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ABSTRACT

Since observation of the Higgs boson, one of the fundamental priorities of the ATLAS experiment

is to precisely measure properties of this particle, allowing evaluation of the Standard Model

(SM) of particle physics. Associated Higgs production with a top-quark pair (t t̄ H) is particularly

useful as it can directly determine the absolute value of the top-Yukawa coupling.

Correctly identifying events containing interactions with the Higgs is challenging: among

all t t̄ H final states, that in which a Higgs decays to a bb̄-pair and and the top quarks each

decay hadronically to jets has the largest branching ratio, but also the least signal purity. The

overwhelming majority of backgrounds within ATLAS come from non-resonant production of

multijet events. The other significant background in this search comes from t t̄+ jets events.

Distinguishing signal events from background events based around the identification and

classification of jets becomes increasingly difficult as pile-up increases; proposed increases in

luminosity at the LHC will make this worse. Optimising the ATLAS trigger and jet reconstruction

are required to combat this effect. In the trigger, I investigate the viability of tracking with jets,

opening new avenues to improving identification.

Developments in jet reconstruction, through access to jet substructure (JSS), can improve

flavour-tagging. Limitations arise due to contributions from Non-Global Logarithms (NGL), a

problem circumnavigated by utilising soft drop grooming. By analysing JSS variables in flavour-

tagged soft drop-groomed jets I am able to identify optimal grooming strengths and variables

for discriminating between different jet flavours. In particular, I find that applying soft-drop

grooming to tau-flavoured jets improves correlation between the jet mass and the mass of tau

leptons. Comparing reconstructed jets with truth jets at different grooming strengths also al-

lows me to evaluate the validity of reconstructed jets in representing real physics. Finally, I use

all this to compare results from Monte Carlo (MC) simulation of t t̄ , t t̄ H and dijet events, as well

as real data from the ATLAS detector in order to optimise discrimination between Higgs events

and background. These processes display potential for optimising Higgs measurements with

flavour-tagging improvements through JSS analysis in soft drop-groomed small-jets.
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1

INTRODUCTION

To me there has never been a higher

source of earthly honour or

distinction than that connected

with advances in science.

Isaac Newton

In 2012 the universe changed dramatically - or at least our fundamental understanding of it

did - with the discovery of the Higgs boson. This discovery by the ATLAS and CMS collaborations

at the Large Hadron Collider (LHC) was the final puzzle-piece of the Standard Model (SM): the

theoretical framework that lies at the heart of particle physics [24][25]. First formulated during

the 1960s and 1970s, the SM explains the foundational principles of the universe in terms of ele-

mentary particles, their interactions, and the universe-shaping forces that emerge. The Higgs

boson was the last of these particles to be experimentally verified, and its discovery opens the

door to new regions of scientific exploration. The SM has its limitations, and there exists phe-

nomena within nature it cannot explain. Rigorous analysis of the Higgs boson, its properties

and interactions, allows us to evaluate proposed models vying to supersede the SM as the key-

stone of particle physics. There also exists the possibility that a comprehensive understanding

of this momentous particle will lead us to a new understanding of physics.

A particular focus is the Yukawa coupling between the Higgs and fermions, leading to the

masses of the latter. The fermion masses are proportional to the strength of their coupling

with the Higgs; therefore, understanding the coupling of the heaviest of these, the top quark,

is especially important. A direct measurement of the Yukawa coupling between the Higgs and

top quarks is accessible via the t t̄ H Higgs production channel, known as associated production

with top quarks.

Jets, collimated sprays of hadronically decaying particles, are of particular importance in

decoding the physics of Higgs production. The Higgs decay channel with the highest branch-

ing ratio is Higgs decay to a b-quark pair (H → bb̄), resulting in significant hadronic output.

Signal purity in this decay channel is poor: the dominant process at the LHC is multi-jet pro-

duction, and the dominant background for H → bb̄ is top pair-production (t t̄ ) with additional
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hadronic jets. Understanding the physics of hadronic jets is a fundamental part of decoding

Higgs physics at ATLAS; however, proposed future changes at the LHC to increase luminosity

pose growing issues with jet reconstruction due to the increasing effect of pile-up. Optimising

jet reconstruction to improve accuracy, reliability and efficiency is, therefore, vital to analysis.

Developments within the ATLAS Jet Signature trigger to improve jet identification at high

speed is one aspect of this, leading to testing possible solutions, such as hardware implement-

ations like the Fast TracKer (FTK). Advances in offline analysis rely on exploring innovative tech-

niques and processes, including the use of JSS and novel grooming techniques in jet reconstruc-

tion. To address issues posed by to traditional jet grooming techniques, such as NGL, alternat-

ives grooming techniques must be explored that overcome this, such as soft drop grooming.

The main analysis of this thesis focuses on the application of soft drop grooming to small

Anti-kT jets constructed from calorimeter clusters. I inspect the changes on JSS observables

brought about by soft drop grooming in a number of different jet flavours. This is done using

Monte Carlo (MC) samples of t t̄ , t t̄ H and dijet events, as well as real data.

This thesis is presented in nine chapters. The first, Chapter 1, discusses the theoretical

fundamentals of the SM and, in particular, the Higgs boson. Following this, the experimental

setup of the LHC and the ATLAS detector are introduced in Chapter 2. Chapter 3 explains the

generation of MC samples used to model physics events at ATLAS, as well as the algorithms used

for reconstructing physics objects using signals from the detector subsystems. Discussion on

the methods of jet identification, reconstruction and processing can be found in Chapter 4. In

Chapter 5, I consider the ATLAS hardware and software triggers and potential tracking develop-

ments in the ATLAS HLT Jet trigger. The main analysis of the thesis, relating to the effects of soft

drop grooming on flavour-tagged small jets, is presented in Chapter 6. This is followed by a

final conclusion with recommendation for future analysis.
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1THE STANDARD MODEL AND

THE HIGGS BOSON

These things thou must always have

in mind: What is the nature of the

universe, and what is mine?

Marcus Aurelius

In this chapter, I will introduce the theoretical structure that underpins the particle phys-

ics work within this thesis. I shall start this chapter with the most successful theory in particle

physics, the Standard Model (SM). The SM provides us with a theoretical framework that de-

scribes the universe in the form of elementary particles and how their interactions generate

the fundamental forces of nature. An overview of these particles and forces are given in Sec-

tion 1.1.

The achievements of the SM are evidenced by numerous experimental successes, predict-

ing results to a high precision. One recent (and well-publicised) success involves the process

of electroweak symmetry breaking, described by the Brout-Englert-Higgs mechanism in 1967,

and the discovery in 2012 of a new particle, the mechanism’s proposed scalar boson: the Higgs

boson[24, 25]. These are covered in Sections 1.2 and 1.3.

1.1 The Standard Model

The SM of particle physics is the theoretical foundation of particle physics and describes the

fundamental physical phenomena at microscopic levels of nature. It explains vast amounts

of experimental observations made within particle physics, alongside some cosmological phe-

nomena from the early universe. Various sections were developed over the course of the 20th

century, a combination of experimental results and theoretical formalisations, culminating in

the 1960s and 70s [26, 27]. Described as one of the most successful scientific theories in his-

tory, it has been rigorously tested by experiment, and has made a number of correct predictions

[28], including many measureable quantities which have been well verified experimentally. It

describes the nature and interactions of three out of the four fundamental forces of nature: the

electromagnetic (EM) force, the weak force and the strong force. The final force, gravity, is not
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explained within the SM; however, it is much weaker than the other three forces – its effects are

too small to affect physics at the small scales of particle physics.

The SM is a Quantum Field Theory (QFT) and integrates the foundational principles of spe-

cial relativity and quantum mechanics [29]. It describes the phenomenology of fundamental

fields and their interactions, and identifies particles as excitations within their correspond-

ing quantum fields, based within a four-dimensional Minkowski spacetime. The SM describes

these particles as point-like, meaning they contain no internal structure and, therefore, are

the base components of the universe. It is an effective theory, and gives a description of these

particles and their effects via the exchanges of gauge bosons.

Described within the model are three generations of fermions, four gauge vector bosons

and one scalar boson, as well as a number of qualities they possess. The SM has predicted the

existence of multiple particles that have since been experimentally discovered: the top quark

[30, 31], the τ lepton [32] and the W [33] and Z bosons [34], all in the last century, and in 2012 the

experimental confirmation of the SM was complete with discovery of the Higgs boson[24, 25].

The SM is the most general renormalisable QFT that is also invariant under transformations

of gauge symmetries. It is therefore an example of a gauge theory, whereby the Lagrangian is

invariant under a continuous group of local transformations.

Gauge theories and symmetries within the Standard Model

Symmetries and conservation laws are key to the SM. In 1915, mathematician and theoretical

physicist Emmy Nöether demonstrated that symmetries within a system in nature are indicat-

ors that the system possesses conserved physical properties. Specifically, she showed that each

differentiable symmetry of the action of these systems has a corresponding conservation law

[35]. The action of a physical system can be defined as the integral over time of a Lagrangian

density function (L):

S =
∫
Ld t (1.1)

This makes use of the Lagrangian formalism to describe the field dynamics of the system. All

necessary field dynamics are described within the L functions, where the total is split into a

kinematic and interaction term:

LT =L f r ee +Li nt (1.2)

This describes both the spacetime evolution of the free field, and the way in which these dif-

ferent fields are coupled to one another. The Lagrangian of the SM can be described as the

combination of the Lagrangians describing the Electroweak (EW) force, Quantum Chromody-

namics (QCD) and the Higgs field:

LSM =LEW +LQC D +LHi g g s (1.3)

These symmetries described can be either observable, or simply intrinsic to the system. Under

certain transformations, these symmetries allow the properties of the system to be maintained.

This is gauge theory, a specific class of quantum field theories.
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Within gauge theories exists a group of transitions of the field variables, known as gauge

transformations. These gauge transformations must leave the basic physics of the quantum

field unchanged. The transformations form mathematical groups, allowing us to use group

theory to identify and classify symmetries conserved within the SM. Within gauge theories the

Lagrangian is invariant under a continuous group of local transformations. Gauge invariance,

as this is known, bestows the chosen theory with a certain symmetry. Within the SM this is

realised as invariance of fermion fields under given transformation TX , where X denotes the

conserved property of the field [36].

The apparatus of the group of gauge transformations within a given gauge theory necessit-

ates limitations on the properties of the fields it describes, such as interactions with other fields

and particles. Consequently, the forces of nature are described as gauge fields, and interactions

are delivered through exchanges of the quanta of the field, gauge bosons, within the gauge field

of the analogous local symmetry group. The collection of the gauge transformations, the group

of the SM, is the Lie Group, containing all transformations between possible gauges [37]. The

associated Lie algebra of group generators is associated to any Lie Group. For every group gen-

erator there emerges a corresponding gauge field.

The symmetry group of the SM can be mathematically described as

SU (3)C ⊗SU (2)L ⊗U (1)Y (1.4)

Here, the first part of the group, SU (3)C , denotes the theory of Quantum Chromodynamics

(QCD), providing a description of the strong nuclear force. SU (2)L ⊗U (1)Y refers to EW Theory,

a combined theory of Quantum Electrodynamics (QED), describing the force of electromagnet-

ism, and the weak nuclear force [38]. However, this symmetry is spontaneously broken and

leaves both forces behaving differently from one another at everyday energies. Here the sub-

scripts refer to the charge of the fields described by the symmetry: C signifies the colour charge,

L denotes left-handedness and Y indicates the weak-hypercharge. Weak hypercharge relates

to the correspondence between the electric charge of electromagnetism, Q, and weak isospin.

This leaves electromagnetism with a U (1)E M symmetry group.

The SM can be described as a Non-Abelian Yang Mills QFT [39]. Here an Abelian Group is

one with commutativity – whereby the order of group operations when applying to two ele-

ments of the group, does not affect the result. Non-Abelian Lie groups, however, behave such

that the generators for gauge fields do not commute; therefore, this means that the gauge bo-

sons described within these theories can self-interact. Yang-Mills theory involves use of the

special unitary group, SU (n), using non-Abelian Lie groups. Both the weak and strong forces

are described by these non-Abelian groups.

QED, the first QFT proposed, is an Abelian gauge theory, with the U (1)E M symmetry group.

It has a single gauge field, the electromagnetic four-potential, and has the photon as its single

gauge boson. The unified EW theory is also a Yang-Mills theory.
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1.1.1 Particles

Figure 1.1: Summary of the elementary particles in the SM, including thier respective electric
charge, colour charge, mass and spin [1].

The SM also defines the set of fundamental particles that form the basic building blocks

of nature, see Figure 1.1. These particles are excitations in their corresponding, underlying

quantum fields. We can divide these particles into two broad groups: fermions and bosons

[37]. Fermions have a 1
2 integer spin in units of ~ and obey the physics of Fermi-Dirac statistics.

Bosons, described as force-propagating particles, have integer values of spin, once more in

units of ~.

Beyond spin, there are three other fundamental properties particles possess; mass, helicity

and chirality. Mass determines the propagation of particles though spacetime in the absence of

interactions. Helicity is the projection of a particle’s spin onto its momentum and is defined as

“left-handed” when opposed to the momentum of the particle, or “right-handed” if in the same

direction. Massive particles have a helicity that can change, depending on the inertial reference

frame. Chirality is a related concept, with no physical representation and is equivalent to the

helicity in the case of massless particles. It is an intrinsic quantum property describing the

wavefunction of the particle.
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Fermions

Fermions, further split into leptons and quarks, can be described as the “matter particles”:

those which construct the basis of matter. Fermions have a 1
2 integer spin in units of ~ and

obey the physics of Fermi-Dirac statistics [40]. Leptons only couple with the weak and electro-

magnetic forces, but quarks couple with the weak, electromagnetic and strong force (through

Quantum Chromodynamics (QCD)).

We can further subdivide leptons and quarks into 3 generations of doublets. The first gen-

eration of both leptons and quarks collectively form the basis for stable matter: the electron (e),

up quark (u) and down quark (d). Amongst the quarks and the charged leptons, each genera-

tion has successively higher mass than the last, and mass varies by several orders of magnitude.

This difference in mass is not built into the mathematical foundations of the SM, and therefore

is a free parameter of the theory. Leptons come in six flavours, subdivided into electrically

charged leptons and electrically neutral neutrinos.

νe

e−

 ,

νµ
µ−

 ,

ντ
τ−

 (1.5)

The electron (e), muon (µ) and tau (τ) leptons have a charge of −1 in units of the electron

charge, e. The flavours of the three neutrinos reflect the flavours of the three charged leptons

within each generations: the electron neutrino (νe ), muon neutrino (µe ) and tau neutrino (τe ).

Having no electric charge means the neutrinos only couple to the weak force. Leptons possess

a value known as a lepton number, L, related to their flavour. Both electrons and electron

neutrinos have an electron number value, Le , of −1. The values of muon and τ generation

leptons relate to the muon number, Lµ, and τ number, Lτ, respectively. Each lepton number is

conserved.

Quarks come in six flavours in total. These are organised into 3 generations of “up-type”/”down-

type” pairs. The “up-type” quarks are, in ascending order of mass, the up (u), charm (c) and top

(t ) quarks. Each of these three quarks possess an electric charge of +2
3 in units of the electron

charge, e. The down (d), strange (s) and bottom (b) quarks are the “down-type” quarks and

each carry an electric charge of −1
3 in units of the electron charge, e. These can be organised

into three SU (2) doublets constructed from the “up-type” and “down-type” quark within each

generation.

u

d

 ,

c

s

 ,

t

b

 (1.6)

Each quark also carries a baryon number of 1
3 . In nature, quarks are not found in isolation:

they form bound states called hadrons with integer values of electric charge and Baryon num-

ber. Hadrons can be categorised further into mesons and baryons, according to the number of

quarks (and anti-quarks) they are made of. Mesons are made of an even number of quarks (and

anti-quarks), such as the pion (π0), made of an up quark-antiquark pair (uū). Baryons consist
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of an odd number of quarks (and anti-quarks), such as the proton (uud) and neutron (udd).

The Baryon number is always conserved. Quarks are also colour charged, meaning that they

couple with the strong force. The charges of these quarks are (anti-)red, green and blue.

For all Fermions there exists an anti-particle partner, as predicted by the Dirac equation,

with identical mass and spin, but with opposite charges [41]. This includes electric charge,

colour charge, Baryon number and Lepton number.

Bosons

Figure 1.2: Timeline of the theoretical predictions and experimental observation of elementary
particles of the SM [2]

Bosons, force-mediating particles, have integer values of spin, once more in units of ~, and

observe Bose-Einstein statistics [40]. There are four bosons described within the SM. Three

gauge bosons, or vector bosons, all with a spin value of 1, and a single scalar boson (the Higgs

boson) with a spin of 0. The first of the vector bosons is the photon, γ, the mediator of the elec-

tromagnetic (EM) force. This force couples with particles with an electric charge, Q, measured

in units of the electron charge, e.

e = 1.602×1019 C (1.7)



9 1.1 The Standard Model

Two of the three remaining vector bosons are the mediators of the weak force: the two W ±

bosons and the Z 0 bosons. The final of the vector bosons is the gluon, g , the exchange particle

of the strong force. Gluons are self-interacting, meaning they feel the effects of the strong force

themselves. The only other particles they couple with are the quarks. Both quarks and gluons

are colour charged: quarks come in three and gluons come in eight colour charges. Beyond

the SM, a mediator of gravity, the spin 2 graviton, has been proposed, but not experimentally

confirmed [42].

1.1.2 Forces and Interactions

The SM contains within it a comprehensive description of three of the four fundamental forces

of nature. These forces can be described in terms of couplings between particles and fields,

from which the particles of the SM arise. The dynamics of these fields can be explained through

use of the Lagrangian field density, L.

L=L(ψ,∂µψ) (1.8)

Here, ψ is a fermion field and ∂µψ is the partial derivative with respect to the four-vector of

all generalised space coordinates, xµ. The invariance of the Lagrangian density function un-

der particular transformations relates to symmetries within the system described. A simple

example of one such transformation is a phase transformation:

ψ→ e−iθψ (1.9)

The SM requires these symmetries be local, gauge symmetries, relying on a continuous change

in phase that is dependent on spacial coordinates such that

ψ (x) → e−iθ(x)ψ (x) (1.10)

Under this transformation extra terms will be introduced due to the partial derivative acting on

the local dependence. To maintain the gauge invariance of the L, the partial derivative must be

replaced with a covariant derivative:

∂µ→ Dµ = ∂µ+ i Aµ (1.11)

Here we see the introduction of a new vector field, Aµ. The addition of this vector field ensures

the extra terms introduced are dealt with such that the L remains invariant:

Aµ→ A′
µ = Aµ−∂µ (1.12)

The inclusion of this new vector field has the consequence of introducing excitations within

this field: the force-carrying bosons. The interaction between these bosons and the fermion

field, ψ, is also inserted. For each example of this, whereby a field describing a force is de-

veloped into our L, we must also introduce a coupling constant,α, to determine the interaction

strength between our fermion field and the bosons. This coupling is dependent on the energy

scale of our system, and this is known as a “running coupling”.

Our full L will include the description of the EW force, QCD and the effects of the Higgs field,

as shown in equation 1.3.
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1.1.3 Electromagnetic Interaction

The first fundamental force to be described through the use of QFT is the EM force, in the theory

of Quantum Electrodynamics (QED) [29]. QED arises from the U (1)Y ω symmetry group [43].

This group has only one generator, meaning the theory predicts there will be a single boson

mediating this force. The symmetry of the system leads to QED being invariant under gauge

transformations of the global phase transformation type, such that

ψ→ψ′ = e(−iQθ)ψ (1.13)

Here ψ is our fermion field, of spin 1
2 and Q is electric charge. The particle described meets the

requirements for the Dirac equation of motion such that

iγµ∂µψ−mψ= 0 (1.14)

Where γµ represents the set of Dirac gamma matrices. To ensure invariance under gauge trans-

formations, we set our covariant derivative with the requirement

∂µ→ Dµ ≡ ∂µ–iQ Aµ (1.15)

The introduction of a new vector field, Aµ reveals a massless, spin-1 gauge boson, the medi-

ator of the EM force: the photon (γ). Therefore, QED describes the coupling between charged

fermions and the photon. QED is an Abelian group of symmetry U (1)Q . The commutativity of

the 1-dimensional group results in the photon being electrically neutral, and therefore unable

to self-interact. The L for QED is given by

LQED =−1

4
FµνFµν+ψ

(
iγµDµ−m

)
ψ (1.16)

Here we have defined the EM field tensor, Fµν as

Fµν = ∂µAν−∂νAµ (1.17)

The coupling constant for the EM interaction defined at zero momentum transfer is

αE M = e2

4π
≈ 1

137
(1.18)

Where e is the elementary charge. The EM force is considered a chiral gauge group, as it couples

with right- and left-handed particles at different strengths.

1.1.4 Weak Interaction

The second force described within the SM is the weak force. Experimental results have revealed

that the weak force only interacts with left-handed particles. By only acting on left-handed

components of the fermion fields, and only coupling with left-handed neutrinos, the weak

force violates parity conservation [44]. Weak interactions couple to the weak isopin, T , related

to the chirality of particles. Weak interactions conserve TZ . Fermions with left-handed chirality
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have a TZ value of 1
2 for up-type quarks and neutrinos, and TZ value of −1

2 down-type quarks

and charged leptons. These left-handed fermions can be described as a two-component field

and grouped into doublets of isospin:

ψl =
uL

dL

 ,

cL

sL

 ,

 tL

bL

 (1.19)

ψl =
νe,L

eŁ

 ,

νµ,L

µL

 ,

ντ,L

τL

 (1.20)

These doublets transform under the symmetry group SU (2)L . The Lagrangian of weak force is

LW = iψlγ
µDµψl + i ēRγ

µ∂µeR (1.21)

This is invariant under the SU (2)L transformation

ψl →ψl
′ = e

1
2
−→α (x)−→τψl (1.22)

And the Covariant derivative is

Dµ = ∂µ+ i
g

2
−→τ−→Wµ (x) (1.23)

−→τ represents the Pauli matrices and g is coupling constant of the weak force. The weak force

is derived from a non-Abelian SU (2)L symmetry and contains three generators, and therefore

three gauge bosons mediating interactions. These are the two W ± bosons and the Z boson. The

lack of commutativity means that these bosons interact. The subscripted L in the symmetry

group references the weak force coupling only to particles with left-handed chirality (or anti-

particles with right-handed chirality). The weak force is composed of both charged and neutral

currents mediated by these bosons.

Imposing local gauge invariance results in three component vector fields:

W i=1,2,3
µ (1.24)

Mixing between these three gauge fields gives rise to the physical W boson. From W 1
µ and W 2

µ

we can form a linear construction to produce the W ± boson:

W ±
µ = 1p

2

(
W 1
µ ∓W 2

µ

)
, (1.25)

The W ± bosons carry an electric charge Q =±1 and only interacts with left-handed fermions

through the weak isospin charge, TZ . The W ± boson has a TZ value of ±1. The transmission of

the W boson transforms particles weakly from an isospin value of TZ =+1
2 to TZ =−1

2 . Right-

handed fermions have a weak isospin value TZ = 0, and therefore do not couple with the W

boson. Consequently, they do not undergo weak transformations, remaining as singlets.

uR ,dR ,cR , sR , tR ,bR ,eR ,νe,R ,µR ,νµ,R ,τR ,ντ,R (1.26)

The Z boson is electrically neutral. It couples to both left- and right-handed fermion fields,

but in a different manner: for left-handed particles the coupling depends on both the electric
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charge, Q, and the weak isospin element TZ , for right-handed particles the coupling with the

Z boson is proportional to the electric charge. Imposing that only left-handed fermions are in

doublets means that interactions involve W 3
µ and left-handed fermions, but not right-handed.

The Z boson, therefore, is not trivially W 3
µ , meaning Z and W are not mass degenerate, as

would be the case if W 3
µ and Z were same. The Z boson has a weak isospin component TZ = 0

and couples to both right- and left-handed fermions.

Right handed neutrinos, referred to as sterile neutrinos, have not been observed in nature.

They would not couple with the weak force, and therefore would hypothetically only interact

with gravity. Neutrinos in the SM are only presented as left-handed fermions, with right-handed

anti-particles.

The charged weak-current interacts with quarks in such a way that their flavour is changed.

This is the only coupling that can change the flavour of quarks, and leads to parity violation

within the SM. The probability of these transformation are outlined within the Cabibbo– Kobay-

ashi– Maskawa (CKM) matrix [45, 46]:


d ′

s′

b′

=VC K M


d

s

b

=


∣∣Vud

∣∣ ∣∣Vus
∣∣ ∣∣Vub

∣∣∣∣Vcd
∣∣ ∣∣Vcs

∣∣ ∣∣Vcb
∣∣∣∣Vtd

∣∣ ∣∣Vt s
∣∣ ∣∣Vtb

∣∣



d

s

b

 (1.27)

This relates the mass eigenstates of quarks to their flavour eigenstates (denoted d ′). The diag-

onal elements, relating to the transition within generations, are close to 1, meaning that these

transformations are most likely.The weak force is shown to have the smallest range of the fun-

damental forces, acting over just 10×10−18 m. This indicates that the W ± and Z bosons are

short-lived, and are therefore have large masses.

1.1.5 Electroweak Interaction

The weak and EM interactions explain physics in the universe below the O(100 GeV); however,

above this limit they fail to do so. Therefore, theories containing concealed gauge-invariance

obscured by symmetry-breaking at low energies were developed to tackle this issue, leading to

the unification of the weak force and EM first demonstrated by Glashow, Weinberg and Salam

[26, 27, 47, 48, 49]. As a result, the search began for an unseen gauge variance, only observable

above threshold energies that lead to a theory containing symmetry breaking.

The result of this symmetry breaking is that at low energies the only perceived gauge in-

variance is that of QED, and the two appear as separate interactions. This ultimately lead to the

development of unified force of weak interactions and EM - Electroweak (EW) theory - a theory

that incorporates elements of QED and the Fermi theory of weak interactions.

The hidden symmetry group of this interaction is

SU (2)L ⊗U (1)Y ω (1.28)
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Here L indicates the coupling of the weak force to left-handed components of fermion fields.

The identification Y represents the weak hypercharge, a union of TZ , the projection of isospin

in the z-direction, and electric charge, Q, defined in the Gell Mann-Nishijima equation [50, 51]

Y = 2(Q −TZ ) (1.29)

The L of the EW interaction is

LEW = iψlγ
µDµψl + i ēRγ

µ∂µeR (1.30)

This includes the covariant derivative

∂µ→ Dµ ≡ ∂µ–i g−→τ ·−→Wµ− i g ′ Y

2
Bµ (1.31)

Wµ and Bµ are the gauge fields of the two symmetry groups, SU (2)L and U (1)Y ω. g and g ′ stand

for the coupling constants of each symmetry respectively. We impose the requirement that this

L is invariant, and therefore must institute a triple gauge field. This gauge field contains three

generators, to be described as

W i=1,2,3
µ (1.32)

SU (2)L therefore has three component gauge bosons, the bosons that are associated with weak

force interactions. U (1)Y ω has a single massless generator, the photon (γ), therefore this re-

places the U (1)Q symmetry from QED. This gives a total of four gauge bosons. These three

W bosons will transmit the weak force, and the Bµ boson established above interacts with the

weak hypercharge, Y ω and therefore mediates the EM force. These four non-physical gauge

bosons are all predicted by the theory to be massless. They are related to the physical bosons

that transmit electroweak (ew) interactions: W ±, Z and γ. From W 1
µ and W 2

µ we can form a

linear construction to produce the W ± boson:

W ±
µ = 1p

2

(
W 1
µ ∓W 2

µ

)
(1.33)

The Z boson and photon vector fields arise from mixing from W 3
µ and Bµ in such a way that the

photon fields do not couple with neutrinos:Aµ

Zµ

=
 cosθW sinθW

−sinθW cosθW

 Bµ

W 3
µ

 (1.34)

Zµ =W 3
µcosθW −BµsinθW , (1.35)

Aµ = Bµ
3cosθW +W 3

µ sinθW (1.36)

Where the field Aµ once more represents the photon. The photon, Z and W bosons appear as

combinations of the eigenstates of the symmetry group. sinθW is the Weinberg, or weak mixing

angle [52]. This is defined as a ratio of the two ew coupling constants such that:

tanθW = g ′

g
(1.37)
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This value has been determined experimentally.

The W ± bosons carry an electric charge Q =±1 and only interacts with left-handed fermi-

ons through the weak isospin charge, TZ . The Z boson is electrically neutral. It couples to both

left- and right-handed fermion fields, but in a different manner. For left-handed particles the

coupling depends on both the electric charge, Q, and the weak isospin element TZ . For right-

handed particles the coupling with the Z boson is proportional to the electric charge, Q. The

Lagrangian accordingly becomes

LEW =ψlγ
µ

(
∂µ–i g−→τ−→Wµ− i g ′ Y

2
Bµ

)
ψl ēRγ

µ

(
∂µ− i g ′ Y

2
Bµ

)
eR − 1

4

−−→
Wµν

−−−→
W µν− 1

4

−−→
Bµν

−−→
Bµν (1.38)

where

Bµν = ∂µBν−∂νBµ (1.39)

and

Wµν = ∂µ−→Wν−∂ν−→Wµ+ i g
−→
Wµ×−→

Wν (1.40)

The first two terms in the Lagrangian relate to the kinetic energy of the fermions and their

couplings with the gauge fields. The final two terms describe the energy of the gauge fields and

their self-interactions. The Lagrangian is invariant under local gauge the transformations

ψl →ψl
′ = e

i
(−→α (x)−→τ+β(x) Y

2

)
ψl (1.41)

eR → eR
′ = eβ(x) Y

2 ψl (1.42)

The weak force is shown to have the smallest range of the fundamental forces, acting over

just 10×10−18 m. This indicates that the W ± and Z bosons are short-lived, and are therefore

massive. This contradicts our Lagrangian which requires that the gauge bosons are massless,

otherwise invariance is broken. Nevertheless, the mass of the W and Z bosons have been ex-

perimentally confirmed [38]. Theories of the weak force that incorporate massive gauge bosons

lead to problems with renomalisation or loss of gauge invariance. This leaves a requirement for

an apparatus allowing both preservation of gauge symmetry in the SM and to solve the discrep-

ancy between the mass differences between verified physical particles and those gauge bosons

described in theory. Therefore developments to the symmetry breaking in EW theory that could

explain this were devised. The particular structure of the spontaneous symmetry breaking of

this unified theory leads to the development of a complex scalar field, the Higgs field, which

couples to fermions and bosons, giving them their mass [53, 54]. See Section 1.2.

1.1.6 Strong Interaction

The third and final of the fundamental forces described by the SM is the strong force, described

by Quantum Chromodynamics (QCD). It arises from the symmetry group SU (3)C , where the

charge, C , stands for “colour” [55, 56]. One property of this symmetry is that it is a non-chiral



15 1.1 The Standard Model

gauge group and therefore acts the same on right- and left-handed particles. We also impose

invariance under local transformations. We therefore have to construct eight new three-by-

three generators describing interactions of eight gluon fields, Ga=1,. . . 8
µ , to maintain the local

gauge invariance of the symmetry. The covariant derivative is given here,

∂µ→ Dµ ≡ ∂µ–i gsTaGa
µ (1.43)

Here gs is the strong coupling constant, also written as

αs =
g 2

s

4π
(1.44)

Ga
µ represents the gluon fields, with αs taking values 1 to 8. The symmetry group has eight

generators, therefore predicts eight bosons. Ta represents the eight SU (3)C generators, and

uses the Gell-Mann matrix, λa

Ta = 1

2
λa (1.45)

QCD defines the interactions between these eight gluon fields, and the only particles that in-

teract with the colour-charge: quarks and gluons. Gluons are colour-charged, they are non-

Abelian and, therefore, self-interacting. Gluons generate virtual gluons in numbers that are

proportional to the distance between interacting colour-charged particles.

The strong force is aptly named, as it is the strongest of all the fundamental forces. At

zero-momentum transfers the coupling constant, αS = 1. At these low energies QCD cannot

be described through perturbation theory; however, the running coupling of the strong force

is highly sensitive to the energy scale due to asymptotic freedom [57, 58]. This means that the

coupling constant of the strong force at high energies becomes small enough for perturbation

theory to be used. It becomes so small, in fact, that at very high energies quarks can be approx-

imated as free particles. The strong coupling constant,αS is a running coupling that is depend-

ent on the separations between particles interacting. This is due to the gluon self-interaction

loop processes.

Two critical consequences of the asymptotic nature of the running coupling are Asymptotic

Freedom and Colour Confinement. Asymptotic Freedom is the uniform growth in the coupling

strength between gluons and quarks as the energy scale of interactions decreases, and as the

distance between these interacting particles increases. The running coupling can be described

as diverging asymptotically at large distance, or low energy. Therefore the strong force coupling

between colour charged particles grows higher as the distance between them increases. The

result of Asymptotic Freedom is that inside hadrons, where quarks can be considered to be in

bound states, quarks and gluons interact very little and roam about “near free”. At high energies

quarks can be modelled as free particles, and perturbative calculations can therefore make very

accurate predictions.

The reverse effect of this is Colour Confinement. Colour-charged particles - quarks and

gluons - cannot exist in isolation: they must always form colour neutral hadrons, either as a

triplet within a baryon or a doublet within a meson. When the quark components of a hadron

are pulled apart, such as a quark-antiquark pair within a meson, the strong force interaction
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between them increases. Eventually the energy required to overcome the strong force inter-

action and maintain the distance between the quark-antiquark pair becomes so high that it is

instead more energetically favourable for an additional quark anti-quark pair to be created to

maintain the colour confinement of the diverging quarks. This process is called Hadronisa-

tion. Hadronisation will repeat until the energy of the colour charged particles is low enough

for bound states of colour-neutral hadrons to form. The cascading effect of these hadronising

particles leaves a tell-tale signature within particle physics experiments in the form of jets. The

consequence of this is that isolated colour charged particles, such as quarks, are unable to be

observed before they can return to states of colourless hadrons. The one deviation from this

rule is the top quark, (t ), which is so massive that it decays before Hadronisation can occur.

The SM establishes the mean lifetime of the top quark on the O(5×10−25 s), about twenty times

shorter that the time needed for strong interactions to take place. This allows the unusual op-

portunity to study an isolated quark. Due to the effects of Colour Confinement, the range of the

strong force is almost as small as that of the weak force, on the O(10−15 m), even though gluons

are massless. Quarks can be defined as colour triplets

q =


qr

qg

qb

 (1.46)

The principle of colour-charge also allows quarks of the same flavour to exist in the same

bound state without violating the Pauli Exclusion Principle, as long as they have differing col-

our charges. An example is the baryon ∆++, made of three up quarks, uuu. Any states with

a net colour-charge are not invariant under SU (3)C transformations – those which are colour

neutral are invariant. These neutral states can be formed from three quarks (or anti quarks)

of the different (anti-)colour charges, r ed , g r een and bl ue, in a baryon, from quark-antiquark

pairs where colour charges cancel, or hadrons formed of combinations of these baryons and

mesons.

The development of the Coupling Constant through the change of energy scale can be de-

termined from the Lagrangian of QCD and the masses of the quarks [59]. This can be defined as

a function of the energy transfer squared:

αS

(
µ2

)
= 12π(

33–2n f

)
ln

(
µ2

Λ2
QC D

) (1.47)

Here ΛQC D ≈ 200 MeV and is a scale of QCD theory and n f is the number of quarks with a mass

below the transferred energy. The Coupling Constant decreases as a function of this scale.

Coupling diverges rapidly when µ decreases and approaches this scale. This means that the

theory is only perturbative at high energy scales, as αS < 1 is only true for µÀΛQC D .

L=−1

4

8∑
a=1

Ga
µνGaµν+

6∑
f =1

[
q̄ f iγµ

(
∂µ+ i gGµ

)
q f –m f q̄ f q f

]
(1.48)
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Here

Gµ = 1

2

8∑
a=1

Ga
µλ

a (1.49)

This is a sum over each of the eight gluon states. λa are the Gell-Mann matrices. f refers to the

different quark flavours, and q f refers to the quark triplet state, shown in Equation 1.46.

1.2 The Higgs Mechanism

EW theory and QCD do well to describe the nature of fundamental particles and their interac-

tions, and their combined use matches experimental results with great accuracy; however, the

foundational propositions of chiral symmetry and gauge invariance seemingly do not allow an

explanation for the mass of bosons that we observe. The development of the SM from QFT rep-

resentations of the fundamental forces allows the formation of a description of nature where

massless fermion fields interact with massless force-mediating gauge bosons. Both the photon,

γ, and the gluon, g , mediate long range forces, and are therefore massless. This means they do

not contradict this prediction. Nevertheless, from experimental results we know that the W

and Z bosons are massive, as are the fermions, leaving the SM incomplete. The expansion of

EW theory to include the origin of these masses lead to a number of proposals.

The Lagrangian predicts SM particles to be massless, and difficulties exist when attempting

to reconcile this. The total Lagrangian of the SM can be modelled as the sum of each of the

forces within the SM describing particle interactions, LEW and LQC D , with the masses of all

fundamental particles:

LSM =LQC D +LEW +LM ass (1.50)

Inserting the mass terms by hand is problematic, as it voids the gauge invariance and leads to

divergences within the SM. The global Lagrangian symmetry must be preserved, even as the

gauge symmetry is broken, to ensure the theory is renormalisable. The way this is fixed is by

introducing spontaneous symmetry breaking. This lead to independent proposals by Englert,

Brout, and Higgs that an element of the broken symmetry within the ew theory could encom-

pass massive elementary particles within the SM, and in particular could explain the masses of

the W and Z bosons mass [53, 54]. Of these, only Higgs propsed that this this involve a new,

massive boson.

The proposal starts with an electrically neutral scalar complex field, named the Higgs field.

