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Summary

Human activities recognition finds numerous applications for example in sport training,
patient rehabilitation, gait analysis and surgical skills evaluation. Wearable sensing and
Template Matching Methods (TMMs) offer significant advantages compared to manual as-
sessment methods as well as to more cumbersome camera-based setups and other machine
learning (ML) algorithms.

TMMs require less data for training than other ML methods, they are low-power and
therefore suitable for integration on wearable sensor. They compute a sample-by-sample
distance between two time series. When applied to gestures sensors data, this even enables
a richer and more movement-specific assessment and feedback. However, TMMs lack of a
standard training procedure.

In this thesis, we introduce an innovative evolutionary training algorithm for TMM that
not only can maximize recognition performance, but it can also prefer power-minimisation
by reducing the TMM’s computational cost with a configurable trade-off. We exhibit that
a reduction is even possible without sacrificing recognition performance by exploiting the
long-established concept of “time warping”. We demonstrate that our method is suitable
for a wide variety of raw data as well as processed, fused and encoded sensor data.

We present a new original multi-modal, multi-user dataset of beach volleyball move-
ments that allowed to evaluate our training methods on a real-case of sport training
actions. Moreover, the collection of this dataset helped to generate a set of guidelines for
the collection of movement data in the wild, using wearable sensors.

We introduce a 3D human model that can be animated through inertial wearable
sensors data for troubleshooting, movement analysis and privacy-safe annotation of human
activities. Finally, through a case study on a dataset of drinking actions, we demonstrate
how TMM can improve the quality of a badly annotated but highly valuable dataset.
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Chapter 1

Introduction

Activity recognition is the procedure of spotting and identifying human activities from a

certain source of data. We consider activity anything performed for a purpose by a person.

Example of activities can be “consuming a meal”, “performing a surgery”, “completing

a workout”. Often, an activity is defined as composition of a finite set of shorter actions

performed by a person. We consider an action or a movement anything that is performed

by a user between two clear starting and ending moments. Example of actions (or move-

ments) are “drinking from a cup”, “blinking” or “performing a push-up”. When an action

has communicative purposes is called a gesture.

The evolution of wearable and ubiquitous computing has enabled the sensing and

recognition of human activities and actions through small and low powered sensors. Sens-

ing and automatically recognize human actions has important applications in healthcare,

sports, fall detection, just to cite a few [1].

Human activity recognition (HAR) and more specifically action recognition is a prob-

lem of pattern recognition where patterns typical of movements of interest need to be

identified in time series data originating from sensors [2]. This is an important field with

a large number of applications with high societal benefits, such as support for impaired

people [3], skill assessment and behaviour analysis [4, 5, 6], human-computer interactions

[7, 8].

Activity recognition from wearable sensors data has also been deployed in sport move-

ment analysis [9] and athletes training [10], surgical skills evaluation [11, 12] and training

[13], in patients rehabilitation [14], in human motion analysis [15], and in gait assessment

[16].

Templates matching methods (TMMs) are algorithms compares a prototypical tem-

plate with an incoming stream of data in order to find a match and therefore they are a
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very suitable solution for HAR. They can have comparable performance to other machine

learning approaches with the advantage of requiring less training data [17]. Moreover,

they can be used to extract richer information during the classification: for example, it

is possible to use them to measure the distance in centimetres between two movements

by using the right encoding [III]. This is important in sports performance assessment or

skills assessment.

In addition, TMMs can have low computational complexity thanks to dynamic pro-

gramming implementation [18], which enables their implementation in devices with limited

computational capabilities, such as battery operated devices and miniature embedded sys-

tems. They have been integrated in a wide variety of low-power applications: healthcare

[19, 20], Internet-of-Things embedded systems [21], anomaly detection in manufacturing

[22], low-resource speech recognition [23], wearable computing [24], and human activity

recognition (HAR) [17], of which the last two are the applications we consider in this

thesis.

In wearable computing, TMMs have been used for human activity recognition, both

to performing crisp detection of pattern [25, 26], as well as quantifying similarity between

patterns. The latter can be used for skill assessment as measure of the the ability of an

entity (e.g. a person or a robot) at performing a specific assignment.

1.1 Motivations

In this thesis, we are interested in activity and movements recognition using wearable com-

puting and, more specifically, we look at the challenges of power-aware action recognition

using Template Matching Methods (TMMs).

Even though other machine learning approaches, such as deep learning, have showed

to achieve excellent performance in many wearable computing scenarios [27, 28, 29], the

nature of this field, which relies on miniature battery operated embedded devices [30, 31,

32, 33], puts an onus on advancing low-power yet robust pattern recognition algorithms

suitable for embedded devices.

Moreover, methods such as deep learning provide only a classification of activities

without being able to explain the difference between two movements. Instead, TMMs

compare a prototype signal to the incoming data stream such as time series originating

from motion sensor and provide a matching score at each time step. This sample by sample

similarity measure enables a more granular analysis of the movements enabling additional

application of the recognition, for example for skill assessment.
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TMMs have been demonstrated effective for action recognition [34]. More specifically,

in this thesis, we selected Warping Longest Common Subsequence (WLCSS) as TMM

for its robustness against movements variation and low-complexity [26], which make it

suitable candidate for embedded application such as wearable computing platforms [35].

However, WLCSS, and more generally any TMMs presented to date, presents the main

challenge of lacking of a standard training procedure.

1.2 Aims

• We aim at creating a training methods for TMMs that would maximize recognition

performance. Because of the nature of the field of wearable computing, we also

want this algorithm to be power-aware in order to reduce the computational cost

of template matching based recognition whenever the application warrants it (e.g.

need for long battery life outweighs needs for highest accuracy)

• While TMMs have been selected for their runtime low-complexity, the training pro-

cess can be performed offline and therefore it can leverage high performance architec-

tures, such as modern multi-core CPU and GPU. We aim at accelerate the training

procedure by exploiting such architectures.

• We aim at evaluating our methods on a dataset of activities and movements that

would ultimately profit from skill assessment, such as a sport application. We focus

primarily, but not only, on beach volleyball serve movements. Beach volleyball is

a sport that comprises a limited set of very different basic movements (serving,

passing, hitting) that can be combined during a game between two teams of two

players. Every basic movement can then have multiple variation resulting in different

outcomes in the game. In this work, we focus on the serving action because i) it is

the first movement of every rally which means it can greatly affect every consecutive

action; ii) it is not affected by any previous action of the game, allowing players to

have full control and freedom in performing the movement. Performing a good serve

can make a significant difference between winning and losing a point, by putting

the pressure on the opponent from the first movement of the rally. Despite being a

popular sport, there are no publicly available dataset of beach volleyball movements

collected using wearable sensors.

• We also aim at extensively evaluate our methods on different set of actions and

sensors modalities, therefore we also need additional annotated datasets. We aim
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at identifying datasets suitable for activity and movement recognition, by selecting

some of those proposed in the wearable and ubiquitous computing community. We

aim at selecting several application scenarios, different sensor modalities and diverse

sensor fusion methods.

• Due to possible quality issues that can affect datasets such as bad and missing an-

notation, we aim at developing methods to help identify, correct and recover dataset

with such problems before to apply our methods. Hence, we aim at creating visual-

isation tools that would allow us to analyse the movements data in order to possibly

fix these issues. When it is not possible to deploy visualisation tool, e.g. because

the inadequacy of some sensor modalities, we need methods to automatically recover

the correct annotations for a dataset.

1.3 Contributions

As result of our motivation and aims, in this thesis, we present five contributions:

Beach volleyball dataset We collected a new dataset of beach volleyball movements

recorded using wearable inertial sensors. The dataset includes a total of 10 users wearing

sensors in 4 positions, divided on 3 sessions. We recorded this dataset with a focus on the

serve actions, but also including game rallies between players. It is freely available for the

community and to best of our knowledge, it is the only publicly available dataset of beach

volleyball movements comprising inertial data from wearable sensors.

3D Human model for movement animation and annotation We developed a 3D

human model for movement analysis and annotation. Using the orientation data provided

by wearable inertial sensors, this 3D model can be animated in real time or offline for

troubleshooting issue in the movement data and annotations. We present a study where

this model was demonstrated to be suitable for privacy-preserving labelling of data.

WLCSSLearn training algorithm We created the first automatic training proced-

ure for the Warping Longest Common Subsequence (WLCSS) template matching method.

Based on evolutionary algorithm, WLCSSLearn comes in two versions: WLCSSLearn p

trains the parameters of WLCSS to maximize the movement recognition performance.

WLCSSLearn t generates variable templates in length and shape with a configurable

trade-off between recognition performance and power-saving through computational costs

reduction. To the best of our knowledge, WLCSSLearn is the first training methods that

i) allows such trade-off, ii) is application independent, iii) can be easily applied to other
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TMM.

WLCSSCuda In order to support the evolutionary training and to accelerate the

template matching with WLCSS, we introduce the first GPU based implementation of

WLCSS. WLCSSCuda exploits General-Purpose Computing on Graphics Processing Unit

(GPGPU) in order to match multiple templates and segments in parallel. We demonstrate

that not only WLCSSCuda is faster than a standard CPU only based implementation, but

it also scales better with the increase of the number of templates and segments.

Segments extraction from poorly annotated data We demonstrate how WLCSS

and WLCSSLearn can be deployed to recover a poorly annotated but high value datasets

for action recognition with a case study of drinking actions. A dataset of more than

8800 events recorded using specifically instrumented mugs and loosely annotated by the

participants is relabelled using TMMs. We demonstrated that the quality of the dataset

can be highly improved through automatic methods.

1.4 Thesis outline

This thesis develops in three parts: Chapter 2 and 3 deal with the problem of collecting

a datasets and the tools required for checking the quality of the data. Chapters 4 to 7

constitute the main corpus of this thesis, introducing the problem of activity and movement

recognition using TMM and presenting our innovative algorithm for the training of our

selected template matching method, WLCSS. Finally, Chapter 8 presents a case study of

how our methods can be used for recovering a datasets of badly annotated sensors events.

More specifically, each chapter develops as follow:

Chapter 2 describes the collection of the dataset of beach volleyball movements. We

present the sensors, the data collection protocol and the data annotation procedure. We

also presents the challenges we encountered during the annotation phase due to missing

videos for one of the recording session.

Chapter 3 presents the 3D human model for movement animation, analysis and annota-

tion. We describe the 3D model, as well as the pipeline for real-time and off-line movement

animation. Finally, we illustrate how this model can be used for data annotation while

also preserving the privacy of the participants involved in a data collection.

Chapter 4 presents the topic of activity and movement recognition using TMM, in-

troducing the concepts and the notations, as well as providing a description of the main

TMMs. This is useful to explain the motivation for choosing WLCSS as TMM, the activ-

ity recognition pipeline used in this thesis as well as helping to discuss the applicability of
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our training algorithm to other TMMs.

Chapter 5 describes the training methods for the parameters of WLCSS, named WLC-

SSLearn p. Chapter 6 presents the training methods for generating variable length tem-

plates in a power-aware manner, named WLCSSLearn t. The respective chapter for each

version presents a review of the very few and very specific training procedures proposed in

the literature and their limitations. Then we detail the algorithms, the main parameters

and their evaluation. We also discuss how the underlining concepts of WLCSSLearn are

generic enough to be applied to other TMM.

Chapter 7 introduces WLCSSCuda, a GPU implementation of WLCSS aimed at

hastening the training and matching speed by exploiting the highly parallelized com-

putation of General Purpose GPU (GPGPU).

Chapter 8 illustrates a case study of recovery of a highly valuable dataset comprising

8800 poorly annotated segments of drinking/no-drinking actions using TMMs. We analyse

the provided annotations recorded through experience sampling (ES) and show the low

reliability for supervised learning. We demonstrate how TMM can be used together with

our training method to more accurately select and re-annotate drinking and no-drinking

actions.

Finally, Chapter 9 concludes this thesis with a summary of our achievements, their

potential limitations and some prompts for future work.
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Chapter 2

Data collection in the wild: A

beach volleyball case study

In the field of activity recognition, the first need is data. In this chapter, we present the

collection of a dataset of beach volleyball movements. Starting from the motivation, the

chapter presents the sensors setup, the data collection protocol, the annotation process

and the challenges of collecting such dataset, with a case study of missing videos due to a

failure in the cameras recordings.

The content of this chapter has been published in [IX]. The sensors used during the

data collection was described in [II]. I contributed in the development and debugging of

the sensor’s firmware.

2.1 Introduction

A dataset of well annotated activities is fundamental for training and evaluation of auto-

matic recognition methods [2]. As presented in Section 4.3, several datasets have been

presented in the community for this goal. However, in order to evaluate our methods we

decided to also collect a new dataset of actions specifically recorded in an environment

that would benefit from skill assessment. We chose beach volleyball as domain for our

dataset.

Beach volleyball is a sport that comprises a limited set of very different basic move-

ments (serving, passing, hitting) that can be combined during a game between two teams

of two players. Several studies explored the technical aspect of beach volleyball actions

and their effectiveness on the game [36, 37] through the visual and manual analysis of

videos in what is called notational analysis. This method has been used to investigate
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the variations of techniques among different kind of players [38], the dependency of the

different techniques to the success of the game [39], to evaluate a single technique [40], to

understand the biomechanics of a specific technique [41, 42].

From the literature, it has also emerged the high correlation between a good quality

in the basic techniques and the success in the game [37]. For this reason, it is important

for the athletes to achieve the best quality in the performing of the game technique.

The analysis of the beach volleyball games has been performed used mainly the video

recording and the tracking of the players [43, 44]. A first attempt to use wearable sensors

to autonomously recognize the beach volleyball serves and other movements has been

studied in [45, 46]. However, despite a wide set of videos publicly available for beach

volleyball training and games, we were unable to retrieve a dataset of playing actions

recorded using wearable sensors. The few studies investigating wearable sensors for beach

volleyball application did not make their datasets available to the community or they did

not include a set of sensors that could enable movements encoding.

We collected our new dataset of beach volleyball movements using wearable inertial

sensors. Recording a new dataset allowed us to:

• have full control on the set and positioning of the sensors, enabling, for example, the

encoding of the movements for recognition (see Section 4.2);

• customize the data collection protocol in order to focus on specific actions. We focus

on the serving movements because i) it is the first movement of every rally which

means it can greatly affect every consecutive action; ii) it is not affected by any

previous action of the game, allowing players to have full control and freedom in

performing the movement.

In this chapter, we describe our data collection and the resulting dataset. We introduce

the equipment, the data collection protocol and data annotation process. We also present

a possible method for dealing with possible issues during the data collection, with a case

study. Finally, we conclude with the discussion of a set of guidelines for the collection of

datasets using wearable sensors.

2.2 Data collection equipment

The data from the players were recorded using a set of wearable in-house developed inertial

sensing platform, called BlueSense. The entire data collection was recorded using cameras

for a-posteriori annotation. Both sensor modalities are explained in the following.
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Figure 2.2.1: BlueSense AHRS.

2.2.1 BlueSense

BlueSense is a sensor research platform developed for wearable and IoT application [II].

Its small size of just 30x30mm allows to be worn with minimal to none hindering of the

user while performing movements. The platform is instrumented with a 3-axis inertial

unit (IMU) including an accelerometer, a gyroscope and a magnetometer. Thanks the

IMU and its microcontroller, BlueSense is capable of computing 3D orientation on-board,

making it what is called an Attitude and Heading Reference System (AHRS). BlueSense

can sample data up to 1 KHz, and provided orientation data up to 500Hz, while also

logging the raw motion data on a locally stored microSD. The orientation in the form

of quaternions or Euler angles is computed combining the raw data of the IMU using a

variation of Madgwick’s algorithm [47].

BlueSense includes a Bluetooth module for streaming of commands (e.g. start/stop

recording) and data. The platform also includes an on-board real time clock (RTC)

with minimal time deviation of 0.6ppm. This enables to synchronise multiple BlueSense

platforms with a single timestamps and having them synchronised for the entire data

collection, enabling an easier merge of data and annotations once the collection is complete.

For this data collection, we set the sampling rate to 500Hz as we recorded both raw and

orientation data. We also used the integrated microSD as streaming data over Bluetooth

would results in possible loss of samples, as well as lower sampling rate. The commands

were sent to the sensors using a specifically developed Android application 1. This app

allowed not only to start/stop the recording of the data, but also the synchronization of

the timestamps for multiple sensors simultaneously.

1https://play.google.com/store/apps/details?id=net.danielroggen.bs2mgr

https://play.google.com/store/apps/details?id=net.danielroggen.bs2mgr
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Figure 2.2.2: Placement of the BlueSense sensor platform on player.

2.2.2 Sensor placement

A set of 4 BlueSense per player was placed on the torso, the dominant upper arm, lower

arm and hand of the players, thanks to a set of strap bands as shown in Figure 2.2.2. The

straps were made by using an an elastic band and industrial velcro. This ensured a tight

placement of the sensor on the body of players minimising accidental vibrations of the

platform.

By including the torso and the dominant arm, the orientation data can be used to

encoded movements as explained in Section 4.2 or to animate a 3D model like the one

described in Section 3.3.1.

2.2.3 Cameras

Video cameras were used to record every session in order to annotate the data at a second

time. Three action cameras were placed as shown in Figure 2.3.1. These cameras were

chosen because of their wide field of view, allowing a comprehensive recording of the entire

court (see Figure 2.2.3). They were set to record at 1280x720 pixels and 120fps. While

they would have been able to record at higher resolution, we opted to reduce the frame

size in exchange for a higher framerate that could be more useful when looking a fast

movement as beach volleyball serves.
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(a) Action camera (b) Left view (c) Center view (d) Right view

Figure 2.2.3: Action camera for annotation and camera views, respectively for left, center

and right cameras.

2.3 Data collection

A data collection can be a time and effort consuming task, and therefore must be planned

in details in advance. For this reason, we accurately defined the data collection protocol

for the participants as well as the placement of the sensors, and the organization of the

court.

2.3.1 Participants recruitment

The first step of the collection was the choice of the participants. In order to minimise

errors while performing the protocol, we needed players that would be able to serve and

perform specific game actions on command. The participants were selected according with

their level of expertise from the community of players at our closest beach volleyball venue.

The players’s level variated between semi-professional to former professional players. We

did not constrain gender or physicality. We selected 10 players, 5 females and 5 males,

divided in 3 sessions of 4 players. 2 female players were present in two sessions. 9 players

were right-handed and 1 was left-handed. More about the participant recruitment can be

found in Appendix A.

2.3.2 Court Setup

The court was setup accounting for one serving areas and two landing areas on each side of

the net. The two landing areas were delimited by little cones and differentiated between

short and long serves. We empirically set the landing areas to 1.5m deep. They were

delimited by little cones that were removed for the gaming phase of the data collection.

The net height was set to 2.33m as average between men (2.43m) and women (2.24m)

official heights.
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Figure 2.3.1: Setup of the court during data collection. The green areas are the aimed

landing area for short serves, while the orange areas are for long. Players can serve from

any point in the serving area of each court, aiming at the landing areas of the opposite side.

The three wide angle cameras, placed as shown by the black symbol, offer a comprehensive

coverage of the entire court for annotation.

2.3.3 Data collection protocol

The players were instructed to follow a precise but flexible protocol during each session of

the data collection. The protocol was developed in order to record more controlled serves

actions as well as free in-game movements. 4 players would perform such protocol in a 2

hours session, excluding some time for setup and synchronisation.

The protocol was divided in two main parts: the more controlled serving part and

the free game part. In the former, the participants were asked to perform specific serves

individually, as they were in a training session. In the latter, the participants were allowed

to freely play few sets following the standard 2-vs-2 rules of beach volleyball.

We identified 2 main type of serves to consider, graphically presented in Figure 2.3.2

and described in the following. According with the force applied by the player and therefore

the length of the trajectory, each type can be short or long:

Float serve In this serve, the player hits the ball at the centre with a flat and stiff

hand. This cause the ball to float in the air with a small unpredictable side-to-side

movements.

Top spin In this serve, the player perform a wider movement with the arm, compared

to the float serve, and he hits the ball at the top-centre with a spinning forward

movement of the hand. The ball to rotate forward during the flight and the trajectory
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result more curved compared to a float serve.

(a) Float serves

(b) Top spin serves

Figure 2.3.2: Example of float and top spin serves with trajectories, for long (orange)

and short (green) serves.

Once the players were instrumented and the court was prepared, the recording on the

sensors and the cameras started. Then the protocol begin with a synchronisation step

comprising 3 hand claps in front of the cameras. This allowed the synchronization of

all the involved data sources for an accurate annotation (see Section 2.4). The protocol

proceeded as presented in Table 2.3.1.

Finally, the players were asked to repeat the synchronisation step before to be de-

instrumented from all the sensors.

Players were asked to follow the protocol at their best. However, we left room to

correct possible mistakes during the data collection such as the rest breaks and additional

time in between the two parts of the protocol.

2.4 Annotation

The annotation was performed off-line using a previously in-house developed software.

The software supports multiple video and data sources, as well as multiple annotation
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Step No. Rep./Dur. Activity Description

1 8 mins Warm up The participants could warm up freely with the ball.

This was necessary to reduce the risk of injuries and it

also allowed the players to get familiar with the sensors

while playing.

2 12x Long float serves The players placed themselves at the end of the court

in the serving area. They were asked to serve 12 long

float serves. Each player must count its own serves.

3 1 min Rest

4 12x Long top spin serves The players placed themselves at the end of the court

in the serving area. They were asked to serve 12 long

float serves. Each player must count its own serves.

5 1 min Rest

6 12x Short float serves The players placed themselves at the end of the court

in the serving area. They were asked to serve 12 long

float serves. Each player must count its own serves.

7 1 min Rest

8 12x Short top spin serves The players placed themselves at the end of the court

in the serving area. They were asked to serve 12 long

float serves. Each player must count its own serves.

9 1 min Rest

10 Rest of time Free game The players were asked to freely play for the remaining

time of the 2 hours session. The free game respected

the standard 2-vs-2 rules, with sets up to 21 points

and changing side every 7-points. The players teams

stayed the same for this entire part.

Table 2.3.1: Data collection protocol. The columns indicates in order: the step number,

the duration of the step in number of repetitions or minutes, the activity required in each

step and a brief description.

tracks. All the data sources can be synchronised within the application. A screenshot

of the annotation software is shown in Figure 2.4.1. The annotation was performed by a

single annotator recruited amongst the PhD students in our laboratory. The annotator

was carefully instructed by the main author of this data collection, who was also present

in order to solve possible ambiguities.

For this first iteration of the dataset, we labelled only the part of the data collection

including the controlled serves of the players. The labels for each of the four serve types

were introduced manually for each player. The manual annotation allowed to correct

possible mistakes between serve requested by the protocol and the one actually performed

by the players.

The annotations were then exported from the software and merged with the data of
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Figure 2.4.1: Annotation tool used to label the data. The videos on the top are used

to synchronise all the source and to analyse the movements. The annotation are then

inserted in the black tracks (one track per player), in the centre of the screen. On the

bottom, a downsampled signal from one channel of the BlueSense’s IMU is shown to check

the consistency of the sensor data with the movements. One signal is displayed for each

player.

each player singularly. The data from the multiple sensors, torso, upper arm, lower arm

and hand, for each player were synchronized thanks to the timestamps associated with

the sampled data from the BlueSense.

2.5 Dataset issues

Unfortunately, during the data collection we encountered two main issues that could affect

the quality of the data: i) the missing videos for one of the session due to a failure of the

cameras, ii) the malfunctioning of two sensors for one participant resulting in difficulties

in annotating such data.

2.5.1 Missing videos

During one of the sessions, the cameras failed after few seconds of recording. This resulted

in the impossibility of annotating the data as described in Section 2.4. While we could

not figure out the reason for the failure, we managed to recover the annotation thanks to

the precise protocol.

We could indeed analyse the data knowing the order of the steps each player followed

and therefore annotate the serving segments net of possible mistakes made by the players

in the serving.

Figure 2.5.1 shows the steps we performed to annotate the data:
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Figure 2.5.1: Example of data annotation recovery procedure for one user. The raw

data from the gyroscope of the BlueSense positioned on the lower arm are plotted in the

top Figure 2.5.1a. The magnitude of the signal is then computed in order to identify the

section of the data regarding the serves 2.5.1b. This section is identified in Figure 2.5.1b

by the two orange dashed lines. Figure 2.5.1c displays an enlargement of the section of

data pertinents to the serves. The four sections for each one of the serves type is then

visually individuated and represented in Figure 2.5.1d as separated by the vertical orange

dashed lines. A threshold displayed with an horizontal red dashed line is then used to select

the peaks in the data that would be selected as serves.
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1. We started by evaluating the raw data provided by the gyroscope of the BlueSense

placed on the lower arm. We chose this sensors for its sensibility and because it is not

affected by gravity (accelerometer) and external magnetic fields (magnetometer).

2. Considering the serve actions, we assumed that as they have higher energy compared

to slower actions such as passing. Therefore we computed the magnitude of the three

channel data as
√

x2 + y2 + z2 as a measure of the quantity of rotation.

3. We identified the section of the data referring to the serves in the protocol. Starting

from the synchronization claps that can be identified at the beginning of the time

series, we found a section of recurring pattern divided in four sections, one per serves

type in the protocol. The recurring patterns were identified by the highest peaks in

the section. The peaks in the signal resulted by the impact of the hand with the

ball at each serve.

4. We empirically defined a thresholds in order to filter only the peaks referring to

serves. We then defined the boundaries of each section corresponding to long floats,

long top spin, short float, short top spin serves. As expected according to the protocol

and considering the threshold, around 12 peaks were contained in each section.

5. For every peak in each section, we selected a segment of the signal of 450 samples

and we annotated such segment with the corresponding serves type. The length of

the segments was defined as average length of the already annotated serves segments.

We repeated this process for all the four players in the session with missing videos.

In order to verify the correctness of our procedure, Figure 2.5.2 presents the segments

annotated through this method for one player. This player participate in session 3 as well

as in session 1 that was correctly annotated using the videos, allowing to compare the

video-annotated segments and manually annotated segments for the same participant. In

the figure, it is possible to notice how the manually annotated segments in colours have

similar shape to the most representative segment of the video-annotated annotated ones.

This procedure allowed to annotate the serving data for an entire session, comprising

of 4 players for a total of 16 sensors data that would otherwise be unusable for supervised

movement recognition.

2.5.2 Sensors errors and reliability

During an initial session, we discovered the failures of two BlueSense on the same player.

The failure were due to a bad configuration of the sensors themselves: in one case, the
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(a) Long float
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(b) Long top spin
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(c) Short float
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(d) Short top spin

Figure 2.5.2: Comparison of artificially extracted and video-annotated movements. A

player participated in two sessions, one with videos and one with missing videos. Thanks

to this, it is possible to compare the segments of the movements extracted from the sensors

data (over-imposed in colours) and a video-annotated segment (in black), for each serves

type. The video-annotated movement is selected as MRT among the segments for each

serve type.

microSD was not properly formatted, resulting in missing data from the torso sensors.

The second issue was due to a bad configuration of the output format of the data from

the hand sensor that made them non-readable. In the final release of the dataset, we still

include the annotated data from the upper arm and the lower arm of the same user, as

they were still available.

2.6 Dataset summary

Table 2.6.1 summarises the datasets, net of sensors failure. The dataset comprises a total

of 585 annotated serves, divided in 147 long float, 140 long top spin, 155 short float and

143 short top spin serves. In term of time, the dataset includes a total of 2 hours and 12

minutes of annotated data and a total time of 11 hours and 45 minutes of sensors data.

These times account for each users in the same session separately.
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user ID gender hand session lf lts sf sts errors ann time total time sensors

01 F R 1 16 12 11 9 6 00:12:08 00:41:16 -ul-

02 M L 1 12 10 16 15 5 00:11:28 00:40:30 tulh

03 M R 1 8 13 14 12 2 00:11:08 00:40:34 tulh

04 F R 1 13 12 13 14 2 00:11:06 00:40:24 tulh

05 M R 2 12 11 12 13 2 00:09:58 01:00:21 tulh

06 M R 2 12 12 12 13 2 00:10:02 01:04:57 tulh

07 M R 2 11 10 12 11 2 00:09:42 01:05:27 tulh

08 F R 2 12 12 12 11 0 00:09:27 01:05:36 tulh

01 F R 3 13 12 14 12 0 00:12:08 01:12:10 tulh

09 F R 3 12 12 13 11 0 00:11:40 01:10:49 tulh

10 F R 3 14 12 14 11 0 00:11:15 01:12:37 tulh

03 F R 3 12 12 12 11 0 00:11:48 01:10:49 tulh

Total 147 140 155 143 02:11:55 11:45:34

Table 2.6.1: Beach volleyball dataset summary. The columns indicate respectively: the

user ID, the gender of the player, the handedness, the number of each serves with lf =

long float, lts = long top spin, sf = short float, sts = short top spin. The number of

errors is calculated as the number of serves of the wrong type performed by each player.

ann time is the amount of time of annotated data and total time indicated the total amount

of recorded data for each session. Finally, the sensors columns reports the sensor data that

are available for each user: t = torso, u = upper arm, l = lower arm, h = hand.

2.7 Discussion and Conclusion

Throughout the dataset recording and thanks also to the issues that we encountered, we

were able to define a series of guidelines for future data collection that we want to discuss.

First, we think it is important to plan every single step of the data collection in advance.

Defining an accurate protocol is fundamental for the success of the data collection as well

as for handling possible errors of the participants and failure of the hardware.

About the hardware, a lesson we learnt is to invest in high quality hardware: the

cameras failure was an issue that could be prevented by investing in more reliable and

well known products. On the other hand, the wearable sensors were more reliable with a

single issue caused by a mistake in the configuration and not from the sensor itself.

However, we want to stress how important is to extensively test the hardware before-

hand. We conducted several tests of the cameras and of the sensors: this was important,

for example, to set the sensitivity range for the IMU on-board of the BlueSense, adapting

it to the specific application. Unfortunately, in all previous tests the cameras did be-

have correctly without displaying any problem: a confirmation that even extensive testing
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sometimes cannot be enough.

For this reason, we learnt that possible missing data must be accounted for in such

complex data collection. In some case, such as the missing videos, the data can be re-

covered through a manual inspection or other approaches (see Chapter 8). In other cases,

such as for sensors failures, some data can be irrecoverably lost. This can be overcome by

including a high number of participants.

We found that keeping the participant engaged is an important goal to keep in mind

during a data collection. During the recording of the dataset, we found that players

were quite keen to participate as they could play free of charge for some time, once they

completed the first part of the protocol. This is an important aspect to consider, as the

quality of a dataset can be greatly affected by the lost of commitment by the users [V].

Towards this goal, it is also important to extensively try the protocol in advance.

Especially when it comes to human activities, if the protocol is too energy demanding for

the participant, the quality of the movements can decrease after few repetitions. More

importantly, a protocol that is too intense can even cause injuries in the players. For this

reason, we included a mandatory warm-up section at the beginning of every session, as

well as well defined rest interval between exercises.

Assessing the protocol in advance can also help to optimize the efforts of the researchers

performing the data collection. For example, iterating the protocol through just few tests,

we were already able to better spend our effort in setting up the courts, the cameras and

the sensors, by reducing the discomfort of the player when the weather conditions were not

optimal. This is visible in Table 2.6.1 as the total amount of data we collected increases

in time with the progression of the sessions.

On the same note, the discomfort of the users could be minimised even further with

a better placement of the sensors. We realised that in the effort of minimise the sensors

noise by reducing accidental vibrations, we built the straps quite tight and potentially dis-

comfortable. Additionally, the usage of strong industrial velcro resulted in some irritation

on the skin of some players. This could be improved in future iterations for example, by

building a full vest integrating the sensors instead of single bands, or even by fusing the

sensors in the fabric.

We also want to discuss the environment condition for data collection. In our case,

a specific setting such as the beach volleyball court was required. Unfortunately, being

based in the United Kingdom affected our efforts in the data collection as the weather

reduced the availability of the courts. We strongly advise to take the environment con-
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dition into consideration when planning a data collection in the open. For example, we

eventually realised that setting the data collection in more sunny countries would have

greatly increased the availability of courts and people, with little impact on the costs.

However, despite the issues with sensors and cameras, and the numerous way this data

collection could be improved, we consider this dataset a success. The dataset comprises a

total of 585 annotated servers, for a total of more than 2 hours of annotated data plus an

additional 9 hours of non-annotated data. The dataset is available to the community at

https://ieee-dataport.org/open-access/wearlab-beach-volleyball-serves-and-games

https://ieee-dataport.org/open-access/wearlab-beach-volleyball-serves-and-games
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Chapter 3

Privacy preserving annotation of

movements using a 3D model

We saw how dataset can present issues such as bad annotations. Especially when no video

is available, we need tools to recover the movement data. This chapter presents an evalu-

ation to which extent a 3D human model can be used for privacy preserving annotations.

We introduce the model, the animation pipeline that has been first used in [III] and [X].

Finally, we describe three scenario in which the model has been deployed for movement

annotation as published in [I].

3.1 Introduction

In order to achieve a reliable recognition of the actions of the user, an annotated dataset

is needed to train the machine learning classifier and TMMs. Annotation requires that

someone manually specify the actions carried out during the data recording. To do this,

usually several videos are recorded jointly with the recording of wearable sensor data.

After the recording, the video from the cameras are synchronized with the data logged

by the sensors, in order to annotate precisely the start and the end of each activity. This

can be very time-consuming [48]. For this reason, it is usually done using cheap labour

with recent research even looking at crowdsourcing. In such a case, it is yet important to

preserve the privacy of the user whose data was recorded.

We investigate to which extent our 3D human model animated from inertial sensors

placed on the user’s limbs can be used to label the activities of that user while preserving

his/her privacy. We describe:

• an investigation about the segmentation of the activities of the 3D model (i.e. identi-
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fying the occurrence of an activity regardless of its class). We compare the results

of segmentation done by the participants to the experiments with the ground truth

segmentation of activities in the dataset.

• an analysis of the system in a open-ended annotation scenario: we let the user free

to assign a custom label to each activity in a set. The goal of this experiment is to

understand to which extent this model can be used without any knowledge of the

action carried out by the user during the recording. The results of these test are

presented using a set of tag clouds of the words used by testers.

• an evaluation of traditional annotation accuracy, where an activity annotated in the

dataset is played by the model and the testers must pick which activity it could have

been among a list of 11 activities. Results are summarised by a confusion matrix.

3.2 Related work

There are multiple approaches to annotation [2]. Usually the annotation or labelling of the

collected data is done a posteriori using a video recording of the experiment synchronised

with the sensor data [48]. During this process the video synchronized with the inertial data

requires that each sequence of data must be accurately analysed to segment and recognize

each activity correctly. Sometimes multiple cameras are used to record the scene from

different perspectives [48]. The activity of labelling can be a tedious and time-consuming

task: for 30 minutes of recording, the annotation could take 7-10 hours of analysis [48].

For this reason, usually the annotation phase is done using cheap labour.

Recently, crowd-sourcing has been suggested to help reduce the cost and time of an-

notating datasets. Crowd-sourcing is a process where a task can be completed by soliciting

contributions from a large group of lay people. Thanks to this technique, the researchers

can obtain an annotated dataset employing several people at the same time. This can be

realised, for example, using platforms like Amazon Mechanical Turk (MTurk) [49]: this

is a web service where users can ask for workforce. The workers can pick up a task and

complete it earning a money reward. Crowdsourcing has been used to tag human activity

from video [50]. It has also been used to label natural language [51], for speech recognition

[52] and for multimedia tagging [53].

When the annotation task is done using the videos, one of main issues is to preserve

the privacy of the subject in the dataset/video. One way to protect the anonymity of the

subjects in the dataset can be the application of a mask (e.g. a blur or a pixelize video
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filter [54]) to the elements in the video that could be considered meaningful from a privacy

point of view. This step brings however additional time and work to the annotation task.

Moreover, the preprocessing cannot be easily applied to all the elements in the scene in

order to do not alter too much the video and to do not compromise the recognition of

the activities. Another approach consists in using low resolution camera to preserve the

privacy of the subject recorded [55].

A different way can be the real-time annotation of the data. That can be done using

short audio labels recorded by the subject of the dataset together with the inertial data

[56, 57]. This method preserves the privacy and can be accurate. It can be also used

in a “open-ended” context thanks to the absence of a predefined set of labels. Real-time

labelling requires the direct interaction of the user and in the everyday life this could be

annoying. Instead, in case of a real time annotation made by an external experimenter

that observe the scene, it requires that the user carries out the activities in a controlled

environments and it is not always possible. Moreover, the external observer could condition

the way the user will do the activities.

3.3 3D human model for movement animation

Several 3D human models are available online as asset ready to be imported in the major

3D engines [58] [59]. Tools are also available to create realistic 3D human models [60].

However, in both cases, most of the models are developed with a specific structure of the

body parts, generally tuned for game characters, leaving little control to the structure of

the model and therefore of the animation.

We created our own 3D human model for the annotation of activities and gestures.

While our model is an unsophisticated set of shapes (see Figure 3.3.1), this allows a

granular control of the animation of each body part. Moreover, we developed the model

in order to have a wider applicability as motion tracking system, in both real-time and

off-line applications.

The 3D human model is a composition of a skeleton and a mesh. The former provides

the model with the internal structure for movement and positioning of the body parts,

while the latter produces the external appearance of the model. The skeleton and the

mesh of our 3D model are displayed in Figure 3.3.1. The description of each body part

and its ID is presented in Table 3.3.1.

Our human model is built and rendered using the open-source 3D engine called jMon-

keyEngine [61]. This multi-platform engine written in Java allows to develop a model from
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(a) (b)

Figure 3.3.1: 3D human model skeleton and mesh.

ID Description

pel Pelvis. It is a fixed point for the model.

tor Torso

rul Right upper leg

rll Right lower leg

lul Left upper leg

lll Left lower leg

rua Right upper arm

rla Right lower arm

rha Right hand

lua Left upper arm

lla Left lower arm

lha Left hand

Table 3.3.1: 3D human model body part description

the ground up. We built our custom model to keep easier the handling of the animation

and to guarantee more flexibility during the application of inertial data to each body part.

Moreover, the multi-platform nature of the engine would allow us also to deploy this model

and its animation in a crowdsourcing scenario, as it can be integrated and used remotely,

eg. in a web page.

3.3.1 Movement animation

The model is made of 13 parts. These parts are connected in a hierarchical structure

starting from a fixed point set on the pelvis. The hierarchy is shown in Figure 3.3.2.

The movement of a body parts affect all the other parts connected on lower level of the

hierarchy. This allows the model to behave as a human body would do, where, for example,

the movement of the torso affects the movement of the arms and head.
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Figure 3.3.2: Hierarchy of body parts as connected in the human body and our 3D model.

During the animation, the position of each body part must be computed at every

frame. The absolute orientation of each body part must be provided as a quaternion q =

{w, x, y, z} by, for example, one or multiple wearable AHRSs. Providing the orientation

for each body part as quaternions, the 3D engine orients the body parts of the model

skeleton accordingly and renders the mesh at the right position. However, because the

body parts in a human body are connected to each other, the movement of a certain body

section can be registered by multiple sensors, even on different parts. For example, lifting

a straight arm would affect all the sensors on the limb, but in the 3D model is enough to

animate the upper arm vector in order for the lower arm and hand vectors to follow.

For this reason, the absolute quaternions provided by sensors, as the BlueSense for

example, must be pre-processed. Therefore, for each body part, we need to compute

its relative orientation with respect to the previous part in the hierarchy. The relative

orientation qi for a body part i is computed as:

qi = q∗i−1 · qsi

where q∗i−1 is the conjugate quaternion of the previous body part in the hierarchy and qsi

is the absolute quaternion provided by the sensor for the i− th body part.

Once qi is calculated, the 3D engine’s native support of quaternions enable to apply

the rotation to each segment of the skeleton.

The sensors quaternions qsi can be provided in real time forming a live motion tracking

system (see Section 3.3.2) or off-line, as in the case study presented in the rest of this

chapter.
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Figure 3.3.3: Figure 4. Motion tracking system overview: the 3DHumanModel receives

the data as a line of text through a TCP connection. Then it parses this text in order to

extract the quaternions to animate the 3D model. At every rendering cycle, the 3D model

is updated with the most recent orientation data.

3.3.2 Motion tracking system

We created a motion tracking system that can animate our 3D model using a variable

number of BlueSense as trackers. The motion tracking system is made of two applications

and it is presented in Figure 3.3.3. First, the sensors data are collected using Bluetooth

by the specifically developed application called SenseHub. This application: i) receives

the sensors data, ii) synchronize them according with the timestamps of each sample, iii)

forward them to the 3D model as a single line of text through a TCP connection. Then,

the 3D model uses a TCP receiver in order to read the incoming line of text, unpack it

and then animate the human model. The TCP connection allows the SenseHub and the

3D model to be on two different devices, potentially even in two different locations.

The 3D model can also be animated off-line: in this case, the data recorded by the

sensors must be provided through a single file loaded at launch. This modality was demon-

strated to be useful, for example, for privacy preserving annotation.

3.4 Privacy preserving annotation

3.4.1 Experimental setup

We deployed our 3D human model and motion tracking system in a off-line manner in

order to study to which extent it can be used for privacy preserving annotations. For the

experiments, we created three custom built interfaces around our 3D human model, as

shown in Figure 3.4.1. The engine allows the users to rotate the camera around the model
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and zoom in and out to better observe and evaluate each action.

