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Summary

This thesis explores novel ways on constraining the cosmological model of our Universe with
observational data. The explosion in high �delity data coupled with the increasing number of
complementary cosmological probes, makes it possible to test our theories to an unpreceden-
ted precision. However, reaching the experimental designed precision for the upcoming surveys
will require advances in theoretical and statistical modelling. We contribute work to two aven-
ues addressing this problem, in particular by extracting nongaussian information from higher
order weak gravitational lensing statistics and by using Bayesian forward modelling approaches
to increase the information gain compared to traditional analysis methods.

For the �rst project we focus on the aperture mass statistics, which is a E/B decomposed measure
of the weak lensing convergence polyspectra. We construct an accelerated estimator that will
make it feasible to measure those statistics in current and forthcoming surveys. After identifying
an optimized weighting scheme and adapting the theoretical expressions to account for potential
biases, we successfully test the estimators’ performance and reliability on simulated surveys and
then measure the second order statistics on the CFHTLenS survey, �nding excellent agreement
with the traditional analysis in terms of the shear correlation functions.

For the second project we move away from summary statistics and shift our focus to the cosmic
�eld itself. Using idealized structure formation models we construct a likelihood function for a
linearized cosmic �eld, taking into account the observed realization of tracers. For an e�cient
sampling of this high dimensional problem we employ a Hamiltonian Monte Carlo framework.
We then extend the likelihood to jointly sample the �eld and the amplitude of its underlying
power spectrum. We �nd that for realistic scale cuts and galaxy number densities this frame-
work increases the information content by a factor of four.
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1

1Introduction

In this chapter we give an overview of the main ideas that are needed to build a simpli�ed and

predictive model of our Universe. In §1.1 we begin by laying out the geometric foundation of

an expanding spacetime and explore the equations governing a universe’s dynamics given its

contents. After collecting various distance measures, in §1.2 we continue by re�ning the cos-

mological model to include small perturbations that will evolve and may �nally collapse into

the virialized structures we observe today. We then introduce various summary statistics of the

density �eld that may be obtained from both, theory and observations and give a brief overview

of theoretical challenges for their accurate prediction. In §1.3 we introduce the theory of weak

gravitational lensing and motivate some key equations that will be used in the later chapters of

this thesis. Finally, in §1.4 we introduce the Bayes paradigm in a scienti�c context and give an

overview of Markov Chain Monte Carlo (MCMC) methods.

The content of this chapter can be found in various textbooks on general relativity and cos-

mology, as well as in more recent review articles. In the �rst two sections we mainly follow

along the lines of Dodelson (2003), Wald (1984), Piattella (2018) and Lesgourgues & Pastor (2006),

while for §1.3 we made use of Bartelmann & Schneider (2001), Kilbinger (2015) and Mandelbaum

(2018) and §1.4 borrowed information found in Heavens (2009). Throughout the chapter we add

additional references pointing to the original literature.



2 1.1 The expanding Universe

1.1 The expanding Universe

1.1.1 Foundations

The standard model of relativistic cosmology is grounded on three assumptions: General re-

lativity (GR), the cosmological principle, and Weyl’s postulate. The �rst assumptions equips us

with a mathematical formalism to build upon; in particular we will de�ne a universe as a four

dimensional spacetime obeying the Einstein �eld equations (Einstein, 1915)

Gαβ ≡ Rαβ −
1
2Rgαβ = 8πG

c4 Tαβ , (1.1)

which link the geometry of spacetime encapsulated in the Einstein tensor Gαβ to its content

described by the energy-momentum tensor Tαβ . The Einstein tensor itself depends on the Ricci

tensor Rαβ and its contraction, the Ricci scalar R. All those geometric quantities in turn can be

constructed from the second derivatives of the more fundamental metric tensor gαβ , which itself

can be used to measure distances in spacetime.

The idea of the cosmological principle dates back much further than the latter two assump-

tions - a �rst conceptual formulation can already be found in Newton’s Principia Mathematica,

in which he proposes a universal law of gravitation that extends the equations of motion through

absolute space. Phrased in a modern jargon, the cosmological principle asserts homogeneity and

isotropy on spacelike hypersurfaces Σt, i.e. that at each point in time the universe looks the

same in each direction for each point in space. The formal de�nitions of spatial homogeneity

and isotropy then imply that there exists a foliation of spacetime into spacelike hypersurfaces,

that the Σt are orthogonal to an observers (timelike) worldline and that each such Σt has to

be a space of constant curvature. The latter property in turn reduces the number of each Σts

possible geometries to three; namely to a spherical, �at, or hyperbolical one. For this thesis we

will exclusively work in the �at case, which is supported by recent observations (Alam et al.,

2017; Efstathiou & Gratton, 2019). The resulting form of the metric is known as the Friedman-

Lemaitre-Robertson-Walker (FLRW) metric (Friedman, A., 1922; Lemaître, 1931; Robertson, 1935;

Walker, 1937):

ds2 = −c2dt2 + a2(t)
[
dχ2 + χ2dΩ2

]
, (1.2)

where the positive function a(t) denotes the scale factor describing the expansion of the universe

with time t and the spatial part of the metric is expressed in spherical coordinates consisting of

the comoving distance χ and the solid angle Ω . As this line element is invariant under the scal-

ing transformation (a→ κa , χ→ χ/κ) one can set the scale factor today to unity, a0 ≡ 1.
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Finally, Weyl’s postulate (Weyl, 1923) states that the cosmic �uid particles move along non inter-

secting timelike geodesics originating from a single point. The postulate implies that observers

following di�erent world lines can agree on a common, universal time. One should note that

there is some debate on whether Weyl’s postulate is a necessary assumption or if it can be ab-

sorbed in the cosmological principle, see for example Rugh & Zinkernagel (2010) and references

therein.

From the time component of the geodesic equation for a massless particle (i.e. a photon) propagat-

ing through an FLRW spacetime one deduces that the particles energy is inversely proportional

to the scale factor. This implies that if we observe a photon with wavelength λobs its wavelength

at emission was di�erent. We denote this di�erence as the redshift z ≡ (λobs−λem)/λem. Using

that a photons energy E is also proportional to its frequency f we can relate the redshift to the

scale factor as:

aem = Eobs
Eem

= fobs
fem

= λem
λobs

= 1
1 + zem

, (1.3)

where we assumed the observing time to be today.

1.1.2 Cosmic Dynamics

With the FLRW metric in hand one can express the left hand side of Eq. (1.1) in terms of the

scale factor and its derivatives ” · ” with respect to time. For �nding an explicit expression for

the energy-momentum tensor we require it to have the same symmetries as Eq. (1.2); Weinberg

(1972) shows that this implies the form of an ideal �uid

Tαβ =
(
ρc2 + p

)
uαuβ − p gαβ , (1.4)

where ρ, p and u denote the �uid particles’ energy density, pressure and 4-velocity. Due to

the orthogonality of the �uids’ worldines to the spatial part of the metric, the velocities in the

comoving frame are simply given by u ∼ (ca, 0, 0, 0). Subbing those expression in the Einstein

equations we arrive at the two Friedmann equations describing the dynamical evolution of a

homogeneous universe:(
ȧ

a

)2
= 8πG

3 ρ (1.5)

ä

a
= −4πG

3

(
ρ+ 3 p

c2

)
. (1.6)

We see that expansion rate of the universe Eq. (1.5) is governed by its total energy density, while

it’s acceleration Eq. (1.6) does additionally depend on the �uid’s pressure1. The expansion rate
1 Had we not restricted ourselves to the spatially �at case, Eq. (1.5) would also depend on the universes’ global

geometry.
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Figure 1.1 Evolution of the di�erent energy components of the Universe. At each time the com-

ponents add up to unity as indicated by the horizontal dashed line. The present is indicated by the

vertical dashed line - the intersections of the individual components with that line correspond

to the values or the Planck Collaboration et al. (2020) analysis.

of the universe can equivalently labeled by the Hubble factor H ≡ ȧ/a.

From the covariant conservation of the energy-momentum tensor one obtains the continuity and

Euler equations, the former is given by

ρ̇+ 3H
(
ρ+ p

c2

)
= 0 ⇒ ρi(a) = ρi,0 exp

[
3
∫ 1

a

1 + wi(a′)
a′

da′
]
, (1.7)

where we solved for an equation of state, pi ≡ wi(a)ρic2 of some energy component i. To

arrive at a more intuitive form we de�ne the dimensionless fractional density parameters Ωi ≡

ρi/ρcrit. ≡ 8πGρH−2
0 /3 in terms of the critical density ρcrit.. For a universe resembling the

matter content of our Cosmos the �rst Friedmann equation Eq. (1.5) can now be rewritten as(
H

H0

)2
= ΩΛ + Ωm,0

a3 + Ωb,0
a3 + Ωr,0

a4 + Ων,0 exp
[
3
∫ 1

a

1 + wν(a′)
a′

da′
]
, (1.8)

where the energy content is distributed between non-relativistic matter (w = 0) consisting of

baryons Ωb, cold dark matter Ωc and massive neutrinos, a relativistic contribution Ωr (w =

−1/3) made up by photons and massless neutrinos, as well as a cosmological constant ΩΛ (w =

−1). Evaluating Eq. (1.8) at the present time we see that the fractional densities add up to unity.

One big aim of observational cosmology is to constrain these parameter as tight as possible - for

this introduction we adapt all numerical calculations to the match the recent constraints from

the Planck mission (Planck Collaboration et al., 2020).
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From the a-dependence in Eq. (1.8) we can deduce that the di�erent energy components will

dominate the universe at di�erent times, the numerical solution is shown in Fig. 1.1. In the early

stages the relativistic components dominate, followed by a phase of matter domination, until

�nally the cosmological constant is taking over to dominate the energy content from the universe

for the rest of its existence. The curve for the neutrino density is the only one to have an in�ection

point as massive neutrinos transition from being a relativistic species at early times to a matter

like component at later times; the location of the in�ection point does in particular depend on

the neutrino mass scale.

1.1.3 Distances and horizons

Due to the dynamic geometry of the FLRW metric there does not exist a universal way to measure

distances. The most prominent quantity is the comoving distance χ being already de�ned in the

FLRW metric, one can relate it to the observable redshift as

χ(z) ≡
∫ t0

t(z)
c

dt
a(t) =

∫ 1

a(z)
c

da′

a′2H(a′) =
∫ z

0
c

dz′

H(z′) . (1.9)

Note that χ remains constant for observers moving with the Hubble �ow (Hogg, 1999) - for

obtaining the physical (proper) distanceχprop light is travelling between two observers one needs

to take into account the time evolution of the expansion factor:

χprop(z) ≡
∫ 1

a(z)
c

da′

a′H(a′) =
∫ z

0
c

dz′

(1 + z′)H(z′) . (1.10)

Neither the comoving nor the proper distance are directly observable, however there exist two

additional measures that are both, linkable to observations and directly related to χ. The �rst one

is the angular diameter distanceχA, which is de�ned as the ratio of an objects size (perpendicular

to the line of sight) and its angular size

χA(z) ≡ χ(z)
1 + z

. (1.11)

Quantities or features with a known absolute size are called standard rulers. By measuring their

apparent scales one can infer the distance to the observer using Eq. (1.11). On the other hand, if

an object is a standard candle (i.e. has a known absolute luminosityL) one can infer the comoving

distance by virtue of the luminosity distance

χL(z) ≡ (1 + z)χ(z) , (1.12)

which is constructed to obey the relation F = L/(4πχ2
L) for the observed �ux F . We collect all

distance measures in Fig. 1.2.
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Figure 1.2 Evolution of the various distance measures with cosmological redshift. Note the

turnover point of the angular diameter distance implying that objects appear magni�ed for large

redshifts.

1.2 Structure formation

Our nearby universe is far from homogeneous on all scales; instead we observe highly overdense

galaxies that appear to trace a more continuous underlying cosmic web. From our assumption

of GR and the structure seen today one might hypothesize that today’s observations could have

evolved from small departures of homogeneity at an earlier stage of the Cosmos.

1.2.1 The early universe

For this thesis we assume that there exists a mechanism that gave rise to some cosmic initial con-

ditions that are consistent with the current observations of the Cosmic Microwave Background

(CMB). The most widely accepted models are based on the in�ationary paradigm (Kazanas, 1980;

Guth, 1981; Linde, 1982; Albrecht & Steinhardt, 1982), in which additional scalar �eld(s) source a

close to exponential expansion of the cosmos prior to radiation domination. While in�ationary

models were primarily put forward to �nd explanations for the �atness, horizon and magnetic

monopole problems2, it was realized by Mukhanov & Chibisov (1981) that quantum �uctuations

2 Note however the criticism of Penrose (1989) estimating the amount of �ne-tuning necessary for in�ation to occur
to be much larger than the one it is able to resolve.
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within the in�aton �eld will expand to cosmological scales and can serve as the primordial seeds

(initial conditions) for the large-scale structure we observe today.

1.2.2 Prosaic perturbation theory

Let us now proceed by modelling a line element that is capable of including the primordial �uc-

tuations. This can formally be achieved by adding perturbations to the FLRW metric (1.2):

ds2 = c2a2(τ)
[
−(1 + 2A)dτ2 + 2Bidτdxi − (2CδKij +Dij)dxidxj

]
, (1.13)

where we introduced the conformal time dτ ≡ dt/a(t). A suitable reparametrization can be ob-

tained by the so-called SVT decomposition, in which the perturbation quantities are decomposed

in their scalar, vector and tensor components (Lifshitz, 1946), giving four scalar, two (divergence-

less) vector and a (transverse and traceless) tensorial variable. One can show that due to the

homogenous and isotropic background these quantities evolve independently in the (�rst order)

perturbed Einstein tensor, (e.g. Durrer (2008)). To take care of spurious perturbations stemming

from a speci�c coordinate choice one �rst computes the transformation equations of the per-

turbation variables under a general coordinate (gauge) transformation and from there constructs

new, gauge invariant, quantities that are coordinate independent and therefore re�ect the phys-

ical degrees of freedom (Bardeen, 1980). This procedure eliminates four components (two scalar

and a vector one), just as one would have expected from the di�eomorphism invariance of GR.

For this thesis we will not work in a fully gauge invariant fashion, but instead �x the coordinate

system to the so-called conformal Newtonian gauge (Mukhanov et al., 1992) and will further-

more restrict ourselves to scalar perturbations; due to this choice the corresponding line element

remains diagonal:

ds2 = a2(τ)
[
(1 + 2ψ)dτ2 − (1− 2φ)dxidxi

]
. (1.14)

The two remaining perturbation variables are commonly referred to as the Bardeen potentials.

Plugging this line element in the Einstein equations and keeping only �rst order terms one gets

the perturbed Einstein tensor. For the corresponding right hand side one constructs a perturbed

energy-momentum tensor in a similar fashion, introducing the density perturbation δρ, the pres-

sure perturbation δp, as well as the velocity perturbation vi and the anisotropic stress σ. Both

sides together yield the perturbed Einstein equations; four equations of motion for the two metric

perturbation potentials in terms of the four scalar energy component perturbations. Structurally

they read:

δGαβ = 4πGa2∑
i

δTαβ,i , (1.15)
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where the sum runs over di�erent energy components.

Getting the corresponding equations of motion for the right hand side of (1.15) turns out to be a

more complicated task. From the local covariant conservation of the energy momentum tensor

one can again obtain a continuity and an Euler equation for the perturbation variables. For some

energy component i they read in Fourier space (Ma & Bertschinger, 1995):

δ′i = −(1 + wi)(θi − 3φ′)− 3H
(
c2
s,i − wi

)
δi (1.16)

θ′i = −H(1− 3wi)θi −
w′i

1 + wi
θi +

c2
s,i

1 + wi
k2δi − k2σi + k2ψ , (1.17)

where we de�ned the overdensity δ ≡ δρ/ρ − 1, the speed of sound c2
s ≡ δP/δρ and the

velocity divergence θ ≡ kiv
i and denoted derivatives with respect to conformal time as ′ and

the Hubble factor expressed through τ asH. In case of a non-interacting species with vanishing

anisotropic stress and pressure perturbations (such as dark matter) the system of equations is

closed, otherwise we need to �nd some more equations of motion. This can be achieved when

switching to a microscopic de�nition of the energy-momentum tensor in terms of the particle

distribution function f in phase space that in turn is governed by the Boltzmann equation:

∂f

∂τ
+ dxi

dτ
∂f

∂xi
+ dq

dτ
∂f

∂q
+ dni

dτ
∂f

∂ni
=
(
∂f

∂τ

)
coll.

, (1.18)

where the phase space is spanned by the positions xi, as well as the modulus q ≡ ap and direc-

tion n̂i ≡ qi/q of the three-momentum. Perturbing the distribution function as f(xi, pj , τ) →

f0(q)
[
1 + Ψ

(
xi, q, nj , τ

)]
and using the metric (1.14) in (1.18) one derives an equation of motion

for Ψ. Finally, expanding Ψ in terms of Legendre polynominals one can carry out the integrations

yielding an in�nite hierarchy of equations for the expansion coe�cients Ψ`. For a more detailed

account on relativistic cosmological perturbation theory see i.e. (Ma & Bertschinger, 1995).

E�ciently solving the set of coupled equations (1.15)-(1.17) together with the various hierarchies

one requires multiple approximation schemes which a discussion of is beyond the scope of this

thesis. Fortunately there exist well maintained public implementations for that problem; the most

well known ones are CAMB and CLASS (Lewis et al., 2000; Blas et al., 2011), which themselves

build on the earlier codes CMBFAST and COSMICS (Seljak & Zaldarriaga, 1996; Bertschinger,

1995).

In Fig. 1.3 we show the time evolution of the gravitational potentials and the overdensity para-

meters for our toy cosmology as calculated by CLASS. We see that on superhorizon scales the

two metric potentials are frozen, but not equal to each other - the latter point is due to the fact

that in that regime free-streaming (relativistic) neutrinos have a nonvanishing anisotropic stress

component. Small scale perturbations will re-enter the horizon during radiation domination

where they become strongly suppressed. While during matter domination the perturbations are
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Figure 1.3 Left hand side: Evolution of Bardeen potentials in linear perturbation theory. Right

hand side: Evolution of the fractional overdensities of various energy components. The linestyles

are matched to the plot on the left

roughly frozen and equal to each other they start decreasing again once the cosmological con-

stant takes over. Multiple interesting e�ects can also be observed when tracing the evolution of

the individual overdensity parameters:

• During radiation domination superhorizon scale dark matter perturbations grow as a2

whereas upon horizon entry the growth gets suppressed to follow a logarithmic scaling

(Meszaros, 1974). Moving to the matter dominated era, the perturbations grow as the scale

factor as long as the neutrinos remain relativistic; at later stages the exponent is slightly

suppressed due to free-streaming massive neutrinos (Bond et al., 1980).

• Before recombination photons and baryons are tightly coupled via Thompson scattering

and the they undergo acoustic oscillations (Peebles & Yu, 1970). For small scales the oscil-

lation amplitude is strongly suppressed due to photon di�usion (Silk, 1968). After recom-

bination the baryons fall into the gravitational potentials of dark matter such that their

perturbations will converge to the dark matter ones. In contrast, the photons remain in a

free streaming state such that their perturbations are frozen.

• In the radiation dominated era the neutrinos are relativistic and free-stream such that

their perturbations are damped on subhorizon scales. During matter domination it is the

neutrino mass and its associated scale factor anr (specifying the time at which the non-

relativistic transition occurs) that determine the subsequent evolution of the perturbations:

while relativistic neutrinos evolve as δγ , massive ones track δb. Therefore, large scales en-
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tering the horizon after anr will track δcdm while smaller scale perturbations start growing

from gradually lower values compared to δcdm such that they still remain suppressed up

to now.

For a thorough justi�cation of our qualitative discussion we refer to Lesgourgues & Pastor (2006).

1.2.3 Going nonlinear

As we have seen in Fig. 1.3 the gravitational potentials on subhorizon scales are both frozen and

equal to each other during matter domination. We might interpret this nice feature to give us

permission to use Newtonian mechanics to track the evolution of perturbations in this regime. If

we now want to describe the nonlinear evolution of cold dark matter we can redo a Newtonian

version of relativistic perturbation theory in which the continuity, Euler and Poisson equations

become:

δ̇ + 1
a
∇ · [(1 + δ)v] = 0 (1.19)

v̇ +Hv + 1
a

(v · ∇)v = −1
a
∇φ (1.20)

∆φ = 3ΩmH
2
0

2a δ , (1.21)

where δ ≡ ρ/ρ̄ − 1 is the density contrast with respect to the global background density ρ̄ and

v ≡ u − Hx denotes the peculiar velocity �eld, i.e. the relative velocity with respect to the

Hubble �ow. An early ansatz to analytically solve those equations is given by standard perturb-

ation theory (SPT) (Juszkiewicz, 1981; Fry, 1984; Goro� et al., 1986; Jain & Bertschinger, 1994),

in which the nonlinear dynamical quantities are equated to a power series of the linear ones.

Applying the this ansatz in Fourier space one can then �nd a recursive solution for the nonlinear

mode coupling kernels. While this framework gives a good description for high redshifts, it is

inherently limited by the requirement of small overdensities and su�ers from multiple conver-

gence issues (Blas et al., 2011). To address some of these shortcomings there have been developed

multiple further techniques, such at resummation schemes (Crocce et al., 2006; Bernardeau et al.,

2008) and e�ective theories based on course grained versions of the �uid equations and sym-

metry considerations (Baumann, 2009; Carrasco et al., 2014). Another interesting observation

has been made by Coles & Jones (1991), who showed that under the assumption of a Gaussian

initial velocity �eld Eq. (1.19) is solved by a lognormal distribution for the density �eld ρ - we

will come back to this model in Chapter 4.

All analytic methods developed so far can only describe the density within the linear and parts

of the quasilinear regime; for a proper treatment of smaller scales one needs to resort to N-body
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simulations, which start from an initial con�guration of dark matter and baryon particles and

evolve those components via collisionless gravitational dynamics, hydrodynamics and e�ective

subgrid models. While a proper overview of the simulated physics and numerical optimization

schemes are beyond the scope of this thesis, see Dolag et al. (2008); Vogelsberger (2020) for re-

views, we note that in recent years it has become increasingly important to include baryonic

physics in simulations that are used to calibrate models for cosmological analyses.

1.2.4 Density �eld statistics

As we have seen in §1.2.1 the theory of in�ation predicts that the initial conditions originate in a

quantum process. Therefore any information we can retrieve from observations will also have to

be phrased in a stochastic context. Focusing on the density perturbation δ we can write down a

probability density functional (pdf) P [δ(x1), · · · , δ(xn)] for the overdensity �eld to be described

by the function δ having values δ(xi) at positions xi. To �nd the statistical properties of this �eld

it is useful to de�ne the n−point correlators ξ(n) that average the ensemble over products of the

�eld at di�erent spatial positions:

ξ(n) (x1, · · · ,xn) ≡ 〈δ(x1) · · · δ(xn)〉

≡
∫

dδ(x1) · · · dδ(xn) P [δ(x1), · · · , δ(xn)] δ(x1) · · · δ(xn) , (1.22)

where in the �rst equality we have de�ned the angle brackets as the ensemble average operation.

In the following we will denote the case with n = 2 simply as the correlation function ξ and the

case with n = 1 as the ensemble mean 〈δ〉.

Taking a second look at Eq. (1.22) this formulation does not appear to be of any practical use, as

today’s cosmologist has only one sky to observe and will therefore never be able to probe the

ensemble averaging operation. Luckily we can still justify the existence of observational cos-

mology by imposing a set of assumptions on the pdf. In a �rst step we extend the cosmological

principle to the pdf, requiring it to be invariant under spatial translations and rotations. Addi-

tionally, we demand the correlators to converge to zero at least exponentially above some spatial

scale. These assumptions form the basis of the ergodic theorem (Weinberg, 2008), which tells us

that the only price we have to pay when replacing the ensemble average with a spatial one is to

get an additional contribution to the variance. The magnitude of this term, which is known as

the cosmic variance, decays inversely proportional to the probed cosmological volume.

A further question we might ask ourselves when looking at Eq. (1.22) is how independent these

correlators are. Given that the overdensity �eld has zero mean, the �rst three correlators carry

complementary information. From the fourth order expressions onward this is not true any-
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more3 and we need to take care of all the additional splitted correlators that are spoiling the

independence. Subtraction o� those terms one de�nes the connected correlators 〈· · · 〉c and the

associated N -point correlation functions (NPCFs):

ξn (x1, · · ·xn) ≡ 〈δ(x1) · · · δ(xn)〉c

≡ 〈δ(x1) · · · δ(x1)〉 −
∑
π∈Pn

∏
πi∈π

〈
δ(xπi(1)) · · · δ(xπi(|πi|))

〉
c
, (1.23)

where we sum over all possible partitions of π the set {1, · · · , n}, πi denotes the ith element of

π and |πi| stands for the number of elements withing πi4.

Recalling back from §1.2.2 that the perturbation equations are most easily solved in Fourier space

we should also de�ne a harmonic space analog related to the N-point correlation functions. These

are called the polyspectra Sn and they are de�ned via:

〈δ(k1) · · · δ(kn)〉c ≡ (2π)3δ(D)
(

n∑
i=1

ki

)
Sn (k1, · · · ,kn) , (1.24)

where the due to statistical isotropy the spectra depend only on the directions of the ks and

the delta function is required by statistical homogeneity. In particular we will denote the lowest

nonvanishing orders as the Power spectrum P , the Bispectrum B, and the Trispectrum T . We

now show that the polyspectra and the correlation function are simply Fourier pairs of each

other:

〈δ(k1) · · · δ(kn)〉c =
∫

d3x1 · · · d3xne−i
∑n

j=1 kjxj 〈δ(x1) · · · δ(xn)〉c

≡
∫

d3r1 · · · d3rn−1d3xne−i
∑n−1

j=1 kj(xn+rj)e−iknxn

× 〈δ(xn + r1) · · · δ(xn + rn−1) δ(xn)〉c

=
∫

d3r1 · · · d3rn−1e−i
∑n−1

j=1 kjrj 〈δ(r1) · · · δ(rn−1) δ(0)〉c

×
∫

d3xn e
−i
(∑n

j=1 kj

)
xn

= (2π)3δ(D)
(

n∑
i=1

ki

)
F [ξn] (k1, · · · ,kn) , (1.25)

3 As an example, take 〈δ1δ2δ3δ4〉 and place the point pairs (1, 2) and (3, 4) in�nitely far apart. Assuming ergodicity,
this implies that the fourth order correlator cannot be fully independent of the second order one.

4 To unpack this notation let us explicitly write down ξ5, for which the possible partitions each fall into one of the
following structures:

( i | j k l m ) , ( i j | k l m ) , ( i | j | k l m ) , ( i j | k l |m ) , ( i | j | k | l m ) , ( i | j | k | l |m ) .

Owing to the fact that the overdensity �eld has zero mean, only the second partition structure will be nonvanishing.
For this structure there are

(5
2

)
= 10 di�erent ways on how to arrange the arguments and therefore we �nd

ξ5 (x1, · · · ,x5) = ξ(5) (x1, · · · ,x5)− [ξ2 (x1,x2) ξ3 (x3,x4,x5) + 9 perm.] .
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where in the �rst equality we re-expressed the overdensity �eld by using the Fourier convention

δ(k) ≡
∫

d3x e−ikxδ(x) δ(x) ≡
∫ d3x

(2π)3 eikxδ(k) (1.26)

and brought the averaging operation inside the integral and in the second one rewrote the cor-

relator in terms of separation vectors from xn. In the third step we made use of statistical ho-

mogeneity such that we are able to split the integral. The �nal step follows when assuming the

spectra to be non-vanishing, which implies the delta function. Comparing with Eq. (1.24) we

con�rm the asserted Fourier correspondence between NPCFs and the polyspectra.

The most simple models for in�ation predict the in�aton �eld to be a Gaussian random �eld

having a scale invariant dimensionless power spectrum5. After the end of in�ation the in�aton

perturbations can directly be related to the gravitational potentials and therefore to δ, making

the initial conditions for the density �elds Gaussian as well. Using Eq. (1.21) we deduce that for

simple in�ationary models the matter power spectrum on large modes that enter during mat-

ter domination will go as P (k) ∝ kns , while for smaller scales entering during the radiation

dominated we have P (k) ∼ k−4+ns . In these expressions ns is known as the spectral index

that quanti�es the slight departures of the initial power spectrum’s scale invariance. Note that

as long as the �eld remains Gaussian all its connected correlators of order > 2 vanish and we

can extract all its information from the power spectrum (Isserlis, 1918; Wick, 1950). For later

evolution stages of the cosmos nonlinear clustering will kick in and induce an increase in the

power spectrum on small scales. While the perturbative approaches outlined in §1.2.3 work well

up until k = O(0.1 h/Mpc) they will break down once the �uid approximation is not valid

anymore. If one wants to proceed to nonlinear scales the halo model approach (Neyman & Scott,

1952; Scherrer & Bertschinger, 1991; Cooray & Sheth, 2002) or more �exible �tting functions

(Smith et al., 2003; Takahashi et al., 2012; Mead et al., 2015; Smith & Angulo, 2019) can do the

job to a su�cient degree. In the left hand side of Fig. 1.4 we compare the linear and nonlinear

power spectrum, calculated with CLASS using the Halo�t extension of Bird et al. (2012), at three

di�erent redshifts. For the linear power spectrum, we explicitly see the power-law limits for

large and small scales, as well as the turnover point corresponding to the horizon size at matter-

radiation equality. For the nonlinear power, we see that it is the smallest scales that are �rst to

5 As the correlation function is dimensionless, the power spectrum will have a dimension of volume. The dimension-
less version of the power spectrum ∆2(k) ≡ k3P (k)/(2π2) can then be interpreted as the contribution of power
within a logarithmic k−interval to the dispersion of overdensity perturbations:

〈
δ(x)2〉 =

∫
R+

d ln k ∆2(k). If
space expands exponentially during in�ation the slow-roll conditions demand the in�aton to roll down the poten-
tial with roughly constant ’velocity’ such that each decade of scales will have the same power. We therefore get a
scale-invariant, constant ∆2 which is also dubbed a Harrison-Zeldovic power spectrum (Harrison, 1970; Zeldovich,
1972).
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Figure 1.4 Left hand side: In the upper panel we show the linear (dashed lines) and nonlinear

(solid lines) power spectra for three di�erent redshifts. The lower panel displays the ratio of the

nonlinear and linear spectra. Right hand side: Impact of baryonic physics on the matter power

spectrum. Figure credit: Huang et al. (2019)

gravitationally collapse, in accordance with what one would expect from a hierarchical model

of structure formation. Sadly, the story is not over yet as for small scales of k & 1 h/Mpc one

does also need to take into account the impact of baryonic physics, which generally leads to a

spoon-like suppression of the power spectrum. In the right hand side plot of Fig. 1.4 we show

the ratio of the power spectra from various hydrodynamical simulations and their dark matter

only counterparts and we see that there is still a lot of variation between di�erent choices of

formulating such models.

1.3 Cosmological weak lensing

1.3.1 Foundations

The deformation of a light bundle propagating through spacetime can be studied with help of

the equation of geodesic deviation (see Fig. 1.5 for a sketch). Let us consider two photons paths

intersecting at an angle θ at χ = 0 and compute the evolution of the comoving separation

vectorx between the two geodesics. In a simple FLRW background Eq. (1.2) there is no curvature

present and the equation can easily be solved as x ≡ χθ. On the other hand, if we consider the

perturbed metric Eq. (1.14) and assume General Relativity, the perturbation potentials will source
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Figure 1.5 Geometry of the lens equation in a cosmological context. In a homogeneous universe

the light rays would be seen at comoving separation β while the LSS induces a continuous de-

formation of the path which is observed at an angle θ. Taken from (Kilbinger, 2015).

an inhomogeneity

d2x

dχ2 = − 2
c2

(
∇⊥φ(1)(x(θ, χ), χ)−∇⊥φ(0)(0, χ)

)
. (1.27)

Using the Green’s function method and de�ning the angular separation vector β ≡ x/χwe can

rewrite Eq. (1.27) as an integral equation, the lens equation,

β = θ − 2
c2

∫ χ

0
dχ′χ− χ

′

χ′

(
∇⊥φ(1)(x(θ, χ′), χ′)−∇⊥φ(0)(0, χ′)

)
︸ ︷︷ ︸

≡α

, (1.28)

that quanti�es the di�erence α between the true (β) and observed position (θ) of a light source

in the sky. Expanding the lens equation around θ to leading order de�nes the Jacobi matrix

Aij(θ, χ) ≡ ∂βi
∂θj

(1.29)

= δij −
2
c2

∫ χ

0
dχ′ (χ− χ

′)χ′

χ
φ,ik(x(θ, χ′), χ′)Akj(θ, χ′) (1.30)

≈ δij −
2
c2

∫ χ

0
dχ′ (χ− χ

′)χ′

χ
φ,ij(χ′θ, χ′)︸ ︷︷ ︸

≡ψ(θ,χ)

, (1.31)

where in going to the second line we applied the chain rule and in the third line employed the

Born approximation6 and de�ned the lensing potential ψ.
6 The Born series is a perturbative solution to the implicit equation Eq. (1.28) in which one expands the photon

trajectory x and iteratively uses those coe�cients to �nd the next order solution. As in our case the perturbation
variable is the gravitational potential and we consider the weak �eld limit one should expect one shold expect the
higher order terms do decrease quickly. The Born approximation is de�ned as only taking into account the leading
order term in the full series. For the Jacobi matrix this implies x(0) = χθ and results in performing the integration
along the unperturebed photon trajectory.
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Figure 1.6 Left hand side: De�nition of the angles α and ϕ. In this speci�c example α < 0 and

hence γt > 0. Right hand side: De�nitions of the tangential shear γt (middle) and cross shear γ×
(right). Green color indicates maximal positive value while red corresponds to maximal negative

value.

We can �nd a useful parametrization of this result when noting that the Jacobi matrix has

three independent components such that it can be decomposed in an isotropic and a distortion

part

A ≡ (1− κ) 12 +

−γ1 −γ2

−γ2 γ1

 → λ± = 1− κ± |γ| , (1.32)

where we de�ned the convergence κ and the shear polar γ ≡ γ1 + iγ2 ≡ |γ|e2iϕ and the λ±
denote the eigenvalues of A. Recalling that Liouville’s Theorem guarantees surface brightness

conservation for gravitational lensing, the Jacobi matrix A acts as a linear operator mapping

the shapes of images to sources. Inverting this relationship we can show that lensing a�ects a

circular light bundle δβ ≡ R
(sinϕ
cosϕ

)
as δθ = A−1δβ which results in two e�ects.

• Gravitational lensing maps circular objects into ellipses, such that the ellipticity ε of δθ

depends on the reduced shear g ≡ γ
1−κ :

ε ≡ a− b
a+ b

= λ+ − λ−
λ+ + λ−

= γ

1− κ

• Gravitational lensing changes the areaA of the source. In the weak limit the magni�cation

µ is solely induced by the convergence:

µ ≡ Aimage

Asource = abπ

R2π
= 1
λ+λ−

= 1
(1− κ)2 − |γ|2

≈ 1 + 2κ

In order to de�ne shear in a coordinate frame independent fashion we introduce a mapping from

the shear components (γ1, γ2) to the so called tangential and cross shear components (γt, γ×)
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in terms of a direction ϕ as

γt(θ,θ0) ≡ −<
[
γe2iϕ

]
= −|γ| cos[2(α− ϕ)] = −(γ1 cos(2ϕ) + γ2 sin(2ϕ)) (1.33)

γ×(θ,θ0) ≡ −=
[
γe2iϕ

]
= −|γ| sin[2(α− ϕ)] = −(γ1 sin(2ϕ)− γ2 cos(2ϕ)) , (1.34)

where in the second equality the direction is the angle of the vector θ − θ0 and α ≡ ](vλ+)

is the rotation angle induced by the shear. Note that due to the minus sign in the argument

of the trigonometric functions this measure indeed is independent of any chosen (orthogonal)

coordinate basis. The minus sign in front is convention - i.e. it assigns positive values to the

tangential shear when the rotated ellipse is aligns tangentially to the isodensity contours of a

positive mass / overdensity distribution.

