset, the small mismatch between curves with N ≥ 1000 are highlighted using a 30x

zoom. For completeness, the (k/N, γk/N) curve is provided (in black); it intercepts the

scaled curves around the steady state.

the ak rates adds an additional layer of approximation to our approach. Therefore,

in addition to eq. (3.6) we also consider a cubic spline of the ak rates, as it provides

an even better fit to the rates based on eq. (3.2) and therefore yields better results.

This is particularly apparent for lattices, where the (C, α, p) model fails for obvious

reasons, and to some extent for Barabási-Albert networks. To summarise, the rates

of infection are first found based on simulations via eq. (3.2). As this approach pro-

duces a discrete function that cannot be used as is in the Fokker-Planck equation,

we propose two alternatives: (a) the (C, α, p) model, eq. (3.6), and (b) a spline.

The PDE is considered with both rates (except for lattices), and the numerical solu-

tion of the PDE is computed via a Finite Volume Method (several other numerical

schemes [Mohammadi and Borz̀ı, 2015; Cacio et al., 2012; Chen et al., 2014] were
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Figure 3.4: Same scenario as in figure 3.3 but for Erdős-Rényi networks using parameter

values from the sixth row of Table (3.1). (a) Unscaled (k, ak) curves for values of N ranging

from N = 100 to N = 100000. Each curve is obtained by simulating 10000 realisations

of the epidemic across 50 realisations of the network; half of the epidemics starting from

k0 = 1, the other half from k0 = N . (b) Corresponding scaled (k, akN ) curves.

tested) as it guarantees that the solution remains non-negative and preserves mass,

see Appendix.

To show the agreement between the Fokker-Planck equation (3.4) and results

from simulations on networks, we selected twelve (three for each network model)

combinations of network and epidemic parameters, as described in Table 3.1. We

tuned the parameters such that for each family we could get epidemics with different

characteristics, i.e., different transient and quasi-steady state. To show this, in

figure (3.2) we illustrate a few realisations of epidemics on networks of size N = 1000

for each scenario (for the 2D-lattice network, the size is N = 1024). We also report

the computation of R0 as described in [Kiss et al., 2017], see Table 3.1. Note that

the initial condition for the PDE is always taken as in the simulations, so k0 = 1.

In the simulations, at every run of the epidemic we select a node at random to be

the initially infected one. This, however, does not prevent setting initial conditions

with a higher number of infected nodes. The initial condition in such cases should

be based on measurements taken from the simulations.

Parameters were chosen so that, for each family, the three quasi-steady states
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Figure 3.5: Comparison of different scaled (k, ak) curves produced by different network

models for large N . The (k, ak) curves are scaled by a factor N . The parameters to

generate data for each curve are provided in the second, the fourth, the eighth and the

last rows of table 3.1, respectively. The lattice network is of size 316× 316, and the other

networks have N = 105.

showed different levels of prevalence. To find the (k, ak) curves via minimisation

of (3.7), we generated data as follows: for each scenario, we created 50 realisations

of the network, and on each we ran 200 realisations of the epidemic, half of which

started from k0 = 1, the other half from k0 = N . This was done in order to obtain

observations over the whole range of possible values of the infected nodes. Indeed,

when epidemics start from low k0 values, they only very rarely reach a prevalence

much higher than the quasi-steady-state.

The numerical solutions of equation (3.4) are compared with results based on

Gillespie simulations [Gillespie, 1976, 1977], see figures 3.6, 3.7, 3.8 and 3.9.

Excellent agreement holds for all scenarios we tested, as long as the size of the

network is ≥ 1000. For small networks, there is a finite-size effect that does not

allow for as good a fit. Interestingly enough, although there are small differences

between different ak curves, as long as N ≥ 1000, the exact choice of N has little
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Figure 3.6: Temporal evolution of the probability distribution px= k
N

(blue histogram)

sampled from 25000 realisations of epidemics across 100 realisations of regular networks

(2nd row of Table 3.1), with N = 1000. Lines are the numerical solutions to the Fokker-

Planck equation (3.4) computed from two different ak rates: best (C,α, p) fit (continuous

curve) and cubic spline of the raw ak computed as in eq. (3.2) (dashed line). The first

panel shows the initial condition (t = 0), which for all simulations is k0 = 1, while the last

panel shows the quasi-steady state distribution.

impact on the numerical solutions of the PDE. This supports our conjecture that

there is indeed a large N limit and, therefore, a universal scaled ak curve which is

approached as N increases. As can be seen, the spline consistently leads to a better

approximation. This is simply due to a tighter fit to the discrete data compared

to the fit based on the (C, α, p) model. We note, however, that the (C, α, p) model

captures the trend of the epidemic and the quasi-steady state is fitted well. Of

course, in the case of the lattice we only use the spline as the (C, α, p) model cannot

capture the linear rise.

To realise the comparisons provided in figures 3.6, 3.7, 3.8 and 3.9 we proceeded
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Figure 3.7: Same scenario as in figure 3.6, but using the parameters given in the sixth

row of Table 3.1, i.e., the first parameter configuration for Erős-Rényi networks.

as follows. We considered the same network realisations and epidemic parameters

used to find the (k, ak) rates. We fixed the initial condition to be k0 = 1 and ran 200

simulations on each realisation. Each individual path was then sampled at regular

times in order to build the empirical distribution p(x, t). Note that all simulations

were kept, even those that died out early. This is because the numerical scheme

preserves the total probability and can account for these early extinctions.

The PDE with the (C, α, p) model is

∂tf(t, x) =
1

2N
∂xx

[(
CN2p (xp(1− x)p)

(
α

(
x− 1

2

)
+ 1

)
+ γx

)
f(t, x)

]
+

−∂x
[(
CN2p (xp(1− x)p)

(
α

(
x− 1

2

)
+ 1

)
− γx

)
f(t, x)

]
. (3.8)

Our three-parameter model, (C, α, p), can be used to derive the epidemic threshold.

In terms of the PDE, see equation (3.8), and as figures 3.6, 3.7, 3.8 and 3.9 show,

an epidemic is supercritical when the drift term is positive. This implies that the
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Figure 3.8: Same scenario as in figure 3.6, but using the parameters given in the eighth

row of Table 3.1, i.e., the second parameter configuration for Barabási-Albert networks.

epidemic threshold is equivalent to

CN2p

(
xp(1− x)p

)(
α

(
x− 1

2

)
+ 1

)
− γx ≥ 0,

at the start of the epidemic, that is x ' 0. As shown in [Di Lauro et al., 2020a], for

Regular and Erdős-Rényi networks, p ' 1 and this leads to

x

[
CN2(1− x)

(
α

(
x− 1

2

)
+ 1

)
− γ
]
≥ 0,

taking the limit x→ 0 in the expression within the brackets above leads to

CN2
(

1− α

2

)
> γ.

This expression reduces to the well-known condition R0 = τ
γ
≥ 1 for fully connected

networks. Indeed, scaled rates for such networks can be computed exactly to be

a(x) = τ
N2x(1− x), meaning that C = τ

N2 , a = 0 and p = 1 in this case.

This equation is implicit, as, of course, both C and α depend on the network and

epidemic parameters in a non-trivial way. Therefore it cannot be used as it is, but it
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Figure 3.9: Same scenario as in figure 3.6, but on a 2D lattice with periodic boundary

conditions, using the parameters given in the 10th row of Table 3.1, i.e., the first parameter

configuration for 2D lattices networks.

offers an interesting interpretation since α determines whether the (k, ak) curves are

left- or right-skewed, see figures 3.5 and [Di Lauro et al., 2020a]. Furthermore, the

topology of the underlying network plays an important role in determining the shape

of this curve; for example, Barabási-Albert networks lead to (k, ak) curves with a

left skew [Di Lauro et al., 2020a]. Thus, all else being constant, networks with high

degree heterogeneity are more likely to see the threshold go past the critical value.

3.3.3 Inference of infection rates using the Fokker-Planck

approximation

In this last section, we provide a simple example of the usefulness of the Fokker-

Planck approximation: inferring epidemic and network parameters given data. Spe-

cifically, we consider the case in which a single trajectory of BD (or Gillespie simu-
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lation of the epidemic on an explicit network) process is observed at discrete time-

steps, i.e.:

y = {(t1, k1), . . . , (tn, kn)} ,

where (t1, . . . , tn) ∈ [0, T ]n (0 ≤ t1 < · · · < tn ≤ T ) and (k1, . . . , kn) ∈ {0, . . . , N}n

are the sets of times and states, respectively. To set up the inference, we express

the likelihood using the transition probability function of a BD process as follows

(using the independence of increments and time homogeneity):

LBD (y; a, c) =
n−1∏
i=1

P (X(ti+1 − ti) = ki+1|X(0) = ki; ak, ck) .

Unfortunately, for a large state space, these transition probabilities are numerically

expensive to compute. Additionally, inferring the full set of rates ak’s and ck’s may

not be efficient. Instead, we recast this problem as that of inferring the C, α, p

parameters of the Fokker-Planck approximation, as in eq. (3.8). This is a much

more tractable numerical problem, that can still provide useful information about

the underlying network and epidemic, as showed in [Di Lauro et al., 2020a]. In

terms of the computational complexity of solving the PDE versus solving the ODE

system, we argue as follows: the system of ODEs requires to solve exactly (N + 1)

equations for each time-step (in a naive explicit Euler scheme), meaning that the

complexity scales as O(N). The Finite Volume Method we are using requires us to

invert a matrix at each time-step. The size of the matrix is V × V , where V is the

size of the volume mesh. The computational complexity of this operation is O(V α),

α ≥ 1. The advantage of PDE and FVM is that we can choose V = O(Nβ) such

that βα ≤ 1. Notice that a viable choice of β is β = 0, in which case the grid size

is constant with respect to N . This results in a trade-off between space resolution

and speed of our solver, while the ODE does not offer this degree of flexibility. This

leads us to replace the previous likelihood function with the following:

LFP (y;C, α, p) =
n−1∏
i=1

f(ti+1 − ti, xi+1;xi, C, α, p), (3.9)

where f(t, x;x′, C, α, p) is the transition probability density obtained from equa-

tion (3.4), the coefficients are given by the C, α, p model, xi = ki
N

for all i ∈ [1, n] and

the initial data is a Dirac delta at location x′ ∈ (0, 1). In this example, f is computed

numerically using the finite-volume numerical scheme described in Appendix 3.6. To
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Figure 3.10: (left) Data generated from a single realisation of an SIS process on an

Erdős-Rényi network with N = 1000, 〈k〉 = 10, τ = 1, γ = 4.5 via the Gillespie algorithm.

the curve was sampled regularly to get 30 data-points over 5 units of time. (right) (C,α, p)

function obtained by maximising the logarithm of the likelihood 3.9 (black dashed line)

compared to the (Ĉ, α̂, p̂) function obtained by fitting the (k, ak) curve obtained for N =

1000 by exploring the full curve with continuous observations of 10000 epidemics across 50

network realisations, as in figure 3.4 (blue continuous line). The initial condition inputed

to the locally bounded gradient-descent solver is shown by the orange dotted line.

illustrate the accuracy of this approach, we consider a set of parameters from the

choices of Table 3.1 (figure 3.10 shows the behaviour of the system when parameters

are those on the 5th row of Table 3.1, i.e. C = 1.36e−05, α = 3.44e−2, p = 9.7e−1)

and generate a trajectory from a single realisation of the SIS epidemic on a Erdős-

Rényi network of size 1000, via Gillespie algorithm. This dataset is shown in fig-

ure 3.10 and consists of n = 30 distinct and equally spaced data points taken from

the epidemic curve. These are then scaled to [0, 1] (taking xi = ki
N

for all i ∈ [1, n]).

The dataset is then used to find a Maximum Likelihood Estimator (MLE) by simply

maximizing the likelihood function from equation (3.9) with respect to C, α, p, that

is finding

(Ĉ, α̂, p̂) = arg maxLFP (y;C, α, p) .

To show that this method provides a good estimate, we simply plot the MLE

rates, (Ĉ, α̂, p̂), against the rates obtained by fitting the (k, ak) curve directly from

data from continuous observations of multiple realisations of epidemics on networks

of size N = 1000, we call this the best estimate, as in figure 3.4. The best estimate

and the rates based on (Ĉ, α̂, p̂) are indeed in good agreement. We repeated the
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inference scheme for all benchmark cases in Table 3.1 (not shown), with the exception

of lattices. The agreement was similar to that shown in figure 3.10 (right panel).

It is worth noting that the goodness of inference depends on how many points

the dataset contains and also how much of the transient and the quasi-steady state

is captured. In the transient, the drift dominates and the process is more stochastic.

On the other hand, in the quasi-steady state, the drift coefficient tends to zero

and fluctuations around it are mainly due to diffusion. Hence, both regimes are

needed if drift and diffusion are to be inferred correctly. Data in the transient or in

the quasi-steady state alone can lead to sub-optimal inference as different parameter

combinations that provide good fit can be found. The example reported in figure 3.10

is an illustration of how useful the PDE limit of epidemics on finite networks can

be in a network and epidemic inference setting. Further, the approximation that we

provide can also be used in a Bayesian approach, by first setting a prior over the

parameters C, α, p for instance.

3.4 Conclusions

In this paper we conjectured and showed numerical evidence for the existence of

PDE limits for exact SIS epidemics on Regular, Erdős-Rényi and Barabási-Albert

networks and 2D lattices with periodic boundary conditions. The key to our ap-

proach is to use a BD approximation which then has a PDE limit provided that the

coefficients of the BD process are density-dependent. Hence, one of the main chal-

lenges was to verify, at least numerically, that this was the case. What is common

between all the networks that we considered is that simply increasing the number of

nodes in the network will not change what a node experiences locally, e.g. the num-

ber or distribution of neighbours. In fact for Erdős-Rényi networks we made sure

this is the case by choosing the probability of connection p such that p = 〈k〉/(N−1).

The same argument seems to hold for scale free networks where the average degree

stays constant and nodes at any scale in networks of any size experience the same

type of neighbourhood. Of course, this is not the case for fully connected networks

since the number of neighbours of a node increases with network size. Furthermore,

we note that ak’s are random variables with some distribution around a well-defined
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mean. This spread/variance in ak’s is in some sense due to higher-order moments

in the network. The variance of these distributions is larger at the beginning of

the epidemic and it decreases with time or as k increases - meaning that the sys-

tem tends to reach an equilibrium where the higher order moments in the network

are not significant enough to produce a real effect. Based on these arguments, we

expect our method to extend readily to configuration networks [Molloy and Reed,

1998] whose degree distribution does not depend on network size.

Of further interest will be to test and, if it works, extend our approach to

clustered and/or networks with community structure. This is a difficult task as

clustering and community structure can be introduced in different ways; for ex-

ample clustered networks can be generated by using Big-V rewiring or by using a

family of clustering inducing subgraphs (e.g. triangles, four fully connected nodes,

and other motifs) [Ritchie et al., 2017]. For networks with community structure, a

good choice could be the stochastic block model [Holland et al., 1983]. However,

as our analysis shows the (C, α, p) model struggles to capture the infection rate

curves for all four network models that we considered. This suggests that a more

flexible model is needed, possibly a non-parametric one, expecially when networks

with more complex topologies are considered.

To solve the PDE numerically, we employed a second order in time finite volume

method whose stability was proven in [Chen et al., 2014]. We compared such nu-

merical solutions to probability distribution sampled from the Gillespie simulation.

The agreement is in general good and, as expected, it becomes excellent as N in-

creases. The existence of the PDE limit is not surprising, given that the coefficients

of the BD process are density-dependent. However, it is important to note that the

agreement between the solutions of the PDEs and empirical distributions based on

simulations provides strong support for the validity of the BD process, strength-

ening the evidence provided in [Di Lauro et al., 2020a], and thus closing the loop

illustrated in figure 3.1.

A PDE perspective on epidemics provides several efficiency gains. The first is

to do with computational efficiency and the possibility to quantify variability. More

importantly perhaps, the solution of the PDE serves as a likelihood which can be

very efficiently computed/evaluated and can form the basis of many networks and
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epidemic inference models, see Section 3.3.3. This is in contrast with approaches

where the networks are explicitly modelled [Ma et al., 2019b] and computational

complexity can make inference out of reach.

At least three separate avenues of future research emerge. First, and perhaps

most importantly, a theoretical justification for the Birth-and-Death approximation

is still needed, if indeed that is possible. Second, there is a need to investigate the

extent to which this method can be extended to other network families and epidemic

dynamics. Thirdly, there is scope to consider how the approximate master equation

could be used to look into the impact of the network on quantities such as time to

extinction. Nevertheless, given that handling exact epidemic models on networks

is still challenging even for networks of modest size, we believe that proposing new

ways to approximate epidemics is worthwhile and may contribute new modelling

and analysis perspectives.
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3.6 Appendix: numerical method for solving the

PDE

In this section we detail the numerical method and algorithms used to solve eq. (3.4).

The algorithm employed is an adaptation and modification of the finite volume

method (FVM) named FVM3 in [Chen et al., 2014]. First, we write the Fokker-

Planck equation in the form

∂f(x, t)

∂t
+
∂j(x, t)

∂x
= 0,

where in our case the current term is j(x, t) = − 1
2N

∂σ2(x)f(x,t)
∂x

+ µ(x)f(x, t), while

initial and boundary conditions are:
f(x, 0) = δ(x− x0), initial condition,

f(0, t) = 0, absorption in x = 0,

∂f(x,t)
∂x
|x=1 = 0, reflection in x = 1.

In our case, both µ(x) and σ(x) vanish at 0, indicating that the only possible steady

state is absorption [Kovacevic, 2018]. Therefore, the solution to this equation is

such that limt→∞ f(x, t) = δ(x). Further, since the solution should provide a

probability density function, we require that f(x, t) ≥ 0 everywhere (positivity)

and that
∫ 1

0
f(x, t) dx = 1 for any t > 0 (conservation of mass). Finite Volume

Methods are a class of numerical methods to solve PDEs [Eymard et al., 2000]

in which the constraints described above are explicitly satisfied, therefore FVM

is the natural candidate for this type of problems. Following notation of [Chen

et al., 2014] we consider a uniform grid, with spacing h = 1
M

and grid points

xi = ih, 0 ≤ i ≤ M . Similarly for time, we consider a uniform grid with spacing

τ and grid points ti = nτ , 0 ≤ n ≤ nmax. We define jni and fni to be the nu-

merical approximations of j(xi, tn) and f(xa, tn), respectively. The control volume

Di = {x s.t. xi− 1
2
≤ x ≤ xi+ 1

2
} is associated to each inner point xi, whereas two

control domains D0 = {x s.t. 0 ≤ x ≤ x 1
2
} and DM = {x s.t. xM− 1

2
≤ x ≤ 1} are

reserved for boundary points, and xi+ 1
2

is defined as (i+ 1
2
)h.

The discretisation of the time derivative can be done with a first-order scheme

(as in [Chen et al., 2014]) or a higher-order scheme. We opted for a second-order
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scheme for time, for which, in general

∂f(xi, tn)

∂t
≈ 3fni − 4fn−1i + fn−2i

2τ
,

and the first iteration is done with the first order time scheme ∂f(xi,tn+1)
∂t

≈ fn+1
i −fni

τ
.

The reason for this choice is that in our case the current term contains both first and

second order space derivatives, so to balance out the required space precision, we

matched it with a second-order discrete time derivative. This improved the stability

of the solution.

The discretised Fokker-Planck equation then becomes:

3fni − 4fn−1i + fn−2i

2τ
+
jn
i+ 1

2

− jn
i− 1

2

h
= 0 (3.10)

We now define the numerical equations imposed by the boundary conditions. The

stability of the numerical scheme (in particular, conservation of mass) is influenced

by the boundary condition at x = 0. Naturally, this condition would be f(0, t) = 0

(absorption), as we already discussed. However, changing it to be a zero-current

condition (i.e. j(x, t) = 0) results in a numerical solution that is more stable. This

change of condition does not influence the solution, as the discretised process is

never evaluated at x = 0. Therefore, we use the following boundary conditions:

j(0, t) = j(1, t) = 0, (3.11)

which translates to:

3fni − 4fn−1i + fn−2i

2τ
+

j 1
2

h/2
= 0,

3fni − 4fn−1i + fn−2i

2τ
−
jn
M− 1

2

h/2
= 0. (3.12)

The difference between instances of FVMs is how the current term is discretised.

In [Chen et al., 2014], several different schemes are explored. In particular, the FVM

that performed better was the so-called central scheme FVM, in which rather than

discretise each component of the current term, we discretise the current as a whole,

as follows:

jn
i+ 1

2
= − 1

2N

σ2(xi+1)f
n
i+1 − σ2(xi)f

n
i

h
+
µ(xi+1)f

n
i+1 − µ(xi)f

n
i

2
, (3.13)

where σ2(xi) = a(xi) + γxi and µ(xi) = a(xi)− γxi.
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The discretised PDE then becomes:

3fni − 4fn−1i + fn−2i

2τ
− 1

2N

σ2(xi+1)f
n
i+1 − σ2(xi)f

n
i

h2
+
µ(xi+1)f

n
i+1 − µ(xi)f

n
i

2h
+

+
1

2N

σ2(xi)f
n
i + σ2(xi−1)f

n
i−1

h2
+
µ(xi)f

n
i − µ(xi−1)f

n
i−1

2h
= 0, (3.14)

with the boundary conditions (3.12). Note that this is an implicit scheme, that

requires at each time-step to invert a matrix of size M ×M .

The initial condition f(x, 0) = δ(x−x0) is approximated by a Normal distribution

f(x, 0) ≈ N (x0, σ̃) with σ̃ � 1. The stability of the solution with respect to the

variance σ̃ is discussed in [Chen et al., 2014], and we have chosen σ̃ = h2. The

mismatch that can be seen in figures 3.6 and 3.7 at 0 is due to the fact that the

algorithm cannot reproduce a δ in 0, and should not be considered a problem, as the

mass outside of 0 is correctly computed by the numerical solver. To test whether

absorption at 0 could have been a problem for the solver, we repeated the calculation

allowing for a small re-infection rate at 0 ε > 0, without noticing differences in the

results.

