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Abstract 
This research aims to develop a target detection and tracking system that can realize real-

time video surveillance. The purpose of the research is to realize a monitoring application 

that can run automatically and intelligently to detect and track illegally parked vehicles. 

Since the application scenario of the algorithm is a real traffic environment, it must be able 

to adapt to complex environmental interference, such as drastic changes in lighting 

conditions, frequent occlusion, and long-term stable tracking. 

The thesis shows the detailed design process and test results of the system. This algorithm 

combines the target detection function based on deep learning network and the multi-

object tracking algorithm based on key point matching. The method shown in the thesis 

focuses on detecting and tracking stationary vehicles in the no parking area. An object 

detection algorithm based on a deep learning network is used to recognize vehicles. Once 

the recognized vehicle is defined as an illegally parked vehicle through the determination 

of its motion state and location, an algorithm based on key-point matching is developed 

and tracked for this type of vehicle. If the target is still stationary in the no parking area after 

a period, the system will generate an alarm. 

The method was tested in more than 20 hours of video. The video comes from public 

database and our own. They all show real surveillance scenes, including different time 

periods of the day and different locations. The test results show that the method achieves 

100% in precision (also called positive predictive value), 95% in recall (also known as 

sensitivity) and 97% in F1 (a measure that combines precision and recall). The results 
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obtained also produce better detection and tracking compared to other comparable 

methods. 
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Chapter 1 

1.1 Introduction 

In recent years, with the development of cities, the public's awareness of public safety and 

security has gradually increased. At the same time, the development of information 

technology, cloud computing and other technologies not only puts higher requirements on 

security products, but also shows a broad space for the application of video surveillance 

security products. More and more new technologies are gradually applied to urban 

construction and urban management, such as urban traffic management and urban 

emergency handling. This requires a video surveillance system that can image and truly 

reflect the characteristics of the monitored object. In particular, digital surveillance systems 

rely on networks and take intelligent and practical image processing methods as the core, 

occupying the commanding heights of today's surveillance technology (see Figure 1 for 

video surveillance system). At the same time, the rise of artificial intelligence can help 

systems detect, track, and analyse with minimal human intervention. However, there are 

still many shortcomings in fully automatic surveillance systems. Target detection, tracking, 

and analysis are influenced by multiple factors. Such as significant changes in weather and 

heavy occlusion by vehicles. And for long-term stationary vehicles under these influences, 

stable and effective tracking is also a huge challenge. Considering the complexity of the 

monitoring scenario, this thesis is devoted to developing a tracking system for cars. This 

system can be used to monitor, track and analyse the long-term parking status of vehicles 

under complex conditions. 
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1.1.1 Video Surveillance Systems 

 

Figure 1 Video surveillance system which includes wired and wireless transmission methods. 

 

Video surveillance is the physical basis for real-time monitoring of key departments or 

important places in various industries. The management department can obtain effective 

data, image or sound information through it, and timely monitor the process of sudden 

abnormal events, to provide efficient and timely command and dispatch, deploy police 

force, and handle cases.  

The surveillance system is composed of five major parts: camera, transmission, control, 

display and recording. The camera transmits the video image to the control host through 

the coaxial cable, network cable and optical fibre. In addition, with the development of 

communication technology, wireless network technologies such as 5G are also used for data 

exchange between the camera and the host. The control host then distributes the video 
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signal to each monitor and video equipment, and simultaneously records the voice signal 

that needs to be transmitted into the video recorder. Through the control host, the operator 

can issue instructions to control the up, down, left, and right movements of the Pan-Tilt-

Zoom (PTZ) camera and also switch between multiple cameras. The special video processing 

mode can be used to record, replay, and process images to make video surveillance system 

has a broader application scenario.  

However, the biggest disadvantage of traditional video surveillance is that it relies on the 

24-hour conscientious monitoring by the staff on duty. A slight negligence may miss 

important situations, which delays the alert and leads to incalculable consequences. As 

shown in Figure 2, the number of cameras is usually greater than the number of monitors. 

The use of round robin displays and multi-screen with small images is likely to cause security 

to miss abnormal phenomena.  

 

Figure 2 Video surveillance platform. 
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Nowadays, with the rapid development and promotion of computer applications, a 

powerful wave of digitisation has been set off all over the world, and the digitisation of 

various devices has become the primary goal of security protection. The key performance 

characteristics of the digital monitoring alarm are: real-time display of the monitoring 

screen, video image quality adjustment function, recording speed can be set, fast retrieval, 

multiple recording methods, automatic backup, pan-tilt-lens control function, network 

transmission, etc. Some of these characteristics are also crucial to the study of this thesis. 

 

1.1.2 The Evolution of Video Analytics 

According to the theory of attention economics, most of today's security control centres 

and corresponding video surveillance systems present a large amount of information to 

security personnel, resulting in poor attention span. A study [1] has shown that the 

performance of operators shows a disturbing trend:  

1. The performance of security operators dropped significantly after 20 minutes 

2. Poor image quality accelerates this rate of decline  

3. Doubling the number of cameras viewed will double the speed of descent 

To improve the work efficiency of security personnel, video analysis technology is used in 

the security field. Video analysis technology uses computer image visual analysis technology 

to analyse and track the target in the camera scene by separating the background and the 

target in the scene. Security personnel can pre-set different illegal rules (for example, the 
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area is a no parking area at a certain time) in different camera scenes. Once the target 

violates the predefined rules in the scene, the system will automatically send out an alarm 

message, and the monitoring command platform will automatically pop up an alarm 

message and emit a warning sound. Through related equipment, users can click on the 

alarm information to reorganise the alarm scene and take relevant preventive measures. 

According to the introduction of the white paper [2] released by the Avigilon Corporation, 

the evolution of video analytics has gone through the following three technologies:  

1. Video motion detection: VMD is the standard function of most new surveillance 

cameras, video recorders and video management software. VMD focuses on detecting 

any pixel movement between scenes. VMD is the most effective method in a static 

environment, but it has a limited effect in a dynamic environment and has a high false 

alarm rate. For example, Axis Communications [3] has developed a VMD-based motion 

detection application that can be used for low-traffic scenarios. 

2. Advanced video motion detection: In order to solve the limitations of VMD, the industry 

has developed from VMD to advanced video motion detection (AVMD). AVMD is based 

on background modelling and alerts for any changes that deviate from the established 

background model. This technology focuses on monitoring the scene and uses data 

collected through complex manual calibration to identify moving objects. After being 

properly set and calibrated, AVMD is quite efficient. For example, Huang [4] proposed 

a motion detection algorithm that integrates a background modelling module, an alarm 

trigger module, and an object extraction module to achieve 81.84% of the average F1 

on the test video. However, when the background composition changes (such as 
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environmental, seasonal, and physical changes, etc.), its function will be limited, 

causing the false alarm rate to increase over time and requiring regular recalibration. 

3. Advanced video pattern detection: The latest evolution of video analysis is advanced 

video pattern detection, which is based on a pattern modelling algorithm to alert any 

changes in the mode of known object types such as people or vehicles. This technology 

focuses on identifying objects in the field of view and using the object's motion 

information to accurately classify them. For example, Truong et al. [5] used Gaussian 

mixture model and a fuzzy c-means (FCM) algorithm to segment candidate fire regions, 

and then a support vector machine (SVM) was used to distinguish between fire and 

non-fire. 

The characteristics of the above three types of video analysis technologies are highlighting 

relevant information of interest to help operators maintain their concentration. The 

application of these video analysis methods has completely changed the previous mode of 

monitoring and analysing surveillance pictures by security personnel. The intelligent video 

surveillance system can continuously analyse the monitored pictures, immediately notify 

the occurrence of abnormalities, reduce reliance on personnel, and improve work efficiency.  

In addition, users can define multiple types of intrusions according to actual needs, allowing 

users to define the characteristics of threats more accurately, effectively reducing false 

positives and false negatives alarms, and reducing the amount of useless data. Finally, 

traditional video surveillance can only be used as evidence for subsequent queries, while 

video analysis methods can play an early warning role (for example, someone left suspicious 

objects in a public place, or someone stays in a sensitive area for a long time) for prompting 
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security personnel to pay attention to relevant surveillance pictures before security threats 

occur, effectively preventing accidents. 

 

1.1.3 Video Surveillance Application Field 

In the past, video surveillance technology applications were mainly concentrated in finance, 

public security, transportation and electric power departments. For example, according to 

a survey by IDC (International Data Corporation) [6], the government is the largest video 

surveillance industry in China, accounting for 47.6% of total expenditures, and the Safe City 

(The project proposed by Ministry of Public Security of the People's Republic of China) 

project is the main market driver force. The goal of "Safe City" construction is to build a 

comprehensive urban early warning system and emergency command system. Such a 

comprehensive urban police management system that integrates comprehensive social 

security management, urban traffic management, and fire dispatching can not only meet 

the needs of public security management, urban management, traffic management, 

emergency command, etc., but also take into account disaster early warning, safety 

production monitoring and other aspects.  

In the UK, video surveillance systems have played a key role in public security and fighting 

crime. With more than 6 million cameras all over the UK BSIA (The British Security Industry 

Association) [7], this surveillance system provides a deterrent to potential criminals and 

makes people feel safer. The British Department of Transport estimates that speed cameras 
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can reduce personal injury accidents by 22% and reduce the number of people killed or 

seriously injured at the camera scene by 42% [8].  

In addition, in the field of transportation, the installation and implementation of intelligent 

traffic monitoring systems are essential for management departments. As motor vehicles 

are indispensable transportation for people to travel, effective management, punishment, 

and reduction of traffic violations of motor vehicles, rapid detection of traffic accident 

escapes and motor vehicle thefts have become more important for local governments and 

traffic control agencies. The transportation department can transmit the scene image of the 

surveillance area back to the command centre through the monitoring system, so that the 

management personnel can directly grasp the traffic conditions such as vehicle queues, 

jams, and signal lights. Video surveillance systems are also used in crowded places such as 

airports, stations, and shopping malls. High-definition intelligent monitoring adopts 

intelligent analysis technology to analyse the video content. By pre-setting different alarm 

rules in different camera scenes, it automatically alarms abnormal behaviours, and can 

generate various statistical information based on massive data to perform intelligent 

monitoring. 

Although some systems have the defects shown in section 1.1.1, which is because the 

scenarios are usually in a complex environment and have huge data. These effects are 

serious challenges to the stability of the system. Hence, with the development of video 

analysis technology, a series of new technologies represented by deep learning, big data 

analysis and image processing have helped video surveillance systems be applied in multiple 

markets. 
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For example, in the process of early warning of wildfires, video surveillance has played a key 

role [9]. The front end of the wildfire monitoring system can be set in the wilderness without 

personnel on duty. With video analysis technology, the system can monitor and discover 

hidden fires 24 hours a day. In recent years, due to extreme heat and dryness, wildfires in 

2020 have worsened by 13% compared to 2019 [10], which further emphasizes the urgency 

of video analysis in forest monitoring. 

The supermarket retail industry is also an emerging market for video surveillance. Alibaba 

opened its first automated retail supermarkets in 2017. Since 2017, these supermarkets 

have been named Tmall supermarkets. Alibaba uses several technologies to automate Tmall 

supermarket. First, through image recognition technology, Tmall Supermarket will conduct 

rapid facial feature recognition and identity verification on consumers. Secondly, through 

item identification and tracking technology, combined with consumer behaviour 

identification, Tmall Supermarket can determine the consumer's settlement intention, and 

finally use the smart gate to quickly complete the payment. These intelligent analysis 

technologies are integrated into the video surveillance system to monitor shoplifters and 

payments. Even for traditional retail stores, smart video surveillance systems are necessary 

to reduce costs. 

The fact that video surveillance technology is only used in the enterprise industry has 

gradually been broken, and the home has become a new market for video surveillance 

applications. In the home security market, video surveillance is mainly used for residential 

security and property monitoring. Home monitoring system can use network technology to 

connect the video, audio, alarm, and other monitoring systems installed in the home, and 
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save and send useful information to other data terminals, such as mobile phones, 

notebooks, 999 alarm centres, etc. AT&T announced a service called digital life in 2016 [11]. 

The video surveillance system and network infrastructure are linked together, which is now 

used by AT&T to prevent burglary and remote furniture control. 

 

1.1.4 Parked Vehicle Tracking and Challenges 

With the development of the world economy, the rapid increase in the number of motor 

vehicles has led to a series of problems such as traffic jams, among which illegal parking of 

motor vehicles is an important factor in causing traffic accidents and traffic jams. Illegal 

parking of motor vehicles has become a ubiquitous urban phenomenon.  According to 

research by Aljoufie [12], illegal parking practice can hamper sustainability of transportation 

system. Illegal parking management is one of the important evaluation criteria for urban 

traffic management. At present, most illegal parking detections use manual monitoring to 

collect information at fixed points. When illegal parking is discovered through video 

surveillance, law enforcement officers manually control the pan-tilt camera to zoom in, take 

pictures of the vehicle, and manually identify and record the license plate, and manually 

restore the camera's pre-set position after completion.  

For example, in 2007, California's Mountain Recreation and Conservation Administration 

(MRCA) installed the first stop sign camera in the United States [13]. The five cameras ware 

located in state parks such as Franklin Canyon Park and Temescal Gateway Park.  
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However, the detection process for illegally parked vehicles is complicated and 

cumbersome, the labour cost is high, and the management is complicated and inefficient. 

With a large increase in monitoring points, the workload of the monitoring personnel is 

getting heavier, and the accuracy of the work is greatly reduced, which greatly consumes 

the human, material, and financial resources related to traffic control. 

 

Figure 3 Illegally parked vehicle monitoring [14]. 
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Figure 4 Illegally parked vehicle monitoring [15]. 

 

If the manual monitoring mode is adopted, since the monitoring centre usually has multiple 

cameras and corresponding displays, some short-term violations may not be noticed by the 

operator [15]. The mode of on-site capture requires a large number of personnel [14]. If it 

is not discovered and investigated in time, it will cause derivative problems such as traffic 

jams. The above two methods will waste a lot of time and energy of traffic managers. 

Therefore, an automated parking management system is proposed to deal with the complex 

and changeable traffic environment. First, in spaces where parking is prohibited, such as 

bus stops, fire hydrants, sidewalks, and any marked areas, the system needs to 

automatically detect illegal vehicles and generate alarms. Secondly, track the captured 

target. 
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1.1.5 Research Gap 

This thesis contains a literature review of current automated systems. Chapter 2 shows the 

technical background of various target tracking and illegally parking monitoring systems. 

The review provides evidence to prove that the monitoring system can be used extensively 

in the field of illegally parking monitoring. However, the current automatic monitoring 

system still cannot completely replace the manual monitoring mode because the related 

technology is still not reliable enough. Although research and technology are advancing, 

most of the illegally parking monitoring systems have not been optimized to achieve the 

following functions that are of interest in this research: 

1. Accurate target vehicle detection capability. When multiple targets appear at the same 

time, the system should accurately distinguish them. 

2. Stable target vehicle tracking ability. The system should be more robust to occlusion, 

changes in light, changes in vehicle appearance and long-term stationary. 

The former means that the system needs to accurately detect the target vehicle from a 

congested road. However, many current detection methods are based on background 

modelling to obtain foreground information. This method is difficult to control the 

detection results without excessive detection or missing detection, which often causes 

misjudgements. In addition, multi-object tracking requires a digital ID to be assigned to each 

target. The latter means that the system needs to be able to adapt to complex 

environmental changes and provide effective long-term tracking, because sometimes the 

transportation department will delimit areas that prohibit long-term parking but allow 
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temporary parking. Only continuous tracking can set different time thresholds according to 

different requirements to realize intelligent monitoring of illegally parked vehicles. 

 

1.1.6 Research Context and Scope 

The content of this thesis is to propose an automatic monitoring algorithm to help road 

cameras automatically track illegally parked vehicles. This research does not involve other 

uses of vehicle monitoring, such as non-stationary target tracking, accident reporting and 

red-light enforcement. It should be noted that this thesis only discusses tracking solutions 

based on static cameras. 

 

1.2 Thesis Plan 

This thesis is dedicated to proposing a reliable automatic monitoring system for illegally 

parked vehicles, which can be used in various scenes and weather conditions in the city to 

relieve the monitoring pressure of traffic management departments. The existing detecting 

and tracking algorithms are discussed in Chapter 2. Chapter 2 also analyses the challenges 

and shortcomings of existing methods. The project started with research on a tracking 

algorithm that can automatically monitor and alarm, and then gradually developed to be 

suitable for more complex and strict environments.  
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This thesis is divided into two parts. The first part shows the combination of deep learning-

based target detection and multi-object tracking to track illegally parked vehicles, while the 

second part is the improvement and development of the first part based on key point 

matching. The entire technology is developed and tested on a personal PC platform with an 

Intel Xeon(R) CPU E5-1620 V3 running at 3.5GHz, NVIDIA Quadro K4200 and with 15.6 GB 

RAM. The tracking system developed by this project is developed by python and runs on 

the Spyder platform of the Linux system. The image processing function in the system is 

provided by the OpenCV-Python library, and the detection weight of the deep learning 

algorithm YOLOV3 is provided by [103] and pre-trained. All functions and errors during the 

running of the software can be visually detected and improved. 

Figure 5 depicts the overall framework of the system and shows the flow from video capture 

to the end of tracking. It shows that the target will be detected first, then the state will be 

judged (speed and location), and finally the eligible target will be tracked until it leaves the 

no parking zone. Specific system design issues, operation and configuration strategies are 

introduced in Chapters 3, 4, 5 and 6. 
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Figure 5 The proposed system framework. The proposed system has been divided into three part: vehicle 

detection, illegally parked vehicle judgment and target tracking. Only the illegally parked vehicles have been 

tracked. 

 

The initial illegally parked vehicle tracking was developed in Chapter 3. The deep learning 

algorithm YOLO (You Only Look Once) [16] was used to detect vehicles in the scene, and the 

multi-object tracking algorithm SORT (Simple Online and Real-time Tracking) [17] was used 

to track stationary vehicles in the scene. The technology had been tested on i-LIDS dataset 

[18] and ViSOR dataset [19]. It can be found that although this method achieves a good 

precision performance, the algorithm generated many false alarms during the test, mainly 

due to the defect of the YOLO [16] algorithm itself in the detection of nearby small objects. 

Frequent occlusion and light changes were also causing of failure. Another problem is that 

the identity of the target is frequently changed due to the instability of the tracking 

component. In order to solve the above problems, the remaining chapters introduce more 

powerful solutions, in which feature point matching is used to track illegal objects in various 

complex environments.  
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Chapter 4 introduces an algorithm to keep the tracking from being dismissed. The feature 

point description of the vehicle was used to match, but it was still restricted by occlusion 

and environmental conditions. Due to the recognition errors of the deep learning algorithm 

in the target detection, some non-vehicle targets will be recognized as vehicles, which leads 

to the invalid tracking of the system. In addition, because the number of SIFT (Scale-

Invariant Feature Transform) [20] feature points is too sparse on some blurred targets, the 

accuracy and reliability of matching are insufficient, which has a negative impact on tracking. 

This method had been tested on the i-LIDS dataset [18] and the results were significantly 

improved compared with the method in Chapter 3. In addition, unlike the multi-object 

tracking algorithm simple online and real-time tracking (SORT) [17], this method can keep 

the ID of the target until the target leaves the no parking zone instead of judging to base on 

the geometric prediction of the bounding box's position, which causes a higher error rate 

and ID switch. 

In Chapter 5, the problem of the previous chapter is solved. A method based on Dense SIFT 

feature point extraction has been used, which significantly increases the number of feature 

points. At the same time, the increasing of feature points increased the robustness to 

blurred targets and light changes. Although the Dense SIFT based technology is better than 

the previous method which discussed in Chapter 4, it requires more computing power in 

calculation, and because the bounding box of the target contains the area outside the 

vehicle, in the process of feature point matching, feature descriptors which outside the 

vehicle will interfere the releasing of the tracker.  
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In order to overcome the aforementioned problems, a novel actively selected feature point 

(ASFP) method has been proposed in Chapter 6. Chapter 6 shows a complete parking 

tracking system, which includes the tracking process under strong light changes and long-

term, high-frequency occlusion. This technology was tested in different scenarios and the 

results were compared with other methods. According to observations, the results of this 

method are more accurate.  