Let us now look at the convergence in a bit more detail. Comparing Eqs. (1.31) and (1.32) we

can relate κ to the lensing potential and from there successively �nd

κ(θ, χ) = ∆ψ(θ, χ)
2

= 1
c2

∫ χ

0
dχ′ (χ− χ

′)χ′

χ
∆(3)φ(χ′θ, χ′)

= 3
2Ωm,0

(
H0
c

)2 ∫ χ

0
dχ′ (χ− χ

′)χ′

χa(χ′) δ(χ′θ, χ′) , (1.35)

where in the second step we de�ned ∆(3) ≡ ∆ + ∂2
χ and assumed that only the derivatives

perpendicular to the line of sight contribute to the convergence (White & Hu, 2000); for the �nal

step we substituted the Poisson equation Eq. (1.21). If we observe multiple galaxies following a

redshift distribution n(z) we obtain the e�ective convergence as7

κ(θ) ≡
∫ ∞

0
dχ nχ(χ) κ(θ, χ) =

∫ ∞
0

dχ G(χ)δ(χθ, χ) (1.36)

G(χ) ≡ 3
2Ωm,0

(
H0
c

)2 χ

a(χ)

∫ ∞
χ

dχ′nχ(χ′)(χ′ − χ)
χ′

, (1.37)

where G denotes the e�ective lensing weight at comoving distance χ. Summarizing, we have

found that the integrated large-scale structure along the line of sight induces an isotropic stretch-

ing of light bundles. Due to its dependence on δ we expect 〈κ〉 ≡ 0 and need to go to at least

second order statistics for retrieving cosmological information.

1.3.2 Weak lensing statistics

In complete analogy to the matter spectra, we de�ne the convergence power spectrum Cκκ as

〈
κ(`)κ∗(`′)

〉
≡ (2π)2δ(D)(`− `′)Cκκ(l) (1.38)

7 The double integral only covers the region where χ > χ′; hence we can �rst change the order of integration,∫∞
0 dχ

∫∞
0 dχ′θ(H)(χ− χ′) =

∫∞
0 dχ′

∫∞
χ′ dχ, and afterwards swap χ↔ χ′.
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and the higher order spectra in a similar way. In this expression, ` denotes the two dimensional

analog of the wave vector k. To relate the convergence power spectrum to the matter power

spectrum we make use of two further approximations: First, we take the �at-sky approxima-

tion and secondly we assume that the kernel Eq. (1.37) does only vary slightly on the coherence

scale of the included LSS. These second assumption forms the basis of the Limber approxima-

tion (Limber, 1953; Kaiser, 1992), in which only wavemodes perpendicular to the line of sight

contribute to the convergence power spectrum, and we obtain

Cκκ(`) =
∫ ∞

0
dχG

2(χ)
χ2 P

(
`

χ
, χ

)
; (1.39)

for the computational details we refer to Appendix 1.A. By comparing Eqs. (1.31) and (1.32) we can

relate the Fourier space representations of the convergence and shear as γ = ((`1 + i`2)2/`2) κ

and thus we have

〈γ(`)γ∗(`)〉 = (`1 + i`2)2(`1 − i`2)2

`4
〈κ(`)κ∗(`)〉 = 〈κ(`)κ∗(`)〉 ⇒ Cκκ(`) = Cγγ(`) ,

meaning that we can infer the theoretical convergence power spectrum from measurements of

the power spectrum associated with the measurable shear correlation functions. As the shear

is a polar and the convergence a scalar we can construct four correlation functions from the

tangential and cross shear components and we expect only the tangential correlator to carry

cosmological information. As even in the absence of systematics the other correlators might

not vanish due to noise, it is a necessary task to construct measures that only project onto the

relevant parts and relate them back to the matter power spectrum. One of those measures is the

aperture mass (Schneider et al., 1998) which we will introduce in section §2.3.2.

1.3.3 Challenges for Weak Lensing Surveys

Our treatment so far has been very idealized and agnostic towards many theoretical and observa-

tional challenges that need to be taken into account when inferring cosmology from the images

of galaxies.

On the theoretical side, it is important to make sure that all the employed approximations

do just have an e�ect that is small in comparison to the statistical error budget of the data. In

particular, on large scales and for tomographic analysis choices the �at-sky and Limber approx-

imations are not applicable anymore and one needs to take into account correction factors, or

make use of the full-sky expressions, which are numerically more demanding (Kilbinger et al.,

2017; Fang et al., 2020). On the small scales one needs to take into account corrections that result

from dropping the Born and reduced shear approximations (Krause & Hirata, 2010), as well as the
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theoretical uncertainties in modelling the nonlinear matter power spectrum itself. Finally, one

does also need to take into account the corrections induced by intrinsic alignments, which are a

physical e�ect resulting in nearby galaxies to be correlated and therefore arti�cially increasing

the lensing signal (Catelan & Porciani, 2001; Hirata et al., 2007; Blazek et al., 2019). In the end,

a careful analysis of the combined theoretical uncertainty is translated to a range of scales that

can be used for constraining cosmological parameters.

On the observational side one needs to perform a number of steps for translating pixelated

images to a reliable shape catalog; while a discussion of the this process is beyond the scope of

this thesis we refer to Mandelbaum (2018) for a recent review. Finally, it is required to being

able to accurately measure the redshift distribution n(z) of the galaxies. As most weak lensing

surveys do not measure the full galaxy spectrum, but instead opt for increasing the number of

observed galaxies by using a set of broad band �lters, the redshifts need to be estimated from just

a few �ux measurements. There are two main methods aiming to provide accurate estimates of

those photo-zs: Template �tting and machine learning.

In the template �tting approaches (Benitez, 2000; Bolzonella et al., 2000; Ilbert et al., 2006) one

uses a set of realistic templates to model a galaxies’ spectral energy distribution (SED); redshift-

ing the templates one obtains a synthetic photometry prediction for the survey. The redshift of

the best �tting SED template does then provide the photometric redshift prediction. One positive

feature of this method is that it is physically motivated and does not formally require additional

spectroscopy. On the other hand, if the set of template SEDs is not representative of the observed

galaxy SEDs, the predictions are much more prone to errors. Machine learning approaches (Col-

lister & Lahav, 2004; Wadadekar, 2005; Carrasco Kind & Brunner, 2014; Sadeh et al., 2016) make

use of a representative training set of galaxies from which they learn a global mapping between

photometry and redshifts. While not explicitly relying on individual SED templates, the lack of

su�ciently many realistic galaxy spectra will hinder the training set to be representative, such

that the generalization to the actual galaxies in the survey might induce biases.

For recovering the redshift distribution function n(z) from the individual photometric red-

shift estimates stacking does not pose a mathematically viable option (Malz, 2021) and further

calibration steps become necessary. One possibility (Lima et al., 2008) is given by reweighting a

spectroscopic sample such that it matches the observed properties (i.e. colors and magnitudes) of

the photometric one. The reweighted n(z) of the spectroscopic sample is then assumed to be an

unbiased estimate of the redshift distribution of the photometric sample. An alternative method

(Newman, 2008; Menard et al., 2013) makes use of the angular cross-correlations between the

photometric sample and any su�ciently overlapping and deep spectroscopic sample. Measuring
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this excess clustering in narrow redshift slices then allows to infer the n(z) of the photometric

sample. As both these methods are based on multiple nontrivial assumptions, recent surveys

have used used both approaches or more sophisticated combinations to calibrate a reliable n(z)

and to assess its uncertainties.

1.4 Statistical methods

1.4.1 Preliminaries

For all empirical sciences, at some point it becomes necessary to check whether our theoretical

models are compatible with observed data. The natural and unique formal language to carry out

such a judgement is given by probability theory (Cox, 1946; Jaynes, 2003; Van Horn, 2003) and

for this work we will choose the Bayesian framework as our tool.

The main probability P
(
H
∣∣∣ d, I) we are after governs how likely a hypothesis H is in the

light of some data d and previous information I . Applying Bayes theorem then allows us to

rephrase this probability in terms of a forward model from hypothesis to data, a prior and a

normalizing factor:

P
(
H
∣∣∣ d, I) =

P
(
d
∣∣∣ H, I)P

(
H
∣∣∣ I)

P
(
d
∣∣∣ I) . (1.40)

Specializing to the discipline of parameter inference we furthermore assume that the hypothesis

H consists of a theoretical modelMwhich can be described in terms of a set of parameters θ such

that the probability of θ conditioned on the data, model and background knowledge becomes

P
(
θ
∣∣∣ d,M, I

)
=

P
(
d
∣∣∣ θ,M, I

)
P
(
θ
∣∣∣M, I

)
P
(
d
∣∣∣M, I

) . (1.41)

In the scienti�c context, �nding a reasonable expressions for the likelihood P
(
d
∣∣∣ θ,M, I

)
re-

quires both, a theoretical model that is testable by the observations, as well as a su�cient under-

standing of the measurement process itself. On the other hand, the prior P
(
θ
∣∣∣M, I

)
may be

set to the posterior of earlier experiments or it can be chosen as an uninformative distribution.

For the remainder of this thesis we will neglect the evidence P
(
d
∣∣∣M, I

)
, but only note that it

also is an important quantity, i.e. for model comparison problems.
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1.4.2 Markov chain Monte Carlo methods

Theoretically, once Eq. (1.41) has been written down the problem of parameter inference is solved

and the relation just needs to be evaluated for su�ciently many values of θ. Practically, the story

is not over yet. For example, let us take a very naive approach and evaluate θ ∈ Rd on a regular

grid spanning some volume Ω ⊂ Rd with n points in each direction. Adopting such a brute-

force strategy is �awed in two fundamental ways: On the one hand, the number of evaluations

scales asO(nd) such that high dimensional parameter spaces cannot be probed. Even worse, we

do not a priori know whether the probed volume Ω does actually include any high probability

region. Markov Chain Monte Carlo methods comprise of multiple algorithms that deal with

aforementioned problems in a more e�cient and controlled way.

In a general setup, any MCMC algorithm that aims at sampling from a distribution π consists

of a stochastic process that generates a homogeneous Markov chain of variables θ. Such a chain

consists of a starting position θ(0) drawn from π, as well as a transition kernel T being de�ned

as8

T (θ(i) → θ(i+1)) ≡ P
(
θ(i+1)

∣∣∣ θ(i), · · · ,θ(0)
)

= P
(
θ(i+1)

∣∣∣ θ(i)
)
,

where the last equality follows from the Markov property. A useful transition kernel should leave

the distribution π invariant (stationary) and allow for a traversal through the whole parameter

space (ergodicity). When those conditions are ful�lled the distribution of elements within the

Markov chain will converge towards π. In practice one usually invokes the detailed balance

condition,

π(θ′)T (θ′ → θ) = π(θ)T (θ → θ′) , (1.42)

which states that the transition kernel has no speci�ed direction of ’time’. We can easily show

that detailed balance implies stationarity of π with respect to the chain:∫
dθ′ π(θ′)T (θ′ → θ) =

∫
dθ′ π(θ)T (θ → θ′) = π(θ)

∫
dθ′ P

(
θ′
∣∣∣ θ) = π(θ)

and all that is left to do is to devise an explicit form of T . The Metropolis−Hastings (MH) al-

gorithm (Metropolis et al., 1953; Hastings, 1970) is a simple example achieving that and it usu-

ally is also involved in more e�cient schemes. It works as follows: starting at some position

θ(i) a new location θ(i+1) is proposed according to some distribution g(θ(i+1)|θ(i)). One then

invokes an accept−reject step PA that results in either appending θ(i) (reject) or θ(i+1) (ac-

cept) to the chain. From this algorithm we can write down the associated transition kernel as
8 Formally, this is incorrect as in our models we deal with a continuous state space and therefore would need to

phrase all arguments in terms of measurable sets. As the main line of reasoning is not a�ected we will trade the
lack of mathematical rigor for a more simple presentation.
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TMH(θ(i) → θ(i+1)) = g(θ(i+1)|θ(i))PA(θ(i+1),θ(i)) and use it in conjunction with detailed

balance to derive an explicit form of the accept−reject step:

PA
(
θ(i+1),θ(i)

)
= min

1,
P
(
θ(i+1)

)
P
(
θ(i)) g

(
θ(i)|θ(i+1)

)
g
(
θ(i+1)|θ(i))

 . (1.43)

For the case of a symmetric proposal distribution g this simply implies that the step is always

accepted when it lies in a higher probability region, otherwise the proposal might be rejected

and the previous (more probable) sample is repeated. Having theoretically solved the stationarity

requirement we still need to �nd a way to practically test whether a chain has converged to π.

One example of such an empirical assessment is given by the Gelman-Rubin diagnostics (Gelman

& Rubin, 1992) in which one runsM randomly initialized chains of lengthN and then compares

the variance W within the chains to the variance B between the chains. In particular, we de�ne

the potential scale reduction factor

P̂SFR ≡

√
N − 1
N

+ M + 1
M

B̂

Ŵ
, (1.44)

which in the case of convergence should be close to unity. In practice one usually calls chains

with P̂SFR ≤ 1.1 for each parameter to have converged, although this value is not motivated

on theoretical grounds and should be chosen to relate to the experimenters required level of

convergence.

For very high dimensional or multimodal distributions π the MH algorithm will struggle to

converge in a computationally feasible timescale and more advanced MCMC approaches, such

as a�ne invariant ensemble and tempering methods (Goodman & Weare, 2010; Swendsen &

Wang, 1986), or Gibbs, slice and Hamiltonian sampling algorithms (Turchin, 1971; Geman &

Geman, 1984; Neal, 2003; Duane et al., 1987) need to be employed. In the following subsection

we will explore the Hamiltonian approach in a bit more detail. Other performant non-MCMC

Bayesian methods used in astronomical applications consist of nested sampling (Skilling, 2004)

and variational inference (Blei et al., 2017) methods.

1.4.3 Hamiltonian Monte Carlo

Hamiltonian Monte Carlo (HMC) (Duane et al., 1987; Neal, 2012; Betancourt et al., 2014; Betan-

court, 2017) is a sampling strategy that invokes methods from classical Hamiltonian dynamics to

construct transition kernels that are able to mostly evade the curse of dimensionality from which

a vanilla MH sampler usually su�ers from. For this subsection, we will match our equations to

the physical convention and denote the set of parameters we want to infer as q.
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At its core, HMC extends our target distribution π(q) : q ∈ Rn to a 2n−dimensional phase

space , π(p, q) = π(p|q)π(q) ≡ e−H(q,p) , where H plays the role of the Hamiltonian function

and p ∈ Rn are a set of auxiliary momentum variables9. If we assume the conditional to be in-

dependent of the positions, we can retain the target distribution by marginalizing e−H over the

momenta:
∫

dp e−H(q,p) = π(q)
∫

dp π(p|q) = π(q)
∫

dp π(p) = π(q). In this thesis we will

make the choice that π(p) = − ln [N (p|0,M)] and therefore the Hamiltonian becomes:

H(q,p) = − ln π(q)− 1
2p

TM−1p+ const. ≡ ψ(q) +K(p) (1.45)

For generating a new sample q′ from a starting position q, HMC proposes the following al-

gorithm:

1. Draw a set of momenta p according to π(p) and interpret the joint set (q,p) as a point in

phase space.

2. Propose a new set of variables (q′,p′) by evolving the Hamiltonian system for some pseudo-

time t according to the equations of motion

dq
dt = ∂H

∂p
= M−1p (1.46)

dp
dt = −∂H

∂q
= −∇qψ(q) . (1.47)

3. Perform an accept−reject step on the proposed state according to the rule PA(q′, q) ≡

TA(H−H′) ≡ min
(
1, e−H′+H

)
and update the chain.

In Fig. 1.7 we give a graphical interpretation of the above algorithm for the example of sampling

from a one dimensional unit Gaussian distribution; a proof that this procedure satis�es detailed

balance is presented in Appendix 1.B. We see that in HMC the simple random walk transition ker-

nel of MH is replaced by the projection of a Hamiltonian trajectory in phase space to the q basis

such that subsequent samples are less correlated and due to the conservation of the Hamilto-

nian we also expect to achieve very high acceptance rates independent of the dimensionality

of the problem. For the computation of the Hamiltonian trajectories we still need to �nd a dis-

cretization scheme that obeys the geometric structure of Hamiltonian mechanics - in particular

symplecticity. Fortunately, the theory of geometric integration (see Blanes & Casas (2016) for an

overview) allows for many such constructions. The most simple (second order) one is given by

the leapfrog integrator, which updates the positions and momenta in the following way:

9 Note that choosing the parametrization to be ∼ e−H is neccessary, as this form does not only constitute a prob-
ability measure, but it also guarantees that the distribution restricted to the level sets of H are invariant under
the Hamiltonian �ow restricted to that level set, see i.e. (Betancourt et al., 2014) or any textbook on mathematical
statistical mechanics.
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Figure 1.7 Step-by-step walkthrough of an HMC algorithm that samples from a one dimensional

unit Gaussian distribution, starting from an initial position q0. In the �rst step we draw the

momentum variable according to the prior distribution to get the initial point (q0,p) in phase

space (top left). We then evolve the system according the Hamilton equations of motion (1.46),

(1.47) to a new position (q1,p
′) in phase space (top middle); in our case (q,p) ∼ G(0,12) and

therefore the trajectories will follow a circular path. After checking that energy was conserved

along the trajectory we project back onto the q-axis to get our second sample q1 (top right).

The three panels in the bottom row show the combination of the previous steps for the next two

samples q2, q3 along with their associated energy level sets.

pt+ε/2 = pt −
ε

2∇qψ(qt)

qt+ε = qt + εM−1pt+ε/2 (1.48)

pt+ε = pt+ε/2 −
ε

2∇qψ(qt+ε) .

In these equations there are two parameters which we have not speci�ed yet and which do

strongly e�ect the performance of the sampler. On the one hand, the stepsize ε is respons-

ible for how long the trajectory will be and therefore how correlated subsequent samples are.

However, choosing a too large stepsize can result in an inaccurate integration (see left hand side

in Fig. 1.8) such that the trajectory leaves the energy hypersurface and therefore such a setting

might lead to high rejection rates. On the other hand, the mass matrix M tells the sampler how
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Figure 1.8 E�ects of hyperparameters on the Hamiltonian trajectories for the example a 100-

dimensional Gaussian with a non-trivial covariance structure. In both plots the elliptic contours

of an accurate implementation are shown as the solid lines. For the plot on the left we show a

pathological behaviour for three random dimensions when choosing a too large stepsize εwhich

will result in an inaccurate integration that does not properly trace the energy hypersurface.

On the right hand side we show the e�ect when adopting an inadequate mass matrix for an-

other three random dimensions. Such a di�erence in the implementation alters the shape of the

trajectories and therefore results in a slower convergence of the chains.

di�erent parameters of the chain are ’mixing’ during the evolution and one should �nd a good

balance between a mass that allows for fast mathematical operations (in particular inversion,

multiplication and Cholesky factorization), but does also approximate the posterior covariance

to a su�cient level. A prominent example is the Hessian of the potential, or its diagonal. In the

right hand side of Fig. 1.8 we show how the trajectories change when approximating a non-trivial

covariance matrix as the identity one.

We note that on the integrator side there have been developed composition methods (Creutz

& Gocksch, 1989; Yoshida, 1990) to construct higher order symplectic discretization schemes;

while those are more stable they are also numerically much more demanding and it depends on

the speci�c problem on whether they will lead to computational advantage over the standard

leapfrog method. On the sampling algorithm itself there exist many additional variations and

optimizations, the most heavily employed ones are NUTS (Ho�man & Gelman, 2011), which

introduced many hyperparameter autotuning methods, and Riemannian Manifold Hamiltonian

Monte Carlo (Girolami & Calderhead, 2011), in which one works within a Hamiltonian system

de�ned on a Riemannian Manifold, therefore taking into account the full posterior curvature

information.
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1.5 Thesis Overview

The research presented in this thesis is organized as follows. In chapter 2 we reproduce Porth

et al. (2020). We begin by introducing the the aperture mass statistics and di�erent ways on how

to estimate it. We then construct an e�cient estimation scheme for the second order statistics

and test its accuracy on a large suite mock catalogs constructed from ray-tracing simulations

and afterwards apply it to the CFHTLenS data. Chapter 3 has been submitted as Porth & Smith

(2021) and presents a more general construction of the estimator introduced in chapter 2 and

investigates up to which order one can to expect to measure the aperture mass statistics in a

KiDS-1000 like survey. In chapter 4 we assess the information content of projected galaxy �elds

when employing a forward modelling approach instead of the traditional analysis in terms of the

power spectrum.
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Appendix

1.A Details on the Limber approximation

In this appendix, which goes along a similar argument as Bartelmann & Schneider (2001), we

motivate the expression of the convergence power spectrum within the �at-sky and the Limber

approximation. Let us begin by manipulating the expression of the correlator of the convergence

(1.36) for a bit:

〈κ(θ1)κ(θ2)〉 ≡
∫ ∞

0
dχ1

∫ ∞
0

dχ2 G(χ1)G(χ2) 〈δ(χ1θ1, χ1)δ(χ2θ2, χ2)〉

=
∫ ∞

0
dχ1

∫ ∞
0

dχ2 G(χ1)G(χ2)
∫ d3k1

(2π)3

∫ d3k2
(2π)3 〈δ(k1, χ1)δ(k2, χ2)〉

× eik⊥,1·χ1θ1eik‖,1χ1eik⊥,2·χ2θ2eik‖,2χ2

=
∫ ∞

0
dχ1

∫ ∞
0

dχ2 G(χ1)G(χ2)
∫ d3k

(2π)3 P (k, χ1, χ2)

× eik⊥·χ1θ1eik‖χ1e−ik⊥·χ2θ2e−ik‖χ2 , (1.49)

where in the going to the second line we decomposed the the wavevector in its perpendicular

and parallel components with respect to the line of sight, k ≡ (k‖, k⊥) and in the last step intro-

duced the unequal time correlatorP (k, χ1, χ2) obeying a Fourier pair relation that is structurally

identical to (1.25):

〈δ(k1, χ1)δ(k2, χ2)〉 = (2π)3δD(k1 + k2)P (k1, χ1, χ2) . (1.50)

Let us now assume that the correlator vanishes for distances θ12 ≡ |θ2 − θ1| above some co-

herence scale Lcoh. and also that the light travel time across 2Lcoh. is su�ciently small such

that the kernel function G does not vary signi�cantly across those scales. De�ning χ ≡ χ1 and

∆χ ≡ χ2 − χ1 > 0 we can proceed with the following approximation:

〈κ(θ1)κ(θ2)〉 ≈
∫ ∞

0
dχ
∫ Lcoh.

−Lcoh.
d∆χ G(χ)G(χ+ ∆χ)

∫ d3k

(2π)3 P (k, χ, χ+ ∆χ)

× eik⊥·χθ1eik‖χe−ik⊥·(χ+∆χ)θ2e−ik‖(χ+∆χ)

≈
∫ ∞

0
dχ G2(χ)

∫ d3k

(2π)3 P (k, χ) eik⊥·χθ1eik‖χe−ik⊥·χθ2e−ik‖χ
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×
∫ Lcoh.

−Lcoh.
d∆χ e−ik‖∆χ

≈
∫ ∞

0
dχ G2(χ)

∫ d2k⊥
(2π)2 P (k⊥, χ)eik⊥·χ(θ1−θ2) , (1.51)

where in the approximation we adapted the integration area and in the second one truncated all

the Taylor expansions at zeroth order. For the �nal line we additionally assumed that k‖Lcoh. �

1 such that the innermost integral converges towards a delta function implying that within the

Limber approximation no wavemodes parallel to the line of sight contribute to the convergence

power spectrum. We now employ again the Fourier pair relation (1.25) to recover the expression

(1.39) of the convergence power spectrum in the Limber approximation:

Cκκ(`) =
∫

d2θ12 e−i`·θ12 〈κ(θ1)κ(θ2)〉

≈
∫ ∞

0
dχ G2(χ)

∫ d2k⊥
(2π)2 P (k⊥, χ)

∫
d2θ12 e−iθ12(`−k⊥χ)

=
∫ χmin

0
dχG

2(χ)
χ2 P

(
`

χ
, χ

)
, (1.52)

where in going to the second line we subbed (1.51) and in the �nal step used the scaling property

of the delta function. We note that the corresponding expressions for higher order spectra can be

obtained with an identical strategy. For more details on the Limber approximation, its limitations,

extensions and applications to tomographic weak lensing surveys we refer to Lemos et al. (2017)

and Kilbinger et al. (2017).

1.B Proof of detailed balance for HMC

In this appendix we follow the original work of Duane et al. (1987). At �rst let us �nd an analytic

way to write down the transition kernel associated with the HMC algorithm:

THMC(q → q′) =
∫

dp dp′ π(p)× TDyn.
[
(q,p)→ (q′,p′)

]
× TA(H−H′) .

Here, TDyn. is the transition matrix for the evolution of the dynamic system and TA is the trans-

ition kernel associated with a MH acceptance step. Recalling that π(q) = e−ψ(q) the detailed

balance condition now becomes

e−ψ(q)THMC(q → q′) = e−ψ(q)
∫

dp dp′ π(p) TDyn.
[
(q,p)→ (q′,p′)

]
TA(H−H′)

=
∫

dp dp′ e−H(q,p) TDyn.
[
(q,p)→ (q′,p′)

]
TA(H−H′) .

In theory detailed balance is ful�lled trivially as by the geometric structure of Hamiltonian sys-

tems the equations of motion are deterministic and time reversible and the energy is conserved.

In the real world this translates to the following set of requirements:
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1. The numerical integration of the equations of motions is time reversible - this requires us

to use a symplectic discretization scheme like leapfrog:

TDyn.
[
(q,p)→ (q′,p′)

]
= TDyn.

[
(q′,−p′)→ (q,−p)

]
2. The Hamiltonian is invariant under momentum reversal: H(q,p) = H(q,−p)

3. The joint MH acceptance e−HTA obeys detailed balance - let us quickly check that:

e−HTA(H−H′) ≡ e−H min{1, eH−H′} = min{e−H, e−H′}

= e−H
′ min{eH′−H, 1} = e−H

′
TA(H′ −H) �

4. The integration measure is area preserving: dp dp′ = d(−p) d(−p′) - this is obvious.

Now the proof becomes straightforward:

e−ψ(q) THMC(q → q′) =
∫

dp dp′ e−H(q,p) TDyn.
[
(q,p)→ (q′,p′)

]
TA(H−H′)

=
∫

dp dp′ e−H(q′,−p′) TDyn.
[
(q′,−p′)→ (q,−p)

]
× TA

[
H(q′,−p′)−H(q,−p)

]
=
∫

dp dp′ e−H(q′,p′) TDyn.
[
(q′,p′)→ (q,p)

]
TA(H ′ −H)

= e−ψ(q′) THMC(q′ → q) �

In going to the second line we used the �rst three requirements to rewrite the expression and in

the next step changed variables as (−p,−p′)→ (p,p′) and used the fourth requirement.
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2Fast estimation of

aperture mass

statistics I

Abstract

We explore an alternative method to the usual shear correlation function approach for

the estimation of aperture mass statistics in weak lensing survey data. Our approach builds

on the direct estimator method. In this paper, to test and validate the methodology, we focus

on the aperture mass dispersion. After computing the signal and noise for a weighted set

of measured ellipticites we show how the direct estimator can be made into a linear order

algorithm that enables a fast and e�cient computation. We then investigate the applicab-

ility of the direct estimator approach in the presence of a real survey mask with holes and

chip gaps. For this we use a large ensemble of full ray-tracing mock simulations. By using

various weighting schemes for combining information from di�erent apertures we �nd that

inverse variance weighting the individual aperture estimates with an aperture completeness

greater than 70% yields an answer that is in close agreement with the correlation function

approach. We then apply this approach to the CFHTLenS as a pilot scheme and �nd that

our method recovers to high accuracy the o�cial result for the variance of both the E and B

mode signal. We then explore the cosmological information content of the direct estimator

using the Fisher information approach. We show that there is a only modest loss in cosmolo-

gical information from the rejection of apertures that are of low completeness. This method

unlocks the door to e�cient methods for recovering higher order aperture mass statistics in

linear order operations.

2.1 Introduction

Weak gravitational lensing of the light from galaxies is a key tool for constraining the cosmolo-

gical parameters and distinguishing between competing models of the Universe (Blandford et al.,

1991; Kaiser, 1998; Zhang et al., 2007). The �rst measurements of the correlations in the shapes
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of distant background galaxy images are now over two decades old (Bacon et al., 2000; Kaiser

et al., 2000; Van Waerbeke et al., 2000; Wittman et al., 2000) and the �eld of cosmic shear has

rapidly matured from these early pioneering studies that mapped of the order a square degree,

to the modern surveys KiDS1, DES2 and HSC3, which are mapping thousands of square degrees

(Hildebrandt et al., 2017; Troxel et al., 2018; Aihara et al., 2018; Hikage et al., 2019). The next

decade will herald in new surveys like Euclid4 and LSST5 that will map volumes close to the

entire physical volume of our observable Universe (Laureijs et al., 2011; LSST, 2009). This will

mean that our ability to extract information from such rich data sets will depend almost entirely

on our ability to understand and model the complex nonlinear physics involved and our ability

to optimally correct or mitigate the systematic errors.

In the last decade, much e�ort has been invested in extracting cosmological information

from the two-point shear correlation functions, and attempts have been made to carefully ac-

count for all systematic e�ects, such as PSF corrections, bias in the ellipticiy estimator, intrinsic

alignments (Schneider, 2006b; Massey et al., 2013; Troxel & Ishak, 2015). The two-point shear cor-

relation functions are the lowest order statistics that are of interest and if the convergence �eld

were a Gaussian random �eld, then they would contain a complete description of the statistical

properties of the cosmic shear signal. However, the distribution of observed galaxy ellipticities

are non-Gaussian due to various e�ects: �rstly, the nonlinear growth of large-scale structure

induces the coupling of density modes on di�erent scales (Bernardeau et al., 2002); secondly, the

estimator for shear from ellipticity is a nonlinear mapping (Miralda-Escude, 1991); thirdly, the

violation of the Born approximation and the lens-lens coupling also lead to non-Gaussianity in

the shear maps (Hilbert et al., 2009). This all leads to a ‘�ow’ of information into the higher order

statistics (Taylor & Watts, 2001). A consequence of this is that the errors on measurements of

the convergence power spectrum become highly correlated on small scales, limiting the amount

of additional information that can be recovered by pushing down to smaller scales (Sato et al.,

2011; Hilbert et al., 2012; Kayo et al., 2013; Marian et al., 2013).

The need to go beyond the simple two-point analysis of the data has been highlighted by a

number of authors (see for example Sefusatti et al., 2006; Byun et al., 2017). For example, it is well

known that ξ+ and ξ− exhibit a degeneracy between the amplitude of matter �uctuations σ8 and

the matter density parameter Ωm, which scales as σ8Ω0.5
m . One way to break this degeneracy is by

combining the information from the 2-point and 3-point shear correlation functions (Kilbinger

1 kids.strw.leidenuniv.nl
2 www.darkenergysurvey.org
3 hsc.mtk.nao.ac.jp/ssp/
4 www.cosmos.esa.int/web/euclid
5 www.lsst.org
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& Schneider, 2005; Semboloni et al., 2011; Fu et al., 2014); another way is through adding in the

information found in the statistical properties of the peaks in the shear �eld (Marian et al., 2013;

Kacprzak et al., 2016). Given the potential of the non-Gaussian probes to tighten constraints on

cosmology and break model and nuisance parameter degeneracies, it is important to study how to

optimally measure them, determine how systematics a�ect them, and to improve the modelling

of them. This work will be essential to undertake, if we are to take full advantage of surveys like

KiDS, DES, HSC, Euclid and LSST.

One of the bottlenecks for accessing the information in the higher-order statistics is that they

are challenging quantities to work with. For example, owing to the fact that the shear is a spin-

2 �eld, there are in principle 2n correlation functions to measure for each nth order cumulant

(Schneider & Lombardi, 2003; Takada & Jain, 2003; Jarvis et al., 2004; Kilbinger & Schneider,

2005). Building the necessary computational tools to measure the 3- and 4-point shear correlation

functions is technically challenging and will require large amounts of CPU time to compute

all possible con�gurations (Jarvis et al., 2004; Kilbinger et al., 2014). This is especially true if

measurement-noise covariance matrices are to be derived from mock catalogues. In addition,

the shear correlation functions are not necessarily the best quantity to measure since they are

not E/B mode decomposed (Schneider et al., 2002b; Schneider & Kilbinger, 2007a).

A powerful method to disentangle systematic e�ects from cosmic shear signals is the E/B

decomposition (Crittenden et al., 2001; Schneider et al., 2002b). At leading order, pure weak

lensing signals are sourced by a scalar lensing potential, which means that their de�ection �elds

are curl free. Equivalently, the ring-averaged cross component of the shear is expected to be

zero (the B mode), while the tangential one contains all the lensing signal (the E mode). Thus B

modes enable a robust test for the presence of systematic errors. One method to take advantage

of this E/B decomposition is the so-called ‘aperture mass statistics’ �rst introduced by Schneider

et al. (1998). ‘Aperture mass’ (Map) and ‘Map-Cross’ (M×) are obtained by convolving the

tangential and cross shear with an isotropic �lter function. Therefore by construction they are

E/B-decomposed. Taking the second moment leads to the variance of aperture mass, the third to

its skewness etc.

The standard approach for measuring the aperture mass statistics in data utilises the fact

that, for the �at sky, any n-point moment can be expressed in terms of integrals over the n-point

shear correlation functions, modulo a kernel function (Schneider et al., 2002b; Jarvis et al., 2004).

The reason for adopting this strategy stems from the fact that for a real weak lensing survey,

the survey mask is a very complicated function: �rstly there are survey edges; next, bright stars

and their di�raction halo need to be drilled out; chip gaps, if not accounted for in the survey
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dither pattern, can lead to additional holes. This small-scale structure in the survey mask means

that in order to make the most of the survey data one should measure the correlation functions.

However, this approach is not without issue: for example, for the correlation function estimator

of the aperture mass dispersion to be accurate and E/B decomposed, one needs to measure ξ+

and ξ− in angular bins su�ciently �ne for the discretisation of the integrals to be reliable (Fu

et al., 2014). Further, one also needs to measure the correlation function on scales ϑ ∈ [0, 2ϑ]

for the polynomial �lter function of Schneider et al. (1998). Owing to galaxy image blending,

signal-to-noise issues and the �nite size of the survey, the lower bound is never possible and

the upper bound means that biases can occur due to edge e�ects. This leads to so called E/B

leakage (Kilbinger & Schneider, 2005). In addition, while the mean estimate is unbiased, the

covariance matrix does require one to carefully account for the mask (Schneider et al., 2002a;

Friedrich et al., 2016). More recent developments that also make use of the shear correlation

functions, while circumventing the issues of E/B leakage on small scales are the ring statistics

and COSEBIs (Schneider & Kilbinger, 2007a; Schneider et al., 2010).

In this paper, we take a di�erent approach and explore the direct estimators of the aperture

mass statistics, which were �rst proposed in Schneider et al. (1998). Rather than measuring the

correlation functions of the shear polar, only to reduce them by integration to a scalar, we in-

stead directly measureMap for a set of apertures and then use an optimised weighting scheme

to average the estimates. As we will show in what follows, this approach has some signi�cant

advantages over the correlation function approach. In addition to the variance, one can also

measure higher order statistics, such as the skewness and kurtosis, with very little additional

computational complexity, code modi�cation or CPU expense (see Porth et al. in preparation).

These e�ciencies will also potentially enable fast computation of covariance matrices and thus

rapid exploration of the likelihood surface for such statistics. The possible down sides to this ap-

proach, which we explore, are the potential loss of cosmological information arising due to the

fact that some incomplete apertures will be rejected. On the other hand, we will also explore the

possibility of not rejecting all incomplete apertures, but accepting/weighting apertures based on

criteria such as coverage factor and the signal-to-noise. This will lead to E/B leakage, however,

as we will show the levels of leakage can be made su�ciently small so that the statistic is accur-

ate within the required errors. As a practical demonstration of this approach we apply it to the

CFHTLenS data and present a careful comparison of it with the two-point correlation function

method. Lastly, we make use of a large suite of mock catalogues to study the cosmological in-

formation content of the two methods for a nominal CFHTLenS like survey and show that there

is no substantial loss of information.



34 2.2 Theoretical background

The paper breaks down as follows: In §2.2 we de�ne the key theoretical concepts for weak

shear and introduce our notation. In §2.3 we de�ne the aperture mass and give expressions for

the aperture mass variance in terms of the matter power spectrum, we also give the alternative

relation between it and the shear correlation functions. In §2.4 we develop the direct estimator

methodology, giving an explicit computation for the mean and variance in the presence of el-

lipticity weights and also show how the direct estimator can be accelerated and made e�ectively

linear order in the number of galaxies and number of apertures. We discuss various strategies

for combining estimates from an ensemble of apertures that give both, high signal-to-noise and

a small bias induced by including incomplete apertures. In §2.5 we turn to the analysis of the

CFHTLenS data. We give an overview of the data we use and also the mock catalogues that

we generate to test for systematic errors. As a preliminary analysis we present the aperture

mass maps for the survey. In §2.6 we investigate the bias of the direct estimator induced by the

CFHTLenS mask through measuring the aperture mass variance on the mock catalogues and

comparing it to the results obtained when using the correlation function method. After determ-

ining the weighting scheme that induces the smallest bias we use it to measure the aperture mass

variance on the true CFHTLenS data and compare it to the analysis presented in Kilbinger et al.

