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Summary

Understanding brain-wide dynamics and their relation to behaviour relies on knowledge

of the interactions of the underlying functional regions in the brain. In this work, we aim

to demonstrate the applicability and limitations of Granger Causality (GC) as a measure

of directed functional connectivity in live zebrafish larvae, offering an alternative to com-

monly used undirected functional connectivity measures such as correlation. In order to

acquire whole-brain datasets, we develop µSPIM: a hardware-agnostic light-sheet micro-

scope control and acquisition toolset which provides functionality focused on functional

imaging, providing an open-source alternative to existing light-sheet solutions limited to

developmental imaging. Further, we present an independent closed-loop virtual reality

solution which provides a flexible extension to existing light-sheet or two photon micro-

scope setups.

In order to demonstrate the applicability of GC to calcium imaging data, we first

apply the causal analysis to simulated spiking data generated by an integrate-and-fire

model convolved with a calcium filter. We show that the directed functional connectivity

reconstructed by GC follows the structural connectivity used to simulate the underlying

network both in bi-variate and multi-variate settings. We identify a number of constraints

on the performance of the measure in form of sampling rate, recording duration and the

number of cells in the network and show that trends in the calcium data result in poor

inference which can be mitigated by filtering prior to the application of GC. Next, we

show that conditional GC on subsets of neurons can be used to infer directed connectivity

between functionally similar neuronal circuits when analysis based on all sources is not

viable due to combinatorial and computational constraints. Finally, we show that directed

connectivity inferred using GC from calcium data collected in vivo from unstimulated

zebrafish larvae displays functional characteristics described in prior research.
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Chapter 1

General Introduction

One of the primary goals of neuroscience is to understand how neural activity gives rise

to different behaviours. Fully answering this question requires an understanding of how

sensory and motor areas mediate the closed-loop flow of information between the brain, the

body and the environment. The larval zebrafish is becoming a promising candidate model

within which it is possible to address these questions, owing to its optical accessibility of

the brain, relatively simple and available genetic manipulation compared to other species,

and repertoire of robust behaviours, many of which are exhibited already only several

days post fertilization (Orger and de Polavieja, 2017). Thus, this animal model provides

an unique opportunity for the interrogation of behaviour, brain-wide neural activity and

their relationship.

While zebrafish are equipped with visual, auditory, somatosensory and olfactory sys-

tems at this young age, behaviours driven by visual stimuli have been of particular interest.

The investigated behaviours driven by vision include the optomotor response (Ahrens

et al., 2012), opto-kinetic response (Portugues et al., 2014; Kubo et al., 2014), escape be-

haviour (Barker and Baier, 2015), pray capture (Bianco et al., 2011) and photo-taxis (Wolf

et al., 2017).

With the advent of selective plane imaging (Huisken et al., 2004), collection of calcium

fluorescence from nearly the entire brain of larval zebrafish brain (Ahrens et al., 2013b)

became available. This allows modern acquisition setups to acquire activity traces for

the vast majority of all neurons in the larval brain (Chen et al., 2018b). Combined with

closed loop virtual reality, this allows for identification and understanding of sensorimotor

processing pathways. While the technological advancement these experimental methods

provide has been extensive, significant technical challenges have prevented wide adoption

of these methods.
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The first set of challenges stems from the complex signal control necessary for the

light-sheet microscope setup to function optimally and fast processing requirements of the

closed-loop virtual reality stimulation system which needs to process data in real time. Due

to the lack of published open-source solutions that would provide flexible functionality for

a wide range of use scenarios, laboratories wishing to adopt these experimental methods

must resort to developing custom in-house solutions specific to their problem. This not

only affects the adoptability of these methods but also results in findings which are harder

to reproduce as authors are not compelled to extensively document their custom solutions

or utilize commercial solutions which are proprietary.

Next, the data produced by light-sheet acquisition can range from 100GB upward for

every 10 minutes of recording, resulting in handling and processing of such data to be

demanding both in terms of storage and processing. While the processing challenges have,

to a large extent, been solved by tools such CaImAn (Giovannucci et al., 2018) which

has been purposed for processing large datasets at scale, handling such datasets is still

non-trivial.

Finally, the large amount of information about the brain-wide activity during beha-

viour (or otherwise) can be challenging to interpret. Causal connections between brain

activity and behaviour cannot be in most cases established from calcium data analysis

alone, relying on additional tools such as opto-genetic stimulation or targeted cell ablation

for the validation. Standard analysis methods such as measures of undirected functional

connectivity (e.g. Correlation), however, provide very little information about the interac-

tions between brain regions, offering very little guidance for establishing likely hypotheses,

making validation through targeted opto-genetic stimulation or cell ablation problematic.

In this work, we aim to develop and provide flexible open source methods for func-

tional light-sheet microscope control which can be easily adapted and extended for specific

research tasks and applications. This is to complement existing solutions such as Open-

SPIM (Pitrone et al., 2013) and Open SPIM microscopy (Gualda et al., 2013) which

focus on providing microscope control for light-sheet systems with focus on developmental

imaging at the expense of their applicability to functional light-sheet imaging. Through

this, we strive to address the lack of open source functional light-sheet control software,

offering a turn-key solution which provides all common functionality for future research

efforts requiring functional light-sheet imaging while preserving the extensibility inherent

to open-source software.

Secondly, we explore closed-loop virtual reality processing in order to develop an ac-
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curate virtual reality model which can be used for the study of behaving fish. While the

importance of environmental feedback has been shown (Ahrens et al., 2012), no published

studies explore an optimal approach to estimating larval movement from acquired larval

tail activity. We aim to address this in our work by exploring the tail dynamics in freely

swimming zebrafish larvae and designing an opens-source modular virtual reality stimu-

lator solution which can be used in combination with existing 2P or light-sheet functional

microscope systems.

Further, we aim to validate Granger Causality (Granger, 1969), a directed functional

connectivity measure which has been widely applied to human neuroimaging data (Seth

et al., 2015), on calcium fluorescence data. While a number of studies applying Granger

Causality (GC) to calcium fluorescence data were conducted in the past (Fallani et al.,

2014; Vanwalleghem et al., 2017; Oldfield et al., 2020), all of these studies assume validity

of GC on low acquisition rate data contrary to findings in other data modalities (Seth

et al., 2013). We provide a proof of principle first in simulated neural network models,

exploring effects of acquisition rate as well as other acquisition parameters, and then in

spontaneous activity in the brain in absence of closed-loop brain-body interactions in

vivo. Our technical contributions set a clear path for future works aimed at identifying

sensory-motor circuits involved in the control of behaviour.

1.1 Thesis outline and contributions

We start by defining the context of this work in Chapter 2 where we discuss past research

with particular focus on the acquisition and processing methods available to-date, their

primary goals and limitations, outlining the importance of our contributions in further

chapters in the context of the wider field of larval zebrafish research. In the second part

we then focus on reviewing known applications and limitations of Granger Causality for es-

timating directed functional connectivity from neural imaging data, providing justification

for our exploration of the method in the context of calcium fluorescence imaging.

In Chapter 3, we introduce the µSPIM Toolbox, an open-source software for control

of a selective plane light-sheet microscope (SPIM) setup, built around the widely adopted

MicroManager platform. We cover the control signal generation process which allows

adoption for various functional imaging tasks and outline calibration methods included in

µSPIM which provide the user with flexibility in terms of microscope hardware used such

that the setup can be adapted to specific usage scenarios and requirements. This work has

been published in ”Saska, D., Pichler, P., Qian, C., Buckley, C. L., & Lagnado, L. (2021).
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µSPIM Toolset: A software platform for selective plane illumination microscopy. Journal

of Neuroscience Methods, 347, 108952.”.

In Chapter 4, we introduce a closed-loop virtual reality stimulator solution which uses

a projector to deliver stimulus to a head-fixed larval zebrafish sample and visually captures

its tail activity to allow for closed loop feedback. We base the functionality transforming

tail activity into motion on a physically plausible parameterized model which we fit based

on motion captured in freely swimming larvae.

In Chapter 5, we further introduce Granger Causality and establish its applicability

to calcium fluorescence data in a number of simulated neural network models where the

underlying structural topology is known. We address a number of experimental issues

including measurement noise and signal drift and conclude by providing Granger Causality

methods which are applicable to large number of sources in a structured neural network,

such as that of a larval zebrafish brain.

In Chapter 6, we follow our results from simulated models and we apply Granger

Causality to in vivo calcium fluorescence data which was collected from larval zebrafish

in the absence of stimuli. We relate our findings of the inferred transfer of information

between the observed brain regions to past findings of structural connectivity, providing

a validation for Granger Causality on in vivo data.

We conclude by Chapter 7 which summarizes our findings and offers discussion on the

applicability and limitations of Granger Causality in the context of calcium fluorescence

imaging data. We also outline the limitations of our results and future research directions

which consider the full sensorimotor loop, building on the basis of our work.
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Chapter 2

Background

Studying the relationship between neural circuits and animal behaviour requires simul-

taneous access to both the behavioural variables as well as the neural activity in a live

animal. This has led to increasing interest in larval zebrafish as an animal model for this

purpose as acquisition protocols have been extensively established and the robust beha-

viour can be controlled through virtual reality stimuli. In this chapter we outline past

research in terms of the available acquisition methods and protocols commonly used to

establish causal connections between brain dynamics and behaviour. Further, we focus on

the processing and analysis tools available and introduce Granger Causality in terms of

its present application in neuroscience, outlining the importance of our work presented in

the later chapters.

2.1 The Zebrafish Model

At early stages, the larval zebrafish offers superior optical accessibility of the brain tissue

compared to other animal models as the tissue surrounding the brain is quite transparent

(Halloran et al., 2000). This has further been improved over the past years by the elim-

ination of many pigments in the tissue through genetic manipulation (Lister et al., 1999;

White et al., 2008; Antinucci and Hindges, 2016), allowing modern acquisition methods the

ability to image from nearly the full population of the 100 000 neurons in the brain (Chen

et al., 2018b) at 6 days post fertilization (dpf). The well-established genetic manipulation

protocols led to many useful advances in the zebrafish model, including genetically coded

calcium indicators (Higashijima et al., 2003) which, in combination with well understood

animal husbandry (Lawrence, 2011) allows for reliable access to samples with consistent

brain imaging properties.
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At young age, zebrafish also exhibit a wide repertoire of robust behaviours driven

through different sensory pathways.

Visual pathway drives opto-motor reflex which allow the larva to combat incom-

ing water current by integrating the visual flow parallel to the orientation of the larval

body (Ahrens et al., 2012), opto-kinetic reflex which aids in stabilizing the eyes and the

body of the larva and turning against incoming current through integration of angular

optic flow (Portugues et al., 2014; Kubo et al., 2014) and pray capture during which eyes

converge on a small moving spots in assistance to hunting and feeding (Bianco et al.,

2011).

Auditory pathway signalling is still rather rudimentary in larvae with frequencies ran-

ging from 100 to 1000 Hz resulting in neural responses (Vanwalleghem et al., 2017; Privat

et al., 2019). Low frequencies (150 to 450 Hz) were additionally found to elicit tail move-

ment over time, suggesting that the auditory system is involved in the temporal integration

of sensory input result in in motor behaviour (Privat et al., 2019).

Somatosensory inputs were then found to drive escape behaviours (Douglass et al.,

2008) and olfactory system aids in navigation toward life-sustaining fresh-water environ-

ment through detection and avoidance of water salinity (Herrera et al., 2021) stimuli.

These behaviours are then generally studied in freely behaving animals (Olive et al.,

2016) or in a head-restrained preparation in which imaging of the brain is more accessible

(Ahrens et al., 2012) through suspension in agar gel, sometimes supplemented by injection

of neuro-muscular blocker (such as α-bungarotoxin, Chang (1962)) to aid image stability

when the investigation of stimulus response is accompanied by brain imaging.

2.2 Acquisition Methods

The small size of zebrafish larvae prohibits use of many brain activity acquisition methods

available in primates, however it also allows application of methods which are not available

in larger animals. Namely, calcium fluorescence imaging where change in properties in

fluorescent molecules upon binding with Ca2+ ions released during neural activity can

be observed and serve as a proxy for the underlying neural activity of the individual

cells imaged. Originally, this was achieved by injection of fluorescent dye into each sample

(Fetcho and O’Malley, 1995; Cox and Fetcho, 1996) which has been replaced by genetically

encoded reporters (Higashijima et al., 2003) with single fluorescent protein (GCaMP)

sensors (Nakai et al., 2001) being most common. The state-of-the-art sensors continue to

improve over time in terms of the dynamics and relative signal-to-noise ratio (Chen et al.,
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2013; Dana et al., 2019) and offer better sensitivity and improve the applicability of the

acquired data.

2.2.1 Two-photon Microscopy

Two-photon (2P) imaging (Denk et al., 1990) is one of the prevalent acquisition methods

in larval zebrafish (Renninger and Orger, 2013) (but also other animal models such as

mice, Stosiek et al. (2003)) which, rather than green light, utilizes infra-red (IR) light to

excite the expressed fluorescent dye in the tissue. Since a single photon of the IR light does

not provide enough energy to cause the dye to fluoresce, two (or in some modalities more)

photons are need at the same time to elicit the fluorescence that a single photon of higher

wavelength light would. The requirement of simultaneous arrival of multiple photons

results in a non-linear excitation probability with a much higher excitation chance at

the focus point. This reduces acquisition from out-of-focus tissue as well as significantly

limiting visible light pollution which is beneficial when imaging brain activity underlying

visually evoked behaviours. The ability to use infra-red light is also advantageous due to its

ability to better penetrate live tissue when compared to higher wavelength light (Helmchen

and Denk, 2005).

Compared to other methods, two-photon microscopy is, however, a relatively slow

acquisition method, particularly when acquiring volumes (Vanwalleghem et al., 2018) even

in modern resonance scanner microscopes (Piyawattanametha et al., 2006). The constraint

to smaller areas is, however, accompanied with a significantly superior spatial resolution

which allows for imaging of individual synapses (Lu et al., 2017).

2.2.2 Selective Light-Sheet Microscopy

Selective Light-sheet Imaging (SPIM) has been originally applied to imaging of develop-

ment of live embryos (Huisken et al., 2004) and has only recently been applied to functional

calcium imaging (Ahrens et al., 2012). Unlike two-photon imaging which uses point scan-

ning to form a plane which is then acquired by the camera, SPIM uses a beam of visible

light which is expanded using a cylindrical lens or scanned by a mirror galvanometer in

order to form an illumination sheet within the tissue sample. By ensuring that the excita-

tion plane coincides with the focal plane of the collection objective, the fluorescence from

the tissue sample can then be collected by the camera. While a single frame allows for

collection of single illuminated plane at the same depth (along the axis of the collection ob-

jective), scanning the illumination plane along the collection axis using a secondary mirror
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galvanometer in the illumination path allows for sequential illumination of tissue at differ-

ent depths. Correct acquisition is the enabled by movement of the collection objective (e.g.

by a piezo-electric stage) such that the illumination always stays in focus throughout the

acquisition. This allows for a volumetric acquisition of nearly the full volume of the larval

brain (Chen et al., 2018b). The collection of activity from larger neural populations then

offers recordings with comparably lower bias, allowing for identification of sparely coded

or distributed cell types (Feierstein et al., 2015). A modification to the SPIM design by

Wolf et al. (2015) allows for two-photon light sheet excitation, which provides improved

applicability in the study of visually-driven behaviour due to the reduced light pollution

when compared to single-photon light.

Unlike for imaging of developmental processes, where a number of microscope control

and acquisition solutions have been published, including OpenSPIM (Pitrone et al., 2013)

and the Open SPIN microscopy (Gualda et al., 2013) project, functional imaging is usually

accomplished by the use of proprietary or in-house solutions (Ahrens et al., 2012; Reynaud

et al., 2015).

2.3 Virtual Reality and Behavioural Acquisition

Although imaging of neural activity in freely swimming zebrafish larvae is possible (Kim

et al., 2017; Symvoulidis et al., 2017), it is still challenging which is reflected in the num-

ber of studies which utilize head-fixed preparations for simultaneous stimulation, calcium

imaging and behavioural acquisition (Ahrens et al., 2012; Severi et al., 2014; Semmel-

hack et al., 2014; Naumann et al., 2016). In such preparations, a stimulus projected on a

screen is commonly used to emulate the environment in studies of visually-evoked beha-

viour (Ahrens et al., 2012; Severi et al., 2014). To then access the swim information, the

activity of the tail is acquired either visually through imaging its movement and tracking

it over time (Semmelhack et al., 2014; Severi et al., 2014; Portugues et al., 2014) or by

electrode acquisition of the neural signal directly from the tail (Ahrens et al., 2012, 2013a).

Studies of behaviours without the opportunity for the fish to interact with its envir-

onment (open-loop) are common (Severi et al., 2014; Oldfield et al., 2020), however it

has been shown that the feedback of the motor action through the environment is an im-

portant input for the behaviour of the fish and its absence leads to behaviour expression

unlike that which occurs in a freely-swimming setting (Portugues and Engert, 2011; Ahrens

et al., 2012), promoting the use of closed-loop stimulation systems in order to quantify

the neural origin of aspects of behaviour which were are not apparent in open-loop setting
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(Kawashima et al., 2016).

2.4 Data Processing Methods

Processing of calcium imaging data can be challenging due to the increasing sizes of data-

sets, especially in the case of light-sheet recordings were a single 10-minute acquisition

can yield over 100GB of imagery. With the volumetric nature of the recordings and the

number of sources in each recording being potentially in the tens of thousands, manual la-

beling is not an option, requiring the implementation of compute-based cell identification

methods.

For this purpose, Pachitariu et al. (2017) introduced Suite2P, a toolbox focused on

the identification of sources in calcium recordings acquired using two-photon microscopy.

While the software has the ability to identify neurons from multiple planes of a volume

recording, it does offer tracking the same cells over multiple planes which can be problem-

atic for the analysis of light-sheet recordings which generally have higher depth resolution

where this is necessary. Giovannucci et al. (2018) later introduced the CaImAn toolbox

which provides a number of tools for the analysis of calcium data, generally better suited

for light-sheet microscopy acquisition: By providing 3D non-rigid motion correction and

cell extraction based on non-negative matrix factorization (Pnevmatikakis et al., 2016) it

allows for much more flexible identification of a larger number of neuronal sources.

2.5 Present approaches to data analysis in calcium imaging

In order to interpret data, many whole-brain imaging publications rely on adapting existing

single-neuron analyses, most frequently limited to correlating the activity to the observed

behavioral parameters. While early studies had to rely on per-pixel data (Ahrens et al.,

2012; Portugues et al., 2014), more recent publications take advantages of aforementioned

processing methods and perform analysis on individual cells (Chen et al., 2018b).

2.5.1 Atlas Registration of Calcium Recordings

In order to aggregate data over multiple recordings and larval samples, it is necessary

to map the recording to a common reference. A number of zebrafish atlases have been

published, including Z-brain (Randlett et al., 2015), MPIN (Kunst et al., 2019) or ViBE-Z

(Ronneberger et al., 2012) which can serve as common registration target as they provide

reference volume brains from different zebrafish lines and expression backgrounds.
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2.5.2 Data dimensionality reduction

With many individual neuronal sources, it can be desirable to identify functional similar

populations of neurons (Cunningham and Byron, 2014). A number of different approaches

have been used with calcium data. In particular, some studies group neurons based on

their spatial location into functionally similar regions either manually (Oldfield et al.,

2020) or by mapping on a common atlas (Kunst et al., 2019). An alternative approach

based on unsupervised clustering of the sources based on their calcium activity (Naumann

et al., 2016; Chen et al., 2018b) can offer lower bias.

2.5.3 Undirected functional connectivity measures

A common approach to establishing the relationship between neural activity and beha-

viour is by correlating the changes in activity of the individual neurons or brain regions

to the changes in behaviour or stimulation. This approach offers only limited information

on the affinity of the neurons by correlating them to different stimuli (Naumann et al.,

2016) or motor activity (Ahrens et al., 2013a). This in itself is not sufficient to determine

connectivity between neurons (Orger, 2016), requiring additional methods such as tracing

of neuronal projections (Hildebrand et al., 2017; Kunst et al., 2019), opto-genetic stim-

ulation of cells (Kaur et al., 2017) or targeted ablation of cells (Roeser and Baier, 2003)

or dendritic connections (Naumann et al., 2016) in order to confirm hypotheses about the

functional interactions within the brain that give rise to the behaviour studied.

2.6 Directed functional connectivity measures

The flow of information in the brain and directed functional interactions between its part

during behaviour can offer more insight than simple undirected functional measures. A

number of measures of directed functional connectivity have been formulated in order to

quantify information flow and causality from data.

2.6.1 Time-shifted Cross-correlation

One of such measures is cross-correlation which quantifies causality through the compu-

tation of cross-correlogram based on Pearson’s correlation coefficient between two time

series where the source time series is shifted by a set number of time lags with respect to

the target time series. In this way, the cross-correlation can provide information about

precedence, however it does not take into account the past time of the target time series
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such that a cross-correlation between a source and completely deterministic target process

could still indicate high directed causal connection.

2.6.2 Granger Causality

This issue has been addressed by Granger (1969), who devised Granger Causality (GC), a

statistical measure of a causal relationship between two processes such that the cause must

always precede its effect and the causal process must provide improvement in prediction

of the effective process. This avoids the issue of possible high causality measures where

the target process is (at least in part) deterministic. In practice, this concept of ’improved

prediction’ is implemented in terms of the improvement in variance of the prediction

error of a vector auto-regressive (VAR) model based on the past of the target process by

inclusion of the past history of the causal process. Later on, the original GC measure

has been extended to the case of inferring the directed functional connectivity between

two multi-dimensional (multivariate) time series (Geweke, 1982) and later to a case which

conditions on other processes such that indirect causal connections can be effectively ruled

out (Geweke, 1984).

2.6.3 Transfer Entropy

Transfer Entropy is a non-parametric generalization of a Granger Causality proposed by

Schreiber (2000). It can be defined as mutual information between the current value of

the target process and the past of the source process conditional on the past of the target

process. Transfer Entropy and Granger Causality have been shown to be equivalent for

Gaussian processes (Barnett et al., 2009). Transfer Entropy can be a useful alternative to

GC in case of non-linear processes, however it requires significantly more data to estimate

accurately Pereda et al. (2005).

2.6.4 Application of Granger Causality to Calcium Data

A number of studies have attempted to apply Granger Causality to calcium imaging data.

Stetter et al. (2012) show unconditional Granger Causality in context of their proposed TE-

based measure of causality on small networks showing some but not optimal performance

for structural connectivity reconstruction.

No study has systematically demonstrated the limitations of applicability of Granger

Causality to calcium recordings in large neuronal populations such as those found across

the brain of larval zebrafish. Some studies applying Granger Causality to calcium data
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from this setting have been published however: Fallani et al. (2014) apply Granger Caus-

ality to neurons in the tail of zebrafish embryos indicating an ipsi-lateral directional flow

of information between the neurons in the direction away from the brain. Vanwalleghem

et al. (2017) apply GC to volumetric calcium recording data in presence of auditory stim-

uli, presenting neurologically plausible results but do not offer significant interpretation

of their findings. Oldfield et al. (2020) investigate prey capture in naive and experienced

zebrafish larvae and attempt to use Granger Causality to quantify the difference between

the two groups of fish.

2.6.5 Known limitations of Granger Causality

Granger Causality has been extensively studied in the context of EEG and MEG recordings

in humans (Seth et al., 2015) and thus many of its limitations are already known. In

particular, GC assumes the input data to be stationary which can often be achieved

through high-pass filtering (Florin et al., 2010; Barnett and Seth, 2011). Furthermore,

the sampling interval of the data has been shown to have a profound impact on Granger

Causality inference as for acquisition rates significantly higher than the causal timescale,

Granger Causality ends up fitting noise, reducing the statistical power of the inferred

result and much slower acquisition speeds lead to identification of spurious and missed

connections as the it becomes impossible to determine the time precedence of the events

in the time series Barnett and Seth (2017). The latter has been a source of controversy

over the applicability of Granger causality to fMRI data where the acquisition speeds are

much slower (order of seconds) than the underlying synaptic delays (order of milliseconds)

(Seth et al., 2015). Further studies have shown that for fMRI BOLD data, is in fact

invariant to the slow convolution of the underlying neural activity but not significant down-

sampling Seth et al. (2013). This is encouraging for our application on calcium fluorescence

data as while acquisition methods such as light-sheet microscopy allow recording at high

acquisition speeds (100Hz) the calcium reporter dynamics are slow Chen et al. (2013)

compared to the time scale of the underlying neural processes.
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Chapter 3

µSPIM Toolset: A software

platform for selective plane

illumination microscopy

3.1 Abstract

Selective Plane Illumination Microscopy (SPIM) is a fluorescence imaging technique that

allows volumetric imaging at high spatio-temporal resolution to monitor neural activity in

live organisms such as larval zebrafish. A major challenge in the construction of a custom

SPIM microscope using a scanned laser beam is the control and synchronization of the

various hardware components.