The numerical advantage of solving a PDE over a system of N ODEs can be

discussed in the following terms. To solve explicitly a system of N ODEs one needs

to compute a matrix M at each time-step, that scales proportional to N . It is worth

noting that it is not possible to change N , as it is given by the system size. To

solve the PDE instead, one needs to define a volume mesh V , whose size scales as

V ∼ Nβ, for some 0 < β < 1. Inverting the matrix V has a cost of V α, for some

α > 0 which depends on the specifics of the numerical scheme. Therefore, as long as

one chooses β ≤ 1/α, solving the PDE instead of the master equation is guaranteed

to be computationally more efficient.

Our implementation is available online at https://github.com/Fdl1989/PDElimitofepidemics.
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3.7 Appendix: universal infection rate curves for

Barábasi-Albert networks and lattices

Below we show evidence that the (k, ak) parameters scale favourably with network

size and thus satisfy the density-dependent condition.
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Figure 3.11: Same scenario as in figure 3.3 but for Barabási-Albert networks using

parameter values from the eighth row of Table (3.1). (a) Unscaled (k, ak) curves for values

of N = 103, 104 and 105. Each curve is obtained by simulating 1000 realisations of the

epidemic across 50 realisations of the network; half of the epidemics starting from k0 = 1,

the other half from k0 = N . The inset shows a 30x zoom of the curve produced for

N = 1000. (b) Corresponding scaled (k, akN ) curves.
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Figure 3.12: Same scenario as in figure 3.3 but for 2D lattice with periodic boundary

conditions, using parameter values from the tenth row of Table (3.1). (a) Unscaled (k, ak)

curves for values of N = 1024, 5041, 10000, 100489. Each curve is obtained by simulating

1000 realisations of the epidemic across 50 realisations of the network; half of the epidemics

starting from k0 = 1, the other half from k0 = N . The inset shows a 30x zoom of curve

produced for N = 1000. (b) Corresponding scaled (k, akN ) curves.



Chapter 4

Optimal timing of one-shot

interventions for epidemic control

Author Summary

Some interventions which help control a spreading epidemic have significant adverse

effects on the population, and cannot be maintained long-term. The optimal timing

of such an intervention will depend on the ultimate goal.

• Interventions to delay the epidemic while new treatments or interventions are

developed are best implemented as soon as possible.

• Interventions to minimize the peak prevalence are best implemented partway

through the growth phase allowing immunity to build up so that the eventual

rebound is not larger than the initial peak.

• Interventions to minimize the total number of infections are best implemented

late in the growth phase to minimize the amount of rebound.

For a population with subcommunities which would have asynchronous outbreaks,

similar results hold. Additionally, we find that it is best to target the interven-

tion asynchronously to each subcommunity rather than synchronously across the

population.

89
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4.1 Introduction

The Influenza pandemic of 1918 was one of the deadliest epidemics of infectious

disease the world has ever seen. In response, many cities introduced widespread

interventions intended to reduce the spread. There is evidence [Bootsma and Fer-

guson, 2007] that some cities which implemented these interventions later had fewer

deaths. This seemingly counter-intuitive observation suggests that they were more

successful by being slow to respond.

When the 2009 influenza pandemic first arrived outside of Mexico, many schools

shut after the first observed infection. Once these schools reopened, and received

a new introduction, the remaining susceptible population was almost as large as

at the outset, so the resulting epidemic was likely to be nearly as large as the

original epidemics would have been. The closure provided increased time to prepare

a response and learn more about the disease, but the overall epidemic was very

similar to what would have happened without the closure. In contrast, evidence

suggests that summer holidays altered the final outcome of the influenza pandemic

(at least in the UK), significantly reducing the total number of infections by splitting

the epidemic into two smaller peaks [Eames, 2014].

This phenomenon can be explained by noting that epidemics rely on two things

to spread: infected individuals and a supply of susceptible individuals. If the in-

tervention is too early, the number infected may fall, but there will be enough

susceptibles available that it can re-establish and grow again. When it returns to

the original size, the remaining susceptible population will be effectively the same

size as it was the first time. Thus, the intervention primarily delays the spread; the

resulting epidemic is comparable to what would have been seen before. However,

if the intervention occurs once the susceptible population has been noticeably de-

pleted, then the number of infections falls and when the intervention is relaxed, the

depleted susceptible population makes the rebound smaller or even nonexistent.

To make this explanation more robust, we note that is well-known that after

an unmitigated epidemic, the total number of infections exceeds the number of

infections required to achieve the “herd immunity threshold” (the level of immunity

required to reduce the effective reproduction number below one) [Cobey, 2020]. We

refer to this extra level of infection as the “overshoot”. It is a consequence of the
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fact that when the effective reproduction number (in absence of intervention) finally

falls to 1, the population reaches the “herd immunity threshold” and incidence no

longer increases. However, because the epidemic is at its peak, this is the time at

which those who have escaped infection so far face the highest force of infection. As

the number infected falls, significant transmission still happens and the epidemic

overshoots the herd immunity threshold. In the absence of further intervention, the

size of the overshoot is determined by the number infected when the herd immunity

threshold is reached.

When we think about this in terms of a temporary intervention, the option to

minimize the total number of infections becomes clearer. A short intervention that

ends with the effective reproduction above one would see a rebound and would see

a larger overshoot than a slightly later intervention that ends with the effective

reproduction number equal to 1.

This underlies the explanation of [Bootsma and Ferguson, 2007] for why tempor-

ary interventions are generally more effective if introduced later in the epidemic (but

not too late). Similar, more detailed theoretical results have been found by [Hollings-

worth et al., 2011; Anderson et al., 2020]. Most studies of these effects are focused

on a single population, and they do not carefully consider the tradeoffs between

competing goals of delaying infections, reducing the peak prevalence, or reducing

the total size.

In the ongoing COVID-19 pandemic, China introduced drastic control measures

very early. These significantly reduced transmission, apparently reducing the ef-

fective reproduction number (the number of new infections per infected individual)

below one [Kucharski et al., 2020; You et al., 2020], although it took a very long time

for new cases to stop. Despite quite significant interventions in Italy in force for a

long period of time, the rate of new cases was slow to fall [De Flora and La Maestra,

2020].

Many other places have turned to aggressive control of infection in an attempt to

keep transmission suppressed [Iwasaki and Grubaugh, 2020; La et al., 2020; Hoang

et al., 2020; Wang et al., 2020; Wu et al., 2020; Baker et al., 2020; Kim et al., 2020].

In places which have have nearly eliminated the disease, the threat of re-emergence

requires constant vigilance. In places which have failed to contain transmission, the
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pervasive interventions that would be required to get transmission low would impose

significant costs through the entire population, and such extensive interventions are

unlikely to be maintained long term. Thus policy-makers face challenges about

whether or when to implement such restrictive interventions.

Motivated by ongoing decisions facing policy makers for the COVID-19 pan-

demic, we develop mathematical models which allow us to explore how to time

short-term interventions in response to an emerging epidemic. We will refer to these

temporary interventions as “one-shot” interventions, meaning that the intervention

cannot be maintained indefinitely or repeated. We are particularly interested in how

the timing might affect the total fraction infected and the peak prevalence, but we

are also interested in the resulting delay of infections.

We must exercise care in determining that a given intervention cannot be sus-

tained. In the initial phase of the COVID-19 pandemic there was significant un-

certainty in the fatality rate. With this in mind [Xu, 2020], the tolerance of the

population for drastic interventions could be significant. What might appear to be

an unsustainable intervention given one set of assumptions about severity may in

fact be sustainable under another set of assumptions. We assume perfect informa-

tion and focus on choosing the time at which a given strategy will be more effective.

A separate, but related line of research focuses on whether (and how long) we should

hold an intervention in reserve while we learn more about the disease: sometimes the

greatest expected benefit comes from learning more before choosing the interven-

tion [Baxter and Possingham, 2011; Ludkovski and Niemi, 2010; Thompson et al.,

2018]. For an epidemic that grows quickly (like the early stage of the COVID-19

pandemic), there is effectively no time to learn about the disease before a decision

is needed, and so these strategies would not be relevant until strong enough inter-

ventions are in place to suppress transmission.

We model an infection spreading in an initially fully susceptible population.

We will model the spread within a single well-mixed population and a population

made up of several weakly-coupled subcommunities (a metapopulation). We will

investigate the impact of intervention on the attack rate (the final fraction infected),

the peak prevalence, and the timing of infections, and in the metapopulation model

we will additionally consider whether it is better to have a synchronized intervention
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or to have the intervention timed separately for each subcommunity. The important

question of whether disease can be eliminated locally is beyond our scope.

Our goal is not to provide predictions for a specific population, but rather to

demonstrate the generic impact of delaying a one-shot intervention, to show its

robustness, and to provide intuition and some guiding principles which will apply

to more complex scenarios.

Our results have important implications for the ongoing COVID-19 pandemic.

If an intervention cannot be sustained for an extended period of time but new in-

terventions or treatments are being developed, it is likely to be best to perform the

intervention sooner to delay potential infections until other methods are available

to treat or further delay infection (e.g., masks distributed, contact tracing imple-

mented, healthcare capacity increased, therapeutic treatments identified, or even

vaccine produced). However, if no other intervention or treatment improvement is

likely to emerge, then it is best if the intervention is “held in reserve” until depletion

of susceptibles has reduced the effective reproductive number enough that the inter-

vention will have maximal impact on the total number of infections (by preventing

the overshoot) or the peak prevalence.

We completed and released this research early in the initial stages of the COVID-

19 pandemic (at the end of February 2020) [Di Lauro et al., 2021], but did not imme-

diately pursue it further due to other pressing questions. In the interim, a number

of other papers have emerged studying related questions, including [Haushofer and

Metcalf, 2020; Gevertz et al., 2020; Della Rossa et al., 2020; Giordano et al., 2020;

Morris et al., 2021]. It is clear from much of this work that nonpharmaceutical

interventions are an important part of epidemic control. In particular, the timing

of an intervention, be it in a single population or over different communities, has a

major impact on its effectiveness and overall outcome.

Our results provide insights into ongoing discussions of “circuit-breaker” inter-

ventions: in particular, such an intervention is particularly valuable because it can

delay infections while other interventions are brought into place, and it can keep the

infection count low enough that interventions that cannot scale well can remain ef-

fective. However, if there is no significant effort to increase other interventions, then

a repeated sequence of such “circuit-breakers” may be needed or the circuit-breakers
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should be delayed.

In this paper, we first introduce the mathematical models we use to explore the

impact of a one-shot intervention against an infectious disease in a single well-mixed

population and in a metapopulation made up of several distinct subcommunities.

Then we discuss results from those mathematical models. Finally we discuss the

implications of these results. In the Appendix we develop some mathematical theory

explaining the mechanism underlying the effect in more detail.

4.2 Methods

In this section we introduce mathematical models for an “SIR” (Susceptible–Infected–

Recovered) epidemic in a single well-mixed population and in a metapopulation

made up of several subcommunities. We assume that the intervention is initiated

at a specific time t∗ (typically once the cumulative number of infections I + R

reaches some threshold), and that the intervention lasts for a fixed duration D. It

reduces the transmission rate by a “strength factor” c. We explore the impact of the

threshold, duration and strength of intervention. In the metapopulation model, we

compare outcomes when the intervention is implemented in all populations at the

same time or in each individual population separately. In both models we measure

time in multiples of the typical infection duration.

We will measure the impact of interventions on three quantities of interest:

• the attack rate or final size: the total fraction infected R(∞),

• the peak prevalence or maximum value of I(t), and

• the average time of infection, t, the average time (or date) at which individuals

become infected. It is given by
∫∞
0
−tṠ dt/

∫∞
0
Ṡ dt =

∫∞
0
tβIS dt/R(∞).

In general the (often conflicting) goals of our intervention are to reduce R(∞), reduce

Imax, and increase t.

The value of minimizing the attack rate is clear as it minimizes the number

of infections. The value of minimizing the peak prevalence is highlighted by the

struggles that many health systems have faced during the early phase of the COVID-

19 pandemic. The importance of increasing the average date at which infections
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occur is somewhat less clear. However, early in an epidemic, medical knowledge

about the disease, health care capacity, and testing/contact tracing capacities are

likely to be limited. Important knowledge about the transmission mechanisms may

be missing. In this early stage where knowledge is increasing, any intervention

that delays the bulk of infections until later is likely to help increase both the

quality of medical care provided and the effectiveness of interventions that may

prevent those infections altogether in the future. This may be particularly important

for interventions such as contact tracing which take time to put in place and lose

effectiveness when there are many infections.

4.2.1 Well-mixed population

To study an intervention in a well-mixed population, we use the standard SIR

model [Anderson and May, 1991].

Ṡ = −βIS,

İ = βIS − γI, (4.1)

Ṙ = γI,

where S, I, and R denote the susceptible, infected and recovered fractions of the

population with S + I + R = 1, and the dot denotes differentiation with respect to

time. There are a few important quantities to consider.

• The basic reproduction number R0: The average number of infections an in-

fected individual causes early in the epidemic in the absence of intervention

and the absence of any depletion of susceptibles. This is R0 = β/γ.

• The effective reproduction number Re: As depletion of susceptibles occurs or

interventions are put into place, the number of infections an infected individual

causes is reduced. When Re < 1, the number of infections declines.

By measuring time in multiples of the typical infection duration, we impose that

γ = 1, and so β = R0.

If R0 > 1 the typical behavior of an epidemic without an intervention is that

at t = 0 we have S ≈ 1, I is very small and R = 0. As time increases, I and

R grow and S decreases. The reduction in S reduces the effective reproduction
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Figure 4.1: The time-evolution of S, I and R for epidemics with no control. R0 = β = 2

(left) and B R0 = β = 4 (right) with γ = 1 in both. Horizontal and vertical dashed black

lines indicate the peak prevalence Imax and average time of infection t respectively, while

green dashed horizontal lines show the attack rate R(∞) found by numerically solving

R(∞) = 1− S(0)e−R0R(∞).

number: Re = R0S. Once S < 1/R0, I begins to fall because recoveries outweigh

new infections: I → 0. Some fraction remains uninfected: S(∞) > 0 and R(∞) =

1− S(∞) [Anderson and May, 1991; Ma and Earn, 2006; Miller, 2012]. See Fig 4.1

for typical profiles of S, I, and R in time.

We assume that at some time t = t∗, an intervention that reduces the transmis-

sion rate is introduced for a duration D. The intervention reduces β by some factor

c. So from time t = t∗ to time t = t∗ +D the transmission rate β = R0 is replaced

by β = (1 − c)R0. During the intervention, the effective reproduction number is

Re = S(1 − c)R0. After time t = t∗ + D the transmission rate returns to β = R0,

and Re = SR0.

We will typically assume that t∗ is chosen based on the cumulative number of

infections I(t)+R(t) crossing some threshold. We choose a monotonically increasing

measure I +R because this lets us choose any t∗, which would not be possible if we

focused on prevalence (I) or instantaneous rate of infection (−Ṡ).



Chapter 4: Optimal timing of one-shot interventions 97

4.2.2 Weakly-coupled Metapopulation model

We will also investigate the effectiveness of interventions in a metapopulation made

up of distinct subcommunities that do not have synchronized epidemics. The most

obvious reason for this setup would be geographically separated populations. How-

ever there could be stratification by age, religion, ethnicity or socio-economic status.

We are particularly interested in whether it is better to time interventions to the

dynamics within each subcommunity separately or for the intervention to be syn-

chronized even through the respective epidemics are not.

It is well-known that if the subcommunities have strong enough coupling, the epi-

demics in all subcommunities are effectively synchronised [Ball et al., 2015; Dickison

et al., 2012]. In this case there is little distinction between asynchronous interven-

tions for each subcommunity or interventions synchronized across all subcommunit-

ies. Thus to compare the results from synchronized interventions with asynchronous

interventions targeted to each subcommunity, we need to explore a population with

weak coupling. We use a standard meta-population model [Anderson and May,

1991], allowing most transmission to be within a subcommunity and some cross

interactions between the subcommunities.

Ṡj = −
∑
i

βijIiSj,

İj =

(∑
i

βijIiSj

)
− γIj,

Ṙj = γIj,

where 0 ≤ Si ≤ 1, 0 ≤ Ii ≤ 1 and 0 ≤ Ri ≤ 1, with Si + Ii + Ri = 1 for

all t, represent the fraction of susceptible, infected and infectious and recovered

individuals in subcommunity i, where i = 1, 2, . . . , N .

To simplify the presentation, all subcommunities are of equal size. The recovery

rate γ is identical for all subcommunities. As before we measure time in multiples of

the typical infectious period, so we set γ to 1. The cross-infection between subcom-

munities is modelled by B = (βij)i,j=1,2,...N , where βij represents the rate at which

infectious contacts are made from subcommunity i towards susceptible individuals

in subcommunity j.

We implement a weak coupling by joining the population in a linear fashion:
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population i is only connected to population (i − 1) and (i + 1). The first and

the last populations only connect to the second and the pen-ultimate population,

respectively. The entries for the coupling/mixing matrix are generated as follows.

On the main diagonal, the βii values are set to 2+(Unif(0, 1)−0.5) where Unif(0, 1)

produces a random number chosen uniformly between 0 and 1. Off-diagonal entries

are set to Unif(0, 1)(β∗/10) (β∗ = maxi=1,2,...,N βii) and represent a scaled and

randomised version of the largest entry on the main diagonal. This yields an R0

above 2, comparable to current estimates for COVID-19 [Kucharski et al., 2020; Liu

et al., 2020].

We will use this model to explore whether it is better to implement an interven-

tion in a synchronized fashion across all subcommunities or to implement it in each

subcommunity. In particular, we will consider the following scenarios:

• track Ii + Ri in each subcommunity and as soon as Ii + Ri > T for some

threshold T , a one-shot control is deployed in the corresponding subcom-

munity,

• track I + R = 1
N

∑N
i=1 Ii + Ri globally and as soon as I + R > T , a one-shot

control across all subcommunities, and

• track each subcommunity and deploy the one-shot control is deployed across

all subcommunities as soon as Ii +Ri > T for the first subcommunity.

One-shot control in a subcommunity is understood to mean reduction in the internal,

incoming, and outgoing rates of infection with a factor of (1− c), where 0 ≤ c ≤ 1

denotes the intervention strength (we assume that the strength is the same in each

subcommunity, and if two communities are both acting, then the movement between

them is scaled by (1 − c)2). This reduction lasts for a duration D and, as soon as

the control is over, the transmission rates for that subcommunity are restored to the

starting levels.

In our results, we will present the average outcome of simulations across 100

distinct populations whose mixing matrices are chosen stochastically based on the

rules described above.
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4.3 Results

We use our mathematical models to explore how the timing of a one-shot intervention

can impact

• total attack rate,

• peak prevalence, and

• average time of infection.

These are expected to be good proxies of the total impact on the population or the

burden on the health services.

We find that one-shot interventions that begin at the first sign of transmission

have the most impact on delaying the epidemic, but they have little impact on

the attack rate or the peak prevalence. This is because only a few individuals

are infected when the intervention is implemented so not many transmissions are

blocked. When the restrictions are lifted, almost as many transmissions end up

happening: the disease spreads in an almost fully susceptible population, and its

trajectory is very nearly the same, just delayed. In contrast if the intervention is

delayed until a non-negligible fraction of the population has been infected it will

have more impact on the epidemic’s shape.

For the weakly-coupled metapopulation model, the subgroups are likely to have

somewhat asynchronous epidemics. In this case it is better to implement the one-

shot interventions based on a local threshold rather than a global threshold. If

the coupling is stronger, the epidemics are closely synchronized and there is little

difference between the strategies.

4.3.1 Well-mixed population

We can think of a strong, but temporary, intervention as dividing the overall epi-

demic into two phases. We allow an epidemic to spread until the intervention is

started. The intervention resets I to a small value (that is, the intervention shifts

the epidemic to a new trajectory with a similar S, but a smaller I). Depending on

how long the epidemic was allowed to spread prior to the intervention, we have some

new value of S(t∗+D). Then a new epidemic happens starting from the new initial
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Figure 4.2: Illustration of the impact of one-shot intervention in a population with

R0 = 2.5. The intervention has c = 0.8 for a duration of D = 2 time units. This

intervention is introduced at different times as determined by a range of Threshold values.

The impact of the threshold (I+R > Tr) for implementing the intervention is shown for A

the attack rate R(∞); B S(t); C peak prevalence Imax; D I(t); E average time of infection

t; and F plots of I(t) + R(t). In (B,D,F), the no-control case is plotted as a dashed line.

The vertical lines in (A,C,E) correspond to the threshold for cumulative infections I +R

which yields the intervention leading to the corresponding color in (A,C,E).

state, spreading as if a fraction 1− S(t∗+D) were vaccinated. The longer we allow

the first phase epidemic to spread, the smaller the value of S(t∗ + D), and so the

smaller the second phase will be. An early intervention truncates the first phase,

but a later intervention reduces the second phase.

For a well-mixed population we find that the timing of a one-shot intervention has

an important impact on the total epidemic. If the intervention is put in place very

early, then the impact is to simply delay the epidemic. Because S(t∗+D) ≈ S(0) the

second phase is effectively like the first phase without an intervention, but delayed.

The delay is somewhat larger than D because it takes some time for I to grow back

to I(t∗).
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Fig 4.2 shows the impact of an intervention in a population with R0 = 2.5 and

an intervention of strength c = 4/5 (it prevents 4 of every 5 transmissions), and

duration 2 (time units measured in multiples of the typical infection duration). The

figure focuses on the impact of varying the threshold value of I + R at which the

intervention is introduced.

Fig 4.3 shows how the optimal threshold changes as the parameters of the disease

or intervention change.

Impact on attack rate

The impact on the attack rate (the total number infected) can be understood by

a mental model of the intervention as a way to shift from the current epidemic

trajectory to a new epidemic trajectory with a similar number of susceptibles, but

fewer infected (this is made more rigorous in Appendix 4.5.1).

If the intervention is introduced early on, it will have an immediate impact.