(2013). We also check how the results change when removing blended sources from the data. In

§2.7 we use the mock catalogues to investigate the cosmology dependence and the information

content of both estimators via the Fisher information. Finally, in §2.8 we summarise our �ndings,

conclude and discuss future work.

2.2 Theoretical background

2.2.1 Basic cosmic shear concepts

In this paper we are principally concerned with the weak lensing of distant background galaxy

shapes by the intervening large-scale structure (Blandford et al., 1991; Kaiser, 1998; Seitz et al.,

1994; Jain & Seljak, 1997; Schneider et al., 1998); see Bartelmann & Schneider (2001); Dodelson

(2003, 2017) for reviews. The two fundamental quantities describing this mapping from true to

observed galaxy images are the convergence κ and the shear γ which, assuming a metric theory

of gravity, are both derived from an underlying scalar lensing potential. In a cosmological setting

the convergence at angular position θ and radial distance χ can be connected to the density

contrast δ(χθ, χ) as:

κ(θ, χ) = 3
2Ωm,0

(
H0
c

)2 ∫ χ

0
dχ′ (χ− χ

′)χ′

χ a(χ′) δ(χ′θ, χ′) , (2.1)
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where Ωm,0 is the total matter density, H0 denotes the Hubble constant, a is the scale factor and

c the speed of light.

In a real survey we will not necessarily have access to the precise redshifts of each source

galaxy. Instead, we will typically have the redshift distribution of sources determined through

photometric redshift estimates. Hence, the e�ective convergence will be obtained by averaging

over the source population pχ:

κ(θ) =
∫ χH

0
dχ pχ(χ)κ(θ, χ)

= 3
2Ωm,0

(
H0
c

)2 ∫ χH

0
dχ′ χ′

a(χ′)g(χ′)δ(χ′θ, χ′) , (2.2)

where χH is the comoving distance to the horizon and the weight function g(χ) is de�ned as

g(χ′) ≡
∫ χH

χ′
dχ pχ(χ)χ− χ

′

χ

= 1
NTOT

∫ zH

z(χ′)
dz dN(z)

dz
(χ(z)− χ′)

χ(z) , (2.3)

where we used that the weight function can be equivalently written in terms of the di�erential

number counts by noting that pχ(χ)dχ = pz(z)dz = (dN/dz)/NTOT.

In the left panel of Figure 2.1 we show the redshift distribution of galaxies in the CFHTLenS for

the four �elds W1, W2, W3 and W4 and the total obtained for the combination of all �elds. They

were obtained by averaging over the BPZ posterior including the lens weights. One can clearly

see that there are signi�cant �eld to �eld variations in the redshift distributions, with the W2

and W4 �elds showing the largest deviations from the mean in the range z ∈ [0.2, 0.4] for W2

and z ∈ [0.5, 0.7] for W4, respectively. The shaded region in the plot shows the standard error

region on the mean. This was estimated using a jackknife resampling of the data.

The right panel of Figure 2.1 shows the lensing weight function g(z) computed using the

estimated distribution function p(z) shown in the left panel for the CFHTLenS. We see that while

there are features in the p(z) distribution, these are e�ectively washed out when computing the

lensing weights for the population. In fact, the most signi�cant outlier is the W2 �eld, which

appears to have a slightly high amplitude for redshifts z > 1.5.

2.2.2 Tangential and cross shear

Owing to the fact that gravity only ‘excites’ certain shear patterns we wish to rotate the shear

into the frame where we can more easily separate out these modes. This is done by decomposing

the shear into ‘tangential’ and ‘cross’ components. Consider the shear �eld at a position vector

θ + θ0, where θ0 is an arbitrary location and θ is a radial vector centred on θ0. We may rotate
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Figure 2.1 Left hand side: Redshift probability density distribution of galaxies in the W1, W2,

W3 and W4 �elds of the CFHTLenS as a function of redshift (i.e. dN/dz/NTOT versus z). The

coloured solid lines show the results for the individual �elds and the dashed black line shows

the total for the combined �elds. error bars and the grey shaded band show the 1σ con�dence

regions, obtained from a jackknife resampling of the survey area. Right hand side: The weight

function g(χ(z)) given in Eq. (2.3) as a function of redshift for the four CFHTLenS�elds and the

combined set. Line styles and colours are as in the left panel.

the shear �eld by the polar angle of the separation vector θ to obtain the tangential and cross

components (Bartelmann & Schneider, 2001):

γt(θ;θ0) ≡ −<
[
γ(θ + θ0)e−2iφ

]
; (2.4)

γ×(θ;θ0) ≡ −=
[
γ(θ + θ0)e−2iφ

]
, (2.5)

where φ is the polar angle associated with the vector θ. The main advantage of this transform-

ation is that for an axially-symmetric mass distribution, the shear is always tangentially aligned

relative to the direction towards the origin of the mass distribution and the cross component will

vanish. This result is not true for any randomly selected point for the origin. However, if we

average the tangential shear over a ring it can be related to the enclosed surface mass density κ:

〈γt(θ;θ0)〉circ = κ(θ;θ0)−〈κ(θ;θ0)〉circ. On the other hand, if we ring average the cross-shear

it will vanish: 〈γ×(θ;θ0)〉circ = 0 (Kaiser, 1995; Schneider, 1996).

2.3 Aperture mass measures for cosmic shear

In this paper we are primarily concerned with the statistical properties of the ring averaged

tangential shear integrated over a �lter function with compact support – the aperture mass.
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2.3.1 Aperture Mass

Aperture mass was developed by Schneider (1996) as a technique for using a weighted set of

measured shears within a circular region to estimate the enclosed projected mass overdensity. It

can be de�ned as follows: consider an angular position vector in the survey θ0, and let us compute

the tangential shear �eld around this point. Aperture mass is now de�ned as the convolution of

the tangential shear with a circularly-symmetric �lter function Q, with a characteristic scale ϑ,

above which the �lter functions are typically set to zero. It can be expressed as:

Map(θ0;ϑ) ≡
∫

R2
d2θ1γt(θ1;θ0)Q(|θ1 − θ0|;ϑ) . (2.6)

In a similar vein one can also de�ne the cross component of aperture mass, which we refer to as

‘map-cross’:

M×(θ0;ϑ) ≡
∫

R2
d2θ1γ×(θ1;θ0)Q(|θ1 − θ0|;ϑ) . (2.7)

In the absence of systematic errors (B-modes) in the lensing data, map-cross should vanish.Map

andM× are therefore said to be E/B decomposed (Schneider et al., 2002b).

As was proven by Schneider (1996), owing to the fact that the shear and convergence are

sourced by the same scalar potential, one can derive an equivalent relation to that above, but

computed by convolving the convergence κ with a di�erent �lter function U :

Map(θ0;ϑ) =
∫

R2
d2θ1κ(θ1)U(|θ1 − θ0| ;ϑ) . (2.8)

It is important to note that the �lter functions Q and U are not independent of one another, but

are related (Schneider, 1996):

Q(θ;ϑ) = 2
θ2

∫ θ

0
dθ′θ′U(θ′;ϑ)− U(θ;ϑ) ; (2.9)

U(θ;ϑ) = 2
∫ ∞
θ

dθ′

θ′
Q(θ′;ϑ)−Q(θ;ϑ) . (2.10)

Also, it is worth noting that the U �lter is a compensated function (Bartelmann & Schneider,

2001).

For this work we will be using a polynomial �lter function introduced in Schneider et al.

(1998):

Q(θ;ϑ) = 6
πϑ2

(
θ

ϑ

)2 [
1−

(
θ

ϑ

)2]
H(ϑ− θ) , (2.11)

whereH(x) is the Heaviside function.
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2.3.2 Aperture mass variance

For cosmic shear, the expectation of the aperture mass around a randomly selected point van-

ishes, since 〈κ〉 = 〈γt〉 = 0. Thus, the lowest order non-zero quantity of interest is the variance.

Using Eq. (2.6) the variance of the aperture mass can be written as:〈
M2

ap

〉
(θ0;ϑ) =

∫
R2

d2θ1d2θ2 〈γt(θ1;θ0)γt(θ2;θ0)〉

×Q(|θ1 − θ0|;ϑ)Q(|θ2 − θ0|;ϑ) . (2.12)

Using Eq. (2.8) we see that this can be equivalently written as:〈
M2

ap

〉
(θ0;ϑ) =

∫
R2

d2θ1d2θ2 〈κ(θ1)κ(θ2)〉

× U(|θ1 − θ0| ;ϑ)U(|θ2 − θ0| ;ϑ) . (2.13)

The Fourier transform of the convergence, κ̃, is de�ned as follows:

κ(θ) ≡
∫

R2

d2`

(2π)2 κ̃(`)e−i`·θ. (2.14)

On using the above transform in Eq. (2.13) we �nd:〈
M2

ap

〉
(θ0;ϑ) =

∫
R2

d2θ1d2θ2

∫
R2

d2`1
(2π)2

d2`2
(2π)2 〈κ̃(`1)κ̃(`2)〉

× e−i(`1·θ1+`2·θ2)U(|θ1 − θ0| ;ϑ)U(|θ2 − θ0| ;ϑ) . (2.15)

We next use the statistical homogeneity and isotropy of the correlations of κ(θ) to de�ne the

convergence power spectrum:

〈κ̃(`1)κ̃(`2)〉 = (2π)2δD(`1 + `2)Cκκ(`1) . (2.16)

On inserting this into Eq. (2.15) and integrating over the Dirac delta function we see that the

aperture mass variance can be written:〈
M2

ap

〉
(ϑ) =

∫
R2

d2`

(2π)2Cκκ(`)
∣∣∣Ũ(`;ϑ)

∣∣∣2 . (2.17)

where

Ũ(`;ϑ) =
∫

R2
d2y ei`·yU(|y| ;ϑ) . (2.18)

To progress we need to relate the convergence power to the matter power spectrum P . In the

small-scale limit and under the Limber approximation, one �nds:

Cκ(`) = 9
4Ω2

m,0

(
H0
c

)4 ∫ χH

0
dχg

2(χ)
a2(χ)P

(
`

χ
, χ

)
. (2.19)

In addition, on inserting Eq. (2.11) into Eq. (2.18) one �nds that Ũ(`;ϑ) = 24J4(`ϑ)/(`ϑ)2. In-

serting these results into Eq. (2.17) we have (Schneider et al., 1998):〈
M2

ap

〉
(θ0;ϑ) = 1

ϑ2
242

2π
9
4Ω2

m,0

(
H0
c

)4 ∫ χH

0
dχg

2(χ)
a2(χ)

∫ ∞
0

dyJ
2
4 (y)
y3 P

(
y

ϑχ
, χ

)
.
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2.3.3 Aperture mass variance from shear correlation functions

As discussed earlier, the standard method for estimating the aperture mass variance is through

the two-point shear correlation functions. Let us make that connection explicit. The complex

shear �eld has two non-vanishing two-point correlation functions that can be written in terms

of its tangential and cross-components as (Schneider et al., 2002b):

ξ+(θ) ≡ 〈γt(θ1;θ2)γt(θ2;θ1)〉+ 〈γ×(θ1;θ2)γ×(θ2;θ1)〉 ; (2.20)

ξ−(θ) ≡ 〈γt(θ1;θ2)γt(θ2;θ1)〉 − 〈γ×(θ1;θ2)γ×(θ2;θ1)〉 , (2.21)

where in this subsection θ ≡ |θ1 − θ2|. It can be shown that ξ+ and ξ− can be written in terms

of the convergence power spectrum as:

ξ+(θ) =
∫

R2

d2`

(2π)2Cκκ(`)J0(`θ) ; (2.22)

ξ−(θ) =
∫

R2

d2`

(2π)2Cκκ(`)J4(`θ) . (2.23)

Using the orthogonality of the Bessel functions we can invert the above expressions to obtain

the convergence power spectrum:

Cκκ(`) = 2π
∫ ∞

0
dθθξ+(θ)J0(`θ) ; (2.24)

= 2π
∫ ∞

0
dθθξ−(θ)J4(`θ) . (2.25)

The important consequence of the above relations is that we can now rewrite the aperture mass

variance using the shear correlation functions. On substitution of Eqs. (2.24) and (2.25) into

Eq. (2.17) one �nds (Schneider et al., 2002b):

〈
M2

ap

〉
(θ0;ϑ) =

∫
R2

d2`

(2π)2

∣∣∣Ũ(`;ϑ)
∣∣∣2 π [∫ ∞

0
dθθξ+(θ)J0(`θ) +

∫ ∞
0

dθθξ−(θ)J4(`θ)
]
.

(2.26)

On reordering the integrals over ` and θ, we see that the above can be written more compactly

as:

〈
M2

ap

〉
(θ0;ϑ) = 1

2ϑ2

∫ ∞
0

dθθ
[
ξ+(θ)T+(θ|ϑ) + ξ−(θ)T−(θ|ϑ)

]
, (2.27)

where

T+(θ|ϑ) ≡
∫ ∞

0
d``

∣∣∣Ũ(`;ϑ)
∣∣∣2 J0(`θ) , (2.28)

T−(θ|ϑ) ≡
∫ ∞

0
d``

∣∣∣Ũ(`;ϑ)
∣∣∣2 J4(`θ) . (2.29)
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Once again, on adopting the Schneider polynomial �lter Eq. (2.11) we see that the above kernels

have an analytic form (Schneider et al., 2002b):

T+(y) = H(2− y)
100π

[
240

(
2− 15y2

)
cos−1

(
y

2

)
+ y

√
4− y2

×
(
120 + 2320y2 − 754y4 + 132y6 − 9y8

) ]
; (2.30)

T−(y) = 192
35πy

3
(

1− y2

4

)7/2

H(2− y) , (2.31)

where in the above y ≡ θ/ϑ.

There are several important things to note about this: �rst, for the case of the Schneider

polynomial �lter function, one needs to measure ξ+ and ξ− over the range θ ∈ [0, 2ϑ], meaning

that we need information from scales close to zero separation. The correlations on small scales

can not be accurately measured and will be dominated by image blending issues and shape noise

(Kilbinger et al., 2006). Second, the integration to obtain the variance from Eq. (2.27) can only

be approximately done using a set of discrete bins which need to be su�ciently dense and non

empty. The result of all of this is that there will be some amount of E/B leakage, which will lead

to a suppression of the signal on small scales (Kilbinger et al., 2006). The �rst issue is also a

problem for the direct estimator, but the second is not.

2.4 Estimating the aperture mass statistics

As discussed in the previous section, there are two approaches to estimating the aperture mass

statistics. The correlation function approach outlined in the previous section has been studied

in great detail. The direct estimator approach that we explore in this work has not been as well

explored, we therefore now describe our extension of this approach in some detail.

2.4.1 The direct estimator for the aperture mass dispersion for a single �eld –

including the source weights

Here we follow Schneider et al. (1998), but extend the work to include a set of arbitrary weights

for each source galaxy. Let us �rst introduce the direct estimator of the aperture mass dispersion

for a single �eld. Consider an aperture of angular radius ϑ, centred on the position θ0,k. The

aperture contains Nk galaxies with positions θi with complex ellipticities εi. For the case of

weak lensing the observed ellipticities and intrinsic ellipticities ε(s)i are approximately related

though εi = γi+ ε
(s)
i . In complete analogy to the de�nition of tangential and cross shear de�ned
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in Eqs. (2.4) and (2.5) we de�ne the same quantities for the tangential and cross components of

ellipticity: εt = −<
[
ε e−2iφ

]
and ε× = −=

[
ε e−2iφ

]
, where the polar angle φ is relative to the

origin θ0,k. Our estimator for the aperture mass variance is de�ned as:

̂M2
ap(ϑ|θ0,k) := (πϑ2)2

∑Nk
i

∑Nk
j 6=iwi wj Qi Qjεt,i εt,j∑Nk
i

∑Nk
j 6=iwiwj

, (2.32)

where wi are weights assigned to the ith galaxy, the Qi ≡ Q(|θi|;ϑ) and where εt,i is the ob-

served tangential ellipticity of the ith galaxy measured with respect to the origin θ0,k. Note that

since the double sum will occur repeatedly, we will use the short-hand notation
∑Nk
i

∑Nk
j 6=i →∑

i 6=j for brevity. We will also suppress the origin θ0,k and also take Nk = N .

One can show that this provides an unbiased estimator for the true aperture mass dispersion,

E [

In Appendix 2.A we also calculate the variance of the estimator Eq. (2.32) and, for a moment

suppressing ϑ, we �nd that it can be written as:

Var
[
M̂2

ap

]
=
∑
l 6=k 6=j 6=iwiwjwkwl(∑

j 6=iwiwj
)2

〈
M4

ap

〉
+ 4

∑
k 6=j 6=iw

2
iwjwk(∑

j 6=iwiwj
)2

〈
M2

apMs,2
〉

+ 2
∑
j 6=iw

2
iw

2
j(∑

j 6=iwiwj
)2

〈
M2

s,2

〉
+

2
∑
k 6=i 6=j wiw

2
jwk(∑

j 6=iwiwj
)2 σ2

εG
〈
M2

ap

〉

+
2
∑
j 6=iw

2
iw

2
j(∑

j 6=iwiwj
)2σ

2
εG 〈Ms,2〉+

∑
j 6=iw

2
iw

2
j

2
(∑

j 6=iwiwj
)2σ

4
εG

2 −
〈
M2

ap

〉2
, (2.33)

where G andMs,2 are as de�ned as:

〈Ms,2〉(ϑ) ≡ πϑ2
∫

d2θ Q2(|θ|;ϑ)〈γ2
t 〉(θ) ;

G(ϑ) ≡ πϑ2
∫

d2θ Q2(|θ|;ϑ) . (2.34)

Importantly, in the limit where all of the source galaxy weights are equal we recover the expres-

sion derived in Schneider et al. (1998).

It is interesting to obtain an approximate form for the above variance. Firstly, let us consider

the case where the number of galaxies per aperture is large such thatN � 1, whereupon we see

that all of the partial sums are approximately equivalent to the full sums, e.g.
∑
i

∑
j 6=iwiwj ≈

(
∑
iwi)2. Consequently, all of the prefactors involving the weights can be dramatically simpli�ed

to give:

lim
N→∞

Var
[
M̂2

ap

]
≈
〈
M4

ap

〉
+ 4S2

〈
M2

apMs,2
〉

+ 2S2
2

〈
M2

s,2

〉
+ 2S2σ

2
εG
〈
M2

ap

〉
+ 2S2

2σ
2
εG 〈Ms,2〉
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+ 1
2S

2
2σ

4
εG

2 −
〈
M2

ap

〉2
, (2.35)

where we de�ned S2 ≡
∑
iw

2
i /(
∑
iwi)2. Let us inspect the quantity S2 in more detail: the

Cauchy-Schwarz inequality tells us that
(∑N

i uivi
)2
≤
∑N
i u

2
i

∑N
j v

2
j , where the elements of

the sets {ui} and {vi} are drawn from the reals. If we take vi = v for any i, then we see that(∑N
i ui

)2
≤
∑N
i u

2
iN , which in turn implies 〈u〉2 ≤

〈
u2〉. On applying this to our ratio S2 we

see that:

S2 ≡
1
N

w2

w2 ≥
1
N

(2.36)

wherew2 =
∑
iw

2
i /N andw =

∑
iwi/N . This insight leads us to make our next approximation,

sinceMs,2 ∼M2
ap we see that S2Ms,2 �M2

ap, since S2 ∝ 1/N . This, then, leads us to write:

lim
N→∞

Var
[
M̂2

ap

]
≈
〈
M4

ap

〉
+ 2S2σ

2
εG
〈
M2

ap

〉
+ 1

2S
2
2σ

4
εG

2 −
〈
M2

ap

〉2
. (2.37)

Thirdly, let us further assume that the underlying shear �eld is Gaussian and hence
〈
M4

ap

〉
=

3
〈
M2

ap

〉2
. Under these circumstances, which will be ful�lled for large apertures, the variance

can be written as:

Var
[
M̂2

ap

]
≈ 2

〈
M2

ap

〉2
+ 2S2σ

2
εG
〈
M2

ap

〉
+ 1

2S
2
2σ

4
εG

2

=
(√

2
〈
M2

ap

〉
+ 1√

2
S2Gσ

2
ε

)2
. (2.38)

The �rst term in the bracket is cosmic variance and the last term denotes the shape noise contri-

bution.

The left panel of Figure 2.2 shows the error on a given estimate from a single aperture, us-

ing Eq. (2.38). The right panel shows the corresponding prediction of the signal-to-noise on the

aperture mass variance, per aperture, again using Eq. (2.38). In order to generate these prediction

we have used (2.20) as a model for the cosmic variance contribution.

2.4.2 Acceleration of the direct estimator

If we were to naively implement the direct estimator approach as given by Eq. (2.32) then we see

that in order to compute the estimate of the variance for a single aperture we need to compute

the sum fromN(N −1) galaxies. Thus one might conclude that the method scales as typicalN2

pair counting approach for galaxies inside the aperture. However, we now show that the method

can be made to scale linearly with the number of galaxies. Let us consider again the estimator

from Eq. (2.32), and we notice that if we put back the term that has i 6= j and explicitly subtract
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Figure 2.2 Left hand side: Contributions to the variance of the estimate of the aperture mass

dispersion in the CFHTLenS data for a single aperture. We show the two contributions to the

variance as predicted from (2.38) as well as the combined result. Note that in adopting (2.38) we

have assumed that the convergence is Gaussianly distributed. Right hand side: The theoretical

signal-to-noise per aperture as a function of the aperture size ϑ in the CFHTLenS data. The black

dotted line shows the cosmic variance limit.

it then we have:

̂M2
ap(ϑ|θ0,k) = (πϑ2)2

∑
i,j wi wj Qi Qj εt,iεt,j∑

i 6=j wiwj
− (πϑ2)2

∑
iw

2
i Q

2
i ε

2
t,i∑

i 6=j wiwj
. (2.39)

If we now introduce the estimators for aperture mass andMs,2 as discretised versions of their

de�nition,

̂Map(ϑ|θ0,k) ≡ (πϑ2)
∑
iwi Qiεt,i∑

iwi
(2.40)

̂Ms,2(ϑ|θ0,k) ≡ (πϑ2)
∑
iw

2
i Q

2
i ε

2
t,i∑

iw
2
i

, (2.41)

we see that Eq. (2.39) can be rewritten as:

̂M2
ap(ϑ|θ0,k) = 1

1− S2

(
πϑ2∑

iwi Qiεt,i∑
iwi

)2

− πϑ2

1
S2
− 1

πϑ2
∑
iw

2
i Q

2
i ε

2
t,i∑

iw
2
i

= 1
1− S2

[
(M̂ap)2

k − S2πϑ
2(M̂s,2)k

]
, (2.42)

where for brevity we used the notation (M̂ap)k ≡ ̂Map(ϑ|θ0,k) and (M̂s,2)k ≡ ̂Ms,2(ϑ|θ0,k).

Note that both terms in the brackets receive an identical contribution of shape noise, hence the

second term should not be neglected.

In general, the estimator Eq. (2.42) is mathematically identical to that of Eq. (2.32) and there-

fore is also an unbiased estimator for the variance of the aperture mass. However, algorithmically

it has a signi�cant advantage in that it is linear in the number of galaxies. This owes to the fact
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that all of the terms on the right-hand-side of Eq. (2.42) are linear in N . For example, the es-

timator (M̂ap)k is linear, so too are the correction factors (M̂s,2)k and S. As we will show in

the second paper in this series (Porth et al., in prep.), it can be shown that this can be naturally

extended to higher order aperture mass statistics. This acceleration of the method to linear order

opens the door to a signi�cant advantage in speed for estimation of aperture mass statistics at

all orders.

2.4.3 Extending the estimate to an ensemble of �elds

The estimator Eq. (2.42) is for a single aperture k and as such will provide a single low-signal-to-

noise, albeit unbiased, estimate. We now wish to make use of the full area of the survey available

to us. We are therefore confronted as to how to best achieve this. As proposed by Schneider et al.

(1998), one simple approach would be to sample well separated apertures such that the shear in

one �eld is statistically independent from another. This would yield the estimator:

M̂2
ap(ϑ) =

∑
kWk

̂M2
ap(ϑ|θ0,k)∑
kWk

, (2.43)

where Wk are weights and the sum extends over the Nap apertures. Since the estimates can

be considered to be statistically independent then the noise can be minimised by choosing the

weights to be given by:

Wk ∝
1

Var
[

̂M2
ap(ϑ|θ0,k)

] . (2.44)

However, this approach would be suboptimal in that it does not take advantage of the full area

of the survey. In this case, the signal-to-noise on the estimate for the full �eld can be achieved by

multiplying the estimates for the aperture mass variance per single aperture by the square root

of the number of independent apertures.

A much better approach, which takes advantage of a larger portion of the available survey

area, is to oversample the apertures, i.e. by placing them on a regular grid with a pixel width of

less than twice the aperture radius. Since the estimate for the survey is still given by Eq. (2.43)

and since it is a linear combination of the estimates for the single �eld, it too is unbiased:

E
[
M̂2

ap(ϑ)
]

=
∑
kWk E

[
̂M2

ap(ϑ|θ0,k)
]

∑
kWk

=
∑
kWk

〈
M2

ap(ϑ)
〉

∑
kWk

=
〈
M2

ap(ϑ)
〉
. (2.45)

However, the variance of the estimate for the survey does now receive an additional contribution

arising from the spatial cross correlation coe�cient between apertures and therefore is no longer
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trivial to determine. This in turn means that the weightsWk from Eq. (2.44) are no longer optimal.

Computing the optimal weights will be further complicated if we include incomplete apertures

in the estimate – which we discuss next6.

2.4.4 Allowing incomplete aperture coverage to increase estimator e�ciency

We next turn to the problem of aperture completeness. In real surveys there are regions of the

survey that are masked out due to bright stars, chip gaps and the survey boundaries. The question

now arises: what do we do if an aperture has some fraction of its area overlapping with the mask?

The simple answer would be that we exclude all such apertures from the estimator. The problem

with this approach is that depending on the size of the aperture this may signi�cantly impact

the available survey area from which to compute the estimate and thus make the approach sub-

optimal. Here we will explore the idea of e�ectively including all apertures that �t within the

survey boundary, but apply weights to each of the form:

Wk = f(ck,Var, . . . ) , (2.46)

where ck ≡ Ak/A is the completeness factor for the kth aperture, whereAk is the available area

of the aperture and A is the unmasked area of the aperture, such that we have ck ≤ 1. Var is

related to the variance of the estimate in the aperture. The ellipsis denotes that in general the

weights could depend on other factors. In this work we will explore three distinct choices:

W(1)
k = H (ck − α) ; (2.47)

W(2)
k = H (ck − 0) Var

[
̂M2

ap(ϑ|θ0,k)
]−1

; (2.48)

W(3)
k = H (ck − α) Var

[
̂M2

ap(ϑ|θ0,k)
]−1

, (2.49)

The �rst case corresponds to accepting all apertures whose completeness factor ck ≥ α and

combining them in a simple average with equal weights to arrive at our estimate for M̂2
ap. The

second case corresponds to accepting all apertures, irrespective of the completeness factor, but

combining all of the estimates using an inverse variance weighted estimate, where the variance

is approximated by Eq. (2.38). The third case is simply the product of the �rst and second cases.

It is important to note that unless α = 1 our estimator given by Eq. (2.43) will formally be-

come biased. This means that we will expect some leakage of E/B modes. Postponing a thorough

analytical and numerical analysis of incomplete aperture coverage and de-biasing strategies to a

companion paper, we will content our selves by investigating the degree of bias that is introduced
6 Deriving the optimal weighting scheme and aperture mass �lter function, that maximizes the signal-to-noise is a

topic of great interest, but we shall leave this for a future investigation.
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by computing the aperture-cross statistics. For reference, these are de�ned in direct analogy with

Eq. (2.32):

̂M2
×(ϑ|θ0,k) := (πϑ2)2

∑
i 6=j wi wj Qi Qj ε×,i ε×,j∑

i 6=j wiwj
. (2.50)

It can be proven that the expectation of this estimator vanishes; that is provided we have no

bias in the estimate we have E
[

̂M2
×(ϑ|θ0,k)

]
= 0. However, the variance of the estimator does

not vanish and it should be given by the pure shape noise contribution to Eq. (2.33). Under the

approximations of Eq. (2.38) this is: Var
[
M̂2
×(ϑ)

]
≈ 2S2σ4

εG
2 per aperture.

We note that it is important to appreciate that the weightsWk apply to how di�erent �elds are

combined, and that the weightswi from Eq. (2.32) apply to how the source galaxies are combined

in arriving at an estimate for a single �eld. We assume that these latter weights have been pre-

computed by the method for estimating galaxy ellipticities.

Finally, before moving on, we note that both, the signal-to-noise properties as well as the bias

induced by incomplete aperture coverage are likely to depend on the choice of the �lter function

Q employed in the estimator. Our choice of the polynomial �lter (2.11) is mainly motivated by

the fact that it only has support within the aperture and therefore induces less bias in small

apertures than more spatially extended �lters, i.e. the Gaussian �lter introduced in Crittenden

et al. (2001). We postpone a thorough discussion on how to construct a �lter function that has

both, high signal-to-noise and low bias to future work.

2.4.5 Estimating computational complexity for evaluation of the direct

estimator for

〈
M2

ap

〉
Before moving on to the computation of the estimator with real data let us estimate the compu-

tational cost for an evaluation of M̂2
ap. As described above, the actual implementation is built

from a series of algorithmic blocks.

(i) We �rst construct a KD-tree data structure for the galaxy catalogue.

(ii) The full survey is tiled with overlapping apertures, where the centres are separated by a

distance d.

(iii) The aperture coverage map is computed to give the ck values for every aperture.

(iv) For apertures that pass the selection cut (H(ck − α)), a KD-tree range search locates all

galaxies that lie inside the aperture radius ϑ.
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(v) Estimate the aperture mass statistics and its variance according to Eq. (2.33) for the kth

aperture.

(vi) Combine the Nap estimates through a weighted mean of the resulting estimates.

In the above algorithm we shall assume that Steps (i)–(iii), and Step (vi) are performed once and

therefore are not the limiting factors for the execution of the code. We do note, however, that the

construction of the KD-tree may have a large memory footprint and will take some non-negligible

time for the initial construction. The parts of the method that require some consideration are

Steps (iv) and (v).

Step (iv) is a range search routine and Step (v) is a routine that evaluates the sums in Eq. (2.42).

To compute the complexity for these steps we �rst identify some parameters: let p specify the

order of the statistics; ϑ describe the aperture radius; and ζ be a parameter that determines the

spacing d between apertures: d ≡ ϑ/ζ . We note that for a non-overlapping �eld of apertures

whose circumferences just touch each other, we would set ζ = 1/2. Further, the number of

apertures is thus a function of ϑ and ζ , Nap(ϑ, ζ). The order for the complexity can thus be

computed as follows:

O(M̂p
ap|p, ϑ, ζ) =

Nap(ϑ,ζ)∑
k=1

[
O(range search|Nk, Nnodes, ϑ)

+O(compute statistic|Nk, p)
]

≈ Nap(ϑ, ζ)
[
O(range search|N,NTot, ϑ)

+NO(compute statistic|N = 1, p)
]
. (2.51)

The �rst thing to notice is that the number of apertures scales all of the computations, so if we �x

the parameter ζ , then the total number of apertures will scale as Nap ∝ Ωs/ϑ
2, where Ωs is the

survey area. The �rst term in the square brackets gives the computational time for a range search

to deliver back the Nk galaxies in the aperture. If the distribution of source galaxies is roughly

randomly distributed on the sky, then we make the approximation Nk ≈ N = NTotA/Ωs. Each

such range search operation then takes of the order O(logNTot) time to execute, but this factor

will also scale with the aperture radius and how clustered the source galaxy data are, and also

the depth we need to go in the tree walk.

Considering the second term in square brackets, this is the required time for computation

of the estimate for the pth order aperture mass statistic. As was described earlier for M̂2
ap, the

estimator scales linearly with the number of galaxies in the aperture, thus in the second line



48 2.5 Application to the CFHTLenS data

Table 2.1 Overview of the CFHTLenS data.

Field # of galaxies Angular Area Ωs [deg]2 n̄ [arcmin]−2

W1 1871709 42.36 12.27
W2 499372 11.72 11.84
W3 1192084 25.23 13.12
W4 558515 12.55 12.36

we simply scale up the complexity to estimate the statistic for a single galaxy by the number of

galaxies in the aperture. As we will explore in our companion paper, owing to this linear scal-

ing, there is no additional overhead in extending the method to compute higher order statistics,

beyond the variance, such as the skewness p = 3 and kurtosis p = 4.

2.5 Application to the CFHTLenS data

We now turn to estimating the aperture mass variance in the CFHTLenS data and in a large series

of mocks generated by ray-tracing through N -body simulations.

2.5.1 CFHTLenS shear data

The Canada-France-Hawaii Telescope Lensing Survey (hereafter CFHTLenS) is a weak lensing

survey that was completed around 2010. It covers 154 deg2 of the sky in �ve optical bands

{u∗, g′, r′, i′, z′} with a ∼ 5σ point source limiting magnitude in the i′ band of i′AB ∼ 25.5.

The survey measures galaxy ellipticities for use in weak lensing analysis from multicolour data

obtained as part of the CFHT Legacy Survey7. The survey data is distributed into four well spaced

�elds, three of which (W1, W2 & W4) lie close to the equatorial plane, and the third (W3) lies at

high declination. Full details of the survey can be found in Heymans et al. (2012).

In this work we make use of the �nal public data release. The combined data set of W1, W2,

W3 and W4 contains ellipticity measurements for 4,121,680 galaxies. In Table 2.1 we provide

a summary overview of the data. Associated with each galaxy are: the angular positions RA

and DEC, in radians; the x- and y-pixel coordinates in the projected tangent map; the ellipticity

estimates ε1 and ε2, the lens weights w; the shear bias correction c and the multiplicative bias

correction m; photometric redshift estimate zphot. Figure 2.1 shows the redshift distribution and

lensing e�ciency for the sources in each of the four CFHTLenS �elds.

7 www.cfht.hawaii.edu/Science/CFHLS/
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Table 2.2 zHORIZON cosmological parameters. Columns are (from left to right): density para-

meters for matter, dark energy and baryons; the amplitude of the power spectrum; the dark

energy equation of state parameters; the spectral index of the primordial power spectrum; the

Hubble parameter.

Model Ωm,0 ΩDE,0 Ωb,0 σ8 w0 wa ns h

Fiducial 0.25 0.75 0.04 0.8 -1 0 1 0.7
Ω±m,0 0.2/0.3 0.8/0.7 0.04 0.8 -1 0 1 0.7
Ω±b,0 0.25 0.75 0.035/0.45 0.8 -1 0 1 0.7
σ±8 0.25 0.75 0.04 0.7/0.9 -1 0 1 0.7
w±0 0.25 0.75 0.04 0.8 -1.2/-0.8 0 1 0.7
w±a 0.25 0.75 0.04 0.8 -1 -0.2/0.2 1 0.7
n±s 0.25 0.75 0.04 0.8 -1 0 0.95/1.05 0.7
h± 0.25 0.75 0.04 0.8 -1 0 1 0.65/0.75

2.5.2 Simulating the CFHTLenS data

In order to understand the statistical properties of the data we have generated a large set of

simulated CFHTLenS skies. These mock data were generated from ray-tracing through N -body

simulations. We used the zHORIZON simulations, performed on the zBOX-2 and zBOX-3

supercomputers at the University of Zürich, described in detail in Smith (2009). Each of the

zHORIZON simulations was performed using the publicly availableGadget-2 code (Springel,

2005), and followed the nonlinear evolution under gravity of N = 7503 equal-mass particles in

a comoving cube of length Lsim = 1500h−1Mpc; the softening length was lsoft = 60 h−1kpc.

For all realizations 11 snapshots were output between redshifts z = [0, 2]; further snapshots

were at redshifts z = {3, 4, 5}. The transfer function for the simulations was generated using

the publicly available cmbfast code (Seljak & Zaldarriaga, 1996), with high sampling of the

spatial frequencies on large scales. Initial conditions were set at redshift z = 50 using the serial

version of the publicly available 2LPT code (Scoccimarro, 1998; Crocce et al., 2006). The sim-

ulations correspond to several cosmological models, with parameters varying around a �ducial

model. The latter closely matched the results of the WMAP experiment (Komatsu et al., 2009).

There are 8 simulations of the �ducial model, and 4 of each variational model, matching the ran-

dom realization of the initial Gaussian �eld with the corresponding one from the �ducial model.

