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Long range coherence of Bose gases in variable dimensionality

Robert SHAH

Abstract

This thesis reports on our experimental investigation into the properties of
condensed Bose gases across the 1D-3D regime. We review known theoretical models
of quasi-condensates (1D) and the less understood crossover regime (the 3D regime
being the Bose-Einstein condensate) and test them against our experimental findings.
We use density ripples (a well-known phenomenon that occurs in quasi-condensates)
as a tool to probe phase coherence of gases across the 1D-3D crossover. We have
compared our results with simulations based on the theoretical models and find
evidence that supports a hybrid model. There are a number of candidates (aspect ratio
of the trapping potential, and dimensionless energies of chemical potential and
temperature) proposed that determine “1D-ness” which we investigate and propose
that the dimensionless chemical potential parameter is the most important. The
experiment we have built also contains novel additions such as atom trapping printed
circuit boards and 3D printed structures, which I report on this thesis.
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Chapter 1

Introduction

Physical systems in low dimensions (one or two-dimensions, 1D/2D) can display
highly intriguing behaviour, their properties can be dramatically different to their
three-dimensional (3D) counterpart. Theoretically low-dimensional systems are
interesting as they often simplify the 3D model and can lead to analytical solutions.
Application of the famous Bethe-ansatz [1] is one such example, which was created to
solve the 1D Heisenberg model, allowing the exact eigenvalues and eigenvectors to be
calculated. Since its original application, the Bethe-ansatz has been extended to a
number of other 1D systems, including systems that can be realised in ultracold atom
experiments.

In the past two decades ultracold atom experiments have allowed us to
experimentally study low-dimensional systems in the many-body quantum regime,
by using the phenomenon of Bose-Einstein condensation (BEC). This gives rise to
coherent states of matter where the thermal de Broglie wavelength of individual
particles becomes larger than their separation, forming a single macroscopic
wavefunction, and is considered the matterwave equivalent of a single mode laser.
BECs composed of dilute vapours of alkali atoms were first realised in 1995 [2–4].
These first experiments produced examples of three-dimensional condensates. Later,
confining potentials were manipulated such that examples of two-[5–8] and
one-dimensional gases [5, 9–13] were realised, however at finite temperature such
systems do not display long range order and cannot be called true Bose-Einstein
condensates (though at zero temperature formation of a BEC is possible in 2D
systems) [14]. These systems are however quantum degenerate and display properties
akin to a BEC, and for this reason they have been named quasi-condensates. In 2D
there exists a superfluid phase transition at sufficiently low temperature known as the
Berezinskii–Kosterlitz–Thouless (BKT) transition [15], and 1D systems can posses the
property of superfluidity at zero temperature [16].

Understanding the coherence properties in low dimensional Bose gases, is not
only interesting in the field itself, but can provide insight into other areas of research
such as high temperature superconductors where in certain scenarios coherence can
be increased in reduced dimensions [17]. A feature of quasi-condensates is the
fluctuation of phase and/or density, it has been pointed out that such systems display
behaviour analogous to the fluctuations observed during the early expansion of the
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Chapter 1. Introduction 2

universe [18, 19]. This thesis focuses on 1D and 3D systems, and how they transition
from one or the other. The crossover regime between 1D and 3D is of significant
interest as many atom chip [20] experiments often will produce condensates within
this regime. Due to the geometry of trapping the trapping wires, atom chips lend
themselves towards "1D-like" cigar shaped potentials (long axially, but short in the
transverse direction). Even though this regime is commonly encountered
experimentally, to the best of our knowledge a thorough experimental study
throughout chemical crossover has not been reported.

In 1968 Elliott H. Lieb and Werner Liniger, used the Bethe-ansatz to solve a 1D
model of Bosons with repulsive contact interactions, now known as the Lieb-Liniger
model [21, 22]. Whilst early interest in this model was purely academic it became of
particular interest recently as it was possible to recreate such a system in the
laboratory with ultracold atoms. One of the intriguing properties of the 1D system is
that the interactions actually increase with decreasing density. The interaction
strength in this model is characterised by the dimensionless quantity γ, now more
famously known as the Lieb-Liniger parameter. With this parameter the model
defines two regimes, the strongly interacting regime γ > 1, and the weakly interacting
regime γ � 1. In the strongly interacting regime, the repulsive interactions are so
strong that atoms can no longer share the same position and "fermionisation" occurs.
The systems operating in such particular regime are known as Tonk-Girardeau gases
[23], and were experimentally realised in [9, 10]. The 1D Bose-gas model was also
solved for finite-temperature at equilibrium with the Yang-Yang formalism [24], via
the application of a thermodynamic Bethe-ansatz. It was found to accurately predict
the density profile of a 1D gas in equilibrium [25], and density fluctuations in the
strong [26] and weakly [27, 28] interacting regimes.

From early theoretical studies in 1967 phase fluctuations were expected to be
present in 1D quasi-condensates [29, 30], in contrast to a true condensate where the
phase does not fluctuate. Much later in 2001 similar behaviour was predicted to occur
in elongated 3D condensates (long in the axial dimension and short in the transverse
dimensions) [31]. It was found that whilst a system may be considered 3D in the sense
that there are transverse degrees of freedom, the phase can fluctuate over length scales
(the phase coherence length lφ) shorter than the axial length of the gas.
Phase-fluctuating elongated 3D condensates were observed experimentally that same
year [32, 33], and later in other early experimental studies (early 2000s) [13, 34–37].
The research reported in this thesis investigates the change in coherence as a 3D
system transforms into 1D, through indirect measurements of the phase fluctuations.
We manipulate the cloud parameters, atom number, temperature, and trapping
potential, and examine the parameters that drive changes to the coherence throughout
the 3D-1D crossover. We also study the effect of interactions during time of flight, an
effect which is known to interfere with the measurement process but presumed
negligible in 1D. We ascertain that the effect of interactions are significant towards the
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3D regime and that they are qualitatively reproduced by the theoretical predictions of
[32, 33]. Intriguingly we find that previously accepted "1D parameters" (aspect ratio λ,
the ratio of system size to thermal phase coherence length L/λT , thermal transverse
degeneracy kBT/~ω⊥, and chemical transverse degeneracy µ/~ω⊥) do not all appear
to be important in driving the crossover and, perhaps most interestingly, we observe
kBT/~ω⊥ to be weakly correlated. Our findings are important to experiments that
desire or require fully coherent gases, such as atom interferometers and atom optics,
and may have more far reaching significance in other fields where dimensionality is
studied.

1.1 Overview

The aim of this thesis was to experimentally map out the 3D-1D crossover regime, and
understand the controlling parameters, and assess the validity of known theoretical
models. At the start of my PhD the group had just moved over from the University of
Nottingham, and so the experiment was built from scratch. Much of the design was
based on the previous experiment in Nottingham, and details of this set-up can be
found in Dr Thomas Barrett’s thesis [38]. Also, Dr William Evans was the major
contributor in the design and installation of the control system and the 2D MOT, his
work can be found in his thesis [39]. Here, I will summarise the content of my thesis.

Chapter 2 presents an overview of the essential theoretical background. It is split into
two parts, first we focus on the important experimental techniques required to
produce a BEC in the laboratory. Second, we discuss the important the physics
relevant to the experiment performed in Chapter 4, we look into the coherence
properties of Bose gases in three and one dimensions, and the fluctuations that arise in
these systems.

Chapter 3 gives details on the experimental set-up. A substantial amount of time was
spent building the experiment during the course of my PhD, hence this chapter will be
large contribution to the content of my thesis. It includes my significant contributions
to the set-up, and features that are relevant to the measurements taken in Chapter 4.

Chapter 4, in this chapter the main experimental results are presented, the details of
the acquisition and analysis procedure are included. Along with the measurements,
four different theoretical models are described, each model is incorporated into a
simulation and their results are compared to experimental measurements. A
discussion of the results and our findings is given at the end of this chapter.

Chapter 5 summarises the work conducted in this thesis, and also provides an outlook,
including potential improvements and possible extensions to this research.



Chapter 2

Bose-Einstein condensation and
phase coherence

This chapter first gives an overview of the fundamental principles behind magnetic
trapping and cooling of neutral atoms, these are important techniques that allow us to
produce Bose-Einstein condensates (BEC) in the laboratory. A vital step in the
experimental process is laser cooling which is a precursor to evaporative cooling,
however as this is not directly relevant to the experimental study in Chapter 4 it is not
included in this chapter and instead I refer to the literature [40–42]. Next I discuss
some of the important properties of a BEC, in particular the coherence properties. The
experiment in this thesis also investigates gases that are not true BECs but
condensation-like behaviour occurs, for this reason these gases are referred to as
quasi-condensates. The final part of this chapter describes the different regimes of
quasi-condensation, how they can be created experimentally, and how their properties
differ.

2.1 Classical to quantum gases

This section addresses the theoretical background to the experimental steps that are
required to transfer a gas of atoms from a classical state into a quantum degenerate
state. First I will describe the interaction between atoms and magnetic fields, and how
a trapping potential can be formed. I will then discuss how 3D trapping structures
have been mapped onto planar devices. Then the evaporative cooling process will be
described, and finally, I will outline the quantum degenerate state known as a Bose-
Einstein condensate, and some of its important features.

2.1.1 Magnetic trapping

First, in order to produce a BEC from an atomic gas, one must select a suitable atom.
Alkali metals are a popular choice amongst ultracold atom experiments, located in
group one of the periodic table they have one valence electron and an odd number of
protons in the nucleus. Isotopes with an even number of neutrons will then combine
to form a composite boson. The single valence electron occupies an outer s-orbital
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Chapter 2. Bose-Einstein condensation and phase coherence 5

above a number of closed shells, this validates use of a relatively simple model of
energy levels. Notably the electronic ground and excited states can be addressed with
optical frequencies, meaning powerful techniques such as laser cooling [43] and
absorption imaging 3.3.1 can be used. Nowadays the appropriate lasers are
commercially available. Secondly the interaction of the electron’s magnetic moment
with a static magnetic field is strong enough to make magnetic trapping feasible. Our
experiment uses 87Rb atoms, the electronic structure is shown in Fig. 2.1.

FIGURE 2.1: 87Rb D2 line [44]. The ground to excited state transition is
52S1/2 → 52P3/2, the corresponding wavelength λ = 780.24 nm.

Other commonly used alkali atoms include, 7Li, 23Na, 39K, 41K, 85Rb, and 133Cs
[45]. In this section we are concerned with the interaction with a static magnetic field
B. The Hamiltonian is [42],

HB = −µ ·B (2.1)

where µ is the total magnetic moment of the atom given by,

µ = −gJµB

~
J +

gIµN

~
I. (2.2)

Here, J = L + S is the total electron angular momentum, the sum of the orbital L
and spin S angular momenta, µB and µN are the Bohr and nuclear magnetons, gJ is
the Landé g-factor, and gN is the nuclear g-factor. Since µB � µN the second term in
Eq. (2.2) can typically be neglected for describing magnetic trapping experiments. If
the field interaction is smaller than the hyperfine interaction AhfsI · J (where Ahfs is
the magnetic dipole constant for Rb87 in the 52S1/2 state Ahfs = h· 3.417 GHz) then mI

and mJ are not good quantum numbers, but F (F = J + I) and mF are [42]. The total
angular momentum F precesses about the magnetic field which we will define along
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the z-axis, projecting J along F we get the result,

HB =
gFµB

~
BzFz, (2.3)

where,

gF = gJ
F (F + 1)− I(I + 1) + J(J + 1)

2F (F + 1)
. (2.4)

Calculating the the expectation value of Eq. (2.3) we get arrive at the weak field Zeeman
Effect,

〈F,mF |HB|F,mF 〉 = ∆EB = gFmFµBBz. (2.5)

The frequency of precession about the magnetic field is the Larmor frequency ωL =

µBB/~, if this is much faster than the change in direction of the field the magnetic
moment will follow the direction of the field adiabatically [46] and the energy shift will
be proportional to field strength ∆EB = gFmFµB|B|. In the presence of a spatially
varying field then atoms with gFmF 6= 0 will experience a force ∝ dB

dz , atoms with
gFmF > 0 are often referred to as low field seekers and atoms with gFmF < 0 high
field seekers. Wing’s theorem [47] states that for a static magnetic field in source free
space it is possible to have a field minimum, however field maxima are forbidden. This
means that only low field seekers can be trapped (high seekers can be held in a stable
orbit about a source, known as a Kepler trap [46]), in our experiment the atoms are in
the 52S1/2 |F = 2,mF = +2〉 state (see Fig. 2.1) for which gF = 1/2.
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FIGURE 2.2: A plot showing the potential seen by a low field seeking
atom. The magnetic field has a constant linear gradient that changes
direction at the position z = 0, as the potential is proportional to |Bz|
the atom would see the red line and be attracted towards the position
z = 0. To avoid Majorana transitions a constant offset field is applied in

a direction perpendicular to the z-axis.

To trap low field seekers we need to create a minimum in magnetic field, Fig. 2.2 is
a simple schematic that shows how field passing through zero can create a trapping
potential. Note that at zero field the mF states become degenerate and atoms can
transition to non-trapped mF states, to prevent this an additional offset field B0 is
used to "plug the hole". This must be in a direction perpendicular to z as any
additional field along z would only move the zero point. The originally linear trap
becomes harmonic at the minimum, and hence can be characterised by a frequency ωz .
For the adiabaticity condition to remain valid ωz � ωL, otherwise the atom’s magnetic
moment cannot follow the change in field direction and will project onto a different
mF state and potentially become untrapped, this is a type of spin-flip loss is known as
a Majorana transition [48]. As a rule of thumb experimentalists often set the offset field
to a minimum of ∼1 G, this ensures that the trap bottom is not resonant with typical
sources of ambient laboratory noise. Another less common method that avoids
Majorana transitions uses a time-orbiting potential or TOP trap, the first experimental
observation of a BEC used such a configuration [2]. The basic principle of the
technique is that by rapidly moving the position of the zero point, the atom sees a
time averaged effective potential without a zero point. The principle of creating a
non-zero minimum in the magnitude of magnetic field |B|, underpins almost all of the
trapping configurations employed in our laboratory.
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Ioffe-Pritchard trap

Most ultracold atom experiments that utilise magnetic traps have field configurations
based on the Ioffe-Pritchard (IP) trap [49]. The field configuration for an IP trap is given
by the following [50],

B(x, y, z) = B0

0

0

1

+
B′′

2

 −xz
−yz

z2 − 1
2

(
x2 + y2

)
+B′

 x

−y
0

 ,

where the first two terms contains the axial confinement (z-axis) shown in Fig. 2.3a,
and the last term is a 2D quadrupole that provides radial confinement (x − y plane)
and can be seen in Fig. 2.3b.

(A)
(B)

FIGURE 2.3: (A) Axial confinement provided by two coils running in
parallel separated by a distance larger than their radius. This also
provides the offset field B0 to prevent Majorana transitions, and its
direction defines a quantisation axis often referred to as the Ioffe field.
The trapped atom’s magnetic moment will be aligned to this direction.
(B) Depiction of the radial confinement field produced from the Ioffe
coils which form a 2D quadrupole. The relative magnitude of the field
is given by the colorscale where black is zero field, and yellow is high

field, and the white arrows show the direction of the field.

The field near the minimum can be approximated to,

|B| ' B0 +
B′′

2
z2 +

1

2

(
B′2

B0
− B′′

2

)
(x2 + y2). (2.6)

Substituting this expression for |B| into Eq. (2.5), we get the potential energy,

U(x, y, z) = gFmFµB|B| = gFmFµBB0 +
1

2

(
ω2
xx

2 + ωyy
2 + ωzz

2
)
, (2.7)
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wherem is the mass of the atom, and ωi are the trap frequencies. Since the configuration
exhibits radial symmetry we refer to the trap frequencies as radial ω⊥ = ωx = ωy and
axial ω‖ = ωz which are given by

ω⊥ =

√
gFmFµB

m

(
B′2

B0
− B′′

2

)
(2.8)

ω‖ =

√
gFmFµB

m
B′′. (2.9)

The radial trap frequency can be tuned by changing the offset fieldB0, this can be done
by applying a bias field in an opposing direction to the Ioffe field, this field is known
as the anti-Ioffe field.

Planar wire traps

Initial realisations of the IP trap were achieved using large external 3D coils, and
sometimes required hundreds of amps to create the desired fields, usually because of
the large distance from the trapping region to the field source. These types of set-ups
consumed lots of power, and often required water cooling, making the set-up even
bulkier. It was pointed out that significant gains could be made using micro-traps as
the magnetic field, gradient, and curvature scale as I/S, I/S2, and I/S3 respectively,
where I is the current in the wires and S is their characteristic size [51]. Initially free
standing single wires or atom wires inside the vacuum chamber were used [46, 52, 53],
this allowed atoms to be trapped very close to the surface of the field source.
However, these wires were often very delicate and could easily be deformed by
external forces, and their fragility only gets worse the smaller the wire is, ultimately
limiting S. The wire being free standing in the vacuum means that heat created from
joule heating can only be channelled away via conduction through the wire itself,
limiting its current capacity and hence the field strength produced. A major step in
progress was the advent of the atom chip [20, 54], in which micron scale wires were
deposited onto a substrate as opposed to standing freely. Placing the wires onto a
substrate not only made them more robust (allowing them to be made much smaller)
but also supplied an extra conduction path for heat to flow, which greatly improved
heat dissipation and thus increased the current capacity and in turn the field strength.
Initial fabrication techniques used electroplating, however this gave relatively large
surface roughness and led to severe fragmentation of the cloud [55] (see Section 3.2.3)
limiting the trapping distances to on the order of 100 µm. Later, fabrication methods
moved to gold evaporation which gave a much improved surface roughness and
allowed for trapping distances of a few micrometres [56, 57].

To understand how the 3D IP trap can be recreated on a 2D surface let us consider
first the magnetic field B produced at point r by a single current carrying wire, which
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can be calculated using the Biot-Savart law,

B(r) =
µ0

4π

∫
V
j(r′)× r− r′

|r− r′|3
dV ′, (2.10)

where j is the current density, V is the volume of the wire, V ′ is the volume element,
and r′ is a point within that volume. The volume integral is simplified to a line integral
by approximating the wire as infinitely thin, which gives,

B(r) =
µ0

4π

∫
C
Idl × r− r′

|r− r′|3
, (2.11)

where C is wire path, and dl is the length element of the wire. For an infinitely long
wire the solution is

B(r) =
µ0I

2πd
, (2.12)

where d is the distance from point r to the wire. The magnetic field gradient, and
curvature are then given by,

B(r)′ = − µ0I

2πd2
, and B(r)′′ =

µ0I

πd3
. (2.13)

Radial 1 confinement can be achieved by applying an opposing bias field, Bbias, this is
shown in Fig. 2.4. The bias field will cancel the field produced by the wire at a position

r0 =
µ0I

2πBbias
. (2.14)

FIGURE 2.4: Single wire guide potential, this provides a 2D quadrupole
along the axis of the wire and is radially symmetric. The position of the
minimum is determined by Eq. (2.14). The plot shows the magnitude of
the field |B| as function of z which represents the vertical distance from
the surface of the wire. Note the minimum does not go to zero as an

offset field is provided by the axial potential in Fig. 2.5.

To create axial confinement two parallel leg wires carry current in parallel or
anti-parallel. The parallel case is depicted in Fig. 2.5, this not only creates a confining
potential along y but also provides the Ioffe field (preventing Majorana transitions

1For consistency with Fig. 2.6 and Fig. 3.18 I will now define the radial coordinates as x and z and the
axial coordinate as y.
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and defining a quantisation axis). The magnitude of the Ioffe field is determined by
trap position r0 and the leg wire current Ileg.

FIGURE 2.5: Diagram showing how two parallel wires (or leg wires)
combine to form a confining potential along the y-axis.

Some common wire configurations are shown in Fig. 2.6. In our experiment we
use a modified U-trap [58] to produce the magneto optical trap (MOT) fields, a Z-trap
for magnetic trapping of thermal clouds, and a H-trap for BECs. Though the H-trap
requires more wires and an extra layer than the Z-trap, its advantage is that the current
in the legs is independent of the current in the central wire. This means ω‖ and ω⊥

are decoupled, giving greater flexibility in tuning the aspect ratio λ = ω⊥/ω‖ which
was a key free parameter for our experiment in Chapter 4. For this reason we chose
a H-trap to create the final trapping potential, however for practical reasons the initial
magnetic trap we chose was the Z-trap. The initial fields require a very high current
(100 A) for the reasons stated in Section 3.2.1, supplying this level of current requires
expensive and bulky power supplies, thus using a Z-trap saves us space, money, and
also simplifies the set-up.
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FIGURE 2.6: (Left to right) Z, H, and U trap. The Z and H traps produce
IP traps, the trap bottom B0 can be tuned with the anti-Ioffe field BAI .
A Z-trap can be made from a single wire but the H-trap requires three
wires and two planes. The counter-propagating current flow in the U-
trap legs creates a quadrupole field in the y direction and is typically
used for MOT fields as the field flips direction through the minimum
which is necessary for laser cooling [43], and the zero-field is not an issue

as hot atoms are less sensitive to Majorana transitions.

Though not shown in Fig. 2.6 quadrupole fields can also be created by two-wire
guides [46, 59]. There is great flexibility in the wire patterns that can be constructed and
hence myriad complex field configurations can be produced, which are also sometimes
used to transport atoms [60–62]. However, the four mentioned in this section are the
most commonly used.

An undesirable effect of the Z and H-traps is a rotation of the isopotential about the
z-axis. This arises from the asymmetry in vertical fields produced by the leg and central
wires, an illustration of the fields can be seen in Fig. 2.7. The eigenaxes (x′, y′, z′) of the
trap can be found by diagonalising the Hessian matrix at r0 [38]. The angle of rotation
θ increases with the relative contribution of the leg wires to the potential, which can
happen by increasing Ileg or r0. This is important as increasing either parameter will
typically decrease the aspect ratio i.e.

θ ∝ 1/λ. (2.15)

Section 3.3.3 outlines how θ can be detrimental to our detection method. As λ is a
control variable in our experiment in Chapter 4, not accounting for θ would lead to
systematic errors.



Chapter 2. Bose-Einstein condensation and phase coherence 13

FIGURE 2.7: Rotation of the potential in an H-trap, this arises due the
vertical fields produced by the leg and central wires, represented in
purple and green respectively. Analysing the fields at the four inner
corners it been seen that cancellation occurs along the diagonal. Here,
θ is the angle of rotation about the z-axis, x and y are the principal axes
of the wire structure, and x′ and y′ are the eigenaxes of the trapping

potential.

We use a numerical simulation of our trapping structures (see Section 3.2) that
calculates the Hessian matrix at the minimum, this lets us obtain a value for θ, and
since the eigenvalues of the Hessian matrix correspond to the curvature of the field
the trap frequencies can also be obtained through,

ωi = 2π ×

√
gFmFµB

m

∂2|B|
∂r′2i

. (2.16)

Experimentally, precise measurements of θ were not possible, however measuring ωi
is relatively simple Fig. 3.42. Measurements of ωi gave good agreement with our
simulations to within 5 %, we therefore assume that the simulated value of θ can be
trusted.

2.1.2 Evaporative cooling

For a dilute atomic gas to condense the phase space density, ρPSD = n(0)λ3
DB must be

on the order of 1 [45] here n(0) is the peak atomic density and λDB =
√

2π~2/mkBT is
the thermal de Broglie wavelength. Phase space density is increased with reducing
temperature, as mentioned previously laser cooling a powerful cooling tool that can
increase ρPSD from 10−13 to 10−6 [63], however this still falls short by six orders of
magnitude . Evaporative cooling is a key step to increase ρPSD by a factor of 106, this
process was used in the first realisation of atomic BECs [2, 3] and has been used ever
since. The complete model is complex, so this section will not go into too much detail
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but instead introduce the important concepts and parameters, for further reading, a
quantitative model can be found in [64, 65]. The basic principle is to remove particles
with energy higher than the average from the trap, and after the cloud has
rethermalised, the resulting ensemble will have a lower temperature. For clouds with
ρPSD � 1, the effects of quantum statistics can be neglected, and the particles can be
assumed to obey Maxwell-Boltzmann statistics (since the condition of ρPSD ∼ 1 is only
satisfied at the end of the cooling the model assumes only Maxwell-Boltzmann
statistics). The process can interpreted as the removal of the high-energy tail of the
distribution, the energy at which the tail is removed is related to the temperature of
the gas by the truncation parameter, η = εcut/kBT . The truncated distribution has the
form [64]

f(ε) = n(0)λ3
DB exp

(
−ε
kBT

)
Θ(εcut − ε). (2.17)

Here, Θ(εcut − ε) is the Heaviside step function, which is equal to zero for ε > εcut.
Visualisation of the truncation process is displayed in Fig. 2.8.