We present an open-source software, µSPIM Toolset, built around the widely adopted

MicroManager platform, that provides control and acquisition functionality for a SPIM.

A key advantage of µSPIM Toolset is a series of calibration procedures that optimize

acquisition for a given set-up, making it relatively independent of the optical design of the

microscope or the hardware used to build it.

µSPIM Toolset allows imaging of calcium activity throughout the brain of larval

zebrafish at rates of 100 planes per second with single cell resolution.

Several designs of SPIM have been published but are focused on imaging of devel-

opmental processes using a slower setup with a moving stage and therefore have limited

use for functional imaging. In comparison, µSPIM Toolset uses a scanned beam to allow

imaging at higher acquisition frequencies while minimizing disturbance of the sample.

The µSPIM Toolset provides a flexible solution for the control of SPIM microscopes

and demonstrated its utility for brain-wide imaging of neural activity in larval zebrafish.
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3.2 Introduction

Selective Plane Illumination Microscopy (SPIM) is a powerful method for 4D imaging of

biological samples at a high spatio-temporal resolution (Power and Huisken, 2017; Ahrens

et al., 2013b). This is achieved by excitation of fluorescent structural or functional report-

ers expressed in the sample by a few micron thick light sheet and simultaneous recording

by an orthogonally positioned high-resolution camera focused on the plane of excitation.

Rapid movement of the sheet through the tissue then allows for volumetric recordings with

cellular resolution. While SPIM imaging has been originally used for the study of develop-

mental processes in a number of animal models including embryos of C. elegans (Rieckher

et al., 2015), Drosophila (Keller et al., 2010) and zebrafish (Kobitski et al., 2015; Wan

et al., 2019), more recently it has also found its use in functional imaging as a complement

to already established imaging methods such as two photon imaging. By providing the

ability to image much larger volumes of tissues while maintaining temporal and spatial

resolution, SPIM provides the ability to investigate the interaction of much larger neuronal

populations as illustrated by imaging of the whole nervous systems in Drosophila embryos

and larvae (Chhetri et al., 2015; Lemon et al., 2015), C. elegans (Ardiel et al., 2017) and

whole-brain imaging in zebrafish (Ahrens et al., 2012, 2013b; Weisenburger and Vaziri,

2018).

While all implementations of SPIM share the common design including an illumination

arm to create a 2D plane of illumination and an orthogonal collection arm that is forming

the image onto the camera, some variations on this basic design have been developed with

different applications in mind (Keller and Ahrens, 2015). These can be divided based on

two main aspects of the design: firstly, the method of light sheet formation and secondly,

the movement of the light sheet relative to the sample. The original approach creates a

stationary light sheet using a cylindrical lens and then translates or rotates the sample

with a moving stage. This implementation has been particularly useful in studies of devel-

opment (Huisken and Stainier, 2009), but it is too slow to monitor the activity of neurons

using, for instance, genetically-encoded calcium indicators. Applications in functional

neuroscience therefore favour a configuration in which the sample is kept stationary while

the light sheet is created using a fast scanning mirror that moves the light beam across

a plane at least once per imaging frame, with a secondary mirror moving the beam in

the z-dimension (Fig. 3.2A). This method has allowed ”brain-wide” imaging of neural

activity in live zebrafish with single neuron resolution and acquisition frequencies of ∼1

Hz (Ahrens et al., 2012, 2013b; Weisenburger and Vaziri, 2018).
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Several SPIM solutions have been published but probably the most accessible in terms

of both hardware and software are the OpenSPIM (Pitrone et al., 2013) and Open SPIM

microscopy (Gualda et al., 2013) projects. Both these implementations are focused on

imaging of developmental processes using the slower ”moving sample” configuration and

therefore have limited use if the aim is to image neural activity through volumes of the

brain. The ”moving light-sheet” configuration is more complex to control because it

requires synchronization of several hardware components with millisecond temporal ac-

curacy. For instance, movements of the imaging objective in the z-dimension must be

synchronized with movement of the light-sheet to stay focused on the plane of illumin-

ation, often involving 50–100 planes per second. Perhaps for this reason, open software

tools for the control of SPIMs in functional imaging experiments are not easily available

and published research utilizing functional imaging generally does not include openly pub-

lished and documented microscope control solutions. We aim to fill this gap by providing

a control software solution, µSPIM Toolset, which adopts an open software approach for

control of a SPIM microscope in which the light-sheet is scanned through a stationary

sample. We achieve this by building µSPIM Toolset around Micro-Manager (Edelstein

et al., 2010), an open-source platform widely used for control of microscopes, to provide a

comprehensive user interface (Fig. 3.3) with a smooth learning curve. µSPIM Toolset has

been designed to be used to control a range of custom-built microscopes, for which it is cal-

ibrated using semi-automated procedures. We demonstrate the utility of µSPIM Toolset

for whole-brain imaging in larval zebrafish.

3.3 Design requirements

We start by listing the basic objectives of software controlling a SPIM microscope in rela-

tion to the microscope we have constructed (Fig. 3.1, see Methods). 1. The illumination

arm requires the control of the laser light-source, using either an internal and/or external

shutter. Dual-colour imaging requires two independent laser sources to be combined. De-

pending on the laser model, power may be controlled on long time-scales using USB or

RS232 interfaces and modulated on short time-scales by analogue signals, while shutter-

ing requires digital signals. 2. The beam has to be scanned in the x and z dimensions

using fast galvanometer mirrors driven through analogue inputs. 3. The collection arm

must follow the beam and collect images that are in focus at different z-positions, which

is achieved by using a piezo-electric mount for the objective, again controlled through an

analogue signal. Finally, 4. The camera acquisition must be accurately timed to collect
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Figure 3.1: Light-Sheet Microscope Implementation: A. Diagram outlining light-sheet mi-

croscope with two mirror galvanometers and a stationary sample. The light sheet is created from a

laser beam by the’ X Galvo scanning mirror’. The’ Z Galvo scanning mirror’ then moves the sheet

through the sample to create volumetric excitation. This is synchronized with a Piezoelectric stage

that moves the imaging objective so that the excitation plane always coincides with the imaging

plane. B. A photo of an example light-sheet microscope setup with one light-sheet path. The main

components are colour coded.

frames at each z position, which in turn requires accurate calibration of the z mirror so

that the z position of the light-sheet is set from the command signal. The software should

then allow control of several features of the camera, including frame integration time,

pixel binning and gain. Furthermore, it should support saving and retrieving images and

movies, zooming, defining ROIs, quick and easy changes in imaging parameters and the

ability to define various imaging protocols using different sequences of laser illumination.

We built µSPIM Toolset around the open-source software Micro-Manager (Edelstein

et al., 2010), which is based on ImageJ (Schindelin et al., 2015), because it immedi-

ately offers the ability to integrate different hardware from a wide range of manufac-

turers through specific plugins, including a range of cameras, light-sources and shut-

ters required for a SPIM. It provides an integrated environment for image acquisition

and a very wide range of post-acquisition processing capabilities through ImageJ. Micro-

Manager does not, however, provide hardware triggering, analogue control and monitor-

ing with the precision required for volumetric imaging of neural activity. For this pur-

pose, we used a National Instruments DAC card (NI PCIe-6738) and wrote an executable

’µSPIM Control’ to allow interaction between Micromanager and hardware through its

own user interface. µSPIM Control synchronizes internal laser shutters, x and z mir-
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Figure 3.2: Light-Sheet Microscope Hardware Control: A. Interaction of different com-

ponents of the µSPIM Toolset-based setup in a typical acquisition setup. µSPIM Toolset provides

control and synchronization of hardware through NI DAC with MicroManager controlling the cam-

era and mechanical shutters through PCI and COM ports. B. Traces of the command signals for

a volume acquisition with 43 planes showing camera trigger (i.), laser shutter (ii.), X mirror signal

(iii.), Z mirror (red) and Piezo (pink) signals for Scan Down (iv.), Scan Up (v.) and Bidirectional

(vi.) acquisition modes generate by the µSPIM control software. C Magnification of boxed region

in B with yellow region showing a single plane signal. Laser shutter signal is a result of a recording

with Edge Masks enabled.
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rors, the objective piezo stage and all camera triggering, leaving laser power, external

mechanical shutters and camera operating properties under control of Micro-Manager

(Fig. 3.2A). µSPIM Toolset therefore provides both accessibility and versatility, retain-

ing the user’s ability to select hardware best suited for the particular setting, as long as

it is supported through a Micro-Manager plug-in (The current range can be viewed at

https://micro-manager.org/wiki/Device%20Support).

3.4 Principles of operation

µSPIM Toolset consists of two main components: a Java plugin for MicroManager which

facilitates all user interaction and configuration, and a C++ control executable which

interacts with the National Instruments board to produce hardware control signals (Fig.

3.2). These support the control of two scanning X mirrors for light sheet formation, two

scanning Z mirrors and one piezoelectric stage for Z motion of the collection objective,

two laser shutters for laser masking and one trigger for the camera acquisition control and

synchronization with other hardware. After an appropriate setup, the Java plugin facil-

itates all necessary tools for calibration and control of the hardware, providing the users

with an intuitive interface without requiring the need for specialized computer knowledge

or programming, while allowing flexibility provided by MicroManager. Fig. 3.2 illustrates

the control diagram, outlining the interaction between the user and the light-sheet micro-

scope hardware (Fig. 3.2A) as well as the temporal sequence of the control signals (Fig.

3.2B and C).

A typical user interface for data acquisition includes the µSPIM Control window (Fig.

3.3A) and the standard MicroManager windows (Fig. 3.3B-D). The primary Microman-

ager window (Fig. 3.3C) provides access to all functionality related to the acquisition,

such as live mode, binning, ROI selection or exposure time. The µSPIM plugin (Fig.

3.3A) provides access to the variables used for light-sheet formation, such as light-sheet

width, volume depth or number of planes as well as providing a set of calibration pro-

cedures described in the Calibration section below. During scan mode, the image can

be viewed in the classical MicroManger live window (Fig. 3.3D) which also allows the

acquisition of snapshots. While acquisition can be manually started through the Micro-

Manager interface, the µSPIM plugin interface provides an acquisition routine executing

a synchronized start of acquisition and illumination, making the process of acquiring data

(namely volumes) simpler and more robust.

Taking full advantage of the stationary sample and fast acquisition speeds, we used

https://micro-manager.org/wiki/Device%20Support)
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Figure 3.3: µSPIM Toolset User Interface: Following a common MicroManager design, the

control interface is separated into several components: µSPIM Toolset-provided plugin window with

control over the light-sheet generation including calibration and acquisition routines shown in A.,

basic ImageJ tools shown in B. and MicroManager interface providing control over the acquisition

hardware shown in C. and live view of the camera shown in D.. The shown user interface has been

captured during the acquisition from a 7 dpf larval zebrafish from the Tg(elavl3:H2B-GCaMP6f)

transgenic line.
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µSPIM Toolset to monitor the activity of neurons across most of the brain of larval

zebrafish expressing the nuclear localised Ca2+ reporter GCaMP6f panneuronally (Tg(elavl3:H2B-

GCaMP6f ), Fig. 3.4). Larvae were embedded so that the laser excited the sample from the

side (arrows in Fig. 3.4A). The width of the sheet spanned 500 µm and covered the entire

hindbrain, the cerebellum and parts of the optic tectum. Single planes were recorded at a

frequency of 98 Hz. The volume was set to cover a distance of z = 100 µm and consisted

of 50 planes with a spacing of 2 µm. The piezo returned to its original position within 10

frames yielding an overall imaging frequency of 1.6 volumes per second. Fig. 3.4C shows

three representative sections at depths of 20, 30 and 40 µm, respectively. The lateral

and axial resolution of the microscope were 0.7 ± 0.1 µm and 5.4 ± 0.5 µm, respectively

(mean ± sd, full width at half maximum, see Methods) and the nuclei of individual cells

are clearly visible in the cerebellum, the anterior and the posterior hindbrain, respectively

(Fig. 3.4D) and their activity over time is shown in Fig. 3.4E.

3.5 Computing requirements

µSPIM Toolset relies only on minimal third-party software for its operation. This includes

MicroManager for integration of acquisition hardware (laser control, light path shutter

and camera) and National Instruments drivers, in order to interface with the National

instruments DAC card. Naturally, drivers and accompanying software must be installed

for the selected hardware (such as lasers or camera) in order to ensure MicroManager can

communicate with those parts properly. Due to the continuous high data throughput,

it is recommended to use a secondary computer for stimulation and/or other intensive

tasks to avoid potential performance issues caused by the multiple tasks competing for

computational resources or ensuring that this is not the case when a single machine is

used.

The computer specifications necessary for optimal function and acquisition of the setup

are highly dependent on the acquisition requirements. For large field of view and high

acquisition speeds, the acquisition produces large datasets, making the process highly

storage-dependent. State-of-the-art acquisition cameras are able to reach 4 megapixel

resolution at 100 Hz and 16 bit depth, producing a theoretical throughput of 838.9 MB/s.

This poses a write speed requirement higher than that which can be satisfied by a regular

SATA3 storage interface which is limited to a theoretical maximum of 600 MB/s. It is

therefore highly recommended to utilize a faster storage solution, such as fast PCI-based

solid state disk (SSD) storage (e.g. Intel Optane 905p) or hardware SSD RAID. The



21

Figure 3.4: Imaging larval zebrafish: A. Schematic of a single light sheet covering the hindbrain

of a larval zebrafish from above as well as a number of light sheets (constituting a volume) from the

side in B. (sheet size and spacing are not to scale). C. Transgenic zebrafish expressing the calcium

reporter GCaMP6f in the cell nuclei of all neurons (Tg(elavl3:H2B-GCaMP6f)) were embedded

in agarose and positioned so that the laser entered the brain from the side (blue arrows in A).

Representative sections of the volume taken at 20, 30 and 40 µm depths at a frequency of 1.6

volumes/sec and an integration time of 10.2 ms per section. The step size was 2 µm, hence

representative sections are 5 sections apart. The laser was set to 1.8 mW. D. magnified view

of boxed areas in C. Single cell nuclei are clearly visible and three examples are highlighted. E.

Excerpts of activity traces of single cells highlighted in D, ∆f/f = (f −min(F ))/min(F ) where

F is full activity trace.



22

acquisition is not highly CPU dependent and neither µSPIM Toolset nor MicroManager

take a significant advantage of parallel processing. A state-of-the-art consumer line 4- or

6-core CPU is sufficient for optimal performance.

µSPIM Toolset supports control of two independently calibrated laser paths. Each

path consists of a visible light laser, two scanning mirrors and one laser path shutter

(Fig. 3.1). The laser path shutter must be supported by MicroManager and is used to

block light between periods of acquisition and thus reduce photo-bleaching of the sample.

One of the two scanning mirrors is used for light sheet formation and the second is used

for Z movement. The laser should provide digital or analogue shuttering capability. All

other devices are controlled using an analogue signal produced by the National Instrument

DAC adapter and should support inputs in appropriate voltage ranges (commonly ±10

V). µSPIM Toolset allows for incomplete configurations e.g. a single light path with

unmodulated laser and a single sheet-generating scanning mirror would provide minimal

functionality, however most of the features of the µSPIM Toolset would be unavailable.

To support the full functionality, the National Instruments DAC card must support at

least 8 analogue outputs with no need for analogue or digital inputs as the control is fully

feed-forward and does not require any feedback from the hardware.

3.6 Calibration

The spatial scales of the signals are greatly dependent on the chosen hardware and thus

require the user to perform a set of calibration procedures to ensure appropriate alignment

of the hardware prior to the first use of the software for acquisition. Subsequently, the

calibration needs to be done only when hardware components are changed and routinely

when it is suspected the software has gone out of calibration. Here and in Fig. 3.5 we

outline the principles of the initial calibration of the different components sufficient to

achieve an acquisition-ready configuration.

3.6.1 X-Mirror

Proper X-plane mirror calibration is essential for the correct assessment of the size of the

illuminated region when starting acquisition. To calibrate the X mirror, it is necessary to

know the size of the field of view (or pixel size). This can be calculated as the effective

camera image sensor size divided by the magnification of the collection objective or by

measuring a standard stage calibration slide under the microscope. Using this measure-

ment, the X Mirror scale can be adjusted such that a sheet of a particular width matches
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Figure 3.5: µSPIM Toolset Calibration: µSPIM Toolset provides the user with calibration tools

which can be used to assess and correct the performance of the individual microscope elements. A.

i. and ii. show the calibration interface for X mirror with respect to the laser shutter when using

masks and for Z mirror, respectively. B. The movement of the X mirror galvanometer lags behind

the supplied signal, resulting in artefacts when using laser masks. (i.) shows the laser shutter

signal (green) and (ii.) shows the X mirror signal (blue) and actual mirror movement (light blue).

Black bar highlights the misalignment between the shutter signal and mirror movement when

the X mirror signal is not calibrated and no delay is introduced. (iii.) shows a mask used for

calibration, emphasizing the difference between uncalibrated and calibrated system. (iv.) shows

the corresponding light sheet produced with poor calibration for the mask signal in (i.). C. is

analogous to (B), showing a well calibrated system where the laser shutter (i.) is synchronized X

mirror movement (ii.), producing overlapping masks shown in (iii.) and (iv.). D. Uncalibrated

Z-Mirror results in loss of focus through the volume. E. After calibration, the light sheet is always

in focus throughout the volume scan. All figures illustrating the light sheet in both uncalibrated

and calibrated scenarios were acquired by scanning the laser through a fluoroscein solution.
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the corresponding number of the pixel. In the case of two illumination paths, this proced-

ure should be repeated for both paths separately. This calibration should be carried out

such that the x-mirror moves around its central position when energized (i.e. with zero

volts driving signal) and the illumination arm should be adjusted such that this central

position is centred on the field of view.

3.6.2 Piezoelectric stage

Piezoelectric stages are generally factory-calibrated to move a predefined distance by set

voltage difference (e.g. 1 µm per 40 mV for the PIFOC model) to which the Piezo Scale

setting should be set. The unit is mV/µm and for the previous example this setting would

be set to 40.0. µSPIM Toolset also provides a Piezo Offset setting which can be used to

adjust voltage offset in software. For optimal operation, it is suggested to adjust the offset

such that a plane at 0.0 µm is near the top of the available range. Setting the offset could

be beneficial, for instance, when imaging at multiple depths in a sample so that when 0.0

µm is positioned at the top of the sample it serves as a reference while allowing the full

range of the piezoelectric stage to be utilized.

3.6.3 Z-Mirror

Next, it is necessary to calibrate the relative movement of the Z-plane mirror(s) with

respect to the movement of the now-calibrated Piezoelectric stage. This can be done

using a calibration procedure provided by µSPIM Toolset which steps the stage through a

user-defined number of levels across a volume of choice and allows the user to adjusts the

Z mirror voltage for each level such that the laser sheet is in focus. Finally, a Z Mirror

scale is generated which can then be used to adjust settings.

3.6.4 X-mirror lag compensation

The X Mirror movement lags the signal which can be problematic when using laser masks

(discussed in Section 3.7.1). To correct for this, µSPIM Toolset provides a simple calibra-

tion process during which a distinct mask is displayed and the mirror lag is adjusted by

the user until the masks perfectly overlap (Fig. 3.5).

3.7 Data acquisition using µSPIM Toolset

For the acquisition of a single plane, the X mirror galvanometer has to be scanned at

least once across the full range of the desired light sheet width and back to its original
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Figure 3.6: Light-Sheet Laser Masks: A. User Interface used to define laser masks allowing the

user to display and use a number of masks for recordings: Edge masks help eliminate excess light

during laser return as visible in D (with Edge masks enabled) compared to C (without any masks),

Eye Mask allowing to turn the laser off in a specific region (such as eye of larval zebrafish) and Blank

Return which turns the laser off during return (flyback), avoiding unnecessary photobleaching of

the sample. B. The median-normalized luminance intensity profiles of a light sheet in Fluorescein

with no mask applied (blue, shown in C.), eye mask (red, shown in E.) and edge masks (green,

shown in D.). F. An illustration of how the ’edge’ and ’eye’ masks could be used in the context

of imaging the brain of a larval zebrafish while minimizing illumination of the retina.
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position (Fig. 3.2, showing 3 scans per frame). To ensure uniform illumination between

frames, µSPIM Toolset takes control over the camera using a rising edge trigger signal

synchronized with the X mirror (Fig. 3.2). Generation of a volume recording is provided

by a synchronous movement of the Z Mirror and the Piezoelectric Stage between frames,

acquiring consecutive frames from different heights in the samples (Fig. 3.2).

µSPIM Toolset implements three volume acquisition modes: Scan Down, Scan Up and

Bidirectional mode. In the Scan Down mode, the volume frames are acquired starting

from the top, moving down through the volume and then finally returning to the top of

the volume to prepare for the acquisition of the next volume. Since the stage moves a

relatively heavy objective, instant movement from the bottom to the top of the volume is

not possible and fast movement can introduce oscillations in the stage’s position, reducing

the quality of the recording. To eliminate this issue, a flyback period is introduced at the

end of volume acquisition (shown in Fig. 3.2B v.), slowing down the return of the stage

at the expense of several frames. The Scan Up mode offers similar functionality to that

of Scan Down mode, however in the opposite direction. Bidirectional mode eliminates the

need for the flyback period by alternating between Scan Down and Scan Up modes on

consecutive volume acquisitions (Fig. 3.2B vi.) at the expense of unequal time period

between frame acquisitions.

To allow for better distribution of sample illumination or illumination of occluded

regions, µSPIM Toolset also supports the control of two separate paths, allowing for two

light sheets of different widths.

3.7.1 Advanced acquisition methods

To allow for better distribution of sample illumination or illumination of occluded regions,

µSPIM Toolset also supports the control of two separate paths, allowing for two light

sheets of different widths.

Laser Masks

Removing parts of the light sheet can be beneficial in some acquisition settings. µSPIM Tool-

set utilizes fast software shuttering to provide two main masks which may be beneficial for

in vivo imaging: Edge Masks, removing the ends of the light sheet and thus reducing the

regions which are over-illuminated due to slow reversion of the direction of the X mirror

(Fig. 3.6) and Eye Mask which can be used to remove illumination from a selected region

in the light sheet (Fig. 3.6), allowing for acquisition where a specific region must not be
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illuminated, such as the eye (Fig. 3.6F). Both masks are easily adjusted (Fig. 3.6A) and

provide further flexibility in designing illumination sheets.

Light Adaptation

Zebrafish larvae have been shown to react to sudden light changes (Burgess and Granato,

2007), interfering with behaviours of interest. This proves problematic in visible light

recordings as the light is commonly turned off between recordings to prevent photodamage

to the sample, resulting in a sudden light change during the start of the recording. We

provide a simple light adaptation functionality which places a light sheet in a position

near the top of the sample prior to and in between recordings, where photodamage is of

less concern and then moves the sheet into the defined position when the recording starts.

Multi-recording sequence

Similarly, to the adaptation period, sudden light changes can be reduced by consecutive

acquisition of a number of recordings without the need for user input in between the record-

ings. This eliminates the concern of photodamage during non-acquisition time periods,

allowing the laser to be turned on for the whole sequence of the recordings.

3.7.2 Data output format

The image data output follows the MicroManager format with acquired image sequences

being split into 4GB files accompanied by a metadata file (Metadata format can be found

in the official MicroManager documentation: https://micro-manager.org/wiki/Files_

and_Metadata). To accommodate for the extra information regarding the light sheet ac-

quisition, µSPIM Toolset provides a separate metadata file which carries the informa-

tion about the volume acquired as well as information about the experiment and sample

provided by the user (Fig. 3.7).