To animate the model, we used the data provided by 5 Inertial Measurement Units

(IMUs) placed on the upper arms, on the lower arms and on the torso provided by the

Opportunity Dataset [48]. This dataset comprises a rich set of 17 naturalistic activities

recorded in a kitchen environment. The activities are:

• Open and close two different doors;

• Open and close three drawers at three different heights;

• Open and close a dishwasher;

• Open and close a fridge;

• Clean a table;

• Drink from a cup;

• Toggle a switch.

This dataset consist of inertial data about the absolute orientation of each limb during

the session. These data have been recorded using a set of XSens MTx inertial sensors

[62]. For our experiments we used the “Drill” run subset. This subset consist of a fixed

sequence of 17 actions repeated consecutively for about 20 minutes. Due to the absence of

the environment in the 3D engine, we decided to join some of the similar labels (e.g. inter-

acting with drawers at different heights is combined). “Open” and “Close” are considered

different actions. From the initial 17 activities in the Opportunity dataset, we obtain the

11 activities shown in the Table 3.4.1, together with their average length in seconds.

We performed three experiments. The participants in the experiments were told that

they would see a 3D model of a person performing typical activities in a kitchen. The par-

ticipants were not given the list of activities at first. Essentially they have to “guess” from

the animation of the model which activity may be undertaken. In the first experiment,

a 15 minutes animation is played by the model. During this animation each participant

must press the space-bar every time he/she notices something that he/she considers inter-

esting and/or recognizable in the model’s movements. It is up to the participant to decide

what they consider “interesting”. This experiment is used to evaluate the capability of

the users to segment the activities using the model. The interface used during this test is

shown in Figure 3.4.1.
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Activity sec

Open Fridge 2.450

Clean Table 3.967

Close Fridge 2.508

Drink from Cup 6.268

Open Dishwasher 2.958

Open Door 3.214

Close Dishwasher 2.862

Open Drawer 2.363

Close Door 3.378

Toggle Switch 1.295

Close Drawer 2.207

Average 3.043

Table 3.4.1: List of activities and their respective average length in seconds. The last

row shows the average length for all the activities.

In the second and in the third experiment, a set of short animations of the body model

are shown to the participant where the model performs exactly one of the 11 possible

activities. For each of the 11 activities we showed the animations of 4 activity instances

picked randomly from the dataset. In this way, we show to the user a random but balanced

set of activities. The set of 44 short animations has been showed to the tester in a random

order. This set was different for each participant.

The second experiment is carried out to investigate to which extent the application

of our model fits an “open ended” scenario. In this experiment, the task of the users

is to insert a short label for each animation. We developed the interface displayed in

Figure 3.4.1b in order to allow the user to enter the label. This interface was showed after

each animation of the set. The user had no time limit to enter the label. After he/she

confirmed the inserted label, the next animation in the set is played.

The last experiment is useful to test the ability to annotate using a 3D model in a

more traditional scenario. The system shows a push button for each of the 11 predefined

activities. The participants must select which activity they think was performed by the

model by pressing the corresponding push button with the mouse. The buttons are shown
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(a)

(b) (c)

Figure 3.4.1: Interfaces developed for the experiments. At the top, the interface developed

for the Experiment 1 where the user must press a button to point out when something

“interesting” happened to the model. No output is presented to the user when he/she press

the button. On the bottom left, the interface proposed for Experiment 2 to let the user to

insert the label manually. At the bottom right, the set of buttons that the user can click to

select an annotation for the activity in Experiment 3.

at the end of each short animation without any limit of time for the users. In Figure 3.4.1c

are shown the buttons. After he/she selected a label, the next animation in the set is

played. This corresponds to the traditional annotation approach where a pre-defined list

of activities are annotated.

The experiment is carried out with 6 people, that are unaware about the dataset

and the set of labels until the last experiment. The setup of the experiment is shown

in Figure 3.4.2. All the participants performed the experiments in the same order and

individually. They were instructed before each test as to what they would have to do

next, in order to not influence the next phase of the experiment.
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Figure 3.4.2: Setup of the experiment.

3.4.2 Results

Every experiment is designed to test a specific step or a different scenario of the annotation.

With the first experiment, we aim to evaluate the capability of the users to segment the

activities. In Figure 3.4.3, we show the results of the segmentation experiments for a subset

of the dataset. The first row of the figure represents the distribution of the activities

throughout the first 3 minutes of the experiment. The next 6 rows show the events

pointed out by each participant. Every vertical line is an event. It allows to compare the

distribution of the event recorded by each participant and the actual distribution of the

activities.

As the experiment left the participants free to decide what they consider “interesting”,

we observe a large variations in the frequency of the events recorded by each participant.

This may be explained because some participants tent to point out longer actions while

other pointed out more shorter task. For example, the participant 3 recorded less events
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User TP FN TN FP Acc.

1 70 57 113 4 0.75

2 58 69 97 20 0.64

3 34 93 110 7 0.59

4 92 35 98 19 0.78

5 95 32 107 10 0.83

6 45 82 103 14 0.61

Table 3.4.2: Test results for the first experiment. The true positive (TP) and the false

positive (FP) do not keep in count if the user pointed out more events for the same activ-

ity/pause. Despite this affects also the accuracy, it can be used to better understand the

results on a quality level. The total number of activities played by the model during the

Test 1 is 127, with 117 pauses between some of the activities. A pause is intended as a

moment between two actions, where the model is not doing anything “interesting”.

than the participant 5.

In Table 3.4.2, we show the number of activities made by the model and correctly

pointed out (true positive), the number of pauses (intended as an interval in the animation

where the model is not doing anything) correctly not pointed out (true negative), the

number of pauses that the user identifies incorrectly as an activity in the model (false

positive) and the number of activities made by the model and incorrectly ignored by the

user (false negative). Multiple events pointed out by a user during the same activity or

the same pause (true positive or false positive) are ignored. This has been made in order

to not false the accuracy: in fact, counting multiple true positive or multiple false positive

for the same instance of an activity would have introduced a bias.

In Figure 3.4.4, we present a cross-correlogram that shows the distribution of the delays

between the pressing of the button by the user and the closest timestamp of the end of an

activity. The distribution appears centered close to 0. This indicates that the participants

actually recognized some movements in the model. Most of the delays are between -5

and +5 seconds from the closest activities. As the average length of activities is 3.043 sec

(Table 3.4.1), a delay between -5 and +5 seconds is not enough to guarantee a correct

segmentation.

The second experiment aims to evaluate the application of our model in the “open-

ended” scenario. In Figure 3.4.5 we show the tag clouds of the words entered to describe

the activities by all users for each label. We noticed that most of the participants mistake
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Dataset activities distribution
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Figure 3.4.3: Segmentation results: this figure represents a subset of the dataset of the

first experiment (ca. 3 minutes). The first row represents the distribution of the activities

during this interval of time. The 6 rows below indicate the events pointed out by each

participant are displayed.
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Figure 3.4.4: Distribution of the delays between the events pointed out by the users and

the closest end of an activity. A positive delay means that the user pointed out an event

after the closest end of the activity. Instead, a negative delay means that the user pointed

out an event too early in respect to the closest end of the activity (i.e. before the activity

is actually completed).
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(a) Open door (b) Close door (c) Open Fridge

(d) Close Fridge (e) Open Dishwasher (f) Close Dishwasher

(g) Open Drawer (h) Close Drawer (i) Clean Table

(j) Drink from Cup (k) Toggle Switch

Figure 3.4.5: Tag cloud of words used by testers in the open-ended experiment for each

activity. The number of occurrences of a word is shown by its size. The colours are only

used to make more clear the distinction between the words.

the dishwasher with the oven: this is quite normal because both appliances can have the

same kind of door. Moreover, the user interface is missing any rendering of the kitchen

environment and no information is given to the user about the appliances and about the

furniture at this stage. However the participants correctly identified the difference between

open and close the dishwasher. Interesting, “drinking” is correctly recognized by all the

participants.

In the last experiment, we investigate the traditional scenario where the user should

annotate a dataset already segmented, choosing the correct label from the predefined

“closed set” of 11 activities indicated in Table 3.4.1. The results are presented in the
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Figure 3.4.6 using a confusion matrix between the choices of the users and the actual

labels of the data.

Figure 3.4.6: Confusion matrix between labels chosen by users and actual labels.

Some activities are correctly recognized by the user: “Drink from Cup” reaches an

accuracy close to 100%. On the other hand, there are actions that are almost never

identified: “Open the Fridge” is the activity identified with the lowest accuracy (4.2%).

The main cause is likely the absence of any point of reference for the environment and the

fact that the fridge was of small size. For this reason, the action of opening and closing

can be easily confused with other actions applied to the same height, such as “Open a

drawer”. Moreover, the confusion between “Open/Close the door” is due to the lack of

information about the direction of opening and closing of the door.

Finally, the participants reached an average accuracy of 56% in the controlled labelling

experiment using our system.

3.4.3 Discussion

Our experiment revealed that a 3D human model can be used for activity annotation

preserving the privacy of the user, but it would require some improvements.

About the segmentation of the activities, which is studied in the first experiments,

the obtained results showed that further analyses are required such as the capability of

point out the duration of the action. Allowing the users to identify the beginning and the
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end of an activity could improve the accuracy in this step. It can be also important to

specify to the user the granularity of the action. As we noticed during the experiment,

the main trouble for the testers was: “What should I consider as an action to point out?”.

Answering this question can depend on the specific application scenario of each dataset:

in some cases an action could be a simple movement as e.g. “move the right arm up”.

In others scenarios instead, it could be important to identify more complex activities as

“make a sandwich”, “prepare a coffee”, etc.

Moreover, during our experiments, we pointed out that a main issue is the lack of the

environment in the scene. It can be difficult for the users to recognize the wide set of

possible activities without knowing the position of the objects and of the furniture in the

environment. A typical example of this is the mistake between the opening of the fridge

and the opening of the drawer: these two movements appear similar when reproduced

with a simple model such as ours. This confusion between movements that appear similar

is more observable in the “open-ended” annotation: in fact in this scenario it occurs that

users identify correctly the movements (opening and closing), but they annotate the task

with a different object whom those movements are applied to (the dishwasher mistaken

with the oven).

Some improvements should be also applied to the model itself. In this first implement-

ation, we used only basic solids to create the human figure: this brought some difficulties

for the users to recognize actions made by short and limited movements. An example

can be the toggling of the switch: in this case, the absence of the hands made it tricky

to identify it. For this reason, we should explore whether a more realistic human model

could improve the accuracy of the annotation.

In order to improve the accuracy of the movements performed by the model, a larger

number of sensors can be a solution. In our experiments the data animate only two parts

of each upper limb and the torso, but the model has been developed to be animated with

a maximum of 12 sensors. The data from all these sensors can be also applied on the

hands, on the legs and on the head. Furthermore, the software can be used with many

different datasets passing specific parameters at start-up. The only requirement is that

the dataset should contain IMU data for each body part the users want to animate. This

can be a limitation: in fact, it can be difficult to use this system with those datasets

already recorded and where the IMUs are placed only on few body parts, not allowing the

model to reproduce all the movements correctly. Instead, this system can be a valid choice

for new recorded dataset. If future work shows higher annotation accuracy, it might even
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be feasible for some scenarios to remove cameras altogether. This could lead to cost and

time savings because researchers will not need neither equipments to record the videos nor

additional time to preprocessing them.

It is the first time that annotation using a 3D model has been proposed. Even though

an average accuracy of 56% may be insufficient for ground truth, this system could exploit

decision fusion among multiple annotators (e.g.majority voting) and filters, to improve

accuracy as already done in [50] for video annotation. In this scenario, it would be also

interesting to study the performance of a classifier trained using the data annotated using

these algorithms.

3.4.4 Conclusion

We raise the need to create a privacy preserving annotation system, in order to speed up

the process of labelling dataset using cheap labour and crowdsourcing. In these cases, a

video can not be used due to lack of anonymity of the user recorded in the video itself.

We study to which extent a 3D human model animated in a virtual environment using

the data from inertial sensors can be used to annotate the dataset. We developed the model

in order to be used as motion tracking system in both real-time and off-line applications.

In order to evaluate its applicability to privacy preserving annotations, we animated a

model using a prior labelled dataset. We then compared the annotation collected with our

model and the actual labels of the dataset. We performed three analyses: a first one to

study the capability of the user to recognize the activities done by the model and correctly

segment the dataset. This is effectively the first step during the annotation process. The

second experiment is designed to analyse to which extent the application of our annotation

system fits in a “open-ended” scenario where the user can choose freely the label for each

action. In the last test we investigate the accuracy of the annotation when a set of possible

choices are given to the users, reaching a high level of accuracy for some specific actions

and manifold results for others.

From the experiments, the results are threefold. The segmentation experiment requires

further analysis in order to better evaluate to which extent a 3D human model can be

actually used for this task. The obtained results are not sufficient to give a strong positive

judgment. The “open-ended” annotation can be used but only when the dataset consist

of actions that look very clear when reproduced by the model (e.g.drinking). For those

actions where movements are limited and short, the accuracy with our system drops.

Instead, using a “closed set” of annotations, our system allows users to reach an average
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accuracy of 56% also using very similar actions and with only 6 people. In this scenario,

adding more people and applying decision fusion algorithms and filters for bad taggers,

our system could become an actual choice to annotate data preserving the privacy of the

subject in the dataset.
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Chapter 4

Action recognition using Template

Matching

Once the data are collected and annotated, the recognition of movements and activities

can be performed. This chapter provides an overview of action recognition using TMM.

Starting from general concepts of template matching and activity recognition, we presents

the action recognition pipeline used throughout this thesis. We also presents the datasets

of actions and activities we gathered from the literature in order to evaluate our methods.

4.1 Template Matching Methods

Template Matching Methods (TMMs) are algorithms that provide a distance measure

between two temporal sequences of data, called time series. The time series can repres-

ent a wide variety of data type. TMMs have been developed for and applied to speech

recognition [63], pattern recognition in images [64], time series indexing [65] and activity

recognition from wearable sensors [26].

In the following, we describe the mechanism of a TMM with an example of application

to activity and movement recognition. Let us consider the problem of recognising beach

volleyball serve movements performed by players wearing an accelerometer sensors on the

wrist of their dominant hand. The player performs many serves during a training. In this

situation, the accelerometer provides a time series of the acceleration of the hand when

moving1. Therefore, a continuous stream of data originates from the wrist sensor. We

refer to this time series data as S = s1, s2, . . . , sM .

1Accelerometers generally provide 3 time series, one for each component x, y, and z. In this example,

we can consider a single channel accelerometer for conciseness and simplicity.
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We wish to individually recognize 4 typical serves (e.g. long/short flat/top spin serves,

see Chapter 2 for more details). Because we are only interested in the serve movements,

the continuous series may be segmented in a multitude of shorter segments delimited

by the interval between the player getting in position to serve and the landing of the

ball after the serve. In order to recognise a serve, its time series is compared using

TMM to the accelerometer readings of each single prototypical serve. We refer to these

prototypes as the templates. We define a template as T = t0, t1, . . . , tN . As there are

several prototypical serves - chiefly one for each of the 4 kind of serve - we define a set of

templates T = {T0, T1, . . . , TO} each representing a prototypical serve movement.

(a) (b) (c)

Figure 4.1.1: Two time series which are similar but misaligned 4.1.1a can be compared

sample by sample (“exact match”) in 4.1.1b, or they can be compared employing dynamic

time warping methods 4.1.1c which looks for the best alignment between the samples of the

two time series.

Most TMMs tolerates some degree of accepted variability between T and S. This can

be due to misalignment of two time series on the time axis or to different length of T

and S (Figure 4.1.1). For example, two instances of the same serve movements can be

performed at slightly different speed, resulting in producing two sensor signals of similar

shape, but different lengths. In this case, the two signals must be recognize as similar

movements despite the variations. This variation is called “time warping”. Exploiting

the concept of “time warping” opens up the possibility to employ shorter templates and

therefore reduce the computational cost of the TMMs, as this is directly related to the

template size (O(|T |)).

A TMM is defined as DT,S = ℧(T, S, C)2 and it computes DT,S , a similarity measure

between T and S, parametrized by the set of parameters C. The use of the parameters C

depends on the TMM and it is used in case of “time warping”.

The distance DT,S can optionally be compared to a threshold V when a crisp detection

2This definition is applicable e.g. to Dynamic Time Warping, Euclidean distance, Edit distance, and

others.
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Figure 4.1.2: A TMM computes the distance D(ti, sj) recursively using the equation in

Table 4.1.1. The distances calculated between every sample i of the template T and every

sample j of the segment S can be visually displayed as a matrix. The total distance between

T and S correspond to the distance computed between the last sample of the template T ,

tN , and the last sample of the segment S, sM , (red square).

is required.

TMMs are generally used to match multiple templates T = {T1, . . . , TO} with multiple

times series S = {S1, . . . , SQ}. In this case, C and V can be extended to two sets,

respectively C = {C1, . . . , CO} and V = {V1, . . . , VO}, as parameters may be optimized

for each template Ti individually.

The most common TMMs are summarised in Table 4.1.1. Most of them are based

on dynamic programming and therefore defined through recursive equations. With the

exception of the Euclidean distance, for all the other methods, the final DT,S is computed

recursively as DT,S = ℧(tN , sM , C), where tN and sM are the last sample of T and S

respectively (see Figure 4.1.2).

4.1.1 TMM for classification

TMMs provide of a similarity measure DT,S between the time series in T and S. This

similarity can be a distance, the lower the better, or a matching score, the higher the

better.

An important application of the similarity measure is time series classification. In this

case, a ground truth label yi is assigned to each Ti. The classifier h aims at assigning the

correct label ŷi to S as4:

3w = 1 and omitted for standard DTW. If w 6= 1 for any sample, the method is called Weighted-DTW.
4argmin is used for distance, argmax for matching score



42

TMM D/S D.P. W C.C. Equation Params. Ref.

Exact

match
Distance

No No O(N) DT,S =

(

n
∑

i=1

|ti − si|
l

)1/l

(4.1) - -

DTW

Yes Yes O(N ·M)

Dti,sj = dti,sj + w ·min























D(ti−1, sj)

D(ti, sj−1)

D(ti−1, sj−1)

(4.2) w(3) [63, 66, 67]

Edit

distance

Dti,sj =







































max(i, j) if min(i, j) = 0

min























Dti−1,sj +D

Dti,sj−1
+ I

Dti−1,sj−1
+ S(ti 6=sj)

otherwise

(4.3)

D, I, S [68, 69]

WLCSS Similarity Dti,sj =



















































0 if i ≤ 0 or j ≤ 0

Dtj−1,si−1
+R if f(ti, sj) ≤ ǫ

max























Dti−1,sj−1
− P · f(ti, sj)

Dti−1,sj − P · f(ti, sj)

Dti,sj−1
− P · f(ti, sj)

if f(ti, sj) > ǫ

(4.4)

R,P, ǫ [26]

Table 4.1.1: TMM overview. For each method the following information are reported: i) whether the TMM calculate a distance (lower is better) or

a matching score (higher is better) (D/S); ii) if it uses dynamic programming, meaning that the distance between T and S is actually the distance

between their last samples D(T, S) = D(tN , sM ) (D.P.); iii) whether it allows warping between time series (W); iv) the computational complexity

(C.C.) v) the equation (Equation); vi) the parameters specific of each TMM, when present (Params.); vii) the reference for the method, when

possible (Ref.).



43

h(S) = argmax
yi

DTi,S

The method is called 1 Nearest Neighbour (1-NN) [70] and it assigns ŷi to S as the

label yi of the template Ti most similar to S. In this case, the classification is named

segmented (Figure 4.1.3).

In some classification tasks, it is possible for a S to be too dissimilar from any Ti. S is

too dissimilar from Ti, if D(Ti, S) < Vi for any Ti in T. In this case, a ŷ = 0 often referred

as NULL class, is assigned to S. Considering the aforementioned beach volleyball serve

example, this can be the case of a movement of the player that is too distinct from any Ti

to be recognized as a serve.

T1

T2

T3

S1 S2 S3 S4 S5 S6 S7

T1, S1 T1, S2 T1, S3 T1, S4 T1, S5 T1, S6 T1, S7

D
T

0 ,S
j

T2, S1 T2, S2 T2, S3 T2, S4 T2, S5 T2, S6 T2, S7

D
T

1 ,S
j

T3, S1 T3, S2 T3, S3 T3, S4 T3, S5 T3, S6 T3, S7

D
T

2 ,S
j

Te
m

pl
at

es

M
atching scores

Segm
ents

Figure 4.1.3: Consider 7 time series segments S1, . . . , S7 (which may correspond to time

series generated by the accelerometer in the serve recognition problem). These 7 time series

(top row) belong to 3 classes (e.g. 3 different kind of serve). For each of these classes, a

prototype is chosen as template, T1, T2, T3 (first left column). The matching scores DTi,Sj

are then computed for every Sj in S1, . . . , S7 for their classification (central 3 plots). In

this case, WLCSS is used as TMM. The red dots correspond to the classification using

1-NN based on the matching scores. The black dots are a mismatch. A possible threshold

V is reported as dashed line for each Ti, but not used in this case.

TMM can also be used for streaming recognition when S is a continuous stream of
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data. In the beach volleyball example, streaming recognition could be used to continuously

recognize serves during a match in which the player wears the sensor that continuously

samples acceleration data. However, in this work, we focus on the segmented recognition

as first step towards improving continuous skill assessment. Also, given our contribution

of a training method for TMMs, segmented recognition allows a direct comparison with

other TMM training methods. More on this matter is discussed sections 5.6 and 6.4.

Unless specified otherwise, any time series classification referred in this thesis is considered

segmented.

4.1.2 Warping Longest Common Subsequence

The Warping Longest Common Subsequence (WLCSS) [26] is an algorithm developed

for template matching in real-time applications that has been developed to be robust

against noisy data and variation of the movements execution speed (warping). WLCSS

was demonstrated to be suitable for real-time embedded implementation on low-power

nodes which are fundamental in the field of wearable computing. This is possible thanks

to its low memory footprint, as well as to the deployment of only compare, sum and

product operations [71].

Using dynamic programming, the algorithm computes a matching score between a

template T and a segment or stream S, updating it at every new sample of the stream. It

can be used for movement recognition as it can handle actions performed with variation

in their speed of execution. This is achieved by three parameters: reward (R), penalty

(P) and acceptance distance (ǫ). Using these parameters, WLCSS computes the matching

score D between the i-th sample of the stream S and the j-th sample of template T ,

according to equation 4.4. D is increased recursively by the reward R when the distance

between the two samples (f(ti, sj)) is below the acceptance threshold ǫ. Otherwise, it

finds the best warping (contraction, dilation, or alignment as-is) between T and S. In this

case, D is decrease by the penalty P proportional to the distance between the samples

(P · f(ti, sj)). An example of WLCSS calculated between a template and a segment is

displayed in Figure 4.1.4.

The values of R,P, ǫ and V , as well as the templates T needed for the matching must

be found or generated during the training phase. We present an evolutionary training

algorithm as main contribution of this thesis in chapter 5 and 6.
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(a) D(t2, s2) (b) D(t3, s3)

(c) D(t3, s4) (d) D(t3, s8)

Figure 4.1.4: Example of computation of matching score using WLCSS (see Eq.4.4),

with parameters R = 8, P = 1, ǫ = 0 and f(ti, sj) = |sj − ti|. The yellow cells indicate

when a mismatch between ti and sj happens (f(ti, sj) > ǫ). The green cells represent

a match between ti and sj (f(ti, sj) ≤ ǫ). In this example, the template is defined as

T = {11, 12, 9, 10}, while S = {13, 11, 12, 9, 10, 12, 11, 11, 10}. The figure presents 4 in-

termediate steps of the matching score calculation using WLCSS. Fig. 4.1.4a displays

the matching score calculated up to D(t2, s2). In this case, f(t2, s2) > 0 indicating a

mismatch. Therefore, three possible values are calculated: Dti−1,sj−1 − P · f(ti, sj) = 4,

Dti−1,sj −P ·f(ti, sj) = 13, Dti,sj−1 −P ·f(ti, sj) = 2. The maximum value is then selected

as the matching score (value in bold), in this case D(t2, s2) = 13. Similarly, D(t3, S3) is

calculate recursively as 23. Fig. 4.1.4c shows an example of matching between t3 and s4:

in this case D(t3, s4) is calculated as Dtj−1,si−1 + R and therefore D(t3, s4) = 32. Finally,

Fig. 4.1.4d shows the complete calculations for D(T, S) = D(tN , sM ) which in this example

is D(t3, s8) = 24.
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4.2 Activity recognition using TMM

Multiple steps must be considered when a TMM is applied to the classification of move-

ments from wearable sensors data. These steps compose a recognition pipeline that includes

the sensors sampling, the pre-processing of the sampled data, the distance calculation us-

ing the TMM and the classification of the segments.

Figure 4.2.1 shows our recognition pipeline, from sensor sampling to the classification,

using a WLCSS as TMM. A stream of data is sampled using one or multiple sensors such

as, for example, accelerometers and gyroscopes. The sensors signal can be subject to

several different pre-processing steps to remove noise from the data and therefore improve

recognition [72]. In our pipeline, unless differently specified, a low-pass filter is employed.

In addition to filtering, the pre-processing step can be useful to reduce dimensionality of

the data. Wearable sensors can provide multi-channel data that generally are not suitable

for TMM that are developed for single channel time series. In our pipeline, we deployed

two different procedures for dimensionality reduction each comprising multiple steps.

The first procedure is useful in case of raw data such acceleration and rate of rota-

tion. The multiple channels, e.g. x, y and z components of an accelerometer, are merged

for example by computing the magnitude of a signal as
√

x2 + y2 + z2. The fused data

is then downsampled in order to reduce the computational cost of the TMM. Finally,

the downsampled signal is quantized to a fixed interval of values in order to reduce the

dimensionality even further; in this case the dimensionality reduction is on the y-axis.

The second method for dimensionality reduction has been presented in [25] and it does

not only allow the fusion of multiple channels from one sensor, but it also merges data

from multiple sensors by encoding complex movements as strings. When available, this

method uses the 3D orientation data from multiple inertial wearable sensors by computing

the 3D trajectory of a hand, or any body part, when performing the movements. This

3D trajectory is then sampled temporally or spatially to produce a series of 3D vectors.

These 3D vectors are then translated in symbols by using the codebook of 3D unit vectors

displayed in Figure 4.2.2a. The translation of a 3D vector is performed by finding its

closest 3D unit vector in the codebook using the angular distance. Since a symbol is

associated to every 3D unit vector in the codebook, this symbols can be used to form the

string representing the trajectory time series. In this case, the encoding of the trajectory

correspond to the quantization of the first method.

A similar approach can be applied to 2D trajectories as well, by using a 2D codebook

as displayed in Figure 4.2.2b. An example of 2D trajectories can be the trace produced
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Figure 4.2.1: Har pipeline example employing WLCSS for segmented classification of

activities. A signal is sampled using, in this case, a 3-channel sensor, with x, y and z

components (A). Then, the pipeline proceeds with a pre-processing step (B) which com-

prises: i) signal filtering (B.1), using a low pass filter for example, for every component;

ii) Then according with the desired dimensionality reduction method, two ways of pro-

cessing the data are possible. The first include sensor fusion of the 3 channels (B.2a),

downsampling of the signal (B.3a), and quantization (B.4a). The second method includes

the computation of 3D (or 2D) trajectories (B.2b), the trajectory downsampling, tempor-

ally or spatially, (B.3b), and the encoding of this samples using a codebook (B.4b). iii)

Finally, the quantized/encoded signal is segmented with some heuristic (C), for example

using a temporal sliding window for the classification, and the ground truth labels of the

samples for the training. iv) Part of the segments can be used for the training (D) of

parameters C, the templates T and the thresholds V for the classification. v) successively,

WLCSS is used to computed the matching scores (E). vi) The classification is then per-

formed comparing the matching scores and the thresholds V (F).

by a finger on a touch-screen. See Section 4.3 for more details.

Successively, independently from the quantization/encoding, the signal is clipped into
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Figure 4.2.2: 3D and 2D codebooks used for the encoding of trajectories. The unitary

vector are equally spaced.

segments. The segmentation can be performed using different heuristics such as time

windows or the ground truth labels. The latter requires an annotated dataset and it is

used for training in order to select specific segments of interest.

The choice of the templates T and the sets of the parameters C is fundamental to

maximize the classification performance. An adequate selection of templates may also

reduce the computation required for pattern recognition. For example, selecting a single

optimal template for each class decrease the computation when a 1-NN approach is used

for the classification, compared to using all the available templates. Moreover, when a

TMM allows warping between time series, a shorter template may be used reducing its

complexity O(N ·M), by decreasing templates’ length N .

For this reasons, part of the segments, if annotated, can be used for training as shown

in Figure 4.2.1. Unlike e.g. back-propagation as a standard algorithm for neural network

training [73], TMMs do not offer a standard training procedure that can be applied across

different algorithms. Therefore, in this thesis we present our training method named

WLCSSLearn.

Finally, once the matching costs D(Ti, Sj) are computed between a segments Sj and

the templates in T, the pipeline proceed with the classification. The classifier h assigns

the label ŷi to Sj as the yi of Ti using the following:

h(Sj) = max

(

0, argmax
yi

D(Ti, Sj) − Vi

Vi

)

= ŷi

One thresholds Vi per template Ti is used for detection and classification. With this

classifier, it is possible for a Sj to be too dissimilar from any Ti and therefore be classified

as NULL-class.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 0 15 31 15 15 15 9 9 21 21 9 9 21 21

2 15 0 15 31 15 15 21 9 9 21 21 9 9 21

3 31 15 0 15 15 15 21 21 9 9 21 21 9 9

4 15 31 15 0 15 15 9 21 21 9 9 21 21 9

5 15 15 15 15 0 31 21 21 21 21 9 9 9 9

6 15 15 15 15 31 0 9 9 9 9 21 21 21 21

7 9 21 21 9 21 9 0 12 19 12 12 19 31 19

8 9 9 21 21 21 9 12 0 12 19 19 12 19 31

9 21 9 9 21 21 9 19 12 0 12 31 19 12 19

10 21 21 9 9 21 9 12 19 12 0 19 31 19 12

11 9 21 21 9 9 21 12 19 31 19 0 12 19 12

12 9 9 21 21 9 21 19 12 19 31 12 0 12 19

13 21 9 9 21 9 21 31 19 12 19 19 12 0 12

14 21 21 9 9 9 21 19 31 19 12 12 19 12 0

Table 4.2.1: Matrix of distances between symbols of the 3D codebook in Figure 4.2.2a.

4.2.1 Template matching of encoded movements

Since the different pre-processing steps can produce different values for the segments

samples, a TMM must be robust to the difference in the time series quantization and

encodings. For WLCSS, this is achieved thanks to f(ti, sj) (see Equation 4.4): in case of

quantized time series, the f(ti, sj) is often the L1-norm between the two samples |ti − sj |.

However, it can be also be other distance metrics defined for the possible values of ti and sj .

This enables WLCSS to be used with numeric time series as well as with signals encoded

using specific alphabets for which the L1-norm between ti and sj could be meaningless

(e.g. time series encoded as strings [25]).

We created two distance matrices for the 3D and 2D encodings respectively. Table 4.2.1

and 4.2.2 show these matrices. The distance between two encoded samples ti and sj

respectively of value a and b is the element at position (a, b) of the matrix. The matrices

are created based on the angular distance between two vectors in each codebook. The

angular is then multiplied by 10 and rounded to integer values in order to be more easily

integrable in embedded wearable platform that might not have support for float numbers.
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1 2 3 4 5 6 7 8

1 0 15 31 15 7 23 23 7

2 15 0 15 31 7 7 23 23

3 31 15 0 15 23 7 7 23

4 15 31 15 0 23 23 7 7

5 7 7 23 23 0 15 31 15

6 23 7 7 23 15 0 15 31

7 23 23 7 7 31 15 0 15

8 7 23 23 7 15 31 15 0

Table 4.2.2: Matrix of distances between symbols of the 2D codebook in Figure 4.2.2b.

4.3 Datasets

Several datasets for activites, gestures and movements recognition have been presented in

the community, including a wide variety of sensor modalities [74]. In order to evaluate

our training methods, in addition to the previously collected beach volleyball dataset (see

Chapter 2), we selected 5 multi-modal datasets of movements coming from the field of

wearable and ubiquitous computing (see Table 4.3.1). We chose these datasets because

they include a variety of movements, sensors modalities and environments in which they are

collected, they are pre-processed differently and they are well established in the community.

This ensures a robust evaluation of our methods. In the following, we describe the pre-

processing applied to each of these datasets and to the beach volleyball dataset to be used

in the rest of this work.

The Skoda dataset comprises actions performed in car manufacturing during a quality

check routine [75]. The movements were performed by users wearing a set of inertial motion

sensors on the back, on the upper arms, on the lower arms and on the hands. Each platform

integrated a 9-axis inertial unit providing the device orientation. The hand coordinates are

computed with respect to the torso position, at each timestep. The trajectory of the hand

in then sampled at regular interval and encoded as in [25] to reduce dimensionality. The

actions are thus represented as a sequence of symbols indicating the direction of movement

of the hand. Each symbol is obtained using a codebook of predefined vectors in order to

sample the displacement of the hand during the movement. We empirically chose a 15

vectors codebook (see Figure 4.2.2a). We selected actions that are commonly performed

with the right hand (e.g. Adjusting the mirror for a left-hand driving car) or with both
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Dataset # of movements |S| Avg. Stream length List of movements

skoda 8 308 57.19 ± 63.46 3001: open hood, 3002: close hood, 3003: open trunk, 3005: close trunk, 3013: mirror, 3014:

check trunk gaps, 3018: open swl, 3019: close swl

opportunity encoded 11 379 29.32 ± 13.98 406516: Open Door 1, 404516: Close Door 1, 406520: Open Fridge, 404520: Close Fridge, 406505: Open

Dishwasher, 404505: Close Dishwasher, 406519: Open Drawer 1, 404519: Close Drawer 1, 408512: Clean

Table, 407521: Drink from Cup, 405506: Toggle Switch

hci guided 5 264 60.25 ± 6.12 49: Triangle, pointing up, 50: Square, 51: Circle, 52: Infinity, 53: Triangle, pointing down

skoda mini 10 725 74.90 ± 20.81 48: write on notepad, 49: open hood, 50: close hood, 51: check gaps on the front door, 52: open left front

door, 53: close left front door, 54: close both left door, 55: check trunk gaps, 56: open and close trunk, 57:

check steering wheel

hci table 26 583 54.51 ± 24.52 9: A, 10: B, 11: C, 12: D, 13: E, 14: F, 15: G, 16: H, 17: I, 18: J, 19: K, 20: L, 21: M, 22: N, 23: O, 24:

P, 25: Q, 26: R, 27: S, 28: T, 29: U, 30: V, 31: W, 32: X, 33: Y, 34: Z

Table 4.3.1: Movements datasets overview. The number of different movements, the number of segments, their average length and standard

deviation is reported. Finally the lists of movements identified by a numeric identifier is presented.
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hands (e.g. Open/close hood). An example of this encoding for the action “Open hood

(3001)” is shown in Figure 4.3.1a.

The OPPORTUNITY Activity Recognition Dataset [48] comprises activities per-

formed in a kitchen environment. We use the “drill” part of the dataset which included

20 repetition of the same set of actions performed by participant. The motion capture

system is similar to that in Skoda dataset as well as the processing of the trajectory data.

We use the position of the right hand as it is the one used for majority of the actions.

Some movements might be performed with the other hand, but this information is not

available in the dataset. The set of actions used in this study is displayed in Table 4.3.1.

An example of 3D encoding of the action “Open Dishwasher” is presented in Figure 4.3.1b.
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(a) Skoda - “Open Hood”
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(b) OPPORTUNITY - “Open Dishwasher”

Figure 4.3.1: Pre-processing step for segments in Skoda 4.3.1a and OPPORTUNITY

4.3.1b datasets. The X-Y-Z coordinates of the hand (Skoda) and lower arm (OPPOR-

TUNITY) are computed combining the 3D orientation data provided by the IMU sensors

on the entire arm. Then, a trajectory is computed as sequence of 3D points in space (left).

The orange and red points are respectively the start and the end point of the trajectory.

Finally, this trajectory is sampled in time (center) and each vector between two sampling

points is encoded using the 3D codebook 4.2.2a with symbol of the closest 3d vector (right).

The HCI (guided) gestures dataset [76] comprises gestures performed by a user fol-

lowing a geometric shape place on a wall in front of the user. We can defined these as

gestures since the movements included in the dataset are meant to communicate with

an HCI system. Several 3D accelerometer were placed on the arm. We used a single

channel of an accelerometer on the lower arm. The original signal was sampled at 96Hz.
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We applied a low-pass filter with cut-off frequency of 5 Hz, downsampled the signal by a

factor 10 and quantized it by mapping the sensing interval ±1G to integer values in the

interval 0-64. Figure 4.3.2a presents an example of this pre-processing, using the gesture

“Triangle, pointing up”.

The Skoda Mini Checkpoint is a dataset of 10 manipulative actions performed in

car maintenance scenario. These movements are a subset of the actions performed in the

Skoda dataset [75] but recorded with accelerometers instead of IMUs, at 98 Hz. We chose

to use a single channel of one of the sensor placed on the right lower arm. The signal was

filtered with a low-pass filter at 5 Hz, decimated by a factor 10 and quantized to integer

values in the interval 0-64. An example of this process is shown in Figure 4.3.2c for the

action “Writing notes”.

The HCI table is a dataset of Graffiti which was a single-stroke hand writing style used

in PDAs based on PalmOS. In this dataset, the alphabet is performed by a user on a touch

screen table while sitting (see Figure 4.3.3a). X,Y trace coordinates recorded at 200 Hz are

filtered with a low-pass filter at 5 Hz. Finally, the 2D trajectories are downsampled at 50

Hz, and every sample is encoded with a symbol using the 2D codebook in Figure 4.2.2b)

as shown in Figure 4.3.3b, using the letter F as example.

Finally, we report the pre-processing of our Beach Volleyball dataset (see Chapter 2)

that will be used throughout the rest of this work. Figure 4.3.4 shows the following steps:

we select the 3-channels gyroscope sensor signal of the BlueSense placed on the lower arm

of the players. We reduce the noise in each of the three components with a low-pass filter

with cut-off frequency of 5 Hz, then we fuse the three channels using the L2 norm. Then,

the signal is downsampled by a factor 10 and quantized to integer values in the interval

0-64.
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(d) Skoda mini - “Segments examples”

Figure 4.3.2: Pre-processing steps for segments in hci guided 4.3.2a and skoda mini

4.3.2c datasets. Starting from the raw data, a low pass filter with cut-off frequency of 5Hz

is applied. Then the signal is downsampled by a factor 10. Finally, it is quantized with

integer value in the interval 0-64. Figures 4.3.2b and 4.3.2d show an example of templates

for every action class respectively in hci guided and skoda mini datasets.
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Figure 4.3.3: The Graffiti X,Y traces for the A-Z alphabet recorded by the touch-table

are displayed in fig. 4.3.3a. Multiple traces are over-imposed for each letter. In fig. 4.3.3b

an example of encoding of 2D trajectory for the letter Q is displayed. The orange and red

points are respectively the start and the end point of the trajectory. The stroke of the finger

recorded by the touch screen (left plot) is sampled temporally. The vectors created between

sampling points (center plot) are encoded by finding the closest vector in a 2D codebook

(4.2.2a) (right plot)
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(b) Beach volleyball - “Segments examples”

Figure 4.3.4: Pre-processing steps for segments in beach volleyball dataset. Starting

from the raw data, a low pass filter with cut-off frequency of 5Hz is applied to each of the

3 channels, x, y, and z. Then, the three channels are fused by using the L1-norm. The

obtained signal is then downsampled by a factor 10. Finally, it is quantized with integer

value in the interval 0-64. Figures 4.3.4b shows an example of templates for every action

class.
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Chapter 5

Training of parameters for TMM

based action recognition

In the previous chapter, we saw that TMMs require a training phase for selecting the best

parameters to maximize recognition. In this chapter, we present our method for training

WLCSS parameters. Starting from the state of the art and its limitations, we introduce

the algorithm and an extensive evaluation to individuate a framework for the training

parameters. An initial version of this algorithm has been published in [VII]. An evolution

of the algorithm and a more extensive analysis is in preparation for [VIII].

5.1 Parameters training methods for TMM: state of the art

Parameters training for TMM has mostly been performed manually for each application

(see Table 5.1.1). This is the case for WLCSS in [77, 35] and LCSS employed in [78]. None

of the authors did specify whether they follow any systematic method for selecting C.

A custom heuristic was suggested for LCSS in [25, 79]: as predefined 3D unit vectors

were used to encode the signal (see Section 4.2), the cost D, I and S were computed as

the angular distance between each pair of vectors.

Authors in [80] and [81] used multiple instances of DTW in a multi-joint gestures

recognition application. A custom heuristic was designed in order to calculate a weight

for each joint based on its contribution to a specific action. The heuristic was specifically

created to optimize the weight of this DTW variant in this specific application.
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TMM Ref Parameters C Optimization method Data

WDTW
[80]

Weights of DTW Custom heuristic
X,Y,Z coordinates of

body joints from Kinect
[81]

Edit distance

[25]
Insertion, deletion,

substitution costs,

and V

Custom heuristic Trajectories from

X,Y,Z coordinates
[79]

[78] Manual choice Fingers position recorded using

Leap Motion sensor

WLCSS
[77]

R, P, ǫ, and V Manual choice
Accelerometer data

[35] 1D Gyroscope data, 1D Acceler-

ometer data, EMG data

Table 5.1.1: Overview of parameter training for different TMM applied to human sensing

data.