Table 2.2 summarizes the cosmological parameters that we simulated.

From each zHORIZON simulation, 16 large �elds of view were generated by choosing di�er-

ent observer positions within the simulation box. These large �elds have side lengths of 12 deg

and are covered by a regular mesh of 40962 pixels. For each pixel, a light ray was traced back
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through the simulation by a multiple-lens-plane algorithm (see Hilbert et al., 2007, 2009), and its

distortion due to gravitational lensing was recorded for a set of 45 source redshifts between 0

and 4.

Each of the large �elds was used to create four simulated mock-CFHTLenS wide �eld source

galaxy catalogues for each of the di�erent CFHTLenS �elds W1 to W4 (i.e., 64 mock catalogues

per CFHTLenS �eld and zHORIZON simulation). The basis for the simulated source galaxy

catalogues are the actual CFHTLenS source catalogues, from which the angular positions and

redshifts were taken. The reduced shear g ≡ γ/(1− κ) for each galaxy in the mock catalogues

was computed by multi-linear interpolation of the simulated lensing distortions onto the source

galaxy’s angular position and redshift (using a di�erent angular o�set within the 12 × 12 deg2

simulated �elds for each mock catalogue). The ‘observed’ source galaxy ellipticities in the simu-

lated catalogues were then computed by combining the reduced shear from the ray-tracing and

the randomly rotated observed ellipticities from the actual source galaxy catalogue.

2.5.3 Maps from the CFHTLenS data

As a �rst step in our analysis of the CFHTLenS data, we compute several aperture based maps for

the four �elds of the CFHTLenS. To generate these maps the survey area was pixelated and the

corresponding maps were computed for apertures located at the pixel centers. We furthermore

only include apertures that are at least 20 per cent complete, the map values for all less complete

apertures are set to the minimum value and therefore appear as blue pixels. Images of the o�cial

CFHTLenS masks are presented in Appendix 2.B.

In Figure 2.3 we show the aperture mass map and its corresponding signal-to-noise map for

the W1 �eld. The aperture masses are estimated using Eq. (2.40) while the noise for each aperture

was estimated as (Hetterscheidt et al., 2005):

̂σ2 (Map(θ0|ϑ)) =
(πϑ2)2∑

iw
2
iQ

2
i ε

2
t,i

2 (
∑
iwi)

2 . (2.52)

The results are shown for the Schneider �lter Eq. (2.11) with aperture extent in the set ϑ ∈

[5′, 10′, 20′]. It is interesting to note that near the survey mask boundaries the value of the aper-

ture mass obtains large positive and negative values. This is due to the fact that for incomplete

apertures the ring averaged tangential shear becomes biased as the mask induces non-vanishing

B-modes (cross-shear). How to deal with the e�ects of masked apertures will be discussed in

detail below and in a companion paper.

In Figure 2.4 we show the aperture completeness map as well as a map of the aperture weights

derived from Eq. (2.49), using the shot noise dominated limit of Eq. (2.38). We rescaled the latter
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Figure 2.3 Mass related maps measured from the W1 �eld of the CFHTLenS data. The x- and

y-axes show the right-ascension and declination of the survey, in arcminutes. The left and right

columns show the results for the aperture mass (Map(θ0|ϑ)) and the corresponding signal-to-

noise ratio. The top, middle and bottom rows show the results for aperture radii of 5′, 10′, and

20′, respectively. The value of the �eld at each location is indicated by the colour bar on the right.
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Figure 2.4 Same as Figure 2.3, but this time columns indicate aperture completeness (left) and

the aperture weights derived from Eq. (2.49), using the shot noise dominated limit of Eq. (2.38)

(right). The weight maps shown are rescaled by their inverse mean. As expected, the weight

depends on the local galaxy number density and on the aperture completeness.
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map by its inverse mean such that the mean weight becomes unity. From there we can expli-

citly see that such aperture weights depend on the aperture completeness, cosmic structures and

on the local depth of the survey. Analogous maps for the other three �elds are presented in

Appendix 2.C.

2.6 Measurements of the aperture mass variance

We now turn to the estimation of the aperture mass variance from the CFHTLenS data using the

direct and correlation function estimators.

2.6.1 Analysis of the CFHTLenS mock skies

Before performing our statistical analysis of the real CFHTLenS data we �rst make a study of

the direct and correlation function estimators as applied to the mocks. From this we will be able

to determine whether the methods are consistent with one another to within the errors and also

which of the three weighting schemes given by Eqs. (2.47) and (2.49) provides the better method

for estimating
〈
M2

ap

〉
(ϑ).

The left panel of Figure 2.5 shows the variance of the aperture mass estimated from the

mocks, as a function of the aperture radius. For the results presented in this section we used

a spacing of d = 0.25 ϑ between the apertures. The thin coloured lines show the results from

the direct estimator approach where the estimates from individual apertures are combined with

equal weight, but where a completeness thresholds ck has been adopted – this is equivalent

to weight scheme W1 c.f. Eq. (2.47). For example the magenta lines show a conservative case,

where only apertures with completeness ck & 90% are taken, whereas the red lines are the most

relaxed where all apertures with ck & 10% are allowed. The thick dashed line shows the results

obtained from the correlation function method, where the pair counts have been measured using

the TreeCorr code of Jarvis et al. (2004)8. The grey shaded region shows the standard error for

the correlation function method and the error bars are the errors on direct estimator. In all cases

these were determined from the ensemble of 512 mocks of our �ducial model. The right panel of

Figure 2.5 shows the same as the left panel, however the results from the direct estimator have

been binned in completeness. Both panels also show the theoretical prediction evaluated via

Eq. (2.20).

8 We computed the shear correlation functions down to 6′′, used 100 logarithmically spaced bins per decade and set
the binslop parameter to 0.1.
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Figure 2.5 Left hand side: Aperture mass variance as a function of aperture radius computed

from the 512 full-ray traced CFHTLenS mock catalogues of the �ducial runs of the W1 �eld for

the di�erent weighting schemes described in the text. The thick solid line gives the theoretical

prediction evaluated via Eq. (2.20). The thin solid lines show results from the direct approach

where the estimates from each apertures are combined with equal weight (this is Eq. (2.47) in

the text). The colour of the lines indicates the value of the aperture completeness parameter

ck = Ak/A – only apertures with a completeness greater than this value are used in the estimate.

The thick dashed line gives the result from the correlation function approach as obtained using

the TreeCorr routine (Jarvis et al., 2004). The error bars show the error for a single realisation of

the CFHTLenS W1 �eld. The grey shaded region are for TreeCorr. Note that the errors from the

direct estimator approach have been slightly o�set for clarity. Right hand side: shows the same as

the left panel, except this time the estimates from the direct estimator have been computed in bins

of aperture completeness. The di�enence between the simulations and the theoretical predictions

for small aperture radii can be attributed to shot noise and the line-of-sight discretization from

which the simulated data su�ers (Hilbert et al., 2020).

The �gure shows that there is a clear bias in the direct estimator approach when the apertures

have a low completeness. This is manifest as an increased amplitude of the signal on all scales.

However, for apertures with ck & 75% completeness (blue line) we �nd that the results are in

good agreement with the case of ck & 90% (magenta line) and that these are fully consistent

with the correlation function results on large scales, to within the errors. We note that on scales

smaller than ∼ 5′ the results from TreeCorr appear to be biased slightly low to those from the

direct estimator approach. We furthermore note a di�erence between the theoretical prediction

and the measurements for small aperture radii which is due to shot noise and the line-of-sight

discretization from which the simulated data su�ers (Hilbert et al., 2020).

The left panel of Figure 2.6 again shows the aperture mass variance estimated from the mocks

for the two methods, but this time the estimates from individual apertures are combined using
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Figure 2.6 Left hand side: Same as Figure 2.5, however this time the estimates for each aperture

are combined using an inverse variance weighting scheme (this is Eq. (2.49) in the text). Note

that when ck . 10% is equivalent to the case where all apertures are considered irrespective of

coverage and their results are combined using an inverse variance weight. Right hand side: Same

as the left panel, but this time showing the variance of the cross component of aperture mass.

As shown in Eq. (2.50) and in the absence of systematic errors,
〈
M2
×(ϑ)

〉
= 0.

the inverse variance weighting schemes with a completeness threshold – that is we now employ

W2 and W3, c.f. Eqs. (2.48) and (2.49). The right panel of Figure 2.6 shows the variance of the

cross component of the aperture mass
〈
M2
×
〉

(ϑ) from Eq. (2.50), which for B-mode free �elds

should vanish.

There are a number of interesting points to note from this analysis. First, we see that all

of the estimates from the direct estimator are consistent with one another and that they all lie

within the error bars of the TreeCorr result. Nevertheless, for scales ϑ > 20′ we still observe

that the direct estimator approach appears to be slightly biased high on large scales for aperture

completeness values ck & 40% compared to the correlation function method. However, for aper-

ture completeness levels ck & 75% we see excellent agreement between the two methods. On

small scales, ϑ < 5′, the correlation function method gives slightly lower results than the direct

estimator. Here we believe that the direct estimator is correct, since as was noted in Kilbinger

et al. (2006), the correlation function method is biased low on scales of the order ϑ ∼ 1′ due to the

absence of correlation function bins on small scales. In the TreeCorr code the small-scale cuto�

in the pair counts is set at ϑ > 6′′. Note that in the mock data there is no image blending and so

the direct estimator should not su�er from this suppression. For the observed CFHTLenS data

this is not necessarily the case.

We also note that, as shown in the right panel of Figure 2.6, the cross component of the

aperture mass variance is consistent with zero to within the error bars for all completeness frac-

tions used. However, the ck & 40% shows a small positive o�set from zero at the level of below
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5 × 10−7. On large and small scales the bias is very small for ck & 75%. This gives us further

con�dence that the discrepancy between the direct estimator and TreeCorr on small scales is due

to the bias in the correlation function approach.

Another point of interest, is that we see the error bars on the most conservative complete-

ness cuts, ck & 95%, are signi�cantly larger than those obtained from the correlation function

method. This makes sense, since, for the case of the most conservative cuts, one can �nd only a

few apertures that meet the criterion. On the other hand, for completeness fractions of the order

ck & 70%, the error bars between the two methods are comparable.

Based on the discussion above, we will be using the weighting schemeW3 for the analysis

of the observed CFHTLenS data.

Finally, we note that the runtime in evaluating the estimators is similar for the direct estim-

ator and TreeCorr, with the former being roughly a factor of two faster. It is also worth noting

that TreeCorr is not exact, but is using various (well tested) approximations and has also been

highly optimized to reach this speed. As noted earlier, the direct estimator speed also depends

on the rate of aperture oversampling. Repeating the analysis for sparser aperture sampling with

d = 0.5 ϑwe found that (as expected) the runtime was furthermore reduced by a factor of four (to

the order of a minute for a W1 �eld on a single processor) with only a tiny fraction of the signal-

to-noise being lost. We postpone a more thorough analysis of the runtime to our companion

paper.

2.6.2 Calibration of the estimators for ellipticity bias

We now turn to the analysis of the observed data. As discussed in §2.4 the aperture mass variance

for a set of apertures can be directly estimated using Eqs. (2.32) and (2.43). However, owing to

calibration errors in the lens�t shape estimation algorithm (Miller et al., 2013), each galaxy’s

ellipticity has a corresponding multiplicative m and additive c bias. Hence, the observed and

true ellipticity components of the ith galaxy are related through:

εobs
1,i = (1 +mi)εtrue

1,i + c1,i ; (2.53)

εobs
2,i = (1 +mi)εtrue

2,i + c2,i . (2.54)

For the CFHTLenS c1 was found to be consistent with zero, however c2 was found to have a S/N

and size dependent bias that was subtracted from each galaxy. On average this correction was

of the order 2× 10−3.

Correction for shear correlation functions: following Miller et al. (2013), the shear correla-
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tion functions can be corrected for multiplicative bias through the following procedure. The ’raw’

shear correlation functions are �rst estimated from the ‘observed’ shears using the estimator:

ξ̂raw
± (θα) =

∑
i

∑
j 6=iwiwj

[
εobs
t,i ε

obs
t,j ± εobs

×,iε
obs
×,j

]
Π(θij |θα)∑

i

∑
j 6=iwiwjΠ(θij |θα) , (2.55)

where θij ≡ |θi − θj | and where Π(θij |θα) is the pair binning function which is unity if θij
lies in the range [θα −∆θ/2, θα + ∆θ/2). If we now insert Eqs. (2.53) and (2.54) into the above

estimator (taking c1,i = 0 and c2,i = 0) we �nd:

̂ξraw
± (θα) =

∑
j 6=iw

′
iw
′
j

[
εtrue
t,i ε

true
t,j ± εtrue

×,i ε
true
×,j

]
Π(θij |θα)∑

j 6=iwiwjΠ(θij |θα) , (2.56)

where in the above we introduced the new weights w′i ≡ wi(1 +mi), then we see that the above

equation can be rewritten:

̂ξraw
± (θα) =

∑j 6=iw
′
iw
′
j

[
εtrue
t,i ε

true
t,j ± εtrue

×,i ε
true
×,j

]
Π(θij |θα)∑

j 6=iw
′
iw
′
jΠ(θij |θα)


×
(∑

j 6=iw
′
iw
′
jΠ(θij |θα)∑

j 6=iwiwjΠ(θij |θα)

)
, (2.57)

The �rst term on the right in parenthesis is the ‘calibrated’ true shear correlation which we can

write as ξcal
± , hence we can write:

̂ξcal
± (θα) =

ξraw
± (θα)

1 +K(θα) ; 1 +K(θα) ≡
∑
j 6=iw

′
iw
′
jΠ(θij |θα)∑

j 6=iwiwjΠ(θij |θα) . (2.58)

Correction for direct aperture mass variance estimator: following in the footsteps of the

shear correlation function approach, we de�ne the raw uncorrected aperture mass variance es-

timate as:

[
̂M2

ap(ϑ|θ0,k)
]raw

= (πϑ2)2
∑
j 6=iwi wj Qi Qj ε

obs
t,i ε

obs
t,j∑

j 6=iwiwj
, (2.59)

recalling that the sums only extend over the galaxies in the aperture. If we now insert Eqs. (2.53)

and (2.54) into the above estimator, as before, then we �nd:

[
̂M2

ap(ϑ|θ0,k)
]raw

= (πϑ2)2
∑
j 6=iw

′
i w
′
j Qi Qj ε

true
t,i εtrue

t,j∑
j 6=iwiwj

. (2.60)

Again, on rede�ning the lens�t weights this leads us to write:

[
̂M2

ap(ϑ|θ0,k)
]raw

=
(

(πϑ2)2
∑
j 6=iw

′
i w
′
j Qi Qj ε

true
t,i εtrue

t,j∑
j 6=iw

′
iw
′
j

)

×
(∑

j 6=iw
′
iw
′
j∑

j 6=iwiwj

)
. (2.61)
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Thus we see that the calibrated estimate of the aperture mass variance can be written:

[
̂M2

ap(ϑ|θ0,k)
]cal

=

[
̂M2

ap(ϑ|θ0,k)
]raw

1 +Kap(ϑ|θ0,k)
, (2.62)

where the normalisation factor is

1 +Kap(ϑ|θ0,k) ≡
∑
j 6=iwiwj(1 +mi)(1 +mj)∑

j 6=iwiwj

= 〈w(1 +m)〉2

〈w〉2
1− S(1+m)

2
1− S2

, (2.63)

where, in the same vein as in §2.4.2, we de�ned

S
(1+m)
2 ≡

〈
w2(1 +m)2〉
〈w(1 +m)〉2

. (2.64)

2.6.3 Analysis of the CFHTLenS data

In left panel of Figure 2.7 we show the aperture mass variance and in the right the variance of

the cross component variance, estimated from the CFHTLenS. The results shown are for the full

combination of the W1, W2, W3 and W4 survey areas. For the direct aperture mass variance

approach the estimate was obtained using the weighting scheme W3, c.f. Eq. (2.49), and the

error was obtained using a weighted jackknife resampling of the data in patches having an area

of roughly (1 deg)2. For the method of measuring the aperture mass variance from the shear

correlation functions (thick, black dashed line), when combining the results from each �eld, we

have simply weighted the estimates in proportion to the �eld area.

In Fig. 2.7 the vertical dashed line indicates the scale ϑ = 5.5′ identi�ed in Kilbinger et al.

(2013), above which the E/B-mode leakage is claimed to be . 1.5%. The E/B mode leakage on

smaller scales originates from the 9′′ cut-o� in the shear-correlation functions, which originates

from the blending of galaxy images and a shear bias for close pairs (see §2.6.4).

The important point to note from the �gure is that on scales ϑ > 5.5′ the measurements from

the direct and correlation function estimators are in very good agreement to within the errors

for a wide range of aperture completeness thresholds. In addition, with the exception of all but

the lowest ck thresholds, the variance of the cross component of the aperture mass variance is

consistent with zero on the same scales. On scales ϑ ≤ 5.5′, both estimators appear to have

non-zero B-modes, which rise sharply on scales ϑ . 2′.
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Figure 2.7 Left hand side: Aperture mass variance as a function of aperture cut-o� scale as

measured in the CFHTLenS data. The results for the direct estimator are indicated as coloured

lines, where the line colour indicates the value of aperture completeness that was used. The

thick dashed line gives the result from the correlation function approach as obtained using the

TreeCorr routine (Jarvis et al., 2004). The error bars show the error for the full CFHTLenS. Right

hand side: : Same as the left panel, but for the variance of the cross component of the aperture

mass.

2.6.4 Impact of close pair image blending on the variance

As noted in Miller et al. (2013), lens�t galaxies with separations closer than 9′′ tend to have a

bias in their ellipticities which is in the direction of the line connecting the centres of the galaxy

images. For the shear correlation functions, Kilbinger et al. (2013) stated that this bias can be

removed by only computing the shear correlation functions down to 9′′. Their justi�cation was

that the alignment direction of the pair is, to a very good approximation, randomly oriented. We

now investigate how such a bias may contaminate the direct estimator approach for aperture

mass variance by comparing the measurements of the full catalogue to a reduced one in which

clustered galaxies below the blending scale are removed.

We proceed by describing our algorithm for removing close pairs of galaxies to generate a

reduced catalogue.

1. We begin by initializing a Boolean mask value for each galaxy. These values are all initially

set to unity.

2. We then spatially organize the data using a hierarchical KD-tree.

3. We next set the pair-cut-o� scale θpc, within which galaxy pairs are to be expunged from

the catalogue.
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Figure 2.8 The probability density functions of the nearest neighbour distances in the CFHTLenS.

The blue histogram shows the distribution before applying our exclusion algorithm and the or-

ange one shows the result after setting the pair-cut-o� scale θpc = 9′′. The vertical dashed red

line indicates θpc.

4. We now loop over all galaxies and perform a range search. If any of the galaxy positions lie

within the sphere of radius θpc and have their Boolean �ag set to unity, then the Boolean

mask value associated with the current galaxy is set to zero and the galaxy will henceforth

be excluded when estimating statistics from the data.

We apply this method to the CFHTLenS data and set the pair-cut-o� scale θpc = 9′′. This yields

a reduced catalogue that contains ∼70% of the original galaxies.

Figure 2.8 shows the probability density function of the distance to the nearest-neighbour

galaxy. Note that these curves have been normalised so that the area under the graph gives

unity.

Figure 2.9 shows our measurements of the aperture mass variance and the variance of the

cross component of aperture mass, in the full and the close-pair reduced CFHTLenS shear cata-

logues. We compare the results from both the direct and the correlation function estimators.

For the direct estimator approach we have employed the weighting functionW3, with the com-

pleteness threshold set to ck = 0.7. Some important points can be noted: looking at the left

panel of Fig. 2.9 the result of excluding pairs of galaxies that are closer then 9” lowers the amp-

litude of
〈
M2

ap

〉
by less than 15% for small aperture scales (∼ 10′). For larger apertures the

changes are smaller. Interestingly, the results from the TreeCorr analysis of the full and reduced

catalogue also show similar di�erences: for small aperture scales, the aperture mass variance
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Figure 2.9 Left hand side: Comparison of the aperture mass variance from the full and small

scale-pair reduced CFHTLenS catalogues. The open circles show the results from TreeCorr and

the solid points the results from the direct estimator when including all apertures with ck >

0.7. The red and blue colours indicate the full and reduced catalogues, respectively. The black

crosses and the black line show the published measurements from Kilbinger et al. (2013) and the

corresponding theoretical prediction for their best-�t cosmology evaluated via Eq. (2.20). The

vertical red dashed line indicates the scale above which the E/B mode leakage should be less

than 1% for the correlation function method. Right hand side: same as left panel, except this time

for the cross component of the aperture mass variance.

appears to be lower in the reduced catalogue. In addition, we see that all of the estimators agree

to within the errors on all scales. However, the agreement between the direct estimator and the

TreeCorr result is exceptionally good for the measurements from the reduced catalogue.

It is also interesting to compare these results with the published measurement from Kilbinger

et al. (2013) (denoted as the black crosses in the plot). Here we see that our measurements are fully

consistent with the Kilbinger et al. (2013) measurements, to within the errors. The right panel of

Figure 2.9 shows that the variance of the cross-component of the aperture mass is reassuringly

consistent with zero for both estimators applied to both the full and reduced catalogues.

2.7 Information content of the estimators

We now turn our attention to the question of addressing the possible information loss in using

the direct estimator approach. We will do this using the Fisher matrix formalism. If we assume

that the likelihood function for measuring the aperture mass variance for a set of Nd aperture

scales is Gaussian, and that the priors on the cosmological parameters are �at, then the Fisher
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information matrix can be written (Tegmark et al., 1997):

Fαβ = 1
2Tr

[
C−1 ∂C

∂pα
C−1 ∂C

∂pβ

]
+ ∂µT

∂pα
C−1 ∂µ

∂pβ
, (2.65)

where µT =
(
M̂2

ap(ϑ1), . . . , ̂M2
ap(ϑNd)

)
is the set of model means measured at the bin centres

and C is the model covariance matrix. The vector p is the set of cosmological parameters. In

this study we will restrict our attention to the cosmological parameters σ8 and Ωm,0, as these

are the most readily constrained from lensing data. The minimum variance bounds on a given

cosmological parameter, after marginalising over all other parameters, can be obtained as:

σ2
pα =

[
F−1

]
αα

. (2.66)

In order to simplify the calculation, we will assume that the �rst term on the right-hand-side

of Eq. (2.65) is signi�cantly smaller than the other term. As was noted in §6 of Smith & Marian

(2015) this can be justi�ed in the high-k limit through mode counting arguments, however, it is

in general an incorrect assumption9.

In order to compute the second term of Eq. (2.65) we follow the approach lain down in Smith

et al. (2014) and use the mocks to evaluate all quantities. That is we measure the derivatives

of the model mean with respect to the cosmological parameters and we also estimate the preci-

sion matrix C−1. To do these tasks we make use of the ray traced mock CFHTLenS data. The

derivatives are estimated using:

∂̂µi
∂pα

=
Nens∑
j=1

M̂2
ap,(j)(ϑi|pα + ∆pα)− M̂2

ap,(j)(ϑi|pα −∆pα)
2Nens∆pα

, (2.67)

whereNens is the number of realisation of the ensemble, andM2
ap,(j)(θi|pα+∆pα) is the estim-

ate of the aperture mass variance on scale θi in the jth realisation of the mocks, for the simulation

with cosmological parameters pα+∆pα. In computing Eq. (2.67) we use the 256 mock ray-tracing

simulations of each cosmological variation of the CFHTLenS data. Note that the above estimator

will reduce the cosmic variance, since when running the modi�ed cosmology simulations we

used Fourier phase realisations that were identical to the �ducial model runs. In addition, when

estimating the precision matrix we take account of the bias in the estimator using the method

described in Hartlap et al. (2007):

Ĉ−1 = Nens −Nd − 2
Nens − 1

[
Ĉ
]−1

, (2.68)

9 On the other hand, as was discussed in Takahashi et al. (2011) the likelihood is not Gaussian, since the power
spectrum estimator is χ2 distributed. Thus one should not quote over-optimistic errors based on the wrong form
for the likelihood function.
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Figure 2.10 Estimates of the derivatives of the aperture mass variance with respect to the cosmo-

logical parameters. The left and right panels show the results for the variations with respect to

the matter density parameter Ωm,0 and the variance of matter �uctuations σ8, respectively. The

solid lines all show the results measured from the direct estimator approach, where the colour of

the line indicates the value for the aperture completeness parameter that was adopted. The error

bars indicate the errors in the ensemble. The black dashed line shows the results from the cor-

relation function approach as measured using TreeCorr. The shaded region shows the standard

error on the TreeCorr estimates.

where Nd is the dimension of the data vector and Ĉ is the standard maximum likelihood estim-

ator of the covariance matrix of the data. We note that by applying the Hartlap correction to our

estimate of the covariance matrix does not account for the sampling distribution of of µ̂ and Ĉ−1

which can be found in Je�rey & Abdalla (2019); their resulting likelihood would lead to a more

sharply peaked center and broader tails and it would need to be propagated in the information

theoretic de�nition of the Fisher matrix to derive the analog of (2.65) in a similar vein to Sellentin

& Heavens (2017).

Figure 2.10 shows the derivatives of the aperture mass variance with respect to the cosmolo-

gical parameters, estimated from the 256 ray-traced mock simulations. The agreement between

the results from the direct estimator approach is excellent, for all of the ck values that we con-

sidered, where we used the inverse variance weighting approach of W3 to combine estimates

from individual apertures. In addition, these also agree with the results from the correlation

function approach to a high degree of accuracy. The only issue to note is that for high complete-

ness fractions ck ∼ 1 the estimates become very noisy10.

Figure 2.11 shows the 2D con�dence contour for Ωm,0 and σ8, and also the 1D posterior dis-

tributions, marginalised over all other parameters, for the same two parameters. Focusing on the

10 In making the Fisher forecasts we need to take into account the error on the model means and the precision matrix,
since not doing so could lead to over-optimistic forecasts. This could be done by generalising the approach described
in Taylor et al. (2013).
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Figure 2.11 Top left and bottom right panels show the 1D posterior distributions, marginalised

over all other parameters, for Ωm,0 and σ8, respectively. The bottom left panel shows the 2D

con�dence interval ellipse for the joint posterior distribution of Ωm,0 and σ8. The coloured lines

again show the results from the Fisher matrix forecast using the direct estimator approach for

various aperture completeness thresholds ck. The dashed line shows the results from TreeCorr.

2D contours, we notice a number of interesting points: �rst, considering the results for the direct

estimator, we see that as we decrease the threshold completeness value ck, the ellipses rotate

clockwise by a small amount. This di�erence in orientation can be explained by noting that for a

CFHTLenS like survey the o�-diagonal elements of the covariance matrix are getting more and

more noisy for increasing values of ck. The reason for this is that the e�ective survey footprint

changes for di�erent aperture radii and that this di�erence is most prominent for conservative

aperture completeness cuts. When choosing a ck of around 0.7 or lower, the covariance matrices

become stable and so does the orientation and area of the ellipse.

Similar observations can be made for the 1D marginalized posterior distributions which lets

us conclude that, within the Fisher Matrix formalism, the information content of the direct es-

timator is comparable with the correlation function method.

There are some caveats that must be mentioned to the interpretation of these results. Firstly,

both the precision matrix and the model means are estimated from the mock simulations of the

CFHTLenS, and are therefore subject to errors. This means that the forecasted constraining

power should also come with an error. Since we are only interested in the relative information,

we have not taken this into account. A more detailed study is required in order to make a more

precise statement, and this is beyond the scope of this work.
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2.8 Conclusions and discussion

In this paper we have explored an alternative method for estimating the aperture mass statistics

in weak lensing cosmic shear surveys. Our method is a direct estimator of the variance. With the

use of a hierarchical KD-tree algorithm for ordering the data we found that the computational

time for execution of this estimator was linear in the number of galaxies per aperture and the

number of apertures used in the estimate. This paper, the �rst in a series, focused on the two-

point statistics, and in particular the aperture mass variance. The summary is:

In §2.2 and §2.3 we reviewed the background theory of weak lensing in the cosmological con-

text and the aperture mass variance and its connection to the matter power spectrum. Here we

also discussed the standard approach for estimating this quantity, which relies on measurements

of the shear correlation functions.

In §2.3 we introduced the direct estimator for the aperture mass variance that we employed.

We showed that when including ellipticity weights the estimator is unbiased. We also computed

the variance of the estimator and showed that in the limit a of Gaussian shear signal, no source

clustering and a large number of galaxies per aperture, the variance reduces to a simple expres-

sion. We then showed how the original estimator introduced by Schneider et al. (1998) can be

accelerated to linear order in the number of galaxies per aperture. We also discussed various

weighting schemes for combining the estimates from di�erent apertures. Finally, we illuminated

the computational complexity of our estimator.

In §2.4 we gave an overview of the CFHTLenS data and we also described our method for

generating mocks of the survey using full gravitational ray-tracing simulations throughN -body

simulations. As a �rst test, we measured the aperture mass maps from the survey data.

In §2.6 we computed the aperture mass variance from our mock surveys, using both the direct

estimator and correlation function method. We found that if we included incomplete apertures in

the direct estimator method, and if we combined all apertures equally that there was a signi�cant

bias in the �nal result. This bias vanished if only complete apertures were used. However, the er-

rors on the estimates increased signi�cantly. We then explored an alternative weighting scheme,

where the apertures were combined using an inverse variance weighting approach, where the

variance was assumed to be dominated by shape noise. The results in this case were found to

be in excellent agreement with the alternative method, even in the case where incomplete aper-

tures were included in the estimate. We found that an aperture completeness threshold of ∼ 0.7

gave very good results and contained only a small residual of B-modes, that were contained well
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within the error tolerance.

We then turned to the application of the method to the CFHTLenS data. It was necessary

to account for two additional observational biases: �rst, we derived the correction factors re-

quired to account for the ellipticity bias in our estimator; second, we created a modi�ed source

galaxy catalogue that removed pairs of galaxies whose images were in close projection on the

sky whose ellipticities are biased by an artefact in the ellipticity estimator algorithm lens�t. On

taking account of these we found that our direct estimator approach and our estimates using the

shear correlation function were in excellent agreement with the published data from Kilbinger

et al. (2013).

In §2.7 we explored the information content of the direct estimator approach and compared

it with that from the correlation function method. We found that the 1D marginalised posterior

distributions for σ8 were less constraining for high aperture completeness than the shear cor-

relation function method, but that as some incomplete apertures were included in the estimate

the distributions became very similar. This trend was mirrored for Ωm,0, except that for high

completeness the distribution for the direct estimator was the most constraining. This may be

due to errors in the forecast due to uncertainties in the precision matrix and derivatives. The 2D

con�dence contours for Ωm,0 and σ8 were roughly the same size for all aperture completeness

thresholds, however they rotated to be in the same direction as those of the correlation func-

tion approach as lower thresholds were taken. This leads us to conclude, at this stage, that the

information content of the two estimators is comparable.

The main advantage of this development in not to replace the correlation function approach

as the way to measure aperture mass statistics and other associated statistics, but to show that

it is a credible method. As mentioned earlier, the real advantage of this approach is that it can

be easily generalised to enable the measurement of higher order aperture mass statistics such

as the skewness and kurtosis with very little extra e�ort. While these can of course also be

estimated using the shear three-point and four-point correlation functions, the task of measuring

these correlation functions and all of their con�gurations becomes increasingly onerous and time

consuming. The method that we have developed will scale linearly with the number of galaxies

in the aperture. This will be the subject of our upcoming study. Besides this, for application to

more recent large-scale lensing surveys like DES and KiDS the analysis will need to be extended

to include curved sky e�ects and we see no obvious issues with this.
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Appendix

2.A Supporting calculations for chapter 5.4

Unbiasedness of the direct estimator

We show that (2.32) provides an unbiased estimator for the true aperture mass dispersion. This

can be done through applying three averaging processes: averaging over the intrinsic ellipticity

distributions A; then the source galaxy positions P ; and then the ensemble average over the

cosmic �elds E (following the notation of Schneider et al., 1998). Ignoring the prefactor and the

denominator for a moment, if we perform the A average then we get:

A

∑
i 6=j

wiwjQiQjεt,iεt,j

 = A

∑
i,j

wiwjQiQjεt,iεt,j

−A(∑
i

w2
iQ

2
i ε

2
t,i

)

=
∑
i,j

wiwjQiQj

{
γt,iγt,j + 2γt,i A

(
ε
(s)
t,j

)
+A

(
ε
(s)
t,i ε

(s)
t,j

)}

−
∑
i

w2
iQ

2
i

{
γ2

t,i + 2 γt,i A
(
ε
(s)
t,i

)
+A

(
[ε(s)t,i ]2

)}
=
∑
i,j

wiwjQiQj

{
γt,iγt,j + σ2

ε

2 δ
K
ij

}
−
∑
i

w2
iQ

2
i

{
γ2

t,i + σ2
ε

2

}

=
∑
i 6=j

wiwjQiQjγt,iγt,j . (2.69)

Note that in the above we assumed that each galaxies’ intrinsic ellipticity is indiviually drawn

from the same Gaussian distribution G
(
0, σ2

ε

)
with zero mean and the shape noise σ2

ε as variance,

i.e. no intrinsic alignments. Next, we perform the average over the spatial positions of the source

galaxies:

P

∑
i 6=j

wiwjQiQjγt,iγt,j

 =
N∏
α=1

{
d2θα
πϑ2

}∑
i 6=j

wiwjQiQjγt,iγt,j



69 2.A Supporting calculations for chapter 5.4

=
∑
i 6=j wiwj

(πϑ2)2

∫
R2

d2θ1d2θ2 Q1Q2γt,1γt,2 . (2.70)

In the �rst step we took the joint PDF of spatial positions to be simply the product of the in-

dependent 1-point PDFs for a uniform random distribution. In the second step, on noting that

γt,i = γt,i(θi;θ0), where θ0 is the same for all the galaxies, we used the fact that the spatial

integral will yield the same result no matter of the indices - hence the change (i, j)→ (1, 2). In

the last step, we integrated out the remaining PDFs and rewrote the domain. Finally, we perform

the expectation over the cosmic �elds:

E
{
P
[
A
(
M̂2

ap(ϑ)
)]}

= (πϑ2)2∑
i 6=j wiwj

∑
i 6=j wiwj

(πϑ2)2

∫
R2

d2θ1d2θ2 Q1Q2 〈γt,1γt,2〉

=
〈
M2

ap

〉
. (2.71)

Estimating the variance of the estimator – including the source weights

We can also calculate the variance of the estimator:

Var
[
M̂2

ap(ϑ)
]

=
〈

(πϑ2)2
∑
i 6=j wi wj Qi Qj εt,i εt,j∑

i 6=j wiwj
(πϑ2)2

∑
k 6=l wk wl Qk Ql εt,k εt,l∑

k 6=l wkwl

〉

−
〈
M2

ap

〉2

= (πϑ2)4(∑
i 6=j wiwj

)2
∑
i 6=j

∑
k 6=l

wiwjwkwlQiQjQkQl 〈εt,iεt,jεt,kεt,l〉 −
〈
M2

ap

〉2

(2.72)

Following the recipe as for the mean estimator, we �rst calculate the average over the source

galaxies and this yields Schneider et al. (1998):

A [εt,iεt,jεt,kεt,l] = γt,iγt,jγt,kγt,l +A
[
ε
(s)
t,i ε

(s)
t,j ε

(s)
t,kε

(s)
t,l

]
+ σ2

ε

2
[
γt,iγt,jδ

K
kl + γt,iγt,kδ

K
jl

+γt,iγt,lδ
K
jk + γt,jγt,kδ

K
il + γt,jγt,lδ

K
ik + γt,kγt,lδ

K
ij

]
. (2.73)

Let us now work out the �rst term on the right-hand-side of the above expression. We see

that we have the following possibilities: all indices di�erent (i 6= j 6= k 6= l)→ 1a ; two indices

equal and three not (i 6= j 6= k = l) + perms → 1b ; (i 6= j 6= k = l) + perms → 1b two

sets of indices equal; three indices equal and one not; all indices equal.