Chapter 7 is the last chapter and conclusion of the thesis, including the advantages of our 

method, the overall direction of this research and the challenges it faces. Also, in the last 

chapter, a discussion of the future work and envisaged direction of the illegally parked 

vehicle monitoring system have been given. 
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Chapter 2 Literature Review 

2.1 Introduction 

This chapter reviews and analyses the current existing target detection and tracking 

methods and illegal vehicle monitoring methods. The essence of illegally parked vehicle 

tracking is to track stationary objects in a specific area, while stationary object tracking is 

generally based on object tracking algorithms. As one of the core topics in the field of vision 

research, the visual tracking of objects has a research history of nearly 20 years [21]. Visual 

tracking refers to the detection, extraction, recognition and tracking of the target in the 

video image sequence to obtain the target's motion parameters, such as target centroid 

position, speed, acceleration, and motion trajectory, etc., thereby carrying out further 

processing and analysis to realize the understanding of the target's behaviour to complete 

higher-level tasks. The visual tracking process generally includes several stages such as 

target detection, target feature extraction, and target tracking. Among them, target 

detection and feature extraction require prior knowledge, and different methods are 

selected according to different occasions. Target tracking can be understood as estimating 

the spatiotemporal state of the target based on the initial state of the target and the target's 

visual features obtained through feature extraction. 
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2.2 Chapter Organization 

The arrangement of this chapter as follows. Since this research proposed a feature matching 

based tracking method, the image features detection and different feature descriptors are 

reviewed in Section 2.3. In Section 2.4, an overview of object tracking is given, which is 

divided into three parts: discriminative, generative and deep learning based object tracking 

method. Section 2.5 reviews the object detection algorithm based on deep learning, this is 

because the proposed method involved deep learning detection algorithms. Section 2.6 

reviews some current illegally parked vehicle tracking methods and Section 2.7 reviews 

some semantic segmentation methods and background subtraction. A summary is given in 

Section 2.8. 

 

2.3 The Feature Detection and Feature Descriptors 

2.3.1 Feature Detection 

Image feature detection is the premise of image analysis and image recognition, and it is 

the most effective way to express high-dimensional image data. The local feature point is 

the local expression of the image feature, it can only reflect the local characteristics of the 

image, so it is more suitable for image matching and retrieval applications, but not suitable 

for image understanding. The global features represent some global information, such as 

colour distribution, texture features, and the shape of main objects. Global features are 

susceptible to environmental interference. Unfavourable factors such as illumination, 
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rotation, and noise will affect the global features. In contrast, the local feature points often 

correspond to the structure where some lines cross or the light and dark changes in the 

image, and they receive less interference. 

The blob and corner are two types of local feature points [22]. A blob usually refers to an 

area that is different in colour and grey from the surrounding area. It has stronger anti-noise 

ability and better stability than corner feature because the blob feature reflects the 

characteristics of the area. The corner feature comes from the corner of the object or the 

intersection between lines in the image.  

Therefore, in this section, two commonly used methods of blob detection are reviewed, 

namely Laplacian of Gaussian (LoG) and Determinant of Hessian (DoH). LoG was proposed 

by Lindeberg in [23] and used to detect local extremum points in an image. This method 

used a Gaussian low-pass filter to convolve the image. The goal is to remove the noise in 

the image, and then use the LoG operator to convolve the image. When the blob structure 

in the image is close to the shape of the LoG operator, the response of the image 

convolution reaches the maximum. 

Another classic blob detection is based on Determinant of Hessian (DoH). The value of the 

determinant of the Hessian matrix also reflects the local structural information of the image. 

Compared with LoG, DoH has a better inhibitory effect on the slender structure blobs [121]. 
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2.3.2 Feature Descriptors 

Once the distinguishing feature points are detected from the original image, various local 

feature descriptors can be used to describe the feature points, and finally compared with 

the object to be detected to obtain a point-to-point match. Choosing appropriate feature 

descriptors plays an important role in object detection. This is because the appearance of 

the object may change due to various factors, including viewing angle, occlusion and light. 

These disturbances have inspired researchers to develop different image feature 

description methods. This section reviews two representative feature descriptors and their 

applications. 

In 1999, Lowe proposed Scale-invariant Feature Transform (SIFT) [20], which extracted 

feature points with invariable scale on the difference of Gaussian (DoG) and perfected the 

algorithm in 2004. The algorithm has certain affine invariance and perspective invariance, 

rotation invariance and illumination invariance, so it has been widely used in image feature 

description. 

The algorithm can be summarised into three steps:  

1. the construction of the Difference of Gaussian pyramid 

2. the detection of feature points  

3. the feature description 

In the first step, the algorithm constructs a pyramid with a linear relationship so that the 

feature points can be searched on a continuous Gaussian kernel scale. It is better than LoG 



 23 

because it uses the first-order difference of gaussian to approximate the LoG operator, 

which greatly reduces the amount of calculation. 

In step of feature point search, the main purpose is the selection of extremum points. The 

extremum point is selected by comparing the detection point with the nearest-neighbour 

points. In addition, another key point in the second step is to delete the edge point, because 

the value of DoG will be affected by the edge. 

The last step is the description of the feature points. The description of the direction of 

feature points requires histogram statistics on the gradient directions of points in the 

nearest-neighbour of the feature points, and the direction with the largest proportion in 

the histogram is selected as the main direction of the feature points. When calculating the 

feature vector, it is necessary to rotate the local image in the main direction, and then 

perform the gradient histogram statistics in the nearest-neighbour. 

As a powerful algorithm that includes feature detection and feature description, SIFT 

algorithm is widely used in many fields. Piccinini et al. [24] proposed a method to detect 

and locate objects under extreme occlusion conditions. This method uses SIFT key point 

extraction and mean shift clustering to partition the correspondences between the object 

model and the image onto different potential object instances with real-time performance. 

For many targets that cannot be detected by appearance, this method has good results. 

Hashmi et al. [25] proposed a method that can detect copy-move forgery in images. In copy-

move forgery, a part of the image is copied and pasted in another part of the same image 

to conceal an object or to duplicate certain image elements. In this method, the SIFT 
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algorithm has been used to describe the feature points of the potential area to help find 

the location of the forgery. 

In 2006, Bay et al. [26] proposed the Speeded Up Robust Features (SURF). Aiming at the 

shortcomings of the SIFT algorithm that the speed is too slow and the amount of calculation 

is large, this method uses the responses of Haar wavelets to approximate gradient 

computation and then accelerate the SIFT operator. 

Like SIFT, the SURF algorithm also includes the detection and description of features. SURF 

descriptors are widely used in the field of object detection. Pranata et al. [27] used deep 

learning networks and SURF to implement a computer-assisted method for detecting 

fracture locations in Computed Tomography (CT) images. The SURF algorithm has been used 

to extract the feature points in the CT image and match them with the reference image to 

locate the fracture. Zhao et al. [28] proposed a field-programmable gate array (FPGA) based 

traffic sign detection system. They used the parallelism and rich resources of FPGAs to 

implement a real-time (60 frames per second) detection method by SURF matching. 

In summary, the SIFT and SURF algorithms are based on the feature detection method not 

only to achieve feature detection, but also to describe the detected feature points. Their 

feature descriptors are all invariant to rotation, scale, blur, Illumination, warping and noise 

area [29].  

In addition to SIFT and SURF, the traditional feature descriptors also include Binary Robust 

Independent Elementary Features (BRIEF) [30] and Oriented FAST and rotated BRIEF (ORB) 

[31] descriptors. And deep learning has also been introduced into the field of feature 
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description, and many feature descriptors based on deep learning have been proposed, 

such as DeepCD [32], L2-Net [33]and HardNet [34]. These descriptors have their own 

characteristics and advantages.  

According to the research from [35], it can be found that compared with traditional feature 

descriptors, deep learning-based descriptors usually have better performance, but with 

higher computation consumption and longer matching time. And because the descriptors 

based on deep learning are built on convolution neural networks (CNN), it is difficult to 

achieve lightweight operation among the traditional feature descriptors, SIFT descriptor has 

achieved very good performance and have good robustness to conditions such as 

illumination and occlusion [35],[36], although SIFT is not the fastest descriptor. 

 

2.4 Tracking Methods 

The above feature descriptors can be used for target tracking, however, the feature 

descriptor does not directly participate in the generation of the tracking result. For 

algorithms that directly perform target tracking without feature matching, the appearance 

of a changing target is always a challenge. Usually, the appearance changing of the target 

includes external changes and internal changes. Internal changes include changes in the 

shape or angle of the target. External changes are usually caused by changes in light, 

environment, occlusion and camera movement. These can only be handled by adaptive 

updating its representation gradually. Therefore, research on observation model and model 

update becomes very necessary. Before the 2010s, researchers still focused on traditional 
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tracking methods for visual targets [37], such as optical flow method, Kalman filter, particle 

filter, and Mean-Shift. 

Lucas et al. [38] proposed the optical flow algorithm in 1981. Optical flow refers to the 

instantaneous velocity of the pixel motion of a moving object on the observation imaging 

plane. The principle of this algorithm is to use the changes in the time domain of pixels in 

the image sequence and the correlation between adjacent frames to find the 

correspondence between the previous frame and the current frame, thereby calculating 

the object’s motion information between adjacent frames. Denman et al. [39] improved a 

tracking method based on optical flow. This method overcomes the shortcomings of 

detecting background flow and develops a system that can use tracking output to enhance 

optical flow detection. 

Kalman and Bucy [40] published a paper about Kalman filtering in the 1960s and proposed 

an algorithm that can estimate the state of a dynamic system through a series of incomplete 

and noisy measurement values. The algorithm only needs to use the measured value of the 

current moment and the estimated value of the previous moment, and the estimated value 

of the current state can be derived from the model. This algorithm introduces state 

variables into the filtering theory, which can solve the filtering problem of time-varying, 

multi-variable, and non-stationary time series. This algorithm is easy to implement on a 

computer because it is a recursive algorithm, and does not need to store historical 

measurement values. The amount of calculation and storage is relatively small, and it is 

convenient for real-time online processing. With the rapid development of computer 

technology, the Kalman filter has gradually obtained extensive research and applications.  
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For example, Patel et al. [41] developed a method for tracking objects using Kalman filter. 

The method draws the trajectory of the target by predicting the position of the centre of 

mass of the target. Bewley et al. developed SORT [17] which uses Kalman filter algorithm to 

predict the position of the detected object in the next frame. The prediction is matched 

with the detection result from next frame to achieve vehicle tracking. 

Particle filtering is also used for object tracking. The essence of particle filtering is monte-

carlo simulation. It is an estimation of objects’ location probability in the region of interest. 

By using this feature, Yang et al. proposed a multi-object tracking algorithm [42]. This 

method uses colour and edge direction histograms to characterise the tracked object. 

Another method based on particle filtering has been used in [43] to improve tracking 

performance. An unscented particle filter is used to generate sophisticated proposal 

distributions that seamlessly integrate the current observation. Cho et al. [44] deployed a 

particle filter-based moving object tracking system that can be used in FPGA. The system 

includes five modules: Camera Controller, Image Store Memory, Image Subtractor, Noise 

Reduction Filter and Particle Filters. The particle filter module uses the pixel differencing 

between the images of the previous and current frames generated by the Image Subtractor 

module to output the tracking image. 

Mean shift is an important and classic algorithm in the field of visual tracking. It has been 

widely used in clustering, image smoothing, image segmentation and tracking. An enhanced 

mean shift tracking algorithm using joint spatial-colour feature was proposed by Hu et al. 

[45]. The algorithm uses kernel density estimation to model the target image and uses the 

estimated kernel density to develop a new similarity measure function. Through these two 
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similarity measurement functions, two similarity-based mean-shift tracking algorithms 

were developed. In addition, in order to solve the object deformation problem, the variance 

matrix is calculated to update the direction of the tracked object.  

Another SIFT-based mean shift algorithm [46] is also used for object tracking in real scenes. 

The mean shift is used to perform a similarity search through the colour histogram and the 

SIFT feature is used to deal with cross-frame regions. The mean shift algorithm combined 

with colour distribution has been used in Comaniciu et al. [47]. Research has found that the 

solution is suitable for tracking various objects with different colour or texture patterns.  

Since the 2010s, more and more people have paid attention to the use of machine learning 

methods in tracking. In recent years, the results in the field of target tracking have basically 

been using machine learning methods. At present, online learning tracking algorithms can 

be divided into two categories: generative model and discriminative model. In addition, 

tracking algorithms based on deep learning are currently very popular research directions. 

 

2.4.1 Generative Tracking Methods 

The target tracking method based on generative models can be defined as: The first step is 

extracting the target features to learn the appearance model to represent the target, and 

then searching the image area for pattern matching, finally find the area in the image that 

best matches the pattern to locate the target.  
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The target information carried by the generative model is richer, and it is easier to meet the 

evaluation criteria of target tracking and the real-time requirements when processing a 

large amount of data information. It is the first step in applications such as intelligent video 

surveillance, human-computer interaction, and intelligent transportation. In recent years, 

it has been widely used in emerging fields such as military guidance, medical diagnosis, 

meteorological analysis, and astronomical detection.  

The core of the generative method is the target representation method and target model. 

For example, probabilistic principal component analysis (PCA) is very effective for target 

tracking, because its representational power can capture the generation process for high-

dimensional image data. Ross et al. [48] proposed an incremental algorithm model based 

on PCA, which can effectively online adapt the changing of appearance of the target. This 

algorithm avoids the failure of many algorithms that use the fixed appearance model of the 

target. A new online object tracking algorithm with sparse prototypes was proposed by 

Wang et al. [49]. The classic principal component analysis (PCA) algorithm and the latest 

sparse representation scheme are used to learn effective appearance models. Taking 

advantage of the subspace representation, the algorithm can handle higher resolution 

image observation.  

The following methods are also belonging to generative tracking. Kwon et al. [50] proposed 

a generative tracker named visual tracker sampler. The sample used in this method includes 

tracker and target state, and tracking is achieved by selecting a most likely tracker and a 

highly possible state. Experiments show that their method can accurately and robustly track 

targets in a real-world tracking environment. Lee et al. [51] proposed a tracking algorithm 
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based on visual tracking decomposition (VTD). The algorithm decomposes the observation 

model into multiple basic observation models which construct by sparse principal 

component analysis (SPCA). Multiple basic trackers designed by associating multiple basic 

observation models, and then integrate multiple basic trackers into one compound tracker 

through the Markov Chain Monte Carlo (IMCMC) framework. 

Regardless of whether the generative model uses global features or local features, its 

essence is to find the closest candidate target to the target model in the high-dimensional 

space of target representation. The disadvantage of this type of method is that it only 

focuses on the target information and ignores the background information. 

 

2.4.2 Discriminative Tracking Methods 

The discriminative method turns the tracking problem into a classification problem and 

trains the classifier to distinguish the target and the background. In the current frame, the 

target area is the positive sample, and the background area is the negative sample. A 

machine learning method is used to train a classifier online to distinguish the target and the 

background. And this trained classifier will be used to find the optimal region in the next 

frame.  

The discriminative tracking method was first proposed by Collins and Liu [52]. This method 

is also called tracking-by-detection. This method adaptively selects the most distinguishing 
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features for the current background and target, and then the feature evaluation mechanism 

is embedded in the mean shift tracking system. 

[53]-[60] shows the applications of support vector machine (SVM) in the tracking field. A 

SVM is a learning technology developed by Boser and his team [53] that is a popular and 

powerful classifier. In the context of target tracking, it can be converted into a binary 

classification problem of target and background. The feature information of target and 

background is used as positive and negative samples to train the SVM to obtain the overall 

classifier. Then the overall classifier can be used to distinguish the target and background in 

the next frame.  

Osuna et al. [54] developed a SVM for face detection and demonstrated the feasibility of 

their method on the face detection problem involving a dataset of 50,000 samples. By using 

the powerful background segmentation capability of SVM, Avidan [55] proposed a vehicle 

tracking method called Support Vector Tracking (SVT) that combines optical flow and SVM. 

SVT combines the computational efficiency of optical flow-based tracking with the function 

of the general classifier SVM, thereby extending the functions of the tracker and the 

classifier. 

However, a SVM cannot effectively solve the online classification problem, because when a 

new sample is added, the classifier must be fully retrained. In response to this situation, 

Tian et al. [56] proposed a tracking algorithm based on the linear SVM classifier. The 

algorithm uses the key frame of the target to online update the SVM classifier and uses 

historical information to effectively process the target appearance variation. Another SVM 
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based online tracking method was used in [57] which combined with PCA. Unlike the 

conventional SVM method, their method directly learns and predicts the state of the object, 

instead of tracking the two-dimensional transition in the process. Sharma et al. [58] 

proposed another online SVM based tracking algorithm. The SVM parameter vector is 

online learned to construct a discriminative classifier. Then the learned SVM parameter are 

used for object likelihood model construction. 

In [59], the ranking SVM was trained for tracking. The tracking process has been formulated 

as a weakly supervised sorting problem to incorporate information into object in the next 

frame. Ning et al. [60] deployed dual linear structured support vector machine (SSVM) to 

achieve fast learning and execution during tracking. This method formulates object tracking 

as a linear SSVM detection problem to achieve rapid model update in its original form. 

SVMs are very powerful models, which perform well in the various tracking algorithms 

shown above. However, if the amount of data is very large, they may face challenges in 

terms of runtime and memory usage. 

 

2.4.3 Deep learning Tracking Methods 

Recently, discriminative tracking methods have gradually occupied the mainstream position, 

and discriminative methods represented by Correlation Filter and Deep Learning have also 

achieved good results. However, because the method based on correlation filtering is not 

very adaptable to scale changes, the solution to scale changes will decrease the tracking 
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speed. At the same time, it is not robust to fast moving objects or low frame rate video. The 

model update strategy and update speed also affect the tracking of occluded objects. 

Considering the above reasons, the correlation filtering shows a low correlation with this 

project, only deep learning tracking is reviewed here. 

The human eye can easily follow a specific target within a period of time. But for the 

machine, this task is not simple, especially in the tracking process. There are various 

complicated situations such as severe deformation of the target, occlusion by other targets, 

or interference from similar objects. Over the past few decades, the research on target 

tracking has made considerable progress, especially since various machine learning 

algorithms were introduced. Since 2013, deep learning methods have begun to develop 

rapidly in the field of target tracking and have gradually surpassed traditional methods in 

performance and achieved huge breakthroughs. 

Since 2015, there has been a new trend in the application of deep learning in the field of 

target tracking. That is, directly use the CNN network trained on a large-scale classification 

database such as ImageNet [61] to obtain the feature representation of the target, and then 

use the observation model to classify and obtain the tracking result. This approach not only 

avoids the dilemma of insufficient samples for direct training a large-scale CNN during 

tracking, but also makes full use of the powerful representation capabilities of deep features. 

For example, as a representative work of applying CNN features to object tracking, FCNT 

(Visual Tracking with Fully Convolutional Networks) [62] has done an in-depth analysis of 

the tracking performance of pre-trained CNN features on ImageNet and designed 
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subsequent network structure based on the analysis results. Based on the analysis of CNN 

features, the research constructs a feature screening network and a prediction network, 

which prevents the tracker from drifting while being more robust to the deformation of the 

target. Another concise and effective way to implement tracking using deep features was 

proposed by Ma et al. [63]. The main idea is to extract deep features, and then use 

correlation filters to determine the final bounding-box. 

These methods are all successful cases of applying pre-trained CNN network to extract 

features to improve tracking performance, which shows that using this idea to solve the 

lack of training data and improve performance is highly feasible. However, the pre-trained 

CNN network for the classification task pays more attention to the objects between the 

classifications and ignores the differences within the classes. The classification task divides 

similar objects into one category, and the tracking task takes the different appearances of 

the same object as one category, which makes these two tasks very different. 