3.8 Discussion

We have presented the µSPIM Toolset which provides a flexible software solution for the

control of SPIM microscopes and demonstrated its utility for brain-wide imaging of neural

activity in larval zebrafish (Ahrens et al., 2012). In contrast to other open source control

solutions for light sheet microscopes, such as OpenSPIM (Pitrone et al., 2013) and Open

SPIM microscopy (Gualda et al., 2013), µSPIM Toolset focuses on a microscope imple-

mentation better suited for functional imaging (as opposed to developmental imaging),

https://micro-manager.org/wiki/Files_and_Metadata
https://micro-manager.org/wiki/Files_and_Metadata
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Figure 3.7: Acquisition using µSPIM Toolset and Output Data Format: A. µSPIM Tool-

set generates a separate metadata file, supplementing metadata supplied by the MicroManager

platform. The generated data contains information detailing the settings of the acquisition (such

as the height of the recorded plane or number of planes in the recorded volume) based on the

parameters set by the user in B.. This information can be supplemented by the user to contain

information about the sample imaged, comments about the experiment protocol as well as the

recording itself to aid cataloguing of the data in acquisition information dialog shown in C..
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filling a gap in available software solutions rather than competing with the existing im-

plementations. With a range of in-built calibration protocols, µSPIM Toolset allows the

user to select hardware based on the needs of the given application. The MicroManager

platform on which µSPIM Toolset is built provides support for a wide range of acquisition

hardware which will provide users with a range of options in customizing their instrument.

Comprehensive documentation and the open source nature of the toolbox allows the user

to adapt the software to advanced application and non-standard use-cases, overcoming the

current limitations of the software.

While our framework offers great flexibility in the choice of hardware used, and is

modular allowing incomplete implementations, µSPIM Toolset fundamentally depends on

the National Instruments DAC and other digital-analogue converters are currently not

supported. Adding support for other DAC devices is supported by the structure of the

source code of our control software, but the modifications necessary may be quite extensive.

As previously outlined, the focus of µSPIM Toolset is primarily on the hardware flex-

ibility aimed at a particular application (functional light sheet imaging) and thus some

more complex functionality may not be supported out of the box. One notable example

would be the use of multiple lasers with various wavelengths which is required when ima-

ging with multiple fluorescent reporters or markers: µSPIM Toolset is currently limited to

providing support for two independent lasers. We have not yet explored the possibility of

replacing one or either of these by a multi-colour light engine, but envisage that this will

be possible given that micromanager supports a number of such devices. Again, advanced

users may choose to modify our solution to support this functionality if required.

Being built around MicroManager, µSPIM Toolset inherits all of its limitations. For

instance, while the list of acquisition hardware supported by the MicroManager platform is

extensive, it is possible that some less common devices are not supported by the platform

and thus cannot be used with our toolbox. Another notable limitation is the lack of

support for the “rolling shutter” mode of acquisition in which the exposure of each line of

pixels on the sCMOS sensor is delayed to coincide with the time at which those pixels are

parfocal with the laser beam passing through the sample (also called electronic confocal

slit detection (Hu et al., 2017)). Because only that single line of pixels is activated,

much background fluorescence caused by scattered illumination of neighbouring areas is

rejected, thereby improving resolution. We did not implement this mode of acquisition as

a standard feature of µSPIM because it results in lower frame rates compared to the usual

“global shutter” mode of acquisition in which all pixels are activated simultaneously.
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While our framework does not support some use cases in its current implementation,

it provides a comprehensive solution to the control of light sheet microscopes with support

for a wide range of both control and acquisition hardware while retaining a gentle learning

curve supported by the well documented calibration and acquisition protocols. For this

reason, we hope the µSPIM Toolset will be adopted in both standard and custom light

sheet imaging use cases thanks to the well-documented open source code base. Both

documentation and source code are available for free from the µSPIM Toolset git repository

(https://uspim.org).

3.9 Materials and Methods

3.9.1 Optical design of SPIM used in this work

A partial parts list for the SPIM we constructed is provided in Table 3.1. The illumination

arm (Fig. 3.1) was fed by one or two lasers through optical fibres (kineflex). When using

both red and green fluorophores, a long-pass dichroic mirror (Thorlabs DMLP505R) com-

bined the beams of the blue and yellow lasers, which then passed through a mechanical

shutter. The beam was reflected by a pair of X and Z Galvo scanning mirrors with 1 kHz

bandwidth at deflection angles ± 0.2°. The beam was then expanded by a factor of 2.5

using a pair of achromatic lenses (f = 50 mm and 125 mm) The optimum beam parameters

were calculated using calctool (http://www.calctool.org/CALC/phys/optics/f NA). The

illumination lens was f = 40 mm achromat. The whole of the illumination arm, beginning

with the combining mirror, was mounted on an optical rail which was itself mounted on

two translation stages (Thorlabs XR25C/M), one of which was slaved to the other. This

arrangement allowed centering of the illumination beam on the field of view when the

x-mirror was set to its position of zero offset, which is especially important for calibration

of x-mirror displacement described above. With the rapid scanning of the X Galvo mirror,

the laser line will form an illumination plane over the integration time of a single frame.

The thickness of the beam waist was ≈ 7 µm, with a Rayleigh length of 440 µm. We there-

fore achieved a relatively uniform plane of illumination across half of the total field of view,

which was 810 µm wide. The specimen stage was custom-designed according to applica-

tion and manufactured using a 3D printer. The stage was attached to an x-y-z translation

assembly (Thorlabs PT3) for positioning of the specimen. For detection, a 16X/0.8NA

Nikon CFI LWD Plan Fluorite objective was placed perpendicularly to the illumination

plane to collect the emitted fluorescence signal. The excitation light was rejected by the

https://uspim.org
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emission filter and then a tube lens of 200 mm focal length (AC508-200-A-ML, Thorlabs,

Inc) used to project an image onto the sensor of the Hamamatsu Flash4.0 sCMOS camera

(13 x 13 mm CCD, so that each pixel imaged an area of 0.16 µm2 using a 16x objective).

The objective lens was mounted on a piezoelectric stage (P-721 PIFOC High-Precision

Objective Scanner, Physik Instrumente Ltd) and its movement synchronized with the Z

Galvo scanner to make sure the illumination plane is always in the imaging focal plane.

The objective and PIFOC scanner were themselves mounted on a manual stage for finding

the focal plane before starting acquisition.

3.9.2 Characterising lateral and axial resolution of the microscope

To characterise the lateral (x/y) and axial (z) optical resolution (defined as the minimum

distance the diffraction images of two points can approach each other and still be resolved

is the resolution limit) of our SPIM we used fluorescent sub- diffraction size beads (0.1 µm

diameter “fluospheres”, Invitrogen), suspended in 1% low melting point agarose (Sigma-

Aldrich). Using a 200 µm wide light sheet and a step-size of 0.5 µm several volumes of the

suspended beads were acquired. 22 non-overlapping beads were used to determine lateral

and axial resolution. Axial resolution was determined by fitting a Gaussian function to

the z- profile running through the point of highest intensity (the centre of the bead). The

position of the peak of that function was used to determine the imaging plane running

through the centre of the bead and a 2D Gaussian where σ(X) = σ(Z) was fit to that

plane. Using this procedure, we determined a lateral resolution of 0.7 ± 0.1 µm (mean ±

sd, full width at half maximum, n = 22 beads) and an axial resolution of 5.4 ± 0.5 µm.

3.9.3 Imaging Brains of Larval Zebrafish

All procedures were in accordance with the UK Animal Act 1986 and were approved by

the Home Office and the University of Sussex Ethical Review Committee. Transgenic

zebrafish larvae of undetermined sex expressing the nuclear localised H2B-GCaMP6f cal-

cium reporter panneuronally (Tg(elavl3:H2B-GCaMP6f), Chen et al. (2013); Dunn et al.

(2016b)), were imaged at 6-7 days-post- fertilisation (dpf) as a part of an ongoing investig-

ation into Optomotor Response in larval zebrafish. All lines were maintained in the nacre

background to limit pigmentation. Larvae were paralysed by positioning them sideways

in a small slit of PDMS (Sylgard184, Dow Crowning) on a coverslip (Pichler and Lag-

nado, 2019) and injecting 0.25mM α-Bungarotoxin (Tocris Bioscience) into their heart.

They were then embedded dorsal side up in 2% low-melting-point agarose (Biogene) in
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Mechanical Parts Component (Manufacturer)

Optical table
1.4 x 1.8 x 0.2 m clean top on Micro-g Pneumatic

and Rigid Legs (TMC Vibration Control)

Rail systems
Precision 100 mm Dovetail Optical Rails with PRC

carriers (Newport)

Translation stages XR25C/M (Thorlabs)

Illumination arm

Lasers
LuxX+ 488 nm 60 mw (Omicron)

Jive 561 nm 100 mW (Cobolt)

Optical Fibre and laser launch
Kineflex Fibre system (0.7 mm), 400-640nm, 2m,

FC/APC connectors (Qioptiq)

Mechanical Shutter SH05/M shutter and SC10 controller (Thorlabs)

Beam expander 2.5x
f = 50 mm achromat (AC254-050-A, Thorlabs) and

f = 125 mm achromat (Edmund Optic)

Dual-axis galvanometer scanner GVS102 - 2D Galvo System (ThorLabs)

Illumination lens f = 40 mm achromat (#49-354-INK, Edmund Optics)

Collection arm

Camera ORCA-flash4.0 v2

Laser cleanup notch filters 488/10, and 561/10 (Chroma)

Detection objective 16X/0.8NA CFI LWD Plan Fluorite (Nikon)

Piezo
PIFOC E-665 amplifier/controller + P-725 (400 µm

travel range from Physike Instrumente)

Emission filter 535/35 (xf3007, Omega)

Tube lens f= 200 mm achromat (AC508-200, Thorlabs)

Mounting of collection arm X-95 mounting system and carriers (Linos)

Computing

Custom built PC incorporating Intel®

Xeon® processor E5-2600

Frame Grabber Firebird Camera Link (2xCLM-2PE8) (Active Silicon)

DAC card PCIe-6738 (National Instruments)

Table 3.1: Parts list for construction of SPIM
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E2 medium (Brand et al., 2002) on a 22 mm x 22 mm coverslip and placed into a custom

glass-walled 3D printed chamber. After filling the chamber with E2 medium, the major-

ity of the agarose that fell between the laser source and the larva’s head was removed

with a scalpel to maintain sufficient stability of the sample while minimising the distance

the laser is travelling through the agarose. The chamber was positioned underneath the

objective so that upon turning on the laser, it would not hit the head, and the eyes in

particular, but rather the tail of the fish. Once the imaging and excitation planes were

successfully aligned, the larva’s brain and in particular the desired brain region was ap-

proached. Finally, experimental parameters such as sheet widths, frame rate, number of

volumes, step-size and adaptation time were defined before starting acquisition. Volumes

were acquired using z-steps of 2 µm, which was sufficient to identify ROIs corresponding to

individual neuronal cell bodies (typically 5-8 µm in diameter) without an unduly high data

acquisition load. Once acquired, data was reduced to time-series of fluorescence signals

for each ROI corresponding to a single neuron. Operation of µSPIM Toolset was tested

using more than 10 zebrafish larvae as part of another ongoing investigation.
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Chapter 4

A model-based closed loop virtual

reality system based on

free-swimming parameters

4.1 Introduction

Neural processes giving rise to behaviour have been of increasing interest in the larval

zebrafish model thanks to the optical accessibility of brain, availability of genetic tools

and the number of robust behaviours the larvae exhibit (Orger and de Polavieja, 2017).

Despite this, a number of challenges exist when acquiring the neural activity data from

behaving animals. It has been extensively shown that environmental feedback is necessary

for the animal’s behaviour to accurately reflect that which would have been expressed in

its natural setting (Ahrens et al., 2012; Portugues and Engert, 2011; Severi et al., 2014;

Markov et al., 2020). This makes freely moving setting favourable for behavioural studies,

however it proves to be difficult when neural activity is of interest as the brain is not

fixed, making it hard to be imaged (but see Kim et al. (2017) and Marques et al. (2020)).

Moreover, the physical environment offers limited options for perturbations and control of

the sensory feedback, narrowing the opportunities of exploration for the embodiment of the

animal in the real world and its effect on behaviour. For these reasons, many studies have

adopted a fixed animal virtual reality approach for the investigation of animal behaviour,

especially in conjunction with neural imaging, such as for the purposes of opto-motor

reflex (Ahrens et al., 2012) or pray capture (Bianco et al., 2011; Semmelhack et al., 2014)

assays.

In many studies, an open-loop virtual reality (VR) environment has been sufficient(Severi
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et al., 2014; Bianco et al., 2011; Semmelhack et al., 2014), however as the importance of

environmental feedback became more apparent(Ahrens et al., 2012), many studies have

focused on the effects of feedback in a head-restrained closed-loop virtual reality setting.

This modality has a number of advantages in comparison to free swimming, mainly in

terms of accessibility for simultaneous imaging of the brain with 2P (Naumann et al.,

2016) or light sheet (Vladimirov et al., 2014) microscopy and the possibility of perturba-

tion to the feedback (Ahrens et al., 2012).

Existing studies utilizing virtual reality with recording activity rely either on electrode

recording from the tail (Vladimirov et al., 2014) or visual capture of tail movement to

estimate the movement of the fish (Severi et al., 2014) to construct the feedback signal.

Here we aim to provide an accurate feedback to the fish based on the recording of tail

movement since the interaction between the larva and its environment is of a particular

interest.

We explore the movement in freely behaving larvae and formulate a realistic feedback

model based on the observed behaviour. This is advantageous as the derived model is

both physically plausible and accurately reflects the properties of the swimming motion in

freely swimming fish. This model is then implemented in a head-fixed setting by record-

ing the activity of the tail and delivering the stimulus to the sample by an independent

stimulus/acquisition arm combining both the stimulation and the necessary tail tracking,

allowing the VR stimulator to be incorporated into existing acquisition setups, irrespective

of present setup.

4.2 Methods

The basic operation of a closed loop stimulator relies on a continuous and consistent

execution and interaction of multiple elements, including camera acquisition of the tail

activity from the sample, tail tracking, integration of the swim model and subsequent

presentation of the computed stimulus back to the fish larva (Fig. 4.1A). This results in

a higher complexity when compared to open loop stimulation as inconsistency in any of

the components will result in inconsistent feedback to the fish, potentially invalidating the

results of the experiment. Here we show the implementation of the individual components

as well as their interaction to produce the closed loop stimulus.
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Figure 4.1: Closed Loop Virtual Reality Setup:

A. Diagram of the closed-loop virtual reality setup based on camera acquisition of larval tail

movement. B. Photos of an example stimulation setups. Top: VR setup used with light-sheet

microscopy with IR illumination from above. Bottom: VR setup used with two-photon imaging,

illumination provided by IR diodes positioned in a ring around the sample. C. Photo of the stim-

ulation chamber showing projection screen with acquisition window for tail movement acquisition.

D. Tail image acquired by the camera fitted with points tracking the tail in the frame. E. Tail

movement is tracked over time (left) and is converted to variables approximating the tail activ-

ity based on tail angle change (top), angle between each pair of consecutive points fitted to the

tail (center) and area covered by the tail in consecutive frames acquired(bottom). Traces on the

right show the respective measures of tail movement on the y-axis (a.u.) tracked over time. F.

Tail activity measures shown in E are converted into acceleration which is converted into velocity

through a simple integration model. Velocity is then integrated over time into displacement. This

model is then used to infer the phase of the stimulus.
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4.2.1 Tail Camera Acquisition

We facilitate the acquisition of the tail movement by a camera mounted on an arm po-

sitioned below the sample (Fig. 4.1B). This allows seamless integration with 2P or light

sheet acquisition as the sample is not occluded from the top nor from the sides. Since

the stimulus is also projected from the bottom of the sample (Fig. 4.1B), a small window

in the projection screen is required to expose the tail for acquisition (Fig. 4.1C). For the

acquisition itself, we chose to use Allied Vision Mako U-130B as it offers high acquisition

speeds (>200Hz) sufficient to capture short, high-frequency, tail bouts in sufficient de-

tail and is small enough to be easily mounted on a horizontal railing without additional

support. To avoid light pollution from and to the acquisition and from the varying light

stimulus, an 850/10 nm band-pass filter has been included in the VR acquisition path and

an external IR light source (850nm) has been positioned above the sample (Fig. 4.1B) in

case of the light sheet microscope setup and in a ring configuration in the 2P microscope

setup (Fig. 4.1B, bottom). Green light band-pass filter has been included in the acquis-

ition arm of the 2P and light sheet setup allowing avoidance of light pollution from the

tail illumination and thus preserving the quality of the neural activity acquisition.

4.2.2 Tail Tracking

A number of tracking solutions have already been formulated and used in many past

investigations of larval behaviour (Portugues and Engert, 2011; Portugues et al., 2015;

Semmelhack et al., 2014). We chose to use a tail tracking algorithm formulated by Sem-

melhack et al. (2014) as it offers both sufficient accuracy and high processing speed of up

to 3ms per frame (300Hz), making it ideal for a real-time application with high acquisi-

tion speeds. This algorithm outputs a present number of points equally spaced along the

tracked tail which is illustrated in Fig. 4.1D.

4.2.3 Swimming Model

As a basis for the swimming model, we use a basic integration model of motion where

the fish has control over its acceleration through some measure of effort derived from the

movement of the tail:

da

dt
= − a

τa
+N ∗ T

dv

dt
= − v

τv
+ a

dd

dt
= v

(4.1)
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Figure 4.2: Processing Data Acquired from Freely Moving Fish:

A. Image excerpt acquired by a high speed camera at 500 frames per second. B. Image from A.

with background subtracted. C. Tracking parameters shown on a processed frame shown in B.

Purple and green traces show the position of larva eyes over time, red line indicates the velocity

vector and dashed rectangle outlines an eye-aligned excerpt used for tail fitting shown in E. D.

Larval fish can be tracked over the period of two seconds, three examples are shown with the

tracked position (left) and forward velocity (right). E. An rectangle aligned with the eyes can be

extracted from the recordings, emulating input from a head-embedded sample for tail fitting (left,

showing tail at times 1, 2 and 3 indicated in D). The tail activity variables can then be estimated

for simple tail angle change (blue), pair-wise tail angle change (orange) and area covered (red).

Figure on the right tracks the variables for the first trace shown in D over the full recording (top)

and first bout (bottom).
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where T is a measure of tail movement (swimming effort), N is a normalizer variable

used to normalize the tail effort across fish, a is acceleration in mm/s2, v is velocity in

mm/s and d is displacement in mm. τa and τv are decay constants for acceleration and

velocity, respectively. This representation of the motion model allows us to capture the

instantaneous acceleration, velocity and position of the larval sample at any given point

in time and to log it for further analysis (Fig. 4.1F).

We formulated 3 models to approximate the swim effort T as a function of the points

fitted along the tail (Fig. 4.1E). The first model is based on the deflection angle of the tail

in the successive image acquisitions. This is computed as the angle between a vector from

the first to the last tail point in the current and the previous acquired frame:

Tα ∝ tan−1
(
yNt − y1t
xNt − x1t

)
− tan−1

(
yNt−1 − y1t−1
xNt−1 − x1t−1

)
(4.2)

where xnt and ynt are the x and y coordinates of a n-th tail point at a time t and N is the

number of tail points captured.

The second model is based on the derivative of the tail, approximated as the change

in angle of a vector formed by a pair of two consecutive tail points summed over all pairs

fitted:

Td ∝
N∑
i=2

tan−1
(
yit − yi−1t

xit − x
i−1
t

)
− tan−1

(
yit−1 − y

i−1
t−1

xit−1 − x
i−1
t−1

)
(4.3)

The third model is loosely based on the area covered by the tail and is formulated in

terms of the average distance covered by each tail point over time:

TA ∝
1

N

N∑
i=1

√
(xit − xit−1)2 + (yit − yit−1)2 (4.4)

Model Parameter Fitting

We evaluate all three models in freely swimming zebrafish larvae where both the tail

movement and corresponding change in position are observable. To do this, we recorded

7 dpf larvae under a microscope for short periods of time with a 500Hz high-speed camera

(Fig. 4.2A). Subtracting the average background of the recording then yielded a good basis

for tracking and analysis (Fig. 4.2B).

To extract the orientation, position and other kinetic variables, we used blob detection

to track the eyes of the zebrafish over time (Fig. 4.2C,D). An eye-aligned square region

was then used to produce a pseudo-head-fixed view (Fig. 4.2C, dotted rectangle) which

could then be used for tail tracking using the algorithm outlined in Section 4.2.2 (Fig.4.2E,

left). Swimming effort could then be estimated using Eq. 4.2, 4.3 and 4.4.
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Using the estimated swimming effort, we can use Eq. 4.1 to model the velocity of the

fish where N , τa and τv are model variables that need to be fitted. Knowing the velocity

of the fish over time (Fig. 4.2D, right), these variables can be estimated by minimizing

the mean squared error between the model and real velocity. Fig. 4.3 A, B and C show

results for fitted models using swimming effort based on tail angle, tail derivative and tail

area, respectively. The example fitted trace on the left shows the model fitted on 500Hz

acquisition data in light colour and the model applied on to sub-sampled recordings with

250Hz, 100Hz and 50Hz rate in darker colours. The figure on the right then details

the change in the mean squared error over the different acquisition rates, indicating the

robustness of the model to sub-optimal or varying frame rate.

During the parameter fitting, we found τa to tend towards 0 as the model needed

to produce a fast rise in velocity at the start of a swimming bout. We therefore fixed

τa = 0.001 which is both fast and still possible to reliably integrate in real time.

4.2.4 Stimulus Projection

The stimulus is projected by the bottom-mounted VR arm (see Section 4.2.1) on a 3D-

printed translucent screen by an Optoma Pico Projector PK320 or BenQ W121OST. We

found the 3D-printed screen to offer sufficient stimulus brightness and contrast (Fig. 4.1C

is representative) while being resistant to liquid spills and simple to produce. It is easily

replaceable by a paper- or film-based projection screen if necessary.

4.3 Results

4.3.1 Realistic Swim Model

To evaluate the performance of the different Swimming effort metrics outlined in Sec-

tion 4.2.3, we investigated both the fitted variable values as well as model metrics over a

range of acquisition speeds.

Over the recorded samples (N=33), we plotted the value of τv for each model fitted

(Fig. 4.3D). We found no significant difference in the values of τv between the models based

on tail area covered (Eq. 4.4), 0.021±0.0065 (mean ± 1 STD), and tail derivative (Eq. 4.3),

0.020 ± 0.0061. The τv values for models based on tail angle (Eq. 4.2), 0.028 ± 0.0081,

differed significantly from both the tail area and derivative models (p < 0.0001, Wilcoxon
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Figure 4.3: Estimating Swim Model Parameters from Freely Moving Fish:

A. Example fitting results (right) for a swimming velocity trace shown in gray (periods of no

movements were omitted), fitted with a model based on tail angle change (light colour). Darker

colours show the same model applied with acquisition rates of 250Hz, 100Hz and 50Hz. The mean

squared error (MSE) for the fitted models applied with varied acquisition rates is shown on the

right. Each coloured trace represents a model fitted on a single larval sample while the black

trace represents the mean with error bars displaying the standard deviation. B. Results for fitting

using the pair-wise angle change presented in the same format as F. C. Results for fitting using

the area covered presented in the same format as F. D. Violin plots showing the parameter value

distribution for τv for tail angle change (left, blue), pair-wise tail angle change (center, orange)

and area covered (red, right). E. Violin plots showing the parameter value distribution for N for

tail angle change (left, blue), pair-wise tail angle change (center, orange) and area covered (red,

right). F. Signal-to-Noise ratio (SNR) at different acquisition rates for the tail activity variables;

tail angle change (left, blue), pair-wise tail angle change (center, orange) and area covered (red,

right). G. Area Under a Curve (AUC) at different acquisition rates for the tail activity variables;

tail angle change (left, blue), pair-wise tail angle change (center, orange) and area covered (red,

right).
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signed-rank test1). All of the τv for the different models were on the same order of

magnitude as would be expected for a variable closely related to the kinetic model rather

than the representation of swim vigour.