• 1a → (i; j 6= i; k 6= i 6= j; l 6= i 6= j 6= k). Averaging over the source galaxy positions

gives:

1a
part

= P

∑
i

∑
j 6=i

∑
k 6=j 6=i

∑
l 6=k 6=j 6=i

wiwjwkwlQiQjQkQlγt,iγt,jγt,kγt,l
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=
N∏
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{∫ d2θα
πϑ2

}∑
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∑
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wiwjwkwlQiQjQkQlγt,iγt,jγt,kγt,l

= 1
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wiwjwkwl

∫
d2θ1 . . . d2θ4Q1 . . . Q4γt,1 . . . γt,4

= 1
(πϑ2)4
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i
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wiwjwkwlM4
ap (2.74)

Finally, on averaging over the shear-�eld realisations and putting back the factors we see

that:

E
[

1a
full

]
= (πϑ2)4(∑

iwi
∑
j 6=iwj

)2
1

(πϑ2)4

∑
i

∑
j 6=i
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〈
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〉
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l 6=k 6=j 6=iwiwjwkwl(∑
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j 6=iwj

)2

〈
M4

ap

〉
(2.75)

• 1b → (i; j 6= i; k 6= i 6= j; l = i 6= j 6= k) + perms. Averaging over the source galaxy

positions gives:

1b
part

= P

∑
i

∑
j 6=i

∑
k 6=j 6=i

w2
iwjwkQ

2
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= 1
(πϑ2)3
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w2
iwjwkM2

ap
Ms,2
πϑ2 , (2.76)

where in the above we have de�ned the quantity:Ms,2 := πϑ2 ∫ d2θ1Q
2(θ1)γ2

t (θ1). We

note that there are three identical contributions of this type that arise from the terms where

i = k, j = l, and j = k. Hence, on averaging over the shear-�eld realisations and putting

back the factors we see that the sum of these terms becomes:

E
[

1b
full

]
= 4

∑
i

∑
j 6=i
∑
k 6=j 6=iw

2
iwjwk(∑
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)2

〈
M2

apMs,2
〉
. (2.77)

• 1c → (i; j 6= i; k = i; l = j) + (i; j 6= i; k = j; l = i). Averaging over the source galaxy

positions gives:

1c
part

= P
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2
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2
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= 1
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We note that the second term (i; j 6= i; k = j; l = i) will be identical to the �rst after

summation, and thus gives us an extra factor of 2. Hence, on averaging over the shear-

�eld realisations and putting back the factors we see that the sum of these terms becomes:

E
[

1c
full

]
= 2

∑
iw

2
i

∑
j 6=iw

2
j(∑

iwi
∑
j 6=iwj

)2
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s,2

〉
. (2.79)

The terms where three or four indices are the same vanish due to the constraints on the sums.

Turning now to the second term on the right-hand-side of Eq. (2.73). Performing the average

over the source galaxy ellipticities we see that, since i 6= j and k 6= l, we have two possibilities:

A
[
ε
(s)
t,i ε

(s)
t,j ε

(s)
t,kε

(s)
t,l

]
= σ4

ε

4
[
δKi,kδ

K
j,l + δKi,lδ

K
j,k

]
, (2.80)

Let us call these two terms 2a and 2b . On performing the average over galaxy positions the

�rst term becomes:
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where in the above we have de�ned the quantityG := πϑ2 ∫ d2θ1Q
2(θ1). The second term 2b

is identical and so gives us a factor of 2. Finally the expectation over the ensemble of realisations

of the shear �eld, with the normalisation factors restored, gives us:

E
[

2a
full

+ 2b
full

]
=

∑
i

∑
j 6=iw

2
iw

2
j

2
(∑

i
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)2σ
4
εG

2 . (2.82)

Turning now to the third term on the right-hand-side of Eq. (2.73) we see that when summing

over allowed indices the �rst and last terms in the square bracket will not contribute. Let us label
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the remaining terms four terms 3a – 3d . On averaging over the source galaxy positions the

�rst of these terms can be written as:
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If we repeat the above calculation for the other 3 remaining terms 3b – 3d , then we see that

they yield exactly the same answer. This means that when summing these contributions we

simply multiply our answer by a factor of 4. Finally, the expectation over the ensemble of real-

isations of the shear �eld, with the normalisation factors restored, gives us:
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On summing all of the contributions to the variance that come from terms Eq. (2.75), Eq. (2.77),

Eq. (2.79), Eq. (2.82) and Eq. (2.85) we see that the weighted variance of the estimator for the

aperture mass variance can be written:
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2.B Mask maps

In Figure 2.12 we show the survey masks for the W1, W2, W3 and W4 �elds of the CFHTLenS.

This �gure clearly illustrates the problem with incomplete sky coverage due to the survey bound-

aries, the holes drilled due to the di�raction e�ects of bright stars and the gaps between chips.

One can also notice that, while the W1, W2 and W4 �elds are fairly �at projections, the W3 �eld

clearly su�ers more from the e�ects of the curved geometry of the sky.

2.C Maps for the W2-W4 CFHTLenS �elds

In Figs 2.13 - 2.15 we show aperture maps for the remaining CFHTLenS �elds. The row are

identically structured as in Figs 2.3 - 2.4, but we only show the signal-to-noise map in the left

column and the inverse variance weight map in the right column.
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Figure 2.12 The pixel masks of the CFHTLenS. The top left, top right, bottom left and bottom

right show the masks for the W1, W2, W3 and W4 �elds, respectively. The red area shows the

observed footprint.
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Figure 2.13 Signal-to-noise and aperture weight map of the W2 �eld of the CFHTLenS data.
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Figure 2.14 Signal-to-noise and aperture weight map of the W3 �eld of the CFHTLenS data.
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Figure 2.15 Signal-to-noise and aperture weight map of the W4 �eld of the CFHTLenS data.
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3Fast estimation of

aperture mass

statistics II

Abstract

We explore an alternative method to the usual shear correlation function approach for

the estimation of aperture mass statistics in weak lensing survey data. Our approach builds

on the direct estimator method. In this paper, we extend our analysis to statistics of arbitrary

order and to the multiscale aperture mass statistics. We show that there always exists a

linear order algorithm to retrieve any of these generalised aperture mass statistics from shape

catalogs when the direct estimator approach is adopted. We validate our approach through

application to a large number of Gaussian mock lensing surveys where the true answer

is known and we do this up to 10th order statistics. We then apply our estimators to an

ensemble of real-world mock catalogs obtained fromN -body simulations – the SLICS mocks,

and show that one can expect to retrieve detections of higher order clustering up to �fth

order in a KiDS-1000 like survey. We expect that these methods will be of most utility for

future wide-�eld surveys like Euclid and the Rubin Telescope.

3.1 Introduction

Weak gravitational lensing by large-scale structure of the light from distant galaxies is a power-

ful probe for constraining the cosmological parameters and distinguishing between competing

models of the Universe (Blandford et al., 1991; Seitz et al., 1994; Jain & Seljak, 1997; Kaiser, 1998;

Schneider et al., 1998; Zhang et al., 2007). The �rst measurements of the correlations in the shapes

of distant background galaxies date back more than two decades (Bacon et al., 2000; Kaiser et al.,

2000; Van Waerbeke et al., 2000; Wittman et al., 2000). Since then, cosmic shear observations

have become ever more precise as the coupling of technological advancements and algorithmic

developments have enabled us to conduct unprecedented deep optical imaging surveys of the
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cosmos KiDS1, DES2 and HSC3, with current state-of-the-art surveys now mapping thousands of

square degrees (Hildebrandt et al., 2017; Troxel et al., 2018; Aihara et al., 2018; Hikage et al., 2019;

Asgari et al., 2021). By the end of the decade planned experiments like Euclid4 and the Rubin Tele-

scope5 (Laureijs et al., 2011; LSST, 2009) will map volumes close to the entire physical volume

of our observable Universe. In order to make optimal use of these rich data sets we will need to

push forward our understanding and modelling of various physical and measurement e�ects. In

particular: accurate modelling of the nonlinear evolution of large-scale structure, including the

baryonic physics e�ects; accurate modelling and correction of the point-spread function of the

telescope; correcting the bias in the weak lensing shape estimation algorithms; and accounting

for the intrinsic alignments, to name but a few of the main systematics (see Schneider, 2006b;

Massey et al., 2013; Troxel & Ishak, 2015, for a more detailed discussion of these e�ects).

If the underlying matter density �eld were a Gaussian random �eld, then all of the inform-

ation in a weak lensing survey would be contained in the shear two-point correlation function.

However, physical e�ects like: the nonlinear growth of structure (Bernardeau et al., 2002), the

mapping between cosmic shear and galaxy ellipticities (Miralda-Escude, 1991), and lensing bey-

ond the Born approximation (Hilbert et al., 2009; Pratten & Lewis, 2016; Fabbian et al., 2018), all

introduce non-Gaussianity in the maps. Furthermore, the nonlinear evolution also induces cor-

relations in the convergence power spectrum multipoles, which grow stronger on small scales.

This means that the information content of the second order statistics becomes saturated after

a given multipole (Sato et al., 2011; Hilbert et al., 2012; Kayo et al., 2013; Marian et al., 2013;

Byun et al., 2017). Thus in order to capture all of the cosmological information available in

lensing surveys one must look to the higher order statistics of the shear �eld (Schneider et al.,

1998; Bernardeau et al., 2002; Schneider & Lombardi, 2003). Furthermore, owing to the di�erent

ways in which the cosmological parameters and nuisance parameters depend on the higher-order

statistics, the inclusion of such measurements brings with it the further virtue of being able to

break parameter degeneracies, e.g. by combining second and third order statistics (Kilbinger

& Schneider, 2005; Semboloni et al., 2011; Fu et al., 2014), or by incorporating the information

found in the statistical properties of the peaks in the shear �eld (Marian et al., 2013; Kacprzak

et al., 2016).

A powerful method to disentangle systematic e�ects from cosmic shear signals is the E/B

decomposition (Crittenden et al., 2001; Schneider et al., 2002b). At leading order, pure weak

1 kids.strw.leidenuniv.nl
2 www.darkenergysurvey.org
3 hsc.mtk.nao.ac.jp/ssp/
4 www.cosmos.esa.int/web/euclid
5 www.lsst.org



80 3.1 Introduction

lensing signals are sourced by a scalar lensing potential, which means that their de�ection �elds

are curl free. Equivalently, the ring-averaged cross component of the shear is expected to be

zero (the B mode), while the tangential one contains all the lensing signal (the E mode). Thus B

modes enable a robust test for the presence of systematic errors. One method to take advantage

of this E/B decomposition is the so-called ‘aperture mass statistics’ (Kaiser, 1995; Schneider, 1996;

Schneider et al., 1998). ‘Aperture mass’ (Map) and ‘Map-Cross’ (M×) are obtained by convolving

the tangential and cross shear with an isotropic �lter function. Therefore by construction they

are E/B-decomposed. Taking the second moment leads to the variance of aperture mass, the third

to the skewness, the fourth to the kurtosis, etc.

The standard approach for measuring the aperture mass statistics in data utilises the fact that,

for the �at sky, any n-point moment can be expressed in terms of integrals over the n-point shear

correlation functions, modulo a kernel function (Schneider et al., 2002b; Jarvis et al., 2004). The

reason for adopting this strategy stems from the fact that the correlation functions can reliably

be estimated in the presence of a nontrivial survey mask. However, for these estimators to be

accurate and E/B decomposed, one requires three conditions to be satis�ed: (i) the ξ+/ξ− correl-

ations need to be measured down to zero separation; (ii) they also need to be measured up to a

maximum angular scale, set by the exact form of the aperture mass �lter and its angular scale;

(iii) the angular bins must be su�ciently �ne for the discretisation of the integrals to be reliable

(Kilbinger & Schneider, 2005; Fu et al., 2014). Owing to galaxy image blending, signal-to-noise

issues and the �nite size of the survey, the lower bound is never possible and the upper bound

means that biases can occur due to edge e�ects. In addition, while the mean estimate is unbiased,

the variance matrix does require one to carefully account for the mask (Schneider et al., 2002a;

Friedrich et al., 2016). More recent developments that also make use of the shear correlation

functions, while circumventing the issues of E/B leakage on small scales are the ring statistics

and COSEBIs (Schneider & Kilbinger, 2007b; Schneider et al., 2010). While those approaches can

be in principle be extended to higher order statistics, the estimation of the n-point correlation

functions turns out to be notoriously time consuming (Schneider et al., 2005; Jarvis et al., 2003).

Further methods to extract non-Gaussian information from the aperture mass look at its probab-

ility density function as a whole (Bernardeau & Valageas, 2000; Munshi et al., 2004; Barthelemy

et al., 2020) or at the distribution of its signal-to-noise peaks (Marian et al., 2012; Heydenreich

et al., 2020; Martinet et al., 2021).

In Porth et al. (2020) we took a di�erent approach and explored a computationally e�cient

(accelerated) implementation of the original direct estimator of the aperture mass dispersion

(Schneider, 1998). Rather than measuring the correlation functions of the shear polar, in this
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formulation one instead directly measures cumulants of Map on a set of apertures and then

uses an optimised weighting scheme to average the estimates, along with a restriction on the

types of apertures that are acceptable. The present work extends our previous investigation in

a number of important ways. First, we construct accelerated direct estimators for the higher-

order aperture mass moments, including the skewness, kurtosis, etc. Second, we also develop

further the multiscale aperture moments (Jarvis et al., 2003; Schneider et al., 2005). These two

improvements enable us to better trace the full, harmonic mode, con�guration dependence of

the convergence polyspectra.

This paper is organised as follows: In §3.2 we introduce key concepts of weak lensing, de�ne

the aperture mass and show how its connected cumulants are related to the convergence poly-

spectra. In §3.3 we revisit the direct estimators for higher order aperture mass measures and

construct suitable bases, in which each statistic can be computed in linear time complexity. After

investigating the variance of the direct estimators, we give details of our updated algorithm used

to perform the measurements. In §3.4 we empirically verify the linear scaling and the measure-

ments of our implementation of the direct estimator on Gaussian mocks. In §3.5 we then apply

the estimator to the SLICS simulation suite in order to assess up to which order one can expect

to extract information from the aperture mass statistics on a KiDS-1000 like survey. Finally, in

§3.6 we summarise our �ndings, conclude and discuss future work.

3.2 Higher order aperture mass measures for cosmic shear

3.2.1 Weak gravitational lensing and aperture mass

In this paper we are mainly concerned with the weak lensing of distant background (source)

galaxy shapes by the intervening large-scale structure (for detailed reviews of the topic see Bar-

telmann & Schneider, 2001; Schneider, 2006a,b; Dodelson, 2003, 2017; Kilbinger, 2015; Mandel-

baum, 2018). The two fundamental quantities describing this mapping from true to observed

galaxy images are the convergence κ and the complex shear γ = γ1 + iγ2, which, assuming a

metric theory of gravity, are all derived from an underlying scalar lensing potential. In a galaxy

survey the e�ective convergence at angular position θ and radial comoving distance χ can be

connected to the density contrast δ(χθ, χ) through:

κ(θ) = 3
2Ωm,0

(
H0
c

)2 ∫ χH

0
dχ′ χ′

a(χ′)g(χ′)δ(χ′θ, χ′) , (3.1)

where Ωm,0 is the total matter density, H0 denotes the Hubble constant, a is the scale factor, c

is the speed of light, χH is the comoving distance to the horizon and g(χ) is a weight function
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related to the normalized redshift distribution dn(z)/dz of the source galaxies as

g(χ′) ≡
∫ zH

z(χ′)
dz dn(z)

dz
[χ(z)− χ′]

χ(z) . (3.2)

Aperture mass was developed by Schneider (1996) as a technique to estimate projected mass

overdensities enclosed within a circular region:

Map(θ0;ϑ) =
∫

R2
d2θ1κ(θ1)U(|θ1 − θ0| ;ϑ) , (3.3)

where U is a compensated �lter function. In the �at sky limit the (cross) aperture mass can be

expressed in terms of a related circularly symmetric �lter function Q(U) and the complex shear

�eld γ in its E/B-decomposed basis:

Map/×(θ0;ϑ) ≡
∫

R2
d2θ1γt/×(θ1;θ0)Q(|θ1 − θ0|;ϑ) , (3.4)

where the tangential and cross components of the shear �eld at position θ + θ0 with respect to

the aperture center θ0 are de�ned as (Bartelmann & Schneider, 2001):

γt(θ;θ0) + iγ×(θ;θ0) ≡ −γ(θ + θ0)e−2iφ , (3.5)

in which φ denotes the polar angle associated with the vector θ. In the absence of systematic

errors (B-modes) in the lensing data, map-cross should vanish (Schneider et al., 2002b).

For this work we will make use of the polynomial �lter function introduced by Schneider

et al. (1998):

Q(θ;ϑ) = 6
πϑ2

(
θ

ϑ

)2 [
1−

(
θ

ϑ

)2]
H(ϑ− θ) , (3.6)

where ϑ is the characteristic scale of the �lter and H(x) is the Heaviside function, which guar-

antees that the �lter function has compact support.

3.2.2 A hierarchy of aperture mass measures

One may construct moments of the aperture mass �eld, and this gives rise to the so called aperture

mass statistics. At the two-point level this gives us the variance
〈
M2

ap

〉
c

(ϑ1) and at the three-

point, the skewness
〈
M3

ap

〉
c

(ϑ1), etc., where the subscript c stands for the connected cumulant

obtained from the moments (Scoccimarro & Frieman, 1996). Owing to the fact that the aperture

mass is a convolution of the convergence �eld with a �lter function, it is possible to rewrite

these moments in terms of their Fourier space counterparts, that is the convergence spectra. For

example for the variance and skewness we have:〈
M2

ap

〉
c

(ϑ) =
∫ d2`1

(2π)2Cκ,2(`1)
∣∣∣Ũϑ(`1)

∣∣∣2 ; (3.7)
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〈
M3

ap

〉
c

(ϑ) =
∫ d2`1

(2π)2 · · ·
∫ d2`3

(2π)2 (2π)2δD
( 3∑
i=1
`i

)

× Cκ(`1, · · · , `3) Ũϑ(`1)Ũϑ(`2)Ũϑ(`3) , (3.8)

where Ũϑi denotes the Fourier transform of the aperture mass �lter functionU(θ;ϑi) andCκ(`1)

denotes the convergence power spectrum, andCκ(`1, `2, `3) the convergence bispectrum. These

spectra can formally be de�ned:

〈κ̃(`1)κ̃(`2)〉c = (2π)3δD (`1 + `2) Cκ(`1) ; (3.9)

〈κ̃(`1)κ̃(`2)κ̃(`3)〉c = (2π)3δD
( 3∑
i=1
`i

)
Cκ(`1, `2, `3) . (3.10)

This of course can be generalised to n-point aperture mass moments:

〈
Mn

ap

〉
c

(ϑ) =
∫ d2`1

(2π)2 · · ·
∫ d2`n

(2π)2 (2π)2δD
(

n∑
i=1
`i

)

× Cκ(`1, · · · , `n) Ũϑ(`1) · · · Ũϑ(`n) , (3.11)

where the n-point convergence spectrum is de�ned:

〈κ̃(`1) . . . κ̃(`n)〉c = (2π)3δD
(

n∑
i=1
`i

)
Cκ(`1, . . . , `n) . (3.12)

It is worth noting that due to the fact that Ũ is a sharply peaked �lter function in Fourier

space, the aperture mass moment on a given scale only carries information about a speci�c range

of wavemodes ` from the underlying polyspectrum. In order to extract more of the information

that is available one needs to compute Eq. (3.11) for a large set of aperture radii (Schneider et al.,

2005).

3.2.3 Multiscale aperture mass moments and their correlators

Even if one considers a wide range of aperture radii there will be certain wavemode con�gura-

tions of the polyspectra that are suppressed when compared with other con�gurations. This may

result in a loss of sensitivity to certain physical e�ects that are only manifest in the higher-order

polyspectra, such as those induced by modi�cations of gravity or primordial non-Gaussianities.

In order to combat this one can further generalise the aperture mass moments in several ways.

First, if we choose di�erent scales for the aperture mass �lter function, then we get the multiscale

aperture mass moments. For the n-point multiscale aperture mass moment this can be written:

〈
Mn

ap

〉
c

(ϑ1, · · · , ϑn) =
∫ d2`1

(2π)2 · · ·
∫ d2`n

(2π)2 (2π)2δD
(

n∑
i=1
`i

)
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× Cκ(`1, · · · , `n) Ũϑ1(`1) · · · Ũϑn(`n) . (3.13)

Second, if we correlate a set of apertures at di�erent spatial positions in the sky, then one can

de�ne the multiscale aperture mass moment correlators (Szapudi & Szalay, 1997; Munshi & Coles,

2003). There are two special cases where this approach can be applied, the �rst is the case where

the separation of the aperture is directed perpendicular to the line of sight. The second case is

where the apertures are placed along the same line of sight, but where di�erent tomographic

bins of source galaxies are used to estimate the aperture mass. The former case measures the

correlation of the cumulants on the same redshift slice, but at di�erent angular positions. The

latter case corresponds to correlating aperture measures in di�erent surveys with overlapping

footprints, or between photometric redshift bins within the same survey. As the aperture mass

�lter carries most of its weight in a compact region surrounding the aperture center one expects

the signal to fall o� rapidly for aperture separations that exceed beyond a few times the aperture

radius. Generalizing the result of (Schneider et al., 1998) we can formally write this as follows:

〈
Mn

apMm
ap

〉
c

(ϑ1, · · · , ϑn, ϑ′1, · · · , ϑ′m;
−→
∆) =∫ d2`1

(2π)2 · · ·
d2`n+m
(2π)2 (2π)2δD

n+m∑
j=1

`j

 Cκ(`1, · · · , `n+m)

× Ũϑ1(`1) · · · Ũϑ′m(`n+m) ei
−→
∆
∑m

j=1 `n+j , (3.14)

where ∆ is a separation vector. Note that for zero separation we recover the (m+n)th cumulant.

In addition, we can assess the impact of the exponential factor by evaluating the two point cross-

correlation coe�cients rmn, which are de�ned in a similar way to those in (Munshi & Valageas,

2005):

rmn(∆) ≡ 〈X
mXn〉c (∆)
〈Xm+n〉c

, (3.15)

where for our case Xm = Mm
ap. In this work, however, we do not consider the cosmological

information contained in Eq. (3.14), but instead use it to assess how fast the rmn converge to

unity - this can be seen as a proxy for how densely apertures need to be sampled within a survey

footprint to retrieve all available signal.
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3.3 Estimators for higher order aperture mass statistics

3.3.1 Direct estimators for the aperture mass moments and their evaluation

in linear order time

In this subsection we concern ourselves with estimators for higher order aperture mass statistics

that mimic the original theoretical expressions Eq. (3.11) more closely. At �rst, let us investigate

the special case of all the radii being equal.

Consider an aperture of angular radius ϑ, centred on the position θ0. The aperture contains

N galaxies6 with positions θi, complex ellipticities ei and weightswi. Then, for a single aperture,

one can write down an estimator for the nth order aperture mass statistic Eq. (3.11) as (Schneider

et al., 1998; Munshi & Coles, 2003)

M̂n
ap = (πϑ2)n

∑
(i1,...,in)N wi1Qi1et,i1 · · ·winQinet,in∑

(i1,...,in)N wi1 · · ·win
, (3.16)

where we de�ned the shorthand notation7

∑
(i1,...,in)N

≡
N∑
i1=1

N∑
i2 6=i1

· · ·
N∑

in 6=in−1 6=... 6=i1
. (3.17)

On applying the above estimator to the case of n = 2, one can easily show that that this estimator

is unbiased after averaging over the intrinsic ellipticity distribution, the galaxy positions within

the aperture, and �nally over cosmological ensembles (Schneider et al., 1998; Porth et al., 2020).

If we were to apply the above estimator given by Eq. (3.16) to determine the hierarchy of

aperture mass moments, then this naive implementation would appear to result in an estimator

that requires of the orderNn operations to compute. However, following our earlier work (Porth

et al., 2020), one can complete the sums to transform the estimators into sums and products of

linear order terms. In Appendix 3.A we explicitly show, using elementary means, how one can

compute the skewness (M̂3
ap) and kurtosis (M̂4

ap) using linear sums. The results for second, third

and fourth orders are:

M̂ap = Ms,1 ; (3.18)

M̂2
ap =

M2
s,1 −Ms,2

1− S2
; (3.19)

6 Strictly speaking, we select galaxies within the support of the Q �lter function of that aperture. For the �lter
functions we use in this work the support is always concentric around the aperture center and linearly scaling with
aperture radius. Therefore we will continue referring to N as the number of galaxies per aperture.

7 Note that in this de�nition and in general the notation i1 6= i2 6= · · · 6= in below a single summation symbol
indicates that the summation index (which is understood to be the �rst one in the expression) is not equal to any
of the other indices in the expression.
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M̂3
ap =

M3
s,1 − 3Ms,2Ms,1 + 2Ms,3

1− 3S2 + 2S3
; (3.20)

M̂4
ap =

M4
s,1 − 6Ms,2M

2
s,1 + 3M2

s,2 + 8Ms,3Ms,1 − 6Ms,4

1− 6S2 + 3 (S2)2 + 8S3 − 6S4
, (3.21)

where we have introduced two additional quantities: Sm and Ms,m, which are de�ned:

Ms,m ≡ Sm (πϑ2)m
∑N
i=1w

m
i Q

m
i e

m
t,i∑N

i=1w
m
i

; (3.22)

Sm ≡
∑N
i=1w

m
i(∑N

i=1wi
)m ; (3.23)

Applying the elementary approach described in Appendix 3.A beyond fourth order rapidly

becomes cumbersome, to say the least. We have therefore developed an analytic method for

generation of the nth order estimator decomposed into linear sums. This follows from noting

that the sum in Eq. (3.16) runs over unequal indices and that one can express any statistic M̂n
ap as

a sum of the power sums Eq. (3.22), where the coe�cients preceding each term are determined

with the help of the complete Bell polynomials Bn. Hence, for the general nth order estimate

one has:

M̂n
ap = Bn (−Ms,1,−Ms,2,−2Ms,3, ...,−(n− 1)!Ms,n)

Bn (−S1,−S2,−2S3, ...,−(n− 1)!Sn) . (3.24)

For full details of this derivation we refer the reader to Appendix 3.B. Here we only note that each

argument that goes into Eq. (3.24) is a single sum over the galaxies in the aperture and is therefore

independent of the order of the statistic. Using this formalism, we extend our decomposition to

5th and 6th order, giving us:

M̂5
ap = 1

N5

[
M5

s,1 − 10Ms,2M
3
s,1 + 15M2

s,2Ms,1 + 20Ms,3M
2
s,1

−20Ms,3Ms,2 − 30Ms,4Ms,1 + 24Ms,5] ; (3.25)

M̂6
ap = 1

N6

[
M6

s,1 − 15Ms,2M
4
s,1 + 45M2

s,2M
2
s,1 − 15M3

s,2 + 40M2
s,3

− 90Ms,4M
2
s,1 + 40Ms,3M

3
s,1 − 120Ms,3Ms,2Ms,1

+90Ms,4Ms,2 + 144Ms,5Ms,1 − 120Ms,6] , (3.26)

where

N5 =1− 10S2 + 15 (S2)2 + 20S3 − 20S3S2 − 30S4 + 24S5 ; (3.27)

N6 =1− 15S2 + 45 (S2)2 − 15 (S2)3 + 40S3 − 120S3S2

+ 40 (S3)2 − 90S4 + 90S4S2 + 144S5 − 120S6 . (3.28)
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3.3.2 Direct estimators for the multiscale aperture mass moments

In complete analogy we can write down an unbiased direct estimator for the full multiscale aper-

ture mass moments of Eq. (3.13):

M̂n
ap(ϑ1, ..., ϑn) = (πϑ2

1) · · · (πϑ2
n)

×
∑

(i1,...,in)wi1Qϑ1,i1et,i1 · · ·winQϑn,inet,in∑
(i1,...,in)N wi1 · · ·win

, (3.29)

where each index runs through all the galaxies within the aperture of the largest radius. In

this case the power sums of Eqs. (3.22) and (3.23) do not form a su�cient basis to express these

estimators, but we are still able to write down the estimators from elements within the sets

Xn ≡
{
X

(m)
(α1,...,αn)

∣∣∣∣∣ αi ∈ {0, 1} ,
n∑
i=1

αi = m ≤ n
}
, (3.30)

where X ∈ {Ms, S} and the corresponding elements constitute of multivariate power sums

being de�ned as

M (m)
s,α1,...,αn ≡

(
n∏
k=1

(
πϑ2

k

)αk)N(α)∑
i=1

wmi

n∏
j=1

[
et,iQϑj ,i

]αj
,

S
(m)
(α1,...,αn) ≡

N(α)∑
i=1

wmi , (3.31)

whereN(α) denotes the number of galaxies within the aperture of the smallest radius for which

αi is not zero. Despite the more complicated looking form compared to the equal radius case these

estimators can also be computed in O(N) time using the
∣∣∣X̂n

∣∣∣ = 2n − 1 distinct multivariate

power sums Eq. (3.31) and summing over various partitions P of the set {1, · · · , n}:

M̂n
ap(ϑ1, ..., ϑn) =

∑n
m=1

∑
π∈Pn,m(−1)m

∏m
i=1(ni − 1)! M (ni)

s,α1(πi),··· ,αn(πi)∑n
m=1

∑
π∈Pn,m(−1)m

∏m
i=1(ni − 1)! S(ni)

(α1(πi),··· ,αn(πi))

. (3.32)

In this expression the combination of the two outer sums run through each partition π that

consists of m blocks and the α(πi) denote the value of the α as evaluated from the ith block

of the partition. For a motivation of this equation and explicit expressions we again refer to

Appendix 3.B.

3.3.3 Estimators applied to a large survey

In order to estimate any aperture statistics

M ∈
{〈
M2

ap

〉
(ϑ1),

〈
M3

ap

〉
(ϑ1), . . .

}
(3.33)
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on a contiguous survey �eld one can simply place an ensemble of apertures on the �eld and

compute their weighted means

M̂ =
∑

apwapM̂ap∑
apwap

, (3.34)

where the weights wi should be chosen to minimize the variance of the estimator. Owing to the

linearity of Eq. (3.34), if the estimator of a single aperture is unbiased, then so is Eq. (3.34). Thus

including more apertures will increase the signal-to-noise of the ensemble estimator.

3.3.4 Variance of the direct estimators

In order to understand how to weight the apertures we need to obtain expressions for the variance

of the moment estimators. On generalizing the prescriptions outlined in (Schneider et al., 1998;

Munshi & Coles, 2003) to include the shear weights, as in Porth et al. (2020), one can work out

expressions for the variance of the higher-order direct estimators Eq. (3.16) for a given aperture.

For the explicit derivation of the variance of the third order statistic see Appendix 3.D. From this

analysis we see that the general expression can be written:

σ2
[
M̂n

ap

]
=

n∑
`=0

n∑
m=`

∑
6=w

2
i1 · · ·w

2
imwim+1 · · ·winwjm+1 · · ·wjn(∑
6=wi1 · · ·win

)2

× C(n, `,m)M `
g,2

(
σ2
ε

2

)`
〈Mm−`

s,2 M
2(n−m)
ap 〉 , (3.35)

where the sum over the galaxy weights can again be decomposed as sums of (bivariate) power

sums and the multiplicities are given by

C(n, `,m) = 1
`!(m− `)!

(
n!

(n−m)!

)2
. (3.36)

For a discussion of the origin for the multiplicity factor C(n, `,m), as well as a motivation of

Eq. (3.35) and some of its limits we refer the reader to Appendix 3.C; in particular we obtain for

the shape noise dominated limit

σ2
[
M̂n

ap

]
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∑
6=w

2
i1 · · ·w

2
in(∑

6=wi1 · · ·win
)2

(
σ2
ε

2

)n
Mn
g,2 . (3.37)

The above formula gives the variance per aperture, thus for the estimator over the full survey

�eld, Eq. (3.34), the variance can be written down as:

σ2
[
M̂
]

= cov
(∑

iwiM̂i∑
iwi

,

∑
j wjM̂j∑
j wj

)

= S2 σ
2
[
M̂ap

]
+
σ2
[
M̂ap

]
(
∑
iwi)

2
∑
i 6=j

wiwjρ(M̂i, M̂j) , (3.38)
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Figure 3.1 Example con�guration of the correlation coe�cient ρ (left) and its e�ect on the signal

contained in a survey �eld as predicted from Eq. (3.41) (right).

where in the above we have de�ned the cross-correlation coe�cient between apertures whose

centres are at position θi and θj to be:

ρ(Mi,Mj) ≡
〈Mi,Mj〉√

〈Mi,Mi〉 〈Mj ,Mj〉
. (3.39)

Note that for the case of well separated apertures, the cross-correlation coe�cient will vanish

and only the �rst summand needs to be taken into account, which for unity weights gives the

familiar 1/Nap scaling of the variance. If the apertures are oversampled, this assumption is no

longer valid and the term involving ρ must be included. Owing to the fact that ρ should only

depend on the relative spatial distance ∆ between the aperture centres, we can rewrite (3.38) as

a weighted sum over all possible distances between aperture center pairs:

σ2
[
M̂
]

= S2 σ
2
[
M̂ap

]
+
σ2
[
M̂ap

]
(
∑
iwi)

2
∑
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i,j∈Ib

wiwj

 ρ(M̂,∆b) (3.40)

≈
σ2
[
M̂ap

]
Nap

+ 2π
σ2
[
M̂ap

]
Asurvey

∫ ∞
Rap/α

d∆ ∆ ρ(M̂,∆) , (3.41)

where in the �rst step the bins are de�ned as a partition of the reals, and Ib ≡ {i, j|∆(i, j) ∈

b} collects all the aperture center pairs falling into bin b. For the second step we make the

approximation that each aperture contains roughly the same signal such that the weights can be

set to unity and we furthermore rewrote the expression in a continuous version, which makes



90 3.3 Estimators for higher order aperture mass statistics

the interpretation of the cross term more concise. In particular, we parametrize the lower bound

of the integral in terms of the aperture oversampling rate α ≡ Rap/∆min.

In a realistic scenario we expect ρ to to rapidly decrease from unity and then to approach

zero for ∆ � Rap. An example of such a correlation coe�cient is shown in Fig. 3.1. Here we

explicitly see the importance of taking into account the cross term once there is a substantial

overlap between neighbouring apertures. In this example we would infer that measuring the

statistics with α ≈ 2 would be su�cient to extract most of the signal.

3.3.5 Implementation and scaling of the direct estimator

A practical implementation of Eq. (3.34) consists of three steps:

(i) Spatially organise the shape catalog to allow for a fast assignment of galaxies to apertures.

(ii) For each aperture of the ensemble compute M̂ap, the associated weight and optionally ad-

ditional systematics (i.e. the coverage fraction ck). Store each of these values in an array.

(iii) Based on some aperture selection and aperture weighting criteria wap, update the weights

and evaluate the weighted sum.

In what follows we will explore each of these steps in more detail and for clarity we will denote

the number of galaxies in the survey and in the aperture as Ng and Ng,ap, respectively.

Assigning galaxies to apertures

For our implementation we use a spatial hashing data structure. We start by covering the sur-

vey footprint with an equal area mesh of Npix pixels and create a hash table with the ID of

each pixel as the key and the galaxy IDs as values. The hash function in our case is the ordin-

ary pixel assignment function. For each aperture we iterate over the associated galaxies within

pixels that partially lie within the Q �lter’s support. The construction of the hash table scales

asO (max(Npix, Ng)) and the assignment is achieved inO
(
max(Npix,ap],Ng,ap)

)
time per aper-

ture. We found that when making a sensible choice of the mesh’s coarseness, this data structure

is more stable than a naive KD-tree based implementation as it does not require an additional

range search operation which scales asO(log(Ng)) per aperture and thus becomes a bottleneck

for small apertures.
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Computing the statistics per aperture

For the case of all radii being equal we �rst compute the power sums in Eqs. (3.22) and (3.23)

and then recursively transform them to the corresponding moments via the recurrence relation

(Comtet, 1974)

Bn+1(x1, · · · , xn+1) =
n∑
i=0

(
n

i

)
Bn(x1, · · · , xn)xi+1 , (3.42)

where B0 ≡ 1. Evaluating each power sum is linear in Ng,ap and for all practical applications

the time taken for transforming to theMn
ap basis can be neglected.

For the general case we need to compute the relevant multivariable power sums Eq. (3.31) and

bring them to the aperture moments basis by the transformation Eq. (3.32). In order to dynam-

ically allocate and evaluate those expressions we use a combinadic counting scheme to organize

the power sum basis whereas the transformation equation is generated with the help of restricted

growth strings (Knuth, 2005).

Choice of weights for the averaging

Following our �ndings in Porth et al. (2020) we employ an inverse shot noise weighting scheme

with an additional hard cuto� clim for the aperture coverage cap, which for second order statistics

was found to lower the mask induced bias while increasing the signal-to-noise compared to equal

weights. The explicit form of the weights for the nth moment can be found from Eq. (3.37) when

neglecting all constant contributions:

W(shot)
ap (clim) ≡

 ∑
(i1,··· ,in)w

2
i1 · · ·w

2
in(∑

(i1,··· ,in)wi1 · · ·win
)2


−1

H(cap − clim) . (3.43)

Dependent on whether we are dealing with the case of equal or unequal aperture radii the sums

can be decomposed in a similar fashion as described above and evaluated together with the cor-

responding linearised direct estimator. As a further re�nement one could also include the weights

and completenesses of the surrounding apertures weighted by the spatial cross correlation coef-

�cient ρ̂ - this would upweight apertures that are close to a mask as they cover more unique

area.
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3.4 Results: application to Gaussian mocks

3.4.1 Aperture mass statistics and Gaussian lensing �elds

In order to validate that our hierarchy of aperture mass moment estimators are unbiased and do

indeed recover correct results, we �rst apply them to a set of Gaussian mock lensing simulations.