However, when the intervention is lifted, the epidemic rebounds until the number

of infections is the same as the original value. The number susceptible is relatively

unchanged, and so a similar epidemic happens with an almost identical epidemic

curve once it rebounds, except with a shift to later time. So an early intervention

has little impact on the attack rate R(∞).

In Fig 4.2A we see that if the intervention is introduced later, there is clear

improvement in R(∞), up to a threshold of I +R of 0.6, which is close to where the

peak prevalence occurs in the epidemic without intervention. This is because when

the epidemic peaks, Re = 1, and so if we immediately and dramatically reduce the

number infected at this point the epidemic quickly dies out.

As new infections do happen during the intervention, this mental model is only

an approximation. It can be made more precise by recognizing that to reduce the

attack rate R(∞), the intervention is most effective if it is timed to directly block as

many transmissions as possible. So we want to time the intervention to maximize

the number of infected individuals present while it is in place (mathematically we

want to maximize β
∫ t∗+D
t∗

I(τ)dτ given D, c, and R0).

Thus the ideal timing to reduce the total number of infections is not at the first

hint of transmission (when there are not enough infected individuals to cause many
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Figure 4.3: Contour plots for R(∞) (top), Imax (middle) and the mean time of infection

t (bottom) as a function of parameters for the well-mixed population. We explore different

threshold values of I +R for the intervention to start, from a minimum of 0.05 to a max

of 0.9. In the first column duration varies from D = 0.1 to D = 6, holding β = 2.5 and

c = 0.8. in the second column, intervention duration is D = 4 and c ranges from 0.2 to

0.9. Finally, in the third column, c = 0.8 and D = 4, and the values of β = R0 vary from

1 to 4. In all cases γ = 1. In the first row, the black curve denotes the threshold for which

Re = 1 when the intervention completes. In the three regions defined by the two lines

in the panels of the second row, the peak prevalence is observed after the intervention

has ended (from left to yellow curve), during intervention (area between the curves), or

before intervention (from red curve to the end of the figure). Where the two curves align,

the prevalence decays as soon as the intervention is implemented and then recovers to the

pre-intervention peak.
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transmissions), but rather, a little before the peak, and if the intervention is perfect

(c = 1), then at the peak. This suggests that the more effective an intervention

is, the closer we should be to the peak before implementing it. It also suggests

that for an intervention of a longer duration, we can implement it somewhat sooner,

but not significantly sooner. For a more infectious disease, the need to begin the

intervention near the peak implies that the threshold value of I +R will need to be

larger (though the time t∗ at which it is implemented is smaller).

These predictions are borne out by observations of the first column of Fig 4.3

which shows how the optimal threshold value of I + R for implementing the in-

tervention changes as the strength c, the duration D, or the reproductive number

R0 change. The earliest interventions have the most impact on the average time of

infection, while somewhat delayed interventions affect the peak prevalence the most,

and later interventions (near the epidemic peak) affect the final attack rate.

Impact on peak prevalence

As in the attack rate case, an early intervention primarily delays the epidemic curve.

It does not significantly alter the shape. Thus the peak prevalence remains effectively

the same unless the intervention is delayed until S is noticeably depleted.

If the susceptible population has been sufficiently depleted prior to the elim-

ination of the intervention, then once the intervention is stopped, the epidemic

rebound will be muted. Moving the intervention later makes the rebound smaller

still. However, it means that the number of infections prior to the intervention is

larger. There comes a threshold at which the phase before and the phase after the

intervention have the same maximum. This is the time that minimizes the peak

prevalence [Morris et al., 2021]. Delaying the intervention past this value results

in a larger pre-intervention peak, while doing it sooner results in a larger post-

intervention peak.

Fig 4.2C shows the optimal threshold to reduce the peak prevalence occurs sooner

than to reduce the attack rate. We can understand this intuitively, because for op-

timizing peak prevalence a moderate rebound is less of a concern than for optimiz-

ing the attack rate. For the purpose of reducing peak prevalence, Fig 4.2D shows

that the optimal time to introduce the intervention is when the current prevalence
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matches the peak prevalence that would occur once the disease rebounds.

We can crudely estimate the threshold necessary for minimizing the peak preval-

ence. If we know a population’s reproductive number R0 and its initially immune

fraction R∗ and susceptible fraction S∗ = 1 − R∗, we can determine the peak pre-

valence (There is an analytic formula for peak prevalence 1 − 1
R0
− R∗ − ln(S∗R0)

R0

but for our purposes we just need to recognize that R0, R
∗ and S∗ are sufficient to

determine it). In the limit of a very long (D →∞) and strong intervention (c→ 1),

at the end of the intervention S(t∗ + D) ≈ S(t∗) and R(t∗ + D) ≈ I(t∗) + R(t∗).

If D is long, but c is small enough that we cannot ignore transmissions occurring

during the intervention, then we need to correct for the fact that S(t∗ +D) may be

somewhat smaller than S(t∗). Accounting for these transmissions further reduces

the size of the second peak.

We can use this to estimate when I(t∗) will approximate the rebound. So long as

duration is not too long, and c is not too much smaller than 1, this is not strongly

dependent on duration or c. This explains why the optimal threshold for peak

prevalence does not vary much in Fig 4.3B and 4.3E.

It is worth highlighting that in related recent work [Morris et al., 2021] showed

that the penalty for making a small error in the timing of the intervention is larger if

it is too late compared to too early. As we see in our figure, the error as a function of

the threshold I+R appears roughly symmetric, but because the optimal intervention

time often occurs while the epidemic growth is increasing, this means that being a

little too late means a larger error in I +R than being a little too early.

Impact on timing of infections

The impact on the timing of an emerging epidemic is an additional factor that

plays an important role. If we anticipate rapid development of new treatments or

interventions, then this may be more important than reducing the anticipated peak

prevalence or total fraction infected.

As we noted for the attack rate and the peak prevalence discussions, for very

early interventions (for which I + R is very small), the entire epidemic curve shifts

in time. Of course if the disease is eliminated locally which is more likely with a

small threshold, then the next peak depends on frequency of reintroduction which
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we do not consider. However, as the threshold increases and we start to see an

impact on the final attack rate R(∞) and peak prevalence Imax, we also see an

additional impact on the average time of infection. Unlike the other targets, a later

intervention tends to have an decreased impact because more of the infections have

occurred earlier.

In a real-world context, we anticipate that the model may overstate the delay

from a very early intervention if there is significant transmission outside the popu-

lation of interest. In a setting where the disease is spreading outside the population,

the reduction of infections within the population during the intervention may be

immediately negated by new transmissions from outside, which are likely to be in-

creasing. So the effect to delay the epidemic is largest if accompanied by reduction

in transmissions from outside. However, in a setting where the disease is not well-

established outside the population (as occurred in China early in the COVID-19

pandemic), or travel from outside can be restricted, a major effort at early time

may significantly delay the eventual epidemic.

4.3.2 Weakly-coupled metapopulation model

We now consider a more realistic population which consists of coupled subcommunit-

ies, effectively a metapopulation model. We again consider one-shot interventions

that either target the entire population at once (synchronous interventions) or that

target individual subcommunities at different times (asynchronous interventions). If

they were strongly coupled, the epidemics would be synchronous [Ball et al., 2015;

Dickison et al., 2012]. So the single well-mixed population results would carry over.

Our focus is on weakly-coupled subcommunities.

A typical plot of the prevalence level in each subcommunity is shown in Fig 4.4

in the absence of intervention. The epidemic starts in subcommunity two but it then

spreads to the others. The entries of the cross-infection/mixing matrix are generated

following the description in Section 4.2.2, and the specific mixing parameters are

given in the Appendix.

As before we consider the impact of intervention on attack rate, peak prevalence,

and peak timing. The overall effect of interventions is qualitatively similar to that

of the single-population model. However, we find that asynchronous interventions
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Figure 4.4: Example of an epidemic spreading across 9 subcommunities with different

contact rates (see the Appendix 4.5.2 for the precise mixing matrix B). The epidemic starts

from subcommunity 2 and it is run for T = 35 units of time. γ = 1 for all subcommunities.

With no control the attack rate or final epidemic size is 0.744.

that separately target each subcommunity significantly outperform synchronized

interventions that begin when either the first subcommunity reaches a threshold or

the global infection crosses a threshold.

For synchronized interventions, the overall impact is smaller, and the best out-

comes are not driven by the actual threshold value. Rather they result from the

intervention being timed to have significant impact on multiple communities, or op-

timally delaying the spread between communities. Consequently, the ideal times for

this will depend on the parameters for between-community transmission, and are

likely to be population-dependent.

Because the epidemics may not be synchronized across subcommunities, when

a synchronous intervention is applied some may have already completed their epi-
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demic, while others have not yet begun. Interventions that are based on the first

population to reach a threshold may not be valuable if the particular intervention is

most effective if it disrupts patterns that do not appear until the first subcommunity

has effectively completed its epidemic.

In our results, we consider 100 simulated populations consisting of 9 subcom-

munities, whose contact structure is generated from the random process described

in Section 4.2.2. For most results we present only the average behavior. We note

that this aggregation may hide important behavior from individual simulations [Juul

et al., 2020]. However, except where noted, our averaged results are qualitatively

similar to what is happening in the subcommunities. Where we look at an individual

simulation, we use the specific population of Fig 4.4.

Impact on attack rate

Our primary observation about the attack rate is that interventions acting at differ-

ent times for each subcommunity are substantially more effective than synchronized

interventions.

The smallest values of the attack rates are achieved when control acts independ-

ently in each subcommunity meaning that as soon as Ii+Ri crosses a threshold, the

one-shot control is switched on in subcommunity i. This is done independently of

whether the efficacy or duration of control is kept fixed, while the other is varied, see

Fig 4.5A and 4.5D. Typically, as in the case of a single population, there seems to

be a clear optimal threshold value which leads to the smallest attack rate. Applying

the control too early or too late leads to higher attack rates. Fixing the threshold

value and increasing the duration of control, see Fig 4.5A, or the strength of control,

Fig 4.5D, leads to smaller attack rates. Both strength and duration of control have

no significant impact on the attack rate if the intervention is too early or too late.

Fig 4.6 shows how the best one-shot control works when the optimal threshold for

fixed control efficacy and duration is implemented. As expected, this plot confirms

that intervention happens close to the peak of the epidemic in each subcommunity

so secondary waves of infection are heavily suppressed.

The impact of the synchronized intervention based on the global level of I+R, see

Fig 4.5C and 4.5F, or on the first subcommunity to reach a threshold, see Fig 4.5B



108 Chapter 4: Optimal timing of one-shot interventions

0.5 1.0
Threshold

2.5

5.0

7.5

10.0

D
u
ra

ti
on

A

0
.60

.7

0
.8

0
.8

0.5 1.0
Threshold

2.5

5.0

7.5

10.0

D
u
ra

ti
on

B

0
.8

0.5 1.0
Threshold

2.5

5.0

7.5

10.0

D
u
ra

ti
on

C

0
.8

0.5 1.0
Threshold

0.2

0.4

0.6

0.8

c

D

0
.7

5

0
.8

0

0.5 1.0
Threshold

0.2

0.4

0.6

0.8

c

E

0
.8

0
0.5 1.0

Threshold

0.2

0.4

0.6

0.8

c

F

0
.8

0

0.6

0.7

0.8

0.70

0.75

0.80

Figure 4.5: Contour plots showing the average attack rate (final epidemic size) over 100

simulated populations for each set of parameter values. In the first row c is fixed and the

duration of control varies on the vertical axis, while in the second row duration is fixed and

c varies. Each column corresponds to one of the three strategies: A,D intervention in each

subcommunity based on that subcommunity reaching a threshold, B,E global intervention

when the first subcommunity breaches the threshold, and C,F global intervention at global

threshold for a population consisting of 9 subcommunities. In each plot, the x − axis

shows the values that the threshold for intervention can take (from a minimum of 0.05

to a maximum of 0.8). In the first row c = 0.8 is constant, while the duration of control

varies from a minimum of T = 1 to a maximum of T = 10. On the second row instead,

the duration of control is kept fixed at T = 2, and the values of c varies from c = 0.1 to

c = 0.9. The recovery rate is γ = 1 for all subcommunities. In all cases, if the threshold is

set too large the intervention is never implemented. The two synchronized interventions

can be approximately mapped to one another by noting the largest Ii+Ri at the time the

global I+R reaches a given threshold. The subcommunity threshold gives more resolution

at small values while the global threshold gives more resolution at large values.

and 4.5E, are much smaller than asynchronous interventions. This is because when it

is implemented in the synchronous case, some communities have already completed

their epidemic while others have not yet begun. So there is less overall impact (see

the asynchrony in Fig 4.4).
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Figure 4.6: Illustration of best control strategy (i.e. smallest attack rate) (controlling

subcommunities individually but using the same threshold for each) when efficacy and

duration of control are fixed at c = 0.8 and D = 2, respectively. It turns out that the

optimal threshold is close to (0.4). This combination represents the point (0.4, 2) in Fig

4.5A, or equivalently the point (0.4, 0.8) in D. With this strategy, we find that R(∞) goes

from R(∞) = 0.75 to R(∞) = 0.63. If we increase control duration from 2 to 10 we would

achieve a further reduction to R(∞) = 0.44. The vertical black lines show the onset of

control.

When the intervention is based on the first time a subcommunity crosses a

threshold, we find that the optimal thresholds are at relatively large values. This

suggests that the value of the synchronized intervention comes from disrupting trans-

mission when the disease is spreading in multiple subcommunities.
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Under the synchronous intervention scenario, we also see some surprising beha-

vior where there are multiple local maxima for the specific metapopulation used in

Fig 4.4 (not shown in Fig 4.5). This effect is because the timing aligns with different

outbreaks. If we intervene at one time, we may have a big impact on one subcom-

munity, and if we miss that window, it is best to wait until another subcommunity

begins to have an outbreak. This effect disappears in the aggregated data of Fig 4.5

because the specific ideal timing is a consequence of the randomly chosen parameters

of each population.

Impact on peak prevalence
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Figure 4.7: Contour plots of the peak prevalence Ipeak = maxt
(
1
9

∑
i Ii(t)

)
, averaged

across 100 simulated populations each with 9 subcommunities. Control strategies and

setup the same as in Fig 4.5.

Here we look at the effect of the intervention on the peak prevalence, that is the

maximum value of I(t) = 1
N

∑
i Ii(t) during the time course of the epidemics. As

with the attack rate, our primary observation for the peak prevalence is that it is

significantly reduced by targeting based on the individual subcommunity.

Fig 4.7 shows the average of the peak prevalence across the same 100 populations
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as Fig 4.5. Perhaps not surprisingly, Fig 4.7 is qualitatively similar to Fig 4.5.

The most impact is through having interventions occurring when the individual

populations reach a threshold. The optimal choices for intervention come earlier in

the epidemic. We still observe that if the intervention is too soon or too late then

there is no significant reduction in peak prevalence.

In Fig 4.7A,D the optimal threshold for intervention is relatively early, this is in

line with the trend observed in Fig 4.2 for the single population case. We should

wait until some immunity builds up before intervening, so that the rebound in each

population is muted.

For our two synchronized strategies, the effectiveness is much less, because the

overall peak prevalence is related to how the individual subcommunities’ peaks align,

and different details of intervention timing, combined with the random parameters

of the simulation, can make the individual peaks align or not.
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Figure 4.8: Contour plots of the peak prevalence, Ipeak, that is the maximum value

achieved by I(t) = 1
N

∑
i Ii(t) during the time-course of the epidemic for the population

used in Fig 4.4, with the intervention occuring when the global infection count reaches a

threshold (as in C and F in earlier figures).

Interestingly, if we look at an individual simulations, there are thresholds which

yield significantly larger improvements in the peak prevalence than we see in the

aggregated data. This is because in each simulated population, the relative timing

of the epidemics subpopulations depends on the system parameters. In a weakly-

coupled metapopulation model with relatively few subcommunities, the global peak
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prevalence is likely to occur when multiple subcommunities happen to be aligned.

We observe this in Fig 4.8 which shows the equivalent of Fig 4.7C and 4.7F for the

same population as in Fig 4.4 (described in the appendix). If we do the same cal-

culation for other populations chosen from the same distribution, we find that the

optimal time can shift dramatically. This is because in a weakly-coupled metapopu-

lation model with relatively few subcommunities, the global peak prevalence is likely

to occur when multiple subcommunities happen to be aligned. This is highly sensit-

ive to parameters, and so the optimal intervention time will vary between different

realizations of the population.

Impact on epidemic timing
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Figure 4.9: Contour plots of the global mean infection time, defined as T =

− 1
R(∞)

∫∞
0 t

∑
i
dSi
dt dt, averaged over 100 simulations. In terms of control strategies and

parameter values the same setup as in Figs 4.7 and 4.5 are used.

When we investigate the average time of infection, we see in Fig 4.9 that targeting

the intervention at each subcommunity is again the most effective. In general the

interventions need to be implemented very early in the epidemic.

Most of the impact comes from slowing the epidemic in the initial subcommunity.

A delay in the initial place of introduction results in a delay in all subcommunities.
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Once the intervention is no longer in place in the initial subcommunity it begins to

grow and spill over into other communities. If other subcommunities wait until then

to begin their response, they gain some benefit. However, once they stop, they face

rapid reseeding from the initial subcommunity. So the main benefit comes from the

initial subcommunity’s actions. When we use a synchronized intervention, the effect

is somewhat smaller, but it is not significantly smaller.

In fact, most of the benefit comes from the initial subcommunity engaging in pre-

ventative measures. There is relatively little impact on the average time of infection

to be gained from the other subcommunities acting early, unless they can maintain

a very small spillover rate for a long period through extensive travel restrictions or

similar interventions. This suggests that significant benefit may come from a hybrid

strategy which focuses on delaying infections out of the initial subcommunity while

other locations focus their interventions on optimizing peak prevalence or attack

rate.

4.4 Discussion

We have considered the impact of a single one-shot limited duration intervention on

the spread of an infectious SIR disease, in both a single well-mixed community and

in a weakly-coupled metapopulation model.

We have found that in a single well-mixed population, an intervention at the

first hint of infection is best for delaying infections. An intervention that waits until

the epidemic is well-established but still well short of the peak is best to reduce the

peak prevalence of the epidemic. An intervention (whose duration would be D) that

starts a little less than D units of time before the peak would otherwise be reached

is best to reduce the total number of infections.

In a weakly-coupled metapopulation model, we find qualitatively similar results.

If the goal is to reduce the total number of infections or to reduce the peak preval-

ence, the best strategy times the interventions asynchronously. The intervention is

applied when the subcommunity reaches a threshold rather than being synchron-

ized to when the average reaches a threshold or the first subcommunity reaches a

threshold. This is because once sufficient infection has entered a community, the
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dynamics are driven by internal transmissions rather than external introductions.

For delaying the average time of infection, the most important detail is that the

subcommunity with the first introduction responds as quickly as possible. Whether

the other subcommunities respond immediately or delay their response until more

infections are present within the subcommunities would have a smaller effect.

4.4.1 Limitations

Our results are somewhat limited by the assumptions we have made to produce a

tractable problem.

We assume that behavior responds immediately to changes in interventions. In

reality, behavior may change prior to an intervention being implemented. Addition-

ally adherence may drop as the intervention continues, and some adherence to the

intervention may remain even once the intervention is removed.

The assumption that the individuals are largely homogeneous may lead to pess-

imistic predictions of when the herd immunity threshold is reached. In the presence

of significant population heterogeneity, there is evidence suggesting that the herd

immunity threshold would be reached earlier, and the epidemic could proceed signi-

ficantly faster [Gomes et al., 2020; Britton et al., 2020]. Our qualitative predictions

remain robust, but the timings would need to move sooner.

We must think critically about what constitutes a one-shot intervention. Whether

an intervention can be maintained may depend on context. Early estimates of case

fatality rate (not to be confused with infection fatality rate) of COVID-19 ranged

from 0.7% in China outside of Hubei province to around 2% in much of the world,

to around 5.8% in Wuhan [World Health Organisation, 2020]. These estimates were

affected by the proportion of cases identified (leading to uncertainty in the denom-

inator), and whether the health system was over capacity (which would increase

the death rate leading to uncertainty in the numerator). True infection fatality

rates appear to lie between 0.5% and 1%, with many estimates closer to 1% than

0.5% [Meyerowitz-Katz and Merone, 2020b; Ward et al., 2020; Pastor-Barriuso et al.,

2020]. With such high fatality rates, our tolerance for drastic interventions should

increase. Thus an intervention that would be considered one-shot for the 2009 H1N1

pandemic which had a significantly lower fatality rate [Wong et al., 2013] might be
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considered sustainable for the COVID-19 pandemic.

In deciding whether an intervention is sustainable, policy makers could formulate

an answer to this question: “Assume you impose the intervention now, and infection

rates remain the same or higher in the future, and would increase if they were

dropped, would you be willing to maintain the intervention in place?” If so, then

the intervention is sustainable. If the answer is “no”, and the intervention will be

abandoned at some future time regardless of the new infection profile, then this is

a one-shot intervention, and it should be held in reserve until it will have maximal

impact.

We have ignored logistical challenges that might be associated with implementing

the intervention separately for each subcommunity. On a large scale (e.g., states

within a country or cities within a state) we anticipate that this is logistically feasible,

while on a small scale (e.g., suburbs in a city) it is more likely that the epidemics

will be synchronized and this benefit is small compared to the logistical challenges.

4.4.2 Policy Implications

Our observations have a number of important policy implications for an epidemic

which is sufficiently established that elimination is not a goal. Primarily:

• To reduce the attack rate of an epidemic, a one-shot intervention should be

introduced shortly before the epidemic peak.

• To reduce the peak size of an epidemic, the intervention should be late enough

to allow significant immunity to develop, but early enough to allow a substan-

tial rebound after the intervention.

• To delay infections as much as possible, the intervention should be implemen-

ted early on.

• In a population made up of many weakly-coupled subcommunities, interven-

tions should be asynchronous.