The interaction between this field and other particles gives these particles mass. The Higgs field

couples to both fermion and boson fields, and is a complex scalar doublet which will transform

under the group SU (2)L as a TZ = 1
2 doublet. It has four real components and models mass

generation of these fundamental particles through the mechanism of spontaneous symmetry
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breaking:

φ=
φ+

φ0

 (1.51)

Where φ+ and φ0 are generic complex fields with the structure

φ+ = 1p
2

(
φ1 + iφ2

)
(1.52)

φ0 = 1p
2

(
φ3 + iφ4

)
(1.53)

Each consists of complex scalar field, with two degrees of freedom. φ1 and φ2 represent the

real and imaginary parameterisations of the Higgs potential, V
(
φ1,φ2

)
. The Lagrangian can be

written as

L=
(
∂µφ

)∗ (
∂µφ

)
–V

(
φ

)
(1.54)

Where V
(
φ

)
represents the potential

V
(
φ

)=µ2
∣∣φ∣∣2 +λ∣∣φ∣∣4 (1.55)

To ensure this scalar field is renormalisable and invariant under the symmetry group of the EW

theory

SU (2)L ⊗U (1)Y ω (1.56)

We ensure the Higgs potential takes the following structure

V
(
φ

)=µ2φ†φ+λ
(
φ†φ

)2
(1.57)

The first term of the scalar potential, parameterised by µ, represents the scalar mass term. The

second term represents the self-interaction vertex and involves the parameter λ. This potential

is symmetric under rotations throughφ space. We require that the potential energy is bounded

from below, λ< 0; however, we can choose the parameter µ freely. If we assume the constants µ

andλ to both be real, this gives the Higgs potential a parabolic shape, with a single minimum at

φ0 = 0. Although, if we choose µ to be imaginary, and therefore µ2 < 0, we obtain a distinctive

shape with a continuum of minima that can help explain spontaneous symmetry breaking.

This is named the "Mexican Hat" potential, See Figure 1.3.

This time φ0 simply represents a local minimum. The continuum of these minima as po-

sitions about the circular trough of the ‘hat’ means that there is no single global minima. The

shape of the potential means that the field is forced to choose one of these arbitrary minima,

and this breaks the rotational gauge symmetry. The convention of representation is

〈φ3〉 = v (1.58)

〈φ1〉 = 〈φ2〉 = 〈φ4〉 = 0 (1.59)
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Figure 1.3: Visualisation of the Higgs potential, also known as the “Mexican Hat” potential, in
the complex plane. The lowest-energy state corresponds to a randomly chosen point within
the “trough”. [3].

v is known as the Vacuum Expectation Value (VEV), v , and can be written as

v ≡
√

−µ2

λ
(1.60)

It is non-zero and has the value

v =
√

1p
2GF

≈ 246GeV (1.61)

Hhere GF is the Fermi constant. The radius of the circle of minima is defined as

∣∣φ0
∣∣=±

√
v2

2
=±

√
−µ2

2λ
(1.62)

This allows us to write a perturbation of the Higgs field, H about the minimum.

φ= 1p
2

 0

v +H (x)

 (1.63)

At high energies the symmetry remains unbroken and the field will take the central VEV, corres-

ponding to V (0,0). As the energy of the system passes below a threshold, the field minimises

and selects a random non-zero ground state from one of the infinite possible minima, the Va-

cuum Expectation Value (VEV), within the trough of the Mexican Hat. This VEV of the Higgs field

is not gauge-invariant, therefore the gauge-symmetry is spontaneously broken in the ground

state of the vacuum. The Higgs field can be expanded about the chosen minimum with addi-

tional scalar fields, each chosen with a zero-value VEV. These are η and ξ.

φ= 1p
2

((
η+ v

)+ iξ
)

(1.64)
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The expanded Lagrangian is now

L= 1

2

(
∂µη

)(
∂µη

)
–

1

2

(
∂µξ

)(
∂µξ

)− 1

2
m2
η+ const +O

(
η,ξ

)
(1.65)

The two terms in this equation both describe bosons: η+ v represents excitations in the η field

and ξ represents excitations in the direction of the field that maintains the same potential. In-

cluding this parameterisation within the Lagrangian of the Higgs gives access to terms describ-

ing the kinetic energy and interactions of these two fields, and that of the gauge. It also allows

us to specify a term describing the coupling between the gauge field and η. We can see a mass

term for the η field and mass terms for the EW bosons are also introduced: W i=1,2,3 and Bµ. The

higher-order terms in η and ξ represent the field interactions. η represents the Higgs field, its

excitations are a massive boson, the Higgs boson. Of the four additional degrees of freedom

established in the Higgs mechanism, three emerge as “Goldstone” Bosons [60]. For each con-

tinuous symmetry broken a massless scalar particle manifests. ξ relates to one of these spin-

less, massless “Goldstone” scalar bosons – although, these decidedly cannot exist in nature -

the inability for a gauge boson to transform into a scalar boson prevents it.

The Goldstone bosons are represented within the complex scalar doublet as a complex

scalar field G± and a real scalar field G0:

φ+

φ0

=
 G+

1p
2

(
v +H + iG0

) (1.66)

The real scalar field H is the Higgs boson field. This can be removed through use of the cor-

rect gauge transformation, though, leading to the creation of a massive gauge boson with an

extra longitudinal polarisation component. The Goldstone bosons created from the symmetry

breaking are absorbed by the weak gauge field, and these become the massive W and Z bosons.

The mass of the W ± boson is determined through a combination of the VEV of the Higgs

field, v , with the coupling constant of the SU (2)L gauge interaction, g :

MW = g v

2
(1.67)

The masses of the Z boson and photon comes from mixing of W 3
µ and Bµ, and involve the two

coupling constants of the EW theory, g and g ′.The Z boson becomes massive, and the photon

maintains no mass:

MZ =
(
g 2 + g ′2

)
v

2
(1.68)

Mγ = 0 (1.69)

The masses of the W and Z bosons are also related by the Weinberg angle in a way that is

consistent with experimental measurements:

MW = MZ

cos
(
θW

) (1.70)
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The fourth and final degree of freedom from the Higgs field forms a massive, spinless boson,

called the Higgs boson. The mass of the Higgs boson is given as

MH =
√

−2µ2 =
√

2λv2 (1.71)

As the parameter λ is not given by theory the mass of the Higgs boson is a free-parameter of the

theory, and therefore can only be found through experiment.

Whilst this explains the origin of mass for the weak gauge bosons, we must go further to

discover the reason for massive fermions, expanding the full Lagrangian of the Higgs field al-

lows us to explore its coupling to fermion fields. Investigation of the simplest form of a mass

term shows it is not gauge invariant:

mψ̄ψ= m(ψ̄LψR + ψ̄RψL) (1.72)

This is because, as proposed in EW theory, the right-handed components of fermions are sing-

lets, whereas left-handed elements are described by doublets. This means that they will trans-

form differently, breaking invariance. To overcome this, the Higgs field must be introduced in

the following fashion

L f =−Y f

(
ψ̄LφψR + ψ̄Rφ

†ψL

)
(1.73)

Here we present the Yukawa Coupling, Y f , as an interaction between a scalar and Dirac type

field (the fermion doublet). The subscript f relates to the applicability of all fermions. The

gauge invariance will now be preserved due to the use of the SU (2) doublets. We can demon-

strate how this works for the case of lepton doubletsν`
`

 (1.74)

Inserting this into our newly formed Lagrangian gives

L` = Y`

(
ν̄`, ¯̀

)
L

 0

v +H

`R + ¯̀R
(
0, v +H

)ν`
`


L

=−Y f vp
2

¯̀`− Y f Hp
2

¯̀`=−m`
¯̀`− m`

v
H ¯̀`

(1.75)

The two new terms that we encounter symbolise the mass of the lepton, m`, and the coupling

they have with the Higgs boson. An expansion of this can also be used to pinpoint the origin of

quark masses in the SM. The relation between these masses and the Yukawa coupling is

m f = Y f
vp
2

(1.76)

The nature of the Yukawa coupling varies for each fermion field, and therefore the mass can

be unique for each particle. This mechanism allows fermions to become massive without nul-

lifying the gauge-invariance of weak interactions. However, the coupling, and therefore these

masses, are not predicted by theory, so they must once again be confirmed by experiment. We

can consider these as free parameters of the SM, and measurements of the Yukawa coupling

enable rigorous tests of this theory.
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1.3 The Higgs Boson

Following the development of the Higgs Mechanism to explain the origin of masses in the SM

the final piece of the puzzle was the search for the predicted Higgs boson: a spinless, electrically

neutral gauge boson, and the last component of predicted fundamental particles within the

SM. On 4th July 2012 a joint announcement by the collaborations of ATLAS and Compact Muon

Solenoid (CMS) at CERN (the configuration of which will be discussed in Chapter 2) declared the

independent discoveries of the Higgs boson [24, 25].

First proposed in 1964, the search for the Higgs boson since its prediction in theory is the

longest of any fundamental particle [53, 54]. Its discovery not only confirmed the validity of

the Higgs mechanism to explain the origin of mass for electroweak gauge bosons, it opened a

new avenue for particle physics to test the accuracy of theoretical predictions through preci-

sion measurements of the properties Higgs boson - for example, the Higgs boson is the first

scalar elementary particle discovered in nature - and its interactions with the other funda-

mental particles. The mass of the Higgs boson is one property requiring experimental data,

as it is a free parameter of the SM, and therefore not predicted in theory. The mass of the Higgs

boson has been measured as (125.10±0.14) GeV [28].

One way to scrutinise the nature of this discovered particle is through analysis of the vari-

ous predicted and observed ways the Higgs boson can be produced within nature, and the

particles into which it will decay. In-depth examination of the frequencies and likelihoods

of these productions and decays can fortify our understanding of the SM, accurately testing

theoretical predictions relating to the coupling of the Higgs boson and the other fundamental

particles of nature. The production and decay of the Higgs boson has been observed and meas-

ured in multiple channels since its discovery and the data is so far highly compatible with the

predicted Yukawa coupling between the Higgs boson and other particles of the SM. Over sev-

eral orders of magnitude theoretical predictions for these Yukawa couplings strongly agree with

experimental evidence.

1.3.1 Higgs Boson Production and Decay

Production of the Higgs boson within particle experiments can take place through a number

of different production channels. There are four dominant production processes of the Higgs

at the centre-of-mass energy of the LHC,
p

s = 13TeV. The most prevalent is gluon-gluon fu-

sion (g g F ), followed by vector boson fusion (V B H), associated vector boson production (V H)

and associated top-quark pair production (t t̄ H) [28]. Both the V H and V B H production al-

low analysis of the coupling between the Higgs and the weak gauge bosons, W and Z . The

g g F and t t̄ H processes permit investigation of direct coupling between the Higgs boson and

the quarks, enabling measurement of the Yukawa couplings between these particles. Although

both the g g F and t t̄ H production-processes allow direct examination of the Higgs coupling to

the top quark, the g g F process is close to two orders of magnitude more prevalent as a produc-
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Figure 1.4: Feynman diagrams of SM Higgs production in (a) gluon fusion, (b) weak-boson fu-
sion, (c) Higgs-strahlung (or associated production with a gauge boson) and (d) associated pro-
duction with top quarks [4].

tion mode when compared to t t̄ H . Problematically, though, the gluons in this scenario couple

to the Higgs boson through a virtual quark loop. This assumes no Beyond Standard Model (BSM)

processes taking place within the virtual quark exchange loop, meaning that accurately study-

ing this production method is made more difficult. Conversely, the t t̄ H production method

relies only on tree-level computations of Higgs coupling, therefore the model dependence of

the measurement is reduced when using this production channel to examine the coupling.

The lifetime of the Higgs is 10−22 s, therefore it decays before it can be detected within ex-

periment. Information about the Higgs boson must, therefore, be constructed through ob-

served properties of its decay products, of which there are a number. Discovery of the Higgs in

2012 relied on utilising a number of these channels, especially the decay into a pair of Z bo-

sons (H → Z∗) and decay into a pair of photons (H → γγ) [24, 25]. Following the discovery of

the Higgs, searches for evidence of other predicted decays have led to the observation of the

first fermionic decays. In 2016 the Higgs decaying to a pair of τ leptons (H → ττ) was observed

[61]. As can be seen in Fig 1.6 the most common decay process for a Higgs of mass 125 GeV

is the decay to a b-quark and b-antiquark (bb̄) pair. This decay channel, (H → bb̄), was only

recently observed in 2018 [62, 63].

The Yukawa coupling between the Higgs boson and fermions is directly proportional to the

mass of the fermion, therefore it is strongest with the top quark, the heaviest fermion with a

mass of (173.0±0.4) GeV [28]:

Yt =
p

2mt

v
≈ 1 (1.77)

Finally discovered in 1995, the top quark was the final quark predicted by the SM to be observed

[30, 31]. The lifetime of the top quark is even shorter, on the scale of 10−25 s. As mentioned,

this means that it is exceptional amongst quarks in that it decays before it is able to hadronise.
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Figure 1.5: The cross-sections for selected production modes for the SM Higgs, of mass 125 GeV,
and their uncertainties as a function of the CoM energy of the LHC [5]

The top quark is also distinctive for being heavier than the W boson – it is therefore the only

quark that decays semi-weakly, producing a real W boson. The SM predicts that all top quark

decays result in a W boson and a down-type quark (d , s,b). The Cabibbo–Kobayashi–Maskawa

(CKM) matrix (Equation 1.27) determines the likelihood of quark flavour-changing. The values

describing mixing between the top quark and the down quark,
∣∣Vtd

∣∣, and the mixing between

the top quark and the strange quark,
∣∣Vt s

∣∣, are found to contribute less than 5%:∣∣Vtd
∣∣≈ 8×10−3 (1.78)

∣∣Vt s
∣∣≈ 35×10−3 (1.79)

The mixing between the top quark and the bottom quark,
∣∣Vtb

∣∣, is dominant. In practise this

means that the top quark decaying into a W boson and b quark is the only notable decay pro-

cess.
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Figure 1.6: Branching Ratios and their uncertainties for the decay processes of the SM Higgs
boson as a function of mass [5]

The decay of a t t̄ pair can be classified by the subsequent decay of the W bosons that are

produced, see Figure 1.8. We find the most likely process is that both of these W bosons decay

hadronically, into quark-antiquark pairs (qq̄) [28]. As the quarks in this final state evolve into

hadronic jets, this process is known as the all-hadronic, or all-jet final state. Following this the

second most likely process is the decay of one W boson hadronically, and one leptonically, such

that it decays into a lepton and a neutrino (`−ν`) . Least likely is a dilepton decay (``) of both

W bosons. Their respective contributions are given below.

t t̄ →W +bW −b̄ → qq̄bq q̄ b̄
(
45.7%

)
(1.80)

t t̄ →W +bW −b̄ → qq̄b`−ν̄`b̄ +`+ν`bq q̄ b̄
(
43.8%

)
(1.81)

t t̄ →W +bW −b̄ → `+ν`b`−ν̄`b̄
(
10.5%

)
(1.82)
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Figure 1.7: The reduced coupling strength modifiers κF mF /v for fermions (t , b, τ and µ) and
κV mV /v for vector bosons (W and Z) shown as a function of their SM predicted masses and of
the VEV of the Higgs field (v = 246GeV). κF (κV ) describe the coupling modifiers for fermions
(vector bosons) predicted by the SM to be unity. The bottom panel displays their measured val-
ues. Ultimately this displays the reduced coupling strength modifiers are directly proportional
to the mass of the particles measured [6].

A third of all semi-leptonic decays involve the production of a τ lepton, which can also decay

hadronically. 40% of dilepton decays produce a single tau, and 10% of dilepton decays lead to

two τ leptons – in each of these cases it is also possible for the τ leptons to decay hadronically.

The search for t t̄ H decays, with a cross section of approximately 670±90(st at .)+110
−100 f b [65],

is complicated by the most common background process within the LHC, top quark pair pro-

duction, t t̄ , with additional hadronic jets. With a cross section of 830±0.4(st at .)±36(s y st .)± (lumi .)pb

t t̄ [66] at centre-of-mass energies of
p

s = 13TeV pair production occurs much more frequently

within the LHC [67, 68, 69, 70]. 90% of these pair productions within the LHC originate from

gluon-gluon fusion, with the rest initiated through quark-antiquark annihilation. Due to their



27 1.3 The Higgs Boson

τ+τ 1%

τ+µ 2%

τ+e 2%

µ+µ 1%

µ+e 2%

e+e 1%
e+jets 15%

µ+jets 15%

τ+jets 15%

"alljets" 46%

"lepton+jets""dileptons"

Top Pair Branching Fractions

(a) t t̄ decay branching fractions. [64] (b) Feynman diagram of t t̄ pair-production through
quark fusion, followed by semi-leptonic decay of t t̄ pair.
[64]

(c) Feynman diagrams of two other t t̄ pair-production
processes [64]

Figure 1.8: Feynman diagrams for t t̄ pair production and decay and diagram showing t t̄ decay
branching ratios.
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multiplicity and prominence in these processes, precise facilitation and accurate understand-

ing of hadronic jets is crucial to analysis for the Higgs boson. This is particularly true for

purposes of understanding Yukawa coupling through observation of interactions between the

Higgs boson and the heaviest particle in the SM, the top quark.

Higgs Decay Channel Branching Ratio [%]

H → bb̄ 58.2

H →W W 21.4

H → g g 8.19

H → ττ 6.27

H → cc̄ 2.89

H → Z Z 2.62

H → γγ 0.227

H → Zγ 0.153

H →µµ 0.022

Table 1.1: Branching Ratios for SM Higgs decays [22]
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2THE ATLAS EXPERIMENT AT

THE LHC

If we are to achieve things never

before accomplished we must

employ methods never before

attempted.

Francis Bacon

This chapter will construct a technical explanation of the use of experimental apparatus for

the acceleration and collision of particles. In particular, it will discuss the Large Hadron Collider

(LHC), as well as the detector machinery for identifying and measuring particles, focusing on

components of A Toroidal LHC ApparatuS (ATLAS).

Following this, the trigger system used by the ATLAS experiment to meet the needs of the high

event rate within the LHC will be introduced.

2.1 The LHC

The Large Hadron Collider (LHC) [71, 72] is based at the European Organization for Nuclear Re-

search (CERN), just outside Geneva, and is the biggest and most powerful particle accelerator in

the world. A synchrotron style particle accelerator, with a circumference of 27 km in total, it is

located in a circular tunnel beneath the Franco-Swiss border at a depth ranging between 45 m

and 170 m below the surface. Within the LHC ring two beams of high energy particles travel

the circumference of the accelerator in opposite directions. Most commonly these high energy

particles are protons, however lead ions are also used. Each beam consists of 2808 bunches

of 1011 protons, with each bunch only 25 ns apart. The counter-rotating beams are passed

through two different beam pipes, inside an ultra-high vacuum of ∼ 10−10 mbar, and are col-

lided at four points 40 million times a second.

The four collision points are the locations of the main experiments at the LHC, two of which,

ATLAS and CMS, are complimentary, multi-purpose detectors [12, 73]. The remaining two are

Large Hadron Collider beauty (LHCb) [74], which specialises in flavour physics, and A Large

Ion Collider Experiment (ALICE) which specialises in heavy ion physics [75]. ATLAS and CMS are
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the largest of the four, and are both designed for equivalent tasks, general-purpose searches

for both the Higgs boson and signs of Beyond Standard Model physics BSM physics at the TeV

scale. LHCb is constructed for precision tests of SM parameters, particularly with consideration

towards CP violation. This is done through the analysis of B and D meson decays. ALICE, an

asymmetric dectector, was specially built to survey the outputs of colliding lead ions with the

aim of producing a quark gluon plasma and measuring properties of QCD phase transitions.

In addition to the four main detectors surrounding the ring, there are a number of smaller

experiments based in the same caverns; TOTal cross section, Elastic scattering and diffraction

dissociation Measurement at the LHC (TOTEM) [76], Monopole & Exotics Detector At the LHC

(MoEDAL) [77], and Large Hadron Collider forward (LHCf) [78]. TOTEM is positioned alongside

CMS and determines the total, elastic cross-section of pp collisions to compute the luminosity

of the LHC [79]. These cross-sections are measured at small angles to the beam. LHCf, like TOTEM,

is a forward detector and is used to examine cosmic ray shower processes by using particles

scattered at small angles from the beam axis. It is situated at both sides of the ATLAS cavern.

MoEDAL is used to seek evidence for stable and highly ionising massive particles or magnetic

monopoles, and is located beside LHCb.

With the purpose of accelerating protons to an energy of 7 TeV, and colliding them at centre-

of-mass energies of
p

s = 14TeV the LHC was first turned on in 2008, however it has only been

fully operational since November 2009 [80]. This delay was caused by an incident whereby a

magnet quench damaged over 50 of the superconducting magnets contained in the complex.

Following this, low energy beams were circulated for the first time. The first full data taking

period, Run 1, did not start until 2010. It has since reached the highest energies for proton-

proton and lead-lead collisions yet. Run 1 mostly consisted of 4 TeV beam energies, with centre-

of-mass energies reaching
p

s = 8TeV. Run 1 continued until 2013 and was followed by Long

Shutdown 1 (LS1), a period of no beam when required upgrades to the experiment could be

undertaken. This was later than was previously planned due to the success of one of the main

goals of the LHC– the discovery of the Higgs boson in 2012. In 2015 the experiment was restarted

for Run 2, reaching a beam energy of 6.5 TeV, and centre-of-mass energy of
p

s = 13TeV. Run

2 continued until late 2018 followed by the Long Shutdown 2 (LS2), which will continue until

early 2021 [81].

2.1.1 Collider Physics

Particle colliders are designed to study the final state objects originating from collisions of sub-

atomic particles at intersectional points known as bunch crossings. At each designated bunch

crossing two conversely travelling bunches of particles (protons in the case of the LHC) will col-

lide with an inconstant number of intersections, generating an assemblage of these final state

objects. High energy physics experiments, including such detectors as ATLAS, can be used to

analyse these final state objects. A collection of final state objects from a single bunch-crossing

is known as a single physics event.
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The LHC is a synchrotron, a category of circular collider. Circular colliders are advantageous

over linear counterparts in that particle beams can be maintained in their given trajectories for

extended periods of time, allowing recurrent use from multiple collisions of the same particle

bunches. The major drawback to circular colliders is that a charged particle experiencing trans-

verse acceleration, as is needed to rotate it around the ring, induces synchrotron radiation. This

radiation leads to an energy loss related to the mass of the accelerated particle:

dE

d t
= k

E 4

m4R2 (2.1)

Where k is a dimensional constant, m is the mass of the accelerated particle, and R is the radius

of curvature of the particle’s trajectory. As can be seen, the energy loss is inversely proportional

to m4, and as such for light particles will be considerable. Electron and positron colliders are

therefore more susceptible to the consequences of synchrotron radiation than proton colliders,

where this is reduced by a factor of (me /mp )4 ≈ 10−12, and the maximum energy reach of the

former is determined by this effect. For hadron colliders this is instead limited by the capability

of the bending magnets and the maximum magnetic field that they can create.

2.1.2 Performance of the LHC

At the LHC, the physical processes we wish to explore result from the hard scattering of partons

within the protons: quarks and gluons. The momenta of these partons is unknown, however, as

they contain unidentified fractions of the total momentum of the proton [82]. There are some

qualities we can determine, though.

An important value of the LHC is the luminosity of the machine [79]:

L = f
nb N1N2

4πσxσy
(2.2)

Here the values impacting the luminosity are the revolutionary frequency of the particle

bunches, f , the number of particles per bunch, nb , the number of bunches per beam N1 = N2,

and the transverse area of the bunches at our interaction point, described using σx and σy ,

Gaussian widths representing the physical size of the beam in the horizontal and vertical dir-

ection. The luminosity is related to the total number of collisions within the machine such that

Nevent =L σevent (2.3)

Where σevent is the cross-section for this event. We can also define the instantaneous lu-

minosity at any time as

Li nst ≡ 1

σ

d N

d t
(2.4)

Here σ is the total cross-section of a given physical process and d N /d t is its rate of oc-

currence. The measure of the total luminosity from the accelerator over a given time period,
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Figure 2.1: Cumulative luminosity for 13 TeV proton-proton data at the end of Run II [7]. 1. The
difference between luminosity delivered by the LHC and recorded by ATLAS stems from ineffi-
ciencies in the trigger system, an inefficiencies of ramping up the tracking detectors when the
LHC declares stable beams.

∆t = t2 − t1, is described as the integrated luminosity, defined as

Ltot =
∫ t2

t1

Li nst d t (2.5)

We are able to determine the average number of particle interactions per bunch crossing,

known as pile-up [83], 〈µ〉 as a function of Li nst :

〈µ〉 = σi nel ast i cLi nst

N f
(2.6)

Hereσi nel ast i c is the total cross-section of inelastic scattering of the protons, N is the num-

ber of circulating bunches, and f is the bunch frequency. The average number of interactions

for each bunch crossing is calculated as a mean over the specific luminosity block of interest.

During Run 1 and early parts of Run 2 the rotational frequency of bunches was 20 MHz, with

50 ns between collisions. Since then it has been increased to 40 MHz, with 40 million collisions

occurring each second, with 2808 bunches of up to 1011 protons colliding every 25 ns. The LHC

was designed for beam energies up to 7 TeV, giving centre-of-mass energies of
p

s = 14TeV.

A peak instantaneous luminosity of Li nst = 2×1034 cm−2 s−1 was reached during early Run 2.

Upon reaching the end of Run 2, the LHC had delivered 156 fb−1 to ATLAS. The LHC has also

collided heavy ions, including lead [84].
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Figure 2.2: Luminosity-weighted distribution of the mean number of interactions per crossing,
〈µ〉, for proton-proton collisions during Run 2 at CoM energy,

p
s = 13TeV data [8].

2.1.3 Acceleration and Injection

The protons used in collisions that take place at the LHC begin their journey elsewhere in CERN,

extracted from hydrogen gas [71]. Electrons are removed from the atomic hydrogen using an

electric field. The remaining protons are then accelerated to higher energies and injected into

the LHC through a number of intermediate steps using successively larger storage rings and

accelerators (see Figure 2.3) [85]. Firstly they are accelerated by Linear Accelerator 2 (LINAC2) up

to energies of 50 MeV, this is followed by the small Proton Synchrotron Booster (sPSB) to reach

energies up to 1.4 GeV, then the Proton Synchrotron Booster (PSB) for energies to 28 GeV and

finally the Super Proton Synchrotron (SPS) to reach energies of 450 GeV. The SPS then injects

two oppositely travelling beams into the ultra-high vacuum pipes and accelerated around the

LHC in opposite directions through two transfer tunnels, each about 2.5 km long.

Travelling from from LINAC2 to the LHC takes the protons about sixteen minutes, and a

further twenty minutes is taken for them to reach collision energies. Within the LHC, the ac-

celeration is accomplished by eight superconductive radiofrequency (RF) cavities: a metallic

chamber with an electric field oscillating at 400 MHz. These are located at four different sites

around the LHC. These RF cavities are also used to maintain bunch structure within the beam,

through longitudinal beam focusing: the oscillating nature of the field in the RF sorts the beams

into bunches by varying the acceleration on the proton with respect to its position within the
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Figure 2.3: The Accelerator complex at CERN, dispaying the various accelerators and detect-
ors [9].

bunch. Protons earlier or later than the bunch centre are decelerated or accelerated by differ-

ing degrees to keep them close in energy. Once protons reach the nominal energy the beams

are able to travel around the LHC and can be stored for several hours during data taking before

being needed to be replenished.

For heavy ion runs this process is somewhat different. The lead ions begin as a source

of vapourised lead before being accelerated within Linear Accelerator 3 (LINAC3) and the Low

Energy Ion Ring (LEIR). Following this they will pass to the Proton Synchotron and take the same

path as the protons.

2.1.4 Collider Magnet Systems

Run 2 began in June 2015, after a two-year long LS1. During this shutdown the magnets were

upgraded to be able to handle the requirement to circulate 13 TeV beams during Run 2. The

magnet system of the LHC consists of 1232 superconducting dipole magnets, operating at a

current of 11850 A, and 392 quadrupole magnets. These magnet systems consist of special

electrical cables formed into coils that can operate in a superconducting regime. They are kept

supercool at a temperature of 1.7 K by superfluid helium and have an average field strength of

8.3 T.

The dipole magnets produce a transverse acceleration on the protons in the beam to main-

tain a circular path. This field is in the direction orthogonal to the direction of movement of
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the protons. The quadrupole magnets, and a few other higher-moment magnets, are deployed

to manage the beam focusing as it is accelerated around the ring, as during the beams’ rota-

tion they can diverge. The 5-7 m long quadrupole magnets refocus the width and height of

the beams. Eight inner triplet magnet systems, of three quadrupole magnets each, are used to

focus the beams close to the collision point. These magnet triplets lie 23 m from the interac-

tion points. 688 smaller sextupole magnets are used to refocus the chromaticity of the beam,

diverted through momentum changes in the particle bunches [86].

The momentum of the particles, p, having travelled through the magnetic field, B , in an arc

of radius R can be given by the relativistic relation [87]:

pT = 0.3BR (2.7)

2.1.5 General Purpose Detectors

ATLAS and CMS, the two biggest detectors of the LHC, are both general purpose detectors - the

purpose of which is to investigate the possibility of new massive particles, especially the Higgs

boson [12, 73]. The need to be general purpose, and as such attempt to identify as many differ-

ent final state objects as possible, is due to the unknown nature of BSM physics.

One way to improve the likelihood of success in this pursuit is to design the detectors to

be fully hermetic; covering the biggest possible solid angle about the interaction region will

increase the possibility of maximising observations of products of the collision. Both of these

general purpose detectors consist of specialised sub-systems, designed to work compliment-

arily to search for different signals, and a fine granularity in order to most precisely determine

the location of these signals. ATLAS and CMS rely on different technologies from one another to

arrive at independent measurements of the same physical phenomena in order to cross-check

and improve reliability. For this their performances are required to be comparable. If as much

information can be determined from observable processes as possible, hermetic detectors can

also lead to the discovery of unobserved processes through missing transverse energy (E miss
T ).

This is done by simply identifying the resulting momentum imbalance in the transverse plane

after reconstructing the rest of the event.

All experiments at the LHC must also meet certain general requirements. Firstly, they must

all be robustly resistant to high levels of radiation, especially parts located close to the interac-

tion region. Secondly, the detector components must be able to identify individual events at a

rate of 40 MHz to keep up with the rate of bunch crossings. This leads to the need for a highly

developed data acquisition process and trigger system, to select and save relevant information

from events in which interesting final state objects are detected.
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Figure 2.4: Cut-away view of the ATLAS detector and its subsystems [9].

2.2 The ATLAS detector

A Toroidal LHC ApparatuS (ATLAS) is the largest of the experiments at the LHC, and is one of

the two general purpose detectors [12]. An illustration is shown in Figure 2.4. It is located

approximately 100 m below ground at CERN’s point 1 cavern. It has a cylindrical symmetry, and

measures 45 m in length and 25 m in diameter. The full system weighs close to 7 kt.

ATLAS was designed with a wide physics program in mind, motivated by searches for the

Higgs boson and new BSM physics. It has forward-backward symmetry, cylindrical geometry

with respect to the interaction point, and a solid angle coverage of nearly 4π. It is designed to

reconstruct and measure a range of physics objects such as hadronic jets, electrons and muons,

originating from hard scattering, with special attention to objects with large transverse mo-

mentum (pT) with respect to the beam axis. It has been optimised to be as sensitive as possible

and to work at the highest luminosity provided by the LHC.

ATLAS consists of a series of specialised layers of subdetectors concentrically stacked sur-

rounding the beam pipe, many of which consist themselves of modules in both the central

barrel region and within the endcaps that lay at each end of the cylinder. Advancing outwards

from the central beam pipe these subdetectors include a set of inner detector tracking techno-

logies, a set of both electromagnetic and hadronic calorimeters, and a muon spectrometer as

the outermost layer. Located within these layers are the components that make up the ATLAS

magnets system.

The innermost section of the detector, the Inner Detector (ID), specialises in reconstructing
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the trajectories of ionising charged particles and can be employed to identify production and

decay vertices. It can be divided into four major components: the inner tracking detector, con-

sisting of a silicon pixel detector; the SemiConductor Tracker (SCT) which makes use of silicon

microstrips; the Transition Radiation Tracker (TRT), the third and final tracking component of

the ID; and, the outermost layer, a thin superconducting solenoid magnet, which immerses

the ID in a 2 T magnetic field. This magnetic field is used to curve the trajectories of charged

particles within the detector to facilitate measurements of particle momentum. This will be

introduced in Section 2.2.3.

The second major section of ATLAS is the pair of calorimeters, which are used to obtain

precise energy measurements of electromagnetically charged particles and hadronic jets. The

first of these is a fine-granularity Electromagnetic Calorimeter (ECAL), constructed of lead and

Liquid Argon (LAr). The second is an iron and scintillator-tile Hadronic Calorimeter (HCAL).

Both of these work in the central barrel region of the detector and are supplemented in the

endcap and forward regions by LAr Forward Calorimeter (FCAL) for both electromagnetic and

hadronic measurements. This will be discussed in detail in Section 2.2.4.

The final and outermost section of ATLAS is the Muon Spectrometer (MS), is used to identify

and gather precision measurements of the positions and momenta of muons travelling through

the detector. As well as detectors and tracking elements a set of large superconducting toroidal

magnets are included within the MS to curve the trajectories of charged particles for measure-

ments of momenta, as within the ID This will be covered in Section 2.2.5.

Each subdetector section consists of both cylindrical barrel sections, centrally placed and

parallel to the beam axis, and additional discoidal “endcap” subsections at each extremity, or-

thogonal to the beam axis. This is to make the detector design as hermetic as possible. The

barrel segments are broadly arranged with segments organised axial relative to the beam pipe,

whilst the endcaps have radial divisions.

Within ATLAS indicators from the different subdetectors can be combined and used to identify

the source of the signal. Photons appear as showers in the electromagnetic calorimeter, but as

neutral objects leave no ionising trace in the ID. Electrons appear identical to photons within

the calorimeter, but also leave tell-tale charged tracks within the ID. Neutrons, with no elec-

tromagnetic charge, leave no trace within the tracking of the ID, however will generate showers

within either the hadronic or electromagnetic calorimeters. Protons add an indicatory charged

track within the ID to the distinctive shower of hadrons within the calorimeter. Other hadronic,

or hadronising particles can be identified through the analysis of jets detected within the had-

ronic calorimeters, see Chapter 4. Muons travel through most layers of the detector without

much trace, but show ionising tracks within both the ID and MS. Neutrinos, distinctive in their

lack of trace within the detector, can be identified by missing transverse energy (E miss
T ) after

determining momentum imbalance.



38 2.2 The ATLAS detector

2.2.1 ATLAS Geometry and Nomenclature

There exists a standardised nomenclature for the coordinate geometry used within ATLAS to

give precision spatial descriptions of both kinematic measurements and detector components.

ATLAS has a forward-backward symmetrical cylindrical geometry with a right-handed Cartesian

coordinate system, the origin of which lies at the particle interaction point. This coordinate

system starts by taking the definition of the z-axis as coincident with the direction of the beam.

The side of the detector in the positive z-direction is labelled as the “A-Side”, and that in the

negative z-direction is the “C-Side”. The x-y plane is therefore transverse to the beam-pipe, with

positive x pointing from the origin towards the centre of the LHC ring and positive y pointing

directly up towards the surface of the earth. The cylindrical symmetry of the detector allows

us to easily introduce a cylindrical coordinate system that replaces measurements on the x-y

plane with the radius, r , and the azimuthal angle, φ, which is measured around the beam axis.

We also introduce the polar angle, θ, measured with respect to the positive-z axis of the beam

pipe, to describe longitudinal positions of objects in the detector. This angle is invariant under

a boost in the beam directions, however we further introduce additional coordinates labelled

as rapidity, Y , and pseudorapidity, η.

Rapidity, used to describe the positions of objects with mass, such as jets, is defined as

Y = 1

2
ln

(
E +pz

E −pz

)
(2.8)

Where E and pz are the energy and the z-component of momentum of the object. The sum

and difference in rapidities is Lorentz invariant under boosts in the z-direction. This is useful at

ATLAS as the unknown and variable fraction of momentum carried by partons within the proton

lead to unknown longitudinal boosts. Particles at the LHC are assumed to be highly relativistic

with negligible masses, however, so a new spatial coordinate is introduced: Pseudorapidity, η,

which is also used to describe the angle of a particle with respect to the z-axis. Defined as

η=− ln

(
tan

θ

2

)
(2.9)

with
∣∣η∣∣= 0 corresponding to the centre of the detector (i. e.where θ = π

2 ) and
∣∣η∣∣=±∞ to the

forward regions (where θ = 0;π). The distance between two points in psuedorapidity-azimuthal

angle space is then defined as

∆R =
√
∆η2 +∆φ2 (2.10)

∆R is often used in the situation of imposing a check for spacial proximity between two

event objects, whereby the requirement

∆R < Rmax (2.11)

defines a space of radius Rmax about the first object within which the second object must

reside. This is often used in the case of “matching” objects to one another.
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An important kinematic variable that is commonly used in ATLAS is the transverse mo-

mentum (pT) of an object, which is measured in the x-y plane and is defined as

pT =
√

p2
x +p2

y (2.12)

Here px and py refer to the components of the object’s momentum in the x- and y-direction. pT

is particularly valuable, as the magnitude of the longitudinal momentum,
∣∣pz

∣∣, of a product of

our collision depends on the unknown momenta of the partons within our colliding protons.

The initial pT is known to be zero, however, so this can be used to determine missing transverse

energy (E miss
T ). If the final visible pT of the system, pvi s

T , is non-zero, then we can determine, due

to momentum conservation, the presence of E miss
T , caused by some unknown component.

E miss
T =

∣∣∣−→pT
mi ss

∣∣∣=∣∣∣−→pT
vi s

∣∣∣=∣∣∣∣∣ i∑
i=1

−→pT
vi s,i

∣∣∣∣∣ (2.13)

Where
∑i

i=1
−→pT

vi s,i is the measured summation of momenta from all visible objects in the event.

2.2.2 Magnet System

Figure 2.5: Schematic of the magnet system within the ATLAS detector [10].

One of the essential features of the ATLAS detector is the magnet system, composed of four

large superconducting magnets [10]. At 22 m in diameter and 2.6 m in length the magnets use

a stored energy of 1.6 GJ to deflect the trajectories of charged particles in order to perform mo-

menta measurements. The direction and radius of curvature of the charged particles’ path

subsequent to deflection by the field is directly related to their momenta and charges.