An important parameter of a model is its proneness to the noise from tail tracking. The

tail tracking algorithm used does not take time history of the tail into account, operating

on individual frames. This benefits from a lower bias and a faster processing speed due

to the relative simplicity of the algorithm. A disadvantage of this approach, however, is a

higher noise where some tail points may move by one or more pixels even if the tail itself

is not moving. This can be very problematic in a low illumination setting, such as that

of a setup with combined neural activity acquisition. To capture this, we approximated

signal-to-noise ratio as the ratio of the average swim vigour, T , during bouts (tail moving)

and outside bouts (tail not moving) over different acquisition rates (Fig. 4.3F). At 500Hz

acquisition rate, the SNR for angle-based measure, 8.8, was significantly higher (p < 0.01,

Wilcoxon signed-rank test) than both derivative-based measure, 7.4 and significantly worse

performing area-based measure (p < 0.01, Wilcoxon signed-rank test) as small variation in

the tail point position results in a small angle change in case of the angle angle-based meas-

ure whereas derivative- and area-based models accumulate the noise from the movement

of all of the tail points. With slower acquisition rates, the change in the observed vari-

ables during tail movement becomes larger between subsequent frames whereas the noise

remains constant. All three measures then benefit from the slower acquisition rates up to

100Hz where angle- and derivative-based measure perform comparatively (16.6 and 14.7

respectively) and area-based measure offers a significantly better signal-to-noise (19.0).

The larger improvement in SNR for area measure can be attributed to a greater increase

in the signal due to lesser susceptibility to underestimating the tail movement as the tail

reverses direction. This is even more apparent at the 50Hz acquisition rate where only

the area-based shows significant improvement in the SNR whereas angle-based measure

shows no improvement and derivative-based measure performs worse than at 100Hz.

Zebrafish larvae are hypothesized to integrate their movement with respect to their

environment over time (Portugues and Engert, 2011). This is not expressed in mean

squared error as even with a significant MSE, the mean velocity could remain constant

over time. We therefore looked at the area under the curve (AUC) for the velocity output

1In all instances, two-sided Wilcoxon signed-rank test was used to characterize the difference between

the models. Some data did not appear to be normally distributed, limiting the applicability of regular

paired t-test.
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by the model over time (Fig. 4.3G). An ideal model would retain constant AUC, however

we observed a significant decrease past 250Hz acquisition speed. The decrease was less

prominent in the case of area-based measure down to 86.0%, followed by angle-based to

79.2% and finally derivative-based to 70.3%.

While basing the swimming vigour on the angle of the tail can yield superior results for

high acquisition speeds where it benefits from higher signal-to-noise ratio, the use of area

is significantly superior for slower acquisition speeds which are more viable for real-time

closed-loop stimulation. This is mainly due to better retention of the information (signal)

in the lower sampling rate setting, leading to better SNR and lesser underestimation of

the distance swam by the fish (velocity AUC). The smaller variance of this effect with de-

creasing frame rate also makes it easier to be compensated for by increasing the normalizer

parameter N .

4.3.2 Tracking of kinetic variables

To provide a basis for a detailed analysis of the behavioural data, we provide granular

swimming data logging at regular intervals (tested up to 200 data points per second).

Along with the basic timestamped kinetic variables produced by the swim model, including

acceleration, velocity and displacement (Fig. 4.4E ii-iv.), the stimulator also saves exact tail

point position and change (Fig. 4.4E i.) as well as the state of the other components of the

stimulator such as the visual stimulus state and the current frame count of accompanying

acquisition (if any, explained below). All experiment-variables are saved as well, including

the time since start of the current experiment, experiment parameters, experiment mode

and the duration of individual stimulation modes (see Section 4.3.6).

4.3.3 Alignment with other acquisition modalities

The VR stimulator was designed to be used in parallel with other acquisition modalit-

ies such as 2P or light sheet microscopy acquisition of neural activity. The alignment of

behavioural and neural activity is particularly important for many studies, allowing the

combination of the data through correlation and other related analysis. To facilitate this,

we implemented triggering and frame counting through a National Instruments acquisition

board which is able to take signals from a different signal-generating device to establish

common timing truth. This can be achieved through sending a single triggering signal

at the start of the acquisition to the VR stimulator to attain simultaneous start of both

recordings, using the relative time to reference events throughout both recordings. Altern-
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atively, if the neural acquisition setup utilizes camera triggering to request the acquisition

of images from the camera, the same signal can be supplied to the VR stimulator to obtain

perfect frame-accurate alignment of the acquired behavioural data.

4.3.4 Tail Tracking achieves real-time performance at high acquisition

rates

We evaluated the performance of the tail fitting algorithm as well as the swim model

computation to ensure that high data throughput can be achieved in real-time (Fig. 4.4C).

Each execution of the swim model loop consistently finished under 1ms with 99.999th

percentile of 50.4µs including processing of the tail points into swim effort, making it

more than sufficient for handling integrative models on the millisecond time-scale. The tail

fitting algorithm processed each frame consistently under 10ms with 99.999th percentile

of 8.44ms, offering sufficient speed for processing tail acquisition with up to 100Hz speed

in real-time.

4.3.5 Support for open and closed loop Optomotor Response (OMR)

stimulus

The main focus of the VR stimulator is to provide functionality focused on the optomotor

response behaviour. We provide closed loop models outlined in Section 4.2.3 deriving the

swimming activity from tail angle change, tail derivative change or area covered by the tail

of the larva (Eq. 4.2-4.4) with default parameters based on our investigation (Section 4.3.1).

However, the significant variance of the normalizer parameter, N (Fig. 4.3E) suggests

some variability of the fish larvae in terms of their physical properties, resulting in a

significantly faster acceleration for some fish compared to others. To attenuate this issue

and offer means to normalize across fish, we provide an on-line fitting protocol that can be

carried out prior to the experiment on each new fish sample which alters the normalizer

parameter such that a given fish perfectly compensates for a drift of a desired speed (by

default, 10mm/s) similar to closed loop VRs developed in other studies (Portugues and

Engert, 2011; Marques et al., 2020).

Closed loop stimulation suffers from an inherent limitation in terms of latency arising

from the camera, computation and projector components. We measured the latency of

our solution by measuring the time duration between presentation of a light flash and

its subsequent appearance on the projector screen by a high-speed camera. With the

hardware used, the setup achieved low latency of 22 ms which can be primarily attributed
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to the high speed projector. In comparison, commonly used projectors can have latency

of 65 ms or higher as the intended usecase of media consumption does not rely on fast

response times. While this is a significant difference, it is important to note that the

latency is still significant on the timescale of freely swimming bouts the zebrafish larvae

exhibit (Fig. 4.4A). This could lead to behavioural differences between the freely swimming

and head-fixed preparation settings.

Some experiments may benefit from the option to switch between closed and open loop

modes for purposes of comparison, or do not require closed loop functionality at all. We

provide an open-loop swim model that takes only the stimulus movement into account,

disallowing the interaction of the fish larva with it’s virtual environment. As such, this

mode does not require the tail fitting or the camera input and can thus be operated

without it if only stimulation is of interest. Naturally, this would mean that none of

the behavioural data can be collected. By default, if the camera input is provided, the

stimulator saves the tail movement data and a virtual acceleration and velocity based on

the tail movement of the fish even if this is not then converted into visual feedback. This

then allows for more comprehensive comparison between closed and open loop behaviour.

4.3.6 Highly modular experiment design

The VR stimulator has been designed with modularity in mind. To support this, it

provides an experiment model comprising of simple stimulus blocks that can be assembled

to produce any customized protocols (Fig. 4.4B) as well as extended for custom function-

ality that is not supported out of the box. A single execution consists of a battery of

experiments where each experiment is parametrized by the user, this could be high and

low gain in a gain adaptation experiment or a set of velocities in a drift experiment. Each

experiment then consists of sub-protocols, such that each sub-protocol is parametrized by

a single value, for example high or low gain in a gain adaptation experiment or a single

velocity in a drift experiment. The sub-protocol then comprises of a fixed stimulus se-

quence which is generally the same across the sub-protocols in a given experiment. This

could be a set length drifting grating at a set velocity followed by a set length rest period.

The user is then able to create experiments based on pre-set sub-protocols, define their

own or even define custom stimuli as needed.

As outlined in Section 4.3.5, open and closed loop swim models are predefined, however

the user has the ability to define a completely custom swim model as well as use different

swim models in different experiments or multiple swim models in different parts of a single
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experiment.

Similarly, the predefined grating stimulus can be exchanged for a user-defined one,

allowing the VR setup to be used outside of the default OMR paradigm.

4.3.7 Native multi-threading support

The integrative swim model requires an uninterrupted, consistent performance for optimal

operation. Having significant delays between the model updates will result in less accurate

approximation of the movement of the larva and it is therefore important for long-running

tasks to be completed asynchronously. The VR stimulator therefore splits tasks into a

number of separate threads that are mostly independent and only communicate results of

their workloads as needed (Fig. 4.4D):

First the main thread (the user thread) is primarily controlled by the user and is

responsible for initialization of other processes such as the camera interface, visual stim-

ulator and the swim model. During the experiment, it handles the instrumentation of

the other threads such as changes of swim model parameters or stimulus speed as well as

communication between individual sub-processes.

The swim model thread solely handles the conversion of tail point data into swim effort

and the integration of the swim model. The output kinetic variables are written into a

shared memory where they can be accessed by the main thread. In this design, the tail

point data is only written by the main thread and only consumed by the integrator thread

and vice-versa for the kinetic variables, allowing uninterrupted operation of the integrator

without the need for extensive memory-locking mechanisms.

The tail acquisition thread awaits incoming frames captured by the camera and handles

the fitting of the tail points of each frame. This functionality itself is completed asynchron-

ously, allowing the tail fitting of the previous frame to take place while the next frame is

being captured by the camera. Processed tail points are sent to the main thread which

writes them directly into the shared memory, ready for consumption by the swim model

integration thread.

The stimulus thread primarily handles the rendering of the stimulus. Each execution of

the main loop supplies the stimulus thread with the most recent position of the fish relative

to its environment, potentially sending hundreds of updates per second. Since modern

projection devices generally only support output of up to 60-120 frames per second, prior

to rendering the next frame, all outdated updates are discarded and only the most recent

position is used. The rendering is handled by PsychoPy (Peirce, 2009) and the thread
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Figure 4.4: Virtual Reality Stimulator Data Output: A. Illustration of the effect of stimulator

latency on the perceived velocity by the larval sample with 22ms and 65ms delay. B. The stimulator

is structured with experiments in mind: stimulus sequences are grouped into simple protocols which

are repeated within one experiment with varying parameters. Batteries of experiments can be run

against any given animal sample in order to execute a number of experiments in succession without

need for user input. C. The distribution of compute time required to complete computation of

swim model (left) and tail fitting (right). D. The VR Stimulator utilizes multi-threading to ensure

optimal performance. The main (user) thread prepares the stimulation settings (i.) and optionally

awaits trigger from other acquisition devices to synchronize the stimulus with the acquisition

(ii.) before setting the swim model parameters and starting the stimulation. The swim model

parameters are changed by the main thread again only when required by the experimental setting

(iii.).
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Figure 4.4: D. cont. The swim model regularly receives information about the state of the tail

as the frames acquired by tail camera are processed by the fitting algorithm (iv.) and updates

the stimulation thread with the virtual position of the sample such that the stimulus presented

accurately reflects the computed position (v.). The stimulation data is saved asynchronously such

that it does not interfere with the stimulation performance (vi.). E. Detailed data of arbitrary

stimulation duration is produced automatically with any acquisition. 13 minute excerpt (left)

shows the tail point change over time, acceleration, velocity (sample in blue, grating drift in black)

and position over time. Same parameters are shown again in detail over 5 seconds on the right.

can be replicated multiple times with each instance handling one output. By default, one

thread is created for the stimulator projector and a second one for a monitoring window

displayed along with current state of the stimulation to the user.

Finally, the data logging thread handles writing the data output of the acquisition.

Receiving data from main thread, it writes the data into a JSON file during the execution

of the other processes, minimizing the impact on the other components of the stimulator.

4.3.8 Tail-movement-based VR can be used to study behaviours in head-

fixed zebrafish larvae

We used our Closed-loop VR stimulator to investigate the optomotor behaviour in head-

fixed larval zebrafish and their response to varying drift speed and gain. We defined gain

as a multiplicative factor to the normalizer parameter, N , such that it controls the effort

needed to produce forward movement. Lower gain values decrease N such that a greater

tail movement vigour is needed to produce set acceleration and vice-versa, high gain values

increase N such that lesser tail movement (and thus effort) is needed to produce the same

acceleration. To normalize across fish samples and recordings, we fit the normalizer N at

the start of each recording such that each larva achieves near-perfect drift compensation

for drift speed of 10mm s−1 and gain of 1.0 (see Section. 4.3.5).

We quantified the bout duration across all trials. With mean of 0.53s (Fig. 4.5A), the

bout duration in the head-fixed larvae is longer than in freely swimming fish, this follows

the results of related studies on head-restrained open-loop behaviour done by Severi et al.

(2014) where the bout duration ranged from 270 ms to 370 ms. In the our closed-loop

results, the fish exhibited a significant grating speed dependant increase in bout duration

for all gains up to grating velocity of 5mm s−1 (Fig. 4.5B) which contrasts the results

of prior open-loop studies and closely follows results in freely swimming fish, albeit with
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substantially longer bout durations (Severi et al., 2014). This difference between open

and closed loop could be attributed to the tendency of larval zebrafish to attenuate their

response to the OMR stimulus in the presence of no visual feedback (Portugues and Engert,

2011). While it is unclear why head-restrained fish exhibit longer bouts, it is possible that

the feedback loop latency is at least one of the causes. Other explanations could include

the lack of lateral line and inner ear (acceleration) input in the head-fixed preparation.

The fish also exhibited gain adaptation in the form of longer bout durations (Fig. 4.5B)

as well as higher mean vigour over the duration of a given bout (Fig. 4.5C) with decreasing

values of gain. The interval between bouts was not significantly affected by gain and only

decreased with increasing grating speed (Fig. 4.5D).
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Figure 4.5: Bout response to gain and drift change:

A. Bout duration probability density distribution for all gain-velocity combinations, n=57164

bouts. B, C, D. Change of Bout Duration, Average Bout Vigour and Interbout Interval (respect-

ively) on varying gain (hue, indicated by scale bar) and drift velocity (x axis), n=57164 bouts. E.

Difference between grating velocity and the average velocity achieved by the fish as a function of

grating velocity and swim gain showing imperfect but significant gain adaptation (compare with

F.). F. Difference between grating velocity and the hypothetical mean velocity that the fish would

achieve if the swim vigour used at gain 1.0 was used for all lower and higher gains.

In order to validate the ability of the fish to stabilize its position in space against the

simulated water flow in the closed loop virtual reality, we examined the difference between

the velocity of the fish samples and the velocity of the displayed grating for different

combinations of swim gains and grating velocities. We observed progressively worse flow

stabilization performance with further deviation from the gain-velocity setting used for

normalization between fish samples (gain of 1.0 and velocity of 10mm s−1) with highest

deviation from perfect compensation at high velocities and low gains where fish swam

on average 4.90mm s−1 (or 24.5%) slower than the grating speed of 20mm s−1 and low

velocities and high gains where fish swam on average 3.44mm s−1 (or 172%) faster than

the grating speed of 2mm s−1 (Fig. 4.5E). Although imperfect, these optic flow stabilization

results show significant signs of gain adaptation which is apparent in contrast with the

hypothetical swim behaviour where vigour would be fixed across all gains (Fig. 4.5F).

In such setting, the under- and over-compensation would range from -15.03mm s−1 to

4.73mm s−1 as compared observed values of -4.90mm s−1 to 3.44mm s−1.

4.4 Discussion

With extensive evidence that embodiment and environmental feedback play a vital role in

the formulation of animal behaviour both in zebrafish (Ahrens et al., 2012; Markov et al.,

2020) and other animal models (Keller et al., 2012), the study of animal behaviour is shift-

ing from simple feed-forward stimulation to feed-back stimulation paradigms to capture

aspects of behaviour that previously could not have been explored. In conjunction with

the acquisition of brain activity, such setups provide a very powerful tool for understanding

of how neural activity gives rise to behaviour and how it adapts to the environment.

We have presented a Closed-loop Virtual Reality stimulator for larval zebrafish which

provides a flexible, high performance, solution for for feedback-enabled stimulation of head-
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fixed larvae. We facilitate this functionality through a single combined acquisition and

stimulation arm, allowing for easy integration into many existing light sheet or two-photon

microscope setups.

With the primary focus on opto-motor behaviour, we have established a kinetic model

approximating the swim behaviour based on tail activity captured in freely swimming

zebrafish larvae. As such, we included the model in our stimulator where it can be used

alongside a grating stimulus to study OMR in a closed-loop setting. We demonstrate this

capability by showing the gain adaptation of the swimming behaviour, identifying the bout

duration and vigour as the two main variables changing with gain. Our results regarding

the bout duration and inter-bout interval closely follow results previously shown in open-

loop studies (Severi et al., 2014), suggesting that the small window in the projection screen

used to capture the tail activity has very little, if any, impact on the fish behaviour.

The modular design of our stimulator offers innate flexibility when building and ex-

ecuting new experiments as well as the capability to integrate novel stimuli, swim models

and acquisition hardware. The individual components of our stimulator are mostly in-

dependent, communicating only vital information as needed, allowing for multi-threaded

implementation assuring high and consistent performance capable of real-time execution

as demonstrated by our benchmarks. As such, the VR stimulator offers a good solu-

tion for not only studies of optomotor response but also serves as a good basis for the

investigation of other behavioural paradigms by offering extensible infrastructure provid-

ing common functionality such as tail acquisition, continuous stimulus updating and data

logging capability.

It should be noted that our VR stimulator solution still suffers from many inherent lim-

itations of the hardware constraints imposed by the head-fixed preparation. The latency

of the closed feedback loop still constitutes a significant portion of the bout duration, pos-

sibly affecting the anatomy of the bouts and swimming behaviour. Since our primary goal

was to develop an extensible, open source, state-of-the-art stimulator which can be used in

conjunction with calcium imaging, we did not significantly improve on the performance of

the current stimulator solutions reported in recent literature nor have we investigated to

which extent the feedback latency affects the behaviour as compared to other limitations

of the head-restrained setup such as the lack of accurate information from the lateral line.

As such, we identify this as one of the future directions that can be pursued in order to dis-

tinguish the major factors contributing to the behaviour observed in the freely swimming

fish as well as to improve on the performance of the current head-restrained closed-loop
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stimulator designs.

A significant limitation of a projector-based stimulation is the latency of the widely

accessible projectors. Large amount of the consumer-grade hardware available operates at

latencies around 65ms. We measured the latency of our closed loop to be 22ms with the

BenQ W121OST projector. While this is a significant improvement, it could still pose a

challenge for fast swim bouts as the tail movement does not overlap with the generated

forward motion (Fig. 4.4A).

Another aspect that needs to be considered when using our solution based on tail

movement activity in conjunction with brain imaging is the negative effect the tail move-

ment may have on the quality of the calcium recording. The movement of the tail may

result in movement or distortion of the head to a small but significant extent, requiring

additional care and preprocessing when handling the resulting data. In this aspect, an

electrode-based tail acquisition in paralysed larvae is superior, however significantly more

challenging in preparation. Tail movement based solutions have also been successfully

used in the past along with calcium acquisition (Severi et al., 2014), demonstrating their

applicability despite the potential sample movement.

We have demonstrated that despite these limitations, our head-fixed closed loop pre-

paration is suitable for the study of gain adaptation. However, our results show that the

both gain adaptation and optic flow compensation of the OMR behaviour is imperfect as

we observed fish to swim too slow at higher grating velocities and lower swim gains and

too fast at slower grating velocities and faster swim gains. It is unclear whether this is

result of aforementioned limitations or innate to fish larvae of this age and a study of freely

swimming larvae would be necessary to gain further understanding of the true robustness

of the OMR behaviour and function.

A number of future directions can be considered for improving and extending our

open-source solution. Namely, we only provide a basic functionality for optomotor beha-

viour experiments with forward motion. Extension of our swim model to include turning

behaviour could not only offer more opportunities in terms of behaviours studied but also

improve the understanding of OMR as many head restrained studies assume forward mo-

tion without accounting for the swim effort expended on turning rather than propulsion.

The causes for differences between freely swimming and head-fixed preparations are also

poorly understood and further investigation may yield potential solutions for improving

the virtual environment such that behaviours that were previously not expressed in the

head restrained setting can be investigated with calcium imaging.
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With the limited amount of closed loop virtual reality solutions for head-restricted

zebrafish larvae available, our solution offers sufficient functionality for the study of opto-

motor behaviour and serves as a good starting point for a virtual reality for investigation

of other behavioural paradigms. The single arm design with relatively low dependence on

the hardware used offers high ease of implementation, including integration into existing

setups used for calcium (or other) imaging, including time-scale synchronization between

the recordings. All source code and documentation is available from our git repository

(https://bitbucket.org/ezfish/ez spim vr/src/master/).
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Chapter 5

Estimating Functional

Connectivity from Calcium

Activity in silico

5.1 Introduction

Establishing relationships between brain activity and behaviour is one of the fundamental

goals in neuroscience. Since the neuronal activity is distributed across regions throughout

the whole brain, imaging methods able to simultaneously record from the whole brain are

needed to gain an understanding of what role the contributing regions of activation have

in the particular behaviour. In human brains, a number of methods exist to interrogate

activity from spatially separated regions, such as fMRI, EEG or Electrocorticography

(Neil, 1993; Lehmann, 1984; Miller et al., 2007).

Similar efforts have been applied to animal models, namely mice, larval zebrafish and

others where calcium imaging is available to achieve single-cell resolution activity record-

ings at scale. In particular, study of larval zebrafish has yielded a large number of results

(Ahrens et al., 2012; Portugues et al., 2014) on the behaviours available in the repertoire

with the aid of two photon and selective plane imaging microscopy (SPIM) which allows

calcium imaging at a cell resolution from nearly the full brain of the larval fish. The res-

ults found based on the SPIM data are generally supported by further interrogation of the

brain structural connectivity by ablating or directly stimulating certain spatial regions of

the brain hypothesised to play a role in the given behaviour (Gahtan et al., 2005; Roeser

and Baier, 2003; Portugues et al., 2013). As such methods are generally not available

in the human brain, causal connectivity is commonly first formulated based on directed
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functional connectivity measures, such as Granger Causality (Seth et al., 2015). This

provides not only an alternative to simple correlation-based study of the neural origin of

behaviour but also offers a means to understand the information flow in the brain over

the underlying structural connectome under different conditions.

Despite the additional information offered by directed functional connectivity measures

over undirected methods (such as correlation or mutual information), the understanding

of its applicability to calcium data is very limited. A study by Stetter et al. (2012) into

simulated neuronal cultures provides some theoretical understanding of the applicability

and limitations of directed functional connectivity measures to calcium imaging data in

networks consisting of individual cells. Granger Causality (GC) has then been applied

by Fallani et al. (2014) in the spinal cord of zebrafish embryos to a small subset of neurons

along the tail. While both of these studies provide valuable pointers towards the applic-

ability of Granger Causality to calcium imaging data from neural activity in live animals,

it remains unclear how to apply GC efficiently to a large number of sources (neurons)

across the full brain. Unlike the datasets explored by the two studies where the number

of sources is generally less than a hundred, a recording of larval zebrafish brain can yield

up to tens of thousands of individual neurons (Vanwalleghem et al., 2020). This limits

the applicability of fully conditional Granger Causality due to both computational and

combinatorial constrains.

To address this issue, we explore applicability and limitations of GC applied to cal-

cium imaging data with particular focus on the practical limitations imposed by both the

acquisition method and the size of the neural population imaged. First, a limited simu-

lated system of two cells with feed-forward and feed-back connections where ground truth

connectivity is known is examined to establish basic constrains that need to be satisfied

in order to be able to establish GC effectively. Secondly, a small simulated network of 5

to 50 cells is examined for the effect of the number of components as well as acquisition

artifacts such as measurement noise and signal drift on the results of the inference. Lastly,

a larger simulated network is used to establish an implementation of Granger Causality

which would be applicable to large in vivo datasets.

5.1.1 Granger Causality

Originating in the field of economics, Granger Causality (GC, Granger (1969)) is a statist-

ical measure of causality (directed functional connectivity) between two processes under

the assumption that 1) cause precedes its effect and 2) knowledge of the causal process
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improves the predictions of the effective process when compared to taking only the history

of the effective process into account.

In a multivariate setting, the second premise then extends to all other processes such

that the cause must contain information about the effect that is unique and present in no

other process (Granger, 2004). Estimation of conditional GC in this case then must take

indirect connections into account. This has been made possible later on by extensions

to the original unconditional GC which have been formulated by Geweke (Geweke, 1982,

1984) and thus modern multi-variate implementations of GC often refer to it as Granger-

Geweke Causality.