Because they require different timings, the three goals we have considered are

in conflict. The benefits of reducing the total number of infections are clear, and if

health care capacity is threatened, the benefits of minimizing the peak prevalence
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are also clear. It is less obvious that delaying infections may help. However when

there is an expectation that improved treatments and improved inteventions may

be developed, a delay is likely to be the best available option.

An additional benefit of delaying the epidemic is observed when we have an

intervention, such as testing & tracing, which does not scale well. As the num-

ber of infections grows beyond the testing capacity, the effectiveness per infection

goes down. At low infection levels these interventions may be enough to suppress

transmission. However, if levels get too high, then a quick intervention that causes

infections to drop may be more effective than an intervention that waits until the

optimal time to minimize the size.

Although we have focused on three distinct goals which lead to different optimal

strategies, the ideal goal is likely to be a combination of these effects. So the timing

will need to respond to different pressures. If, for example, the goal is to keep the

peak prevalence below a certain value while minimizing the maximum prevalence,

then the ideal strategy would let as much immunity develop in the population as

possible before the prevalence limit is reached and then intervene (this is of course

only feasible if there is a time that can keep prevalence below that level). Delaying

the intervention until this point would mean that the second peak would be lower.

If the goal is instead to keep the peak prevalence below some level while maximizing

the delay of infections, then the intervention would be sooner and timed so that the

second peak would reach the target prevalence.

We finally note that in a population made up of weakly-coupled subcommunities

whose epidemics will not be synchronized, the ideal intervention might be to react

strongly and immediately in the first subcommunity where the infection begins to

spread. This can provide protection to the other communities and significantly delay

the spread. Once it spreads beyond that initial subcommunity then the focus may

turn to minimizing the peak prevalence or the attack rate.

4.5 Mathematical Analysis

In this section we provide mathematical analyses of the single population model to

support our results for reducing attack rate and peak prevalence.
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Figure 4.10: We plot S(t) versus R(t) for R0 = 0.5 A, 2 B, and 4 C. For given S(t)

and R(t), the proportion infected is I(t) = 1 − S(t) − R(t), which equals the vertical or

horizontal distance from the point (R(t), S(t)) to the line S + R = 1. The curves and

arrows show how a solution to System (4.1) evolves in time. At points S > 1/R0 (which

occurs only for R0 > 1) curves move farther from the diagonal, representing an increase

in I. Note that the velocity a curve is traversed varies depending on location, and goes to

zero close to S+R = 1. Red dots in B–C indicate the point (S = 1
R0

, I = 0, R = 1−S).

4.5.1 A phase-plane based analysis

Because S+I+R = 1, we can fully specify the current state and the future dynamics

by knowing S and R, in which case I = 1 − S − R. It will be useful to use this to

explore the dynamics of an epidemic and the impact of an intervention.

In Fig 4.10 we show how S(t) and R(t) evolve together in time for three values

of R0 (0.5, 2, and 4) and for several different initial conditions. For a given point

(S(t0), R(t0)), the value of I(t0) is given by the horizontal (or vertical) distance to

the diagonal line S +R = 1.

In the figure, we can see that if S > 1/R0 (which is only possible if R0 > 1),

then the horizontal distance from the curve to the S+R = 1 line is increasing as the

curve moves forward. In other words, I is increasing. Once S < 1/R0, the distance

decreases and eventually goes to 0.

Using these curves, we can investigate the impact of an intervention, as shown

in Fig 4.11. We follow S and R along a curve. When we turn on the one-shot

intervention at time t∗, it no longer follows the original curve. Instead the curve

temporarily follows the paths we would find for (1 − c)R0, starting from the point

(R(t∗), S(t∗)). It follows this curve until reaching (R(t∗ + D), S(t∗ + D)) when the
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Figure 4.11: (S,R) phase portrait (arrows indicate growing time) based on an SIR model

in a single population with β = 2, γ = 1 (giving R0 = 2) and initial condition I(0) = 0.01.

The plot shows a trajectory with no control (continuous red line) as well as three other

trajectories where β = 0.5 for a time period of length D = 2 but with the intervention

setting in only once I +R goes past 0.1 (partially dotted line), 0.3 (partially dashed line)

and 0.5 (continuous broken line), respectively. Control for the three different scenarios sets

in at the points denoted by A, B and C and control ends at A’, B’ and C’, respectively.

intervention is halted. It then follows the curves for the original R0, but starting

from this new point. Note that there is a point (R, S) = (1− 1/R0, 1/R0) at which

separates the points on the line R+S = 1 from which an epidemic could start from

the points at which epidemics finish. The closer a curve is to this point, the smaller

the attack rate.

So forR0 = 2, a temporary intervention gives us a way to move from one curve in

the R0 = 2 plot to another. We see this in Fig 4.11. The timing of the intervention

determines which of the curves the system lands on.

In this context the goal of reducing the attack rate is equivalent to ensuring

that the intervention shifts the curve to a curve as close as possible to (R, S) =

(1− 1/R0, S = 1/R0). Reducing the peak prevalence is equivalent to ensuring that

the curve remains as close as possible to the line S +R = 1.
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Attack rate

If our goal is to minimize the number of infections, we accomplish this by having

the curve (R(t), S(t)) land on a curve that is as close to (R, S) = (1− 1/R0, 1/R0)

as possible given the constraints on the intervention.

Typically we have to wait until the curve has moved closer to the desirable curves

before implementing the intervention. Implementing the intervention early, see the

dotted line in Fig 4.11 means that at the end of the intervention there is still a large

pool of susceptibles which are at risk of becoming infected. Crossing from A to A’

simply puts the epidemic on a slightly different trajectory but the attack rate is

very close to the case with no control. An intervention at a later stage, see dashed

line, improves the final outcome resulting in an attack rate that is smaller when

compared to the case of no control. Finally, the continuous broken line shows an

almost optimal intervention with a further small reduction in the attack rate.

In general, the intervention that will get us closest to the optimal value occurs

when the original curve is close to, but has not yet reached, the largest value of I,

which occurs when S = 1/R0. As the effectiveness of the intervention increases, the

curves it follows during the intervention become more horizontal. For very effective

interventions, this suggests we should wait until very close to the epidemic peak,

while for less effective interventions (which will slope downwards more), we will want

to implement them somewhat sooner.

Peak prevalence

For peak prevalence, the goal is to keep the curve as close as possible to S +R = 1.

The longer we wait to implement the intervention, the closer the final curve is to

S+R = 1, but the farther the original curve moves from the line. With this in mind

it becomes clear that the optimal t∗ to reduce peak prevalence is smaller than the

optimal value to reduce attack rate.

4.5.2 The mixing matrix

The cross-infection between subcommunities is modelled by B = (βij)i,j=1,2,...N ,

where βij represents the rate at which infectious contacts are made from subcom-

munity i towards susceptible individuals in subcommunity j.
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We implement a weak coupling by joining the population in a linear fashion:

population i is only connected to population (i − 1) and (i + 1). The first and

the last populations only connect to the second and the pen-ultimate population,

respectively. The entries for the coupling/mixing matrix are generated as follows.

On the main diagonal, the βii values are set to 2 + (Unif(0, 1)− 0.5). Off-diagonal

entries are set to Unif(0, 1)(β∗ii/10) (β∗ = maxi=1,2,...,N βii) and represent a scaled

and randomised version of the largest entry on the main diagonal. This yields an

R0 above 2, comparable to current estimates for COVID-19.

We choose random values because the coupling parameters determine the timing

of epidemics in the subcommunities. The optimal timing of interventions for a given

realization may depend on how well-synchronized the epidemics are.
To avoid having our results heavily influenced by the particulars of a single

realization of the population, we use randomly assigned mixing parameters in mul-
tiple simulations. For most of our results we aggregate over 100 distinct simulated
populations. However, in Figs 4.4, 4.6, and 4.8 we use a single realization of the
metapopulation model. For this we take the mixing matrix

B =



1.917 0.059817 0 0 0 0 0 0 0

0.062024 2.2203 0.03117 0 0 0 0 0 0

0 0.0094413 1.5001 0.0043357 0 0 0 0 0

0 0 0.070055 1.8023 0.076213 0 0 0 0

0 0 0 0.01146 1.6468 0.049723 0 0 0

0 0 0 0 0.02948 1.5923 0.054573 0 0

0 0 0 0 0 0.07709 1.6863 0.045981 0

0 0 0 0 0 0 0.015262 1.8456 0.015462

0 0 0 0 0 0 0 0.098061 1.8968



.

(4.2)

4.5.3 The impact of aggregation

In our figures showing the impact of interventions in the weakly-coupled metapop-

ulation model, we showed the average across many realizations. However, the syn-

chronization of epidemics in the individual subpopulations would vary depending on

the mixing parameters. Most notably, in the global interventions, the overall effect-

iveness will depend on the relative timing of the epidemics in the subpopulations.

This is seen in Fig 4.12. As a result of this, we must have caution in interpreting the

optimal thresholds for global interventions from the averaged figures. See also [Juul

et al., 2020].



Chapter 4: Optimal timing of one-shot interventions 121

0.5 1.0
Threshold

2.5

5.0

7.5

10.0

D
u
ra

ti
on

A

0
.6

0
.7

0
.8

0.5 1.0
Threshold

2.5

5.0

7.5

10.0

D
u
ra

ti
on

B

0
.8

0
.8

0.5 1.0
Threshold

2.5

5.0

7.5

10.0

D
u
ra

ti
on

C

0
.8 0

.8

0.5 1.0
Threshold

0.2

0.4

0.6

0.8

c

D

0
.7

5

0
.8

0

0.5 1.0
Threshold

0.2

0.4

0.6

0.8

c

E

0
.8

0

0.5 1.0
Threshold

0.2

0.4

0.6

0.8

c

F

0
.8

0

0.6

0.7

0.8

0.75

0.80

Figure 4.12: Contour plots of R∞ for a particular realization of the mixing matrix. In

C we see that there can be multiple peaks in the optimal time [this is also present in B

but it is too small to see]. This is because the effectiveness of the interventions depend on

the timing of epidemics in the different subpopulations and these are asynchronous.



Chapter 5

The impact of network properties

and mixing on control measures

and disease-induced herd

immunity in epidemic models: a

mean-field model perspective

5.1 Introduction

The recent emergence of SARS-CoV-2 and the associated disease COVID-19 has had

worldwide impact. Many cities have had large outbreaks and brought them under

control through major interventions. Once those interventions are lifted, in absence

of effective vaccination, a homogeneous model of infection spread would predict that

as long as less than 1−1/R0 of the population was infected, there is always a threat

of resurgence.

Despite large epidemics, cities such as New York remain well below the threshold

expected to be be required to achieve herd immunity [Stadlbauer et al., 2020].

To avoid the significant economic and health costs associated with continued

interventions, it is natural to consider the so-called “herd immunity” strategy. This

strategy allows infection to spread with restrictions in place so that the outbreak

finishes and interventions are lifted when the herd immunity threshold is reached.

122
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Typically in an uncontrolled epidemic the herd immunity threshold is reached at the

peak of the epidemic, and many additional infections occur as the outbreak slowly

wanes. The additional infections are sometimes referred to as the overshoot [Handel

et al., 2007]. By calibrating the intervention so that there are no (or almost no) in-

fections when the herd immunity threshold is reached, interventions can be removed

with minimal overshoot [Di Lauro et al., 2021; Morris et al., 2021].

The severity of the epidemic in many places whose seroprevalence is still very

low has led many to suggest that the herd immunity strategy is not tenable. How-

ever, recent papers [Britton et al., 2020; Gomes et al., 2020] suggest that immunity

acquired through infection may be distributed through the population in such a

way as to achieve herd immunity at a lower fraction affected than a homogeneous

model would predict. This is because the initial wave of infections preferentially

affects those most at risk. Thus it acts like a targeted vaccination, removing the

people who are most likely to transmit infection from the susceptible pool. Gen-

erally, the time course of a real epidemic involves the following stages: (i) short

period of unconstrained transmission, (ii) significant control or lockdown, and (iii)

relaxation of control measures. Typically, during lockdown some spread persists and

one pertinent question is whether relaxing the lockdown will lead to a second wave.

In [Britton et al., 2020], this question was explored by looking at prevalence at the

end of lockdown in scenarios where lifting the lockdown did not lead to resurgence.

For the purposes of this paper, we refer to this fraction as the disease-induced herd

immunity (DIHI). This means that if DIHI is higher in one scenario than in another,

then in the former a higher prevalence is required than in the latter to achieve herd

immunity through the disease.

These papers make some simplifying assumptions about population structure

that may not hold. In particular they do not consider the fact that existing interven-

tions tend to affect some contacts more than others. For example, the transmission

rates of household contacts are not significantly reduced (and in fact may increase)

during interventions focused on reducing movement. Moreover, many of the highest

risk positions in the disease network are in fact roles (health care workers, delivery

drivers, teachers, etc) that would need to be maintained in most forms of a lockdown,

meaning that some community links may be increased even as others are limited,
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and the changes are distributed heterogeneously through the population.

In this paper we will use several network-based models to improve our under-

standing of how population structure may affect the DIHI threshold. Modelling

epidemics on networks and the analysis of the resulting systems, be they stochastic

or deterministic, is a well studied research area [Kiss et al., 2017; Pastor-Satorras

et al., 2015; Porter and Gleeson, 2016]. The main reason for using networks is two-

fold. First, networks are intuitive and easy to understand and use, and second, they

allow us to represent contact structure within a population to a high degree of accur-

acy. One of the most frequently studied questions in this area is how to understand

and quantify the impact of various network properties on the invasion, spread and

control of infectious diseases. Epidemics are usually modelled as stochastic process

unfolding on the network. For example, the susceptible-infected-recovered/removed

(SIR) epidemic on a network is modelled by the two separate processes: infection

and recovery. In the simplest case both are Poisson processes such that an infectious

node u connected to a susceptible node v transmits at per-contact rate τ , causing

v to convert to infected. Nodes recover at rate γ to an immune state independently

of the network.

On a network with N nodes, the SIR model leads to a continuous-time Markov

Chain over 3N states. Even for small values of N such a system becomes tedious

to handle (numerically or otherwise). This has led to a myriad of approximations

in the form of mean-field models which focus on some average quantities to reduce

the dimensionality of the resulting system [Kiss et al., 2017]. Other approaches

include percolation [Miller, 2016; Moore and Newman, 2000] and message-passing

models [Bianconi et al., 2020].

The mathematical analysis of epidemic models on networks (from regular and

Erdős-Rényi to scale-free networks such as the Barabási-Albert preferential attach-

ment model) has led to many elegant analytical / explicit results regarding the

impact of network properties (e.g., degree heterogeneity, assortativity and cluster-

ing) on the epidemic threshold, final epidemic size or endemic equilibrium, optimal

vaccination strategies [Porter and Gleeson, 2016; Pastor-Satorras et al., 2015; Chen

and Sun, 2014; Holme and Litvak, 2017], as well as the fact that certain mean-field

SIR models are exact in the limit of large configuration model networks [Miller and
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Volz, 2013; Miller and Kiss, 2014]. Many such models are mathematically tractable

and help us gain important intuition about how an epidemic spreads and which

properties of the contact network affect this. While they may not directly inform

policy making, they remain useful tools to develop intuition, highlight important

population features and test various scenarios quickly and effectively.

In this paper we use four different mean-field models [Kiss et al., 2017] to ap-

proximate exact epidemics on networks: (a) degree-based heterogeneous mean-field,

(b) clustered and unclustered pairwise, (c) a new edge-based-compartmental model

that allows us to distinguish between household/local contacts and community/g-

lobal contacts, and (d) an age-structured compartmental model parameterised with

realistic age structure and contact matrices. The primary aim is to investigate

how heterogeneity in model structure impacts DIHI. More importantly perhaps, we

challenge the way lockdown has been implemented in many models, namely, by a

simple reduction in R0 or the transmission rate while keeping the contact network

or mixing matrix the same. We build a new edge-based-compartmental model able

to distinguish between household and community transmissions and use this to im-

plement lockdown by either intervening on both types of connections or only on

the community-based ones. In the same spirit, we use an age-structured compart-

mental model in which we implement lockdown either as a simple scaling of the

entire mixing matrix or, more realistically, a set of age-specific structural changes.

The paper is structured as follows. In section 5.2 we describe all models in-

cluding the underlying network types and relevant model and epidemic parameters.

Section 5.3 contains the results for the network models, whilst section 5.4 provides

the results for the age-structured model. Finally, in section 5.5 we discuss the im-

plications of our findings. Additional technical details are given in the Appendix.

5.2 Methods

We consider a set of mean-field models that capture different levels of detail of the

network structure. This helps reveal the underlying mechanisms where qualitatively

different outcomes occur.

The first two are approximations of the exact stochastic SIR model on networks
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with heterogeneous degree distribution, without and with clustering. This is fol-

lowed by a new edge-based-compartmental model with household structure, i.e.,

with the ability to distinguish between household and community contacts. Finally,

we consider an age-structured SEIRD model based on realistic age-structure and

mixing matrices. For the network-based mean-field models we choose a flexible

degree distribution with good control of the mean and variance, i.e., the negative

binomial. We loosely order the models by their relative complexity, corresponding

to gradually incorporating more features of the underlying network or population

contact structure. While the last model is not explicitly network-based, it uses real-

istic mixing matrices over an age-structured model based on UK data. One can

consider this an extrapolation from (or an approximation of) an explicit network

model where individual-level interactions are averaged out over groups of interest

from an epidemiological view point.

5.2.1 Contact structure and epidemic model

We consider a SIR/SEIRD epidemic spreading in a closed population of size N =

6.65·106 (loosely the population size of the UK) with a well-defined contact structure.

For illustrative purposes, we assume that the probability of an individual having k

contacts follows a negative binomial distribution

Pn,p(k) =

(
k + n− 1

n− 1

)
pn(1− p)k. (5.1)

The reason for this choice is that we want to highlight how heterogeneities in the

contact structure play a central role in determining the DIHI. To illustrate this point,

we consider three different scenarios for the degree distribution of the population.

In all cases, we fix 〈k〉 = n(1−p)/p and we use the remaining free parameter to tune

the variance. To avoid individuals with degree 0, the degree distribution is shifted

by a constant m, thus making the effective average degree 〈k〉 = m+n(1−p)/p. For

normal-like and scale-free-like distributions we take m = 1, and for the delta-like

distribution we take m = 9 (see Table 5.1).

The parameters chosen are reported in Table 5.1, and represent degree distribu-

tions of increasing variance, see figure 5.1, moving from almost no variance (delta-like

degree distribution) to a degree distribution with a longer tail, akin to a scale-free
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Figure 5.1: The three degree distributions described in Table 5.1.

network.

For all network-based models, we consider the simple susceptible-infected-recovered

model (SIR) on a network. The infection is driven by a per-link transmission rate

τ and a recovery rate γ. Mostly, we focus on the corresponding mean-field models

with increasing level of accuracy in terms of what network features are incorporated.

Name n p 〈k〉 σ2 τ

delta-like 1 0.99 10 1 0.016

normal-like 3.86 0.3 10 30 0.016

scale-free-like 1.07 0.107 10 300 0.016

Table 5.1: The three degree distributions considered. The delta-like distribution is

shifted by 9, as its mean would be 1 otherwise. The reason for this choice is the fact

that in negative binomials the variance cannot be lower than the mean. Normal-like and

scale-free like distributions instead are shifted by one, so that the minimum degree is 1.

The resulting degree distributions are shown in figure 5.1.

5.2.2 Degree-based mean field model

In the degree-based mean field model (also called Heterogeneous Mean Field [Pastor-

Satorras et al., 2015]) we denote by [S]k(t) the expected number of susceptibles with

degree k at time t, similarly for [I]k and [R]k. We define [S] =
∑∞

k=1[S]k, similarly [I]

and [R]. The closure is made at the level of individuals, meaning that the infection
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pressure across a link is simply averaged across the entire spectrum of infected nodes.

The resulting ODEs are

˙[Sk] = −τk[Sk]πI ,

˙[Ik] = τk[Sk]πI − γ[Ik],

˙[Rk] = γ[Ik],

πI =

∑M
`=1 `[I`]∑M
`=1 `N`

, (5.2)

where N` = Pn,p(`)N is the number of nodes with degree `. This system effectively

keeps track of degree and heterogeneity in it, but mixing between nodes of different

degrees happens at random but proportionally to degree [Pastor-Satorras et al.,

2015; Kiss et al., 2017], with clustering (the tendency of nodes to form connected

triples) playing no role.

The degree-based mean field model can be derived exactly, under the assump-

tion that individuals with degree k reselect their partners very rapidly, so at every

moment, the status of a node is independent of the status of its current partners.

In reality, many edges are long-lasting, and so correlations build up: a randomly

selected infected node is more likely to connect to another infected node than a

randomly selected susceptible node. More complex models are needed to correct

this.

5.2.3 Heterogeneous pairwise without and with clustering

In the heterogeneous pairwise model, we also count pairs: for example [AkB`] is the

expected number of links connecting a node of degree k in state A to a node of

degree ` in state B [House and Keeling, 2011; Kiss et al., 2017]; likewise for triples

of the form [AkB`Cm]. The closure is done at the level of pairs (i.e. triples are

approximated by singles and pairs), and hence an approximation for the triples are

needed. These are given by

[AkB`Cm] =
`− 1

`

(
(1− ϕ)

[AkB`][B`Cm]

[Bj]
+ ϕ

[AkB`][B`Cm][CmAk]

[Ak][B`][Cm]

)
, (5.3)
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where ϕ is the global clustering coefficient in the network. For the un-clustered case

we simply set ϕ = 0. The resulting ODEs are,

˙[Sk] = −τ
∑
`

[SkI`],

˙[Ik] = τ
∑
`

[SkI`]− γ[Ik],

˙[Rk] = γ[Ik],

˙[SkI`] = −γ[SkI`] + τ

(∑
α

[SkS`Iα]−
∑
α

[IαSkI`]− [SkI`]

)
,

˙[SkS`] = −τ ([SkS`I] + [ISkS`]) ,

˙[IkI`] = −2γ[IkI`] + τ

(∑
α

[IαSkI`] +
∑
α

[IkS`Iα] + [SkI`] + [IkS`]

)
, (5.4)

where triples are closed using equation (5.3). The system can be significantly sim-

plified for the ϕ = 0 case. When ϕ > 0, the closures become more complicated

and present further challenges when implemented numerically (see notes in Ap-

pendix 5.6.1).