The magnet system consists of three subsystems: a single solenoid, one barrel toroid, and

two toroidal endcaps. Each of these is formed of NbTi, a superconducting material with a crit-

ical temperature of 10 K, and cooled by liquid helium to 4.5 K by the magnet cryostat system. It

is designed to provide a precise and stable magnetic field.

Central Solenoid

The Central Solenoid is located between the ID and the barrel ECAL and is designed to provide

a 2 T axial magnetic field with a minimal radiative thickness in front of the calorimeters [88].
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Despite its thinness - with an inner radius of 2.46 m and outer radius of 2.56 m - it still has an

axial length of 5.8 m and can allow accurate momentum measurements up to 100 GeV.

The Barrel and the Endcap Toroids

The two toroidal subsections of the magnet system - the air-core barrel toroid and the pair of

air-cooled endcap toroids - provide a magnetic field of 3-8 T for the MS. The centrally-placed

barrel toroid is comprised of eight coils and has an axial length of 25.3 m, an inner diameter

of 9.4 m and an outer diameter of 20.1 m. The forward-placed endcaps also comprise of eight

coils each, are 5 m in length and have inner and outer diameters of 1.65 m and 10.7 m. The

magnetic field produced here is orthogonal to the particle direction within the MS and is used

to measurement muon momenta.

2.2.3 Inner Detector

(a) Cut-away schematic of the ATLAS ID. Note the IBL is
not shown.

(b) A crosssection of the layered sub-detectors of the
ATLAS ID.

Figure 2.6: The ATLAS ID [11].

The Inner Detector (ID) is the closest sub-detector to the central beam pipe, and is therefore

first to measure products of the collision, including decays of short lived particles [89]. The

ID measures 6.2 m in length and 2.1 m in diameter and is enveloped in a 2 T magnetic field

produced by the solenoid magnet. The ID is designed to provide reliable identifications and

measurements of momenta, and both primary and secondary vertices.

There are a number of restrictions placed on the technology of the ID. The depth of material

needs to be thin in order to limit the interactions of particles before they reach the calorimeters,

which would lead to a degradation of quality in the energy measurements. The close proximity

of the sub-system in relation to the beam means that there are extremely high levels of radi-

ation that the ID must contend with; the equipment within must be resistant to damage from

this. Finally the vast multiplicity of particles formed within proton collisions means that all the
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parts of the ID need to produce measurements with a high level of precision, so as to determine

individual tracks from a series of positional “hits” – this means that the subsections of the ID

must be finely segmented to increase granularity.

To overcome these complications, the ID is composed of multiple specialised sections ar-

ranged into three separate elements: a main barrel with concentric cylindrical layers, and two

disk endcaps, to ensure that it covers all particles in a range of
∣∣η∣∣< 2.5. There are four main

sections of the ID: an Insertable B-Layer (IBL) and Silicon Pixel Detector (SPD) used to accur-

ately measure and reconstruct primary and secondary vertices through silicon pixel layers; the

SemiConductor Tracker (SCT), a layer used for accurate measurements of particle momenta,

constructed from silicon microstrip layers; and, finally, the Transition Radiation Tracker (TRT),

which provides continuous tracking and electron identification complementarily to that of the

ECAL over a wide range of energies. A detailed illustration can be see in Figure 2.6

High-resolution spacial measurements supplied by these sections of the ID are used in al-

gorithms to reconstruct the paths of particles, called tracks.

Insertable B-layer

The innermost section of the ID is the Insertable B-Layer (IBL) [90] [91]. Added during the Run

2 upgrade, the addition of this new layer was done to improve Primary Vertex reconstruction

by a factor of 1.4 (important for the tagging of bottom-quark-initiated jets), double the quality

of impact parameter tracking precision by supplying an additional space-point, and, also, to

prevent damage to the inner layers due to higher radiation levels. It is comprised of 6 million

channels, has a spatial resolution of 8µm by 40µm and is the closest section to the beam axis,

at only 33.25 mm distance.

Silicon Pixel Detector

The second layer of the ID is the Silicon Pixel Detector (SPD), the main feature of which is its

fine granularity, with a resolution of 10µm by 115µm, necessary for precision primary- and

secondary-vertex reconstruction and measurements [92]. The SPD is made of three concentric

layers of silicon sensors that surround the beam axis, and a total of six disk layers, with three at

each forward region. The barrel section is cylinder of length 6.2 m and diameter of 48.4 cm that

extends out to a pseudorapidity of
∣∣η∣∣< 2.5. The endcap disks are all mounted perpendicular

to the beam axis to track charged particles at high η.

Both the SPD’s barrel and endcaps consist of three concentric layers themselves: the b-layer,

or L0, at 50.5 mm; L1 at 88.5 mm; and L2 at 122.5 mm. All of the barrel’s 1,456 modules, and 288

in each of the endcaps, has 46,080 readout channels, or pixels. The smallest of these pixels has

a surface area of 50µm in the φ direction by 400µm along the z-axis. Totalling about 80 million

rectangular segments of silicon sensors, or pixels

Each of these three layers will be traversed by ionising charged particles, leaving “hits” as
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they do so. The ionisation of the semiconductor material produces electron-hole pairs, which

are channelled by an electric field so the resulting current can be detected. This allows the

identification of "space-points" traversed by the particle. Each pixel also has an independent

electronics channel with a separate circuit.

Semiconductor Tracker

The third subsection of the ID is the SemiConductor Tracker (SCT), designed to give preci-

sion momentum reconstruction through four precise spacial measurements of charged particle

tracks [93, 94, 95, 96]. The SCT is arranged in one barrel region, that extends to
∣∣η∣∣< 1.7 and two

endcaps that reach from 1.2 <∣∣η∣∣< 2.5. Each of these sections is constructed of silicon micro-

strip layers which record two “hits”, one on each side of the module, as it is crossed by a charged

particle. The pair of hits is combined to make a single space point allowing the measurement

of track momenta, vertex positions and impact parameters.

There are 4088 modules in total. The barrel region includes four concentric layers of these

silicon detectors between a radius of 299 mm to 514 mm with a total of 2,112 modules. The two

endcap sections have nine layers each and a total of 1,976 modules. Each of these modules

comprises of two sides of 786 back-to-back silicon strip detectors at a stereo angle of 40 mrad

to one another and set at an average pitch of 80µm to provide precision measurements of a

particle’s position in φ.

The components of the SCT are made of strips of silicon, 80µm by 12 cm, to cover a lar-

ger area of space when compared to the two inner layers of the ID. Within the barrel region

these strips are semi-parallel to the axis of the beam direction, whilst in the endcaps they are

arranged radially. The geometry of the SCT is designed to achieve a precision measurement of

the position on hits in the longitudinal direction, even with the length of the strips. A resolution

of 17µm in the radial plane, by 580µm in the direction z-direction is obtained.

The silicon strip sensors are read out by a radiation-hard front-end chip, with each chip

reading out 128 channels. As the SCT is further away from the beam pipe compared to inner

layers there is a reduced particle density expected, this allows lower levels of granularity to be

used within whilst maintaining a high level of performance. There are about 6.3 million read-

out channels (about 2 million fewer than the pixel detector).

Transition Radiation Tracker

The final layer of the ID is the Transition Radiation Tracker (TRT), which aims to improve pT

resolution for particles with longer track lengths [97, 98]. It is cylindrical and comprised of

layers of nearly 300,000 plastic gaseous straw tube elements surrounded by transition radiation

material. It consists of a barrel section and two endcap sections and extends to
∣∣η∣∣< 2.0.

The TRT barrel segment is made of three concentric layers, each with 32 modules, with radii

between 55.4 cm and 108.2 cm. Each layer contains approximately 50,000 straws, each 1.44 m
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long and aligned with the beam axis with independent readouts at each end. It extends over a

region of
∣∣η∣∣< 1.0. Both of the endcap regions are divided into 18 wheels, with 224 layers, and

a total of around 320,000 radially arranged straws. These cover a region of 0.8 <∣∣η∣∣< 2.0. This

overlap means that there can be hits in both the barrel and the endcap.

The tube elements are straws of plastic, wound from a multilayer film reinforced with car-

bon fibres, and are 4 mm in diameter. Each straw is filled with a gas containing 70% Xe, for

x-ray absorption, 27% CO2, and 3% O2, both to increase the electron drift velocity and photon

quenching. A 30µm gold-plated tungsten wire runs through the middle of each straw to be

used as an anode, and the inside face of the straw is coasted with aluminium, a high-voltage

cathode. Each wire is divided into two halves, close to η= 0. The gas contained within the

straws operates as a drift chamber would. It is ionised as charged particles traverse it and elec-

trons and ions are collected at the anode or cathode. This means that a current is created within

the straw and, due to the nature of the electric field within the tube being known, the time of

electron drift to the wire can be used to determine the distance between the wire and the path

of the charged particle.

Additionally between the straw elements is a transition radiation material. This consists of

polypropylene fibres in the barrel region and polypropylene foils within the endcaps. Trans-

ition radiation occurs as a charged particle passes between media with different dielectric con-

stants.

Within the central region of the TRT there are typically about 35 hits per subsystem for a

single charged particle passing through, significantly higher than the SPD and SCT, with 3 and 4

hits respectively. It has a spacial resolution of 130µm. This allows for improved estimation of

track parameters when combined with the SPD and SCT.

The TRT allows the identification of particles through the detection of x-ray photons which

are emitted as highly relativistically charged particle cross the media boundaries [99]. The Ra-

diation at x-ray frequencies is recorded as an additional, high-threshold hit and is proportional

to the Lorentz factor of the charged particle, defined as

γ= E

mc2 (2.14)

Electrons and charged pions can be distinguished for a pT range of 1-150 GeV using the ratio of

high threshold hits, as γ is significantly larger for electrons than it is for heavier particles. The

low threshold required to identify a single hit is 300 eV, whereas the high-threshold is between

6 and 7 keV. There is a significant chance of high threshold hits for electrons of approximately

1 GeV, and upwards of 200 GeV for other, heavier, particles. Measurements of (dE/d x) can also

be used in identifying protons and kaons with E miss
T less than 10 GeV.

2.2.4 Calorimeters

The second major sub-detector elements of ATLAS are the calorimetry sections, shown in Fig-

ure 2.7. Located outside the 2 T solenoid magnet, it consists of detectors with full symmetry in
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Figure 2.7: The ATLAS Calorimeter, including the ECAL, HCAL and FCAL sub-components [12].

φ, and a coverage of
∣∣η∣∣< 4.95. The calorimeters have been designed to fully absorb particles

and to translate their energies into measurable variables, and also to be hermetic, allowing a

measurement of the total event as accurately as possible.

There are three main sub-sections of the Calorimeters: the Electromagnetic Calorimeter

(ECAL), which detects and measures electromagnetically interacting electrons and photons with

a fine granularity; The Hadronic Calorimeter (HCAL), which has a courser granularity and is

used to identify and measure particles that interact via the strong force; and The Forward Calor-

imeter (FCAL), which absorbs both types of particles that have trajectories close to the beam

pipe. The ECAL is the innermost section and measures electron and photon energy loss through

a cascade of electromagnetic shower interactions through the calorimeter. It consists of a Li-

quid Argon (LAr) barrel, and two endcap sections. The LAr is used as a sensing element, where

the showers taking place in the Argon will free electrons that are then collected and meas-

ured. These electromagnetic showers occur each time a high-energy photon or electron passes

through the material. Below a few MeV the dominant effect of a photon passing through a

material is Compton Scattering, or the photoelectric effect. At energies above this the photon

primarily interacts through pair-production, creating electron pairs. High-energy electrons,

including those created in the pair-production, emit photons via bremsstrahlung. This cycle

of photon and electron-pair-creation, the shower, continues until the energy of the emitted

photons are below the pair-production threshold, whereby energy loss of electrons starts to

dominate.

The HCAL comprises of two major sections: one central section containing the Tile Barrel
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and Tile Extended Barrel, known as the “Tile Calorimeters”, and a section in the forward region

consisting of the two endcaps, which use LAr as a sensing element. The sensing material used

for the barrel sections is a collection of tiles made of scintillating plastic. The light produced by

these tiles when hadronic particles interact is detected and measured. The FCAL also uses LAr in

the forward region, and aims to cover the section closes to the beam axis.

Each of the calorimeters uses different technologies to target both electromagnetic and

hadronic particles. They are non-compensating, meaning their signal responses to the electro-

magnetic and hadronic energy release are different, therefore a dedicated correction must be

applied to calibrate the different types of showers at the same energy scale. The only particles

known to not interact with the calorimeters are neutrinos.

All of the calorimeters rely on sampling technology, in which the material that absorbs the

incoming particles is distinct and different from the material that is used to measure their en-

ergy [100]. The first layer of the calorimeters, the “absorber”, is a high-density absorbing ma-

terial used to initiate energy loss by producing a shower of lower-energy secondary particles.

These lower-energy secondary particles then continue onwards to the second active material

layer, the “sampler”, which measures the progressively degrading energy, either through use

of scintillation or ionisation. The calorimeters are also designed to ensure they can contain

the developing showers, improving energy measurements and also preventing particle showers

“punching through” into the muon spectrometer.

An important factor involved in the design of the calorimeters is the radiation length of

the material used, Xo , which corresponds to the distance taken to reduce the energy of a single

electron by a factor of 1/e. This length is used to define the thickness of the ECAL. The equivalent

for the HCAL is the nuclear interaction length,λi , the mean distance travelled by a hadron before

being subjected to an inelastic interaction. On average the nuclear length is on the order of one

magnitude larger than the average radiation length, hence hadronic particles are much more

penetrating within ATLAS than electromagnetic particles.

The Electromagnetic Calorimeter

The Electromagnetic Calorimeter (ECAL) is the innermost section of the calorimeters and lies

outside the solenoid magnet [101, 102]. In order to reduce the amount of dead material in front

of the calorimeters, they share a common vacuum vessel. The aim of the ECAL is to accurately

and efficiently identify photons and electrons over a wide range of energies, from about 5 GeV

to 5000 GeV, and to measure their energies.

The calorimeter is divided into a central barrel, covering a region of
∣∣η∣∣< 1.475 and two

endcaps with a range of 1.375 <∣∣η∣∣< 3.2. The barrel is divided into two half-barrel wheels and

is housed in the barrel cryostat. The endcaps are located in endcap cryostats. Additional to

this, there is a region defined as the crack-region, found at the meeting space of the barrel and

endcaps. Signal from this region is discarded in analysis due to the large volume of material

obscuring the detectors.
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The ECAL is a sampling calorimeter, using lead (Pb) plates as the absorbing material and Li-

quid Argon (LAr) ionisation chambers with copper electrodes as the active sampling compon-

ent. Within the barrel these modules are arranged radially and placed in alternating layers in

a folded accordion geometry. This means they provide a full azimuthal (φ) coverage, maintain

an even energy resolution throughout , give fast extraction of the signal from the front or rear

end electrodes and also help to avoid the presence of radial cracks of non-interactive material.

The decision to use LAr is based on its linear response combined with large yields from signals,

as well as its being robust against radiation damage. In the endcaps the layers are parallel to

the radial direction and run axially.

The functionality of the calorimeters relies on the LAr becoming ionised by electromag-

netic showers traversing the material. Bremsstrahlung, Compton Scattering and electron pair-

production from photons all occur from interactions taking place in the material and give rise

to electromagnetic showers. These showers ionise the LAr in active regions, and the resulting

ionisation charges can be detected.

The LAr within the ECAL is cooled to 90 K. Liberated electrons within the material are col-

lected and recorded by 101,760 copper electrode readout channels in the barrel, and 62,208 in

each of the endcaps. The read out circuits are made of three copper layers insulated by two lay-

ers of polyimide. The two outermost layers of the circuitry are split into sectors, connected to

high-voltage sources, polarising the LAr gap to the absorber. The inner layer is where the signal

is collected through capacitive-coupling, which is then segmented into read-out pads.

The ECAL starts with a presampling later, a thin layer of active LAr, inside the barrel cryostat,

with 10,880 readout channels. This presampler is able to produce a measurement of the energy

lost in the dead material of the support structure upstream of the ECAL, such as the supporting

walls of the cryostat. This allows the correction for energy lost by taking a measurement just

before the majority of the electromagnetic showers is developed. This layer is only 0.5 cm thick

in the endcaps and 1.1 cm in the barrel region, and covers a range of
∣∣η∣∣< 1.8. The granularity

of the barrel presampler is very small, at just η≈ 0.003, allowing precision pointing of photons.

The first sampling layer of the Calorimeter is designed to bring precision measurements,

including distinguishing between single-shower prompt photons, and those from neutral pion

decays with double showers. It is necessary for it to have the smallest measurable segment size

of the three main layers at ∆η×∆φ= 0.025×0.025.

The second sampling layer contains the majority of the electromagnetic shower, the largest

fraction of energy deposited, and is used for the main energy measurements. High-energy

showers can extend to the third sampling layer. Since hadronic showers generally deposit

more energy and are more penetrating the absence of deposits this layer is used to identify EM

showers. As a layer with more focus on discrimination it has a coarser granularity at∆η×∆φ= 0.05×0.025.

The depth of the three sampling layers is highly optimised, motivated in large part by rejec-

tion of neutral pions, π0. The first layer has a depth, including dead material and presampler, of

6Xo . The second layer extends to a depth of 22Xo and the third layer extends between a depth
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of 2Xo and 12Xo .

The Hadronic Calorimeter

The next part of the calorimetry is the Hadronic Calorimeter (HCAL), surrounding the ECAL [103,

104]. The main purpose of the HCAL is to provide energy measurements of hadronic objects

within ATLAS. It is constructed of steel and scintillating tiles coupled to optical fibres, which are

read out by photo-multipliers. The tiles are 3 mm thick, positioned perpendicular to the beam

axis, and are staggered in depth.

The HCAL barrel section is segmented into three cylindrical layers with an inner radius of

2.28 m and an outer radius of 4.23 m. The three sections are the central barrel, which is 5.65 m

long and covers a region of
∣∣η∣∣< 1.0, and the two moveable extended barrels, both 2.9 m long

and covering a range of 0.8 <∣∣η∣∣< 1.7. There are also two endcaps located directly behind the

ECAL endcaps, sharing the same LAr cryostat, and covering a region of 1.5 <∣∣η∣∣< 3.2. The en-

dcaps are both 1.78 m in length along the beam pipe, and 2.03 m in radius. The endcaps are

positioned to overlap with the extended barrels to account for the drop in material density in

these locations.

Each of the cylinder sections consists of 64 modules spread in theφ direction. Each module

is further divided radially, into three layers with a granularity of ∆η×∆φ= 0.1×0.1 for the two

innermost layers and ∆η×∆φ= 0.2×0.1 for the outermost. The three layers are 1.5, 4.1 and

1.8λi thick in the central barrel and 1.5, 2.6 and 3.3λi thick in the extended barrels. Module

layers are offset with respect to the layers of their neighbours to increase granularity. Each

hadronic endcap consists of two wheels, each containing two layers of wedge-shaped modules

which use copper absorber layers alternated with LAr.

The materials and techniques used in the HCAL are different from those used within the ECAL

and vary within the tile calorimeter itself. Steel is used as the absorbing material within the

barrels, and is interleaved with plastic scintillating tiles as the active medium. The scintillating

tiles are read out from both sides by wavelength-shifting fibres to photomultiplier tubes. 5,760

of these are located in the main barrel and 4,092 in each of the extended barrels. The endcaps

use copper plates as their absorbing material and LAr as their active material and are connected

to 5,632 readout channels each. The electronics of the HCAL are contained within supportive

plastic girders. These girders also provide flux return for the central solenoid magnetic field.

The Forward Calorimeter

The final part of the calorimetry is the Forward Calorimeter (FCAL) [105]. The LAr FCAL cov-

ers a range of 3.1 <∣∣η∣∣< 4.9 and is placed at a distance of 4.7 m from the collision point. It is

formed by three modules in total. Firstly, one electromagnetic layer with copper as a shower-

initiating metal. Following this are two hadronic layers using tungsten as absorbers. These

are also employed to provide containment and minimise lateral spread of hadronic showers.

The absorber metal matrix of regularly spaced longitudinal channels is filled with concentric
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rod and tube electrodes and small gaps are filled by LAr. To avoid problems with ion build up

caused by higher particle fluxes, the LAr gaps in the FCAL are made substantially smaller than in

other parts of the calorimeter (0.25 mm compared to 8.5 mm in the endcaps). The rods are at a

high, positive voltage, and the tubes and matrix are both grounded. Each module of the three

modules is 45 cm long.

Measurements within the FCAL are not as accurate as those from the other components of

the calorimeter system, due to a coarser segmentation and to the large amount of background

from underlying hadronic activity in the forward region. There are 1,008 readout channels

within the electromagnetic module, and 754 channels in the hadronic modules.

2.2.5 Muon Spectrometer

Figure 2.8: Overview of the ATLAS MS [12].

The outermost detecting section of the ATLAS detector, the Muon Spectrometer (MS), shown

in Figure 2.8, surrounds the calorimeters and is used to measure the most penetrating particles

detected by ATLAS: Muons [106]. Muons lose far less energy through interaction processes, such

as Bremsstrahlung, than electrons due to their higher mass. They do not interact strongly and

their electromagnetic energy loss through Bremsstrahlung is suppressed relative to that of an

electron by a factor of (me /mµ)4 ≈ 5.4e−10. Their lifetime within the detector is also measured

as longer, due to time dilation processes originating from their relativistic momenta at the LHC.
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Muons do leave a track in the ID, small energy deposits in the Calorimeters, and then go onto

leave additional track segments in the MS.

The MS is used to determine the paths of muons taken through the detector, and also to

deliver precision measurements of their momenta. The design of the MS is similar to the in-

ner detector, it employs large superconducting air-core toroid magnets to cause deflection of

the muons. The muon trajectory in the MS is curved in the R − z plane. Measurements of

their trajectory within a magnetic field can be taken through the use of high precision track-

ing chambers to accurately measure their momenta. Measurements can also be made of their

momentum, direction and electric charge. The larger size of the MS allows accurate measure-

ments of muons up to the TeV scale, which is essential for the physics programme of ATLAS. The

MS can also act as a stand-alone trigger for muons with pT of the order of several GeV.

Distinct from the other ATLAS sub-detectors, the MS has its own separate components for

fast muon-triggering online, and precision muon-reconstruction offline. It has four different

types of component channel: two for precision measurement and two for triggering, as the

readout time of the precision measurement chambers is longer than the required limit for trig-

gering. (After a muon has been detected with the precision chambers the other detector sub-

components would no longer be storing the data from the corresponding bunch-crossing due

to the amount of time the precision chambers require to record data.) These trigger cham-

bers are operational in the region of
∣∣η∣∣< 2.4, with two different types of chamber employed

to handle the increased rates in the forward regions. The muon trigger system selects inter-

esting events containing muon candidates by providing identification of the individual bunch-

crossings and measuring the muon track in the φ plane which is orthogonal to the one meas-

ured by the tracking chambers. The muon trigger system defines Region of Interest (RoI) in η

and φ which are then scanned with precision by Monitored Drift Tubes (MDT).

The magnet system used to bend the muon tracks consists of two sections; a single large

barrel toroid covering the region
∣∣η∣∣< 1.4, and two endcap magnets at either end of the barrel,

covering the regions 1.6 <∣∣η∣∣< 2.7. The region between these, 1.4 <∣∣η∣∣< 1.6, is the transition

region and is covered by both the barrel and endcap magnets. In the barrel region the toroidal

field is produced by eight very large, superconducting coils and the muon tracks are measured

using chambers arranged into three cylindrical layers about the z-axis. The layers lie at a ra-

dius of 5, 7.5 and 10 m. Within the endcap regions and the transition region, the chambers are

installed in the R-φ plane, also in three layers. There are four endcap wheels at a longitudinal

distance of 7.4 m, 10.8 m, 14 m and 21.5 m from the centre of the detector.

Including the MDT there are two drift chambers. The other is the Cathode Strip Cham-

bers (CSC). These are both dedicated to high-resolution measurements of tracks in the pseu-

dorapidity range
∣∣η∣∣< 2.7. Over most of the η-range, a precision measurement of the track

coordinates in the principle bending direction of the magnetic field is provided by the MDT.

CSC, which have a higher granularity than the MDT, are used for the innermost plane over

2 <∣∣η∣∣< 2.7. The drift chambers contain gas which is ionised by the passing muon, and ion-

isation electrons are then attracted to, and read out by either one of the MDT or several CSC
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wires. The time taken for electrons to reach the wire is known as the drift time. The drift times

in the MDT and CSC chambers (approximately 100 ns), are too long to allow the use of MDT and

CSC in the first trigger level, which requires the detector to be read out in less than 25 ns (the

bunch crossing time).

The dedicated trigger subdetectors consist of the Resistive-Plate Chambers (RPC) in the bar-

rel,
∣∣η∣∣< 1.05 and Thin-Gap Chambers (TGC) in the higher background region of the endcaps,

1.05 <∣∣η∣∣< 2.7. These are used to complement the precision chambers and to attach measured

signals to certain bunch crossings. They provide a more coarse measurement of η and φ , but

have a response time of less than 25 ns, making them appropriate for use in hardware trigger

decisions. The RPC use parallel electrode-plates rather than wires to detect muons, while the

TGC are multi-wire proportional chambers. In addition to their triggering capability, the RPC

and TGC are used to measure the curvature from the toroidal magnetic field, which is in the

R − z plane. These also determine a second reading of the muon coordinate which is ortho-

gonal and complementary to that taken by the precision chambers. The RPC have a spatial

resolution of 1 cm and a very fast response time of about 1 ns which is necessary for the trig-

gering. The resolution of the TGC is slightly better at 5 mm and they have a response time of

4 ns.

There are several sections within the MS that have fewer chambers. Close to η≈ 0 there are

control systems for the ID, calorimeters and solenoid magnet. At the base of the MS there are 9

rows of “feet” used to support the entire ATLAS detector. In all other regions there is a pairing

between each RPC and MDT layer. The lack of space near the feet requires smaller RPC without

MDT. In order to achieve the required performance it is important that the chambers are aligned

accurately and that their position is well known. For this reason the muon system contains an

optical alignment system both in and between the muon chambers, and this is complemented

by track-based alignment.

Monitored Drift Tubes

The first section of the MS are is the Monitored Drift Tubes (MDT). A precision measurement

drift chamber, the MDT are aluminium tubes filled with gas, and provide momentum meas-

urements in the
∣∣η∣∣< 2.7 region of ATLAS. In the innermost endcap region they only reach∣∣η∣∣< 2.0. The tubes are 29.970 mm in diameter, and are filled with Argon (93%) and CO2 (7%)

gas. Through the centre runs a tungsten-rhenium wire held at a constant potential of 3080 V.

When a penetrating muon reaches these tubes it results in a trail of electrically charged ions

and electrons, which can then drift to the sides and the centre of the tube to be collected for

measurements by the anode wire. By measuring the drift time of these charged electrons and

ions from their initial point, the position of the muon can be determined. The major short-

coming of the MDT is that their drift time can reach up to 700 ns, limiting the maximum rate

of operation of the system. Tubes have an average precision of 80µm, enhanced by having

multiple layers of tubes for each module. Chambers have a resolution of 35µm.
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Within the barrel, the MDT are arranged axially, and in the endcaps they are arranged radi-

ally, moving outwards from the beam axis. They are disposed orthogonally with respect to the

beam axis, and they only provide a measurement of the coordinate of the hits. They able to take

a total of twenty measurements for each track in both the barrel and endcaps.

Cathode Strip Chambers

The second part of the MS high precision measurement region are the Cathode Strip Chambers

(CSC). The use of faster detectors is needed to cope with the demanding rates and background

conditions in the forward region. These work in a similar fashion to the MDT, but instead of

tubes with central wires, there are cathode strips above and below the anode wire.

The CSC are placed in the first layer of the endcaps and cover the region 2 <∣∣η∣∣< 2.7. They

consist of two disks, each with eight multi-wire proportional chambers that have four CSC

plates, giving four measurements for an individual track. These are faster multi-wire propor-

tional chambers with a finer spacial resolution with respect to the MDT. There are cathodes seg-

mented into strips with higher granularity. The CSC are arranged radially, with sections fanning

out from the z-axis. One set of cathodes is arranged orthogonally to the wires for precision, and

the other is parallel to the wires, providing a measurement of the transverse coordinate. This

allows both coordinates to be measured from the induced charge distribution.

The gas between the strips and wires is a non-flammable mixture of Ar (30%), CO2 (50%)

and CF4 (20%). The resolution of a chamber is 60µm in the bending plane η and approximately

5 mm in the transverse plane.

Resistive Plate Chambers

The Resistive-Plate Chambers (RPC) are gas chambers mounted in the barrel region. In the

range
∣∣η∣∣< 1.05. They are used for muon triggering and secondary complementary coordin-

ates, orthogonal to the precision measurements from the MDT. They are a gas based parallel

electrode-plate detector formed by two parallel resistive plates held apart by insulating spacers.

These are oppositely-charged anodes and cathodes. Both of these are made of a plastic lam-

inate material with high resistivity, Bakelite. Plates used are at a spacing of 2 mm and with

uniform electric field of 4.9 kVmm−1 across them.

The gas inside is a mixture of F4 (94.7%), H10 (5%) and SF6 (0.3%), as well as smaller per-

centages of C2, H2, and Iso-C4. As a muon passes through the gas mixture in the electric field, a

limited-ionising-avalanche multiplication takes place, centred around the primary-ionisation

electron. Muons passing through the RPC ionise the gas, which sets free electrons. These are

accelerated by the electric field and start ionising more of the gas atoms which leads to a chain

reaction of many accelerated electrons which is called an electron avalanche.

These avalanches are formed along the ionised tracks towards the anode, which is read out

by capacitive-coupling to metallic strips. The signal from ionising particles is collected by ex-
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ternal aluminium strips, separated from the plates by an insulating film, with a time resolution

of the order of 1 ns, a significantly shorter time scale than the separation between two bunch

crossings, 25 ns. These are read out by metallic couplings on the outside of the resistive plates.

These signals are utilised as inputs for the muon triggers thanks to the rapid speed of re-

sponse. They also provide a measurement of the η-φ coordinate of the muon, which is not

measured in the MDT. A maximum of six space-points are recorded for every track.

Thin Gap Chambers

The final section of the MS are the Thin-Gap Chambers (TGC). They are multi-wire propor-

tional chambers, similar in design to the CSC, optimised to achieve a fast signal collection.

They are mounted within the endcaps to improve the muon trigger capability in the region

1.05 <∣∣η∣∣< 2.4 and to determine theφ coordinate of muon trajectories in the forward direction

up to
∣∣η∣∣< 2.7.

The TGC consist of an array of anode wires that are placed between two graphite cath-

ode layers and filled with a gas mixture. They are filled with CO textsubscript2 (55%) and n-

pentane (45%) gas, with the cathode plates 2.8 mm apart. The anode wires are only 1.8 mm

apart, which, along with a high electric field, leads to very good time resolution. The wire-to-

cathode distance, 1.4 mm, is smaller than the wire-to-wire distance 1.8 mm. Again, a muon

passing through the gas in these TGCs will ionise it and cause an electron avalanche which is

collected on the nearest wire. They provide large signals and in a very narrow time window

making them ideal for triggering purposes. They have a higher granularity than the RPC.
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3THE GENERATION,

SIMULATION AND

RECONSTRUCTION OF

ATLAS DATA
If you wish to make an apple pie

from scratch, you must first invent

the universe.

Carl Sagan

Monte Carlo (MC) simulated processes are an integral element of particle physics analysis

at ATLAS. Custom software algorithms are developed to simulate the physical processes tak-

ing place following the proton-proton collisions [107]. Simulation of both signal processes and

background are critical to further understanding of physics of particle interactions and decays

following proton-proton collision. Predicting the evolution of these physical processes is ne-

cessary to design meaningful analyses and validate predictions with real data taken from the

detector allows us to evaluate the accuracy of our theoretical models. There are three main

stages to this procedure: firstly, the generation of MC events, discussed in Section 3.1. Secondly,

we simulate the interactions of particles in these events with our detector, covered in Sec-

tion 3.2. This emulates the response of the real detector and the respective responses of each

sub-system of the detector and is the first step to allow a direct comparison to real ATLAS data.

The third stage is the reconstruction of physics objects, described in Section 3.3. Here, stand-

ardised algorithms reconstruct different types of physics objects based on signals from the de-

tector sub-systems. The reconstruction procedure is the same for both real data and simulated

events, to allow direct comparison. The specific MC samples and reconstructed objects used in

the main analysis for this thesis are covered in Chapter 6.

3.1 Generation of Monte Carlo-Simulated Events

Critical to the analysis of physics within ATLAS data is the employment of MC-simulated physics

processes [107]. The use of simulated collision events, generated through a multi-phased MC

method allows the replication of signal processes and potential background processes. These

simulations are repeatedly implemented to further anticipate predictions about event rates,

kinematics, topologies and signals within the detector. The generated simulations involve the
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Figure 3.1: Illustration of a proton-proton collision in the LHC, as simulated by MC event gen-
erators [13]. Depicted is t t̄ H →W bW bbb → qqb`νbbb. The colliding protons are symbolised
by the two large, green ovals. The gluons of these protons are signified by the blue, looping
lines. One parton from each proton is involved in the hard-scattering event, represented by the
red circle. The red, looping lines extending from the hard-scatter indicate Bremsstrahlung, as
simulated by parton showers. The purple oval at the bottom and it’s respective branching struc-
ture indicates a secondary scattering event, the UE. Light green ovals indicate the hadronisation
of partons, and dark green ovals indicate the subsequent decays of these hadrons. Finally, the
straight and undulating yellow represent leptons and soft photon radiation respectively.

use of both perturbative and non-perturbative (phenomenological) techniques to produce the

events. To allow full analysis of experimental data, these generated events must then be passed

through simulations of detector responses.

The execution of MC generation involves stochastic simulation of events following theoret-

ically derived probability distributions. A target process is chosen and a selection of samples

are produced through the filtering of events. Samples are divided into categories to allow the

selection of relevant processes. Following this, filtering by given final states is possible; this

reduces the demand on computational resources.

Descriptions of Proton-Proton collisions at the LHC depend on identification and categor-

isation of the Deep Inelastic Scattering (DIS) process [108]. These DIS processes are so named



55 3.1 Generation of Monte Carlo-Simulated Events

due to the probing of the substructure of the each proton by the other, and the non-conservation

of momentum during the collision. These processes can be hard or soft. Hard processes can

be described through perturbation theory; describing soft processes, which dominate interac-

tions at the LHC must include the use of non-perturbative QCD effects.

Most frequently, the collision includes a hard scattering process, which takes place between

two constituent partons, one in each of the protons. An illustration is given in Figure 3.1. These

events are defined as having either a significant transfer of momentum, large pT, or a large

mass scale. The target process of our analyses most often originate from these central hard

scattering events and can be chosen before event generation takes place. The list of partons

included within the models of our proton-proton collisions are the valance quarks within the

proton, uud , the gluons that mediate strong interactions between these valence quarks, g , and

all sea quarks produced through virtual qq̄ creation originating from strong field fluctuations

within the hadron.

Beyond the central hard scattering process, the collision also involves multiple softer pro-

cesses, including Initial State Radiation (ISR), Final State Radiation (FSR) and the Underlying

Event (UE). ISR originates from particles which are radiated by the partons pre-scatter. The

ISR interacts with the hard process. FSR is emitted post-scattering. Soft scattering also occurs

from additional remnants produced from the breakup of the colliding protons. All processes

originating from ISR, FSR and beam remnants constitutes the UE. This approximation is limited,

however, by identification and understanding of soft or collinear emissions.

Generating the events using MC simulations is broadly broken down into a number of steps

involving both perturbative and phenomenological calculations. We employ a variety of spe-

cialised event generators, specialising in a range of theoretical techniques and methodolo-

gies, to suitably develop simulations of the many significant physical processes that take place

within the collisions.

The first juncture to address is the modelling of the initial state of the protons within our

collision. The point-like constituent partons carry a fraction of the total momentum of the

proton that contains them. The momentum of our proton must be shared amongst its par-

tons through use of mathematical processes known as Parton Distribution Function (PDF)s [82].

Following this we simulate the primary hard scattering of the partons within the proton. The

simulation of the hard scattering process is divided into a Matrix Element (ME) component, in-

volving perturbative calculations to a fixed order, and a Parton Shower (PS) component which

simulates the emission of additional soft object within the event. Colour-charged particles

simulated within the event are able to radiate gluons or produce qq̄ pairs through these PS,

resulting in cascades of radiation within the detector. The next stage, the simulation of Had-

ronisation, emulates the process by which these showering colour-charged quarks and gluons

eventually reach energies low enough to form colour-neutral hadrons. Below we will review

these key steps involved in producing the required MC simulated events in depth.
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3.1.1 Parton Distribution Functions

The first part of the process of generating our events is through the use of Parton Distribu-

tion Functions (PDFs) [82]. During high-energy collisions, the substructure of our protons are

probed. This takes place through Deep Inelastic Scattering (DIS) and involves the exchange of a

boson between two partons, each from within one of the two protons in our collision, transfer-

ring a four-momentum of modulus q . We cannot know the flavour and momentum of partons

within our colliding protons, as this calculation is non-perturbative. This is because low en-

ergy, soft QCD effects dominate the parton interactions. PDFs are therefore used to represent

the probability of specific parton flavours found within the proton and the probabilistic mo-

mentum distribution these constituent partons, i , possess. PDFs can be seen as a description of

the change of the structure functions of the proton’s constituents as a function of the running

strong coupling, αS . They are used throughout the stages of the MC simulation; the ME, PS and

UE.

PDFs rely on the momentum transfer between interacting partons, Q2 through exchange of

bosons with momentum −q2 and the fraction of the total proton’s longitudinal momentum, xi .

This is known as the "Bjorken-x" [109]. The structure of the proton is represented as fi

(
xi ,Q2

)
.