5.1.1 Limitation of state of art

From our Section 5.1, it is clear how no systematic approach was identified for training

TMMs parameters. Choosing them manually is a tedious task, considering the wide space

of possible values for each parameter. Even a brute force search may not allow to explore

the entire search space when a large number of parameters must be optimised. Moreover,

as they are mostly defined using dynamic programming (see Table 4.1.1), TMM are not

differentiable [82] (without define custom operators) and therefore standard optimization

methods such as gradient descent cannot be applied to narrow the parameters search.

While other approaches that do not require a gradient could be used, i.e. back propaga-

tion, none of them would allow the optimization of variable length parameters. This would

be required later in this work, as explained in Chapter 6.

Few custom heuristics have been proposed to solve this problem but while they reach

good results, to the best of our knowledge, none of them could be easily transferred to

other TMM or other applications.

5.2 Evolutionary algorithms

In order to overcome these limitations, we based our methods on Evolutionary Algorithms

(EAs). EAs are a class of algorithms that ”evolve” a randomly initialized population

of individuals in order to find the individual that maximizes a fitness function, using

principles loosely inspired by biological evolution.

EAs make it possible to search efficiently an optimum even when the space of possible

solutions is large and when multiple highly correlated parameters need to be optimized at

the same time [83].
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Figure 5.3.1: Parameters R, P , ǫ and V binary encoded in a bitstring, using bp = 4 and

bt = 9.

The individuals in the populations are made by one or multiple genes. The genes

can be real number or binary digits representing the encoding of a specific object of the

optimization problem.

The EA evolves the population through an iterative process according to a fitness

score computed for each individual. At each iteration, after the fitness computation, a

new population is generated in 3 steps:

• Selection. A subset of the individuals in the previous iteration’s population is se-

lected, according to the fitness score. The size of this subset is defined by a rank

parameter.

• Crossover. The selected individuals are crossed over with a probability cp in order

to create new individuals.

• Mutation. With a certain probability mp, a random selection of genes in the new

population is mutated. It means that they are swapped between 1 and 0, and vice-

versa, in case of binary genes. Other heuristic can be used in order to mutate numeric

genes (see 6.2 for an example).

• Occasionally, at each iteration, some of the best individuals from the previous popu-

lation are copied to the new one in order to prevent a good individual to be destroyed

through crossover/mutation. This is called elitism.

The evolution process can end after a predefined number of generations or when there

are no significant changes in the fitness score.

5.3 WLCSSLearn p

WLCSSLearn p is our method for training WLCSS’s parameters. Based on evolutionary

algorithms, WLCSSLearn p trains the set of parameter R, P , ǫ and V for every action

class g individually. A template T must be provided for every g.

The training algorithm is presented in Algorithm 1.
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WLCSSLearn p encodes the set of parameters to train in bitstring as shown in Fig-

ure 5.3.1. The number of bits for R,P and ǫ is set through the parameter bp. The

parameter bt defines the number of bits for the threshold V .

Symbol Description

bp Number of bits used to encode each WLCSS para-

meter R,P and ǫ.

bt Number of bits used to encode the threshold V .

Table 5.3.1: WLCSSLearn p parameters to control the binary encoding of parameters

and thresholds.

In addition to bp and bt, WLCSSLearn p uses a set of parameters to control the

evolutionary training presented in Table 5.3.2. The usage of each parameter is explained

in the following, for each step of the evolutionary training.

Algorithm 1 WLCSSLearn p- WLCSS parameters per-action training

Input: dataset, GA parameters

1: [templates], [segments] = WLCSSLearnInit(dataset)

2: for each g in [gestures] do

3: population = initPopulation()

4: for a = 1, ...,generations do

5: for each pk in population do

6: [R, P, ǫ, V ]k = decode(pk)

7: pk.fitness = computeFitness([R, P, ǫ, V ]k, [templates], [segments])

8: population = selection(population, rank)

9: population = crossover(population, cr)

10: population = mutation(population, mt)

11: [R,P, ǫ, V ]g = getBestFit(population)

Output: [R, P, ǫ, V ]g for each g in [gestures]

WLCSSLearnInit. WLCSSLearn p performs an initialization step before the train-

ing. This step is required to select the template T for each action class g. The MRT is

selected as representative T for each g (see Section 6.1). Then, according to the paramet-

ers bp and bt, a population of pop individuals in generated randomly. Each individuals pk

encodes a single set of R,P, ǫ and V . WLCSSLearn p uses the same value of bp for R,P, ǫ.

The value of bt must be bigger than bp as the thresholds values are orders of magnitude

larger than the value of R,P or ǫ. In our evaluation, the ratio between bp and bt is set

empirically. The length of every individual pk is therefore:

len(pk) = 3 · bp + bt
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Symbol Parameters

iter Number of iterations to evolve the population for

pop Number of individuals in the population

rank Number of individuals selected at every iteration

based on the top fitness scores

elit Optional limited number of individuals carried over as

they are (no evolution) at every iteration

cr Probability of a crossover operation between two indi-

viduals

mt Probability of the mutation of each bits in the bitstring

Table 5.3.2: EA parameters controlling the number of individuals in the population, the

number of selected individual at each iteration, the number of individuals in the elitism,

the crossover and mutation probability.

The algorithm then evolves the population through selection, crossover and mutation

operators in order to maximise the fitness function at every iteration, for a single action

class g at a time. This means, that for every g, the segments Sj in the training set can

be divided in those belonging to g and those that do not. Therefore, during the training

we consider the classification a 2 class problem. In this case, the threshold V is used to

define a match/mismatch of a certain segment S for the trained action class g.

ComputeFitness A fitness function is needed in order to guide the evolution. WLC-

SSLearn p uses the F1 score as fitness function F (pk). For every individual pk, the match-

ing scores D(T, Sj) are computed for every Sj. D(T, Sj) is then compared to V encoded

by each individual pk and classified as g if D(T, Sj) ≥ V or g if D(T, Sj) < V . Then,

according the ground truth label of every Sj , we can count:

• True positive (TP): Sj belonging to class g and correctly classified as g;

• True negative (TN): Sj not belonging to class g and correctly classified g;

• False positive (FP): Sj not belonging to class g, but wrongly classified as g;

• False negative (FN): Sj belonging to class g, but erroneously classified as g.

Using these definition, we can compute precision, recall and F1 score as our fitness function

F (pk):

precision =
TP

TP + FP
recall =

TP

TP + FN
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F (pk) = 2 ·
precision · recall

precision + recall
(5.1)

Selection The top rank best fitting individuals are selected in order to parent the

future generation of individuals. The rank individuals are then replicated in order to

maintain the fixed size pop of the population 1.

Crossover With a probability cr, every pair of selected parents bitstring generates a

new offspring by swapping two parts of consecutive bits as displayed in Figure 5.3.2. The

swapping point is chosen randomly from a discrete uniform distribution in the interval

[2, len(pk) − 2], to ensure to exchange at least 2 bits. The crossover operator does not

take into account the boundaries of R,P, ǫ and V within the bitstring (see Section 5.6 for

more).

(a) Pre (b) Post

Figure 5.3.2: Example of crossover, pre and post operation. The crossover operator

takes two bistrings (left) and with probability cr generates two new bitstrings by swapping

a random portion of the bitstrings.

Mutation The bits of every bitstring in the population mutates with a per-bit prob-

ability mt. The mutation is a change of bits from 0 to 1 and viceversa. See Figure 5.3.3

for an example.

(a) Pre

(b) Post

Figure 5.3.3: Example of mutation, pre and post operation. A random selection of bit is

changed from 0 to 1, and viceversa, with a per-bit probability of change mt.

Elitism A limited number of individuals indicated as elit from the previous iteration’s

population is carried over at every iteration. This prevents the evolution to diverge from

an optimal solution once one is found.

1The actual number depends on the elitism. If elit > 0, then the number of individuals after the

replication is pop− elit
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Parameter Start value End value Step

cr 0.1 0.5 0.05

mt 0.05 0.5 0.05

Table 5.4.1: Interval of values of cr and mt considered in our evaluation.

WLCSSLearn p stops after a predefined number of iteration (This is further discussed

in Section 5.6).

5.4 Evolutionary parameters analysis

We present an extensive evaluation of WLCSSLearn p aimed at showing how evolutionary

parameters and encodings affect training time and recognition performance. We charac-

terize:

• the effect of cr and mt on the recognition performance, while keeping constant pop,

rank and elit, using WLCSSLearn p;

• we analyse how pop, rank, and elit affect the F1 score and the speed of training of

WLCSSLearn p, for fixed values of cr and mt;

• we evaluate the recognition performance and the speed of training for different values

of bp and bt. Using a lower number of bits reduces the search space and could lead

to faster convergence. On the other hand, a larger number of bits may slow the

convergence but allowing to explore more the search space, finding better solutions.

Since the evolution of the populations in WLCSSLearn p is a stochastic process, we

repeat each test 10 times and we average the results. In order to speed-up our evalu-

ation, we employ the parallelized implementation of WLCSS based on CUDA described

in Chapter 7.

5.4.1 Crossover vs Mutation

First, we examine the impact of cr and mt on the training. We empirically choose two

intervals of values for cr and mt as shown in Table 5.4.1. We set the other evolutionary

parameters to fixed values displayed in Table 5.4.2.

We ideally want to find one set of cr and mt that would work for every dataset.

Table 5.4.3 shows the best fitness score for each dataset and the values of cr and mt
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Parameter Value

pop 32

rank 12

elit 3

iter 500

bp 4

bt 9

Table 5.4.2: Fixed values of other evolutionary parameter and encodings during cr and

mt evaluation

used to obtain it. It is clear how there is no single value that works for every dataset.

Finding a range of value suitable for a wider range of scenario is more valuable. Therefore,

Figure 5.4.1 presents the fitness scores reached at the end of the training, for each dataset,

and the performance loss compared to the best fitness scores presented in Table 5.4.3.

Since the variation in performance for each value of cr and mt are between 0% and 5%,

we find more useful and clear for the reader to analyse the performance loss compared

to the best fitness scores. Figure 5.4.2 shows the average performance loss across all the

dataset.

From the figures, we can observe that cr and mt greatly affect the recognition per-

formance, although with different impact. mt is apparently more important than cr, as it

is possible to notice that the bigger variations in the F1 score happen on the x-axis of the

plots, rather than the y-axis. Secondly, given the large variability of the color distribution

amongst datasets, it is possible to notice that the effect of cr and mt can change greatly

across different datasets.

However, from Figure 5.4.2 it is possible to identify that the interval [0.15 − 0.25] for

mt minimize the performance loss, with values between −0.23% and −0.11%, depending

on the value of cr. On the other hand, it is not possible to clearly identify an interval for

cr that would strongly reduce the performance loss. However, from Table 5.4.3 it visible

how, with the exception of the hci guided dataset, the best performance are obtained when

cr ≥ mt, therefore we suggest that cr > 0.25 for any value of mt.

Finally, with a maximum performance loss of < 1%, our findings show that cr and

mt do not necessarily need to be optimized per application if they are in the suggested

interval of values.
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Figure 5.4.1: Evaluation of maximum fitness score reached after 500 generations of

WLCSSLearn p with respect to different values of cr and mt averaged across action classes

for all the datasets. The percentage loss of the score for each combination of cr and mt

is showed with respect to the best score represented by the black square. The colormap

represent the fitness score obtained at the end of the training, and it is computed with

respect to minimum and maximum fitness score for each dataset singularly. The best and

worst scores are displayed as the maximum and minimum values of the color-bar.
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Dataset cr mt Max Fitness Score (F1)

skoda 0.30 0.20 90.35

opportunity encoded 0.45 0.20 87.90

hci guided 0.10 0.25 97.86

skoda mini 0.25 0.15 95.98

hci table 0.30 0.10 80.87

beachvolleyball 0.25 0.25 76.02

Table 5.4.3: Best fitness scores for each dataset and relative values of cr and mt.
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Figure 5.4.2: Average loss of performance across all the datasets for each pair of values

of cr and mt.



67

5.4.2 Population size, rank and elitism

The parameters pop, rank and elit also affect the fitness score. We investigate this effect by

executing WLCSSLearn p with five different combination of pop, rank and elit presented

in Table 5.4.4.

We also set the value of the other evolutionary parameters to constant values in order

to simplify the evaluation. We manually set cr = 0.35, mt = 0.25, as from the previous

analysis we show minimal change in performance within the specified intervals, and iter =

1000.

The results of this analysis are presented in Figure 5.4.3. An increase in population

size appears to lead to convergence in a lesser number of iterations. However, the time

for training grows linearly with the size of the population, meaning that using a smaller

population would take less time to complete 1000 generations. While there is no necessarily

a best choice between the two, we suggest an intermediate number of individuals (e.g.

pop = 32) as a reasonable trade-off between training time and avoidance of local optimum,

which can happen for low number of pop.

pop rank elit

8 3 1

16 6 2

32 12 3

64 24 6

128 48 12

Table 5.4.4: Analysed combinations of pop, rank and elit.

5.5 Genetic encoding evaluation

We evaluate the effect of the number of bits used to encode R,P, ǫ, i.e. the parameters bp

and bt, after 1000 iterations. Smaller values of bp lead to smaller R,P and ǫ which would

reduce the search space, speeding up the training. On the other hand, bt must variate

accordingly to bp, as R and P affect the possible values of the matching scores that must

be compared against V in order to define a match/mismatch.

We studied several values of bp and bt in pairs, presented in Table 5.5.1. In order to

make the results only dependant from the number of bits, we keep the same values for all



68

bp bt

3 7

4 9

6 13

8 17

10 21

12 25

14 29

Table 5.5.1: Analysed pairs of values for bp and bt.

the remaining parameters to pop = 32, rank = 12, elitism = 3, iter = 500, cr = 0.35,mt =

0.25.

Figure 5.5.1 presents the results of this analysis. Each plot represents the average of

10 evolutionary run for each pair of values of bp and bt. The results are also analysed at

different steps of the training. It is possible to notice that for skoda mini, hci guided and

beach volleyball datasets even very small number of bits (3, 7) are sufficient to reach high

fitness scores already after few iterations, i.e. 50. However, under the same conditions,

the skoda, opportunity and hci table datasets fails to reach their maximum performance

as shown for other and higher number of bits.

By looking at the average fitness score reached after 1000 generations for all the dataset,

the pairs of values of bp and bt (4, 9) and (6, 13) more consistently allow to get the

maximum fitness score.

Higher values of bp and bt not only increase the time WLCSSLearn p takes to converge,

but also they may even fail to converge. For example, the pair (8, 17) takes longer to train

than lower number of bits but still reach comparable fitness score for the skoda mini,

hci guided and skoda datasets. On the other hand, for opportunity encoded and hci table,

the same pair of bits values makes WLCSSLearn p fails to reach its maximum potential

fitness score, reached with the encoding (6, 13).

Figures 5.5.2 show the probability distribution of the numerical values obtained after

training, for each pair of R,P and ǫ, for all the datasets, for each pair of bp and bt.

While we would be interested in a clear concentration of probability on specific values, the

scattered distribution of possible values emerging from the plots strongly suggests that all

the three parameters must be part of the training.
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5.6 Discussion

We demonstrated how WLCSSLearn p is effective for the training of WLCSS’s parameters.

However, the training procedure as well as the genetic operators are not tied only to the

WLCSS method but they can be used with other TMMs. With a different encoding of

the individuals of the population, WLCSSLearn p can be deployed for other parametrized

TMMs such as LCSS and WDTW. In case of LCSS for example, the individuals would

encode the substitution, deletion and insertion costs and the fitness function would use

LCSS to compute F (pk).

Moreover, while we focused on the task of action recognition, our evaluation using

different datasets including different encodings showed that our method is applicable to

a large variety of input data. This makes WLCSSLearn p exportable to other pattern

recognition tasks even from different domains such as audio streams.

WLCSSLearn p uses a genetic algorithm to explore the search space. As explained

in Section 5.1.1, other methods, such as gradient descent cannot be applied to the op-

timization of non-differentiable functions as the equation of WLCSS. A brute force ap-

proach could be used instead: however considering the case of 4 bits for the WLCSS

parameters and 9 bits for the threshold V , for a single action class, this would results in

24·3+9 = 221 = 2097152 possible sets to be evaluated in a brute force search. Considering

the same number of bits, a populations of 32 individuals with elit = 3 and the maximum

of 500 iterations, WLCSSLearn p requires only 32+29·499 = 14532 computations to reach

an optimal solution. In this scenario, WLCSSLearn p requires 99.3% less computations.

Additionally, from the analysis in Section 5.5, it is possible to notice that WLCSSLearn p

reaches the maximal recognition performance with even less than 500 iterations for most

datasets, reducing the required computations even more.

There are several avenues to bring further to WLCSSLearn p:

• enhancing the crossover operator. In the current implementation, the crossover op-

eration is applied on the entire chromosome at once. It is possible to make this

operator aware of the boundaries of the genes for R, P, ǫ and V , applying the cros-

sover operation only between whole genes, instead of breaking them at bit level. This

would enable a more precise evolution and possibly a faster convergence. Moreover,

it could make the parameter cr more effective than the current implementation,

where we demonstrated having lower impact, especially compared to mt.

• introducing a stop criteria for the evolutionary training. From our evaluation, it is
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Dataset F1 score Encoding (bp, bt)

skoda 0.91 ± 0.01 6, 13

opportunity encoded 0.88 ± 0.00 4, 9

hci guided 0.98 ± 0.00 6, 13

skoda mini 0.95 ± 0.00 3, 7

hci table 0.81 ± 0.01 6, 13

beachvolleyball 0.76 ± 0.00 4, 9

Average 0.88 ± 0.08

Table 5.7.1: Summary of recognition performance (F1 Score) with WLCSSLearn p. The

best encoding for each dataset is indicated. The evolutionary parameters were all set to

pop = 32, rank = 12, elitism = 3, iter = 1000, cr = 0.35,mt = 0.25.

clear how the biggest and more significant changes of the training happens in the

first tens of iterations. A stop criteria would accelerate the training by avoiding

useless iterations once an optimal results has been achieved. A possible solution for

this would be to compute the gradient of the fitness scores and stop the evolution

when such gradient remains 0 for a predefined number of iterations.

5.7 Conclusion

We presented WLCSSLearn p, a training algorithm for WLCSS with a focus on action

recognition. Based on evolutionary algorithms and using custom encoding of chromosomes,

WLCSSLearn p trains the parameters of WLCSS in order to maximize the recognition

performance.

We evaluated WLCSSLearn p on 6 datasets of gestures including different kind of

data encoding/quantization. We proved that our method is robust against the intrinsic

variability of sensors data for action recognition, it is independent from the data encoding

and it can work with minimal change from the user.

Through an extensive analysis we individuate a framework for the WLCSSLearn p’s

training parameters:

• We found that the best intervals for the mutation probability is [0.15−0.35]. Within

this interval, the value of the crossover probability does not affect performance, but

considering our empirical results, we advices a value of cr ≥ mt, and therefore
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cr > 0.25. Within these range of values, the performance loss is < 0.21% meaning

that cr and mt do not require any application-specific optimization.

• Our evaluation showed that a good balance between performance and training speed

is achieved by a number of individuals pop = 32, with a proportional rank = 12 and

elitm = 3, when the maximum number of iterations is 1000.

• Finally, across all datasets and given the previously suggested evolutionary paramet-

ers, we advise an encoding of 6 bits for the WLCSS parameters and 13 bits for the

thresholds V .

Within this framework of parameters, WLCSSLearn p showed recognition performance

of 88% ± 8 F1 score on average across all the datasets.
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(b) opportunity encoded
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(c) hci guided

0 10 50 100 200 1k
Generations

0.0

0.2

0.4

0.6

0.8

1.0

Fit
ne

ss
 sc

or
e 

- F
1

pop=8, rank=3, elit=1

0.955±0.00

0 10 50 100 200 1k
Generations

pop=16, rank=6, elit=2

0.958±0.00

0 10 50 100 200 1k
Generations

pop=32, rank=12, elit=3

0.959±0.00

0 10 50 100 200 1k
Generations

pop=64, rank=24, elit=6

0.960±0.00

0 10 50 100 200 1k
Generations

pop=128, rank=48, elit=12

0.960±0.00

00
:01

:00

01
:45

:45

03
:30

:30

05
:15

:15

07
:00

:00

Tr
ai

ni
ng

 ti
m

e 
in

 h
h:

m
m

:s
s

(d) skoda mini
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(f) beach volleyball

Figure 5.4.3: Fitness score at the 0, 10th, 50th, 100th, 200th, and 1000th generation of the evolutionary training withWLCSSLearn p, for different

values of pop, rank and elitism (indicated as title of each subplot), for all the datasets. Each boxplot is the average of the training for every action

repeated 10 times, for different randomly generated initial population. The training time of each configuration are reported using the right y-axis.

These times cannot be compared across different datasets because the analysis were executed on different machines. However, since all the different

combinations for the same dataset were executed on the same machine they can be used to evaluate the difference in time between different values

of pop, rank and elit. These times are calculated as average of all the multiple executions. Finally, they are comparable within each dataset but not

across different datasets as the tests were executed on different machines assigned on a per-dataset basis.
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(f) beach volleyball

Figure 5.5.1: Fitness score at the 0, 10th, 50th, 100th, 200th, 500th, and 1000th generations of the evolutionary training withWLCSSLearn p, for

different pairs of bp and bt (indicated as title of each subplot). Each boxplot is the average of the training for every action in each dataset repeated

10 times, for different randomly generated initial populations.
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Figure 5.5.2: Probability distribution of values R, P, and ǫ in pairs for Skoda dataset.

It is possible to notice how the parameters do not follow any specific distribution, making

necessary to train all of them. For conciseness sake, we report here only the results for

the Skoda dataset. Additional plots for all the other datasets can be found in Figure B.1,

in appendix.
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Chapter 6

Generation of variable templates

for TMM based action recognition

As shown in Chapter 4, a TMM requires also a set of accurately selected templates to

match. Following the WLCSS parameter training described in Chapter 5, we present our

method for power-aware template generation for WLCSS. Starting from the state of the

art and its limitations, we introduce the algorithm and an evaluation of the template gen-

eration. The content of this chapter is being prepared to be submitted to [VIII].

6.1 Template training methods for TMM: state of the art

Template training is needed in order to select time series segments that will be used as

templates for the classification. From our literature review, we have identified two main

categories of templates training: i) the selection of one or multiple templates among the

ones available as training set, or ii) the creation of synthetic templates starting from those

available a training time.

Falling in the first category, the simplest approach is to use the entire training set

of templates for the classification. This has been proposed for classification in a 1-NN

manner with WDTW [84], LCSS [78], and Manhattan distance [85].

A manual selection of a subset of templates from the training set is commonly used

with Euclidean distance [86],DTW [87, 88, 89], and WLCSS [35]. None of the authors

specified the criteria for the selection.

A more systematic solution for selecting templates from a training set named “most

representative template” (MRT) has been proposed for LCSS [25, 79] and DTW [90].

For every recognition class, MRT computes a distance metric between each pair Ti and
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Tk, with i 6= k, in the training set and chooses the template with the minimum sum of

distances:

T = argmin
i

∑

i 6=k

D(Ti, Tk)

Effectively, MRT selects the template with lowest intra-class variation. This however does

not take into account for inter-class variability, potentially resulting in lower classification

performance. In addition to MRT, authors of [90] also explored random selection, best

alignment and manual creation but without solving any of the aforementioned issues. As

solution to this issue, cross-validation was used to select templates for DTW in [91].

The other family of templates training approaches aims at creating synthetic templates.

The authors in [8] clustered the templates of each class and used the centroid obtained as

average as templates. Improved methods for averaging the training templates have been

proposed for DTW in [92, 93, 17] and MPLCS [94]. A more advanced combination of

cross-validation and averaging is suggested for DTW [95]: authors used cross-validation

to select 9 templates per class from the training set, while averaging is used on these 9

templates to generate a 10th one. These 10 templates per class are then employed in 1-

NN classification. Synthetic templates are generated for DTW [96], by analysing the hand

movements for the actions in the training set and manually defining a hand trajectories

from scratch for each action.

Another approach for generating templates is to use specifically recorded templates

for the classification of other segments. Compared to the rest of the segments, these

specific templates are recorded under more favourable condition such as using expert

users performing the movements or a more controlled environment to reduce noise in the

sensors signal. These methods has been used for WDTW [80, 81] and WLCSS [77].

Finally, evolutionary strategies (ES) have been proposed for template training using

DTW in [97] using a simple synthetic dataset and successfully applied to movement re-

cognition in [98]. The entire training set is used as initial population of the ES.

6.1.1 Limitations of state of the art

For templates training, both categories of methods we identified have shortcomings. For

the first category, using the entire training set for 1-NN classification accounts for lar-

ger variety of templates at the cost of increasing the complexity. Selecting a subset of

training templates for the classification solves this issue. However, manual selection of

the templates from the training set is intractable for large datasets. For this reason, more

systematic methods such as MRT and cross-validation have been suggested. Nevertheless,
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TMM Ref Training method Data

DTW

[87] Manual choice of sub-set from training set Static and dynamic hand movements recorded us-

ing cameras and Kinect

[91] Cross-validation Hand trajectories from Kinect tracking

[95] Cross-validation and custom heuristic Actions from video recording

[90] Random choice, MRT, best alignment and manual

creation

Walking patterns recorded using a gyroscope

[96] Hand movements using Time-of-flight (TOF)

videos

Synthetically created through heuristic

[88] Manual choice 3D Accelerometer data

[92] Template averaging using

custom heuristic

Fingerprint and signature images

[93] Fingerprint and signature images

WDTW

[97] Generated with ES Artificial dataset of time series

[98]

[80] Specifically recorded X,Y,Z coordinates of body

joints from Kinect
[81] Specifically recorded

DTW,

WDTW,

DDTW

(Derivative

DTW)

[84] Training instances used as templates Various dataset (UCR Time Series Classification

Archive [99])

DTW, Eu-

clidean

distance

[17] Custom average 3D Accelerometer data

DTW, LCSS [89] Manual choice from dataset Hand shapes from images

Euclidean

distance

[8] Computed as centroid of clustering Fingers shape from hand pictures

[86] Manual selection Features extracted from images of hand move-

ments

Manhattan

Distance

[85] Training instances used as templates Features extracted from images of hand move-

ments

MPLCS (cus-

tom LCSS)

[94] Custom average Trajectory from 3D camera

Edit distance

[25] MRT
Trajectories from

X,Y,Z

coordinates[79]

[78] Training instances used as templates Fingers position recorded using Leap Motion

sensor

WLCSS
[77] Specifically recorded Accelerometer data

[35] Manual selection 1D Gyroscope data, 1D Accelerometer data, EMG

data

Table 6.1.1: Overview of training procedure to select {T}, for different TMMs applied to

human sensing data.

none of these methods can explore possible variation of the templates shapes to improve

the recognition, or length reduction for computational saving.

Falling in the second category, methods for averaging the training templates have been

proposed in order to create new synthetic templates. While some of these methods can
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be beneficial to reduce the computation by using a single templates generated from the

training segments, none of them explore systematically variations of shape and length of

templates for further and potentially configurable reductions.

Evolutionary strategies have been proposed as solution in order to automatically gen-

erate shape variation of the training set. These works however do not attempt to optimise

any variation of template length. Moreover, using the training set as the only initial popu-

lation might lead to premature convergence missing better solutions that an unconstrained

random sampling of the search space could offer.

Finally, specifically recording of special templates was proposed in order to have less

noisy time series to match for the classification. However, setting up a data collection just

for templates training can be expensive. Moreover it can be physically impossible if other

researchers do not have access to the same setup used for the original data collection.

In summary, no standard method was identified for the training neither for the para-

meters nor the templates and none of the proposed approach can be easily be transferred

across multiple TMM. More importantly, to the best of our knowledge, none of the custom

method found in the related work aims at reducing the templates length for power saving.

6.2 WLCSSLearn t

WLCSSLearn t generates a single template for each action class g. The generated tem-

plates maximise the inter-class differences, while maximising the intra-class similarities of

the segments in the training set. By generating a single template per class, WLCSSLearn t

decrease the effort of the classification compared to using the entire training set or a large

sub-set of it for the matching when using 1-NN classification (see Chapter 4).

Moreover, the most unique feature of this algorithm is that it optimises the shape

of the template as well as its length. We designed a fitness function which allows to

emphasize either improving recognition performance or reducing template length, and

therefore computational cost. This is achieved by using a variable-length genetic encoding.

WLCSSLearn t encodes the templates to evolve as sequence of samples as in Fig-

ure 6.2.1. Each sample of the templates in WLCSSLearn t is a natural number. The

possible values for the samples are defined by the quantization interval or encoding used

for the time series in the dataset (see Chapter 4). At first, all the templates have the same

length: this length is computed as average length of training segments for the action class

g.

A set of parameter Cg = {R,P, ǫ} per action class g must be provided at initialization
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(b) Representation of the same pk as segment

Figure 6.2.1: Example of WLCSSLearn t individual. An individual pk is generated as

array of numeric sample 6.2.1a. 6.2.1b show its representation as time series. In this

example, the samples of the segment are quantized on the interval 0-24.

step. This set can be provided by an heuristic or, by a prior execution of WLCSSLearn p.

The thresholds Vi are computed automatically at the end of the evolution given that their

values are highly dependant from the templates length.

WLCSSLearn t generates the templates following the process presented in Algorithm 2.

In addition to the evolutionary parameters described in Table 5.3.2, WLCSSLearn t re-

quires specific parameters for the template generation that are shown in Table 6.2.1.

WLCSSLearn t initialization During the initialization, WLCSSLearn t computes

the starting length of the individuals in the population, for each action class g. Con-

sequently, the algorithm calculates the maximum and minimum possible length of the

generated templates according to the max l and min l parameters. Once this step is com-

plete, the training begins for one action class g at a time generating a random population

of individuals pk.

ComputeFitness The fitness function comprises two terms: i) the length of the

individual pk indicated with l(pk) and ii) a measure of the recognition performance for

each individual pk. The latter is a measure of how well each individual pk distinguish

between segments Sj that belong to action class g from those that do not. This measure

is indicated with Υ(pk) and it is computed as:

Υ(pk) = Dg −Dg

where Dg is the 5-th percentile of the matching scores D(pk, Sj) of all Sj for which y(Sj) =

g and Dg is the 95-th percentile of the matching scores D(pk, Sj) of all Sj for which
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Algorithm 2 WLCSSLearn t- per-action template generation

Input: dataset, [actions classes], [R,P, ǫ]g

1: WLCSSLearnInit(dataset)

2: for each g in [actions classes] do

3: population = initPopulation()

4: for a = 1, ...,generations do

5: for each pk in population do

6: [templates] = decode(pk)

7: F (pk) = computeFitness([R, P, ǫ]g , [templates], [segments])

8: population = selection(population, rank)

9: population = crossover(population, cr)

10: population = mutation(population, mt)

11: population = variate length(population, λ)

12: Tg = getBestFit(population)

13: Vg = computeThreshold(Tg , [segments])

Output: [T, V ]g for each g in [actions]

Symbol Description

en Enlarge probability. It defines how likely is for an

individual to be enlarged at each iteration.

sh Shrink probability. It defines how likely is for an indi-

vidual to be shrunk at each iteration.

min l Minimum length. It is the minimum value that an

individual can be shrunk to. It is expressed as per-

centage of the original length.

max l Maximum length. It is the maximum value that an

individual can be expanded to. It is expressed as per-

centage of the original length.

λ Parameters controlling the computational cost reduc-

tion vs. recognition performance trade-off.

Table 6.2.1: WLCSSLearn t parameters controlling the templates lengths and the com-

putation reduction vs. recognition performance trade-off.
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Figure 6.2.2: In this example, a dataset comprising 30 segments of 3 classes is used.

The first 10 segments are of class 1 ( •), the segments 10-20 of class 2 ( N) and segments

20-30 of class 3 ( �). WLCSSLearn is applied to find representative templates of class

g = 1. Here the matching score between three individuals p1, p2, p3 and all the segments Sj

are represented by dots for a single iteration of the evolution. As the evolution has been

ongoing, we notice that the matching scores between p1, p2, p3 and the segments 1-10 tend

to be higher than the matching scores between p1, p2, p3 and segments 10-30. Visually, p3

appears the best among the three individuals, as the matching scores achieved are substan-

tially higher when comparing p3 to segments 1-10, which are the ones the individuals are

evolved to look like, and substantially lower when comparing p3 to segments 20-30. This

is also represented by the dashed lines Dg and Dg.
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y(Sj) 6= g. The usage of percentiles allows the performance measure Υpk to account for

possible outliers in the classification. More on this is discussed in Section 6.4. An example

of the computation of Υpk for 3 individuals p1, p2, p3 for the same action class g is displayed

in Figure 6.2.2.

Both the individual length l(pk) and Υ(pk) are normalized on the interval 0-1 in order

to combined in a single fitness value per pk. The normalized length ‖l(pk)‖ is computed

with min-max normalization using the minimum min l and maximum length max l of the

templates for each action class g set at initialization step.

A sigmoid function is used to normalize Υ(pk) in the same interval 0-1:

‖Υ(pk)‖ =
1

1 + e−b·Υ(pk)

We empirically set the value b = 5
R·max l(Sj)

, where R ·max l(Sj) is the upper-bound of the

possible matching score considering the WLCSS functioning. More on this is discussed in

Section 6.4.

Finally, the two terms are combined in the fitness function:

F (pk) = λ · ‖l(pk)‖ + (1 − λ) · ‖Υ(pk)‖ (6.1)

in which the parameter λ allows to configure the trade-off between reducing the length of

the template for computation reduction or improving the recognition performance.

Selection The top rank best fitting individuals are selected based on their values of

F (pk). The rank individuals are then replicated in order to maintain the fixed size pop of

the population taking into account elitism as for WLCSSLearn p.

Crossover The crossover operator is applied with probability cr to pair of individuals,

coupled randomly after selection. Due to the variable-length genetic encoding, we designed

a specific crossover operator as shown in Figure 6.2.3. A random number is selected from a

standard uniform distribution U(0, 100). This value indicates the percentage of the length

of each individual that must be exchanged. This values is then multiplied by the length

of each individuals and round to integer in order to define the crossover sample position.

This ensures that no individuals greater than the possible maximum length are generated

at each step.

Mutation A random selection of genes are mutated at this step, in each individuals.

We introduce a specific operator due to the encoding of the templates in WLCSSLearn t

as presented in Figure 6.2.4. When a sample s of the template is mutated into ŝ, the

following operation is applied:

ŝ = (s + x) mod max(enc) (6.2)
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(a) Pre (b) Post

Figure 6.2.3: Crossover operator for template training. The position is chosen randomly

as percentage (0-100%) that the two individuals will swap. In this case, the crossover

position indicated by the arrow is chosen as 75%. Rounding this percentage to the effective

lengths of the two individuals, the swapping position is set to 8 and 5 for the two individuals

respectively. Figure 6.2.3b shows the two new individuals resulting from the crossover

operator.

with x being a random value following the distribution X ∼ N (0, 4), and max(enc) the

maximum value of the quantization (or encoding) of the time series in the dataset. This

constrains the shape of the generated template to variate at specific samples, while main-

taining a similar shape overall from one generation to the next.

(a) Pre (b) Post

Figure 6.2.4: Mutation operator for template training. The samples at position 0, 4, 8, 9

are mutated by adding random values following the distribution X ∼ N (0, 4) using Equa-

tion 6.2. As example, considering the same quantization from Figure 6.2.1, the sample at

position 4 is computed as 24 + 3 mod 24 = 1.

VariateLength This operator can enlarge, shrink or leave the individuals as they are,

respectively with probability en, sh, 1 − (en + sh), with 0 ≤ en ≤ sh ≤ 1. Figure 6.2.5

shows an example. When the operation of enlarge is selected, a random position within the

individual to add 1 sample is picked. The value of this gene is the mean value of the genes

immediately before and after the insertion point. On the other hand, the shrink operation

removes a genes from the randomly selected position, for each individual. The operations

of enlarging/shrinking are not permitted on templates that are already respectively of the

maximum and minimum allowed length, no matter the values of en and sh. Figure 6.2.5

presents an example of this operator.

WLCSSLearn t stops after a finite number of iterations. At the end of each per-action
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(a) Enlarge (b) Shrink

Figure 6.2.5: VariateLength operator. Enlarging 6.2.5a: a position j is selected randomly

from a discrete uniform distribution U{0, l(pk)}, with l(pk) being the individual length.

The value of the new sample introduced at that position, indicated by the gray arrow, is

calculated as the mean value between the previous sample at j and the next sample at j+1.

In this example, the new sample, shown in the yellow box, is introduced at position 8 and

calculated as (2 + 14)/2 = 8. Shrinking 6.2.5b: a sample at a randomly chosen position

j is removed. The removing position is randomly from a discrete uniform distribution

U{0, l(pk)}.

evolution, the threshold Vi is computed as the average point between Dg and Dg obtained

from the individual with the best fitness F (pk) at the last iteration.

6.3 Template Generation Evaluation

In this section, we present the evaluation of WLCSSLearn t and its configurable trade-off

between recognition performance and computation saving. We use the knowledge acquired

in the previous evaluations of WLCSSLearn p in order to select a single set of evolutionary

parameters and to focus only on the template generation analysis.

Since the chromosomes used by WLCSSLearn t are wider than those employed in

WLCSSLearn p (the templates can be longer than the the sum of b·3 and bt) and also more

complex (the values of single genes in the chromosome are discrete number rather then

binary bits), we aim at making this evaluation simpler without sacrificing its reliability.

Thanks to the knowledge built in the previous evaluation and since WLCSSLearn t is

slower than WLCSSLearn p, we select a single set of evolutionary parameters for all the

tests in this analysis. In the following, we rather focus on the template generations itself

showing:

• the generation of a single template, for a single dataset, over multiples steps of the

evolutionary training, displaying the individuals in the population and their lengths’s

distribution;

• the similarity/difference of the best performing generated templates compared to
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the MRT, for all the actions in a single datasets;

• an analysis of the recognition performance/computation saving trade-off. The tests

for this analysis were conducted for all the classes, for all the datasets.

All the tests are performed using the following global parameters: pop = 64, rank = 16,

elitism = 3, iter = 500, cr = 0.3 and mt = 0.1. Also, as we want to focus only on

the trade-off, we keep constant the minimum and maximum possible length of generated

templates; they are expressed as percentage of the starting length, which is computed as

the length of the MRT for that action. They are set respectively to 5% and 100% of the

length of MRT. Finally, we set the probability of enlargement or shrinking or leaving the

template as it is to be equally likely, i.e. en p = 0.33 and sh p = 0.33.

6.3.1 Shape and length of generated templates

Figure 6.3.1 shows how the templates of a given action class evolve in shape and length over

the course of the evolutionary training with WLCSSLearn t. We sample the population

of individuals at several steps of the generation. We then order them by similarity and

selected a sub-sample of the population at every step. We compute the distribution of the

lengths of the templates at every step and it is possible to notice how gradually the length

of the individuals reduces as well as their visual complexity. This latter aspect becomes

more clear in Figure 6.3.2.

The figure shows a comparison between the individuals with the highest fitness and the

MRT of the corresponding action class. The figures indicates that the evolutionary process

tends to reduce the length of the template and increase the saliency only of features that

are most characteristic of the segments in each action class. This is a clear example of

using the warping as an advantage, as shorter and simpler templates can still be used for

longer time series classification.



86

0
Shape of individuals

0

50

Individuals
lengths

distribution

1

0

50

2

0

50

3

0

50

4

0

50

5

0

50

10

0

50

15

0

50

20

0

50

25

0

50

30

0

50

35

0

50

40

0

50

50

0

50

60

0

50

70

0

50

80

0

50

90

0

50

100

0

50

150

0

50

200

0

50

350

0

50

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120

500

0 60
Samples

0

50

Individuals

Ge
ne

ra
tio

ns

Figure 6.3.1: Population of individuals during variable template generation for a single

action class of the hci guided dataset. The individuals are sampled at different step of

the evolution. The color-map indicates the fitness score, normalized per iteration. The

histograms on the right side show the distribution of the lengths of all the individuals (not

only the ones shown).
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all the iteration, the length of the best individual reduces as well as its visual complexity.

6.3.2 Computational reduction vs performance recognition

We evaluate to which extent the parameter λ in Equation 6.1 affect the trade-off between

computational reduction vs recognition performance. Multiple results must be noted:

• Figure 6.3.2 displays that the parameter λ effectively allows to tune the trade-off

between recognition performance and computation saving. An increase in the weight

of the fitness function F (pk) from Equation 6.1 does affect the reduction of the

generate template. This trade-off is more finely configurable with hci table and

skoda mini dataset than for the opportunity encoded, skoda and beach volleyball

datasets. This is a consequence of using a single template per actions and the ratio

between number of action classes and number of segments per action. If the template

is not good enough (e.g. too short or not optimized in shape), all the segments for

that actions would affect the recognition performance reducing the F1 score at once.

This it confirmed by the fact that the big jumps in the plots, when present, happen

on the x-axis representing the F1 score.