FIGURE 2.8: A gas of thermal atoms with temperature T1 has a Maxwell-
Boltzmann distribution, where the most probable energy is kBT1. The
cooling process removes particles with energy higher than ηkBT1, the
remaining particles collide and rethermalise to a lower temperature and

fewer atoms.

Once the truncated distribution has rethermalised εcut has to be reduced to prevent
η from increasing, this continual reduction in trap depth is known as forced
evaporation. Thus εcut is time dependent and has to be tuned specifically to the
experimental sequence. Cooling efficiency can described by the parameter α, which is
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the reduction in temperature per atoms lost [65],

α =
d(lnT )

d(lnN)
=

Ṫ /T

Ṅ/N
, (2.18)

the larger α the more efficient the cooling process is. A measurement of the cooling
efficiency for our experiment is shown in Fig. 3.40. Efficient cooling, or runaway
evaporation, can only occur if the rethermalisation time τel is shorter than the
timescale of losses due to background collisions τbg. Rethermalisation occurs through
elastic collisions between the atoms and are often referred to as "good" collisions (each
atom on average must undergo ∼ 4 scattering events for the cloud to rethermalilse
[66]), whereas the collisions with background are bad collisions. The parameter R is
the ratio of good to bad collisions R = τbg/τel. The condition for runaway evaporation
can be expressed in terms of R (for a harmonic trapping potential) [65],

R ≥ Rmin =
τev

τel

1

α− 1
(2.19)

where τev is the time scale for evaporation given by,

1/τev = −Ṅ
N

= n(0)σelῡηe−η. (2.20)

The time scale of elastic collisions τel is determined by the elastic collision rate γel,

1/τel = γel = n(0)σelῡ
√

2, (2.21)

where σel is elastic collision cross-section, and ῡ
√

2 is the average relative velocity
between two atoms [65]. The peak density n(0) of a thermal cloud in a spherically
symmetric harmonic potential (i.e. ωx = ωy = ωz) is given by,

n(0) = Nω3

(
m

2πkBT

)3/2

(2.22)

this means that adiabatically compressing the trap is advantageous as it increases the
γel. A typical cooling sequence will compress the trap whilst reducing εcut. For good
efficiency (large α) τev needs to be increased, however this also increases Rmin and
decreases R. There is a trade-off between the efficiency and the speed of the ramp (the
rate at which εcut is reduced), too fast and there are insufficient collisions to
rethermalise properly, too slow and too many atoms are lost to background collisions.

Radio-frequency evaporation

To selectively remove high energy atoms from the trap we use radio-frequency
radiation, this method was used in the first BEC experiments [2] and is still used by
almost all experiments with BECs of alkali atoms. Radio-frequency radiation is
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applied that is resonant with Zeeman splitting Eq. (2.5) between the mF states, due to
the spatially varying magnetic field of the trapping potential ~ωRF is only resonant in
a particular region of space. Resonant atoms will be transferred into the lower mF

states eventually transitioning to a high field seeking state and are repelled from the
trap. Larger distances from the trap centre are only accessible by hotter atoms, thus by
tuning ~ωRF hotter atoms can be selectively removed from the trap.

FIGURE 2.9: Principle of radio-frequency cooling, when ~ωRF =
gFµB|B(r)|∆mF atoms will undergo a cascade of transitions to an un-

trapped state.

The trap depth is set by RF frequency εcut = 2~(ωRF − ω0), where ~ω0 is the energy
separation at trap minimum. In the |F = 2〉 ground state ω0 = 2π× 0.7 MHz G−1. An
advantage of using RF frequency cooling is that the trap depth can be decreased
independently of the static trapping potential, thereby maintaining large trapping
frequencies throughout the process.

2.1.3 Bose-Einstein condensation

As the phase space density approaches unity the quantum statistics becomes
important as the atoms start to become degenerate. For a gas of non-interacting
bosons in thermodynamic equilibrium of atom number N and temperature T the
mean occupation number of an energy state i is given by the Bose distribution
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function [45],

f(εi) =
1

e(εi−µ)/kBT − 1
, (2.23)

where µ is the chemical potential. At high temperatures µ is large and negative, and
Eq. (2.23) is approximately the Boltzmann distribution,

fMB(εi) = e−(εi−µ)/kBT , (2.24)

and fMB(εi) � 1 thus the occupation number for any particular state is low. As the
temperature is lowered the chemical potential increases and thus f(ε0) increases, the
chemical potential is constrained µ < ε0 otherwise the occupation number would
become negative and therefore unphysical [45]. In the case for a harmonic trapping
potential defined as,

V (r) =
1

2
m
(
ω2
xx

2 + ω2
yy

2 + ω2
zz

2
)
, (2.25)

the energy levels εi of the Bose distribution function will then be,

ε(nx, ny, nz) = (nx +
1

2
)~ωy + (ny +

1

2
)~ωx + (nz +

1

2
)~ωz. (2.26)

Bose-Einstein condensation occurs when there is macroscopic occupation of the
ground state ε0. The critical temperature Tc is defined as the point at which
macroscopic occupation occurs, signifying the onset of Bose-Einstein condensation.
Here I will derive Tc following the steps in [45]. For large atom number
Ntot = N0 + Nex (number of atoms in the ground state plus the number in all of the
excited states), ε0 is chosen to be zero, which also constrains µ ≤ 0. The number of
particles in the excited states is given by,

Nex =

∫ ∞
0

g(ε)f(ε)dε (2.27)

where g(ε) is the density of states, which for a three dimensional anisotropic harmonic
oscillator is,

g(ε) =
ε2

2~3ωxωyωz
. (2.28)

Equation 2.27 is maximised when µ = 0, this means that there is an upper bound on the
number of atoms that can occupy the excited states Nmax

ex . If Ntot > Nmax
ex the surplus

atoms must reside in the ground state, therefore at Ntot = Nmax
ex , µ = 0, and T = Tc.

Applying these conditions to Eq. (2.27) we get,

Nmax
ex (µ = 0, T = Tc) =

∫ ∞
0

g(ε)

eε/kBTc − 1
dε. (2.29)
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Evaluating the integral we get the expression of Tc for an ideal gas in a harmonic trap
[45],

Tc = 0.94
~
kB
ω̄N

1/3
tot , (2.30)

where ω̄ is the geometric mean trapping frequency. Combining this result with
Eq. (2.29) and Ntot = N0 + Nex, we get the condensate fraction as a function of
temperature,

N0

Ntot
= 1−

(
T

Tc

)3

. (2.31)

In reality Eq. (2.31) needs a number of corrections to account for finite size [67] and
interactions [68] (interestingly in this paper they also show that interactions between
the condensate and the thermal fraction have to be accounted for). Remaining in the
ideal case, without interactions, the ground state φ(r) is obtained by putting all the
particles in the lowest single particle state (nx = ny = nz = 0), then the total ground
state is the product of all the single particle states φ(r) = Πiϕ0(ri), where ϕ0(r) is
determined by the Schrödinger equation [67],

ϕ0(r) =
(mω̄
π~

)3/4

exp
(
−m

2~
(ωxx

2 + ωyy
2 + ωzz

2)
)
. (2.32)

The density distribution is n(r) = N |ϕ0(r)|2, which increases with N , however the size
of condensate does not, its size is fixed by the harmonic oscillator length aho =

√
~/mω̄.

Interactions

Whilst the case of an ideal Bose gas proves instructive, it is not representative of the
experimental situation. Even though the gases are very dilute interactions between the
atoms still exist, these can be attractive or repulsive (for 87Rb interactions are repulsive).
As the gas is cold and dilute the inter-atomic interaction, U(r′ − r), is simplified as
only low energy two-body collisions are likely, they are characterised by the s-wave
scattering length [67]. In this regime the interactions can be described with an effective
contact potential,

U(r′ − r) = g3Dδ(r
′ − r), (2.33)

where g3D is the coupling constant and is related to the s-wave scattering length a by,

g3D =
4π~2a

m
. (2.34)

Accounting for this interaction with mean-field approach leads to a modification of the
Schrödinger equation, giving the time-dependent Gross-Pitaevskii equation (GPE) (for
derivation of the GPE see [67]),

i~
∂

∂t
Φ(r, t) =

(
−~2∇2

2m
+ V (r) + g3D|Φ(r, t)|2

)
Φ(r, t). (2.35)
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Here, Φ(r, t) is the order parameter or wave function of the condensate which comes
from the Bogoliubov approximation. The ground state is obtained by writing the wave
function into time and spatial-dependent terms Φ(r, t) = φ(r) exp(−iµt/~), Eq. (2.35)
becomes the time-independent GPE,

(
−~2∇2

2m︸ ︷︷ ︸
Kinetic

+V (r) + g3D|φ(r)|2︸ ︷︷ ︸
Interaction

)
φ(r) = µφ(r). (2.36)

This equation is said to be a nonlinear Schrödinger equation, as the interaction term
g|φ(r)|2 is a source of nonlinearity, which is proportional to density as n(r) = |φ(r)|2.

Thomas-Fermi approximation

Interactions can have a dramatic effect on the condensate density, depending on the
sign of g the density will either be attracted to or repelled from centre, deforming the
Gaussian Eq. (2.32). For sufficiently large N the interaction energy becomes much
larger than the kinetic energy and the corresponding KE term can be dropped.
Neglecting the kinetic energy from Eq. (2.36) leaves,[

V (r) + g3D|φ(r)|2
]
φ(r) = µφ(r). (2.37)

this is known as the Thomas-Fermi approximation. It has the solution [45],

n(r) = |φ(r)|2 = (µ− V (r))/g3D, (2.38)

in the region that V (r) ≤ µ, and n(r) = 0 for V (r) > µ. Thus the size of the cloud is
determined by the chemical potential and the trapping potential. For an anisotropic
harmonic potential, the radii in each direction are

Ri =

√
2µ

mω2
i

, (2.39)

the radius R, is hence referred to as the Thomas-Fermi radius. The density profile has
the form of an inverted parabola

n(r) =
18

8π

N0

RxRyRz

(
1− x2

R2
x

− y2

R2
y

− z2

R2
z

)
, (2.40)

and the chemical potential µ, which serves to normalise the distribution to the total
number of particles N0, is given by

µ =
1

2
~ω̄
(

15a

aho
N0

)2/5

. (2.41)
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2.2 Coherence properties of Bose gases

The flexibility to manipulate the trapping potentials in the experimental systems has
allowed experiments to force constraints onto condensed systems that induce two- or
one-dimensional behaviour. The trapping potential for 2D system results in a pancake-
like density, whereas for a 1D system the density is an elongated cigar shape. Strictly
speaking, to be 1D/2D the following criteria need to be satisfied

µ� ~ω⊥ (2.42a)

kBT � ~ω⊥ (2.42b)

where ω⊥ is the trapping frequency in the transverse direction or the system’s short
axis. Excitations to higher energy transverse modes are not possible, and the
transverse dynamics are "frozen out". Clouds satisfying Eq. (2.42a) or Eq. (2.42b) are
said to be chemically or thermally 2D/1D. The coherence properties of 2D/1D
systems differ significantly from the 3D situation, and the defining features of the BEC
are not upheld, as such true Bose-Einstein condensation is not possible at finite T in
2D or 1D systems (for T = 0 condensation is possible in 2D, but not in 1D [16]). The
definition of a BEC is often stated as the presence of off-diagonal long-range order in
the density matrix ρ(1), i.e. the 〈r′|ρ(1)|r〉 6= 0 even as |r′ − r| → ∞ [69], it is this
condition that is not satisfied at finite temperature T in one or two dimensions [70].
That being said, the coherence properties observed still have condensate-like
behaviour, and are commonly referred to as quasi-condensates. In this section I will
discuss the coherence properties in more detail, but I will focus only on 3D and 1D
systems as the 2D case is not relevant to our experiment.

2.2.1 Correlation functions

In order to analyse the coherence properties it is useful to introduce the first and
second order correlation functions G(1) and G(2), as they are inherently related to the
coherence. First presented by R. Glauber in 1963 to define coherence of light fields
[71–73], the correlation functions were later used to study coherence of Bose gases [74,
75]. The first-order, or one-body, correlation function describes the spatial coherence
and is defined as,

G(1)(r, r′) =
〈
Ψ̂†(r)Ψ̂(r′)

〉
, (2.43)

where Ψ̂†(r) and Ψ̂(r′) are the creation and annihilation field operators of the second
quantisation representation. G(1) is normalised by the density n(r) to give

g(1)(r, r′) =

〈
Ψ̂†(r)Ψ̂(r′)

〉√
n(r)n(r′)

, (2.44)
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this function describes the phase coherence of the system, and it often has a
characteristic length scale over which it decays, which is referred to as the phase
coherence length.

The second-order, or two-body, correlation function G(2) gives the probability of
finding a particle at position r′ given that there is a particle at r. It describes the density
correlations and is defined as,

G(2)(r, r′) =
〈
Ψ̂†(r)Ψ̂(r)Ψ̂†(r′)Ψ̂(r′)

〉
, (2.45)

and is normalised by the density squared,

g(2)(r, r′) =

〈
Ψ̂†(r)Ψ̂(r)Ψ̂†(r′)Ψ̂(r′)

〉
n(r)n(r′)

. (2.46)

A famous measurement of second-order correlations was the Hanbury Brown and
Twiss experiment [76–78]. In this experiment they were able to determine the size of
the star Sirius by measuring the decay of second-order (intensity-intensity)
correlations using two detectors with variable separation. A known property of light
is photon-bunching (g(2)(0) > 1), which is observed when the light source is
incoherent. Bunching is absent when the light source is coherent, i.e. from a laser.
Interestingly, Bose gases display behaviour analogous to photons. Bosonic bunching
occurs in thermal gases (incoherent source), whereas for a BEC (coherent source) the
bunching is absent. This behaviour was measured experimentally in [79].

2.3 Regimes of interacting Bose gases

In this section I will relate the correlations and fluctuations in different regimes of the
3D and 1D systems. The 3D model has already been introduced so I will go directly
into the discussion of correlations. For the 1D case I will first introduce the Lieb-Liniger
model to and define the different sub-regimes of 1D systems along with their coherence
properties.

2.3.1 Correlations in 3D systems

In 3D a thermal gas (T > Tc) the normalised first and second order correlation functions
are related by [75],

g(2)(r, r′) = 1 + g(1)(r, r′)2. (2.47)

The phase coherence length is the thermal de Broglie wavelength λdB, over this
distance g(1)(r, r′) will decay to zero,

g(1)(r) ' exp

(
−π r2

λ2
dB

)
. (2.48)
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Thus g(1)(0) = 1 and from Eq. (2.47) g(2)(0) = 2, which means it is twice as likely to
find a particle at the same position than at a distance greater than λdB, this property is
known as bosonic bunching which was previously mentioned in analogy to incoherent
light sources Section 2.2.1. For a pure BEC the phase coherence length goes to infinity
and g(1)(r, r′) = 1 everywhere. For a partially condensed gasN0 < Nto g

(1)(r, r′) decays
from 1 to a finite value determined by the local condensate fractionN0/Ntot [75]. In this
case the second order correlation function is given by [80],

g(2)(r, r) = 2−
(
|ψ(r, r′)|2

n(|r− r′|)

)2

, (2.49)

where the second term is ratio of the local condensate density to the total density. For
a pure BEC g(2)(r, r) = 1 over the whole sample.

2.3.2 One-dimensional systems

Lieb-Liniger model

In 1963 Lieb and Liniger introduced the Hamiltonian for a one-dimensional gas of
bosons [21, 22]

Ĥ = − ~2

2m

N∑
i=1

∂2

∂y2
+ g1D

N∑
i<j=1

δ(yi − yj). (2.50)

where g1D is a general one-dimensional interaction parameter (this assumes repulsive
contact interactions), for consistency with the coordinate system used in the
experimental section I will define the axial direction along y, and the radial direction
in the x − z plane. The Lieb-Liniger model solves this Halmiltonian at T = 0 with a
Bethe-Ansatz [1], providing a method to calculate the equilibrium ground state and
excitation spectrum. Later the Yang and Yang used a thermodynamic Bethe-Ansatz to
derive thermodynamic functions for a system at finite T [24].

The transverse ground state for a one-dimensional gas in a harmonic trap has a
Gaussian form [81, 82]

φ⊥(r) =
(mω⊥
π~

)1/4
exp

(
mω⊥r

2

2~

)
, (2.51)

where r = (x, z) represents the transverse directions, and a⊥ =
√

~/mω⊥ is the
harmonic oscillator length in the transverse direction. If the condition µ/~ω⊥ � 1 is
not quite satisfied then the transverse ground state swells due to the interactions [83].
If the s-wave scattering length a < a⊥ then the three-dimensional behaviour of
collisions remains. The 1D scattering parameter is then calculated by integrating out
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the transverse degrees of freedom [81],

g1D =
2π~2a

ma2
⊥
. (2.52)

The interaction coupling constant g1D can be used to define an intrinsic length,
lg = ~2/mg1D, of the interactions [84]. The length scale is related to the Lieb-Liniger
parameter γ, (a dimensionless quantity characterising the interaction strength) by,

γ =
1

n1Dlg
=
mg1D

~2n1D
, (2.53)

where n1D = N/L, with L being the length of the gas. Interestingly, as opposed to the
case in three-dimensions, Eq. (2.53) shows that in one-dimension interactions actually
increase with decreasing density. The degeneracy temperature in one-dimension is [14,
84],

T1D =
~2n2

1D

2mkB
, (2.54)

whereas the equivalent temperature in 3D is given by Eq. (2.30). It is also useful to
introduce a dimensionless temperature t, where,

t =
T

T1Dγ2
=

2~2kBT

mg2
1D

. (2.55)

The parameters t and γ are used to build a phase diagram where different regimes
can be distinguished, shown in Fig. 2.10. Note that whilst the term phase diagram is
used, the regimes should not be interpreted as phase transitions. In fact phase
transitions in 1D at finite T are forbidden by the Mermin-Wagner theorem [85], and
the boundaries between regimes should instead be understood as smooth cross-overs.
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FIGURE 2.10: Phase diagram capturing the different coherence regimes
of one-dimensional gases, the different regimes were calculated using
the Yang-Yang model [86]. The green lines indicate the cross-over
regions between different regimes, which are described in the text below.
The blue dots indicate the values of all the clouds analysed in our
experiment, however this will not be entirely accurate as not all the

clouds can considered as one-dimensional.

Strongly interacting - (γ > 1, t < 1) - In this regime the interactions are very strong
and completely dominate, experimentally this would be achieved with very low N

and high ω⊥ (for example the experiment in [9] had an atom number of N ∼ 50 and
transverse confinement of ω⊥ = 70.7 kHz). The regime is more famously known as the
Tonks–Girardeau gas [23] here the interactions are so strong that the atoms cannot
occupy the same position, and therefore are said display fermionic properties
g(2)(0) = 0. In 2004 the Tonks gas was realised twice using optical lattices [9, 10], as of
yet observation of a Tonks gas on an atom chip has not been confirmed however
features of the strongly interacting regime were observed in [26].

Weakly interacting - (γ < 1) - Within this regime several sub-regimes are
distinguished, first is the nearly ideal Bose gas regime 2 which is split into a
non-degenerate (classical) where t � γ−2 & T > T1D, and a degenerate sub-regime,
where γ−3/2 � t � γ−2 & T < T1D. In the classical sub-regime temperatures are high
and interactions do not play a role, as the gas is very dilute. State occupation is well
described by the Boltzmann distribution Eq. (2.24), the correlation length is on the
order of λdB similar to the case in 3D Eq. (2.48). Once the temperature is lowered

2following the nomenclature of [84], this is referred to as the decoherent regime in [86].
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below T1D the gas becomes degenerate and the phase coherence increases,

g(1)(y) ' exp

(
− 2πy

nλdB

)
= exp

(
− y
lφ

)
(2.56)

the length scale of decay, lφ = λ2
dBn/2π = ~2n/mkBT is much bigger than λdB. As I will

explain in Section 2.3.3 density and phase fluctuations are present in this sub-regime.
Second is the quasi-condensate regime, which again has two sub-regimes, thermal

(γ−1 � t � γ−3/2 ) and quantum t � γ−1. The two sub-regimes are named after
dominating contributor to the fluctuations, the source of which can be either thermal
or quantum. Our experiment probes the thermal quasi-condensate sub-regime, for
quantum fluctuations to dominate extremely low temperatures are required [27], and
are not of concern in this experiment. Density fluctuations in the quasi-condensate
regime are suppressed by interactions 〈δn〉 ∝ 1/g1D Eq. (2.58), and the length scale
is given by the healing length ξ = ~/√mg1Dn1D. Thus the only relevant source of
fluctuations in this experiment are phase fluctuations which are thermally driven, and
the first order correlation function for this regime is calculated in Section 2.3.3.

2.3.3 Thermal fluctuations

Fluctuations refer to the random manifestation of excitations in the system, and they
are responsible for the loss of long range order. They come in two categories, thermal
or quantum fluctuations. Quantum fluctuations are a result of the Heisenberg
uncertainty principle, however since they do not give significant contribution to the
total fluctuations in our experimental parameter space (see Fig. 2.10) they will not be
discussed in this thesis. A derivation of expressions for the fluctuations in
quasi-condensates can be found in [87, 88], they apply a Bogoliubov treatment in the
phase-density representation, where the field operator is expressed as

ψ̂(r) =
√
n̂(r) expiθ̂(r) . (2.57)

Here, n̂(r) = n0(r) + δn̂(r) (δn̂(r) accounts for the density fluctuations) and ˆθ(r) are
spatially dependent density and phase operators. This section will avoid going into
the finer details of the derivations but rather attempt to highlight the important results
to give a qualitative description.

Density fluctuations

Excitations are divided into two groups, long wavelength (k � 1/ξ) phononic
excitations, and short wavelength (k � 1/ξ) particle-like excitations, where
ξ = ~/√mgn is the healing length. The relative density fluctuations coming from
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phonons with wave vectors 1/L ≥ k < 1/ξ are given by,

〈δn2〉phonons

n2
∝ kBT

gξn2
∝ tγ3/2. (2.58)

For particle like excitations the contribution from each mode is,

δn2
k =

4mkBT

L~2k2
(2.59)

which scales as 1/k2, to estimate the total contributions we must sum over all modes
(i.e. 1/ξ →∞) the contribution converges to [89],

〈δn2〉particles

n2
' tγ3/2

π
. (2.60)

Thus, from Eq. (2.58) and Eq. (2.60) if t � γ−3/2 density fluctuations will be small and
can be neglected, this can be seen to be true for our data in Fig. 2.10.

Phase fluctuations

From similar analysis as above we find that phonon contributions scale as [84, 89],

〈θ2〉phonons ∝
LmkBT

~2n
=
L

lφ
(2.61)

where lφ = ~2n/mkBT is the phase coherence length, we see that this scales with the
length of the system which sets the upper bound of the phonon wavelength.