Realising that there is a huge difference between image classification tasks and tracking, 

Nam et al. [64] proposed a network called MDNet to directly use tracking video to pre-train 

CNN to obtain the general representation. MDNet uses video data which closer to the 

essence of tracking for training and proposes a novel multi-domain training method. The 

idea of cross-application of training data solves the difficulty of distinguishing foreground 

and background in all training sequences with the same CNN, but the speed of this method 

is still slow because the data of the first frame is used to train the bounding box regression 

model. 
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Hence, recurrent neural networks (RNN), especially LSTMs (Long Short-Term Memory) with 

gate structure, GRUs (Gated Recurrent Units), etc. have shown outstanding performance 

on timing tasks. Many researchers have begun to explore how to apply RNNs to solve the 

problems in existing tracking tasks.  

Cui et al. [65] proposed a novel tracking method using multi-directional recurrent neural 

network to model and identify reliable target parts which are useful for overall tracking. 

This method generates a confidence map of the entire candidate region through RNN 

training on a two-dimensional plane. The confidence map will be used to train correlation 

filters to obtain the final tracking results. Compared with other correlation filter algorithms 

based on traditional features, this algorithm has a greater improvement, which shows that 

RNN's exploration of association relationships and constraints on filters are indeed effective. 

Different from the trend of deep learning in the field of vision such as detection and 

recognition that far surpass traditional algorithms, the application of deep learning in the 

field of target tracking still faces challenges. The main problem is the lack of training data: 

one of the capabilities of the deep model comes from the effective learning of a large 

number of labelled training data, and target tracking only provides the bounding-box of the 

first frame as training data. In this case, training a deep model for the current target at the 

beginning of tracking is difficult.  

The above shows several current ideas to solve this problem based on deep learning 

tracking algorithms. However, the existing deep learning target tracking methods are still 

difficult to meet the real-time requirements (because the deep learning need GPU and 
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powerful computing power). There is still a lot of research space for designing the network 

and tracking process to achieve speed and effect improvement. 

 

2.5 Deep Learning Target Detection 

Object detection belongs to the field of computer vision, which existed before the concept 

of deep learning was proposed. Before deep neural networks, the main way to achieve 

target detection was still based on statistics or knowledge. In view of the amazing 

performance of deep neural networks, the industry's research on target detection has 

shifted in the direction based on deep neural networks. In view of the powerful logic 

abstraction ability and feature extraction ability of deep neural networks, the current target 

detection is almost all based on the deep learning framework. Target detection based on 

deep learning has a wider range of detection objects, covering various objects in life, such 

as bicycles, animals, people, cars, and so on. 

Target detection based on deep learning can be divided into two categories: 

1. Deep learning classification algorithm. 

2. Deep learning regression algorithm. 

The classification algorithm is also known as the two-step method. This type of algorithm 

first extracts the Region Proposal (candidate area) of the detected image. The difference 

with sliding windows is that Region Proposal uses the texture, colour and other information 

in the image, so this type of algorithm produces fewer candidate windows and higher 
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quality. After Region Proposal extracts the candidate windows, the next step is to use a 

deep neural network to automatically extract features and classify these candidate 

windows. Then merge the areas containing the same target, and finally output the target 

area to be detected. 

This type of algorithm was first proposed by Girshick et al. [66]. An R-CNN (Region Based 

Convolutional Neural Networks) has been used to generate candidate regions before 

detection, which reduces information redundancy and improves detection speed. And this 

algorithm overcomes the poor robustness of traditional manual feature extraction, which 

is limited to low-level features such as colour and texture. However, the overlap of the 

candidate regions causes the R-CNN algorithm to repeatedly convolves the same region, 

which increases the storage space occupation and reduces the training speed. In addition, 

the cropping and zooming of the picture will lose the original information of the picture, 

resulting in poor training effects. 

He et al. [67] discovered these problems and developed SPP Net to solve them. SPP Net 

chooses to convolve firstly and then generate the area to reduce storage and speed up 

training. A special pooling layer is used before the fully connected layer to break the 

constraint of fixed size input.  

Based on the SPP Net, Girshick changed R-CNN from a serial structure to a parallel structure 

and regressed the bounding box while classifying [68]. This change not only speeds up the 

prediction, but also improves the accuracy. Ren et al. [69] proposed a concept of Region 

Proposal Networks, which uses neural networks to learn by themselves to generate 
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candidate regions. These neural networks can learn more high-level and abstract features, 

and the reliability of the generated candidate regions are greatly improved. 

The detection methods introduced belong to a two-stage scheme, which includes two steps: 

candidate region generation and region classification. Compared with traditional target 

detection algorithms, this type of algorithm does not completely abandon the design 

concept of Region Proposal, but the use of corresponding algorithms greatly reduces the 

number of Region Proposal. 

With the advent of the You Only Look Once (YOLO) [16] algorithm, deep learning target 

detection algorithms began to have a single-stage method. Different from the two-step 

detection algorithm represented by the R-CNN series, YOLO discards the region proposal 

stage, and directly completes feature extraction, region proposal regression and 

classification in the same convolutional network, making the network structure simple, and 

the detection speed is nearly 10 times faster than Faster R-CNN. This enabled the deep 

learning target detection algorithm to meet the needs of real-time detection tasks under 

the current computing power. The algorithm scales the detected image to a uniform size.  

In order to detect targets at different locations, the image is equally divided into grids. If 

the centre of a target falls in a grid unit, the grid unit is responsible for predicting the target 

and outputting its bounding box and confidence. The confidence here refers to what object 

is contained in the grid and the accuracy of predicting this object. 

YOLO is indeed very fast (78fps for YOLOv3), but the detection quality of small targets is not 

good, and it is not easy to distinguish when multiple targets appear in a grid cell. Liu et al. 
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[70] proposed a single-shot detector (SSD) algorithm based on YOLO, which combined 

anchors from the Faster RCNN. Feature maps of different sizes are combined for prediction, 

thereby improving the recognition accuracy. And the high-resolution (large size) feature 

map contains more information about small objects, so SSD can better identify small objects. 

In addition, the biggest difference from YOLO is that SSD does not use fully connected layer 

to reduce many parameters and increase speed. 

 

2.6 Illegally Parked Vehicle Detection and Tracking 

Illegal parking affects the overall environment of urban road traffic and leads to chaotic 

urban traffic order. As shown in Chapter 1, illegally parked vehicle detection and tracking 

systems are essential for many scenarios. In order to replace or help the human operators 

of the surveillance system, researchers have developed a variety of methods to detect and 

track illegally parked vehicles in urban traffic scenes using the various visual tracking and 

target detection technologies shown above. 

Lee et al. [71] proposed the use of background segmentation and consecutive frame 

subtraction to detect illegal parked vehicles. Image projection is used to convert two-

dimensional data into one-dimensional data, which helps reduce the complexity of 

background segmentation and target tracking. Bevilacqua et al. [72] proposed target 

detection by background difference and then calculated its centroid position. They 

determined whether the target is stationary by tracking the position of the target centroid. 

Alkhawaji et al. [73] proposed a system for detecting and tracking illegal vehicles using a 



 40 

Gaussian Mixture Model (GMM) and Kalman Filter. The GMM is used in this system as a 

reliable background model construction and foreground extraction method. In the tracking 

component of the system, the Kalman filter is used to track the detected target. 

Another algorithm using GMM for background construction was proposed by Mu et al. [74]. 

The relatively complete foreground target is processed and tracked by the morphology filter, 

and the shape of vehicle and roundness of wheel are used to identify the vehicle. Sarker et 

al. [75] proposed the Illegal Parking Detection method based on GMM. The foreground 

targets extracted by an adaptive GMM are analysed and detected through time sequences 

of pixel-level features. The grey value of a pixel point of the no parking zone is counted on 

a time sequence to distinguish whether the object stops in the Region of Interest (ROI), and 

the seed filling algorithm is used to distinguish the target type.  

Hassan et al. [76] proposed a method for detecting a stationary target based on image 

segmentation. They used the high update rate of GMM for foreground extraction of the 

video, as this can accommodate lighting changes, but it means that stationary object to be 

part of the background quickly. To solve this problem, they introduced Segmentation 

History Images (SHI) to post-filter the results of GMM and determine when the object was 

when stationary. [77] shows a machine learning tracking method that combines Haar-

Cascade and background subtraction models. Gaussian mixture model and canny method 

are used to separate foreground objects and edge detection respectively. 

A vehicle tracking method that combines SVM and background subtraction is proposed by 

Jo et al. [78]. The HOG (Histogram of Oriented Gradients) feature was introduced to train a 
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SVM classifier from the vehicle database, and this classifier is used to classify the foreground 

objects. An online learning tracking algorithm using the frame-to-frame subtraction was 

proposed by Zhao et al. [79]. This algorithm uses a method based on texture and colour 

histograms. Online learning methods are used to update the weights of these features in 

order to achieve the best solution. The approach proposed by Maddalena et al. [80] is to 

automatically generate models by self-organising methods based on the background and 

foreground without prior knowledge of the pattern classes. Albiol et al. [81] used the Harris 

algorithm to detect corner points on the street, and they combined the corners with time 

to create a spatiotemporal map. The detection of stationary vehicles was achieved by 

analysing the spatiotemporal map. This method does not require subtracting the 

background or tracking any targets. 

Compared with traditional target detection methods based on background subtraction, 

deep learning-based target detection algorithms also have broad application prospects. Xie 

et al. [82] proposed a real-time illegal parking detection system that uses a combination of 

deep learning algorithms and motion detection. The system uses the SSD algorithm as the 

target detection module, and the target detected as a vehicle will be judged as a parking 

vehicle and tracked through motion analysis and location analysis. Even in complex weather, 

the deep learning based SSD network was still robust. 

Tang et al. [83] proposed a real-time illegal parking detection algorithm based on Contextual 

Information Transmission. This research improves the performance of the SSD algorithm in 

small target tracking and feeds deep layer information back to the shallow layer through 
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deconvolution. According to the test, the algorithm is 1.5% higher than the benchmark SSD 

in the detection of small targets. 

Other deep learning-based algorithms also have many applications in the field of illegally 

parked vehicle detection. Ng et al. [84] proposed a CNN-based illegal parking detection 

technology. The technology is divided into two steps. The ROI extraction module extracts 

the latest no parking zone and then a sliding window search module performs window-

based searching on the ROI. The second step uses a pre-trained ALexNet to check whether 

there is an illegally parked vehicle in the search window. The method proposed by Chen et 

al. [85] is to perform target detection processing on video using a deep learning network 

YOLOv3, and then template matching is applied in motion detection of a vehicle.  

 

2.7 Semantic Segmentation and Background Subtraction 

Semantic segmentation is a technique that associates tags or categories with each pixel of 

a picture. It is used to identify the collection of pixels that constitute a distinguishable 

category. For example, self-driving cars need to recognise vehicles, pedestrians, traffic 

signals, sidewalks, and other road features. Therefore, semantic segmentation can be used 

in many situations, such as autonomous driving and medical imaging 

Before deep learning methods became popular, semantic segmentation methods such as 

TextonForest [86] and Random Forest Classifiers [87] were used more frequently. However, 
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after the popularity of deep convolutional networks, deep learning methods have improved 

a lot over traditional methods, so traditional methods will not be discussed in detail here. 

The current deep learning semantic segmentation models are basically developed based on 

FCN (Fully Convolutional Network) [88]. FCN classifies the image at the pixel level, thereby 

solving the problem of image segmentation at the semantic level. This technology can 

accept input images of any size and retain the spatial information in the original input image. 

 For example, Zhang et al. [89] proposed a method based on FCN to solve the problem of 

vehicle counting in city cameras. The algorithm is a novel method called FCN-rLSTM that 

utilises the strengths of FCN for dense visual prediction and strength of LSTM for modelling 

temporal correlation. It can be found from the test on the UCSD dataset that the algorithm 

has performance far exceeding baseline methods. 

However, the results obtained are insensitive to details in the image due to upsampling. 

Hence, some new methods have been developed to improve this problem. For example, 

another idea of semantic segmentation is based on the method of improving feature 

resolution. The purpose of this type of method is to restore the resolution dropped in the 

deep convolutional neural network, so as to obtain more context information. 

The DeepLab [90] architecture developed by Google combines a deep convolutional neural 

network and a fully connected Conditional Random Field (CRF) was applied to the task of 

semantic segmentation, and the purpose is to do pixel-by-pixel classification. Liu et al. [91] 

applied semantic segmentation to the research of underwater scenes. The algorithm uses 

DeepLab as the basic framework, and introduces a module called unsupervised colour 
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correction method (UCM) into the encoder structure of the framework to improve image 

quality. Compared with the original method of Deeplab, this method improves the 

segmentation accuracy by 3%. 

In addition to the above two architectures, there are many novel methods based on 

structures such as SegNet [92], RefineNet [93] and PSPNet [94], which can apply semantic 

segmentation to multiple scenarios. For instance, Audebert et al. [95] proposed a deep 

learning-based pre-detection segmentation method. This method was used to segment and 

classify various wheeled vehicles in high-resolution remote sensing images. 

The methods introduced above all implement a semantic segmentation method based on 

deep learning. However, in order to achieve state of the art performance, semantic 

segmentation algorithms based on deep learning usually have many parameters and high 

computational complexity, which can easily overwhelm the resource capacity and 

capabilities of the video surveillance platform. Some studies such as [96] and [97] have 

implemented certain real-time applications, but these systems were all running on high-

speed CPUs and powerful GPUs. For example, the [96] runs the program on the Nvidia Titan 

X, and so does [97].  Compared with some lightweight moving object detection algorithms, 

such as GMM (Gaussian Mixture Mode), semantic segmentation occupies a lot of 

computing power, which leads to this technology not being used in the target detection of 

this research. Considering that this project needs to implement a illegally parked vehicle 

monitoring system that can run in real time, the semantic segmentation algorithm is not 

conducive to reducing computational power consumption. At the same time, the model of 

using cloud computing capabilities can indeed solve the problem of lack of computing 
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power in local devices, but in the face of data transmission from millions of cameras, signal 

delay and congestion will become a huge challenge. Therefore, a lightweight detection 

method that can be run locally is the best solution. 

As a traditional image processing method, background subtraction is the main pre-

processing step in many computer-vision based tasks. For example, customer statistics need 

to use a static camera to record the number of people entering and leaving the room, or a 

traffic camera that needs to extract transportation information. If there is a complete still 

background frame, the foreground object can be obtained by calculating the pixel 

difference by the frame difference method. However, there will be no such image in most 

cases, so the background needs to be extracted from any obtained image. When a moving 

object has a shadow, the situation becomes more complicated because the shadow is also 

moving. For this reason, the background subtraction algorithm is introduced to separate 

the foreground of the moving object from the video, so as to achieve the purpose of target 

detection. 

OpenCV has implemented several very easy to use algorithms, namely KNN [98], GMG [99], 

MOG [100] and MOG2 [101]. The results and comparison of these four background 

subtraction methods can be seen in Chapter 6.3. 
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2.8 Conclusion 

This literature review has covered the major advances in the field of visual tracking and 

illegally parked vehicle tracking which supported the feasibility of automated and intelligent 

parked vehicle monitoring systems. The findings include visual tracking technology, multi-

object tracking algorithms, and methods for monitoring illegally parked vehicles. It should 

be noticed that today's mainstream illegally parked vehicle tracking algorithms are based 

on the fusion of deep learning and image processing method. Through the research of 

relevant literature, it can be found that the deep learning based tracking usually requires 

the data association processing to achieve tracking by detection.  

Therefore, the detection and data association of objects becomes crucial. There are many 

detection algorithms, for example, the famous Faster-RCNN algorithm is used to detect 

targets, and traditional methods can also be used to detect multiple targets. There are also 

many data association methods. One of the most popular methods is the Hungarian 

algorithm used in SORT [17] and deep SORT [102]. In addition, traditional image processing 

methods still play an important role in the tracking process. 

Despite these achievements [71]-[85], there is still a lot of work to be done to optimise the 

illegally parked vehicle monitoring system to improve performance. These reviews and 

various techniques help advance this research. Based on the information in the literature 

review, no one has proposed a method that integrates tracking algorithms based on deep 

learning detection and feature point matching for use in an illegally parked vehicle 

monitoring system. Specifically, traditional image processing techniques such as 
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background segmentation cannot adapt to complex environmental changes. At the same 

time, the detection and tracking methods based on deep learning such as semantic 

segmentation and deep learning descriptors provide good detection and tracking results 

but consume a lot of computing power and cannot be used outside the laboratory. 

Therefore, this thesis proposes a method based on deep learning detection and key point 

matching to achieve a low power consumption and high-efficiency illegally parked vehicle 

monitoring system. Specifically, the proposed method uses a one-step method to reduce 

the consumption of computational power, and the feature point matching ensures the 

tracking effect of the target. 

The Chapter 1 shows the challenges of illegally parked vehicle monitoring. This research 

provides a novel and effective method to solve these problems. A tracking system based on 

the combination of YOLO algorithm and SORT algorithm has been proposed in Chapter 3. 

Then in Chapter 4 and 5, the tracking system has been modified. A tracking module based 

on feature point matching has been added to improve the tracking effect, which involved 

the changing of feature point extraction.  Finally, the actively selected feature points (ASFP) 

has been integrated on the method discussed in Chapter 5 to achieve robustness to light 

changes, occlusion and long-term tracking. The effectiveness of this system has been 

proven through extensive tests. 
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Chapter 3 Deep Learning Detection and MOT 

Tracking on Illegally Parked Vehicles 

3.1 Introduction 

Automatic detection and tracking are essential for modern illegally parked vehicle 

monitoring systems. An illegally parked target can be defined as a vehicle that is stationary 

in a no parking zone at a specific time and parked for a period of time. The monitoring of 

this type of target means that the system needs to track the target in a continuous video 

sequence and keep the target's digital ID tag unchanged. The following situations will affect 

the monitoring process: similar targets appear in the scene; the target is partially or 

completely occluded; the background of the object is changing, such as light changes and 

background movement. Thus, for the case where a plurality of objects in the scene with the 

same fixed background, tracking solution can be converted to the multi-object tracking 

system of a particular time and location.  

On the basis of the existing detection and multi-object tracking algorithms, this chapter 

proposes a tracking-by-detect method for illegally parked vehicles monitoring, in which the 

detection module uses YOLOv3 [103] algorithm. Then the tracking module will be 

implemented by the SORT algorithm. If the tracked target is identified as an illegally parked 

vehicle in the state judgment module, an alarm will be generated.  

The technology has been tested on the i-LIDS dataset [18] and ViSOR dataset [19]. The 

experimental results show that although the proposed method for monitoring illegally 
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parked vehicles makes mistakes in the case of frequent occlusions, and there is an ID switch 

situation caused by data association failure, it can be used when occlusion do not occur. 

 

3.2 Chapter Organisation 

The arrangement of this chapter is as follows. The following section briefly describes the 

test environment of the system. Section 3.4 introduces the YOLOv3 algorithm used in this 

chapter to detect objects from video sequences. Section 3.5 introduces a method to track 

the vehicle. Section 3.6 describes how the tracked object is determined to be illegally 

parked vehicles. The results are presented and discussed in Section 3.7 and a summary is 

given in Section 3.8. 

 

3.3 Overall Test Environment and Software Implementations 

In order to test whether the multi-object tracking algorithm SORT can be used to track 

illegally parked vehicles, the ViSOR dataset [19] and i-LIDS [18] datasets have been used in 

this chapter. The ViSOR dataset provides the simplest monitoring scene. Although there are 

multiple objects in the scene, there are no more than 2 illegally parked vehicles at the same 

time. At the same time, there are no occlusion or complicated light changes, and all moving 

targets move slowly. 
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The i-LIDS dataset is closer to the real traffic environment. High-speed moving vehicles, 

drastic changes in light and shadows, multiple targets appearing in the no parking zone at 

the same time, frequent occlusion or even complete occlusion, the above conditions will 

interfere with the tracking process and generate false alarms. The detected vehicles enter 

the no parking zone in several different ways, including slow taxiing, fast passing and illegal 

parking, each of them needs to be classified. In addition, various bad-weather conditions 

can also lead to tracking failures due to the overexposure of the picture. Taking into account 

the differences in the scenes of different datasets, the no parking zone is user selected as 

the region of interest (ROI) as shown in Figure 6.  