• Table 6.3.1 presents a comparison of recognition performance calculated as F1 score

between the MRT approach and WLCSSLearn t, for reductions between 10% and

50%. The templates generated with WLCSSLearn t increase the recognition by 7%

on average across all the datasets, with a maximum of +15% for hci table dataset,

with a length reduction between 10% and 20%. When a larger reduction between
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0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
F1 Score

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

Co
m

pu
ta

tio
n 

re
du

ct
io

n 
co

m
pa

re
d 

to
 M

RT

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Te
m

pl
at

e 
le

ng
th

 w
ei

gh
t i

n 
fit

ne
ss

 fu
nc

tio
n

(b) opportunity encoded
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(c) hci guided
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(d) skoda mini
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(e) hci table
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(f) beach volleyball

Figure 6.3.3: Action recognition performance and computation reduction of WLCSS-

Learn t with variable length templates generation. The x-axis is the F1 score. The y-axis

is the percentage of less computation required due to the generation of shorter templates

compared to the MRT. The red dashed line represents the chance-level classification F1

score, while the black dashed line represents the F1 score for the MRT. The color-map rep-

resent the weight of the template length in the fitness function during the evolution (lw).
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Dataset
F1 score -

MRT

F1 score with WLCSSLearn t

10%-20% c.r. 20%-30% c.r. 30%-40% c.r. 40%-50% c.r.

skoda 0.97 0.98 (+0.01) 0.98 (+0.01) 0.98 (+0.01) 0.97 (-0.00)

opportunity encoded 0.89 0.83 (-0.06) 0.82 (-0.07) 0.77 (-0.12) 0.70 (-0.19)

hci guided 0.97 0.99 (+0.02) 0.97 (+0.00) 0.98 (+0.01) 0.99 (+0.02)

skoda mini 0.94 0.98 (+0.03) 0.92 (-0.02) 0.90 (-0.04) 0.93 (-0.01)

hci table 0.78 0.93 (+0.15) 0.88 (+0.09) 0.84 (+0.06) 0.79 (+0.01)

beachvolleyball 0.63 0.91 (+0.28) 0.89 (+0.27) 0.90 (+0.27) 0.87 (+0.24)

Mean difference - +0.07 +0.05 +0.03 +0.01

Table 6.3.1: Comparison of F1 score computed using MRT and the average F1 score

obtained with generated templates, for different range of computational reductions (c.r.),

indicated as header of columns 3-6. In parenthesis, the difference between the F1 score for

each range and the F1 score with MRT is reported. Finally, the average difference of F1

score obtained using WLCSSLearn t across multiple datasets is also reported as last row.

40% and 50% is enforced, WLCSSLearn t has comparable performance to MRT

within a margin of 1% on average across datasets.

• Table 6.3.2 shows a comparison of the F1 score resulting from chance-level classifica-

tion for each dataset and the score obtained with WLCSSLearn t, for large ranges of

computational cost reduction (50%-90%). When the maximum reduction is applied

(range 90%-80%), WLCSSLearn t enables recognition performance 33% higher than

chance-level classification on average across multiple datasets. For the range 80%-

70%, the F1 score difference compared to chance-level with WLCSSLearn t attain a

48% increase. As expected, the F1 score increases even further for lower reduction

ranges. While for high computational reductions values the F1 score with WLC-

SSLearn t may seems very low in absolute values, i.e. only 24% for hci table, it

has been demonstrated that any recognition accuracy greater than guessing can be

greatly improved by fusing more sensors [100].
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Dataset
F1 score -

Chance

F1 score with WLCSSLearn t

90%-80% c.r. 80%-70% c.r. 70%-60% c.r. 60%-50% c.r.

skoda 0.12 0.58 (+0.46) 0.67 (+0.54) 0.66 (+0.53) 0.81 (+0.68)

opportunity encoded 0.09 0.36 (+0.27) 0.47 (+0.38)(∗) 0.51 (+0.42) 0.58 (+0.49)

hci guided 0.20 0.48 (+0.28) 0.77 (+0.57) 0.92 (+0.72) 0.95 (+0.75)

skoda mini 0.10 0.59 (+0.49) 0.71 (+0.61) 0.80 (+0.70) 0.88 (+0.78)

hci table 0.04 0.28 (+0.24) 0.54 (+0.50) 0.69 (+0.65) 0.75 (+0.71)

beachvolleyball 0.25 0.51 (+0.26) 0.50 (+0.25) 0.68 (+0.43) 0.68 (+0.43)

Mean difference - +0.33 +0.48 +0.58 +0.64

Table 6.3.2: Comparison of F1 score between chance-level classification, defined as

1
num of action classes

, and the average F1 score obtained with generated templates, for dif-

ferent ranges of computational reductions (c.r.), indicated as header of columns 3-6. In

parenthesis, the difference between the F1 score for each range and the chance-level classi-

fication F1 score is reported. The average difference of F1 score obtained using WLCSS-

Learn t across multiple datasets is also reported as last row. (∗) The value for the range

80%-70% of computation reduction for the opportunity encoded is not available from the

experiment (see Figure 6.3.3b). Hence, the value in the table is an interpolation using 2nd

degree polynomial regression fitted on the existing values.

6.4 Discussion

While we demonstrated the effectiveness on WLCSSLearn t for WLCSS, the algorithm can

be applied to any template matching method. Similarly to WLCSSLearn p, the genetic

operators of WLCSSLearn t are generic enough that, not only it can be deployed for other

TMM in HAR, but also in different pattern recognition domains. This would bring the

benefit of computational savings thanks to the variable length of the templates to other

TMMs and applications.

The fitness function of WLCSSLearn t provides a measure of how good an individual is

at distinguish between segments of action class g from those of different action classes (g).

The standard F1 score (and therefore the fitness function used by WLCSSLearn p) is not a

good candidate as this measure must be continuously defined for matching/mismatching

segments rather than being the result of just a discrete counting of match/mismatch.

This measure, provided by Υ(pk) in Equation 6.1, is computed by using Dg and Dg as

the 5-th and the 95-th percentile of the matching scores respectively of the segments

of action class g and g. This accounted for 5% of outlier segments that could disrupt

the evolution but these values can variate in order to increase/decrease sensitivity and

specificity. Decreasing the percentile value for Dg increases the sensitivity allowing less
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outliers in the segments of action class g. On the other hand, increasing the percentile value

for Dg would increase the specificity by excluding a higher number of segments of action

classes different from g. However, changes in these values could affect the evolution and the

recognition performance: if the percentile values are closer, the evolution would converge

faster at the cost of less recognition performance. Instead, farther values of the percentile

would increase the recognition performance at the cost of potentially jeopardising the

convergence of the evolution. We reckon that further evaluations on this matter can be

beneficial.

The terms composing the fitness function in Equation 6.1 are normalized in order to be

combined. While we used the min-max normalization for the length of the individuals, we

had to choose a different and more peculiar solution for normalizing Υ(pk). This originate

from the difficulty of defining a minimum and maximum for Υ(pk) that would be realistic

in our domain. From the equation of WLCSS (eq. 4.4) it is possible to define a theoretical

minimum and maximum for the matching costs (Dg and Dg) respectively as:

min Υ(pk) = P · len(T ) · max (ti − sj)

max Υ(pk) = R · len(T )

where P and R are penalty and reward, len(T ) is the length of the template and max ti − sj

is the maximum possible difference between two samples of T and S. However, the min-

imum score min Υ(pk) can occur only in case the difference of every sample of T and

S is equal to max ti − sj , considering encoding/quantization (see 4). This is unlikely to

happen in a real scenario. Therefore, we found out that, due to the wide interval between

the theoretical min Υ(pk) and max Υ(pk), using a min-max function in this case failed.

Indeed, the values of Υ(pk) normalized using these minimum and maximum did not have

enough variability in order to correctly drive the evolution. For this reason, we opted for

the sigmoid function described in Section 6.2. We recognize however that this is a custom

choice and that other options might be suitable. Moreover, our sigmoid function presents

a parameter b defining the slope of the function that we decided empirically but that could

benefit further exploration.

6.5 Conclusion

In this chapter, we presented WLCSSLearn t: the first training algorithm for generating

variable length templates with a configurable trade-off between recognition performance

and computation saving. We evaluated this algorithm and the configurable trade-off on 6
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datasets of actions including different kind of data all from the domain of wearable and

ubiquitous computing.

WLCSSLearn t was able to generate variable lengths templates that:

• can be configured through a single parameter λ between computational reduction

and recognition performance

• have better recognition performance than the naive approach of selecting the MRT

up to 15%, even with up to 10% of computation saved.

• have comparable performance, between +1% and +7%, to MRT with up to 50% of

computational savings across all the datasets

• perform +33% better than chance-level classification when a 80%-90% computational

reduction is enforced.
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Chapter 7

WLCSSCuda: supporting TMM

training with GPGPU

This chapter describes a GPU accelerated implementation of WLCSS. Exploiting the General-

Purpose computing capabilities of NVIDIA GPU, WLCSSCuda is capable of running large

number of multiple instances of WLCSS simultaneously. WLCSSCuda finds great ap-

plications in the WLCSSLearn presented in chapters 5 and 6, where a highly parallelized

implementation of WLCSS greatly increase the speed of the evolutionary training. The

content of this chapter has been published in [VI].

7.1 Introduction

WLCSSCuda is a GPU accelerated implementation of Warping Longest Common Sub-

sequence (WLCSS) using CUDA. This is a framework developed by NVIDIA for general

purpose processing on GPUs (GPGPU) [101]. In the past, GPUs have been used to

accelerate other TMMs, such as Dynamic Time Warping [102] and Longest Common

Subsequence [103]. However, to the best of our knowledge, this is the first GPU imple-

mentation of WLCSS.

WLCSSCuda allows to execute a high number of instances of the TMM simultan-

eously. This can be exploited during training which is not done on the embedded sensor

node, but rather on much more capable and general purpose computers. For this reason,

WLCSSCuda found great application in WLCSSLearn, where a high number of WLCSS

computations are required at each generation of the evolutionary algorithm.

We compare WLCSSCuda with a multi-core CPU implementation of WLCSS and show

an drastic speedup in the matching score computation.
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7.2 WLCSSCuda

WLCSSCuda is our GPU implementation of WLCSS built using CUDA. Thanks to the

high number of cores in modern GPUs, it is possible execute tasks, called kernels, with a

high level of parallelization. CUDA abstracts the physical structure of the GPU in a grid

of blocks. Each block can be addressed using a 1D, 2D, or 3D index. A block is a unit

made by several threads that can be computed in parallel or serially on a GPU core. A

3D indexing is provided for the thread too. The scheduling of the threads’s execution is

transparent to the user. The number of maximum blocks and maximum threads per block

depends on the GPU.

WLCSSCuda structures the computation using a 2D grid for the blocks and 1D struc-

ture for the threads, as shown in Figure 7.2.1: a single template/stream pair is assigned

to each block. Then, within that block, a thread is used for every parameters set. Dur-

ing initialization, all the templates, streams and parameters are transferred to the GPU

memory. Then, each kernel computes the pointer to the templates, segments and WLCSS

parameters in memory using respectively the indexes q and k for the blocks, and r for

the threads. Each triad template/segments/parameters is used by only one kernel which

is executed by a single thread. Finally, when the matching scores are computed, they are

transferred from the GPU memory back to the main memory. WLCSSCuda computes the

entire score between the template and the segment.

WLCSSCuda supports 2D and 3D encoded templates, as presented in Section 4.2.1.

By selecting the correct encoding at initialization time, WLCSSCuda uses the correct

distance matrix to compute the distance f(ti, sj) between samples.

WLCSSCuda is developed in C++ with a Python wrapper for loading the data and

reading the results.

7.3 WLCSSCuda vs WLCSS

We evaluated to which extent WLCSSCuda could accelerate multiple template matching,

taking into account the time required to transfer the data to/from the GPU, which has been

demonstrated to be a bottleneck in CUDA applications [104]. We compared the execution

of WLCSSCuda on 4 GPUs and a multi-threaded WLCSS on 4 CPUs (see Table 7.3.1). We

simulates 4 test scenarios in which a different number of streams, templates and WLCSS

parameters were employed (Table 7.3.2). We reported the average of 10 executions. The

CPU implementation of WLCSS uses all the available threads in the CPU to run always
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Figure 7.2.1: WLCSSCuda structure: blocks are represented in yellow. A template Tq

and a segments Sk are assigned to each block. A set of parameters pr is assigned to each

thread, displayed in blue.

the maximum number of possible WLCSS simultaneously.

We used OPPORTUNITY Dataset [48] as source of templates and segments, select-

ing a random subset of movements segments for each test, to make them more realistic.

The average length of the templates (and streams) is 98 samples, with a standard devi-

ation of ± 46. The same subset of movements was used for WLCSSCuda and the CPU

implementation in each test.

Table 7.3.3 shows the average time for each test for every CPU and GPU. For WLCSS-

Cuda, all the values include the time to the transfer of data to/from the GPU memory. As

we expected, the GPUs are faster in every scenario we evaluated. Moreover, it is possible

to notice how WLCSSCuda scales better when the number of instances increase. Test d

requires 100 times more evaluations than test a; the GPUs take on average only 85 times

the time required by test a while the CPUs take 110 times more than a, on average, across

all the different models.

7.4 Discussion and Conclusion

We presented WLCSSCuda, a GPU accelerate multiple TMM. We demonstrated that

WLCSSCuda can drastically increase the computation of multiple template matching,

with an increase of 67 times in the best case compared to a multi-threaded CPU approach.

1https://www.nvidia.com/en-gb/
2https://www.amd.com/en/products/ryzen-threadripper
3https://ark.intel.com

https://www.nvidia.com/en-gb/
https://www.amd.com/en/products/ryzen-threadripper
https://ark.intel.com
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Table 7.3.1: CPU and GPU tested. For more details about the GPUs and CPUs (AMD

and Intel), visit respectively 1, 2, 3

GPU Model CUDA cores Cores Frequency Memory

GTX 1080 Ti 3584 1645 MHz 11 GB GDDR5X

GTX 1050 Ti 768 1418 MHz 4 GB GDDR5

GTX 970 1664 1317 MHz 4 GB GDDR5

Titan XP 3840 1582 MHz 12 GB GDDR5X

CPU Model Frequency (Max Turbo) # of Cores # of Threads

AMD Ryzen 1900X 3.8 GHz (4 GHz) 8 16

Intel i7-8750H 2.2 GHz (4.1 GHz) 6 12

Intel i7-4770K 3.5 GHz (3.9 GHz) 4 8

Intel i7-6700 3.4 GHz (4.0 GHz) 4 8

Table 7.3.2: The number of templates, streams, parameters sets and the total number of

WLCSS computation is shown, for each test scenario.

Test # Templates (Q) # Streams (K) # Params. sets (R) Tot. WLCSS

a 10 1000 10 100000

b 20 2000 10 400000

c 50 5000 10 2500000

d 100 10000 10 10000000
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Table 7.3.3: Results of WLCSS running on the 4 GPUs and the 4 CPUs. The values are

in seconds and they are averaged across multiple running. The improvements are computed

respectively between the best CPU against the worst GPU, and viceversa.

Platform / Test a b c d

Titan XP 0.49 ± 0.04 1.53 ± 0.15 9.66 ± 0.61 38.29 ± 1.87

GTX 1080 Ti 0.55 ± 0.07 1.98 ± 0.14 12.77 ± 1.51 51.38 ± 6.22

GTX 1050 Ti 0.79 ± 0.13 2.92 ± 0.26 18.15 ± 0.67 72.04 ± 3.59

GTX 970 0.91 ± 0.16 4.00 ± 0.67 18.97 ± 0.86 70.74 ± 3.69

AMD 1900X 8.29 ± 0.89 32.27 ± 1.74 231.75 ± 31.59 932.69 ± 86.19

i7-8750H 17.50 ± 2.57 81.23 ± 5.30 555.26 ± 15.39 2140.20 ± 141.37

i7-6700 20.35 ± 1.07 80.18 ± 8.28 523.05 ± 34.30 2008.19 ± 81.33

i7-4770K 22.78 ± 3.20 99.62 ± 10.00 647.21 ± 45.91 2452.15 ± 170.12

Improvement 10-46 times 8-65 times 12-67 times 13-64 times

However, there is still room for improvement: we plan to evaluate different organizations

of data in order to better use the block/thread CUDA structure. Moreover, we aim to

make WLCSSCuda automatically adapting such structure according with the number

of templates/streams/parameters sets in order to increase the performance even further.

Finally, WLCSSCuda is available as open source software at the address

https://github.com/sussexwearlab/WLCSSCuda.

https://github.com/sussexwearlab/WLCSSCuda
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Chapter 8

Segment classification from poorly

annotated data: a drinking

movement recognition case study

As we have seen in the previous chapters, datasets can be affected by bad annotations.

Template Matching Methods and our training algorithm can be used to solve this issues in

order to recover a highly valuable but poorly annotated dataset. This chapter presents a

case study of recovering a dataset of drinking movements. The content of this chapter has

been published first in [IV] and then extended and improved in [V].

8.1 Introduction

Action recognition has applications in several fields such as healthcare and sports [105].

In order to create a reliable movement recognition system, it is important to have a well-

annotated dataset [2]. However, creating high-quality datasets may require to rely on

lab-like environments, with limited ecological validity [48]. Activity recognition research

generally strives to employ datasets with unrealistically “perfect” ground truth annota-

tions. In an ecologically valid data collection, however, it is likely that a highly valuable

dataset is acquired, but that only poor quality annotations are available.

Experience sampling (ES) is a real-time annotation approach done by users themselves

a mobile device [106]. This allows more ecologically valid data collection in everyday life

(e.g. no need to video record the experiment). However, ES can lead to the following

issues: i) the synchronisation between the activity performed and the label annotated by

the user is generally of poor quality, with the user annotating the activity after the event,
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or combining multiple activities in a single annotation; ii) the user may forget to label an

event, iii) the user may annotate an activity with the wrong label.

In this work, we investigate how to make sense of a highly valuable dataset comprising

a large number of drinking movements, which have been annotated through ES, leading

to numerous deficiencies in the annotation quality. The dataset contains drinking move-

ments annotated by the users with a mobile application. The dataset was collected in an

office environment using a 3-axis accelerometer and it is made by 8825 “sensor events”,

with 1808 “drink events” annotated by users through ES. Using this dataset, we aim to

address two main challenges: i) to understand why the quality of the annotation is low

and consequently how would it be possible to improve in future data collection and ii)

to understand whether it is still possible to use such big dataset without relying on the

annotations for spotting drinking movements and how. This work is based on the research

presented in [IV]. The main contributions are:

• A study of the annotations. We analyse the user annotations, their distribution in

time during the data collection, and their relation to the sensor events, in order to

understand the causes of the low quality and where the data collection process can

be improved.

• A template matching approach, based on Warping Longest Common Subsequence

(WLCSS) [26], to extract a subset of drinking movements, within a certain level of

confidence. This subset will allow the dataset to be used for research purposes. As

extension of the previous work, in this chapter, we evaluate multiple sensors channel

in order to obtain a more precise selection of drinking movements.

• An unsupervised algorithm (K-Means) adapted to template matching. This al-

gorithm is a new variation of K-Means [107] where the WLCSS is used as distance

measure. It allows to cluster movements based on the raw signal of the sensors.

At the same time, it clusters movements taking in account the variation in the way

they can be performed, by using WLCSS which has been successfully used for robust

movements detection [26].

8.2 Related work

The quality of annotations obtained through ES can be poor [106]. Annotations issues

can include time shift of a label with respect to the activity, as well as wrong or missing

labels [108].
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Some approaches suggested to improve ES with manual re-annotation [106]. This is

not feasible economically for a large datasets. Moreover, despite re-annotation the quality

may still be insufficient for the training of machine learning algorithms [106]. The impact

of ES on activity recognition has been studied in [109]. However, the authors simulated

the ES in a controlled environment and they used only the data corresponding to the user

annotations.

The problem of poorly labelled data can be tackled during the annotation itself or

during the training of the machine learning algorithm. A method useful to reduce the

effort of the users while annotating their activity has been proposed in [110]. The authors

suggested a one-time point annotation method that requires the users to only label a single

moment per activity rather than specifying the beginning and the end. The method then

recognizes automatically the boundary of the activity in the annotated signal. Neverthe-

less, it requires that the labels are within the execution interval of the activity.

Unlabelled or poorly labelled data are available in big quantities nowadays due to the

large diffusion of sensing devices, such as smartphones and wearables devices. For this

reason, methods such as semi-supervised learning, active learning and unsupervised learn-

ing have been applied in order to extract useful information from sparsely annotated data.

A combination of active learning and semi-supervised learning has been studied in [111].

The authors used a dataset of daily activities collected with two subjects wearing acceler-

ometer sensors and motioned tracked with infrared sensors. This approach however uses

a decision window of 30 seconds long and thus is not suitable for recognizing movements

that occur in a short time. Unsupervised learning has been successfully applied to activity

recognition in [112] and more recently in [113]. In the latter, an activity discovery method

based on clustering is proposed to help with ES, although it is designed for periodic move-

ments rather than sporadic actions. Unsupervised learning has been applied to actions

clustering in [114], where a K-Means clustering has been evaluated specifically for hand

movements.

Several studies have tried to address the challenge of activity recognition from poorly

annotated data. While most of them used synthetic dataset and focused on periodic or

long activity (such as walking, running, etc.), to the best of our knowledge none of them

applies to drinking movements collected in a real-life office environment.
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8.3 Dataset

The dataset was collected by providing a set of mugs to 60 users (one mug per user) in

an office environment. Each user collected data for a period of 4 days. Each mug was

instrumented with a logger comprising a 3-axis accelerometer [115]. The loggers were

placed in a hollow at the bottom of each mug. As the mugs were custom made, the

positioning of the loggers was not the same in all mugs. The loggers sample acceleration

at 20 Hz, with a timestamp in ms. In order to save power, they start logging acceleration

when a movement is detected. After 5 seconds of inactivity they automatically stop the

recording, without record the inactivity period. We use the term sensor events to refer

to every recording performed by the loggers that lasts at least 4 seconds (as configured

on the loggers for this data collection). Therefore, sensor events can occur for a variety of

reasons: moving the mug on the desk, washing it, drinking from the cup, etc.

The data annotation was performed through experience sampling by the users them-

selves. They labelled each drinking event manually using an Android application installed

on their smartphones. Each annotation could be punctual or delayed. An annotation

is considered punctual when it was entered immediately after the drinking event. It is

considered delayed, when it refers to an event in the past. The users could specify in

the application whether their annotation was punctual or delayed. However they did not

have to provide an indication as to how much the delay was. Furthermore, there were no

guidance indicating after how much time an annotation should be considered “delayed”

rather than “punctual”.

The resulting dataset is made by 8825 sensor events, 1808 user annotations, of which

1477 marked as “punctual” and 331 as “delayed”. The percentage of annotated movements

with respect to the total amount of sensor events is of 20.5%.

8.4 User annotation analysis

We aim to analyse the causes of the poor annotations in order to improve future data

collections, as well as helping during the next steps of this study.

Figure 8.4.1 indicates the main challenge of the annotation protocol, which is how

users understood differently how and what to annotate. The data collection protocol did

not require participants to annotate drinking solely when using the instrumented mugs:

they could annotate drinking as well when using regular mugs. It might happen that users

annotated drinking events performed using other cups. The protocol did also not specify
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(b) User 461

Figure 8.4.1: Example of annotations of two different users, over the 4 days period.

The start time of the sensor events are displayed in the top plot of each figure, one thin

line per event. The delayed and punctual annotations inserted by the users are displayed

respectively in the second and the third plot of both figures. The X-axis reports date and

time, in the format “MM-DD HH”. It is also possible to notice the differences in the way

two users annotated the drinking events.
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Figure 8.4.2: Change in the user commitment in the annotation during day 2, 3, and

4. The grey bars represents the percentage of annotations for each day with respect to day

1. Day 2 displays an increment of 0.24%; Day 3 and 4 an average decrease of 11% in the

number of annotations. The vertical bars represents the standard deviation for each day.

what to consider as a “drinking event”. Users could interpret it as referring to a single

sip, multiple sips, or the act of drinking the entire cup. It is also possible to notice how

the annotations are not well aligned with the sensor events.

We also studied the distribution of the labels, per user, over the 4 days of data col-

lection. It could help to understand the users’ commitment in annotating their drinking

movements, assuming they were keeping the same drinking habits among all the days.

This may be useful in order to spot days for which the annotations can be more reliable.

The results are presented in Figure 8.4.2. While there is no significant change between day

1 and day 2, with an average increase in the number of annotation of 0.24%, starting from

day 3 the engagement decrease by 11% on average among all the users. The plot shows

also a great variability in the data: there were users that increased their commitment over

the 4 days, as well as users for which the commitment decreased over the 4 days.

From the analysis of the annotations, it can be concluded that they were not reliable

enough to be used together with the data for the supervised classifier training.

8.5 Movement classification

In order to make the collected dataset useful for drinking movement recognition, each

event recorded by the sensors had to be classified in drinking/non-drinking. As highlighted

previously, the users annotations cannot be used as-is as they are not accurate enough.

A manual relabelling of the entire dataset was unfeasible given the lack of any video

recordings.
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(a) (b)

Figure 8.5.1: Examples of orientation of the loggers in the custom made mugs. Although

X and Y axis can be different in each mug, the Z-axis is always facing downwards.

We developed an approach based on a template matching method (TMM) to automat-

ically spot a subset of events which are believed to be drinking movements with a certain

confidence value. The approach then uses few events which are manually identified as

drinking events with high confidence to train the TMM.

8.5.1 Data processing and training set selection

We used a heuristic method to select a few sensor events as the training set. We performed

a few drinking movements using the same instrumented mug in order to chose the best

sensor channel for template matching.

The chosen channel (or channels) must be orientation independent, as there was no

information about the positioning of the logger in the mug (Figure 8.5.1). We discovered

that the Z-axis of the accelerometer quite clearly indicates the movement of lifting the cup

to drink. Also, despite different orientation of the loggers, this axis was always perpendic-

ular to the bottom of the mug. A template of such movement is displayed in Figure 8.5.2.

A subset of movements visually similar to this template was selected manually from the

entire set of the available movements. We selected this subset trying to include some vari-

ability in the way the drinking movements were performed. Another subset of non-drinking

movements was selected too, choosing the templates that were very visually different from

the drinking movements. The training set is displayed in Figure 8.5.3. It is formed by 78

events: 37 drinking movements (8.5.3a) and 41 non-drinking movements (8.5.3b).

However, lifting the cup does not necessarily mean that a drinking was actually per-

formed. For this reason, in order to better detecting the rotation of the mug due to the

drinking, we also used the magnitude of the acceleration on X-Y plane as additional in-

formation. This was also due to the lack of the gyroscope on the loggers. The X-Y plane

was chosen because it was always parallel to the bottom of the mug (Figure 8.5.1). The

magnitude was computed as mxy =
√

x2 + y2. A template for a drinking movement rep-

resented by the magnitude is shown in Figure 8.5.4. A different training set based on the
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Figure 8.5.2: Template of a drinking movement, performing a single sip, displaying the

acceleration on the Z-axis.

template of the magnitude was chosen. The choice was based on visual similarity to such

template. A subset of non-drinking movement was also chosen for the XY magnitude The

training set of drinking and non-drinking movement for the XY magnitude is displayed in

8.5.5. The drinking movements were selected only when they corresponded to a lifting of

the mug (Z-axis).

All the instances in the dataset were filtered using a Butterworth low pass filter with

cut off frequency set to 10 Hz. They were also resampled to a fixed number of samples.

The number of samples was selected as the average length of a drinking movement, which

is 170. This step was performed in order to reduce the impact of non-drinking events

that can last longer time than drinking movements (e.g. washing the cup, moving the cup

around the office, etc.).

In order to evaluate which is the best channel for drinking movement recognition, we

decided to match the templates for Z-axis signal and XY magnitude separately.

8.5.2 WLCSS training

The selected training segments are used with WLCSSLearn p to optimise the values of R,

P, ǫ and V to maximise the ability of WLCSS to distinguish drink from non-drink. We used

our training in order to optimize the values of the parameters starting from a randomly

generated population. Each individual of the population is an array containing the 4

parameters. The EA evolves this population through the usual selection, mutation and

crossover operators [116]. Here, the F1 score is used for the selection. The optimization

process stops after a predefined number of iterations, in this case 500.
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(a) Drinking movements

(b) Non-drinking movements

Figure 8.5.3: Training set of movements using the Z-axis of the accelerometer. 8.5.3a

displays the templates chosen as drinking movements. 8.5.3b shows those selected as no-

drinking movements. All the plots show the templates downsampled to the fixed length of

170 samples (X-axis). The Y-axis represents the acceleration within a range of ± 2g.



107

0 50 100 150 200
# Samples

-2

0

+2

M
ag

ni
tu

d
e 

(g
)

Figure 8.5.4: Template of a drinking movement, performing a single sip, displaying the

magnitude of the acceleration on the X-Y plane.

8.5.3 Confidence computation

Given the unreliability of the labels in the dataset, it is not possible to evaluate pre-

cisely the correctness of a match for this particular dataset. For this reason, we opted

to provide a confidence level for each movement as output of our method rather than a

simple match/no-match. The confidence level was assigned using Four Parameter Logistic

Regression:

υ = δ +
α− δ

1 + (D
V

)β

where υ is the confidence level, D is the matching cost, and V is the threshold. The

function, displayed in Figure 8.5.6, provides a confidence value in the range [0:1]. The

range is defined by the parameters α = 0 and δ = 1. The parameter β, which define the

slope of the function curve, was set manually to 5. Using a fixed interval for the confidence

makes its value unrelated from the absolute value of V , which can vary according with

the parameters R, P and ǫ.

Finally, we computed three confidence values: i) a value for the Z-axis signal (cz) used

to detect the lifting of the mug, ii) a value for the matching of the XY magnitude template

(cxy) useful for the detection of the mug’s rotation and iii) a combined value that takes

into account the previous twos (ccomb). This latter value was empirically defined as:

ccomb = 0.7 · cz + 0.3 · cxy

The weights for cz and cxy were chosen experimentally based on the assumption that a

drinking movement, intended as rotation of the mug, is performed only after the lifting

the mug.
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(a) Drinking movements

(b) Non-drinking movements

Figure 8.5.5: Training set of movement using the magnitude of X and Y axis of the

accelerometer. 8.5.5a displays the templates chosen as drinking movements. 8.5.5b shows

those selected as no-drinking movements. All the plots show the templates downsampled

to the fixed length of 170 samples (X-axis). The Y-axis represents the acceleration within

a range of ± 2g.
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Figure 8.5.6: 4 Parameter Logistic Regression function used to assign a confidence with

the respect to the threshold.
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8.5.4 Evaluation

We used the two different subset of instances (Z-axis signal and XY magnitude) to train

two separate instances of the system using the EA. As the EA is a stochastic process, we

repeated the training 10 times, and we picked the best values for each of the two systems.

The values are R=68, P=0, ǫ=28 and T=3364 for the Z-axis and R=23, P=11, ǫ=11 and

T=726 for XY magnitude. With these parameters, we run the algorithm on the entire

dataset, by using the templates displayed in Figure 8.5.2 and Figure 8.5.4, which were

selected manually from the training sets as templates.

Figure 8.5.7 displays a comparison of the sensor events and the annotations for a single

user, with the corresponding matching scores, for the Z-axis (8.5.7a) and XY Magnitude

(8.5.7b). The matching of the template for XY magnitude is less restricting than the

matching on the Z-axis. This is possibly due to the fact the rotation of the mug can

happen even in case of movement different from just the drinking: e.g. while washing the

mug, moving it around, etc.

The percentages of total detected movements for each scenario, compared to the total

number of events are displayed in Table 8.5.1, for different confidence values. The low

percentages are due to the nature of the sensors, which were collecting all sort of movements

such as moving the mug on the desk, washing it or even accidental movements. It is

important to note that the number of detected events is also lower than the number of

user annotations (1808). This may be a result of the data collection protocol which did not

specify to annotated only the drinking movements performed with the instrumented mug.

Finally, for low confidence values (≥25% and ≥50%) the matching of the Z-axis signal

and the XY magnitude are quite different in term of percentage. For higher values of the

confidence (≥75%), the performance of the two systems tend to be the same, with similar

percentages of detected events. Moreover, in order to better compare the performance of

the two systems, we created the cross-correlogram presented in Figure 8.5.8. It displays the

distribution of the differences between the confidence cz and cxy. While the two systems

generally agree, as shown by the peak on 0, there is a negative skewness. This means that

system for XY magnitude is less precise in detecting the drinking events than detecting

the lifting of the mug using the Z-axis.

From the analysis, it is clear how the Z-axis signal is better for detecting a first subset

of drinking movements rather then just the XY magnitude. The latter is useful to filter

out events that refer to lifting of the cup but without an actual drinking performed by the

user.
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(b)

Figure 8.5.7: Comparison of WLCSS matching scores with recorded data for a single

user, for Z-axis (8.5.7a) and XY magnitude (8.5.7b). For each of the two template match-

ing, from the top: the WLCSS matching scores and the threshold T, as horizontal line

(first plot), the start time of the sensor events (second plot), and the user annotations

delayed and punctual (respectively third and fourth plot). The data are for 4 days period,

with the X-axis reporting date and time in the format “MM-DD HH”
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Figure 8.5.8: Cross-correlogram representing the difference between the confidence ob-

tained using the Z-axis signal and the XY magnitude.
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Figure 8.5.9: Cross-correlogram representing the distribution of the delays (in seconds)

between the user annotations and all the events recorded by the loggers (8.5.9a). Cross-

correlogram representing the distribution of the delays (in seconds) between the user an-

notations and the events detected with a confidence ≥50%, using the signal from the Z-axis

only (8.5.9b). Cross-correlogram representing the distribution of the delays (in seconds)

between the user annotations and the events detected with a confidence ≥50%, using the

XY magnitude (8.5.9c).



112

Table 8.5.1: Number of drinking movements detected for some confidence levels. The

percentages are with respect to the total number of sensor events in the dataset (8825).

Confidence
Z-Axis XY-Magnitude Combined

# movements % # movements % # movements %

≥ 25% 1481 17% 5253 60% 3930 44%

≥ 50% 942 10% 4365 49% 1113 12%

≥ 75% 543 6% 3453 39% 483 5%

We studied the relation between user annotations, sensor events and detected move-

ments, for the two systems. To do this, we assigned to every recorded event the closest

user annotation in time. Then, computing the time difference between the sensor events

and the corresponding closest annotations, we created the cross-correlogram displayed in

Figure 8.5.9a. Figure 8.5.9b and Figure 8.5.9b present the distribution of the same time

differences, but considering only the movements detected by WLCSS with a confidence

≥50%, respectively for Z-axis and XY magnitude. The plot for Z-axis presents a more

pointy distribution, confirming that, in this case, WLCSS detected events that were actu-

ally closer in time to the user annotations. The plot for XY magnitude confirms the lower

precision of the detection with respect to the user annotation.

8.6 Unsupervised learning

We evaluated also an unsupervised approach in order to classify the movements in drinking/non-

drinking as it does not require a training set. We developed a custom method based on

K-Means. We modified K-Means in order to make it able to cluster movements performed

with variation in their speed of execution.

8.6.1 K-Means with WLCSS

K-Means is a clustering technique that aims to partition n observation in k clusters. Each

observation belongs to the cluster with the closest mean. It can be used for unsupervised

learning by clustering the input data based on a distance measure. The algorithm is

based on two steps, assignment step and update step, which are repeated until a stopping

criteria is met [107]. This criteria can be reaching a maximum number of iterations, the

change of the clusters in the update step in below a thresholds, etc. We implemented a

modified version of the K-Means, where WLCSS was used a distance measure in place of
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the Euclidean distance. The assignment in our implementation is modified as following:

argmax ciWLCSS(x, ci)

where x is a sensor events, ci is the centroid for the i-th cluster. The function argmin is

replaced by argmax as WLCSS compute a matching score rather than a distance. The

update step is unmodified.

8.6.2 Evaluation

We compared our version of K-Means (named K-MeansWLCSS) against the standard

version that uses the Euclidean distance in order to assign each instance to the closest

cluster. We applied both the implementation on the training set from the previous step,

with k = 2 as the goal was to distinguish between drinking and non-drinking movements.

As all the instances were resampled to the same length, they could be used as feature

vectors for both the implementations, without dealing with different lengths of the feature

vectors (in this case the resampled raw signal). Applying the algorithms on the training

set allowed us to compare the clustering results with the labels assigned manually to each

movement, during the data selection. Figure 8.8.1 presents a visual comparison between

the clusters obtained with the two versions of K-Means. For both the implementations,

Cluster 1 seems to include mainly the drinking movements, while Cluster 2 the non-

drinking movements. We used this consideration in order to evaluate the performance

of the two algorithms computing precision, recall and F1 score, presented in Table 8.7.1.

They are computed by comparing the clustering of K-Means with the manual labels of

the instances in the extracted subset. K-Means WLCSS increased the F1 score by 16%,

being able to detect more variations in the drinking movements as it is also visible from

Figure 8.8.1. It was able to cluster correctly drinking movements composed by two sips,

such as the instances 8, 16, and 21 of Figure 8.8.1c.

8.7 Discussion

We discovered that the main issue for this dataset was the data collection protocol which

was too relaxed. More precise instructions would increase considerably the quality of

the data. Simultaneously, asking the users for more precision in following the protocol

should be balanced with shorter sessions of data collection, as we noticed how the user

commitment decreases over 4 days of continuous data collection. Lastly, as it has been

demonstrated that experience sampling is not reliable, we recommend to increase the
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Table 8.7.1: Precision, Recall and F1 score for K-Means and K-MeansWLCSS computed

on the training set. They are computed using the manual labels assigned to each instance

in the training set as ground-truth. The majority of the movements in a cluster is used as

classification label for the K-Means implementations.

K-M K-M WLCSS

Precision 100% 92.11%

Recall 62.16% 94.6%

F1 77% 93%

effort in the setup of the experiment by including a video recording. It would dramatically

increase the quality and re-usability of the dataset, although it would require additional

time for the labelling of the data. In order to reduce this effort, the video recordings

can be used to precisely annotate just a small portion of the entire dataset. This well-

annotated subset, which can be also collected a-posteriori, or can be used as training set

instead of extracting one through heuristic. The well-annotated dataset would also allow

to evaluate more precisely the performance of the TMM or any other classifier on the

complete dataset, through statistical analysis.

In this study we extracted a subset of events which can be considered as drinking

movements with a certain confidence. This extracted subset can be potentially used to

re-train the TMM for a more reliable movement recognition system. The re-training

phase can be performed using movements with different levels of confidence: an higher

level of confidence would increase the specificity of the found movements. Decreasing this

value would increase the sensitivity, potentially including more variations of the drinking

movements.

Finally, we aimed to evaluate how an unsupervised learning technique can be used in

order to extract drinking movements from a poorly labelled dataset. We implemented a

modified version of K-Means which uses WLCSS as distance measure for the assignment

step. The results are promising: with 2 clusters it managed to differentiate between

drinking and non-drinking movement with an 93% F1-score, although on a limited number

of sensor events. A more extensive evaluation can be performed on the entire dataset,

although without a reliable ground-truth, a validation of the results, in this case, could be

difficult.
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8.8 Conclusion

In this study, we investigate how to extract knowledge from a poorly labelled dataset

of drinking movements. We analysed the user annotations in order to get qualitative

information on how to improve the data collection. We exposed how the loose protocol

created most of the problems and we highlighted the need of providing more precise

instructions to the users. Then, by selecting instances manually and using a template

matching algorithm, we demonstrated that it is possible to extract a subset of instances

which are actually drinking movements within a certain level of confidence. We proved

that an unsupervised approach based on K-Means and WLCSS can improve the clustering

of movement over the standard K-Means implementation. Our method outperformed the

baseline method by including a wider variety of drinking movements and increasing F1-

score by 16%.
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Figure 8.8.1: Comparison between clusters obtained with K-Means using Euclidean dis-

tance (top left, top right), and using WLCSS (bottom left, bottom right).
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Chapter 9

Conclusion

This chapter concludes the thesis with a summary of the achievements of this thesis with

regards of movement recognition using TMMs. We also discuss the limitations of our work

and the future development to overcome these limitations. Finally, we conclude underlining

the relevance of our contributions.

9.1 Achievements

In this thesis, we individuated some of the challenges of applying Template Matching

Methods (TMMs) to movements recognition. In addressing these challenges solving the

aims we presented in Section 1.2, we made the following contributions, here divided ac-

cording with the thesis structure presented in Section 1.4.

With regards of the data availability:

• We collected and presented the first publicly available dataset of beach volleyball

serves movements and games. The dataset comprises data from 10 users divided

over 3 sessions, recorded using 4 wearable inertial platforms per user. In total,

the dataset counts 585 annotated serves, divided in 4 categories: 147 long float,

140 long top spin, 155 short float and 143 short top spin serves. In addition to

the annotated serves that span on over 2 hours, the dataset includes 9 hours of

free unlabelled games rallies. It is freely available to the community at the link

https://ieee-dataport.org/open-access/wearlab-beach-volleyball-serves-and-games.

• We developed a 3D human model that can be animated using the 3D orientation

data provided by any wearable sensing platform for troubleshooting movement data

issues and for movements analysis. The 3D model in made of 12 body segments

that can be independently animated using each one a sensors worn by the user in

https://ieee-dataport.org/open-access/wearlab-beach-volleyball-serves-and-games
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the corresponding position. We showed that our model can be animated both in

real-time and offline. In this latter case, we demonstrated that it can be successfully

deployed for privacy preserving annotation in three different scenarios:

– Event-detection: the animated model can be used to detect when an activity

of interest is happening in the data stream;

– Open-ended annotation: the animated model can represent activities and move-

ments with enough accuracy to let the annotator to open-ended label the data

with the correct activity performed by the model;

– Closed-set annotation: when the 3D model is used for annotating activities

from a closed set, it can reach up to 56% accuracy with only 6 annotators.