Granger causality also has an information-theoretic interpretation as the transfer of in-

formation between two stochastic processes, through its equivalence with transfer entropy

(Schreiber, 2000; Paluš et al., 2001). This equivalence is exact for Gaussian processes

(Barnett et al., 2009), and more generally asymptotic for Markovian processes (Barnett

and Bossomaier, 2012).

VAR modelling

Commonly, Granger Causality estimation is based on the comparison of the error term

variance from a vector autoregressive (VAR) model of the observed processes (Geweke,

1982, 1984). This can be formulated as

Ut =

p∑
k=1

Ak · Ut−k + εt (5.1)

where Ut is vector of n stochastic processes at time t and Ak is a n×n matrix of regression

coefficients for the k-th lag and εt is n-dimensional process of residuals. p is then a meta-

parameter representing the number of lags in the VAR model (Barnett and Seth, 2014).

The lag order of the VAR model, p, is selected based on the individual characteristics

of the underlying data. Generally, higher order models will be able to fit the data better,

however due to the larger parameter set of A for the higher lag order, more data would

be needed to estimate the parameter values with consistent statistical power compared to

models with lower order. For a dataset of a constant size, the performance of the parameter

estimation (and in turn GC estimation) would suffer with both too-large and too-small

model order due to the bias-variance trade-off of the model order (Stokes and Purdon,

2017). It is therefore desirable to select the smallest possible lag order for which the

VAR model accurately represents our data. To quantify this, a number of criteria have

been formulated, with most common being Akaike information criterion (AIC, Akaike
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(1973), Bayesian information criterion (BIC, Schwarz et al. (1978) and Hannan–Quinn

information criterion (HQC, Hannan and Quinn (1979). For our analysis, we used HQC

to quantify the representation of our data by the VAR model as we have found it to provide

a good compromise between BIC and AIC which generally tended to underestimate and

overestimate the model order, respectively.

To then estimate the VAR model order based on the information criterion selected,

it is necessary to estimate the unknown parameters of the VAR model. We considered

two linear regression fitting algorithms: ordinary least squares (OLS) and the Levinson,

Wittle, Wiggins, Robinson (LWR) (Levinson, 1946; Whittle, 1963; Wiggins and Robinson,

1965) algorithm (Morf et al., 1978). Unlike OLS which needs to be re-computed for every

model order, LWR is computed recursively (Barnett and Seth, 2014), supporting its wide

adoption for its stability (Pereda et al., 2005). This is favourable since more consistent

results for VAR models with subsequent model orders would contribute to determining

the lag number after which the extent to which the VAR model reflects the underlying

data no longer improves. For this reason we also used LWR in our analysis of calcium

imaging data. We limited our estimation of the model order to a maximum of 30 lags as

generally the estimated model order did not exceed 20 for the majority of our models.



58

5.2 Feedback model in silico

To first demonstrate the applicability of Granger causality to calcium imaging data, we

investigated a simple simulated feedback model of two cells connected by a reciprocal

connection (Fig. 5.1A). Based on simulation tools developed by Stetter et al. (2012), we

have formulated a spiking model simulation based on the NEST Simulator (Fardet et al.,

2020) and a modified calcium convolution model which generates calcium traces based on

the simulated spiking data.

5.2.1 Methods

Simulation of spiking data

The two neurons were modeled using the integrate-and-fire model iaf psc alpha implemen-

ted in the NEST simulator (parameters summarised in Table 5.1) with synapses based on

the Tsodyks synapse model (Tsodyks et al., 2000) tsodyks synapse implemented in the

NEST simulator (parameters summarised in Table 5.2).

Parameter Value Unit Description

E L 0.0 mV Resting membrane potential

C m 1.0 pF Capacity of the membrane

tau m 20 ms Membrane time constant

t ref 2 ms Duration of refractory period

V th 20 mV Spike threshold

V reset -70 mV Reset potential of the membrane

tau syn ex 2 ms Rise time of the excitatory synaptic alpha function

tau syn in 2 ms Rise time of the inhibitory synaptic alpha function

I e 0.0 pA Constant input current

Table 5.1: Neuron parameters used for the integrate-and-fire simulation:

Neurons were simulated using the iaf psc alpha model implemented in the NEST

Simulator. Details are documented at https://nest-simulator.readthedocs.io/en/nest-

2.20.1/models/neurons.html#classnest 1 1iaf psc alpha.

Calcium convolution

We have extended the Stetter et al. (2012) implementation of the calcium convolution

model formulated by Vogelstein et al. (2009) to include the rise time of the calcium which
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Parameter Value Unit Description

U 0.3 a.u. Parameter determining the increase in u with each spike [0,1]

tau psc 3.0 ms Time constant of synaptic current

tau fac 0.0 ms Time constant of synaptic current

tau rec 500.0 ms Time constant for depression

Table 5.2: Parameters used for the simulation of the synaptic con-

nections Synpases were simulated using the tsodyks synapse model imple-

mented in the NEST Simulator. Details are documented at https://nest-

test.readthedocs.io/en/pynestapi test/models/synapses/tsodyks synapse.html.

was omitted in the original model. Even for fast calcium reporters, such GCaMP6f, the

time to peak can be as much as 150 ms (Chen et al., 2013). It is unclear whether this

has any measurable effect on the GC estimation process. However, the sampling rate used

here for the GC estimation is and order of magnitude faster than the rise time, justifying

it’s inclusion into the model.

To replicate the properties of the H2B-GCaMP6f calcium reporter, we used a mean

lifetime τdecay = 2885 ms equivalent to a half decay time of about 2 seconds (Kawashima

et al., 2016) and rise constant of τrise = 80 ms (Chen et al., 2013).

The two cell feedback model

We constructed a two cell model such that the first neuron, C1 has a feed-forward excit-

atory synaptic connection to the second neuron, C2 with synaptic strength W = 10 (in

pA). C2 then has a feedback excitatory synaptic connection to C1 with synaptic strength

of wfb ×W where wfb is multiplicative factor between 0 and 1 such that the strength of

the feedback connection is always defined as a fraction of the feed-forward strength, al-

lowing for the inspection of Granger causality as a function of the relative strength of the

two synaptic connections. We have set the synaptic delay to 1.5 ms which reflects values

found in natural chemical synapses (Eccles, 2013). The two neurons then each receive an

individual external input stimulus from a Poisson spiking generator with mean time to

spike, λP in seconds (Fig. 5.1A).

Granger Causality inference

To estimate Granger Causality, we used the Multivariate Grange Causality (MVGC) Tool-

box (Barnett and Seth, 2014). Unlike in multivariate situations, in this case with two vari-
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ables, indirect associations do not need to be taken into account as no common sources

outside the two cells exist. The Poisson spike generator is the only input the cells receive

(apart from connections to each other) and it outputs a unique and independent spike

train into each neuron.

For the purposes of this section, we estimate the Granger causality on unprocessed

calcium traces captured from the two cells with the only parameters varied being the

sampling rate and the sampling duration.

5.2.2 Results

Functional connectivity relies on external excitation

An input a given neuron receives can have a profound impact on the activity it then

exhibits. To evaluate the effect of the external input both on the activity of the two cells

and the resulting directed functional connectivity, we varied the mean time between spikes

produced by the Poisson generator, λP , between 1 and 1/4 such that the resulting spiking

rate is either 1, 2, 3 or 4 spikes per second. As one would expect, the activity of the cell

increased from very sparse (λP = 1) to very dense (λP = 1/4) with increasing spiking

rate (Fig 5.1B). For further sections, λP = 1/3 was used as it exhibited strong but still

realistic activity with periods of both high activity and silence.

To evaluate the transmission of information between the two cells with the different

external stimulus frequencies, we computed Granger Causality in a model with base syn-

aptic strength W = 10 pA and feedback multiplier wfb between 0.0 and 1.0 (Fig. 5.1C).

With increasing spiking rate of the external stimulus, the directed functional connectivity

measured as Granger Causality better reflected the underlying anatomical connectivity

defined by the relative strengths of the synapses. While more frequent activity in the cells

resulting from more frequent external stimuli aids the accuracy of the GC inference, the

improvement in the ability to discern lower feedback strengths with increasing external

spiking rate likely results from the higher amount of time the neuron spends in an excited

state, increasing the likelihood of co-occurrence of the input from the other cell and the

external input, exceeding the spiking threshold. With sparse external input the likelihood

of a neuron reaching the spiking threshold upon receiving input from the other neuron is

much lower, thus reducing the directed functional connectivity between the two cells.
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Figure 5.1: Simulated model of two cells:

A. Diagram illustrating the setup of the two cell model. Two cells (C1 and C2) receive Poisson

input and are connected by directional connections of different strengths. B. Simulated calcium

traces of C1 (red) and C2 (blue) for different values of the input Poisson distribution mean, λP

(inverse of the spiking rate) with feedback weight wfb = 0.1. C. Granger Causality value for

feed-forward connection, GCfwd (red) and feed-back connection, GCfb (blue) varying with the

weight of the feedback connection, wfb. One plot is shown for each value of λP investigated. D,

E, F and G Normalized Granger causality ratio nGCfb (color) depending on the feed-back weight

multiplier wfb for varying values of base weight strength W (in D.), sampling (acquisition) rate

(in E.), recording duration (in F.) and synaptic delay (in G.).
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Information transmission decreases with both low and high connectivity strengths

The synaptic connection weight W defines the overall connection strength between the

two cells and thus has a direct impact on the information transfered between the cells.

In order to evaluate our choice of W , we explored the effect of the feedback multiplier

wfb between 0.0 and 1.0 under a range of base synaptic strengths W between 2.0 and

20.0. To simplify the interpretation of our results, we present the feedback GC value as

a factor of the overall connectivity: nGCfb = GCfb × 2/(GCfwd +GCfb) (Fig. 5.1C). At

very low connection strengths, we observed very low difference in the directed functional

connectivity as a function of the changing feedback weight. This is the result of inability

to reliably produce a response to an incoming stimulus even if the cell is already excited by

the external input. With increasing W , the GC estimate better represents the underlying

relative strength of the two connections. However, for high values of W , this ceases to be

the case as the neurons start to fire synchronously.

To formalize this, we quantified the change in performance by measuring the consist-

ency of increase in the GC value with increasing wfb for each individual value of W as the

length of the longest chain of consecutive increases in nGCfb. This measure was devised

under the premise that if GC was an accurate measure of the synaptic strength, nGCfb

in a neuron pair with higher wfb would always be higher than that in a pair with lower

wfb, resulting in a monotonic increase of nGCfb as a function of wfb. Our measure may

be preferable to simply summing the number of increases observed as it puts more im-

portance on the coherence through the sequentiality requirement. We have not found any

significant difference for W = 14.0 and W = 16.0, however both decreasing and increasing

values of W resulted in a significant progressive decrease in the ability of the directed func-

tional connectivity to track the relative strength of the underlying synaptic connectivity

(Fig. 5.2A).

Estimation of directed functional connectivity relies on fast acquisition rates

Unlike undirected functional connectivity measures such as mutual information or correl-

ation, directed measures rely on the ability to properly identify an accurate sequence of

events in order to accurately quantify directional transfer of information. If the sampling

frequency is too slow, more specifically significantly slower than the synaptic delay, it

becomes not only difficult to detect significant true Granger causalities, but spurious

causalities also become more frequent. Equally, over-sampling results in modelling high-

frequency noise and may therefore yield averse effects on the statistical inference of GC as
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Figure 5.2: Performance of GC inference as a function of recording parameters: Average

longest continuous increase of estimated GC value with increasing synaptic weight as a function

of base synaptic weight W (in A.), sampling rate (in B.) and recording duration (in C.). The

average longest continuous increase is denoted in weight levels examined from wfb = 0.0 to 1.0 at

a interval of 0.1.

well (Barnett and Seth, 2017), making the proper choice of acquisition rate very important.

Using the methodology described in the previous sub-section, we explored a range of

acquisition (sampling) rates from 20 Hz to 500 Hz (Fig. 5.1E). Slower acquisition rates res-

ulted in poor performance with gradual improvement until 50 Hz sampling rate after which

there was no significant improvement until 250Hz (Fig. 5.2B). An acquisition rate of 500

Hz resulted in a significantly poorer performance when compared to 250Hz. This follows

theoretical results by Barnett and Seth (2017) which indicate that sampling interval length

near the transmission delay duration yields the best conditions for the GC inference. The

optimal range found falls within the capabilities of state-of-the-art light-sheet microscopes

which generally allow acquisition at up to 100 Hz. We therefore continue to use 100 Hz

sampling rate for our sub-sequent simulations as it is both viable for current acquisition

hardware and offers some margin before deterioration in performance occurring at sub-50

Hz sampling speed.

Common recording durations are sufficient for estimating Granger Causality

While genetically encoded calcium indicators generally allow for multi-minute recordings

(Cho et al., 2017), they still suffer from photo-bleaching with increasing duration and

illumination power. This can become an issue as significant amount of bleaching can result

in a non-stationary signal, negatively impacting the ability to estimate GC accurately. We

have therefore investigated a range of recording durations from 30 seconds to 30 minutes
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Figure 5.3: GC is affected by synaptic delay in slower acquisition rates: All figures follow

the format of Fig. 5.1G where the synaptic delay effect is shown for an acquisition rate of 100Hz

Slower acquisition speeds show increasingly poorer performance for short synaptic delays in slower

acquisition rates of 40 Hz (in A.), 33.3 Hz (in B.) and 20 Hz (in C.).

(Fig. 5.1F) to assess the viability of producing an adequate in vivo calcium recording.

Longer recording durations resulted in better performance (Fig. 5.2C) with sub-5 minute

recordings providing very little ability to infer GC accurately. We use 10 minute simulated

recording duration for our other analyses as it is easily achievable in vivo and here we have

shown it to be sufficient for GC inference.

Synaptic delay only affects GC estimation at slower sampling rates

As outlined above, the feasibility of determining the correct sequence of events is vital for

correctly estimating directed functional connectivity measures. With synaptic transmis-

sion speeds being generally faster (Eccles, 2013) than the shortest exposure durations of

10 ms available in modern calcium imaging systems (see Chapter 3), we identified this

as one of the possible factors that could limit the applicability of GC to activity traces

recorded from individual cells at this timescale.

We have adjusted the synaptic delay in our simulation, ranging from 0.25 ms (faster

than the speed of an average chemical synapse) to 50.0ms (slower than a realistic rate

of acquisition). At the sampling rate of 100 Hz, we have not seen any significant delay-

dependant change in our results (Fig. 5.1G), suggesting that at the intended acquisition

rate, the synaptic delay is unlikely to be a limiting factor. We have found for this to not

be the case for slower acquisition speed (sub-40 Hz) where longer synaptic delay resulted

in a significant improvement of the estimated GC value (Fig. 5.3).
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5.2.3 Discussion

In this section, we have outlined a simple bivariate model of two integrate-and-fire neurons

convolved with a realistic calcium filter. We demonstrate the importance of external input

as well as synaptic strength when considering inference of Granger Causality. The chosen

base synaptic weight of W = 10 falls within a range for which GC performs particularly

well. While we cannot guarantee that this is the case in real neuronal networks, past

research has shown that neural systems often operate around criticality which is hypo-

thesised to maximize information processing power, neither in a state with low relations

between the individual neurons nor a state in which the activity of neurons is overly syn-

chronized (Hesse and Gross, 2014), represented by low and high synaptic connectivity in

our model, respectively.

Since the calcium reporter dynamics are much slower than the duration of the synaptic

delay, it could be conceivably contended that the slow calcium convolution could have an

averse effect on the inference of Granger Causality. The results we present here directly

contradict this hypothesis, suggesting that inference is possible as long as a sufficiently

high sampling rate is used. Similar results have been shown for fMRI BOLD signals

where Granger Causality analysis was shown to be invariant to the slow hemodynamic

convolution (Seth et al., 2013).

We have shown that at the acquisition speed of 100Hz, the inference of GC is robust to

varying synaptic delay, providing substantial evidence that establishing the time order of

events sufficient for the computation of GC is possible in calcium data despite the sampling

interval of 10 ms being an order of magnitude longer than the synaptic delay of 1.5 ms

used in our models. We have not investigated this aspect of the model further, so the

exact details of how the directed causality is computed at 100 Hz with connection delay

an order of magnitude smaller, are subject to further investigation. This could be one

of, and possibly combination of, following factors: 1) the membrane potential dynamics

are sufficiently slow, including the depolarization after spiking and 2) since a resulting

spiking activity is often the product of multiple inputs (in this case the external input and

input from the other cell), it is possible that activity of one cell increases the probability

of spiking in the other cell for several (tens) of milliseconds, such that external input is

then more likely to bring the second cell over the spiking threshold, resulting in a delayed

spiking event several (tens) of milliseconds later.

Lastly we show that for 10 minute recordings, accurate inference of GC is possible,

suggesting that it is also possible to apply GC in vivo, provided that it can scale to a large
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number of sources which is discussed in the following two sections.



67

5.3 Multi-cell networks

Having confirmed the applicability of GC to calcium fluorescence data in the two cell

model, we extended our model to multiple cells. Unlike the previous bivariate setting, a

multivariate setting gives rise to additional challenges, namely where indirect associations

can result in incorrect inference of directed functional connectivity measures. In a simple

example where neuron A has synaptic connections to both neuron B with a shorter delay

and neuron C with a longer delay, it may appear as though neuron B has a synaptic

connection to neuron C as Bs activity always precedes that of C even though that is not

the case here as A is the common cause. We therefore use pairwise-conditional Granger

Causality to control for the indirect connections. With increasing number of sources in a

system, however, both the computational and combinatorial complexity increase rapidly,

posing an additional constraint on the size of network analysed or the recording duration

required. We therefore base all our analyses in this section on a range of network sizes up

to the number of sources for which GC can be reliably computed.

5.3.1 Methods

Simulation of the spiking neuron model

We utilized our spiking data and calcium convolution model outlined in Section 5.2.1 with

only minor modifications: Firstly, we only allowed connections to be either of full strength

W or none at all (connection not present) with connection probability of 0.3. Secondly,

we decreased the mean rate of external input from the Poisson generator to 2 spikes per

second (λP = 1/2) as each neuron now receives multiple inputs from other neurons in the

model (as compared to one input in the case of two cell model). Lastly, as the number of

synaptic connections in our networks grows quadratically whereas the number of neurons

grows linearly, we scaled down the synaptic strength W for larger networks according to

the mean number of incoming connections per neuron:

W = 20×
(

Nsynapses

2×Nneurons

)−0.85
+ 4.0 (5.2)

The exact parameter values have been chosen empirically such that for the explored model

sizes and structures the activity remained near-critical i.e. such that neurons were able to

incite activity in downstream neurons without the simulated activity in the network being

overly synchronous.
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Observational noise

Under normal conditions, the recorded calcium fluorescence signal is always noisy with

the signal-to-noise (SNR) ratio being the product of illumination power, calcium reporter

expression and the acquisition equipment used. We use additive white Gaussian noise to

reproduce this in our simulation. To achieve an output fluorescence signal with a specific

SNR, we first compute the power PX of the fluorescence trace X resulting from the calcium

convolution (described in Sec. 5.2.1) as the sum of the absolute squares of the individual

samples xi in the signal divided by the signal length N :

PX =
1

N

N∑
i=1

|xi|2 (5.3)

We then obtain the power of the Gaussian noise PZ based on the desired SNR value, η as

PZ =
PX
η

(5.4)

Note that we use linear η. If needed, this can be converted to decibels using ηdB =

10× log10(η). Knowing the mean power of the Gaussian signal to be equal to it’s variance,

PZ = σ2, we can then obtain the noise Z of a desired power from a Gaussian distribution

N (µ, σ):

Z ∼ N (0,
√
PZ) (5.5)

To produce the noisy calcium fluorescence trace Y , the generated Gaussian white noise is

then added to the original signal:

Y = X + Z (5.6)

Signal trend modelling

Calcium traces recorded in vivo from larval zebrafish may contain significant trends or

drifts resulting from a number of factors. Broadly, these can be categorized into two

groups. Firstly, factors related to sub-optimal recording performance such as decay caused

by photo-bleaching of the calcium reporter over time of the recording or changes in the

region of interest (in this case the neuron body) which cannot be corrected by motion

correction during post-processing. Secondly, slow time-scale changes is the activity of

the recorded neurons resulting from long-term phenomena such as adaptation to or in-

tegration of a stimulus over time. While the latter category may be interesting from a

neuroscientific point of view, both of these categories may be equally detrimental to the

accurate estimation of Granger Causality as the stationarity of the signal is significantly
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reduced with increasing presence of slow timescale trends in the signal. As such, we in-

clude slow timescale trends in our calcium fluorescence model to investigate the effects on

the inferred directed functional connectivity.

In order to produce realistic signal trends, we fit a polynomial of 10-th degree (P (t)) to

raw calcium fluorescence traces Yraw of neurons in in vivo recordings from larval zebrafish

(protocols of acquisition and processing can be found in Chapter 6) using the polyfit

function provided by the NumPy package (Harris et al., 2020). We then subtract the

fitted polynomial from the raw trace to obtain ’de-trended’ activity Ydtr:

Ydtr(t) = Yraw(t)− P (t) (5.7)

where Y (t) would denote an observation of calcium fluorescence value at time t. We then

estimate the base fluorescence as 8th percentile of the de-trended calcium trace recording,

similar to when calculating ∆f/f of a calcium recording:

fdtr = Perc8%(Ydtr) (5.8)

which can the be used along with the base fluorescence value of our simulated calcium

signal to achieve common scale between the polynomial trend and our simulated calcium

trace. Assuming our simulated calcium data Y is trend-less, we can calculate base fluor-

escence as we did for the de-trended in vivo recording,

f = P8%(Y ) (5.9)

and then add the rescaled polynomial trend to the simulated calcium signal to obtain it’s

’trendy’ version:

Ytr(t) = Y (t) +
f

fdtr
× P (t) (5.10)

A random unique trend is then added to each simulated trace Y by estimating pairs of

P (t) and fdtr for a large number of in vivo-recorded neurons. We limited neurons from the

same simulated models to be paired with trends extracted from a single random recording

since trends extracted from the same recording are more likely to be similar than trends

collected across multiple different recordings. This ensures that the addition of trends

does not produce effects larger than those that would realistically be observed in an in

vivo recording.

Signal processing

In order to improve signal fidelity of the recorded neural data, it is common to incorporate

extensive preprocessing in order to de-noise and de-trend the recorded data as a priori
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knowledge about the recording modality can be used to identify and reject artifacts from

the signal (Pnevmatikakis et al., 2016). However, it has been shown that pre-processing

can have a profound impact on the time ordering and information content of the signal

which can lead to missing existing or identifying spurious causalities when utilizing directed

functionality measures such as Granger Causality (Florin et al., 2010). This may extend

to many calcium data-specific methods as well, as their application for pre-processing data

prior to causal analysis has not been previously investigated and is thus poorly understood.

Signal filtering, which has extensively been used in junction with GC in EEG and MEG

studies (Hesse et al., 2003; Wang et al., 2007; Kanal et al., 2009), has been explored both

analytically (Barnett and Seth, 2011) and empirically (Florin et al., 2010) with similar

conclusions that a notch filter can be used to remove line noise and zero-phase high-pass

filtering is optimal for slow time-scale artifact removal. Barnett and Seth (2011) point out

that GC is theoretically invariant to the application of arbitrary invertible multivariate

filters provided the data is stationary and can thus be applied to non-stationary data in

order to improve its stationarity without causing connections to be missed or spurious

connections to be inferred. Florin et al. (2010) has further shown that both the type and

order of the high-pass filter used has an effect on the performance of the subsequent GC

analysis on simulated and empirical data. A Butterworth filter of low orders has been

found to perform particularly well.

Following these studies, we employ a second order zero-phase high-pass Butterworth

filter with varying cutoff frequency to investigate its efficiency at removing signal drift from

the simulated calcium traces. We do not include a notch filter since calcium fluorescence

acquisition does not suffer from line noise to a significant extent as other acquisition

methods (such as EEG) do.

Evaluating directed functional connectivity results

A major benefit of in silico models is the availability of the ground truth about the

synaptic connections between the individual sources in the network. While it must be

noted that the notion of directed functional connectivity is not synonymous with physical

connectivity, the two are closely linked and we may, therefore, use the similarity between

the estimated directed functional connectivity and the underlying synaptic connectivity

as a measure of performance for the extent of this investigation.