The number of equations in the heterogeneous pairwise model grows very large

if the network has degrees of many different types (e.g., because there is an equation

for ˙[SkI`] for every k, ` pair). Generalizing this to more complex structures can

become unwieldy. Edge-based compartmental models provide an alternative and

are discussed next.

5.2.4 Edge-based compartmental model with household struc-

ture and community transmission

It is interesting to consider models which explicitly distinguish between links that

happen within the households and those that happen elsewhere, as lockdowns act

mostly on inter-household contacts. To consider household structures, we take ad-

vantage of the edge-based compartmental modelling (EBCM) framework [Miller,

2011; Miller et al., 2012], adapting the model in [Volz et al., 2011] to build a model

that (i) has a more realistic contact structure with households, and (ii) can distin-

guish between within household and community transmission, see figure 5.2. This

model keeps the number of equations tractable.

We assume that individuals are divided into households of size 4. Within house-
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holds, there is complete mixing. In addition, each individual has a number of con-

tacts outside the household, which allow for community transmission. The equations

for this model are given in Appendix 5.6.2.

Figure 5.2: Caricature of the network model with households of size four and community

stubs due to be connected up following the configuration model.

5.2.5 Age-structured compartmental model

We use a version of the SEIRD compartmental model by Alvarez et al. [Álvarez

et al., 2015] adapted to remove any built-in control measures (originally modelled

as a Hill repression function modulating the number of daily contacts in response

to control measures) and to include age-structured interactions in the population.

The model is as follows:

Ṡi = −βSi
n∑
j=1

CijIj/Nj,

Ėi = +βSi

n∑
j=1

CijIj/Nj − γEEi,

İi = γEEi − γIIi,

Ṙi = + (1−mi) γIIi,

Ḋi = +miγIIi, (5.5)
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where β, γE and γI are age-independent parameters denoting infectivity, rate at

which exposed individuals become infected (inverse of incubation period) and rate

at which infected individuals recover or die (inverse of disease duration) respectively

(note that γI in this model corresponds to γ in the above models). The mi are

age-dependent mortality probabilities and control the fraction of those infected in-

dividuals who die. Susceptible individuals become exposed proportionally to a force

of infection defined as the product of the contagion matrix with the prevalence by

age. The contagion matrix is simply the product of the intrinsic infectivity of the

epidemic and the daily contacts of individuals in age group i with individuals from

age group j, Cij. Finally, n is the number of age groups considered and Ni is the

count of individuals in age group i.

5.2.6 Epidemic parameters

Ling et al. [Ling et al., 2020] reported that the median time from symptoms onset to

first negative RT-PCR in oropharyngeal swabs of convalescent patients was around

10 days, and further evidence [Wei et al., 2020] suggested that pre-symptomatic

infection could happen 1 − 3 days before the first symptoms appear. Accordingly,

we set γ = 1/14 (i.e. an average of two weeks before recovery). Before setting τ , we

summarise the expression for R0 for the various models that we consider. For the

heterogeneous degree-based mean-field model [Kiss et al., 2017] we have

R0 =
τ〈k2〉
γ〈k〉 . (5.6)

For the heterogeneous pairwise model, we use

R0 =
τ

τ + γ

〈k2〉 − 〈k〉
〈k〉 . (5.7)

For the edge-based model, we set the in-household infection parameter βh to be 3−5

times bigger than the inter-households infection parameter βc.

The basic reproduction number of the edge-based and the age structured models

are given by the leading eigenvalues of the following two next-generation matrices [Diek-

mann et al., 2010]. First, for the edge-based compartmental model, based on [Pellis
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et al., 2012], we have

A =


µ̃cµ0 1 0 0

µcµ1 0 1 0

µcµ2 0 0 1

µcµ3 0 0 0

 , (5.8)

where

µ̃c =
βc

(βc + γ)
E[D̃], µc =

βc
(βc + γ)

E[D], (5.9)

with D̃ and D the distribution of the excess degree (i.e. the distribution of the left-

over edges attached to a node reached by following one random edge, see [Newman,

2018]) and degree distribution of the network, respectively. µ0, µ1, µ2 and µ3 are

the expected number of infected in generation 0, 1, 2 and 3 in a household of

size 4. These values can be found in [Britton et al., 2019] on page 222/223, with

ϕI(βh) = γ/(βh + γ).

Finally, the R0 for the age-structured compartmental model is given by the

largest eigenvalue of:

β

γI


N1

N1
C11

N1

N2
C12 · · · N1

Nn
C1n

N2

N1
C21

N2

N2
C22 · · · N2

Nn
C2n

...
...

. . .
...

Nn
N1

Cn1
Nn
N2

Cn2 · · · Nn
Nn

Cnn

 .

where β is the intrinsic infectivity, γI is the rate at which infected individuals

either recover or die, Ni is the size of the population in age group i, and n = 18

is the number of age groups in the model. C is the age-mixing matrix and the

normalisation factor Ni
Nj

comes from the fact that at t0, there are only susceptible

individuals in the population of each age group and therefore Si = Ni in the partial

derivative with respect to I of the r.h.s of the second equation in system (5.5).

5.3 Results

5.3.1 Validation of mean-field models

Before proceeding with the study of how contact heterogeneity and the choice of

model impacts DIHI levels, we first test the validity of our proposed mean-field
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models on synthetic networks. This is a well-studied and challenging problem, espe-

cially for clustered networks where results are limited to networks in which clustering

is introduced in a very specific way (e.g., no overlapping motifs/subgraphs for ex-

ample [Newman, 2003a; Kiss and Green, 2008; Newman, 2009]). Another way of

introducing clustering in a network is to use so-called BigV rewiring [House and

Keeling, 2010], which does not enforce the non-overlap between motifs/subgraphs

but distributes these at random. This is the approach that we used to generate

clustered networks for validation purposes. In fact, exact results only exist for SIR

epidemics on configuration networks (with no clustering) with certain conditions on

the moments of the degree distribution. In [Decreusefond et al., 2012; Janson et al.,

2014], it is proven that the edge-based compartmental model is exact in the limit

of such large graphs. Therefore, here, our aim is not to give a full justification of

mean-field models but rather to show that the proposed mean-field models perform

well compared to the simulated exact epidemic model.

Concretely, for each distribution of Table 5.1, we generated a single instance

of a network with N = 10000 nodes by drawing the degree of each node from

that distribution. The network was then built using the configuration model. The

number of infected nodes at time t = 0 was set to 10 nodes (these were identical in

each run to ensure that the initial conditions for simulations and mean-field models

were correctly matched). We also tallied the number of all possible pairs of type

AiBj, where A,B ∈ {S, I, R} and i, j took values in the set of all possible degrees, in

order to inform the initial conditions of the heterogeneous pairwise models. Then,

we ran 100 realisations of the SIR epidemic on the generated networks using the

Gillespie algorithm, implemented in the EoN software package [Miller and Ting,

2019]. We then compared the stochastic trajectories with the numerical solution of

the homogeneous mean-field, heterogeneous mean-field and heterogeneous pairwise

unclustered/clustered (see figure 5.3) models. When comparing the outcome of many

realisations of the epidemic to results from a mean-field model most often averages

are taken. This works well especially when the initial stochasticity is small, as it is

the case for R0 well above the epidemic threshold. A time-shifted average is also

possible, or using confidence intervals based on many simulations [Juul et al., 2020;

Lofgren, 2012]. For our purposes we chose the average, to have a single curve to
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compare against deterministic models. It is well known, [Juul et al., 2020; Lofgren,

2012] and Appendix A.2 of [Kiss et al., 2017], that individual realisations may

differ from the average. However, after the initial stochastic phase, all epidemics

grow almost deterministically and in line with the proposed mean-field models.

Not surprisingly given that edge-based models have already been shown to be

equivalent to heterogeneous pairwise models [Kiss et al., 2017], figure 5.3 shows good

agreement. Figure 5.4 shows the good agreement for clustered pairwise models on

networks with low degree heterogeneity and clustering at 0.1 and 0.2. In other

settings (medium and high degree heterogeneity), as we will see in section 3.3, the

impact of clustering is dominated by that of degree heterogeneity.

We found that in the medium- and high-heterogeneity cases, homogeneous mean-

field models with the parameters chosen predicted no epidemics at all. For this

reason, they were no longer used in the following section. Unsurprisingly, the model

that performed best, was the heterogeneous pairwise, consistent with the fact that

this model captures higher-order structure. Finally, it should be noted that in the

low-heterogeneity case, the homogeneous mean-field model performed better than

the heterogeneous mean-field. The reason for this is that, by construction, the

heterogeneous mean-field model does not account for the fact that an edge can

only transmit once, and therefore, overestimates the growth of the epidemic. On

the other hand, the homogeneous mean-field model ignores degree heterogeneity,

leading to an under-estimation. However, figures 5.3 and 5.4 show that our chosen

models perform well.

5.3.2 The impact on DIHI

Most of our scenarios are concerned with determining the impact of model and

demographic heterogeneities on the DIHI levels. In well-mixed homogeneous pop-

ulations, each individual contributes equally to spreading, and therefore DIHI is a

well-defined quantity, independent of whom has been infected during the first wave.

In models with degree heterogeneities, nodes with higher degree contribute to the

spreading of the disease much more than nodes with fewer links. This means that

depending on whom has been infected, we can observe different levels of DIHI. This

effect, however, does not show in our results since the DIHI is based on the infections
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Figure 5.3: Comparison of 100 simulations of epidemics on a configuration model net-

work of size N = 10000 (gray lines) and various mean-field models (Hom. stands for

homogeneous, MF for mean-field, PW for pairwise). Each panel shows results for a dif-

ferent degree distribution of Table 5.1. Epidemic parameters are τ = 0.016 and γ = 0.07

in all figures, and the initial number of infected nodes is 10. Note that in the second and

third panels, the homogeneous mean-field approximation predicts no epidemic at all.

Figure 5.4: Comparison of 100 simulations of epidemics on a configuration model network

of size N = 10000 (gray lines) and various mean field models, for two levels of clustering

(left) 10% (right) 20%. Clustering is achieved by means of the BigV algorithm, as outlined

in [House and Keeling, 2010]. Each panel shows results for the first degree distribution

of Table 5.1 - low heterogeneity. Epidemic parameters are τ = 0.016 and γ = 0.07 in all

figures, and the initial number of infected nodes is 10.
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accumulated during the first wave as determined by our equations.

It is well known that in the simple compartmental model herd immunity at time

t = 0 is achieved as long as at least 1−1/R0 of the susceptible individuals are removed

or immunised. In line with [Britton et al., 2020], our general setup is that an initial

epidemic spreading freely for a short time is intervened upon by implementing a

lockdown period of fixed duration. Afterwards, all parameters immediately return

to their pre-lockdown values. In the most basic case this is done by keeping the

network or the mixing matrix the same and multiplying the transmission rate by a

constant 0 < α < 1. Crucially, however, we also explore the implications of how

the lockdown is modelled, that is, we investigate the difference between reducing

the transmission rate whilst keeping the network the same and changing the contact

network, the latter being more in tune with what happens in reality. In the more

realistic age-structured model, we compare a reduction of all entries in the mixing

matrix with a number of scenarios involving school closure and work distancing.

For the edge-based compartmental model we focus on final epidemic size but still

under the assumption of a lockdown period. This is because we want to compare

how the two different strategies affect the eventual outcome of the epidemic, rather

than how the optimal α varies between the two strategies, a comparison that would

be difficult to interpret.

There is an extremely strong relation between the speed or rate of spread of the

uncontrolled epidemic and the timing and length of the lockdown. In fact this can

be visualised in terms of the ‘flattening of the curve’ argument. A reduction of the

transmission rate during lockdown leads to a flattening of the epidemic curve with a

reduced peak and an extended duration which ideally should fit within the control

period. This means that if the epidemic grows quickly and the lockdown period

is short two outcomes are possible. First, a fast growing epidemic with a short

lockdown period needs to be met with a significant reduction in the transmission

rate, i.e., small values of α. This will lead to a reduced epidemic which does not

have enough time to unfold and the lifting of lockdown is followed by a full blown

epidemic. Second, if the reduction is not strong enough (i.e., larger values of α),

then a significant epidemic will occur during the lockdown itself with no further

peak after lifting control [Di Lauro et al., 2021], see also figure 5.5.
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Figure 5.5: Optimal α (see legend) and DIHI (denoted as hd in figure legends and axis

labels) in delta-like (first row), normal-like (second row) and scale-free-like (third row)

networks using the heterogeneous mean-field (first column) and heterogeneous pairwise

model with ϕ = 0 (second column). Continuous curves indicate [I](t), while dashed

curves indicate [R](t). The two vertical curves represent the beginning and the end of

the lockdown. Duration of lockdown is 130 days. Finally, the horizontal line and the

corresponding percentage reported are the cumulative prevalence at the end of lockdown

for the best strategy that does not allow for a second wave.
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5.3.3 Contact heterogeneity and clustering

The main focus here is to investigate the impact of degree-heterogeneity and clus-

tering on herd immunity induced by a first wave of the epidemic. In networks

with heterogeneous degrees, one can preferentially target high-risk individuals and

this will reduce the number needed to achieve DIHI. Such heterogeneity can be ex-

ploited in many ways: for example, targeted immunisations [Albert et al., 2000] and

acquaintance immunisation [Cohen et al., 2003]. Equally, the epidemic itself typic-

ally finds the high-risk groups first and thus ‘removes’ important individuals or risk

groups. In line with [Britton et al., 2020; Gomes et al., 2020], we exploit this fact

and consider different levels of degree-heterogeneity and different mean-field models

to explore what happens in the wake of the lockdown period when some level of

spreading is possible.

In each scenario considered, we seeded nodes with degree k = 10 with [Ik](0) = 5

infected individuals, the rest of the population being fully susceptible. We let the

epidemic run until the cumulative number of infected people reached 0.5% of the

population. Then, a one-shot intervention lasting exactly T = 130 days kicked in.

During lockdown, control measures made τ → τ̃0 = ατ (by acting on τ). Afterwards,

lockdown was lifted and τ immediately returned to its pre-lockdown value. For

the edge-based-compartmental and age-structured models, lockdown also involved

preferential interventions on community or household links and modulation of the

mixing matrix, respectively.

Figure 5.5 shows results from the degree-based mean field model (left column)

and heterogeneous pairwise model without clustering (right column) for networks

with increasing levels of degree heterogeneity (from top to bottom). In each case, we

find the optimal α (a simple down scaling of the transmission rate without change to

the network) and report the number of infections required to achieve DIHI (i.e., total

of infected and recovered nodes at the end of lockdown such that the the epidemic

after lockdown is subcritical). Several observations can be made. First, a higher

value of DIHI also means a higher value of the cumulative incidence, but the two

quantities are different. Secondly, for both models, aggressive control (low value of

α) leads to a second wave. Equally, if the control is too weak (high value of α) the

epidemic will still run its course during the first wave with some reduction in the
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final size. Hence, there is an optimal value of α for which the final epidemic size is

smallest and the epidemic post-lockdown is subcritical.

Both models clearly show that the value of DIHI decreases with variance of the

degree distribution. Despite displaying the same overall trends, the two models are

quantitatively different. In a like-for-like comparison, the degree-based heterogen-

eous mean-field model leads to larger overall epidemics. This is to be expected since

this model does not keep track of the links explicitly and thus over estimates what

would happen in a true simulation on an explicit network [Kiss et al., 2017]. The

pairwise model, however, accounts for links and correlations and leads to epidemics

that are typically less potent. Furthermore, the heterogeneous pairwise model leads

to smaller values of DIHI showing that the accuracy with which the network struc-

ture is accounted for matters. This demonstrates that model choice is important as

the precise levels of DIHI matter in a real-world scenario.

The effect of clustering is illustrated by figure 5.6. Typically, clustering lengthens

the duration of the epidemic and lowers the peak when compared to the unclustered

case (see also [Volz et al., 2011]). The final epidemic size is also smaller. This means

that there is a small amount of leeway for implementing control and that the control

effort can be smaller compared to the unclustered case. It is worth noting that the

final epidemic size is also smallest at the optimal α value (see also [Britton et al.,

2020]).

Finally, opting for the more accurate heterogeneous pairwise model, the level of

DIHI is plotted for increasing values of variance and for different clustering levels,

see figure 5.6. It is clear that higher variance can drive DIHI levels to as low as 30%.

Clustering in the heterogeneous pairwise model leads to even smaller values of the

DIHI, although increasing variance in the degree negates the effect of clustering and

the DIHI levels are very similar to those observed with ϕ = 0.25 and ϕ = 0.5. This

highlights the non-trivial interactions between network properties where clustering

has biggest impact in sparse networks and where high levels of degree heterogeneity

can negate the effect of clustering.
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Figure 5.6: (left) Difference between control acting on un-clustered networks (continuous

lines) and clustered networks (dashed lines), with clustering coefficient ϕ = 0.5, corres-

ponding to the second point on the x-axis of the right panel. Vertical lines are at the

beginning (continuous) and end (dashed) of control. Blue curve is optimal control for

ϕ = 0, red for ϕ = 0.5. (right) Impact of variance in degree distribution on DIHI he, for

different pairwise models with different values of ϕ. Average degree is 〈k〉 = 6, τ = 0.04

and γ = 1/14. Control duration is 100 days from the moment I(t) +R(t) ≥ 0.025.

5.3.4 All versus community control only

Although the previous models do account for some important contact network fea-

tures, they are not ideal to capture structure such as households. Being able to cap-

ture households explicitly and having the flexibility to differentiate between house-

hold and community transmission is important because many of the interventions

available to us (e.g., closing schools and workplaces) affect community transmission

differently from household transmission. Thus, a distinctive feature of most lock-

down measures is a change in network structure, rather than a global reduction in

transmission rate.

Although our model is not an exact reflection of true population structure,

it allows us to investigate whether an intervention that disproportionately affects

between-household transmission can be appropriately captured by a model that

treats the intervention as reducing all transmission rates.

For a given start time and intervention strength, if the duration of the inter-

vention is long enough, the number of infections becomes very small and the even-
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Figure 5.7: Control scenarios based on the EBCM model with intervention scaling factor

of α = 0.6 starting at T = 60 (dashed vertical line), and lasting for different durations

(continuous vertical lines). (left) Intervention on the whole network, (right) intervention

on the community structure. Parameters of the epidemic and community network are

〈k〉 = 4, σ2 = 7.5, βh = 0.045, βc = 0.015.
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Figure 5.8: Final epidemic sizes based on the EBCM as a function of the beginning of

lockdown and its duration, with two different strategies: intervention on the whole network

(left) or intervention on the community links only (right). Each value is the minimum

final epidemic size that can be obtained for varying α. Parameters of the epidemic and

community network are: 〈k〉 = 4, σ2 = 7.5, βh = 0.045, βc = 0.015
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tual rebound has the same shape, regardless of duration. The optimal intervention

strength leaves the population sitting at the DIHI threshold when the epidemic dies

out. When the intervention is lifted, no rebound occurs. Thus the outcomes of

the optimal intervention are the same if the duration is long enough. In figure 5.7

and at the top right of figure 5.8 we notice that if the intervention is long enough,

the optimal final size becomes independent of duration. To see this for earlier start

times requires longer durations. Our argument to explain why this happens is as

follows: suppose that for a given α, we find the smallest time such that DIHI is

achieved. Prolonging the intervention for longer than said time will result in the

number of actively infectious people reducing even further by end of lockdown but

not change the downward trend of the epidemic, which will eventually die out.

Comparing the top right of both panels in Figure 5.8 show that the optimal

community intervention allows more infections than the optimal global intervention.

The intuition behind this is based on the observation that epidemics typically

exploit ‘heterogeneities’ in the population. For networks,, this means that high-

degree nodes typically become infected early on in the epidemic. This is the main

reason why a first epidemic wave in a network with very heterogeneous degree infects

the highly connected nodes. In a scale-free like network, the number of such nodes

is small (e.g., 20% of the nodes responsible for 80% of infection). If the epidemic

progresses with strong interventions in place, it cannot spread far beyond these high-

degree nodes. Once it dies out, the residual network is highly fragmented and made

up of much lower degree nodes.

In this household model, community links drive degree heterogeneity. House-

hold links alone lead to a regular network. Hence, when we effectively cut most

community links, heterogeneity in degree is significantly reduced for the duration of

control. This means that many high-degree nodes that would normally be infected

during the first wave will now not get infected. The infection is unable to target the

highest-degree nodes. When control is lifted, the high-degree nodes reactivate their

links, allowing the epidemic to rebound.

However, when controlling both link-types equally, degree heterogeneity is pre-

served and the infection again preferentially targets the high-degree nodes. A weaker

control targeted to all edges rather than just community edges may allow an initial
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wave of similar size, but it will preferentially target the high-degree nodes. So this

type of control acts as a very effective way of finding highly-connected nodes. This

then means that at the end of lockdown, it is more likely that the most ‘dangerous’

nodes be removed, and with that, a smaller chance of a second wave.

Consider two epidemics with the same intervention start time, providing the op-

timal strategy for either the global or the community case. We would expect that the

average community degree of those who have been infected in the global case would

be higher than in the community case. Thus, on average, the individuals immunised

by infection in the community case will be less important to disease transmission

and thus more of them must be immunised to achieve the DIHI threshold. This

is important because households may be able to sustain the epidemic for extended

amounts of time and therefore change the outcome in DIHI levels.