We presented a power-aware evolutionary based training method for WLCSS, named

WLCSSLearn, in two versions. More specifically:

• WLCSSLearn p is our method to train the parameters of WLCSS. We demonstrate

that it can maximize the recognition performance on several dataset of activities

including different sensor modalities and movements encoding, with minimal input

by the user. Through an extensive evaluation, we set guidelines for the training

parameters as well as for the genetic encoding of the parameters of WLCSS within

WLCSSLearn p. Our training method allowed recognition performance of 88%±0.08

F1 score, on average across 6 different datasets.

• WLCSSLearn t is our method to generate variable length templates for WLCSS.

The generated templates can be configured to maximise recognition performance

or to reduce computational costs of the template matching. We showed that our

method can improve by up to 15% the recognition performance compared to previous

methods of selecting the most representative template (MRT) in the training set,

while also saving between 10% and 20% of computations for some dataset. Overall,

we demonstrated that WLCSSLearn t shows comparable recognition performance

to MRT while saving up to 50% of computational cost. Finally, WLCSSLearn t can

reduce the computations up to 90% while still increasing by 33% the recognition

performance over chance-level recognition.

We demonstrated that WLCSSLearn is robust to difference in movements, sensor modal-

ities and application scenarios.
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Finally, we evaluate a case study of recovering a highly valuable but poorly annotated

dataset of drinking actions. In this case, our 3D model could not be deployed to the lack

of orientation data. However, we demonstrated that:

• WLCSS and our training method can be used to annotate drinking/non-drinking

actions with different levels of confidence;

• using WLCSS as distance measure for unsupervised K-Mean clustering of actions

segments can improve by 26% the F1 score compared to using the standard Euclidean

distance.

9.2 Limitations and future work

Throughout this thesis, we dealt with isolated recognition of activities and movements.

However, continuous recognition of actions is a more realistic scenario where the sensors

produce a continuous stream of data that must be classified in order to provided feedback

on the user movement. In this case, a continuous matching scores is produced by the

TMM which creates further challenges to adapt our work to continuous recognition. We

identified these challenges as:

• taking into account the NULL-class. When sensors produce a continuous stream of

data, a portion of these data refers to movements that are not of interest for the

application. For example, in the beach volleyball serving application, the NULL

class can include all those movements between serves such as, for example, picking

up the ball from the ground, removing the sand from it, etc. In this case, because

it is impossible to forecast these movements, NULL class cannot be identified with

one or more templates in order to be classified as such. Therefore it must be just

discarded by increasing the specificity of the matching through better templates and

especially the threshold V . However, it is not possible to predict the length of the

NULL-class data and consequently it is not possible to predict how low the value of

the continuous matching score computed by the TMM due to a long mismatch. This

makes difficult to adapt the value of V at training time in order to exclude the NULL-

class by using only the isolated segments as done in this work. As a possible solution,

we suggest to use a windows based approach to continuous recognition where the

continuous stream of data is broken into fixed time windows that would then be

classified singularly and that can be used for training as independent segments. In
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this case, part of the segments included for the training with WLCSSLearn will

include data of the NULL-class.

Another possibility is to set a maximum lower bound to the matching score that

would cap the score in case of long mismatch. This would prevent a long mismatch

due to the NULL-class and the consequent low value in matching score to affect the

detection of a match when needed.

Both these methods would requires further analysis in order to set application specific

window length or lower bound for the matching score.

• distinguishing between long and short variation of similar but different actions. Con-

sidering the beach volleyball application, the long version of a specific serve can be

mistaken for a warped variation of a shorter one. Since in continuous recognition

there is not specified start and end of a movement, this can become an issue where

shorter movements cause several false positives when a longer actions is being detec-

ted. In this case, a possible solution is to deploy templates for the shorter actions

longer than the minimal length in order to include additional information about the

end of the short movements. This would increase the differences with respect to the

templates of the longer actions.

As described in this work, WLCSSLearn is a two step process: WLCSSLearn p trains

the parameters of WLCSS and WLCSSLearn t generates the templates for the matching.

However, both steps would be required at each time. Therefore, we identify this as one

of the limitation of this work and the main future improvement. A single step training

that would both train the parameters and generate the templates simultaneously would

be beneficial, reducing some of the overhead of the two step process. For example, in the

current implementation the threshold V is computed twice: i) first it is calculated with

the trained parameters as its value depends on R and P , ii) then it is computed again for

every generated template as the value of V also depends on the length of the generated

T and the value of its sample. A unique comprehensive WLCSSLearn for simultaneous

parameters training and template generation would require a new encoding of individuals

chromosomes, new genetic operators for this new encoding and a new fitness function that

could drive the evolution.
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9.3 Relevance and conclusion

In this thesis, we looked at the problem of movement recognition with Template Matching

Methods. We selected TMMs as recognition algorithm to automatically classify actions

from wearable sensors data as they offer a granular distance between two sensor signals

and therefore two movements. The granular distance can be used in order to finely assess

the quality of the movement. We identified the main challenge in the lack of a training

algorithm for TMMs that would maximise the recognition performance while also allowing

a power-aware training. In the process of addressing this challenge:

• we presented a new dataset of beach volleyball serve actions and games in order

to evaluate our methods in an application scenario that would benefit from skill

assessment. This is the first publicly available dataset of beach volleyball movements

collected with these kind of sensors.

• We also produced a 3D human model for troubleshooting potential problem with

sensors data in a dataset which has been demonstrated to be useful for privacy

preserving annotations and a case study of recovering poorly annotated data that

can be used for template matching for skill assessment.

• Finally, we addressed the lack of training method for TMM by presenting the first

training method for Warping Longest Common Subsequence, named WLCSSLearn,

that:

– maximize per-application recognition performance with minimal input from the

user

– unprecedentedly, allows a configurable trade-off between recognition perform-

ance and computational cost reduction.

– can be exported to other TMMs with little adjustments: with the right en-

coding, WLCSSLearn p can be used to train the parameters of Longest Com-

mon Subsequence (LCSS), i.e. insertion, deletion and substitution costs, and

the weight of Weighted Dynamic Time Warping (W-DTW). By changing the

TMM used to compute the match in WLCSSLearn t, our training algorithm

can generate templates for any template matching method, i.e. DTW, LCSS,

etc.

We argue that, thanks to our methods, movement recognition using TMMs can be effect-

ively improved.



122

Bibliography

[1] Jeffrey W. Lockhart, Tony Pulickal and Gary M. Weiss. ‘Applications of mobile

activity recognition’. In: Proceedings of the 2012 ACM Conference on Ubiquitous

Computing - UbiComp '12. ACM Press, 2012. doi: 10.1145/2370216.2370441.

url: https://doi.org/10.1145/2370216.2370441.

[2] Andreas Bulling, Ulf Blanke and Bernt Schiele. ‘A tutorial on human activity

recognition using body-worn inertial sensors’. In: ACM Computing Surveys 46.3

(2014), pp. 1–33. doi: 10.1145/2499621. url: https://doi.org/10.1145/

2499621.

[3] Lorenzo Porzi et al. ‘A smart watch-based gesture recognition system for assisting

people with visual impairments’. In: Proceedings of the 3rd ACM international

workshop on Interactive multimedia on mobile & portable devices - IMMPD '13.

ACM Press, 2013. doi: 10.1145/2505483.2505487. url: https://doi.org/10.

1145/2505483.2505487.

[4] G. Saggio et al. ‘Gesture recognition and classification for surgical skill assess-

ment’. In: 2011 IEEE International Symposium on Medical Measurements and

Applications. IEEE, 2011. doi: 10.1109/memea.2011.5966681. url: https:

//doi.org/10.1109/memea.2011.5966681.

[5] Fabien Despinoy et al. ‘Unsupervised Trajectory Segmentation for Surgical Ges-

ture Recognition in Robotic Training’. In: IEEE Transactions on Biomedical En-

gineering 63.6 (2016), pp. 1280–1291. doi: 10.1109/tbme.2015.2493100. url:

https://doi.org/10.1109/tbme.2015.2493100.

[6] Chongyang Wang et al. ‘Leveraging Activity Recognition to Enable Protective

Behavior Detection in Continuous Data’. In: arXiv preprint arXiv:2011.01776

(2020).

[7] Jinxian Qi et al. ‘Intelligent Human-Computer Interaction Based on Surface EMG

Gesture Recognition’. In: IEEE Access 7 (2019), pp. 61378–61387. doi: 10.1109/

https://doi.org/10.1145/2370216.2370441
https://doi.org/10.1145/2370216.2370441
https://doi.org/10.1145/2499621
https://doi.org/10.1145/2499621
https://doi.org/10.1145/2499621
https://doi.org/10.1145/2505483.2505487
https://doi.org/10.1145/2505483.2505487
https://doi.org/10.1145/2505483.2505487
https://doi.org/10.1109/memea.2011.5966681
https://doi.org/10.1109/memea.2011.5966681
https://doi.org/10.1109/memea.2011.5966681
https://doi.org/10.1109/tbme.2015.2493100
https://doi.org/10.1109/tbme.2015.2493100
https://doi.org/10.1109/access.2019.2914728
https://doi.org/10.1109/access.2019.2914728
https://doi.org/10.1109/access.2019.2914728


123

access . 2019 . 2914728. url: https : / / doi . org / 10 . 1109 / access . 2019 .

2914728.

[8] Meenakshi Panwar and Pawan Singh Mehra. ‘Hand gesture recognition for human

computer interaction’. In: 2011 International Conference on Image Information

Processing. IEEE, 2011. doi: 10 . 1109 / iciip . 2011 . 6108940. url: https :

//doi.org/10.1109/iciip.2011.6108940.

[9] Cassim Ladha et al. ‘ClimbAX’. In: Proceedings of the 2013 ACM international

joint conference on Pervasive and ubiquitous computing. ACM, 2013. doi: 10.

1145/2493432.2493492. url: https://doi.org/10.1145/2493432.2493492.
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[27] Francisco Ordóñez and Daniel Roggen. ‘Deep Convolutional and LSTM Recurrent

Neural Networks for Multimodal Wearable Activity Recognition’. In: Sensors 16.1

(2016), p. 115. doi: 10.3390/s16010115. url: https://doi.org/10.3390/

s16010115.

[28] Daniele Ravi et al. ‘A Deep Learning Approach to on-Node Sensor Data Analytics

for Mobile or Wearable Devices’. In: IEEE Journal of Biomedical and Health

Informatics 21.1 (2017), pp. 56–64. doi: 10.1109/jbhi.2016.2633287. url:

https://doi.org/10.1109/jbhi.2016.2633287.

[29] Henry Friday Nweke et al. ‘Deep learning algorithms for human activity recog-

nition using mobile and wearable sensor networks: State of the art and research

challenges’. In: Expert Systems with Applications 105 (2018), pp. 233–261. doi:

10.1016/j.eswa.2018.03.056. url: https://doi.org/10.1016/j.eswa.

2018.03.056.

[30] Elisa Spano, Stefano Di Pascoli and Giuseppe Iannaccone. ‘Low-Power Wear-

able ECG Monitoring System for Multiple-Patient Remote Monitoring’. In: IEEE

https://doi.org/10.1109/icassp.2013.6639333
https://doi.org/10.1109/icassp.2013.6639333
https://doi.org/10.1109/icassp.2013.6639333
https://doi.org/10.1145/3267242.3267275
https://doi.org/10.1145/3267242.3267275
https://doi.org/10.1145/3267242.3267275
https://doi.org/10.4108/bodynets.2007.143
https://doi.org/10.4108/bodynets.2007.143
https://doi.org/10.4108/bodynets.2007.143
https://doi.org/10.1109/isda.2012.6416645
https://doi.org/10.1109/isda.2012.6416645
https://doi.org/10.1109/isda.2012.6416645
https://doi.org/10.1109/isda.2012.6416645
https://doi.org/10.3390/s16010115
https://doi.org/10.3390/s16010115
https://doi.org/10.3390/s16010115
https://doi.org/10.1109/jbhi.2016.2633287
https://doi.org/10.1109/jbhi.2016.2633287
https://doi.org/10.1016/j.eswa.2018.03.056
https://doi.org/10.1016/j.eswa.2018.03.056
https://doi.org/10.1016/j.eswa.2018.03.056


126

Sensors Journal 16.13 (2016), pp. 5452–5462. doi: 10.1109/jsen.2016.2564995.

url: https://doi.org/10.1109/jsen.2016.2564995.

[31] James Dieffenderfer et al. ‘Low-Power Wearable Systems for Continuous Mon-

itoring of Environment and Health for Chronic Respiratory Disease’. In: IEEE

Journal of Biomedical and Health Informatics 20.5 (2016), pp. 1251–1264. doi:

10.1109/jbhi.2016.2573286. url: https://doi.org/10.1109/jbhi.2016.

2573286.

[32] Simone Benatti et al. ‘A Versatile Embedded Platform for EMG Acquisition and

Gesture Recognition’. In: IEEE Transactions on Biomedical Circuits and Systems

9.5 (2015), pp. 620–630. doi: 10.1109/tbcas.2015.2476555. url: https:

//doi.org/10.1109/tbcas.2015.2476555.

[33] Jongpal Kim and Hyoungho Ko. ‘Reconfigurable Multiparameter Biosignal Ac-

quisition SoC for Low Power Wearable Platform’. In: Sensors 16.12 (2016), p. 2002.

doi: 10.3390/s16122002. url: https://doi.org/10.3390/s16122002.

[34] Mahtab J. Fard, Sattar Ameri and R. Darin Ellis. ‘Toward personalized training

and skill assessment in robotic minimally invasive surgery’. In: Lecture Notes

in Engineering and Computer Science 2226.October (2016), pp. 719–724. issn:

20780958. arXiv: 1610.07245.

[35] Daniel Roggen et al. ‘Limited-memory warping LCSS for real-time low-power

pattern recognition in wireless nodes’. In: European conference on wireless sensor

networks. Springer. 2015, pp. 151–167.

[36] M. Michalopoulou et al. ‘Computer analysis of the technical and tactical ef-

fectiveness in Greek Beach Volleyball’. In: International Journal of Performance

Analysis in Sport 5.1 (June 2005), pp. 41–50. doi: 10.1080/24748668.2005.

11868314. url: https://doi.org/10.1080/24748668.2005.11868314.

[37] A.B. Lopez-Martinez and J.M. Palao. ‘Effect of serve execution on serve efficacy in

men’s and women’s beach volleyball’. In: International Journal of Applied Sports

Sciences 21.1 (2009), pp. 1–16. issn: 15982939.

[38] Markus Tilp et al. ‘Digital game analysis in beach volleyball.’ In: International

Journal of Performance Analysis in Sport 6.1 (June 2006), pp. 140–148. doi: 10.

1080/24748668.2006.11868362. url: https://doi.org/10.1080/24748668.

2006.11868362.

https://doi.org/10.1109/jsen.2016.2564995
https://doi.org/10.1109/jsen.2016.2564995
https://doi.org/10.1109/jbhi.2016.2573286
https://doi.org/10.1109/jbhi.2016.2573286
https://doi.org/10.1109/jbhi.2016.2573286
https://doi.org/10.1109/tbcas.2015.2476555
https://doi.org/10.1109/tbcas.2015.2476555
https://doi.org/10.1109/tbcas.2015.2476555
https://doi.org/10.3390/s16122002
https://doi.org/10.3390/s16122002
https://arxiv.org/abs/1610.07245
https://doi.org/10.1080/24748668.2005.11868314
https://doi.org/10.1080/24748668.2005.11868314
https://doi.org/10.1080/24748668.2005.11868314
https://doi.org/10.1080/24748668.2006.11868362
https://doi.org/10.1080/24748668.2006.11868362
https://doi.org/10.1080/24748668.2006.11868362
https://doi.org/10.1080/24748668.2006.11868362


127
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Appendix A

Recruiting participant for

collecting data of beach volleyball

serves and games

This appendix integrates the recruitment of participants for the data collection described

in Chapter 2. The procedure of recruitment was approved by an ethical committee by

the University of Sussex. In order to get the approval, the committee required to fill a

risk assessment, a privacy information sheet for the participant to sign and to display any

recruiting materials such as flyers. The ethical approval was granted under the internal

code ER/MC606/1. An extension in time was also approved with the code ER/MC606/2,

with no additional material required. In the following, the recruiting flyer and the privacy

information sheet are reported.
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PARTICIPANT INFORMATION SHEET

PROJECT TITLE: Improvement of the quality of the execution of beach volleyball 
techniques using wearable sensors

What is the purpose of the project?
The goal of this project is to develop and to evaluate an automated system for 
performance analysis and improvement of beach volleyball player during the training. 
Specifically, this project is aimed to evaluate and improve the execution of a set of beach
volleyball techniques by analysing the movements of the body parts instrumented with 
wearable sensors. These sensors are inertial sensors capable to measure their 
movement in a 3D space.

The movements of a player will be analysed using 12 sensors with pattern matching 
algorithms. The project requires first collecting a dataset of executions of every beach 
volleyball techniques (serve, receive, pass, hit, block, dig), for each possible variation 
(e.g. float serve, spin serve, jump float serve, jump spin serve, etc.). Several videos of 
each execution will be recorded during the data collection. By using these videos, each 
instance in this dataset will be  evaluated and annotated by an expert with a score of the
quality of the execution.

The system will be then able to evaluate future executions by finding the most similar 
instance in the dataset using algorithm for pattern matching. In this case, the patterns 
will be the sequence of the orientation of the body parts measured with the inertial 
sensors.

Participants in this project will be instrumented with the 12 sensors and will be asked to 
perform a sequence of techniques.

Do I have to take part?
It is up to you to decide whether or not take part. If you decide to accept to participate, 
you would be given this information sheet to keep and be asked to sign a consent form. 
If you decide to take part, you are still free to withdraw at any time and without giving a 
reason.

What will happen to me if I accept?
If you accept you would be involved in the project data collection and system evaluation.

As first, during the data collection phase, you would be asked to perform a set of beach 
volleyball techniques, following a specific protocol, simulating a training session. After 
having worn the sensors, an initial briefing and a warm up, you will be asked to perform 
each technique for a 2 minutes length interval, following the indication that will be given
and at the best of you possibilities. The entire session won’t last for more than 1 hour. 
You will have 2-5 minutes of rest between every exercise interval. Anyway, you can stop 
and pause whenever you want.



During the evaluation of the system, you will be asked to perform a subset of the 
techniques wearing the system. You should perform each technique 5-10 times, then the
system will analyse your performance. After that, you will be asked to perform the same 
technique 5-10 times. Between each set of executions you can rest for 1-2 minutes. 
Anyway, you can stop and pause whenever you want.

Along all the experiments and the evaluations, you could be asked to answer several 
qualitative surveys anonymously.

What are the possible disadvantages and risks of taking part?
You would be requested to perform a set of beach volleyball techniques. The data 
collection and system’s evaluation sessions will be similar to training sessions, where the 
risks are in line with those you could encounter during an actual training (without the 
sensors and the system).
These sessions may be tiring, however you wouldn’t be asked to over exert your body or 
engage in any excessive physical activity. Even though there will be several breaks, you 
could pause and/or stop if you need it.

Will my information in this study be kept confidential?
The dataset collected during this project will consist of several different data: the 
inertial data from the sensors, the videos recorded during the data collection, the 
evaluation of the expert annotators of the quality of the executions and the data 
derived from the qualitative surveys.

The inertial data as well as the qualitative surveys’ data would be unlinked from your 
personal information and they will be anonymised. These data would be stored in a 
deidentified way (e.g. using ID numbers not names), and kept separate from other 
details about you.

The videos will be treated according with your preference on the consent form. They will
never be linked directly to your personal details, but you could choose if you want to 
publish your videos in the dataset entirely (leaving your face visible), if you want to make
your face blurred/pixelated, or if you prefer to exclude your videos from the datasets.

After the data collection is completed, no sensor information leading to the 
identification of any individual would be kept.

What will happen to the result of the research project?
The results of this research may be written into scientific reports for publication in 
academic venues. Your anonymity will be ensured in the way described before. If you are 
interested in copies of the published research, you can contact any researcher involved 
in the project.

We plan to release publicly the collected dataset (partly or completely), after proper 
anonymization and unlinking process, to make it accessible to the wider scientific 
community.

Who is organising the research?
This research is conducted by staff members of the University of Sussex, School of 
Engineering and Informatics.



Who has approved this study?
This study has been approved by the Sciences & Technology Cross-Schools Research 
Ethics Committee (crecscitec@sussex.ac.uk). The project reference number is 
ER/MC606/2.
University of Sussex has insurance in place to cover its legal liabilities in respect of this 
study.

Contact for Further Information
In case you would require further information, you can contact:
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Appendix B

WLCSSLearn p: Distribution of

generated R,P, ǫ

This appendix complements the analysis from Section 5.5 with the additional plots presen-

ted in Figure B.1 showing the distribution of the generated R,P, and ǫ for the opportun-

ity encoded, hci guided, skoda mini, hci table, beach volleyball datasets not included in

the main chapter. The figures confirm the findings from Section 5.5: there is no clear prob-

ability distribution of the values of R,P, and ǫ, which means that they must be optimized

in every application.
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Figure B.1: Probability distribution of values R, P, and ǫ in pairs for opportun-

ity encoded, hci guided, skoda mini, hci table and beach volleyball dataset. It is possible

to notice how the parameters do not follow any specific distribution, making necessary to

train all of them.
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Appendix C

WLCSSLearn t: Shape and length

of generated templates compared

to MRT

This appendix integrates the comparison of the shape and length of the templates with

the highest fitness generated by WLCSSLearn t with respect to the Most Representative

Templates (MRT), for each action class in every dataset (see Section 6.3.1). The figures

show how the evolutionary process tends to reduce the length of the templates while

increasing the most relevant features of the templates for each action class.
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Figure C.1: Comparison of best fitting variable templates generated with WLCSSLearn t

(black), sampled at several generations, and MRT (orange) for all the dataset. Over all

the iteration, the length of the best individual reduces as well as its visual complexity.
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Appendix D

Publications

This appendix includes a re-print of all the original publications this thesis is built upon

and that are listed in the List of Publications. The work described in Chapter 5 and 6

is being prepared to be published in [VIII] and therefore has not been included in this

appendix.
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Abstract
Annotating activity recognition datasets is a very time con-

suming process. Using lay annotators (e.g. using crowd-

sourcing) has been suggested to speed this up. However,

this requires to preserve privacy of users and may preclude

relying on video for annotation. We investigate to which ex-

tent using a 3D human model animated from the data of

inertial sensors placed on the limbs allows for annotation

of human activities. We animate the upper body of the 3D

model with the data from 5 inertial measurement sensors

obtained from the OPPORTUNITY dataset. The animated

model is shown to 6 people in a suite of experiments in

order to understand to which extent it can be used for la-

belling. We present 3 experiments where we investigate the

use of a 3D model for i) activity segmentation, ii) for "open-

ended" annotation where users freely describe the activity

they see on screen, and iii) traditional annotation, where

users pick one activity among a pre-defined list of activi-

ties. In the latter case, results show that users recognise

the model’s activities with 56% accuracy when picking from

11 possible activities.

Author Keywords
Activity recognition; annotation; wearable technologies; 3D

human model.
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Introduction
Activity recognition is fundamental for context-aware com-

puting [3]. For example, it can be used to understand the

routines of a user to support rehabilitation or personalised

healthcare [2].

In order to achieve a reliable recognition of the activity of

the user, an annotated dataset is needed to train the ma-

chine learning classifier. Annotation requires that someone

manually specify the actions carried out during the data

recording. To do this, usually several videos are recorded

jointly with the recording of wearable sensor data. After the

recording, the video from the cameras are synchronized

with the data logged by the sensors, in order to annotate

precisely the start and the end of each activity. This can

be very time-consuming [11]. For this reason, it is usually

done using cheap labour with recent research even look-

ing at crowdsourcing. In such a case, it is yet important to

preserve the privacy of the user whose data was recorded.

In this work we investigate to which extent a 3D human

model animated from inertial sensors placed on the user’s

limbs can be used to label the activities of that user while

preserving his/her privacy.

The contribution of this paper are:

• a 3D human model created to reproduce the user

movements. The model is developed in Java and it

can be and deployed on different platforms, allowing

a wide application in a crowdsourcing scenario. We

animate the model’s upper and lower arms and back

from the inertial sensor data available in the OPPOR-

TUNITY dataset [11].

• an investigation about the segmentation of the activi-

ties of the 3D model (i.e. identifying the occurence of

an activity regardless of its class). We compare the

results of segmentation done by the participants to

the experiments with the ground truth segmentation

of activities in the dataset.

• an analisys of the system in a open-ended annota-

tion scenario: we let the user free to assign a custom

label to each activity in a set. The goal of this experi-

ment is to understand to which extent this model can

be used without any knownledge of the action carried

out by the user during the recording. The results of

these test are presented using a set of tag clouds of

the words used by testers.

• an evaluation of traditional annotation accuracy, where

an activity annotated in the dataset is played by the

model and the testers must pick which activity it could

have been among a list of 11 activities. Results are

summarised by a confusion matrix.

State of the art
There are multiple approaches to annotation [5]. Usually

the annotation or labelling of the collected data is done a

posteriori using a video recording of the experiment syn-

chronised with the sensor data [11]. During this process the

video synchronized with the inertial data requires that each

sequence of data must be accurately analyzed to segment

and recognize each activity correctly. Sometimes multiple

cameras are used to record the scene from different per-

spectives [11]. The activity of labelling can be a tedious

and time-consuming task: for 30 minutes of recording, the

annotation could take 7-10 hours of analysis [11]. For this

reason, usually the annotation phase is done using cheap

labour.



Recently, crowd-sourcing has been suggested to help re-

duce the cost and time of annotating datasets. Crowd-

sourcing is a process where a task can be completed by

soliciting contributions from a large group of lay people.

Thanks to this technique, the researchers can obtain an

annotated dataset employing several people at the same

time. This can be realised, for example, using platforms like

Amazon Mechanical Turk (MTurk) [1]: this is a web service

where users can ask for workforce. The workers can pick

up a task and complete it earning a money reward. Crowd-

sourcing has been used to tag human activity from video

[9]. It has also been used to label natural language [14], for

speech recognition [10] and for multimedia tagging [13].

When the annotation task is done using the videos, one of

main issues is to preserve the privacy of the subject in the

dataset/video. One way to protect the anonymity of the sub-

jects in the dataset can be the application of a mask (e.g. a

blur or a pixelize video filter [4]) to the elements in the video

that could be considered meaningful from a privacy point of

view. This step brings however additional time and work to

the annotation task. Moreover, the preprocessing cannot be

easily applied to all the elements in the scene in order to do

not alter too much the video and to do not compromise the

recognition of the activities. Another approach consists in

using low resolution camera to preserve the privacy of the

subject recorded [6].

Figure 1: The human model. This

interface is also used during the

first experiment, where the user

must press a button to point out

when something "interesting"

happened to the model. No output

is presented to the user when

he/she press the button.

A different way can be the real-time annotation of the data.

That can be done using short audio labels recorded by the

subject of the dataset together with the inertial data [7] [12].

This method preserves the privacy and can be accurate. It

can be also used in a "open-ended" context thanks to the

absence of a predefined set of labels. Real-time labelling

requires the direct interaction of the user and in the every-

day life this could be annoying. Instead, in case of a real

time annotation made by an external experimenter that ob-

serve the scene, it requires that the user carries out the

activities in a controlled enviroments and it is not always

possible. Moreover, the external observer could condition

the way the user will do the activities.

Experimental setup
The human model is rendered using the open-source 3D

engine called jMonkeyEngine [8]. This multiplatform engine

written in Java allows to develop a model from the ground

up: we built our custom model to keep easier the handling

of the animation and to guarantee more flexibility during the

application of inertial data to each body part (Figure 1).

To animate the model, we used the data provided by 5 In-

ertial Measurement Units (IMUs) placed on the upper arms,

on the lower arms and on the torso. IMUs provide a quater-

nion representing the orientation of the sensor and limb in

a world coordinate system. After a precomputation step, we

applied the respective quaternion to each body part thanks

to the engine, which handle directly this formalism. The

multiplatform nature of the engine would allow us also to

deploy this model and its animation in a crowdsourcing sce-

nario, because it can be integrated and used remotely, eg.

in a web page.

The engine allows the users to rotate the camera around

the model and zoom in and out to better observe and evalu-

ate each action.

In this paper we use the the Opportunity Dataset [11]. This

dataset comprises a rich set of 17 naturalistic activities

recorded in a kitchen environment. The activities are:

• Open and close two different doors;

• Open and close three drawers at three different heights;

• Open and close a dishwasher;



• Open and close a fridge;

• Clean a table;

• Drink from a cup;

• Toggle a switch.

This dataset consist of inertial data about the absolute ori-

entation of each limb during the session. These data have

been recorded using a set of XSens MTx inertial sensors

[15]. For our experiments we used the "Drill" run subset.

This subset consist of a fixed sequence of 17 actions re-

peated consecutively for about 20 minutes. Due to the ab-

sence of the environment in the 3D engine, we decided to

join some of the similar labels (e.g. interacting with draw-

ers at different heights is combined). "Open" and "Close"

are considered diffent actions. From the initial 17 activi-

ties in the Opportunity dataset, we obtain the 11 activities

shown in the Table 1, together with their average length in

seconds.

Activity sec

Open Fridge 2.450

Clean Table 3.967

Close Fridge 2.508

Drink from Cup 6.268

Open Dishwasher 2.958

Open Door 3.214

Close Dishwasher 2.862

Open Drawer 2.363

Close Door 3.378

Toggle Switch 1.295

Close Drawer 2.207

Average 3.043

Table 1: List of activities and their

respective average length in

seconds. The last row shows the

average length for all the activities.

We perfomed three experiments. The participants in the

experiments were told that they would see a 3D model of a

person performing typical activities in a kitchen. The partici-

pants were not given the list of activities at first. Essentially

they have to "guess" from the animation of the model which

activity may be undertaken. In the first experiment, a 15

minutes animation is played by the model. During this an-

imation each participant must press the space-bar every

time he/she notices something that he/she considers inter-

esting and/or recognizable in the model’s movements. It is

up to the participant to decide what they consider "interest-

ing". This experiment is used to evaluate the capability of

the users to segment the activities using the model. The in-

terface used during this test is the same shown in Figure 1.

In the second and in the third experiment, a set of short

animations of the body model are shown to the participant

(a)

(b)

Figure 2: Interfaces developed for the experiments. At the top, the

interface developed to let the user to insert the label manually

(Experiment 2). At the bottom, the set of buttons that the user can

click to select an annotation for the activity (Experiment 3).

where the model performs exactly one of the 11 possible

activities. For each of the 11 activities we showed the an-

imations of 4 activity instances picked randomly from the

dataset. In this way, we show to the user a random but bal-

anced set of activities. The set of 44 short animations has

been showed to the tester in a random order. This set was

different for each participant.

The second experiment is carried out to investigate to which

extent the application of our model fits an "open ended"

scenario. In this experiment, the task of the users is to in-



sert a short label for each animation. We developed the

interface displayed in Figure 2(a) in order to allow the user

to enter the label. This interface was showed after each an-

imation of the set. The user had no time limit to enter the

label. After he/she confirmed the inserted label, the next

animation in the set is played.

Figure 3: Setup of the experiment.

The last experiment is useful to test the ability to annotate

using a 3D model in a more traditional scenario. The sys-

tem shows a push button for each of the 11 predefined

activities. The participants must select which activity they

think was performed by the model by pressing the cor-

responding push button with the mouse. The buttons are

shown at the end of each short animation without any limit

of time for the users. In Figure 2(b) are shown the buttons.

After he/she selected a label, the next animation in the set

is played. This corresponds to the traditional annotation ap-

proach where a pre-defined list of activities are annotated.

The experiment is carried out with 6 people, that are un-

aware about the dataset and the set of labels until the last

experiment. The setup of the experiment is shown in Fig-

ure 3. All the participants performed the experiments in the

same order and individually. They were instructed before

each test as to what they would have to do next, in order to

not influence the next phase of the experiment.

TP FN TN FP Acc.

70 57 113 4 0.75

58 69 97 20 0.64

34 93 110 7 0.59

92 35 98 19 0.78

95 32 107 10 0.83

45 82 103 14 0.61

Table 2: Test results for the first

experiment. The true positive (TP)

and the false positive (FP) do not

keep in count if the user pointed

out more events for the same

activity/pause. Despite this affects

also the accuracy, it can be used to

better understand the results on a

quality level. The total number of

actitities played by the model

during the Test 1 is 127, with 117

pauses between some of the

activities. A pause is intended as a

moment between two actions,

where the model is not doing

anything "interesting".

Results
Every experiment is designed to test a specific step or a dif-

ferent scenario of the annotation. With the first experiment,

we aim to evaluate the capability of the users to segment

the activities. In Figure 4, we show the results of the seg-

mentation experiments for a subset of the dataset. The first

row of the figure represents the distribution of the activities

throughout the first 3 minutes of the experiment. The next

6 rows show the events pointed out by each participant.

Every vertical line is an event. It allows to compare the dis-

tribution of the event recorded by each participant and the

actual distribution of the activities.

As the experiment left the participants free to decide what

they consider "interesting", we observe a large variations

in the frequency of the events recorded by each partici-

pant. This may be explained because some participants

tent to point out longer actions while other pointed out more

shorter task. For example, the participant 3 recorded less

events than the participant 5.

In Table 2, we show the number of activities made by the

model and correctly pointed out (true positive), the number

of pauses (intended as an interval in the animation where

the model is not doing anything) correctly not pointed out

(true negative), the number of pauses that the user iden-

tifies incorrectly as an activity in the model (false positive)

and the number of activities made by the model and incor-

rectly ignored by the user (false negative). Multiple events

pointed out by a user during the same activity or the same

pause (true positive or false positive) are ignored. This has

been made in order to not false the accuracy: in fact, count-

ing multiple true positive or multiple false positive for the

same instance of an activity would have introduced a bias.

In Figure 5, we present a cross-correlogram that shows the

distribution of the delays between the pressing of the but-

ton by the user and the closest timestamp of the end of an

activity. The distribution appears centered close to 0. This

indicates that the participants actually recognized some

movements in the model. Most of the delays are between -5

and +5 seconds from the closest activities. As the average

length of activities is 3.043 sec (Table 1), a delay between

-5 and +5 seconds is not enough to guarantee a correct

segmentation.
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Figure 4: Segmentation results: this figure represents a subset of

the dataset of the first experiment (ca. 3 minutes). The first row

represents the distribution of the activities during this interval of

time. The 6 rows below indicate the events pointed out by each

participant are displayed.
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Figure 5: Cross-correlogram representing the distribution of the

delays between the events pointed out by the users and the

closest end of an activity. A positive delay means that the user

pointed out an event after the closest end of the activity. Instead, a

negative delay means that the user pointed out an event too early

in respect to the closest end of the activity (i.e. before the activity

is actually completed).

The second experiment aims to evaluate the application

of our model in the "open-ended" scenario. In Figure 6 we

show the tag clouds of the words entered to describe the

activities by all users for each label. We noticed that most

of the participants mistake the dishwasher with the oven:

this is quite normal because both appliances can have the

same kind of door. Moreover, the user interface is missing

any rendering of the kitchen environment and no informa-

tion is given to the user about the appliances and about the

furnitures at this stage. However the participants correctly

identified the difference between open and close the dish-

washer. Interesting, "drinking" is correctly recognized by all

the participants.

In the last experiment, we investigate the traditional sce-

nario where the user should annotate a dataset already

segmented, choosing the correct label from the predefined

"closed set" of 11 activities indicated in Table 1. The results

are presented in the Figure 7 using a confusion matrix be-

tween the choices of the users and the actual labels of the

data.

Some activities are correctly recognized by the user: "Drink

from Cup" reaches an accuracy close to 100%. On the

other hand, there are actions that are almost never iden-

tified: "Open the Fridge" is the activity identified with the

lowest accuracy (4.2%). The main cause is likely the ab-

sence of any point of reference for the environment and the

fact that the fridge was of small size. For this reason, the

action of opening and closing can be easily confused with

other actions applied to the same height, such as "Open a

drawer". Moreover, the confusion between "Open/Close the

door" is due to the lack of information about the direction of

opening and closing of the door.



(a) Open door (b) Close door (c) Open Fridge

(d) Close Fridge (e) Open Dishwasher (f) Close Dishwasher

(g) Open Drawer (h) Close Drawer (i) Clean Table

(j) Drink from Cup (k) Toggle Switch

Figure 6: Tag cloud of words used by testers in the open-ended experiment for each activity. The number of occurrencies of a word is shown

by its size. The colors are only used to make more clear the distinction between the words.



Figure 7: Confusion matrix between labels chosen by users and

actual labels.

Finally, the participants reached an average accuracy of

56% in the controlled labelling experiment using our sys-

tem.

Discussion
Our experiment revealed that a 3D human model can be

used for activity annotation preserving the privacy of the

user, but it would require some improvements.

About the segmentation of the activities, which is studied

in the first experiments, the obtained results showed that

further analyses are required such as the capability of point

out the duration of the action. Allowing the users to identify

the beginning and the end of an activity could improve the

accuracy in this step. It can be also important to specify to

the user the granularity of the action. As we noticed during

the experiment, the main trouble for the testers was: "What

should I consider as an action to point out?". Answering this

question can depend on the specific application scenario of

each dataset: in some cases an action could be a simple

gesture as e.g. "move the right arm up". In others scenar-

ios instead, it could be important to identify more complex

actions as "make a sandwich", "prepare a coffee", etc.

Moreover, during our experiments, we pointed out that a

main issue in the lack of the environment in the scene. It

can be difficult for the users to recognize the wide set of

possible activities without knowing the position of the ob-

jects and of the furniture in the environment. A typical ex-

ample of this is the mistake between the opening of the

fridge and the opening of the drawer: these two movements

appear similar when reproduced with a simple model such

as ours. This confusion between movements that appear

similar is more observable in the "open-ended" annotation:

in fact in this scenario it occurs that users identify correctly

the movements (opening and closing), but they annotate

the task with a different object whom those movements are

applied to (the dishwasher mistaken with the oven).

Some improvements should be also applied to the model

itself. In this first implementation, we used only basic solids

to create the human figure: this brought some difficulties

for the users to recognize actions made by short and lim-

ited movements. An example can be the toggling of the

switch: in this case, the absence of the hands made it tricky

to identify it. For this reason, we should explore whether a

more realistic human model could improve the accuracy of

the annotation.

In order to improve the accuracy of the movements per-

formed by the model, a larger number of sensors can be

a solution. In our experiments the data animate only two

parts of each upper limb and the torso, but the model has

been developed to be animated with a maximum of 12 sen-

sors. The data from all these sensors can be also applied

on the hands, on the legs and on the head. Furthermore,

the software can be used with many different datasets

passing specific parameters at start-up. The only require-



ment is that the dataset should contain IMU data for each

body part the users want to animate. This can be a limita-

tion: in fact, it can be difficult to use this system with those

datasets already recorded and where the IMUs are placed

only on few body parts, not allowing the model to reproduce

all the movements correctly. Instead, this system can be a

valid choice for new recorded dataset. If future work shows

higher annotation accuracy, it might even be feasible for

some scenarios to remove cameras altogether. This could

lead to cost and time savings because researchers will not

need neither equipments to record the videos nor additional

time to preprocessing them.

It is the first time that annotation using a 3D model has

been proposed. Even though an average accuracy of 56%

may be insufficient for ground truth, this system could ex-

ploit decision fusion among multiple annotators (e.g.majority

voting) and filters, to improve accuracy as already done in

[9] for video annotation. In this scenario, it would be also

interesting to study the performance of a classifier trained

using the data annotated using these algorithms.

Conclusion
In this work we raise the need to create a privacy preserv-

ing annotation system, in order to speed up the process

of labelling dataset using cheap labour and crowdsourc-

ing. In these cases, a video can not be used due to lack of

anonymity of the user recorded in the video itself.

We study to which extent a 3D human model animated in

a virtual environment using the data from inertial sensors

can be used to annotate the dataset. To test this we created

and animated a model using a prior labelled dataset. We

compared the annotation collected with our model and the

actual labels of the dataset.

We performed three analyses: a first one to study the ca-

pability of the user to recognize the activities done by the

model and correctly segment the dataset. This is effectively

the first step during the annotation process. The second

experiment is designed to analyze to which extent the appli-

cation of our annotation system fits in a "open-ended" sce-

nario where the user can choose freely the label for each

action. In the last test we investigate the accuracy of the

annotation when a set of possible choices are given to the

users, reaching a high level of accuracy for some specific

actions and manifold results for others.

From the experiments, the results are threefold. The seg-

mentation experiment requires furter analysis in order to

better evaluate to which extent a 3D human model can be

actually used for this task. The obtained results are not

sufficient to give a strong positive judgment. The "open-

ended" annotation can be used but only when the dataset

consist of actions that look very clear when reproduced by

the model (e.g.drinking). For those actions where move-

ments are limited and short, the accuracy with our system

drops. Instead, using a "closed set" of annotations, our sys-

tem allows users to reach an average accuracy of 56% also

using very similar actions and with only 6 people. In this

scenario, adding more people and applying decision fu-

sion algorithms and filters for bad taggers, our system could

become an actual choice to annotate data preserving the

privacy of the subject in the dataset.
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Abstract
We present an extensible sensor research platform for

wearable and IoT applications. The result is a 30x30mm
platform capable of 500Hz motion and orientation sensing
using 98mW when logging the data. The platform can wake
up at programmed intervals using only 70uW in hardware off
mode. A maximum 0.6ppm time deviation between nodes al-
lows usage in a network for whole body movement sensing.