In this case, the whole moment hierarchy can be written as powers of the variance of the aperture

mass. Hence, this motivates us to de�ne the scaled aperture mass moments:

sn(ϑ1) ≡ 1
(n− 1)!!

〈
Mn

ap

〉
(ϑ1)[〈

M2
ap

〉
(ϑ1)

]n/2 = δKn,2N , (3.44)

where the �nal equality is true for a Gaussian �eld only.

In order to test this we generated 256 Gaussian lensing mocks. The methodology to create

each mock was as follows:

(i) We �rst generate a Gaussian convergence �eld over a 12 × 12 degrees2 survey area. The

area is tiled by a rectangular mesh of 81922 pixels. The variance of the convergence is

obtained through specifying the convergence power spectrum, and we do this for a source

distribution similar to that for the CFHTLenS survey (Fu et al., 2014).

(ii) We next obtain the shear �eld. This is done by Fourier transforming the convergence �eld

and making use of the Kaiser & Squires (1993) approach8.

(iii) We then sample 4×106 galaxies into the survey footprint and use a multilinear interpolation

of the shear �eld onto each galaxy.

Note that since we are assessing the accuracy of the estimators only we choose to set the intrinsic

ellipticities of our source galaxies to zero. On repeating the analysis below when including this

term we did not �nd a shift of the curves.

3.4.2 Computational scaling tests

Owing to the fact that each step of our algorithm is strictly linear, we expect a linear relationship

between the elapsed time for estimator evaluation and the number of galaxies, for any given

statistic. In addition, for the equal radius case the order of the statistics should not strongly
8 In order to suppress edge e�ects introduced by the FFT we build the pixelated convergence �eld on an a plane

having 16 times the area of the mock.
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Figure 3.2 Computational complexity of the direct estimators for equal (left) and unequal (right)

aperture radii as a function of the number of galaxies. All results are given for apertures of ra-

dius 10′ which are oversampled by a factor of sixteen (α = 4) on a survey �eld of size (12deg)2.

Di�erent colors indicate di�erent orders of the evaluated statistics. The black dashed line in-

dicates the time spent in constructing the spatial hash. We see that for equal aperture radii the

evaluation of higher order statistics basically comes for free, while for unequal radii there is a

constant multiplicative o�set based on the relative size of the radii and on the order which traces

the number of multivariate power sums that need to be evaluated. All the scaling were obtained

when running the estimator on a single CPU core.

impact the evaluation time. However, for the unequal radius case, this does not necessarily hold

true, since the computation depends on the relative sizes of the apertures as well as on the order

of the statistics to be evaluated.

Figure 3.2 shows the elapsed time of the direct estimator calculation for a Gaussian mock,

where the number of sampled galaxies in the mock is increased. Focusing on the left panel

�rst, this shows the case for the standard aperture mass estimators with equal radii and here we

compute all of the moments up to the 20th order. As expected the computational time for all of

the moments scales linearly with the size of the problem and we also see that there is no obvious

drop in performance for the higher order moments.

The right panel of Figure 3.2 is the same as the left panel, but now for the case of unequal

radii aperture mass moments, and here we only consider moments up to 6th order. There are

two di�erences between the equal and non-equal radius case. First, we can see that there is a

much larger multiplicative o�set between adjacent orders for the generalized statistics. This is

expected as the number of basis elements that need to be allocated in that case is given by 2n

compared to the n ones in the equal radius statistics. We also observe that for the second order

statistic the unequal radius calculation does roughly need four times as long as the equal radius

one. We can explain this o�set when noting that for our example the ratio of the largest and
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Figure 3.3 Comparison of the measured aperture mass moments with their theoretical prediction.

Left hand side: The upper subpanel shows the aperture mass dispersion as a function of the

aperture scale. The red line shows the theoretical predictions evaluated from the input power

spectrum and the blue line shows the measurement from the mocks. The blue shaded regions

show the standard deviation of the corresponding measurement across the ensemble. The lower

subpanel shows the relative error between the measurement and the theory, with the line styles

as before. Right hand side: Same as left panel, but for the kurtosis of aperture mass.

smallest scale was set to two. With our de�nition of the oversampling rate as being relative to

the smallest aperture radius this implies that we need to allocate four times as many galaxies.

Finally, we note that the superior scaling of the direct estimator compared to traditional es-

timation methods should not come as a surprise. Looking back at the original de�nition Eq. (3.11)

of the aperture mass one sees that it depends on the positions and shapes of the galaxies with

respect to the aperture origin. In contrast, when switching to the description of aperture mass in

terms of the shear correlation functions (i.e. Schneider et al., 2002b), the main dependence shifts

to the relative distance and shapes between tuples of galaxies. This change of reference position

makes the evaluation of correlation function based estimators intrinsically much more complex

than a simple discretization of Eq. (3.11).

3.4.3 A hierarchy of aperture mass moments

Figure 3.3 shows a comparison of the direct estimators for the second and fourth order aperture

mass moments as a function of angular scale as applied to the 256 Gaussian mocks. Here we

consider the case where all the aperture radii are equal (recall that for a Gaussian �eld all of the

odd moments vanish). In both cases the curves are in very good agreement with the Gaussian

theory predictions, indicated by the solid red lines. We also note that for increasingly large

aperture radii the measured results appear to be slightly below the theoretical expectation. This
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Figure 3.4 Scaled nth order aperture mass moments sn(ϑ) (see Eq. 3.44), measured in the en-

semble of 256 Gaussian mocks, as a function of the aperture scale, for all moments up to 10th

order. The solid lines of varying colours show the mean of the measurements. The dotted black

lines show the Gaussian theoretical expectations. For a Gaussian mock, the even order sn(ϑ)

give unity, and the odd ones vanish.

discrepancy can be attributed to �nite �eld e�ects, as well as border e�ects being introduced by

the Kaiser-Squires inversion method (see Pires, S. et al., 2020, for a discussion).

Figure 3.4 presents the measured sn (see Eq. (3.44)) for all of the aperture mass moments up to

10th order as a function of the aperture scale. We see that they are consistent with the Gaussian

theoretical expectations. Note that in order to obtain this good agreement and circumvent the

�nite �eld e�ects described above, we used the ensemble mean of the measured aperture mass

variance as the denominator in sn.

Figure 3.5 displays the fourth and sixth order multiscale aperture mass statistics as a function

of the scale parameter. Note that there are a number of options for exploring the con�guration

dependence of the multiscale aperture mass moments, here we focus on �xing the ratio of the

�lter lengths and varying the overall scale of the con�guration with the parameter ϑ, e.g. for the

kurtosis we would have

〈
Mn

ap

〉
c

(ϑ1, · · · , ϑn) =
〈
Mn

ap

〉
c

(α1ϑ, · · · , αnϑ) (3.45)

with αi = ai, where ai is a constant vector (it is to be understood that αi is di�erent from

the aperture spacing parameter α). The estimates shown in the �gure were obtained using our

generalized estimator Eq. (3.32). As for the previous cases, we �nd good agreement between the

measurements and the Gaussian predictions, which were obtained by making use of Eq. (3.13)
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Figure 3.5 Multiscale aperture mass moments as a function of the scale parameter ϑ, measured

in the ensemble of 256 Gaussian mocks. Line styles are the same as in Fig. 3.3. Left hand side:

the fourth order aperture statistics. In this case, the vector of aperture scales was set to α =

(0.5, 0.8, 1., 2.). Right hand side: Same as left hand side, but this time for the sixth order statistic

with the vector of aperture scales set to α = (0.5, 0.7, 1., 1.1, 1.5, 2.).

and Wicks theorem for the convergence polyspectra (Bernardeau et al., 2002).

3.5 Results: Detection signi�cance of higher order moments

In this section we now turn to the question of the detection signi�cance of higher order aperture

statistics from current and future surveys.

3.5.1 The SLICS mocks

In order to answer this question we make use of the SLICS9 mocks – this is a large suite of

lensing mock catalogues generated from a large set of cosmological N -body simulations (for

full details see Harnois-Déraps et al., 2018). Each SLICS mock corresponds to a survey area of

100 deg2. These are generated from the past light cone extracted from fully independent gravity-

only N -body simulations, which evolve N = 15323 particles within a comoving box of length

L = 505 h−1Mpc. The lensing maps are constructed using the Born approximation. We adopt

the catalogues for which the galaxies are randomly distributed within the lightcone according

to the KiDS-450 source distribution (Hildebrandt et al., 2017). The shape noise has been set to

σε = 0.29 per shear component. In order to mimic a constraining power that is comparable

to the KiDS-1000 data while not being too noisy, we rescale the errorbars by a factor of
√

10.

This provides us with e�ectively 819 simulated 1000(deg)2 surveys with which to perform our

analysis.
9 https://slics.roe.ac.uk/

https://slics.roe.ac.uk/
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When estimating the aperture mass statistics from the SLICS mocks using the estimator given

by Eq. (3.34), the achievable signal-to-noise ratio will depend on the number of sampled apertures

selected. If too few are chosen then our estimate will be ine�cient, on the other hand due to the

fact that there are aperture-to-aperture correlations choosing too many will capture all of the

available information, but ultimately will be computationally ine�cient. We therefore expect

that the information will saturate for a given oversampling rate, and that to sample at a higher

rate would be of little use. To investigate this we proceed as in Porth et al. (2020) and place

apertures on a regular grid with spacing ∆, corresponding to an aperture oversampling rate of

α ≡ min ({ϑi}) /2∆.

3.5.2 Measurement in the SLICS mocks

Figure 3.6 shows the detection signi�cance of the equal radii aperture mass statistics for the

second, third, fourth and �fth order aperture mass statistics as a function of the aperture scale

and for various choices of the oversampling rate. For the second order statistics we also plot the

theoretical prediction of the aperture mass dispersion evaluated from Eq. (3.11), where the con-

vergence power spectrum was computed with CCL10 (Chisari et al., 2019) using Halo�t (Smith

et al., 2003), but with the modi�cations of Takahashi et al. (2012), as the matter power spectrum.

While part of the di�erence between the curves for small aperture radii could be attributed to

uncertainties in Halo�t, our suspicion is that they mostly stem from the limited particle mass

resolution in the SLICS mocks (see Fig. 6 in Harnois-Déraps et al. (2018) for the resulting sup-

pression of the shear correlation functions for small separations).

Several important points are worth noting from these measurements. First, we see that for a

KiDS-1000 like survey there is su�cient �delity to detect the aperture mass statistics up to �fth

order, with the signal-to-noise peaking at an aperture size of around ϑ ≈ 10′ for all statistics.

This is exciting, as this has never before been achieved with standard correlation function based

estimators, and if correct would represent the �rst robust detection of these statistics using these

methods. Second, while for the case of the two-point statistics the signal-to-noise ratio (shown

in lower sub-panels for each plot) falls o� slowly for larger apertures, this ratio approaches zero

faster for the connected parts of the higher order statistics11. Third, while an aperture over-

sampling rate of α ≈ 2 seems su�cient to capture all the signal for second order statistics, it

misses some information for subsequent orders where it becomes necessary to use α & 4.

10 https://github.com/LSSTDESC/CCL
11 Owing to the fact that the aperture mass has zero mean, the full and connected moments di�er only for even order

moments of four or more.

https://github.com/LSSTDESC/CCL
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Figure 3.6 Measurement of the aperture mass statistics in the SLICS simulation suite for di�erent

aperture oversampling rates α. All measurements were done on an ensemble of 819 realiza-

tions with an angular area of 100 deg2 each, where the n(z) follows the KiDS-450 distribution.

The upper part of the panels correspond to the mean and rescaled standard deviation from the

ensembles. The lower panel shows the signal-to-noise for the corresponding statistics when res-

caled to match a 1000 deg2 survey. For the aperture mass dispersion we additionally plot the

theoretical prediction as the black line. For the fourth and �fth order plots we restrict ourselves

to the contribution of the connected part of the convergence polyspectra. We see that choosing

an oversampling parameter of α & 4 recovers most of the information.

Figure 3.7 displays the correlation structure of the aperture mass cumulants as well as the

cumulative detection signi�cance. We only consider measurements with ϑ ≥ 10′ as this is where

the SLICS mocks do agree reasonably well with the theoretical predictions and and due to the

fact that the robust theoretical modelling of those statistics might reach its limits at around those

scales. We see that while for shape noise free ellipticity catalogs there are strong correlations

for small aperture radii, this is not the case for the realistic mocks in which those scales are still

shape noise dominated. We further note large correlations around the diagonal between di�er-

ent orders, where the degree of correlation increases with the order of the cumulants. For the

cumulative detection signi�cance we see that that the cumulants beyond third order do not add

a substantial amplitude to the cumulative signal-to-noise. This is expected, given the relatively

lower signal-to-noise as well as the larger portion of cross-covariances that need to be taken into
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Figure 3.7 Correlation coe�cient matrix (left) and cumulative detection signi�cance (right) for

connected moments of the aperture mass statistics. We take into account aperture sizes between

10′ and 100′. In the correlation matrix the lower triangle shows the results without shape noise

while the upper part includes this term and serves as the basis for the computation of the detec-

tion signi�cance.

account. One should note that this type of analysis does not imply that the higher order cumu-

lants are obsolete as they still may add complementary information by breaking cosmological

parameter degeneracies.

3.5.3 Multiscale aperture mass measurements

We now shift to the measurement of the multiscale statistics for which there are a number of

ways on how to select various aperture scale multiplets. In Figure 3.8 we focus on a �xed set

of aperture propositions and then simply scale them with a single parameter ϑ. The di�erent

con�gurations of aperture radii that we have employed are shown in Table 3.1. We see that

for both, the third and the �fth order moments there does not appear to be a strong decline in

detection signi�cance for multiscale apertures compared to the associated moments, even if the

relative spread of radii is large.

Another way to select aperture scale multiplets for a statistic of order n is choose a list of

m ≥ n aperture scales and to compute the statistics for each choice of n elements within that

list. For our purposes we choose the subset in which none of the aperture radii are equal, as

this speeds up our calculation, see Appendix 3.B.3 for the details. In the left hand side of Fig. 3.9

we show our measurements for the second, third and fourth order connected cumulants of the

multiscale aperture mass statistic using ten logarithmically spaced scales between 5′ and 50′. The

�rst index of the multiplet corresponds to the selection of the smallest possible aperture scales
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Figure 3.8 Measurements of the unequal radii aperture mass statistics of third (left) and �fth

(right) order in the SLICS simulation suite. Each line corresponds to a di�erent set of relative

aperture sizes as given in Table 3.1.

Third order Fifth order
Label Con�guration Label Con�guration
X1 (1, 1, 1) X5 (1, 1, 1, 1, 1)
X2 (1, 2, 2) X6 (1, 1, 2, 2, 2)
X3 (1, 5, 5) X7 (1, 1, 5, 5, 5)
X4 (1, 3, 5) X8 (1, 2, 3, 4, 5)

Table 3.1 Co�gurations of the aperture radii displayed in Fig. 3.8

from which we then start choosing the next lowest radius in the subsequent dimension up until

we reach the combination of the largest possible set of aperture radii - for an example of this path

for the third order statistics see Fig. 3.10. Recalling that the second order aperture mass statistic

is simply a �ltered version of the power spectrum, we should not expect the multiscale extension

add any information to that order12. For the three statistics we again �nd a detection signi�cance

that is comparable to the equal scale case, meaning that we can extract substantial signal from

convergence spectra con�gurations which are not corresponding to regular polygons. In the

right hand side of Fig. 3.9 we plot the joint correlation coe�cient of the multiscale cumulants.

On the investigated range of scales we only �nd a slight to modest correlation between the

higher order multiscale statistics and the second order one. It also appears that the higher order

cumulants exhibit a stronger auto- and cross correlation. However, this is (at least partially) an

artefact of the range and sampling density of the chosen radii.

12 For a di�erent form of the Q �lter function like the one proposed in Crittenden et al. (2001) one can easily work
this out analytically, see .i.e. Schneider et al. (2005).
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Figure 3.9 Measurements (left) and correlation matrix (right) of the multiscale aperture mass stat-

istics of second, third and fourth order. For each of those statistics we compute all con�gurations

for ten logarithmically spaced radii between 5′ and 50′ in which all the apertures have unequal

radii. The black lines indicate the blocks of the (cross-) correlations of di�erent orders.
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Figure 3.10 Path in which the set of non redundant aperture scales for the third order statistics is

traversed. The starting point is the lower corner. The subpath in the ϑ3 = 50′ plane corresponds

to the full path taken for the second order statistics.
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3.6 Conclusions and Discussion

In this paper we have explored an alternative method for estimating the aperture mass statistics

in weak lensing cosmic shear surveys. This study extended our previous work (Porth et al., 2020)

in a number of ways: First, we generalized the direct estimator approach to higher statistics, and

showed how to rewrite the standard estimator as a product of linear order time sums. Second,

we provided the details of the computation of the variance of these estimators. Third, we further

generalised the aperture mass statistics to include the multiscale approach. Again, we showed

how one could estimate these using linear order products of power sums. The work can be

summarised as follows:

In §3.2 we reviewed the background theory of cosmological weak lensing and showed how

the connected cumulants of the aperture mass statistics are related to the convergence polyspec-

tra.

In §3.3 we introduced the direct estimator for moments of the aperture mass statistics. We

then gave expressions for how the nested sums can be decomposed into a linear combination of

products of (multivariate) power sums that facilitates a linearly scaling estimation procedure in

the number of galaxies within an aperture. We then generalized this estimator to an ensemble of

overlapping apertures and computed its variance. We argued that the aperture cross correlation

coe�cient leads to a substantial correction to the naive 1/N scaling if the apertures are not

well separated, and that it also can be used to assess the degree of aperture oversampling that is

necessary to capture most of the available information. Finally, we gave a detailed explanation

of the algorithms used for our implementation.

In §3.4 we successfully validated our method on Gaussian mock simulations and furthermore

veri�ed the linear scaling.

In §3.5 we turned to the SLICS simulation suite and assessed the signal-to-noise of the stat-

istics for a 1000 degree survey following a KiDS-450 like n(z) distribution function. We found

that with these speci�cations signi�cant detections of up to �fth order can be expected for the

equal and unequal radii cumulants and that an aperture oversampling rate of at least four extracts

nearly all the signal.

In this paper we have neglected the impact of survey masks on the measurement process and

the possible bias that this could induce, the exploration of this is su�cient to warrant its own

publication and this is the subject of our associated publication (Porth et al. in prep.). Through-

out this paper we were mainly concerned with making the extraction of information from higher
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order statistics of galaxy shape catalogs computationally feasible and accurate. However, we re-

mained agnostic about further challenges that need to be addressed before applying our methods

to real data. For example, one should investigate the required PSF modelling, shape measurement

and shear bias calibration quality to not introduce substantial biases in the measurement. Ad-

ditionally, the range of measurements that can ultimately be used for obtaining cosmological

parameter constraints will be limited to the scales for which one can theoretically accurately

model those higher order statistics.
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Appendix

3.A Derivations of aperture mass skewness and kurtosis

estimators

3.A.1 Derivation of the estimator for M̂3
ap

Let us compute the derivation of the skewness M̂3
ap of the aperture mass. The standard direct

estimator is given by:

M̂3
ap = (πϑ2)3

∑N
i,j 6=i,k 6=i 6=j wiwjwkQiQjQket,iet,jet,k∑

i,j 6=i,k 6=i 6=j wiwjwk
. (3.46)

It can be shown using the methods described in Schneider et al. (1998) and Porth et al. (2020)

that this leads to an unbiased estimator of the skewness. We can rewrite the above estimator by

noting that an unconstrained triple sum can be decomposed into the following partial sums:

N∑
i,j,k

=
N∑

i 6=j 6=k
+

N∑
i,j=k,i6=j

+
N∑

j=k,i,j 6=k
+

N∑
k=i,j,k 6=i

+
N∑

i=j=k
(3.47)

This can be rearranged to give:

N∑
i 6=j 6=k

=
N∑
i,j,k

−
N∑

i,j=k,i6=j
−

N∑
j=k,i,j 6=k

−
N∑

k=i,j,k 6=i
−

N∑
i=j=k

(3.48)

Similarly, the unconstrained double sum can be decomposed and rearranged in the following

manner:

∑
i,j

=
∑
i 6=j

+
∑
i=j

⇒
∑
i 6=j

=
∑
i,j

−
∑
i=j

. (3.49)
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Using this result repeatedly in Eq. (3.48) allows us to rewrite the constrained sums as uncon-

strained sums:

N∑
i 6=j 6=k

=
N∑
i,j,k

−

 N∑
i,j=k

−
N∑

i=j=k

−
 N∑
j,k=i
−

N∑
i=j=k

−
 N∑
k,i=j

−
N∑

i=j=k

− N∑
i=j=k

=
N∑
i,j,k

−
N∑

i,j=k
−

N∑
j,k=i
−

N∑
k,i=j

+2
N∑

i=j=k
=

N∑
i,j,k

[
1− δKj,k − δKk,i − δKi,j + 2δKi,jδKi,k

]
.

(3.50)

Hence, on repeatedly using this result we can rewrite the sum in the numerator and denominator

of Eq. (3.46) to give us an alternate form for the skewness as:

M̂3
ap = (πϑ2)3

[∑N
i,j,k wiwjwkQiQjQket,iet,jet,k − 3

∑N
i,j wiw

2
jQiQ

2
jet,ie

2
t,j + 2

∑N
i w

3
iQ

3
i e

3
t,i

]
[∑N

i,j,k wiwjwk − 3
∑N
i,j wiw

2
j + 2

∑N
i w

3
i

] .

(3.51)

If we now divide through each term by (
∑
iwi)3 and recall expressions Eqs. (3.22) and (3.23) we

see that our estimator becomes:

M̂3
ap =

M3
s,1 − 3Ms,2Ms,1 + 2Ms,3

1− 3S2 + 2S3
. (3.52)

3.A.2 Derivation of the estimator for M̂4
ap

The standard direct estimator for the kurtosis of aperture mass is given by:

M̂4
ap = (πϑ2)4

∑N
i,j 6=i,k 6=i 6=j,l 6=i 6=j 6=k wiwjwkwlQiQjQkQlet,iet,jet,ket,l∑

i,j 6=i,k 6=i 6=j,l 6=i 6=j 6=k wiwjwkwl
. (3.53)

We follow similar steps to the derivation of the skewness and note that the unconstrained quad-

ruple sum can be written:

N∑
i,j,k,l

=
N∑

i,j 6=i,k 6=i 6=j,l 6=i 6=j 6=k
+

 N∑
i,j 6=i,k=l 6=i 6=j

+5perms

+

 N∑
i=j,k=l 6=i

+
N∑

i=k,j=l 6=i
+

N∑
i=l,j=k 6=i


+

 N∑
i=j=k,l 6=i

+
N∑

i=j=l,k 6=i
+

N∑
i=k=l,j 6=i

+
N∑

j=k=l,i 6=j

+
N∑

i=j=k=l
, (3.54)

which on rearranging leads us to:

N∑
i,j 6=i,k 6=i 6=j,l 6=i 6=j 6=k

=
N∑

i,j,k,l

−

 N∑
i,j 6=i,k=l 6=i 6=j

+5perms

−
 N∑
i=j,k=l 6=i

+
N∑

i=k,j=l 6=i
+

N∑
i=l,j=k 6=i


−

 N∑
i=j=k,l 6=i

+
N∑

i=j=l,k 6=i
+

N∑
i=k=l,j 6=i

+
N∑

j=k=l,i6=j

− N∑
i=j=k=l

, (3.55)
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We now make use of our previous results to rewrite the constrained sums on the right-hand side

of the expression as unconstrained sums:

N∑
i,j 6=i,k 6=i 6=j,l 6=i 6=j 6=k

=
N∑

i,j,k,l

−


 N∑
i,j,k=l

−
N∑

i,j=k=l
−

N∑
j,k=i=l

−
N∑

k=l,i=j
+2

N∑
i=j=k=l

+ 5perms


−
{ N∑

i=j,k=l
−

N∑
i=j=k=l

+

 N∑
i=k,j=l

−
N∑

i=j=k=l

+

 N∑
i=l,j=k

−
N∑

i=j=k=l

}

−


 N∑
i=j=k,l

−
N∑

i=j=k=l

+

 N∑
i=j=l,k

−
N∑

i=j=k=l

+

 N∑
i=k=l,j

−
N∑

i=j=k=l


+

 N∑
k=l=j,i

−
N∑

i=j=k=l

−
N∑

i=j=k=l
. (3.56)

On making repeated use of the Kroneker delta symbol this can now be compactly written as:

N∑
i,j 6=i,k 6=i 6=j,l 6=i 6=j 6=k

=
N∑

i,j,k,l

[
1−

{[
δKk,l − δKj,kδKk,l − δKi,kδKk,l − δKi,jδKk,l + 2δKi,jδKi,kδKi,l

]
+ 5perms

}
−
{ [
δKi,jδ

K
k,l − δKi,jδKi,kδKi,l

]
+
[
δKi,kδ

K
j,l − δKi,jδKi,kδKi,l

]
+
[
δKi,lδ

K
j,k − δKi,jδKi,kδKi,l

] }
−
{ [
δKi,jδ

K
i,k − δKi,jδKi,kδKi,l

]
+
[
δKi,jδ

K
i,l − δKi,jδKi,kδKi,l

]
+
[
δKi,kδ

K
i,l − δKi,jδKi,kδKi,l

]
+
[
δKj,kδ

K
j,l − δKi,jδKi,kδKi,l

] }
− δKi,jδKi,kδKi,l

]
. (3.57)

On collecting, cancelling and grouping like terms we see that this can be written:

N∑
i,j 6=i,k 6=i 6=j,l 6=i 6=j 6=k

=
N∑

i,j,k,l

[
1−

(
δKi,j + δKi,k + δKi,l + δKj,k + δKj,l + δKk,l

)
+
{
δKi,jδ

K
k,l + δKi,kδ

K
j,l + δKi,lδ

K
j,k

}
+
{
δKi,jδ

K
i,k + δKi,jδ

K
i,l

+ δKi,kδ
K
i,l + δKj,iδ

K
j,k + δKj,iδ

K
j,l + δKj,kδ

K
j,l + δKk,iδ

K
k,l + δKk,jδ

K
k,l

}
− 6δKi,jδKi,kδKi,l

]
.

(3.58)

Hence, on making repeated use of Eq. (3.58) in Eq. (3.53) and along with Eqs. (3.22) and (3.23), the

estimator for kurtosis of aperture mass becomes:

M̂4
ap =

M4
s,1 − 6Ms,2M

2
s,1 + 3M2

s,2 + 8Ms,3Ms,1 − 6Ms,4

1− 6S2 + 3S2
2 + 8S3 − 6S4

. (3.59)

3.B A proof of the general theorem for arbitary order aperture

mass statistics

In this section we provide a derivation of the the general form of the n-point aperture mass stat-

istic estimator given by Eq. (3.24). At the time of writing, we are not aware that the combinatoric
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methods that we have used in the derivation of the general expression have been used before in

the cosmological context, and therefore provide a brief overview of them – in particular the Bell

polynomials. In what follows we will try to not rely on advanced mathematical methods, but

instead use a basic framework to explain how the Bell polynominals are linked to set partitions,

and �nally how they are connected to the aperture mass estimators.

3.B.1 Set partitions and Bell polynomials

We begin by de�ning a partition π of a set n = {1, 2, · · · , n} as a collection of mutually exclusive

subsets (blocks) of n whose union equals n. In our case all these partitions can be mapped onto

an associated partition λ being de�ned as the number of elements of each block in π. Each

element λ can be represented as (n1, n2, · · · , nm) or as (1m1 , 2m2 , · · · , nmn) where for the

former expression the ni denote the length of the ith block while for the latter case the mi

represent the number of occurrences of a block of length i in π. If π is a partition of n having

m blocks this implies that
∑
imi = m and

∑
i i mi = n. We will now show that the following

proposition holds:

Claim:

For the set n and a partition λ of lengthm given as (1m1 , 2m2 , · · · , `m`) there are n!∏`

i=1 mi!(i!)
mi

partitions π of n having the same λ(π).

Check:

As a �rst step we just look at the number of ways the m subsets can be chosen from n. This can

easily be worked out when noting that for the �rst subset there are
( n
n1

)
choices, for the following(n−n1

n2

)
etc. Following through all of the subsets we then have(
n

n1

)(
n− n1
n2

)
· · ·
(
n− n1 − · · ·nm−2

nm−1

)(
nm
nm

)

= n!
n1!(n− n1)!

(n− n1)!
n2!(n− n1 − n2)! · · ·

(n− n1 − · · ·nm−2)!
nm−1!nm!

nm!
nm!

= n!
n1!n2! · · ·nm!

possibilities. Shifting this expression to the representation of λ given above we see that many

of them give the identical partition π; to get rid of those ones we need to divide by the number

of ways all the equal size blocks themselves can be permuted with each other. Applying those

conditions we have

1
Norm.×

n!
n1!n2! · · ·nm! = 1

m1!m2! · · ·m`!
× n!

(1!)m1(2!)m2 · · · (`!)m` = n!∏`
i=1mi!(i!)mi

(3.60)

possibilities remaining, which is exactly the proposed expression.
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With this result in hand we are now in position to understand the form of the partial Bell

polynomial Bn,m being de�ned as

Bn,m(x1 · · · , xn−m+1)

=
∑

(m1,··· ,mn−m+1)∈Pn,m

n!
m1! · · ·mn−m+1!

(
x1
1!

)m1

· · ·
(

xn−m+1
(n−m+ 1)!

)mn−m+1

,

(3.61)

where

Pn,m ≡
{

(m1, · · ·mn−m+1) ∈ Nn−m+1
0 |

n−m+1∑
i=1

mi = m ,
n−m+1∑
i=1

i mi = n

}
.

Comparing the prefactors and the index set13 with our discussion above we see that the partial

Bell polynomials simply sum over all the partitions λ of n having a �xed m, i.e. they list the

number of ways a set consisting the n objects can be partitioned into m blocks. For example,

looking at B4,2 the allowed index combinations are {(0, 2, 0), (1, 0, 1)} such that Eq. (3.61) eval-

uates to B4,2 = 4x1x3 + 3x2
2. We note in the passing that these expressions generate the same

prefactors that arise in the halo model, i.e. we can relate the structure of B4,2 to the two-halo

term of the halo model trispectrum.

Finally, we de�ne the complete Bell polynominal Bn which list all possible partitions of n

objects:

Bn(x1 · · · , xn−m+1) =
n∑

m=1
Bn,m(x1 · · · , xn−m+1) =

n∑
m=1

∑
π∈Pn,m

n−m(λ(π))+1∏
i=1

x
mi(λ(π))
i ,

(3.62)

where the �rst equality states the formal de�nition and the second one rewrites it into an explicit

sum over all the partitions of the set n.

3.B.2 Sums over unequal indices and Bell polynomials

Let us look at the simple expression
∑N
i=1

∑N
j 6=i xixj . A naive implementation of this double

sum would imply a quadratic complexity of the corresponding program. A much faster way

resulting in linear complexity can be achieved when noting that
(∑N

i1=1 xi1

) (∑N
i2=1 xi2

)
=∑N

i1=1
∑N
i2 6=i1 xi1xi2 +

∑N
i1=1 x

2
1 . We can easily generalize this pattern by treating the number

of indices as the set n from the previous subsection. Then all the di�erent partitions λ of this set

correspond to di�erent ways these indices can be set equal with one another; the corresponding
13 The upper limit is given by the partition having the largest possible block size, namely (1m−1, 20, · · · , (n− (m−

1))1)
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prefactors can be obtained via the Bell polynominal. To clarify this statement we write down as

an example the expression for n = 4:(∑
i

xi

)4

=
∑

i1 6=i2 6=i3 6=i4
xi1xi2xi3xi4 +

 ∑
i1 6=i3 6=i4

x2
i1xi3xi4 + 5perm.


+

∑
i1 6=i2

x3
i1xi2 + 3perm.

 +

∑
i1 6=i3

x2
i1x

2
i3 + 2perm.

 +
∑
i1

x4
i1

∼ (14, 20 , 30 , 40) + 6× (12 , 21 , 30 , 40)

+ 4× (11 , 20 , 31 , 40) + 3× (10 , 22 , 30 , 40) + (10 , 20 , 30 , 41)

(3.63)

From here we see that we can express a sum over n unequal indices in terms of two power sums

and a set of related sums over at most n − 1 unequal indices. Repeating the same argument on

the latter sums one eventually arrives at an expression only involving power sums. Carrying out

aforementioned calculations for our example this yields

∑
i1 6=i2 6=i3 6=i4

xi1xi2xi3xi4 =
(∑

i

xi

)4

− 6
(∑

i

xi

)2(∑
i

x2
i

)
+ 8

(∑
i

xi

)(∑
i

x3
i

)

+ 3
(∑

i

x2
i

)2

− 6
(∑

i

x4
i

)
. (3.64)

Comparing the latter two expressions we note that their index partitions are the same, but that

they di�er in some signs and prefactors; namely there is a negative sign for an odd partition

length m and an additional multiplicative factor of (i − 1)! for each block of length i. Looking

at the structure of Eq. (3.64), i.e. the fact that all of its summands correspond to a partition of an

integer set and that furthermore it constitutes of n di�erent building blocks we might be tempted

to cast it in terms of Bell polynomials with the identifying the x` from Eq. (3.62) with the power

sums c`
∑
i x

`
i : c` ∈ R. In the next paragraphs we formalize these observations and from there

determine the c`.

The �rst di�erence can be motivated most easily by choosing a graphical representation in

which we draw each index as a single point. Then the prefactors in Eq. (3.63) are given by the

number of ways one can group together di�erent points such that they constitute the corres-

ponding partition whereas for Eq. (3.64) it additionally matters in which order these points have

been set equal with each other, which in mathematical terms is described by how many closed

cycles one can draw between them. The induced correction of (`−1)! for a block of length ` can

be absorbed in the Bell polynomial by setting c` = (`− 1)!.

The second observation can be generalized inductively. Looking at our example of n = 4 we

see that the sign for each partition λ is given by sgn(λ) =
∏n
i=1(−1)mi(λ)((i+1)mod2), that is each



110 General proof for the sum decomposition

block of even length contributes a negative sign. Performing the induction step we have

∑
i1 6=···in 6=in+1

xi1 · · ·xin+1 =

∑
in+1

xin+1

 ∑
i1 6=···i3 6=in

xi1 · · ·xin


−

 ∑
i1 6=···i3 6=in

x2
i1xi2 · · ·xin

+ (n− 1) perm.

 . (3.65)

Looking at the modi�cation of the partitions, for the �rst term we have m1 → m1 + 1 for all λ

such that we would not have expected any sign �ips. For the second term, we need to update

the block in which the identical index sits, assuming it had length k we have mk → mk − 1 and

mk+1 → mk+1 +1. In case of an even k reducing its occurence by one induces an additional sign

�ip whereas for odd ks we get a sign �ip for the increase of mk+1. Putting things together we

conclude that we could predict the correct signs by examining the partition structures. Therefore,

setting c` = (−1)(`+1) mod 2(`− 1)! in Eq. (3.62) will reproduce generalizations of Eq. (3.64). We

can brush this in a nicer shape by setting c` = −(` − 1)! and furthermore multiplying Bn by

(−1)n; this modi�cation e�ectively just multiplies each term of the previous result by an even

power of negative one.

With these two modi�cations in hand we can �nally write down the main result of this

subsection, namely the way on how to transform a sum over unequal indices into a sum over

products of power sums:

∑
i1 6=···6=in

xi1 · · ·xin = (−1)n Bn

(
−0!

∑
i

xi, −1!
∑
i

x2
i , · · · , −(n− 1)!

∑
i

xni

)

(3.66)

3.B.3 Application to the aperture mass estimator

Looking at the form of Eq. (3.66), the expression for the direct estimator of the aperture statistics

with equal aperture radii Eq. (3.24) immediately follows when identifying the arguments in the

nominator and denominator with the power sums Ms,m and Sm and cancelling the overall sign.