The phase fluctuations from particle like excitations again scale with 1/k2, and a
similar relation to Eq. (2.60) is found,

〈θ2〉particles ∝ tγ3/2. (2.62)

As is the case with the density fluctuations, if t � γ−3/2 then contributions from
particle like excitations to the phase fluctuations can be neglected. Thus in the thermal
quasi-condensate regime (see Fig. 2.10) the source of the phase fluctuations comes
from only thermal long wavelength excitations. We can now compute the first-order
correlation function Eq. (2.44) with Eq. (2.57) (neglecting density fluctuations),

g(1)(y) = 〈ei(θ(y)−θ(0))〉. (2.63)

Using Wick theorem 〈ei(θ(r)−θ(0))〉 = e−〈(θ(r)−θ(0))2〉/2 [84]. From Eq. (2.61) we find that
〈(θ(r)− θ(0))2〉 = y/lφ, therefore the first order correlation function is,

g(1)(y) = e−|∆y|/λT , (2.64)
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where λT = 2lφ = 2~2n/mkBT is the thermal phase coherence length. The decay
length of g(1) is twice as long that in the degenerate ideal Bose gas, the reason for this
can be understood by the fact that in this regime both phase and density fluctuations
are present, whereas in the thermal quasi-condensate regime only phase fluctuations
are present [84].

In experiments a common detection method is to perform absorption imaging (see
Section 3.3.1) after switching off the trapping potential (effectively instantaneously)
and letting the cloud expand for a time ttof . This free expansion time is called time-of-
flight. It turns out that time-of-flight is particularly useful as it allows us to indirectly
measure g(1). In-situ the quasi-condensate has a random phase pattern θ(y) that follows
the the first-order correlation function in Eq. (2.64). The gradient of the phase ∇θ(y)

gives rise to a velocity field via the relation [45],

v(y) =
~
m
∇θ(y). (2.65)

During expansion the velocity field converts into position space, and gives rise to the
striking interference fringes in the density, commonly referred to as density ripples.
This can also be seen as a self-interference effect, due to the differences in phase. In
effect, free expansion transforms the phase pattern into density correlations, which
experimentally is an easily measurable quantity. An analogy can also be made to
speckle patterns in optics, where the quasi-condensate (laser) is a coherent source with
a perturbed spatially fluctuating phase which transforms after temporal (spatial)
propagation into density (intensity) fluctuations [90]. Similarities between atomic and
optical speckle have been measured experimentally in references [91] and [92].

As long as the in-situ density fluctuations are small, the assumption that first-order
correlations transform into second-order correlations is valid. This condition is true for
the parameter space we explore (as we’ve shown in Section 2.3), density fluctuations
only become important for temperatures close to Tc. In 2009 an analytical solution
for the evolution of the power spectrum of the density ripples 〈|ρ(q)|2〉 (which can be
obtained experimentally by taking the Fourier transform of the absorption images) for
one and two-dimensional systems was provided by [93] (the result will be discussed in
more detail in Section 4.1.1). In the 1D case the gas is assumed to be weakly interacting,
of uniform density, and infinitely long axially. The second order correlation function
g(2)(y) and 〈|ρ(q)|2〉 are Fourier pairs and follow the relation [93],

〈|ρ(q)|2〉 = n2
1D

∫ ∞
−∞

dy exp(iqy)
[
g(2)(y, ttof)− 1

]
, (2.66)

where 〈|ρ(q)|2〉 is given by,

〈|ρ(q)|2〉
n2

1Dξ
=
λT q −

[
λT q cos(2~q2ttof/m) + 2 sin(2~q2ttof/m)

]
exp(−2~qttof/mλT )

qξ(1 + λ2
T q

2)
.

(2.67)
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FIGURE 2.11: Power spectrum of the density ripples 〈|ρ(q)|2〉 generated
with Eq. (2.67), for a homogeneous gas of density n1D = 55 µm−1 and

temperature T = 53 nK after a time-of-flight of 34 ms.

An example of the power spectrum 〈|ρ(q)|2〉 is plotted in Fig. 2.11, which shows
clear non-monotonic behaviour. Since the phase coherence length is a free parameter
in Eq. (2.67), it was suggested by [93] that this result could be used to perform
thermometry where standard "fit to the wings" method fails (this method is described
in Section 3.3.1). At very low temperatures there can little to no observable thermal
cloud, and even with a small observable thermal fraction the signal-to-noise can be
too small for reliable fitting. Good agreement with experimental measurements was
observed in [94], in [95–97] they adapt Eq. (2.67) with a local density approximation
(see Section 4.1.2) and also extract temperature. Agreement for the 2D scenario was
found in [98].

In our experiment we measure 〈|ρ(q)|2〉, as it is the Fourier transform of g(2)(y) it is
related to the in-trap first order correlation function g(1)(y) and hence can be used to
extract information of the phase coherence. Thus, by measuring 〈|ρ(q)|2〉 whilst
changing the cloud parameters we can investigate the phase coherence properties
throughout the 1D-3D crossover.
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Experimental realisation

This chapter gives an overview of the important components in our experiment
set-up, the procedure for Bose-Einstein condensate production, and a summary of the
overall performance. There are numerous laboratories globally that produce
Bose-Einstein condensates, incorporating many different techniques. Optimising the
production process in terms of atom number, cycle time, power consumption, and
system size is desirable not only for research quality but also to progress the
robustness, repeatability, and commercialisation of quantum technologies. Comparing
techniques is therefore valuable to academics and those in industry. In our set-up
notable technologies include the 2D MOT, PCB (printed circuit board), and 3D printed
structures. This chapter provides a detailed description of these components and an
overview of the methods in BEC production and detection.

3.1 Experimental set-up

This sections documents the main components in the experiment. Emphasis on detail
is given for components - such as imaging - that have greater significance to the
experimental results in Chapter 4. When I started my PhD at the University of Sussex,
our laboratories were yet to be built, and so I helped build the whole experiment from
scratch. The building contains five separate laboratories all but one used for cold atom
experiments. The experiment reported in this thesis is located in a laboratory named
the "Green lab", the nomenclature will be used to distinguish from the other
laboratories which will occasionally be referenced. Some of the components described
in this section are common to the other laboratories, further information can be found
in former students’ theses, [39, 99].

3.1.1 Laser systems

As our building has three laboratories working with 87Rb it was clear that it would
be beneficial to have a centralised laser system. Sharing a laser system saves on cost,
optical table space, and improves output stability (as the laboratory is isolated and less
prone to disturbance). The main drawback is that failure of the laser system delays all
three laboratories, however that does also mean that there are three parties interested in

29
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getting it fixed as quickly as possible. This section describes the laser system built in the
centralised laser laboratory room, the optical set-up within the Green lab, methods of
stabilisation of laser frequency, power and polarisation, and the laser cooling schemes.
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FIGURE 3.1: Energy level diagram of the 87Rb D2 line [44]. The laser
laboratory (Fig. 3.2) provides cooling and repumping light locked to the
frequencies shown in this diagram. Within each laboratory the source
light from the laser laboratory is frequency shifted via acousto optic
modulator’s (AOMs) to the final frequencies required for the cooling,
repumping, optical pumping, and imaging light. The frequency shifts

required for each process are indicated on the diagram.

The laser laboratory provides each experimental lab with two laser beams that we
will call cooling beam and repumping beam which are both frequency and power
stabilised. Each laboratory works with 87Rb, the energy level structure is shown in
Fig. 3.1. The cooling light is also the source light for optical pumping and imaging.
Figure 3.2 shows a diagram of the optics set-up. To supply the light we use two
Toptica TA-Pro lasers, each contains an extended cavity laser diode that provides seed
light for a tapered amplifier (TA) chip, which amplifies the power from 50 mW to 3 W.
In order to reduce the effect of environmental noise, each laser is housed in an optical
enclosure on top of a optical table equipped with automatic re-levelling pneumatic
isolators. This suppresses the effect of vibrations and temperature fluctuations.
Having a separate isolated lab dramatically decreases the amount of exposure to noise
that can occur from someone simply entering the room. It is also protected from
electrical interference that can occur from the plethora of electrical components used
in the main lab (such as ground loops, and electrical spikes from switching currents
on/off). This is particularly helpful for frequency stabilisation; both power and
frequency stabilisation methods will be outlined later in this section. The main output
from each TA-Pro is then split into three arms using a series of mirrors and polarising
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beam splitter (PBS) cubes, these are then coupled into 15 m long
polarisation-maintaining optical fibres that are routed to each lab, see Fig. 3.2. These
fibres are not capable of receiving high power input, limiting the power output to
∼100 mW, while this is sufficient for the repumping transition it is short of the
required 2 W for the cooling transition. To overcome the lack of power an additional 3
W TA chip (Toptica BoostTA) is used in each lab. This amplifies the seed light from the
laser lab from 30 mW to 2.7 W whilst retaining the original frequency.

FIGURE 3.2: Optical set-up of laser system in the laser lab. Both the
cooler and repump lasers have the same set-up, a pick off beam is taken
after the laser diode to be used for spectroscopy. Immediately after the
main output we dump excess power and a pick off a small proportion of
the beam to monitor the power output with a photodiode (PD). The main
beam is then distributed via optical fibres amongst the three laboratories.

Frequency stabilisation

The frequency can be stabilised using active feedback, typically referred to as
"locking". There are number of techniques to perform frequency locking, naming a
few, modulation transfer spectroscopy [100], magnetic field dithering [101], and
polarisation spectroscopy [102]. In our experiment we use standard frequency
modulation spectroscopy [103]. This method uses the atomic absorption spectrum as a
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frequency reference and requires the output frequency to be modulated in order to
generate an error signal. To generate a frequency reference we perform Doppler-free
saturation spectroscopy [104] on a rubidium vapour cell (with an enhanced
population of the 87Rb isotope), to extract an absorption spectrum. We also obtain the
Doppler-broadened spectrum to subtract from the Doppler-free spectrum to cancel
out common noise. The laser output frequency is modulated by dithering the laser
diode current with a low amplitude sine wave at 40 kHz. This modulates the
amplitude of the transmission signal seen on the photodiode. The signal from the
photodiode is then demodulated by mixing with the dither signal, producing an error
signal that is proportional to the derivative of the absorption profile. With the error
signal obtained standard PID electronics are used to feedback on the laser diode
current, this hardware is built-in to the laser controller provided by Toptica. The zero
crossing of the error signal will correspond to a peak in absorption profile, thus
locking can be performed on resonance with a transition or at a crossover resonance
(see [104] for the definition of a crossover resonance). Our cooler laser is locked to the
|F = 2〉 → |F ′ = 1 ⊗ 3〉 crossover resonance, and our repump laser is locked to the
|F = 1〉 → |F ′ = 1〉 transition Fig. 3.1.
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(A)

(B)

FIGURE 3.3: Doppler-free absorption spectroscopy signal of the (A)
cooling transition 52S1/2 |F = 2〉 → 52P3/2 |F ′ = 1 ⊗ 3〉 and (B) the

repump transition 52S1/2 |F = 1〉 → 52P3/2 |F ′ = 1〉.

Power stabilisation

Power stabilisation is a much simpler process; an error signal can be extracted directly
from the output of a photodiode as it varies monotonically with the laser power. The
power is locked at three locations, first after the TA-Pro output in the laser lab to
ensure the power supplied to each sub-laboratory is stable, second after the BoosTA in
the Green lab (see Fig. 3.4) this corrects for any residual variations such as polarisation
that can occur after passing through a 15 m optical fibre, and finally after a fibre
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located next to 3D MOT fibre couplers in the Green lab (see Fig. 3.4) which deals with
local variations due to optics (e.g. mirror mount instability). At the first two locations
we feedback on the current supplied to the TA chip within the TA-Pro/BoosTA. For
the third location feedback is applied to the voltage-controlled amplifier (VCA) which
controls the power output of the acousto-optic modulator (AOM) used on the cooler
light (see Fig. 3.4). The third location is the most important as this has the most
influence on the MOT beam powers, power variance here will have a knock-on effect
which will ultimately cause the BEC atom number to fluctuate. The ideal location to
perform feedback would be at the MOT fibre outputs (which send light directly into
the vacuum chamber) this could be done with an electronic variable optical attenuator.

FIGURE 3.4: Schematic of the optics distribution for laser light
preparation in the Green lab.

3D MOT

We utilise a four beam mirror-MOT configuration [54] where two of the cooling beams
are reflected off the surface of the atom chip. A 45° rotated quadrupole field is created
with the under-structure (see Section 3.2.1) and an external bias field. When
well-optimised, in combination with the 2D MOT (discussed in the next section,
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Section 3.1.1) >2×109 atoms can be loaded in 4 s. When well-aligned 2 s MOT loading
is long enough to saturate the atom number loaded into the magnetic trap, however
for the sake of stability we load for 4 s. Our lab has air conditioning that performs
poorly, whilst it does cool the room it displays periodic (∼30 min) variations with
temperature swings of ∼6 ◦C. The large temperature fluctuations are detrimental to
BEC stability (in terms of atom number and temperature), after extensive
characterisation we find that the stability is best without the air conditioning on. As in
normal operation our laboratory is not temperature controlled, we observe the fibre
coupling drift over the course of the day due to temperature drifts, loading for an
extra 2 s ensures the atom number loaded into the magnetic trap is less sensitive to the
temperature fluctuations.

2D MOT

We employ a 2D MOT to pre-cool the rubidium atoms before loading into the 3D
MOT located in the science chamber. It is advantageous in that it allows a region of
high rubidium partial pressure in the 2D MOT for capturing many atoms, and keeps
the pressure low in the science chamber which reduces the background collision rate
and improves the evaporate cooling (see Section 2.1.2). The introduction of the 2D
MOT dramatically decreased our MOT loading time from 30 s to 4 s, and increased the
loaded atom number from 4 × 108 to ∼ 1 × 109. A measurement of the loading rate is
shown in Fig. 3.5, an apparent two-step loading rate is observed when using 100 mW

per beam. It is worth noting that absorption imaging for such large atom numbers can
become unreliable due to the limited field of view of the imaging, and the irregular
shape and high densities of the cloud. These factors can invalidate the assumptions
made in Eq. (3.4), and/or the applied fitting function Eq. (3.5).

We are lacking an accurate measurement of the atom number in the 3D MOT as
the cloud is simply too large at sufficient time of flight to reduce the density below
saturation of the optical depth. Measuring it would require designing a new imaging
system with lower magnification, however ultimately we care about the number of
atoms loaded onto the atom chip (see Section 3.2.3) and therefore it was deemed not to
be essential. Details of the design, working principles, and an in-depth analysis of the
performance can be found in chapter 7 of [39]. Highlighting the use of new
technologies, the optical and magnetic mounts were 3D printed, which allowed us to
easily replicate the design in another laboratory. For the interested reader, more
information can be found about 2D MOTs and their implementation in cold-atom
experiments in [105–107].
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FIGURE 3.5: Atom number vs loading time, for different powers of
the cooling laser beams in the 2D MOT. Initially only 60 mW per beam
was used (black, diamonds), after increasing to 100 mW we observed
an increase in atom number, and that the loading curve became non-
linear, after the first second (green, dots) we measure ∼2× 108 atoms,
and after 2 s (red, squares) roughly 1× 109. We deem that a loading rate

of 5× 108 s−1 is a reasonable assumption.

3.1.2 Vacuum system

Figure 3.6 shows the vacuum system before external connections and bias coils have
been added, the main features have been annotated. We use an off-the-shelf spherical
octagon with a CF100 port on the top to house the electrical feed-through, and on the
bottom such that there is large area of optical access for the mirror MOT beams. The
picture was taken after bake-out, which was carried out over seven days with a
maximum temperature of 160 ◦C. A bake-out tent was used, this encases the whole
chamber and acts as would an oven. The bake-out tent provides excellent temperature
control and homogeneity, both problems that often occurs with the more commonly
used method of applying heat tape and wrapping the chamber in aluminium foil. The
tent was custom built to fit our system, and whilst time consuming to design, once
built it was quicker and easier to use.
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FIGURE 3.6: Vacuum chamber post bake-out, before addition of bias-
coils and cable connections.

Pressure in the science chamber is kept to 2× 10−10 mbar, which is typically quite
high for experiments of this nature. We suspect the reason for the high pressure is due
to two high density Sub-D1 (also known as D-sub) connectors located in our
feed-through, they both contain 50 pins each capable of carrying roughly 9 A, they are
used to supply currents to the PCB and atom chip (see Section 3.2). A standard helium
leak detection test points to the D-sub connectors as a potential source of leak in our
chamber. Similar behaviour was observed in other laboratories with the same
connectors. The poor vacuum limits the atoms lifetime in the magnetic trap to about
10 s, the measurement is shown in Fig. 3.7. Fortunately this low lifetime is not a major
issue as RF cooling can be performed sufficiently well in 8 s, leaving around 1×105

atoms in the final BEC (see Fig. 3.38).

1Allectra 218-D50-SS-HC
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FIGURE 3.7: Measurement of the lifetime of a thermal cloud in the
copper-Z trap, atoms are cooled to a temperature of a few µK in a trap
with truncation parameter η >10 and the hold time varied. The lifetime

τ , is extracted from a fit to N(t) = N(0) exp(−t/τ).

3.1.3 Bias coils

To provide homogeneous bias fields we use coil pairs in Helmholtz configuration.
Figure 3.8 shows the positioning of the coils in relation to the science chamber. Using
3D modelling and magnetic field simulations to optimise the geometry we were able
design a compact formation that gave us a high field to current ratio and thereby
reduce power consumption, without the need for active cooling.

The largest bias field required is along the x-axis, it needs to cancel the large fields
produced from the central bar of the copper-Z, and they are both large in order to attain
the high field gradients desired for trapping (see Section 2.1.1). We are able to produce
fields >100 G without heating the coil above ∼45 ◦C eliminating the need for water
cooling. A custom rig was built to wind the enamelled copper wire about the holder,
this allowed us to efficiently pack the volume with conductor, true to the simulation.
The coil holder for the vertical (z-bias) was 3D printed which gave us more flexibility
in the design allowing us easily mount to the chamber, it was also manufactured in a
few days, substantially quicker than mechanical workshop times for metal parts.
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FIGURE 3.8: Arrangement of bias coils with respect to the science
chamber (not to scale). Two x-bias coils provide fields for the MOT,
magnetic trapping, optical pumping, and imaging. Two opposing y-
bias coils provide fields in the MOT, Ioffe and anti-Ioffe fields (see

Section 2.1.1). One z-bias coil is used for MOT fields.

Two x-bias coils are required due to the short time (∼3 ms) and large variation in
field (≈100 G) required from MOT bias field, optical pumping field, and magnetic trap
bias field. Whilst ensuring that the fields are switch on/off in >1 ms. The two y-bias
coils provide fields in the Ioffe and anti-Ioffe directions, and the z-bias is mainly used
to control the position of the MOT.

(A)

(B)

FIGURE 3.9: (A) A plot from the magnetic field simulation used to
determine optimal size and location of the x-bias coil pair. (B) Image

of the assembled coil pair.
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3.1.4 Control and monitoring system

As is common to all cold atom experiments, there is a requirement for precise control
over a range of different equipment. Power supply units that provide electrical
currents for all the trapping structures, AOMs that control the frequency and power of
the laser beams, and waveform generators to perform RF cooling. It is essential that
they can be run in parallel, and can be switched on/off quickly and simultaneously.
The control system we use is called Advanced Real-Time Infrastructure for Quantum
(ARTIQ) [108]. It is an open source programming software written to interface
between fully programmable gate array (FPGA) based hardware. The modular set of
hardware comes from open-source hardware ecosystem called Sinara [109]. A detailed
description of the ARTIQ system can be found in chapter 5 of [39].

FIGURE 3.10: Dashboard of our online monitoring system visualised by
Grafana.

We use real time monitoring of the laboratory conditions for diagnosis of
malfunctions or unexpected behaviour. Using multiple micro-processors around the
lab we collect data on beam powers, temperatures, atomic cloud properties, vacuum
pressure, and electrical currents. These data are uploaded in real time to an online
database influxDB [110] and then visualised on Grafana [111], a web based tool that
can be accessed anywhere with an internet connection. This has allowed us to
perform safe remote operation of the experiment, which has been essential over the
lockdown period due to COVID-19. Further details on the monitoring network can be
found in [112].
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3.2 Trapping structures

Our experiment contains three different components for magnetic trapping (excluding
bias coils) an under-structure, PCB, and an atom chip, see Fig. 3.11. This section
describes each structure and the principles guiding their design. The typical size of
the trapping wires on each component reduces in size from centimetre to micron
scales. Each structure is stacked on top of each other with the largest structures (which
have highest current capacity) located the furthest away from the trapped atoms, see
Fig. 3.11c. The main principle (as will be discussed in more detail), is that throughout
the cooling sequence the scale of the trapping structures matches that of the atomic
cloud, thus providing an efficient transfer from a large relatively hot cloud (MOT, T
≈60 µK, σy,z & 1 mm) to a small cold cloud (BEC, Ry = ∼100 µm, Rz = ∼1 µm).

(A) (B)

(C)
(D)

FIGURE 3.11: (A) Assembled electrical feed-through, atom chip and PCB
can be seen on top. (B) Under-structure shown before PCB and atom
chip have been added. (C) Exploded view of the trapping structure
assembly showing atom chip, PCB, and under-structure. (D) View of

assembled electrical feed-through inside the science chamber.
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3.2.1 Under-structure

Top layer

Bo�om layer

x

z y

FIGURE 3.12: Schematic of under-structure. On the bottom layer is
the sheet which when combined with an x-bias field provides the
quadrupole field in the x-z plane for the MOT, and the sidebars (on the
top layer) generate the MOT field in the y-z plane. Also on the top layer

is the Z track, which is used in the pure magnetic trap.

The copper under-structure consists of a z-shaped conductor, two sidebars which run
parallel to the legs of the Z, and a broad sheet running perpendicular to legs. We use the
sheet and sidebars with an external bias coil to create the quadrupole field for the MOT.
The broadness of the sheet improves the quality of the quadrupole field produced, as
the eigenaxis remain at 45° over a larger volume than they would if it was a narrow
wire [58]. The MOT is then compressed and undergoes sub-Doppler cooling. After
cooling we atoms transfer into an Ioffe-Pritchard type magnetic trap made using the
copper Z and an external bias coil. The MOT cloud is large (N = 1×109) and relatively
hot (T≈ 60 µK). To optimally transfer the atoms from MOT to magnetic trap we follow
the concept of mode matching. This process aims to maximise the phase space density,
ρ, [63] ρ = n(0)λ3

dB, where n(0) is peak atomic density, and λdB =
√

2π~2/mkBT is
the thermal de Broglie wavelength. A large ρ will also mean a high elastic collision
rate which will improve the efficiency of RF cooling (see Section 2.1.2). Maximising the
phase space density requires us to keep atom number high and temperature low. To
maximise N a useful quantity to know is η, the ratio between trap depth and T a high
η will suppress atom loss from spilling and plain evaporation. To minimise the heating
during transfer the final and initial trapping potentials should have the same shape
and position. To maintain a Gaussian density distribution from the MOT, the atomic
cloud must be transferred in the magnetic trap whose harmonic frequencies are given
by,

ωj =

√
kBT

mσ2
j

, (3.1)
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where σj is the RMS width of the cloud in the jth dimension (j ∈ {x, y, z}). In our
sequence after compression and sub-Doppler cooling the MOT has temperature T ≈
60 µK, and sizes σx = 1600 µm, and σy = σz = 700 µm. Thus, the mode-matching
procedure determines the ideal initial magnetic trap frequencies to be (ω‖, ω⊥) = 2π×
8 Hz and 2π× 16 Hz, and a trap depth of ≥ 600 µK. In practice it is difficult to achieve
these values, as increasing trap depth generally increases the trap frequencies, the best
parameters are found with large fields far from the trapping wire. This requires very
high currents, meaning large copper structures are needed to support them.

FIGURE 3.13: Schematic showing the difference of the trapping potential
in the regions sampled by a hot and a cold cloud.

It is worth noting that the mode matching process breaks-down slightly as the
potential generated by the trapping structures is only harmonic in a small region
about the trap minimum. Far away from the minimum the potential becomes linear.
As such, hotter clouds predominantly sample the linear part of the potential and
therefore the trap is better characterised by a field gradient rather than a frequency.
Whereas the converse is true for cold clouds (e.g. BECs), a schematic is shown in
Fig. 3.13. Practically, the loading of the magnetic trap is often found optimised
empirically, but the parameter η and frequencies from Eq. (3.1) can be used as an
initial starting point. The control parameters are then adjusted to maximise the final
phase space density. In our experiment we find that a high trap depth is more
important than well-matched trap frequencies, because this results in larger captured
atom number, allowing more flexibility to counteract any induced heating with
evaporative cooling in the following stage.