1 Introduction
Our work is motivated by sensor-based human activity

recognition which is key to smart-assistive systems. It ad-
dresses issues we experienced in prior work collecting large
scale datasets for human activity recognition [7] and takes
into account experiences reported by other researchers. The
key observations are: i) some applications require real-time
recognition and thus data streaming, whereas others perform
offline analysis which requires data logging; ii) multiple sen-
sors are generally improving recognition performance, thus
their recordings must be synchronised [4]; iii) using limb co-
ordinates instead of raw motion data is well suited for fine
gesture recognition, which thus requires orientation sensing
[8]; iv) some applications require high sample rate, espe-
cially in sports [2]; v) activity recognition can benefit from
novel sensors [5], and thus a platform should be extensible.

A secondary motivation is measurements over extended
periods of time at low sample rate (e.g. once per day), which
is common in Internet of Things (IoT) applications. Instead
of hardware event detectors [9] we combine true hardware
off with programmed wake-up through a real-time clock.

2 Hardware
The platform (fig. 1) comprises an ATmega1284p micro-

controller at 11MHz, 3V regulator and LiPo battery charger,
Micro SD slot, a single-chip 3D accelerometer, gyroscope
and magnetometer (MPU9250), a coulomb counter, and

USB and Bluetooth 2 interfaces. Classic Bluetooth allows
enough bandwidth for real-time analytics. It has a one of
the highest accuracy real-time clock (RTC) on the market
(DS3232M), with ±5 ppm accuracy over the entire temper-
ature range. It is used to timestamp the recordings of inde-
pendent nodes. We measured the drift of the RTC to be less
than 0.6ppm when nodes are at room temperature. Overall,
the platform is 30x30mm. It accepts extension boards on top
or bottom (fig. 2). One connector comprises the program-
ming interface, SPI interface, regulated power, USB power,
two GPIO which can also be used as ADC inputs, and an
open-drain line which can be used to wake up the system
from hardware off. This may be used to implement event de-
tectors using low-power analog circuitry [9]. The other con-
nector comprises the I2C interface, analog and battery power
and 5 GPIO pins, 3 of which can be used as ADC inputs.

True hardware off is achieved by turning off the power
regulator (LTC3553 in fig. 1). The system can wake up from
this mode when the power button is pressed, when a real-
time clock alarm occurs, or when a pin on the expansion
connector is pulled low. The logic to wake up the system
(power logic in fig. 1) is powered by the battery directly.

30mm

3
0
m
m

+X

+Z

+Y

Figure 2. PCBs and node fitted with a 160mAh battery.
Larger batteries can be employed if needed.

3 Firmware
The firmware offers a terminal interface over USB and

Blueooth to setup the node and start/stop data acquisition.
We designed the firmware to achieve high sample rate with
low jitter. No operating system is used to minimise over-
heads. However a comprehensive library abstracts the user
application from the hardware details. Most I/O library func-
tions rely on interrupt routines to receive or send data from or
to a peripheral. The interrupt routines stores or reads the data
from memory buffers to which the library functions called
from user code can also access. The SD card interface how-
ever is not interrupt driven and SD card writes are blocking.
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Figure 1. Extensible sensing platform for wearable and IoT applications.

Table 1. Power use in various modes.
Logging Streaming Idle

500Hz 100Hz 500Hz 100Hz No conn. BT conn. Off

98mW 94mW 200mW 184mW 18mW 92mW 70µW

Data logging uses an optimised FAT32. Log files are
pre-allocated contiguously on the SD card. This allows to
employ SD card “pre-erase” and “multi block writes” com-
mands which allow streaming writes of data, without having
to regularly update the FAT entries and cluster link. Only
when a file is closed is the FAT updated to reflect the size of
the file. With this we achieved 1KHz ADC sample rate with
jitter less than ±30µS [5].

The motion sensor data is converted into orientation
quaternions using a variation of Madgwick’s algorithm [3],
where the corrective step using the accelerometer and mag-
netometer is carried out at a fixed 12.5Hz. This allows to
keep the computation time below 1100µS and is instrumen-
tal to achieve 500Hz motion sensing. We did not observe
adverse effects thanks to the low noise of the gyroscope.

Timekeeping is obtained from a combination of an inter-
nal AVR timer and the RTC. The AVR timer provides a time
resolution of 1ms. A 1Hz RTC signal is used to regularly
reset the AVR timer. This ensures that the timekeeping error
is bound by the RTC timekeeping accuracy.

4 Characterisation
We minimised CPU power consumption by sleeping the

processor when busy-looping. In idle mode (i.e. waiting for
commands), the dominant power contribution is the Blue-
tooth radio, which we minimised by modifying the inquiry
and page scan window and duty cycling. This decreased idle
power by 19mW at the expense of slightly longer discov-
ery and connection time. In hardware off mode, the only
components directly powered by the battery are the coulomb
counter, the RTC and the power-up logic. The type of SD
card used has a significant influence on power use during
logging. Table 1 shows power use with a 32GB Samsung
EVO+ SD card; using a 32GB SanDisk Extreme instead in-
creased power use by 40mW.

5 Conclusion
BlueSense offers a better tradeoff and versatility for wear-

able sensing applications compared to many other plat-

forms. It is smaller at 30x30mm than commercial solu-
tions by Xsens (47x30mm for the wireless MTw), Shimmer
(51x34mm for the Shimmer3 IMU) and x-io technologies
(42x33mm for the x-IMU) and it offers higher sample rate
(500Hz) than the XSens MTw (120Hz) and many other plat-
forms [6], inluding highly miniaturised ones [1]. It is exten-
sible, as is the x-IMU. True hardware off also allows usage
in IoT applications. The bill of material is below £80 per unit
(excluding assembly) in batches of 30.

An AVR processor was used to reduce development time
by exploiting our large existing code base. The firmware
development time was nevertheless significantly underesti-
mated due to the highly specific needs of this platform re-
quiring a large number of new software modules. A lesson
learned for embedded systems development is that a more
modern microcontroller could have been used (e.g. an ARM
Cortex-M) while incurring only a very limited increase in
development time. The platform will be open-hardware1.

6 References
[1] H. Harms et al. ETHOS: Miniature orientation sensor for wearable

human motion analysis. In IEEE Sensors, pages 1037–1042, 2010.

[2] M. Lapinski et al. A distributed wearable, wireless sensor system for
evaluating professional baseball pitchers and batters. In Proc Int Symp

on Wearable Computers, pages 131–138, 2009.

[3] S. Madgwick et al. Estimation of IMU and MARG orientation us-
ing a gradient descent algorithm. In IEEE Int Conf on Rehabilitation

Robotics, 2011.

[4] S. Münzner et al. CNN-based sensor fusion techniques for multimodal
human activity recognition. In Proc Int Symp Wearable Computers,
pages 158–165, 2017.

[5] A. Pouryazdan et al. Wearable electric potential sensing: a new modal-
ity sensing hair touch and restless leg movement. In Proc. ACM Int

Joint Conf on Pervasive and Ubiquitous Computing: Adjunct, pages
846–850, 2016.

[6] D. Rodrı́guez-Martı́n et al. A wearable inertial measurement unit
for long-term monitoring in the dependency care area. Sensors,
13(10):14079–14104, 2013.

[7] D. Roggen et al. Collecting complex activity data sets in highly rich
networked sensor environments. In 7th Int. Conf. on Networked Sensing

Systems, pages 233–240. IEEE Press, 2010.

[8] T. Stiefmeier et al. Wearable activity tracking in car manufacturing.
IEEE Pervasive Computing Magazine, 7(2):42–50, 2008.

[9] F. Sutton et al. The design of a responsive and energy-efficient event-
triggered wireless sensing system. In Proc Int Conf on Embedded Wire-

less Systems and Networks, pages 144–155, 2017.

1http://github.com/droggen/BlueSense2



Demo: Complex Human Gestures Encoding from Wearable
Inertial Sensors for Activity Recognition

Mathias Ciliberto
University of Sussex

m.ciliberto@sussex.ac.uk

Luis Ponce Cuspinera
University of Sussex

l.ponce-
cuspinera@sussex.ac.uk

Daniel Roggen
University of Sussex

daniel.roggen@ieee.org

Abstract
We demonstrate a method to encode complex human ges-

tures acquired from inertial sensors for activity recognition.
Gestures are encoded as a stream of symbols which repre-
sent the change in orientation and displacement of the body
limbs over time. The first novelty of this encoding is to en-
able the reuse previously developed single-channel template
matching algorithms also when multiple sensors are used si-
multaneously. The second novelty is to encode changes in
orientation of limbs which is important in some activities,
such as sport analytics. We demonstrate the method using
our custom inertial platform, BlueSense. Using a set of five
BlueSense nodes, we implemented a motion tracking system
that displays a 3D human model and shows in real-time the
corresponding movement encoding.

1 Introduction
Inertial sensors and template matching algorithms have

been used successfully for activity recognition in healthcare,
well-being and sports applications [2]. Template matching
algorithms can be embedded on low-power sensor nodes [6].
Nevertheless, they are generally designed to work with a sin-
gle channel of data. In certain situation, such as in beach vol-
leyball movements analytics, this can be a limitation as mul-
tiple sensors are required to be employed on different body
parts in order to get and analyse the complexity of the move-
ments. For this reason, using them can become challenging
for complex gestures recognition.

Modern inertial platforms, such as XSens [5], Ethos [4]
and our BlueSense, can provide orientation data, generally as
quaternions. We present an encoding approach for complex
gestures that elaborate the orientation data provided by sev-
eral inertial sensors worn by the user. This method encodes
the position and the orientation of the user’s hand during a
movement as a single stream of symbols, simplifying the ap-

Figure 1. Setup of BlueSense on the user’s upper body.

(a) 3D, 15 symbols (b) 2D, 8 symbols

Figure 2. 3D and 2D codebooks examples. Different numbers of vec-

tors can be used in each codebook, in order to reduce or increase the

granularity of the displacement sampling.

plication of single channel pattern matching algorithms. It is
an extension of [7] with the novelty of including the rotation
of the hand during the movements in the encoding. This will
be important in future applications, such as sport analytics
and specially in beach volleyball gesture recognition.

2 Gesture Encoding
The system described in [7] computes the position of the

upper body joints using the 3D orientation of sensors placed
on each limbs and the torso of the user, as displayed in Fig-
ure 1. Combining these positions, the algorithm finds the
position of the hand in the 3D space. A gesture is then ex-
pressed as successive positions of the hand forming a tra-
jectory. Then, the trajectory can be sampled at regular time
intervals or after that a certain distance has been covered.
For each sample, the vector difference between two contigu-
ous positions is calculated. This vector is finally encoded
to a symbol using a codebook: this is a set of 3D unit vec-
tors equally distributed with respect to their direction (Fig-
ure 2). The symbol corresponding to the displacement vector
is given by the closest codebook vector. The coded symbols
are indexes in the codebook.

The method as described in [7] lacks of information about
the rotation of the hand during the movement. Two different
gestures can lead to the same displacement encoding, for ex-
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ample if they have been performed once with the palm facing
upwards and another time with the palm facing downwards.
In order to overcome this issue, we introduced a second en-
coding for the rotation of the hand.

This extra encoding uses a 2D codebook (Figure 2) in or-
der to represent the rotation of the hand. Defining a starting
position encoding (for example the palm facing downwards
parallel to the ground is encoded as 1), it is possible to rep-
resent the rotation of the hand with the closest symbol in
term of angular distance. The two symbols for position and
rotation of the hand are eventually combined in order to ob-
tain a single symbol. As natural numbers are used to index
the codebooks vectors, this step is performed using a pair-
ing function. An example, the Cantor pairing function, is
presented in 1:

e(d,r) :=
1

2
(d + r)(d + r+1)+ r (1)

where d is the symbol for the displacement, r is the sym-
bol for the rotation of the hand and e is the final encoding.
The addition and product operators are the arithmetical op-
erations of sum and multiplication.

An example of the whole system can be observed in Fig-
ure 3. A 7-symbols codebook for the displacement and a
4-symbols codebook for the rotation are used.

3 Demonstration
In order to visualize the data provided by BlueSense

nodes, we created a motion tracking system which is pre-
sented in Figure 4. The system includes a set of 4 BlueSense
sensor nodes and two programs: SensHub and the 3D hu-
man model. The former collects the orientation data through
Bluetooth from the sensors, synchronizes them and forwards
them to the 3D model as single line of text through a TCP

Figure 4. Motion tracking system overview. The 3DHumanModel re-

ceives the data as a line of text through a TCP connection. Then it

parses this text in order to extract the quaternions to animate the 3D

model. At every rendering cycle, the 3D model is updated with the most

recent orientation data.

connection. The latter is a 3D human model developed us-
ing the JMonkeyEngine 3D engine [1]. The TCP connection
allows to place SensHub and the 3DHumanEngine on two
different devices, potentially in two different locations.

We were able to evaluate of the 3D model and the motion
tracking system during the British Science Festival 2017 [3].
During the event, we deployed the system in a more complex
simulation where people where asked to play a virtual beach
volleyball game. We analysed the latency and the battery
life of the sensors. The sensors are able to stream quater-
nions up to 500 Hz, but considering the framerate of the 3D
rendering set to 60fps, we set the sample rate to 100 Hz. The
latency is highly related to the hardware of the PC that runs
the simulation. During the event it was acceptable for real
time gaming. We also tested the battery life of the sensors
that streamed the data for about 4 hours continuously.

In the future, we plan to employ the motion tracking sys-
tem to support the training of beach volleyball players.
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Abstract
In this paper we present a case study on drinking gesture

recognition from a dataset annotated by Experience Sam-

pling (ES). The dataset contains 8825 "sensor events"

and users reported 1808 "drink events" through experi-

ence sampling. We first show that the annotations obtained

through ES do not reflect accurately true drinking events.

We present then how we maximise the value of this dataset

through two approaches aiming at improving the quality of

the annotations post-hoc. First, we use template-matching

(Warping Longest Common Subsequence) to spot a sub-

set of events which are highly likely to be drinking gestures.

We then propose an unsupervised approach which can per-

form drinking gesture recognition by combining K-Means

clustering with WLCSS. Experimental results verify the ef-

fectiveness of the proposed method.

Author Keywords
Gesture recognition; dataset annotation; activity discovery;

dataset curation
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Introduction
Gesture recognition has applications in several fields such

as healthcare and sports [7]. In order to create a reliable

gesture recognition system, it is important to have a well-

annotated dataset [1]. However, creating high-quality datasets

may require to rely on lab-like naturalistic environments,

with limited ecological validity [11]. Activity recognition re-

search generally strives to employ datasets with unrealisti-

cally "perfect" ground truth annotations. In an ecologically

valid data collection, however, it is likely that a highly valu-

able dataset is acquired, but that only poor quality annota-

tions are available.

Experience sampling (ES) is a real-time annotation ap-

proach done by users themselves a mobile device [13].

This allows more ecologically valid data collection in ev-

eryday life (e.g. no need to video record the experiment).

However, ES can lead to the following issues: i) the syn-

chronisation between the activity performed and the label

annotated by the user is generally of poor quality, with the

user annotating the activity after the event, or combining

multiple activities in a single annotation; ii) the user may for-

get to label an event, iii) the user may annotate an activity

with the wrong label.

In this work, we investigate how to make sense of a dataset

with high business value, which has been annotated through

ES, which led to numerous deficiencies in the annotation

quality. The dataset contains drinking gestures annotated

by the users with a mobile application. The dataset was col-

lected in an office environment using a 3-axis accelerome-

ter and it is made by 8825 "sensor events", with 1808 "drink

events" annotated by users through ES. Using this dataset,

we aim to address two main challenges: i) to understand

why the quality of the annotation is low and consequently

how would it be possible to improve in future data collection

and ii) to understand whether it is still possible to use such

big dataset without relying on the annotations for spotting

drinking gestures and how. The contributions of this work

are:

• A study of the annotations. We analyse the user an-

notations, their distribution in time during the data

collection, and their relation to the sensor events, in

order to understand the causes of the low quality and

where the data collection process can be improved.

• A template matching approach, based on Warping

Longest Common Subsequence (WLCSS) [8], to ex-

tract a subset of drinking gestures, within a certain

level of confidence. This subset will allow the dataset

to be used for research purposes.

• An unsupervised algorithm (K-Means) adapted to

template matching. This algorithm is a new variation

of K-Means [4] where the WLCSS is used as distance

measure. It allows to cluster gestures based on the

raw signal of the sensors. At the same time, it clus-

ters gestures taking in account the variation in the

way they can be performed, by using WLCSS which

has been successfully used for robust gesture detec-

tion [8].

Related work
The quality of annotations obtained through ES can be poor

[13]. Annotations issues can include time shift of a label

with respect to the activity, as well as wrong or missing la-

bels [9].

Some approaches suggested to improve ES with manual

re-annotation [13]. This is not feasible economically for a

large number of users and however, in [13] the quality of



the annotations was still not sufficient for the training of

machine learning algorithms. The impact of ES on activ-

ity recognition has been studied in [2]. However, the authors

simulated the ES in a controlled environment and they used

only the data corresponding to the user annotations.

The problem of poorly labelled data can be tackled during

the annotation itself or during the training of the machine

learning algorithm. A method useful to reduce the effort of

the users while annotating their activity has been proposed

in [10]. The authors proposed a one-time point annotation

method that requires the users to only label a single mo-

ment per activity rather than specifing the beginning and the

end. The method then recognizes automatically the bound-

ary of the activity in the annotated signal. Nevertheless, it

requires that the labels are within the execution interval of

the activity.

Unlabelled or poorly labelled data are available in big quan-

tities nowadays due to the large diffusion of sensing de-

vices, such as smartphones and wearables devices. For

this reason, methods such as semi-supervised learning,

active learning and unsupervised learning have been ap-

plied in order to extract useful information from sparsely

annotated data. A combination of active learning and semi-

supervised learning has been studied in [12]. The authors

used a dataset of daily activities collected with two sub-

jects wearing accelerometer sensors and motioned tracked

with infrared sensors. This approach however uses a de-

cision window of 30 seconds long and thus is not suitable

for recognizing gestures that occur in a short time. Unsu-

pervised learning has been successfully applied to activity

recognition in [5] and more recently in [3]. In the latter, an

activity discovery method based on clustering is proposed

to help with ES, although it is designed for periodic move-

ments rather than sporadic gesture. Unsupervised learning

has been applied to gestures clustering in [14], where a K-

Means clustering has been evaluated specifically for hand

gestures.

Several studies have tried to address the challenge of ac-

tivity recognition from poorly annotated data. While most

of them used synthetic dataset and focused on periodic or

long activity (such as walking, running, etc.), to the best of

our knowledge none of them applies to drinking gestures

collected in a real-life office environment.

Dataset
The dataset was collected by providing a set of mugs to 60

users (one mug per user) in an office environment. Each

user collected data for a period of 4 days. Each mug was

instrumented with a logger comprising a 3-axis accelerom-

eter [15]. The loggers were placed in a hollow at the bottom

of each mug. As the mugs were customly made, the posi-

tioning of the loggers was not the same in all mugs. The

loggers sample acceleration at 20 Hz, with a timestamp in

ms. In order to save power, they start logging acceleration

when a movement is detected. After 5 seconds of inactiv-

ity they automatically stop the recording, without record the

inactivity period. We use the term sensor events to refer to

every recording performed by the loggers that lasts at least

4 seconds (as configured on the loggers for this data col-

lection). Therefore, sensor events can occur for a variety of

reasons: moving the mug on the desk, washing it, drinking

from the cup, etc.

The data annotation was performed through experience

sampling by the users themselves. They labelled each

drinking event manually using an Android application in-

stalled on their smartphones. Each annotation could be

punctual or delayed. An annotation is considered punctual

when it was entered immediately after the drinking event.



It is considered delayed, when it refers to an event in the

past. The users could specify in the application whether

their annotation was punctual or delayed. However they did

not have to provide an indication as to how much the de-

lay was. Furthermore, there were no guidance indicating

after how much time an annotation should be considered

"delayed" rather than "punctual".
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(b) User 461

Figure 1: Example of annotations

of two different users, over the 4

days period. The start time of the

sensor events are displayed in the

top plot of each figure, one thin line

per event. The delayed and

punctual annotations inserted by

the users are displayed

respectively in the second and the

third plot of both figures. The

X-axis reports date and time, in the

format "MM-DD HH". It is also

possible to notice the differences in

the way two users annotated the

drinking events.

The resulting dataset is made by 8825 sensor events, 1808

user annotations, of which 1477 marked as "punctual"

and 331 as "delayed". The percentage of annotated ges-

tures with respect to the total amount of sensor events is of

20.5%.

User annotation analysis
We aim to analyse the causes of the poor annotations in

order to improve future data collections, as well as helping

during the next steps of this study.

Figure 1 indicates the main challenge of the annotation pro-

tocol, which is how users understood differently how and

what to annotate. The data collection protocol did not re-

quire participants to annotate drinking solely when using

the instrumented mugs: they could annotate drinking as

well when using regular mugs. It might happen that users

annotated drinking events performed using other cups. The

protocol did also not specify what to consider as a "drinking

event". Users could interpret it as referring to a single sip,

multiple sips, or drinking the entire cup. It is also possible

to notice how the annotations are not perfectly aligned with

the sensor events.

We also studied the distribution of the labels, per user, over

the 4 days of data collection. It could help to understand the

users’ commitment in annotating their drinking gestures, as-

suming they were keeping the same drinking habits among

all the days. This may be useful in order to spot days for

which the annotations can be more reliable. The results are

presented in Figure 2. While there is no significant change

between day 1 and day 2, with an average increase in the

number of annotation of 0.24%, starting from day 3 the

engagement decrease by 11% on average among all the

users. The plot shows also a great variability in the data:

there were users that increased their commitment over

the 4 days, as well as users for which the commitment de-

creased over the 4 days.

From the analysis of the annotations, it can be concluded

that they were not reliable enough to be used together with

the data for the supervised classifier training.

Gesture classification
In order to make the collected dataset useful for drinking

gesture recognition, each event recorded by the sensors

had to be classified in drinking/non-drinking. As highlighted

previously, the users annotations cannot be used as-is as

they are not accurate enough. A manual relabelling of the

entire dataset was unfeasible given the lack of any video

recordings.

We developed an approach based on a template match-

ing method (TMM) to automatically spot a subset of events

which are believed to be drinking gestures with a certain

confidence value. The approach then uses few events

which are manually identified as drinking events with high

confidence to train the TMM.

Data processing and training set selection

We used a heuristic method to select a few sensor events

as the training set. We performed a few drinking gestures

using the same instrumented mug and discovered that the

Z-axis of the accelerometer quite clearly indicates the ges-

ture of lifting the cup to drink. A template of such gesture

is displayed in Figure 3. A subset of gestures visually sim-



(a) Drinking gestures

(b) Non-drinking gestures

Figure 4: Training set of gesture. 4a displays the templates

chosen as drinking gestures. 4b shows those selected as

no-drinking gestures. All the plots show the templates

downsampled to the fixed length of 170 samples (X-axis). The

Y-axis represents the acceleration within a range of ± 2g.

ilar to this template was selected manually from the entire

set of the available gestures. We selected this subset trying

to include some variability in the way the drinking gestures

were performed. Another subset of non-drinking gestures

was selected too, chosing the templates that were very vi-

sually different from the drinking gestures. The training set

is displayed in Figure 4. It is formed by 78 events: 37 drink-

ing gestures (4a) and 41 non-drinking gestures (4b).
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Figure 2: Change in the user

commitment in the annotation

during day 2, 3, and 4. The gray

bars represents the percentage of

annotations for each day with

respect to day 1. Day 2 displays an

increment of 0.24%; Day 3 and 4

an average decrease of 11% in the

number of annotations. The

vertical bars represents the

standard deviation for each day.
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Figure 3: Template of a drinking

gesture, performing a single sip.

All the instances in the dataset were filtered using a But-

terworth low pass filter with cut off frequency set to 10

Hz. They were also resampled to a fixed number of sam-

ples. The number of samples was selected as the average

length of a drinking gesture, which is 170. This step was

performed in order to reduce the impact of non-drinking

events that can last longer time than drinking gestures (e.g.

washing the cup, moving the cup around the office, etc.).

Template matching using WLCSS

The Warping Longest Common Subsequence (WLCSS) [8]

is an algorithm developed for template matching in real-time

applications. Using dynamic programming, the algorithm

can compute a matching score between a template and a

stream, updating it at every new sample of the stream. It

can be used for gesture recognition as it can handle ges-

tures performed with variation in their speed of execution.

This is achieved by three parameters: reward (R), penalty

(P) and acceptance distance (ǫ). The algorithm is shown in

(1).

M(i, j) =































0 if i ≤ 0 or j ≤ 0

M(j − 1, i− 1) +R if |S(i)− T (j)| ≤ ǫ

max











M(j − 1, i− 1)− P · |S(i)− T (j)|

M(j − 1, i)− P · |S(i)− T (j)|

M(j, i− 1)− P · |S(i)− T (j)|

if |S(i)− T (j)| > ǫ

(1)

The matching score M(i,j) is computed as function of the

previous scores, by adding a reward (R) when the distance

between the i-th stream sample (S(i)) and the j-th template

sample (T (j)) is below an acceptance distance (ǫ), or by

subtracting a penalty (P) proportional to the distance, when

this is above ǫ. In addition to R,P, and ǫ, WLCSS needs a

threshold T. As WLCSS computes a matching score (M) be-

tween an instance in the dataset and a template, T is used

to define whether an instance matches with the template

(M≥T) or not (M<T). The value of the threshold is related

to the specificity and the sensitivity of the matching algo-

rithm: a high threshold means high specificity, while a low



threshold means high sensitivity. The values of R,P,ǫ and T

must be found during the training phase. We optimized this

based on an evolutionary optimization technique.

WLCSS optimization using evolutionary algorithm

We optimise the values of R, P, e, T to maximise the ability

of WLCSS to distinguish drink from non-drink using an evo-

lutionary algorithm (EA). We used the EA in order to opti-

mize the values of the parameters starting from a randomly

generated population. Each individual of the population

is an array containing the 4 parameters. The EA evolves

this population through the usual selection, mutation and

crossover operators [6]. Here, the F1 score is used for the

selection. The optimization process stops after a predefined

number of iterations, in this case .
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Figure 5: 4 Parameter Logistic

Regression function used to assign

a confidence with the respect to

the threshold.

Given the unreliability of the labels in the dataset, it is not

possible to evaluate precisely the correctness of a match for

this particular dataset. For this reason, we opted to provide

a confidence level for each gesture as output of our method

rather than a simple match/no-match. The confidence level

was assigned using Four Parameter Logistic Regression:

y = d+
a− d

1 + (M
T
)b

where y is the confidence level, M is the matching cost,

and T is the threshold. The function, displayed in Figure 5,

provides a confidence value in the range [0:1]. The range

is defined by the parameters a = 0 and d = 1. The pa-

rameter b, which define the slope of the function curve, was

set manually to 5. Using a fixed interval for the confidence

makes its value unrelated from the absolute value of T ,

which can vary according with the parameters R, P and ǫ.
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Figure 6: Comparison of WLCSS matching scores with recorded

data for a single user. From the top: the WLCSS matching scores

and the threshold T, as horizontal line (first plot), the start time of

the sensor events (second plot), and the user annotations delayed

and punctual (respectively third and fourth plot). The data are for 4

days period, with the X-axis reporting date and time in the format

"MM-DD HH"

Evaluation

We trained the system using the EA and the subset of in-

stances selected as training set. As the EA is a stochastic

process, we repeated the training 10 times, and we picked

the best values of R=68, P=0, ǫ=28 and T=3364 for the

WLCSS. With these values, we run the algorithm on the

entire dataset, by using the template displayed in Figure 3,

which was selected manually from the training set as tem-

plate.

Figure 6 displays a comparison of the sensor events and

the annotations for a single user, with the corresponding

matching scores. In the figure, it is also reported the thresh-

old: the matching costs >= T are those which are detected

as drinking gesture with a confidence ≥50%. The percent-

ages of total detected gestures compared to the total num-

ber of events are displayed in Table 1, for different confer-



ence values. The low percentages are due to the nature of

the sensors, which were collecting all sort of movements

such as moving the mug on the desk, washing it or even ac-

cidental movements. It is important to note that the number

of detected events is also lower than the number of user an-

notations (1808). This may be a result of the data collection

protocol which did not specify to annotated only the drinking

movements performed with the instrumented mug.

We studied the relation between user annotations, sensor

events and detected gestures. To do this, we assigned to

every recorded event the closest user annotation in time.

Then, computing the time difference between the sensor

events and the corresponding closest annotations, we cre-

ated the cross-correlogram displayed in Figure 7. Figure 8

presents the distribution of the same time differences, but

considering only the gestures detected by WLCSS with a

confidence ≥50%. The latter plot presents a more pointy

distribution, confirming that WLCSS detected events that

were actually closer in time to the user annotations.

Unsupervised learning

Table 1: Number of drinking

gestures detected for some

confidence levels. The

percentages are with the respect to

the total number of sensor events

in the dataset (8825).

Confidence # gestures %

≥ 25% 1481 17%

≥ 50% 942 10%

≥ 75% 543 6%
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Figure 7: Cross-correlogram

representing the distribution of the

delays (in seconds) between the

user annotations and all the events

recorded by the loggers.
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Figure 8: Cross-correlogram

representing the distribution of the

delays (in seconds) between the

user annotations and the events

detected with a confidence ≥50%.

We evaluated also an unsupervised approach in order to

classify the gestures in drinking/non-drinking as it does

not require a training set. We developed a custom method

based on K-Means. We modified K-Means in order to make

it able to cluster gestures performed with variation in their

speed of execution.

K-Means with WLCSS

K-Means is a clustering technique that aims to partition

n observation in k clusters. Each observation belongs to

the cluster with the closest mean. It can be used for unsu-

pervised learning by clustering the input data based on a

distance measure. The algorithm is based on two steps, as-

signment step and update step, which are repeated until a

stopping criteria is met [4]. This criteria can be reaching a

maximum number of iterations, the change of the clusters

in the update step in below a thresholds, etc. We imple-

mented a modified version of the K-Means, where WLCSS

was used a distance measure in place of the Euclidean dis-

tance. The assignment in our implementation is modified as

following:

arg max
ci

WLCSS(x, ci)

where x is a sensor events, ci is the centroid for the i-th

cluster. The function argmin is replaced by argmax as

WLCSS compute a matching score rather than a distance.

The update step is unmodified.

Evaluation

We compared our version of K-Means (named K-Means-

WLCSS) against the standard version that uses the Eu-

clidean distance in order to assign each instance to the

closest cluster. We applied both the implementation on

the training set from the previous step, with k = 2 as the

goal was to distinguish between drinking and non-drinking

gestures. As all the instances were resampled to the same

length, they could be used as feature vectors for both the

implementations, without dealing with different lengths of

the feature vectors (in this case the resampled raw signal).

Applying the algorithms on the training set allowed us to

compare the clustering results with the labels assigned

manually to each gesture, during the data selection. Fig-

ure 9 presents a visual comparison between the clusters

obtained with the two versions of K-Means. For both the im-

plementations, Cluster 1 seems to include mainly the drink-

ing gestures, while Cluster 2 the non-drinking gestures.

We used this consideration in order to evaluate the perfor-

mance of the two algorithms computing precision, recall

and F1 score, presented in Table 2. They are computed by

comparing the clustering of K-Means with the manual labels



of the instances in the extracted subset. K-Means_WLCSS

increased the F1 score by 16%, being able to detect more

variations in the drinking gestures as it is also visible from

Figure 9. It was able to cluster correctly drinking gestures

composed by two sips, such as the instances 8, 16, and 21

of Figure 9c.

Discussion

Table 2: Precision, Recall and F1

score for K-Means and

K-MeansWLCSS computed on the

training set. They are computed

using the manual labels assigned

to each instance in the training set

as ground-truth. The majority of the

gestures in a cluster is used as

classification label for the K-Means

implementations.

K-M K-M_WLCSS

Precision 100% 92.11%

Recall 62.16% 94.6%

F1 77% 93%

We discovered that the main issue for this dataset was the

data collection protocol which was too relaxed. More pre-

cise instructions would increase considerably the quality of

the data. Simultaneously, asking the users for more pre-

cision in following the protocol should be balanced with

shorter sessions of data collection, as we noticed how the

user commitment decreases over 4 days of continuous data

collection. Lastly, as it has been demonstrated that expe-

rience sampling is not reliable, we recommend to increase

the effort in the setup of the experiment by including a video

recording. It would dramatically increase the quality and

re-usability of the dataset, although it would require addi-

tional time for the labelling of the data. In order to reduce

this effort, the video recordings can be used to precisely

annotate just a small portion of the entire dataset. This well-

annotated subset, which can be also collected a-posteriori,

or can be used as training set instead of extracting one

through heuristic. The well-annotated dataset would also al-

low to evaluate more precisely the performance of the TMM

or any other classifier on the complete dataset, through sta-

tistical analysis.

In this study we extracted a subset of events which can be

considered as drinking gestures with a certain confidence.

This extracted subset can be potentially used to re-train the

TMM for a more reliable gesture recognition system. The

re-training phase can be performed using gestures with dif-

ferent levels of confidence: an higher level of confidence

would increase the specificity of the found gestures. De-

creasing this value would increase the sensitivity, potentially

including more variations of the drinking gestures.

In our approaches, we used only the accelerometer signal

recorded on the Z-axis. Using this axis, the lifting gesture

was clear (see Figure 3), but it does not necessarily mean

that the user lifts the cup and drinks. A more extensive and

potentially robust approach would include also the X and

the Y axis, computing the combined acceleration (on X and

Y), in order to spot the actual sipping gesture.

Finally, we aimed to evaluate how an unsupervised learning

technique can be used in order to extract drinking gestures

from a poorly labelled dataset. We implemented a modified

version of K-Means which uses WLCSS as distance mea-

sure for the assignment step. The results are promising:

with 2 clusters it managed to differentiate between drinking

and non-drinking gesture with an 93% F1-score, although

on a limited number of sensor events. A more extensive

evaluation can be performed on the entire dataset, although

without a reliable ground-truth, a validation of the results, in

this case, could be difficult.

Conclusion
In this study, we investigate how to extract knowledge from

a poorly labelled dataset of drinking gestures. We analysed

the user annotations in order to get qualitative information

on how to improve the data collection. We exposed how the

loose protocol created most of the problems and we high-

lighted the need of providing more precise instructions to

the users. Then, by selecting instances manually and using

a template matching algorithm, we demonstrated that it is

possible to extract a subset of instances which are actually

drinking gestures within a certain level of confidence. We

proved that an unsupervised approach based on K-Means



and WLCSS can improve the clustering of gesture over the

standard K-Means implementation. Our method outper-

formed the baseline method by including a wider variety of

drinking gestures and increasing F1-score by 16%.
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Abstract In this chapter we present a case study on drinking gesture recognition

from a dataset annotated by Experience Sampling (ES). The dataset contains 8825

"sensor events" and users reported 1808 "drink events" through experience sampling.

We first show that the annotations obtained through ES do not reflect accurately

true drinking events. We present then how we maximise the value of this dataset

through two approaches aiming at improving the quality of the annotations post-hoc.

Based on the work presented in [1], we extend the application of template-matching

(Warping Longest Common Subsequence) to multiple sensor channels in order to

spot a subset of events which are highly likely to be drinking gestures. We then

propose an unsupervised approach which can perform drinking gesture recognition

by combining K-Means clustering with WLCSS. Experimental results verify the

effectiveness of the proposed method, with an improvement of the F1 score by 16%

compared to standard K-Means using Euclidean distance.
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1 Introduction

Gesture recognition has applications in several fields such as healthcare and sports

[2]. In order to create a reliable gesture recognition system, it is important to have

a well-annotated dataset [3]. However, creating high-quality datasets may require to

rely on lab-like environments, with limited ecological validity [4]. Activity recog-

nition research generally strives to employ datasets with unrealistically "perfect"

ground truth annotations. In an ecologically valid data collection, however, it is

likely that a highly valuable dataset is acquired, but that only poor quality annota-

tions are available.

Experience sampling (ES) is a real-time annotation approach done by users them-

selves a mobile device [13]. This allows more ecologically valid data collection in

everyday life (e.g. no need to video record the experiment). However, ES can lead to

the following issues: i) the synchronisation between the activity performed and the

label annotated by the user is generally of poor quality, with the user annotating the

activity after the event, or combining multiple activities in a single annotation; ii)

the user may forget to label an event, iii) the user may annotate an activity with the

wrong label.

In this work, we investigate how to make sense of a dataset with high business

value comprising drinking gestures, which has been annotated through ES, leading

to numerous deficiencies in the annotation quality. The dataset contains drinking

gestures annotated by the users with a mobile application. The dataset was collected

in an office environment using a 3-axis accelerometer and it is made by 8825 "sensor

events", with 1808 "drink events" annotated by users through ES. Using this dataset,

we aim to address two main challenges: i) to understand why the quality of the

annotation is low and consequently how would it be possible to improve in future

data collection and ii) to understand whether it is still possible to use such big dataset

without relying on the annotations for spotting drinking gestures and how. This work

is based on the research presented in [1]. The main contributions are:

• A study of the annotations. We analyse the user annotations, their distribution in

time during the data collection, and their relation to the sensor events, in order

to understand the causes of the low quality and where the data collection process

can be improved.

• A template matching approach, based on Warping Longest Common Subsequence

(WLCSS) [5], to extract a subset of drinking gestures, within a certain level of

confidence. This subset will allow the dataset to be used for research purposes.

As extension of the previous work, in this chapter, we evaluate multiple sensors

channel in order to obtain a more precise selection of drinking gestures.

• An unsupervised algorithm (K-Means) adapted to template matching. This algo-

rithm is a new variation of K-Means [6] where the WLCSS is used as distance

measure. It allows to cluster gestures based on the raw signal of the sensors. At

the same time, it clusters gestures taking in account the variation in the way they

can be performed, by using WLCSS which has been successfully used for robust

gesture detection [5].
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2 Related work

The quality of annotations obtained through ES can be poor [7]. Annotations issues

can include time shift of a label with respect to the activity, as well as wrong or

missing labels [8].

Some approaches suggested to improve ES with manual re-annotation [7]. This

is not feasible economically for a large datasets. Moreover, despite re-annotation

the quality may still be insufficient for the training of machine learning algorithms

[7]. The impact of ES on activity recognition has been studied in [9]. However, the

authors simulated the ES in a controlled environment and they used only the data

corresponding to the user annotations.

The problem of poorly labelled data can be tackled during the annotation itself

or during the training of the machine learning algorithm. A method useful to reduce

the effort of the users while annotating their activity has been proposed in [10].

The authors suggested a one-time point annotation method that requires the users to

only label a single moment per activity rather than specifying the beginning and the

end. The method then recognizes automatically the boundary of the activity in the

annotated signal. Nevertheless, it requires that the labels are within the execution

interval of the activity.

Unlabelled or poorly labelled data are available in big quantities nowadays due

to the large diffusion of sensing devices, such as smartphones and wearables de-

vices. For this reason, methods such as semi-supervised learning, active learning

and unsupervised learning have been applied in order to extract useful information

from sparsely annotated data. A combination of active learning and semi-supervised

learning has been studied in [11]. The authors used a dataset of daily activities col-

lected with two subjects wearing accelerometer sensors and motioned tracked with

infrared sensors. This approach however uses a decision window of 30 seconds long

and thus is not suitable for recognizing gestures that occur in a short time. Unsuper-

vised learning has been successfully applied to activity recognition in [12] and more

recently in [13]. In the latter, an activity discovery method based on clustering is

proposed to help with ES, although it is designed for periodic movements rather than

sporadic gesture. Unsupervised learning has been applied to gestures clustering in

[14], where a K-Means clustering has been evaluated specifically for hand gestures.

Several studies have tried to address the challenge of activity recognition from

poorly annotated data. While most of them used synthetic dataset and focused on

periodic or long activity (such as walking, running, etc.), to the best of our knowledge

none of them applies to drinking gestures collected in a real-life office environment.

3 Dataset

The dataset was collected by providing a set of mugs to 60 users (one mug per user)

in an office environment. Each user collected data for a period of 4 days. Each mug

was instrumented with a logger comprising a 3-axis accelerometer [15]. The loggers
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were placed in a hollow at the bottom of each mug. As the mugs were customly

made, the positioning of the loggers was not the same in all mugs. The loggers

sample acceleration at 20 Hz, with a timestamp in ms. In order to save power, they

start logging acceleration when a movement is detected. After 5 seconds of inactivity

they automatically stop the recording, without record the inactivity period. We use

the term sensor events to refer to every recording performed by the loggers that lasts

at least 4 seconds (as configured on the loggers for this data collection). Therefore,

sensor events can occur for a variety of reasons: moving the mug on the desk, washing

it, drinking from the cup, etc.

The data annotation was performed through experience sampling by the users

themselves. They labelled each drinking event manually using an Android application

installed on their smartphones. Each annotation could be punctual or delayed. An

annotation is considered punctual when it was entered immediately after the drinking

event. It is considered delayed, when it refers to an event in the past. The users

could specify in the application whether their annotation was punctual or delayed.

However they did not have to provide an indication as to how much the delay was.