Factorisation theorem declares that the differential cross-sections, dσ, of a given hard process

can be given as [110]

dσ=∑
I , j

∫ 1

0
d xi

∫ 1

0
d x j dσpar t

i , j fi

(
xi ,Q2

)
f j

(
x j ,Q2

)
(3.1)

Here dσpar t
i , j represents the differential cross-section of the hard process between the pair of

partons. PDFs are universally applicable and do not depend on the hard process being con-

sidered, as they are functions of the momentum fraction.

The source of these PDF shapes are acquired from fitting measurements to experimental

measurement data from both fixed-target and collider experiments, including the Tevatron

and HERA. This allows the calculation of the Dokshitzer–Gribov–Lipatov–Altarelli–Parisi equa-

tions (DGLAP) evolution equations, which are used to compute the dependence of the PDFs as a

function of Q2 for a particular parton [111, 112, 113]. This means that the measured PDF can be

transferred to experiments within much higher regions of Q2, such as the LHC.

The accuracy of the PDF is variable, it can sometimes extend up to Next-to-Next-to-Leading

Order (NNLO), but it more often set at Leading Order (LO) or Next-to-Leading Order (NLO).

A decision on the flavour scheme used within the calculation also must be made, most of-

ten between the four-flavour (4F) and five-flavour (5F) schemes. The 4F scheme implements

massive b-quarks within the calculations, such that the constituents of the proton are restric-

ted to the four lightest quarks and the gluon. b-quarks are, however, included within the final

state. In the 5F scheme b-quarks are factored in as massless partons, and are therefore also

included in the initial state.
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3.1.2 Matrix Element Calculations

The second part of the event generation involves the computation of the hard scatter within

the event, describing the interaction of partons within the proton, and the outgoing particles

they produce. This is done through use of the Matrix Element (ME) calculation. Matrix Element

(ME) calculations involve the perturbative quantum field theory calculations of the Feynman

diagrams of processes of interest within the event, and the computation of the partonic cross-

section σ̂n .

Hard processes involve a momentum transfer at large scales, Q2 >O(1GeV). At these ener-

gies the running coupling of QCD, αS , drops down to ≈ 0.1, where perturbation theory can be

used. These processes can therefore be constructed from first principles using the ME of the

interaction, simulated through the use of QFT techniques. PDFs simulate the incoming partons

using the ME in an expansion of αS . This leads to the calculation of a probabilistic distribution

of the partons outgoing from the interaction. All hard processes are considered in the simula-

tion, including hard emissions of energetic quarks and gluons, either through a quark radiating

a gluon (q → qg ), or when a gluon either decays into a quark-antiquark pair (g → qq̄) or gluon

pair (g → g g ). There are dedicated event generators to supply higher order calculations.

Associated scattering matrices can be calculated to differing orders. Many of these pro-

cesses are now determined to NLO precision in perturbation theory expansion of αS , and can

be normalised to NNLO. Multi-purpose event generators will provide a comprehensive list of

LO matrix elements. MADGRAPH [114] and POWHEG [115] generators are commonly used to

compute these Matrix Element (ME) calculations to NLO precision.

The use of ME calculations in this process cancels out Ultraviolet (UV) divergences in higher-

order computations; however, if larger multiplicities of final state objects are included, these

cancellations are nullified: contributions from soft collinear emissions bring new divergences.

These contributions are removed through an introduced cut-off, such that extraneous soft ob-

jects are excluded. These are consequently added back during the Parton Shower (PS) phase of

the simulation. Any overlap with the PS is removed through a matching procedure, determining

the separation in phase spaces covered by the ME and PS.

3.1.3 Parton Showers

The third phase in event simulation is the Parton Shower (PS) phenomenological modelling.

The PS builds on the ME describing the evolution of partons preceding and following the hard

scatter. Due to the lower energies involved, the emission of the soft objects cannot be modelled

with ME calculations. Calculations are non-perturbative, therefore differing methods must be

used. Consequently, higher-order calculations can be taken into account at this stage, unlike

during the ME calculations. These higher-order contributions are additional, soft emissions

from QED and QCD processes. Determining these higher-order calculations, however, requires

approximations in which the dominant contributions within each order are the only ones in-

cluded.
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Phenomenological models use algorithms based on step-wise Markov chains [116]. These

algorithms give probabilistic decisions on soft-processes, including gluon emission by a quark

(q → g q), or pair production from either a quark-antiquark pair (g → qq̄) or a gluon pair (g → g g ).

At each step of the algorithm a decision is made as to whether these processes will occur. As

the parton energies decrease they undergo Hadronisation.

During intermediate levels of momentum transfer (Q2) there is potential for crossover between

hard emission to be treated peturbatively, and softer processes to be treated as part of the

PS, leaving the potential that double-counting might take place. Use of the Catani-Krauss-

Kuhn-Webber (CKKW) [117] and Michelangelo L. Mangano (MLM) [118] algorithms are utilised

to identify the domain of these processes and assign them to be treated either through ME Cal-

culations or within the PS in a way that avoids significant discontinuities in observable spectra.

The most commonly used PS models are developed by the PYTHA [119], SHERPA [120] and

HERWIG [121] collaborations.

3.1.4 Hadronisation

Following the PS, the simulated partons reach a value of momentum transfer (Q2) approaching

the order of ΛQC D ≈ 200MeV. At these energy scales the colour confinement property of QCD

becomes relevant to calculations, as all evolved soft partons (with exception of the top quark)

begin to Hadronise. The Hadronisation of these partons into colour-neutral hadrons is regu-

lated by non-perturbative QCD, meaning specialised phenomenological modelling techniques

are once again required. Unstable hadrons created within this process will further decay into

stable final-state objects. This is also simulated during this phase. This requires the use of

non-trivial parameterisation decisions to simulate the decay chains of these unstable hadrons.

The two models most commonly used for modelling these processes are the cluster model,

by HERWIG [122], and the Lund string model, by PYTHA [123]. Both of these methods contain

a high number of parameters, they must therefore make use of empirical methods, fine-tuned

to experimental data [124, 125]. The final state of the Hadronisation phase then consists of

objects that are stable on the timescale of colliders, and therefore can be passed onwards to a

simulation of the detector.

3.1.5 Underlying Event and pile-up

The final phase of the simulated event is the modelling of the Underlying Event (UE) [126].

Alongside the hard scattering processes, involving only two quarks or gluons, interactions from

extra partons can produce extra soft interactions at lower scales of energy. LHC processes can

be regarded as Multiple Parton Interactions (MPI), generating multiple instances of underlying

hadronic activity. These are referred to as the UE.

Pile-up from non-primary interactions must also be considered. There are two categories

of pile-up to be considered: in-time and out-of-time pile-up. For in-time pile-up the source of
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interactions are collisions between proton pairs of the same bunch crossing as the hard scat-

ter. Out-of-time pile-up occurs due to collisions in a different bunch crossing. This pile-up is

modelled and overlaid on the MC simulation using PYTHA.

The low energy scales of these interactions means, once again, that specialised phenomen-

ological models are used. These are reliant on parameters tuned to data. The resultant Hadron-

isation of these interactions must also be taken into account, and are simulated using related

models.

3.2 Detector Simulation

Following the event simulation, we are left with a series of truth level events: a list of four-

vectors representing particles defined as “stable”- with lifetimes of approximately 3×10−11 s-

and holding the kinematic information of the event. These truth level events depict the physics

objects prior to their interaction with the detector, meaning that for meaningful comparison

with data from the experiment this simulated data must be passed through another simulation,

this one replicating the effects of the detector and the subsequent signals from the detector

sub-systems [127].

To produce the detector simulation we use GEANT4 [128], a software toolkit integrated

within ATLAS offline software. The result of this is an output in an identical format to exper-

imental data passing through the ATLAS TDAQ. This means that both our MC simulation and

real ATLAS data can be processed in a consistent way through the same reconstruction software.

There is also use of faster simulations, such as AltFastII (AF2) [129] , using a parameterised sim-

ulation of detector response.

3.2.1 Propagation

The first stage of simulating the effects of the detector involves recreating the propagation of

MC simulated physics objects. This simulates the interactions between these particles and the

numerous sub-systems integrated within the detector. The interactions must be equivalent to

the conditions experienced by real particles undergoing detection, including undergoing inter-

mediate particle decays and scattering. This stage also accordingly simulates the response of

the detector, including ionisation and radiation. “Hit” files are produced, containing simulated

track positions and energy deposits in the sub-detectors, and are passed onto the following

stage: “Digitisation”.

3.2.2 Digitisation

The second stage of our detector simulation, “Digitisation”, transforms our “Hits” through a

reproduction of the electrical response of our detector subsystems. Therefore, the tracks and

energy deposits in our simulation are translated into digitised values for output-style electronic
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signals: currents, voltages and associated times. During this process a pre-generated model of

background noise found within the detector is inserted. Incorporating the background at this

stage allows us to save CPU processing time by preventing repeated simulation of information

independent from the event. The noise consists of a number of distinct items: Extraneous

soft collisions, such as pile-up interactions; cavern background, including low energy neutron

physics; beam halo; and cosmic rays.

This MC simulation data is then output into a format known as a Raw Data Object (RDO),

the same output format as given by the ATLAS TDAQ system. Having our MC simulation output

contain equivalent information to our real experimental data allows processing by the same

trigger and object reconstruction software, such that the simulations and real data can be ex-

plicitly compared.

Additionally to the RDOs we produce Simulated Data Object (SDO) files. These represent a

“truth” level record of the event, with information on the true identity of particles at each of the

vertices and all corresponding tracking and decay information. These truth level objects can

(and will) later be matched to reconstructed objects, allowing comparison and evaluation of

algorithms used in reconstruction processes by identification of potential misreconstructions.

3.2.3 Fast Simulation

The complete procedure of running the detector simulation involves an incredibly detailed ac-

count of each process taking place within every subsystem and is labelled as the “Full Simula-

tion” (fullsim for short). Simulating a single event using fullsim typically takes several minutes.

When requirements dictate the need for millions of events for a given sample this timeframe

can be significant and a quicker option may be preferable. Thankfully, there is a stream-lined

option available for detector simulation: the “Fast Simulation” (fastsim).

Employing fastsim can reduce the simulation time by a full order of magnitude – particu-

larly useful for large dataset requirements – and can reduce the strain on computing resources.

ATLAS uses the software AltFastII (AF2) [129] to generate these fastsims. AF2 utilises the full

GEANT4 process software [128] for the ID and MS simulations, and uses FastCaloSim for the

calorimeters.

The increase in speed of AF2 comes from parameterising the simulation of our physics

particles energy responses and distribution within the ATLAS detector, simplifying the PS process

which would normally take up >90 % of the processing time, now reduced to a few seconds per

event. Nevertheless, this fastsim, however useful in reducing processing times, must be used

appropriately: analyses requiring in-depth calorimeter information, such as JSS, necessitates

that we use the full PS to avoid significantly less accurate models. This is the case in this ana-

lysis. JSS will be discussed in Section4.5.



61 3.3 Object Reconstruction

Figure 3.2: Diagram representing the detectable signatures of different physics objects within
the ATLAS subdetectors [14]

3.3 Object Reconstruction

Following, the collection of real data from the ATLAS detector, we are left with data that is ready

to be processed into physics objects for identification and analysis. The data from our RDOs,

containing digitised detector signals and responses, can now be converted back into tracks

and calorimeter information, which in turn are reconstructed into physics objects through the

use of reconstruction algorithms. Examples of physics objects are shown in Figure 3.2.

In the case of real detector data, preliminary selections on events are executed by the ATLAS

TDAQ system: relevant signals of the desired physics objects are pinpointed by software al-

gorithms running in the HLT (described in detail in Section 5.1.2. These algorithms are required

to run quickly; however, once these events are actually recorded we can use more rigorous re-

construction algorithms to analyse the data.

Object reconstruction at ATLAS is executed through the Athena software framework [130]

to combine information from the various subdetectors to a specification depending on the

objects used and the analysis objectives. This data is then output in the format of an Analysis

Objects Data (AOD) for physics analysis. In the first instance, physics objects are reconstructed

with a broad set of requirements. Analysis-dependent specifications allow, and dictate, tighter
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object definitions to increase object selection purity at the detriment to broader efficiency.

A range of reconstructable objects exists: Tracks and Vertices, Electrons and Photons, Muons,

taus, E miss
T and Hadronic Jets. The final major physics objects to be reconstructed within our

simulations, Hadronic Jets, will be discussed in full detail in Chapter 4.

3.3.1 Tracks and Vertices

The first set of object reconstructions we shall look at is that of the tracks and vertices, both

based on data coming from the ID. Tracks are the reconstruction of pathways taken by charged-

particles through the ID [131, 132]. Vertices are defined as the positions at which single particles

decay, or pairs of particles interact [133]. Tracks and Vertices are first reconstructed themselves,

before being matched to separate physics objects for further uses. Tracks are vital for charged-

particle reconstruction, and vertices are required both for flavour tagging in jets and for quan-

tifying pile-up. A “Primary Vertex” is defined as the vertex at which the hardest event scattering

is taking place.

Tracks

As charged particles make their way through the ID and pass the different layers within (the

pixel layer, SCT and TRT) they generate hits. These hits are combined through a number of al-

gorithms and reconstructed into tracks [131, 132, 133]. There are three main algorithms which

are used for track reconstruction. The primary track-reconstruction algorithm uses what is

known as an “inside-out” approach: starting from the innermost layer, requiring at least 3

grouped, consistent hits in the inner pixel and SCT layers, with each of the hits required to

pass a minimum pT requirement of >1GeV. Subsequently the track reconstruction moves to

extrapolate the tracks to include compatible hits from the TRT through use of a combinatorial

Kalman filter [134]. A secondary “outside-in” algorithm, aiming to target later decays of neutral

particles within the ID, is also used. Known as back-tracking, it is seeded within the outermost

layer, the TRT, and works its way inwards towards the pixel layer, considering hits not utilised in

the “inside-out” reconstruction. Thirdly, a final track reconstruction algorithm using only hits

from the TRT is used. Following the initial steps of reconstruction, selections can be applied to

reach the appropriate track quality for analyses.

Charged particles within the ID undergo acceleration from the magnetic field, and as a res-

ult the pathways they leave are helicoidal, with curvature inversely proportional to the pT of

the particle. The tracks can be parameterised through use of five track perigee parameters, all

given relative to the origin of the ATLAS co-ordinate system and measured at the point closest

to the z-axis. Firstly, the combination of two space co-ordinates: pseudorapidity, η and the

azimuthal angle, φ. The next are impact parameters: the transverse impact parameter, d0, the

distance of closest approach between the track and origin, measured in the transverse plane;

and the longitudinal, z0, the distance measured in the longitudinal direction. Finally, the pT:
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which is proportional to the magnitude of the magnetic field, B , and the bending radius of the

trajectory, R (see Equation 2.7.

Vertices

Vertex reconstruction at ATLAS is required to identify physics objects produced in the correct

hard scattering event from those produced in other pile-up collisions [133]. Proton-proton

collisions are distributed along the z-axis of our beamline, in coordination with the finite length

of the proton bunches. To correctly ascertain the collision of origin of each vertex, we ensure

the tracks that constitute it are traced back to the beamline.

For a track to be defined as coming from a Primary Vertex (PV) it must lie within the beam-

spot area, the area surrounding the collision point where the two proton beams overlap, and

have at least two selection-passing tracks associated to it. A higher minimum number of tracks

can be determined to decrease the likelihood of events additional to our event of focus degrad-

ing the vertex reconstruction.

Reconstruction of vertices works on the principle of grouping reconstructed tracks back to

a common interaction point using an adaptive vertex-fitting algorithm [135, 136]. Each track

used in the reconstruction of vertices must pass a minimum pT>400MeV and have a suitably

central pseudorapidity, η<2.5.

Vertex reconstruction is an iterative process. Reconstruction ends when no additional ver-

tices can be constructed or if all possible tracks are associated to vertices. To begin our vertex

construction we first identify a seed, signified by a global maximum of reconstructed tracks

within the z-direction. The centre of the vertex is decided by fitting tracks using the least

squares fitting method. Outlying tracks, far from the vertex centre, are more likely to be noise

tracks, not originating from the vertex we seek to reconstruct, and are therefore assigned lower

weights in the fitting process.

The true position of the vertex centre, and the identity of any real outlier tracks, are un-

known to us. Each iteration of track-to-vertex matching results in the weights of outlier tracks

being diminished. Each iteration of the reconstruction increases the accuracy of vertex con-

struction and identification of outlying tracks. Once the vertex centre ceases to change between

iterations, the algorithm appoints the vertex complete, and moves to find a new seed, using

those tracks not associated with the current vertex. This continues until all tracks are clustered

into vertices, or no further vertices can be reconstructed.

Complications through pile-up interactions can lead to multiple vertices being successfully

identified. The assignment of a true PV, representing the main hard scatter of our event, is given

to the vertex with the highest sum of squared associated track momenta (
∑

p2
T ). All other PVs

found are, therefore, assigned as pile-up vertices. The number of these pile-up PVs within the

event, Number of Primary Vertices (NPV), is related to the average number of interactions per

bunch crossing, 〈µ〉, used as a direct measurement of the pile-up for calibrations.

We also define a Secondary Vertex (SV) as those which lie outside of the beamspot region.
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These SVs originate from tracks displaced from the PV, indicating the particles with lifetimes suf-

ficiently long to traverse a measurable distance before decaying (typically mms). This feature

can aid in the flavour-tagging of jets, by identifying the presence of these particles.

3.3.2 Electrons and Photons

Within ATLAS both electrons and photons are reconstructed using a combination of information

from the ECAL and ID [137]. The experimental signature characteristic of photons and electrons

within the ATLAS detector is an electromagnetic shower taking place within the ECAL. Electrons

also have an associated track within the ID. For electrons and photons, these are reconstructed

within the central region corresponding to the acceptance of the ID and the highly segmented

section of the ECAL,
∣∣η∣∣< 2.47.

The first step to reconstructing electrons and photons involves the clustering of calorimeter

energy deposits from seeds, which begins with identifying seed-clusters. These seeds are en-

ergy deposits within the ECAL that have pT >2.5GeV, when the energy of all layers of the calori-

meter are added together in a "tower" structure. Any duplicates are removed following energy

comparisons with nearby seeds. A standard threshold is chosen to optimise the efficiency of

the reconstruction, which helps to minimise any possible contribution from noise originating

from electronic or pile-up sources.

A method commonly used in the reconstruction of these physics objects is the clustering

by sliding-window algorithm [138, 139]. This process searches for clusters by defining a fixed

longitudinal tower within the ECAL as a window, scanning over blocks of three-by-five in units

of ∆η×∆φ= 0.025×0.025, which corresponds to the granularity within the middle sampling

layer of the ECAL. Towers with the most energy deposited are identified, and matched to tracks

within the ID.

Track matching starts with searches for those with pT >500MeV. These tracks are extrapol-

ated from their last measured point inside the ID up to the middle sampling layer of the ECAL.

The position within η−φ space extracted from this extrapolation is them compared with our

seed cluster, and the two are deemed geometrically matched if
∣∣∆η∣∣< 0.05 and

∣∣∆φ∣∣< 0.1. If

more than one track meets these criteria, however, the track with the smallest geometric dis-

tance, R, is chosen.

If there are multiple possible tracks within the ID then we must identify the primary track

in order to determine the kinematics and charge of the electron. Any tracks that have hits in

the pixel or SCT layers are prioritised, and the one closest to the centre of the cluster is chosen.

We then define the object based on the number and location of the tracks found: the object is

labelled as an electron candidate when at least one track is found, or as a photon if there are no

tracks, or tracks are only found within the TRT.

It is also possible to reconstruct converted photons that produce an electron-positron pair

through interaction with materials within the detector. This process is characterised by the

presence of two oppositely-charged tracks that are matched to the seed cluster. If the opening
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angle of the electron-positron pair is large, however, a single track with no hits in the innermost

silicon layers may be found [140].

Upon a successful matching between a seed cluster and a track, the cluster window is en-

larged to three-by-seven units within the barrel region (
∣∣η∣∣< 1.475) and five-by-five units in

the end-caps (1.375 <∣∣η∣∣< 3.2), centred on the original seed cluster centre. These new, larger

cluster windows are used to determine the energy of the electron candidate. Four separate

contributions are collated to determine the total energy of the cluster. The first is the estimated

energy deposit in material in front of the ECAL shower sub-detector, this is used to measure any

energy lost by the particle before it reaches the ECAL. The second is the measured energy de-

posit within the found cluster itself. The third contribution comes from energy deposits within

the ECAL that lie outside of the cluster itself: the lateral leakage. The final contribution comes

from estimated energy deposited beyond the ECAL, and is called longitudinal leakage. For the

final energy of the electrons we also combine the cluster energy with any track momenta.

Following reconstruction of electrons and photons, identification algorithms are employed

to exclude any misidentifications. “Fake” electrons signals can come from other objects, in-

cluding muons, photons, jets, pion decays and other hadrons. To identify fakes a likelihood

discriminant is utilised, gathering information from ID tracking, the calorimeters, combined

track-cluster variables, such as shower shape, and radiation deposited within the TRT.

The reliability of real electron reconstruction can be improved by including additional cut-

based conditions to provide a better level of separation between real and fake electrons. There

are three different WPs defined for electron identification: loose, medium and tight [141]. These

WPs possess increasingly improved rejection of background (therefore an increased sample pur-

ity) through a process of tightening criteria on variables, but has the downside of lowering the

levels of identification efficiency. The signal efficiency in electron identification is given by the

ratio of electrons passing identification criteria to the total number of electron candidates. For

photons there exists only two WPs: loose and tight. Both the shower shape and the amount

of hadronic activity taking place behind the EM cluster lie at the centre of photon identifica-

tion. EM showers caused by photons and those caused instead by neutral mesons can be dis-

tinguished from one-another through the investigation of energy deposits within the first two

layers of the ECAL [140].

3.3.3 Muon Reconstruction and Identification

Reconstruction of muons within the ATLAS detector involves the use independently identified

tracks from both the ID and MS [142, 143]. These muon-track candidates are constructed through

seed segments from within the middle layers of the MS, where more trigger hits are available.

These seed segments are combined through a matching process with hits located in segments

from both the outer and inner layers of the MS. For a segment to be considered for this recon-

struction all tubes that it covers must contain a “hit”. We require at least two of these segments

to construct a track.
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There are four different types of muon reconstruction algorithm, all within different re-

quirements [144]. In the first of these, a “combined” process, the track reconstruction is per-

formed independently in both the ID and MS before a combined track is prepared. This com-

bined track is fashioned with a global fit, a process that requires considerations of energy lost

through the calorimeter. The process most commonly used to produce this is an “outside-in”

pattern recognition algorithm. Firstly the reconstruction takes place within the MS and is then

extrapolated inwards to match tracks of comparable pT that are located within the ID. This

provides a good momentum resolution for all ranges of muon pT.

The second muon reconstruction tactic is the “Segment Tagged” process. In this procedure

muons are reconstructed via the matching of a singular MS segment track, located within the

inner layer, to a track from within the ID. This technique is most applicable to muons with low

pT, or those that pass through MS regions with low acceptance rates.

The third method is the “Calorimeter-Tagged” approach. This relates to muon candidates

with ID tracks that can be matched to energy deposits within the calorimeter that signal the

presence of a Minimum Ionising Particle (MIP). This MIP subsequently leaves no tracks within

the MS. This process is used to recover acceptance for muons within the central region of the

detector,
∣∣η∣∣< 0.1, that may have only been partly recorded due to a crack within the barrel of

the MS.

The fourth and final algorithm used to reconstruct muons is the “Extrapolated” method.

Here a track from within the MS will signify a muon with a trajectory that lies inside the ac-

ceptance range of the MS, but outside of the ID acceptance, 2.5 <∣∣η∣∣< 2.7. The trajectory of

the MS track is extrapolated backwards and is required to have a loose compatibility with the

interaction point on the beam-line at the centre of the detector.

Muon candidates within ATLAS can be non-prompt, meaning that they originate from de-

cays of charged pions and kaons, instead of from the primary vertex of the event. Further iden-

tification restrictions are applied in order to separate these from prompt muons. One of these

requirements is the track quality standard within both the ID and MS sub-detectors. Another

is criteria placed on the compatibility of charge and momentum between the ID and MS. A

normalised χ2 distribution of the combined MS-ID track fit is also used.

As with electron reconstruction, three WPs are used in muon identification: loose, medium

and tight.

3.3.4 Tau Reconstruction and Identification

Tau identification at ATLAS is a more complicated process [145, 146]. This is due to the heavy

mass of the tau leading to a short lifetime, meaning they decay within the beam-pipe region

before reaching our detectors. 32.5 % of tau decays are leptonic, and are indistinguishable from

light leptons originating from our event. The remaining 64.7 % of tau decays are hadronic,

and therefore the identification of these taus rely on reconstruction of their decay products,

hadronic jets. See 4.
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Figure 3.3: Illustration of a 3-pronged hadronic decay of a τ -lepton [15]. The three charged
hadrons produced in the decay leave charged tracks within the ATLAS ID that can be used to
classify the hadronic decay.

More than 90 % of hadronic tau decays that take place, do so though just five dominant

decays. These five decays modes leave either one or three charged hadrons, up to two neutral

pions (π0) and a tau neutrino. An example of a hadronic tau decay with three charged had-

rons is shown in Figure 3.3. To identify hadronically decaying taus, a combination of shower

shape variables and tracking information is used in a multivariate algorithm using a Boosted

Decisions Tree (BDT). These taus are required to have min pT > 15GeV, be within
∣∣η∣∣< 2.5 and

have either one or three associated tracks. Hadronic tau reconstruction has an efficiency of

55 % for one charged decay products, or 40 % for three, with a rate of fake quark- and gluon-

initiated jets misidentification of below 1 % [146].

3.3.5 Missing Transverse Energy

Missing transverse energy (E miss
T ), can be defined as the imbalance of visible transverse mo-

mentum within the ATLAS detector in a given event. The hermetic coverage of the ATLAS detector

allows us to infer from E miss
T the presence of undetected particles. These could be particles that

are known to be invisible to ATLAS, such as neutrinos, or could include potential Dark Mat-

ter (DM) candidates [147] or evidense of physics beyond the SM, such as Supersymmetry (SUSY)

[148]. When these particles are produced in our events, there will be a tell-tale, significant mo-

mentum imbalance within the plane transverse to the direction of the collision [149, 150].

As we know that momentum in directions transverse to the z-direction of the collision

must be conserved, this missing transverse momentum (pmiss
T ) can be calculated as the neg-

ative vector-sum of the four-momenta of all visible detected physics objects in this event:

pmiss
T =−∑

i
pi,obj

T (3.2)

Where pi,obj
T represents the transverse momentum of the i -th visible detected physics object in

the given event. The E miss
T is equal to the magnitude of pmiss

T .
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Calculating the full E miss, as opposed to only that in the transverse plane, would be im-

possible as the longitudinal energy of the initial partons in our collision are unknown and vary

with each event. We can, however, make the assumption that these partons have a negligible

momentum in the transverse direction and can expect that the net transverse momentum of

all detected objects is balanced, unless particles are missed by our detector.



69

4JETS AND JET

RECONSTRUCTION

Nothing exists except atoms and

empty space; everything else is

opinion

Democritus

The final major objects requiring reconstruction within ATLAS are Jets. A full understand-

ing of the physics in ATLAS necessitates the study colour-charged particles created within the

collisions at the LHC. However, Colour Confinement complicates this, due to the hadronisa-

tion of these particles. The hadronisation of quarks and gluons leads to a collimated stream of

showering, energetic hadrons [151]. The pattern of energy deposits they leave within the de-

tector, and in particular the calorimeter, are reconstructed into four-momentum vectors called

jets. Understanding the topology of these signals are vital to reconstructing the physics of these

jets. To replicate the physics from the original event we must endeavour to collate these energy

deposits, from the calorimeter or otherwise, into sets originating from common origins. For

these processes to be successful required agreement on certain sets of definitions must be used

within Jet Reconstruction, whether it be the inputs used – definitions of calorimeter signals and

calibrations, reconstructed tracks, generated particles and partons within MC samples – or the

reconstruction algorithms and treatment processes applied upon them. These inputs are dis-

cussed in Section 4.1 and the clustering methods used to reconstruct our jets are covered in

Section 4.2.

Jet construction methods must aim to build jets in an increasingly complete, reliable and

accurate way. Jet reconstruction must be consistent and methodical, so as to meet theoret-

ical and experimental requirements, therefore inputs, both from our detector and from out MC

simulations, must be stringently defined. Following reconstruction, we can use these Jets as

proxies for the partons they originate from. This means strict requirements on reconstructed

jets must be placed, so that the most precise and accurate information can from gained them.

Treatment processes are also applied, including Jet Cleaning and standardised Jet Calibrations,

discussed in Section 4.3.

Through the process of reconstructing Jets at ATLAS, the aim is to re-establish the correl-
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ations between the sources of these jets, allowing discovery of the physical processes taking

place within the event. It may also allow the uncovering of the original particles coming from

the hard scattering. Flavour Tagging involves classifying characteristics of jets originating from

defined origins. The current state of this is explained in Section 4.4. There are limitations to

these methods; however the use of JSS techniques provides further opportunities for jet tag-

ging. See Section 4.5.

Some energy within jets does not originate from partons coming from the hard scatter, and

instead come from external sources, such as the UE or pile-up. Techniques that examine JSS in

order to algorithmically remove these extraneous contributions, known as Jet Grooming, are

covered examined in Section 4.6. Shortcoming in current Jet Grooming techniques require de-

velopment and testing of novel methods: soft drop grooming (soft drop grooming) is a Jet Groom-

ing algorithm that is able to remove contributions from Non-Global Logarithms (NGL) in an

Infrared Safe (IRS) manner. This is reviewed in Section 4.7.

4.1 Jet Inputs

Firstly, we will address the inputs required to build our jets. From MC simulated events we have

access to “Truth Particles”: stable, final-state particles allowing reconstruction of “Truth Jets”

that represent the physics of the event before interaction with our detector takes place. This is

not possible for real data, so we therefore form our reconstructed jets using data both from the

energy deposited within the calorimeter and from the tracks from the ID.

4.1.1 Topoclusters

To start the Jet Reconstruction process, we must gather the components of our jets: topoclusters

[16]. Jet clustering methods rely on topological clusters of cells within our Hadronic Calori-

meter (HCAL). We can search for these energy deposits within these calorimeter cells to start

our process: however, we must bear some things in mind. Firstly, that the calorimeter cells

within our detector are exposed to a base level of “noise”: information coming from sources

beside the hadronic jet we are attempting to analyse, or even external to the physics of our

hard scattering. This can come from detector, electronics and from the UE/pile-up. We can es-

timate the average noise for our events through a combination of electronic noise and pile-up:

〈σnoise〉 =
√
σ

pile−up
noise

2 +σelectronic
noise

2
(4.1)

To allow efficient data reconstruction we must adjust this average for corrections. The changing

nature of pile-up, linked to the differences of instantaneous luminosity throughout any given

run of the LHC, means that this average cannot accurately represent the pile-up at one any point

in time: for much of the spectrum of pile-up the average is not optimal. This equation assumes

a predicted level of pile-up, based on the planned luminosity and that this noise will follow a

Gaussian distribution.
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(a) Seed cells (b) Seed cells with growth cells

(c) Final topoclusters

Figure 4.1: Stages of topocluster formation in the ATLAS calorimemter for a MC simulated event.
Shown in (a) are cells used to seed the topoclusters. (b) shows the inclusion of topoclusters
growth cells. Finally, (c) shows the completed topoclusters with boundary cells. [16]

To overcome the issues caused by this noise within calorimeter cells we can set an energy

threshold. We set our threshold energy as four times the average expected noise within a given

cell: ∣∣∣E seed
cel l

∣∣∣> 4×σnoi se (4.2)

Following this, we can search for cells with energy exceeding this threshold to seed our jet re-

construction, forming proto-topoclusters, and build the remainder of our topoclusters from

neighbouring cells meeting lower energy thresholds. This stage is shown in Figure 4.1(a). We

next inspect the energy within neighbouring calorimeter cells, directly adjacent to our seed

either within the same layer, or into the next layer. We search for neighbouring cells with an

energy surpassing the threshold of twice the expected noise:∣∣∣E g r ow th
cel l

∣∣∣> 2×σnoi se (4.3)

These so-called growth cells are then added to our proto-cluster. This is shown in Figure 4.1(b).

If two neighbouring seed cells are found they are merged into a single proto-cluster. If more
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than one seed cell neighbours the same growth cell, they are all merged into a single seed.

Following this, we look once more for a set of cells, this time directly adjacent to our growth

cells and with no energy threshold. These are boundary cells:

∣∣∣E bound ar y
cel l

∣∣∣> 0 (4.4)

The addition of the boundary cells completes the process of building our topoclusters. This

stage is illustrated in Figure 4.1(c). All topoclusters have mass set as zero, meaning the en-

ergy of each topoclusters is equal to the momentum. Each of these topoclusters should ideally

be a proxy for a single particle from within our event, however merging of topoclusters can

be caused by multiple particles in close proximity. To overcome this we can additionally use

tracking information from the ID to identify separate particles.

4.1.2 Topocluster Calibrations

EM Calibration

There are two possible levels of calibration we can apply to our topoclusters. The first of these

is the EM calibration. The EM calibration works by recalculating both the signal and the average

expected noise of each of the calorimeter cells to the response from electrons (see Section 2.7).

This topocluster calibration aims, therefore, to reconstruct the energy deposits from electrons

and photons more accurately. The EM calibration, however, does not aim to reconcile the effects

of non-compensating calorimeter responses. It also does not take into account signal losses

caused either by inactive material within the detector, or as a consequence of the topological

clustering method.

Hadronic Calibration

The second calibration processes is the hadronic calibration. It does aim to attune the different

calorimeter responses and the effects of signal loss, and therefore the corrections it produces

are generally much higher than for the EM calibration. It includes cell signal-weighting, and is

therefore known as the Local Cell Weighting (LCW) calibration. The hadronic calibration follows

a number of steps: firstly the topoclusters are classified by their source, as either hadronic and

EM. This is important as the calibration is different for each energy deposit. As mentioned

in Section 2.2.4, the penetrating depth of a hadronic shower is much less than that of an EM

shower. This mean that identifying a topoclusters as hadronic or EM in origin can be rooted in

its longitudinal depth,λclus and the signal energy density within the cluster, ρcel l . Both of these

variables can be used to define a dynamic scaling, allowing the probability of a topocluster’s

origin to be determined, and therefore the most suitable calibration chosen.
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(a) (b)

(c) (d)

Figure 4.2: Results of different jet clustering algorithms in MC simulated event [17]. Shown are
the results of a cone algorithm, (a), the C/A algorithm, (b), the kT algorithm, (c), and the Anti-kT

algorithm, (d). The beneficial circular nature of the Anti-kT jets is visible here.

4.2 Jet Clustering

Now we have the inputs with which to reconstruct out jets, the next step in our jet reconstruc-

tion is to collate these topoclusters into meaningful structures. We must find way to decide

which clusters are part of which jet. There are many possible ways to approach this problem

and we require a solution that meets both theoretical and experimental requirements to build-

ing our jets. The combination of our jet algorithm and the parameters we choose for it forms

the basis of our jet definition.

In 1990, the “Snowmass accord” [152] set out some general agreements on the properties

of jet definitions. Some of the more important ones are as follows:

• Simple to implement within an experimental analysis;

• Simple to implement within theoretical calculations;

• Defined at any order of perturbation theory;
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• Gives a finite cross section at any order of perturbation theory.

Our jet reconstruction process must also meet the requirements for Collinear Safety and be IRS

(known as being Infrared Collinear safe (IRC)) [17]. For Collinear safety to me bet, the splitting

of energy deposits from a large pT particle into two separate collinear particles should not alter

the results of our jet reconstruction. To be IRS soft particles added to or removed from the jet

should not alter the results of our Jet Clustering algorithm. This prevents soft radiation from

the pile-up or from the UE affecting the final state of our jet.

Beyond this, different jet algorithms can lead to numerous differences in the reconstruc-

tion results. Different jets can be produced from the same hard collision, including different

topologies, a variety in the numbers of jets and differences in the shapes of jets. The choice

we make for our algorithm is therefore important, and it is vital we take the objective of our

analysis into consideration. We may select jet algorithms that give small area jets in the aim to

reduce the effects of pile-up, or select larger jet radii for studies of boosted and heavy particles.

4.2.1 Cone Algorithms

Initial intuitive attempts at jet clustering lead to the development of cone-type algorithms, de-

veloped in the 1970s [153]. These jet clustering algorithms can be considered as “top-down”:

dependent on the concept that the process of hadronisation and QCD branching both leave the

broad features of energy flow within an event intact. This allowed a fully consistent calculation

in perturbative QCD as to the likelihood of multiple jets within an event. The process involves

defining a cone about the collimated spray of particles within our event [154]. These algorithms

are problematic however, as they do not consistently meet the requirements for Infrared Col-

linear safe (IRC) safety.

4.2.2 Sequential Recombination Algorithms

Pursuits for Jet clustering Algorithms that could overcome difficulties with IRC lead to the de-

velopment of sequential Recombination algorithms. These have a “bottom-up” structure. The

topoclusters in our calorimeter are combined in an iterative fashion, the order of which relies

on a distance measure between pairs of topoclusters that can depend on a function of their

pT. This parameter relating to the momentum is used to determine jet resolution. Beyond jet

finding they also define a sequence of clustering to our event, related to probabilistic models

of parton branching, and necessary for JSS studies.

There are three such algorithms that are most often used in hadron collider experiments,

sometimes known as the kT-like algorithms. Each of them rely on calculating the distance

between pairs of clusters within a chosen parameter space to decide on which pairs should

be recombined into ’proto jets’. The calculations required to follow these schemes can be sum-

marised by three equations:

di j = min
(
di ,d j

) ∆R2
i j

R2 (4.5)



75 4.2 Jet Clustering

di = p2p
T,i (4.6)

∆R2
i j =

(
ηi −η j

)2 +
(
φi −φ j

)2
(4.7)

The first of our equations, Equation 4.5, sets the value of our distance parameter, di j , between

two topoclusters within our calorimeter, i and j . It relies on R, a free parameter chosen by us to

decide our desired jet size and Ri j . The final equation, Equation 4.7, describes Ri j : the distance

in η−φ space between i and j . The second, Equation 4.6, describes the distance, within our

parameter space, between the topoclusters, i and the beam of our collider. This is a function

of the pT of the particle and contains a value, p, which we are able to choose to determine

our algorithm. The default value of p is one, and defines our first sequential recombination

algorithm, the kT algorithm.