The main processing has been shown in Figure 7. All objects appearing in the ROI will be 

automatically classified by the state judgment module, and the targets determined as 

illegally parked vehicles will be tracked and alarms will be generated. The video sequence 

has been first detected by the YOLOv3 algorithm, and all non-vehicle detection results have 

been removed by a category filter before being sent into the target tracking module. In the 

process of all objects being tracked, the state judgment module will classify the objects 

according to their position and speed, thereby reducing false alarms. Otherwise, these false 

alarms will be generated by vehicles passing by the no parking zone. The alert can be 

generated in the first frame where it is defined as an illegally parked vehicle. 
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Figure 6 (a)(c) Typical traffic environment from ViSOR dataset and i-LIDS dataset. (b)(d) Manually marked no 

parking zone. 

 

Figure 7 The framework of this system. The overall framework can be divided into three parts: vehicle detection, 

state judgment module and illegally parked vehicle tracking. All the detected vehicle should be judged by their 

speed and position. The vehicle belonging to illegally parking will be tracked. 
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The entire technology is developed and tested on a personal PC platform with an Intel 

Xeon(R) CPU E5-1620 V3 running at 3.5GHz, NVIDIA Quadro K4200 and with 15.6 GB RAM. 

The tracking system proposed in this chapter and the improvements in subsequent chapters 

are all developed by python and run on the Spyder platform of the Linux system. The image 

processing function in the system is provided by the OpenCV-Python library, and the 

detection weight of the deep learning algorithm YOLOV3 has been trained on the COCO 

dataset [124]. The judgment module of illegally parked vehicles is developed by the author 

on the basis of the original SORT algorithm [17]. The tracking program based on feature 

point matching and background subtraction is also developed by the author. 

As the most commonly used evaluation index in object detection, mean Average Precision 

(mAP) represents the accuracy of the detection algorithm. The mAP is used to compare the 

ground truth bounding box with the detected box and return a score. The higher score 

indicates the higher accuracy of detection.  

The calculation of mAP involves the following steps. First of all, several important indicators 

about the detection results need to be counted: 

 

1. True Positive Alarms (TP): The system generates alarms for real events 

2. False Positive Alarms (FP): The system generates an alarm but no real event occurs 

3. False Negative Alarms (FN): The real event exists but the system does not generate an 

alarm 
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This data allows the following values to be calculated:  

 

The Recall (detection rate):  

𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 3 − 2 

 

and the Precision (probability of an alarm being genuine):  

𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 3 − 3 

Recall, R, is the ratio between true positive events and the total events in the ground truth. 

Precision, P, is the ratio between true positive events and all events obtained from the 

experiment. In addition, the combination of recall and precision which known as F1 

measure is also used to evaluate the performance of the method. The calculation method 

for F1 is as follows: 

𝐹1 =
2𝑃𝑅

𝑃 + 𝑅
𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 3 − 4 

The second step is to rank the results according to the confidence of each detection. Draw 

the PR curve (precision-recall curve) of the precision and recall of each test result in turn by 

ranking, and then the area under the PR curve is the AP (Average Precision) score. The area 

can be obtained by Equation 3-5: 

                                                                      AP = ∫ 𝑝(𝑟)𝑑𝑟
1

0

                                   𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 3 − 5 
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In the test, the YOLOV3 algorithm obtained a mAP-50 (the IoU=0.5 according to COCO 

dataset's request) result of 57.9 on the COCO dataset. Figure 8 shows a series of examples 

of vehicles, buses and trucks in the COCO dataset. 

 

Figure 8 Some examples of cars, buses and trucks from COCO dataset. The YOLOV3 algorithm has been trained 

to detect various types of vehicles, such as cars, buses and trucks that were marked in the images. 

 

The method proposed in this paper is repeatedly tested on more than 10 hours of video to 

ensure the accuracy of the results. All functions and errors during the running of the 

software can be visually detected and improved. All functions and errors during software 

operation can be observed and analysed through the visual window, and all output data are 

stored locally for analysis. 
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3.4 YOLOv3 Object Detection Algorithm 

The object detection method used to provide the potential targets to be tracked within this 

chapter, and also applies to this thesis, is based on the YOLOv3 algorithm presented in [103]. 

The basic idea of the YOLO algorithm has been introduced in the literature review. 

Compared with the original display, the third version has better detection capabilities for 

small objects. The basic framework of the deep learning algorithm YOLOV3 is a 

convolutional neural network with 53 layers. The image is input into the classification model 

with a size of 256x256 and features are extracted from different scales. Through weighted 

voting on all features, a tensor containing all feature information is formed, and this tensor 

will become the basis for classifying the target. Finally, the result of this classification is 

transformed into detection.  

Therefore, the YOLOV3 algorithm detected objects in the video, and the identified objects 

are marked by bounding boxes. In order to verify the tracking performance of the target 

tracking module for illegally parked vehicles, only the detection results with vehicle-related 

tags will be kept, which reduced the interference of other types of targets in the multi-

object tracking and speeds up the calculation. The following Figure 9 shows a typical scene 

from the i-LIDS dataset and YOLOV3 detection results. It should be noted that the detection 

weights of the YOLOV3 algorithm used in this project are trained on the COCO dataset [124] 

to obtain the detection ability for a variety of vehicles. 



 56 

  

Figure 9 The vehicles detection results by YOLOv3. All detected targets are represented by blue bounding boxes. 

 

3.5 SORT Tracking 

As shown in Figure 9, the output of the YOLOv3 algorithm contains all the objects that 

appear in the video scene. All objects that do not belong to the target of interest has been 

deleted through the tags of the objects. As shown in Figure 10, only the targets classified as 

cars, buses, and trucks will be tracked. This change helps the multi-object tracking module 

focus on the illegally parked vehicle monitoring. As a classic algorithm for multi-object 

tracking, SORT can provide high-speed and efficient tracking for the illegally parked vehicle 

tracking. 

SORT has a Tracking-by-Detection framework, which has four basic components: target 

detector, state prediction, data association and track management. These are also the basic 
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components of many multi-object tracking algorithms that follow the Tracking-by-Detection 

framework. The original SORT algorithm uses Faster R-CNN of VGG16 architecture [122] as 

the target detector. Section 3.4 introduces the YOLOv3 algorithm as the target detector in 

this system to provide faster detection speed, which has 3.8 time faster than Faster R-CNN 

[103].  

SORT uses a Kalman filter [40] to actively predict the state of the target, and matches the 

predicted result with the actual detected target frame. The relationship between track and 

detection is regarded as a bipartite graph (also called a bi-graph, is a set of graph vertices), 

and the weight of each edge of the bipartite graph is defined by the Intersection over Union 

(IOU) of its two endpoints (a track and a detection respectively). SORT uses the Hungarian 

algorithm [123] to find the best match in this bipartite graph and sets a minimum IOU 

threshold for the match to reduce the number of false matches. Figure 10 shows some 

example of SORT tracking. 
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Figure 10 The vehicle tracking results by SORT. All detected targets are represented by colored bounding boxes. 

The number in the upper left corner represents the digital ID of the target. 

 

3.6 State Judgment and Tracking 

Once input the detected objects to the multi-object tracking module, these objects can be 

regarded as potential illegal targets. Considering the purpose is to focus on tracking 

stationary targets in the no parking area, a state judgment module and tracking module 

should be added to run in parallel. Chapter 2 reviews some methods based on such as time 

sequences of pixel-level features or window-based searching ([78]-[81]), but these methods 

require complex analysis processes, which consume a lot of computing power. In order to 

judge the state of the tracked target, the proposed judgment method is based on the 

following classification of all vehicles. According to the analysis of the behaviour of all 

vehicles, the vehicles in the video scene can usually be divided into the following categories:  
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1. The vehicle is driving outside the no parking zone 

2. The vehicle is parking outside the no parking zone 

3. The vehicle is moving in the no parking zone 

4. The vehicle is parking in the no parking zone 

Therefore, the state judgment should include vehicle position information and speed 

information. For categories 1 and 2, the proposed method can easily identify by the location 

information of the target. For categories 3 and 4, apart from using position information to 

determine whether the target is in the ROI area (no parking zone), it is also necessary to 

measure the speed of the target. 

By observing and analysing the trajectory of vehicles in a large number of videos, firstly 

measuring the speed of all tracked vehicles will help delete vehicles that have no intention 

of parking. This allows the illegally parked vehicle monitoring system to screen out vehicles 

in category 1 and 3. In the field of surveillance video speed measurement, there are two 

ways to calculate vehicle speed. One is the combination of video image and field 

measurement. The vehicle movement distance is matched with the monitoring screen 

through field measurement, and the movement time is obtained by video frame rate 

calculation. The second is to use vehicle technical parameter measurement. In the video 

image, the vehicle's movement distance and time are respectively obtained by calculating 

the vehicle's technical parameters and the video frame rate.  
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Considering that the proposed method needs to be applicable to a variety of road scenes, 

and the actual distance measurement conflicts with the concept of the automatic 

monitoring method, the former method is not applicable to this thesis.  

Therefore, a speed test on the basis of the second method has been conducted. Since the 

purpose of speed detection is to distinguish whether the vehicle is stationary, that is, to 

determine whether the target belongs to category 2 or 4. Hence, the actual vehicle 

movement distance is not needed in the detection processing. The relative movement 

distance of a vehicle can distinguish the movement state. Whether the vehicle is moving 

can be judged by calculating the distance between the same position of the target on the 

pixels in two adjacent frames. Here the Euclidean distance of the target in two adjacent 

frames has been chosen to calculate. 

Euclidean distance is a commonly used distance definition that refers to the true distance 

between two points in m-dimensional space, or the natural length of the vector. The 

Euclidean distance in two-dimensional and three-dimensional space is the actual distance 

between two points. In the two-dimensional space, such as the scenes in this thesis, the 

Euclidean distance can be calculated by the following equation:  

𝑃 = √(𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 3 − 1 

 

 In Equation 3-1, x1, y1 indicate the position of YOLO bounding box‘s centre point in the 

current frame, and x2, y2 indicate the position of the centre point in the next frame. If the 

distance P between two points can equal to 0, it indicates that the target is in a static state. 
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In the test, each position of the bounding box has been tried to calculate the moving 

distance, but due to camera noise and partial occlusions, the bounding box did not remain 

completely still for stationary objects. This leads to the moving distance between frames 

cannot be equal to 0 even for the completely stationary target. Therefore, the centre point 

of the bounding box has been chosen from many distance calculations schemes which gives 

the smallest bounding box drift result. Figure 11 shows the result of distance measurement 

by selecting the centre point of the bounding box. 

 

Figure 11 The line graph shows moving distance of the different vehicles. It can be found that there is a clear 

distinction between moving vehicles and stationary vehicles. 

 

As shown in the Figure 11, the movement state of the vehicle can be judged by using some 

threshold L. According to the measurement of a large number of datasets, ideally, the 
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moving distance of the illegally parked vehicle is 0, but the bounding box generated by the 

system will be slightly shifted so that the distance cannot be constant at 0.  

However, since the moving distance of the driving vehicle will not be less than 1 with 

Euclidean Distance, the threshold L can be set to 1 to distinguish the movement state of the 

vehicle. At the same time, the location of the vehicle also needs to be detected.  The 

bounding box generated by the detector was used to determine whether the target is in the 

ROI. If the target completely enters the ROI, the bounding box will have a huge intersection 

with the no parking zone. In addition, considering the difference between the 3D viewing 

angle of the monitoring screen and the 2D viewing angle of the detected image, the target 

passing at the edge of the ROI will also have a bounding box that partially overlaps the no 

parking zone. Therefore, a ratio R is given to calculate the ratio of the intersection of the 

bounding box and the no parking zone to the total area of the bounding box. If the 

intersection value R of the target is less than a given threshold S, it means that the target is 

not in the ROI. Figure 12 shows the relative positions of the vehicle and the no parking zone 

under different intersection values R. 
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Figure 12 The intersection between bounding box and the red zone has been calculated and represented by S. 

The position status of vehicles can be judged by S. If the intersection is greater than S, it means that at least 

part of the vehicle has entered the red zone (a) S=5.7% (b) S=18% (c) S=51% (d) S=26%. 

 

In a 2-dimensional image, the driving direction of vehicles with the same volume will affect 

the intersection area. For example, for the four targets in Figure 12, it is obvious that the 

intersection in (a) and (b) for the vehicles driving towards the camera is small, while (c) and 

(d) are large. Therefore, the threshold S should not be too large to filter out all targets 

driving towards the camera. However, the vehicle still can be clearly classified in the above 

four situations by combining with the target moving distance information. Therefore, 

through testing on the i-LIDS and ViSOR datasets, S=10% is an appropriate threshold, and 

this value is also selected in the following chapters. 
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In summary, the target will be defined as an illegally parked vehicle if the moving distance 

is greater than L and the overlap area is greater than S. 

 

3.7 Discussion and Results 

The proposed method has been tested on the ViSOR dataset and i-LIDS dataset which 

provides two different test scenarios: empty parking lots and roads with complex 

environmental changes. The ViSOR dataset consists of 4 video sequences in 2-3 minute and 

contains multiple events. All events occurred in a parking lot and the illegally parked 

vehicles were not blocked. The I-LIDS dataset was opened by the Centre for Applied Science 

and Technology (CAST, formerly HOSDB) to researchers for using in parking vehicle 

monitoring. I-LIDS contains 3 sets of video sequences with a total length of more than 10 

hours and different lighting conditions and weather conditions (day, night, rain, lightning, 

rapidly changing shadows, etc.). In the test of these two datasets, the ViSOR requires an 

alarm to be generated within 10 seconds when the vehicle is stationary in the no parking 

zone. The i-LIDS dataset requires the alarm to be generated within 10 seconds after the 

target is stationary in the no parking zone for more than 60 seconds (In order to clearly 

show the sensitivity of the proposed method to parking vehicles, In the presentation section 

of this thesis, the program will be temporarily modified to generate an alarm when the 

target is stationary in the no parking zone. In all the statistical results shown in this thesis, 

the alarms are generated strictly in accordance with the official guidelines of i-LIDS.).  
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Figure 13 shows all the events in the 4 video sequences of the ViSOR dataset. The proposed 

method detects all events and avoids two interference events. In (a), (b) and (c), the alarm 

event is generated immediately when the vehicle is stationary in the no parking zone. Since 

the tracking module is based on a multi-object tracking algorithm, as shown in the Figure 

13, multiple bounding boxes are generated to locate the vehicle. In order to show the 

results of the proposed method the word “alarm” is displayed on the image above the 

problem vehicle. The information is also written to file. Visually and by comparing the 

results to the ground truth data the accuracy of the tracker can be measured.  For (d), there 

are two vehicles entering the video scene, but the vehicles passing through the no parking 

zone and finally stop in the area where parking is allowed, (case 14 and 12 in (d)), so the 

alarm is not generated. 

 

Figure 13 The detection and tracking results from VISOR dataset. The word ‘alarm’ above the vehicle represent 

the tracking of the target. (a) Case 26 is an illegally parked vehicle entered the no parking zone. (b) Case 19 is 

an illegally parked vehicle entered the no parking zone. (c) Case 26 is an illegally parked vehicle entered the no 

parking zone. (d) No illegally parked event occurred, case 12 and 14 are two interference events. 
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The test video sequences in the i-LIDS dataset are divided into three groups based on three 

different viewing angles and scenes. Frequent occlusions, sunny days, rainy days, shadow 

movement caused by cloudy, overexposure caused by night and lightning are all included in 

the test scene. Table 1 below shows the detailed test results of the proposed algorithm. All 

event alerts are strictly in accordance with the official requirements of the i-LIDS dataset.  

 

File Name Duration Total Event True Positive False Positive False Negative  

PVTEA101a 01:21:29 26 16 0 10 

PVTEA101b 00:24:40 8 1 0 7 

PVTEA102a 00:51:56 18 11 0 7 

PVTEA103a 01:03:54 16 8 0 8 

PVTEA201a 00:18:50 4 2 1 2 

PVTEA202b 01:05:23 17 4 2 13 

PVTEA301a 00:15:29 3 1 0 2 

PVTEA301b 00:28:07 7 5 0 2 

PVTEA301c 00:27:09 6 3 0 3 

Total 06:16:57 105 51 3 54 
Table 1 Result from the proposed method on videos containing illegally parking events from i-LIDS dataset 

 

Table 1 shows that in all 105 events, the method based on deep learning detection (YOLOV3) 

and multi-object tracking (SORT) successfully tracked 51 events (see Figure 14 for tracking 

examples) and lost 54 events. The overall recall is only 49%. At the same time, the method 

generated 3 false alarms (precision 94%). These results are significantly lower than other 

authors’ methods of illegally parked vehicle tracking (94% in [104], 89% in [78]). According 

to the observation and analysis of each event, it can be found that the systematic flaws of 

this method led to a large number of false negative events. First, as described above, the 

tracking module of this method is based on the multi-object tracking algorithm SORT. 
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According to the framework of the SORT algorithm, in the process of target tracking, Kalman 

filter is used to establish the following prediction model: 

𝑥 = [𝑢, 𝑣, 𝑠, 𝑟, 𝑢̇, 𝑣̇, 𝑠̇]𝑇  𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 3 − 5 

Where u and v represent the horizontal and vertical coordinates of the centre of the target, 

s and r represent the size and proportion of the bounding box of the target. And the last 

three values indicate the prediction of next frame.  

The detected bounding box is used to update the target state, in which the velocity 

component is optimised through the Kalman method. If no detection is associated with the 

target, the state will be updated by the linear velocity model. Therefore, as shown in the 

model, no exterior features of the tracked target are used, but only the position and size of 

the detected bounding box have been used for the motion estimation and data association 

of the target, and there is no re-recognition algorithm. So, when the target is lost, it cannot 

be tracked again. 

Secondly, the Hungarian algorithm is used for data association. The cost matrix is calculated 

by the intersection-over-union (IOU) distance between the detected targets and their 

predicted position. IOU can solve the problem of short-term occlusion of the target. 

However, for the long-term occlusion as shown in Figure 14, the tracking is difficult to re-

establish, because if the IOU matching between the predicted position of the tracked target 

and the detected target is not achieved for consecutive T frames, the target is considered 

to disappear. 
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Finally, the tracker will be deleted if the predicted position of the target is not associated 

with the detection in the T frame (T was set by original SORT), which caused by occlusion or 

environment. After a period of time, although the original target may be tracked again, the 

target ID has been switched. Therefore, in the test, although some targets were tracked 

from the first frame until they left the ROI, which was also regarded as a false negative event 

because their ID had changed. During the test, T was increased to 20 (1 in original SORT) to 

give more processing time to the data association, but there were still at least 355 ID 

switches in the test. Figure 14 shows a typical monitoring process involving a successful 

monitoring event and a failed event. 

For the 2450 frames from (a) to (h), the illegally parked vehicles with ID 4 and 11 are two 

real illegally parking events. In (a), case4 (see the vehicle with ID 4 in Figure 14) is detected 

and defined as an illegally parked target through position and speed detection, and the 

word ‘alarm’ is generated as marked on the image above the problem vehicle. After 4 

seconds in (b), case 11 and 13 appeared at the same time, case 4 is still being monitored 

because the occlusion has not occurred yet. With a few frames later in (c), case4 is occluded 

by the case11 (illegally parked event) and the case 13 (fast passing vehicle), at this moment 

the tracking fails due to the occlusion. In the next second, as shown in (d), the tracking is 

regenerated because the detection result is successfully linked with the predicted bounding 

box.  