Thermal management is often very important in cold atom experiments. Electric
current flow through a wire causes joule heating, and as by-product can cause them to
deteriorate (particularly on the atom chip), and if allowed to get too hot will melt.
However more likely is that thermal expansion will become problematic before
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reaching the melting point, the expansion causes stress on the structures and can lead
to bad connections, short-circuits, and in the worst-case expand into to the atom
chip/PCB and cause it to crack. High temperatures can also cause material to out-gas
and hence degrade the vacuum. As stated above we require high currents in our
under-structure so to prevent unwanted heating the trapping wires are embedded in
Boron Nitride, which is electrically insulating, with a good thermal conductivity
30 W m−1 K−1. This is then secured to a large copper block that projects outside the
vacuum chamber (copper has a thermal conductivity of 401 W m−1 K−1) acting as a
heat sink to draw heat out of the chamber. The importance of thermal management is
discussed in more detail in the next section as it is a key component in the design
process.

3.2.2 Printed circuit board (PCB)

The main purpose that the PCB was designed for was to act as an intermediate
trapping stage between the under-structure and the atom chip. The medial size of the
PCB would allow us to create trapping fields that well match with both. Thus helping
us follow the mode-matching principle of maximising the phase space density, which
in turn improves atom number and cycle time. We designed it with compactness in
mind, with the hope that it might be able to replace the under-structure. A MOT was
produced with PCB alone, however the atom number was significantly lower, proper
characterisation was not undertaken. The feasibility of replacing the under-structure
will be explored in the future with the second generation PCB Section 3.2.2. The
currents required are much smaller as the trapping structures can be much closer to
the atoms, this would remove the need for high current supplies and switches, which
are expensive and bulky. It should also be possible to create a BEC directly on the PCB
potentially bypassing the need for an atom chip. This would be a major advantage in
terms of cost.

TABLE 3.1: Thermal conductivity and resistivity of common materials
used in atom chip and printed circuit board technologies.

Material Thermal conductivity [W/(m K)] Resistivity [Ω m]
FR4 [113] 0.34 (23 ◦C) 3× 1013

Rogers4003 [114] 0.71 (80 ◦C) 1.7× 1014 (23 ◦C)
AlO [115] 18 10× 1012

AlN [115] 170 10× 1012

Copper [116, 117] 401 (0 ◦C) 1.724× 10−8 (20 ◦C)
Si [116, 117] 168 (0 ◦C) 0.1 to 60 (20 ◦C)

SiO2 1.1 ∼1× 1015

PCB technology is well established for use in electronics and a PCB designed for
atom trapping is structurally much simpler than what would typically be used in
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electronics (there are no electrical components just wire traces). At first glance one
might conclude that making such a PCB would therefore be not only simple but
inexpensive. There are however some key requirements that mean that standard PCB
materials are not suitable, and this complicates the design process. An atom trapping
PCB needs to be UHV compatible, non-magnetic, and have a high thermal
conductivity. The standard board material used in electronics is FR4 (a fibre glass
material) and is not UHV compatible, typically the conductors contain nickel which is
magnetic and needs to avoided for atom trapping. A common alternative is
Rogers4000 (a type of ceramic laminate) it is UHV compatible and the boards can be
fabricated with the same standard manufacturing processes as with FR4 (keeping
costs low). Unfortunately, it has poor thermal conductivity, which severely limits the
maximal electric current that can be sustained. For low electrical current requirements
Rogers4003 [114] is good a option as there are a wealth of companies that are able to
process it, and the cost of production remains low. For our purposes however high
current capacity is needed (see Section 3.2.2 for more details on the current
requirements) and therefore high thermal conductivity is essential. Aluminium
nitride (AlN) is a ceramic material that is an ideal candidate, as it has a high thermal
conductivity (see Table 3.1) and is an excellent electrical insulator. A number of
groups have used AlN as substrate for their atom chips [118–121]. Normally the
substrates are made of silicon which has good thermal conductivity but is electrically
semi conductive, to prevent current flow into the substrate a thin layer of SiO2 is used,
which is electrically insulating but a poor thermal conductor. Figure 3.14 shows
numerical finite element calculations of the time evolution of heat distributions,
comparing FR4 and AlN materials as a substrate. After 6 s the temperature of the wire
on the FR4 substrate increases by 20 ◦C as the heat hasn’t been able to travel to the
heat sink whereas with an AlN substrate the wire heats by only 1 ◦C as the AlN can
quickly transport heat into the copper.
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(A)

(B)

FIGURE 3.14: Time series plots showing the heat flow arising from joule
heating of a 35 µm× 200 µm Au wire carrying 2 A, on an FR4 (A) and an
AlN (B) substrate attached to a large copper heat sink. Time steps (from
left to right) 0 s, 1 s and 6 s, with an initial temperate 20 ◦C, simulation

was produced in COMSOL.

The main difficulty with AlN PCBs is in bonding copper to the AlN, the current
method (direct copper bonding - DCB) is tricky and significantly more expensive partly
due to the high temperatures required. At the time we were designing the PCB we
found only one company in Europe who offered AlN (there were a handful of options
in China and the USA). Even with the increased expense the PCB was still roughly ten
times cheaper than commercially available atom chips. It also has the advantage that
double layer PCBs are no more complicated than a single layer, the same cannot be said
for atom chips. If the PCB can be shown to work effectively then it could significantly
reduce costs and increase versatility.
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Version 1

FIGURE 3.15: Track layout of PCB, numbers in millimetres indicate the
width of the track. A H-trap trap can be made with currents I1B &
I1G for longitudinal confinement, and I2C with an X-Bias for transverse
trapping. All tracks are made of copper and have a thickness of 70 µm,

which are bonded to AlN board.

Figure 3.15 shows the track layout on the double layered PCB. Tracks on the
top/bottom run perpendicular/parallel to the main trapping wire on the atom chip -
labelled as TE see Fig. 3.18 - the top layer being closest to the atom chip. The PCB was
designed with a H-trap rather than a Z-trap configuration as this allows for
independent control of the longitudinal, ω//, and transverse, ω⊥, trapping frequencies.
This independent control enables a large tuneable range of aspect ratios, which was
key for our experiment in Chapter 4.

The aim was to use the PCB throughout the whole magnetic trapping sequence.
Transfer from the MOT using tracks 2A-2E with an x-bias field providing transverse
confinement, and tracks 1A & 1H with an anti-Ioffe field for longitudinal confinement.
The cloud would then be smoothly transferred into the chip trap, where the PCB top
layer would provide longitudinal confinement. The bottom layer tracks could then be
used to support the chip wire increasing transverse trapping frequency without having
to bring the cloud closer to the chip surface or increasing the current in the wire as both
of these become limited by fragmentation effects (see Section 3.2.3).

Unfortunately, grounding problems and electrical noise affected many of the PCB
tracks. This severely reduced the lifetime of the magnetic trap and direct transfer of the
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MOT cloud to PCB trap had to be abandoned. Attempts at creating a BEC solely with
the PCB trapping wires also failed, efficient evaporative cooling of the cloud couldn’t be
maintained. We attribute this to a combination of limited lifetime and radial trapping
frequency. The wires responsible for radial trapping(2B, 2C, & 2D) are located on the
bottom layer of the PCB - furthest away from the atoms. This makes it difficult to
get the high field gradients required. Supplying a maximum current of 25 A through
these, and trapping 100 µm away from the atom chip surface the geometric mean trap
frequency ω̄ is only ' 2π× 90 Hz. This would be sufficient if the cooling sweep was
slow enough, though this requires a better quality vacuum.

Version 2

Due to fragmentation issues (Section 3.2.3) and the limited number of usable tracks on
the atom chip (see Section 3.2.3) a new chip design was necessary. We decided to use
this opportunity to also design a new PCB. Knowing the problems with the first design
we decided to flip the layers around, with the radial trapping wires now closer to the
atoms. Our simulation indicates 8 A through track 1C (and again trapping at a distance
of 100 µm) would be able to provide ω̄ > 2π× 200 Hz. The radial trapping wires being
closer to the chip surface also means that there is higher potential barrier to chip surface
which means we could trap <100 µm away, further increasing ω̄.
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FIGURE 3.16: Schematic of the second generation PCB. For magnetic
trapping top layer tracks will provide transverse confinement when
combined with an opposing x-bias, and the bottom layer tracks will
deliver the axial confinement. Both layers can be combined to generate
the MOT fields currently produced by the under-structure, tracks 1A to

1E acting as the sheet, and tracks 2A and 2H as the sidebars.
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As the optimal MOT fields are now known, we were able to position the wires such
that the fields produced by under-structure can be better replicated. If successful this
will allow us to neglect the under-structure from future designs. This PCB has been
manufactured and will be installed the next time the vacuum needs to be opened.

3.2.3 Atom chip

(A) (B)

(C) (D)

FIGURE 3.17

The atom-chip was fabricated by Dr Chris Mellor at the University of Nottingham. It
has a Si substrate with an area of 35.5 mm× 35.5 mm and a thickness of 280 µm. The
conducting surface layer is 2 µm thick Au, deposited by thermal evaporation, all gaps
between tracks are 5 µm. Tracks are connected to the PCB by Au wire bonds.

The design was intended to be flexible and allow us to create a number of different
types of traps. Z and U configurations can be made on the 200 µm wide tracks using
the appropriate, an H-trap configuration can be made but requires the PCB to provide
longitudinal confinement. Multiple central wires were included in case of track failure
during fabrication, but can also be used to perform RF-dressing [122]. Unfortunately
we found shorts to ground on tracks NK, RH, and SG, due to remnant flakes of gold
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between wires, left over from the lift-off process during fabrication. We also observed
fragmentation (see Section 3.2.3 p.48) problems making many wires unusable. As a
consequence this has limited us to a maximal radial trapping frequency, ω⊥, of about
1.4 kHz. The trapping potentials created for the experiment in Chapter 4 were made
with a H-trap configuration, chip track TE was the main trapping wire providing radial
confinement, and PCB tracks 1B & 1G performed as the legs to provide longitudinal
confinement.

FIGURE 3.18: Track layout of atom chip. Grounding problems mean that
tracks SG, RH, and NK are unusable.

Fragmentation

Fragmentation refers to unwanted break up of the atomic density [55, 123, 124], it
occurs due to perturbations of the trapping potential. In wire/chip traps these
perturbations arise from imperfections of the trapping wire that causes the electrical
current path to meander [125, 126]. Wire imperfections come in a few forms, surface
roughness, edge corrugations, and grain formation within the bulk of the conductor.
Not surprisingly, fragmentation effects get stronger the closer the atoms are to the
trapping wire. Improved fabrication techniques have been shown to greatly reduce
the magnitude of fragmentation [57], they saw with the best quality chips it was
possible to trap at heights of 10 µm, whereas early experiments had observed
fragmentation at heights as large as 250 µm. Other methods to negate fragmentation
effects have been successfully implemented, one way is to use AC currents [127, 128],
and more recently digital mirco-mirror devices (DMD) were used to imprint a
correcting optical potential [129].
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FIGURE 3.19: Fragmentation of a thermal cloud close to critical
temperature (Tc = 450 nK), trapped on a 200 µm wide wire. The cloud is
made at a height of 60 µm from the surface of the wire and then ramped
to its final height where it is held for 50 ms before imaging after 1 ms
time of flight. Each profile is an average of five images after integrating

vertically.

Figure 3.19 shows the atomic density profiles as a function of their height from
the chip, demonstrating the effect of the fragmentation due to the imperfections of the
trapping track AD on our atom chip. We observe smooth potentials up to a height of
∼30 µm. In the experiment described in Chapter 4, atom chip track TE is used instead,
fragmentation effects are observed at <100 µm, however it is still possible to create
traps with higher aspect ratios thus making it better suited for the experiment. We
observe fragmentation at heights >150 µm on the two remaining 10 µm wide tracks,
at this distance radial trapping frequencies are lower than what can be obtained on
track TE. Whilst these tracks are not used for trapping, they can be utilised to perform
RF-dressing which is currently an ongoing experiment in the laboratory.
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(A)

(B)

(C)

FIGURE 3.20: (A) Current density simulation produced in COMSOL of a
T-junction on track AD with a current of 1 A. (B) Trapping potential |By|
along the y-axis from 1 A through track AD and a 1 G bias field along y.
(C) Isosurface of the trapping potential in (B) which showing the filling
of well and an OD density image of the atom cloud after 1 ms time of

flight.

One of the main issues with using track AD was the the T-junctions at B and C.
They were included to give us the option to make extra trapping configurations, a
U-trap could be made sending current from B to C, or a modified Z-trap by sending
current from M to K and A to C. The problem was that the T-junctions create a path of
lower resistance causing the current flow to bulge outward, as can be seen in Fig. 3.20a.
The bulging effect creates a mini U-trap at the two junctions, and when combined with
an homogeneous bias field (the Ioffe-field) this creates an asymmetric potential along
the y-axis, where atoms trapped at edges will either see a potential well or barrier, see
Fig. 3.20b. For a lot of traps the T-junctions are far enough apart that they have no
observable effect on the atomic density, however when making traps with low ω‖ we
observed clouds like that shown in Fig. 3.20c.
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Bose-Einstein condensate microscopy

Observations of fragmentation in early experiments highlighted that BECs were
extremely sensitive to small changes in magnetic field. Further investigation
demonstrated that they could be used as a magnetic field microscope offering pT

sensitivity with µm scale resolution [130, 131]. Since then BEC microscopy has been
demonstrated several times [132–134]. A separate experiment in our group is working
on microscopy [99], they are attempting to measure the current flow through samples
of silver nano-wires and graphene. It was possible for us to demonstrate a much
simpler example of BEC microscopy, by analysing the fragmentation of the BEC as it is
scanned across the trapping wire. This allows us to visualise the location of
imperfections in the atom chip track.

(A) (B)

FIGURE 3.21: (A) Area scanned in the measurement shown in Fig. 3.22.
The cloud is moved incrementally from the centre to the edge of the wire,
a total distance of 80 µm off-centre. (B) Magnetic field lines produced by
the chip wire, adding a z-bias field will shift the trap minimum towards
the edge of the wire. To keep the distance to the surface of the chip fixed

the x-bias field must also be simultaneously reduced.

The scan was performed with clouds at three different temperatures, T � Tc ,
T = Tc , and T < Tc. The volume of the thermal cloud depends on the temperature,
whereas below Tc the chemical potential becomes the important parameter. The
transition appears as an increase in sensitivity which can be seen visually in Fig. 3.22.
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FIGURE 3.22: Microscopy of the 200 µm wide chip wire with varying
temperature clouds which are held at an estimated distance of 1 µm
from the wire surface. Each image scans an area of 400 µm× 80 µm, each
column is an average of 20 images that have been vertically integrated.
a) Thermal cloud T =1 µK. b) Cloud at critical temperature T = 0.45 µK.

c) Bose-Einstein condensate T = 0.2 µK.

3.3 Imaging

Our primary detection method employs standard absorption imaging techniques we
also utilised fluorescence imaging to optimise the 2D MOT. In this section I will briefly
highlight the key physics principles involved in absorption imaging, describe our
imaging system, and discuss problems that are significant for the density ripple
measurements in section 4.2.

3.3.1 Absorption imaging

Absorption imaging after time of flight is a very common technique amongst ultra cold
atom experiments. The basic principle is to shine resonant probe light onto the atomic
cloud and observe the reduction in light intensity from which the atomic density is
extracted. Extraction of the atomic density is based on the Beer-Lambert law [38, 135,
136],

dI/dx = −n(x, y, z)σscI, (3.2)
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where I is the probe light intensity, x is the direction of propagation of the light, n
is the 3D atomic density, and σsc is effective scattering cross-section. This defines the
probability of absorption of an incoming photon [43],

σsc =
σ0

1 + (2δ/Γ)2 + I/Isat
, (3.3)

where σ0 = 3λ2/2π is the resonant scattering cross section, Γ is natural linewidth of
the atom, δ is the detuning from resonance, and Isat is the saturation intensity. In our
experiment the imaging transition is from |F = 2〉 → |F ′ = 3〉 (see Fig. 3.1). If the
probe light is unpolarised (or if there is no magnetic field present) transitions to all
available mF states are possible making a complex multi-level system. Accounting for
the multiple levels σsc is modified by the average squared Clebsch-Gordon coefficient
(2F ′ + 1)/3(2F + 1) = 7/15 [137]. However if circularly polarised light, σ+, is used
with a quantisation axis defined by a homogeneous magnetic field (we use ∼2 G) the
transition is restricted to |F = 2,mF = 2〉 → |F ′ = 3,mF = 3〉, simplifying the system
to two-levels. In the two-level case Isat = 1.67 mW/cm2 for 87Rb [135]. A detailed
description of how to determine σsc when the two-level approximation isn’t possible
can be found in [89]. Attenuation of the light intensity is greatest at δ = 0 enabling
maximum signal to noise ratio, and dispersion effects (i.e. phase shifts) are
suppressed, for these reasons imaging is performed on resonance. We also set the
probe light intensity such that I � Isat which simplifies Eq. (3.3) to σsc = σ0. Inserting
this result into Eq. (3.2) and then integrating over the length of the cloud along x gives
the definition of optical density, OD,

OD(y, z) = σ0n2D(y, z) = − ln

(
I0(y, z)

If(y, z)

)
, (3.4)

where I0 and If are the incident and output intensities, and n2D(y, z) is the
two-dimensional column density. Hence, to extract optical density one must measure
the intensity of the light beam before and after the passing through the cloud. In
practice three images are taken, atoms A, light L, and dark D. A contains information
of If the probe light intensity after passing through the atoms. L contains information
of I0 where the image is captured with the probe light only. Finally D the dark image
is taken without probe light or atoms, this captures all stray background light Ibg and
is subtracted from both A and L. Figure 3.23 shows each of the images captured and
the calculated optical density.
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FIGURE 3.23: Atoms A (top left), Light L (top right), Dark D (bottom
left), and the resulting optical density (bottom right) image.

Fringe removal

Captured absorption images often show undesirable fringes patterns. These come
from imperfect propagation of the probe light along the imaging path, where slight
misalignments can cause lens aberrations as well as interference and diffraction
patterns. In principle, calculating Ak/Lk should remove all common fringes between
Ak and Lk (when taking measurements many images are taken for statistical
purposes, here k represents the image number within the total data set). In practice
mechanical noise causes vibrations of the optical elements and hence lead to shot to
shot variations of the probe intensity and not all fringes are removed. Figure 3.23
shows that whilst most large fringe patterns in the atoms and light images are
removed in the final optical density image, remnant fringes remain. This is
problematic for our density ripple analysis (see Section 4.2.1) as the size of fringes are
similar to the features we are measuring.
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FIGURE 3.24: Optical density image of a Bose-Einstein condensate.
(Left) original OD image. (Right) OD image after applying the fringe

removal algorithm, it is very effective and no visible fringes remain.

To combat the imaging fringes, during post-processing we employ a fringe
removal algorithm demonstrated in [138], this method is also advantageous in that it
can reduce the photon shot noise. The basic principle of the algorithm is to construct a
new optimal light image Qk for every atoms image Ak using all of the light images
available. Whereby the resulting optimal image Qk is a weighted average of many
light images, and instead of calculating Ak/Lk we use the optimal image Ak/Qk. This
fringe removal algorithm actually has a similar working principle to that of modern
facial recognition algorithms [139]. Figure 3.24 shows the effectiveness of the
procedure comparing the resulting optical densities calculated with/without
application of the fringe removal.

Extracting cloud parameters

Once the OD images have been collected we need to convert them into atomic density,
and apply a fitting procedure to extract the size, atom number, and temperature.
Absorption imaging captures column density, the analytical formula for the column
density can be obtained by integrating the formula for the 3D density along the
imaging direction (x-axis). High temperature thermal clouds follow a
Maxwell-Boltzmann distribution, leading to a Gaussian density profile with column
density given by,

n2D
classical(y, z) =

N

2πσyσz
exp

(
− y2

2σ2
y

− z2

2σ2
z

)
, (3.5)

integration along z gives the line density,

n1D
classical(y) =

N√
2πσy

exp

(
− y2

2σ2
y

)
. (3.6)
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For clouds close to Tc the lower energy states become highly populated and
quantum degeneracy effects can no longer be ignored. In this situation the
distribution is given by a Bose-enhanced Gaussian. The column density of a
Bose-enhanced Gaussian is given by [136],

n2D
BE(y, z) =

N

2πσyσzg3(z̃)
g2

[
z̃ exp

(
− y2

2σ2
y

− z2

2σ2
z

)]
, (3.7)

where z̃ = exp(µ/kBT ) is the fugacity, and gk(x) = Σ∞n=1x
n/nk is the polylogarithm

function. Again we obtain the line density by integration along z,

n1D
BE(y) =

N√
2πσyg3(z̃)

g5/2

(
z̃ exp

(
− y2

2σ2
y

))
. (3.8)

To simplify the fitting procedure it is typically assumed that z̃ = 1 as at Tc µ ≈ 0.
For clouds with temperature T � Tc in a harmonic potential where the Thomas-Fermi
(TF) approximation is valid, the density is an inverted parabola. In this case the column
density is given by,

n2D
TF(y, z) =

5

2π

N

RyRz
max

{
1− y2

2R2
y

− z2

2R2
z

, 0
}3/2

, (3.9)

integration along z gives the line density,

n1D
TF(y) =

15

16

N

Ry
max

{
1− y2

2R2
y

, 0
}2
. (3.10)

In quasi-1D condensates (µ � ~ω⊥) the 3D TF approximation is not valid as the
kinetic energy is no longer much smaller than the interaction energy. As such, the
kinetic energy term in Eq. (2.36) cannot be neglected. When the kinetic energy is much
greater than the interaction energy, the wave function of the radial ground state is a
Gaussian with a width given by the harmonic oscillator length σ = a⊥ =

√
~/mω⊥.

Longitudinally, the TF approximation can still be valid (as µ� ~ω‖), in which case the
axial density profile remains an inverted parabola. In this case the line density is
obtained by vertical integration of a Gaussian to give [140],

nq1D(y) =
3

4

N

Ry
max

{
1− y2

2R2
1D

, 0
}
, (3.11)

where the cloud radius R1D =
√

2µ1D/mω2
‖ now depends on the 1D chemical

potential µ1D = ~ω⊥
(√

1 + 4an(0)− 1
)

. For gases close to the 1D limit (µ ∼ ~ω⊥) the
interaction and kinetic energy can be comparable and the radial wave function swells
due to interactions. Here, the wave function takes the form of a Gaussian with a
density dependent width σ2 = a2

⊥
√

1 + 2an1D [83, 141] (a measurement of the
interaction-induced swelling was performed in [142]). The resulting axial density
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profile was calculated in [83] and has the following form,

nGerbier(y) =
α

16a

(
1− y2

L2

)
[α

(
1− y2

L2

)
+ 4]. (3.12)

where α = 2(µ/~ω⊥ − 1), L =
a2y
a⊥

√
α is the length of the gas, and a is the s-wave

scattering length. This formula works when the radial ground state is Gaussian
Eq. (3.11) or Thomas-Fermi Eq. (3.10) and anywhere in between.