To do so, we rank the inferred Granger Causality values in ascending order of their

magnitude, selecting a threshold from the set of the values. Based on this threshold,
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Figure 5.4: Simulated model of multiple cells:

A. Diagram illustrating the setup of the multiple cell model. 5 to 50 cells receive Poisson input

and are connected by random directional connections to each other. B. Mean fluorescence trace of

models with 5, 10, 25, and 50 cells. C. Average Area Under the ROC (Receiver Operating Charac-

teristic) Curve decreases with the size of the model outlining better performance for smaller models

and worse for models with large number of sources. D Mean Receiver Operating Characteristic

(ROC) curve for synaptic connections predicted based on the estimated GC value for models with

5, 10 25 and 50 neurons (red) compared with chance level (gray).
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we then label all directed edges in the network with corresponding GC value above the

threshold as connections and all directed edges with GC value below the threshold as non-

connections, effectively basing a binary classifier with a variable discrimination threshold

on the computed Granger Causality values. The performance of said classifier can then

be evaluated using a standard Receiver Operating Characteristic (ROC) curve which is

created by plotting true positive rate (TPR) against false positive rate (FPR) at various

threshold settings (Metz, 1978).

Area Under the ROC Curve (AUC) can then be used to summarize the overall per-

formance across the full range of thresholds (Ling et al., 2003). Caution must be exercised,

however, as the AUC measure on its own may be misleading since it occludes some aspects

of the classifier’s performance (Lobo et al., 2008) with the limitation most applicable to

our study being the inclusion performance in for thresholds which we know to be of rare

occurrence e.g. the thresholds assuming full or close-to-full connectivity in our case, which

is unlikely in real neural ensembles (Perin et al., 2011). For this reason, we include ROC

results wherever possible and discuss performance within each simulation in detail.

5.3.2 Results

The complexity of identifying directed functional connectivity increases with

network size

In order to identify combinatorial limitations given the nature of calcium fluorescence data

and given our constraints of 10 minute recordings, we computed Granger Causality for

simulated networks with sizes ranging from 5 neurons to 50 neurons. Although the activity

in the simulated network remained largely invariant with size, we observed an increase in

mean amplitude of the fluorescence signal (Fig. 5.4B) which is expected with increasing

number of synaptic connections (Brewer et al., 2008).

The ability of the inferred GC values to discern underlying synaptic connectivity de-

creases sharply with the network size (Fig. 5.4C) which is expected given the recording

duration is constant causing substantial decrease in the statistical power of the model to

condition out indirect connections (Barnett et al., 2020). This effect was further exagger-

ated by our choice of dense connectivity (30%). It is important to note, however, that

TPR improved faster over the range of lower discrimination thresholds (which assumes

sparser connectivity) compared to TPR increase for higher threshold values (Fig. 5.4D,

see also following sub-section).
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Figure 5.5: Effect of observational noise in simulated networks of cells:

A. Diagram outlining additional processing of the simulated calcium signal. A drift and Gaussian

noise is added to the generated calcium trace to simulate signal drift and observational noise

analogous to that which is present in in vivo recordings. The resulting signal is optionally processed

with a high-pass filter to remove the drift from the calcium trace and improve stationarity of the

signal (further shown in Fig. 5.6) B. Area under the ROC curve (AUC) as a function of network

size and the signal to noise (SNR) ratio of the calcium traces combined with Gaussian noise of

different power. η = ∞ denotes the original calcium trace with no added noise. C. ROC curves

for the different values of SNR (η) for networks of 5, 15 and 25 neurons.
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Observational noise occludes the identification of causal connections

To investigate the effects of observational noise, we applied varying levels of noise to achieve

signal-to-noise ratios ranging from 16.0 to 0.125 using method described in Section 5.3.1,

without adding signal drift or filtering. Similar to results from past studies (Nalatore

et al., 2007), measurement noise has been found to have a negative impact on the directed

functional connectivity estimate which gets more pronounced with the relative amplitude

of the noise (Fig. 5.5B).

For networks of larger sizes (15 neurons and larger), the AUC decreased with decreasing

SNR non-monotonically with apparent increase in AUC around η = 2.0 (Fig. 5.5B). We

linked this to model order estimate which was increased upon the addition of noise and then

steadily decreased again as the noise became more prevalent than the signal. However, this

apparent increase in AUC results from improved TPR for higher discrimination thresholds

(compare η = 2.0 and η =∞ for size of 25 in Fig. 5.5C) offering lesser improvement when

networks with sparse connections are considered.

High-pass filtering is efficient at improving stationarity in calcium imaging

data

Preprocessing the calcium signal with no trend in presence of measurement noise s.t. η = 4

(Fig.5.6A) resulted in a significant decrease in performance when frequencies of 0.25Hz and

faster were filtered in networks with 10 and more neurons (Fig.5.6B). We conclude that

this is a result of some of the causal events being dampened by the filtering process and

then being occluded by the high-frequency Gaussian noise which remains unaffected by the

filtering. Akin to analytical analysis of filtering by Barnett and Seth (2011), we observed no

significant filtering-dependent decrease in performance in noise-less simulations (Fig. 5.7).

When the simulated calcium traces are combined with the non-stationary trends ex-

tracted from calcium fluorescence recordings (Fig.5.6C), the ability to infer causal connec-

tions is significantly reduced (Fig.5.6D,E), often close to pure chance (AUC=0.5). Zero

phase high-pass filtering fully restores the ability to infer functional connections using GC

(Fig.5.6E) subject to causal connections lost in the measurement noise explained above

even for very low filtering cutoffs.

5.3.3 Discussion

In this section we have investigated Granger Causality in a network of interconnected cells,

validating it’s performance in a multivariate setting. We have shown that the ability of
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Figure 5.6: High-pass filtering improves signal stationarity:

A. A noisy calcium trace with no added signal drift. B. AUC as a function of network size and

filtering threshold with GC estimated on calcium traces without any signal drift. X-axis is shared

between sub-figure B and D. 0 signifies no filtering. C. Fluorescence trace with added signal

drift. D AUC diagram analogous to B with signal drift present. E AUC as a function of filtering

threshold for networks with 5, 10 and 15 neurons based on calcium traces with no drift (red) and

added drift (blue).
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Figure 5.7: GC is invariant to filtering in the absence of noise:

A. Performance for different sizes of networks (color) does not change with filtering at different

thresholds.

GC to discern synaptic connections decreases rapidly with the size of the network. This

is somewhat limiting as the number of neurons in nearly all live animals is several orders

of magnitude higher than that explored here. We further address this in the following

section, providing possible solutions to the issue.

We further identified an adverse effect of measurement noise on the GC inference

which may be a potential challenge for in vivo acquisition: it is generally possible to

reduce recording noise by either a) increasing illumination power of the excitation laser or

b) by increasing the exposure time and slowing down the rate of acquisition. The former

method may, however, increase photo-bleaching of the calcium reporter, producing a non-

stationary recording which is then more challenging to analyse. Similarly, the second

method is limited as in the prior section we outlined the importance of high acquisition

rate for correct identification of the time ordering of the causal processes. Under slower

acquisitions (although with improved SNR), it could then be impossible to infer directed

functional connectivity.

Lastly, while we show that high-pass filtering can have some negative effects, it provides

an important means of improving the stationarity of the calcium signal, especially long

timescale trends present in in vivo data. It is important to note that our polynomial fit

used to capture trends in the acquired data only captures very slow timescales and some

faster trends may be present in the in vivo data, which have not been included. Using

a faster filtering threshold (e.g. 0.25Hz) than that found to be sufficient here (0.125Hz)

may therefore produce more conservative results.
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5.4 Scalable GC analysis methods

The previous two models dealt primarily with bivariate and multivariate settings with a low

number of processes where full conditioning is possible. However, in calcium recordings, it

is common to identify hundreds or even thousands of neurons (Chen et al., 2018b) which

are generally organized into groups of neurons with similar activity or function (Kunst

et al., 2019). Conditioning on all sources of such large datasets is combinatorially and

computationally not viable, necessitating the applications of GC with partial conditioning.

In this section we explore such methods applied to simulated structured networks where

groups of neurons are functionally similar, providing a solution which can be used for large

in vivo acquisitions.

For all simulations in this section we included measurement noise s.t. SNR = 10.0 (see

Section 5.3.1) and we pre-processed all traces with a high-pass filter with cutoff of 0.125

Hz.

5.4.1 Methods

Simulation of the spiking neuron model

We use the neuronal network model formulated in Section 5.3.1, however, here we group

neurons in the network into sets of 10 ’functionally similar’ neurons which have high

probability of synaptic connection (30%) within the group. Each pair of groups then has

a 30% chance of a directed connection where neurons from one group have a 10% chance

of forming a directed synaptic connection with neurons in the other group. In the absence

of group-to-group connection, neurons only have 1% chance to form a synaptic connection

(Fig. 5.8A). This model provides a setting in which sub-sampling and partial conditioning

can be easily examined.

Group-wise conditional GC

Provided we are only interested in the interactions of groups considered as ensembles of

neurons and interactions of individual neurons are not of interest, we can compute Granger

Causality between each group pair, such that we condition only on the neurons from the

groups other than the two groups considered (Fig. 5.8B). This prevents us from identifying

individual neuron-to-neuron connections, particularly because GC is never computed for

connections between individual neurons as it is only calculated between each two groups

considered in the form of two multi-dimensional time series rather than two sets of one-
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dimensional time series where individual neuron-to-neuron GC values would be computed

(Geweke, 1982, 1984). As such, only one GC value (for each direction) between the two

groups in the pair considered is computed.

This method comes with two major limitations. First, the total neuron count is still

likely to be higher than that which is computationally viable. A second limitation lies in

that the results of analyses conducted on models with the same number of groups however

of varying group sizes are not comparable, requiring the selection of a smallest common

group size over all the recordings we wish to compare. This may not be an issue in this

simulated model as all of our group sizes are consistently of 10 neurons each, however in

vivo, the number of neurons can not only vary significantly between formulated groups

but also between recordings. As such, we might miss causal connections due to selecting

a subset of neurons smaller than that offered by the recordings.

Sub-sampled group-wise GC with partial conditioning

To mitigate the limitations of the group-wise method formulated above, we can select a

common number of neurons we then sub-sample from each group which is equal or smaller

than the size of the smallest group across all of our recordings. We can further decrease

the sub-sample size to accommodate for combinatorial and computational constraints

(Fig. 5.8C). We then apply the group-wise method to this sub-sample and repeat this

process of sub-sampling and GC estimation several times, averaging the estimated causal

value between each pair of groups across all trials.

This method ensures that we both maximize the potential of our acquired data and our

results can be compared and aggregate findings be obtained across multiple recordings.

Sub-sampled unconditional group-wise GC

The above two methods both condition on neurons from groups other than the two con-

sidered. As previously stated, this is advantageous as indirect causal connections can

be correctly identified, however in some cases this may not be necessary, particularly in

scenarios where relations between groups are sparse and easy to identify. In such cases,

computing Granger Causality between each pair of groups, not conditioning out neurons of

other groups may be sufficient and be combinatorially and computationally advantageous.

For this reason, we consider an unconditional approach analogous to the sub-sampled

conditional method described in the previous section: For a given pair of groups, we select

an equal sub-sample of neurons from each and then compute GC between them. We repeat
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Figure 5.8: Conditioning methods in large networks: A. Example topology of a simulated

network with 10 groups. The region (group) connectivity matrix is shown on the left where 30% of

connections between regions exist with directed synaptic connections (red) and lack thereof (black).

The connectivity matrix of the individual neurons is shown on the right, based on the group

connectivity. Directional synaptic connections exist with 30% probability for neurons within the

same region (diagonal), 10% for directed connections between regions and 1% everywhere else. B.

Group-wise approach to conditioning out indirect connections. Groups considered are considered

as a whole, conditioning on neurons of all remaining groups. In this illustration all groups are of the

same size, however this need not be the case in in vivo data. C. Sub-sampled conditional approach.

Similar to method in B. but only operating on a sub-sample of neurons from each group, in this

example with sample size of 1. This process is repeated for several trials with different sub-samples

of neurons. D Unconditional approach where each pair of groups is considered independently. For

each pair of groups, the selected sub-samples are used to compute GC (in this case sample size is

2), not taking any other group into account, possibly leading to misidentification of connections.

This process is repeated for several trials with different sub-samples of neurons.
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Figure 5.8: E. Performance in methods shown in B. C. and D. with the group-wise approach shown

in purple, conditional approach in red and unconditional approach in blue, respectively. Left plot

display the performance (AUC) for networks with different numbers of regions. Similarly, the

figure on the right shows the estimated model order for different network sizes of each method. F.

Performance of GC when predicting structural connectivity (AUC) for the sub-sampled conditional

approach shown in B. for different sub-sample sizes (x-axis) and sizes of the network: 5 groups

(red), 10 groups (blue), 15 groups (purple), 20 groups (gray) and 25 groups (yellow).

this process for a set number of trials for each pair of groups, then averaging each causal

estimate across all trials (Fig. 5.8D).

Performance evaluation of the proposed methods

We investigated all three conditioning methods over a networks with 5, 10, 15, 20 and

25 groups, noting their performance in terms of AUC when comparing the structural and

inferred directed functional connectivity (Fig. 5.8E). For both the sub-sampled conditional

and unconditional method, we selected samples of 5 neurons from each group, repeated

across 10 trials.

5.4.2 Results

Unconditional approach does not track structural connectivity

When comparing the performance of the unconditional and group-wise approach (blue

and purple in Fig. 5.8E, respectively) across all trials, we identified that the unconditional

approach suffers from indirect connections to and from other groups of neurons which it is

unable to properly condition out. This resulted in AUC≈0.5, equivalent to pure chance.

In contrast, the AUC when conditional using the group-wise method was close to 0.66 for

smaller networks (5 groups) and 0.57 for larger networks (25 groups).

Model order decreases with network size for the conditional but not for the

unconditional approach

The computed model order (Fig. 5.8E, right) was found to not change significantly with

network size for the sub-sampled unconditional approach. As the sample size selected from

each group has been kept constant and the model order is computed on a per-pair basis,

the number of neurons considered in the estimation process remains constant. This would

remain true even if the size of group was varied as long as the sub-sample size remains
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constant (not shown), maintaining constant model order.

For both the group-wise and sub-sampled conditional approach the model order de-

creased with network size as the number of sources grows linearly with the number of

groups. The model order was then significantly smaller for the full group-wise approach

when compared to the sub-sampled alternative due to the larger amount of neurons con-

sidered in the full approach.

Sub-sampled conditional approach can provide performance similar to group-

wise conditioning method

We found the sub-sampled conditional method to perform similarly but generally worse

when compared to the full group-wise approach for all sizes of the simulated networks when

the default case of sample size of 5 neurons was considered (Fig. 5.8E). We then considered

different sub-sampling sizes to show its effect on the inference, observing similar trends

across all network sizes (Fig. 5.8F): the performance generally improved with sample size

(note that sample size of 10 is equivalent to full group-wise approach).

5.4.3 Discussion

We presented a limited neural model with groups of densely connected neurons which

allowed us to consider three different approaches of causal analysis in structured networks.

We identified a conditional method with sub-sampling as particularly appealing, as it

provides means for maximizing the use of data in our dataset, allows flexibility in terms

computational complexity (controlled by the sample size and trial count) and performs well

even with small sample sizes. The unconditional approach maintained model complexity

(model order) across a variable number of regions which would make it a good candidate for

application to sets of recordings where number of imaged regions varies greatly. However,

this method did not perform on the selected model, highlighting the need for proper

conditioning of indirect causes.

The investigation of the network parameters, such as connection probability between

the neurons and groups and their impact on the applicability of the individual approaches

was very limited as we kept most parameters constant, including the number of neurons

in each group. A more thorough analysis could offer insight into settings in which the

unconditional approach is applicable, offering better understanding of it’s utility for in

vivo recording analysis.

Likewise, the full group-wise approach, in the way it was applied here, serves as a best-
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case scenario rather than how it could be applied in practice. As mentioned, applicability

of this method in a manner that is comparable across recordings would require selecting

a smaller (consistent) number of neurons from all groups and recordings. For the model

network here, suppose we can under this constraint only pick 5 neurons of the 10 neurons in

each group. Instead, we could use the conditional sub-sampling method with, for example,

sample size of 3, sampling from up to 10 neurons when available. This comparison is more

akin to the application to real data recordings and it is possible that multiple trials of the

conditional method would outperform the one trial of the ’full’ group-wise method.

Finally, we did not investigate the impact of the number of trials in the sub-sampling

approaches on the quality of the result. It is likely that with increasing number of trials,

the performance of these methods would improve with diminishing returns. A formal

investigation of this relationship could guide the selection of sufficiently large trial count

while minimizing the computational requirements of these methods.
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5.5 Conclusion

In this chapter we demonstrated the applicability of Granger Causality to calcium ima-

ging data, identifying and addressing a number of general and specific limitations and

constraints. First, we confirmed that GC can be reliably inferred from calcium data us-

ing a simple two cell model in Section 5.2, next we have addressed scalability and data

processing using networks of interconnected neurons in Section 5.3 and finally we present

methods for the application of GC at scale to structured neural networks in Section 5.4.

5.5.1 Recording requirements and considerations

In our simulations, sampling (acquisition) rate had a profound impact on the accurate

estimation of the directed functional connectivity. With optimal acquisition rates of 50

to 250 frames per second, the highest possible acquisition rate of modern light-sheet mi-

croscopes setups (generally 100Hz) may be a favourable choice. This contrasts many

behavioural studies (Portugues et al., 2014; Haesemeyer et al., 2018; Favre-Bulle et al.,

2018) which utilize very slow acquisition rates (<10Hz) as undirected connectivity meas-

ures such as correlation or mutual information do not suffer from the same constraints.

In such conditions, Granger Causality is unlikely to be applicable, however it is possible

that long-timescale interactions in live animal brains may allow for meaningful directed

connectivity results as these are not present in our simple simulations.

With the acquisition rate of 100Hz, we have shown that the inference results for short

recording durations (<5 minutes) are very poor and recordings of at least 10 minutes are

advisable. This amounts to 60000 samples per recording and longest possible recordings

are desirable especially with non-ideal acquisition parameters such as high amounts of noise

present in the acquired traces or in the presence of non-stationary changes throughout the

acquisition.

We identified non-stationarity in the signal as a factor with significant negative impact

on the GC estimation. Several sources for non-stationarity exist. Firstly, changes in

recordings that cannot be corrected during pre-processing, such as slow z-drift during

plane acquisition. Secondly, long time-scale brain processes such as integration of stimuli or

adaptation. Generally these can be accounted for by additional signal filtering (described

below). Finally, photo-bleaching which, apart from decaying baseline fluorescence, causes

a decrease in amplitudes of the calcium reporter in response to spiking activity. This is

unlikely to be correctable by filtering alone and caution must therefore be exercised when

selecting illumination power and duration of the recording.
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Finally, with lower signal-to-noise ratios, the estimation of directed functional con-

nectivity also suffers as many of the small causal events become masked by the noise.

This can be mitigated by either increased illumination power during acquisition which, in

general, yields better SNR or by increasing the duration of the recording as the directed

functional connectivity can be better estimated with increasing amounts of data. However,

again, both increased illumination and recording duration will result in a more pronounced

photo-bleaching of the calcium reporter, resulting in a direct trade-off between the SNR,

recording duration and data stationarity.

5.5.2 Processing requirements and considerations

We identified zero-phase high pass filtering as a potential method for improving the sta-

tionarity of the calcium data by removing long term drifts and trends from the data. In the

presence of noise, filtering with higher frequency thresholds had a progressively worsening

impact on the inferred directed functional connectivity, making the selection of an appro-

priate filtering threshold important. In our simulation, even filters with threshold of 0.125

Hz were sufficient in removing the non-stationarity in the data, however, it is possible that

in in vivo acquisitions, faster trends may be present, justifying use of a 0.250 Hz or even

0.5 Hz filtering threshold as it may be more conservative.

In multivariate models, we have demonstrated the importance of proper conditioning

as indirect causal connections may skew the results of the directed functional connectivity

inference. In particular, we showed that unconditional pair-wise computation of a Granger

Causality in a network with multiple functionally similar groups yields results no better

than chance and a conditional approach is therefore required. We show that this can be

achieved by repeated sub-sampling of neurons from each groups offering a method that is

not only computationally viable but also comparable across multiple recordings.

5.5.3 Relation to existing applications of GC in vivo

We identified a number of studies which attempted to apply Granger Causality to in

vivo datasets. Here we briefly discuss the relationship between our findings and results

presented in the related published literature.

Fallani et al. (2014) examineed sections of the tail in zebrafish embryos, computing

Granger causality between 11 neurons in the spinal cord captured using a spinning disk

confocal microscope at an acquisition rate of 4 Hz for a 250s duration. The study re-

ports an ipsilateral connectivity directed along the tail (and away from the brain) that is



85

characteristic of the tail beat motion larval zebrafish exhibit. Tail beat requires delayed

contraction of the muscles along the tail which is different for the left and the right side of

the tail. Our second simulation setting of several interconnected neurons is very similar

to the setting presented. Since we identified the need for fast acquisition (> 50Hz) for

accurate inference of directed functional connectivity, it is possible that the comparably

slow acquisition rate of 4 Hz resulted in the identification of spurious connections in the

neurons of the tail. It is also important to note that the neurons along the spine receive

common input from the brain. As the authors do not record the brain activity, it would

be impossible to condition it out, leaving the results susceptible to the identification of

indirect connections.

Vanwalleghem et al. (2017) investigated the responses of zebrafish larvae to auditory

stimuli using a light-sheet microscope, acquiring 4 volumes of 25 planes each spanning

depth of 250 µm per second (4Hz). GC was applied in this study over a number of brain

regions where signals from each of the regions were averaged. The authors preformed

a number stationarity and co-integration test prior to GC to establish that the data is

sufficiently stationary, however give no information on how or whether the sampling time

of the planes in the volumes acquired were corrected. When the light-sheet is scanned

through the brain, the activity of neurons captured at higher depths is captured later

than at lower z-depths when scanning down and vice-versa when scanning up. This alters

the true time ordering of the events captured, which, if not corrected, will result in spurious

depth-dependant causal relations between brain regions at different depths.

Oldfield et al. (2020) investigated pray capture in naive and experienced animals and

attempt to quantify the differences in directed functional connectivity by applying Granger

Causality to both settings. The authors identify the acquisition rate of 3.6Hz used is much

slower than the timescale at which the action potentials resulting in the recorded activity

occur, further arguing that bursts of action potentials may occur at slower timescales,

closer to that of the calcium dynamics (and the acquisition rate used). We have identified

that despite the slow dynamics of calcium reporters, directed functional connectivity can

still be inferred, even in a two neuron model where no complex dynamics are present where

we have also shown that accurate inference of GC requires fast acquisition rates (Sec. 5.2)

this closely follows previously published results (Seth et al., 2013).
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5.5.4 Limitations and future directions

In our simulations, we mainly focused on the limiting factors Granger Causality rather

than the underlying network used for simulations. While this allowed us to identify many

recording and processing guidelines listed above, we have not investigated the effects of

properties of the simulated network of integrate-and-fire neurons. Investigations into how

the density of synaptic connectivity affects the quality of the inferred directed functional

connectivity could provide a better understanding of how applicable GC is in different

connection densities. The probability of synaptic connections we used in most of our

simulations (30%) was likely higher than that present in most neural systems and thus

provides quite conservative results. It is likely that in a network with sparser connections,

GC would perform better given the smaller number of indirect connections for each given

pair of neurons and/or groups of neurons. More insight would also be given into the

applicability of the unconditional approach proposed in Section 5.4 which may perform

better when sparser connections between groups of neurons are considered.

In the final step of our investigation, we considered sub-sampling methods as means to

produce comparable and computationally plausible results, showing that smaller sample

sizes yielded results of worse quality. The networks considered were still rather small (10

neurons per functional group), limiting the extent to which the sub-sampling methods

could be investigated. Application of these methods to networks with a larger number

of neurons e.g. 200 per functional group would provide a better understanding of the

limitations of these methods as in such models, the sample size relative to the total number

of neurons in each group could be much smaller, akin to in vivo recordings.