However, it is limited by the insufficient detection capabilities of the YOLOv3 algorithm for 

small objects, and in the YOLOv3 detection framework, each grid can only output one 

prediction result. Therefore, the biggest shortcoming of this algorithm is that the detection 
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effect of some nearby small objects is not very good, such as the two illegal vehicles nearby 

in (d). As shown in the figure, the bounding box of case4 cannot stably represent the target 

position, causing the system to incorrectly judge the target as a moving target. Figure 14 (e) 

and (f) show that the tracking is unstable due to detection defects. Figure 14 (g) and (h) 

show the scene when the target leaves the ROI. The alarm of case 11 continues when the 

vehicle slowly moving in no parking zone, because the target is still in the ROI and the speed 

is less than the threshold L. The alarm will not be released until the target leaves the illegal 

zone, as shown in (h). 
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Figure 14 The failure tracking caused by proposed method. (a)The illegally parking event occurred. (b)Two 

vehicles moving closer to the target. (c)The tracking lost because of the occlusion. (b)The tracking re-

generated again. (e)-(g)Two tracking running stable because there is no effect of occlusion. (h)One of the 

target left the no parking zone and tracking released. 
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Figure 15 shows more test results. Successful alarm events are shown in (a)-(c) because 

there is no serious occlusion affecting the generation of the tracker. Figure 15 (d)-(f) 

represent typical target loss caused by detection failure. The movement of people obviously 

affects the YOLO algorithm's choice of the target's bounding box position, which leads to 

drastic fluctuations in the position and size of the bounding box. The passing truck 

completely includes the target from the viewing angle of the two-dimensional image, 

resulting in the loss of detection of the target vehicle. 

 

 

Figure 15 (a)-(c) The success tracking achieved by proposed method with raining. The system can working well 

without serious occlusions. (d)-(e) The failure tracking at night. The tracking failure because pedestrians 

interfered with speed measurement (f) The tracking lost because of the detection failure. When the truck 

passes by, the target vehicle cannot by recognised by YOLOV3 because it was completely covered by the truck. 
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3.8 Conclusion 

This chapter discusses a technology based on the combination of deep learning detection 

and multi-object tracking to determine whether the automatic detection and tracking of 

parked vehicles can be achieved in actual scenes. The technology has been tested on video 

sequences from the ViSOR and i-LIDS datasets, and the recall and precision of the 

technology have been obtained. The experimental results show that the method based on 

the combination of the YOLOv3 algorithm and the SORT algorithm achieves 100% precision 

and recall rate for the ViSOR dataset, but the precision rate drops to 94% and the method 

fails to track on 54 events in a total of 105 illegally parked events (49% recall) for i-LIDS 

dataset. 

The failure of the method with the i-LIDS dataset does not mean that the method is 

completely unable to detect and track the illegally parked target. By manually checking all 

failed events, it can be found that all failed events were caused by changes in the 

environment such as occlusion, lighting, and multi-target overlap. In other words, the 

system failures are due to the long-term tracking of the parked vehicle. In order to 

overcome these difficulties, a more powerful solution is needed to maintain the tracking ID 

in the first frame of the event and establish the inter-frame connection of the illegally 

parked vehicle in the subsequent frame sequence. Another observation about illegal vehicle 

monitoring in this chapter is to determine whether the proposed method of measuring the 

position and speed of the target can efficiently adapt to the complex traffic environment. 

Through testing, a suitable threshold has been found for distinguishing the position and 
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speed of illegal vehicles and legal vehicles. In addition, it is easy to be observed that the 

detection will affect the speed calculation, and the fluctuation of the bounding box is caused 

by occlusion, which gives wrong speed data. Chapter 4 introduces a technique based on 

SIFT feature descriptor matching, where the focus is to keep tracking of the illegally parked 

target in the case of SORT tracking failure. 
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Chapter 4 Tracking with Key Points 

4.1 Introduction 

Chapter 3 shows a method based on the combination of deep learning detection and multi-

object tracking for illegally parked vehicle monitoring. The main drawback is that this 

method lacks robustness to occlusion, light changes, and multi-target overlap. However, 

since the proposed method provides good detection result of the first frame when the 

target is illegally parked in the test, other methods can be used to replace the tracking 

method proposed above for continuous tracking after the first frame. Therefore, a method 

based on SIFT feature descriptor matching has been proposed to continuously track the 

target after the target is judged as an illegally parked event. Different from global features 

such as colour features, texture features, and shape features, SIFT features are local 

features. The local image features have the characteristics of rich content in the image, 

small correlation between features, and the detection and matching of other features will 

not be affected by the disappearance of some features in the case of occlusion. In addition, 

SIFT features have good stability and invariance, can adapt to rotation, scale changes, and 

brightness changes, and cannot be interfered by viewing angle changes and affine 

transformations to a certain extent. These invariances first come from the gaussian pyramid 

established during SIFT feature extraction. The SIFT algorithm obtains scale invariance by 

extracting extreme points in the gaussian pyramid. The rotation invariance is obtained by 

collecting the gradient direction of the 4*4 area around the extreme point. Finally, the 

algorithm avoids affine changes in illumination by normalizing the gradient histogram 
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In order to explore whether SIFT feature descriptors can be used to track illegally parked 

vehicles under occlusion and light changes, this chapter proposes a method for tracking 

illegally parked vehicles based on SIFT feature point matching, where the feature points are 

matched by brute-force matching. The matching result will be used to keep track when the 

target is detected and is defined as an illegally parked vehicle. The method was tested on 

the video sequence of the I-LIDS dataset. Experimental results show that tracking will not 

be disturbed when most occlusions occur. However, some of the video scenes contain long-

term large-area occlusions, small targets, and blurr targets. The test shows that the 

extraction of SIFT feature points will be affected by the above conditions and cause tracking 

failures. 

 

4.2 Chapter Organization 

This chapter is organised as follows. Section 4.3 introduces the overall framework of the 

SIFT algorithm for illegal vehicle detection and suggests how to make up for the 

shortcomings of the previous chapter. The section 4.4 shows the extraction of SIFT feature 

points and how to replace the SORT algorithm for continuous target tracking. This includes 

the characteristic analysis of the SIFT feature descriptor to deal with the tested traffic 

environment and the method based on BF (Brute-Force) matching to maintain the inter-

frame link of the target. In Section 4.5, the proposed method is tested on the i-LIDS dataset 

and the results are discussed. Finally, a summary is given in section 4.6. 
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4.3 The Framework of Key-Point Matching in Tracking 

Detecting and tracking stationary objects such as illegally parked vehicles is one of the 

important functions of all public video surveillance systems. As the number of cameras has 

increased dramatically and with the development of technology, a large number of high-

definition monitoring images can be provided to the central processing platform, a reliable 

automated analysis and alarm generation system is required to deal with such complex 

situations. Many datasets were published (i-LIDS, Sherbrooke, ViSOR, Sussex Daytime) to 

help researchers test such detection and tracking algorithms. Hassan [104] summarised a 

general framework for solving such problems. The framework consists of two main steps: 

detection and tracking. Among them, detection is to separate the foreground target of 

interest from the static background by background segmentation technology. Traditional 

background segmentation techniques include frame difference method and GMM-based 

background subtraction method. Nowadays, with the development of deep learning 

technology, semantic segmentation technology based on high-performance GPUs is also 

widely used. Then once these foreground targets stay in the ROI for more than a certain 

time, the alarm will be triggered and these events will be tracked. In Chapter 2, some 

methods and researches in this area also have been reviewed. However, the problem is that 

in the detection process, the background segmentation technology cannot adapt to light 

changes well and incorrectly identifies background objects as foreground targets. Another 

serious problem is that in the tracking process, colour, texture, and shape features are 

usually used to track objects. However, the global features mentioned above are not 

applicable to the situation of lighting changes and occlusion. 
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Considering that with the development of deep learning technology, one thing for sure is 

that the achievements in the field of multi-object tracking can help to establish the 

detection and tracking of stationary targets, especially for illegally parked vehicles. The 

general workflow of the MOT (Multiple Object Tracking) algorithm includes the following 

steps:  

1. grab the original frame of a given video  

2. run the object detector to obtain the bounding box of the object  

3. calculate different features for each detected object, usually the visual and motion 

features 

4. calculate the probability that the two objects belong to the same target 

5. assign a digital ID to each object by data association 

In the previous chapter, the proposed method used the YOLOv3 algorithm and the SORT 

algorithm to detect and track illegally parked vehicles. The potential and shortcomings of 

the multi-object tracking system in the field of illegal vehicle monitoring have been shown 

in Chapter 3. Through analysis, it can be found that, compared with the general MOT 

algorithm, the tracking of illegally parked vehicles can be achieved by modifying step 3 and 

4 on the basis of the above framework. Therefore, a tracking method based on SIFT feature 

matching has been proposed in this chapter. The framework of this method is shown in 

Figure 16. 
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Figure 16 The framework of proposed method in this chapter. The detection module is based on YOLOV3 

algorithm. The multi-object tracking includes the SORT algorithm and the illegally parked vehicle judgment 

module. The last module build a key-points matching based illegally parked vehicle tracking. 

 

The framework is divided into three parts. The first and second parts are still based on the 

YOLOv3 algorithm and the SORT algorithm as shown in the Figures 9 and 10 (see Chapter 3 

for the specific process). Different from the general method summarised by Hassan [104], 

the proposed method uses the YOLOv3 algorithm to replace the background segmentation 

algorithm in target detection, which ensures the accuracy of the target classification 

(background segmentation technology usually needs to integrate other algorithms to 

identify the category of foreground objects).  
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Secondly, the deep learning detection algorithm is robust to occlusion, illumination changes 

and target appearance changes than background segmentation. At the end of the second 

part, the target state judgment module (see Section3.3) will output two results. Vehicles 

judged to be driving legally will not be considered in the next step. For a vehicle that is 

defined as an illegally parked vehicle, starting from the first frame of the event, the 

proposed method will use the SIFT algorithm to extract the key points of the target, and this 

frame will also be set as the initial frame. In the next frame, since the position of the 

stationary vehicle will not change, the target will no longer be predicted and detected by 

SORT. A new SIFT descriptor extraction was used in the same position as the previous frame.  

After the key point features of the target area are obtained in the initial frame and the 

current frame, a feature matching will be built by using the key points of the two frames. If 

the number of successfully matched key points is greater than a given threshold G, it means 

that the target remains in place. If the number of key points for successful matching is less 

than the threshold G, it means that the target has left the ROI and therefore cannot obtain 

enough key points for successful matching. 

 

4.4 SIFT Descriptor Extraction and Vehicle Tracking 

The multi-object tracking algorithm SORT introduced in the previous chapter is used to 

provide initial frame tracking and identification of targets. Then, scan this SORT output to 

find any illegally parked vehicles that may exist in the scene. All vehicles that were 

determined to be illegally parked will be recorded and stored ID and location information. 
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At the same time, the alarm will be generated on the first frame when they illegally parked 

and this frame will be defined as the initial frame. After the initial frame, the SORT tracking 

of the target will be replaced by the key point matching method proposed in this chapter. 

The bounding box of the target will be cropped first, and the key points of the cropped 

image will be described by SIFT features. The cropped target is shown in Figure 17. 

 

Figure 17 The illegally parked vehicle has been cropped. The cropped image generated by the bounding box of 

target vehicle. The cropped image usually contains the target, the shadow and the surrounding environment 

because the bounding box is rectangular. 

 

The Figure 17(b) shows a processing area for feature extraction. In the local feature 

descriptor, the SIFT algorithm was selected for the description of key points. A review of the 

SIFT algorithm has been specifically introduced in the literature review. Figure 18 shows an 

example of the SIFT feature descriptor extraction result and the involved process. 
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Figure 18 The steps involved in SIFT descriptor extraction. The generation of SIFT descriptor includes the 

generation of DoG (Difference of Gaussian) pyramid and histogram statistics on the gradient (see section 2.3.2 

for detailed operation steps).  

 

The result of applying the SIFT feature descriptor to the key point extraction is that the key 

points of the target vehicle such as corner points, edge points, bright spots in dark areas 

and dark points in bright areas are extracted and described by their position, scale and 

direction. Each key point will have a descriptor, and a set of vectors will describe the key 

point so that it does not change with various changes, such as changes in lighting, changes 

in perspective, and so on. These key points form a subset of key point descriptions about 

the template image (the template image is also called the initial frame). Then in the next 
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frame, the same feature point extraction and description will be used to build a new key 

point description subset for the observation image (current frame). Since the feature 

descriptor is a vector, the distance between the two feature descriptors can reflect the 

degree of similarity, that is, whether the two key points are the same. 

Different matching methods can be used for different feature points. This study used the 

BF (Brute-Force Matcher) matcher to match the SIFT feature, because according to the test, 

the BF matcher has better accuracy and speed at the SIFT feature points than the Flannel 

(Fast Library for Approximate Nearest Neighbours) matcher. Noble's research [105] also 

proves this point. Brute-Force Matcher was used in this study to calculate the distance 

between a certain feature point descriptor of the initial frame and all feature point 

descriptors of the current frame, and then sort the obtained distances. The one with closest 

distance was taken as the successful matched point. 

Although this method is simple, there were a lot of false matches, which required some 

techniques to filter out false matches. Therefore, the KNN (K-nearest neighbours) algorithm 

have been used to remove false matches. The specific method is to return the two nearest 

neighbour matches for the feature points (from the initial frame point set). If the ratio of 

the first match to the second match is large enough (the vector distance is far enough), it 

indicates that the first match is a correct match. Since only the tracking of stationary objects 

is considered, the tracking method based on feature point matching is very suitable for the 

situation discussed in this chapter. The tracking result can be judged by the number of 

successfully matched feature points. Figure 19 visualises the matching results. 
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Figure 19(a) A successful matching example (b) All successfully matched feature points are linked between two 

frames 

 

Since the matched target is a stationary vehicle, the number of successfully matched feature 

points will not change over time under the ideal condition. However, due to changes in the 
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environment, the appearance of the vehicle may change. Therefore, in actual operation, 

the first matching of the vehicle will usually be the best result (successful matching peak) 

during the entire tracking of the target. Considering that the target may be partially blocked 

or interfered by environmental noise, the subsequent matching success value is greater 

than the selected threshold G to determine that the target is still being tracked. If the value 

is less than the threshold G, the target is in one of two situations: 

1. The target vehicle has left the no parking zone 

2. The target vehicle is blocked in a large area or even completely blocked 

In both cases, the matching success rate is significantly lower than the peak value of 

successful matching. This will cause the algorithm to incorrectly classify the occluded 

situation as the vehicle has left the ROI and thus delete the tracker, or the vehicle does leave 

the ROI but the tracking is still running. Therefore, a timer has been added in the tracking 

process. Normally, the occlusion of the vehicle is short-lived, so once the number of 

successfully matched feature points is less than the threshold G and the duration is within 

the threshold T, the tracker will not be deleted. Conversely, once the tracker does not give 

enough successful matches for a long time (over T), it means that the target has left the no 

parking zone.  

Through the statistics of matching results for different size targets, G=40 is an appropriate 

threshold to judge the matching result. The value cannot be smaller because the non-

vehicle features in the bounding box will also give a successful matching. And the selection 

of the threshold T also needs to balance the occlusion event and the accuracy of tracking. 
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Too large a threshold for T will cause the tracking to not be released in time when the target 

leaves. Therefore, T=2 seconds (25fps) is an appropriate threshold. 

 

4.5 Results and Discussion 

The performance of the proposed method is evaluated from two aspects: a method based 

on feature point matching instead of SORT tracking for illegally parked vehicles; and the 

effectiveness of occluded vehicles. The method proposed in this chapter has been evaluated 

in different traffic scenarios from the i-LIDS dataset. 

The video sequence set used in this chapter comes from the i-LIDS dataset. The set contains 

39 illegally parking events and 21 videos of 2-10 minutes in length. As the same with the 

Chapter 3, the alarm is generated after the vehicle is stationary in the no parking zone for 

60 seconds. 

The overall test results of the proposed method are shown in Table 2. Among the 48 real 

events, the proposed method monitored 39 events and reported 1 false positive event. The 

precision rate of all alarms was 97.5%. At the same time, 7 real events were not found and 

tracked, and the overall recall was 84.8%. 
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Video Name Total Event True Positive  False Positive  False Negative 

PVTRA101a01 2 1 0 0 

PVTRA101a02 2 2 0 0 

PVTRA101a03 2 1 1 0 

PVTRA101a04 2 2 0 0 

PVTRA101a05 1 1 0 0 

PVTRA101a06 1 0 0 1 

PVTRA101a07 1 1 0 0 

PVTRA101a08 1 1 0 0 

PVTRA101a09 3 1 0 2 

PVTRA101a10 5 4 0 1 

PVTRA101a11 2 2 0 0 

PVTRA101a12 2 2 0 0 

PVTRA101a13 2 1 0 1 

PVTRA101a14 2 2 0 0 

PVTRA101a15 2 2 0 0 

PVTRA101a16 3 2 0 1 

PVTRA101a17 4 4 0 0 

PVTRA101a18 2 2 0 0 

PVTRA101a19 3 2 0 1 

PVTRA101a20 3 3 0 0 

PVTRA101a21 3 3 0 0 

Total 48 39 1 7 
Table 2 Results obtained after testing the proposed method on i-LIDS dataset 

 

According to observations, the proposed method is robust to partial occlusion (Figure 20(a), 

(b), (d)) and short-term large-area (Figure 20(c)) occlusion. As shown in Figure 20, the 

tracker can still keep working when the target is blocked by other objects. 

In order to clearly show the progress of the proposed method compared to the previous 

chapter, the method in this chapter is represented by a white bounding box and the tracking 

generated by the SORT algorithm is represented by a coloured bounding box. When the 

word ‘alarm’ displayed above the bounding box, it indicates that the illegally parking tracker 

discussed in the Chapter 3 is also working. Figures 20(a) and (b) show a scene where 
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multiple vehicles gather and block each other. It can be clearly seen that when vehicles are 

close to each other, the tracking of illegally parked vehicles based on SORT cannot work. In 

contrast, the method proposed in this chapter still keeps track even if SORT tracking 

disappears or the bounding box drifts. The SIFT-based tracking represented by the white 

bounding box is not affected by partial occlusion. Figure 20(c) and (d) show the tracking 

results when the target is completely occluded. For short-time (several seconds) large-scale 

occlusion or complete occlusion of the scene in the figure, the proposed method has good 

robustness. The number of successfully matched feature points is obviously lower than the 

given threshold G, but the tracker will not be released within the pre-set time T, which 

ensures that the tracker is continuously positioned at the original position. 
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Figure 20 The tracking results under occlusion. (a)There are two tracking has been built. (b)The targets have 

been occluded by another vehicle while tracking. (c)-(d)The target has been nearly completely occluded by the 

red van but the tracking is very robust. The matched key-points drops to 5 during occlusion. 

 

Although the proposed method is significantly improved over the method in the previous 

chapter, it still has shortcomings. The false negative event is caused by two reasons. As 

shown in Figure 21, the first reason for monitoring failure is because the target is far from 

the camera. The video sequence of i-LIDS was captured by low-quality analog camera with 

a resolution of 576*720. During the signal transformation from analog to digital, the edges 

and corners of small targets could become blurred, which causes the SIFT algorithm to be 
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unable to extract enough key points for feature matching. This situation also appeared in 

Figure 22. Although the SORT algorithm tracked one of the vans in the image, the SIFT based 

tracking still cannot be built because the number of feature points is too few for matching. 

 

Figure 21 Even under relatively loose matching conditions, only 30 key points are extracted for feature matching. 

In this case, the target's matching success rate has been below the threshold G for a long time, causing the 

tracker to be deleted. 

 

The second cause of false negative events is the failure of target detection. For example, in 

Figure 22 and 23, the YOLOv3 algorithm successfully identified the car, but the vans cannot 

be detected due to the occlusion and unclear object display. 
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Figure 22 Unlike typical vehicles, the van in the video is hard to be identified and classified by YOLOV3. 

 

Figure 23 Through manual inspection, it was found that YOLOv3 detected one of the vans, but the detection 

only lasted 1 frame (the video sequence was running at 25 frames per second).  