Temperature is extracted from a "fit to the wings", where Eq. (3.7) is fitted to the
thermal component of the density profile after masking out the condensate fraction.
Once the rms width of the Bose-enhanced Gaussian σi is extracted it can be used to
calculate the temperature, T . A simple method would be to assume purely ballistic
expansion during time of flight and which gives the time dependence of σi as,

σi(ttof) =

√
σi(0)2 +

kBT

m
t2tof . (3.13)

Assuming that the cloud has expanded to much greater than its initial size i.e. σi(0)�√
kBT
m ttof (which is true for hot clouds and long time of flight), we then get the simple

expression for temperature,

TBallistic =
m

kB

(
σi(t)

ttof

)2

. (3.14)

This is a useful assumption as it does not require knowledge of σi(0) meaning T can
be extracted directly from a single tof image. In reality, at early times of flight, where
the mean free path is smaller than the cloud size, interactions still contribute and
hydrodynamic expansion occurs [143], this can happen for elongated clouds and high
densities. As atom chip traps are typically much longer in the axial direction, it is
common that the mean free path is smaller than axial size but much larger than its
radial dimension. This means that at early time of flight hydrodynamic axial collisions
transfer energy to the radial degree of freedom. This creates a velocity imbalance that
is proportional to the collision rate and hence dependent on the trapping frequencies
ω⊥ and ω‖, leading to an anisotropic expansion such that σ⊥(t) > σ‖(t). Accounting
for the hydrodynamic expansion gives the following expression for temperature T

[144],

T =
2τ2
‖

1 + 3τ2
‖
T⊥ +

1 + τ2
‖

1 + 3τ2
‖
T‖, (3.15)

where τi = ωit, and

Ti =
m

2kB

ω2
i σ

2
i

1 + τ2
i

. (3.16)

The result means that to get an accurate temperature one must know the trap
frequencies beforehand, and whilst this requires additional measurements it is not too
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arduous as the frequencies are fixed and need only be measured once.

Imaging system

Our experiment uses two imaging systems that share the same mount but have
switchable components so that we can alternate between two magnifications of the
imaging system, this allows us to image atomic clouds depending on the cloud size
throughout sequence effectively. For clarity I will refer to the two set-ups as
high-magnification and low-magnification. Both the low-magnification and
high-magnification imaging systems image the z − y plane which captures the
longitudinal and radial profile of the cloud (see Section 3.2.3 to see coordinates in
relation to the atom chip). Both systems were initially numerically optimised using
OSLO, a ray tracing program. External measurements of each system prior to
installation were then carried out and free parameters adjusted for optimal resolution.

FIGURE 3.25: Schematic for both the low-magnification and high-
magnification imaging system. Lens l1 (focal length 150 mm) is shared
between the two systems, after lens l1 there is a removable lens tube
that can be replaced with lens l2 (focal length 75 mm low-magnification,
750 mm high-magnification ) and the camera of the low-magnification
imaging system. For low-magnification imaging (L1, L2, L3) = (174,
225, 57) mm, and for high-magnification imaging (L1, L2, L3) = (174,

500, 259) mm.

The primary use of the low-magnification imaging system was during the
optimisation of the stages up to and including the loading of the atom chip trap.
Atomic clouds produced by the MOT and in the early stages of evaporate cooling
have large atom numbers, it is necessary for the clouds to expand sufficiently during
time of flight that the atomic density has reduced enough to prevent saturation of the
optical density. Since these clouds are relatively hot (50 µK to 400 µK) this expansion
can be considerable, the σi width can easily be a few millimetres and so to capture the
whole cloud we demagnify the object. The camera for the low-magnification imaging
system is a DMK 23U618 CCD (640 × 480 pixels of width 5.6 µm) placed within in a
two-lens system (see Fig. 3.25 for a schematic). This set-up has magnification,



Chapter 3. Experimental realisation 61

M = 0.5, with a field of view of 4.48 mm× 3.36 mm, a spatial resolution of ∼17.5 µm,
and a depth of field of ∼ ±1 mm.

The high-magnification imaging system is required when imaging BECs, as the
cloud’s size is typically a few 100 µm and can display internal features (such as
solitons and density fluctuations) that are smaller than 1 µm . In this scenario it is
desirable to have a large magnification and a high imaging resolution. The
high-magnification imaging system uses an Andor iXon Ultra 888 camera (1024× 1024

pixels of width 13 µm) also in a two-lens system (see Fig. 3.25 for a schematic),
external measurements give M = 3.36 yet in-situ M was measured to be 3.51. The 4%

discrepancy is considered to be acceptable and attributed to slight differences between
the external and in-situ set-up. The field of view is 3.79 mm× 3.79 mm, with a spatial
resolution (Rayleigh criterion) of 11.7 µm, and a depth of field of ±0.2 mm. All optical
density images in Chapter 4 are acquired with the high-magnification imaging system.

3.3.2 Design of optical system

Principles of design

In general it is desirable to have an imaging system with as high resolution as
possible, such that all features of the cloud can be resolved. There are a few definitions
of resolution but the most commonly recognised is the Rayleigh criterion which gives
the diffraction limited resolution and is defined as (in the paraxial approximation),

∆rRayleigh =
1.22λf

D
=

0.61λ

NA
, (3.17)

where λ is the wavelength of the probe light, f and D are the focal length and diameter
of the first lens, and NA = D/2f is the numerical aperture of the system. This would
suggest maximising NA is very important, which means getting the first lens as close
as possible to the atoms. Experimental groups have employed a number of different
techniques to achieve this, such as recessed windows and translatable lenses [145], and
even atom chips with integrated optics [146]. The NA will also be reduced if the beam
is clipped before entering the first lens. This can be particularly problematic when
imaging close to the surface of the chip. To get around this a common technique is to
tilt the beam with respect to the chip surface and capture the reflected beam [147]. In
our experiment we image after 34 ms time of flight which is sufficiently large such that
cloud is far enough away from the chip surface that we do not have to worry about
clipping of the beam. One issue with optimising for resolution is a loss of depth of field
(DOF), this is the distance along the optical axis over which an object can be imaged
without significant blurring. The formula for DOF is given by,

DOF =
λn

NA2 , (3.18)
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where n is the refractive index of the medium. The depth of field is inversely
proportional to NA2 hence the depth of field rapidly reduces as the resolution is
improved. For example in an experiment at the university of Heidelberg [148] they
have developed an extremely high imaging resolution of ∆rRayleigh = 1.1(1) µm

(which is - within error - the diffraction limit of their system), however the depth of
field is only 6.8 µm. This is problematic for time of flight imaging as interactions due
to tight radial confinement can cause huge radial expansion of the cloud. Trapping
potentials with ω⊥ ≈ 2π× 1 kHz will typically have a sub-micron radial size in-situ but
after time of flight will quickly expand to become on order of hundreds of
micrometres. As an example, in our experimental set-up, after 34 ms of time of flight,
the radial cloud size at the time of imaging can be up to 500 µm. At small depth of
field the duration of the imaging pulse τ becomes significant. During the pulse atoms
absorb and re-emit photons resulting in a net transfer of momentum from photons to
the atoms. The effect pushes the cloud a distance, ∆x = vrecRscτ

2/2, along the optical
axis where vrec is the recoil velocity and Rsc is the effective scattering rate. In our
experiment τ = 50 µs which gives ∆x = 2.2 µm, this is very small compared to our
depth of field, however for high resolution imaging systems ∆x can easily be on the
order of the depth of field. The distance ∆x can be reduced by decreasing the pulse
length and/or the beam intensity but these both in turn decrease the signal to noise
ratio.

High resolution imaging can be hard to implement, the ideal system can be
simulated with numerical ray tracing software (such as OSLO and Zeemax) yet it
often requires complex multi-lens systems and custom-built optics, rapidly increasing
the cost and build time. Getting the experiment up and running as quickly as possible
was deemed a priority, thus it was decided to compromise on resolution by using a
simpler two-lens design with off-the-shelf optics to save on time. However, we have
designed a new imaging system with better imaging resolution and plan to assemble
and install it in the near future.

Lens aberrations

Another point is to make sure that the imaging beam and all optical components are
well-aligned to the optical axis. The effects of misalignment however are not so obvious
and are quite complicated. In general any misalignment will worsen the effects of lens
aberrations and lead to defocusing, this section briefly summarises the common lens
aberrations, for more detail I refer the reader to [149].

Lens imperfections or misalignment of either the object or an optical element can
lead to aberrations. Looking at Fig. 3.26, in the ideal case all light should be focused at
f1 and the camera located at the image plane. Generally aberrations lead to the creation
of secondary foci, for simplicity let us consider only one additional focus at f2. Now
using spherical aberrations (discussed in the next paragraph) as an example, central
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rays will be focused at f1 and peripheral rays at f2. Placing a camera at the image
plane will capture the central rays in focus however the peripheral rays will be out of
focus.

FIGURE 3.26: Schematic of a simplified imaging system to visualise
alignment procedure and aberrations.

Spherical aberrations come from the spherical curvature of the lens surface, ideally
the lens should be aspheric however this is tricky to manufacture and spherical lenses
are more common. The consequence is that rays passing through the lens off centre
will be focused to an axial location offset from the rays passing through the centre. At
the focus, the intensity distribution is given by the Airy pattern (which is discussed in
Section 3.3.2 p.62). The effect of this aberration is to transfer intensity from the central
lobe to the side lobes. It can be avoided by using aspheric lenses (which are more
expensive) or corrected for by using multiple spherical lenses. In our set-up spherical
lens are used due to cost and accessibility.
Coma occurs when the object is located off axis. Rays pass through the lens obliquely,
rays that that pass through the edge of the lens are focused at larger distances than
rays that pass through the centre. This causes a point like object to look like a comet in
the image plane, and its tail will extend towards the edge of the image. The effect is
worse for larger aperture lenses. This is problematic when varying time of flight as the
cloud moves along the z-axis, to image correctly at each time of flight the imaging
system should be recentred to the cloud position. From a measurement of the focus
position with time of flight we found that the focus position shifted by ∼100 µm from
10 ms to 25 ms. In our set-up we estimate that this shift corresponds to a decrease in
imaging resolution of 1 µm to 2 µm. The data acquired in Chapter 4 is taken at a fixed
time of flight, and the imaging system and cloud are always centered on each other,
thus this effect should be negligible.
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Astigmatism is similar to coma in that it occurs when the object is placed off centre
from the optical axis, however it can also occur when there is an asymmetry in the
lens curvature. Two planes are defined, the meridional plane which contains the
object and the optical axis, and the sagittal plane which lies perpendicular. The two
planes have separate foci, and the best imaging plane is located between to two.
Curvature of field, also known as the Petzval-aberration, refers to the fact that the
imaging plane is in-fact not a plane but has a concave shape when viewed from the
object. The curvature of the imaging plane is determined by the refractive index and
surface curvature of the lens used. As detectors are typically flat this means that the
captured image will be out of focus at the edge. This can be problematic when
imaging large clouds.
Distortion occurs when magnification properties of the lens vary across the surface.
This can lead to pincushion or barrel deformation depending on whether the
magnification is higher or lower closer to the optical axis.

An interesting experiment at the University of Chicago [150] demonstrated a
technique to greatly reduce the effects of aberrations. They were able to measure the
modulation transfer function (MTF) in-situ from images of thermal clouds (the MTF
will be described in relation to the point spread function in the next section).
Aberrations distort the MTF, they were able to adjust the alignment of their imaging
system and remove the distortions by observing the changes to the MTF.

Finite resolution

To describe the effects of finite resolution it is useful to introduce the point spread
function (PSF). The function determines how a point like object O(r) is transformed
into an image I(r) via the convolution I(r) = O(r) ∗ PSF(r). In a diffraction-limited
system the PSF is the Fraunhofer diffraction pattern from a circular aperture and the
result is the Airy function. In this case the PSF can be expressed in terms of the
resolution,

PSF(r) = 2
J1 (1.22πr/∆r)

1.22πr/∆r
(3.19)

where J1 is the first order Bessel function of the first kind, and ∆r is the resolution
as defined by the Rayleigh criterion in Eq. (3.17). As a convolution in real space is
equivalent to a multiplication in Fourier space, the image I(r) can be calculated by,

I(r) = FT−1[Õ(k) ·OTF(k)], (3.20)

here, Õ(k) is the Fourier transform of the object O(r), and the optical transfer function
(OTF) has been introduced which is the Fourier transform of the PSF. The OTF is a
complex function, its modulus is responsible for amplitude variation and is known as
the modulation transfer function (MTF), the argument causes phase variation and is
known as the phase transfer function (PTF), thus the total expression
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OTF(q) = MTF(q) exp [iPTF(q)]. For a diffraction-limited system there is no phase
shift and the OTF can be reduced to MTF. For this reason the OTF and MTF are
commonly interchanged. In real systems (not diffraction limited) the PSF is more
complicated than Eq. (3.19) and is related to the pupil function which accounts for
aberrations, for further reading see [150, 151]. Though, for systems with small
aberrations Eq. (3.19) is a good estimate.

FIGURE 3.27: (Left) Normalised intensity of the modulus squared of
point-spread function for an imaging resolution of rRayleigh = 11.7 µm.
(Right) Example image of two points separated by 11.7 µm the Rayleigh
criterion (blue), 9 µm the Sparrow criterion (red), and 10.35 µm a distance

in between (yellow).

Figure 3.27 shows a one dimensional cut through |PSF|2 where the PSF is given by
Eq. (3.19), and the resulting image for two point like objects with different separations.
It is worth noting that whilst the Rayleigh criterion is the most commonly accepted
definition of imaging resolution, in practice it is still possible to discern that there are
two points when separated at this distance. The most generous definition is given by
the Sparrow criterion ∆rSparrow = 0.47λ

NA , at this distance there is no minimum between
the two points in the final image. This criterion is perhaps more important for our
experimental analysis as density fringes separated by ∆rRayleigh will still be discernible,
and hence appear in the power spectrum, 〈|ρ(q)|2〉 see Section 2.3.3 for the definition of
〈|ρ(q)|2〉.
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FIGURE 3.28: (Left) Modulus square of the point spread function
generated using Eq. (3.19), with ∆r = 6 µm. (Center) Object, consisting
of four 2 µm thick stripes, the outer pair are separated by a distance of
20 µm, the inner pair by 2 µm, and separation between the outer and
inner stripes equal to 7 µm. (Right) Resulting image after convolution of

the object with the PSF.

An example of imaging an object with a finite resolution is shown in Fig. 3.28. In
this figure the object consists of four stripes at different separations, imaging the object
equates to a convolution of the object with the PSF. The result is to blur out the initial
stripe pattern. In this case the blurring is so large that the two inner stripes can no
longer be resolved. This stripe pattern is much like density ripples that arise from the
phase fluctuations discussed in Section 2.3.3 and we observe experimentally. If two
fringes in the atomic density are too close together they will be blurred into one, just
like is seen in Fig. 3.28.

It is possible to approximate the PSF by fitting a Gaussian to the central lobe.
Using the Gaussian approximation the effect of the imaging system on 〈|ρ(q)|2〉 can be
simulated by multiplying by e−q

2σ2
PSF [96], where σPSF is the width of the Gaussian,

the result can been seen in Fig. 3.29. The change is dramatic, high frequencies are
suppressed and only the first peak remains yet with reduced amplitude and
frequency. We can get an in-situ measurement σPSF by fitting the power spectrum of a
1D cloud to 〈|ρ(q)|2〉e−q2σ2

(where 〈|ρ(q)|2〉 is defined in Eq. (2.67)) gives a value of
σPSF = 4 µm, this corresponds to a resolution of ∆rRayleigh = 11.7 µm.
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FIGURE 3.29: (Blue) Density ripple power spectrum simulated with
the Ornstein-Uhlenbeck method (see Section 4.1.4). (Red) result after
convolution with the PSF which has been approximated to a Gaussian

with σPSF = 4 µm.

Prior to installment the resolution of the high-magnification imaging system was
measured externally by imaging a pin-hole of 2 µm diameter. When imaging an object
much smaller than the imaging resolution the object is effectively point-like and the
resulting image captures the modulus square of the point spread function |PSF|2.
Figure 3.30 shows the results of our measurement, where a 2 µm diameter pin-hole
was imaged at different points along the optical axis. As the pin-hole moves through
the focus the point spread function alters, which can be seen in the captured images
Fig. 3.30a. The images are compared to a ray-tracing simulation performed with
OSLO which predicts the focal point as the position where the power in the central
lobe is greatest. The pin-hole measurement shows good agreement with the OSLO
simulation, and σPSF matches to within 10 %, this corresponds to a resolution as
defined by the Rayleigh criterion of ∆rRayleigh = 5.4 µm from OSLO, and ∆rRayleigh =

5.8 µm obtained from the pin-hole measurement. It is not completely clear why there
is such a large discrepancy with the resolution measured externally and in-situ.
However, we believe that the source of the discrepancy comes from a few differences
between the external and in-situ set-up, for example a different camera was used in
the external measurement (it had a smaller pixel size and therefore was deemed less
likely to impair the measurement) and it is plausible that during installation the
optical alignment was not as good as in the external set-up. It is also possible that
in-situ the exit beam is clipped by the view-port, this would reduce the NA and thus
increase ∆rRayleigh.
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(A)

(B) (C)

FIGURE 3.30: (A) Intensity images of 2 µm diameter pin-hole at various
distances from the focal plane. As the pin-hole is defocused the intensity
in the outer discs increases. (B) (Blue dots) Horizontal cut through
an image of the pin-hole in focus, the central lobe is then fitted to a
Gaussian (red curve). (C) Simulation produced in OSLO of the point
spread function (blue dots) for our imaging at the focal point, the central

lobe is fitted to a Gaussian (red curve).

Finite pixel area

After passing through the optics the image still needs to detected. Typical cameras have
a square array of equally spaced photosensitive pixels, the result is to average over each
pixel area, and due to the pixel separation certain frequencies will be suppressed. This
averaging effect can be expressed as a convolution of the image with a 2D rectangular
function, we write the detector response function hdetector(x, y) as,

hdetector(x, y) = rect(x/Wx)rect(y/Wy), (3.21)

where Wi is the width of a pixel. What matters here is the pixel width at the atoms
(the object plane), this is the physical width of the camera pixel divided by the
magnification. To calculate the corresponding MTF we then take Fourier transform,
and hence the MTF for an array of square pixels is given by,

MTFdetector(kx, ky) = |sinc(πkxWx)||sinc(πkyWy)|, (3.22)
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where kx = 1/x and ky = 1/y.

(A) (B)

FIGURE 3.31: (A) 1D MTF of a square pixel array with am effective
pixel width of W , at spatial frequencies of kx = n/W , where n ∈
{1, 2, 3...}, there is a complete reduction in amplitude. The effective
pixel width is determined by the camera pixel width Wcam divided by
the magnification M . (B) (Blue, dash-dot) MTF of our detector which
for the high-magnification imaging system has an effective pixel width
W = Wcam/M = 13/3.51 = 3.7 µm. (Red, solid) MTF of our imaging
optics given by Eq. (3.19), which has σPSF = 4 µm. (Black, dashed)
combined MTF of the whole imaging system. Units are given in 2π/µm
to be consistent with spectral measurements in the experimental section.

Figure 3.31 shows the effect of our camera on the MTF, the additional contribution is
minimal. For high resolution imaging systems however it can become very important,
for the MTF to not be detector limited the pixel size must be made sufficiently small.

3.3.3 Focusing methods

As previously discussed (Section 3.3.2) placing the imaging system at the focal plane
is vital, even a relatively small separation between them (>100 µm) can cause a large
decrease in the imaging resolution. In order to find the focal point experimentally, one
must minimise a parameter whilst translating the imaging system along the imaging
axis. One commonly used method measures the Thomas-Fermi radius of a BEC,
which is deemed suitable due to the relatively (compared to a thermal cloud) sharp
change in optical density at the cloud edge. A measurement using this method in our
experiment is shown in Fig. 3.32. It is quite obvious that this is not a particularly
sensitive measurement. Our pixel size is 3.75 µm so the cloud radius increases by
roughly 2 pixels 2 mm away from the focus it is worth noting that this measurement
should be improved with a smaller pixel.
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FIGURE 3.32: Focusing of the imaging system using axial half size of
the cloud. (Blue, dots) Mean TF radius measured from five clouds at
each distance d, errorbars indicate the standard deviation. (Red, solid) A
harmonic fit finds the minimum at d = (−188± 112) µm, the red shaded
region indicates the confidence bounds from the fit, where d = 0 µm is

the focal position determined from the density ripple method.

Density ripples can occur on scales much smaller than typical imaging resolutions,
and when analysed in reciprocal space (i.e. the spatial frequency spectrum) the
observed spectrum is very sensitive to small changes in the imaging resolution,
making density ripples an ideal tool to determine the focal point, and has been
demonstrated to be accurate to within 2 µm [152]. As the imaging system moves away
from the focal plane not only is there a blurring of the fringes, there are also additional
artificial fringes that appear. The effect on the power spectrum 〈|ρ(q, d)|2〉 is to shift
the first peak to lower frequencies and generate artificial peaks at higher spatial
frequencies. The form of this relation is given by,

〈|ρ(q, d)|2〉 = 〈|ρ(q, 0)|2〉 cos2

(
q2d

2k0

)
, (3.23)

where d is the distance from the focal plane, and k0 is wave number of the imaging
beam. An example of this measurement is shown in Fig. 3.33, which shows clearly the
appearance of the artificial fringes as the imaging system is moved out-of-focus.
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FIGURE 3.33: Focusing of the imaging system using density ripples. At
each distance the mean power spectrum of the density ripples 〈|ρ̃(q)|2〉
Eq. (4.8), is calculated from ∼ 30 images. Red and blue curves are fits
to second and third peaks using Eq. (3.23), the focus is found at d =

(0± 20) µm.

FIGURE 3.34: Single shot OD images of clouds taken at with the camera
located at different points along the optical axis, where d = 0 mm is at

the focus.

Cloud tilt

The trapping potential created in a H or Z trap causes a tilt, θ, with respect to the central
trapping wire due to the vertical field asymmetry that arise between the legs and the
central wires (see Section 2.1.1). Adjusting the trapping frequencies to decrease the
aspect ratio λ = ω⊥/ω‖ causes an increase in the cloud tilt θ. Consider the diagram
in figure 3.35, the imaging process effectively integrates the density along the x-axis,
capturing any density fluctuations that occur along the y-axis. However, if θ 6= 0 the
integration does not occur along the eigenaxis of the cloud and would start to blur out
the density ripples.
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FIGURE 3.35: Schematic showing the orientation of the cloud tilt, θ, with
respect to the imaging direction. During time of flight the cloud changes
from a cigar shape to an elliptical disc, due to strong interactions in the
radial direction. If the cloud is phase fluctuating density ripples will

appear parallel to the semi-major axis.

When we initially started acquiring data for this experiment we didn’t account for
the cloud tilt and saw an artificial reduction in the density ripples in the lower aspect
ratio traps. To model effects of the cloud tilt we first simulated the propagation of an
electric field through an atomic density by using a split-step Fourier method [152]. The
theoretical steps are described in Section 3.3.4, however in this section only a qualitative
description is used and results shown.

We start by simulating a 3D atomic density of a BEC in the Thomas-Fermi
approximation that has been expanded after a time of flight. The density is then
modulated by a sinusoid with a variable spatial period d, to simulate density ripples
with a specific, well-defined frequency, the cloud is then tilted about the z-axis by an
angle θ determined from a magnetic trapping field simulation of the PCB and atom
chip, plus an additional tilt φ that accounts for any tilt of imaging beam from the
optical axis Fig. 3.36a shows a plot of a density slice in the x-y plane. The electric field
of the imaging beam is then propagated through the tilted cloud (along the x-axis)
and the optical density is calculated as shown in Section 3.3.4, replicating the optical
density images captured experimentally (see Fig. 3.36b). Residuals are calculated by
subtracting the density modulated image from one without the modulation, the
residuals are then integrated along the z-axis to obtain the line density (see Fig. 3.36c).
We then compare the power spectrum of tilted and non-tilted residuals, and repeat for
a number of different spatial periods d. The tilted power spectra are normalised by the
non-tilted spectra and the relative difference is computed to estimate the modulation
versus spatial frequency q, thus creating a MTFθ for cloud tilt seen in Fig. 3.37a. To
simulate the effect of cloud tilt we then multiply the power spectrum 〈|ρ(q)|2〉 by
MTFθ. Figure 3.37b shows the result we see that the cloud tilt acts similar to the PSF in
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(A) (B)

(C)

FIGURE 3.36: (A) density slice through the plane parallel to surface
without tilt (left) and with tilt (right). (B) Simulated optical density
images of the tilted clouds. (C) line density of tilted images and the

calculated residuals for tilted and non-tilted clouds.

Fig. 3.29 it has a much stronger suppression of high frequencies. The modulation
grows with the radial size of the cloud and θ, thus traps with larger atom number
and/or ω⊥ will be more sensitive to θ.