The kT Algorithm

The kT algorithm [155, 156] combines together close and low-pT, and therefore soft topoclusters,

first. This is done by setting the value of p, describing the beamline-to-cluster distance within

our parameter space found within Equation 4.6, to one:

di = p2
T i (4.8)

di j = min
(
p2

T i , p2
T j

) ∆R2
i j

R2 (4.9)

Recalling Equations 4.5 and 4.6 with our given p-value allows us to calculate both the distance

parameter between our two clusters, i and j , and between i and the beam. We do this for all

clusters and find the minimum value. If the minimum in our list of distance values is a value

of di j we combine the clusters i and j , forming our proto-jet. We then remove both of these

clusters from our list, and add the new proto-jet to our list of clusters. If the minimum value in

our list of distances is a value of di , our cluster i is labelled as a jet, and is removed from our list

of clusters. After either of these decisions we compute all of our distances again and continue

onwards until all of our particles are clustered into jets.

One of the consequences of this process is that all clusters will eventually become a jet, or

part of a jet. Single soft particles can therefore also become jets, and this may be remedied by

defining a minimum pT threshold that our clustered jets must pass to be considered in further

steps of our analysis. Unlike cone algorithms, the kT algorithm is considered IRC safe, however it

produces geometrically irregular jets, which can complicate certain reconstruction corrections.

See Figure 4.2

The Cambridge/Aachen Algorithm

The Cambridge/Aachen (C/A) algorithm [157, 158] uses a distance measure that is only based

on the angular distance between clusters. Depending only on geometric factors means it is
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therefore independent of the energy and momentum of the particles being clustered. We can

thus set the value of p in our distance measurements to zero:

di = p0
T i = 1 (4.10)

di j =
∆R2

i j

R2 (4.11)

As all values of di are now equal to one, the sequence first sequentially combines together pairs

of clusters that are closer that our maximum defined jet radius, R, and stops only when all jets

are separated by a distance equal to, or larger than R. All remaining clusters are then defined as

our final jets. The C/A also gives irregularly shaped jets, however the purely-geometric nature of

the C/A algorithm makes it possible and easy to inspect a specific jet on many different angular

scales – a property that will come in particularly handy in our analysis presented in Chapter 6.

The Anti-kT Algorithm

As the kT algorithm uses the distance parameter p = 1, the Anti-kT algorithm [159], conversely,

uses the distance parameter p =−1, such that:

di = p2p
T i = p−2

T i (4.12)

di j = min
(
p−2

T i , p−2
T j

) ∆R2
i j

R2 (4.13)

This leads to a sequential combination favouring high-pT clusters combining with nearby clusters.

This leads to jets growing outwards around a hard “seed”, meaning a centre of high-pT topo-

clusters. The combined use of the energy and angle within the distance parameters means that

the Anti-kT algorithm leads to IRC growth of jets. Once all jets are separated by a distance greater

or equal to R we have our final set of jets.

The outward growth of these jets also leads to them being circular in the y-φ plane, as seen

in Figure 4.2(d), with a radius of size R. This is a reason to favour the Anti-kT algorithm over the

kT or C/A algorithms, which both produce irregularly-shaped jets. Regular jet geometries lead

to fewer complications in detector corrections, and corrections from non-perturbative origins.

The containment of the total jet within the chosen boundary of R means that it is easier to

define regions of the detector in which all jets are fully contained. Regularly shaped jets also

make the process of pile-up suppression simpler: the area of the jet can be analytically calcu-

lated following merging or splitting. The lower memory requirements for the Anti-kT algorithm

also means that jet reconstruction can be faster and more efficient [160].

One downside to the method is that unlike the other kT-like algorithms the Anti-kT method

of reclustering does not follow a physically meaningful recombination order: it does not fol-

low the jet fragmentation through the separate reconstruction, and subsequent combining of

soft subjets and hard subjets. For all the benefits above, however, and also the better trigger

matching performance and greater stability under high levels of pile-up, the Anti-kT method is

chosen as the standard jet reconstruction algorithm to define jets within analyses at ATLAS.
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4.3 Processing Jets

To ensure our jets meet the required standards for analysis there are multiple levels of pro-

cessing we can apply to improve them before we use them. The processes we follow depends

on the aims of the analysis we are undertaking. We must also take note that Jets are built in

a range of sizes, also chosen to suit the analysis objectives. Different radii of jets are used to

strengthen jet reconstruction in a variety of ways, the methods in which we process and treat

these jets must therefore reflect this.

The ATLAS experiment makes the distinction between small jets and large jets based on ra-

dius. Small jets have a radius 0.2 ≤ R ≤ 0.4, most commonly set to R = 0.4 and are constructed

using the FastJet package [161]. Using small jets has the benefit of reducing the effect of pile-up

in jet reconstruction when compared to large jets R = 1.0, which are commonly used for recon-

struction of heavy particles. For the analyses in this thesis I have chosen to use small-jets for

this reason.

4.3.1 Jet Calibration

Figure 4.3: Calibration stages for small jets.

The first step we take to process our jets is a series of calibrations to account for the effects

of many procedures on our jets: detector response, pile-up, non-compensating calorimeter re-

sponses, differences between data and MC simulations and more. The calibrations applied to

a jet are dependent on information, such as the jet radius of reconstructed jets. For the small

reconstructed jets, of radius R = 0.4, the calibration process undertaken is the JES calibration

[162]. The purpose of the JES calibration method is to correct the JES[163] of those jets recon-

structed from clusters in the calorimeter, in order to match the energy scale of truth jets within

MC simulations. The JES process consists of multiple phases, listed below.

Origin Correction

Calibrating our hadronic jets first requires taking our reconstructed jets, made from topoclusters,

and making corrections for the origin. The purpose of this is to guarantee that our jet direction

is correctly aligned with the primary vertex, such that it points towards the hard-scattering of

our event and not simply the geometric centre-point of the detector (See Figure 2.4). This cal-

ibration can improve the spatial jet resolution in η and does not impact the energy of our jet.

We can crosscheck this calibration by using jets reconstructed from clusters in MC simulations

with truth jets, constructed from truth particles.
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Pile-up Correction

The second stage in our jet calibration process aims to negate various consequences of pile-up

[164]. When reconstructing our jets from topoclusters, energy originating from pile-up can be

incorrectly included. The average energy contribution from pile-up is distributed in a uniform

manner throughout the η-φ plane. The homogeneity of this contribution simplifies the process

of subtracting additional pT from reconstructed jets using Equation 4.14.

pcor r ect i on
T = pr eco

T − (
ρ× A

)−α(
NPV −1

)− (
β×〈µ〉) (4.14)

Here ρ represents the median pT density of the reconstructed jet. It is dependent on the NPV

within our event, and is by association an indication to the extent of pile-up. A represents

the area of our reconstructed jet, thus the first term to be subtracted from our pT represents

the combined pile-up contribution within our jet [165]. The second term uses the NPV and a

constant, α, to calculate an event-specific pile-up energy contribution to subtract. The final

term includes a second constant, β, and relies on our mean number of interactions per bunch

crossing, 〈µ〉, and relates to out-of-time pile-up within our event (see Section 3.1.5). Our second

and third terms involve calculations of difference in pT between the reconstructed jet and a

truth jet.

MC-based energy calibration

The next step is an energy calibration, and uses information from our MC simulations, used to

correct the four-momentum of our jet to match the energy scale of the particle-level jets [166].

We begin our correction by geometrically matching reconstructed jets to truth jets within the

detector, within a distance of ∆R = 0.3. With these jets matched to one another, we can use the

difference in their energy to calibrate our reconstructed jets.

Another correction is possibly made at this stage, this time to the η direction of our recon-

structed jet. Biases in η are present in some regions of the detector and are particularly prom-

inent in jets passing through regions of the calorimetry system with variances in granularity,

materials or geometry. Ultimately, differences in response in our reconstructed jet’s energy can

occur due to this trans-regional effect.

This step of the calibration is unique in that it is the only stage of our calibration process

for small jets that is also used for large jets. Large jets are calibrated first through grooming (see

section 4.6) then through MC-based processes to calibrate the energy of the jets. Large jets also

undergo a MC -based mass calibration based on mass response, Rm = 〈mr eco/mtr uth〉.

Global Sequential Calibration (GSC)

GSC is a procedure used to counter any content-dependencies that exists within jet reconstruc-

tion [167]. By decreasing the sensitivity of variances that exist between quark- and gluon-jets

in calorimeter response, GSC aims to tackle dependence on the energy distribution and particle



79 4.3 Processing Jets

composition in jet reconstruction. Jets originating from quarks most often possess hadrons

that possess a significant portion of the jet pT – these jets, therefore, highly penetrate the de-

tector. The same is not true for gluon-jets, as these most often contain particles with a broader

distribution of jet pT. GSC therefore aims to improve resolution in JES.

Five different jet observables form the basis for this calibration process:

• The jet-energy fraction within the first layer of the HCAL;

• The jet-energy fraction within the final layer of the HCAL;

• The number of tracks with pT>1GeV associated to the jet;

• The track-width of the jet;

• The number of muon track segments associated to the jet;

The corrections are globally applied, for all regions of the detector, to the four-momenta of the

reconstructed jet.

In-situ Energy Calibration

The final step in the JES calibration relies on residual in-situ energy corrections, accounting for

disagreements between jet responses in data and MC simulations [168]. Reconstructed jets have

corrections applied to their pT through a process relying on a sequence of reference objects,

each of which focuses on a different pT range. Within the central region of the detector,
∣∣η∣∣< 0.8,

jets are calibrated using Z Boson (pT of 20 GeV to 500 GeV), photon (pT of 36 GeV to 950 GeV)

and multijet (pT of 300 GeV to 2000 GeV) events. Within the forward region of the detector,

0.8 <∣∣η∣∣< 4.5, jets are calibrated using well-measured jets from the central region using dijet

events.

4.3.2 Jet Cleaning

Identifying jets with origins external to our collision event, or from noise within the detector,

relies on given requirements on quality. Events possessing more “bad” (fake) jets than good

are removed from analyses [169]. The main sources of these fake jets include the background

from upstream proton losses induced by the beam in the LHC, cosmic rays and noise within the

calorimeter. Jet cleaning makes use of multiple jet-quality variables, in order to identify good

and bad jets. Bad jets originating from noise in the LAr can be identified by their signal pulse

shape within the calorimeter. Jets from any of the external sources can be recognised through

use of tracking info and energy ratios. Both loose and tight selections exist for distinguishing

good jets from bad. The loose working point, which is most commonly used in physics analysis,

has an efficiency above 95 %.
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4.3.3 Rejecting pile-up Jets

The jet reconstruction process necessitates the effective rejection of jets originating from pile-

up [170, 171]. These pile-up jets are partly removed through the calibration process, as this

process reduces the pT of these jets so that they are below the pT threshold. Jets that remain

can be removed through the use of the Jet vertex Tagger (JVT) discriminant following JES. The

JVT is a multivariate measurement constructed from observables relating to the fraction of

charged tracks that are both within the jet and point to the PV – an indication of their originat-

ing from the hard-scatter within our event. This process, carried out in both MC simulation jets

and jets from data, makes use of information from jet tracks originating from the hard scatter,

and relates to the fraction of jet pT they carry. This algorithm targets low-pT jets (pT<60 GeV).

These jets must be central within the detector,
∣∣η∣∣< 2.4, and be matched to tracks passing a pT

threshold of 0.4 GeV.

We can also use the number of tracks associated to a jet to identify its origin, such as QCD

jets from vertices caused by pile-up. The ID only reconstructs tracks that are in-time with the

event, and these jets will have fewer tracks associated to them. Pile-up jets originating from

local fluctuations, known as Stochastic Jets, are superpositions of jets, and can be identified

through the multiple vertices their tracks originate from. Many vertices, leading to a JVT score

below the defined threshold, indicate a Stochastic Jet, which is subsequently removed.

4.4 Flavour Tagging

Figure 4.4: Illustration of the key criteria utilised in identification of jets initiated by b-quark
decays. d0 is the inverse IP [18].

Identifying the source of our jets is a crucial aspect of physics analysis, allowing us to identify

rare (or even undiscovered) particles and interaction processes. The procedures for classify-

ing our jets by their particle of origin are known as tagging. A particularly prominent area

of flavour-tagging for small jets is b-tagging, used to identify jets containing b-hadrons. B-

hadrons have relatively long lifetimes for hadrons (≈ 1ps), therefore their prolonged journey

through the detector leaves distinctive secondary vertices with high- IP tracks (see Figure 4.4).

We define the distance of closest approach between a chosen track and its associated primary
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(a) (b)

Figure 4.5: From [19], MV2c10 BDT score for b-jets (solid line), c-jets (dashed line) and light-
flavour jets (dotted line) in simulated t t̄ events, (a), and the light-flavour jet (dashed line) and
c-jet rejection factors (solid line) as a function of the b-jet tagging efficiency of the MV2c10 b-
tagging algorithm, (b). Rejection, here, is defined as the inverse of the efficiency tagging of a
c-jets (dashed line) and light-flavour jets as a b-jets.

vertex as the IP. These high- IP tracks can be matched to jets, permitting selection criteria to

identify and distinguish these “b-jets” from other flavours. The performance of b-tagging at

ATLAS is therefore intimately linked to and reliant on tracking ability in the ID particularly the

IBL (see Section 2.2.3).

Beyond tracking, algorithms are also employed to classify and flavour-tag b-jets. The ATLAS

collaboration employs three distinctive categories of algorithm for b-tagging purposed, each

attempting to recognise b-jets though different methods.

• IP2D and IP3D: These rely on the IP of tracks matched to the jet, as IP should be larger

for tracks originating from the decay of b-mesons. The probability distribution of two

variables, the significance of the IP and longitudinal significance are used to generate

a discriminant. IP2D utilises only the impact parameter significance, d0/σd0 , for a dis-

criminating variable, whereas IP3D also makes use of the longitudinal impact parameter

significance, such that it’s discriminant is z0sinθ/σz0sinθ [172].

• Secondary Vertex Finding Algorithm: This method reconstructs secondary vertices within

the cone of the jet. During reconstruction pairs of tracks forming two-track vertices are

rejected if they are compatible with a background source, such as photon conversions,

decay of lon-lived particles or hadronic interactions with the detector [173]. Other cri-

teria aim to prevent fake vertex reconstruction. Much higher rates of reconstructed sec-

ondary vertices distinguish b-jets from both c- and light-jets.

• Decay Chain Multi-Vertex Algorithm (JetFitter) [174]: This reconstructs the full decay-
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chain of b-hadron within the jet based on the jet’s topological structure. The trajectory

from the primary vertex, through to the b-hadron, and it’s subsequent decay products

are extracted. This is undertaken through the assumption the primary, secondary and

tertiary vertices of the hard-scattering, b-hadron and c-hadron respectively, line up, and

an approximation of the flight direction of the b-hadron. The vertices and tracks of the

b-hadron and c-hadron are therefore identifiable.

Additionally to these methods there exists the multivariate method of b-tagging [175, 176, 177].

This multivariate algorithm combines the three previous tagging methods using a BDT, produ-

cing a multivariate tagging value with the best separating power. This algorithm comes in three

forms: MV2c00, MV2c10 and MV2c20. Each of these are named after the percentage of c-jets

used within the training samples in addition to the majority of light-flavoured jets. MV2c10 is

trained on t t̄ events that contain at least one lepton. 7 % of jets within these samples are c-jets,

and therefore have c-hadrons.

These c-jets are a source of background in our searches for b-jets (see Figure 4.5). Although

the lifetime of a c-hadron is shorter, and therefore the distance traversed within our detector is

shorter, they leave similar signals, including the indicative secondary vertex. Use of the MV2c10

algorithm is therefore critical to discriminate between b-jets and c-jets, as well as jets from light

quarks (u,d , s), jets from gluons, or jets originating from hadronically decaying τ -leptons.

The MV2c10 algorithm is calibrated with four different fixed WPs, each of these have a given

b-tagging efficiency and rejection factor for c-, τ -, and light-jets. Efficiency in tagging at a

given working point is εb = N t ag g ed
b /N tr ue

b . The rejection factor of a WP is taken as the inverse

of the tagging rate of background objects, for example the rejection factor of c-jets is given as

Rc = N tr ue
c /N t ag g ed

c . These WP are defined by a single cut value on score sourced from a BDT

using 21 different jet variables. These 21 consist of variables from a combination of the three

different, previously defined b-tagging algorithms.

WP BDT cut b-jet efficiency c-jet rejection light-jet rejection τ-jet rejection

Very tight 0.9349 60 % 34 1538 184

Tight 0.8244 70 % 12 381 55

Medium 0.6459 77 % 6 134 22

Loose 0.1758 85 % 3.1 33 8.2

Table 4.1: WPs for MV2c10 b-tagging algorithm, shown with respective b-jet efficiency and other
jet rejection rates attained from training on t t̄ events.

Another tagging technique with growing relevance is the use of jet substructure (JSS) ob-

servables to increasingly improve the capabilities of flavour tagging [178, 179].
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4.5 Jet Substructure

Following, or during, the process of Jet Reconstruction, we can start to look in closer detail at

information within our jet, giving us clues to the physics of our event. Understanding the flow

and distribution of particles within our jet to identify its origin relies on examination of the jet

substructure (JSS). How beneficial this JSS is to deepening our understanding of the physics re-

lies on a number of factors, such as how able we are to resolve decay structures within our jet,

or our ability to distinguish and remove contributions from pile-up. Complexities in accurately

determining JSS stem from limitations in detector resolution (either in space or in energy), defi-

cient calorimeter acceptance of low energy particles and extra contributions from pile-up. We

can undertake this task by analysing JSS observables related to:

• The number of identifiable constituents within the jet;

• The energy of these constituents;

• The angular separation between these constituents in our detector geometry.

As an example, the identification of the number and nature of decay prongs - signalled by smal-

ler, hard (high-pT) jet-like structure within jets - can assist us in identifying the origin of the jet.

Jets with little, or no sign of this hard-substructure most often originate from decays of gluons

or light-quarks. In ATLAS, this can be measured by using the “N-subjettiness” algorithm [179].

4.5.1 Jet Mass

One of the more valuable JSS observables, and of particular focus for this thesis, is jet mass.

Outside of heavy quarks, partons can generally be considered to be massless, however jets are

not massless – especially any jets with notable levels of JSS. Analysing the invariant mass of our

jets and comparing it to objects we aim to tag can help us discover the source of hadronisation

and boosted hadronic decay.

In a perfect reconstruction of the physics of our event the jet mass that is produced by

recombining the four-momenta of its constituent should reflect the original source of the jet.

We therefore sum the four-momenta of the jet constituents in the following way

m j et =
√∑

i∈J
Ei

2
–
∑
i∈J

−→pTi
2

(4.15)

Here J is our jet, constructed from constituents, i . Each constituent i has energy Ei and trans-

verse momentum −→pTi . These constituents can be massive (such as tracks or massive particles)

or can be massless (such as our calorimeter clusters or massless particles), and can be recon-

structed into jets using any of the standard definitions. We can calculate the jet mass both

before and after Jet Grooming (See Section 4.6) takes place.
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Jet mass is most significant for those jets originating from the decays of heavier particles.

As a rule of thumb, the opening angle of a dedcay can be given by Equation 4.16.

R ≈ 2m

pT
(4.16)

For jets originating from light quarks or gluons it is less well defined, but scales proportionally

to the pT.

For the best results, we desire that the internal structure of jets remain intact throughout

reconstruction, we therefore require a high level of resolution of the energy flow within jets. The

jet mass is therefore vulnerable to detector effects, such as lateral energy spread. Single particle

cascades can also negatively affect the resolution of jet mass. Accurately identifying jet mass is

also complicated by the presence of particles that radiate out of, and then radiate back into, a

jet. In theory these are represented by resummation terms called Non-Global Logarithms (NGL).

Further JSS analysis can help with adressing the effects if pile-up, improve measurement of

mass and analysis of prong structure. We can also mitigate these issues through the use of Jet

Grooming.

4.6 Jet Grooming

Reconstruction of hadronic jets from calorimeter clusters will characteristically necessitate

grooming to counter non-perturbative effects degrading jet resolution. This source of these

issues includes contributions from pile-up and other soft-radiation originating from sources

other than the hard scattering in our event. The jet grooming process aims to leave only the

intrinsic structure of the jet behind, and remove all other superfluous information. The various

grooming processes undertaken can also distill the discrete nature of energy deposits within

jets, allowing improved study of JSS variables for flavour assignment. A number of techniques

are employed to groom jets, each with strengths and weaknesses.

4.6.1 Jet Filtering

Jet filtering [180, 181] requires we start with Jets reconstructed with angular size R j . We then

recluster the contents of our jet on a smaller angular scale, R f i l ter ed < R j . From here we choose

the n(= 1,2,3. . . ) hardest subjets, and reject all other clusters within our original jet. This allows

selection of the dominant radiation products from a chosen decay, whilst removing much of the

contamination from the UE.

4.6.2 Mass Drop

For the Mass Drop method of Jet Grooming we begin by reclustering a jet using C/A algorithm

[180, 181]. Following this we reverse the last step of the clustering, leaving us with two sub-jets.

We subject this pair of sub-jets to a requirement test relating to their mass, pT and respective
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Figure 4.6: Jet "Filtering" process.

angular distance. We first ensure that the heavier of the two sub-jets has a significant “Mass

Drop” from that of our ungroomed jet, µ f r ac , shown in Equation 4.17.

max
(
m1,m2

)
m j et

<µ f r ac (4.17)

Here µ f r ac is a chosen fraction of the original jet mass (e. g. 2/3). We next ensure that the

splitting of the pT distribution between our two sub-jets is not too asymmetric:

y =
min

[
pT,1

2, pT,2
2
]

m2
j et

×∆R1,2 > ycut (4.18)

ycut is our chosen threshold (e. g. 0.09). If our sub-jet pair fails to meet these two requirements

we discard the least massive, redefine the most massive as our new jet to be groomed, and we

repeat the process. When we find a sub-jet pair passing our requirements we take the clustered

pair to be our new groomed jet. In previous Higgs studies in ATLAS, a combination of Mass

Drop and Filtering has been applied [181]. In this instance, the successful application of the

Mass Drop grooming is followed with Filtering, using the distance between the two sub-jets,

R12, to define a new angular distance, R f i l ter < R12, with which to recluster the new jets. As

with jet filtering, the desired n-hardest remaining sub-jets are chosen, and all other clusters

rejected. This allows selection of the dominant radiation products from a chosen decay, whilst

removing much of the contamination from the UE. Here R f i l ter = min
(
0.3,∆R12

)
and n = 3 in

order to reconstruct two b-jets and a gluon in (H → bb̄) searches.

4.6.3 Jet Trimming

The jet grooming procedure most commonly used within ATLAS is Jet Trimming [180, 182]. The

method of jet trimming starts with reclustering the constituents a large jet (with R = 1.0) into

subjets of chosen size Rsub using the kT jet clustering algorithm. To improve the rejection of

soft radiation within our jet grooming, a suitable subjet parameter threshold as a fraction of our

total jet pT is chosen named fcut . All subjets that fail to meet this pT requirement are rejected:

p sub j et
T > fcut ×p j et

T (4.19)
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Figure 4.7: Jet "Trimming" process.

The jet is then reclustered using only those subjets that remain. Typical bounds used within

ATLAS are fcut = 5% and Rsub = 0.2 [180, 182]. This jet trimming algorithm aims to remove soft

radiation and contributions from pile-up, the UE, ISR and MPI.

4.6.4 Jet Pruning

Another Jet Grooming technique is Pruning [180]. Here the process starts by reclustering the

original jet using either the C/A or kT algorithm. If the two sub-jets we are about to cluster

together have an angular distance ∆R12 > Rpr une , and the softer of the two subjets has a pT

below our defined zcut threshold

min
(
pt1, pt2

)
pt1 +pt2

< zcut (4.20)

then the softer of the two subjets is removed, and the next step of reclustering is moved onto.

Pruning aims to enhance the substructure resolution within the jet by removing soft, wide-

angle radiation at each clustering step.

4.6.5 Limitations With Grooming

Issues and limitations with current grooming methods have lead to searches for new ways to

groom jets. The introduction of new, tuneable degrees of freedom introduces extra complexity

that requires further investigation for analysis-specific optimisation. Jet grooming methods

also require consideration of the presence and effects NGL – a problem specifically tackled by

the use of soft drop grooming (soft drop grooming).

4.7 SoftDrop Grooming

Total and accurate predictions for mass, and other JSS variables beyond Leading Logarithm (LL)

has so far not been possible, due to the presence of NGL, resummation terms associated with

particles that radiate out of, and back into, a jet [183]. These additional radiative terms can

preclude precision calculations and measurement of JSS variables. The development of novel

Jet Grooming techniques, however, can allow us to solve these problems. Soft drop grooming is
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Figure 4.8: Schematic of both C/A clustering and soft drop grooming algorithms. The softest subjet
of any pair not passing soft drop criteria is rejected. Image altered from [20]

a jet grooming procedure to remove soft and wide-angle radiation from the jet that is formally

insensitive to NGL, allowing comparison to theoretical calculations at higher logarithmic orders

[23, 20]. The calculation of jet mass from jets with soft drop grooming applied is, therefore,

unaffected by NGL, opening up new ways to determining precision JSS.

Soft drop grooming requires the reclustering of Anti-kT clustered jets using the Cambridge/Aachen

(C/A) algorithm, clustering pairwise by distance starting with the closest pair of clusters within

our defined jet radius. This newly reclustered jet is then declustered into the last pair of sub-

jets to be clustered together. The pair of sub-jets remaining are then subjected to a test, to see

if together they pass the soft drop condition, defined in Equation 4.21.

mi n(pT, j 1, pT, j 2)

pT, j 1 +pT, j 2
> zcut

∆R12

R

β

(4.21)

This means that, from our pair of sub-jets, that with the lowest value of pT must have a calcu-

lated portion of the total sum pT of the pair. Here the value zcut is the scale of the energy to be

removed through soft drop grooming, and β is the chosen sensitivity to wide-angle radiation.

∆R12 is the distance in η−φ space of our two sub-jets, and R is the radius of our reconstructed

jet. If the pT of the softer sub-jet is less than the required portion then we remove it from our jet,

and the remaining sub-jet of the pair becomes our new, groomed jet. This process is applied

again upon the new, groomed jet, and so forth, until either all parts of the jet are groomed away,

or we reach a sub-jet pair that pass the requirements, whereupon we stop grooming.
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5THE ATLAS TRIGGER

SYSTEM

One essential object is to choose that

arrangement which shall tend to

reduce to a minimum the time

necessary for completing the

calculation.

Ada Lovelace

The rate of data delivered by the LHC to ATLAS surpasses available recording and storing cap-

abilities [12, 184]. Physics processes of interest are only produced in a minor fraction of these

events, as most bunch crossings yield only soft hadronic collisions of no interest to physics

analysis. A trigger system, therefore, is required to make rapid decisions based on event in-

formation. This ATLAS trigger system is utilised to select events of interest to keep for physics

analysis, and discard others. This consists of fast real-time decisions based on signals from the

various sub-detectors. The ATLAS trigger is designed to reduce the event rate from the 40 MHz

bunch crossings from the LHC down to 1 kHz, a rate that is manageable for recording. Only

data from events identified as containing potentially interesting physics, and of high energy

are stored.

A strong understanding of how to best trigger on events of intersest is, therefore, cruicial to

the efficient and effective capture of data from the detector. An increasin in luminocity of the

ATLAS experiment, with a higher rate of proton-proton collisions, is likely to make this process

increasingly complex [185] [186].

The first section of this chapter discusses the structure of the ATLAS trigger system and the

second section covers analysis work done with the Jet Signature Trigger group to better under-

stand how the trigger uses track finding for jet reconstruction.

5.1 The Architecture of the ATLAS Trigger System

An overview of the ATLAS Trigger and Data Acquisition (TDAQ) system is displayed in Figure 5.1.

The system consists of two levels – the first uses custom fast electronics hardware to gather
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Figure 5.1: The schematic of the ATLAS TDAQ system [21].

coarse data at high speed, and the second uses slower, more complex software decisions and a

finer granularity. The first, hardware based stage is the Level-1 (L1) trigger [187]. It uses inform-

ation from the calorimeters and MS and identifies Region of Interests (RoIs). Event data taken

from other sub-systems are stored in memory temporarily whilst L1 comes to a decision.

The second is called the High Level Trigger (HLT) [188, 189]. This is software based and

runs algorithms using data from the whole detector, bringing in information from the ID and

reconstructs events of interest. The HLT consists of software algorithms running on a cluster of

computers on several thousand Central Processing Unit (CPU)s (HLT farm). During Run 1 the

HLT was split into two parts, Level-2 (L2) and the Event Filter (EF), however to reduce complexity

of the system, and increase efficiency in algorithms, during Run 2 these were merged into a

single HLT stage [190, 191].

Each stage of Trigger system builds on the decision from the previous level, reducing the

rate of data recording. Any objects that do not meet the requirements of the trigger are per-

manently discarded, therefore it is vital to select as many events with potentially interesting

physics as possible in an unbiased fashion. The triggers identify signatures of potentially inter-

esting physics, such as high pT particles, jets or large E miss
T . These are used for benchmarks for

event selection.

There exists a trigger menu, comprised of a list of trigger selections to be active at certain
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times during the data-taking period. The menus consist of the list of L1 and HLT triggers to be

running during a particular luminosity block of the LHC. Trigger items can have a pre-scaling.

A pre-scale of 5 means that only 1/5 events passing the selected trigger is kept. This is done

randomly and allows for an optimal usage of the bandwidth whilst luminosity within the LHC

changes. If the output rate is too high, a determined chain of decisions can be pre-scaled by a

factor P: only 1/P events that meet criteria are accepted.

There is also the Fast TracKer (FTK) system, which was installed in Run 2, used to process

events accepted by L1, and to seed HLT algorithms [192, 193]. It provides global track recon-

struction from within the ID at L1 trigger rate using lookup tables stored in associative memory

chips custom made for pattern recognition.

All accepted data are eventually passed through the TDAQ system into data streams for off-

line physics analysis, trigger level analysis and monitoring or used for detector calibration. This

channels data from sub-detector to permanent storage, where an offline computing infrastruc-

ture of four tiers (Tier-0,1 2 and 3) is used to construct the data from streams into meaningful

event information. The data flow through these tiers is managed by the Data Acquisition sys-

tem.

5.1.1 Level 1 Trigger

The Level-1 (L1) Trigger uses custom-made fast electronics to complete the first stage of event

selection based on information from the sub-detectors [187]. Its decision is then passed on-

wards to the Central Trigger Processor (CTP). L1 Trigger is hardware based and is required to

make decisions within 2.5µs to reduce data rate down from 40 MHz to a maximum of 100 kHz.

To do this, the L1 trigger defines one or more RoIs in the η-φ plane containing signatures of

interesting physics. RoIs incorporates information about the type of object detected, its energy

and its coordinates within the sub-detector and are used later for reconstruction and tracking

within the HLT. RoIs are defined by the two sections of the L1 trigger: L1 Calorimeter (L1Calo)

and the L1 Muon (L1Muon). Construction of these RoIs rely on the calorimeters L1 Calorimeter

(L1Calo) and the MS, L1 Muon (L1Muon) triggers. These are used to decide if particles within

the detector originate from high-energy collisions containing interesting physics. The L1Calo

function of the trigger searches the calorimeter for signals to identify large Transverse Energy

(ET), E miss
T and high-pT objects. It completes this either by using low granularity trigger towers

(measuring energies of electrons, photons and jets) or by ascertaining weak interactions have

taken place (recognising hadronically decaying tau leptons using their showers. Muons are

detected in the independent trigger system within the MS through the L1Muon trigger. This also

determines electroweak interactions have taken place when triggering on muons within the

the MS.

Since Run 2 there exists new Level-1 Topological (L1Topo) triggers [194]. These were intro-

duced with the objective of reducing the event rate before the Central Trigger Processor (CTP).

This is particularly important at increasingly high luminosities. When using only the L1Calo and



91 5.1 The Architecture of the ATLAS Trigger System

L1Muon triggers, the CTP can only base decisions on information relating to the multiplicity and

thresholds of potential physics objects. The new L1Topo trigger can improve upon this by ac-

cessing higher-level topological information including invariant mass and angular variables.

It combines kinematic information from the L1Calo and L1Muon, allowing more complex selec-

tions based on event topology. The L1Topo processes data through algorithmic firmware. These

are loaded onto integrated circuits known as Field Programmable Gate Array (FPGA)s before be-

ing sent onwards to the CTP. L1Muon uses firmware to send coarse granularity measurements of

η-φ and pT onwards to the L1Topo.

As information from all L1 sections reach the CTP, the trigger menu is implemented. This

consists of 512 distinct items, each of which is a logical combination of criteria to be achieved

for an event to be accepted. This can be based on thresholds, multiplicities and L1Topo flags.

When an object in the sub-detectors meets these requirements, L1 trigger sends an “accept

signal”. The event information is then buffered into the Read-Out System (ROS) and sent along-

side any RoI data to the second level of the ATLAS Trigger: the HLT. At this point data from the

full detector is read out. This is processed by fast electronics and the information is stored in

front-end pipelines on or near to the detector. This is stored here until further processing is

required of the data. The data is sent to Read Out Driver (ROD)s, specific for each detector, and

is later passed onto the Read-Out System (ROS).

The L1 latency is measured from the time of the p-p collision, during the bunch crossing,

up until the L1 trigger decision is ready to be sent to the front-end electronics. The L1 latency

is required to be less than 25µs to match the pace of these collisions. There exists a number of

procedures in place to slow the flow of data to prevent the overlapping of readout windows: the

CTP prescribes two different types of “dead time” within the processing; simple and complex.

Simple dead time sets a limit on the minimum time between two consecutive accept signals

from the L1. Previously this was the time span of 5 bunch crossings, but is now the time span

of 4, 100 ns. Complex dead time sets a maximum on the number of L1 accepts within a given

period of time. Any signals during this time period are rejected by the CTP. The number of the

luminosity block within which the data is taken is kept.

5.1.2 High Level Trigger

The second part of the ATLAS trigger system is the High Level Trigger (HLT) [188, 189]. The HLT is a

software-based system and uses RoIs selected by the L1 trigger at full granularity and precision.

The HLT implements additional selection criteria to data coming from the L1 trigger and the

rate is reduced from 100 kHz to 1 kHz in ≈250 ms. This stage runs on several thousand CPUs.

Following acceptance by the HLT trigger further algorithms are implemented the data for online

analysis, fully reconstructing events to wholly recreate the physics objects within.

During Run 1, the HLT consisted of two separate stages; L2 and the EF. Before Run 2 these

were combined into a single farm to reduce complexity, remove redundancies between them

and allow for dynamic sharing of resources between algorithms [190, 191]. The inclusion of
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tracking information from the ID at the HLT stage of triggering enables identification of objects

such as electrons and muons. Tracking within the HLT has two subdivisions: fast tracking and

precision tracking. Fast tracking allows the rejection of the majority of events, and is utilised

to reduce the overall processing time. Precision tracking goes on to reconstruct the events that

remain. During data taking through 2015 and 2016 the software based Fast Track Finder (FTF)

performed fast tracking. The Fast Track Finder (FTF) delivered approximately 2,500 independ-

ent trigger chains. Each of these trigger chains are a sequence of algorithms for pattern recogni-

tion. These algorithms are executed within the RoIs provided by the L1 trigger and were specially

developed both to provide precision reconstruction of tracks from well-separated objects, such

as electrons photons, muons and taus, and to match these tracks with finer granularity inform-

ation from the calorimeters.

Muon candidates, following reconstruction accomplished solely from information coming

from the MS, are linked with RoIs chosen from the FTF. Information from the MS was used within

the FTF to identify muon candidates only indicated within the MS. The FTF would then use this

to identify ID tracks within the provided RoI.

Once an event has been accepted by the HLT it is transferred to local storage and is then

transmitted to the computing centre of CERN where offline reconstruction takes place. This

offline analysis employs complex algorithms over full events to reconstruct candidate physics

objects. These events are written to different data streams, each of which will be used for physic

analyses, trigger level analysis and monitoring or for calibration of the detector. These streams

consist of a single jet/tau/E miss
T stream, a muon stream, an electron/photon stream and a min-

imum bias stream. Events can feature in more than one stream: these streams are therefore

defined as inclusive. Overlap is kept to a minimum, with only about 10 to 15% of events duplic-

ated. Only for physics analysis is the full event information written to the stream. This allows a

lower bandwidth as only necessary information is written for other analyses.

The Jet Signature Trigger

The LHC is a hadron collider, and as such produces a very large number of hadronic jets, in

fact most events collected by ATLAS contain jets [195]. The ATLAS HLT jet signature trigger uses

high-speed jet reconstruction algorithms to trigger on events with chosen hadronic decay sig-

natures. Developmental work on the ATLAS HLT jet trigger focuses on improving the efficiency

and accuracy of these methods to better identify and trigger on events of most potential interest

to hadronic analysis.

The jet trigger selects for both high-pT jets, for searches involving high-mass exotic states,

and also selects for lower-pT jets for use in calorimeter calibration and of offline jet calibration.

The jet trigger selects chosen events through detection of jets reconstructed and passing se-

lection cuts. Cuts on the pT and η range are of most importance within the jet trigger, making

accurate reconstruction of the jet energy and direction critical. As jets are defined by the recon-

struction algorithm used to produce them, comparison with offline jet reconstruction used in
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analyses is essential to evaluate the jet trigger.

The ATLAS Fast TracKer

In 2017 the installation of a new, high-speed hardware-based tracking system, the Fast TracKer

(FTK), took place [192, 193]. The motivation for the Fast TracKer (FTK) was to improve tracking

and tackle a number of developing challenges, both by reducing the computational load of

track-finding, likely to be exacerbated by future increases in LHC luminosities [185, 186], and by

improving tracking precision through the use of global, rather than local, track reconstruction.