Furthermore, there were no guidance indicating after how much time an annotation

should be considered "delayed" rather than "punctual".

The resulting dataset is made by 8825 sensor events, 1808 user annotations, of

which 1477 marked as "punctual" and 331 as "delayed". The percentage of annotated

gestures with respect to the total amount of sensor events is of 20.5%.

4 User annotation analysis

We aim to analyse the causes of the poor annotations in order to improve future data

collections, as well as helping during the next steps of this study.

Figure 1 indicates the main challenge of the annotation protocol, which is how

users understood differently how and what to annotate. The data collection protocol

did not require participants to annotate drinking solely when using the instrumented

mugs: they could annotate drinking as well when using regular mugs. It might happen

that users annotated drinking events performed using other cups. The protocol did

also not specify what to consider as a "drinking event". Users could interpret it as

referring to a single sip, multiple sips, or the act of drinking the entire cup. It is also

possible to notice how the annotations are not well aligned with the sensor events.

We also studied the distribution of the labels, per user, over the 4 days of data

collection. It could help to understand the users’ commitment in annotating their

drinking gestures, assuming they were keeping the same drinking habits among all

the days. This may be useful in order to spot days for which the annotations can be

more reliable. The results are presented in Figure 2. While there is no significant

change between day 1 and day 2, with an average increase in the number of annotation

of 0.24%, starting from day 3 the engagement decrease by 11% on average among

all the users. The plot shows also a great variability in the data: there were users
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(b) User 461

Fig. 1: Example of annotations of two different users, over the 4 days period. The

start time of the sensor events are displayed in the top plot of each figure, one thin line

per event. The delayed and punctual annotations inserted by the users are displayed

respectively in the second and the third plot of both figures. The X-axis reports date

and time, in the format "MM-DD HH". It is also possible to notice the differences

in the way two users annotated the drinking events.
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that increased their commitment over the 4 days, as well as users for which the

commitment decreased over the 4 days.

From the analysis of the annotations, it can be concluded that they were not reliable

enough to be used together with the data for the supervised classifier training.

day2 day3 day4
-90%

-75%

-60%

-45%

-30%

-15%

0%

15%

30%

45%

60%

75%

Fig. 2: Change in the user commitment in the annotation during day 2, 3, and 4. The

grey bars represents the percentage of annotations for each day with respect to day

1. Day 2 displays an increment of 0.24%; Day 3 and 4 an average decrease of 11%

in the number of annotations. The vertical bars represents the standard deviation for

each day.

5 Gesture classification

In order to make the collected dataset useful for drinking gesture recognition, each

event recorded by the sensors had to be classified in drinking/non-drinking. As

highlighted previously, the users annotations cannot be used as-is as they are not

accurate enough. A manual relabelling of the entire dataset was unfeasible given the

lack of any video recordings.

We developed an approach based on a template matching method (TMM) to

automatically spot a subset of events which are believed to be drinking gestures with

a certain confidence value. The approach then uses few events which are manually

identified as drinking events with high confidence to train the TMM.

5.1 Data processing and training set selection

We used a heuristic method to select a few sensor events as the training set. We

performed a few drinking gestures using the same instrumented mug in order to

chose the best sensor channel for template matching.
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(a) (b)

Fig. 3: Examples of orientation of the loggers in the custom made mugs. Although

X and Y axis can be different in each mug, the Z-axis is always facing downwards.

The chosen channel (or channels) must be orientation independent, as there was no

information about the positioning of the logger in the mug (Figure 3). We discovered

that the Z-axis of the accelerometer quite clearly indicates the gesture of lifting the

cup to drink. Also, despite different orientation of the loggers, this axis was always

perpendicular to the bottom of the mug. A template of such gesture is displayed

in Figure 4. A subset of gestures visually similar to this template was selected

manually from the entire set of the available gestures. We selected this subset trying

to include some variability in the way the drinking gestures were performed. Another

subset of non-drinking gestures was selected too, choosing the templates that were

very visually different from the drinking gestures. The training set is displayed in

Figure 5. It is formed by 78 events: 37 drinking gestures (5a) and 41 non-drinking

gestures (5b).

0 50 100 150 200
# Samples

-2

0

+2

A
c
c
e
le

ra
ti

o
n
 (

g
)

Fig. 4: Template of a drinking gesture, performing a single sip, displaying the

acceleration on the Z-axis.

However, lifting the cup does not necessarily mean that a drinking was actually

performed. For this reason, in order to better detecting the rotation of the mug

due to the drinking, we also used the magnitude of the acceleration on X-Y plane

as additional information. This was also due to the lack of the gyroscope on the

loggers. The X-Y plane was chosen because it was always parallel to the bottom of

the mug (Figure 3). The magnitude was computed as mxy =

√
x2
+ y2. A template
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(a) Drinking gestures

(b) Non-drinking gestures

Fig. 5: Training set of gestures using the Z-axis of the accelerometer. 5a displays

the templates chosen as drinking gestures. 5b shows those selected as no-drinking

gestures. All the plots show the templates downsampled to the fixed length of 170

samples (X-axis). The Y-axis represents the acceleration within a range of ± 2g.

for a drinking gesture represented by the magnitude is shown in Figure 6. A different

training set based on the template of the magnitude was chosen. The choice was

based on visual similarity to such template. A subset of non-drinking gesture was

also chosen for the XY magnitude The training set of drinking and non-drinking

gesture for the XY magnitude is displayed in 7. The drinking gestures were selected

only when they corresponded to a lifting of the mug (Z-axis).

All the instances in the dataset were filtered using a Butterworth low pass filter

with cut off frequency set to 10 Hz. They were also resampled to a fixed number of

samples. The number of samples was selected as the average length of a drinking

gesture, which is 170. This step was performed in order to reduce the impact of

non-drinking events that can last longer time than drinking gestures (e.g. washing

the cup, moving the cup around the office, etc.).



Drinking gesture recognition from poorly annotated data: a case study 9

0 50 100 150 200
# Samples

-2

0

+2

M
ag

ni
tu

d
e 

(g
)

Fig. 6: Template of a drinking gesture, performing a single sip, displaying the

magnitude of the acceleration on the X-Y plane.

In order to evaluate which is the best channel for drinking gesture recognition,

we decided to match the templates for Z-axis signal and XY magnitude separately.

5.2 Template matching using WLCSS

The Warping Longest Common Subsequence (WLCSS) [5] is an algorithm devel-

oped for template matching in real-time applications. Using dynamic programming,

the algorithm can compute a matching score between a template and a stream, up-

dating it at every new sample of the stream. It can be used for gesture recognition as

it can handle gestures performed with variation in their speed of execution. This is

achieved by three parameters: reward (R), penalty (P) and acceptance distance (ǫ).

The algorithm is shown in (1).

M(i, j) =




0 if i ≤ 0 or j ≤ 0

M( j − 1, i − 1) + R if |S(i) − T( j)| ≤ ǫ

max





M( j − 1, i − 1) − P · |S(i) − T( j)|

M( j − 1, i) − P · |S(i) − T( j)|

M( j, i − 1) − P · |S(i) − T( j)|

if |S(i) − T( j)| > ǫ

(1)

The matching score M(i,j) is computed as function of the previous scores, by

adding a reward (R) when the distance between the i-th stream sample (S(i)) and the

j-th template sample (T( j)) is below an acceptance distance (ǫ), or by subtracting

a penalty (P) proportional to the distance, when this is above ǫ . In addition to R,P,

and ǫ , WLCSS needs a threshold T. As WLCSS computes a matching score (M)

between an instance in the dataset and a template, T is used to define whether an

instance matches with the template (M≥T) or not (M<T). The value of the threshold
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(a) Drinking gestures

(b) Non-drinking gestures

Fig. 7: Training set of gesture using the magnitude of X and Y axis of the accelerom-

eter. 7a displays the templates chosen as drinking gestures. 7b shows those selected

as no-drinking gestures. All the plots show the templates downsampled to the fixed

length of 170 samples (X-axis). The Y-axis represents the acceleration within a range

of ± 2g.

is related to the specificity and the sensitivity of the matching algorithm: a high

threshold means high specificity, while a low threshold means high sensitivity. The

values of R,P,ǫ and T must be found during the training phase. We optimized this

based on an evolutionary optimization technique.

5.3 WLCSS optimization using evolutionary algorithm

We optimise the values of R, P, e, T to maximise the ability of WLCSS to distinguish

drink from non-drink using an evolutionary algorithm (EA). We used the EA in
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order to optimize the values of the parameters starting from a randomly generated

population. Each individual of the population is an array containing the 4 parameters.

The EA evolves this population through the usual selection, mutation and crossover

operators [16]. Here, the F1 score is used for the selection. The optimization process

stops after a predefined number of iterations, in this case .

5.4 Confidence computation

Matching costs
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Fig. 8: 4 Parameter Logistic Regression function used to assign a confidence with

the respect to the threshold.

Given the unreliability of the labels in the dataset, it is not possible to evaluate

precisely the correctness of a match for this particular dataset. For this reason,

we opted to provide a confidence level for each gesture as output of our method

rather than a simple match/no-match. The confidence level was assigned using Four

Parameter Logistic Regression:

y = d +
a − d

1 + (M
T
)b

where y is the confidence level, M is the matching cost, and T is the threshold. The

function, displayed in Figure 8, provides a confidence value in the range [0:1]. The

range is defined by the parameters a = 0 and d = 1. The parameter b, which define

the slope of the function curve, was set manually to 5. Using a fixed interval for the

confidence makes its value unrelated from the absolute value of T , which can vary

according with the parameters R, P and ǫ .

Finally, we computed three confidence values: i) a value for the Z-axis signal

(cz) used to detect the lifting of the mug, ii) a value for the matching of the XY

magnitude template (cxy) useful for the detection of the mug’s rotation and iii) a

combined value that takes into account the previous twos (ccomb). This latter value

was empirically defined as:

ccomb = 0.7 ∗ cz + 0.3 ∗ cxy
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The weights for cz and cxy were chosen experimentally based on the assumption

that a drinking gesture, intended as rotation of the mug, is performed only after the

lifting the mug.

5.5 Evaluation

We used the two different subset of instances (Z-axis signal and XY magnitude) to

train two separate instances of the system using the EA. As the EA is a stochastic

process, we repeated the training 10 times, and we picked the best values for each

of the two systems. The values are R=68, P=0, ǫ=28 and T=3364 for the Z-axis and

R=23, P=11, ǫ=11 and T=726 for XY magnitude. With these parameters, we run

the algorithm on the entire dataset, by using the templates displayed in Figure 4 and

Figure 6, which were selected manually from the training sets as templates.

Figure 9 displays a comparison of the sensor events and the annotations for a

single user, with the corresponding matching scores, for the Z-axis (9a) and XY

Magnitude (9b). The matching of the template for XY magnitude is less restricting

than the matching on the Z-axis. This is possibly due to the fact the rotation of the

mug can happen even in case of gesture different from just the drinking: e.g. while

washing the mug, moving it around, etc.

The percentages of total detected gestures for each scenario, compared to the

total number of events are displayed in Table 1, for different confidence values. The

low percentages are due to the nature of the sensors, which were collecting all sort

of movements such as moving the mug on the desk, washing it or even accidental

movements. It is important to note that the number of detected events is also lower

than the number of user annotations (1808). This may be a result of the data collection

protocol which did not specify to annotated only the drinking movements performed

with the instrumented mug. Finally, for low confidence values (≥25% and ≥50%)

the matching of the Z-axis signal and the XY magnitude are quite different in term of

percentage. For higher values of the confidence (≥75%), the performance of the two

systems tend to be the same, with similar percentages of detected events. Moreover,

in order to better compare the performance of the two systems, we created the cross-

correlogram presented in Figure 10. It displays the distribution of the differences

between the confidence cz and cx y. While the two systems generally agree, as shown

by the peak on 0, there is a negative skewness. This means that system for XY

magnitude is less precise in detecting the drinking events than detecting the lifting

of the mug using the Z-axis.

From the analysis, it is clear how the Z-axis signal is better for detecting a first

subset of drinking gestures rather then just the XY magnitude. The latter is useful

to filter out events that refer to lifting of the cup but without an actual drinking

performed by the user.

We studied the relation between user annotations, sensor events and detected ges-

tures, for the two systems. To do this, we assigned to every recorded event the closest

user annotation in time. Then, computing the time difference between the sensor
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Fig. 9: Comparison of WLCSS matching scores with recorded data for a single user,

for Z-axis (9a) and XY magnitude (9b). For each of the two template matching,

from the top: the WLCSS matching scores and the threshold T, as horizontal line

(first plot), the start time of the sensor events (second plot), and the user annotations

delayed and punctual (respectively third and fourth plot). The data are for 4 days

period, with the X-axis reporting date and time in the format "MM-DD HH"
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Fig. 10: Cross-correlogram representing the difference between the confidence ob-

tained using the Z-axis signal and the XY magnitude.
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Fig. 11: Cross-correlogram representing the distribution of the delays (in seconds)

between the user annotations and all the events recorded by the loggers (11a). Cross-

correlogram representing the distribution of the delays (in seconds) between the user

annotations and the events detected with a confidence ≥50%, using the signal from

the Z-axis only (11b). Cross-correlogram representing the distribution of the delays

(in seconds) between the user annotations and the events detected with a confidence

≥50%, using the XY magnitude (11c).
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Table 1: Number of drinking gestures detected for some confidence levels. The

percentages are with respect to the total number of sensor events in the dataset

(8825).

Confidence
Z-Axis XY-Magnitude Combined

# gestures % # gestures % # gestures %

≥ 25% 1481 17% 5253 60% 3930 44%

≥ 50% 942 10% 4365 49% 1113 12%

≥ 75% 543 6% 3453 39% 483 5%

events and the corresponding closest annotations, we created the cross-correlogram

displayed in Figure 11a. Figure 11b and Figure 11b present the distribution of the

same time differences, but considering only the gestures detected by WLCSS with

a confidence ≥50%, respectively for Z-axis and XY magnitude. The plot for Z-axis

presents a more pointy distribution, confirming that, in this case, WLCSS detected

events that were actually closer in time to the user annotations. The plot for XY

magnitude confirms the lower precision of the detection with respect to the user

annotation.

6 Unsupervised learning

We evaluated also an unsupervised approach in order to classify the gestures in

drinking/non-drinking as it does not require a training set. We developed a custom

method based on K-Means. We modified K-Means in order to make it able to cluster

gestures performed with variation in their speed of execution.

6.1 K-Means with WLCSS

K-Means is a clustering technique that aims to partition n observation in k clusters.

Each observation belongs to the cluster with the closest mean. It can be used for

unsupervised learning by clustering the input data based on a distance measure. The

algorithm is based on two steps, assignment step and update step, which are repeated

until a stopping criteria is met [6]. This criteria can be reaching a maximum number of

iterations, the change of the clusters in the update step in below a thresholds, etc. We

implemented a modified version of the K-Means, where WLCSS was used a distance

measure in place of the Euclidean distance. The assignment in our implementation

is modified as following:

arg max
ci

W LCSS(x, ci)
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where x is a sensor events, ci is the centroid for the i-th cluster. The function argmin

is replaced by argmax as WLCSS compute a matching score rather than a distance.

The update step is unmodified.

6.2 Evaluation

We compared our version of K-Means (named K-MeansWLCSS) against the standard

version that uses the Euclidean distance in order to assign each instance to the closest

cluster. We applied both the implementation on the training set from the previous step,

with k = 2 as the goal was to distinguish between drinking and non-drinking gestures.

As all the instances were resampled to the same length, they could be used as feature

vectors for both the implementations, without dealing with different lengths of the

feature vectors (in this case the resampled raw signal). Applying the algorithms on

the training set allowed us to compare the clustering results with the labels assigned

manually to each gesture, during the data selection. Figure 12 presents a visual

comparison between the clusters obtained with the two versions of K-Means. For

both the implementations, Cluster 1 seems to include mainly the drinking gestures,

while Cluster 2 the non-drinking gestures. We used this consideration in order to

evaluate the performance of the two algorithms computing precision, recall and

F1 score, presented in Table 2. They are computed by comparing the clustering

of K-Means with the manual labels of the instances in the extracted subset. K-

Means_WLCSS increased the F1 score by 16%, being able to detect more variations

in the drinking gestures as it is also visible from Figure 12. It was able to cluster

correctly drinking gestures composed by two sips, such as the instances 8, 16, and

21 of Figure 12c.

7 Discussion

Table 2: Precision, Recall and F1 score for K-Means and K-MeansWLCSS computed

on the training set. They are computed using the manual labels assigned to each

instance in the training set as ground-truth. The majority of the gestures in a cluster

is used as classification label for the K-Means implementations.

K-M K-M_WLCSS

Precision 100% 92.11%

Recall 62.16% 94.6%

F1 77% 93%
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We discovered that the main issue for this dataset was the data collection protocol

which was too relaxed. More precise instructions would increase considerably the

quality of the data. Simultaneously, asking the users for more precision in following

the protocol should be balanced with shorter sessions of data collection, as we noticed

how the user commitment decreases over 4 days of continuous data collection. Lastly,

as it has been demonstrated that experience sampling is not reliable, we recommend

to increase the effort in the setup of the experiment by including a video recording.

It would dramatically increase the quality and re-usability of the dataset, although

it would require additional time for the labelling of the data. In order to reduce this

effort, the video recordings can be used to precisely annotate just a small portion of the

entire dataset. This well-annotated subset, which can be also collected a-posteriori,

or can be used as training set instead of extracting one through heuristic. The well-

annotated dataset would also allow to evaluate more precisely the performance of

the TMM or any other classifier on the complete dataset, through statistical analysis.

In this study we extracted a subset of events which can be considered as drinking

gestures with a certain confidence. This extracted subset can be potentially used to

re-train the TMM for a more reliable gesture recognition system. The re-training

phase can be performed using gestures with different levels of confidence: an higher

level of confidence would increase the specificity of the found gestures. Decreasing

this value would increase the sensitivity, potentially including more variations of the

drinking gestures.

Finally, we aimed to evaluate how an unsupervised learning technique can be used

in order to extract drinking gestures from a poorly labelled dataset. We implemented

a modified version of K-Means which uses WLCSS as distance measure for the

assignment step. The results are promising: with 2 clusters it managed to differentiate

between drinking and non-drinking gesture with an 93% F1-score, although on a

limited number of sensor events. A more extensive evaluation can be performed

on the entire dataset, although without a reliable ground-truth, a validation of the

results, in this case, could be difficult.

8 Conclusion

In this study, we investigate how to extract knowledge from a poorly labelled dataset

of drinking gestures. We analysed the user annotations in order to get qualitative

information on how to improve the data collection. We exposed how the loose

protocol created most of the problems and we highlighted the need of providing more

precise instructions to the users. Then, by selecting instances manually and using a

template matching algorithm, we demonstrated that it is possible to extract a subset of

instances which are actually drinking gestures within a certain level of confidence.

We proved that an unsupervised approach based on K-Means and WLCSS can

improve the clustering of gesture over the standard K-Means implementation. Our

method outperformed the baseline method by including a wider variety of drinking

gestures and increasing F1-score by 16%.
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Fig. 12: Comparison between clusters obtained with K-Means using Euclidean dis-

tance (top left, top right), and using WLCSS (bottom left, bottom right).
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ABSTRACT

Template matching methods can benefit from multi-cores ar-

chitecture in order to parallelise and accelerate the matching

of multiple templates. We present WLCSSCuda: a GPU ac-

celerated implementation of the Warping Longest Common

Subsequence (WLCSS) pattern recognition algorithm. We

evaluate our method on 4 NVIDIA GPUs and 4 multi-cores

CPUs. We observe a 67-times speedup for the GPU imple-

mentation in the best case against the multithreaded CPU

implementation.
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1 INTRODUCTION

Template Matching Methods (TMM) have been successfully

applied in activity recognition [2]. They compute a matching

score between one or more templates and a stream of sensor

data. Therefore, they can benefit from multi-core architec-

tures in order to improve their speed of execution. They can

take advantage of such architectures when multiple tem-

plates must be simultaneously compared to an incoming
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sensor signal as well as during training when multiple in-

stances of the TMMmust be run in order to evaluate different

parameter sets. WLCSSCuda is a GPU accelerated implemen-

tation of Warping Longest Common Subsequence (WLCSS)

using CUDA. This is a framework developed by NVIDIA for

general purpose processing on GPUs (GPGPU) [3]. In the

past, GPUs have been used to accelerate other TMMs, such

as Dynamic Time Warping [5] and Longest Common Subse-

quence [6]. However, to the best of our knowledge, this is the

first GPU implementation of WLCSS. WLCSSCuda allows to

execute multiple instances of the TMM simultaneously. We

compare this approach with a multi-core CPU implementa-

tion of WLCSS and show an drastic speedup in the matching

score computation.

2 WARPING LONGEST COMMON SUBSEQUENCE

Warping Longest Common Subsequence (WLCSS) is a TMM

suitable for continuous pattern recognition - such as spot-

ting complex gestures - which is more robust than Dynamic

Time Warping to noisy sensor data [2]. It computes a match-

ing score (Mi , j ) between a template (T ) and a stream (S) by

adding a reward (R) every time a sample i from S matches

with a sample j from T within an acceptance threshold (ϵ).

Otherwise, it decrementsMi , j by a penalty (P ) proportional

to the mismatch.

Optimising WLCSS parameters requires an exhaustive

grid search for R, P , ϵ , which benefits from computational

speedups.

3 WLCSSCUDA

WLCSSCuda is our GPU implementation of WLCSS built

using CUDA. Thanks to the high number of cores in modern

GPUs, it is possible execute tasks, called kernels, with a

high level of parallelization. CUDA abstracts the physical

structure of the GPU in a grid of blocks. Each block can be

addressed using a 1D, 2D, or 3D index. A block is a unit made

by several threads that can be computed in parallel or serially

on a GPU core. A 3D indexing is provided for the thread too.

The scheduling of the threads’ execution is transparent to

the user. The number of maximum blocks and maximum

threads per block depends on the GPU.
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Figure 1: WLCSSCuda structure: blocks are represented in

yellow. A template Tq and a stream Sk are assigned to each

block. A set of parameters pr is assigned to each thread, dis-

played in blue.

WLCSSCuda structures the computation using a 2D grid

for the blocks and 1D structure for the threads, as shown in

Figure 1: a single template/stream pair is assigned to each

block. Then, within that block, a thread is used for every pa-

rameters set. During initialization, all the templates, streams

and parameters are transferred to the GPU memory. Then,

each kernel computes the pointer to the templates, stream

and WLCSS parameters in memory using respectively the

indexes q and k for the blocks, and r for the threads. Each

triad template/stream/parameters is used by only one kernel

which is executed by a single thread. Finally, when the match-

ing scores are computed, they are transferred from the GPU

memory back to the main memory. WLCSSCuda computes

the entire score between the template and the stream.

WLCSSCuda is developed in C++ with a Python wrapper

for loading the data and reading the results.

4 EVALUATION

We evaluated to which extent WLCSSCuda could accelerate

multiple template matching, taking into account the time

required to transfer the data to/from the GPU, which has

been demonstrated to be a bottleneck in CUDA applications

[1]. We compared the execution of WLCSSCuda on 4 GPUs

and a multithreaded WLCSS on 4 CPUs (see Table 1). We

simulates 4 test scenarios in which a different number of

streams, templates and WLCSS parameters were employed

(Table 2). We reported the average of 10 executions. The CPU

implementation of WLCSS uses all the available threads in

the CPU to run always the maximum number of possible

WLCSS simultaneously.

We used OPPORTUNITY Dataset [4] as source of tem-

plates and streams, selecting a random subset of gestures for

each test, to make them more realistic. The average length

of the templates (and streams) is 98 samples, with a standard

deviation of ± 46. The same subset of gestures was used for

WLCSSCuda and the CPU implementation in each test.

GPU Model CUDA cores Cores Frequency Memory

GTX 1080 Ti 3584 1645 MHz 11 GB GDDR5X
GTX 1050 Ti 768 1418 MHz 4 GB GDDR5
GTX 970 1664 1317 MHz 4 GB GDDR5
Titan XP 3840 1582 MHz 12 GB GDDR5X

CPU Model Frequency (Max Turbo) # of Cores # of Threads

AMD Ryzen 1900X 3.8 GHz (4 GHz) 8 16
Intel i7-8750H 2.2 GHz (4.1 GHz) 6 12
Intel i7-4770K 3.5 GHz (3.9 GHz) 4 8
Intel i7-6700 3.4 GHz (4.0 GHz) 4 8

Table 1: CPU and GPU tested. For more details about the

GPUs and CPUs (AMD and Intel), visit respectively 1, 2, 3

Test # Templates (Q) # Streams (K) # Params. sets (R) Tot. WLCSS

a 10 1000 10 100000
b 20 2000 10 400000
c 50 5000 10 2500000
d 100 10000 10 10000000

Table 2: The number of templates, streams, parameters sets

and the total number of WLCSS computation is shown, for

each test scenario.

Platform / Test a b c d

Titan XP 0.49 ± 0.04 1.53 ± 0.15 9.66 ± 0.61 38.29 ± 1.87
GTX 1080 Ti 0.55 ± 0.07 1.98 ± 0.14 12.77 ± 1.51 51.38 ± 6.22
GTX 1050 Ti 0.79 ± 0.13 2.92 ± 0.26 18.15 ± 0.67 72.04 ± 3.59
GTX 970 0.91 ± 0.16 4.00 ± 0.67 18.97 ± 0.86 70.74 ± 3.69

AMD 1900X 8.29 ± 0.89 32.27 ± 1.74 231.75 ± 31.59 932.69 ± 86.19
i7-8750H 17.50 ± 2.57 81.23 ± 5.30 555.26 ± 15.39 2140.20 ± 141.37
i7-6700 20.35 ± 1.07 80.18 ± 8.28 523.05 ± 34.30 2008.19 ± 81.33
i7-4770K 22.78 ± 3.20 99.62 ± 10.00 647.21 ± 45.91 2452.15 ± 170.12

Improvement 10-46 times 8-65 times 12-67 times 13-64 times

Table 3: Results of WLCSS running on the 4 GPUs and the

4 CPUs. The values are in seconds and they are averaged

across multiple running. The improvements are computed

respectively between the best CPU against the worst GPU,

and viceversa.

Table 3 shows the average time for each test for every

CPU and GPU. For WLCSSCuda, all the values include the

time to the transfer of data to/from the GPU memory. As we

expected, the GPUs are faster in every scenario we evaluated.

Moreover, it is possible to notice how WLCSSCuda scales

better when the number of instances increase. Testd requires

100 times more evaluations than test a; the GPUs take on

average only 85 times the time required by test a while the

CPUs take 110 times more than a, on average, across all the

different models.

1https://www.nvidia.com/en-gb/
2https://www.amd.com/en/products/ryzen-threadripper
3https://ark.intel.com
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5 DISCUSSION AND CONCLUSION

We presented WLCSSCuda, a GPU accelerate multiple TMM.

We demonstrated that WLCSSCuda can drastically increase

the computation of multiple template matching, with an

increase of 67 times in the best case compared to a multi-

threaded CPU approach. However, there is still room for

improvement: we plan to evaluate different organizations

of data in order to better use the block/thread CUDA struc-

ture. Moreover, we aim to make WLCSSCuda automatically

adapting such structure according with the number of tem-

plates/streams/parameters sets in order to increase the per-

formance even further. Finally, WLCSSCuda is available as

open source software at the address

https://github.com/sussexwearlab/WLCSSCuda.
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Abstract—Template matching algorithms are well suited for
gesture recognition, but unlike other machine learning ap-
proaches there are no established methods to optimize their
parameters. We present WLCSSLearn: an optimization approach
for the WarpingLCSS algorithm based on a genetic algorithms.
We demonstrate that WLCSSLearn makes the optimization pro-
cedure automatic, fast and suitable for new recognition problems
even when there is no a-priori knowledge about suitable range of
parameter values. We evaluate WLCSSLearn on three different
datasets of gestures. We demonstrated that our method increased
the accuracy and F1 score up to 20% compared to previous
literature.

Index Terms—component, formatting, style, styling, insert

I. INTRODUCTION

Human gesture recognition from sensor data has important

application in healthcare, sports and human-computer interfaces

(e.g. for gaming). Templates matching methods (TMMs) have

been applied successfully to recognize complex human gestures.

They can have comparable performance to other machine

learning approaches with the advantage of requiring less

training data [1]. Moreover, they can be used to extract richer

information during the classification: for example, it is possible

to use them to measure the distance in centimetre between two

gestures by using the right encoding [2]. This is important in

sports performance assessment or skills assessment [3].

Recently, the "Warping Longest Common Subsequence"

(WLCSS) TMM method was introduced as a more robust

alternative to e.g. Dynamic Time Warping when the sensor

data is noisy [4]. It showed a 12% improvement in F1 score

over DTW when recognizing activities of daily living from

noisy data [4].

While other machine learning techniques present a well

defined training algorithm, WLCSS, and more in general

TMMs, do not have a standard training procedure. Training of

WLCSS requires to: i) choose the templates to use for matching

and ii) optimise its parameters. For the first, a possible approach

is to choose the most representative template (MRT) among

those available at training time, such in [4], [5]. The training

instance with the highest similarity to all the training instance

for a gesture is considered the most representative.

On the other hand, the optimization of the parameters is

generally done manually for every specific application. For

this reason, we introduce WLCSSLearn, a training algorithm

for WLCSS. WLCSSLearn is based on an genetic algorithm

and it has been developed to autonomously find the best set

of parameters for WLCSS for a specific application with the

minimum input from the user. We evaluate WLCSSLearn on

three dataset of gestures collected using a variety of sensors.

II. RELATED WORK

A. Template Matching Methods

Template matching methods (TMMs) are algorithms that

use a similarity measure to spot and/or recognize a template

within a stream of data. Several TMMs have been proposed and

applied for gesture recognition over the years: Dynamic Time

Warping (DTW) has been employed for gesture recognition

using accelerometers and inertial sensors in [6] and [13]. It

computes the optimal match between two time series warped

in time, trying to align them sample by sample. In [5], the

Edit distance (ED) has been used in order to recognize human

gestures in a car manufacturing environment. It measure the

distance between two sequences as the minimum number of

single-symbol operation (insertion, deletion and substitution)

required to change one sequence into the other, assigning to

each of them a cost. Longest Common Subsequence (LCSS)

has been explored as similarity measure for visual gestures

in [8]. A variation of LCSS, called WarpingLCSS (WLCSS)

has been proposed [4] and evaluated in sport application [12].

WLCSS was shown to improve tolerance to noisy data [14] in

comparison to DTW. Moreover, WLCSS can be implemented

on limited memory devices, such as wearable devices [12]. It

computes the LCSS between two sequence that can be warped

in time, using three parameters: a reward (R), a penalty (P)

and a noise tolerance threshold (ε) (see subsection III-A).

B. TMM Parameter optimization

As other machine learning approaches, the parameters of

TMMs must be optimised during the training stage. However,

unlike e.g. back-propagation as a standard algorithm for neural

network training, there is no standard procedure to train

TMMs. TMMs need one or more templates to match, and,

in addition, each of them have different parameters to be

optimized, generally for each specific application. Table I

presents an overview of different optimization approaches for

several TMMs. The overview is limited to gesture recognition



TABLE I: Overview of TMMs for gesture recognition and their optimization

Ref TMM Parameters Data Optimization method

[6] DTW Templates 3D Accelerometer data Manual choice from dataset.

[7] Custom DTW Weights of custom DTW, templates X,Y,Z coordinates from Kinect Maximization of custom heuristic for

the weights. Specifically recorded tem-

plates.

[1] Euclidean distance, DTW, cross-

correlation and Rce

3D Accelerometer data Templates Generation of templates by custom

average.

[8] DTW, LCSS Templates Images Manual choice from dataset.

[9] MPLCS (custom LCSS) Matching thresholds. Templates Trajectory from 3D camera Manual setting of threshold. Specifi-

cally recorded templates.

[10] [5] Edit distance Insertion, deletion, substitution costs.

Matching thresholds. Templates.

Trajectories from X,Y,Z coordinates Computation of costs relatively to the

encoding through heuristic. Computa-

tion of matching thresholds through

heuristic. Templates chosen as the

most representative within all the tem-

plates of each gesture class.

[11] WLCSS R, P, ε , and matching thresholds. Tem-

plates

Accelerometer data Manual setting of parameters. Specif-

ically recorded templates.

[12] LM-WLCSS R, P, ε , and thresholds. Templates

1D Gyroscope data Manual setting of parameters R, P,

ε , and matching thresholds.

Manual choice of the templates

from dataset.

1D Accelerometer data

EMG data

applications, although they may be performed using different

data such as videos, images or inertial data.

The related work shows that there is a wide variety of

methods which have been suggested to optimise TMMs

(Table I). DTW is used in [6], [1] and [8] but the three studies

have all different methods for choosing the gesture templates:

in [6] and [8] the templates are chosen manually by the authors

from the dataset, while in [1] the templates are generated from

the training set for each gestures by averaging all the instances

for the same gestures using a custom heuristic. In [7] and [9]

instead, a set of gestures is specifically collected to be used as

templates. The former uses a custom DTW that requires also a

set of weights as parameter; they are optimized by maximizing

an heuristic specifically designed. The latter uses a modified

version of LCSS: in this case, the authors set manually the

matching thresholds.

In [10] and [5], the Edit distance is used as the TMM. The

costs for the operations of insertion, deletion and substitution

are computed according to the specific encoding used by

the authors. This encoding transforms the hand displacement

performed during a gestures in a stream of symbols. The

matching threshold for each gesture class is computed with an

heuristic using the average matching costs for that class, the

standard deviation and a manually chosen parameter. Finally,

the MRT within each gesture class is chosen for the matching.

While this method may increase the recognition of the gestures

of the same class of the template, it does not assure that all

the other gestures are correctly discarded.

WLCSS is used as TMM in [11] and [12]. In both studies,

the values of the parameters R, P, ε are set manually as well as

the matching thresholds. Finally, the templates are selected by

hand in [12], while in [11] a set of templates was recorded just

for that end. However, this is not always possible especially

when the recognition is done a posteriori without information

about the setup of the data collection.

TMMs do not offer a standard training procedure that can

be applied across different algorithms and different data. More

specifically, when manually setting the parameters, it is often

not possible to explore efficiently the entire space of possible

solutions.

III. METHODS

We chose to develop WLCSSLearn for WLCSS as it is a

robust and powerful TMM against noisy data. Its applicability

to different TMMs is discussed in V. In the following, the

template matching algorithm and its parameters are described

in detail. Then, WLCSSLearn is presented.

A. WLCSS

M(i, j) =































0 if i ≤ 0or j ≤ 0

M( j−1, i−1)+R if f (S(i),T ( j))≤ ε

max











M( j−1, i−1)−P · f (S(i),T ( j))

M( j−1, i)−P · f (S(i),T ( j))

M( j, i−1)−P · f (S(i),T ( j))

if f (S(i),T ( j))> ε

(1)

WLCSS is a TMM capable of spotting and recognizing

gestures which may be dilated or contracted in time and it is

suitable for real-time low-power implementation [14] [12]. It

uses dynamic programming in order to compute the similarity

between a template and a stream of data. WLCSS is defined

by the recurrence relation (1), where M(i, j) is the matching

score up to date to the i-th sample of the stream (S(i)) and the

j-th sample of the template (T ( j)). f (S(i),T ( j)) is a function

used to compute the distance between the stream and the

template samples. WLCSS will increase the matching score by a

reward (R) whenever samples of the template and sensor stream

matches within a noise tolerance threshold (ε). Otherwise, it

will find the best warping (contraction, dilation, or alignment

as-is) between template and sensor stream. In this case, it

penalizes the matching score by a penalty (P) proportional to

the difference between the warped template and sensor stream.

In addition to R, P, and ε , WLCSS needs a set of thresholds

T, one for each of the k classes of gestures to recognise.



Fig. 1: Parameters encoded as genes. The thresholds values

(T0,T1, ...,Tk) are encoded sequentially (red genes). The

number of genes for every threshold is fixed, but the number of

thresholds depends on the number of gestures to be recognized.

These thresholds are used to define whether a matching score

Mk is high enough (Mk > Tk) to be considered as a detected

event for the corresponding k-th class. When the matching

score is computed between an isolated gesture instance and the

templates, it is called isolated recognition. In this case, when

gestures matches with multiple templates, it can be classified

unambiguously by defining an heuristic, such as:

class = arg max
k

Mk −Tk

Tk

When the matching scores are computed between all the

samples of a stream and the templates, it is called continuous

recognition (see III-C).

The performance of WLCSS on each specific application

are highly dependant on the set of parameters, R, P, ε and T.

B. WLCSSLearn

WLCSSLearn is a training algorithm for WLCSS that aims

to find the optimal parameters R, P, ε , and threshold values T.

The algorithm operates the training in isolated recognition.

It uses a genetic algorithm (GA) to optimise that set of

parameters. GAs are a class of algorithms that "evolve" a

randomly initialized population of individuals in order to find

the best fitting individual, maximizing a fitness function, using

principle loosely inspired by biological evolution. GAs make it

possible to search efficiently an optimum even when the space

of possible solutions is large and when multiple parameters

need to be optimized at the same time [15].

Each individual of the population encodes the parameters

to evolve in a string of bits (genes). WLCSSLearn encodes

these parameters using a variable number of genes as shown

in Figure 1.

The GAs evolves the population through an iterative process

according to a fitness score computed for each individual. At

each iteration, after the fitness computation, a new population

is generated in 3 steps:

• Selection. A subset of the individuals in the previous

iteration’s population is selected, according to the fitness

score. The size of this subset is defined by the rank

parameter.

• Crossover. The selected individuals are crossed over with

a probability cp in order to create new individuals.

• Mutation. With a probability mp, a random selection of

genes in the new population is mutated. It means that they

are swapped between 1 and 0, and vice-versa.

• At each iteration, some of the best individuals from the

previous population are copied to the new one in order

to prevent a good individual to be destroyed through

crossover/mutation. The number of these individuals is

controlled by the parameter elitism.

Algorithm 1 WLCSSLearn - R, P, ε and thresholds optimiza-

tion
Input: dataset, [gestures_classes], iterations

1: [templates], [gestures] = WLCSSLearnInit(dataset, [gestures_classes])

2: [pop] = initPopulation()

3: for k = 1, ...,iterations do

4: for pi in [pop] do

5: (R, P, ε , [thresholds]) = decode(pi)

6: pi.fitness = computeFitness(R, P, ε , [templates], [gestures], [thresholds])

7: [pop] = evolve([pop])

8: (R, P, ε , [thresholds]) = getBestFit([pop])

Output: (R, P, ε , [thresholds])

The evolution process can end after a predefined number of

iterations, as WLCSSLearn, or when there are no significant

changes in the fitness score.

WLCSSLearn is detailed in Algorithm 1. The initialisation

function WLCSSLearnInit extract all the gestures from the

dataset as isolated instances to be used as training set. During

this step, data from the null-class is added to the training set

in order to provide for the lack of null class that derives from

the extraction of the gestures. A subset of null class data is

added proportionally to the percentage of the null class in the

dataset. This null-class data is added in the form of fragments

extracted randomly from the whole null-class signal. In order

to prevent over-fitting to the null-class during the training, the

length of each null-class fragment is the average length of the

gestures in the dataset.

After the initialization, WLCSSLearn starts to evolve the

population, decoding, at each iteration, each individual in R,

P, ε and the thresholds in order to compute the fitness score.

It is clear how the choice of the function to compute

the fitness score is fundamental in order to find the optima.

WLCSSLearn uses a combination of F1 score and accuracy. It

targets to maximize the product F1∗accuracy. The F1 score

assures the best general performance over the entire training

set. The accuracy guarantees that the best performance must

be reached in all the recognition classes at the same time. This

avoids the possibility that WLCSSLearn get stuck in a local

optimum where the best F1 score is achieved only by a subset

of the recognition classes.

C. Performance metrics for continuous template matching

Template matching algorithms, and more in general activity

recognition, can work in isolated or continuous case. While

WLCSSLearn performs the training in the isolated case, we

evaluated it also in the continuous recognition.

In the isolated case, using the heuristic presented in III-A,

it is possible to classify each instance unambiguously. It is

possible to count true positives (TP), true negatives (TN),

false positives (FP) and false negatives (FN) to evaluate the

performance of the TMM. Finally, precision, recall and F1

score can be calculated.

In the continuous case, the matching score is computed

between a template and the entire stream of data. For each

template, a new matching score is computed at every new



TABLE II: List of activities for each dataset: (a) OPPORTUNITY, (b) Skoda, (c) HCI guided

(a)

Open Door Close Door

Open Drawer Close Drawer

Open Fridge Close Fridge

Open Dishwasher Close Dishwasher

Clean Table Drink from Cup

Toggle Switch Null

(b)

Open hood Adjusting mirror

Close hood Check trunk gaps

Open trunk Open spare wheel box

Close trunk Close spare wheel box

(c)

Triangle, pointing up Infinity

Square Triangle, pointing down

Circle

sample of the stream. It means that for every activity in the

ground truth, multiple matching scores are available as every

activity lasts for more samples. This entails that the focus is

more about the detection of an event. The continuous case

presents several challenges, compared to the isolated case,

when a TMM is used:

• multiple matching scores can be above a single acceptance

threshold within the same single instance of an activity,

potentially at different time

• the matching score for a specific template can go above

and below the threshold multiple times within the same

ground truth activity instance

• within the same ground truth activity, multiple templates

can match multiple times

• a template can match with a reasonable delay after a

ground truth event

An approach for performance evaluation for continuous activity

recognition has been presented in [16]. However, this method

is designed for activity recognition based on time fragments.