5.4 Scaling versus modulating the mixing matrix

model

In this section, we further explore the notion that modulating the effective R0 of

the epidemic through modifying the structure of the mixing matrix (in this case,

the age-structure mixing matrix) can affect the system differently from achieving

it through simply scaling each element of the mixing matrix. To do so, we began

by considering three scenarios described by [Prem et al., 2017], namely, school

closure, school closure and social distancing, and work distancing. In a baseline,

no-intervention case, the matrix of daily contacts C was set to be the sum of 4

components: school contacts, work contacts, home contacts and other contacts. In

what follows, we use the corresponding matrices of age-banded daily contacts in the

UK produced by the POLYMOD study [Prem et al., 2017]. Briefly, school closure

is realised by zeroing the school component of the mixing matrix); school closure

and social distancing involved zeroing school contacts as well as reducing by half

the number contacts at other locations between school-going individuals (first four

age groups); work distancing is implemented by halving the contacts made at the

workplace. For each of these interventions, we compared the behaviour of the system

when re-scaling the matrix of total contacts so that itsR0 during the intervention was
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Figure 5.9: Comparison of the effect of three different control measures in the age-

structured compartmental model. The three measures, school closure, school closure and

social distancing, work distancing (coloured continuous lines, from left to right), act on

the structure of the matrix (see text). For reference, the dashed lines result from an

intervention reducing infectivity but yielding the same effective R0 during the intervention.

Epidemic values are (γE , γI) = (1/7, 1/14). Vertical dashed lines indicate beginning and

end of control.

the same as the R0 of the modified mixing matrix during the intervention (namely,

2.114, 2.106 and 2.179 for scenarios 1 to 3 respectively).

Age-banded population counts (18 5-year bands) were taken from the Office for

National Statistics (licensed under the Open Government Licence), pooling all age

groups above 85. Mortality rates were taken from the modelling of [Verity et al.,

2020], assuming that the rates in ten year age bands are the same as across two five

year age bands. These rates were calculated based on cases in China in the initial

outbreak and from the closed population on the Diamond Princess cruise ship. It

is possible that these rates may prove to be overestimates compared to populations

that do not experience overwhelming levels of hospitalisation, but they are not likely

to be impacted by the interventions considered here.

To determine the evolution of the epidemic in this baseline case, we first scaled

the contact matrices so that the system’s R0 was 2.5 (to maintain consistency with

previous sections). In all cases, we used the same start date (T = 260) and duration

(150 days) for the intervention. These parameters were arbitrarily chosen among

the sets of possible parameters resulting in a sub-critical epidemic post-intervention.



146 Chapter 5: Impact of network properties on control and herd immunity

Figure 5.10: The four components of the POLYMOD age mixing matrix (after subtrac-

tion of the diagonal).

Figure 5.9 confirms that all interventions (coloured lines) result in a reduction in

the number of infected individuals. However, whether this intervention is realised

through modulating the contact matrix (solid lines) or through uniform scaling

(dashed lines) results in substantially different outcomes (≈ 16% differences for

scenarios 1 and 2, ≈ 3% in scenario 3), even though the scaling factors used in the

control interventions (dashed lines) are very similar from one scenario to the other.

This is clear evidence that the structure of the contacts modulates the effects of the

intervention.

Figure 5.10 provides a visual intuition as to why the work distancing scenario is

closest to simply scaling the matrix. As pointed out by [Mossong et al., 2008], assort-

ative mixing dominates in 3 of the components (home, school, other). Thus, school

closure primarily affects diagonal elements of the mixing matrix (and primarily for

the first 4 age groups). Intervention 2 does involve halving (some of) the contacts

in the other component and some of those terms diffuse away from the diagonal,

however, these contribute little to the overall mixing matrix. In contrast, the work

component is the only component to feature what Mossong et al. [Mossong et al.,

2008] describe as a wide contact plateau. Because this plateau accounts for more

than half of the total number of contacts within the corresponding 8 age-bands,

intervention 3 (social distancing) is most akin to scaling the entire matrix.

To further clarify how the structure of the contacts modulates the effects of

the intervention, we carried out simulations in which two confounding factors were

removed, namely heterogeneity in the number of individuals in the different age-
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Figure 5.11: Impact of zeroing school (left), work (middle) and other (right) components

when each age group has the same number of individuals and each component contributes

the same number of contacts. For each, left panel shows the total prevalence of infected

individuals in the population using the intervention (red) and the control (scaling of the

entire contact matrix to achieve the same effective R0, in black). The right panel shows

the prevalence of infected in three pooled age groups chosen to reflect the target of each

intervention.

bands and in the frequency of contacts by age. Whereas the former plays a key

role in the calculation of the effective R0 (see Section 5.2.6), the latter weights the

impact of the intervention. For example, zeroing school contacts which only account

for 12% of the total number of contacts will be negligible compared to zeroing other

contacts that account for 40%. Therefore, in what follows, all age groups were set

to have the same number of individuals (1/18-th of the total population) and all

contact components were scaled to have the same sum of elements (arbitrarily, the

sum of the original number of other contacts). We then systematically analysed

the effect of three different interventions in which one component (school, work,

or other was systematically scaled down by a factor taking values between 1.0 (no

intervention) and 0.0 in steps of 0.1.

Figure 5.11 shows the effect of the most severe form of intervention (the zeroing

of the relevant component) and clearly demonstrates that, once confounding factors

are removed, changes in the mixing matrix lead to different outcomes in terms of

whether such an intervention is more or less effective than simply scaling the matrix

to achieve the same effective R0. Here, zeroing the school component is less effective
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than scaling the overall matrix (despite an overall scaling factor of 0.61). Instead,

zeroing either the work or other component is more effective than scaling the overall

matrix (despite larger scaling factors, 0.87 and 0.88, respectively). It should be

noted that whilst zeroing the work and other components leads to similar results

in terms of total prevalence, there are differences in prevalence by age which could

have significant implications when age-structured mortality rates are considered.

5.5 Discussion

In this paper we explored a range of mean-field models previously used to approx-

imate exact epidemics on networks and providing some analytical traction regarding

how network properties impact epidemic invasion, final size and the efficacy of con-

trol measures. In order of increasing complexity, these models are: the degree-based

heterogeneous mean-field, heterogeneous pairwise (without and with clustering), and

an edge-based compartmental model which explicitly includes household structure

and can distinguish between household and community transmission. While these

cannot be used as they are to inform policy they still provide important insights into

model selection and key features that need to be captured, or can be exploited, to

identify the best possible control measures. In addition, we also tested our findings

against a more realistic age-structured model with real mixing matrices.

We have shown that increased degree heterogeneity (i.e., higher variance in the

degree distribution) leads to DIHI levels that are much smaller than the basic com-

partmental model, 1 − 1/R0. This is in line with the findings of [Britton et al.,

2020; Gomes et al., 2020]. Moreover, we quantified the extent to which the DIHI

induced by the first wave depends on the variance in the degree distribution. We

have shown that herd immunity in clustered networks is even lower because epidem-

ics on clustered networks last longer and have lower peaks, allowing more flexibility

regarding the start and intensity of control.

Perhaps, the most important question that we addressed regards how lockdown/-

control is implemented in different models. Many models assume that during lock-

down the contact network or mixing matrix is not changing but rather the trans-

mission rate is scaled [Britton et al., 2020; Di Lauro et al., 2021; Gomes et al., 2020;
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Morris et al., 2021]. We do not believe that this is appropriate because during lock-

down the underlying contact structure changes. Our results with the edge-based

compartmental and age-structured models have shown that these two approaches

differ in outcome. Perhaps, the assumption of a non-changing contact structure dur-

ing lockdown is more likely to be made in mean-field models. In models at higher

than mean-field resolution (e.g. agent-based) it is much easier to explicitly modify

the contact network.

We have therefore revealed a possible risk with using a model that ignores house-

hold structure to infer the level of infection required to reach the DIHI threshold.

The favourable change in the DIHI threshold compared to what we predict from

a homogeneous model is a consequence of heterogeneities. Where the intervention

makes the population more homogeneous, the disease will no longer act like an ef-

fective intervention. In an extreme case, it will require more infections to achieve

herd immunity than a random vaccination would need [Ferrari et al., 2006]. As

the infection spreads along edges, we would see that at the end of the first wave,

susceptible people are disproportionately in contact with other susceptible people

and recovered people are disproportionately in contact with recovered people. So

the residual network of susceptible nodes has more contacts than would occur if the

same fraction were vaccinated randomly.

Another important observation resulting from our work is that it is extremely

difficult to make general statements by extrapolating from findings based on simple

models. Most models in fact ignore meso-scale structures (e.g., degree heterogeneity

does well for local or micro structure whilst mixing matrices do well for macro-scale

mixing) and their absence may exacerbate the impact of an intervention (either pos-

itively or negatively) leading to erroneous conclusions. In the present paper we saw

that when intervention could not act on the global network of contacts, DIHI levels

varied substantially, although heterogeneities still played a major role in reducing

them.

Finally, it is worth noting that in all models we considered, when lockdown

ended (and if DIHI was not reached), epidemics went on to grow exponentially.

However, in many real-life scenarios, a prolonged phase of sub-critical spreading
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(i.e. slow decay) has been observed before the exponential growing phase returned.

There is a number of reasons why this behaviour is not observed in our models: (i)

Deterministic models fail to capture fluctuations that dominate when the number

of infected people is small, which might have a major impact on resurgence; (ii)

during lockdown, the contact structure changes drastically and abruptly, but when

lockdown is lifted, there is a delay/inertia in going back to pre-lockdown status, such

lag having important implications on resurgence; (iii) after lockdown, some social

distancing measures remain along with social awareness reducing exposure to the

disease. Understanding and modelling these effects is an interesting challenge to

address in future work.

In complementing our study of network-based mean-field models, we used a

model with no explicit contact structure, where instead contact structure was alluded

to via age-related mixing patterns. In the present situation with Covid-19, such

models are appealing because they explain some of the structure of the population

and provide a rationale for establishing a lockdown. Moreover, with higher mortality

rates among older people, age-structured models are of interest in their own right.

There is some tension between which model is most apt for describing population

experience of the infection, the control measures effected and the outcomes for the

population. The ideal solution may lie between some of the options presented here.

However, age-structured models cannot say much that is explicit about the struc-

ture of contacts within the population. While we have discussed ways in which lock-

downs can be implemented in such models, the formulation is arguably less intuitive

than in the network case. How to bridge the gap is an interesting question. An

age-related network might be one labelled with age classes, with analysis focused

on understanding the positions in the network occupied by individuals of a given

age. This could be coupled to household models of network formation, one with

variable sizes and smaller households more likely to feature older individuals. Once

the general structure of such networks is known, adapting the models here would be

simple enough. These considerations are beyond the presentation here but would

be a fruitful avenue for future discussions, particular if additional lockdowns are

required.
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5.6 Appendix

5.6.1 Pairwise equations

We can account for clustering in the pairwise model, by introducing a clustering

factor ϕ. The equations are similar to (5.4), but when closures are implemented we

have to consider both open and closed triples.

In the case of open triples, the equations for the closures are the same as in (5.4),

scaled by (1− ϕ) to account for clustering, i.e.

[A`SkI]o = (1− ϕ)k−1
k

[A`Sk][SkI]
[Sk]

,

[ISkA`]
o = (1− ϕ)k−1

k
[ISk][SkA`]

[Sk]
,

(5.10)

where the superscript o indicates open triples. For closed triples, we first study

[A`SkIm]c. This quantity represents triples in which the first node is in state A, the

middle node is in state S with degree k, and the third node is in state I with degree

m. The triple is closed, therefore the third node is connected to the first one. This

introduces correlations when we write the triple in terms of pairs for the closure,

which we indicate with CS`IM .

[AkS`Im] = ϕ[AkS`](`− 1)
[S`Im]

`[S`]
CAkIm . (5.11)

The correlation can be written in terms of the ratio between realized pairs [AkIm]

and possible pairs [AkIm] in a well-mixed population:

CAkIm =
[AkIm]

k[Ak]
m[Im]
〈k〉N

. (5.12)

Hence, the closure is

[AkS`Im] = ϕ
(`− 1)

`

〈k〉N
km

[AkS`][S`Im][AkIm]

[Ak][S`][Im]
. (5.13)

In a similar manner, we can write the expression for [ImSkA`]. The resulting system
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is therefore

˙[Sk] = −τ [SkI]

˙[Ik] = τ [SkI]− γ[Ik]

˙[Rk] = γ[Ik]

˙[SkI`] = −γ[SkI`] + τ

[∑
m

([SkS`Im]− [ImSkI`])− [SkI`]

]

˙[SkS`] = −τ
[∑

m

(
[SkS`Im]− [ImSkI`]

)]
,

(5.14)

where

[AkS`Im] = ϕ[AkS`]
`− 1

`

[S`Im]2

〈k〉[S`]2 [Im]
N

+ (1− ϕ)
`− 1

`

[AkS`][S`Im]

[S`]
.

5.6.2 Edge-based compartmental model

We consider a network with 4N nodes partitioned into households of size 4. Apart

from the within household community, each node has a number of links to nodes

outside the household, according to the degree distribution Pn,p(k). The within

household per-contact-transmission is denoted by βh while the community trans-

mission by βc. The resulting system is given below,
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ϕ̇SSS(t) = −3A(t)ϕSSS(t), (5.15)

ϕ̇SSI(t) = 3A(t)ϕSSS(t)− γϕSSI(t)− 2(A(t) + βh)ϕSSI(t)− βhϕSSI(t), (5.16)

ϕ̇SSR(t) = γϕSSI(t)− 2A(t)ϕSSR(t), (5.17)

ϕ̇SIR(t) = 2A(t)ϕSSR(t) + 2γϕSII(t)− γϕSIR(t)− βhϕSIR(t), (5.18)

ϕ̇SRR(t) = γϕSIR(t)− A(t)ϕSRR(t), (5.19)

ϕ̇IRR(t) = A(t)ϕSRR(t) + 2γϕIIR(t)− γϕIRR(t)− βhϕIRR(t), (5.20)

ϕ̇RRR(t) = γϕIRR(t), (5.21)

ϕ̇IIR(t) = −2γϕIIR(t)− 2βhϕIIR(t) + 3γϕIII(t), (5.22)

ϕ̇III(t) = (A(t) + 2βh)ϕSII(t)− 3γϕIII(t)− 3βhϕIII(t), (5.23)

ϕ̇SII(t) = −(A(t) + 2βh)ϕSII(t)− 2βhϕSII(t) + 2(A(t) + βh)ϕSSI(t)− 2γϕSII(t),(5.24)

Θ̇(t) = −(βhϕSSI(t) + 2βhϕSII(t) + 3βhϕIII(t) + βhϕSIR(t) + 2βhϕIIR(t) +

+βhϕIRR(t)), (5.25)

θ̇(t) = −βcϕI(t), (5.26)

ϕI(t) = θ(t)− γ(1− θ(t))/βc − (1− ε)ϕ
′(θ(t))

〈k〉 Θ(t), (5.27)

A(t) =
ψ′(θ(t))

ψ(θ(t))
βcϕI(t), (5.28)

S(t) = (1− ε)Θ(t)ψ(θ(t)), (5.29)

Ṙ(t) = γI(t), (5.30)

I(t) = 1− S −R, (5.31)
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with the following initial conditions:

ϕSSS(0) = (1− ε)3, (5.32)

ϕSSI(0) = 3ε(1− ε)2, (5.33)

ϕSII(0) = 3ε2(1− ε), (5.34)

ϕIII(0) = ε3, (5.35)

θ(0) = 1, (5.36)

Θ(0) = 1, (5.37)

S(0) = 1− ε, (5.38)

I(0) = ε, (5.39)

(5.40)

with all other variables set to zero at time t = 0.
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Chapter 6

Covid-19 and Flattening the

Curve: a Feedback Control

Perspective

6.1 Introduction

Defining and implementing social distancing protocols (SD) is a significant chal-

lenge with economical, political, and scientific considerations. The definition of a

clear or optimal goal remains unclear. As an example, consider the direct reduction

of deaths by Covid-19. Imposing this goal requires the harshest measures possible,

for an indefinite period of time. According to the available models [Kiss et al., 2017]

a monotonic relationship exists between this cost function and the SD level. Yet,

this strategy has many potential drawbacks. First, extreme levels of lockdown are

unsustainable in the long run, due to the vast range of pernicious secondary effects

(e.g. poverty [Goolsbee and Syverson, 2020], mental illnesses [Bhuiyan et al., 2020])

which in turn are themselves associated with a rise in mortality. Additionally, re-

laxing or lifting control after a harsh lockdown may lead to a second wave, possibly

more critical than the first one [Xu and Li, 2020]. Another strategy would be to let

the epidemic spread freely (red curve in Fig. 6.1) to get herd immunity as fast as

possible. This is also hardly acceptable, as it would lead to higher mortality [Arm-

strong et al., 2020], and to a prolonged stress of the health care system. The

“flattening the curve” strategy provides a third option, which promises to combine

156
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Figure 6.1: The aim of this work is to devise a control strategy that achieves the curve

flattening goal, which should result in a curve similar to the green one. The two alternative

extreme cases are shown as comparison: the result of no SD is shown in red, and of full

lockdown in yellow.

the benefits of the two extremes [Thunstrom et al., 2020]. The key idea (of which

Fig. 6.1 provides a visual representation) is to allow some level of disease spreading,

while ensuring that people seeking medical assistance can access the health care

system.

A vast pre-Covid-19 pandemic literature [Nowzari et al., 2016] on designing con-

trollers for dealing with epidemics already exists. However, none of these works

tackled the curve flattening goal, since no pandemics before threatened to overbur-

den the healthcare system on such a large scale. In the context of Covid-19, open

loop optimal control is proposed in [Di Lauro et al., 2021] for selecting the optimal

timing of a time-limited lockdown, and in [Djidjou-Demasse et al., 2020] the au-

thors find a trade-off between number of deaths and damage to the economy. Yet,

feed-forward strategies are quite prone to uncertainties naturally associated with

epidemics [Di Lauro et al., 2020b]. More robust strategies have been proposed,

relying on feedback control. A linear controller is proposed in [Giordano et al.,

2020]. A fast switching strategy with duty cycle selected through a slow feedback

is discussed in [Bin et al., 2020]. In [Köhler et al., 2020], the loop is closed by peri-

odically re-planning the optimal action, in a model-predictive-control fashion. An

explicit formulation of curve flattening is instead provided in [Morris et al., 2021],

where an open loop strategy is devised so to optimally reduce the infectious peak.

An interesting alternative is discussed in [Charpentier et al., 2020], where a trade-off
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between the health care and the socio-economic cost of the pandemic is proposed,

and the limited capacity level of intensive care units is imposed as a constraint.

Both these solutions are open loop.

This letter investigates the use of feedback control theory as a tool for engineering

an effective curve flattening strategy. We wish to design a simple rule that can be

implemented on a local level, without the need of accessing specialized facilities to

run complex optimization routines. We perform extensive simulations of epidemics

on networks [Pastor-Satorras et al., 2015; Kiss et al., 2017], with conditions inspired

by real Covid-19 scenarios. This is as far as we know the first time that such analysis

is carried out for Covid-19 control related research. We remark that the acceptable

level of “curve flattening” is to be decided by policy makers, based upon cost-benefit

analysis. However, once an optimal curve has been identified, this letter offers a

novel, theoretically-backed strategy that guarantees that the goal of controlling the

epidemic curve is achieved.

6.2 Background: Model of the Epidemics with

Dynamic Interventions

Consider a fixed population of N individuals, and a disease spreading among them,

through direct contacts. Each individual can be in either of three states: (i) suscept-

ible, meaning that they can be infected by the pathogen; (ii) infected, meaning that

they contracted the pathogen and they can now infect other susceptible people; (iii)

recovered -and therefore immune, or removed. We denote with S(t), I(t), R(t) the

number of people at time t who are susceptible, infected or recovered, respectively.

We have that S(t) + I(t) + R(t) = N . We can therefore neglect the study of R, as

its value can always be recovered from S, I and N . If the population is well mixed,

the evolution of the disease can be described by the SIR model

ṡ(t) = −β(t)ı(t)s(t), ı̇(t) = +β(t)ı(t)s(t)− γı(t), (6.1)

where s(t) and ı(t) are the system state, indicating respectively the number of

susceptible S(t) and infectious I(t), divided by the total population N . Note that,

despite its simplicity, the SIR model has proven able to match real data when
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applied to Covid-19 [Morris et al., 2021; Thunstrom et al., 2020], and it is therefore

widely used in the literature. Without loss of generality, we consider that, at t =

0, s + ı = 1. The constant γ ≥ 0 defines the transition rate from the pool of

infected, to the compartment of recovered/removed. β is the rate at which an

infected individual makes disease-transmitting contacts with other people. When SD

policies are imposed, the value of β varies, 0 < βm ≤ β ≤ βM, with βm corresponding

to total lockdown. Therefore β can vary in time, and it is the control input of (6.1).

6.3 Control Strategy

We propose here a control strategy acting on system (6.1). As shown by Fig. 6.2,

this architecture is made of two components: (i) an optimal open loop action, and

(ii) a feedback controller implementing trajectory tracking.
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Figure 6.2: Block diagram of the strategy proposed in this paper. The input and output

maps reduce the high-dimensional dynamics of the outbreak to a simpler evolution of few

salient characteristics, namely the prevalence of infected and susceptible ı, s, which are

sensible to changes in the level of SD, modelled here as different values of the transmis-

sion rate of infection β. A nonlinear feedback controller acts within this representation

implementing trajectory tracking of an optimal control policy.
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6.3.1 Optimal curve flattening under nominal conditions

Our aim here is to introduce a nominal strategy (“Optimal Solution” in Fig. 6.2)

for optimally flattening the epidemic curve ı(t), so to keep the number of infected

people ı within the maximum capacity of the health care system, ıth > 0. This

can, for instance, be evaluated by considering the percentage of people that will

need Intensive Care Units (ICUs), which are probably the most critically limited

resources. As discussed in the introduction, enforcing this constraint is of paramount

importance, since exceeding it may provoke a critical failure of the healthcare system,

leading to a substantial increase in the number of deaths not only from the disease,

but also from uncorrelated health issues. On the other hand, we want to keep

the level of restriction on the population as low as possible, to minimise secondary

negative effects. Note that the curve flatting goal is the result of a careful balance

between competing interests, and as such we decide to explicitly impose it as a goal.

We consider the case of a constant β. This simplification is instrumental in making

the optimal control problem more manageable.