For the traps we initially investigated θ ranged from 1° to 6.5°, and the value of the
laser beam tilt φ was unknown. To estimate φ we deliberately tilt the imaging beam
to maximise 〈|ρ(q)|2〉, this would mean that the laser beam is aligned with the cloud
tilt, i.e. θ + φ = 0°. We found that such condition is met when φ = 1.5°. Once we
knew our value of φ we then adjusted the imaging beam tilt such that θ + φ = 0° ±
0.5° for all traps. However, it is not good practice to apply large corrections to φ as it
can deteriorate the MTF of the optics (misalignment off the optical axis can increase
aberrations and reduce the resolution), we therefore ensure φ ≤ 2.5°, and hence all
traps investigated in Chapter 4 have θ no greater than 3°.
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(A) (B)

FIGURE 3.37: (A) MTFθ is calculated from the ratio of the normalised
amplitude of 〈ρ〉 for θ 6= 0° and θ = 0° at a number of different density
modulation periods d. (B) Application of MTFθ on 〈ρ〉, simulated by the
Ornstein-Uhlenbeck process (see Section 4.1.4). We see that 0.5° tilt has

negligible effect and therefore we consider it an acceptable error.

3.3.4 Split-step Fourier method

This section describes the method we have used to simulate the effect of the cloud tilt on
the power spectrum of the density ripples. It can also be used to generate a theoretical
prediction of the measurement in Fig. 3.33, the technique follows the approach used
in [152]. The method propagates the electric field ~E(~r) along the optical axis (the x
direction), with wave number k0 = 2π/λ, ~E(~r) is defined as,

∇2 ~E(~r) + k2
0ε(~r) = −∇[ ~E(~r) · ln(ε(~r))]. (3.24)

For a propagation through an object with complex relative permittivity ε(~r) = ε/ε0 and
relative susceptibility χ(~r) = ε(~r)− 1, where ε is the permittivity, and ε0 is the vacuum
permittivity. If ε(~r) varies slowly across the medium the RHS of Eq. (3.24) can be set to
zero, leaving,

∇2 ~E(~r) + k2
0ε(~r) = 0. (3.25)

Assuming light is linearly polarised along x such that ~E(~r) = E(~r)~ex, we can rewrite
Eq. (3.24) as,

−δ
2E(~r)

δx2
= [∇2

y,z + k2
0]E(~r) + k2

0χ(~r)E(~r). (3.26)

Applying the paraxial wave approximation and assuming the electric field has the form
E(~r) = exp(ik0x)E′(~r), where E′(~r) is a slowly varying envelope along ~ex, inserting
into Eq. (3.26) we get,

−2ik0
δE(~r)

δx
= ∇2

y,zE
′(~r) + k2

0χ(~r)E′(~r). (3.27)
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where the weak dependence of E′(~r) on x allows us to drop the δ2E′(~r)
δx2

term.
Propagation of E′(~r) can be split into two operations, one that performs free space
propagation with operator P′(~r2D,∆x) (χ(~r) = 0), and another that deals with the
absorption and refraction of the light Q′(~r2D,∆x) (this only considers the second term
of the right-hand-side in Eq. (3.26)). In the simulation free space propagation is
performed in Fourier space, the operators are given by,

P′(~r2D,∆x) = P̃′(~k2D,∆x) = exp

(
−i
k2

2D

2k0
∆x

)
, (3.28)

Q′(~r2D,∆x) = exp

(
i
k0

2

∫ x+∆x

x
χ(~r)dx,

)
(3.29)

under the condition that |χ(~r)| � 1 such that the dependence of E′(~r) on x remains
weak. The total propagation can then calculated by a split-step method,

E′(~r + ∆x) = P′(∆x/2)Q′(∆x)P′(∆x/2)E′(~r). (3.30)

Once the electrical field is known the intensity can be calculated via I(~r) = cε0|E(~r)|2/2,
from which the optical and atomic densities can be extracted using Eq. (3.4).

3.4 Preparation and characterisation of condensates

This section explains the experimental sequence used to produced a condensate in
terms of timings and processes. A lot of the steps are common to all ultracold atom
experiments however the optimal parameters can vary a lot depending on
environmental conditions. I will describe our specific sequence parameters and why
we have chosen them, the main limitations and how to resolve/improve on them.

3.4.1 Experimental sequence

Our typical sequence takes around 14 s to produce a single condensate. In the
experiment we can produce condensates with different atom number, temperature,
and trapping frequencies. Each run shares the same sequence up until the atoms are
loaded into the chip trap. The ideal sequence is as short as possible without sacrificing
too much on the final atom number, or shot to shot stability.
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FIGURE 3.38: Time series of the processes used to generate a condensate.
Each cloud generated undergoes the same process up until the chip
has bean loaded, from there the trapping currents are varied to get the
desired trap frequencies, then the hold time and final RF frequency are

manipulated to control atom number and temperature.

MOT loading: Approximately 2× 109 pre-cooled atoms from the 2D MOT are loaded
into the 3D MOT in 4 s at a height of 4 mm from the chip surface.

MOT compression: The MOT is compressed by increasing the trapping frequencies
and brought to a height of 1.5 mm from the surface of the atom chip, we then apply
sub-Doppler cooling for 7 ms reducing the temperature of the atoms to approximately
60 µK. The trapping fields are then turned off and the atoms are then optically
pumped to the |F = 2,mf = 2〉 ground state in 2.5 ms.

Magnetic trap loading: Magnetic trapping fields are turned on within a few ms

capturing approximately 1× 109 atoms and held for a further 50 ms and the cloud is
heated to about 300 µK during the process.

Compression and rf cooling: Radio frequency cooling is applied whilst the cloud is
compressed and brought to a height of 300 µm from the chip whilst maintaining a trap
bottom of roughly 1 G (this corresponds to 0.7 MHz). The cloud is cooled to
approximately 8 µK with 5× 106 atoms remaining. As the initial chip trap is not as
deep as the copper-Z trap hotter clouds would start spill out of the trap.

Chip loading: The rf frequency is raised instantaneously to 20 MHz and the atom chip
and PCB currents are ramped on and the copper-Z down in 600 ms. Approximately
4× 106 atoms are loaded into the chip trap with minimal heating.

Compression to final trap: The cloud is then moved to a height of 100 µm while being
compressed to the desired final trap frequencies. This is the closest we can get to the
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chip surface before observing adverse fragmentation.

Final rf cooling: Once the atoms are settled in the final trap, we apply the last RF
cooling ramp to set the final temperature of the atoms. It is during this ramp that we
reach the critical temperature and make a BEC, the formation of a condensate as the
temperature is reduced can be seen in Fig. 3.39. The cloud is then held for an
additional 150 ms in the presence of an RF-shield to ensure the cloud has thermalised,
a further optional hold time is applied to control the final atom number. The high
heating rate from the current noise means the maximum hold time is less than 1 s.

FIGURE 3.39: Formation of a BEC as the final rf frequency is reduced
and the temperature of the gas decreases. From top to bottom, cloud
temperature T = 641 nK, 547 nK, 466 nK and 165 nK, and condensate
fraction N0/Ntot = 0 %, 2 %, 14 % and 81 %. The trapping frequencies

are ω⊥ = 2π× 680 Hz and ω‖ = 2π× 23.5 Hz.

The specific values for currents, timings, frequencies and powers etc. were chosen
to optimise the phase space density. One way to analyse the effectiveness of the
sequence is to plot the cooling efficiency i.e. the ratio of the number of atoms lost per
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gain temperature reduction. Figure 3.40 shows the efficiency curves for three different
sequences (shallow gradient corresponds to better cooling) the blue curve shows the
progress made when we initially started to optimise the sequence. The cooling
efficiency starts well but as we get to colder temperatures there are not enough atoms
to maintain a high collision rate and the phase space density fails to reach unity i.e.
condensation does not occur. To increase atom number we then doubled the MOT
loading time, and with careful optimising of the rf cooling ramp we were able to
improve the cooling efficiency in the latter stages of the sequence such that the cloud
could condense. The yellow curve in Fig. 3.40 depicts the efficiency of the sequence in
Fig. 3.38, with the addition of the 2D MOT the atom number and ramp time was
improved throughout the sequence.

FIGURE 3.40: (Blue) No pre-cooling with the 2D MOT, 15 s MOT loading
from the background, 10 s evaporative cooling, poor cooling efficiency
during the end of the sweep prevented condensation. (Red) No 2D MOT,
30 s MOT loading, 10 s evaporative cooling, a higher initial atom number
kept cooling efficiency high enough to reach condensation. (Yellow) 2D
MOT, 4 s MOT loading, 7.5 s evaporative cooling. The green shaded area
depicts the critical temperature required for condensation in a trap with

a geometric mean frequency of ω̄ = 2π× 212 Hz.

The main limitations in our laboratory are, the absence of adequate air
conditioning, a poor vacuum pressure, and electrical noise. The lack of active
temperature control severely affects the long term stability of our experiment, the
output of many components (e.g. electrical currents and optical fibre coupling) is
dependent on the temperature of the laboratory (it typically takes an hour or two for
our experiment to reach a stable temperature). This in turn is affected by external
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temperatures and we see the lab temperature drift from morning to evening, day to
day (if there are sharp changes in the weather), and from winter to summer. The
sequence therefore requires constant tweaking in order to maintain atom number and
most importantly the final trapping frequencies. An obvious improvement would be
to install better AC units, and this has been scheduled to take place in the coming
year. We are also planning to implement active feedback on the electric currents
supplied to the trapping structures, this should keep the final trap frequencies fixed,
and thus improve shot to shot stability and reduce the warm up time.

Bad vacuum pressure increases the collision rate between trapped cold atoms and
the hot atoms from the background, thus reducing the lifetime of atoms in magnetic
trap. These are "bad collisions" (see Section 2.1.2). The bad collision rate effectively
determines the speed of the RF cooling sweep. The reasons for the poor vacuum
pressure are discussed in Section 3.1.2, the vacuum limited lifetime is shown in
Fig. 3.7, hence our sequence time in on the order of 10 s. Increasing the lifetime would
allow us to perform the cooling sweep slower making the cooling more efficient,
however since the high pressure appears to be down to the sub-D connectors on the
electrical feed-through connected to our vacuum chamber, it would require
replacement of the electrical feed-through. Though we did apply high vacuum sealant
around the sub-D pins which reduced the pressure from 5× 10−10 mbar to
1.5× 10−10 mbar.

Whereas a thermal cloud’s lifetime is largely vacuum limited, the condensate
lifetime is much shorter, typically below 500 ms, as it is subject to extra loss
mechanisms. Atom losses occur from collisions with untrapped background atoms,
three-body collisions (proportional to n2), two-body spin flips (proportional to n), and
parametric heating that comes from technical noise on the trapping fields. Heated
atoms accelerate losses as they can undergo multiple collisions with the condensed
atoms. To prevent the accelerated losses from heating, a radio-frequency (rf) shield is
used to remove the heated atoms from the trap [153]. The frequency of the rf shield
has to be slightly adjusted for different traps, we find 8 kHz to 12 kHz greater than the
final frequency of the rf cooling sweep to be optimal.
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FIGURE 3.41: (Left) Temperature versus hold time in the atom chip trap.
A BEC is created and allowed to thermalise in the presence of an RF-
shield, the shield is then switched off and held for a further time to allow
the current noise and background collisions to heat the cloud. From
a linear fit the heating rate is measured to be (302± 22) nK/s. (Right)
Optical density images of clouds at hold times of (from top to bottom)

0 ms, 120 ms, 280 ms and 440 ms.

The most problematic electrical noise in our lab came in the form of electrical
current noise in the trapping structures, and ground loops. Current noise refers to the
small AC current that is superimposed onto the DC output and depends on the
specifications of the power supply unit. It causes a shaking of the trapping potential
that leads to heating of the atoms if at a frequency comparable to ω⊥, ω‖, or the trap
bottom, a measurement of the heating rate is given in Fig. 3.41, often the only way to
reduce this is to buy a higher quality power supply or implement active stabilisation
[154]. Noisy input power can also affect the noise of the device output, we have low
noise power sockets in the laboratory which we power important devices such as the
laser diodes and PSUs for trapping structures. Initially we powered our control
system directly from the mains, this was later found be a large noise source and
switching to an external PSU dramatically increased the cloud lifetime. Ground loops
occur when the grounds for different devices become connected, this can lead to
current flow in undesirable paths. We have observed ground loops to cause
components output to become noisy, and even radiate in the radio-frequency 1 MHz to
20 MHz range (this is bad as it can couple the mf states and cause additional spin-flip
losses). Ground loops are notoriously complicated to resolve and since in typical cold
atom experiments there are numerous connections between multiple devices it is
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important to take great care to avoid short-circuits between different grounds. To
protect against stray radio-frequency radiation we use cable shielding on the
connections to the trapping structures.

Final cloud parameters

The range of traps used in the experiment in Chapter 4 are listed in the table below.
The values were chosen to investigate the 1D and 3D regimes. For the 1D regimes
we wanted to explore any difference between the usual 1D conditions, µ/~ω⊥ <1, and
kBT/~ω⊥ <1 with the less stringent definitions such as high aspect ratio and L/λT

�1. For the 3D regime we need L/λT �1, in general this requires large atom number,
and low temperatures. Atom number and temperatures are obtained by the fitting
procedure discussed in Section 3.3.1, and the trap frequencies are determined by the
measurement shown in Fig. 3.42.

Trap parameter Value
ω‖ [2π ×Hz] 15 - 34
ω⊥ [2π ×Hz] 400 - 1400

λ 12 - 80
N [104] 0.3 - 12
T [nK] 80 - 500

TABLE 3.2: Cloud parameters
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(A) (B)

FIGURE 3.42: (A) Example of a measurement of the radial trapping
frequency ω⊥, an AC current is applied to PCB track 2C, the frequency is
then swept. The AC current causes parametric heating of the cloud, and
when in the presence of an RF shield heated atoms are kicked out of the
trap, the effect is strongest on resonance hence the trap frequency is the
point where most of the atoms are lost. In this measurement ω⊥ = 2π×
(800± 10) Hz. (B) Example measurement of the longitudinal trapping
frequency ω‖, a small horizontal kick is applied to the cloud, the cloud is
held in the trap and undergoes an oscillation at the trap frequency. The
hold time is varied and the horizontal position extracted, the data is then
fitted to a damped sinusoidal function. In this measurement ω‖ = 2π×

(17.70± 0.16) Hz.



Chapter 4

Density Ripples in the crossover
Regime

This chapter explains our main experiment; measurement of the density ripples across
the 3D-1D crossover in order to probe the evolution of the phase coherence, and
determine the driving parameters. The first section describes four contending
theoretical models that can be used to predict the power spectrum of the density
ripples after time of flight 〈|ρ(q)|2〉 in elongated phase-fluctuating gases. Second the
experimental acquisition and data analysis methods are explained. Finally the results
are shown and discussed, this part contains a comparison of our measurements
against the different theoretical models and an investigation into the potential driving
parameters of the 3D-1D crossover regime.

4.1 Equilibrium properties: simulation

In this section four theoretical models are described, each concerned with the density
ripples after time of flight but differing in their assumptions and approach. The basis of
each model is explained and their results will be compared to each other, comparison
with our measured data is made in the following section.

4.1.1 Imambekov result

In 2009, an analytical expression was presented for the spectrum of the density ripples
after time of flight for a weakly interacting 1D gas of length L → ∞ in the
thermodynamic limit i.e. n1D = N/L is constant [93]. The model assumes that at time
t = 0 the confinement potential is switched off instantaneously, during time of flight
interactions are assumed to be negligible and redundant, and axial expansion is weak
such that mean density profile after time of flight is equal to the in-situ density profile
i.e. 〈ρ(y, ttof)〉 = n(y, t = 0) = n1D where n(y) denotes the in-situ density profile, and
ρ(y) the density after time of flight. The main result was first given in Section 2.3.3,

83
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however for readability I will repeat it here1,

〈|ρ̃(q)|2〉
n2

1Dξ
=
λT q −

[
λT q cos(2~q2ttof/m) + 2 sin(2~q2ttof/m)

]
exp(−2~qttof/mλT )

qξ(1 + λ2
T q

2)
.

(4.1)
This result is valid if

π

ξ

√
~ttof

m

kBT

µ
� 1, (4.2)

and if satisfied, the first order correlation function can be approximated to g(1)(y) =

exp(−|y|/λT ). Note that 〈|ρ(q)|2〉 is an intensive quantity, when comparing Eq. (4.1)
to a system of finite length we introduce the parameter 〈|ρ̃(q)|2〉 = L〈|ρ(q)|2〉. The
spectrum shows non-monotonic behaviour as long as ttof < 6.5mλ2

T /~, the position of
the minima and maxima are roughly given by,

qmin
n =

√
πm2n

~ttof
, (4.3a)

qmax
n =

√
πm(2n− 1)

~ttof
. (4.3b)

These are "standing wave" conditions (the arguments of the sine and cosine terms in
Eq. (4.1) are equal to πn / 2πn) which become more precise at lower temperatures
[93], i.e. the contrast between minima and maxima increases with decreasing
temperature. The presence of minima and maxima in 〈|ρ(q)|2〉 is understood by
interpreting the free expansion of a phase fluctuating cloud as the matter-wave
equivalent to the temporal Talbot effect [155]. Initially formulated in optics from the
context of a plane wave incident on a periodic grating. At regular distances from the
grating (the Talbot length) the image of the grating is reproduced. The effect has been
observed in cold atom experiments numerous times, [156–161].

In Fig. 4.1a the function in Eq. (4.1) is plotted for various times-of-flight,
illustrating how the spectrum changes. The first maximum qmax

1 shows the worst
agreement with Eq. (4.3b) this is due to the interplay between the exponential decay
term with the oscillatory sine and cosine terms. The modification of the spectrum due
to finite optical imaging resolution is demonstrated in Fig. 4.1b. For comparison,
Fig. 4.1c shows an experimental measurement of the power spectrum of the density
ripples. This measurement has also been obtained with a 2D degenerate Bose gas [98]
for which the analytic prediction was also given in [93]. However, they found the
positions of the maxima to be given by qmax

n '
√
πm(1.8n− 1.26)/~ttof as opposed to

Eq. (4.3b), they attribute the discrepancy to interactions during early time-of-flight,
which was also theoretically investigated in [162].

1Note, the original expression in [93] contained an incorrect factor, which was later corrected in [97].
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(A)

(B)

(C)

FIGURE 4.1: (A) (Left) Density ripple power spectra 〈|ρ̃(q)|2〉 generated
with Eq. (4.1) for a cloud with n1D = 24 µm−1 and T = 5 nK at time-of-
flight 30 ms (blue, solid), 35 ms (red, dotted), and 40 ms (yellow, dashed).
Minima/maxima of the spectra shift to lower frequencies as time of
flight increases. (A) (Right) Minima/maxima of spectra at different time-
of-flight align when plotted against the dimensionless quantity ~q2ttof

2πm ,
positions of the minima/maxima are estimated by Eqs. (4.3a) and (4.3b).
(B) Density ripple power spectra generated as in (A) with an additional
correction for the finite optical imaging resolution. The shift in peak
position becomes less clear, and the peaks fail to align when plotted
against ~q2ttof

2πm . (C) Experimentally measured power spectra 〈|ρ̃(q)|2〉 for
a cloud in the cross-over regime with ω(⊥,‖) = 2π× 1075 Hz and 18.6 Hz,

N = 6.5× 104, T = 350 nK, L/λT ∼5, and µ/~ω⊥ = 3.5.
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4.1.2 Local density approximation

Imambekov’s result Eq. (4.1) was derived for an infinitely long system with uniform
density, however this is not a realistic experimental scenario. Obviously L = ∞ is
impossible, and generally the confining potential means the system’s density will be
inhomogeneous, even though homogeneous densities are possible with box traps [129,
163–166]. According to [93] corrections for finite length can be neglected if,

mL

~t
min (L,Kξ/a)� 1, (4.4)

where K = π~n1D/mc is the Luttinger liquid parameter, and c is the speed of sound, if
only the lowest transverse mode is occupied then c =

√
2~ω⊥n1Da/m. This is easily

satisfied within our experimental parameters. If Eq. (4.4) holds then the density
inhomogeneity can be accounted for using the local-density approximation (LDA) by
averaging Eq. (4.1) over many smaller parts of the gas, each with different
homogeneous densities. This approach was suggested in [93] but has been used and
developed mainly by the Paris group [95, 96, 145, 167]. For systems with L � λT and
~qttof/m, and if we only consider wavevectors greater than the inverse cloud length
q � 1/L, the region of cloud that contributes to the density fluctuations at position y

is much smaller than L justifying the use of the LDA [96]. Implementing the LDA
calculates Eq. (4.1) with the local density n0(y) and averages over the length of the
gas, this is expressed by [96],

〈|ρ̃(q)|2〉 =

∫
dy〈|ρn0(y)(q)|2〉. (4.5)

They find excellent agreement with the result from a complete calculation based on
the Bogoliubov modes [96, 145]. A comparison between the two results is shown in
Fig. 4.2, however the choice of density to make a fair comparison with the LDA isn’t
obvious. For the LDA the density profile n(y) is assumed to be Thomas-Fermi, to
compare with the homogeneous we can either use the peak density n(0) or the
average density N/L, both results are shown Fig. 4.2 though the correct density is
seemingly arbitrary. Though, this highlights the limitation of a comparison between
an infinite homogeneous system and a finite inhomogeneous system.
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FIGURE 4.2: Density ripple power spectra 〈|ρ̃(q)|2〉 calculated with
Eq. (2.67) in the homogeneous case for two densities, (blue, dashed)
n1D = N/L, and (green, solid) n1D = n(0) the peak density of
the longitudinal density profile (assumed to be Thomas-Fermi), finally
using the LDA (red, dotted). Cloud parameters are taken from an
experimentally measured values of a 1D gas, where (ω⊥, ω‖) = 2π×
1235 Hz and 16.1 Hz, N = 6.7× 103, T = 105 nK, L/λT = 9.5, and

µ/~ω⊥ = 0.87.

Both the homogeneous and LDA results have been used to perform thermometry,
a measured power spectrum or g(2) can be fitted with the analytical result (with an
imaging correction applied) where T is the only free parameter. The homogeneous
result was used in [94], and the LDA in [95, 96, 145, 167]. An example thermometry
measurement using the LDA is shown in Fig. 4.3, for a 1D cloud we observe an
agreement (albeit weak) with the standard wing fitting procedure (see Section 3.3.1),
however in the crossover regime we observe that the LDA underestimates the
temperature by a factor of 2-3.
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FIGURE 4.3: Temperature measurement using the LDA simulation.
Measured density ripple power spectrum (black, dots) of a 1D cloud
after 34 ms time-of-flight fitted with the LDA simulation (blue, solid
line). Fitting returns a temperature of T =(77± 15) nK, whereas
standard wing fitting (see Section 3.3.1) gives T =(105± 32) nK, which
are consistent within the error (determined from statistical variations).
The large error in the temperature T from wing fitting procedure is
attributed to the low atom number, as the optical density of the thermal
component at low atom numbers and long time of flight is very small
and hence the signal to noise is also low. Measured cloud parameters
(ω⊥, ω‖) = 2π× 1235 Hz and 16.1 Hz, N = 6.7× 103 µ/~ω⊥ = 0.87, with

σpsf = 4 µm.

4.1.3 Dettmer result

In 2001 an experiment was performed analysing the nature of phase fluctuations in
elongated 3D BECs [32, 33]. Acknowledging the fact that interactions will play a role
during time-of-flight they presented a model that incorporates it, however it assumes
that the phase fluctuations remain small with respect to the overall density profile of
the cloud, which should be valid in 3D. The initial assumption of the distribution of
phase was taken from [31] which was evaluated for elongated 3D condensates.
Fluctuations arise from excitations of two groups: high-energy particle-like excitations
εj > ~ω⊥ and low energy collective excitations εj < ~ω⊥. Here, εj = ~ω‖

√
j(j + 3)/4 is

the excitation spectrum and is calculated by solving the Bogoliubov-de-Gennes
equations for the case of an elongated 3D condensate [31, 168]. High-energy
excitations have wavelengths smaller than both the radial and longitudinal size of the
condensate and therefore have "3D character" and can only provide small phase
fluctuations. In contrast, low-energy excitations have wavelengths larger than the
radial size but smaller than the longitudinal size and as such have "1D character". The
low-energy excitations are expected to be the dominant contribution to the phase
fluctuations [31].
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FIGURE 4.4: Visualisation of the axial spectrum of low-energy
excitations. The quasi-condensate consists of a highly occupied
groundstate ψ0 and numerous low-energy excitations ψj . These
excitations are phonons (or quasi-particles) and can be viewed as density

oscillations within the atomic cloud [169].