For the case of unequal aperture radii we still need to do a bit more work. Looking back

to our previous example Eq. (3.63), having unequal aperture radii induces di�erent values of the

Q �lters such that the xi cannot be taken to be the same variable anymore. Hence we have to

replace the prefactors in Eq. (3.63) by a sum over all the possible ways the di�erent radii can

be partitioned. The second set of prefactors that arises when going to Eq. (3.64) still applies

in the case of unequal radii as it e�ectively corresponds to swapping two aperture radii in the
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corresponding multivariate power sum Eq. (3.31). Thus it seems appropriate to formulate the

solution via summing over partitions, such that we can rewrite Eq. (3.29) as

M̂n
ap(R1, ..., Rn) =

∑n
m=1

∑
π∈Pn,m(−1)m

∏m
i=1(ni − 1)! M̂ (ni)

s,(α1(πi),··· ,αn(πi))∑n
m=1

∑
π∈Pn,m(−1)m

∏m
i=1(ni − 1)! Ŝ(ni)

(α1(πi),··· ,αn(πi))

. (3.67)

We note that from this formulation one can build an e�cient way of computing Eq. (3.32) within

the subset U of the datacube [R1, · · ·Rm]n (m ≥ n) in which neither of the indices are equal:

This is due to the fact that the number of power sums in which 1 ≤ i ≤ n radii are selected is

simply given by
(m
i

)
and therefore the n-dimensional hypercube of aperture radii can be con-

structed from a set consisting of just
∑n
i=1

(m
i

)
power sums. After allocating those power sums

for all the galaxies within an aperture we can then enumerate through the relevant aperture radii

multiplets, select the relevant subsets of the power sums, and then again apply the transform-

ation equation (3.32) to transform to the multiscale aperture mass moments, or equivalently to

their corresponding connected parts. With the help of this procedure we were able to conduct

the full analysis displayed in Fig. 3.9 on the SLICS ensemble (a total of around 2.5 billion galaxies)

within just 6000 CPU hours.
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3.B.4 Expressions of the accelerated estimator for low orders (unequal radii)

In order to save space we only write down the expressions for the nominator or Eq. (3.32), the denominator will have an identical structure. As expected, the

number of sums in the nth order estimator equals the nth Bell number.

M̂1
ap(ϑ1) = 1

norm ×M
(1)
s,1 ;

M̂2
ap(ϑ1, ϑ2) = 1

norm ×
{
M

(1)
s,1,0M

(1)
s,0,1 −M

(2)
s,1,1

}
;

M̂3
ap(ϑ1, ϑ2, ϑ3) = 1

norm ×
{
M

(1)
s,1,0,0M

(1)
s,0,1,0M

(1)
s,0,0,1 −

[
M

(2)
s,1,1,0 M

(1)
s,0,0,1 + 2 perm.

]
+ 2 M (3)

s,1,1,1

}
;

M̂4
ap(ϑ1, ϑ2, ϑ3, ϑ4) = 1

norm ×
{
M

(1)
s,1,0,0,0M

(1)
s,0,1,0,0M

(1)
s,0,0,1,0M

(1)
s,0,0,0,1 −

[
M

(2)
s,1,1,0,0M

(1)
s,0,0,1,0M

(1)
s,0,0,0,1 + 5 perm.

]
+
[
M

(2)
s,1,1,0,0M

(2)
s,0,0,1,1 + 2 perm.

]
+ 2

[
M

(3)
s,1,1,1,0M

(1)
s,0,0,0,1 + 3 perm.

]
− 6 M (4)

s,1,1,1,1

}
;

M̂5
ap(ϑ1, ϑ2, ϑ3, ϑ4, ϑ5) = 1

norm ×
{
M

(1)
s,1,0,0,0,0M

(1)
s,0,1,0,0,0M

(1)
s,0,0,1,0,0M

(1)
s,0,0,0,1,0M

(1)
s,0,0,0,0,1

−
[
M

(2)
s,1,1,0,0,0M

(1)
s,0,0,1,0,0M

(1)
s,0,0,0,1,0M

(1)
s,0,0,0,0,1 + 9 perm.

]
+
[
M

(2)
s,1,1,0,0,0M

(2)
s,0,0,1,1,0M

(1)
s,0,0,0,0,1 + 14 perm.

]
+ 2

[
M

(3)
s,1,1,1,0,0M

(1)
s,0,0,0,1,0M

(1)
s,0,0,0,0,1 + 9 perm.

]
− 2

[
M

(3)
s,1,1,1,0,0M

(2)
s,0,0,0,1,1 + 9 perm.

]
+ 6

[
M

(4)
s,1,1,1,1,0M

(1)
s,0,0,0,0,1 + 4 perm.

]
+ 24 M (5)

s,1,1,1,1,1

}
;

M̂6
ap(ϑ1, ϑ2, ϑ3, ϑ4, ϑ5, ϑ6) = 1

norm ×
{
M

(1)
s,1,0,0,0,0,0M

(1)
s,0,1,0,0,0,0M

(1)
s,0,0,1,0,0,0M

(1)
s,0,0,0,1,0,0M

(1)
s,0,0,0,0,1,0M

(1)
s,0,0,0,0,0,1
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−
[
M

(2)
s,1,1,0,0,0,0M

(1)
s,0,0,1,0,0,0M

(1)
s,0,0,0,1,0,0M

(1)
s,0,0,0,0,1,0M

(1)
s,0,0,0,0,1,0 + 14 perm.

]
+
[
M

(2)
s,1,1,0,0,0,0M

(2)
s,0,0,1,1,0,0M

(1)
s,0,0,0,0,1,0M

(1)
s,0,0,0,0,0,1 + 44 perm.

]
−
[
M

(2)
s,1,1,0,0,0,0M

(2)
s,0,0,1,1,0,0M

(2)
s,0,0,0,0,1,1 + 14 perm.

]
+ 2

[
M

(3)
s,1,1,1,0,0,0M

(1)
s,0,0,0,1,0,0M

(1)
s,0,0,0,0,1,0M

(1)
s,0,0,0,0,1,0 + 19 perm.

]
− 2

[
M

(3)
s,1,1,1,0,0,0M

(2)
s,0,0,0,1,1,0M

(1)
s,0,0,0,0,1,0 + 59 perm.

]
+ 4

[
M

(3)
s,1,1,1,0,0,0M

(3)
s,0,0,0,1,1,1 + 9 perm.

]
− 6

[
M

(4)
s,1,1,1,1,0,0M

(1)
s,0,0,0,0,1,0M

(1)
s,0,0,0,0,0,1 + 14 perm.

]
+ 6

[
M

(4)
s,1,1,1,1,0,0M

(2)
s,0,0,0,0,1,1 + 14 perm.

]
+ 24

[
M

(5)
s,1,1,1,1,1,0M

(1)
s,0,0,0,0,0,1 + 5 perm.

]
− 120 M (6)

s,1,1,1,1,1,1

}
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3.C Variance of the direct estimator

3.C.1 Motivation of the shape and multiplicity factor

We recall the de�nition of the M̂n
ap variance:

σ2
[
M̂n

ap

]
= E

[(
M̂n

ap

)2
]
−
〈
Mn

ap

〉2

=
(
πϑ2)2n(∑

6=wj1 · · ·wjn
)2 · E

∑
6=
wi1 · · ·winxi1 · · ·xin ·

∑
6=
wj1 · · ·wjnxj1 · · ·xjn


−
〈
Mn

ap

〉2
, (3.68)

where we de�ned xi ≡ Qiet,i for notational simplicity. We proceed along the standard lines

by decomposing the expectation value in an averaging step A over the intrinsic ellipticity dis-

tribution, another one P over the galaxy positions, and �nally one over the cosmological en-

semble. Let us start by applying the ellipticity averaging procedure for which A(ei, ej) ≡
σ2
ε
2 δ

K
i,j + γiγj

(
1− δKi,j

)
. Noting that each summation sign in (3.68) runs over an index set where

all the indices are unequal, we see that only indices between the two sums can be contrac-

ted to yield the shape noise expression. We can represent the index structure graphically as

| i1 · · · in | j1 · · · jn| and de�ne a contraction as a line between two indices of the i and j set.

The prefactor of the term in the A-averaging is then given by the number of possible contrac-

tions.

As an example, let us compute the prefactor when applying two contractions in the variance of

the third order statistics. For the �rst contraction there are 9 possibilities, while for each second

one there are only for indices remaining, giving 4 further possibilities. As the contractions are

interchangeable we need to divide the result by two to yield a prefactor of 18. A graphical rep-

resentation of this explanation would look as follows:∣∣∣∣∣i1 i2 i3 | j1 j2 j3
∣∣∣∣∣ = 9

2 ×
∣∣∣∣i2 i3 | j2 j3∣∣∣∣ = 9 · 4

2! = 18 .

This scheme allows us to easily generalize our example to performing ` contractions on the nth

order statistics, giving a prefactor of C2(n, `) ≡ n2(n−1)2···(n−`−1)2

`! .

For the position averaging we can repeat the same argument, as P (QiγiQjγj) ∼ Ms,2δ
K
i,j +

M2
ap

(
1− δKi,j

)
. If we already have performed ` contractions for theA-averaging, there are only

(n− `) free indices left in each block - hence there will be C2(n− `, p) possibilities to perform

p additional contractions in the P -averaging.

Next we compute the expectation value for a given index set in which we have performed `
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contractions in the A-averaging and p contractions in the P -averaging:

〈
P

∑
6=
w2
i1Q

2
i1 · · ·w

2
i`
Q2
i`
w2
i`+1Q

2
i`+1γ

2
t,i`+1 · · ·w

2
i`+pQ

2
i`+pγ

2
t,i`+p

wi`+p+1Qi`+p+1γt,i`+p+1 · · ·winQinγt,in wj`+p+1Qj`+p+1γt,j`+p+1 · · ·wjnQinγt,jn

〉

≡
〈

N∏
i=1

∫
Ap.

d2θi
πϑ2

∑
6=
w2
i1Q

2
i1 · · ·w

2
i`
Q2
i`
w2
i`+1Q

2
i`+1γ

2
t,i`+1 · · ·w

2
i`+pQ

2
i`+pγ

2
t,i`+p

wi`+p+1Qi`+p+1γt,i`+p+1 · · ·winQinγt,in wj`+p+1Qj`+p+1γt,j`+p+1 · · ·wjnQinγt,jn

〉

=
∑
6=
w2
i1 · · ·w

2
i`+pwi`+p+1 · · ·winwj`+p+1 · · ·wjn

 ∏
i∈{i1,··· ,i`}

∫
Ap.

d2θi
πϑ2 Q

2
i


×
〈 ∏

i∈{i`+1,··· ,i`+p}

∫
Ap.

d2θi
πϑ2 Q

2
i γ

2
t,i

 ∏
i∈{i`+p+1,··· ,jn}

∫
Ap.

d2θi
πϑ2 Qiγt,i

〉(∫
Ap.

d2θi
πϑ2

)N−2(`+p)

=
∑
6=
w2
i1 · · ·w

2
i`+pwi`+p+1 · · ·winwj`+p+1 · · ·wjn ×

∏̀
i=1

(∫
Ap.

d2θi
πϑ2 Q

2
i

)

×
〈 p∏
j=1

(∫
Ap.

d2θj
πϑ2 Q

2
jγ

2
j

) 2(n−`−p)∏
k=1

(∫
Ap.

d2θk
πϑ2 Qkγk

)〉

≡
∑
6=w

2
i1 · · ·w

2
i`+p

wi`+p+1 · · ·winwj`+p+1 · · ·wjn
(πϑ)2n × M `

g,2〈M
p
s,2M

2(n−`−p)
ap 〉 .

Note that in this derivation the order of the contracted indices does not matter as they all end up

to be integration variables. If we now combine this result together with the multiplicity factors

we can write a closed form expression for (3.68):

σ2
[
M̂n

ap

]
=

n∑
`=0

C2(n, `)
(
σ2
ε

2

)`
M `
g,2

n−∑̀
p=0

∑
6=w

2
i1 · · ·w

2
i`+p

wi`+p+1 · · ·winwj`+p+1 · · ·wjn(∑
6=wi1 · · ·win

)2

× C2(n− `, p)〈Mp
s,2M

2(n−`−p)
ap 〉 −

〈
Mn

ap

〉2

≈
n∑
`=0

∑
6=w

2
i1 · · ·w

2
i`
wi`+1 · · ·winwj`+1 · · ·wjn(∑
6=wi1 · · ·win

)2

× `!
(
n

`

)(
n

`

) (
σ2
ε

2

)`
M `
g,2

〈
M2(n−`)

ap

〉
−

〈
Mn

ap

〉2

≈ n!
∑
6=w

2
i1 · · ·w

2
in(∑

6=wi1 · · ·win
)2

(
σ2
ε

2

)n
Mn
g,2 . (3.69)

The �rst line is equivalent to (3.35) when combining the multiplicity factors and adjusting the

indices. The second line makes the approximation that each of theMs,2 are negligible (which is

true for large N ); for the �nal line we only keep the shot noise contribution.
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3.C.2 Modi�cations for unequal aperture radii

In case of multiple apertures the structure of the variance is basically unchanged, the only thing

we need to adjust is to use the multivariate version of the power sums and to replace the multi-

plicity factor with a sum over the actual multivariate expressions such that their radii correspond

to the structure of the contracted indices. If we then take the shot noise dominated case we end

up with:

σ2
shot

[
M̂n

ap(R1, · · · , Rn)
]

=
∑′
6=w

2
i1 · · ·w

2
in(∑′

6=wi1 · · ·win
)2

(
σ2
ε

2

)n

×
∑

α1 6=···6=αn

n∏
i=1

G2

(max ({Ri, Rαi})
min ({Ri, Rαi})

)
, (3.70)

where we de�ne G2 as the multiple radii generalization ofMg,2:

G2(α) ≡ πR2
∫

d2θ QR(θ)QαR(θ) = 72
α2

[ 1
24 −

1
8α2 + 1

10α4

]
(α ≥ 1)

where the second equality denotes the corresponding equation for the polynomial �lter. Note

that for the corresponding inverse shot noise weighting scheme only the sum over the weights

matters, as the remainder of the above expression is constant and can be factored out.
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3.C.3 Explicit expressions for low orders

Here we collect the lowest order explicit expressions for (3.35). The second order expression was �rst derived in (Schneider, 1998). Note that our prefactors

di�er from the ones de�ned in (Munshi & Coles, 2003).

σ2
[
M̂1

ap

]
= 1(∑

6=wi1

)2

∑
6=
wi1wj1

〈
M2

ap

〉
+
∑
6=
w2
i1 〈Ms,2〉+ 1Mg,2

(
σ2
ε

2

)∑
6=
w2
i1

− 〈Map〉2

σ2
[
M̂2

ap

]
= 1(∑

6=wi1wi2

)2

{∑
6=
wi1wj1wi2wj2

〈
M4

ap

〉
+ 4

∑
6=
w2
i1wi2wj2

〈
Ms,2M2

ap

〉
+ 2

∑
6=
w2
i1w

2
i2

〈
M2

s,2

〉

+4Mg,2

(
σ2
ε

2

)∑
6=
w2
i1wi2wj2

〈
M2

ap

〉
+
∑
6=
w2
i1w

2
i2 〈Ms,2〉

+ 2M2
g,2

(
σ2
ε

2

)2∑
6=
w2
i1w

2
i2

− 〈M2
ap

〉2

σ2
[
M̂3

ap

]
= 1(∑

6=wi1wi2wi3

)2

∑
6=
wi1wj1wi2wj2wi3wj3

〈
M6

ap

〉
+ 9

∑
6=
w2
i1wi2wj2wi3wj3

〈
Ms,2M4

ap

〉

+ 18
∑
6=
w2
i1w

2
i2wi3wj3

〈
M2

s,2M2
ap

〉
+ 6

∑
6=
w2
i1w

2
i2w

2
i3

〈
M3

s,2

〉
+ 9Mg,2

(
σ2
ε

2

)∑
6=
w2
i1wi2wj2wi3wj3

〈
M4

ap

〉

+ 4
∑
6=
w2
i1w

2
i2wi3wj3

〈
Ms,2M2

ap

〉
+ 2

∑
6=
w2
i1w

2
i2w

2
i3

〈
M2

s,2

〉 ]
+ 18M2

g,2

(
σ2
ε

2

)2
∑
6=
w2
i1w

2
i2wi3wj3

〈
M2

ap

〉

+
∑
6=
w2
i1w

2
i2w

2
i3 〈Ms,2〉

]
+6M3

g,2

(
σ2
ε

2

)3∑
6=
w2
i1w

2
i2w

2
i3

− 〈M3
ap

〉2
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σ2
[
M̂4

ap

]
= 1(∑

6=wi1wi2wi3wi4
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wi1wj1wi2wj2wi3wj3wi4wj4
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∑
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∑
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∑
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∑
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∑
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∑
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∑
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∑
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+ 4

∑
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σ2
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ap

]
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wi1wj1wi2wj2wi3wj3wi4wj4wi5wj5

〈
M10

ap

〉

+ 25
∑
6=
w2
i1wi2wj2wi3wj3wi4wj4wi5wj5

〈
Ms,2M8

ap

〉
+ 200

∑
6=
w2
i1w

2
i2wi3wj3wi4wj4wi5wj5

〈
M2

s,2M6
ap

〉
+ 600

∑
6=
w2
i1w

2
i2w

2
i3wi4wj4wi5wj5

〈
M3

s,2M4
ap

〉
+ 600

∑
6=
w2
i1w

2
i2w

2
i3w

2
i4wi5wj5

〈
M4

s,2M2
ap

〉
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+ 120
∑
6=
w2
i1w

2
i2w

2
i3w

2
i4w

2
i5

〈
M5

s,2

〉
+ 25Mg,2

(
σ2
ε

2

)∑
6=
w2
i1wi2wj2wi3wj3wi4wj4wi5wj5

〈
M8

ap

〉
+ 16

∑
6=
w2
i1w

2
i2wi3wj3wi4wj4wi5wj5

〈
Ms,2M6

ap

〉
+ 72

∑
6=
w2
i1w

2
i2w

2
i3wi4wj4wi5wj5

〈
M2

s,2M4
ap

〉

+ 96
∑
6=
w2
i1w

2
i2w

2
i3w

2
i4wi5wj5

〈
M3

s,2M2
ap

〉
+ 24

∑
6=
w2
i1w

2
i2w

2
i3w

2
i4w

2
i5

〈
M4

s,2

〉 ]
+ 200M2

g,2

(
σ2
ε

2

)2

∑
6=
w2
i1w

2
i2wi3wj3wi4wj4wi5wj5

〈
M6

ap

〉
+ 9

∑
6=
w2
i1w

2
i2w

2
i3wi4wj4wi5wj5

〈
Ms,2M4

ap

〉

+ 18
∑
6=
w2
i1w

2
i2w

2
i3w

2
i4wi5wj5

〈
M2

s,2M2
ap

〉
+ 6

∑
6=
w2
i1w

2
i2w

2
i3w

2
i4w

2
i5

〈
M3

s,2

〉 ]
+ 600M3

g,2

(
σ2
ε

2

)3

∑
6=
w2
i1w

2
i2w

2
i3wi4wj4wi5wj5

〈
M4

ap

〉
+ 4

∑
6=
w2
i1w

2
i2w

2
i3w

2
i4wi5wj5

〈
Ms,2M2

ap

〉
+ 2

∑
6=
w2
i1w

2
i2w

2
i3w

2
i4w

2
i5

〈
M2

s,2

〉
+ 600M4

g,2

(
σ2
ε

2

)4
∑
6=
w2
i1w

2
i2w

2
i3w

2
i4wi5wj5

〈
M2

ap

〉
+
∑
6=
w2
i1w

2
i2w

2
i3w

2
i4w

2
i5 〈Ms,2〉


+ 120M5

g,2

(
σ2
ε

2

)5∑
6=
w2
i1w

2
i2w

2
i3w

2
i4w

2
i5

}
−
〈
M5

ap

〉2

σ2
[
M̂6

ap

]
= 1(∑

6=wi1wi2wi3wi4wi5wi6

)2

∑
6=
wi1wj1wi2wj2wi3wj3wi4wj4wi5wj5wi6wj6

〈
M12

ap

〉
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+ 36
∑
6=
w2
i1wi2wj2wi3wj3wi4wj4wi5wj5wi6wj6

〈
Ms,2M10

ap

〉
+ 450

∑
6=
w2
i1w

2
i2wi3wj3wi4wj4wi5wj5wi6wj6

〈
M2

s,2M8
ap

〉
+ 2400

∑
6=
w2
i1w

2
i2w

2
i3wi4wj4wi5wj5wi6wj6

〈
M3

s,2M6
ap

〉
+ 5400

∑
6=
w2
i1w

2
i2w

2
i3w

2
i4wi5wj5wi6wj6

〈
M4

s,2M4
ap

〉

+ 4320
∑
6=
w2
i1w

2
i2w

2
i3w

2
i4w

2
i5wi6wj6

〈
M5

s,2M2
ap

〉
+ 720

∑
6=
w2
i1w

2
i2w

2
i3w

2
i4w

2
i5w

2
i6

〈
M6

s,2

〉
+ 36Mg,2

(
σ2
ε

2

)
∑
6=
w2
i1wi2wj2wi3wj3wi4wj4wi5wj5wi6wj6

〈
M10

ap

〉
+ 25

∑
6=
w2
i1w

2
i2wi3wj3wi4wj4wi5wj5wi6wj6

〈
Ms,2M8

ap

〉
+ 200

∑
6=
w2
i1w

2
i2w

2
i3wi4wj4wi5wj5wi6wj6

〈
M2

s,2M6
ap

〉
+ 600

∑
6=
w2
i1w

2
i2w

2
i3w

2
i4wi5wj5wi6wj6

〈
M3

s,2M4
ap

〉

+ 600
∑
6=
w2
i1w

2
i2w

2
i3w

2
i4w

2
i5wi6wj6

〈
M4

s,2M2
ap

〉
+ 120

∑
6=
w2
i1w

2
i2w

2
i3w

2
i4w

2
i5w

2
i6

〈
M5

s,2

〉 ]
+ 450M2

g,2

(
σ2
ε

2

)2

∑
6=
w2
i1w

2
i2wi3wj3wi4wj4wi5wj5wi6wj6

〈
M8

ap

〉
+ 16

∑
6=
w2
i1w

2
i2w

2
i3wi4wj4wi5wj5wi6wj6

〈
Ms,2M6

ap

〉
+ 72

∑
6=
w2
i1w

2
i2w

2
i3w

2
i4wi5wj5wi6wj6

〈
M2

s,2M4
ap

〉
+ 96

∑
6=
w2
i1w

2
i2w

2
i3w

2
i4w

2
i5wi6wj6

〈
M3

s,2M2
ap

〉

+ 24
∑
6=
w2
i1w

2
i2w

2
i3w

2
i4w

2
i5w

2
i6

〈
M4

s,2

〉 ]
+ 2400M3

g,2

(
σ2
ε

2

)3
∑
6=
w2
i1w

2
i2w

2
i3wi4wj4wi5wj5wi6wj6

〈
M6

ap

〉
+ 9

∑
6=
w2
i1w

2
i2w

2
i3w

2
i4wi5wj5wi6wj6

〈
Ms,2M4

ap

〉
+ 18

∑
6=
w2
i1w

2
i2w

2
i3w

2
i4w

2
i5wi6wj6

〈
M2

s,2M2
ap

〉
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+ 6
∑
6=
w2
i1w

2
i2w

2
i3w

2
i4w

2
i5w

2
i6

〈
M3

s,2

〉 ]
+ 5400M4

g,2

(
σ2
ε

2

)4
∑
6=
w2
i1w

2
i2w

2
i3w

2
i4wi5wj5wi6wj6

〈
M4

ap

〉

+ 4
∑
6=
w2
i1w

2
i2w

2
i3w

2
i4w

2
i5wi6wj6

〈
Ms,2M2

ap

〉
+ 2

∑
6=
w2
i1w

2
i2w

2
i3w

2
i4w

2
i5w

2
i6

〈
M2

s,2

〉 ]
+ 4320M5

g,2

(
σ2
ε

2

)5

∑
6=
w2
i1w

2
i2w

2
i3w

2
i4w

2
i5wi6wj6

〈
M2

ap

〉
+
∑
6=
w2
i1w

2
i2w

2
i3w

2
i4w

2
i5w

2
i6 〈Ms,2〉

+ 720M6
g,2

(
σ2
ε

2

)6∑
6=
w2
i1w

2
i2w

2
i3w

2
i4w

2
i5w

2
i6

}

−
〈
M6

ap

〉2
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3.D Variance of the direct estimator for the aperture mass

skewness

3.D.1 Notation

Let us begin this section by de�ning some useful notation. Unless otherwise speci�ed, for an nth

order computation we assume apertures with Ng > n galaxies within them.

Ms,n ≡
∑Ng
i=1(wiQiεt,i)n(∑Ng

i=1wi
)n ≡

∑Ng
i=1(wixi)n(∑Ng
i=1wi

)n ; xi ≡ Qiεt,i ; (3.71)

Mg,n ≡
∑Ng
i=1(wiQi)n(∑Ng
i=1wi

)n . (3.72)

From now on we assume all sums with no explicit upper limit to run up toNg . As the summation

indices do become rather messy, we shall also de�ne the following simplifying shorthands:

∑
6=
≡
∑
i1

∑
i2 6=i1

· · ·
∑

in 6=in−1 6=···6=i1
; (3.73)

∑
6=

ia=ib

≡
∑
i1

∑
i2 6=i1

· · ·
∑

ia 6=···6=i1
· · ·

∑
ib−1 6=···6=i1

∑
ib+1 6=···6=i1

· · ·
∑

in 6=···6=i1
. (3.74)
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3.D.2 Computation

With this background notation in hand, the variance of 〈M3
ap〉 can be written as

σ2
[
M̂3

ap

]
=
〈(
πθ2

)3
∑
6=wi1wi2wi3xi1xi2xi3∑

6=wi1wi2wi3
·
(
πθ2

)3
∑
6=wj1wj2wj3xj1xj2xj3∑

6=wj1wj2wj3

〉
− 〈M3

ap〉2

(3.75)

We proceed as always by averaging over the source galaxies. For the third order variance we then

expect four structurally identical terms each corresponding to various permutations of contrac-

tions. The prefactor can be found by considering the following scheme. We represent the two

groups of indices in a similar shape to a six point correlator and count the number of di�erent

contractions that contract14 an index of the i set with one of the j set. Let us do an example to

count all double contractions (see illustration below): For a single contraction we have 9 possib-

ilities, whereas for two contractions we can e�ectively do all single contractions (9 terms) and

delete the contracted indices, leaving us with just four remaining indices. Connecting those gives

4 more possibilities. Finally we divide by the factorial of the number of contractions, as those are

interchangeable. ∣∣∣∣∣i1 i2 i3 | j1 j2 j3
∣∣∣∣∣ = 9

2! ×
∣∣∣∣i2 i3 | j2 j3∣∣∣∣ = 9 · 4

2! = 18

Generalizing to a contractions for twonth order index sets this givesC(n, a) = n2(n−1)2···(n−(a−1))2

a! .

Now we �nd for the source galaxy averaging

A(εt,i1εt,i2εt,i3εt,j1εt,j2εt,j3) = γt,i1γt,i2γt,i3γt,j1γt,j2γt,j3 1

i1 i2 i3 | j1 j2 j3 +
(
σ2
ε

2

)(
Q2
i1γt,i2γt,i3γt,j2γt,j3δ

K
i1,j1 + 8 perm.

)
2

i1 i2 i3 | j1 j2 j3 +
(
σ2
ε

2

)2 (
Q2
i1Q

2
i2γt,i3γt,j3δ

K
i1,j1δ

K
i2,j2 + 17 perm.

)
3

i1 i2 i3 | j1 j2 j3 +
(
σ2
ε

2

)3 (
Q2
i1Q

2
i2Q

2
i3δ

K
i1,j1δ

K
i2,j2δ

K
i3,j3 + 5 perm.

)
4

(3.76)

We now perform the positional averaging over those terms 1 − 4 individually. In order to

shorten similar calculations we note the following identity for the position average correspond-

ing to an m point contraction of an nth order variance:

〈
P


∑
6=

i1=j1
···

im=jm

wi1 · · ·winwj1 · · ·wjn xi1 · · ·xinxj1 · · ·xjn


〉

14 In this note contraction of two indices means that they are set equal to each other.
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=
∑
6=
w2
i1 · · ·w

2
imwim+1 · · ·winwjm+1 · · ·wjn 〈Mm

s,2M2(n−m)
ap 〉 (3.77)

For the term 1 the index structure in the summation symbol has not changed at all, so we can

simply recycle the reasoning to get to the ellipticity averaging calculation. Also adding in the

ensemble average we get〈
P

∑
6=
wi1wi2wi3xi1xi2xi3

∑
6=
wj1wj2wj3xj1xj2xj3

〉

=
∑
6=
wi1wi2wi3wj1wj2wj3〈M6

ap〉+ 9
∑
6=
w2
i1wi2wi3wj2wj3〈M

1
s,2M4

ap〉

+ 18
∑
6=
w2
i1w

2
i2wi3wj3〈M

2
s,2M2

ap〉+ 6
∑
6=
w2
i1w

2
i2w

2
i3〈M

3
s,2〉 (3.78)

Note that in this case we can pull out the prefactor from the summation symbols as the ensemble

average quantities are theory values.

For the second set of terms 2 we have one Kronecker delta in place such that we can only

contract over the remaining �ve indices. For example, the �rst term with the matching weights

yields15:〈
P

∑
i1

∑
i2 6=i1

∑
i3 6=i2 6=i1

∑
j2 6=i1

∑
j3 6=j2 6=i1

w2
i1wi2wi3wj2wj3Q

2
i1xi2xi3xj2xj3

〉

= Mg,2

∑
6=
w2
i1wi2wi3wj2wj3〈M

4
ap〉+ 4

∑
6=
w2
i1w

2
i2wi3wj3〈M

1
s,2M2

ap〉

+ 2
∑
6=
w2
i1w

2
i2w

3
i3〈M

2
s,2〉

 (3.79)

All the other permutations simply shift the squares in one of thewis around, but does not change

the result - hence we can simply multiply by 9.

Continuing with the terms in 3 the two Kronecker deltas force us to do either one or no

contraction. For the �rst term the result looks like:〈
P

∑
i1

∑
i2 6=i1

∑
i3 6=i2 6=i1

∑
j3 6=i2 6=i1

w2
i1w

2
i2wi3wj3Q

2
i1Q

2
i2xi3xj3

〉

= M2
g,2

∑
6=
w2
i1w

2
i2wi3wj3〈M

2
ap〉+

∑
6=
w2
i1w

2
i2w

2
i3〈Ms,2〉

 (3.80)

Again, all the other permutations yield the same result, so we can multiply by 18.

For the �nal 4 term no further contractions can be done and, again, all permutations give

equivalent answers. For the �rst term we have〈
P

∑
i1

∑
i2 6=i1

∑
i3 6=i2 6=i1

w2
i1w

2
i2w

2
i3Q

2
i1Q

2
i2Q

2
i3

〉 = M3
g,2
∑
6=
w2
i1w

2
i2w

3
i3 (3.81)

15 For an explicit computation of this term, see Appendix 3.D.3
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Collecting together all the terms we �nd the weighted variance of the 〈M3
ap〉 to be

σ2
[
M̂3

ap

]
= 1(∑

6=wi1wi2wi3

)2


∑
6=
wi1wi2wi3wj1wj2wj3〈M6

ap〉+ 9
∑
6=
w2
i1wi2wi3wj1wj2〈M

1
s,2M4

ap〉

+ 18
∑
6=
w2
i1w

2
i2wi3wj1〈M

2
s,2M2

ap〉+ 6
∑
6=
w2
i1w

2
i2w

2
i3〈M

3
s,2〉

+ 9Mg,2

(
σ2
ε

2

)∑
6=
w2
i1wi2wi3wj1wj2〈M

4
ap〉+ 4

∑
6=
w2
i1w

2
i2wi3wj1〈M

1
s,2M2

ap〉

+ 2
∑
6=
w2
i1w

2
i2w

3
i3〈M

2
s,2〉


+ 18M2

g,2

(
σ2
ε

2

)2
∑
6=
w2
i1w

2
i2wi3wj1〈M

2
ap〉+

∑
6=
w2
i1w

2
i2w

2
i3〈Ms,2〉


+6M3

g,2

(
σ2
ε

2

)3∑
6=
w2
i1w

2
i2w

2
i3

− 〈M3
ap〉2 (3.82)

3.D.3 Explicit computation of one third order term

We now compute one contraction term explicitly and show that all permutations and higher

order contractions can be computed in a similar fashion. As a �rst step let us write down all the

possibilities that the six indices can take. In here the ath element of each tuple shows which index

the ja is, it is either i1, i2, i3, or none of those which is labelled 6=. The horizontal lines separate

sets of tuples which have the same number of unequal indices. Note that counting through the

tuples we get the numbers from the contractions.
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(6= 6= 6=)

(i1 6= 6=) ( 6= i1 6=) ( 6= 6= i1)

(i2 6= 6=) ( 6= i2 6=) ( 6= 6= i2)

(i3 6= 6=) ( 6= i3 6=) ( 6= 6= i3)

(i1 i2 6=) (i1 6= i2) (6= i1 i2)

(i1 i3 6=) (i1 6= i3) (6= i1 i3)

(i2 i3 6=) (i2 6= i3) (6= i2 i3)

(i2 i1 6=) (i2 6= i1) (6= i2 i1)

(i3 i1 6=) (i3 6= i1) (6= i3 i1)

(i3 i2 6=) (i3 6= i2) (6= i3 i2)

(i1 i2 i3) (i2 i1 i3) (i3 i1 i2)

(i1 i3 i2) (i2 i3 i1) (i3 i2 i1)

The term we deal with is the �rst one in 1 where j1 is set equal to i1. In a �rst step we rewrite

the six summation symbols in terms of summations that solely consist of unequal indices. For

this we can only choose the tuples that have i1 as a �rst entry. We then �nd successively

∑
i1

∑
i2 6=i1

∑
i3 6=i2 6=i1

∑
j1

∑
j2 6=j1

∑
j3 6=j2 6=j1

wi1wi2wi3wj1wj2wj3Qi1xi2xi3Qj1xj2xj3δ
K
i1,j1

=
∑
i1

∑
i2 6=i1

∑
i3 6=i2 6=i1

∑
j2 6=i1

∑
j3 6=j2 6=i1

w2
i1wi2wi3wj2wj3Q

2
i1xi2xi3xj2xj3

=
∑
6=
w2
i1wi2wi3wj2wj3Q

2
i1xi2xi3xj2xj3

+
∑
6=

(
w2
i1w

2
i2wi3wj3Q

2
i1x

2
i2xi3xj3 + w2

i1wi2w
2
i3wj3Q

2
i1xi2x

2
i3xj3

)
+
∑
6=

(
w2
i1w

2
i2wi3wj2Q

2
i1x

2
i2xi3xj2 + w2

i1wi2w
2
i3wj2Q

2
i1xi2x

2
i3xj2

)
+
∑
6=
w2
i1w

2
i2w

2
i3

(
Q2
i1x

2
i2x

2
i3 +Q2

i1x
2
i3x

2
i2

)
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=
∑
6=
w2
i1wi2wi3wj1wj2Q

2
i1xi2xi3xj1xj2 + 2

∑
6=
w2
i1w

2
i2w

2
i3 Q

2
i1x

2
i2x

2
i3

+ 2
∑
6=
w2
i1wi2wi3wj1Q

2
i1xi2xi3xj1 (wi2xi2 + wi3xi3)

where in the �rst step we applied the delta, in the second one subbed in all the relevant terms

and in the third one renamed indices and combined equal terms. Note that the number of tuples

chosen for each number of 6= symbols does match the one from the contraction formalism. Now

we apply the position and ensemble averaging.

〈
P

∑
i1

∑
i2 6=i1

∑
i3 6=i2 6=i1

∑
j1

∑
j2 6=j1

∑
j3 6=j2 6=j1

wi1wi2wi3wj1wj2wj3Qi1xi2xi3Qj1xj2xj3δ
K
i1,j1

〉

=
∑
6=
w2
i1wi2wi3wj1wj2Mg,2〈M4

ap〉+ 2
∑
6=
w2
i1w

2
i2w

2
i3Mg,2〈M2

s,2〉

+ 2
∑
6=
w2
i1wi2wi3wj1 (wi2 + wi3)Mg,2〈M1

s,2M2
ap〉

=
∑
6=
w2
i1wi2wi3wj1wj2Mg,2〈M4

ap〉+ 2
∑
6=
w2
i1w

2
i2w

2
i3Mg,2〈M2

s,2〉

+ 4
∑
6=
w2
i1w

2
i2wi3wj1Mg,2〈M1

s,2M2
ap〉

where in the last step we noted the argument of the sum with brackets is symmetric, and hence

the results for both terms are equal. This is exactly the result we would have expected from the

contractions on the subset excluding i1 and j1.