We mentioned photo-bleaching as one of the potential factors that needed to be con-

sidered, however the impact of which is not investigated as we do not include it in our

simulations. Since photo-bleaching generally follows an exponential decay (Patterson and

Piston, 2000), it may be possible to account for it by division of the signal trace by the

fitted exponential. Further investigation is therefore required and could yield signific-

ant improvements in terms of attainable signal-to-noise ratios or recording durations in

recordings suitable for causal analysis.
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Chapter 6

Application of Granger Causality

to in vivo Calcium Fluorescence

Data

6.1 Introduction

In the previous chapter exploring the applicability of Granger Causality to simulated

calcium fluorescence data, we established that the slow calcium dynamics do not prevent

us from estimating GC accurately, as long as sufficiently high sampling rate is used and an

appropriate amount of data is collected. Having shown a scalable sub-sampling method of

Granger Causality inference on large datasets in simulation, it is necessary to demonstrate

it’s applicability to in vivo data as well.

While this study is not the first to attempt to do this in larval zebrafish (Fallani et al.,

2014; Vanwalleghem et al., 2017; Oldfield et al., 2020), past applications were limited to

very slow recording speeds of less than 5 Hz. It remains unclear whether Granger Causality

can be inferred at such slow recording speeds as it would need to be mediated through

some emerging long time-scale neural processes. This is because GC cannot be inferred

from the relatively fast underlying synaptic connectivity at such low sampling rates (Seth

et al., 2013) as we have also shown in our investigation in the previous chapter.

In this chapter, we acquire a dataset of single-plane light-sheet recordings of spontan-

eous brain activity in larval zebrafish. Using existing zebrafish atlases, we obtain a common

reference and superimpose previously identified functionally similar brain regions onto our

recordings. We then assign neurons identified in each recording to these brain regions

based on their spatial position, allowing to then perform Conditional Granger Causality
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with sub-sampling to obtain a directional functional connectivity map of the brain. We

validate our results against previously identified brain region connectivity and show evid-

ence suggesting that Granger Causality can be inferred from calcium fluorescence data

using our methodology.

6.2 Methods

6.2.1 Acquisition of light-sheet data

All larval zebrafish samples were maintained and prepared for light-sheet acquisition ac-

cording to protocols described in Section 3.9 which also describes the optical design of

the light-sheet microscope. All brain activity data was collected from 6 and 7 dpf larvae

using the MicroManager platform (Edelstein et al., 2010) and the control of the light-sheet

microscope was facilitated by the µSPIM plug-in (Chapter 3).

For each larval sample, multiple plane recordings were acquired at different depths,

10-20 µm apart as limited by the photo-bleaching of the calcium reporter. We used the

maximum acquisition speed, 98 Hz, allowed by the microscope hardware, acquiring a total

of 60000 images per recording over a 10.2 minute period following the results of our the-

oretical study in Chapter 5. We allowed for a 5 minute rest period between acquisitions

and provided a 60s acclimatization period prior to each recording during which the illu-

mination laser was scanned above the tissue of the fish in order to minimize the transient

brain activity response to the changing light intensity at the start of the recording. Since

our setup forms the light sheet by scanning laser in the x-y plane, different parts of the

illuminated region are acquired at different points in time during the acquisition of each

frame. To achieve best possible time ordering of acquired data and to ensure the data

is acquired as uniformly as possible the laser was scanned 4 times for each frame (392

times per second). Over-illuminated regions at both ends of the light sheet caused by the

reversal of the mirror galvanometer were removed using the laser masking functionality

of µSPIM.

The volume for registration was acquired after all plane recordings for a given sample

were finished, covering the same x-y region and depth of 170 µm from the top-most part

of the brain. Each sample was then culled and safely disposed in accordance with UK

Animal Act 1986.

For the purposes of this study, brain activity was recorded strictly in the absence of

stimulus to assure stationarity of the data.
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Figure 6.1: Acquisition and processing pipeline of light-sheet imaging data:

A. An overview of data acquisition and processing. Data acquired using light-sheet microscope

controlled by µSPIM software has been first registered to avoid movement artifacts. Individual

sources (neurons) were then extracted using the CaImAn toolbox (Giovannucci et al., 2018). B.

Flow diagram of the scheduling system used for automated data processing at scale. A scheduler

process monitors preset directories for unprocessed recordings. When a recording that is not

already being processed is found and enough processing resources are available, the recording

directory is locked such that no other processing task can be launched against it. The scheduler

then launches the next step of the processing pipeline as a new task, allowing multiple processing

tasks for different recordings to run in parallel. When the current processing step is completed,

the recording directory is unlocked again, allowing for the next step of processing to be scheduled.

C. Example fluorescence traces (a.u.) of neurons identified during processing of the fluorescence

data.
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6.2.2 Motion correction and cell identification

Prior to data processing, we binned the original recordings with 2x2 binning such that each

pixel covered ∼ 0.64 µm. We found this to have no adverse effect on the processing results

and yielded a significant improvement in terms of computational speed and decreased

storage requirements.

To correct x-y motion in the recordings, we utilized the elastic motion correction

algorithm supplied with the CaImAn toolbox Giovannucci et al. (2018) with patch size

of 48x48 px and 24x24 px overlap. We allowed for rigid shift of maximum 10 pixels and

elastic shift of 4 pixels in each dimension. As we did not acquire data from multiple depths,

z-registration of the imaging data was not possible. Instead, the data was screened prior

to processing for drift along the z-axis and recordings with poor quality were removed

from processing.

Identification of individual sources (neurons) was facilitated by the constrained non-

negative matrix factorization (CNMF) algorithm (Pnevmatikakis et al., 2016) implement-

ation of CaImAn toolbox (Giovannucci et al., 2018). We disabled merging of components

and eliminated all sources with SNR<2.5 as computed by the CaImAn toolbox. The

traces of the identified neurons were used without any de-noising or other pre-processing

(Fig 6.1C).

6.2.3 Automated scheduling of processing tasks

Due to the large nature of datasets produced by light-sheet acquisitions, averaging ∼100

GB per 10 minute recording, the transfer and processing were slower than viable for manual

scheduling of the processing tasks with transfers taking up to 20 minutes and motion

correction and source identification several hours each. With several tens of recordings

produced on any given day, processing of the recordings could take several days on a single

machine. To accelerate and automate our data processing pipeline, we developed a simple

scheduling system (Fig. 6.1B) based on the Docker container architecture (Merkel, 2014).

We chose Docker as a basis for our processing due to it’s wide adoption and avail-

ability on modern UNIX-based operating systems. Further, it allows us to package full

execution environments for our processing tasks independent of packages and software in-

stalled on the host operating system, ensuring consistency of execution between different

machines and operating systems even as software is updated over time. A centralized

Docker repository then allows for consistent updating of processing tasks and their execu-

tion environments across multiple machines without the need for manual intervention on
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each machine.

We split the steps in our data ingestion and processing pipeline into individual Docker

containers such that each step is completely independent of any other. General steps in

the processing of light-sheet single plane recordings would be:

• Move: Data is moved from general storage (such as local storage or acquisition

storage) into shared network-attached storage.

• Downscale: All tiff stacks of the given recording are downscaled and incomplete

meta-data produced by ImageJ is optionally removed using the mogrify tool supplied

with the ImageMagick toolbox.

• Plane Motion Correction: The single plane recording is motion corrected in x-y

using the CaImAn toolbox as described in the previous sub-section.

• Plane Source Extraction: Neurons are identified from the single plane activity

recording using the CaImAn toolbox as described in the previous sub-section.

• Performance Summary: A brief summary of the processing steps execution is

generated, including estimated motion over time and number of sources identified.

A small, motion-corrected, image stack is generated by time sub-sampling of the

registered recording for the purposes of manual assessment of any motion artifacts

present.

To manage the scheduling of the of the processing tasks, a separate scheduler container

was used, monitoring both the general storage and shared network-attached storage for

unprocessed recordings. If one is found, the scheduler then uses the host operating system

Docker service to launch a new container for the next step in the processing pipeline of

the recording. The information about the state of processing of each recording was kept

in a JSON manifest file in its respective directory which was updated at the end of each

step in the processing pipeline.

In order to allow distributed processing, we implemented a locking mechanism based

on the creation of a folder in the recording directory which is an atomic operation on

synchronous UNIX filesystems. The locking folder would then again be removed at the

end of each processing step, allowing for the next step to be scheduled. Upon failure

during the execution (exhaustion of resources, loss of power or restart of the operating

system), the recording directory would remain locked until it is examined and corrected

by the user and the locking folder is manually removed.
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Step Parameters Values

General

interpolation

use-histogram-matching

winsorize-image-intensities

BSpline

true

[0.005,0.995]

1. Rigid

metric

convergence

shrink-factors

smoothing-sigmas

MI[s,d,1,32,Regular,1.0]

[500x250x100,1e-6,10]

4x2x1

2x1x0vox

2. Affine

metric

convergence

shrink-factors

smoothing-sigmas

MI[s,d,1,32,Regular,1.0]

[500x250x100,1e-6,10]

4x2x1

2x1x0vox

3. SyN

metric

convergence

shrink-factors

smoothing-sigmas

MI[s,d,1,32,Regular,1.0]

[200x100x50,1e-6,10]

4x2x1

2x1x0vox

Table 6.1: ANTs registration parameters:

Detailed description of each parameter can be found on the ANTs documentation website:

http://stnava.github.io/ANTsDoc/. s and d in the MI metric denote the source and destination

file, in this case the recording volume and the atlas volume, respectively.

Since each processing task has different requirements in terms of the computational

resources, multiple tasks can be executed in parallel on any given machine. By defining

a capacity of each machine based on network link speed, storage speed, processing power

and memory available, we can ensure an optimal utilization of all available resources by

scheduling tasks with different demands.

We processed our recordings using our scheduling system on two machines, although

more machines could be used to accelerate processing:

• A Dell machine, Dual Intel(R) Xeon(R) Gold 6132 CPU (28 cores total @ 2.60GHz),

512GB DDR4 RAM, 10GBit/s Network Link

• A custom machine, Dual Intel(R) Xeon(R) CPU E5-2690 (16 cores total @ 2.90GHz),

256GB DDR3 RAM, 1GBit/s Network Link
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6.2.4 Atlas registration

The registration volume acquired from each fish sample was registered against the Z-

Brain Atlas (Randlett et al., 2015) using a non-rigid volumetric registration provided by

the ANTs toolbox (Avants et al., 2009). Parameters used in the registration call can

be found in Table 6.1. Some of our recordings contained predominantly the hindbrain

as we avoided illuminating the eyes of the larva directly. Such recordings often failed to

register against the atlas. Registering against a sub-volume of the atlas containing only

the hindbrain and part of the tectum resolved this issue.

While the Z-Brain atlas provides a number pre-defined anatomical regions, function-

ally similar regions defined in the MPIN atlas (Kunst et al., 2019) are better suited for the

analysis of functional connectivity in this study. To superimpose MPIN region masks onto

the volumes recorded, we registered the MPIN atlas volume against the Z-Brain reference

using the same ANTs registration process as for our recorded volumes. With the trans-

formations between MPIN, Z-Brain and our recorded recordings known, the MPIN masks

were transformed using the antsApplyTransforms tool supplied with the ANTs toolbox.

While the general depth of each plane recording was known in relation to the registration

volume for a given fish sample, the acquisition of the plane and volume recordings would

often take place up to 2 hours apart. During this time, the larva could sink, significantly al-

tering the relative z-position between the recordings. To avoid establishing false affiliation

between the neurons in the plane recording and MPIN brain regions, we re-established

the relative depth between the plane and volume recordings as follows: First the back-

ground of both recording was removed by removing 60th percentile luminance value from

all pixels. Next, we registered each plane of the volume recording against the single-plane

recording using fast phase cross-correlation algorithm provided by the scikit-learn toolbox

(Pedregosa et al., 2011) to account for any x-y drift during the period elapsed between

recordings. Finally the similarity between the single-plane recording and each motion-

corrected plane of the volume recording was computed as L1 loss and the loss values over

all planes in the volume were smoothened using a hanning window spanning 10 µm. This

yielded a clear single best optimal plane in the case of all recordings which was manually

validated.

To overlay the MPIN region masks onto each single-plane recording, the optimal plane

from each mask volume was selected and translated according to the x-y shift computed

above. The region affinity of each neuron was based on its centre of mass. As the MPIN

atlas does not contain overlapping regions, the affinity of each neuron was unique.
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Figure 6.2: Atlas registration and neuron grouping:

A. After acquisition of functional plane recordings, a volume of the brain was captured. This was

then registered against the Z-Brain Atlas (Randlett et al., 2015) using Elasix registration toolbox

(Avants et al., 2009). Registering functional region data from MPIN atlas (Kunst et al., 2019)

against the Z-Brain atlas using the same method then provides a common reference for mapping

the functional regions onto volumes of individual recordings. By then registering the functional

plane recording onto the volume recording, we overlay the MPIN region masks onto the plane

recording which can then be used to determine region affinity of individual neurons. B. Region

masks mapped onto two individual light-sheet recordings. C. Number of recordings in the dataset

used for Granger Causality inference in which a given functional region was present in the left

hemisphere (blue) and the right hemisphere (red). D. Mean size of each region in pixels in the

left (blue) and right (red) hemisphere for recordings in which it was present. E. Mean number of

neurons for each region in the left (blue) and right (red) hemisphere for recordings in which the

region was present.
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6.2.5 Brain region selection

We acquired 105 single-plane recordings from 30 fish which we manually screened and

selected good recordings based on a number of criteria: We discarded recordings which

were of generally poor quality as a result of excessive scattering of the light sheet through

the agarose, poor camera focus or poor calcium reporter expression. We eliminated all re-

cordings with motion artifacts, excessive z-drift and x-y drift which could not be corrected

by the motion correction protocol. Samples with low brain activity resulting from poor

recovery following the sample preparation or poor adaptation to the restraint conditions

were also removed. 82 recordings passed the screening with satisfactory quality.

Following the registration protocol, we ensured that all recordings were accurately

registered against the Z-Brain atlas. Poorly registered recordings were either retried or

discarded. We obtained a sufficient atlas registration for 69 recordings, failures were mainly

attributed to missing or poor quality registration volumes and uneven z-drift between

acquisition of the single-plane recording and registration volume which resulted in non-

trivial plane-volume registration.

We determined brain region affinity for each neuron in all recordings, treating parts of

each region contained in the left and right hemisphere separately and retained all region-

recording pairs containing at least 10 neurons. We then examined the number of recordings

which contain a given region (Fig. 6.2C), the size of each region in pixels (Fig. 6.2D) and

the number of neurons affiliated with each region (Fig. 6.2E).

To only select regions which are well represented across our recordings, we required

each region to be present in both hemispheres across at least 15 recordings.

6.2.6 Functional measure inference

For each recording, Granger Causality was established between available regions using

sub-sampled conditional approach established in Chapter 5.4 with sample size of 5 and 50

trials per recording (Fig. 6.3A,C). To eliminate the non-stationary period caused by the

start of the recording, we discarded the first 20 seconds of each acquisition. Additionally,

we define two measures of the asymmetry in the estimated directed functional connectivity,

GCdiff = GCa→b −GCb→a (6.1)
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Abbreviation Region

Left Right

teo TEO Tectum

ce Ce Cerebellum

mon MON Medial Octavolateralis Nucleus

intmos2,3 IntMOS2,3 Intermediate Dorsal Medulla Oblongata stripe 2,3

intmos4 IntMOS4 Intermediate Dorsal Medulla Oblongata stripe 4

intmos5 IntMOS5 Intermediate Dorsal Medulla Oblongata stripe 5

supmos2,3 SupMOS2,3 Superior Dorsal Medulla Oblongata stripe 2,3

supmos4 SupMOS4 Superior Dorsal Medulla Oblongata stripe 4

supmos5 SupMOS5 Superior Dorsal Medulla Oblongata stripe 5

infmos1 InfMOS1 Inferior Dorsal Medulla Oblongata stripe 1

infmos2,3 InfMOS2,3 Inferior Dorsal Medulla Oblongata stripe 2,3

infmos4 InfMOS4 Inferior Dorsal Medulla Oblongata stripe 4

infmos5 InfMOS5 Inferior Dorsal Medulla Oblongata stripe 5

nx NX Vagus Motor Nucleus

fmn FMN Facial Motor Nucleus

sfgs SFGS Stratum Marginale

vsl VSL Vagal Sensory Lobe

Table 6.2: MPIN atlas brain region abbreviations:

Abbreviations for regions present in the data recorded. Abbreviations for the left hemisphere

are in lower case and capitalized for the right hemisphere, following the convention in the MPIN

cellular-resolution atlas publication (Kunst et al., 2019). Regions shaded in gray were selected as

they contained at least 10 neurons in each hemisphere in 15 recordings.
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Figure 6.3: Functional connectivity estimated in vivo:

A. Neurons in each recording are grouped based on their region affinity. Granger Causality is

then calculated using the conditional method with sub-sampling described in Chapter 5.4. B.

Correlation matrix of the examined brain regions (names of regions corresponding to abbreviations

shown can be found in Table 6.2) averaged over all recordings (n = 69). C. Granger Causality for

the selected regions averaged over all recordings (n = 69). D. Granger Causality values plotted

against Correlation. Each data point represents a single directed connection.
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which denotes the difference between forward (GCa→b) and backward GCb→a functional

connectivity and its normalized version:

nGCdiff =
2× (GCa→b −GCb→a)
GCa→b +GCb→a

(6.2)

For comparison, we also computed correlation between the neurons of brain regions

using the de-trended calcium trace of each (Fig. 6.3B). De-trending here was done using

the same procedure as defined in Section 5.3.1 where high-order polynomial was fitted to

the trace and then subsequently subtracted to obtain the de-trended version.

6.3 Results

6.3.1 Inferred directed functional connectivity is bilaterally similar

Prior studies have identified bilateral symmetry in the structural organization of the

zebrafish brain (Kunst et al., 2019; Naumann et al., 2016; Hildebrand et al., 2017). While

the organization is symmetrical, this does not guarantee bilaterally symmetrical neural

responses in the presence of asymmetrical stimuli, such as sideways drift which elicits

turning behaviour (Naumann et al., 2016).

To examine bilateral symmetry in the directed flow of information across hemispheres,

we examined the nGCdiff values for ipsilateral (Fig. 6.4A) and contra-lateral (Fig. 6.4C)

connections between regions in both hemispheres. If the brain was bilaterally functionally

symmetrical, we would expect similar overall directionality in all connection pairs across

the two hemispheres. We therefore plotted nGCdiff values for ipsilateral connections ori-

ginating in the left hemisphere against ipsilateral connections originating in the right hemi-

sphere (Fig. 6.4B), showing positive trend indicating bilateral symmetry (corr = 0.64).

Similar relationship (corr = 0.52) was established between contra-lateral connection ori-

ginating in the left and right hemisphere (Fig. 6.4D).

It is important to note, however, that in a true symmetry, we would expect a lin-

ear relationship with unit coefficient and zero intercept for both ipsi- and contra-lateral

connections,

nGCL→L = 1.0× nGCR→R + 0.0

nGCL→R = 1.0× nGCR→L + 0.0

which was not reproduced by the linear fits (shown in Fig. 6.4B,D):

nGCL→L = 0.5259× nGCR→R + 0.0021

nGCL→R = 0.6467× nGCR→L + 0.0130
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This could be explainable by the asymmetrical visual stimulation caused by the illumin-

ation laser of the light-sheet microscope which which was incident on the fish only from

one (the left) side.

6.3.2 Granger Causality provides information different from Correlation

When plotting Granger Causality against Correlation values for the same connections

(Fig. 6.3D), we can establish some linear relationship between the Correlation and Granger

Causality values. It is important to note, however, that this does not mean that the

information provided by both measures is the same or similar. GC provides directed

information about the functional connectivity whereas Correlation does not.

The linear relationship between GC and Correlation observed here is not ubiquitous for

all types of data. Its presence in calcium data likely stems from the slow dynamics of the

calcium reporter: every time activity in a region elicits activity in a functionally-connected

downstream region, the calcium fluorescence increases for both regions for several seconds,

following the slow fluorescence decay. This then appears as though the regions are active

at the same time, increasing correlation between the regions as well. Correlation cannot,

however, discern the time ordering of the events.

6.3.3 Cerebellum shows functional efferents consistent with previously

found structural connectivity

To form an overview of the asymmetric transfer of information in the larval brain (Fig. 6.5A)

we identified statistically significant differences in Granger causalities GCdiff using Wil-

coxon signed-rank test (Fig. 6.5C), corrected for multiple hypotheses, selecting connections

with p < 0.05. The statistically significantly asymmetries nGCdiff (Fig. 6.5B, highlighted

in red) were plotted on a connectivity diagram (Fig. 6.5D).

Previous cell tracing studies have found efferent connections from cerebellum to many

regions of the Medulla Oblongata both ipsi-laterally (stripes 2, 3 and 4) and contra-

laterally (stripes 1-5) (Kunst et al., 2019). Here we observed similar efferent connections

from the left cerebellum, although not from the right cerebellum. The cause of this

bilateral asymmetry is not clear, however it is plausible that the asymmetric light-sheet

illumination (from the left side) is the cause.
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Figure 6.4: Cross-lateral comparison of Granger Causality results:

A. Normalized difference between Granger Causality values (nGCdiff = 2 × (GCa→b −

GCb→a)/(GCa→b+GCb→a)) for ipsilateral connections originating in the left hemisphere (left) and

in the right hemisphere (right). B. Correlation plot for nGCdiff values for ipsilateral connections

of the two hemispheres. C. Normalized difference between Granger Causality values for contra-

lateral connections originating in the left hemisphere (left) and in the right hemisphere (right). D.

Correlation plot for nGCdiff values for contra-lateral connections of the two hemispheres.
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6.3.4 Medial Octavolateralis Nucleus exhibits similar functional con-

nectivity to Cerebellum

The Medial Octavolateralis Nucleus (MON) receives a strong afferent input from the

lateral line (Bell et al., 2008) and has been shown to receive afferent connections from

the Cerebellum (Ce) ipsi-laterally (Kunst et al., 2019) as well as provide efferent output

to cerebellar granule cells (Dohaku et al., 2019). Several studies have identified MON

to have a Cerebellum-like structure, suggesting that MON may function as a part of the

Cerebellum (Mikami et al., 2004; Bell et al., 2008; Bae et al., 2009). The results of our

directed functional connectivity support this view as we observed ipsilateral, bilaterally

symmetrical, efferent flow of information to many parts of the Inferior Dorsal Medulla

Oblongata (Fig. 6.5D). Whether this is facilitated by direct structural connections which

have not yet been identified or is mediated by the Cerebellum is unclear, however.

6.3.5 Efferent functional connections from the Tectum is greater than

afferent ones

The Tectum plays a major role in virtually all visually driven behaviours as it receives

numerous inputs from the retina, integrating the visual input which is often sent to down-

stream motor areas in the mid- and hindbrain (Gahtan et al., 2005; Severi et al., 2014;

Dunn et al., 2016a; Naumann et al., 2016). While we have not observed many significant

functional connections to and from the tectum (likely due to its low appearance in our

recordings, n = 16), we observed a relatively smaller incoming functional connectivity

in both the left (GCin = 0.88 × GCout) and the right (GCin = 0.87 × GCout) tectum

(Fig. 6.5E). These results reflect the feed-forward nature of the tectal region, although the

fish was not explicitly stimulated in any of our recordings.

We also observed some significant outward functional connectivity to the Vagal Mo-

tor Nucleus and Inferior Dorsal Medulla Oblongata stripes 2 and 3 from the left tectal

region. While no known direct pathways exist between these regions, it is possible that

the observed functional connectivity is mediated by the nucleus of the medial longitudinal

fasciculus (nMLF) which has not been included in our recordings but mediates many of

visually-evoked motor behaviours (Severi et al., 2014; Naumann et al., 2016).
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Figure 6.5: Directed functional connectivity map of larval zebrafish brain:

A. Diagram showing the brain regions analysed using Granger Causality. Explanation of brain re-

gion abbreviations can be found in Table 6.2. B. Normalized difference between Granger Causality

values (nGCdiff ) between all regions considered. Connections highlighted in red are statistically sig-

nificant (p < 0.05, corrected for multiple hypotheses). C. Statistical significance of the asymmetry

in Granger Causality (GCa→b − GCb→a) computed using the Wilcoxon signed-rank test. Values

highlighted in red are statistically significant. D. Asymmetries shown in B. that are significant ac-

cording to Wilcoxon test presented in C. were plotted on a connectivity diagram. E. Relative plot

of aggregated incoming (white) and outgoing (dark blue) directed functional connectivity (GC) to

and from each brain region.
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6.4 Discussion

In this study, we applied Granger Causality to in vivo calcium imaging data collected using

a light-sheet microscope setup and we show supporting evidence for the applicability of GC

inference as a means to establish directed functional connectivity between brain regions.