The low-energy axial excitation spectrum is visualised in Fig. 4.4, the occupation is
given by Nj = [exp(εj/kBT )− 1]−1 in accordance with Bose-Einstein statistics. The
total phase distribution θ(y) is evaluated by a sum over the phase contributions from
each axial mode i.e. θ(y) =

∑∞
j=1 θj(y). Contributions from each mode are weighted

by their occupation number Nj , however random thermal fluctuations will drive
transitions between different modes. The phase distribution of a single mode j is [32]

θj(y) =

[
(j + 2)(2j + 3)g

4πR2
⊥Lεj(j + 1)

]1/2

P
(1,1)
j

( y
L

) (αj + α∗j )

2
, (4.6)

where P
(1,1)
j

( y
L

)
are Jacobi polynomials, αj and α∗j are complex Gaussian random

variables that have replaced the creation and annihilation operators, as is typical in a
c-field approximation. The random variables αj and α∗j capture changes in the
occupation of each mode that arise from thermal fluctuations. Examples of phase
distributions calculated according to Eq. (4.6) are shown in Fig. 4.5 for various
temperatures, in both 1D and 3D configurations. It can be seen that the 3D
configuration gives rise to more axially phase-coherent clouds.
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(A)

(B)

FIGURE 4.5: Numerically simulated phase distributions produced by
Eq. (4.6) at different reduced temperatures T/Tc. (A) 1D cloud with
(ω⊥, ω‖) = 2π× 1235 Hz and 16.1 Hz, N = 6.7× 103, µ/~ω⊥ = 0.87, and
L/λT = 1.35, 6.75 and 11.5 respectively. (B) 3D cloud with (ω⊥, ω‖) =
2π× 395 Hz and 33.7 Hz, N = 9.6× 104, µ/~ω⊥ = 8.37, and L/λT = 0.05,

0.25 and 0.42 respectively.

By linearising the 3D Gross–Pitaevskii equation with respect to small fluctuations
of the phase and density, and imprinting the phase θ(y) on the in-trap wavefunction,
they arrive at the following analytical expression for the relative density fluctuations
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after time of flight,

δn(y)

n0(y)
= 2

∑
j

sin

[
ε2j ttof

~µ(1− (y/L)2)

]
(ω⊥ttof)

−(εj/~ω⊥)2θj(y), (4.7)

and demonstrated that this expression reproduces the result obtained from a full 3D
numerical solution of the GPE for a given time-of-flight. Using this equation we can
generate density ripples after time-of-flight and measure the power spectrum through,

〈|ρ̃(q)|2〉 = 〈|
∫
dyδρ(y)e−iqy|2〉. (4.8)

Here δρ(y) = ρ(y) − 〈ρ(y)〉 are the density perturbations from the mean. An example
is shown in Fig. 4.6, where it has been plotted with the analytical result for a
homogeneous density as well as the local density approximation. Since Eq. (4.7)
provides a spectrum of a single cloud we have to take the mean of many realisations,
the random nature of the fluctuations means that spectra can look slightly deformed
for a low number of realisations (see Fig. A.3).

FIGURE 4.6: Density ripple power spectra for the homogeneous case
with n1D = n(0) (blue, dashed) calculated with Eq. (2.67), the
numerically simulated LDA (red, dotted), and Dettmers result from
Eq. (4.7) (green, solid) a mean from 200 realisations. Cloud parameters
(ω⊥, ω‖) = 2π× 1235 Hz and 16.1 Hz, N = 6.7× 103 µ/~ω⊥ = 0.87, with

σpsf = 4 µm.

In the experiment [32, 33], the expression for the ripples after time-of-flight
Eq. (4.7) is used to further obtain a closed-form expression for the mean square
density fluctuations in the central region of the cloud σBEC/n0,

(σBEC/n0)2 =
T

λTφ

√
ln τ

π


1 +

[
1 +

(
~ω⊥τ
µ ln τ

)2
]1/2

1/2

−
√

2

 . (4.9)
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Here, τ = ω⊥ttof , λ = ω⊥/ω‖, and Tφ is a characteristic temperature given by,

Tφ =
15

32

(~ω‖)2Ntot

µkB
. (4.10)

In the temperature interval Tφ < T < Tc the phase will fluctuate at a length scale
smaller than the length of the cloud, it is an equivalent parameter to the phase
coherence length i.e. L/λT ≈ T/Tφ [31]. They measure σBEC/n0 smaller than the
prediction of Eq. (4.9) by a factor of approximately two, and attribute this discrepancy
to a small tilt in the imaging beam. A similar measurement with our data is shown in
Fig. 4.7b, instead here we have compared the experimental data to the numerical
simulation. The quantity σBEC/n0 is the relative standard deviation of density
fluctuations, in Eq. (4.9) this quantity is evaluated at the cloud centre. To extract this
quantity from our measured data and the numerical simulations we have taken the
mean standard deviation over a half-width about the cloud centre. The numerical
simulation and the analytical result of Eq. (4.9) assume that the phase fluctuations
remain small, thus, we have noted the amplitude of the power spectrum 〈|ρ̃(qmax

1 )|2〉
in the color scale. From Fig. 4.5a we observe that even the numerical simulations are
inconsistent with Eq. (4.9), and for the most part the discrepancy is larger when
〈|ρ̃(qmax

1 )|2〉 is large. A comparison of the numerical simulation with experimental
measurements is shown in Fig. 4.7b. From a linear fit to the data we observe that the
experimentally measured values of σBEC/n0 are approximately 60 % of those
generated by the numerical simulation. This is not far from the factor of two disparity
observed in [32], however in our case we have accounted the tilt of the imaging beam
Section 3.3.3. Therefore, this may indicate that the assumption of small phase
fluctuations is invalid.
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(A) (B)

FIGURE 4.7: (A) Relative standard deviation of the density fluctuations
σBEC/n0 calculated from the analytical result in Eq. (4.9) compared to the
numerical simulation. The dashed line is guide to the eye at a gradient
of one indicating agreement between the numerical simulation and
Eq. (4.9). The colourbar indicates the amplitude of the power spectrum
〈|ρ̃(qmax

1 )|2〉 generated by the numerical simulation. (B) Comparison of
σBEC/n0 measured experimentally and the numerical simulation. In this
plot the effect of the imaging has been taken into account. The black-
dashed line is a guide to the eye with a gradient of one, and the green-
solid line is fit to the data and has a gradient of ∼ 0.6. The colourbar
indicates the amplitude of the power spectrum 〈|ρ̃(qmax

1 )|2〉 measured
experimentally.

The publication [96] calculates a correction to the LDA to account for the
interactions based on Dettmer’s result [32, 33], and amounts to multiplying the power
spectrum by a frequency-dependent function

Cint = (ω⊥ttof)
−(cq/ω⊥)2 . (4.11)

In their experiment Cint was always >0.95, meaning they could neglect interactions.
For our experimental parameter space this correction factor can be significant, in
particular for the clouds closer to the 3D regime, due to the dependency of Cint on ω⊥,
see Eq. (4.11). Considering wavevectors from DC to q = 2π× 0.4 µm−1, Cint can be as
low as 0.4.
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FIGURE 4.8: Effect of interactions during time-of-flight on the power
spectra generated from the LDA simulation (see Eq. (4.5)) according to
the correction factor Cint from Eq. (4.11). (Blue, dash-dotted) 1D cloud
interaction-corrected, (blue, solid) 1D cloud no interaction correction,
(yellow, dotted) 3D cloud interaction-corrected, and (yellow, dashed) 3D
cloud no interaction correction. 1D cloud parameters (ω⊥, ω‖) = 2π×
1235 Hz and 16.1 Hz, N = 6.7× 103, µ/~ω⊥ = 0.87, and L/λT = 9.5. 3D
cloud parameters (ω⊥, ω‖) = 2π× 395 Hz and 33.7 Hz, N = 9.6× 104,

µ/~ω⊥ = 8.37, and L/λT = 0.33.

4.1.4 Ornstein-Uhlenbeck process

This numerical approach was developed by the experimental group in Vienna [94,
170–174] and has been used as a thermometry tool in many of their recent
publications. The method relies on generating the phase pattern by an
Ornstein-Uhlenbeck stochastic process [170, 175]. The original application of the
Ornstein-Uhlenbeck (OU) process was in modelling Brownian motion [176]. The main
result is that the phase pattern can be generated by,

θ(y + dy) = θ(y) +

√
2dy

λT (y)
N (0, 1), (4.12)

where N (0, 1) is a random number of Gaussian distribution and a standard deviation
of 1. The updating formula is useful as it allows us to alter λT to match the local density
n(y). The generated phase patterns are displayed in Fig. 4.9. Figure 4.10 shows that the
phase pattern generated via Eq. (4.12) results in the same spatial correlation properties
as in Eq. (4.6).
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(A)

(B)

FIGURE 4.9: Phase patterns produced by Eq. (4.12) at different reduced
temperatures T/Tc. (A) 1D cloud with (ω⊥, ω‖) = 2π× 1235 Hz and
16.1 Hz, N = 6.7× 103, µ/~ω⊥ = 0.87, and L/λT = 1.35, 6.75 and 11.5
respectively. (B) 3D cloud with (ω⊥, ω‖) = 2π× 395 Hz and 33.7 Hz, N =

9.6× 104, µ/~ω⊥ = 8.37, and L/λT = 0.05, 0.25 and 0.42 respectively.
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FIGURE 4.10: Correlation functions of the in-situ phase generated by the
OU method (green, squares) Eq. (4.12), and the Dettmer method (red,
triangles) Eq. (4.6). The black dash-dotted line indicates the expected
exponentially decaying correlation function for a homogeneous gas with
density equal to that of the peak density from a 1D Thomas-Fermi
density profile, here λT (n(0)) = ∼16 µm. Both methods agree, and their
exponential fits (fit to OU solid green curve, and the fit to DET is the
dashed red curve) give λT = ∼12 µm, in reality the decay shouldn’t be
a pure exponential, as λT is spatially dependent in the inhomogenous

case.

Once the phase pattern is known it can be imprinted onto the wave function which
(neglecting density fluctuations) has the form of,

ψ(y, t = 0) =
√
n1D(y)eiθ(y). (4.13)

The wave function after time-of-flight is then evaluated by applying the propagation
operator U(ttof , 0)2,

ψ(y, ttof) = exp

(
− ittof

~
Ĥ

)
ψ(y, t = 0). (4.14)

At t = 0 the potential is instantaneously switched off, assuming ballistic expansion i.e.
interactions are neglected, then the Hamiltonian reduces to the kinetic energy term Ĥ =
p̂2

2m = ~2
2m

∂2

∂y2
. The propagation is easily performed in Fourier space as a differentiation

in real space becomes a multiplication in k-space. The propagator is then,

F
[
exp

(
− ittof

~
Ĥ

)]
⇒ exp

(
−i~k

2

2m
ttof

)
, (4.15)

2This is only true if the Hamiltonian is time-independent.
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and wave function after expansion is then [177],

ψ(y, ttof) = F−1

[
exp

(
−i~k

2

2m
ttof

)
F [ψ(y, t = 0)]

]
. (4.16)

The density after time-of-flight is then simply ρ1D(y, ttof) = |ψ(y, ttof)|2, and the power
spectrum can be calculated with Eq. (4.8). A comparison of the four models for a 1D
cloud is shown in Fig. 4.11.

FIGURE 4.11: Theoretical predictions of density ripple power spectra
for the homogeneous case with n1D = n(0) (blue, dashed), the LDA
simulation (red, dotted), simulation based on Dettmers result Eq. (4.7)
average of 200 realisations (green, solid), and the OU simulation average
of 200 realisations (purple, dash-dotted). Cloud parameters (ω⊥, ω‖) =
2π× 1235 Hz and 16.1 Hz, N = 6.7× 103 µ/~ω⊥ = 0.87, with σpsf = 4 µm.

We observe that the OU and LDA approach give good agreement. This is useful
for numerical calculations, as the LDA is simply calculated from an analytical
formula, whereas the OU method requires perform multiple Fourier transforms across
many realisations. Though the question remains, which method is more accurate in
predicting experimental observations? We shall explore the answer to this question in
the next section 4.2. It is expected that Dettmer’s result should differ from the LDA
and OU methods, as it takes into account interactions during the initial period of
expansion after trap switch-off and also assumes relatively small fluctuations of the
phase. What is unusual is that the amplitude of the first peak is significantly higher,
which is in contrast to what one might expect for a model that assumes small
fluctuations a priori. It also predicts the amplitude of 〈|ρ̃(q)|2〉/N2 at high q is lower
than in the other models.
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4.1.5 Stochastic Gross-Pitaevskii Equation

We should note that another theoretical model not discussed in this thesis is the
application of the stochastic Gross-Pitaevskii equation (SGPE) [178, 179] to generate
the distrubtion of the phase within the gas. The SGPE adds a complex noise term to
the GPE to account for density and phase fluctuations from low lying modes and in
contrast to the regular GPE it is able to model clouds at finite temperature. It has been
used to analyse previous experimental work, [180–182]. We are considering extending
the research reported in this thesis to include this model, however to this date the
work has not been carried out.

4.2 Equilibrium properties: experiment

This section describes the data acquisition and analysis procedure, presents the results,
and discusses our findings.

4.2.1 Acquisition and analysis procedure

The aim of our acquisition process is to extract measurements of the power spectra and
second order correlation function, for varying trap parameters, and across the 1D-3D
crossover regime.
Step 1 - Absorption images are captured of many realisations (we typically take ∼500

images for each cloud) of the same cloud parameters, i.e. trap frequencies ω⊥ and ω‖,
atom number N , and temperature T . The optical densities are obtained and a fringe
removal algorithm (see Fig. 3.24) is applied, the OD images are then fitted and the
column density distribution is extracted.

FIGURE 4.12: Five single shot optical density images from one data set,
clearly showing the fluctuations are randomly changing shot to shot.
The final image is an average of 250 shots, the random nature of the

fluctuations means that the density profile of the mean is smooth.
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Step 2 - Images are fitted to extract size, atom number, and temperature (see
Section 3.3.1), an example is shown in Fig. 4.13. We then post-select the data by atom
number N , and Thomas-Fermi radius Ry, in order to reduce the spread of these
parameters in the data set, in theory only atom number N should need to be used,
however our experiment is prone to temperature drifts which have a secondary
knock-on effect that can cause the trap frequencies to vary slightly. Post-selection
typically leaves >200 images, though this varies depending on the experimental
stability during the acquisition.

FIGURE 4.13: Example of fit of bimodal cloud, consisting of thermal
part (magenta) together with a phase-fluctuating BEC (green), with trap

frequencies ω⊥ = 2π× 1005 Hz, and ω‖ = 2π× 16.9 Hz.

Step 3 - Post-selected images are then processed to obtain the density residuals,
δρ(y)j . First the thermal component is removed by subtracting its contribution using
the fit. This ensures that atom number variation in the thermal fraction does not play
a role, although these variations would only contribute to the low/DC part of the
spectrum, we consider it good practice to remove it. We then crop out the background
such that only the condensate remains, thereby minimising any contribution to the
power spectrum from detector noise. After cropping, the image is vertically
integrated to get the line density ρ(y, ttof). The density residual for each shot is
calculated by subtracting the mean of all shots. This process is shown in Fig. 4.14.
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FIGURE 4.14: Image processing to extract δρ(y)i from absorption images
of a phase fluctuating cloud. The original optical density image is shown
in the the top left, using the fit the thermal component is subtracted. An
elliptical crop is performed using Ry and Rz obtained from fitting. The
cropped image is then vertically integrated and converted from optical
density into atomic density (black dashed line, bottom right). Finally
the mean line density (blue dots, bottom right) is subtracted to obtain
the residual density fluctuations δρ(y) (red solid line, bottom left). Here
the prediction for the density profile after time-of-flight is plotted (red
solid line, bottom right) using the self similar solutions from [183] which

is valid in the Thomas-Fermi regime.

Step 4a - Calculate power spectrum of the density ripples, 〈|ρ̃(q)|2〉/N2, using
Eq. (4.8). For each residual δρ(y) the modulus square of the Fourier transform is
calculated and then normalised by atom number to get power spectrum of a single
cloud |ρ̃j(q)|2/N2

j , where j is the shot number. Artificial fringes can arise in the
residuals, δρ(y)j = ρj(y) − 〈ρ(y)〉, if there is positional variation of the cloud along y,
this is accounted for by centering each density profile. The mean of the spectra is then
computed to get 〈|ρ̃(q)|2〉/N2. Examples of the single shot spectra and their
corresponding mean are shown in Fig. 4.15. Once we have obtained the mean power
spectrum we fit the measurement with the LDA Eq. (4.5), and extract two features, the
peak position qmax

1 , and the peak amplitude 〈|ρ̃(qmax
1 )|2〉/N2, which can be seen in

Fig. 4.15. Evaluation the shot noise of the camera found a noise floor well below
(�1 %) the smallest 〈|ρ̃(qmax

1 )|2〉/N2 measured.
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FIGURE 4.15: (Left) Mean power spectrum 〈|ρ̃(q)|2〉/N2 of a phase
fluctuating cloud (black, dashed), five example spectra of single shots
are shown (solid, coloured). The mean of the spectra is taken from a total
of 250 shots. The inverse cloud length is indicated by the black dashed
line, contributions below this line typically come from variations in total
atom number. (Right) Fit with the LDA simulation (red, solid) to the
measured spectrum (black, dotted) which has uncertainty indicated by
the grey shaded region, all fit parameters (N , T , ttof , and σpsf ) have been
left free to give the best fit (as opposed to Fig. 4.3 where only T is a free
parameter so the temperature can be estimated). The magnitude and

position of the peak is extracted, as indicated in the plot.

Step 4b - Calculate density-density correlations, in this case we use the averaged
two-point correlation function g̃(2)(y), introduced in [94]. The autocorrelation for each
density profile is computed G

(2)
j =

∫
ρj(u)ρj(u + y)du, and the mean taken to attain

G(2) = 〈
∫
ρ(u)ρ(u + y)du〉. This result is then normalised with the autocorrelation of

the mean density profile,

g̃(2)(y) =
〈
∫
ρ(u)ρ(u+ y)du〉∫
〈ρ(u)〉〈ρ(u+ y)〉du

. (4.17)

An example measurement is displayed in Fig. 4.16, the corresponding power spectrum
can also be seen in Fig. 4.15. The theoretical prediction for a homogeneous gas with the
same temperature, and peak density is plotted in comparison.
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FIGURE 4.16: Normalised two-point density correlation function for a
phase fluctuating cloud. (Blue dots) Experimentally measured g̃(2)(y),
the surrounding blue shaded area indicates the statistical uncertainty.
(Black solid line) Theoretical prediction for a homogeneous gas [93]

using Eq. (4.1) and Eq. (2.66).

4.2.2 Results and Discussion

In this section I present our results, and also discuss our conclusions. First I review
the theoretical models mention in the previous section, second the effect of interactions
during time of flight, and finally the driving parameters of the 3D-1D crossover.

Comparison of theoretical models and hydrodynamic expansion

A comparison of the power spectrum 〈|ρ̃(q)|2〉/N2 predicted by all models with an
experimental measurement of a 1D cloud is displayed in Fig. 4.17. We see that the
Ornstein-Uhlenbeck simulation gives the best match. The prediction from the LDA is
also a near match, this method has its advantages as mentioned in Section 4.1.2 it is
computationally much simpler than the OU method.
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FIGURE 4.17: Density ripple power spectra from the homogeneous case
with n1D = n(0) (blue, dashed), the LDA (red, dotted), the Dettmer
model with 200 realisations (green, solid), the OU model with 200
realisations (purple, dash-dotted), and the experimental measurement
(black squares) the shaded region indicates the statistical uncertainty.
The interaction correction Cint has been applied to the OU and LDA
spectra. The cloud parameters are (ω⊥, ω‖) = 2π× 1235 Hz and 16.1 Hz,

N = 6.7× 103 µ/~ω⊥ = 0.84, with σPSF = 4 µm.

To give a quantitative measure of the agreement between the theory and the data
we define a quantity δρ,

δρ =

∫
dq|〈|ρ(q)|〉theory − 〈|ρ(q)|〉exp|∫

dq〈|ρ(q)|〉exp
, (4.18)

which can be understood as the relative difference between the theory and the
measurement. In other words, if δρ = 0 then the theoretical prediction is a perfect
match to the measurement. This quantity is plotted versus L/λT in Fig. 4.18.



Chapter 4. Density Ripples in the crossover Regime 104

(A) (B)

FIGURE 4.18: Moving mean of δρ plotted versus L/λT . The moving
mean (an average over ± 3 data points) is used in order to extract the
general trend of the data. (A) The three inhomogeneous density models
are compared, (red, dashed) Dettmer, (blue, dotted) OU, (green, solid)
LDA. (B) The interaction correction Cint is applied on the OU and LDA,

(red, dashed) Dettmer, (blue, dotted) OU+, (green, solid) LDA+.

We observe that the OU method gives best the agreement across the most of the
parameter space, however it only gives a good agreement (δρ . 1) in the 1D regime.
Whilst our experiment does not probe deep into the 1D regime, the OU method has
been used successfully in other experiments that do [172–174, 184]. Towards the 3D
end of the parameter space (L/λT ≤ 1), we see that Dettmer’s model becomes the best
predictor of the power spectrum, however δρ is high, Fig. 4.19 shows an example of
the spectra for L/λT ∼ 0.5. Dettmer’s model appears to correctly predict the peak
position qmax

1 , but not the peak amplitude 〈|ρ̃(qmax
1 )|2〉/N2, diverging significantly from

other models around L/λT ∼ 4. Applying the interaction correction Cint (Eq. (4.11))
given in [96] to the OU model (from hence forth I will refer to the interaction corrected
OU/LDA models as OU+/LDA+), partially recovers Dettmer’s prediction (this can be
seen in Fig. 4.19 and Fig. 4.18b) indicating that the derivation of Cint is valid.
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FIGURE 4.19: Density ripple power spectra 〈|ρ̃(q)|2〉/N2 for a cloud in
the 3D limit with L/λT = 0.42 and µ/~ω⊥ = 7.1 (black squares, shaded
region indicates statistical uncertainty), with theoretical predictions of

Dettmer (red, dotted), OU (blue, solid), and OU+ (blue, dashed).

A qualitative explanation of the effects of interactions can be understood as
follows, immediately after the trapping potential is switched off the cloud undergoes
hydrodynamic expansion, in this stage the interaction energy still plays a role,
however it is quickly converted into kinetic energy causing the gas to undergo
accelerated expansion in the radial direction. Once the interaction energy becomes
negligible the expansion is ballistic, and size increases at a constant rate. In the
Thomas-Fermi regime the radial size during expansion is given by,
R⊥(t) = R⊥(0)

√
1 + (ω⊥t)2 [183], in 1D the scaling is the same except R⊥ is replaced

with a⊥ (see Eq. (2.51)). The timescale of hydrodynamic expansion is determined by
the inverse of the trapping frequency thydro = (ω⊥/2π)−1, in our experiment this
ranges from 0.75 ms to 2.5 ms. Thus for weaker radial confinement the hydrodynamic
expansion time is longer, and whilst in this regime momentum transfer can occur
between the radial and axial directions. This creates an additional axial velocity to the
velocity field already present from the phase gradients, causing the density to spread
out further than would be observed without interactions. Hence the separation of the
density fringes will increase shifting qmax

1 to a lower spatial frequency. This effect was
observed in a 2D gas [98] and described theoretically in [162], in 2D systems the effect
of interactions are stronger as the cloud only expands fast in one dimension.
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(A)

(B)

FIGURE 4.20: (A) Peak position qmax
1 versus L/λT , blue dots indicate

the measured data, the errorbars display the statistical uncertainty.
For visibility the moving mean of the theoretical predictions, OU (red,
dashed), Dettmer (green, solid), have been plotted, the shaded regions
indicate the moving standard deviation. (B) Applying the interaction
correction Cint to the OU model almost recovers the predictions of
Dettmer’s model. (Red, dashed) OU model, (red, dotted) OU+ model,

and (green, solid) Dettmer.