 

4.6 Conclusion 

This chapter discusses the tracking technology based on feature point matching. The main 

focus is to determine whether the feature of the key point is strong enough for the matching 
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of illegally parked vehicles in different frames with real situations. The i-LIDS dataset can be 

used for this purpose, because this dataset provides a large number of real scenes used to 

track illegally parked vehicles in the no parking area. This method consists of two stages. 

First, YOLOv3 based target detection and SORT multi-object tracking methods are used to 

obtain the positions and target identities of all vehicles in the scene. These tracked targets 

will be recorded as soon as they become stationary in the no parking zone. Once they are 

identified as illegally parked targets, SIFT descriptors can be used to obtain their key 

features and store them in the database for further tracking. In the second stage, BF 

matching based tracking technology is used to process these feature data. By matching the 

feature points of the target in the current frame with the feature information stored in the 

database, an inter-frame connection can be established for each illegally parked target. The 

performance of the proposed method is evaluated from two aspects. 

First of all, the target detection stage is evaluated along with SIFT feature description, the 

overall prediction rate of the system can be obtained to 97.5%. It benefits from the accuracy 

of the deep learning algorithm YOLOv3 in the object detection, and also benefits from the 

system made an object classifier to filter all none-vehicle objects, the system avoids as much 

as possible the false positive rate. 

In the second stage of the evaluation, the tracking technology based on key point matching 

was analysed. It can be seen that compared to the method proposed in the previous chapter, 

the system has achieved a greater improvement. In a total of 48 real events, the overall 

recall rate is 84.8% compared to the 49% reported in the previous chapter. The main reason 

for the improvement of this recall rate is that SIFT features can establish the target's inter-
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frame link more firmly than the data association method. On the other hand, the detection 

rate of 84.8% still cannot meet the monitoring requirements of illegally parked targets in 

real scenarios. The main reason which led to 7 failed monitoring in a total of 48 events was 

that the target was often occluded by other objects in the scene. In a real traffic 

environment, occlusion can happen in many ways. One is the short-term occlusion from fast 

moving objects, and the second is the long-term and large-area occlusion from other slow 

moving or stationary vehicles. Compared with the previous chapter, this system is well 

adapted to short-term occlusion regardless of whether it is completely occluded. In addition, 

tracking can also be maintained for a small part of long-term occlusion. 

Therefore, it is concluded that in order to detect and track illegally parked vehicles in 

challenging traffic scenarios, the system needs to be continuously improved. This not only 

requires full adaptation to all occluded conditions, but also can track targets under 

drastically changing lighting conditions. In the next chapter, an improved feature point 

matching technology will be discussed, which can effectively track occluded and blurred 

targets, and Chapter 6 will explore whether the improved feature point matching method 

can track targets stably under changing lighting conditions. 
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Chapter 5 Tracking with Dense Feature Points  

5.1 Introduction 

The conclusion of the previous chapter is that although the matching of the SIFT feature 

descriptor can replace the multi-object tracking technology, its performance will be 

affected when the target is occluded for a long time or by a large vehicle. This situation 

usually occurs in a heavy traffic environment, and in the blurry scene, the feature point 

extraction of the SIFT algorithm will be more difficult. In the case that the feature points are 

collected sparsely, the only way can be used is loosing the matching conditions to obtain 

successful matching, which will reduce the performance of the system.  

In order to develop a more powerful and accurate parking vehicle monitoring system that 

can be implemented in all-weather environments and traffic scenarios, this chapter 

introduces the feature point extraction method based on dense SIFT to help extract a more 

reliable set of key points for the target tracking. Then a background matching has been used 

to detect whether the target has left the no parking zone. 

 

5.2 Chapter Organization 

The rest of this chapter is arranged as follows: Section 5.3 introduces the feature point 

extraction method based on the dense SIFT. Section 5.4 shows the tracking under occlusion 

conditions and gives some examples. The release of tracking is discussed in Section 5.5. The 
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test results on the dataset are shown in Section 5.6. Finally, a summary of this method is 

given in Section 5.7. 

 

5.3 Dense Key Point Extraction 

As shown in the previous chapter, the entire system is divided into two main stages: 

detection and tracking. The first stage is to accurately detect illegally parked vehicles in the 

scene. Through a large number of tests, the target detection based on YOLOv3 and SORT 

algorithm is considered to be reliable. At the beginning of illegal parking, at least one frame 

of the detection result is given containing the identity and location of the target. The 

manually-divided no parking zone and target position and speed measurement all play an 

important role in this stage. More "no parking zone" are shown in Figure 24. Using the frame 

containing the detected illegally parked vehicle which generated in the first stage, the 

feature point matching can keep track in the second stage until the target leaves the no 

parking zone. 
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Figure 24 i-LIDS dataset for Illegally Parked Vehicle Detection. The no parking zone are marked in red. 

 

However, as analysed in the previous chapter, the SIFT algorithm has defects in matching 

certain targets or under special conditions. In order to build feature descriptor subsets for 

targets with small areas and blurred targets, more feature points must be extracted. Even 

for targets whose features can be extracted normally, more key points mean that more 

accurate tracking can be established and can be adapted to more complex environments. 

However, this requirement is limited by the fact that the SIFT algorithm automatically 

selects the extreme points in the image pyramid when extracting feature points. 

Therefore, the dense SIFT method has been introduced to extract key points. This 

technology is a dense version of SIFT, which can quickly calculate the key points of the 

sampling at a pre-set density. The main idea is shown in Figures 25. 
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Figure 25 A patch has been used to slide on the image with a certain step size. This patch describes the sub-

sampling area, and the patch size is 4bins*4bins 

 

Dense SIFT effectively increases the number of feature points that can be used for matching. 

As shown in Figure 25, the ‘step size’ represent the density of extracted feature points. 

Feature points will be extracted according to the pre-set step size. When the step size is 1, 

all pixels will be extracted as feature points. The extracted feature points will be described 

in the same method as the original SIFT. 

Through a fixed step size, dense SIFT can be reused for multiple images of the same size. 

However, for the application scenario in this thesis, dense SIFT needs to select different step 

sizes to adapt to different sizes of illegally parked vehicles. Figures 26 and 27 show a 

comparison of a series of target vehicles with key points extracted under the dense sift 

algorithm and the same target using SIFT. 
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Figure 26 Images shows the extraction scene of feature points. The tracked target is highlighted. (a) The target 

is in the night scene (b) The obscured fuzzy target (c) The fully displayed target is in the daytime scene 

 

Figure 27 shows the key point extraction results of the above three targets. These three 

examples show that the dense SIFT method can achieve better key point extraction results 

than the SIFT algorithm in different sizes. Considering that a large number of key points will 

increase the calculation time during the matching process, the step size has been adaptively 

selected according to the size of the target to achieve a balance between the calculation 

speed and the matching result. During the operation of the system in this chapter, the size 

of the bounding box is regarded as the size of the illegally parked vehicle. By calculating the 

pixel size of the bounding box, the step size will be adaptively adjusted according to the size 

to maintain an appropriate number of key points. 



 98 

 

Figure 27 For the same target, there is a huge difference between the original SIFT and Dense SIFT when 

extracting feature points. (a) Pixel size of target (b) SIFT output (c) Dense SIFT output with step size 8 (d) Dense 

SIFT output with step size 5 

 

5.4 Illegally Parked Vehicle Tracking Under Occlusion 

The dense SIFT method changes the key point locations on the target and obtains more 

feature points for the matching to track. As the number of feature points available for 

matching increases, the performance should improve. Tracking occluded targets is the main 

challenge faced in the previous chapters. Many tracking methods, as in this thesis, need to 
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be robust against occluded objects to prove their performance. For example, Tian et al. [106] 

stated that occlusions are clearly a problem led to some low-correlation scores. The method 

proposed in this chapter attempts to overcome this problem. First of all, as discussion in the 

previous chapter, occlusion problems can be divided into the following categories, which 

can be analysed separately in this section: 

1. Partial occlusion 

2. Complete occlusion 

Examples of category 1 have been shown in the images in Chapter 4 (Figure 20). The SIFT-

based method in the previous chapter can be adapted to short-term or long-term partial 

occlusion, because the unoccluded part can provide feature points to match. The tracking 

can still work as long as these features can establish matching on the unoccluded part of 

vehicle. However, assuming that the light changes when the target is partially occluded or 

the target has few feature points due to blur, the matching feature points are likely to be 

less than the threshold G (defined in Chapter 4) and the tracking will fail. The method 

proposed in this chapter overcomes this problem. For illegally parked vehicles, the feature 

points are no longer autonomously selected by the SIFT algorithm, but intensively extracted 

by adaptively selected steps. Therefore, for the detected target, this method provides 

enough feature points when the target is partially occluded or blurred. Figure 28-29 shows 

the difference between Dense SIFT and SIFT when matching features of partially occluded 

targets. 
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Figure 28 Typical occlusion scene in the i-LIDS database, including some short-term partial occlusion. 
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Figure 29 The continuous change in the number of matched key points from frame 429 to frame 540. (a) The 

key point is extracted from the SIFT algorithm in Chapter 4, and the number of matched key points reaches the 

minimum value of 1 at frame 507. (b) The key point extraction is taken from the method proposed in this 

chapter 
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Compared to the SIFT algorithm, the method in this chapter significantly increases the 

number of matching feature points, especially when occlusion occurs. For occlusions like 

the one shown in frame 455 (Figure 28), the feature points that dense SIFT can extract will 

not be reduced by the occlusion. More importantly, the occlusion that occurred at frame 

508 almost completely covered the target vehicle. In this case, there is still a considerable 

number of matched points (change from 1 to 20) that can be obtained to ensure accurate 

tracking.  

The bigger challenge is the second type of occlusion, that is, complete occlusion. Hassan set 

a timer in [104] to keep track of the completely obscured target within P seconds. When 

the target is occluded by another stationary object, the algorithm will delete the previous 

target and track the new stationary target. In the proposed system, the timer has been 

abandoned to deal with occlusion. This is because setting the waiting time also means that 

even if the target leaves the ROI, the tracker needs to keep tracking in place within the 

waiting time. Therefore, a step was needed to deal with the situation where sufficient key 

points cannot be extracted when the target is completely occluded. Considering that the 

large-area occlusion and the appearance of the target leaving the ROI are the same at the 

level of system detection, it means that the number of matching feature points is less than 

the threshold G (the threshold has been set to less than the minimum number of matches 

in the case of partial occlusion). 

Therefore, a step was set up to verify whether the target is completely occluded. The 

intersection of the bounding boxes has been used to determine whether the vehicle is 

occluded. Assume that a scene with occlusion is shown in Figure 30. The rectangle 
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represents three cars. There are many ways to determine whether the rectangle (bounding 

box) intersects, for example, to determine whether any two sides of the rectangle intersect 

(referring to occlusion). However, this method has a drawback. When a rectangle is 

contained by another rectangle (when it is completely occluded), no edges are intersected 

but still meet the definition of intersection. For example, vehicles 1 and 2 are shown in the 

figure below. 

 

Figure 30 The bounding box intersection in different situations. The three rectangles respectively represent the 

vehicles in the scene. Two different occlusions are shown, namely the complete occlusion between vehicle 1 

and 2 and the partial occlusion between vehicle 2 and 3. In general, if the distance between the centre points 

of the two targets is greater than the sum of their length and width respectively, which means the occlusion 

has occurred. 
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Another method has been used to detect intersections, which is to compare the distance 

between the centres of the two rectangles in the x-axis direction and half the sum of the 

lengths of the two rectangles. At the same time, comparing the distance between the 

centres of the two rectangles in the y-axis direction and half the sum of the widths of the 

two rectangles. If the distance of the centre on the x-axis and y-axis is less than half of the 

sum of their side lengths, the condition of intersection is met. Formulated as follows: 

|𝑥01−𝑥02−𝑥11−𝑥12| < (𝑥02−𝑥01) + (𝑥12−𝑥11) 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 5 − 1 

 

And  

|𝑦01−𝑦02−𝑦11−𝑦12| < (𝑦02−𝑦01) + (𝑦12−𝑦11) 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 5 − 2 

 

If the above conditions are met at the same time, the area of the intersection area can be 

calculated: 

𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 = [𝑚𝑖𝑛(𝑥02, 𝑥12) − 𝑚𝑎𝑥(𝑥01, 𝑥11)] × [𝑚𝑖𝑛(𝑦02, 𝑦12) − 𝑚𝑎𝑥(𝑦01, 𝑦11)] 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 5 − 3 

 

𝐼𝑂𝑈 =
𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛

𝑡𝑎𝑟𝑔𝑒𝑡 𝑎𝑟𝑒𝑎
𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 5 − 4 

 

Since the bounding box coordinates of the illegally parked vehicles are fixed and clear, the 

Intersection over Union (IOU) of the intersection area can be calculated by using the 
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bounding boxes of other objects and the illegally parked vehicles for intersection detection 

(Equation 5-4). Considering that the irregular shape of the vehicle causes the bounding box 

to contain some non-vehicle pixels, the IOU was set to 80% by counting different size of 

occlusion. 

If the IOU is less than 80%, it means that the target is partially occluded, but also means 

that there are still enough feature points to be extracted. On the contrary, it means that the 

target is completely occluded, and the target's tracker will be frozen in place until the 

occluder moves to expose the target. Figure 31 and 32 show the effect of occlusion 

detection. The blocked part is marked by blue. 

 

Figure 31 Partial occlusion will not affect the collection of feature points. The intersection area will be marked 

as occluded and covered by a blue mask 
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Figure 32  It is a common situation in tracking that illegally parked vehicles are almost completely occluded. The 

intersection has been detected and marked by blue. 

 

5.5 Release the Tracker 

If the matched feature point of the tracked target is less than the threshold G, the system 

will trigger the detection of occlusion. If an occlusion occurs, the tracker will not be deleted 

even if the matched feature points are too few. During the duration of the occlusion, the 

tracker will always remain in the original position of the target. 

At the same time, considering that the SORT algorithm fails to track some targets, in some 

cases, the bounding box of the occluder cannot be given, as shown in the figure below. 
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Figure 33 Because the SORT algorithm fails to track the bus, it is impossible to detect the occlusion of the 

illegally parked vehicle. When the bus completely covers the car, the number of successfully matched feature 

points will approach 0, which will cause the tracker to be deleted 

 

Therefore, a background matching was introduced to keep the system from deleting 

tracking when there were unrecognised occlusions in the scene. 

If an image without any vehicle is defined as a background frame, it can be found that when 

the vehicle leaves the ROI, the no parking area and the background frame are almost the 

same (there may be shadows and different lighting). On the contrary, when there is an 

occlusion in the no parking area, the background frame and the area will not give any 

matched feature points. 
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Hence, a step of matching the target area with the background frame has been added to 

the system. This step will be triggered when the following two conditions are met at the 

same time: the number of matched feature points are less than the threshold G, and no 

occlusion is identified around the target. In this step, feature points will be extracted and 

matched for the background frame and the bounding box of the current frame. If the 

matching result is much higher than the matching result of the initial frame and the current 

frame, it means that the bounding box area of the current frame is more similar to the 

background frame (road surface). If it is not, which means that other objects are blocking 

the target. Figure 34 shows a typical case of distinguishing whether a vehicle has left or is 

blocked. 
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Figure 34 The matched feature points are represented by lines. All matches occur at the same position (target 

bounding box area) in different frames (a) Suppose that the bounding box area of the vehicle is matched with 

the same position in the background frame. Only one successful match occurs because the bounding box 

usually contains some non-vehicle parts (b) When the vehicle is completely occluded, it cannot match any 

similar feature points. (C) After the vehicle leaves the original position, the same road information can establish 

multiple successful matches 
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This step makes up for the inability to detect whether there is occlusion due to the defect 

of the SORT algorithm in target tracking, and also helps the monitoring system to achieve 

real-time tracker release. Compared with other methods that use a timer to deal with target 

occlusion, this system is more suitable for occluded target tracking. For example, for those 

occlusion events that are terminated by a timer, the proposed method can maintain long-

term tracking without releasing the target because the target cannot be detected. The 

above steps have played an important role in the target tracking process. The figure below 

shows the operating structure of the system. 

 

Figure 35 The framework proposed in this chapter for the tracking of illegally parked vehicles under occlusion. 

The tracking of the target will not be cancelled due to occlusion. Tracking will only be released when the target 

leaves the no parking zone, and this situation can be detected by the background matching function. 

 

5.6 Results and Discussion 

The proposed technique has been tested on three different databases. In the scenario of 

the i-LIDS dataset, the alarm is triggered 60 seconds after the event occurs. In other dataset 
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scenarios, the alarm is generated immediately when the vehicle is illegally parked. 

Considering that the step size of key point extraction with each target are different, the 

threshold G for the lowest match is chosen to use 10% of the maximum number of matches 

instead of a fixed value. This adaptive threshold G helps the system to accurately determine 

the occlusion status of the target, and it can also delete invalid trackers in time to achieve 

accurate event monitoring. This system demonstrates excellent performance under the 

frequent occurrence of various occlusions and any camera angle. For scenes with blurred 

targets, the proposed method in this chapter had a better performance, because compared 

with the original SIFT, the proposed method can extract more feature points on the blurred 

target for matching. The following three datasets have different camera angles, image 

quality, and lighting conditions. 

 

5.6.1 The I-LIDS Dataset 

The proposed method was tested on the i-LIDS dataset. The same video sequence was also 

used by the method discussed in the Chapter 3. These video sequences have a total duration 

of more than 6 hours and contain three different scenes at different times of the day, which 

contains very complex environmental conditions. For example, image movement caused by 

camera shake, overexposure caused by thunder and lightning, and target blurring caused 

by low quality analogue camera. Table 3 shows the results obtained from the video 

sequence. Among 105 real illegally parked events, the proposed method successfully 

detected 100 events, while the method used in Chapter 3 only detected 51 events. All 
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alarms were generated within 10 seconds after the target has been marked as illegally 

parked vehicle. The method achieves a 95% recall, but there were 17 false alarms, 

accounting for 14% of the total number of alarms, this was due to the object detection error 

in the YOLOv3 algorithm. Some non-vehicle targets (such as tree and shrub) have been 

identified as vehicles and tracked by the SORT algorithm. These objects have been classified 

as illegal vehicles by the system because they located around the ROI. Therefore, a 

technology is needed that can screen out non-vehicle targets without consuming a lot of 

computing power. The specific method has been discussed in the next chapter. 

In addition, four parked vehicle scenarios from the i-LIDS dataset were selected as the 

benchmark dataset for the AVSS (Advanced Video and Signal based Surveillance) 

conference. Table 4 shows the test results of this method on these four scenarios and 

compares it with other methods. The tracking images have been shown in Figure 36. The 

purpose of this test is to demonstrate the sensitivity of the proposed method to illegally 

parked events. Generally, faster response speed and timely tracking release can prove that 

the tracking system has better performance. The average error can be calculated by 

comparing the start and end time of the tracking with the ground truth, and the best 

tracking result is obtained compared with other results. Compared with other methods, the 

proposed method has the closest tracking result to ground truth 
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Video Name Duration 

(hh:mm:ss) 

Total Event True Positive False Positive False Negative 

PVTEA101a 01:21:29 26 25 0 1 

PVTEA101b 00:24:40 8 8 0 0 

PVTEA102a 00:51:56 18 18 0 0 

PVTEA103a 01:03:54 16 15 0 1 

PVTEA201a 00:18:50 4 3 0 1 

PVTEA202b 01:05:23 17 17 17 0 

PVTEA301a 00:15:29 3 2 0 1 

PVTEA301b 00:28:07 7 6 0 1 

PVTEA301c 00:27:09 6 6 0 0 

Total 06:16:57 105 100 17 5 

Table 3 Test results on the i-LIDS dataset. Compared with the test results in Chapter 3, F1 has increased from 

0.64 to 0.90 but there are still 17 false positive events which are due to the misdetection of the YOLOV3 

algorithm. 