Looking at the other eight permutations, the only di�erence is that we choose di�erent indices at

the start - however there will always be equally many and all the steps are essentially mirrored,

therefore we can just multiply the result we got by 9.

3.E Distribution of the statistics

In this appendix we show the sample distribution of the various aperture mass statistics within

the 819 SLICS mocks in Fig. 3.11. In order to being able to compare the shapes of the distributions

for various aperture radii we shift and normalise each pdf such that it has zeros mean and unit

variance. Let us at �rst focus on the measurements on the ensemble for which the shape noise

has been set to zero. We see that practically only the �rst order measurement is well approxim-

ated by a Gaussian sampling distribution across all aperture scales. Going to higher orders one

observes a clear deviation from a normal sampling distribution where the di�erence increases

for higher orders and larger aperture radii. When shape noise is included the curves look similar

for large aperture radii, while the measurements for small scales are dominated by shape noise
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Figure 3.11 Normalised sample distribution of the aperture mass moments for the �rst six orders

of the statistics in the SLICS mocks. In the upper panel we show the results for the noiseless case

while the lower panel displays the histograms when including the shape noise contribution. The

black curve indicates a standard normal distribution.
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and hence they do converge to the normal distribution again. Looking at the overall di�erence to

the Gaussian approximation one can say that up until second order the approximation is roughly

valid while for higher orders one expects corrections that need to be thoroughly modeled. We

note that these results might change when running the estimators on a larger survey: As each

estimate is given as a sum over estimates stemming from individual apertures and as the number

of apertures is proportional to the survey area, the CLT will make the sampling distribution of

the estimator converge to a Gaussian. One might already see a hint of this feature in the upper

panel where the sampling distribution of small aperture radii is closer to a normal distribution

than the one for larger radii. As the number of individual apertures per estimate is also propor-

tional to R−2
ap and no shape noise was present in this case, we might interpret this feature as a

consequence of the CLT.
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4The Information

Content of Projected

Galaxy Fields

4.1 Motivation

On a high level, the potential constraining power of cosmological weak lensing surveys depends

on the observed area and on the survey depth. As a theoretical description of the nonlinear dens-

ity �eld is lacking, the full information cannot be retrieved and instead one performs cosmolo-

gical analyses with the help of summary statistics. The most widely used statistic is the power

spectrum containing only the Gaussian contribution of the available information. In the con-

text of three dimensional �elds there have been proposed linearization methods (Neyrinck et al.,

2009; Joachimi et al., 2011; Neyrinck et al., 2011) that successfully remap some of the nonlinear

information into the second order statistics; however the information gain is strongly depleted

once shot noise is taken into account. A more complete way to extract cosmological information

from spectroscopic surveys can be formulated in terms of forward modelling approaches that

do not need to compress the observed data. Recently, the proposed models in (Kitaura & Enßlin,

2008; Jasche & Kitaura, 2010; Jasche & Wandelt, 2013a,b; Wang et al., 2014) have been successfully

applied to N-body simulations and real galaxy redshift surveys (Lavaux & Jasche, 2016; Leclercq

et al., 2017) to reveal a wealth of information of the dark matter density �eld and its phase space

distribution in our nearby Universe. Due to the high dimensionality of the resulting posteriors,

those models have mainly been used to reconstruct the three dimensional matter distribution

when using a �xed cosmology.

In this chapter we aim test how well an idealistic forward model performs for projected tracer

�elds with a line of sight resolution that might be acquired from imaging surveys. To assess

the information contained in the resulting posterior we do not keep the cosmology �xed and

allow the amplitude of the transformed power spectrum to vary. The information content can
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then be rephrased as the the signal-to-noise of the estimated amplitude parameter after having

marginalized over the projected mass �eld itself.

This chapter is organised as follows: In §4.2 we introduce the hierarchical model adopted

for our reconstruction and test the validity of our parametrizations on the Quijote simulation

suite. In §4.3 we give an overview of the Hamiltonian Monte Carlo sampling algorithm and

lay out some speci�c choices we made for our implementation. In §4.4 we �rst validate our

model on a suite of lognormal simulations, then apply it to the Quijote suite and �nally compare

the reconstruction con�dence of the hierarchical model to the expected signal-to-noise using

standard analysis methods.

4.2 Model

For this work we suppose that we are given a set of galaxies on a two dimensional plane. We

then cover the plane with a regular grid and assign the galaxies to the grid cells, yielding a set

of galaxy counts N ≡ {Nc}. A hierarchical model connecting the observations to a Gaussian

mass �eld δlin with a power spectrum P parametrized by a set of parameters ΠP can then be

schematically written down as:

P
(
δlin,ΠP

∣∣∣ N,B, P) ∝ P
(
N
∣∣∣ δnl, B

)
P
(
δnl

∣∣∣ δlin
)

P
(
δlin,ΠP

∣∣∣ P)P(ΠP ) , (4.1)

where δnl denotes a nonlinear mass �eld for which the galaxies are assumed to be biased tracers.

The model for galaxy bias is encoded in the bias operator B. In the following we will give our

modelling choices for each contribution to Eq. (4.1).

The Poissonian likelihood

The �rst term models the way on how the set of discrete tracers is sampled onto the dark matter

�uid; we assume this to follow an inhomogeneous Poisson process (Layzer, 1956; Peebles, 1980):

P
(
N
∣∣∣ δnl, B, n̄

)
= P (n̄)

∏
c

e−nc n
Nc
c

Nc!
, (4.2)

nc ≡ n̄
(
1 +B

[
δnl
]
c

)
, (4.3)

where we introduced the galaxy density �eld n which depends on the mean number density of

observed galaxies n̄ and the physical connectionB between the galaxies and dark matter. We do

furthermore put a logarithmic prior on n̄, such that one can perform an analytic marginalization:

P
(
N
∣∣∣ δnl, B

)
∝
∏
c

(
1 +B

[
δnl
]
c

)Nc (∑
c

1 +B
[
δnl
]
c

)−Ntot

. (4.4)



132 4.2 Model

In the following we will make the simplifying assumption of B ≡ 1.

The second term in Eq. (4.1) corresponds to a physical model that evolves a linear density

�eld to a nonlinear one. For this work we will assume a local model of structure formation, such

that

P
(
δnl

∣∣∣ δlin
)

=
∏
c

δD
(
δnl
c −G−1

(
δlin
c

))
, (4.5)

where G is a function that aims at inverting structure formation. For this work we will consider

two di�erent forms of G−1. The �rst is a logarithmic transformation, while the second one is

Schechter-like:

Logarithmic :

G−1(δlin) = eδlin−σ2/2 − 1 ; (4.6)

Schechter :

G−1(δlin) = n ea1δlin−a2
1σ

2/2
(
1 + e(δlin−δ0)t

)a2−a1
t − 1 , (4.7)

where σ2 is the variance of the linear overdensity �eld and the normalization function n is

de�ned to yield 〈δnl〉 ≡ 0. Note that the Schechter-like transformation is constructed to in-

terpolate between two biased logarithmic transformations around a characteristic scale δ0 with

an interpolation ’width’ described by 1/t.

The Gaussian prior

Assuming that the function G completely gaussianizes the δnl, the linear �eld will be fully de-

scribed by its correlation function ξ, such that we can write down a corresponding prior as

P
(
δlin,ΠP

∣∣∣ ξ) = 1√
(2π)npix |ξ|

exp

−1
2
∑
c,c′

δlin
c ξ−1

cc′ δ
lin
c′

 , (4.8)

where npix denotes the total number of pixels in the grid and |ξ| is the determinant of the cor-

relation matrix. In order to circumvent the computationally not feasible matrix inversion and

products in the exponent we evaluate Eq. (4.8) in its harmonic basis:

P
(
δlin,ΠP

∣∣∣ P) ∝ (∏
c

P−1/2
c

)
exp

[
−1

2
∑
c

δlin
c F−1

[
δ̃lin

P

]
c

]
. (4.9)

For the remainder of this work we will assume that also P is parametrizable by a function that

interpolates between two di�erent power laws:

P (k;A, k0, a1, a2, s) = A

((
k

k0

)a1s

+
(
k

k0

)a2s)− 1
s

. (4.10)
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Figure 4.1 Left hand side: Gaussianizing transformations for an angular resolution of≈ 4 Mpc/h

and a set of projection depths in units of the resolution ∆pix. The shaded region in the up-

per panel corresponds the the standard deviation of the numerical transformation equations

across the ensemble. The solid lines in the upper panel correspond to the best �t model Eq. (4.7).

The black dashed line indicates the expected scaling from a logarithmic transformation model

Eq. (4.6). The lower panel displays the relative error between the best �t model and the mean

numerical transformation. The shaded regions in the lower panel display the 2.5% and 1% er-

rorbands. Right hand side: Same as the plot on the left, but for the power spectra of the trans-

formed �elds. In the lower panel we plot the 5% errorband as well as the statistical spread of

measurements across the ensemble.

Accuracy of parametrizations

For assessing the applicability of the parametrizations Eq. (4.7) and Eq. (4.10) to N-body simu-

lations we test their accuracy with help of the Quijote suite (Villaescusa-Navarro et al., 2020).

In particular, we make use of the ensemble of 100 high resolution simulations in which 10243

particles were evolved within a 1h−1Gpc box. After retrieving the snapshots at z = 1 we assign

the particles onto a regular mesh consisting of 2563 voxels using a NGP scheme. From those we

create projected mass �elds by specifying a projection depth and summing up the content in the

corresponding voxels.

For each mass slab i we then employ inverse transform sampling to construct a linearising

function Gnum
i that maps the projected overdensity �eld to a �eld following a Gaussian dis-

tribution with zero mean and a variance matching the one we would have gotten when log-

transforming the overdensity �eld. Averaging over all theGnum
i de�nes our numeric gaussianiz-

ing functionGnum to which we �t the Schechter transformation Eq. (4.7). The best �t parameters

then determine our model for G−1. The results from this procedure for our chosen angular res-

olution of ≈ 4 Mpc/h are shown in the left panel of Fig. 4.1 and we see that G does give a

percent accurate �t for nearly all pixels. We furthermore note that while G scales similarly to a
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logarithmic model around the mode of δnl, it does quite strongly deviate from such a model for

moderately overdense and underdense regions.

After having �xed the linearization procedure we transform each of the projected overdensity

�elds according toG and compute the associated power spectra Pi. Again, we determine the best

�t parameters of the model Eq. (4.10) against the mean of the Pi to de�ne our �nal model for P .

We show the numeric result in the right hand side of Fig. 4.1. As for the transformations we �nd a

reasonable agreement across all scales that is well within the statistical spread of the true spectra.

We repeated the analysis described above for di�erent meshs consisting of 642, 1282 and 5122

pixels, as well as for power spectrum �ts to models where the logarithmic transformation Eq. (4.6)

had been applied; none of them gave results to which our discussion does not apply.

4.3 Sampling method

4.3.1 Hamiltonian Monte Carlo Sampling

We employ a Hamiltonian Monte Carlo (HMC) scheme (Duane et al., 1987) to e�ciently sample

from the high dimensional distribution Eq. (4.1). This method evades the curse of dimensionality

by exploring level sets of a distribution P ∝ e−H in which the HamiltonianH is de�ned as

H(q,p) ≡ 1
2p

TM−1p+ ψ(q) ; (4.11)

ψ(q) ≡ − ln P(q) , (4.12)

where we assume the auxiliary momentum variables p to follow a Gaussian distribution, p ∼

G (0,M). From this formulation one can construct a valid Markov chain for the original posterior

P by marginalizing over the momenta and for each drawn sample of p evolve the system to a

new location (q′,p′) in phase space according to the Hamilton equations of motion

dq
dt = ∂H

∂p
= M−1p (4.13)

dp
dt = −∂H

∂q
= −∇qψ(q) . (4.14)

Due to numerical inaccuracies the Hamiltonian will not be exactly conserved along the trajector-

ies; in order to still satisfy the detailed balance condition one then needs to invoke a Metropolis-

Hastings rejection step prior to updating the chain with the value of q′. For more complete

reviews of HMC see i.e. Neal (2012).

Adopting the HMC framework to the posterior Eq. (4.1) we have q = {δlin,ΠP } and by making



135 4.3 Sampling method

use of Eqs. (4.9) and (4.4) the potential ψ becomes

ψ (q) = ψPoiss
(
δlin
)

+ ψGauss
(
δlin,ΠP

)
; (4.15)

ψPoiss = Ntot log
[∑

c

(
1 +G−1

(
δlin
c

))]
−
∑
c

Nc

(
1 +G−1

(
δlin
c

))
(4.16)

ψGauss = 1
2
∑
c

(
ln(Pc) + δlin

c F−1
[
δ̃lin

P

]
c

)
, (4.17)

where Ntot denotes the total number of observed tracers. The corresponding expression of the

gradient is more cumbersome and we refer to Appendix 4.A for the details.

4.3.2 Implementation speci�cs

As for all sampling schemes there exist multiple knobs that need to be tweaked in order to facil-

itate an e�cient exploration of our posterior. In this subsection we give a top level overview of

the choices for our implementation.

For the mass matrix M we employ a low rank approximation of the Hessian of Eq. (4.1).

Our most e�cient solution turned out to be formulated in harmonic space and it allows for a

drawing of complex momenta that is bound by FFT operations, as well as for a linearly scaling

complexity for the matrix vector product in Eq. (4.13). We note that employing a diagonal mass

matrix associated with the Hessian of the Gaussian part of the potential did give similarly good

convergence properties.

As advocated by the standard literature we invoke a Leapfrog integrator to discretise the

evolution equations Eqs. (4.13) and (4.14). This method is expected to be e�ective as it is a second

order symplectic discretization scheme that will conserve the Hamiltonian for a well chosen

stepsize. We also checked whether higher order palindromic integrators (see Creutz & Gocksch

(1989) for the original formulation, or Hernández-Sánchez et al. (2021) for a �rst application to

cosmology) result in an e�ective speedup; however for all of our probed grid resolutions the

Leapfrog method remained the most e�cient integrator.

In order to choose a useful stepsize for the integrator we apply a dual averaging scheme

(Nesterov, 2009; Ho�man & Gelman, 2014) during the burnin stage that iteratively adapts the

stepsize to a value that will result in some speci�ed acceptance rate δ during the sampling phase.

Once burnin is over we �x the stepsize to its �nal value ε in the iteration.

Due to the high dimensionality of the problem we also need to worry about the memory

footprint of the individual chains. In this work we are mainly concerned with the chains of the

power spectrum parameters Πp and therefore we save those as a whole, but do the same only
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for a fraction of the latent �eld parameters δlin. As the convergence properties of those variables

depend on the number of tracers in the corresponding pixel we make sure that our selection does

include su�ciently many overdense and underdense regions.

4.4 Results

4.4.1 General strategy

For the remainder of this work we will solely concern ourselves with modelsM that vary the

power spectrum amplitudeA jointly with the cosmological �eld δlin and �x the remaining power

spectrum parameters to their best �t values. We furthermore choose the prior value A∗ of the

amplitude to some value between two thirds and three half times its best �t value and choose

this value A0 as the initial value for the amplitude in M. A possible starting position of the

latent �eld, δlin
0 , can be chosen as a random Gaussian �eld constructed to match the prior power

spectrum with a strongly reduced amplitude.

When running the modelM with these initial conditions we found that the burnin period

becomes very prolonged as the starting point is in strong con�ict with the Poisson likelihood

and a very small stepsize becomes necessary to navigate the chains to their stationary territory1.

To circumvent most of the complexity we adopt a nested burnin strategy where in a �rst step we

run a simpler modelM′ in which we also �xA ≡ A0. Burning in this model with δlin
0 is fast and

choosing some sample fromM′ once stationarity is reached yields a better starting con�guration

δlin
0 for the full modelM that does now burn in much quicker.

Additionally, we note that all our models for generating mock data, as well as the sampling

procedure depend on the following set of hyperparameters which are drawn according to some

random seeds r for each chain:

(i) The cosmic initial condition rcosmo that gives rise to to ‘true‘ projected density �eld.

(ii) The Poisson sampling process rPoiss that sets the data information in our reconstruction

procedure

(iii) The values rini used to initialize the reconstruction algorithm

(iv) The values rmom that specify the order on how to draw the momentum variables during

the reconstruction.
1 We tried various other initialization choices for δlin

0 and A0. For each of them we found the same pathological
behaviour.
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If we want to make a solid prediction about the information content in the power spectrum amp-

litude A we would formally need to marginalize over a large set of seed con�gurations. We can

get rid of one dimension when making the assumption that rini and rmom do not in�uence each

other, and we collect both seeds in a new one, rhmc. Checking the dispersion of the outcomes

when varying over rhmc for �xed rcosmo and rPoiss is then equivalent to assessing the conver-

gence property of the chains, i.e. by virtue of the Gelman-Rubin diagnostics (Gelman & Rubin,

1992). Varying over the remaining two seeds is necessary and we do this for our analysis.

4.4.2 Validation on lognormal simulations

While the point transformations G do a good job in removing nonlinearities of the mass �eld,

they are not su�cient to fully gaussianize the �eld which renders the prior Eq. (4.9) formally

wrong. In order to test our implementation we additionally apply our model on an ensemble of

lognormal mocks. In particular, we obtain a tracer realization as follows:

(i) We specify a resolution and spatial extent of the slab, as well as a tracer sampling density n̄

(ii) We generate a Gaussian random �eld g having a power spectrum Pg that is tuned to match

the best �t power spectrum of the Quijote ensemble of the corresponding slab speci�cs

(iii) We generate a lognormal �eld as δln by applying the transformation Eq. (4.6) to g

(iv) We treat each pixel as a volume element from the corresponding Quijote slab and Poisson

sample tracers into the pixels

In Fig. 4.2 we show as an example the results of a single chain which was run on a 2562 grid and

we choose to evolve the system for 20 timesteps before updating the chain; we furthermore set

A0 ≡ 0.7A∗ and choose n̄ ≡ 0.002/Mpc3. Looking at the �rst burnin stage, using the model

M′, we see that the latent �eld has burned in to the prior power spectrum after around 100

iterations. Moving to the full modelM we see that both, the power spectra measured from the

latent chains and the theoretical evaluation based on the chain for the amplitude A give results

that are consistent with each other and with the true mass �eld. When tracking the evolution of

the amplitude chain we see that during the burnin stage ofM it evolves from the prior value to

the true amplitude that was used for generating the mock data2. After burnin has �nished the

chain oscillates around the true value and will therefore provide an unbiased estimate.
2 We note that for this example we used a less e�cient stepsize adaptation algorithm to explicitly showcase the

evolution of the amplitude from the prior to the truth.
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Figure 4.2 Sampling of the posterior Eq. (4.1) on a lognormal mock. Upper panel: Comparison

of the observed galaxy �eld to the underlying true �eld. Middle left panel: Power spectra of the

proposed latent �elds during burning of the simpli�ed modelM′. Middle right panel: Results of

the sampling stage when using the full modelM. The blue errorband indicates the variance of

the power spectra measured from the proposed latent �elds whereas the black solid line gives

evaluates the theoretical power spectrum model with the mean of the proposed values for the

amplitude. Lower panel: The amplitude chain of the modelM during the burnin stage (left of the

red dashed line) and the sampling stage. The solid black line indicates the value that was used

for generating the mock data while the dashed black line indicates the mean of the prior we did

put on A.
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Name Nside Depth
[∆pix]

G−1 Snapshots Poisson
realizations

Tracer
densities

Initial
conditions

Schechter_
HighRes

512 50 Schechter 5 4 4 6

Schechter_
BaseRes

256 25 Schechter 100 4 4 8

Schechter_
LowRes

128 12 Schechter 5 8 4 6

Schechter_
vLowRes

64 6 Schechter 5 8 4 6

Log_
HighRes

512 50 Log 5 4 4 6

Log_
BaseRes

256 25 Log 5 4 4 6

Table 4.1 Parameter settings for the various ensemble runs performed on snapshots from the

Quijote simulation suite. For each of the chains the four tracer densities that are varied over are

0.002, 0.005, 0.01, and 1.0 tracers per inverse Mpc3. The Schechter_BaseRes run probes the

whole Quijote ensemble and consists of the most (100× 4× 4× 8 = 12800) individual chains.

Each chain consists of 5000 Hamiltonian samples.

4.4.3 Application to the Quijote simulation suite

Overview of ensemble runs

We now turn to the runs on the Quijote ensemble. As discussed in §4.4.1, it is required to vary

over cosmological ensembles, as well as over di�erent Poisson sampling realizations. Addition-

ally, we aim to investigate how the reconstruction con�dence of our model is a�ected by the pixel

resolution and the sampling density of tracers. In Table 4.1 we summarize the di�erent choices

of the hyperparameters for each analysis used in this work.

For each chain we adopt the nested burnin strategy: we sample from modelM′ for 500 times

before switching toM which we burn in for another 1000 steps after which the 5000 samples

that will be used for the subsequent analysis are generated. In order to obtain a new sample we

evolve the equations of motion (4.13) for 40 timesteps. To test the convergence of the chains we

furthermore save the full chains for around 5− 20 per cent of the latent �eld pixels, depending

on the grid resolution.
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Reconstruction accuracy

Before moving to the results of the ensemble we show in Fig. 4.3 the real space latent �eld recon-

structions of a single chain when using the Schechter transformation Eq. (4.7) or the logormal

one, Eq. (4.6). We see that while neither of the transformations succeeds in removing the �lament-

ary structure, the Schechter model does produce less extended tail of overdensities as compared

to the lognormal model. We can predict this feature from Fig. 4.1 in which the gaussianizing

transformation grows slower than the logarithmic graph and thus will map a larger range of

overdensities to an equal sized bin in the transformed �eld. On the level of an individual sample

we see that both models are con�dent in sampling similar structures in overdense regions while

for underdense spots the models resort to their gaussian prior and will therefore not be able to

predict the �lamentary structure by itself. Finally, for the mean �eld and its nonlinearized ver-

sion we again observe a good reconstruction of the high ends of the density �eld while regions

with little data information appear washed out.

Due to the �laments in the latent �eld and the fact that the Gaussian prior 4.9 does not in-

clude higher order clustering statistics, we expect the reconstruction to yield a slightly biased

amplitude. In Fig. 4.4 we quantify the magnitude of this e�ect and its dependence on the galaxy

sampling density on the Schechter_BaseRes and Log_BaseRes runs. As a sanity check we also

include the lognormal reconstructions LNMock_BaseRes and we �nd that they give unbiased

results. We also see that the Schechter transformation produces a much smaller bias than the

lognormal one which we attribute to the fact that it facilitates a gaussianization of the nonlin-

ear �eld at the one point level: With the tracers only being able to probe the high density tail

the logarithmic model implicitly extends this tail to underdense regions, resulting in the power

spectrum amplitude to be driven to a higher value. The fewer tracers are observed the more

severe this e�ect and the resulting bias will become. The Schechter model does not su�er from

this feature and thus its bias remains nearly constant across all n̄. Repeating the analysis for

di�erent gridding scales we �nd that the bias of the Schechter model does only slightly grow

with increasing resolution while the logarithmic model is more strongly a�ected.

Information content

To assess on how much additional information the hierarchical model Eq. (4.1) contains in com-

parison to a traditional analysis in terms of the tracer power spectra we compare the recon-

struction con�dence of the power spectrum amplitude chain CA to the expected variance of the

measured power spectra. The �rst quantity can simply be determined by averaging the signal-
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tom). The remaining columns show the linearised mass �eld (second), a sample from the chain

(third), and the mean of all samples for the linear (fourth) and nonlinear (�fth) �elds. Panels

in the top row were obtained when employing the Schechter transformation Eq. (4.7) while the

bottom row was the result of assuming a lognormal model Eq. (4.6). for G. For both runs we

chose n̄ = 0.002/Mpc3 and matched all the random seeds.
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to-noise of the CA over the ensemble,(
S

N

)
hier.
≡
〈

E(CA)
σ(CA)

〉
chains

. (4.18)

For obtaining the corresponding measure from the standard analysis we follow the procedure put

forward in Rimes & Hamilton (2005); Lee & Pen (2008) and estimate the cumulative information

content of the projected power spectra,(
S

N

)2
(< k) ≡

∑
i,j∈Rk

r−1
ij , (4.19)

where r denotes the normalised correlation matrix of the shot-noise subtracted spectra and the

sum runs over all index pairs for which ki,j < k. To minimize the noise when estimating r and

therefore get a stable inverse we obtain this quantity from 2000 Quijote simulations which were

run on the standard resolution, i.e. using 5123 dark matter particles from which we construct

the slabs and tracer counts as described in §4.2.

In Fig. 4.5 we compare the two measures Eqs. (4.18) and (4.19) for the Schechter models of

di�erent resolutions. Firstly, we see that that the cumulative signal-to-noise of the traditional

analysis starts to diverge from the Gaussian scaling at around k = 0.1h/Mpc and quickly plat-

eaus thereafter. In contrast, for the hierarchical model the con�dence on the linear amplitude

has a signi�cant dependence on the tracer density and resolution and does always yield more
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information than the power spectrum based method. For a high-sampling limit of n̄ = 1h/Mpc3

Eq. (4.1) recovers the Gaussian mode count up until scales down to 2Mpc/h. In the plot on the

right we quantify the information ratio of both analysis methods and we see that there is a sig-

ni�cant advantage for transverse scales < 8Mpc/h. In particular, the information is quadrupled

at translinear scales for an attainable shot-noise level of n̄ = 0.01h/Mpc3.

4.5 Conclusions

In this chapter we have explored the information content of a simplistic forward model for pro-

jected galaxy �elds. It can be summarized as follows:

In §4.2 we wrote down a hierarchical model that is composed of a Poisson likelihood for the

discrete galaxy distribution and a Gaussian prior on the linearized density �eld. We showed that

a Schechter like functional form is su�cient to parametrize the gaussianizing point transforma-

tion of the nonlinear density �eld. In §4.3 we introduced the HMC sampling algorithm and wrote

down the explicit expression for the potential corresponding to the hierarchical model. We then

gave an overview of our implementation choices, namely a non-diagonal mass matrix, a second

order Leapfrog integration scheme, an automatic stepsize adaption algorithm, as well as some

storage optimizations. In §4.4 we started by laying out our nested burnin strategy and gave an

overview of the four hyperparameters that are varied during the ensemble runs. After having

successfully validated our implementation on lognormal mock catalogs we presented a summary

of our ensemble runs on the Quijote simulation suite. Analyzing the resulting chains we found

that the reconstruction bias of the power spectrum amplitude depends on the chosen functional

form of the linearization procedure. Comparing the reconstruction con�dence of the hierarchical

model to the cumulative information content of the raw �eld we showed that the forward mod-

elling approach allows to extract four times the information as compared to traditional analysis

methods.
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Appendix

4.A Details of the implementation

Choice of mass matrix

The mass matrix can be written in a block like structure consisting of the the Hessian associated

with the latent �eld parameters, the Hessian with respect to the power spectrum amplitude, and

a mixed one. For this work we make the following choices:

M =

 ∇2
δ (ψPoiss + ψGauss) ∇2

δ,ΠP∗
ψGauss

∇2
δ,ΠP∗

ψGauss ∇2
ΠP∗

ψGauss

 ≡
 ∇2

aψGauss + ε −∂P /∂ΠP∗

P ∗3/2

−∂P /∂ΠP∗

P ∗3/2
1
2
∂P /∂ΠP∗

P ∗ · ∂P /∂ΠP∗
P ∗



=

 1
P ∗ (1 + P ∗ � ε) − 1

A∗
√
P ∗

−
(

1
A∗
√
P ∗

)T nL
2A∗2

 , (4.20)

where in the �rst step we dropped the Poisson contribution, introduced a positive de�nite, con-

stant normalization vector ε that is needed to keep the mass well de�ned and substituted the

Fourier space representation of Eq. (4.9) evaluated at a†a = P ∗. In the second step we speci�ed

to the case in which Π∗P ≡ A∗. As the latent part has a diagonal structure we can easily compute

the inverse with help of the block matrix inversion formula:

M−1 =


(√
P ∗ �X

)
1 + αX ⊗X αA∗X

αA∗XT αA∗2

 ,

where X ≡
√
P ∗

1 + P ∗ � ε α ≡ 2
nL

1
1− 2

〈
1

1+P ∗�ε

〉 . (4.21)

To circumvent the large storage requirements of this representation we make use the fact that

we only need to perform the operationM−1p within the integrator which can be done in linear



145 4.B Convergence tests

time and space complexity as

M−1

 pL

pΠ

 =


√
P ∗ �X � pL + αΣX + αA∗pΠX

αA∗Σ +A∗2αpΠ

 , (4.22)

where we de�ned Σ ≡XT · pL. We can now draw a random momentum vector as follows:

1. Compute a lower triangular matrix L s.t. M = LLT . In our case the resulting Cholesky

matrix reads

L =

 1√
P ∗

√
1 + P ∗ � ε 0

−
(

X
A∗
√
P ∗

)T 1√
αA∗

 . (4.23)

2. Draw a random unit Gaussian, z ∼ H(0,1nL) ⊕ G(0, 1), where for the latent �eld pixels

we enforce hermitian symmetry.

3. Transform z to inherit the correct covariance properties: p = Lz. This can again be done

without needing to store L as a whole.

Dual Averaging

We implemented a dual averaging algorithm using the same formalism as presented in Ho�man

& Gelman (2014), see their Algorithm 5 for the speci�c implementation and initialization values.

As our target acceptance rate we chose δ = 0.65. In Fig. 4.6 we show how well this setup did work

in the ensemble runs which were all starting the �rst burnin stage with a the same, very small

stepsize. We see that the resulting stepsize is indeed compatible with the target acceptance rate

for all the probed ensemble runs. We also see that there is a strong dependence of the inferred

stepsize on the galaxy sampling density and the pixel scale.

However, we also found that for this automatically inferred stepsize there is a non-negligible

amplitude bias present in the lognormal mocks for a very low galaxy sampling density. When

reducing the stepsize by a factor of three3 this bias disappeared, see Fig. 4.7. While we did not

�nd such a strong change for the Schechter transformation we think that one should be aware

of this e�ect for more complex hierarchical models.

4.B Convergence tests

In Fig. 4.8 we show the Gelman Rubin diagnostics Eq. (1.44) for the Schechter_BaseRes run. We

see that the amplitude chains did converge for practically all our runs, except for some recon-
3 We adapt the the number of integration steps accordingly to have a similar trajectory length for each of the runs.
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dual averaging algorithm. For both plots we took into account all the chains in the Schechter
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Figure 4.7 Dependence of the power spectrum amplitude ratio on the chosen stepsize for di�erent

transformations in the ensemble runs performed on a 2562 grid. The solid lines display the results
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Figure 4.8 Convergence diagnostic of the chains in the Quijote baseline ensemble run. The left

hand side shows the results for the power spectrum amplitude for each of the 400 individual

runs. The color coding corresponds to the four di�erent galaxy sampling densities. On the right

hand side we plot the ensemble mean of the PSFR for 500 randomly chosen pixels.

structions performed with very low galaxy sampling densities. However, as those PSFR values

are only slightly above the 1.1 level and we just care about the ensemble mean of the distribu-

tions, this should not pose a problem. For the latent pixel parameters we see that the mean PSFR

for all the runs is very well consistent with unity. Checking the Gelman Rubin diagnostic on the

other ensemble runs we �nd similar results.
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5Summary and Outlook

In this thesis we have explored two di�erent methods that both aim at extracting cosmological

information that is not contained in the power spectrum. Our contributions can be summarized

as follows:

In chapter 2 we revisited the originally proposed direct estimator of the second order aperture

mass statistics of Schneider et al. (1998) and modi�ed it in two ways. On the one hand, we rewrote

the expressions in a fashion that facilitates a fast computational scaling. On the other hand, we

proposed a weighting scheme that is based on the shape noise dominated limit of the inverse

variance of the second order estimator and that additionally allows to fully exclude apertures that

are partially covered by a survey mask. We then compared our modi�ed direct estimator to the

traditional analysis method in terms of shear correlation functions on a large suite of ray-tracing

mock simulations. We found that the novel weighting scheme does eliminate most of the mask

induced bias while still maintaining a high signal-to-noise for an aperture completeness cuto�

of 0.7. We used this observation to apply our direct estimator to the CFHTLenS data and found

it to be in excellent agreement with the published results from Kilbinger et al. (2013). Finally,

we used the Fisher matrix formalism and a large suite of mock catalogs that were constructed

from simulations spanning multiple cosmologies to conclude that the information content of our

direct estimator and the correlation function method is comparable.

In chapter 3 we extended the direct estimator put forward in chapter 2 to arbitrary multiscale

aperture measures. As those statistics trace the full information probed by the polyspectra they

are expected to strongly help in obtaining tighter parameter constraints. After having motivated

a linear order algorithm for estimating the statistics we computed its variance for an ensemble

of apertures and we showed that the spatial correlation between neighbouring apertures induces

a limit for the aperture oversampling rate above which the information saturates. After having
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successfully validated our implementation we made use of the SLICS simulation suite and showed

that for a KiDS-1000 like survey one can expect to extract information up to �fth order for both,

single and multiscale apertures.

An immediate extension of the presented work would be to theoretically assess the impact

of a survey mask when adopting the direct estimator approach. This is an ongoing project and

we have developed exact theoretical expressions for the expected measurement on an incomplete

aperture and have furthermore worked out template based approximation schemes that make the

calculations feasible when dealing with ensembles of thousands of apertures. In particular, we

have explicitly checked that our method is able recover the second order masked statistics at the

per cent level. For an overview of those preliminary results, see Fig. 5.1. We plan on extending

these methods to the higher order multiscale apertures.

Up to now we have been concerned with extracting cosmological information from moments

of the mass �eld. While under the assumption of a nearly Gaussian CMB statistical physics

would guarantee most of the information to be contained in the lower order moments, we will

still never be able to extract the full information of the nonlinear density �eld using such meth-

ods. In chapter 4 we therefore shifted gears and made use of a forward modelling formalism for

projected galaxy �elds that uses the full observed data instead of summary statistics. To build a

simpli�ed model we assumed that structure formation can be described as a point transformation

and that galaxies are Poisson tracers of the dark matter �eld. We used the Quijote simulation suite

to determine the one point gaussianizing transformation of the mass �eld and showed that its

inverse di�ers substantially from a logarithmic model and is parameterizable by a Schechter-like

function. By adopting a Hamiltonian Monte Carlo sampling scheme we were able to e�ciently

extract the information of the power spectrum amplitude of the linearized mass �eld from the

high dimensional posterior. Comparing this information to the expected one when adopting a

standard power spectrum analysis on the raw �eld we found that the forward model is able to

produce four times tighter constraints.

There are multiple ways to extend our analysis. On the modelling side, we could use a more

advanced structure formation model beyond a point transformation. As those models are usually

formulated in terms of three dimensional �elds one could try to �nd a way to phrase them in

terms of projected �elds, such that the sampling will remain fast. As long as the adopted model

is deterministic, we expect the information content to be very similar to the one found for our

simple model. Another immediate extension would be to tailor the formulation towards weak

lensing analyses, in which, on a high level, the shot noise is replaced by the shape noise. Given

our �ndings for projected �elds we would expect the information gain of a hierarchical model
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Figure 5.1 Upper left hand side: The angular mask adopted for this example. Upper right hand

side: The theoretically predicted impact of the mask on the second order E-mode aperture stat-

istics for two di�erent analytic approximation schemes. The di�erent colors indicate di�erent

aperture completeness cuto�s ck. Lower panel: Comparison of the theoretical calculations to

measurements on the SLICS ensemble for cuto� scales of ck ∈ {0.7, 0.6, 0.5, 0.4}. In the upper

panel the solid and dashed lines show the measured E and B-mode in the presence of the survey

mask. We plot our theoretical prediction for this mode with ck = 0.7 as the black dashed line.

In the middle panel we show the ratio between the masked and unmasked E-mode statistics and

again compare against the theoretical expectation with ck = 0.7 displayed via the black dashed

line. In the lower panel we show the discrepancy of the analytical predictions and the measure-

ments when normalizing by the expected estimation uncertainty for a KiDS-1000 setting.
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to be similar to the results presented in this thesis. On the sampling side there are still many

di�erent avenues that can be explored. For example, one could investigate the performance

increment when using more advanced schemes, such as NUTS or RMHMC.

The work presented in this thesis has contributed to one of the many challenges that need

to be tackled in order to optimally use the information collected by ongoing and future surveys.

This will ultimately lead to a better understanding of our Universe. In recent years it has be-

come apparent that many of those challenges cannot be treated separately, but instead require a

collaborative e�ort between multiple previously not strongly connected �elds of research. I am

convinced that this will lead to many new interesting results and that the �eld of observational

cosmology will remain as exciting as it is now!
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