Rapid pattern recognition, relying on particle look-up tables found in hardware memory chips,

and reconstruction capabilities with rates approaching those of the L1 trigger gives the High

Level Trigger (HLT) early access to global tracking information.

The precision tracking software is based on algorithms using track information, rather than

just pattern recognition. Access to full object reconstruction, seeded by spacial coordinates and

refined tracks from the FTF, prevents the precision tracking from being limited by RoIs. Access to

the full range of information from the calorimeters enables establishment of global quantities,

such as E miss
T and full reconstruction of jets within the HLT Jet Signature Trigger. Detection of b-

quark decay, through recognition of secondary decay vertices, is vastly improved through this

precision tracking.

5.2 Fast Tracking in the ATLAS HLT Jet Trigger

This section gives an overview of the technical work performed to obtain the ATLAS author-

ship qualification. The work was done within the Jet Signature Trigger group detailed in Sec-

tion 5.1.2, and covered use of the FTK.

Increases in luminosity in the ATLAS experiment leads to some detriment in jet reconstruc-

tion: the increase in proton-proton impacts lead to higher likelihoods of misidentifying inform-

ation from collisions in addition to the collision of interest, also known as pile-up. As proposals

for future increases in luminosity in the LHC are likely to exacerbate this problem, solutions

must be found [185] [186]. One process likely to improve discrimination, therefore reducing

the effects of pile-up, is the increased use of identifying particle tracks for jets. Although, due

to long processing times, this has previously been limited to b -quark tagging for b-jets built

around RoI in the detector (See Section 4.4).

The ATLAS Fast TracKer (FTK) (Section 5.1.2) is a system that does global track reconstruc-

tion after each L1 trigger, to enable the HLT to have early access to tracking information [192]. It

allows the possibility of rapid b-quark and τ-lepton identification within the online trigger sys-

tem by providing a list of tracks with excellent resolution at the start of HLT processing. These

improved, and now global, track reconstructions allow more information to be assigned to a

jet. Investigations into FTK vertices, jets and tracks, and how they vary from those constructed

both within the HLT and within offline reconstructions can give us more insight to the changes
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this improved tracking brings. Thus, I begin an exploration into the differences in Jet recon-

struction with use simulated of the FTK.

Methodology

To examine potential differences in track reconstruction from the use of FTK, requires the use

of specially developed MC simulations. These MC samples are simulations of fully-leptonic and

semi-leptonic t t̄ pair-production events (see Section 1.3.1) generated by POWHEG and PYTHA

(see Section 3.1) and contain the following special collections

• HLT: Jets reconstructed with tracks and vertices which are found by simulation of current

ATLAS HLT tracking capabilities. Tracks are found only in RoIs with "fast tracking" for b-jet

chains;

• Offline: Jets reconstruction with tracks and vertices which are found using the current

algorithms for offline analysis.

• FTK: Jets reconstructed using tracks and vertices found by simulation of FTK in the ATLAS

trigger. Track-finding “full-scan”: tracks are found globally, not just in RoI;

• FTKO: Jets reconstructed using tracks and vertices found by simulation of offline analysis

using FTK. Track-finding “full-scan”: tracks are found globally, not just in RoI;

A singularly useful variable that can illuminate differences between these reconstruction col-

lections is RpT of a jet [171], defined as the sum of transverse momentum for only those tracks

that are both matched to a jet and associated to the PV as a portion of the sum of transverse

momentum for all tracks matched to a jet:

RpT =
∑

pT
j et and pv
tr ack∑

pT
j et
tr ack

(5.1)

RpT is used as one of the key variables for developing the JVT BDT (see Section 4.3.3). In this

analysis two objects are defined as matched when the distance between them in η-φ space is

∆R < 0.4, as defined in Equation 2.10. RpT shows a physical estimation of how much of a jet’s

energy comes from the PV of the event. Selection requirements have also been placed on the

tracks, such that they required pT > 1GeV and η< 2.5, and a requirement on jets, such that they

need pT > 15GeV and at least one track matched to them. Any other tracks or jets are not used

in this analysis.

5.2.1 Results

RpT

Looking at the results for RpT , shown in Figure 5.2, there are sections of the distribution with

strong agreement between jets from all of the collections, and some key areas of difference.
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(a) All jets passing selections
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(b) Lead jets only

Figure 5.2: RpT for tracks, jets and vertices from four different collections: FTK, FTKO, HLT and
offline.

The FTK and FTKO collections show very close agreement, both when looking at all jets and

when simply looking at the leading jet (with the highest pT) of each event. All collections show a

strong peak at zero indicating the majority of tracks matched to these jet are not also associated

to the PV. When looking at results for all jets it can be observed that, in terms of shape, HLT shows

the most difference to other collections. There is a gentle rise up to about 0.8, where it peaks,

followed by a steeper fall. This indicates jets with a fairly high portion of their track-momentum

coming from the PV are most common. The FTK, FTKO and offline collections have more in

common, each showing an early peak with a drop off. This indicates these jet reconstruction

methods found a high portion of track-momenta not from the PV. FTK and FTKO both have a

second, more prominent peak close to unity, indicating that these jets are most likely to have

close to all of their track-momenta sourced from the PV in our events.

When looking at results for leading jets, it can be seen that generally, jets reconstructed

from all collections are more likely to have a high portion of their track-momenta originating

from the PV of the event. This is most common for those from FTK and FTKO collections, which

show very similar results to one another. This is less common for the HLT and offline collection.

To learn more about the origins of the differences in these results, and more about track-

finding within jet reconstruction, exploration of some of the constituent elements of RpT were

undertaken in more detail.

Number of Tracks

The first component of RpT explored was the number of tracks found within events. In Fig-

ure 5.3(a) the total number of tracks passing these selections is displayed. It can be seen that

within the HLT collection far fewer tracks were found than in other collections. The number of
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(b)

Figure 5.3: The number of tracks found in each collection, (a), and the number of tracks
matched to jets in each collection, (b).

tracks in HLT peaks at close to twenty tracks in each event. This is comparible to results taken

from data, where the number of tracks (following a loose object-selection) per event (following

an event-selection) is approximately 17.8 [196]. FTK and FTKO find many more, peaking close

to 175 tracks per event – this difference is most likely due to the global nature of track finding.

Offline jet reconstruction finds even more, peaking above 200 tracks per events, and continu-

ing to a significant number of events finding at least 450 tracks per event. This is likely due to

less time restrictions for offline track finding, allowing more tracks to be discovered.

Following this, the number of tracks matched to jets and how these vary for each collection

was investigated. Looking at Figure 5.3(b) it can be seen that the majority of jets have up to

seven tracks matched to them. HLT jets are most likely to have only a single track matched

to them, the minimum requirement for this analysis. This peak quickly drops off into a dip,

followed by a second, smaller peak close to seven tracks, before slowly dropping off. This means

that, despite a high portion of tracks found with six tracks, or no tracks, there are a lower portion

found between, with few tracks. For jets in FTK and FTKO something quite different is observed:

again the majority of jets have fewer than eight tracks, but this peaks at about four, with many

fewer jets having only one matched track. Following this peak the number of tracks matched to

a jet drops off more quickly than for HLT jets. For offline jets it can be understood that there are

a relatively small portion of jets with only one matched track, rising to peak at six. Following

this the distribution drops off slowly, much like HLT.

Combining this information with what I have previously shown, these results suggest that

the big difference in number of tracks between HLT and other collections in the region between

1 and 8 tracks comes from the regional, and not global, nature of track finding in HLT. Therefore,

more jets are observed in FTK, FTKO and offline collections with a low to medium number of

matched tracks, whereas for HLT these jets have closer to one matched track. This hypothesis
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(a) FTK vs FTKO
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(c) FTK vs offline

Figure 5.4: Jets can be matched one-to-one between different collections. Shown here is the
number of tracks matched to FTK jets, where these jets have themselves been matched one-to-
one with jets from other collections. The number of tracks matched to the respective matched
jet is also shown.
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was explored in more detail by comparing matched jets.

Ensuring a jet within the FTK collection is matched within a distance of ∆R < 0.4 to a jet

in the HLT, FTKO and offline collections allows comparison of the number of tracks matched

to these jets one-for-one. Observe in Figure 5.4 how the number of matched tracks for these

matched jets compare to jets from the FTK collection. Firstly, I present the results for FTK vs

FTKO. Each of these pairs of matched jets have the same number of tracks matched within FTK

as FTKO, an exact one-to-one result. It is visible that the majority of these jets have three or four

matched tracks, with very few having more than ten. This reflects the previous result. Moving

onto the comparison between HLT and FTK, it can be seen that there is a strong correlation

between the two, but with two slight differences. At high numbers of tracks there slightly fewer

matched tracks in FTK than HLT, though this is the minority of jets. In a much larger portion of

these jets – those with very few tracks matched – there is a significant difference: the majority of

the matched jet-pairs have a jet from the HLT collection with only a single track, and a jet from

the FTK collection with three or four tracks. This skew towards a higher number of tracks found

in FTK is present in all jets with relatively few tracks found in HLT. This matches the hypothesis

from previous results and indicates that track finding for jets using the FTK is more likely to find

several tracks where track finding in HLT has only found a low number.

When comparing jets from the offline collection to those in FTK, it can be once again seen

that there is a reasonably good agreement between the numbers of tracks assigned to jets; how-

ever, for each matched jet pair there is likely to be a higher number of tracks in the offline case.

This would indicate a general trend of better offline track finding. From explorations took place

to see if there is a certain quality that these missed tracks have in common.

Sum of Track pT

To a develop a broader understanding of the tracks in these jets I next constructed a larger

portion of the original RpT variable, by looking at the denominator: the sum of pT from all

tracks matched to a jet, labelled ΣpT Tr ack . In Figure 5.5 I present the results for this variable.

For the most part the results reflect those from the number of tracks matched to jets and

the distributions follow a similar pattern. The sum of track pT for jets in the FTKO, FTK and

offline collections rise quickly to have a single peak - at 4 GeV, 6 GeV and 8 GeV respectively

- and steadily drop off. The sum of track pT for Jets in the HLT collection has its first, highest

peak between 0 GeV and 2 GeV, before dipping, with a second, smaller peak at 34 GeV. The

combination of HLT jets having, firstly, many fewer results with low, non-zero values than the

other collections followed by a second peak at higher values of summed track pT combined

with secondlt, fewer tracks being found indicates that the tracks missed by jet-track finding in

HLT are low pT tracks. These results also indicate that the higher value of summed track pT for

the offline collection, compared to FTK, originates from the fact that more tracks are found in

offline jets, increasing Sum of Track pT for each jet. The differences in collection are not as

apparent when looking at the lead jet (with the greatest value of pT) in any event: distribution
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(a) Tracks matched to jets
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(b) Tracks matched to lead jets
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(c) Tracks associated to the PV and matched to jets
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(d) Tracks associated to the PV and matched to lead jets

Figure 5.5: Once tracks are matched to jets, their pT can be summed. This is shown for tracks
matched all jets passing selection, (a), tracks matched lead jets, (b), tracks that are assciated to
the PV and matched to jets, (c), and tracks that are associated to the PV and matched lead jets,
(d).
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shapes are much more similar; however, I see that in the HLT collection there is once again a

scarcity of low-pT results.

Following this, I also looked to the numerator of the RpT ratio, by exploring the summed

momenta of tracks that are both matched to a jet and associated to the PV. Once more it can be

observed that there is a very familiar difference between jets in the HLT collection, and strong

similarities between jets from the FTK, FTKO and offline collections. A significant drop in the

number of low-sum-pT results for HLT jets is present in the results for these track sets, and those

of lead jets. Overall, this indicates that track finding in FTK has similar capabilities for finding

low-pT tracks as in offline processing.

As with the number of tracks matched to jets from these collections, I undertakook a one-

to-one comparison for matched jets. In Figure 5.6 it is shown that the sum of track pT contrasts

between pairs of jets from different collections.

It is shown that results from FTK and FTKO match exactly, with the majority of jets having

a value between 2 GeV and 8 GeV. When compared to jets from the HLT collection, there is

reasonably strong positive correlation; however, the majority of jets from the HLT collection

have a value between 2 GeV and 6 GeV and are matched to jets from the FTK collection with a

notably higher sum of track pT. This would support the hypothesis that track-finding in the

HLT is missing many low-pT tracks that are found within the FTK collection. When inspecting

the comparison between jet pairs from the FTK and offline collections, many cases can be seen

where there is a higher value of offline jets when the value for FTK is particularly low (below

around 20 GeV), otherwise there is a reasonably good correlation. This indicates the offline case

is somewhat better at track-finding, following from offline jets having more tracks matched to

them.

Track Width

From here I shall display the results from another insightful variable, track width, defined as

WTr ack =
∑

(TrackpT)× (∆r f r om j et )∑
TrackpT

(5.2)

Looking at Figure 5.7 there are some clear difference between the different collections. First

note, that the matching distance limits possible track width at a maximum of 0.4, as expected.

For jets from the FTK, FTKO and offline collections there is a very similar distribution, with the

portion of jets increasing steadily to a peak at a track width value of 0.24, before quickly drop-

ping off as the limit of 0.4 is approached. For jets from the HLT collection, however, there is a

very different distribution with a sharp rise up to a peak at track width of 0.08, followed by a

sharp drop and a small second peak above 2.8. This seems to indicate a tighter track clustering

about the jets in the HLT collection.

Investigating track width for matched jet pairs from different collections demonstrates that

jets from FTK and FTKO are an exact match once again. When comparing FTK jets to those

matched in HLT it can be seen that for FTK jets with values of track width between 0.02 and
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(a) FTK vs FTKO
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(b) FTK vs HLT
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(c) FTK vs offline

Figure 5.6: Jets can be matched one-to-one between different collections. Shown here is the
sum of track pT, Σ(Track pT), for tracks matched to FTK jets, where these jets have themselves
been matched one-to-one with jets from other collections. The sum of track pT for tracks
matched to the respective matched jet is also shown.
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(a) Track width for all collections
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(b) FTK vs FTKO
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(c) FTK vs HLT
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(d) FTK vs offline

Figure 5.7: Track width (Equation 5.2) is shown. Jets can be matched one-to-one between dif-
ferent collections. Also shown here is the track width for tracks matched to FTK jets, where
these jets have themselves been matched one-to-one with jets from other collections. The track
width of tracks matched to the respective matched jet is also shown.
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0.12 the value is skewed lower for the matched HLT jet, related to the peak in low values for HLT

jets. At higher values track width increases more quickly for HLT jets than those from the FTK

collection, with a clustering around 0.22 to 0.3, related to the FTK peak. Comparison of FTK jets

and offline jets demonstrated that there is a very strong correlation in track width, as indicated,

and a clustering close to where the peak is. Further investigations were then undertaken into

the differences seen in track width. This was done with the use of related variables, shown in

the following sections.

∆R and∆z

To investigate further potential differences in the distributions of tracks within jets the variable

∆R was investigated. This began with an analysis of the distances between these tracks and the

centre of the jet they are matched to. Looking at Figure 5.8, the first thing to note is the hard

cut-off caused by the maximum matching distance. Secondly, it is seen that the distributions

in FTK, FTKO and offline jets are very similar to one another, and all very different to jets from

the HLT collection. Jets from the FTK, FTKO and offline collection display a gradual rising in the

number of tracks found when increasing the distance from the jet, up to a peak at the cut-off

distance. This is likely related to the increasing likelihood of finding a track as the area searched

increases quadratically. For jets in the HLT collection a very different pattern emerges: with a

tight clustering of tracks about the jet centre, peaking at a distance of ∆R = 0.04 before rapidly

dropping off, with a second, much smaller peak at the cut-off distance. Looking at results for

the lead jets in events it can be seen that this difference is not present, as jets in all collections

find many more jets clustered about the jet centre. This increase in track-clustering is expected

about high-pT jets, as they tend to be more collimated. In all likelihood, the differences in track

finding for HLT jets come from the regional nature of track-finding, with tracks from high-pT

jets prioritised. Global track-finding with the FTK means that many more tracks further from

the jet centre are found, these are likely the same low-pT tracks that are missing from HLT jets

in the previous results.

Following this, this result was cross-checked with tracks that are both matched to jets and

that are also associated with the PV of the event. For jets from the FTK, FTKO and offline collec-

tions, some evidence of clustering about the jet centre is shown, a result that is more prominent

for leading jets. This is possibly related to the fact that tracks coming from the PV are matched

to higher-pT jets, originating from the hard-scattering in the event, with other jets in the event

sourced from soft-interactions and pile-up. For jets from the HLT collection a far more extreme

clustering about the jet centre is observed, once again displaying these differences between the

regional and global track-finding.

Further to this, the distribution of jet-tracks about the leading-track was inspected. Here

the leading track is defined as the track with the highest-pT that is also matched to a jet. In Fig-

ure 5.9 these results are shown. It is clear that the distribution for tracks from the FTK, FTKO and

offline collections are very close, and that tracks from the HLT collection are slightly different.

It is noted that all distributions follow a rise-and-fall curve, with tracks from the HLT collection
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(a) Tracks matched to jets
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(b) Tracks matched to lead jets
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(c) Tracks associated to the PV and matched to jets
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(d) Tracks associated to the PV and matched to lead jets

Figure 5.8: ∆R between tracks and the jet they are matched to. This is shown for tracks matched
all jets passing selection, (a), tracks matched lead jets, (b), tracks that are assciated to the PV and
matched to jets, (c), and tracks that are associated to the PV and matched lead jets, (d).
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(a) Tracks matched to jets
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(b) Tracks matched to lead jets
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(c) Tracks associated to the PV and matched to jets
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(d) Tracks associated to the PV and matched to lead jets

Figure 5.9: ∆R between tracks and leading track matched the same jet. This is shown for tracks
matched all jets passing selection, (a), tracks matched lead jets, (b), tracks that are assciated to
the PV and matched to jets, (c), and tracks that are associated to the PV and matched lead jets,
(d).
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peaking earlier than other distributions. The gradual increase up to the first peak is related

to the quadratically increasing area about the lead track in which other tracks can be found.

The effects of the selection, ∆R < 0.4 has two effects on results: the first is a hard cut-off at the

maximum possible distance between two tracks matched to the same jet, ∆R = 0.8, the second

is that as ∆R = 0.4 is reached, the maximum possible distance for tracks very close to the jet

centre is approached. The further the distance moves from 0.4 towards 0.8 the fewer possible

locations there are to locate pairs of tracks this distance apart that are both still matched to the

jet. This likely contributes significantly to the increasingly fast drop off following the crest of

the curve. When looking at tracks matched to leading jets or tracks matched to all jets it can

be seen that those from the HLT collection have an earlier peak than other collections. Also

demonstrated is that track distances from the FTK, FTKO and offline collections have a slightly

more prominent peak

Once again, this was cross-checked by only including tracks that are both matched to a jet

and associated to the PV of the event. For tracks from the FTK, FTKO and offline collections there

is a very similar distribution to those tracks only matched to jets; however, for tracks in the HLT

collection there is now a very prominent group of tracks close to the lead track. This clustering

about the lead track is likely due to the collimated nature of high-pT jets originating from the PV,

caused by the hard-scattering event. These high-pT jets have central lead tracks and dominate

the results for HLT in a way that global track finding in FTK is less susceptible to.

The final variable examined to investigate these differences was the longitudinal distribu-

tion of tracks that are matched to jets, about the PV, ∆z. The results for this variable are shown

in Figure 5.10.
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(a) Tracks matched to jets.
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(b) Tracks matched to lead jets.

Figure 5.10: ∆z between tracks and the PV. This is shown for tracks matched to all jets, (a), and
tracks matched to lead jets, (b).

It can observed that tracks found from the HLT collection are clustered the most closely

about the PV, with 0.1 % of tracks reaching 2.5 mm away. Tracks from the FTK and FTKO col-
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lection are the least tightly clustered, with 0.1 % reaching as far as 10 mm. Offline tracks lay

in between, with 0.1 % reaching 5 mm distance from the PV. This pattern is the same when

looking at tracks only matched to lead jets. The greater spread of tracks from the FTK and FTKO

collection once again demonstrates differences between regional and global track-finding in

the ATLAS experiment.

5.2.2 Conclusion

Through this analysis I undertook an exploration of the differences in track-finding between

use of the ATLAS HLT, FTK, FTKO and offline reconstruction, to build solid ground work through

investigation of several informative variables. These results lead to a clear, if preliminary, un-

derstanding of some key similarities and differences between the use of tracks with the FTK

compared to other methods. It was shown that the tighter clustering about the matched-jet

centre, lead track and PV in the tracks from the HLT collection is not present in tracks from

the FTK collection, and propose this is due to the global nature of track-finding. This result is

much closer to results seen from the more detailed process of offline track-finding in events,

and leads to benefits, such as more low-pT tracks being found in FTK events than HLT events.

These differences are likely to improve tracking with jets, ultimately improving the efficiency

and reliability of jet reconstruction in ATLAS.
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6SMALL JET

RECONSTRUCTION WITH

SOFT DROP GROOMING

To raise new questions, new

possibilities, to regard old problems

from a new angle, requires creative

imagination and marks real

advance in science.

Albert Einstein

6.1 Analysis Overview

Since the discovery of the Higgs boson, a key area in the search for new physics is investigat-

ing the Yukawa coupling, in particular that of the heaviest SM particle, the top quark. The t t̄ H

channel of Higgs production involves a direct coupling between the top and the Higgs, and

therefore presents a unique opportunity for study. The H → bb̄ decay channel has the highest

Branching Ratio (BR), at 58 %, of all decays for a SM Higgs of 125 GeV (see Section 1.3.1). Searches

for signals for this particular decay are complicated by the most common background process

within the LHC, multi-jet production and top quark pair production, t t̄ , with additional had-

ronic jets. The top-quark decay with the highest BR is t → bW , at 99.8 %. Jets from b-quarks,

therefore, play a key role in the search for understanding the Higgs boson. The subsequent de-

cay of the produced W bosons can lead to either a 2-jet, 1-jet or 0-jet state with a BR of 45.7 %,

43.8 % and 10.5 % respectively. Thus, accurately identifying the sources of jets is paramount,

but complex. Work within hadronic jet identification and classification, however, can improve

understanding of the different physics taking place in these events. This may ultimately lead

to better separation between events containing signals of physics of interest, such as events

containing the Higgs boson, from background events.

Increases in the luminosity of the ATLAS experiment, both ongoing and planned for the fu-

ture, will lead to some detriment in jet reconstruction, most particularly due to pile-up. Un-

derstanding the internal structure of jets in events at ATLAS through the utilisation of jet sub-

structure (JSS) observables can significantly improve the understanding of physical processes
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Figure 6.1: NCLUS for the b-flavour-tagged jets from the t t̄ MC sample at each stage of soft drop
grooming, with a ratio to the ungroomed value. Applying soft drop grooming to the jets steadily
reduces the value of NCLUS. This is dicussed in detail in Section 6.6.1.

taking place within events (see Section 4.5). It is imperative, therefore, that accurate reading

of these JSS variables is undertaken. Doing so for key variables such as jet mass, critical in

identifing boosted hadronically decaying particles, is complicated by these increasing levels of

pile-up within the detector. Accurately identifying jet mass is complicated by the presence of

Non-Global Logarithms (NGL) (Section 4.7), an issue that is exacerbated by these higher levels

of pile-up.

Soft drop grooming is a jet grooming procedure, used to remove soft and wide-angle radi-

ation from the jet, that is formally insensitive to NGL (see Section 4.7). The calculation of the

masses of jets that have the soft drop procedure applied is, therefore, insensitive to these NGL.

The motivation for this analysis is to ascertain whether applying soft drop grooming to flavour-

tagged small jets reconstructed within ATLAS can be beneficial for discrimination between t t̄ H

signal events and events of the most prominent backgrounds, such as t t̄ . To do this I undertake

an investigation of JSS observables from reconstructed flavour-tagged small jets of different ori-

gin with different strengths of soft drop grooming applied, sourced from both MC simulations

and ATLAS data.

In this chapter, I construct the focus of the primary analysis: investigating the effects and

possible benefits of applying soft drop grooming to flavour-tagged small jets reconstructed

within ATLAS. Following this, I explore the results of the studies into soft drop grooming on

flavour-tagged small jets from both MC simulation samples and ATLAS data. Firstly, in Sec-

tion 6.6 I present the investigation of effects soft drop grooming has on reco-jets, particularly

on the JSS observables NCLUS, and jet mass. The results of these investigations prompted a

more detailed exploration of soft drop grooming with tau-jets, which is covered in Section 6.7.

Here I show results relating to "lost" tau-jets and "real" vs "fake" tau-jets. The next section,

Section 6.8, covers differences in quark- and gluon-jets when subjected to soft drop grooming.
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Following this, I look at the effects on b -jets that have been also identified through traditional

b-tagging methods in Section 6.9. After this I introduce the results from flavour-tagged small

jets originating in t t̄ H MC samples in Section 6.10. These will be compared to the results from

t t̄ MC samples. Then I move onto studying the results of applying soft drop grooming to truth-

particle jets, and how these compare to reco-jets in Section 6.11. Section 6.12 will investigate

the effects of soft drop grooming on jet response. Finally, I will cover the analysis and results

from utilising data from the ATLAS detector in Section 6.13.

6.2 Data and Monte Carlo Samples

Each of the samples used in these studies, both collected by the ATLAS detector or MC simula-

tion produced as part of the official ATLAS MC production, have been chosen such that samples

for comparison closely match one another in terms of their production, format and for specific

event- and object- selection required (such as the necessary calorimeter topocluster informa-

tion).

An important factor in choosing the best MC samples for comparisons within the analysis

is the distribution and average value of pile-up found within the events, shown in Figure 6.4.

Where comparison of results are made between MC samples and ATLAS data, or either between

different MC simulation samples, matching weighted pile-up distributions are used, as shown

in Figure 6.4(b).

6.2.1 ATLAS Data

Some of the analyses presented here utilise data from proton-proton collisions, at
p

s =13 TeV

centre-of-mass energy, collected by the ATLAS detector during 2018. This data has to pass the

data quality criteria known as the Good Runs List (GRL) – requiring that beam of the LHC is

stable, that all of the subdetectors within ATLAS have correct operating voltages, and that the

magnetic fields of the toroidal and solenoidal magnets are of the correct strength [197]. Fur-

ther validation is also undertaken by the ATLAS Data Quality group, studying data for deviations

with respect to previously gathered, and well-understood runs. 41.9 fb−1 of 58.5 fb−1 “Good for

Physics” data from 2018 (See Figure 6.2). This subset of the ATLAS data was chosen for its spe-

cific format and for the required pre-selection on events and objects necessary to undertake

the analysis, such as inclusion of necessary calorimeter cluster information.

It should be noted that the pile-up distribution of the final sub-set of ATLAS data analysed in

this thesis does not match exactly with the full 2018 data. This was deemed acceptable for these

performance studies, where the physics of the reconstructed hadronic jets, and their behavious

under soft drop grooming, is the focus.
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Figure 6.2: Cumulative luminosity versus time delivered to ATLAS by the LHC (green), recorded
by ATLAS (yellow), and certified to be quality data that is “Good for Physics” (blue) during stable
beams for proton-proton collisions at 13TeV centre-of-mass energy in 2018 [7].

6.2.2 Monte Carlo Simulation Samples

These analyses rely on samples of MC simulations produced as part of the official ATLAS MC pro-

duction, discussed in Section 3.1. The first of these used is a sample of (leptonic and semi-

leptonic) t t̄ MC events simulated using POWHEG-BOX 2 [198] and utilising PYTHIA [119] for

modelling of PS, hadronisation and UE. The second of the MC simulation samples utilised is

semi-leptonic t t̄ H events (see Section 1.3.1). This sample is modelled using the same generat-

ors: as above. Both of these samples have weighted pile-up distributions to match the pile-up

conditions from ATLAS in 2017 (see Figures 6.3(b) and 6.4(a)).

Through the latter section of analysis, in which I make comparisons to ATLAS data from

2018, I utilise two different MC simulation samples. One contains events with t t̄ samples sim-

ulated using POWHEG-BOX 2 and PYTHIA, which is referred to as “t t̄2”. Also shown is results

results from t t̄ 2 following application of the selection process described in Section 6.3.2, which

is labelled "t t̄ 2Sel ". The second contains dijet samples, simulated by SHERPA [199]. Each of

these have weighted pile-up distributions to match conditions from ATLAS in 2018, shown in

Figure 6.4(b).

6.3 Selection Processes

6.3.1 Object Selection

The first physics objects I make use of in this analysis are calorimeter topoclusters (from now

on referred to as clusters or topoclusters), which I use to reconstruct calo-jets (from now on

referred to as reco-jets). I select only those clusters with positive energy values and implement

the FastJet package to reconstruct jets with the Anti-kT clustering algorithm, previously covered

in Section 4.2. I reconstruct the jets with a clustering radius of R = 0.4, and require that all jets

used for analysis possess at least two clusters.
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Figure 6.3: Luminosity-weighted distribution of the mean number of interactions per crossing
for proton-proton collisions during Run 2 at CoM energy,

p
s = 13TeV data [8] for 2018 (a) and

for 2015 - 2018 (b).
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Figure 6.4: Pile-up distributions for the different MC samples, and data sample. Shown is num-
ber of particle interactions per bunch,µ.(a) shows MC simulation samples weighted to 2015 and
2017 data. (b) shows both MC samples weighted to 2018 data and the sub-set of ATLAS data used
in comparison studies.

I also make use of final-state truth-particles in order to reconstruct truth-particle jets. These

truth-particle jets are reconstructed from at least two final-state truth-particle “constituents”,

though this will not include any neutrino or muon particles, as these are rejected. Once again,

I employ the FastJet package to reconstruct Anti-kT jets with radius of R = 0.4.

The final three jet objects are all "out of box", and are not produced during my individual

analysis, but taken directly from the MC and data samples. These are constructed using the

reconstruction processes described in Section 3.3. The first of these jet types are EM-jets, which

are reconstructed from uncalibrated topoclusters (therefore at “EM” scale, see Section 4.3.1).
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These have been reconstructed using the Anti-kT algorithm, with a radius R = 0.4. The next of

these jet types are truth-jets, previously reconstructed from truth-particles using the Anti-kT

algorithm, with a radius R = 0.4. The final “out of the box” jet types I use in this analysis are

traditional tau-jets. These are jets defined as originating from the hadronic decays of the τ

lepton by traditional τ -tagging methods. In total, this gives five types of jet used within the

analysis, reviewed in Table 6.1.

Jet Type Description
Reco-jet Reconstructed during my analysis from calorimeter topoclusters using

FastJet and Anti-kT at R = 0.4
Truth-particle jet Reconstructed during my analysis from final state "truth-particles" using

FastJet and Anti-kT at R = 0.4
EM-jet Previously reconstructed from uncalibrated calorimeter topoclusters using

Anti-kT at R = 0.4
Truth-jet Previously reconstructed from final state "truth-particles" using Anti-kT at

R = 0.4
Traditional tau-jet Jet identified as originating from τ by traditional tagging methods.

Table 6.1: The types of jet used in this analysis.

I place selections on all jets used within the analysis. Each of these jets must have
∣∣ηmax

∣∣= 2.5

and pTmi n = 25GeV. I also require that each reco-jet used is matched sufficiently close within

the detector to at least one EM-jet, within a distance of dRmax = 0.4.

In studies only using MC simulated events I also require a matching of this fashion between

the reco-jet, at least one reconstructed truth-particle jet and at least one truth-jet. I also re-

quire a pT matching between the truth-particle jet and truth-jet, such that the two objects have

∆pT max = 25GeV. Any jets not meeting these requirements are discarded.

Some of these analyses make use of “out of the box” reconstructed electrons and muons

(see Section 6.3.2).

6.3.2 Event Selection

Following the selection of the physics objects, I employ criteria to select only those events I

wish to use. There are two event selection configurations I use in these analyses, the first of

which will only be used for MC simulation studies, as it requires truth-information not present

in ATLAS data. Here I ensure an event always contain at least one reco-jet with a matched EM-jet

(both meeting the jet selection and matching requirements). They must also contain at least

one truth-jet and at least one truth-particle jet, both matched to a reco-jet and to one another.

This matching criteria is explained above.

Selection for Analyses with ATLAS Data

Data from the ATLAS detector does not contain any “truth” information about events. There-

fore, studies that involve this ATLAS data require a common event selection to give an accurate
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comparison. These selections are combined with further criteria used in traditional searches

for t t̄ events. This set of event selection criteria is used to select t t̄ pair production events with

leptonic and semi-leptonic decays [200].

Here, the only jets that are available are the “out of the box” EM-jets and the reco-jets I

have constructed from at least two clusters, as defined in Section 6.3.1. As before, each of

these jets must be central to the detector,
∣∣ηmax

∣∣= 2.5, and have a minimum transverse mo-

mentum, pTmi n = 25GeV. I also require that each reco-jet used is matched sufficiently close

within the detector to at least one EM-jet, within a distance of dRmax = 0.4. Every event re-

quires at least 4 of these jets, with either 1 or 2 of them b-tagged (see Section 6.4.3) Further

to this each event must have exactly one electron or muon with a maximum transverse mo-

mentum, pTmax = 28GeV.

It is also required that minimum values are set for E miss
T and for the transverse mass of the

W boson, mW
T . For events with an electron these minimum values are set to E miss

T > 30GeV

and mW
T > 30GeV. For those events in which an muon is found a minimum for their combined

value is required, E miss
T +mW

T > 60GeV.

mW
T =

√
2p`

T E miss
T 1−cosφ (6.1)

6.3.3 Selection Cuts

For some studies in these analyses, I will use the application of one-dimensional selection cuts

to further explore the physics taking place. Application of selection cuts on a single observ-

able, such as rejecting all jets with a jet mass below a chosen maximum value, mmax = 50GeV

for example, may have a stronger effect on jets of a particular flavour-tag, or from a particular

sample. If used correctly, this can increase the “purity” of a sample, in regards to a chosen fla-

vour. I will then explore whether using soft drop grooming can improve this selection process,

allowing an increase in the maximum possible purity of the sample.

Following this, the application of these selection cuts can also be limited, such that a min-

imum chosen Working Point (WP) must be reached following a cut for it to be valid. The chosen

WP used will be that 80 % of the chosen "signal" jets must remain followin a selection cut. These

signal jets may be jets from a chosen flavour or from a given sample. Therefore, I look only at

those cuts that will return at least 80 % of the chosen jet origin or flavour. Once again, I will

which of these selection cuts return the best purity for my flavour or sample of choice. Through

this method, I hope to investigate whether soft drop grooming can improve the maximum pos-

sible purity achieved by the selection cut.

6.4 Jet Flavour-Tagging

Following the reconstruction and selection of jets, the next stage is to assign flavour informa-

tion, labelling the proposed origin of the jet. In these analyses, reco-jets are assigned flavour-
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tags through three different methods, which can be applied individually or in combination.

Each of these methods and their application in analysis are described below.

6.4.1 Truth-Flavour-Tagging

Figure 6.5: Schematic of truth-flavour tagging sequence used in this analysis. Also shown is the
sub-categorisation of tau-flavour-tagged jets into 1- and 3-pronged tau-jets.

MC simulation samples contain truth information that can be utilised to determine the ori-

gin of jets through the process of truth-flavour-tagging. Truth-flavour-tagging is a process that

involves matching a jet to a truth-particle within drmax = 0.3. EM-jets from the chosen samples

already have this information for this analysis to access. Any reco-jets matched to an EM-jet

with a truth-flavour label of b, c, τ or “light” are kept, all others are either flavour-tagged as “lost

taus” (See Section 6.4.2) or rejected.

In this context, light-jets are those which have been matched with light partons. Further

truth information, taken from the truth-jets matched to these light-jets, can be used to de-

termine whether the origin is a light-quark (u, d or s) or a gluon. This PartonTruthLabelID

corresponds to the ID of the highest energy parton ghost-matched to the jet [166]. The jet can

then be labelled as either a gluon- or uds-jet. A schematic detailing this truth-flavour-tagging

process is shown in Figure 6.5.

6.4.2 Further Tau-Flavoured Jet-Tagging

1-Pronged and 3-Pronged Tau-Jets

Those reco-jets that have now been assigned a flavour-tag of “tau” are further sub-divided into

1-prong and 3-prong tau-jets. For this to be assigned, the reco-jet must be matched with a

tau-jet found through traditional τ -tagging techniques. Any reco-jets flavour-tagged as tau-

jets without this match are passed on to be “lost taus” (See Section 6.4.2). Next, I access the

number of ID tracks associated to the matched tau-jet. This relates to the number of charged

decay-products discussed in Section 3.3.4. A single track, or three tracks (the only two available

number of tracks in this case), leads to the tau-flavoured reco-jet being categorised as a 1-
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pronged tau reco-jet, or 3-pronged tau reco-jet respectively [146]. A schematic detailing this

flavour-tagging process is shown in Figure 6.5.

Fake and Real Tau-Jets

Beyond classification of tau-flavoured jets by the number of prongs they possess, I further di-

vide them into “fake” and “real” taus. I determine this by checking the tau-jet (found by tra-

ditional τ -tagging techniques) that is matched to a reco-jet now flavour-tagged as either a 1-

pronged or 3-pronged tau. If this matched tau-jet is, itself, matched to a truth-particle defined

as a stable, final-state, non-leptonically decaying τ -lepton, then my reco-jet is labelled as a

“Real” 1- or 3-pronged tau, representing a hadronic τ decay within the MC simulation. Other-

wise, the 1- or 3-pronged tau is labelled as “Fake”. A schematic detailing this flavour-tagging

process is shown in Figure 6.6.

Figure 6.6: Schematic of process for flavour-tagging tau-flavoured reco-jets as either "Real" or
"Fake".

"Lost" Tau-Jets

The final, additional, tau-related flavour-tag used in this analysis is that of “lost tau”. These are

to account for those hadronic tau decays not identified by traditional τ -tagging methods.