Figure 4.20 shows the peak position versus L/λT , which is loosely related to thydro

as weaker transverse confinement decreases L and increases λT (assuming N , T , and
ω‖ remain fixed). In general, at high L/λT interactions become negligible and the peak
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position should be determined by ttof (see Eq. (4.3b)) only. Since time-of-flight is fixed
qmax

1 should be constant, at sufficiently high L/λT we observe in the data and theory a
convergence of the peak position to a constant value of qmax

1 = ∼0.28 µm−1. As L/λT
becomes smaller the cloud behaves more and more like a true BEC, and as a side effect
(from manipulating the trapping potential) the interactions during time-of-flight
become important, thus shifting qmax

1 to lower values. Again this behaviour is
observed in the data and Dettmer’s prediction, however the magnitude of the
measured shift is greater than predicted, and as expected this shift is not observed in
the OU model. Applying the interaction correction (Eq. (4.11)) somewhat successfully
replicates Dettmer’s model in terms of peak position, the OU+ model now shows a
shift of qmax

1 but to a lesser extent than Dettmer’s model (see Fig. 4.20b).
In conclusion Dettmer’s approximation is qualitatively valid in explaining the effect

of interactions on the spatial frequency of the density ripples, however it incorrectly
estimates the size of the resulting density fluctuations. The OU model provides a better
estimate on the size of the fluctuation, and adapting the model with the interaction
correction from [96] gives a good approximation of Dettmer’s result, therefore we find
that the OU+ model is the best estimate of the density ripples in the crossover.
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1D-3D crossover regime

In this section we explore the drivers of phase fluctuations throughout the
dimensional crossover. Figure 4.21 displays the parameter space sampled with our
data and compares it to previous experimental work, showing that our data spans a
large range of the crossover.

FIGURE 4.21: Dimensional parameter space explored in terms of µ/~ω⊥
and kBT/~ω⊥ with comparison to previous experimental work. Our
data (blue, dots), Armijo et al. [28] (green, diamonds), Hugbart et al. [37]
(red, triangles), Richard et al. [36] (black, stars), Manz et al. [94] (cyan,

squares), and Trebbia et al. [185] (red, crosses).

From the results in Section 4.2.2 we postulate that peak position qmax
1 is influenced

in the majority by interactions during time-of-flight, and therefore, is not a direct
indicator of "3D-ness". The peak position is also affected by the finite optical imaging
resolution, however, this is only a technical limitation and the affect is the same on all
of the data. To parameterise the strength of the fluctuations we use the quantity
g̃(2)(0), from Eq. (4.17) (similarly the peak of the power spectrum can also be used
〈|ρ̃(qmax

1 )|2〉, since they are related as a Fourier transform pair by the Wiener-Khinchin
theorem [186, 187]). This is the likelihood of finding two particles in the same location,
relative to the mean density. A fully coherent 3D BEC would not experience any
fluctuations and the single shot density would be equal to the mean density giving
g̃(2)(y) = 1. As fluctuations appear bunching in the density ripples is observed and
g̃(2)(y) > 1.

We probe the dimensional crossover up to µ/~ω⊥ . 1 and kBT/~ω⊥ & 1, partly due
to experimental limitations and also the fact that the deeply 1D regime (µ, kBT ) /~ω⊥ �
1 has already been thoroughly explored [27, 28, 94, 142, 173, 188]. It has also been
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observed that the physics of the degenerate part is effectively 1D if µ/~ω⊥ < 1 even
though the thermal condition kBT/~ω⊥ < 1 is not satisfied [5, 25].

FIGURE 4.22: (Left) g̃(2)(0) vs. aspect ratio (λ = ω⊥/ω‖), the errorbars
indicate the statistical uncertainty. Inset (A)/(B) is a single shot
optical density image taken from the data-set indicated by the green
diamond/red square. (Right) g̃(2)(0) vs. kT/~ω⊥, errorbars indicate the

statistical uncertainty.

Our experiment measures multiple clouds in the parameter space given in
Section 3.4.1. From Fig. 4.22 we observe that aspect ratio doesn’t appear to have a true
bearing on the "1D-ness" of the system, as at a fixed aspect ratio there can be a wide
range of fluctuation strength g̃(2)(0). Using λ ∼ 45 as an example g̃(2)(0) varies from
1.01 to 1.07, example optical density images are shown in Fig. 4.22. Instead aspect
ratio should be thought of as a practical tool that allows for the presence 1D or 3D
system, i.e. it is easier to make a 1D system with high aspect ratios and a 3D system
with low aspect ratios. Figure 4.22 also shows that the 1D thermal parameter
kBT/~ω⊥ is only very weakly correlated with g̃(2)(0), implying that kBT/~ω⊥ is not a
relevant parameter when determining the dimensionality of the gas.
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FIGURE 4.23: (Left) g̃(2)(0) vs. L/λT , red points indicate clouds with
µ/~ω⊥ < 4.5, and the errorbars indicate the statistical uncertainty.
(Right) g̃(2)(0) vs. µ/~ω⊥, the black dashed line indicates an approximate
threshold value of µ/~ω⊥ ∼ 4.5. Above the threshold fluctuations start

to increase significantly.

Figure 4.23 shows the significance of µ/~ω⊥, we see a threshold value at ∼4.5,
surpassing this threshold the magnitude of fluctuations rapidly increases. Indicating
that the onset of phase fluctuations is driven by the chemical potential µ/~ω⊥. We also
observe a strong correlation between g̃(2)(0) and L/λT , however we suggest instead
this should be thought of as a change in "sampling window", the degree of fluctuation
increases when a larger window is viewed, but the physics is still set by the chemical
potential µ/~ω⊥. Consider an elongated gas that is quasi-1D (µ/~ω⊥ � 1), viewing a
section of the gas of length equal to λT , you would observe a fully phase coherent
object, however the radial degrees of freedom remain frozen out and so the
dimensionality has not changed.
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FIGURE 4.24: (Visualisation of the parameter space in terms of
dimensional quantities, kBT/~ω⊥ and µ/~ω⊥. The surface is a
2D interpolation of the acquired data (dots), here the colourscale
shows the amplitude of the power spectrum 〈|ρ(qmax

1 )|2〉/N2. (Inset)
〈|ρ(qmax

1 )|2〉/N2 versus kB/~ω⊥ for (blue, dots) µ/~ω⊥ > 4.5, (green,
diamonds) µ/~ω⊥ ∼ 3.4, and (red, squares) µ/~ω⊥ ∼ 2.3. The solid

lines are cuts through the 2D interpolation shown in the main figure.

In Fig. 4.24 we explore the data in terms of the two stricter one-dimensional
parameters µ/~ω⊥ and kBT/~ω⊥. We see that the strength of the phase fluctuations is
more strongly influenced by temperature kBT/~ω⊥ when the chemical potential
µ/~ω⊥ is low. It appears if the chemical potential µ/~ω⊥ is sufficiently high phase
fluctuations remain small regardless of kBT/~ω⊥, this can be seen in the inset of
Fig. 4.24. This figure supports the conclusion from Fig. 4.23 that the chemical potential
is the driver of dimensionality, but also reveals the importance of kBT/~ω⊥ at lower
µ/~ω⊥ which cannot be deduced from Fig. 4.22.
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FIGURE 4.25: Six examples of a measured power spectrum (blue, solid)
with varying values of L/λT and µ/~ω⊥ are compared to the prediction
from the OU+ model (red, dashed). The blue shaded region indicates the
statistical uncertainty on the measured data. In each plot, included is an
optical density image of a single shot from within the total dataset. The
discrepancy between prediction and measurement grows as the system

becomes more coherent.

Examples of how the power spectrum of the density ripples 〈|ρ̃(q)|2〉/N2 changes
with increasing coherence is visible in Fig. 4.25. Interestingly, there are still fluctuations
(albeit very small) in what we would consider a 3D gas (bottom right of Fig. 4.25),
this shows that there is no sharp transition to full phase coherence at λT & L, this
behaviour was also observed in reference [37] however in that article the coherence
properties were characterised in terms of T/Tφ.
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FIGURE 4.26: (Left) Measured mean power spectra of three clouds
spanning the 1D-3D crossover, 1D (blue, dots) µ/~ω⊥ = 0.84 and
L/λT = 9.5, crossover (red, squares) µ/~ω⊥ = 3.3 and L/λT = 5.7,
and 3D (yellow, triangles) µ/~ω⊥ = 6.7 and L/λT = 0.31. For
comparison the prediction from the OU+ model is plotted alongside,
1D (blue, solid), crossover (red, dash-dotted), and 3D (yellow, dashed).
(Right) Normalised two-body correlation function g̃(2)(y), for the same
three clouds, alongside the prediction from the OU+ model. The same

labelling is used as in the left figure.

In Fig. 4.26 we have plotted the power spectrum 〈|ρ̃(q)|2〉/N2, and the normalised
two-body correlation function g̃(2)(y), for three clouds spanning the 1D-3D crossover.
In the 3D case we measure an almost flat g̃(2)(y) ≈ 1, as expected for a BEC, this is not
reproduced by the OU+ prediction which overestimates the size of the fluctuations
significantly, the disparity is clearer in power spectrum. In the 1D case the phase
fluctuations become large and g̃(2)(0) grows, and the minima decreases, typical of the
bunching/anti-bunching features observed in interference patterns. For the data of
the 1D cloud in Fig. 4.26 (blue dots) at ∆y >20 µm we see deviation from the expected
value of ∼1. We believe this could be due to a lower number of shots acquired (in this
data-set there are ∼100 shots, whereas typically each data-set contains around 200
shots) combined with the fact that density fluctuations are large compared to the
mean density.

We have also investigated our data in terms of the number of low-energy axial
excitations (introduced in Section 4.1.3) as they contribute to the phase fluctuations [31].
We compute the total occupation of the modes N1D, which have a spectrum given by
εj = ~ω‖

√
j(j + 3)/4. If kBT � ~ω‖ (this is true for all of our data) the Bose occupation

function can be approximated to Nj = kBT/εj . Excitations can be considered low-
energy up until εj = ~ω⊥, at this point the excitation becomes particle-like and do not
contribute to the phase fluctuations. Thus, the total number of low-energy excitations
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can be computed by,

N1D =

εj<~ω⊥∑
j

kBT/εj . (4.19)

We postulate that the strength of the phase fluctuations will be related to the number
of coherent atoms NBEC and the number of low-energy excitations N1D. This appears
to be confirmed in Fig. 4.27, in this figure the ratio N1D/NBEC is plotted against the
amplitude of the power spectrum 〈|ρ̃(qmax

1 |2〉. We observe an approximately linear
relationship between the two quantities. Even though our data covers a wide
parameter space (see Fig. 4.21) we observe a collapse onto a single curve. This is
strong evidence that the phase fluctuations are well described by the theoretical
description in [31].

FIGURE 4.27: Relationship between the strength of the phase
fluctuations 〈|ρ(qmax

1 |2〉 and the relative number of low-energy exciations
N1D/NBEC. (Blue, dots) Acquired data with errorbars indicating
statistical uncertainty, (red, dashed) a linear fit to the data with 95%

confidence bounds represented by the shaded region.

Figure 4.27 has shown that the strength of the phase fluctuations are determined by
the number of low-energy excitations N1D/NBEC, rather than µ/~ω⊥ or kBT/~ω⊥. This
implies that the strength of phase fluctuations is not directly related to dimensionality
but rather an indication of one-dimensional behaviour. In Fig. 4.24 and Fig. 4.23, we see
that the phase fluctuations only become significant when the chemical potential µ/~ω⊥
is small, as such, it is the chemical potential µ/~ω⊥ that sets the dimensionality. Once
the dimensionality is low enough the phase can fluctuate at an arbitrary strength set by
N1D/NBEC.



Chapter 5

Summary and Outlook

The work reported in this thesis is summarised in this chapter, and followed up with
an outlook for future extensions to the research carried out.

A number of theoretical models were described, all of which can give predictions
for the power spectrum of the density ripples 〈|ρ̃(q)|2〉/N2, and the second-order
correlation function g̃(2)(y). The predictions from each of the models were compared
to measurements of 〈|ρ̃(q)|2〉/N2 and g̃(2)(y). We have shown that the model (from
those reviewed in this thesis1) that fits our observations best is the
interaction-corrected Ornstein-Uhlenbeck model (OU+), Section 4.1.4. The
interaction-correction condenses part of Dettmer’s model (Section 4.1.3) which
evaluates the time-of-flight expansion into a frequency-dependent correction term Cint

Eq. (4.11) taken from [96]. We have also shown that the properties of the
phase-distribution θ(y) in Dettmer’s model (Eq. (4.6) taken from [31]) agrees with that
generated by the OU model in Eq. (4.12) (see Fig. 4.10).

The interaction-correction can also be applied to the LDA (see Section 4.1.2), the
LDA+ model. The resulting predictions are only slightly worse than that of the OU+
model in the 1D regime, though the disparity increases as the 3D regime is approached
(see Fig. 4.18). However, it has an advantage in the fact that it is computationally much
quicker to calculate. That being said, the OU+ model is still a poor predictor of our
observations in the 3D regime and consistently over estimates the size of the density
ripples observed in our measurements throughout the 1D-3D crossover. However, the
predictions do start to converge with experimental observations at the 1D end of the
crossover.

We observe that interactions during time-of-flight act to "spread out" the density
ripples, shifting density fringes to lower spatial frequencies Section 4.2.2. Whilst the
interaction correction Cint improves on the results of the LDA and OU models, it does
not completely recover the peak position qmax

1 obtained from Dettmer’s model (see
Fig. 4.20).

Dimensional parameters, µ/~ω⊥, kBT/~ω⊥, ω⊥/ω‖, and L/λT were explored in the
1D-3D crossover regime in Section 4.2.2. We found that neither aspect ratio ω⊥/ω‖ nor
L/λT had a real bearing on dimensionality. In contrast to the expectations from [45]
and the findings of [28], we found that kBT/~ω⊥ did not characterise dimensionality in

1We note that use of the SGPE may provide better predictions, and requires further investigation.
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the crossover well (see Section 4.2.2). Instead we observed that the chemical potential
µ/~ω⊥ was the key parameter that drove 1D behaviour, supporting the claims from
previous experiments [5, 25]. Finally, we saw that the size of the phase fluctuations
can be determined by the total occupation of low-energy axial excitations N1D/NBEC.
However, this quantity cannot be directly related to dimensionality, although a non-
zero value indicates the presence of 1D behaviour.

Our experiment suffered a number of limitations that could be improved for the
future generations of the experiment. Our poor optical imaging resolution of ∼10 µm

suppresses information of the high frequency end of the density ripple spectra.
Preliminary designs with custom-built optics suggest this could be improved to
∼3 µm with our current science chamber. This could be further improved by
increasing the numerical aperture, for example by using a recessed window. A high
imaging resolution coupled with a long time-of-flight should make it possible to
resolve qmax

2 , which to date, has not been observed in a 1D gas.
The range of accessible aspect ratios λ was ultimately limited by fragmentation

effects (see Section 3.2.3), which were observed at distances of 100 µm from the chip
surface, this is relatively large distance compared to other experiments [57]. A
replacement atom chip has been manufactured, which we hope has a much smaller
surface roughness. Whilst it was possible to create traps of lower aspect ratios
(without fragmentation) than used in this thesis, the cloud tilt (see Section 3.3.3)
became too large to image density ripples effectively. Reducing the fragmentation
would allow us to trap the atoms closer to the chip surface, reducing the magnitude of
the tilt, and also give us access to larger ω⊥, thus expanding both the low and high
end of accessible aspect ratios λ.

Dimensional quench
One possible extension to this research would be to analyse the non-equilibrium

dynamics of the phase within a system. Starting with a 3D system and rapidly
changing the potential to change dimensionality to 1D (or other way around). Such a
rapid change to the system is often referred to as a "quench". As such this experiment
would be to perform a dimensional quench, the concept is shown in Fig. 5.1. Initial
attempts at the dimensional quench show the excitation of breathing modes [189]. A
measurement of the breathing mode frequency is displayed in Fig. 5.2.
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FIGURE 5.1: (Top) Dimensional quench concept, rapidly changing the
to potential to change the dimensions of the system such that µ/~ω⊥
changes from<1 to>1 or vice versa. (Bottom) Preliminary results, so far
we have been unable to perform the quench without exciting breathing
mode oscillations, and it may not be possible to do so. Here, example
optical density images are shown of the cloud through half an oscillation

period.

Interesting questions can be asked within the context of breathing, like how the
phase changes throughout an oscillation, does an originally phase fluctuating cloud
become more coherent, and can the same be said for the reverse process? Does the
phase coherence length change with time, and how fast can it respond? A similar
experiment was performed in [184], they observed a scale invariant behaviour of the
excitation spectrum, and a oscillatory time dependent temperature.
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FIGURE 5.2: Excitation of the quadrupole breathing mode, in a trap of
ω‖ = 2π× 17.7 Hz and ω⊥ = 2π× 800 Hz. For a BEC in cigar shaped

potential breathing oscillation frequency is ωBM =
√

5
2ω‖ = 1.58ω‖ [190],

from our measurement we measure ωBM/ω‖ ≈ 1.47. As of yet we are
unsure of the source of the 6 % discrepancy.

Digital micro-mirror devices
The recent application of Digital Micro-mirror Devices (DMD) in ultracold atom

experiments provided a new way of creating arbitrary potentials [129, 165, 166, 191,
192]. The DMD consists of an array of micron sized flip mirrors, that each have an on
or off state, this allows for precise control of the optical potential, and has been used to
counteract fragmentation effects [129], and even imprint artistic depictions of Bose and
Einstein onto a condensate [165].
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FIGURE 5.3: Image of a ViAIUX V-9501 DMD module [193], includes a
Texes Instruments DLP9500 DMD chip [194]. 1080× 1920 square mirrors

of width 10.8 µm.

Use of this technology can give access to a wealth of new experiments due to the
greater tuneability of potentials. For example one could use the DMD in to create box
shaped potentials and investigate the crossover with clouds of homogeneous densities.
It may provide a better way to perform a dimensional quench, for example by rapidly
changing the length of the cloud by introducing a hard wall potential to cut off the
edges (see Fig. 5.4). Using a box potential this could provide a direct way to investigate
L/λT versus µ/~ω⊥, as the density would remain fixed after the quench and only L

would change. This could prove an interesting way to refine the conclusions of our
experiment.

FIGURE 5.4: Alternative concept to perform a dimensional quench. The
length of the system is suddenly changed by introduction of a hard wall

potential.

Additional Experiments
Recently, we implemented RF dressing of potentials to manipulate the trapping
potential and we are now attempting to create a triple-well potential. Our aim is to
test the thought experiment outlined in [195], which suggests a method to test if
"relative quantum phase" is transitive. If the phase difference ∆φ between 2 of 3
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isolated systems, A, B, and C, can be measured (i.e. ∆φAB = φA − φB and
∆φBC = φB − φC) is the following relation true ∆φAC = ∆φAB + ∆φBC. Alternatively
we could create a double-well potential [122, 196], and probe correlations in the gas by
measuring the relative phase between two condensates along their axial direction.
This analysis has been done in previous experiments which have used the double well
to probe correlations in the equilibrium setting [173], and the non-equilibrium setting
[197–199].

The Kibble-Zurek mechanism (KZM) [200, 201] is a theory that was devised to
describe non-equilibrium dynamics after a spontaneous symmetry breaking phase
transition and predicts the formation of topological defects. Originating in cosmology
it was later proposed to occur in other scenarios including condensed matter systems
[202]. The phenomenon has been observed in a number of ultracold atom experiments
[203–206]. In the context of these ultracold atom experiments, an initially decoherent
(thermal) gas is quenched through the critical temperature to a coherent state (BEC).
The rapid quench prevents full coherence from being established, and the topological
defects that arise are vortex filaments. An interesting measurement would be to
observe the behaviour in the crossover regime, where the final equilibrium state is not
totally coherent (BEC) but only partially coherent (quasi-condensate). Another
interesting question that could be investigated is whether the KZM would occur in a
dimensional quench from 1D to 3D?

Generalised hydrodynamics is a theory that recently emerged [207, 208] to explain
non-equilibrium dynamics of integrable systems. It can be seen a dynamical extension
to the Yang-Yang model, however in contrast to the conventional hydrodynamic
(CHD) approach it does not assume local thermal equilibrium [97]. It has been shown
to successfully predict the dynamical evolution of density in expansion [97] where
CHD fails. Recently this model was extended to the dimensional crossover regime
(µ/~ω⊥ � 1, kBT/~ω⊥ ∼ 1) [209] and gave good agreement with an experiment [210].
However, this is a thermally driven dimensional crossover (kBT/~ω⊥ & 1), and as we
have observed in our measurements the chemical crossover may more important, it
would be interesting to see if it can be used to predict the evolution in a chemically
driven crossover (µ/~ω⊥ & 1).

The experiment reported in this thesis has performed a thorough characterisation
of the phase coherence in the 1D-3D crossover - in equilibrium. However, the
experimental set-up developed is also well suited to study quantum many-body
systems out-of-equilibrium, its application may shed light on other fundamental
questions.

"Tempus edax rerum. Time, the devourer of all things." — OVID, Metamorphoses, XV. 234



Appendix A

1D-3D crossover regime -
supplementary material

A.1 Measurements

In this section I include supplementary analysis of the data reported in Section 4.2.2.
Figure A.1 plots the peak position qmax

1 against the additional "1D parameters" that are
not shown in Fig. 4.20a.

FIGURE A.1: "1D parameters" versus peak position qmax
1 . Dots indicate

experimental measurements, and the errorbars come from the statistical
uncertainty. The solid lines are the moving mean of the predictions
from the OU+ model, and the shaded area indicates the corresponding

moving standard deviation.
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As discussed in Section 4.2.2 qmax
1 is mainly effected by interactions. Here, the shift

of qmax
1 is related to an increase in thydro, and is indirectly related to the "3D end" of the

parameter space (low L/λT and λ, and high µ/~ω⊥ and kBT/~ω⊥). This is qualitatively
reproduced in the data.

FIGURE A.2: "1D parameters" versus peak amplitude 〈|ρ̃(qmax
1 )|2〉/N2.

Dots indicate experimental measurements, and the errorbars come from
the statistical uncertainty. The solid lines are the moving mean from
the predictions of the OU+ model, and the shaded area indicates the

corresponding moving standard deviation.

Another parameter that can be used to evaluate the strength of the fluctuations is
the peak amplitude 〈|ρ̃(qmax

1 )|2〉/N2. In the main text we choose g̃(2)(0) because this has
a better signal to noise, as the parameter is an average over more points. However, we
believe it gives similar information on the size of the density fluctuations. The usual
1D parameters are plotted against the peak amplitude in Fig. A.2, which reproduces
the same trends that can be seen in Figs. 4.22 and 4.23 where g̃(2)(0) has been used.

A.2 Simulations

In this section I have included some supporting figures for the Section 4.1 of the main
text.
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FIGURE A.3: Power spectrum of the density ripples 〈|ρ̃(q)|2〉/N2

generated by the Dettmer model Section 4.1.3, for a varying number of
realisations 10 (blue, dotted), 100 (red, dashed), and 1000 (yellow, solid).
Cloud parameters (ω⊥, ω‖) = 2π× 1235 Hz and 16.1 Hz, N = 6.7× 103

µ/~ω⊥ = 0.87.

Figure A.3 shows how the mean power spectrum varies with different number of
realisations. Due to the random number generation of density ripples, a low number of
realisations can make the mean appear distorted in comparison to the power spectrum
obtained from the analytical result of the LDA Section 4.1.2.
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