We summarize the above considerations through the optimization problem

max
β∈R

β, s.t. 0 < ı(t) ≤ ıth ∀t and (6.1). (6.2)

We now propose a Lemma introducing a general solution to this optimal control

problem.

Lemma 1 The following is the closed form solution of (6.2)

β = − γ

1− ıth
W−1

(
−1

e

1− ıth
1− ı(0)

)
, (6.3)

where W−1 is the Lambert W function [Corless et al., 1996], branch −1.

Proof 1 Since the cost function is linear in the optimization parameter, the optimal

value is to be found on the boundary of the feasible set, i.e. β has to be such that

maxt ı(t) = ıth.

The maximum value of ı is given by the non-trivial solution of ı̇(t) = 0. Com-

bining this condition with the second equation in (6.1) yields s+ = γ/β. Further,

we can combine the two equations in (6.1) into dı/ds = γ/(βs) − 1. This nonlin-

ear ordinary differential equation can be solved together with the initial condition
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Figure 6.3: Two executions of the proposed control architecture when applied to system

(6.1).(left) infected nodes, (right) control parameter β. Two different choices of control

gains ψi and ψs are considered. The other parameters are γ = 0.1, βM = 0.22, ı̄(0) = 0.1,

ıth = 0.12, ı(0) = 0.14. Susceptibles are not shown for the sake of space.

s(0) = 1− ı(0), ı(0), to get

ı(s) =
γ

β
ln

(
s

1− ı(0)

)
− s+ 1. (6.4)

By inverting ı(s+) for β, we get the desired optimal value such that maxt ı(t) = ıth.

The following is a solution for all integer values of j,

β = − γ

1− ıth
Wj

(
−1

e

1− ıth
1− ı(0)

)
, (6.5)

where Wj(ā) is the j−th branch of the Lambert W function [Corless et al., 1996].

Each of the branches is built as the solution of ā = Wje
Wj . Among all of them,

only W−1,W0 have domain within the real line. Moreover, it is always the case that

W0 > W−1, which in turn assures that the larger value of β is always reached for

j = −1, concluding the proof.

It is worth noting that the argument of W−1 is always between −1/e and 0 since

ı(0) ≤ ıth. This is exactly the range of arguments for which the W−1 is well defined

[Corless et al., 1996].

6.3.2 Trajectory tracking controller

The following Lemma introduces the tracking controller (“Trajectory Tracking” in

Fig. 6.2) implementing the reactive change of the SD level β. Note that in principle
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this controller is agnostic to the choice of the reference to be tracked, and it is

introduced as such. However, in our architecture we consider the output of Lemma

1 as the reference β̄, ı̄, s̄.

Lemma 2 Consider ψi, ψs ∈ R, ψs > 0, ψi ≥ 0. Consider also s̄, ı̄, β̄ ∈ R to be a

solution of (6.1) with s̄(0), ı̄(0) > 0. Then, the feedback loop composed by the action

β(s, ı, t) = +ψi(̄ı− ı)− ψs(s̄− s) +
s̄ ı̄

s ı
β̄, (6.6)

and the SIR model (6.1), is such that (s, ı) converges to (s̄, ı̄) if s(0), ı(0) > 0.

Proof 2 Consider now the linear change of coordinates x = −(ı+ s)/γ. Adding up

the two equations in (6.1), yields ı̇+ ṡ = −γı. We can therefore establish the change

of coordinates

ı = ẋ, s = −γx− ẋ. (6.7)

Combining the latter, with the second equations in (6.1) allows writing the following

equivalent formulation of the SIR dynamics

ẍ = −(γx+ ẋ)ẋβ − γẋ. (6.8)

We take the following control action

β(x, ẋ, t) = − γ ˙̄x+ ¨̄x

(γx+ ẋ)ẋ
+ αp(x̄− x) + αd( ˙̄x− ẋ), (6.9)

with αp > γ, αd > 0 being the gains of a PD-like action. Note that the de-

nominator of the first element of the right hand side of (6.9) is equal to sı. In-

deed, the hypothesis s(0), ı(0) > 0 implies that s(t), ı(t) > 0, ∀t, since (6.1) is

a strictly positive dynamical system [Kiss et al., 2017]. This produces the closed

loop dynamics ë = −(γ + αd(−γx − ẋ)ẋ)ė − αp(−γx − ẋ)ẋe, where e = x̄ − x.

As mentioned before s, ı > 0, therefore γ + αd(−γx − ẋ)ẋ = γ + αdsı > 0 and

αp(−γx − ẋ)ẋ = αpsı > 0, for all t < ∞. Thus, we propose the following Energy-

-like Lyapunov candidate V (e, ė, t) = ė2/2 +
∫ e
0

(αp(−γ(xd − ε) − ẋ)ẋ)εdε, which is

positive definite. We perform time differentiation, obtaining through standard ma-

nipulations V̇ = −(γ + αdsı)ė
2 ≤ 0, since s, ı > 0. This proves that (e, ė) are

bounded. Yet, it is not enough to prove stability, since the error dynamics is time-

-variant. Indeed, s, ı are a combination of x, ẋ, x̄, ˙̄x, the latter two being explicit

functions of time. To prove asymptotic convergence we invoke Barbalat’s Lemma,
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which requires to perform a further differentiation V̈ = −(γ+αdsı)ėë−αd(ṡı+sı̇)ė2

which is bounded since it is sum and products of bounded functions. Therefore, (e, ė)

converges asymptotically to (0, 0), and as a consequence (s, ı) converges to (s̄, ı̄).

To conclude the proof, we need to show now that (6.6) and (6.9) are equivalent.

First, we use (6.8) to obtain ¨̄x = (γx̄ + ˙̄x) ˙̄x − γ ˙̄x. We then take ψs = αp/γ and

ψi = αd − αp/γ. Finally, we combine these three equations with (6.7) and (6.9).

This leads to (6.6), therefore concluding the proof.

We want our control action to remain limited when acting on a neighborhood of

sı = 0. Also, it is not meaningful to act on the system by changing β to values

smaller than the one associated with total lockdown βm > 0, or greater than the one

representing no social distancing βM > βm. We therefore introduce the following

modification on the ideal controller

β(s, ı, t) =

[
ψi(̄ı− ı)− ψs(s̄− s) +

s̄ı̄

[sı]∞ε
β̄

]βM
βm

, (6.10)

where ε > 0 is a small constant, and [a]ul is is equal to l or u if a < l or a > u

respectively, and equal to a otherwise. Fig. 6.3 reports two examples of application

of the algorithm to the SIR model (6.1).

6.4 Network Control

6.4.1 Network Model

We implement two important features in a refined model: (i) people interact through

heterogeneous contact structures, i.e. the population is not well-mixed, and (ii)

real epidemics have an intrinsic degree of stochasticity, so they cannot be exactly

described by (6.1). We therefore consider stochastic epidemics on networks [Pastor-

Satorras et al., 2015; Kiss et al., 2017]. A network is a pair (V, E), where V is a

set of N nodes (or vertices), and E is a set of edges (or links) connecting nodes,

i.e. tuples {u, v}, where u, v ∈ V . A population contact structure is modelled by a

network in which nodes represent individuals, and links are associated with routes

of disease transmission between individuals. We consider undirected networks, such

that {u, v} ∈ E ⇐⇒ {v, u} ∈ E . Figs. 6.2, 6.4, 6.5, show pictorial representations

of networks. Here, we focus on a particular well-known class of random networks,
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Figure 6.4: Pictorial representation of SEIRD dynamics on a network. The process is

a continuous-time Markov chain. Each infected (and infectious) node spreads the disease

to its susceptible neighbors at rate βn until no longer infectious. A node that has been

successfully infected, becomes first exposed, then infectious itself. Its ultimate destiny is

either dying (with probability pD), or fully recovering (with probability 1− pD). The rate

of each event is given on the continuous arrows.
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i.e. Erdős-Rényi [Bollobás, 2001], generated as follows: start with N isolated nodes,

consider each unique pair of two distinct nodes and connect them with probability

0 ≤ p ≤ 1. Hence, the probability of a node having k neighbors follows a binomial

distribution B(N − 1, p), 〈k〉 = p(N − 1) being the average degree. Such networks

may be considered a very first order approximation of realistic contact structures,

as they display sufficient heterogeneity and are easy to implement [Kiss et al., 2017].

6.4.2 Epidemic model on Network

We consider a SEIRD model for disease spreading, in which nodes are divided into

comparments representing their status with respect to the disease: S (susceptible),

E (exposed), I (infected/infectious), R (recovered), or D (deceased). Fig. 6.4 il-

lustrates the possible transitions of a susceptible node that is in contact with two

infectious neighbors. Compared to a SIR model (see Sec. 6.2), we add an exposed

class to account for individuals who have been infected but are not yet infectious

(biologically known as incubation phase). We also allow for infected individuals

to either survive or die. Outbreaks are modeled as Markovian processes on the

generated network, in which an infected node spreads the disease, via links, to its

susceptible neighbors at a constant rate βn, turning them into exposed. At a con-

stant rate γE, an exposed node becomes infected, and stops infecting at a constant

rate γI , after which two outcomes are possible: either fully recovery (transition into

R), with probability 1−pD, or death with probability pD (transition into D). Nodes

in compartments R and D play no further role in the dynamics. Further, pD depends

on the prevalence of the disease, to model increased mortality in case of saturation

of the health care system. Control interventions in this model are implemented as

changes in the value of βn. At time t = 0, I(0) = Nı(0)� N randomly chosen nodes

are infected. The remaining ones are initialized as susceptible. We use a Gillespie

algorithm [Gillespie, 1977] adapted to networks [Kiss et al., 2017] to simulate this

process. In Fig 6.5 we show a realization of an outbreak on a network of modest

size, to highlight how the topology impacts the dynamics.

6.4.3 Input and Output Maps

To connect the controller to the network model, we introduce two maps, as shown
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in Fig. 6.2. Such mappings are general, and they could be used in conjunction

with different control techniques relying on similar input-output description of the

pandemic. The output map extracts s and ı from the full state of the network by

counting as s the fraction of nodes either S or E, and as ı the fraction of I. The

input map provides expressions for the control input on the network level βn given

the output of the controller β(s, ı, t). With the aim of evaluating the input map,

we turn to the adaptation of β to networks. From (6.1) we get

Nı̇ = βNıs− γNı⇒ İ = βI
S

N
− γI. (6.11)

The term βIS/N represents the total infectious pressure in the ODE model. This

quantity drives the whole infectious process, and it is crucial that the map preserves

it. On the network, the infectious pressure is given by the infectious pressure βn

times the number of links between infected and susceptible nodes, which is a random

variable that depends on which nodes are infected/recovered and on the topology

of the network. Therefore, implementing an exact mapping would require to im-

pose a different SD level on each individual, depending on the degree of its social

interactions. Although well defined in theory, this is clearly not implementable in

practice. To overcome this issue, we introduce the so-called mean-field approx-

imation [Pastor-Satorras et al., 2015; Kiss et al., 2017]. On average, an infected

node is connected to 〈k〉 neighbors, of which we assume that a proportion S/N is

susceptible - where 〈·〉 is the expected value operator. Hence, we set the number of

S − I links as 〈k〉IS/N . We derive βn as a simple linear function of β

βnI(t)〈k〉S(t)

N
' β

N
I(t)S(t)⇒ βn '

β

〈k〉 . (6.12)

This is a valid first-order approximation, that is known to give an upper estimate

of the true S − I link count (see [Kiss et al., 2017; Pastor-Satorras et al., 2015]),

which in our case can only translate in a more conservative control strategy. This

expression connects a SIR model (6.1) to a stochastic SIR on networks, rather than

a stochastic SEIRD, as we want. Hence, we need to add an additional layer that

conciliates γE and γI with γ in the SIR model. To do so, we first consider the time

to full recovery (or death) of an individual who has been infected in a SEIRD model.

This is a random variable exponentially distributed with rate γEγI/(γI + γE). We

set the controller γ to this value. To find the infection rate, we use the definition of
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R0 [Kiss et al., 2017] for both models, i.e. R0 = β/γ for the SIR, and R0 = β̃/γI

for SEIRD (we momentarily use β̃ to distinguish it from the β in the SIR), and we

impose that they are equal. This yields β̃ = β(γI + γE)/γE. Finally, combining this

expression with (6.12), gives βn as

βn =
β̃

〈k〉 =
β

γE

γI + γE
〈k〉 . (6.13)

Figure 6.5: Simulation of a SEIRD outbreak on a Erdős-Rényi network of size 200, with

average degree E [k] = 7. A single node at day 1 spreads infection to its neighbors (red

edges), which in turn become first exposed, then infected, and eventually recover or die.

The network is drawn in such a way that nodes with fewer links are on the periphery. The

effect of the topology on the disease is particularly evident on such nodes, as only a few

of them gets infected compared to central ones.

6.5 Simulations

On top of the complexity introduced by the network dynamics, we consider several

non-ideal behaviors to better approximate a real-world scenario. Note that none of
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Table 6.1: Parameters used for simulations in Sec. 6.5.

βmax 0.0227 βmin 0.0057

γE 0.25 delay (days) N ({3, 7, 20}, 1)

γI 0.1428 noise (signal) N (0, 0.1)

N 16000 Hospitalization rate 0.02

Tf (days) 240 ıth (%) 0.025

I0 800 pD if ı ≤ ıth 0.005

S0 15200 pD if ı ≤ ıth 0.02

〈k〉 19 policy update (days) {1, 7, 15}

these effects are considered in the controller design, and therefore are to be seen as

uncertainties.

• Unknown random delay affects measurements, which changes every time the

controller is executed. This models the difficulties in getting on-line estimates

of prevalence through daily swab tests.

• Policy update is allowed at a fixed rate, to mimic real life scenarios in which

policy makers are reluctant to apply different degrees of restrictions too fre-

quently.

• Quantization of the possible levels of the network control level βn, based on

Italian mobility data [Pepe et al., 2020]. Policy makers can realistically imple-

ment only limited control actions. We use 5 distinct, equally spaced, levels,

from βmin > 0 to βmax. We set βmin = 0.25βmax.

• We introduce measurement noise of the signal, proportional to its value, to

model uncertainty in the estimation of the prevalence when the epidemic is

out of control.

For the tuning of the model parameters we consider the case of Codogno, which

has been the first city in Lombardy with a diagnosed case of Covid-19. We have used

Google data for the number of people in Codogno and the hospital capacity. We

considered realistic parameters for incubation period [Ling et al., 2020], infectious

period [Ling et al., 2020], hospitalization rate [World Health Organisation, 2020],
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infection fatality rate [Meyerowitz-Katz and Merone, 2020a], and social network

connectivity [Melegaro et al., 2011]. All the parameters are reported in Table 6.1.

The initial condition is set to I0 = 800, to model a delayed recognition of the presence

of the disease, and simulations are run for Tf = 240 days.

Figs. 6.6 and 6.7 show the evolution of infected ı, deaths D/N , and prescribed

SD β(s, t, ı), for the case where policy can change once a week and delay between

testing and results is on average 4 days. We report the results when using the pro-

posed feedback action β(t, s, ı), and, as comparison, the evolution of the uncontrolled

epidemics (βn = βmax) and of a one on-off intervention lasting for 60 days, during

which βn = βmin. Susceptible percentages s are not shown for the sake of space.

We aggregate results from 100 simulations, each one run on a different network

realization.

We evaluate the performances of the controller in various settings, in which we

act on two main parameters, namely, the delay in knowledge of the status and

the frequency at which the control policy can be changed. The former one can

take values of {3, 7, 20} days, while the latter moves between {1, 7, 15} days. We

consider all the possible combinations of these parameters. We cannot report here

the complete results of our simulations, for the sake of space. We report instead some

relevant performance indexes in Fig. 6.8 - namely the reduction in social distancing

compared to 60 days full lockdown, and reduction in deaths with respect to not

applying any strategy. We observe that the controller performs well on average

even in the most extreme cases. Yet, we observe increased dispersion as we increase

delays and reaction times. The use of the controller consistently induces a reduction

of over 32% of deaths in the worst case, and, in the best tested case, of 63%.

6.6 Discussion

Our approach resulted in a strategy able to keep the curve below the health care

capacity when uncertainty is low, with increased variability when delays and other

inaccuracies in measuring become important. From this analysis, it appears clear

that is crucial to have a reliable estimate of the current prevalence of the disease.

This is of course the downside of closed loop strategies, i.e. that the controller
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becomes less reliable as the quality of measurements deteriorates. Instead, it is

worth noting that, given low delays in data, updating policies every 15 days has

a limited impact on the performance of the controller. Interestingly, increasing

delays (or control updates frequency), does not have a major impact on the average

performance of simulations, in terms of reduction of mortality. However, this result

might be misleading, because the variance between different realisations gets higher

as the delay increases, meaning that the controller becomes unreliable if applied to

an individual realisation. This suggests that the crucial quantity for control is on-line

prevalence estimation. Therefore, this analysis confirms that, when implementing

control policies based on daily testing data, policy makers should ideally have access

to the exact state of the system. Clearly, this is far from being a realistic assumption.

Still, our results demonstrate that periodic loop closure might be a viable solution

also in a more realistic scenario.

At the same time, we observe a relevant outcome in all our simulations, namely

that when control acts on an outbreak that has already reached a significant pro-

portion of the population, the advisable strategy is to go into full lockdown until

the epidemic curve is brought down to acceptable levels, and then to gradually relax

and adjust control measures, according to the estimated prevalence.

6.7 Conclusions and Future Work

This preliminary work showed that a simple feedback action can improve the robust-

ness and the effectiveness of an optimal policy for epidemic control, even in presence

of quite non ideal behaviors in the system and in measuraments. The effectiveness

of strategies based on control for dealing with epidemics is still an open topic, with

respected academics having opposite positions [Casella, 2021; Nowzari et al., 2016].

Although our results are far from being readily applicable, they provide a new piece

to this intricate puzzle. Future work will be devoted to use more reliable input maps

(and possibly theoretical models for the controller), improve control design with ro-

bust and adaptive techniques, include other sources of lags and uncertainties, use

more realistic network models - possibly dynamic networks, the ultimate goal being

engineering a sound model that could be useful when it comes to decision making
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for governments.
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Figure 6.6: Prevalence of infected (left) and dead (right) nodes for the considered sim-

ulation scenario. It is shown here the case in which the policy changes only once every

week, and the average delay in measurements is set to 3 days. All the other values are as

in Tab. 6.1.



Chapter 6: Covid-19 and Flattening the Curve 173

Figure 6.7: Level of SD β(t, s, ı) as a function of time. The average output of the

controller across 100 simulations, when policy changes every 7 days and delays in data are

3 days, is shown together with its lower and upper quartiles (Q1-Q3). We also report for

comparison a 60 days full-lockdown strategy, and the feedforward action β̄.
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Figure 6.8: Heat maps reporting (a-c) the average reduction in βn, normalised by∫ Tf
0 βh(t)dt for the scenarios in which ı 6= ı̄(0) and ı = ı̄(0), respectively and (b-d) the

average reduction in deaths, normalised by the average number of deaths, for the scenarios

in which ı 6= ı̄(0) and ı = ı̄(0), respectively. Colors in (b) follow the width of the fist and

third percentile (reported in the cells under the average). Both the indices are defined so

that the smaller the better.
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Discussion

An epidemic spreading through a population is a complex phenomenon, whose form-

alisation often results in forbiddingly high dimensional models. Usually, mathem-

atical models rely on approximations that keep the most fundamental properties

of the underlying system. Although the foundation of epidemiological models were

based on homogeneous mixing, i.e. they assumed that everyone is in contact with

everyone, it became soon clear that knowledge of the network of contacts is funda-

mental to determine the evolution of epidemics; hence, networks and epidemiology

are fundamentally linked. In this framework, epidemics are formalised as random

processes taking places on a network, in which infection is carried through links

between infected nodes and susceptible nodes. The number of equations needed

to describe such systems grows exponentially with their size; hence, many models

have been proposed to reduce the dimensionality of the system [Kiss et al., 2017],

by focusing on aggregate statistics. Mean-field approximations are well-established

methods to derive ordinary differential equations (ODEs) for the expected number

of infected nodes, while explicitly including the most important properties of the

underlying network. In this thesis, I have presented five pieces of research, that

enter in this framework at different levels. Chapters 2,3 introduce and develop the

Birth-and-Death approximation of epidemics on networks, a method to reduce the

dimensionality of the problem (from 2N equations to N + 1 equations) and at the

same time preserve the stochasticity typical of the true process. This approximation

is employed to perform network inference from population level data (Chapter 2),

and it is extended to include large-networks limit, which results in a one-dimensional

175
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Fokker-Planck equation (Chapter 3). Chapters 4,5,6 consider low-dimensional mod-

els for epidemic control, explicitly inspired by Covid-19. Different models are em-

ployed to address different key questions, and are displayed in order of complexity.

Initially, we modelled one-shot interventions, such as lockdowns, as changes in the

transmission rate for (metapopulation) SIR models, to address questions regarding

how to optimally time intervention to control epidemics according to different goals

(Chapter 4). Then, different mean-field like approximations that explicitly model

the underlying network structure are considered when deriving the herd-immunity

threshold for SIR diseases (Chapter 5). Finally, the flattening-the-curve strategy

employed by many countries during this year of pandemic is modelled by means of

feedback control theory, and tested on explicit network simulations, informed with

parameters taken from the literature (Chapter 6).

Here, I will discuss the research and results presented in this thesis, as well as

considering potential improvements to each piece of work and open questions.

7.1 Birth-and-Death approximation and network

inference

7.1.1 Summary of contributions

Mean-field-like approximations result in systems ODEs whose solution describes

the expected epidemic curves [Kiss et al., 2017]. The choice of which mean-field

model to employ typically depends on which features of the underlying network are

thought to have a non negligible impact on the epidemic dynamics. Reproducing the

expected epidemic curves with low-dimensional models whose derivation explicitly

considers the underlying topology has great value on its own, but it has a few

limitations. Indeed, epidemics are intrinsically stochastic processes - especially in

their initial phase; therefore it is desirable to have low-dimensional models capable

of describing the variability of different realisations of the same process. Except

for a few remarkable cases, such as the fully connected networks, no general theory

exists to efficiently compute the evolution of an epidemic on a network.