There are two ways a reco-jet will be tagged as a lost tau-jet. Firstly, if the truth-flavour-label

of the matched EM-jet is τ and the reco-jet is not matched to a tau-jet found through traditional

τ -tagging methods, but is matched to a truth-particle jet that is a non-leptonically decaying τ-

lepton. Secondly, if the truth-flavour-label of the matched EM-jet does not match that of light-,

b, c or tau, but the reco-jet is matched to a truth-particle jet that is a non-leptonically decaying

τ-lepton. A schematic detailing this flavour-tagging process is shown in Figure 6.7.
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Figure 6.7: Schematic of process for flavour-tagging "lost" tau-flavoured reco-jets.

6.4.3 Applying b-Tagging

Additional to, or instead of, utilising truth-information for flavour-tagging the reco-jets, I also

make use of traditional b-tagging methods. Each EM-jet has a b-tagging value assigned accord-

ing to the MV2c10 algorithm described in Section 4.4. If this b-tag value passes the threshold of

0.9349 (see Table 4.1), then any reco-jet matched to said EM-jet will be labelled as “tagged”. As

no truth-level information is available in data from the ATLAS detector, this will be the primary

flavour-tagging method used for those studies. It will also be used to further investigate those

reco-jets already truth-flavour-tagged as b -jets. A schematic detailing this flavour-tagging pro-

cess is shown in Figure 6.8. The efficiencies and rejection rate of this cut are shown in Sec-

tion 4.4 and Table 4.1.

Figure 6.8: Schematic of process for applying traditional b-tagging to reco-jets using the the
MV2c10 algorithm.

6.5 Application of Soft Drop Grooming

Following any strength of soft drop grooming, I require reco-jets to possess a minimum of two

clusters, otherwise they are discarded. As truth-level information, and therefore truth-particle

jets, do not exist in ATLAS data, those analyses using the data-tailored selection process de-
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scribed in Section 6.3.2 will have this requirement only. Those analyses making use of truth-

flavour information and the standard event selection process have the additional requirement

that truth-particle jets must possess a minimum of two constituent truth-particles following

the application of soft drop grooming, otherwise the reco-jet it is matched to is discarded.

Groom name β value z value

SDb0z05 0 0.05

SDb0z1 0 0.10

SDb0z15 0 0.15

SDb0z20 0 0.20

SDb0z25 0 0.25

SDb0z30 0 0.30

Table 6.2: Grooming strengths used for soft drop grooming. Zcut is a soft threshold, and β is an
angular component. [23].

The process of applying soft drop grooming of different strengths can be illustrated by the

effect on the number of clusters in the reco-jet, an example of this process for reco-jets that are

truth-flavour –tagged as b -jets is shown in Figure 6.1.

6.6 Soft Drop Grooming Flavour-Tagged Small Jets

6.6.1 Number of Clusters
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Figure 6.9: NCLUS for different truth-flavour tagged jets when ungroomed, (a), and soft drop
groomed with strength Z cut = 0.10, (b).
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(f) 3-pronged tau

Figure 6.10: NCLUS at each strength of soft drop grooming with a ratio to the next softest groom-
ing strength.
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Throughout these analyses I focus on the effects of soft drop grooming on a number of

observables, within both the reco-jets and truth-particle jets. The first of these is NCLUS, the

number of topoclusters remaining in the reco-jet, both before and after various configurations

of soft drop grooming are applied. The NCLUS distributions for ungroomed jets of different

flavours are shown in Figure 6.9(a). What is shown is that tau-flavoured jets peak at a lower

value of NCLUS than the other flavours, with 1-pronged tau - and 3-pronged tau -jets peaking at

around ten and twelve clusters respectively. Following this, what is observed is uds-jets peaking

at fourteen, c-jets peaking at 15, and both gluon-jets and b-jets peaking at 16 clusters. The

width of each of these distributions are comparable.

The clearest indication of the effects of soft drop grooming comes from studying the num-

ber of calorimeter clusters remaining within the reconstructed jet at different levels of groom-

ing. Firstly, the NCLUS found in the ungroomed flavour-tagged small jets is inspected.

Looking at Figure 6.9, the effects of soft drop grooming at the chosen grooming strength,

Z cut = 0.10, can be seen. The first thing to note is that tau-flavoured jets seem to be the most

heavily groomed, with a very strong peak appearing at the minimum NCLUS, two. This is true

more so for 1-pronged tau-jets rather than 3-pronged tau -jets. Secondly, very little change in

the gluon-jets is noted: at this grooming strength they are the flavour of jet that changes the

least. Jets sourced from quarks (uds, b, and c) lie somewhere between these two extremes, and

at this grooming strength behave similarly.

What is expected is that jets with a well-defined hard-core, clear and distinct from those

clusters indicative of wide-angle soft radiation, will lose more clusters following grooming. The

significant imbalance of pT between the clusters within the core and the clusters outside will

lead to the low energy clusters being removed. The results shown here indicate, preliminarily,

that the tau-flavoured jets have a well defined core by comparison. Those jets lacking the well-

defined hard-core, such as gluon-jets, will therefore be less likely to lose clusters, and this is

what is seen in the results.

The results for each of the grooming strengths, comparing flavours, can be seen in Fig-

ure A.1.

More detailed investigations into the effects of different grooming strengths upon each of

these flavours was then undertaken. Figure 6.10 displays the NCLUS for each particular flavour

of jet, at different strengths of soft drop grooming. The rate of change between one grooming

strength and the next is also displayed, allowing identification of any thresholds with significant

changes.

6.6.2 Sample Size

Another, related factor explored is the change in the number of flavour-tagged small jets of each

flavour, and how this changes for each strength of soft drop grooming, shown in Figure 6.11.

A reminder that at least two clusters are required to remain within the jets to avoid rejection.

If the jets have fewer than two clusters remaining following grooming then they are discarded.
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Figure 6.11: The fraction of each set of flavour-tagged small jets remaining following different
strengths of soft drop grooming.

We see that overall, and at the first stage of grooming, 1-pronged tau–flavoured flavour-tagged

small jets are most likely to be groomed away, quite dramatically compared to all other fla-

vours: ultimately only 20% of these are left. The biggest change occurs between the ungroomed

sample and that of the grooming strength Z cut = 0.05, with subsequent increases in strength re-

moving less and less of the original sample.

We see that the uds-flavour-tagged small jets and 3-pronged tau -flavoured jets are both

heavily groomed away, though at different rates, losing close to 50% of the original sample

size. As is the case with 1-pronged tau–flavoured flavour-tagged small jets, uds-jets lose most

between the ungroomed sample and that of the grooming strength Z cut = 0.05. Our c-, b- and

gluon-jets lose relatively little in terms of sample size, only about 25% for gluons and b-jets.

Both c- and b-jets do not lose any jets at all until grooming strength reaches Z cut = 0.15. Our

default grooming strength of Z cut = 0.10 is the highest strength where all flavours of jets have

more than 50% of their samples sizes left.

6.6.3 jet mass

The second JSS observable in this study is the jet mass of the reco-jet, both before and after soft

drop grooming is applied. The jet mass distributions for ungroomed jets of different flavour

are shown in Figure 6.12(a). Here, much the same order of peaks as in NCLUS is displayed,

with 1-pronged tau - and 3-pronged tau -jetsf peaking at the lowest values of 6.54 GeV and

7.35 GeV, respectively. The only flavour to have moved in order is gluon-jets, now between tau-

and quark-flavoured jets and peaking at 7.65 GeV. The flavours with the highest peak in jet

mass are the quark-jets, with uds-, c- and b-jets peaking at 7.95 GeV, 8.55 GeV and 10.35 GeV

respectively. Also note that the distribution for these values of jet mass are more varied than in

NCLUS with tau-flavoured jets appearing more narrow than other flavours, and b-jets broader.

This can be related to the results for NCLUS by looking at the ratio between the peak values for
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(b) Z cut = 0.1

Figure 6.12: Jet mass for different truth-flavour tagged jets when ungroomed, (a), and soft drop
groomed with strength Z cut = 0.10, (b).
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Figure 6.13: The peaks of the jet mass distributions for each set of flavour-tagged small jets at
different strengths of soft drop grooming.
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Flavour Peak NCLUS value / Peak jet mass value

gluon 0.478

uds 0.568

c 0.570

3-pronged tau 0.613

1-pronged tau 0.645

b 0.647

Table 6.3: Ratio of peak value for NCLUS and jet mass in ungroomed jets of each flavour.

NCLUS and jet mass for each flavour, shown in Table 6.3 With gluon-jets there is a change in the

order of peaks tied with the smallest ratio between the peak values of NCLUS and jet mass. This

indicates that gluon-jets are generally composed of softer, lower-mass clusters. These results

also indicate that tau- and b-jets have higher mass clusters, and are therefore more likely to

have a hard-core of higher mass clusters.The order of this ratio from, lowest to highest, also

corresponds to the mass of the isolated particles in ascending order.

Next, the main JSS observable of interest, jet mass, was investigated. These results are shown

in Figure 6.12. Here, some quite interesting results are seen following soft drop grooming at

the chosen default strength of Z cut = 0.10. Dramatic changes in the mass distribution of the

tau-jets, particularly 1-pronged tau s is observed: the distributions spike quite dramatically

compared to all the other flavour-tagged small jets, peaking at a value very close to that of the

mass of the τ -lepton, 1.777GeV. There also follows a second, much smaller peak. Our quark-

flavour tagged jets show somewhat less serious changes, with uds only changing a little, b-

jets changing by about half, and therefore the most and c-jets affected somewhere in between,

with a shift of about a third. Following grooming the distributions of all three flavours are very

similar. Also very interesting, the gluon-flavour-tagged small jets almost don’t change at all at

this level of grooming.

Comparing these changes with that of the NCLUS, a number of things are observed. Firstly

the small change in gluon mass distribution is unsurprising as very little change in the NCLUS

was seen. The changes in the tau-jets indicate that the remaining mass, close to that of the

τ -lepton, is held in very few clusters, just 2 or 3, this may be indicative of a hard-core. How-

ever, significant jet mass lay outside of these clusters too. It is harder to come to any definitive

conclusions about the changes seen in the quark jets, but the relation seems to indicate that

each of the clusters that were removed potentially held a smaller portion of the mass of those

that remain, as the mass changes less than the NCLUS. The results for each of the grooming

strengths, comparing flavours, can be seen in Figure A.2.

To investigate this shift in more detail, the peak of the mass distributions at different strengths

of soft drop grooming were compared, shown in Figure 6.13. Here, another interesting result for

the tau-jets was seen, a dramatic drop in mass between the soft drop grooming Z cut = 0.05 and

Z cut = 0.10, much higher than the difference at any other level of grooming. We see the biggest
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drop in uds-jets and c-jets taking place at the next grooming strength, Z cut = 0.15, gluons at

Z cut = 0.20 and b-jets showing a steady decrease at each step.

6.7 Soft Drop Grooming with Tau-Jets
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(b) Z cut = 0.10

Figure 6.14: NCLUS for the ungroomed, (a), and soft drop groomed with strength Z cut = 0.10,
(b), tau flavour-tagged jets.
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Figure 6.15: Jet mass for the ungroomed, (a), and soft drop groomed, (b), tau flavour-tagged
jets.

As seen from Figures 6.9 and 6.12, the effects that soft drop grooming has on the tau-

jets is very interesting. To investigate these effects in greater depth, two areas were explored:
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Figure 6.16: The peaks of the jet mass distributions for each set of tau-jets at different strengths
of soft drop grooming.
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Figure 6.17: The fraction of each set of tau-jets remaining following different strengths of soft
drop grooming.

firstly, whether soft drop grooming allows discrimination between incorrectly identified tau-

jets (fakes) and correctly identified tau-jets; secondly, whether tau-jets, which have not been

identified using traditional τ-tagging methods, can be correctly identified. For this purpose the

properties of five sub-categories of tau-jet were investigated (see Section 6.4.2 and Table6.4).

We can start by looking at the effects of grooming on the mass of and NCLUS in each of

tau-jets types. In Figure 6.14 the NCLUS distribution for tau-jets, both before and after applying

soft drop grooming with strength Z cut = 0.10, is presented. As previously observed, following

grooming the NCLUS strongly peaks at the minimum value of two clusters. In Figure 6.15 the

effects of soft drop grooming on the mass of the jets are displayed. It can be observed that the

pronounced peak at low mass is present in all flavours of tau-jets , though to various degrees.
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Tau Jet Type Description
Real 1-pronged tau Matched to a traditional tau jet that has one ID track and is matched to a

truth-particle tau.
Real 3-pronged tau Matched to a traditional tau jet that has three ID track and is matched to a

truth-particle tau.
Fake 1-pronged tau Matched to a traditional tau jet that has one ID track and is nott matched to

a truth-particle tau.
Fake 3-pronged tau Matched to a traditional tau jet that has three ID track and is not matched to

a truth-particle tau.
Lost taus Not match to a traditional tau jet.

Table 6.4: The types of tau jet used in this analysis.

Looking also at the peak jet mass for tau-jets at each grooming strength some common

behaviour can be observed. In Figure 6.16 it is apparent that applying grooming increasingly

lowers the peak jet mass of tau-jets , but all tau-jets have a severe drop in peak jet mass at soft

drop grooming strength Z cut = 0.10, dropping just below the τ -lepton mass of 1.777 GeV.

The effects of soft drop grooming on the number of jets in the samples can also be in-

vestigated. In Figure 6.17 it can be seen that (for most tau-jets) applying soft drop grooming

steadily removes a portion of the sample. A noticeable difference between 1-pronged tau-jets

and 3-pronged tau -jets can also be seen, with 1-pronged tau depleting more rapidly than 3-

pronged tau . The single-pronged nature of 1-pronged tau likely leads to a higher portion of

jets groomed down to a single cluster, and thus no longer passing the minimum requirement of

two clusters. Most striking, however, is the difference between fake and real 1-pronged tau-jets.

See Section 6.7.2.

6.7.1 Recovering Lost Tau-Jets

Firstly, investigations into whether lost tau-jets can be potentialy identified from groomed ob-

servables is undertaken. Looking at Figure 6.14, the effects of soft drop grooming on the dis-

tribution of NCLUS within tau-jets can be seen. As previously observed, following grooming the

NCLUS strongly peaks at the minimum value of two clusters. This is true for all tau-jets includ-

ing lost tau-jets, although initially less pronounced. Looking at the distribution of NCLUS within

tau-jets for all groomings, in Figure 6.18, it is apparent that this is a trend that continues with

increased grooming strength.

Investigating the effects of soft drop grooming on the jet mass of lost tau-flavoured jets

again demonstrates that the trend common to all tau-jets is present: a peak present between

1 GeV and 2 GeV. This peak is much less prominent for lost tau-jets, but the start of it is there.

Looking at Figure B.1 it is shown that this peak becomes more apparent at higher strengths

of grooming. These lost taus-jets can also be compared to non-tau flavours in Figure B.9 and

Figure B.10.

Using soft drop grooming on these reveals a common behaviour with the other tau-jets,

with early peaks appearing, both in NCLUS and jet mass, and growing in prominence at higher
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Figure 6.18: Number of clusters for tau-flavour jets, groomed with strength Z cut = 0.05, (a),
Z cut = 0.10, (b), Z cut = 0.15, (c), Z cut = 0.20, (d), Z cut = 0.25, (e), Z cut = 0.30, (f)
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strengths of grooming. Explorations, therefore, were undertaken to test if it is possible to in-

troduce possible selection cuts, relying on these features, to separate lost tau-jets from other,

non-tau-jets.

Selection Cuts on lost tau-jets
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Figure 6.19: NCLUS in lost tau-jets and all non-tau-jets ungroomed, (a), and with soft drop
grooming strength Z cut = 0.05, (b), with a ratio to the number of lost tau-jets
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Figure 6.20: Jet mass in lost tau-jets and all non-tau-jets ungroomed, (a), and with soft drop
grooming strength Z cut = 0.05, (b), with a ratio to the number of lost tau-jets. The green line
indicates the selection cut.
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Figure 6.21: NCLUS, (a), and jet mass, (b), in ungroomed lost tau-jets and all non-tau-jets, with
a ratio to the number of lost tau-jets. The red line indicates the selection cut with an 80 % WP.

Using soft drop grooming has a small effect on improving the identification and selection

of lost tau-jets through the use of selection cuts. How soft drop grooming improves selection

cuts on NCLUS can be explored. At ungroomed level the best possibly purity that can attainain

from the sample is by only selecting jets with fewer than seven clusters. Of the remaining jets,

1.71 % are lost tau-jets. This retains 6.44 % of all lost tau-jets in the sample. This purity can only

be slightly improved upon through the use of soft drop grooming, but with a significant loss of

the sample size. At soft drop grooming strength Z cut = 0.05 the best purity possibly purity that

can be attained from the sample is by only selecting jets with fewer than three clusters. This

gives a purity of 1.73 %, but retains only 3.7 % of soft drop grooming lost tau-jets. Both of these

potential cuts are shown Figure 6.19.

Looking also at possible selection cuts on jet mass there is a similar trend. These are shown

in Figure 6.20. At ungroomed level, a maximum possible purity of 2.95 % is achievable, by only

selecting jets with a jet mass less than 3 GeV. This keeps 2.75 % lost tau-jets. It is possible

to improve upon this purity with soft drop grooming jets with a strength of Z cut = 0.05 and

selecting only those remaining jets with jet mass less than 1 GeV. The purity increases to 4.12 %,

but with the remaining sample size dropping to 1.03 %.

Choosing from only cuts that return 80 % of lost tau-jets at the given strength of soft drop

grooming, it is found that using grooming reduces the purity of the samples. First, this selection

cut is applied on NCLUS. The single cut of this type, retaining at least 80 % of the groomed

sample, with the best given purity has me only keep jets with fewer than nineteen clusters.

This cut retains 81.5 % of lost tau-jets, which make up 0.809 % of all remaining jets. This purity

cannot be improved upon through the use of soft drop grooming and selection cuts on NCLUS

whilst retaining at least 80 % of jets.
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Following the same process for jet mass the same result is observed, the highest purity at-

tainable through the use of selection cuts whilst retaining at least 80 % of jets is at ungroomed

level. Selecting only jets with jet mass less than 14 GeV, a purity of 0.842 % is obtained, with

81.6 % of lost tau-jets remaining from the original sample. The cuts for the chosen selection are

shown in Figure 6.21.

These results initially suggest that identifying and distinguishinglost tau-jets from all the

other flavours is not obviously made easier just through the use of soft drop grooming, although

the small number of lost tau-jets, in relation to non-tau-jets , has a strong part to play in this.

The observable features common to tau-jets following soft drop grooming may still be useful a

tool for recovering these lost tau-jets.

6.7.2 Identifying Fake Tau-Jets
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Figure 6.22: NCLUS for the ungroomed, (a), and soft drop groomed with strength Z cut = 0.10,
(b), tau flavour-tagged jets.

We can explore the differences between “real” and “fake” tau-jets within each bin in more

detail by including a ratio plot displaying the ratio between these “fake” and “real” tau-jets ,

showing how they diverge. We do this for both 1-pronged tau and 3-pronged tau . We display

these for ungroomed jets in Figure 6.22 and soft drop grooming with defaul strength, Z cut = 0.10

in Figure 6.23. For the NCLUS within the jets, this is shown, for all grooming strengths in Fig-

ure B.13. For jet mass this is shown, for all grooming strengths, in Figure B.14.

As previously observed, following grooming the NCLUS strongly peaks at the minimum value

of two clusters. This is true for all tau-jets , but is most prominent in the real tau-jets . The

distributions for jet mass show peaks at the τ -lepton mass, much more prominently for real

than for fake tau-jets . We see, in both cases, soft drop grooming acting more strongly on real

tau-jets than fakes. Using soft drop grooming on the tau-jets reveals a divergence in behaviour
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Figure 6.23: Jet mass for the ungroomed, (a), and soft drop groomed with strength Z cut = 0.10,
(b), tau flavour-tagged jets.

between real and fake tau-jets . The distinctive tau-jets behaviour of early peaks appearing, for

both NCLUS and jet mass, and growing in prominence at higher strengths of grooming, is less

pronounced for fake tau-jets . We can therefore, explore possible selection cuts, utilising these

features, to separate the real tau-jets from fakes. We can also see from Figure 6.17 that there are

obvious differences in the remaining sample sizes of real and fake 1-pronged tau-jets following

soft drop grooming strength of Z cut = 0.05, with the fake 1-pronged tau-jets dropping close to

four times as much as those that are real.

Looking at Figure 6.17 the differences in sample-loss between fake and real taus can be

observed. Close to 75 % of fake 1-pronged tau-jets are lost following soft drop grooming of

strength Z cut = 0.05, with the effects of grooming waning at higher strengths, compared to less

than 20 % of real 1-pronged tau-jets. This indicates these fake 1-pronged tau-jets have a single-

cluster hard-core with much softer surrounding clusters. The reverse behaviour for 3-pronged

tau -jets, whereby fake 3-pronged tau -jets are less likely to be groomed away, indicates a less

pronounced hard-core than in those that are real.

Selection Cuts on fake tau-jets

Using soft drop grooming on the tau-jets seems promising for improving the identification and

separation of real tau-jets from fake through the use of selection cuts. We first look at the effect

of soft drop grooming on using selection cuts on the NCLUS distribution to separate real and

fake tau-jets . At ungroomed level the best cut available removes all jets with fewer than 22

clusters. Of the tau-jets found remaining, 86.3 % are real. However, this cut leaves only 3.07 %

of -pronged tau-jets and 1.88 % of 3-pronged tau . This is reasonably improved upon through

the use of soft drop grooming. A jump in possible sample purity at a strength of Z cut = 0.05, to
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Figure 6.24: Number of clusters for tau-flavour jets, groomed with strength Z cut = 0.05, (a),
Z cut = 0.10, (b), Z cut = 0.15, (c), Z cut = 0.20, (d), Z cut = 0.25, (e), Z cut = 0.30, (f), all normalised
to the number of real taus for each prong value.
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Figure 6.25: Jet Mass for tau-flavour jets, groomed with strength Z cut = 0.05, (a), Z cut = 0.10, (b),
Z cut = 0.15, (c), Z cut = 0.20, (d), Z cut = 0.25, (e), Z cut = 0.30, (f), all normalised to the number of
real taus for each prong value.
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Figure 6.26: NCLUS in lost tau-jets and all non-tau-jets ungroomed, (a), and with soft drop
grooming strength Z cut = 0.2, (b), with a ratio to the number of real tau-jet. The green line
indicates the selection cut.
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Figure 6.27: Jet mass in lost tau-jets and all non-tau-jets ungroomed, (a), and with soft drop
grooming strength Z cut = 0.15, (b), with a ratio to the number of real tau-jet. The green line
indicates the selection cut.
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Figure 6.28: NCLUS in lost tau-jets and all non-tau-jets ungroomed, (a), and with soft drop
grooming strength Z cut = 0.25, (b), with a ratio to the number of real tau-jet. The red line
indicates the selection cut with an 80 % WP.
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Figure 6.29: Jet mass in lost tau-jets and all non-tau-jets ungroomed, (a), and with soft drop
grooming strength Z cut = 0.3, (b), with a ratio to the number of real tau-jet. The red line indic-
ates the selection cut with an 80 % WP.
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95.8 %, coincides with the significant drop in fake 1-pronged tau-jets. By applying a soft drop

grooming strength of Z cut = 0.20 and selecting only those tau-jets with fewer than three clusters

a purity of 96.6 % is achieved. This cut also retains 44.4 % of 1-pronged tau-jets and 30.0 % of

3-pronged tau -jets, a significant increase. These cuts can be seen in Figure 6.26.

Moving to jet mass a similar development can be seen: at ungroomed level the highest

purity that can be obtained is 86.7 %, by removing all tau-jets with a jet mass lower than 39 GeV.

Following this selection cut, only 0.00895 % of 1-pronged tau-jets and 0.00459 % 3-pronged

tau -jets remain. We again see a significant jump in the highest possible purity following the

application of soft drop grooming with a strength of Z cut = 0.05, to 96.1 %. At Z cut = 0.15 it

is possible to achieve a purity of 96.7 % by selecting only those tau-jets with a jet mass of less

than 3 GeV. This keeps 61.5 % of 1-pronged tau-jets and 37.3 % of 1-pronged tau3-jets. Once

more, a dramatic gain in the number of jets in the high-purity region. These cuts can be seen

in Figure 6.27.

Moving onto selection cuts that satisfy the 80 % WP, improvements in the purity attainable

from the tau-jets can be seen. For the ungroomed tau-jets, wash is found is that a selection that

removes any jets with fewer than 8 clusters can achieve a purity of 83.4 %, retaining 80.9 % of

1-pronged tau-jets and 87.1 % 3-pronged tau -jets. Following soft drop grooming of strength

Z cut = 0.05 this increases to 92.4 %. The highest value acquired is 96.2 %, by selecting tau-

jetsgroomed with a strength of Z cut = 0.25 and with less than 6 clusters. After this cut has been

applied 83.5 % of 1-pronged tau and 87.1 % 3-pronged tau -jets remain. These cuts can be seen

in Figure 6.28.

For jet mass, the behaviour is the same. The purity of ungroomed jets can be maximised,

to a value of 82.4 %, by removing all tau-jetswith jet mass less than 5 GeV. This selection keeps

81.4 % of 1-pronged tau-jets and 85.8 % of 3-pronged tau -jets. At soft drop grooming strength

Z cut = 0.05 this increases to 92.4 %. We reach a maximum at soft drop grooming strength

Z cut = 0.30, by cutting to keep only those tau-jets with a jet mass of less than 3 GeV. From

this selection a purity of 96.4 % is reached, keeping 85.4 % of 1-pronged tau-jets and 75.9 % of

3-pronged tau -jets. These cuts can be seen in Figure 6.29.

In each of these cases soft drop grooming provides a definitive improvement in the ability

to separate real and fake taus, with higher purities available, and less reduction in sample size

occurring from applying selection cuts. Ultimately, the effect soft drop grooming has on re-

moving a large portion of fake 1-pronged tau-jets seems to play a significant part in improving

this separation.

6.8 Light jets

The effects that soft drop grooming has on gluon initiated jets, leads to investigations in more

detail the effects on grooming on both flavours of light jets: uds and gluons. Could soft drop

grooming be used to help discriminate between uds- and gluon-flavour-tagged small jets? Here

comparisons between these two flavours is presented. We display the number of jets as a rel-
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Figure 6.30: NCLUS for ungroomed, (a), and soft drop groomed with strength Z cut = 0.10, (b),
light flavour-tagged jets, normalised to the number of uds-jets with a ratio to uds-jets.
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Figure 6.31: Jet mass for ungroomed, (a), and soft drop groomed with strength Z cut = 0.10, (b),
light flavour-tagged jets, normalised to the number of uds-jets with a ratio to uds-jets.
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ative portion of uds-jets. We also display a ratio plot beneath, to compare gluon to uds within

each bin in closer detail.

We can start by looking at the effects of grooming on the NCLUS and jet mass for both uds-

and gluon-jets. In Figure 6.30 the NCLUS distribution in these jets before and after applying soft

drop grooming with strength Z cut = 0.10 is displayed.

As noted previously in Figure 6.9 the change in the distribution of uds-jets leads to a high

peak at the minimum value for NCLUS, two. The gluon-jet distribution, however, are changed

very little, but has broadened and shifted to smaller values.

Similarly, looking at the effect of soft drop grooming on jet mass, shown in Figure 6.31, only

a very small shift in the distribution of gluon-jets, to smaller values, is seen. The change in uds-

jets this grooming strength is not dramatically different, however more prominent differences

start to appear at higher strengths of soft drop grooming.

NCLUS at all grooming strengths, is shown in Figure C.3. For jet mass this is shown, for all

grooming strengths, in Figure C.4.

As discussed in Section 6.6.3 differences in the sample-loss of light-jets following soft drop

grooming is observed, with close to twice as many uds-jets than gluon-jets removed. Sec-

tion 6.6.3 also shows the different changes in peak-jet mass in light-jets after application of soft

drop grooming, with the peak-jet mass of uds-jets lower than quark-jets for many groomings.

The differences in the ways uds- and gluon-jets behave under soft drop grooming allow

explorations of whether groomed jets can be utilised to better separate these flavours through

the use of selection cuts.

Selection Cuts on light-jets

Investigations as to whether application of soft drop grooming can bring improvement of the

process of making selection cuts to maximise the purity of the sample, either for uds-jets for

gluon-jets was undertaken. First, investigations were undertaken into whether any cuts on the

NCLUS within soft drop grooming jets can improve signal purity when looking for either uds-

or gluon-jets amongst the light-flavoured jets. For uds-jets this does not seem to be the case,

the highest obtainable purity is amongst ungroomed jets, where 89.4 % of all light jets is found.

This is done by selecting only jets with fewer than three clusters, retaining 0.270 % of all uds-jets

in the sample.

Similar results occur when cutting on jet mass to select uds-jets. The maximum purity that

achieved is 89.1 % by selecting ungroomed jets with jet mass less than 1 GeV. This purity can’t

be improved upon through grooming, however this only keeps 0.0605 % of original uds-jets.

The opposite is true, however, for gluon-jets, where grooming steadily increases the max-

imum possible purity available. We also find that the remaining sample size, following the

selection cut, increases. Firstly, the effects of soft drop grooming on choosing selection cuts for

NCLUS were investigated. At ungroomed level the best result occurs when removing all jets with



139 6.8 Light jets

Number of Clusters

 
 th

is
 fl

av
F

ra
ct

io
n 

of
 J

et
s

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

uds
gluon
uds
gluon

ATLAS Simulation
 R=0.4 jets

t
ungroomed anti-k

tt
8YTHIA + POWHEGP

Number of Clusters

0 5 10 15 20 25 30 35 40

R
at

io
 w

ith
 u

ds
 je

ts

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
uds
gluon
uds
gluon

(a) ungroomed

Number of Clusters

 
 th

is
 fl

av
F

ra
ct

io
n 

of
 J

et
s

0

0.05

0.1

0.15

0.2

0.25

0.3

uds
gluon
uds
gluon

ATLAS Simulation
 R=0.4 jetst=0.30 anti-kcutz

tt
8YTHIA + POWHEGP

Number of Clusters

0 5 10 15 20 25 30 35 40

R
at

io
 w

ith
 u

ds
 je

ts

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
uds
gluon
uds
gluon

(b) Z cut = 0.3

Figure 6.32: NCLUS for ungroomed, (a), and soft drop groomed with strength Z cut = 0.3, (b),
light flavour-tagged jets, normalised to the number of uds-jets with a ratio to uds-jets. The
green line indicates the selection cut to maximise gluon-jets.
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Figure 6.33: Jet mass for ungroomed, (a), and soft drop groomed with strength Z cut = 0.3, (b),
light flavour-tagged jets, normalised to the number of uds-jets with a ratio to uds-jets. The
green line indicates the selection cut to maximise gluon-jets.
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Figure 6.34: NCLUS for ungroomed, (a), and soft drop groomed with strength Z cut = 0.25, (b),
light flavour-tagged jets, normalised to the number of uds-jets with a ratio to uds-jets. The red
line indicates the selection cut with an 80 % WP to maximise gluon-jets.
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Figure 6.35: Jet mass for ungroomed, (a), and soft drop groomed with strength Z cut = 0.25, (b),
light flavour-tagged jets, normalised to the number of uds-jets with a ratio to uds-jets. The red
line indicates the selection cut with an 80 % WP to maximise gluon-jets.
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fewer than 38 clusters. This gives a sample purity of 66.4 %, but this only retains 0.0559 % of

all original gluon-jets; however, at the maximum soft drop grooming strength of Z cut = 0.30 a

purity of 69.7 % is reached by removing all jets with fewer than thirteen clusters. This selection

keeps 25.8 % of gluon-jets in the sample. These cuts can be seen in Figure 6.32

Moving onto selection cuts that satisfy the 80 % WP similar results arefound for the purity

attainable from the light-jets. Firstly, uds-jets the purity of the selected samples cannot be

improved through the use of soft drop grooming. For NCLUSthe best attainable purity, whilst

retaining at least 80 % of the sample size, is accomplished by selecting only ungroomed jets

with fewer than 20 clusters. This gives a purity of 59.0 % and preserves 81.2 % of all uds-jets.

For selection cuts applied to jet mass of uds-jets, the best attainable purity comes from the

ungroomed jets. We accomplish 55.3 % purity by selecting only jets with jet mass less than

21 GeV, keeping 91.0 % of the uds-jets.

For gluon-jets the story is once again that of increasing purity by using soft drop grooming

before applying selection cuts. By only selecting ungroomed gluon-jets with at least twelve

clusters a purity of 49.8 % can be reached, whilst still maintaining 85.2 % of the sample jets.

Following application of soft drop grooming with strength Z cut = 0.25, and selecting only jets

with at least four clusters, 61.4 % sample purity can be obtained, whilst still keeping 80.8 % of

the gluon-jets. This is shown in Figure 6.33.

Selecting jet mass cuts on gluon-jets to maximise purity, whilst still retaining 80 %, also

improves following soft drop grooming. Applying a cut on ungroomed jets that removes any

with jet massless than 5 GeV gives a purity of 45.6 %. This keeps 94.1 % of gluon-jets. This is

improved upon by applying soft drop grooming the jets before implementing the cut. Using

jets that have first had soft drop grooming applied, with a strength of Z cut = 0.25, a purity of

52.3 % can be achieved by removing all jets with a jet mass less than 2 GeV. This allows me to

keep 80.7 % of the gluon-jets. This is shown in Figure 6.34

Over all, applying soft drop grooming is successful for improving possible sample purity

for gluons, whether restricting this to reaching an 80 % WP of gluon-jets or not. The different

behaviour displayed by uds- and gluon-jets following the application of soft drop grooming –

particularly the more dramatic changes in uds-jets from applying soft drop grooming: the shift

in distribution shape of NCLUS, the bigger drop in peak jet mass and the larger reduction in

sample jets - means that grooming the jets improves the ability for separation of light-jets from

one another. This is shown in Figure 6.35

6.9 Soft Drop Grooming and b-Tagging

We can deepen the understanding of the effects of soft drop grooming on b-jets by investig-

ating any potential differences between those b-jets identified by traditional tagging methods

(See Section 6.4.3), and those which remain “untagged”. Understanding common or different

behaviours of these b-jets, and how untagged b-jets compare to non-b-jets, may allow me to

improve identification methods.
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Figure 6.36: NCLUS for ungroomed, (a), and soft drop groomed with strength Z cut = 0.10, (b),
b-tagged flavour-tagged jets with a ratio to b-tagged jets.
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Figure 6.37: Jet mass of Ungroomed, (a), and soft drop groomed with strength Z cut = 0.10, (b),
b-tagged flavour-tagged jets with a ratio to b-tagged jets.
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strengths of soft drop grooming.

cutz
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

F
ra

ct
io

n 
of

 J
et

s 
R

em
ai

ni
ng

0

0.5

1

1.5

2

2.5

Tagged b

Untagged b

Tagged b

Untagged b

ATLAS Simulation
 R=0.4 jetstanti-k

tt

8YTHIA + POWHEGP

Figure 6.39: The fraction of tagged- and untagged-b-jets remaining following different
strengths of soft drop grooming.

Firstly I can look make comparisons between tagged b-jets and untagged b-jets. Figure 6.36

shows NCLUS for tagged b-jets and untagged b-jets, both ungroomed and with soft drop groom-

ing strength Z cut = 0. applied. We display a ratio plot beneath, to compare tagged and untagged

b-jets within each bin in closer detail. When comparing the ungroomed jets I see a strong over-

lap with only slight differences. Both tagged b-jets and untagged b-jets peak at sixteen clusters,

but the distribution for untagged b-jets is very slightly broader, and slightly shifted to higher

values of NCLUS. Afer using soft drop grooming I start to see tagged b-jets and untagged b-jets

behaving differently. Both are starting to develop a second, earlier peak, at four clusters, close

to the minimum value of two, however this is certainly more prominent for the tagged b-jets,

where this new peak is the highest, unlike for untagged b-jets. NCLUS for all grooming strengths

are shown in Figure D.3.
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Next, I can compare the results for jet mass, in Figure 6.37. When the jets are ungroomed

I see a similar distribution between tagged b-jets and untagged b-jets, peaking at 10 GeV and

9 GeV respectively. The shape of the distribution is a little broader for untagged b-jets, and

shifted to slightly lower masses. Following grooming, the two distributions are even closer than

before. Both now peak at 6 GeV, but untagged b-jets still have a slightly broader distribution

and are slightly shifted to heavier jet mass. jet mass for all grooming strengths are shown in

Figure D.4. We also see this present in Figure 6.38, with the peak mass of tagged b-jets starting

off about 20 % higher in ungroomed jets, and quickly dropping down to matchuntagged b-jets

following grooming.

The combination of these features before soft drop grooming suggests initially that tagged

b-jets, with slightly fewer clusters and slightly higher values of jet mass, may have a more cent-

ralised structure, with a harder core than untagged b-jets. The effects of grooming are more

dramatic on the value of NCLUS than on jet mass for both tagged b-jets and untagged b-jets,

and suggests, as expected, the clusters I are grooming away are softer. This effects of grooming,

and in this behaviour in particular, is more apparent in tagged b-jets, however. The more ap-

parent effect of soft drop grooming on tagged b-jets indicates more initial definition between

hard and soft clusters, as the higher number of clusters, and smaller value of jet mass lost, show

these clusters are softer. Following the first soft drop grooming strength, Z cut = 0.05, the mass of

both tagged b-jets and untagged b-jets remains very close, indicating these many, soft clusters

in tagged b-jetss were groomed away easily, and the pattern of tagged b-jets with fewer clusters

with more jet mass remains throughout.

When comparing the portion of the sample lost to soft drop grooming I see very little dif-

ference between tagged b-jets and untagged b-jets, with very slight fewer untagged b-jets lost.

This is shown in Figurer 6.39. This could relate to tagged b-jets having fewer clusters than

untagged b-jets, and thus more likely to be groomed below the minimum NCLUS value of two

clusters.

Selection Cuts on untagged bjets

Can any of the common, distinct features of b-jets be used to improve identification of un-

tagged b-jets against a background of non-b-jets? Comparing the observables of untagged b-

jets to all non-b-jet flavours may answer this question. Firstly, I present the results for NCLUS

for these sets of jets in Figure 6.40.