 

Method Sequence Ground Truth Duration 

(sec) 

Obtained Results Duration 

(sec) 

Error 

(sec) 

Average 

Error   

(sec) 

Start 

Time 

End 

Time 

Start 

Time 

End 

Time 

Proposed 

Method 

Easy 02:48 03:15 00:27 02:47 03:18 00:31 4 4.25 

Medium 01:28  01:47 00:19 01:36 01:48 00:12 9 

Hard 02:12 02:33 00:21 02:14 02:34 00:22 3 

Night 03:25 03:40 00:15 03:25 03:41 00:16 1 

Bevilacqu

et al. [72] 

Easy 02:48 03:15 00:27 N/A N/A 00:31 4 4.33 

Medium 01:28 01:47 00:27 N/A N/A 00:24 5 

Hard 02:12 02:33 00:21 N/A N/A 00:25 4 
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Night* 03:25 03:40 00:15 N/A N/A N/A - 

Boragno 

et al. 

[107] 

Easy 02:48 03:15 00:27 02:48 03:19 00:31 4 5.25 

Medium 01:28 01:47 00:19 01:28 01:55 00:27 8 

Hard 02:12 02:33 00:21 02:12 02:36 00:24 3 

Night 03:25 03:40 00:15 03:27 03:46 00:19 6 

Lee 

et at. [71] 

Easy 02:48 03:15 00:27 02:51 03:18 00:27 6 6.25 

Medium 01:28 01:47 00:19 01:33 01:52 00:19 10 

Hard 02:12 02:33 00:21 02:16 02:34 00:18 5 

Night 03:25 03:40 00:15 03:25 03:36 00:11 4 

Guler 

et al. 

[108] 

Easy 02:48 03:15 00:27 02:46 03:18 00:32 5 6.75 

Medium 01:28 01:47 00:19 01:28 01:54 00:26 7 

Hard 02:12 02:33 00:21 02:13 02:36 00:23 4 

Night 03:25 03:40 00:15 03:28 03:48 00:20 11 

Venetiane

r 

et al. 

[109] 

Easy 02:48 03:15 00:27 02:52 03:16 00:24 5 9.33 

Medium 01:28 01:47 00:19 01:43 01:47 00:04 15 

Hard 02:12 02:33 00:21 02:19 02:34 00:15 8 

Night* 03:25 03:40 00:15 03:34 N/A N/A - 

Porikli 

[110] 

Easy* 02:48 03:15 00:27 N/A N/A N/A - 11 

Medium 01:28 01:47 00:19 01:39 01:47 00:08 11 

Hard* 02:12 02:33 00:21 N/A N/A N/A - 

Night* 03:25 03:40 00:15 N/A N/A N/A - 

Lee 

et at. 

[111] 

Easy 02:48 03:15 00:27 02:52 03:19 00:27 8 12.33 

Medium 01:28 01:47 00:19 01:41 01:55 00:15 21 

Hard 02:12 02:33 00:21 02:08 02:08 00:29 8 

Night* 03:25 03:40 00:15 N/A N/A N/A - 

Table 4 The results of the proposed method on the AVSS 2007 benchmark database. Compared with other 

methods that are also tested on the AVSS 2007 data set, the proposed method has the best performance, 

which is reflected in the smallest error time. The average error of 4.25 seconds is the best result currently 

available. Easy, Medium, Hard and Night refer to test videos in four different scenes and environments, and 

the difficulty of tracking increases sequentially. Figure 36 shows four video tracking examples. *: This item is 

not included in the average error calculation. N/A: The data is not available.  
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Figure 36 Shows the results of the proposed method on the AVSS2007 benchmark dataset. The dataset from i-

LIDS contains shadow changes, blurred targets and night targets. (a) PV Easy (b) PV Medium (c) PV Hard (d) PV 

Night 

 

5.6.2 Sherbrooke Video 

Sherbrooke's video is used to study the problem of target tracking in the city which is 

provided by Jodoin et al. [112]. Although the video was not specifically shot for the 

detection of illegal parking, the illegal parking events in the video can still be used for testing. 

In the video, an illegal parking event occurred with 5 partial occlusions and 1 complete 
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occlusion. The proposed method successfully monitored the event, and no false alarm was 

generated. This video provides tests under different camera angles from i-LIDS. After testing, 

it is found that the same thresholds and parameters as i-LIDS can be used in this test. There 

was only one true positive alarm generated in testing and no false alarm generated (100% 

recall and 100% precision). Figure 37 shows the tracked scene and the tracking results under 

occlusion. The tracked vehicle is highlighted by a white bounding box. 

 

Figure 37  The image shows the tracking scene of illegally parked vehicles from Sherbrooke video. The video 

contains 6 occlusion events and the target is very small and blurry. 

 

5.6.3 Sussex Daytime Video Dataset 

This method was also tested on the Sussex daytime video. This video was produced by 

Industrial Informatics and Signal Processing Research Group from the University of Sussex 

to track illegally parked vehicles. The total length of the video is 33 minutes and focuses on 

a busy highway with a roadside parking area. As a test, the parking area is defined as the 
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illegal parking area in this test. In the video, there are a total of 6 illegally parking events 

generated and accompanied by thousands of occlusions. During the testing on this video, 

all illegally parked vehicles have been tracked and both recall and precision reached 100%. 

Figure 38 shows an image from Sussex daytime video, where two tracked events are 

highlighted by a white bounding box. 

 

Figure 38 The images from the Sussex daytime video. All events are monitored and no false events are 

generated. 

 

5.7 Conclusion 

This chapter introduces a powerful method for tracking illegally parked vehicles, which 

solves one of the biggest challenges faced by this application, which is occlusion. Firstly, an 

extraction method based on adaptive selection of key points has been used to establish the 

feature description of the target, in which dense extraction was used to overcome the 

difficulties caused by blurred targets or occluded targets. Once the object has a large 
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number of feature points extracted, the brute-force matching method was still used to track 

the target. When the matching result of the target is significantly lower than the normal 

level, the method based on intersection detection will be used to determine whether the 

target has left the no parking zone or is blocked by another object. Research shows that the 

proposed method has a 95% recall under various occlusion conditions. 

The proposed method was tested on three datasets. A total of more than 7 hours of video 

recording traffic scenes in different locations and different environments were used to 

evaluate the performance of the method. Among 116 real events in all video sequences, 

the proposed method gave 111 alarms, and the obtained recall rate exceeded 95.6%, 

compared to 49% in the Chapter 3. At the same time, compared with the methods proposed 

in the previous chapters, this method produced 17 false alarms with a precision rate of 87%, 

compared with the 97% in Chapter 4 and 94% in Chapter 3. Since the method in this chapter 

does not include the recognition function of the detected target, tracking of non-vehicle 

targets in the no parking zone cannot be deleted. Another important performance that can 

be obtained through experimentation is that as long as the tracking starts, it will not be lost 

until it leaves the no parking zone. Compared with other methods, the proposed method 

does not generate a missed track. For example, the method of [104] produced 17 missed 

tracks on the same i-LIDS dataset. 

The methods discussed in this chapter and the previous two chapters are based on the 

target detection and classification results of the YOLOv3 algorithm. Therefore, in order to 

reduce false alarms caused by classification errors, new methods need to be added to 

improve the methods in this chapter. The next chapter highlights a method of screening 
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non-vehicle objects. Background subtraction technology will be used and designed to 

reduce computational cost to improve image processing speed and tracking effect under 

lighting conditions. 
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Chapter 6 The Illegally Parked Vehicles Tracking 

with Actively Selected Feature Points and 

Performance Evaluation 

6.1 Introduction 

In Chapter 2, Gaussian Mixture Model (GMM) technology is introduced as an object 

detection method in traditional target tracking methods, and then methods such as SVM 

are used to classify the detected objects. Nowadays, deep learning-based object detection 

technology can complete the detection and classification of objects in one step, which has 

led to less and less relevant studies using GMM and other background subtraction 

technologies for target tracking. However, compared with the bounding box generated by 

the deep learning algorithm, the target generated by the background subtraction is more 

accurate. Although the shape and size of each target are completely different, the bounding 

box will always contain many non-vehicle parts while marking the target area. Therefore, 

when dense key points are extracted in the bounding box area, these key points not only 

describe the features of the vehicle but also the features of the non-vehicle, as shown in 

Chapter 5. 

If the extraction of key points can be focused on the vehicle, it can firstly reduce the time 

required for feature point matching while ensuring accuracy, and secondly, it can help the 

system better adapt to tracking under conditions of severe lighting changes. This chapter 

introduces a novel actively selected feature points (ASFP) method that can accurately 

extract key points from the tracked object. Its main purpose is to use fewer key points to 
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accurately track the object and thereby reduce computational costs and adapt to lighting 

conditions. The key points will still be densely extracted but the position will be restricted 

to the target, instead of densely collected key points in the bounding box. The experimental 

results show that this method not only can better adapt to the environment of light changes 

than the previous method, but also has a significant increase in speed. 

 

6.2 Chapter Organisation 

This chapter is arranged in the following way. The ASFP method is analysed and discussed 

in Section 6.3. This section also highlights the differences between different background 

subtraction programs. Section 6.4 discusses the application of the ASFP method under 

changing lighting conditions, and gives examples and comparisons with other methods 

under the same lighting conditions. Section 6.5 describes how the proposed method 

response to the false positive events. Section 6.6 shows the test results of the proposed 

method on the dataset and gives a comparison between the method finally proposed in this 

thesis and other methods. A summary is given in Section 6.7. 

 

6.3 Key-point Extraction with Background Model 

This thesis is dedicated to proposing a method that can quickly and effectively monitor 

illegally parked vehicles. The previous chapters have proposed various methods to achieve 

this function step by step. However, as the extraction density of key points changes from 
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sparse to dense, the computational cost of the system also increases, and additional 

background matching also exacerbates this consumption. Therefore, in order to reduce 

computational cost and achieve faster processing speed, the selection of key points needs 

to be more precise, that is, to delete useless key points while ensuring a sufficient number.  

Both semantic segmentation and background subtraction technologies can help to achieve 

this goal. 

Considering the huge difference in execution time and memory usage between semantic 

segmentation technology and background subtraction technology, background subtraction 

was chosen to be introduced into this system. Compared with the semantic segmentation 

technology that requires a multi-layer convolutional neural network and a large amount of 

pre-training, the background subtractor provided by OpenCV can achieve fast and 

lightweight background subtraction and realise the required functions in this system. 

 

6.3.1 The Comparison of Background Subtractors 

There are currently four easy-to-use background subtractors provided by OpenCV, namely 

mixture of gaussians segmentation algorithm (MOG) [100], MOG2 [101], geometric multigid 

(GMG) [99] and k-nearest neighbours background segmentation algorithm (KNN) [98]. 

These four background subtractors can all realise part of the function of semantic 

segmentation technology, that is, the extraction of foreground objects (moving objects), 

and each has its own advantages. Figure 39 shows the test results of different background 
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subtractors on the same scene. The foreground areas have all undergone the same 

morphological processing. 

 

Figure 39 Moving targets are extracted by different background subtraction algorithms. The image shows a 

representative picture ranging from 300 to 390 frames. The binaries image uses white and black to represent 

the moving foreground object and the static background respectively. Different subtractors have different 

foreground object segmentation effects. 

 

Considering the purpose of the above background subtraction methods are detecting 

moving objects, not all subtractors are suitable for this system. When the target is stationary, 
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the algorithm will change the background model within a few frames to turn the target from 

the foreground to the background. Under normal circumstances, the illegal vehicle tracking 

algorithm in this thesis needs a short time (usually within a few frames) to wait for the 

bounding box to stop and trigger an alarm. Specifically, the tracker started to work after the 

target is stationary, but the process from moving to static usually taking few frames. Hence, 

when the vehicle is finally parked, the background subtractor is already set this vehicle to 

the background. In other words, there is a time gap between tracker and foreground. This 

problem can be solved by changing the update rate to keep the parked vehicle belonging to 

foreground more time.   

Marcomini et al. compared the precision rate and processing time of MOG, MOG2 and GMG 

in the context of vehicle segmentation in [113]. According to the comparison, it can be 

found that GMG has the worst segmentation effect and MOG2 has the fastest calculation 

speed. The research of Adinanta [114] and Trnovszký [115] proved that KNN has the best 

performance among the four subtractors. 

The test results shown in Figure 39 also prove the conclusions of the above research.  The 

MOG2 and KNN subtractors can reduce the update rate to slow down the time when the 

target turns from the foreground to the background when it is stationary. In addition, the 

MOG algorithm shadow detection is not perfect, even if it helps to restore the target 

contour to the original shape. 

In general, KNN has better accuracy and shadow detection capabilities with an excellent 

computing speed. Considering that the purpose of this chapter is to locate densely 
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extracted key points in the target area, the existence of shadows will interfere with the 

selection of key points. Therefore, KNN has been used and its output will help the system 

to accurately select key points. 

 

6.3.2 Precise Key Point Selection 

When the specific position and range of the target are obtained by background subtraction, 

the positions of key points can be actively selected instead of being uniformly distributed in 

the bounding box. The specific effect is shown in Figure 40. The system will detect the 

positions of all key points, and use the difference between the foreground target and the 

background on the binarized image to determine the key point category. Once it is found 

that the key point is located in a non-vehicle area, such as the road surface or shadow in 

the bounding box, the key point will be deleted. Through a test on all datasets which used 

in this chapter, the number of key points after deletion is 25%-40% less than before. 
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Figure 40 The key point extraction case comes from the i-LIDS dataset (a) shows the target being tracked (b) 

Key points extraction method used in Chapter 5 (c) The proposed method deletes all non-vehicle key points 

 

When the object turns from a moving state to a static state, the background subtraction 

cannot maintain this foreground object for a long time, even if reducing the update rate of 

the background model. Relevant research shows that some methods can be used to 

maintain a stationary target in the foreground. For example, [104] proposed a method 

called SHI (Segmentation History Image) to retain stationary pixels from the segmented 

stationary objects, so as to realise the detection of illegally parked vehicles based on 

background segmentation. 

However, considering that the method proposed in this chapter does not require the 

detection and tracking of illegally parked vehicles to be based on the background subtractor 

method, only the first frame after the target is stationary will be used to test for invalid key 

point deletion. This solves the problem that the feature points cannot be extracted after 

the foreground target becomes the background. 
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In addition, the proposed method also has good applicability for partial occlusion. Through 

the intersection detection described in Chapter 5, the system can calculate the ratio of the 

intersection area (IOU). If the ratio is between 0-80%, which indicates that the target is 

partially occluded, and the system will delete the key points in the intersection area as 

shown in Figure 41. 

 

Figure 41 (a) The image comes from the i-LIDS dataset showing a partially occluded scene (b) On the image 

after the background is subtracted, the occluded area can be deleted by using the intersection detection of the 

bounding box. (c) Extract key points for the entire bounding box area (d) The key points of the blocked area and 

non-vehicle area are removed 
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For the case where the matched feature points are less than the threshold G, namely the 

target is completely occluded or leaves the no parking zone, the solution in Chapter 5 is to 

calculate the IOU of the intersection area. If the IOU exceeded the threshold (80%), the 

target will be judged to completely occluded and the tracker will remain in place. Otherwise, 

it means the target has left the no parking zone. 

However, when tracking targets in actual scenes, the target detection module based on 

YOLOV3 and SORT algorithms (the method proposed in Chapter 3) do not always provide 

complete tracking results for all vehicles. For example, when two vehicles were close to 

each other, the system may lose tracking. According to the statistics given by the SORT 

algorithm in [17], 30% of the targets have not been tracked for at least 20% of its life span, 

and there are 1764 frags (number of fragmentations where a track is interrupted by miss 

detection) in the MOT benchmark sequences. The same problem occurs in this thesis. 

Therefore, a background matching method has been proposed in Chapter 5 to solve it when 

the intersection detection fails and the matched feature points are less than the threshold.  

The ensuing problem is that the calculation cost of the system increases and the processing 

speed is reduced because the feature point matching is performed one more time. The 

processing speed for the i-LIDS dataset is only 7 frames per second. And the background 

frame needs to be manually selected to meet the condition that no vehicle is illegally parked 

in the screen. For different time periods of the same scene, such as day and night, the 

background frames also need to be selected separately. These conflicts with the goal of this 

thesis to realise the automatic detection of the system. 
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In order to reduce the computational pressure of the system, the method proposed in this 

chapter makes full use of the existing data for analysis and gives a simpler detection method. 

As shown in Figure 42, when the illegally parked vehicle is completely blocked, the number 

of matched feature points will be less than the threshold G, but a new foreground object 

(occluder) appears in the target area. When extracting the key points of the target area, the 

proposed method will extract the key points from the occluder. Since in the binaries image, 

the occluder and the illegally parked vehicle belongs to the foreground target (shown as the 

white area in Figure 42b), these key points will not be removed. 

 

Figure 42 A typical completely occluded event from the i-LIDS dataset (b) Extract key points from the original 

target area and remove all key points belonging to the background 

 

In contrast, as shown in Figure 43, when the target leaves the no parking zone, the original 

tracking area appears as a background area in the background subtraction screen, and all 

key points extracted in this area will be removed. 
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Figure 43 (a) The illegally parked vehicle leaves the no parking zone (b) The key points cannot be extracted 

because there is no foreground object in the original tracking area (red bounding box) 

 

In summary, the proposed method is based on background subtraction to modify the 

method in Chapter 5, which improves the calculation speed of the system (from 7fps to 

12fps) and reduces the consumption of feature point matching. 

 

6.4 Tracking Under Lighting Changes 

Tracking under changing light conditions is another challenge faced by this ASFP method. 

For systems such as the monitoring of illegally parked vehicles, it is necessary to adapt to 

tracking under drastic changes in light. Changes in light will not only lead to the appearance 

of shadows, but also affect the appearance of the target, especially for long-term events 

that may last for several hours. This thesis uses the SIFT feature descriptor-based matching 
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method and utilises the illumination invariance of the SIFT descriptor, which performs well 

in the case of light changes. In addition, the removal of non-vehicle key points through the 

background subtraction method also significantly enhances the system's robustness to 

illumination changes. This is because, compared to the key points on the road or the 

background, the key points from the vehicle are more likely to reflect the feature of corner 

points, edges and extreme points. These key points have relatively better stability when the 

light changes. For example, matching the feature points of the vehicle and the road under 

the same lighting conditions, it can be found that the matching result of the vehicle has 

experienced a change from 130 to 90, while the matching result of the road has dropped 

from 36 to 3. 

Figure 44 shows the proposed method tested on a video with obvious light changes, and 

the results are shown in Figure 45. Figure 45(a) shows the number of matched feature 

points and the number only drops when occlusion occurs. The dramatic change of light can 

be obtained by observing the fluctuation of the grey value. Specifically, in order to reflect 

the change of light, the average grey value of the vehicle area has been calculated and 

counted, and the change of the average grey value is consistent with the change of lighting 

conditions. Figure 45(c) shows the proportion of matched feature points to all extracted 

feature points. Through this ratio, it can be found that the tracking performance is very 

robust to lighting. 
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Figure 44 The image shows the change in lighting conditions. The tracked target is marked by a red bounding 

box. This video sequence shows dramatic changes in lighting within a minute 
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Figure 45 The matching result with lighting changes. (a) The lighting changes of the scene can be shown by the 

changes of the average grey value. It can be seen that compared to the highest value of 200, the grey value 

drops to 40 when the environment becomes dark. (b) In the scene of light changes but the ASFP method 

maintains a stable tracking. The value of matching only decreased due to occlusion. (c) The proportion of 

matched feature points to the total feature points can also be used to judge the stability and robustness of the 

tracking. 
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The ASFP method also tested on the video sequence as shown in Figure 46. It can be clearly 

seen through the image that the change of light causes the appearance and disappearance 

of shadows. At the same time, the target experienced multiple complete occlusions during 

the tracking period, which made tracking more difficult. 

Figure 47 shows the test results of the proposed method on the video sequence. The first 

thing to be sure is that the proposed method keeps track under light changes and occlusions. 

At the same time, compared with the SIFT-based and the dense SIFT-based method 

proposed in previous chapter, the method proposed in this chapter has better tracking 

results. 