The first piece of research, in Chapter 2, considers a novel conjecture in net-
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work epidemiology. We approximate epidemics on networks by Birth-and-Death

processes, characterised by a system of (N + 1) master equations, whose rates en-

code both the structure of the underlying network and the disease parameters. The

solution of the master equation describes the probability distribution of the number

of infected people for a SIS epidemic on a network. Extensive simulations on well-

known network classes, namely Regular, Erdős-Rényi, and Barabási-Albert, showed

good agreement with the master equations for the approximated model, for vari-

ous choices of network and epidemic parameters. This conjecture holds for various

network sizes as well, as shown in Chapter 3.

Real world epidemics spread on often only partially-known networks of contacts.

This is particularly problematic because many advanced theoretical models often

rely on full knowledge at least of global properties of the network. Network infer-

ence from the observation of epidemics usually is done at a local level [Britton and

O’Neill, 2002; O’Neill and Roberts, 1999], meaning that it is possible only if one

is able to continuously observe the status of the nodes of a network. The aim is

usually to infer the whole topology, that is, the adjacency matrix of the network.

In [Groendyke et al., 2011], the aim is instead to infer the generative parameter of

a known network class rather than the adjacency matrix; however, the data con-

sidered rely on having precise information at a node-level. Unfortunately, it is rarely

possible to observe individuals continuously in real-world scenarios, where the most

common information available is often given in terms of discrete time aggregate

statistics, such as the daily number of infected people. The Birth-and-Death pro-

cess approximation proves particularly useful in this realistic setting. The rates of

the master equations are network-class dependent, therefore techniques from inverse

problems applied to Birth-and-Death process can be applied to recover information

about the network class. In Chapter 2, this is done in a Bayesian framework. Pri-

ors over 3 well-known network classes (Regular, Erdős-Rényi, and Barabási-Albert)

are computed numerically from simulations of many different network and epidemic

parameters combinations. The likelihood can be efficiently computed from stand-

ard techniques as described in [Crawford et al., 2014], therefore the posterior for

each network class can be numerically estimated, and model selection is performed

with the MAP estimator. This method successfully recovers the most likely network



178 Chapter 7: Discussion

classes reliably, from discrete time observations of the population-level counts, and

it is validated both on synthetic and real networks. In the latter case, the outcome

of the inference scheme is a class among the three that we have considered, so we

interpret this result as the closer network that might have generated the data.

In a follow-up research, described in Chapter 3, we considered the large N limit

of epidemics on network. It is known [Janson et al., 2014] that certain mean-field

approximations become exact in the large network size limit. However, such models

retain the same limitations described in the previous paragraphs, and a probabilistic

description of the epidemic is potentially more useful both theoretically and for

applications. In this Chapter, the Birth-and-Death approximation is studied in the

limit of large N , resulting in a Partial Differential Equation (PDE) limit to SIS

epidemics on networks, in the form of a one-dimensional Fokker-Planck equation,

whose drift and diffusion coefficients depend strongly on the underlying network

structure and epidemic parameters. In order to get a PDE-limit, we verified that

the rates of the Birth-and-Death process are density dependent, i.e. they can be

written as a function of the prevalence I
N

only. This was numerically validated for

a wide range of networks classes, including lattices and scale-free networks.

A PDE that describes the evolution of an epidemic on a large network is useful

not only because it reduces greatly the numerical complexity of the system, but also

because it allows to use PDE inverse problem techniques to infer information on the

underlying network structure from the observation of an epidemic. Instead of the

master equation, that is numerically expensive to compute for networks of large size,

we showed in a fully worked out example how to efficiently compute the likelihood

using the Fokker-Planck equation. The inference scheme is analogous to the one

described in Chapter 2, where instead of the master equation of a birth-and-death

model, we have used the Fokker-Planck equation resulting from the PDE limit.

7.1.2 Limitations and future works

This concludes the first part of my thesis, where the focus is to validate a new

approximation method and apply it for network inference. There are a few limita-

tions and potential new lines of research that are well worth of exploring. Perhaps,

the most important question to answer is whether it is possible to formally prove
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that Birth-and-Death processes approximate population-level epidemics. I believe

that at least bounds for this approximation can be derived by studying convergence

methods for random processes. In terms of numerical results, it would be important

to extend and validate what has been obtained on more realistic networks - maybe

using non-parametric formulations of the rates. In a non-published piece of research,

we tried to extend this to stochastic block-models, and observed that rates show the

presence of communities in the underlying network. This might potentially become

a tool to make community inference, but unfortunately we did not have time to

carry on this project. Another line of research that I hope to study in the future

is to extend our results to different epidemic models, such as SIR (or even SEIR).

The main problem in these cases is that, whereas on a SIS rates are one-dimensional

(the population-level status is determined once the number of infected is known), in

a SIR model, one needs a rate for any possible combination of S and I, that is, the

number of susceptible and the number of infected. This would therefore result in a

two-dimensional manifold that might prove difficult to study. In principle, the ap-

proximations remain valid, but further research needs to be carried out to ascertain

this. From a technical point of view, we have used a three-parameter model that fits

quite well rates on random networks such as Regular, Erdős-Rényi and Barabási-

Albert. It might be desirable to use a non parametric model to fit such rates, as

it would make the whole inference scheme more robust and generalisable to many

other network classes. Of course, this can be done only after having answered a

rather philosophical question: to carry out our research, we assumed that networks

can be divided into distinct classes, so that the problem of network inference can be

recasted as a problem of network class inference. Is this still true when one considers

more complex network structures? For instance, does a network with, say, 4 distinct

communities belong to a different class compared to a network with 5 communities?

And an Erdős-Rényi network that has been modified so that its clustering coefficient

is non-negligible, can be still considered belonging to that class? After all, do net-

work classes exist in nature, or are just models to guide researchers? In this sense

then, identifying a network as a member of a certain class, might simply indicate

that it shares some topological properties with that class, that might or might not

be enough information, depending on the problem to solve.
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7.2 Mean-field models applied to epidemic con-

trol

7.2.1 Summary of contributions

The second part of my thesis (Chapters 4-5-6) considers the application of mean-field

approximations for Covid-19 response. This section embraces the research produced

in year 2 and year 3 of my doctorate, as well as projects resulted from collaborations

outside my academic supervisor’s group.

Most of the research works in this section were inspired by the urgency of mat-

ters related to Covid-19 response, so it is useful to frame my research works within

the chronology of the scientific debate around Covid-19 measures. Note that all the

works in this part have been produced between February, 2020 and October, 2020.

The scientific consensus at the beginning of the epidemic was that epidemic control

cannot rely on lockdowns or prolonged social distancing measures. Indeed Western

countries initially excluded even the possibility of a lockdown, until Italy led the

way [Tom Whipple, 2020]. Thus, a number of papers from early 2020 studied the

timing at which time-limited lockdowns should be implemented [Morris et al., 2021;

Perkins and España, 2020]. For instance, in [Morris et al., 2021], the problem of

how to theoretically derive an optimal strategy for using a short lived intervention

to reduce peak prevalence is answered, using a SIR model. Our approach, described

in Chapter 4, enters this discussion by studying the issue from different perspectives.

In particular, we consider how different goals impact optimal timings of intervention.

In our research, three different strategies are considered: (i) to delay the epidemic

as much as possible, (ii) to minimise the final size, (iii) to minimise the peak of

the prevalence. These three questions are addressed using the SIR model, and are

then extended to metapopulation SIR, to mimic an epidemic spreading on different

subcommunities of a population. Additionally, we have considered how the inter-

vention is employed, either globally or locally, and we find that it is best to target

the intervention asynchronously to each subcommunity rather than synchronously

across the whole population.

We explored different combinations ofR0, control duration, and control strength,

and found that results are quite general: if the goal is to delay the epidemic as much
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as possible, while waiting for future pharmaceutical solutions, then the best time

to introduce a lockdown is as early as possible. Instead, if the ultimate objective is

to reduce the cumulative number of infected people, then the intervention needs to

be employed slightly before the peak, the precise time depending on how strong the

intervention can be. Finally, if the goal is to minimize the peak, then the optimal

intervention is employed partway through the growth phase, to allow some immunity

to build up so that the eventual rebound at the end of control is not larger than the

initial peak.

More or less at the same time, it became clearer that complete eradication would

be out of reach for the vast majority of countries in the World, so determining the

final size of Covid-19 with precision became a hot topic in research. One key ob-

servation is that the final size depends on the value of herd-immunity threshold,

which ultimately depends on the underlying model assumptions. In a simple SIR

model informed with early estimates for Covid-19 (R0 ∼ 3) the herd-immunity

threshold is roughly 66% of the whole population. This is important as, if erad-

ication is impossible, at least these many people need to be immunized before the

epidemic ends - unless we consider that non-pharmaceutical interventions can be pro-

longed forever. Therefore, determining the exact level of herd-immunity threshold

is of crucial importance. The SIR model has been deemed as too simplistic by a

number of researchers [Britton et al., 2020; Gomes et al., 2020], who showed how

heterogeneity in the contact structure or in the individual susceptibility of the pop-

ulation might lead to herd-immunity levels as low as 20%, when interventions are

considered [Britton et al., 2020]. This is because the disease acts like a targeted

vaccine, preferentially immunizing higher-risk individuals who play a greater role

in transmission, and a limited first-wave might leave behind a residual population

that cannot support a second wave. Of course, one major criticism that can be

levelled at such models is that they are just slightly less simplistic than the SIR

in their assumptions. Nonetheless, these results remark the importance of model

choice when investigating such fundamental questions. In Chapter 5, we explore a

class of epidemic models coming from network science, with the aim of showing ex-

plicitly how model selection determines strongly any result regarding herd immunity

levels. We consider degree-based heterogeneous mean-field, heterogeneous pairwise,
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clustered heterogeneous pairwise and edge-based compartmental models on differ-

ent networks [Kiss et al., 2017]. An important finding is that the way measures

are implemented in various models determines strongly the value of herd-immunity.

In many works, it is assumed that during lockdown the contact network is not

changing, but rather the transmission rate [Gomes et al., 2020; Morris et al., 2021;

Britton et al., 2020]. In these cases, any source of heterogeneity indeed reduces the

herd-immunity threshold. However, if models allow to explicitly consider the net-

work structure to model interventions as changes in its topology, we show that the

effect becomes more subtle. This is confirmed also by considering realistic scenarios

taken from well-recognised institutions data and published research. In general, the

more complex the model, the stronger its predictive power. The trade-off is that the

information required to inform complex models might be difficult to extract from

real-world data, potentially leading to more unrealistic conclusions than simplistic

models informed correctly.

The paper that constitutes Chapter 6 has been conceived months later than the

former two, when it became clearer that the one-time control intervention paradigm

was obsolete, as many countries relied on repeated interventions to keep the pre-

valence below a certain threshold, as the vaccines were developed, approved, and

finally distributed - a strategy known as flattening the curve. As such, the problem

of controlling the epidemic through its whole course has been addressed by a number

of research groups [Casella, 2021; Giordano et al., 2020; Köhler et al., 2020]. The

challenge is to engineer a strategy that ensures that the healthcare system would

not be overwhelmed during the whole course of the epidemic. However, as shown in

Chapter 5, model misspecification can lead to wrong predictions, and therefore non-

optimal control. We proposed a potential way to limit this problem by considering

a feedback control approach. We formalised the problem of flattening the curve in

terms of the SIR model with feedback, in which the control parameter is the rate

of transmission. The ultimate goal is to reduce as much as possible the strength

of control measures while ensuring that the number of infected people would, at

any given time, remain under a certain pre-defined threshold. After putting for-

ward a trajectory-tracking controller and proving that it is optimal on this simple

system, we showed that it is robust by stress-testing it. In particular, a stochastic
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SEIRD model on Erdős-Rényi networks informed with realistic data is considered

as a ground-truth, to show that the model is robust to model misspecification. The

original controller is then connected to the network model by means of two maps

(for input and output, respectively), based on simple mean-field model arguments.

On top of that, we considered the effect of delays and noises in the input data, as

well as control acting only at a fixed rate, to mimic real life scenarios where policy

makers are reluctant to apply different degrees of restrictions too frequently. The

results show that using feedback control can improve dramatically the robustness

and the effectiveness of an optimal policy for epidemic control, even in presence of

non-ideal behaviours in the system and in presence of noisy,lagging measurements.

Again, depending on how far is the model from reality, and on how precise and

updated the information upon which decisions are made, the outcomes might differ

a lot among different realisations. However, defining a control action that can be

adapted to the actual prevalence and adjusted online proves to be robust to some

degree of model misspecification and real-world delays/noises.

7.2.2 Limitations and future works

There are many open problems and future directions of research, and I believe

that research aimed at better understanding Covid-19 and how to control epidemic

spreading in a population will perhaps become the main topic in Epidemiology for

the foreseeable future. In my work, for instance, I have not considered tracing apps,

testing, quarantine, behavioural response, and finally vaccines. Each of these aspects

may possibly be incorporated separately in relatively tractable epidemic models,

but the complexity arising from considering all of these features and their interplay

together possibly prevents any analytical result to be derived. For instance, as the

awareness of the epidemic increases among the population and social distancing

measures are employed by governments, the contact structure might change quite

sensibly and abruptly, and it is not clear how to model this phenomenon correctly.

For this reason, many governments rely on several distinct groups, each one with

its own model, to inform the epidemic response; for instance, in the UK, the SAGE

group includes, among the others, independent models from Imperial College , War-

wick University, and London School of Hygiene and Tropical Diseases. Such models
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are more complex than the ones analysed in this work, and their aim is to consider

a population as a sum of individuals that have different behaviours and respond

differently to the disease - known as agent-based models (ABM) [Ferguson et al.,

2020]. Although, in principle, ABM might be the most accurate models to describe

the real epidemic, they require a vast amount of information to even be initialised.

In the era of Big Data, this seems available and it is perhaps the most promising way

forward. However, uncertainties/errors in data collecting/delays might add up and

be overlooked. Predictions based upon these data might eventually not be correct.

For this reason, simpler models that require less precise information such as the ones

described in this thesis may work in synergy with these more complicated approaches

to Epidemiology, providing bounds and benchmarks for more sophisticated models.

At the same time, the mathematical theory of epidemiology can benefit from the

study of epidemic models on networks, as theoretically rigorous advancements are

still possible and well worth investigating.
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K. Gaythorpe, W. Green, A. Hamlet, W. Hinsley, D. Laydon, G. Nedjati-Gilani,

S. Riley, S. van Elsland, E. Volz, H. Wang, Y. Wang, X. Xi, C. A. Donnelly,

A. C. Ghani, and N. M. Ferguson. Estimates of the severity of coronavirus dis-

ease 2019: a model-based analysis. The Lancet Infectious Diseases, 20(6):669–

677, Jun 2020. ISSN 1473-3099. doi: 10.1016/S1473-3099(20)30243-7. URL

https://doi.org/10.1016/S1473-3099(20)30243-7. 145

E. M. Volz, J. C. Miller, A. Galvani, and L. A. Meyers. Effects of heterogeneous and

clustered contact patterns on infectious disease dynamics. PLoS Comput Biol, 7

(6):e1002042, 06 2011. 129, 139

C. J. Wang, C. Y. Ng, and R. H. Brook. Response to covid-19 in taiwan: big data

https://doi.org/10.1016/S1473-3099(20)30243-7


Bibliography 205

analytics, new technology, and proactive testing. Jama, 323(14):1341–1342, 2020.

91

Y. Wang, J. Cao, X. Li, and A. Alsaedi. Edge-based epidemic dynamics with

multiple routes of transmission on random networks. Nonlinear Dynamics, 91

(1):403–420, jan 2018. ISSN 1573269X. doi: 10.1007/s11071-017-3877-3. URL

https://link.springer.com/article/10.1007/s11071-017-3877-3. 11, 38

H. Ward, C. J. Atchison, M. Whitaker, K. E. Ainslie, J. Elliot, L. C. Okell, R. Redd,

D. Ashby, C. A. Donnelly, W. Barclay, et al. Antibody prevalence for sars-cov-2

in england following first peak of the pandemic: React2 study in 100,000 adults.

MedRxiv, 2020. 114

W. E. Wei, Z. Li, C. J. Chiew, S. E. Yong, M. P. Toh, and V. J. Lee. Presymptomatic

transmission of SARS-CoV-2 — Singapore, January 23–March 16, 2020. Morbidity

and Mortality Weekly Report, 69(14):411–415, apr 2020. ISSN 1545861X. doi:

10.15585/MMWR.MM6914E1. URL https://www.cdc.gov/mmwr/volumes/69/

wr/mm6914e1.htm. 131

J. Y. Wong, P. Wu, H. Nishiura, E. Goldstein, E. H. Lau, L. Yang, S. Chuang,

T. Tsang, J. M. Peiris, J. T. Wu, et al. Infection fatality risk of the pandemic

a (h1n1) 2009 virus in hong kong. American journal of epidemiology, 177(8):

834–840, 2013. 114

World Health Organisation. Media statement: Knowing the risks for covid-19,

2020. https://www.who.int/indonesia/news/detail/08-03-2020-knowing-the-risk-

for-covid-19, Last accessed on 2020-08-06. 114, 168

Y.-C. Wu, C.-S. Chen, and Y.-J. Chan. The outbreak of covid-19: An overview.

Journal of the Chinese Medical Association, 83(3):217, 2020. 91

L. e. a. Xu. Full spectrum of COVID-19 severity still being depicted. Lancet. 2020,

2020. 92

S. Xu and Y. Li. Beware of the second wave of covid-19. The Lancet, 395(10233):

1321–1322, 2020. 156

https://link.springer.com/article/10.1007/s11071-017-3877-3
https://www.cdc.gov/mmwr/volumes/69/wr/mm6914e1.htm
https://www.cdc.gov/mmwr/volumes/69/wr/mm6914e1.htm


206 Bibliography

C. You, Y. Deng, W. Hu, J. Sun, Q. Lin, F. Zhou, C. H. Pang, Y. Zhang,

Z. Chen, and X.-H. Zhou. Estimation of the time-varying reproduction num-

ber of COVID-19 outbreak in china. medRxiv, 2020. doi: 10.1101/2020.02.08.

20021253. URL https://www.medrxiv.org/content/early/2020/02/17/2020.

02.08.20021253. 91

https://www.medrxiv.org/content/early/2020/02/17/2020.02.08.20021253
https://www.medrxiv.org/content/early/2020/02/17/2020.02.08.20021253

	PhD Coversheet
	PhD Coversheet

	Di Lauro, Francesco
	Contents
	List of Tables
	List of Figures
	1 Introduction
	1.1 Background and thesis overview
	1.1.1 Network Inference
	1.1.2 Epidemic Control

	1.2 Technical Introduction
	1.2.1 Networks
	1.2.2 Epidemics on Networks


	2 Network Inference from Population-Level Observation
	2.1 Introduction
	2.2 The forward model
	2.2.1 Birth-and-death approximation of SIS epidemics
	2.2.2 Three-parameter model of infection rates
	2.2.3 Dataset
	2.2.4 Numerical validation of the forward model

	2.3 Bayesian inference of network class from single epidemics
	2.3.1 Prior distributions for each network class
	2.3.2 Numerical method for posterior marginals computations
	2.3.3 Network class inference

	2.4 Discussion
	2.5 Acknowledgments

	3 PDE limits of SIS epidemics
	3.1 Introduction
	3.2 Methods
	3.2.1 Birth-and-Death Approximation of SIS Epidemics
	3.2.2 Fokker Planck equation as a limit of the Birth-Death process

	3.3 Results
	3.3.1 Validation of the density dependence condition
	3.3.2 Comparing PDE and simulations
	3.3.3 Inference of infection rates using the Fokker-Planck approximation

	3.4 Conclusions
	3.5 Acknowledgments
	3.6 Appendix: numerical method for solving the PDE
	3.7 Appendix: universal infection rate curves for Barábasi-Albert networks and lattices

	4 Optimal timing of one-shot interventions
	4.1 Introduction
	4.2 Methods
	4.2.1 Well-mixed population
	4.2.2 Weakly-coupled Metapopulation model

	4.3 Results
	4.3.1 Well-mixed population
	4.3.2 Weakly-coupled metapopulation model

	4.4 Discussion
	4.4.1 Limitations
	4.4.2 Policy Implications

	4.5 Mathematical Analysis
	4.5.1 A phase-plane based analysis
	4.5.2 The mixing matrix
	4.5.3 The impact of aggregation


	5 Impact of network properties on control and herd immunity
	5.1 Introduction
	5.2 Methods
	5.2.1 Contact structure and epidemic model
	5.2.2 Degree-based mean field model
	5.2.3 Heterogeneous pairwise without and with clustering
	5.2.4 Edge-based compartmental model with household structure and community transmission
	5.2.5 Age-structured compartmental model
	5.2.6 Epidemic parameters

	5.3 Results
	5.3.1 Validation of mean-field models
	5.3.2 The impact on DIHI
	5.3.3 Contact heterogeneity and clustering
	5.3.4 All versus community control only

	5.4 Scaling versus modulating the mixing matrix model
	5.5 Discussion
	5.6 Appendix
	5.6.1 Pairwise equations
	5.6.2 Edge-based compartmental model

	5.7 Acknowledgments

	6 Covid-19 and Flattening the Curve
	6.1 Introduction
	6.2 Background: Model of the Epidemics with Dynamic Interventions
	6.3 Control Strategy
	6.3.1 Optimal curve flattening under nominal conditions
	6.3.2 Trajectory tracking controller

	6.4 Network Control
	6.4.1 Network Model
	6.4.2 Epidemic model on Network
	6.4.3 Input and Output Maps

	6.5 Simulations
	6.6 Discussion
	6.7 Conclusions and Future Work

	7 Discussion
	7.1 Birth-and-Death approximation and network inference
	7.1.1 Summary of contributions
	7.1.2 Limitations and future works

	7.2 Mean-field models applied to epidemic control
	7.2.1 Summary of contributions
	7.2.2 Limitations and future works


	Bibliography