It means that the activity recognition is based on temporal

fragments that last for a specific amount of time. When the

task is to detect an event, the fragment based evaluation is

not suitable anymore as a "match" is unlikely to last for the

entire ground truth activity. For these reasons, counting true

positives (TP), true negatives (TN), false positives (FP) and

false negatives (FN) is not trivial. We introduce a performance

measure approach for TMM as a variation of [16]. We redefine

TP, TN, FP and FN for TMM as described in the following:

TP is a single match occurred within a ground truth event or

within a predefined window, in seconds, after the end of

the ground truth event.

TN is a segment of null class, within of which no match has

occurred. It is weighted by its duration in seconds.

FP Within the FP category, we distinguish between:

• FP-merge is a FP that occurs within a ground truth

event which is not null-class. It happens when multiple

events for the actual class are detected. It means that

those event should be considered a single merged one.

• FP-insertion is a FP that occurs within a ground truth

event when an event of the wrong class is detected.

• FP-substitution is a Fp within a ground truth event

which is not a null class. It happens when an event of

the wrong class is detected and no events of the correct

class are detected.

FN occurs when a ground truth event which is not null-class

is not detected at all.

With this approach, it is possible to compute accuracy,

precision, recall and F1 score using the standard definition.

IV. EVALUATION

A. Data

Three different dataset were used for the evaluation of

WLCSSLearn. These datasets are made by sensor data collected

using inertial platforms worn by users while performing human

complex gestures or activities. Although they may not be

specifically made for gesture recognition, they have been chosen

because they are publicly available and they have been used in

previous studies, making possible a comparison of the results.

The details of each dataset and how it is pre-processed are

explained in the following. We used the same pre-processing

used in the reference study for each dataset in order to allow

a comparison with the previous studies.

The OPPORTUNITY Activity Recognition Dataset is a multi-

modal dataset recorded in a domestic environment [17]. The

dataset includes the set of gestures displayed in table IIb. In

this study, we used the data of a single acceleration channel

from the lower arm sensor. The signal, originally sampled at 30

Hz, was filtered using a low pass filter with cut-off frequency

of 10 Hz and then quantized in the range -64 to 63.

The Skoda dataset comprises gestures performed in car

manufacturing, during a quality check routine [5]. The gestures

were performed by users wearing a set of inertial platforms

on the back, on the upper arms, on the lower arms and on the

hands. Each platform integrated a 9-axis inertial unit providing

its orientation in quaternions. Each users executed the gestures

with the dominant hand, unless differently specified, or with

both, when required. Due to the lack of information about

which hand is dominant for each user, we focus on a subset of

gestures that are commonly performed with the right hand (e.g.

Adjusting the mirror for a left-hand driving car) or with both

hands (e.g. Open/close hood). The set of gesture is presented

in Table IIa. For this dataset, we applied the encoding of

gestures presented in [2] in order to reduce the dimensionality

of the data. With this encoding, human gestures are represented

as a sequence of encoded symbols. Each symbol is obtained

using a codebook of predefined vectors in order to sample the

displacement of the hand during the gesture. We empirically

chose spatial sampling and a 27 vectors codebook.

The HCI dataset is composed of a set of 5 hand gestures

performed by a user wearing an inertial unit on the lower arm

[4]. The gestures are performed moving the hand to form the

shapes described in Table IIc. The 3 signals provided by the

accelerometer (x, y, and z), originally sampled at 96Hz, were

filtered with a low pass filter with cutoff frequency of 5 Hz.

Finally the magnitude computed as
√

x2 + y2 + z2 is used.



B. WLCSSLearn setup

We evaluated WLCSSLearn on the three datasets using

the same set of parameters 1. This allowed a comparison of

the performance of WLCSSLearn although the three dataset

presented different data.

As the choice of the template is fundamental for a TMM,

we evaluated WLCSSLearn using two different heuristics for

choosing the template:

• Random choice A template was chosen randomly at each

test. This case represents the average performance of

WLCSS picking a template by chance.

• Most representative The MRT for each gesture among the

training instances is selected. Similarity between all the

templates for a single gesture is computed using the LCS

algorithm. This TMM was chosen as is quite robust with

respect to variation in the performing speed of a gesture

and it does not require any parameter (which would be

subject to optimization, otherwise).

As the GA algorithm used by WLCSSLearn is a stochastic

process, we repeated the optimization 5 times for each dataset,

for every template choice method, for a total of 10 tests.

WLCSSLearn optimizes the parameters in isolated recognition,

with a percentage of null class added by WLCSSLearnInit

during the training. After the optimization, we evaluate the

obtained parameters in isolated recognition without null class

(Iso_NoNull), isolated with the addition of null class (Iso_Null)

fragments and in continuous recognition (Cont).

C. Results

We studied the evolution of the parameters in term of the

algorithm complexity and recognition accuracy.

Figure 2 displays the values of the max fitness score at each

iteration for every dataset. The values are averaged across all the

tests we performed. It is visible how WLCSSLearn converges

to an optimal value even before the limit of 500 iteration

we set manually. However, in order to better understand the

performances of the algorithms, looking only at the number of

iterations is not enough. The number of individuals per iteration

must be taken into account too. WLCSSLearn found the optimal

values after 1390, 2290 and 2470 evaluations, on average for the

three datasets respectively. In comparison, a brute force search

for the same space of parameters would take (25)3=32768

evaluations in the worst case, considering the R, P and ε made

of 5 bits. Moreover, this worst case does not take into account

the thresholds, as they are variable for each application, while

WLCSSLearn optimizes them simultaneously.

Table III presents an overview of the results in term of

accuracy and F1 score, for every combination of template

choice method and recognition type (Iso_NoNull, Iso_Null, or

Cont). These values are obtained as the average of accuracy

and F1 score, on all the classes, for every set of 5 tests. The last

column presents the best results for the same dataset and, where

possible, the same algorithm, for every dataset. These values

1Population=10, Iteration=500, Genes=5 for R, P, ε , 10 for each threshold,
rank=3, elitism=1, cr=0.3, mp=0.1
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Fig. 2: Max fitness score (F1score∗accuracy) evolution for

3 datasets during training using WLCSSLearn. The values are

averaged across all the training test.

are placed as general reference, but a specific comparison is

often not possible due to the lack of information about the

process for the reference studies.

It is possible to notice how Iso_NoNull and Iso_Null are

the scenarios with the highest scores. This is due to the nature

of the TMM and the great variability in the null class for

two of the three datasets (OPPORTUNITY and Skoda). The

HCI dataset has a lower variability in the way the gestures are

performed as well as in the null class between each gesture.

Although in the continuous recognition the performance is

generically lower, WLCSSLearn led to increased recognition

performance compared to previous literature in almost all

the tests. The OPPORTUNITY dataset, which is the most

challenging one, is the one of the cases where the performance

are not matched to the previous literature. In this case, it is

important to notice that the accuracy is increased thanks to

WLCSSLearn. Moreover, we suspect that the lower F1 score

is due to two main differences between our study and [4],

taken as reference. The first is that we used the data from

a single channel of acceleration instead of the magnitude

of all the three axis. Also, we used our own method for

evaluate the performance of the TMM, as [4] do not provide

any insight on the approached used. Similarly, for the Skoda

dataset, the accuracy increased by 18%, while the lower F1

score is probably due to difference in the input data. In [18],

the results are obtained as the fusion of multiple templates

matching. Also, DTW is used as TMM instead of WLCSS,

making the comparison less effective.

From the table, it is also visible how the choice of

the templates influences the performance of the recognition.

Especially when the variability of the gestures is wide, as in

OPPORTUNITY, a random choice of the template can decrease

the performance by 11% on F1 score, compared to choosing

the most representative template.

V. DISCUSSION & FUTURE WORK

The main drawback of the algorithm is the time consuming

optimization process. For the three dataset, OPPORTUNITY,

Skoda and HCI, WLCSSLearn took respectively 7h45min,

25min and 1h30min on average to complete 500 iterations, on

a desktop PC with a 3.40 GHz CPU. The main bottleneck is the

calculation of WLCSS for computing the fitness scores. This

issue escalate dramatically with the increase of the number and

of the length of the templates. A possible solution is to use faster

way to compute WLCSS: a highly parallelized computation

(e.g. using GPUs) would allow to compute multiple matching



TABLE III: Comparison of F1 scores of WLCSS on the three datasets. The parameters obtained with WLCSSLearn are

evaluated in isolated without null class (Iso_NoNull), isolated with null class (Iso_Null), and continuous (Cont). The results are

compared to the best results for each dataset in the literature.

Dataset Template selection
WLCSSLearn Previous Studies

Iso_NoNull Iso_Null Cont
Accuracy F1 score Accuracy F1 score Accuracy F1 score Accuracy F1 score Ref

OPPORTUNITY
Random choice 0.92 ± 0.01 0.53 ± 0.04 0.94 ± 0.01 0.43 ± 0.02 0.72 ± 0.07 0.37 ± 0.04

0.50 ± 0.06 0.48 ± 0.05 [4]MRT (LCS) 0.94 ± 0.00 0.61 ± 0.05 0.97 ± 0.00 0.58 ± 0.03 0.83 ± 0.04 0.48 ± 0.03

Skoda
Random choice 0.98 ± 0.02 0.90 ± 0.09 0.99 ± 0.01 0.88 ± 0.10 0.94 ± 0.02 0.42 ± 0.06

0.76 0.58 [5] [18]MRT (LCS) 0.99 ± 0.01 0.97 ± 0.04 1.00 ± 0.00 0.95 ± 0.05 0.94 ± 0.01 0.44 ± 0.02

HCI guided
Random choice 0.93 ± 0.07 0.83 ± 0.14 0.96 ± 0.03 0.83 ± 0.14 0.79 ± 0.08 0.88 ± 0.05

0.74 0.72 [4]MRT (LCS) 0.98 ± 0.01 0.95 ± 0.03 0.99 ± 0.00 0.95 ± 0.03 0.94 ± 0.02 0.97 ± 0.01

scores at the same time, increasing drastically the performance

of WLCSSLearn.

In our test, we set manually the values of the WLCSSLearn

parameters Population, Iteration, Genes, rank, elitism, cr, and

mp. We aim to characterize more in details such parameters

in future studies.

We also did not evaluated different way of pre-process data

as we aimed to a comparison with previous study, but we

intend to exploit this in future extensions of this research as it

may really improve the performance of the TMM.

Finally, we found that the choice of the template may

influence the performance of WLCSSLearn. For this reason, we

realize that WLCSSLearn can potentially be used for generating

an optimized template instead of picking one from the training

set. In this case, an evolution strategy may be used instead

of a genetic algorithm, as the values of the genes for each

template may have to vary within a set of discrete values. For

example, this would be the case for generating a template for

the encoded Skoda dataset which represent the samples with

values in the range 0-27.

The generation of the template can be useful to adapt

WLCSSLearn for other TMM as well. We chose WLCSS

as it is a robust TMM with several parameters. With the right

fitness function, our algorithm can be adapted for generating

the template for DTW or to compute the cost of insertion,

deletion and substitution for the Edit distance.

VI. CONCLUSION

We presented WLCSSLearn, an automated learning algo-

rithm for WLCSS. Using a genetic algorithm, WLCSSLearn is

able to learn and optimize the parameter R, P and ε required

by WLCSS. Moreover, it can find the best matching thresholds

for each recognition class. We demonstrated its applicability

using three dataset of human gestures. The results show that

our method increase the accuracy and F1 score by up to 20%

compared to a manual optimization, but more specifically it

is automatic and it does not require any previous knowledge

on the data. Although there is still space for improvement,

WLCSSLearn is a robust foundation for a well performing

learning method for TMM.
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ABSTRACT

Activity and gesture recognition from wearable sensors data can

be used for skill assessment in order to gauge the capability of a

user at performing a task. As many other problem of automatic

classification, gesture recognition relies on annotated data for the

training of the classification system and to gather a set of gestures

for the assessment. The collection of a multi-sensors dataset for this

goal can be challenging, especially when it is performed in the field

rather than in a more controlled environment such as a laboratory.

In this paper, we present the collection of a beach volleyball gestures

dataset in the field. The resulting dataset is made publicly available

to the community and it includes 585 annotated gestures, collected

by 10 users, with 4 wearable inertial sensors per user. In addition,

we also provide a list of lessons learnt, suggestions and guidelines

to improve future data collections in the field.
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1 INTRODUCTION

Skill assessment is the procedure to gauge the capability of the user

at performing a certain task. In the field of wearable computing,

gesture recognition can be deployed for skill assessment through

the application of pattern recognition methods on inertial sensors

data in order to measure the similarity between streams of data

associated to different gestures.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

UbiComp-ISWC ’21 Adjunct, September 21ś26, 2021, Virtual, USA

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8461-2/21/09. . . $15.00
https://doi.org/10.1145/3460418.3479355

Gesture recognition relies on datasets of well annotated gestures

to detect, recognize and then assess the quality of the movements.

A dataset is required for each specific assessment application. The

datasets for this goal can also include a wide variety of sensors in

order to capture the complexity of human movements [8]. For these

reasons, the need of data is a continuous challenge [16].

Collecting a dataset for skill assessment can be a complicated task

due to factors as preparing the environment, choosing and setting

up the sensors, as well as accurately define the data collection

protocol. These tasks can be even more challenging when the data

collection is required by the application domain to be performed

in the field rather than in an artificial environment. For example,

this is the case of data recorded for industrial applications, surgical

skill assessment, and in outdoor sports.

In this paper, we illustrate our process of collecting a multi-

sensor multi-user dataset of gestures through a case study of beach

volleyball gestures. We selected this application scenario because,

as sport, it can greatly benefit from skill assessment in the future,

while also presenting the main challenge of being an outdoor sport

played in an environment that could be cumbersome for a data

collection. Creating a new dataset allowed us to:

• have full control on the set and positioning of the sensors,

enabling, for example, the encoding of the gestures for recog-

nition as presented in [17]. By including a wide set of sensors,

we increase the applicability of this dataset for the evaluation

of skill assessment systems;

• customize the data collection protocol in order to focus on

specific gestures. In this case, we focus on the serving ges-

ture because i) it is the first movement of every rally which

means it can greatly affect every consecutive action; ii) it is

not affected by any previous action of the game, allowing

players to have full control and freedom in performing the

movement.

The contributions of this paper are:

• a publicly available dataset of beach volleyball serves ges-

tures recorded by 10 users in 3 session, with multiple wear-

able inertial sensors. The serves gestures are annotated with

4 types of serves. The dataset also include data recorded

during several 2-vs-2 games recorded with the same setup.

• a case study of annotation recovery for one of the session,

due to a failure in the camera system set up for a-posteriori

data labelling.

• a list of lesson learnt, suggestions and guidelines aimed at

simplifying and improving future data collection performed

in the field with wearable sensors.
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2 BACKGROUND

Beach volleyball is a sport that comprises a limited set of very

different basic movements (serving, passing, hitting) that can be

combined during a game between two teams of two players. Several

studies explored the technical aspect of beach volleyball gestures

and their effectiveness on the game [10, 13] through the visual

and manual analysis of videos in what is called notational analysis.

This method has been used to investigate the variations of tech-

niques among different kind of players [18], the dependency of the

different techniques to the success of the game [5], to evaluate a

single technique [6], to understand the biomechanics of a specific

technique [9, 14].

From the literature, it has also emerged the high correlation

between a good quality in the basic techniques and the success in

the game [10]. For this reason, it is important for the athletes to

achieve the best quality in the performing of the game technique.

The analysis of the beach volleyball games has been performed

used mainly the video recording and the tracking of the players

[4, 12]. However, setting up a controlled environment with cameras

and tracker for a sport that is mainly played outdoor is often not

possible. A first attempt to use wearable sensors to autonomously

recognize the beach volleyball serves and other gestures has been

studied in [3, 7].

Unfortunately, despite a wide set of videos publicly available for

beach volleyball training and games, we were unable to retrieve a

dataset of playing gestures recorded using wearable sensors. The

few studies investigating wearable sensors for beach volleyball

application did not make their datasets available to the community.

3 EQUIPMENT

3.1 BlueSense

The data from the players were recorded using a set of wearable in-

house developed inertial sensing platform, called BlueSense. Blue-

Sense is a sensor research platform developed for wearable and

IoT application [15]. Its small size of just 30x30mm allows to be

worn with minimal to none hindering of the user while perform-

ing gestures. The platform is instrumented with a 3-axis inertial

unit (IMU) including an accelerometer, a gyroscope and a magne-

tometer. BlueSense is capable of sampling raw data at 1 KHz, or

computing 3D orientation on-board up to 500 Hz, using a variation

of Madgwick’s algorithm [11]. The data can be logged on a locally

stored microSD, or streamed over the integrated Bluetooth module.

The Bluetooth module is also used for streaming of commands

(e.g. start/stop recording, set timestamps, etc.). The platform also

includes an on-board real time clock (RTC) with minimal time de-

viation of 0.6ppm, allowing multiple nodes to stay synchronised

for the duration of the data collection, enabling an easier merge of

data and annotation once the collection is complete.

For this data collection, we set the sampling rate to 500Hz as we

recorded both raw and orientation data. We also used the integrated

microSD as streaming data over Bluetooth would results in possible

loss of samples. The commands were sent to the sensors using a

specifically developed Android application 1.

1https://play.google.com/store/apps/details?id=net.danielroggen.bs2mgr

(a) BlueSense (b) Sensors place-
ment

Figure 1: BlueSense platform and sensors placement on the players.

3.2 Sensor placement

A set of 4 BlueSense per player was placed on the torso, the dom-

inant upper arm, lower arm and hand of the players, thanks to a

set of strap bands as shown in Figure 1b. The straps were made

by using an an elastic band and industrial velcro. This ensured a

tight placement of the sensor on the body of players minimising

accidental vibrations of the platform.

By including the torso and the dominant arm, the orientation

data can be used to encoded gestures as explained in [17] or to

animate a 3D model like the one described in [1].

3.3 Cameras

The entire data collection was recorded using 3 wide-angle video

cameras for a-posteriori annotation. The cameras were placed as

shown in Figure 2a. These cameras were chosen because of their

wide field of view, allowing a comprehensive recording of the entire

court (see Figure 2b-2d). They were set to record at 1280x720 pixels

and 120fps. While they were able to record at higher resolution, we

opted to reduce the frame size in exchange for a higher framerate

that could be more useful when looking at fast movements as beach

volleyball serves.

4 DATA COLLECTION

We accurately defined the data collection protocol for the partici-

pants in order to reduce the time and effort required.

4.1 Participants recruitment

The first step of the collection was the choice of the participants. In

order to minimise errors while performing the protocol, we needed

players that would be able to serve and perform specific game

gestures on command. The participants were selected according

with their level of expertise from the community of players at our

closest beach volleyball venue. The players’ level varied between

semi-professional to former professional players. We did not con-

strain gender or physicality. We selected 10 players, 5 females and

5 males, divided in 3 sessions of 4 players. 2 female players were

present in two sessions. 9 players were right-handed and 1 was

left-handed.

4.2 Court Setup

The court was setup accounting for one serving areas and two

landing areas on each side of the net, as shown in Figure 2. The
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(a) Setup of the court

(b) Left view (c) Center view (d) Right view

Figure 2: Setup of the court during data collection and camera view

examples. In Figure 2a, the green areas are the aimed landing area

for short serves, while the orange areas are for long. Players can

serve from any point in the serving area of each court, aiming at the

landing areas of the opposite side. The three wide angle cameras,

placed as shown by the black symbol, offer a comprehensive coverage

of the entire court for annotation. An example of the camera view is

displayed at the bottom, respectively for left 2b, center 2c and right

cameras 2d.

two landing areas were delimited by little cones and differentiated

between short and long serves. We empirically set the landing areas

to 1.5m deep. They were delimited by little cones that were removed

for the gaming phase of the data collection.

The net height was set to 2.33m as average between men (2.43m)

and women (2.24m) official heights.

4.3 Data collection protocol

The players were instructed to follow a precise but flexible proto-

col during each session of the data collection. The protocol was

developed in order to record more controlled serves gestures as

well as free in-game movements. 4 players would perform such

protocol in a 2 hours session, excluding some time for setup and

synchronisation.

The protocol was divided in two main parts: in the first part, the

participants were asked to perform specific serves individually, as

they were in a training session. In the second part, the participants

were allowed to freely play few sets following the standard 2-vs-2

rules of beach volleyball.

We identified 2 main type of serves to consider, graphically

presented in Figure 3 and described in the following. According

with the force applied by the player and therefore the length of the

trajectory, each type can be short or long:

Float serve In this serve, the player hits the ball at the centre with

a flat and stiff hand. This cause the ball to float in the air

with a small unpredictable side-to-side movements.

Top spin In this serve, the player perform a wider movement with

the arm, compared to the float serve, and he hits the ball

at the top-centre with a spinning forward movement of the

hand. The ball to rotate forward during the flight and the

trajectory result more curved compared to a float serve.

(a) Float serves (b) Top spin serves

Figure 3: Example of float and top spin serves with trajectories, for

long (orange) and short (green) serves.

Table 1: Data collection protocol. The columns indicates in order:

the step number, the duration of the step in number of repetitions

or minutes, the activity required in each step and a brief description.

Step

No.

R./D. Activity Description

1 8 mins Warm up The participants could warm up freely

with the ball. This was necessary to re-

duce the risk of injuries and it also al-

lowed the players to get familiar with

the sensors while playing.

2 12x Long float

serves

The players placed themselves at the

end of the court in the serving area.

They were asked to serve 12 long float

serves. Each player must count its own

serves.

3 1 min Rest

4 12x Long top

spin serves

They were asked to serve 12 long float

serves. Each player must count its own

serves.

5 1 min Rest

6 12x Short float

serves

They were asked to serve 12 long float

serves. Each player must count its own

serves.

7 1 min Rest

8 12x Short top

spin serves

They were asked to serve 12 long float

serves. Each player must count its own

serves.

9 1 min Rest

10 Rest of

time

Free game The players were asked to freely play

for the remaining time of the 2 hours

session. The free game respected the

standard 2-vs-2 rules, with sets up to

21 points and changing side every 7-

points. The players teams stayed the

same for this entire part.

Once the players were instrumented and the court was prepared,

the recording on the sensors and the cameras started. Then the

protocol begin with a synchronisation step comprising 3 hand claps

in front of the cameras. This allowed the synchronization of all the

involved data sources for an accurate annotation (see Section 5).

The protocol proceeded as presented in Table 1.

Finally, the players were asked to repeat the synchronisation

step before to be de-instrumented from all the sensors.

Players were asked to follow the protocol at their best. However,

we left room to correct possible mistakes during the data collection

such as the rest breaks and additional time in between the two parts

of the protocol.
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5 ANNOTATION

The annotation was performed off-line using a previously in-house

developed software. The software supports multiple video and data

sources, as well as multiple annotation tracks. All the data sources

can be synchronised within the application. A screenshot of the

annotation software is shown in Figure 4.

For this first iteration of the dataset, we labelled only the part of

the data collection including the controlled serves of the players.

The labels for each of the four serve types were introducedmanually

for each player. The manual annotation allowed to correct possible

mistakes between serve requested by the protocol and the one

actually performed by the players.

Figure 4: Annotation tool used to label the data. The videos on the top

are used to synchronise all the source and to analyse the movements.

The annotation are then inserted in the black tracks (one track per

player), in the centre of the screen. On the bottom, a downsampled

signal from one channel of the BlueSense’s IMU is shown to check

the consistency of the sensor data with the movements. One signal

is displayed for each player.

The annotations were then exported from the software and

merged with the data of each player singularly. The data from

the multiple sensors, torso, upper arm, lower arm and hand, for

each player were synchronized thanks to the timestamps associated

with the sampled data from the BlueSense.

6 DATASET ISSUES

Unfortunately, during the data collection we encountered two main

issues that could affect the quality of the data: i) the missing videos

for one of the session due to a failure of the cameras, ii) the malfunc-

tioning of two sensors for one participant resulting in difficulties

in annotating such data.

6.1 Missing videos

During one of the sessions, the cameras failed after few seconds of

recording. This resulted in the impossibility of annotating the data

as described in Section 5. While we could not figure out the reason

for the failure, we managed to recover the annotation thanks to the

precise protocol.

We could indeed analyse the data knowing the order of the steps

each player followed and therefore annotate the serving segments

net of possible mistakes made by the players in the serving.

Figure 5 shows the steps we performed to annotate the data:

(1) We started by evaluating the raw data provided by the gyro-

scope of the BlueSense placed on the lower arm. We chose
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Figure 5: Example of data annotation recovery procedure for one

user. The raw data from the gyroscope of the BlueSense positioned

on the lower arm are plotted in the top Figure 5a. The magnitude

of the signal is then computed in order to identify the section of

the data regarding the serves. This section is identified in Figure 5b

by the two orange dashed lines. Figure 5c displays an enlargement

of the section of data pertinent to the serves. The four sections

for each one of the serves type are then visually individuated and

represented in Figure 5d as separated by the vertical orange dashed

lines. A threshold displayed with an horizontal red dashed line is

then used to select the peaks in the data that would be selected as

serves.

this sensor for its sensibility and for not being affected by

gravity (accelerometer) and external magnetic fields (mag-

netometer).

(2) Considering the serve gestures, we assumed them having

higher energy compared to slower gestures such as passing.

Therefore we computed the magnitude of the three channel

data as
√︁
𝑥2 + 𝑦2 + 𝑧2 as a measure of the quantity of rotation.

(3) We identified the part of the data referring to the serves in

the protocol. Starting from the synchronization claps that

can be identified at the beginning of the time series, we found

a section of recurring pattern divided in four subsections,

one per serves type in the protocol. The recurring patterns

were identified by the highest peaks in the section. The peaks

in the signal resulted by the impact of the hand with the ball

at each serve.

(4) We empirically defined a thresholds in order to filter only the

peaks referring to serves. We then defined the boundaries

of each section corresponding to long floats, long top spin,

short float, short top spin serves. As expected according to
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the protocol and considering the threshold, around 12 peaks

were contained in each section.

(5) For every peak in each section, we selected a segment of

450 samples that we then annotated with the correspond-

ing serves type. The length of the segments was defined as

average length of the already annotated serves.

We repeated this process for all the four players in the session

with missing videos. In order to verify the correctness of our proce-

dure, Figure 6 presents the segments annotated through this method

for one player. This player participate in session 3 as well as in ses-

sion 1 that was correctly annotated using the videos, allowing to

compare the video-annotated segments and manually annotated

segments for the same participant. In the figure, it is possible to no-

tice how the manually annotated segments in colours have similar

shape to the most representative segment of the video-annotated

annotated ones.

This procedure allowed to annotate the serving data for an entire

session, comprising of 4 players for a total of 16 sensors data that

would otherwise be unusable for supervised gesture recognition.

6.2 Sensors errors and reliability

During an initial session, we discovered the failures of two Blue-

Sense on the same player. The failure were due to a bad config-

uration of the sensors themselves: in one case, the microSD was

not properly formatted, resulting in missing data from the torso

sensors. The second issue was due to a bad configuration of the

output format of the data from the hand sensor that made them

non-readable. In the final release of the dataset, we still include the

annotated data from the upper arm and the lower arm of the same

user, as they were still available.

7 DISCUSSION

Throughout the dataset recording and thanks also to the issues that

we encountered, we were able to define a series of guidelines for

future data collection that we want to discuss.

Defining an accurate protocol is fundamental for the success

of the data collection as well as for handling possible errors of the

participants and failure of the hardware. It is important to plan

every single step of the data collection in advance.

Invest in high quality hardware equipment. The cameras

failure was an issue that could be prevented by investing in more

reliable and well known products. On the other hand, the wearable

sensors were more reliable with a single issue due to a mistake in

the configuration.

Extensively test any hardware. We conducted several tests of

the cameras and the sensors: this was important, for example, to set

the sensitivity range for the IMU of the BlueSense for this specific

application. Unfortunately, in all previous tests the cameras did

behave correctly without displaying any problem: a confirmation

that even extensive testing sometimes cannot be enough.

Account for missing data. In some case, such as the missing

videos, the data can be recovered through a manual inspection

or other approaches [2]. In other cases, such as for sensors fail-

ures, some data can be irrecoverably lost. This can be overcome by

including a high number of participants.

Keep the participants engaged. During the recording of the

dataset, we found that players were quite keen to participate as they

could play free of charge for some time, once they completed the

first part of the protocol. This is an important aspect to consider,

as the quality of a dataset can be greatly affected by the lost of

commitment by the users [2].

Testing the data collection protocol would help to assess

the engagement of the participants as well as the intensity of the

protocol. If the protocol is too energy demanding for the participant,

the quality of the gestures can decrease after few repetitions. More

importantly, if the protocol is too intense can even cause injuries

in the players. For this reason, we included a mandatory warm-up

section at the beginning of every session, as well as well defined

rest interval between exercises.

Testing the protocol in advance can also help to optimize the

efforts of the researchers performing the data collection. For ex-

ample, just after few iterations of the protocol, we were able to

better spend our effort in setting up the courts, the cameras and the

sensors, by reducing the discomfort of the player when the weather

conditions were not optimal. This is visible in Table 2 as the total

amount of data we collected increases in time with the progression

of the sessions.

Reduce the discomfort of the participants. In addition to

improving the protocol, the discomfort of the participants could be

minimised even further with a better placement of the sensors. In

the effort of minimising the sensors noise by reducing accidental

vibrations, we built the straps quite tight and potentially discomfort-

able. Additionally, the usage of strong industrial velcro resulted in

some irritation on the skin of some players. This could be improved

in future iterations for example, by building a full vest integrating

the sensors or even by fusing the sensors in the fabric.

Assess the environment for the data collection. In our case,

a specific setting such as the beach volleyball court was required.

Unfortunately, being based in the United Kingdom affected our

efforts as the weather reduced the availability of the courts. We

strongly advise to take the environment conditions into considera-

tion when planning a data collection in the open. For example, we

eventually realised that setting the data collection in more sunny

countries would have greatly increased the availability of courts

and people, with little impact on the costs.

8 CONCLUSION

We illustrated the creation of a dataset of beach volleyball serves

gestures for skill assessment. We described the process of data

recording, as well as data labelling and recovering of data with

missing annotation. Finally, we discussed a set of guidelines to

improve future collection of gestures data in the field.

The resulting dataset is summarised in Table 2: net of sensors

failures, it comprises a total of 585 annotated servers, divided in

147 long float, 140 long top spin, 155 short float and 143 short top

spin serves. In term of time, the dataset includes a total of 2 hours

and 12 minutes of annotated data and a total time of 11 hours and

45 minutes of sensors data. These times account for each users in

the same session separately.

The dataset is freely available to the community at

https://ieee-dataport.org/open-access/wearlab-beach-volleyball-serves-

and-games
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(a) Long float
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(b) Long top spin
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(c) Short float
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(d) Short top spin

Figure 6: Comparison of artificially extracted and video-annotated gestures. A player participated in two sessions, one with videos and one

with missing videos. Thanks to this, it is possible to compare the segments of the gestures extracted from the sensors data (over-imposed in

colours) and a video-annotated gesture segment (in black), for each serves type. The video-annotated gesture is selected as MRT among the

segments for each serve type.

Table 2: Beach volleyball dataset summary. The columns indicate respectively: the user_ID, the gender of the player, the handedness, the

number of each serves with lf = long float, lts = long top spin, sf = short float, sts = short top spin. The number of errors is calculated as the

number of serves of the wrong type performed by each player. ann_time is the amount of time of annotated data and total_time indicated the

total amount of recorded data for each session. Finally, the sensors columns reports the sensor data that are available for each user: t = torso, u

= upper arm, l = lower arm, h = hand.

user_ID gender hand session lf lts sf sts errors ann_time total_time sensors

01 F R 1 16 12 11 9 6 00:12:08 00:41:16 -ul-

02 M L 1 12 10 16 15 5 00:11:28 00:40:30 tulh

03 M R 1 8 13 14 12 2 00:11:08 00:40:34 tulh

04 F R 1 13 12 13 14 2 00:11:06 00:40:24 tulh

05 M R 2 12 11 12 13 2 00:09:58 01:00:21 tulh

06 M R 2 12 12 12 13 2 00:10:02 01:04:57 tulh

07 M R 2 11 10 12 11 2 00:09:42 01:05:27 tulh

08 F R 2 12 12 12 11 0 00:09:27 01:05:36 tulh

01 F R 3 13 12 14 12 0 00:12:08 01:12:10 tulh

09 F R 3 12 12 13 11 0 00:11:40 01:10:49 tulh

10 F R 3 14 12 14 11 0 00:11:15 01:12:37 tulh

03 F R 3 12 12 12 11 0 00:11:48 01:10:49 tulh

Total 147 140 155 143 02:11:55 11:45:34
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Appendix E

The Sussex-Huawei Locomotion

(SHL) dataset

In addition to the work presented in this thesis, we contributed to the wearable and

ubiquitous computing research community with other works, presented in this Appendix.

We organized the collection and curation of a dataset for Locomotion and Transporta-

tion mode recognition in collaboration with Mathematical and Algorithmic Sciences Lab,

PRC, Huawei Technologies France. Over a period of 7 person months, we collected data

from 3 participants instrumented with 4 smartphones and a front facing cameras travelling

over different means of transports. The dataset resulted to be the largest dataset of its

kind, with more than 750 hours of annotated data, 16 sensors modalities.

The dataset collection process was described is a series of publications listed in the

following. The recognition of transportation through several sensors modalities was also

explored with both machine and deep learning methods.

In addition, one of the most important contribution for the community is the creation

of a very successful series of machine learning challenges, that reached the fourth edition

at the time of writing, in 2021. The results of the challenges as well as our baseline for

each edition are published in a yearly publication, presented in the Human Activity Sens-

ing Corpus and Applications (HASCA) workshop, as part of the Ubiquitous Computing

conference and International Symposium on Wearable Computer (Ubicomp/ISWC).

List of additional publications

• Mathias Ciliberto et al. ‘High reliability Android application for multidevice mul-

timodal mobile data acquisition and annotation’. In: Proceedings of the 15th ACM
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Conference on Embedded Network Sensor Systems - SenSys ’17. ACM Press, 2017.

doi: 10.1145/3131672.3136977

• Hristijan Gjoreski et al. ‘A Versatile Annotated Dataset for Multimodal Locomotion

Analytics with Mobile Devices’. In: Proceedings of the 15th ACM Conference on

Embedded Network Sensor Systems - SenSys ’17. ACM Press, 2017. doi: 10.1145/

3131672.3136976

• Hristijan Gjoreski et al. ‘The University of Sussex-Huawei Locomotion and Trans-

portation Dataset for Multimodal Analytics With Mobile Devices’. In: IEEE Access

6 (2018). doi: 10.1109/ACCESS.2018.2858933. url: https://ieeexplore.ieee.

org/document/8418369/

• Lin Wang et al. ‘Benchmarking the SHL recognition challenge with classical and

deep-learning pipelines’. In: UbiComp/ISWC 2018 - Adjunct Proceedings of the 2018

ACM International Joint Conference on Pervasive and Ubiquitous Computing and

Proceedings of the 2018 ACM International Symposium on Wearable Computers. As-

sociation for Computing Machinery, Inc, 2018, pp. 1626–1635. isbn: 9781450359665.

doi: 10.1145/3267305.3267531

• Lin Wang et al. ‘Enabling reproducible research in sensor-based transportation mode

recognition with the sussex-huawei dataset’. In: IEEE Access 7 (2019). issn:

21693536. doi: 10.1109/ACCESS.2019.2890793

• Lin Wang et al. ‘Summary of the Sussex-Huawei locomotion-transportation recogni-

tion challenge 2019’. In: UbiComp/ISWC 2019- - Adjunct Proceedings of the 2019

ACM International Joint Conference on Pervasive and Ubiquitous Computing and

Proceedings of the 2019 ACM International Symposium on Wearable Computers.

Association for Computing Machinery, Inc, 2019. doi: 10.1145/3341162.3344872

• Sebastien Richoz et al. ‘Human and machine recognition of transportation modes

from body-worn camera images’. In: 2019 Joint 8th International Conference on

Informatics, Electronics and Vision, ICIEV 2019 and 3rd International Conference

on Imaging, Vision and Pattern Recognition, icIVPR 2019 with International Con-

ference on Activity and Behavior Computing, ABC 2019. 2019. doi: 10.1109/

ICIEV.2019.8858537

• Lin Wang et al. ‘Summary of the sussex-huawei locomotion-transportation recogni-

tion challenge 2020’. In: UbiComp/ISWC 2020 Adjunct - Proceedings of the 2020

https://doi.org/10.1145/3131672.3136977
https://doi.org/10.1145/3131672.3136976
https://doi.org/10.1145/3131672.3136976
https://doi.org/10.1109/ACCESS.2018.2858933
https://ieeexplore.ieee.org/document/8418369/
https://ieeexplore.ieee.org/document/8418369/
https://doi.org/10.1145/3267305.3267531
https://doi.org/10.1109/ACCESS.2019.2890793
https://doi.org/10.1145/3341162.3344872
https://doi.org/10.1109/ICIEV.2019.8858537
https://doi.org/10.1109/ICIEV.2019.8858537
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ACM International Joint Conference on Pervasive and Ubiquitous Computing and

Proceedings of the 2020 ACM International Symposium on Wearable Computers.

Association for Computing Machinery, 2020. doi: 10.1145/3410530.3414341

https://doi.org/10.1145/3410530.3414341

	PhD Coversheet
	PhD Coversheet

	Ciliberto, Mathias
	Contents
	List of Publications
	List of Tables
	List of Figures
	1 Introduction
	1.1 Motivations
	1.2 Aims
	1.3 Contributions
	1.4 Thesis outline

	2 Data collection in the wild: A beach volleyball case study
	2.1 Introduction
	2.2 Data collection equipment
	2.2.1 BlueSense
	2.2.2 Sensor placement
	2.2.3 Cameras

	2.3 Data collection
	2.3.1 Participants recruitment
	2.3.2 Court Setup
	2.3.3 Data collection protocol

	2.4 Annotation
	2.5 Dataset issues
	2.5.1 Missing videos
	2.5.2 Sensors errors and reliability

	2.6 Dataset summary
	2.7 Discussion and Conclusion

	3 Privacy preserving annotation of movements using a 3D model
	3.1 Introduction
	3.2 Related work
	3.3 3D human model for movement animation
	3.3.1 Movement animation
	3.3.2 Motion tracking system

	3.4 Privacy preserving annotation
	3.4.1 Experimental setup
	3.4.2 Results
	3.4.3 Discussion
	3.4.4 Conclusion


	4 Action recognition using Template Matching
	4.1 Template Matching Methods
	4.1.1 TMM for classification
	4.1.2 Warping Longest Common Subsequence

	4.2 Activity recognition using TMM
	4.2.1 Template matching of encoded movements

	4.3 Datasets

	5 Training of parameters for TMM based action recognition
	5.1 Parameters training methods for TMM: state of the art
	5.1.1 Limitation of state of art

	5.2 Evolutionary algorithms
	5.3 WLCSSLearn_p
	5.4 Evolutionary parameters analysis
	5.4.1 Crossover vs Mutation
	5.4.2 Population size, rank and elitism

	5.5 Genetic encoding evaluation
	5.6 Discussion
	5.7 Conclusion

	6 Generation of variable templates for TMM based action recognition
	6.1 Template training methods for TMM: state of the art
	6.1.1 Limitations of state of the art

	6.2 WLCSSLearn_t
	6.3 Template Generation Evaluation
	6.3.1 Shape and length of generated templates
	6.3.2 Computational reduction vs performance recognition

	6.4 Discussion
	6.5 Conclusion

	7 WLCSSCuda: supporting TMM training with GPGPU
	7.1 Introduction
	7.2 WLCSSCuda
	7.3 WLCSSCuda vs WLCSS
	7.4 Discussion and Conclusion

	8 Segment classification from poorly annotated data: a drinking movement recognition case study
	8.1 Introduction
	8.2 Related work
	8.3 Dataset
	8.4 User annotation analysis
	8.5 Movement classification
	8.5.1 Data processing and training set selection
	8.5.2 WLCSS training
	8.5.3 Confidence computation
	8.5.4 Evaluation

	8.6 Unsupervised learning
	8.6.1 K-Means with WLCSS
	8.6.2 Evaluation

	8.7 Discussion
	8.8 Conclusion

	9 Conclusion
	9.1 Achievements
	9.2 Limitations and future work
	9.3 Relevance and conclusion

	Bibliography
	Appendices
	Appendix A Recruiting participant for collecting data of beach volleyball serves and games
	Appendix B WLCSSLearn_p: Distribution of generated R,P, e
	Appendix C WLCSSLearn_t: Shape and length of generated templates compared to MRT
	Appendix D Publications
	Exploring Human Activity Annotation Using a Privacy Preserving 3D Model
	BlueSense: designing an extensible platform for wearable motion sensing, sensor research and IoT applications
	Complex human gestures encoding from wearable inertial sensors for activity recognition
	A Case Study for Human Gesture Recognition from Poorly Annotated Data
	Drinking Gesture Recognition from Poorly Annotated Data: A Case Study
	WLCSSCuda: A CUDA Accelerated Template Matching Method for Gesture Recognition
	WLCSSLearn: Learning Algorithm for Template Matching-based Gesture Recognition Systems
	Collecting a dataset of gestures for skill assessment in the field: a beach volleyball serves case study

	Appendix E The Sussex-Huawei Locomotion (SHL) dataset