Table 5 shows the comparison between the proposed ASFP method and the other two 

tracking methods based on edge [104] and colour [116]. The running average variations in 

matching of three methods has huge difference. It can be seen from Table 5 that the 

matching results in this chapter have achieved better performance than the other two 

technologies, especially when the light changes drastically. 
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Figure 46 The image shows the dramatic lighting changes from 900 to 1700 frames. The tracked target is 

marked by a red bounding box 
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Figure 47 (a) This line chart records the matching results of the three methods proposed in this thesis from 900 

frames to 1700 frames. Among them, the three methods have undergone illumination changing and occlusion 

together. (b) This line chart indicates the change of lighting by showing the average grey value of the overall 

image 
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Frame Number Proposed method Edge energy tracking 

[104] 

I-MCHSR tracking 

[116] 

900 100% 88.54% 95.68% 

1200 100% 83.43% 76.06% 

1400 100% 78.51% 71.89% 

1700 86.30% 67.54% 60.09% 

Table 5 Three types of tracking results of illegally parked vehicles based on different features. The data of Edge 

energy tracking and I-MCHSR tracking are obtained by [104] and [116], respectively. 

 

6.5 False Positive Events Removal 

According to the dense SIFT based tracking results shown in Table 3, a total of 17 false 

positive alarms were generated in a total of 6 hours of video sequence. YOLOv3 algorithm 

as the detection module provides all vehicle targets to tracking system. Therefore, once the 

false positive alarm occurs, it can be concluded that the YOLOv3 algorithm gives an incorrect 

detection result. As shown in Figure 48, the YOLOv3 algorithm incorrectly detects non-

vehicle objects.  
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Figure 48 False positive events caused by failed detections. This is a test result that appeared in the previous 

chapters and contained a false positive event. This error is due to the YOLOV3 algorithm mistakenly 

recognizing a street light and vehicle as a truck. 

 

Since YOLOv3 was used to classify objects, in some cases, non-vehicle objects will be 

classified as cars, which leads to the algorithm to extract key points in this area. In the 

previous chapters, the deletion of the tracker requires feature matching between the 

background frame and the current frame to determine whether the target has left the no 

parking zone. For the misidentified non-vehicle target, the algorithm will recognise it as still 

in place, even if the matched key point is lower than the threshold G. For example, Figure 

48 shows a typical false positive event from the test results in Chapter 5. 
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In this chapter, the proposed ASFP method solves this problem and uses foreground targets 

to detect this type of event. Through the observation and analysis of all false positive events, 

it can be found that the number of matched feature points of these false positive events 

will be very small (very close to 0). This is because the feature points extracted by this 

system will be filtered by foreground objects. All feature points belonging to the background 

will not be used for matching (see section 6.3.2). Therefore, when the detection results of 

these non-vehicle objects which belonging to the background appear in the screen, the 

system will delete these false positive detections based on the number of feature points. 

 

 6.6 Results and Discussion 

The proposed technology was tested on two different datasets and divided into two 

scenarios: illegally parked vehicles on crowded roads and tracking targets that lasted from 

daytime to dusk accompanied by occlusion and illumination changes. In the former scenario, 

the alarm event is generated after the target is stationary in the ROI for more than 60 

seconds. The results have been compared with other advanced methods from the literature, 

and it was found that this method obtained state of the art results. In addition, through 

testing on the latter dataset, the proposed method showed good robustness to light 

changes and occlusion conditions. The running speed and computing cost have been 

optimised and improved. Through testing, it was found that the proposed method can run 

on PC with an Intel Xeon(R) CPU E5-1620 V3 running at 3.50 GHz, NVIDIA Quadro K4200 and 

with 15.6 GB RAM at a speed of 12 frames per second.  This speed is calculated after testing 
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all videos. Compared with the original YOLOV3 algorithm (78fps) and SORT algorithm 

(260fps), the speed of proposed system has been significantly reduced. This is firstly 

because the tracking module based on feature point matching reduces the computing 

speed, and secondly because the platform running the system cannot provide sufficient 

computing power. This speed can be higher for more powerful computer hardware, such as 

NVIDIA 3080 GPU card and Intel I9 CPU. Secondly, the lack of code optimization is also the 

reason for the unsatisfactory speed. Since the program involves the combination of multiple 

modules and parallel operations, a better optimization can speed up the running speed of 

the program.  

For example, [125] provides a good idea to run the SIFT algorithm on the GPU to improve 

the speed of the program. The research of Blaine et al. found that the SIFT algorithm run 

and optimized by GPU can reduce the computational power consumption by 87%. 

According to the test of the YOLOV3 algorithm, it can be found that the YOLOV3 algorithm 

that runs alone on this PC platform can reach a speed of 18-20fps. Considering that the 

largest computational power consumption of this program occurs in the target detection 

section, if other section can be optimized, the running speed of the entire program can 

eventually be very close to 20fps. 

In addition, the proposed method is always accompanied by defects caused by the use of 

the YOLOv3 algorithm. In detail, because there is no regional sampling, YOLOV3 has a good 

performance on global information, but it performs poorly on small objects. Therefore, 

once very small vehicles and extremely dense targets cannot be detected, tracking failures 

will be unavoidable. In the multi-object tracking stage, the SORT algorithm does help the 
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system establish the target tracking and digital ID, but as introduced in section 3.7, the 

purely coordinate-based target tracking algorithm has certain limitations. Relying only on 

the target coordinates to correlate the same target in the previous and subsequent frames 

is less effective in some situations. Therefore, the proposed method uses feature point 

matching to avoid this problem. 

6.6.1 I-LIDS dataset 

The method was first tested on two sets of parked vehicle datasets. Each set of video 

sequences contains different scenes and different times, covering the increasingly worse 

tracking environment. The first set of video sequences contains a series of short events, and 

the video length exceeds 6 hours. The second set contains multiple long-term events (5-15 

minutes each). In these two sets, the alarm is generated after the vehicle is stationary in the 

parking violation area for 60 seconds. Table 6 shows the result obtained from the first set. 

Among 105 real events, the proposed method successfully detected 100 of them, and these 

alarms were generated within 10 seconds, which fully met the official requirements of i-

LIDS. The overall recall rate exceeds 95%. At the same time, no false positive alarms were 

generated compared with the method in the previous chapter, there were 17 false alarms. 

This is because all non-vehicle targets have been filtered. At the same time, the overall 

frame rate of the system reached 12fps. The proposed method is also compared with other 

technologies, as shown in Table 7. It can be seen that the system can detect illegally parked 

vehicles more accurately than other methods. 
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Video Name Duration 

(hh:mm:ss) 

Total Event True Positive False Positive False 

Negative 

PVTEA101a 01:21:29 26 25 0 1 

PVTEA101b 00:24:40 8 8 0 0 

PVTEA102a 00:51:56 18 18 0 0 

PVTEA103a 01:03:54 16 15 0 1 

PVTEA201a 00:18:50 4 3 0 1 

PVTEA202b 01:05:23 17 17 0 0 

PVTEA301a 00:15:29 3 2 0 1 

PVTEA301b 00:28:07 7 6 0 1 

PVTEA301c 00:27:09 6 6 0 0 

Total 06:16:57 105 100 0 5 

Table 6 The proposed method is tested on video sequence from i-LIDS dataset. (also used in Chapter 3 and 5) 

 

Algorithm Total 

Events 

True 

Positive 

False 

Positive 

False 

Negative 

Precision Recall F1 

Ours-

Chapter 3 

105 51 3 54 0.82 0.49 0.61 

Ours-

Chapter 5 

105 100 17 5 0.85 0.95 0.90 

ASFP 

method 

105 100 0 5 1.00 0.95 0.97 

Hassan[10

4] 

105 99 18 6 0.84 0.94 0.88 

Jo[78] 105 93 N/A N/A 0.89 0.89 0.89 
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Fan[117] 105 89 8 N/A 0.91 0.84 0.87 

Albiol [81] 105 N/A N/A N/A 0.98 0.96 0.97 

Table 7 The proposed method is compared with others. N/A: Data is not provided from the author of the 

technology 

 

The proposed method tested the detection and tracking results of long-term events in the 

second set from the i-LIDS dataset. Compared to the short-term events of the first set 

(average of 2-3 minutes per event), long-term events require more powerful performance 

to keep tracking. Especially some blurred targets can only be detected by the YOLOv3 

algorithm for a few frames. In fact, the proposed method is robust to poor target detection 

results. During this period, complex light changes and frequent occlusion have stricter 

requirements for tracking. Through the test, all events from the second set have been 

successfully detected and tracked, and no false alarms have been generated. The overall 

results of the proposed method are shown in Table 8. 

Video Name Duration 

(hh:mm:ss) 

Total Event True Positive False Positive False Negative 

PVTEN102d 00:19:43 1 1 0 0 

PVTEN201a 00:29:56 2 2 0 0 

PVTEN201b 00:30:00 1 1 0 0 

PVTEN201c 00:20:05 2 2 0 0 

PVTEN201d 00:19:54 2 2 0 0 

Total 01:59:38 8 8 0 0 

Table 8 Results from long-term events testing. The proposed method passed the test very well and did not 

produce any errors or failures 
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The Figure 49-56 show the tracking results of the proposed method on a series of videos 

from the i-LIDS dataset. 

 

 

 

Figure 49 Tracking from night events. Both targets can be accurately detected and tracked, including an 

blurred target. 
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Figure 50 Tracking under completely occlusion. Even if the target is almost completely occluded, the tracking 

remains stable. 

 

Figure 51 Tracking in low light environment at night. It can be seen that the lighting conditions for the scene 

are very poor but still cannot interfere with the tracking of the target. 
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Figure 52 Tracking under partial occlusion. The unobstructed part of the target can provide enough feature 

points for matching. 

 

Figure 53 Tracking on rainy days, including a blurred target and refraction of light. The environmental 

interference in this scenario is more complicated, which puts higher requirements on the robustness of 

tracking. 
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Figure 54 Tracking in rainy days, including a half-displayed target and a blurred target. One of the targets is 

almost completely occluded, and the system can only detect one matching feature point. 

 

Figure 55  Tracking of two targets which close to each other. In this case, the YOLOV3 algorithm can easily fail 

to detect because they are too close to each other. 
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Figure 56 Tracking under light changes. The target is far away from the lens and blurry, so 409 matched 

feature points can provide very robust tracking. 

 

6.6.2 Day to Dusk Video 

The above testing shows the tracking performance of various events under a short-term 

light changing. In order to test the tracking effect of the proposed method on the target 

under the completely changed background environment, a video dedicated to this purpose 

was made. As shown in Figure 57, the target area was recorded from 10 am to 6 pm. During 

this period, the target experienced a change of light from day to dusk, accompanied by the 

occlusion of the people passing by. Through testing, it can be found that the proposed 

method does not occur target loss during the event and keeps tracking stable all the time. 
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Figure 57 the image comes from a fixed position from 10am to 6pm. (a) target vehicle parked at 10am(b)target 

blocked by window, this situation can be seen as occlusion event (c) the strong light (d)-(e) weak light (f) target 

vehicle parked at 6pm. 
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6.7 Conclusion 

Based on the method proposed in Chapter 5, an ASFP method proposed in this chapter that 

can accurately select the location. The focus is to improve the robustness of the tracker to 

light changes and occlusion conditions, and improve the processing speed of the system. 

Changes in the tracking environment usually bring great challenges to the system, for 

example, when the tracked object goes through different time periods of the day, its 

appearance changes will cause the tracking to fail. The ASFP method overcomes these 

challenges. The traditional but efficient background subtraction algorithm has been used to 

extract the illegal target from the background, by using the position of the pixels in the 

foreground area to delete the key points that were not related to the target, and the dense 

SIFT method ensured sufficient key points for matching. The system was tested on videos 

from different datasets, and the state of the art results were achieved while maintaining 

the computing speed of 12fps (7fps in Chapter 5). 
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Chapter 7 Conclusions and Future Work 

7.1 Conclusions 

This thesis is dedicated to the research and development of a reliable and efficient parking 

vehicle monitoring system, which can be used for the detection and tracking of illegally 

parked vehicles. In the past, many studies have proposed a variety of methods for the 

monitoring of illegally parked vehicles. Due to technological progress in the past decade, 

especially the proposal of target detection and multi-object tracking algorithms 

represented by deep learning networks, more powerful algorithms can now be used to 

achieve various image processing functions more accurately. Considering the importance 

of parking vehicle monitoring, this thesis proposes a method that uses a combination of 

deep learning detection and key point matching. 

This research focuses on how to keep tracking of illegally parked vehicles in different 

environments and scenarios. This thesis that introduces this research is divided into four 

progressive steps to complete the desired results. For the specific implementation process, 

please see the past chapters. 

The first step of the project is to establish an illegally parked vehicle detection module, 

which is introduced in Chapter 3. A vehicle detection framework based on the deep learning 

algorithm YOLOv3 and the SORT algorithm is established. All detected vehicles are classified 

as illegal vehicles and others through their position and speed judgment. If a stationary 

vehicle is found in the no parking zone, an alarm will be generated and the target will be 

marked by a bounding box. However, even if the target is identified as an illegally parked 
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vehicle, the corresponding tracking cannot be maintained during the event. This is because 

the MOT based tracking cannot continuously track the target. This chapter focuses on the 

fact that the surveillance system has great defects in the tracking of targets, which is caused 

by the inability of the SORT algorithm to continuously track the target. However, it can be 

observed that the target detection module based on YOLOv3 algorithm can well realise the 

recognition of the target, and the target state judgment module based on position and 

speed can classify the recognised vehicle very well. Although the proposed method achieves 

a precision rate of 94%, more than 50% of the targets are not tracked (49% recall), indicating 

that the method cannot adapt to the work in the real scene. In subsequent chapters, the 

method of key-point matching will provide a more powerful solution. 

Chapter 4 and Chapter 5 discuss the tracking method based on key point matching which 

can be used in traffic scenes. Both chapters use SIFT feature descriptors as the basis for 

establishing tracking matching. Taking into account that occlusion will cause the global 

features of the detection area to change, in comparison, the SIFT feature is a local feature, 

which makes it robust to occluded targets. But on the other hand, the number of key points 

determines the tracking effect of the occluded target. Especially for occluded targets, only 

a few key points can be successfully matched. Taking these conditions into account, the 

feature points need to be collected intensively to ensure that the match can be established 

under extreme conditions. In addition, the completely occluded target also needs to be 

distinguished from the target leaving the no parking zone. 

Chapter 4 mainly uses sparse methods to extract SIFT feature descriptors. The method from 

Chapter 3 provides the first frame of the detection result and state judgment of the illegally 
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parked vehicle and the identity ID. Since the extraction of feature points needs to separate 

the corner points, edges, and extreme points of the target, when the target is occluded, a 

large number of key points will be lost, and the matching will fail. Therefore, the occluded 

target will not be tracked very stably. For the matching of feature points, the well-known 

BF matching method is selected, and the output matching results will be used as the basis 

for tracking. When the number of successfully matched feature points exceeds the 

threshold, it indicates that the target is still in place. The method was tested on 21 video 

sequences and achieved an overall recall rate of 84.8% in a total of 48 real events. It can be 

seen from the results that the main challenge faced by this method is the inability to extract 

enough feature points for matching due to the blurred target. Secondly, a large area of 

occlusion will lead to a too low matching success rate. Although this method uses a timer 

to retain the tracker in the case of a short-term matching failure, the release of the tracker 

when the target leaves the no parking zone is affected and cannot even be deleted. 

Considering that these are the most common problems in illegal vehicle monitoring, the 

next chapter proposes a more powerful key point extraction method, which can track the 

object when the target is completely occluded and will not interfere with the release of the 

tracker. 

In order to adapt to complex road scenes, the key point extraction method based on dense 

SIFT is used in Chapter 5. The proposed extraction method can not only accurately extract 

effective key points when the target is partially occluded, but also has a good performance 

for fuzzy targets and small targets. Then the method of intersection detection is used to 

determine whether the target has left the no parking zone. Experimental results show that 
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the proposed method can obtain an overall recall rate of 95.6% even under frequent 

occlusions. In more than 7 hours of video, the method tested the tracking performance in 

different scenes and different camera angles. By comparing the results with the previous 

chapters, this method significantly improves the performance of the monitoring system. 

It can be seen from Chapter 4 and Chapter 5 that although the SIFT feature descriptor has 

illumination invariance, a certain degree of illumination robustness can be guaranteed. 

However, considering the complex scene where the event occurs, this method needs to be 

improved for the scene where the light changes. As we all know, background subtraction as 

a traditional motion detection method has a good performance on moving targets 

extraction. Since the extraction of the foreground target is based on the pixel-scale 

differential detection, compared to the bounding box generated by the YOLO algorithm, the 

foreground target output by the background subtraction method has a contour close to the 

real target. By reducing the update frequency of the background model, this method can 

also continuously output the detection result when the moving target becomes stationary. 

The main motivation of Chapter 6 is to track illegally parked vehicles steadily in scenes with 

changing lighting, especially the system needs to be suitable for tracking such as from day 

to night. And considering the effect of actual use, the computational consumption of the 

system needs to be reduced. The idea is to select key points more accurately while keeping 

enough key points for matching. Using the foreground target area detected by background 

subtraction, all feature points unrelated to the tracked vehicle will be removed. The 

proposed ASFP method has been evaluated in different real scenarios. Experimental results 

show that the ASFP method achieves the best tracking results under illumination changes 
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with a relatively small number of feature points (compared to the number in Chapter 5), 

but the speed is improved. 

The comparison of the methods proposed in Chapter 3,5, and ASFP on the same dataset is 

shown in the following table and contains the test results of other algorithms on the dataset. 

 

Algorithm Total 

Events 

True 

Positive 

False 

Positive 

False 

Negative 

P R F1 

Chapter 3 105 51 3 54 0.82 0.49 0.61 

Chapter 5 105 100 17 5 0.85 0.95 0.90 

ASFP 

method 

105 100 0 5 1.00 0.95 0.97 

Hassan 

[104] 

105 99 18 6 0.84 0.94 0.88 

Jo [78] 105 93 N/A N/A 0.89 0.89 0.89 

Fan [117] 105 89 8 N/A 0.91 0.84 0.87 

Albiol 

[81] 

105 N/A N/A N/A 0.98 0.96 0.97 

Table 9 Tracking performance and comparison with I-LIDS dataset. These results show comparisons between 

all versions of the proposed method and other methods. P: Precision rate. R: Recall rate. F1: A measure that 

combines precision and recall.  
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7.2 Future Work 

The method proposed in this thesis can be further improved to try to obtain broader 

application. The method based on deep learning detection and feature point matching can 

provide a recall rate more than 95%. Nevertheless, in some cases, a target that is too small 

may cause the detection of the object to fail. Therefore, additional target detection 

modules can be deployed to deal with the missed illegal targets. For example, the target 

detected by the background subtraction technology and semantic segmentation can also 

help the algorithm to make up for the failed target. Such methods may require a more 

powerful processing platform, because the output results of such methods need to be 

processed in the shortest time. In addition, the SIFT feature descriptor is used in this thesis 

because of the robustness of the feature to light. At the same time, feature descriptors such 

as SURF [26], DAISY [118] and ORB [31] can also achieve the similar functions of SIFT. In 

addition, based on the deep learning, many states of art descriptor can also provide more 

robust matching, such as the SuperPoint [119] and ContextDesc [120]. The high-speed, 

dense extraction and other characteristics of these descriptors may be very useful for this 

topic. 

The work of this thesis only focuses on the monitoring of illegally parked vehicles. In fact, 

using the YOLOv3 algorithm can detect more than 80 kinds of objects, this research can be 

applied to more scenes to track different objects of interest. For example, in the sensitive 

area intrusion detection, abandoned baggage detection and other fields, this method can 

provide a good monitoring effect. For these scenarios that require continuous monitoring 
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for 24 hours, mistakes in manual monitoring can lead to very serious results. This research 

is dedicated to realising automated monitoring in fixed scenarios, which can make up for 

mistakes in manual monitoring. 
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