We have shown that Granger Causality is bilaterally similar for both ipsi- and contra-

lateral connections. The measure was not, however, truly symmetrical as the linear re-

lationship between the values observed in the two hemispheres had coefficient of 0.5259

and 0.6467 for ipsi- and contra-lateral connections, respectively whereas a coefficient of

1.0 would be expected in a symmetrical setting. It is unclear as to why this is the case,

however it is likely that the visible light-sheet illumination produced light pollution which

affected the one eye to a greater extent than the other, effectively serving as an asymmet-

rical stimulus, whereby affecting the symmetry in the directed functional connectivity. A

setup which has two illumination arms, each illuminating the brain from one side of the

fish sample could mitigate this issue as the brain would be illuminated more uniformly, the

perceived stimulus would be symmetrical and the illumination power of each arm could

be halved, minimising the effect the visible light has on the sample.

By investigating the directed connections, we found connections between regions which

are asymmetrical in a statistically significant manner, suggesting that GC provides more

information than an undirected functional measure such as correlation. We have identi-

fied neurologically plausible connections, namely originating in the tectum and we have

identified that the tectum, which is often regarded as a feed-forward processing structure,

has larger outgoing than incoming G-causal magnitude in both hemispheres, consistent

with this assumption. For the Medial Octavolateralis Nucleus (MON) we found similar

functional connectivity to that of Cerebellum, reflecting its hypothesised functional simil-

arity. In aggregate, these result point toward the ability of Granger Causality to uncover

real directed functional connectivity in the larval brain.

We reported some connectivity that could not, however, be explained by previous

research. In particular, we observed a directed functional connectivity from the left tectum

to parts of the Medulla Oblongata and Vagus Motor Nucleus. This could have been

perhaps a functional connection mediated by another region which has not been included

in our recordings, such as nMLF and the direction of the connectivity generally follows

the common flow from sensory to motor regions. The directed contra-lateral connection

between Inferior Dorsal Medulla Oblongata stripe 5 (left) and Inferior Dorsal Medulla

Oblongata stripe 4 (right) is not known, however. It is possible that this could be a spurious
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connection or a novel functional connection that has not been previously identified.

It is also important to note that a large portion of the connections shared common

directionality between ipsi- and contra-lateral connections (Fig. 6.2D) i.e. a connection

from region A (left) would tend to have the same directionality to region B (left) as to

the region B (right). This goes against the structure of many established behavioural

pathways where brain regions often interact either ipsi- or contra-laterally (Severi et al.,

2014; Naumann et al., 2016)

While our results have been mostly suggestive of correct directed functional connectiv-

ity inference, we offer no good guidance on the selection of the hyper-parameters for the

GC inference. For our analysis, sample size 5 and 50 trials seemed to yield a good per-

formance, albeit it is unclear whether these parameters are optimal. As guidance, we

estimate the probability of a neuron being missed in a region of size, N , sample size, S,

and number of trials, T , as

P =

(
1− S

N

)T
(6.3)

With the largest region in our dataset of ∼ 50 neurons (Fig. 6.2E), the probability of a

neuron being missed in such region would be (1 − 5/50)50 ≈ 0.52%. The advantage of

additional trials quickly diminishes and it is possible that a lower number of trials would

be sufficient in our case. To calculate the number of trials needed for a given probability

P , we can solve the equation above for T :

T =
log(P )

log(1− S
N )

(6.4)

and likewise, the equation can be solved for the sample size, S, as

S = −N × (
T√
P − 1) (6.5)

however it is important to note that S is bound by the size of the smallest number of

neurons in any given brain region in the dataset and will likely be better determined by

the amount data collected, with more data allowing for larger sample sizes that produce

more complex models. A good protocol to establish the hyper-parameters could therefore

be to first establish the sample size S given the constraints of the data and then calculate

the number of trials T based on a desired value of P , for example 5%. A theoretical in-

vestigation between the interaction of the hyper-parameters S and T and the performance

of the GC inference could provide more insight into the optimal parameter selection.

We limited this study to the minimal stimulus input given by the visible light of

the light-sheet-forming laser. The method of estimating directed functional connectivity
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would, however, prove to yield more insightful results when applied to stimulated fish

samples as this would allow comparisons between directed functional connectivities under

different conditions, possibly providing more insight into how the stimulus is interpreted

and how response behaviours are formed. We identify this as a major future direction for

both further validation of directed functional connectivity measures on calcium fluores-

cence data in vivo and as a way to guide future research of the behaviours in question.
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Chapter 7

General Discussion

In this work, we established a robust platform for light-sheet imaging and closed loop

virtual reality. We then used our light-sheet microscope control solution to establish the

applicability and limitation of using Granger Causality (GC) as a measure of directed

functional connectivity in vivo, supported by our prior investigation of GC inference on

calcium fluorescence data in the simulated neuronal networks. While our results advance

the understanding of directed functionality measures in calcium data, our results lead to

many open questions which were not within the scope of our work.

In this chapter, we summarize our findings and provide a more general interpretation

in form of guidance for application of Granger Causality to in vivo calcium fluorescence

recordings. We conclude by outlining potential future directions of research with the aim

to identify the role of sensory-motor circuits in the control of behaviour.

7.1 New tools to study embodied behaviours using func-

tional light-sheet microscopy

While the applicability of light-sheet microscopy has been demonstrated for functional

imaging of distributed neural activity (Ahrens et al., 2013b; Vladimirov et al., 2014, 2018;

Chen et al., 2018a), significant technical challenges have limited its wide-spread use. We

have identified a gap in the available software for light-sheet microscope control and ac-

quisition as currently no open source solutions which provide functionality focused on

functional calcium imaging currently exist. This increases the barriers of entry for both

new and established laboratories looking to adopt functional light-sheet imaging for their

research.

To this end, we developed µSPIM in Chapter 3 (and Saska et al. (2021)), a flexible



107

open-source light-sheet control extension for the MicroManager acquisition platform. The

aim for µSPIM has been two-fold: firstly, to provide complete control of all parts of the

light-sheet microscope, providing the user with functionality focused on functional imaging

and secondly to do so in a hardware-agnostic manner, giving the user an opportunity to

adapt the microscope setup to their particular needs.

We achieve the first aim by providing an intuitive graphical interface which seamlessly

integrates with the existing MicroManager software and provides control over all func-

tionality of our software. µSPIM provides both basic functionality for imaging of brain

activity including single plane imaging as well as custom user-defined volume imaging

and advanced functions such as laser masking to attain more uniform illumination over

the light-sheet, an optional light adaptation period which reduces transient brain activ-

ity at the start of the recording caused by sudden change in illumination and sequential

acquisition allowing the acquisition of multiple recordings in succession.

To give the user control over the hardware used while maintaining the quality of

acquisition, µSPIM includes a number of calibration procedures which assure correct syn-

chronization of all control components of the microscope. The flexibility of the acquisition

hardware is provided by the MicroManager platform which integrates with many camera

and shuttering systems out of the box.

To provide means to study embodied behaviour in head-restrained preparations, we

develop a closed-loop virtual reality in Chapter 4. We base our solution on a physic-

ally plausible model of motion parametrized using parameters obtained from the motion

of freely-swimming zebrafish larvae, implementing the VR system in a single combined

stimulation-acquisition arm, offering ease of integration into existing solutions. Although

we do not use the VR stimulator for our study of Granger Causality in vivo in this work,

it could serve as a part of future studies of directed functional connectivity in the presence

of stimuli.

7.2 Validation of Granger Causality in calcium fluorescence

data

The second main aim of this work is to establish the applicability of Granger Causality to

calcium fluorescence data. GC provides an appealing alternative to undirected functional

connectivity measures such as correlation as it offers directed causal information which

is not provided by most analysis methods applied to calcium data to-date. In the past,
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GC has been successfully applied in EEG, MEG and Electrocorticography data (Hesse

et al., 2003; Barnett et al., 2020; Potes et al., 2014), often using data acquired at 50-

500Hz sampling rate which is attainable by modern light-sheet calcium imaging systems

(up to 100 Hz). Nevertheless, attempts to apply GC to calcium fluorescence data have

been scarce with no studies systematically validating its applicability to large datasets and

identifying the limitations imposed by the calcium reporter dynamics.

7.2.1 Validation in simulated neuronal network models

We first establish three simulated neuronal network models where the ground truth struc-

tural connectivity is known.

By examining a simple bivariate case of two neurons with reciprocal connections, we

were able to establish several prerequisites in order for the inference of GC to be possible.

Firstly, we found the optimal range for sampling rates to fall between 50Hz and 250Hz with

significant decrease in performance outside either end of this range (akin to theoretical

results published by Barnett and Seth (2017)). Secondly, recording durations had large

impact on the statistical power of the inference with longer recording durations offering

better results. Generally, we found recordings of 10 minutes to be sufficient. Next, we

identified that in order for the structural connectivity to give rise to the functional transfer

of information, the target neuron may need to receive multiple inputs. This has an im-

portant implication on validating the results of directed functional connectivity based on

the known structural connectivity as some structural connections may only be functionally

active if the target neuron is in a specific (excited) state or when multiple incident con-

nections are active simultaneously. Finally, we found synaptic delay to only be a limiting

factor for slower acquisition rates while acquisition rate of 100 Hz remained unaffected.

Our second simulated model focused on multi-variate scenario where multiple neurons

are connected by a random synaptic topology. In this model we examined the effects of

measurement noise and non-stationary trends in the data, showing that gradual decrease

in the ability of the inferred functional connectivity to track the underlying structural

connectivity with increasing noise. Further, we have shown that adding polynomial trends

extracted from our in vivo recordings had significant adverse impact on the performance

of the GC inference, however we demonstrated that this can be corrected by a low-order

zero phase high-pass filter applied prior to the Granger Causality inference. Following

analytical studies (Barnett and Seth, 2011), our results confirmed that filtering with faster

cut-off frequencies results in progressively worse inference performance in the presence of
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noise, making the selection of slowest possible cut-off frequency which corrects the non-

stationarity in the data very important.

In the last simulated model, we examined structured networks where neurons belong

to functionally similar groups. We then proposed and evaluated three approaches applic-

able to large datasets. We have shown that without conditioning on other variables when

computing GC between two groups, it becomes impossible to infer structural connectivity

from the estimated directional functional connectivity. With the limitations in comparab-

ility and result aggregation across datasets (recordings) of the full approach, we concluded

that averaged multiple trials of the conditional approach on sub-sampled data is most

suitable for application to large datasets.

7.2.2 Validation in in vivo light-sheet imaging

Having established the basic principles of the approach of estimating Granger Causality

on calcium fluorescence, we collected a dataset of 69 light-sheet single plane recordings

from unstimulated 6-7 dpf larval zebrafish. Using existing tools, we extracted activity

traces of individual neurons and by registering our recordings against the Z-Brain atlas

(Randlett et al., 2015), we were able to establish affinity of the neurons in each recording

to functional regions from the MPIN atlas (Kunst et al., 2019). Selecting only regions well

represented across our recording dataset, we then computed conditional Granger Causality

using repeated sub-sampling.

While we have observed bilateral similarity between the average directionality of the

connections between pairs of regions, we were not able to establish true symmetry, likely

due to the unilateral illumination of the fish samples by visible light. By identifying

connections that were statistically larger in one direction than the other, we were able to

show some similarity between our results of directed functional connectivity and known

structural connectivity, namely in the efferent projections from the cerebellum. Further, we

have demonstrated overall information leaving the tectum to be larger than the incoming

connections from other brain regions, following the notion that the tectum mainly provides

feed-forward processing of incoming sensory inputs. It is important to note, however

that the amount of information leaving and entering any other brain region was very

similar, that either a) the directional information provided by Granger Causality under

the constraints of in vivo calcium imaging is very weak or b) not many of the examined

regions show significant directional flow of information in the presence of no stimulus

(limited to that of the visible light-sheet).
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7.3 Applicability and limitations of GC in in vivo calcium

recordings

This section puts our results into the broader perspective of calcium imaging, highlighting

their importance in terms of ways in which GC is applied and its possible limitations. We

base our suggestions on the results presented in this work and where applicable we support

our arguments by past research in other recording modalities and provide examples of past

uses of Granger Causality on calcium fluorescence data where applicable.

7.3.1 Granger Causality and Two Photon microscopy

In standard two-photon (2P) microscopy, a point is scanned in the x-y plane to form each

frame of the recording. This acquisition setup is appealing due to virtually no visible light

stimulation of the imaged sample, providing full control over the visual stimulus input.

Granger Causality analysis of such recordings may be possible, however extra caution must

be exercised when acquisition speeds significantly slower than the minimum transmission

(synaptic) delay are used. Scanning of the excitatory point across the x-y plane results

in significant difference in time at which the signal is acquired from different parts of the

imaged area. This may result in inference of spurious directional connections, particularly

in the reverse to the scanning direction of the two-photon microscope. As this issue is likely

to affect most, if not all, attainable imaging speeds of standard two-photon microscope

systems, use of two-photon light-sheet microscopy (Wolf et al., 2015) is advisable for studies

which require greater control over the visual stimulus as the applicability of Granger

Causality is better understood through the results of our study. The linear acquisition of

data in the frame is not covered in our validation on simulated neural networks and further

investigation would be needed prior to application to 2P data acquired at high acquisition

speeds using modern resonance scanner setups (Piyawattanametha et al., 2006).

7.3.2 Granger Causality on volumetric light-sheet recordings

A similar issue arises in light-sheet volume recordings where a sheet of light is scanned,

sequentially collecting multiple planes to form a volume. This affects the study by Van-

walleghem et al. (2017) where the authors present causal analysis results based on volu-

metric recordings. Without providing an adequate solution to this issue, it is likely that

the presented results were significantly affected, where simple correlations in the brain

activity may appear to be causal due to the untrue time ordering of the analysed data.
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Re-sampling the individual plane traces in the volume to a common time offset (e.g. that

of the center plane of the volume) could reduce this effect but it is unlikely to fully mit-

igate it. As this topic has not been extensively discussed in past literature, a study into

potential solutions to this problem may be necessary before the application of GC to se-

quentially acquired data (such as volumetric light-sheet or two-photon recordings) can be

justified.

7.3.3 Acquisition setting and parameters for single plane light-sheet re-

cordings

Single plane light-sheet acquisition, which scans a light beam to form a plane, does not

suffer from the issue of different parts of the frame being acquired at different points in time

as much. This is because modern mirror galvanometers allow for much faster movement

of the light beam than once per frame (even at 100 frames per second). In our study

we scanned the laser back and forth 4 times per frame (or 392x per second). With our

theoretical results suggesting that 500 Hz is significantly faster than the causal timescale

(inferred from worse GC inference at this sampling rate compared to 250 Hz recordings,

also see Barnett and Seth (2017)), it is likely that scanning the light beam at this speed

is sufficient to avoid this issue.

The simulated neural network results presented in this study show that inference of

GC from calcium fluorescence data is possible, despite the slow dynamics of the calcium

reporter. This does not, however, imply that slow sampling rates are sufficient to infer

causal connectivity and we show this by exploring the directed functional connectivity

inferred at different sampling rates with optimal sampling frequencies being above 50 Hz

and inference of causality being nearly impossible for sampling frequencies below 20 Hz.

Similar results were found in fMRI data for which GC analysis was demonstrated to be

invariant to the slow hemodynamic convolution but not low sampling rate (Seth et al.,

2013) and the application of GC to fMRI data which is commonly collected at a very

low sampling frequency has been critiqued for this reason (Seth et al., 2015). Despite

this, virtually all applications of GC to in vivo calcium data use sub-5 Hz acquisition rate

(Fallani et al., 2014; Vanwalleghem et al., 2017; Oldfield et al., 2020) which is hard to

justify in the context of the millisecond timescale of the underlying neuronal responses.

While it is unclear whether some slow brain region interactions occur at such timescales,

the application is likely to be limited since many behaviours are processed in less than 400

ms (Burgess and Granato, 2007; Severi et al., 2014). For this reason, we suggest using at
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least 100 Hz acquisition speeds following the results of our in silico studies.

We have shown that 10-minute recording duration is sufficient for establishing the

relative strength of synaptic connections in the simulated bivariate model with little im-

provement for longer recordings. In multi-variate models, the optimal recording duration

is likely to be much higher as proper conditioning on all variables is needed to avoid in-

direct connectivity issues. Generally, longer recordings will benefit the inference of GC

in terms of statistical power and it is therefore advisable to select the longest possible

recording duration allowed by the experimental setup.

In our experimental validation of GC, we observed bilateral similarity but not true

symmetry. We hypothesized this may be because of the unilateral visible light illumination.

Illumination of the sample from both sides would not only make the potential stimulus

reaching the eyes of the fish symmetrical but would also allow for decrease of the power

of each of the two lasers, possibly making the effect of the stimulus on the functional

connectivity less pronounced. A two photon light-sheet microscopy (Wolf et al., 2015)

could serve as a good alternative as it does not use visible light unlike regular light-sheet

microscopes.

7.3.4 Signal de-trending and pre-processing

In Chapter 5 we showed that non-stationary long timescale drifts in the data have a

detrimental effect on the inference of Granger Causality and we introduced zero-phase

high pass filtering as a means to negate these effects. We suggest use of a cut-off of at

least 0.125 Hz for the high-pass filter which is applied prior to the GC inference. Similarly,

we show that filter cut-offs of 0.5 Hz and higher are not likely to be desirable as they

significantly affect the subsequent inference due to the presence of noise in the signal.

7.3.5 Photo-bleaching of calcium reporters

Due to photo-bleaching, both the baseline and the calcium response amplitude can decrease

over time, resulting in non-stationary data. While high-pass filtering can likely correct

for the decaying signal baseline, it is unlikely to fully compensate for the decrease in

amplitude of the calcium response, requiring additional compensatory pre-processing steps

(see Future directions below) to fully correct the affected calcium activity traces. Without

correction, it is up to the experimenter to assess the stationarity of the signal and adjust

the recording duration or laser power down accordingly. Since we have not included photo-

bleaching in our simulated models, it is impossible to provide quantitative guidance here
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without further research.

7.3.6 Analysis of connectivity without conditioning

In Section 5.4 on structured neural network models, we explored several methods of es-

timating Granger Causality between individual brain regions, finding that conditioning on

all other sources is necessary to accurately estimate the directed functional connectivity

between two regions since our unconditional approach was not able to provide any inform-

ation about the structural connectivity of the underlying networks. This has potential

implications for studies utilizing the bivariate Granger Causality (Fallani et al., 2014;

Oldfield et al., 2020) as the results of this method are susceptible to estimating indirect

connections. Similarly, single recordings are unable to capture the full brain, making com-

pletely conditional inference impossible. It is therefore necessary to keep in mind that it

is possible that some estimated functional connections will be facilitated by unobserved

regions.

7.4 Future directions

Here we outline several lines of research which could extend the methodology established

or use it to further improve understanding of functional connectivity in larval zebrafish.

7.4.1 The effects of the signal-to-noise ratio to data stationarity trade-

off

A brief outline of the issue of photo-bleaching was given in the context of the negative

impact non-stationarity has on the quality of the Granger Causality inference in Sec-

tion 7.3.5. While the effects of photo-bleaching are known (Patterson and Piston, 2000),

we did not include them in our simulated calcium data model. Extending the model to

include photo-bleaching could provide further opportunities to understand the trade-off

between the resulting degree of non-stationarity in the data, the SNR of the signal and

the duration of the recording, providing information on the optimal choice for illumination

power and recording length for in vivo acquisition.

7.4.2 Methods to compensate for calcium reporter photo-bleaching

Since illumination power and recording duration both increase the apparent effects of

photo-bleaching, a method for negating its effect could not only improve the stationarity
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of the data but also allow for longer recordings or increase in the laser power (yielding

higher SNR) and thus increasing the statistical power of the interference. Since the general

dynamics of the calcium reporter over time with different power of the laser have been well

described (Patterson and Piston, 2000), estimating the decay constant for a given recording

setting would then be sufficient to construct an exponential decay of the fluorescence.

Division of the individual neuron traces by the exponential trend may then be sufficient to

correct for the photo-bleaching effects without affecting the time precedence of the signal.

7.4.3 Comparison of GC with other directed functional connectivity

metrics

While we have shown the applicability of GC to calcium fluorescence data in this study, we

have not established that Granger Causality yields the best results in terms of the inferred

directed functional connectivity. Other measures such as Transfer Entropy (Schreiber,

2000) or Cross-correlation (Silfverhuth et al., 2012) or their extensions (Orlandi et al.,

2014) could perform better and it is therefore necessary to investigate them comparatively

against Granger Causality.

7.4.4 Directed functional connectivity in behaving animals

In our in vivo study we have focused on Granger Causality in samples with no explicit

external stimulus. While this ensures stationarity in the calcium signal for the validation

of our GC inference method, recordings where a stimulus is presented are necessary to

examine specific behaviours. Granger Causality can then be used to compare sensory-

motor circuit interactions in terms of the directed functional connectivity across different

behaviours and settings. For example, comparing GC on recordings which have been

acquired in the presence of either forward or backward stimulus grating and comparing

them to each other or to the reference connectivity with no explicit stimulus could help

identify the functional changes that happen in order to suppress swimming or to swim

more frequently in fish in the two different conditions.

7.5 Concluding remarks

With the increasing research interest in the brain-wide dynamics underlying animal beha-

viour, we believe that our open-source tools will aid wide adoption of light-sheet micro-

scopy for whole brain imaging, advancing our understanding of more complex behaviours.

As the complexity of the examined neural interactions grows, the importance of efficient
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analysis methods will only become more apparent. We present Granger Causality as a

means to establish directed functional connectivity in calcium fluorescence data, serving

as a useful tool for guiding and confirming hypotheses alongside existing tools such as

targeted neuronal ablation or opto-genetic stimulation. While our results on in vivo data

are limited, the applicability and performance of Granger Causality will only increase as

the acquisition hardware and the calcium reporter properties improve over time. Trough

the proposed future directions, we provide guidance both on further improving the meth-

odology established in this work as well as setting a clear path for future works aimed

at identifying the role of sensory-motor circuits in the control of behaviour through the

unique opportunities offered by the directed functional connectivity measures.
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Vladimirov, N., Wang, C., Höckendorf, B., Pujala, A., Tanimoto, M., Mu, Y., Yang,

C.-T., Wittenbach, J. D., Freeman, J., Preibisch, S., et al. (2018). Brain-wide circuit

interrogation at the cellular level guided by online analysis of neuronal function. Nature

methods, 15(12):1117–1125. 106

Vogelstein, J. T., Watson, B. O., Packer, A. M., Yuste, R., Jedynak, B., and Paninski,

L. (2009). Spike inference from calcium imaging using sequential monte carlo methods.

Biophysical journal, 97(2):636–655. 58

Wan, Y., McDole, K., and Keller, P. J. (2019). Light-sheet microscopy and its potential

for understanding developmental processes. Annual review of cell and developmental

biology, 35:655–681. 14

Wang, S., Chen, Y., Ding, M., Feng, J., Stein, J. F., Aziz, T. Z., and Liu, X. (2007).

Revealing the dynamic causal interdependence between neural and muscular signals in

parkinsonian tremor. Journal of the Franklin Institute, 344(3-4):180–195. 70

Weisenburger, S. and Vaziri, A. (2018). A guide to emerging technologies for large-scale

and whole-brain optical imaging of neuronal activity. Annual review of neuroscience,

41:431–452. 14

White, R. M., Sessa, A., Burke, C., Bowman, T., LeBlanc, J., Ceol, C., Bourque, C.,

Dovey, M., Goessling, W., Burns, C. E., et al. (2008). Transparent adult zebrafish as a

tool for in vivo transplantation analysis. Cell stem cell, 2(2):183–189. 5

Whittle, P. (1963). On the fitting of multivariate autoregressions, and the approximate

canonical factorization of a spectral density matrix. Biometrika, 50(1-2):129–134. 57

Wiggins, R. A. and Robinson, E. A. (1965). Recursive solution to the multichannel filtering

problem. Journal of Geophysical Research, 70(8):1885–1891. 57

Wolf, S., Dubreuil, A. M., Bertoni, T., Böhm, U. L., Bormuth, V., Candelier, R.,
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