At the ungroomed level the distribution seen is much like that for all b-jets, of all the fla-

vours shown it has the highest value for NCLUS and a slightly broader distribution. At groomed

level there is only a slight difference, with untagged b-jets affected by soft drop grooming slightly

less than the group containing all b-jets, but still following a similar trend: other than gluon-

jets, it still has the highest and broadest distribution for NCLUS.

Following this I present jet mass for the untagged b-jets. These are shown in Figure 6.41.

Again, at ungroomed level the result is much the same as the group containing all b-jets: the
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Figure 6.40: NCLUS for ungroomed, (a), and soft drop groomed with strength Z cut = 0.10, (b),
untagged-b-jets and non-b-flavour-untagged jets with a ratio to untagged-b jets.
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Figure 6.41: Jet mass for ungroomed, (a), and soft drop groomed with strength Z cut = 0.10, (b),
untagged-b-jets and non-b-flavour-untagged jets with a ratio to untagged-b jets.



146 6.9 Soft Drop Grooming and b-Tagging

Number of Clusters

 
 th

is
 fl

av
F

ra
ct

io
n 

of
 J

et
s

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Untagged b
uds
gluon
c
tau (1p)
tau (3p)

Untagged b
uds
gluon
c
tau (1p)
tau (3p)

Untagged b
uds
gluon
c
tau (1p)
tau (3p)

Untagged b
uds
gluon
c
tau (1p)
tau (3p)

Untagged b
uds
gluon
c
tau (1p)
tau (3p)

Untagged b
uds
gluon
c
tau (1p)
tau (3p)

ATLAS Simulation
 R=0.4 jets

t
ungroomed anti-k

tt
8YTHIA + POWHEGP

Number of Clusters

0 5 10 15 20 25 30 35 40

R
at

io
 w

ith
 U

nt
ag

ge
d 

b 
je

ts

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
Untagged b
uds
gluon
c
tau (1p)
tau (3p)

Untagged b
uds
gluon
c
tau (1p)
tau (3p)

Untagged b
uds
gluon
c
tau (1p)
tau (3p)

Untagged b
uds
gluon
c
tau (1p)
tau (3p)

Untagged b
uds
gluon
c
tau (1p)
tau (3p)

Untagged b
uds
gluon
c
tau (1p)
tau (3p)

(a) ungroomed

Number of Clusters

 
 th

is
 fl

av
F

ra
ct

io
n 

of
 J

et
s

0

0.1

0.2

0.3

0.4

0.5

Untagged b
uds
gluon
c
tau (1p)
tau (3p)

Untagged b
uds
gluon
c
tau (1p)
tau (3p)

Untagged b
uds
gluon
c
tau (1p)
tau (3p)

Untagged b
uds
gluon
c
tau (1p)
tau (3p)

Untagged b
uds
gluon
c
tau (1p)
tau (3p)

Untagged b
uds
gluon
c
tau (1p)
tau (3p)

ATLAS Simulation
 R=0.4 jetst=0.30 anti-kcutz

tt
8YTHIA + POWHEGP

Number of Clusters

0 5 10 15 20 25 30 35 40

R
at

io
 w

ith
 U

nt
ag

ge
d 

b 
je

ts

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
Untagged b
uds
gluon
c
tau (1p)
tau (3p)

Untagged b
uds
gluon
c
tau (1p)
tau (3p)

Untagged b
uds
gluon
c
tau (1p)
tau (3p)

Untagged b
uds
gluon
c
tau (1p)
tau (3p)

Untagged b
uds
gluon
c
tau (1p)
tau (3p)

Untagged b
uds
gluon
c
tau (1p)
tau (3p)

(b) Z cut = 0.3

Figure 6.42: NCLUS for ungroomed, (a), and soft drop groomed with strength Z cut = 0.3, (b),
untagged-b-jets and non-b-flavour-untagged jets with a ratio to untagged-b jets. The green
line indicates the selection cut.
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Figure 6.43: Jet mass for ungroomed, (a), and soft drop groomed with strength Z cut = 0.10, (b),
untagged-b-jets and non-b-flavour-untagged jets with a ratio to untagged-b jets. The green
line indicates the selection cut.
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Figure 6.44: NCLUS for ungroomed, (a), and soft drop groomed with strength Z cut = 0.3, (b),
untagged-b-jets and non-b-flavour-untagged jets with a ratio to untagged-b jets. The red line
indicates the selection cut with an 80 % WP.
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Figure 6.45: Jet mass for ungroomed, (a), and soft drop groomed with strength Z cut = 0.25, (b),
untagged-b-jets and non-b-flavour-untagged jets with a ratio to untagged-b jets. The red line
indicates the selection cut with an 80 % WP.
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distribution for jet mass is the highest and broadest of all flavours. The effects on the jet mass

results following the application of soft drop grooming is even more similar to all b-jets than it

was for NCLUS: other than gluon-jets the distribution remains the highest and broadest. What

is seen is that these untagged b-jets, like all b-jets, start off with a high value of NCLUS and jet

mass, and are moderately effected by soft drop grooming – more so than gluon-jets but less so

than tau-jets.

Following this result, I investigate the ability to produce a single-variable cut on these samples

to improve signal purity. Starting with possible cuts on the value of NCLUS, I find that it is pos-

sible to improve the maximum purity of the sample following application of soft drop groom-

ing. The maximum possible purity attainable at ungroomed level is 32.4% by only selecting

those jets with at least 39 clusters. This retains 0.00801% of ungroomed untagged b-jets. This

is improved by applying a soft drop grooming of Z cut = 0.30 an selecting only jets with at least

39 clusters, giving 36.1% purity. This retains 0.00706% of groomed untagged b-jets, 0.00506%

of the original sample. These cuts are displayed in Figure 6.42.

A similar result is true when investigating jet mass. The maximum possible purity attain-

able at ungroomed level is 33.5%, by selecting only those jets with a jet mass of at least 39 GeV.

This retains 0.0803% of untagged b-jets. This can be improved by applying soft drop grooming

with a strength of Z cut = 0.10 and selecting only jets with a jet mass of at least 39 GeV, giving

a purity of 37.7%. This retains 0.0757% of groomed untagged b-jets, 0.0748% of the original

sample These cuts are displayed in Figure 6.43.

Next, I explore whether imposing a single variable cut on groomed jets can improve purity

whilst retaining an efficiency of 80%. I start with results for NCLUS, where an improvement is

indeed possible. At ungroomed level it is possible to obtain a purity of 21.4% whilst retaining

82.5% of untagged b-jets. This is done by selecting only those jets with at least 13 clusters. After

applying soft drop grooming of strength Z cut = 0.30, however, a purity of 23.0% can be achieved,

whilst still keeping 82.2% of groomed untagged b-jets. This is done by selecting jets with at

least three clusters, which retains 58.9The same is true once again for jet mass. The maximum

possible purity achievable for ungroomed untagged b-jets is 21.2%, by keeping only jets with

a jet mass of at least 8 GeV, maintaining 81.5% of untagged b-jets. Following an application of

soft drop grooming with strength Z cut = 0.25, a purity of 23.3% is reachable, by retaining only

jets with a jet mass of at least 2 GeV. This keeps 83.0% of groomed untagged b-jets, 68.3% of the

original sample. These cuts are displayed in Figure 6.45.

Overall it is seen that application of soft drop grooming can marginally improve the purity

of untagged b-jets within the sample, even with the 80% efficient WP imposed.

6.10 Soft Drop Grooming with t t̄ H and t t̄

So far in this chapter, all of the results have been JSS observables of flavour-tagged small jets

from t t̄ events. Do the changes I see here in JSS observables following the application of soft

drop grooming reflect what I also see in flavour-tagged small jets from t t̄ H events? If so, does
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Figure 6.46: NCLUS for the ungroomed, (a), and soft drop groomed with strength Z cut = 0.10,
(b), flavour-tagged jets from t t̄ H events.
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Figure 6.47: Jet mass for the ungroomed, (a), and soft drop groomed with strength Z cut = 0.10,
(b), flavour-tagged jets from t t̄ H events.
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Figure 6.48: NCLUS for ungroomed t t̄ and t t̄ H jets of different flavours.
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Figure 6.49: NCLUS for t t̄ and t t̄ H jets of different flavours, soft drop grooming with Z cut = 0.10.
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that lead to potential improvements in flavour-tagging jets in t t̄ H events? If not, does that lead

me to a potential method for improving separation between t t̄ and t t̄ H events?

We begin by investigating the NCLUS within jets in t t̄ H events, with distributions shown

in Figure 6.46 and Flavour-by-Flavour comparisons in Figure 6.48. We generally see similar

distributions for jets within t t̄ H to those from t t̄ events. At ungroomed level, shown in Fig-

ure 6.48 there is very little distinction between jets from either of these events, however some

differences do appear following the application of soft drop grooming, with the default strength

of Z cut = 0.10, shown in Figure 6.49. Here some differences in shape between t t̄ and t t̄ H are

present, most noticeably for b-jets, but also in c-jets and uds-jets. In these jet flavours I see that

jets from t t̄ samples appear to be affected by the process of soft drop grooming, with the de-

velopment of an early peak at a low value of NCLUS that is more prominent for jets in t t̄ events.

This indicates that at this strength more clusters are groomed away within jets in t t̄ events than

jets of the same flavour in t t̄ H .

Moving onto jet mass I notice again that generally the distributions are very close, with

distributions shown in Figure 6.47 and Flavour-by-Flavour comparisons in Figure E.8. For most

flavours of ungroomed jets there is a slight difference in the distributions of jets from t t̄ and t t̄ H

samples, where I observe a higher peak for t t̄ H samples, and for t t̄ a there is a slightly broader

distribution, skewed to slight higher values for jet mass. This is particularly prominent for b-

jets, least for tau-jets, and seemingly non-existent for gluon-jets. Following soft drop grooming

of default strength Z cut = 0.10 I see these differences are heavily reduced and the distributions

are now much closer.

Selection Cuts for t t̄ H and t t̄ samples

Can I use soft drop grooming to improve the capability of selection cuts to increase the purity of

the sample? Here I compare how these selection cuts can increase separation between b-jets,

and b-tagged b-jets, from t t̄ and t t̄ H events. Can imposing selections cuts on groomed jets do

a better job at separating jets from t t̄ and t t̄ H than selection cuts imposed on ungroomed jets?

The number of jets are normalised to the number of t t̄ and t t̄ H events.

Firstly I look at b-jets from both sets of events. The highest possible purity of t t̄ I can acquire

from selection cuts on ungroomed jets is 59.5 % by removing jets with NCLUS fewer than 39,

however from b-jets that have been had a soft drop grooming strength of Z cut = 0.05 I can

achieve t t̄ purity of 60.1 % by only keeping jets with fewer than 6 clusters. This is shown in

Figure 6.50.

For ungroomed jets I can attain 44.3 % purity for t t̄ H b-jets by only keeping jets with fewer

than 7 clusters. Using jets with a soft drop grooming of strength Z cut = 0.30 I can get purity

of 45.4 % by removing all jets with fewer than 18 clusters. We see that grooming allows me to

improve purity for both sample sets in this way. This is shown in Figure 6.51.

If I want to impose selection cuts that only retain 80 % of t t̄ H b-jets, I still find I are able to

increase t t̄ b-jet purity by using jets with soft drop grooming applied. Using ungroomed jets I
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Figure 6.50: NCLUS for the ungroomed, (a), and soft drop groomed with strength Z cut = 0.05,
(b), flavour-tagged jets from t t̄ and t t̄ H events. The green line indicates the selection cut to
maximise t t̄ events.
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Figure 6.51: NCLUS for the ungroomed, (a), and soft drop groomed with strength Z cut = 0.3,
(b), flavour-tagged jets from t t̄ and t t̄ H events. The green line indicates the selection cut to
maximise t t̄ H events.
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Figure 6.52: NCLUS for the ungroomed, (a), and soft drop groomed with Z cut = 0.2, (b), flavour-
tagged jets from t t̄ and t t̄ H events. The red line indicates the selection cut with an 80 % WP to
maximise t t̄ events.
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Figure 6.53: NCLUS for the ungroomed, (a), and soft drop groomed with strength Z cut = 0.10,
(b), flavour-tagged jets from t t̄ and t t̄ H events. The red line indicates the selection cut with an
80 % WP to maximise t t̄ H events.
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Figure 6.54: Number of clusters for the ungroomed, (a), and soft drop groomed with strength
Z cut = 0.05, (b), flavour-tagged and b-tagged jets from t t̄ and t t̄ H events. The green line indic-
ates the selection cut to maximise t t̄ events.
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Figure 6.55: Number of clusters for the ungroomed, (a), and soft drop groomed with strength
Z cut = 0.3, (b), flavour-tagged and b-tagged jets from t t̄ and t t̄ H events. The green line indic-
ates the selection cut to maximise t t̄ H events.
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Figure 6.56: Number of clusters for the ungroomed, (a), and soft drop groomed with strength
Z cut = 0.2, (b), flavour-tagged and b-tagged jets from t t̄ and t t̄ H events. The red line indicates
the selection cut with an 80 % WP to maximise t t̄ events.
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Figure 6.57: Number of clusters for the ungroomed, (a), and soft drop groomed with Z cut = 0.05,
(b), flavour-tagged and b-tagged jets from t t̄ and t t̄ H events. The red line indicates the selec-
tion cutto maximise t t̄ H events.
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can obtain a t t̄ purity of 56.9 % by removing jets with fewer than 13 clusters. This keeps 81.6 %

of groomed t t̄ H b-jets, and 82.1 % of t t̄ b-jets. Using jets with a soft drop grooming strength of

Z cut = 0.20 I can achieve a t t̄ b-jet purity of 57.3 %. This is done by only keeping jets with fewer

than 16 clusters. This retains 80.4 % of groomed t t̄ H b-jets and 82.0 % of groomed t t̄ [] b-jets.

This is shown in Figure 6.52.

If I want to keep 80 % of all soft drop grooming t t̄ H b-jets than I can also improve purity.

for ungroomed jets I can reach t t̄ H b-jet purity of 43.4 % by only keeping jets with fewer than

23 clusters. Keeps 84.2 % of t t̄ H , and 83.6 % of t t̄ . With jets groomed with strength Z cut = 0.10 I

can accomplish a purity of 43.9 % by removing jets with fewer than 6 clusters. This keeps 81.6 %

of groomed t t̄ H b-jets and 79.3 % of groomed t t̄ b-jets. Here I find that grooming allows me

to improve purity for both sample sets, whilst still retaining an efficiency of 80 % for the t t̄ H

b-jets. This is shown in Figure 6.53.par

We can repeat this process using only b-jets that have been tagged through traditional iden-

tification methods, tagged b-jets. When comparing tagged b-jets from t t̄ and t t̄ H events I also

see that applying selection cuts to jets that have had soft drop grooming applied can improve

the purity of the sample more than applying selection cuts to ungroomed jets. The highest pur-

ity for t t̄ tagged b-jets I can reach is 58.6 %, by only keeping jets with at least 39 clusters. We

can improve on this by applying soft drop grooming strength of Z cut = 0.05 and selecting jets

with fewer than six clusters. – giving me a purity of t t̄ tagged b-jets of 60.7 %. This is shown in

Figure 6.54.

The maximum purity for t t̄ H tagged b-jets I can attain is 44.3 %, by selecting only jets with

fewer than 7 clusters. After applying soft drop grooming of strength Z cut = 0.30, and selecting

jets with at least 36 clusters, I can acquire a purity for t t̄ H tagged b-jets of 47.5 %. This is shown

in Figure 6.55.

If I once more set the requirement of keeping 80 % of the groomed t t̄ H tagged b-jets fol-

lowing the selection cuts, I still find that applying soft drop grooming improves the effect of the

selection cut in maximising purity. for ungroomed jets the maximum purity I can achieve for

t t̄ tagged b-jets, whilst retaining 80 % of t t̄ H tagged b-jets, is 56.9 %. This is done by removing

all jets with fewer than 13 clusters and retains 81.6 % of all t t̄ H tagged b-jets and 81.8 % of t t̄

tagged b-jets. Following the application of soft drop grooming strength Z cut = 0.20 I are able to

reach a t t̄ tagged b-jets purity of 57.4 %. This is achieved through keeping only jets with fewer

than 15 clusters. This selection cut keeps 80.5 % of t t̄ H tagged b-jets and 82.7 % of t t̄ tagged

b-jets. This is shown in Figure 6.56.

We also see that application for soft drop grooming can improve sample purity for t t̄ H

tagged b-jets. The maximum attainable purity of t t̄ H tagged b-jets using ungroomed jets is

43.3 %. This is by applying a selection cut that keeps only jets with fewer than 22 clusters, re-

taining 80.8 % of all t t̄ H tagged b-jets and 80.5 % f t t̄ tagged b-jets. Following soft drop groom-

ing of strength Z cut = 0.05 I can reach a purith for t t̄ H tagged b-jets of 43.9 % by removing all

jets with fewer than nine clusters. This keeps 82.9 % of t t̄ H tagged b-jetsand 80.5 % of t t̄ tagged

b-jets. This is shown in Figure 6.57.
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Ultimately, I do not see that application of both soft drop grooming and selection cuts to

tagged b-jets improves seperation between t t̄ and t t̄ H events.

6.11 Truth Jets vs Reconstructed Jets

Following the investigations I make into the effects of soft drop grooming on flavour-tagged

small jets reconstructed from Calorimeter Clusters, I extend this to explore the effects of soft

drop grooming on matched truth-particle jets. I aim to explore how good these reco-jets are as

a proxy for the real physics of the event, and whether applying soft drop grooming can improve

that. I look to how ungroomed and groomed reco and truth-particle jets agree, and examine

the effects of soft drop grooming on observables the truth-particle jets themselves. I hope to

see whether the application of soft drop grooming to these different types of jets has different

effects.

6.11.1 Number of Clusters

Firstly, I compare NCLUS for ungroomed reco and truth-particle jets, shown in Figure 6.58. As

seen before, at an ungroomed level, flavour-tagged small jets reconstructed from calorimeter

clusters have strongly similar distribution shapes, peaking between values of ten and sixteen.

However looking at the results from the truth-jets I can determine broadly three groups. Firstly,

gluon-, b- and c-jets, each with a very similar distribution shape in both truth and reco-jets.

In each case, values for truth-jets cover a broader range than that of reco-jets. The peak value

for gluon- and b-jets is a little higher in truth than reco, indicating some clusters are possibly

missed in reconstruction. The peak for c-jets is slightly higher in reco than in truth, indicating

that extraneous clusters could be wrongly included in reco-jets. Secondly, I inspect the distri-

bution for truth uds-jets, which has a first small peak at a NCLUS value of five, followed by a

second peak at thirteen, which is close to the peak for reco-jets, fourteen. Finally, I can look at

the distributions for truth tau-jets, which is about half the width of the distribution of NCLUS for

reco-jets with a peak in truth at close to half the value of the peak in reco tau-jets. This indicates

many extraneous clusters are included in the reco-jets that are not present in truth tau-jets.

I expand this assessment by comparing the value of NCLUS for each given reco-jet against

that of the truth-jet it is matched to, shown in Figure 6.59. For the quark- and gluon-jets I

can see a broader distribution in truth-jets NCLUS and the shift in peaks. For uds-jets I also

see the presence of the smaller first peak in the distribution of truth-jet NCLUS, I see that these

truth-jets of two to three clusters are most strongly matched to reco-jets with between six and

ten clusters. Looking at the results for tau-jets I see the broader distribution for reco when

compared to truth-jets.

Firstly, I can compare values of NCLUS in ungroomed truth-jets to reco-jets that have been

groomed with a soft drop grooming strength of Z cut = 0.05 , shown in Figure 6.60. Firstly I can

see that for each of the quark-jet flavours the effect of applying soft drop grooming to reco-jets
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Figure 6.58: NCLUS in ungroomed reco and truth-particle jets.
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Figure 6.59: NCLUS for ungroomed matched reco and truth-particle jets.
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Figure 6.60: NCLUS in reco and truth-particle jets with soft drop grooming strength Z cut = 0.05
applied to reco-jets.
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Figure 6.61: NCLUS for matched reco and truth-particle jets with soft drop grooming strength
Z cut = 0.05 applied to reco-jets.
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Figure 6.62: NCLUS in reco and truth-particle jets with soft drop grooming strength Z cut = 0.1
applied to reco-jets.
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Figure 6.63: NCLUS for matched reco and truth-particle jets with soft drop grooming strength
Z cut = 0.1 applied to reco-jets.
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Figure 6.64: NCLUS in reco and truth-particle jets with soft drop grooming strength Z cut = 0.1
applied to both reco and truth-particle jets.
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Figure 6.65: NCLUS for matched reco and truth-particle jets with soft drop grooming strength
Z cut = 0.1 applied to both reco and truth-particle jets.
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is that the distribution shape is now closer to that of the truth-jets. We see this in uds-jets,

however the reco distribution is missing the first, low-value peak present in truth-jets. Both

b- and c- reco-jet distributions become broader, with lower peaks, and therefore closer to the

shape of their respective truth-jet distributions, however the peak value for reco b-jets moves

further away from that of the truth-jets following the grooming away of clusters. Following the

application of soft drop grooming strength of Z cut = 0.05, the peak value of reco gluon-jets also

moves to a lower value, and is subsequently further away from that of the truth-jets, however

the distribution shape does not change, indicating an even distribution in NCLUS loss amongst

reco-jets. In tau-jets I start to see the development of a higher, first peak close to the minimum

value of NCLUS of two, which is not present in truth-jets.

Once more I look to the jet-by-jet comparison for NCLUS in ungroomed truth-jets and reco-

jets with soft drop grooming applied, shown in Figure 6.61. In results for each quark flavour

I start to see an increasing number of cases of reco-jets with five clusters or fewer matched

to truth-jets with ten or more, demonstrating the effects of grooming away clusters within the

reco-jets. In gluon-jets I see only a small change, with a uniform drop in NCLUS for reco-jets. In

tau-jets the dramatic change I see matches the previous results, with the majority of matches

showing two clusters in reco-jets. These are mostly matched to truth-jets with between four

and seven clusters, indicating that low-pT clusters both from the hadronic and from external

sources, are groomed away.

Following this I can compare values of NCLUS in ungroomed truth-jets to reco-jets that have

been groomed with a soft drop grooming strength of Z cut = 0.10 , shown in Figure 6.62. With

this level of soft drop grooming applied I see the distributions for each of the sets of reco-jets

changing to be more different to those of their respective truth-jets. For reco uds-jets I see the

a more pronounced peak at the minimum value of NCLUS, 2. This is close to the location of the

first peak in the truth-jet distribution, however it is much higher in reco-jets. This is followed

by a supressed second peak in the reco distribution, close to that in the truth distribution, but

slightly lower. The reco distribution for both b- and c-jets are similar, with high initial peaks

at very low values of NCLUS, followed by a smaller, less noticeable peak that is closer to that in

truth-jets, but smaller and of a lower value. In gluon-jets I see little difference from the previous

grooming, but a slightly broadened reco distribution means it is closer to the truth distribution.

In tau-jets the reco-jet distribution I see is no closer to that of truth-jets. Over all these reco-jet

distributions seem to be slightly “over-groomed” for the observable NCLUS.

Looking to results for the matched jet comparison, in Figure 6.63, I see a continuation in

the trend of previous results. The distributions for quark-jets show truth-jets with NCLUS values

between ten and twenty-five matched to reco-jets with fewer than five clusters. The effect of

the stronger strength of soft drop grooming is apparent here. In gluon-jets I start to see the

effects of grooming reducing the number of clusters in reco-jets more clearly. In tau-jets I start

to see very few reco-jets with more than five clusters.

We can also see how applying soft drop grooming of strength Z cut = 0.10 to both truth

and reco-jets comparably affects jet observables such as NCLUS. The results of this is shown in
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Figure 6.64. In the three quark-flavours I can see a similar effect soft drop grooming has on

the NCLUS within truth-jets, in each case I see a simple, narrow distribution with peak at a lower

value than for ungroomed truth-jets. The effect of soft drop grooming of strength Z cut = 0.10 on

NCLUS in truth-jets is similar to that of soft drop grooming strength Z cut = 0.05 on reco-jets, and

less severe than reco-jets groomed with strength Z cut = 0.10– demonstrating these truth-jets

have fewer soft, wide-angle clusters and are therefore less susceptible to the effects of soft drop

grooming. For gluon-jets I see that truth and reco-jets groomed with a strength of Z cut = 0.10

have a very similar value for NCLUS, with truth-jets having a slightly lower value. Despite the

change in reco gluon-jets due to soft drop grooming only being small, it is now very close to

the groomed truth-jet. The small difference between groomed reco and truth in gluon-jets

illustrates the small amount of corruption in NCLUS coming from external sources following soft

drop grooming. In truth tau-jets I see a dramatic change in NCLUS following soft drop grooming

with the development of a very prominent peak displaying the majority of groomed truth-jets

have only three or four clusters, a result that shows a strong resemblance to groomed reco-jets.

This indicates that soft drop grooming is likely targeting the same clusters in both truth and

reco-jets leaving only the hard-core for both.

We can explore these effects further by comparing soft drop grooming on matched jet pairs,

the results of which are shown in Figure 6.65. We see that for uds-, b- and c-jets the effect on the

two-dimensional distribution is very similar: the value of NCLUS for truth-jets is generally shif-

ted to lower values, but it seems this is loosely relational to the value of NCLUS in matched reco-

jets. Those truth-jets matched to reco-jets with fewer clusters are more likely to lose clusters

themselves from grooming. This indicates that the effects that soft drop grooming is having on

reco-jets is happening in the same way within these matched truth-jets – the same information

is being groomed away. For tau-jets I also see this, but to a stronger degree – in the same way

the soft drop grooming has more of an extreme effect on reco tau-jets. In gluon-jets I see a

more even distribution in the change of NCLUS for truth-jets – less related to NCLUS values in the

respective matched reco-jets. This is likely related to the smaller effect soft drop grooming had

on reco gluon-jets. Ultimately these results indicate that the same changes are taking place in

both reco and truth-jets following soft drop grooming, if perhaps to a slightly reduced degree.

Overall these results show that applying soft drop grooming with a strength of Z cut = 0.05

to reco-jets generally improves the agreement with truth-jets, but that applying strength of

Z cut = 0.10 might lead to “over-grooming” for values of NCLUS. This is not necessarily true for

tau-jets which seem to have a more complicated relation. We also see the effects of applying

soft drop grooming to truth-jets are comparable to their respective matched reco-jets, but to

a lesser degree, indicating that they have fewer soft, wide-angle clusters that will be groomed

away.

6.11.2 Jet Mass

I start by contrasting the values of jet mass for ungroomed truth-particle and reco-jets, shown

in Figure 6.66. I discern that reco gluon-jets show very close agreement to those in truth-
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Figure 6.66: Jet mass in ungroomed reco and truth-particle jets.
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Figure 6.67: Jet mass for ungroomed matched reco and truth-particle jets.
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Figure 6.68: Jet mass in reco and truth-particle jets with soft drop grooming strength Z cut = 0.05
applied to reco-jets.
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Figure 6.69: Jet mass for matched reco and truth-particle jets with soft drop grooming strength
Z cut = 0.05 applied to reco-jets.
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Figure 6.70: Jet mass in reco and truth-particle jets with soft drop grooming strength Z cut = 0.1
applied to reco-jets.
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Figure 6.71: Jet mass for matched reco and truth-particle jets with soft drop grooming strength
Z cut = 0.1 applied to reco-jets.
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Figure 6.72: Jet mass in reco and truth-particle jets with soft drop grooming strength Z cut = 0.1
applied to both reco and truth-particle jets.
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Figure 6.73: Jet mass for matched reco and truth-particle jets with soft drop grooming strength
Z cut = 0.1 applied to both reco and truth-particle jets.



177 6.11 Truth Jets vs Reconstructed Jets

particle gluon-jets when looking at jet mass. I see that all quark-jet flavours have similar results

to one another: reco-jets have a slightly broader distribution and peak at a higher value of jet

mass, when compared to their respective sets of truth-particle jets. This indicates the inclusion

of small amount of mass from sources external to the truth-particle event. Results for tau-jets

show very narrow truth-particle jets compared to non-tau-jets flavours. As the reco shape of

tau-jets is similar to non-tau-jets flavours, this means the reco distribution is therefore much

broader and higher peaking than the truth. This initially indicates the presence of lots of extra

mass coming from external origins. I combine this information with that seen in the values of

NCLUS. In gluon-jets the drop in jet mass from truth-particle to reco is smaller than the drop in

NCLUS, this shows that the clusters missed in reco-jets were seemingly low mass. In uds- and

c-jets the opposite is true. A small increase in NCLUS from truth-particle to reco and a larger

increase in jet mass indicates the extra clusters included in reconstruction are higher mass.

In b-jets the picture is more complicated with reco-jets having a lower value of NCLUS with a

slightly higher jet mass compared to truth-particle jets – this could indicate a combination of

missing low-mass clusters and incorporating fewer, high-mass clusters from external origins.

In tau-jets see both the value of NCLUS and jet mass for reco-jets are essentially double that in

truth, indicating only that the average jet mass of these extra clusters is comparable to those

within the truth-particle jet.

Investigating these results on a jet-by-jet basis to compare truth-particle and reco results for

jet mass can tell me more. I present these results in Figure 6.67. In gluon-jets I see a very strong

correlation between the jet mass of a reco-jet and its respective matched truth-particle jet, once

more demonstrating reco gluon-jets are a good proxy for truth-particle jets when looking at jet

mass. I also observe a strong correlation for the quark flavours with only a slight skew towards

higher values of jet mass in reco-jets. This indicates the extra jet mass seen in the distribution

for reco-jets is likely evenly distributed amongst quark-jets. In tau-jets I percieve the replication

of the previous result, with jet mass roughly double the value in reco-jets as in truth. This seems

to be slightly more present in low mass jets, perhaps relating to the shift present in tau-jets with

lower values of NCLUS.

We now move onto studying the effects of soft drop grooming on jet mass within the Truth

and Reco Jets. Firstly, I can apply soft drop grooming of strength Z cut = 0.05 to the reco-jets

and compare these to the ungroomed truth-jets. We show the results for this in Figure 6.68. We

now see a very strong agreement in values of jet mass between the quark flavours, particularly

in c-jets. In gluon-jets I see that following soft drop grooming the agreement between reco

and truth-jets has worsened, with a decreasing of jet mass causing a shift in the distribution.

This could be indicative of possible “over-grooming”. In tau-jets I see a slightly improvement in

agreement between truth and reco-jets, with jet mass values of reco-jets broadening to include

lower values, closer to those of truth-jets. As a general trend I see that the larger values of NCLUS

groomed away in reco-jets has lead to a smaller loss in jet mass, showing the clusters lost were

low mass, as should be expected from soft drop grooming.

Comparing the jet mass of the groomed reco-jets to the jet mass of ungroomed truth-jets I
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can see more information on the changes soft drop grooming brings, see Figure 6.69. We note

that for quark-flavour jets I see a very strong correlation between jet mass for reco-jets with

a soft drop grooming strength of Z cut = 0.05 applied and ungroomed truth-jets, with uniform

improvement across all truth jet mass values. This uniform change is also present in gluon-jets,

however the change is slightly detrimental to the agreement between truth and reco values of

jet mass. The results for tau-jets shows the most change, and I see more change in the value of

reco jet mass for truth-jets of lower jet mass, meaning these low-mass jets are more susceptible

to the effects of soft drop grooming.

We now groom the reco-jets with the default soft drop grooming strength Z cut = 0.10, the

results of which are shown in Figure 6.70. For uds-, gluon, b- and c-jets I now see a very sim-

ilar result, whereby reco-jets have distributions narrower, and lower in jet mass, than their re-

spective truth-jets. These reco distributions now appear “over-groomed” compared to truth.

In each case this decrease and difference is less than for values of NCLUS, demonstrating that

the clusters groomed away are low in mass. For tau-jets, however, I now start to see a stronger

agreement between reco and truth values of jet mass than at lower strength, or no soft drop

grooming. The distribution shapes are much more similar, with peaks in reco very close to

those in truth. The dramatic change in NCLUS from significantly too high to too low, matched

with change of jet mass from much too high to very comparable indicates the clusters lost were

very likely to be “extra”, perhaps from pile-up, and the smaller NCLUS left are the most hard parts

of the jet containing the main mass of the tau-jets.

On a jet-by-jet basis the results of this strength of soft drop grooming is to slightly decrease

the correlation between truth and reco jet mass for uds-, gluon,- b- and c-jets with a close

uniform decrease in the value of jet mass. For tau-jets I see the obvious shift to lower values of

jet mass in the reco-jets.

We can also explore the effects that soft drop grooming has on the truth-jets, shown in

Figure 6.72. For every jet flavour I see that applying soft drop grooming with strength Z cut = 0.10

has a bigger change on the distribution of jet mass in truth-jets than in reco-jets. In gluon-jets,

those with the least change, I see that soft drop grooming has shifted the distribution of jet

mass in truth-jets to slightly lower values than that of groomed reco-jets. In uds-, b- and c-jets

I see that is has shifted much more with the development of a high peak at low jet mass. This

is at 2 GeV for truth uds- and truth c-jets and at 5 GeV for truth b-jets, potentially presenting

me with the hard-core of the truth-jet. For tau-jets the change is much more dramatic with

over 80 % of each set of groomed truth tau-jets displaying jet mass between 0 GeV and 2 GeV.

The change in jet mass for the truth-jets resulting from soft drop grooming appears to be more

dramatic than changes in value of NCLUS for the same jets. This difference is opposite to that in

reco-jets, indicating the clusters groomed away in truth-jets were much less likely to bewide-

angle, low mass clusters, which I expect to see fewer of in the truth-jets as they originate most

prominently from pile-up.

We can discover more about these changes in truth-jets by looking at matched comparisons

for jet mass in truth and reco-jets. We see that in uds-, b-, c- and tau-jets that the drop in jet
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mass within truth-jets does not appear to be totally uniform: the condensing of the distribution

in truth mass direction seems to indicate more drop in value of jet mass from higher jet truth

masses than lower. Ultimately the results from this section show me that reco-jets with different

strengths of soft drop grooming applied, depending on the flavour, show strong agreement with

truth-jets for values of jet mass: reco gluon-jets show strongest agreement when ungroomed;

quark flavour jets, uds-, b- and c-jets, show strong agreement after a soft drop grooming of

strength Z cut = 0.05 has been applied; and reco tau-jets show good agreement when groomed

with the chosen default soft drop grooming strength, Z cut = 0.. We also note that applying soft

drop grooming to truth-jets changes their jet mass more than when applied to reco-jets of their

respective flavour – combining this with the smaller value of NCLUS generally lost by truth-jets

from soft drop grooming illustrates the contrast to many more, lower-mass clusters groomed

in reco-jets.

6.12 Jet Response
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Figure 6.74: Jet response of ungroomed gluon-jets, in the pT range 30 GeV to 60 GeV (b) and
200 GeV to 250 GeV (b)

In addition to exploring the consequences on JSS observables of applying soft drop groom-

ing, I also investigate how it effects technical aspects of jets reconstruction in the ATLAS de-

tector. A crucial element of this type is the jet response [201], a measurement that can tell me a

lot about how much jet energy, or pT is actually registered in the calorimeter during reconstruc-

tion. I therefore compare values of pT in both the reco-jets and the truth-particle jet they are

matched to, both before and after applying to soft drop grooming. I therefore define the meas-

ure of jet response by finding the pT of the reco-jet as a fraction of the pT of the truth-particle

jet.
pT r eco− j et

pT tr uth−par ti cle j et
(6.2)
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Figure 6.75: Mean jet response of all jet flavours, ungroomed.

For the analysis I look at this for each of the reco-jets, at each stage of grooming, and I always

use the ungroomed truth-particle jet as the marker.

pT
g r oomi ng
r eco− j et

pT
ung r oomed
tr uth−par ti cle j et

(6.3)

I bin these responses by pT
g r oomi ng
r eco− j et , and fit a Gaussian function to the total result of that bin. I

then find the mean value, standard deviation (σ) and χ2 value of this fitted Gaussian function.

The results of this process are presented for gluon-jets in Figure 6.74, and for all jet flavours in

Figure F.1 and Figure F.2.

Looking at the response for jets with pT between 30 GeV and 60 GeV, I can see that gluon-

and c-jets have the mean response values closest to one, at a value of 0.99 and 1.01 respectively.

b-jets are close to a value of one, with 0.98 and uds-jets are a little further at 1.06. I observe that

tau-jets have means with the furthest values to one, with 3-pronged tau -jets and 1-pronged

tau-jets at 1.08 and 1.15 respectively. For jets with pT between 200 GeV and 250 GeV I also see

that gluon-, b- and c-jets have values of mean closes to one, at 0.99, 1.01 and 1.01 respectively.

I see uds-jets are again a little further away, at 1.02. I also see that tau-jets have means with the

furthest value from one, with 3-pronged tau -jets and 1-pronged tau at 1.03 and 1.04 respect-

ively. Over all I see that other than for gluon- and c-jets (with the closest mean in the first pT

bin), the mean is closer to one for those jets with pT between 200 GeV and 250 GeV.

When looking at the standard deviation for jet response for jets with pT between 30 GeV

and 60 GeV, I see most flavours have values very close to one another, with uds-, 1-pronged

tau - and 3-pronged tau -jets each with values of 0.2, b- and c-jets at values of 0.21, and gluon-

jets somewhat broader at 0.24. I see a general trend of narrowing as I move to for jets with

pT between 200 GeV and 250 GeV. uds-, gluon-, b- and 3-pronged tau -jets all have a standard

deviations of 0.07, and c- and 1-pronged tau-jets have a standard deviations of 0.08. All have

become more narrow, particularly gluon-jets, an outlier in the first pT bin.
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Following the calculation of this for all the chosen pT bins, I plot the means from each bin

for comparison, the results for all five flavours are shown in Figure 6.75. Looking at the results

for Mean jet response I see a general trend of mean values moving closer to one as the pT of

the jets increase – this is particularly true for those with the furthest values in the pT bin 30 GeV

to 60 GeV, uds-, 3-pronged tau - and 1-pronged tau-jets. I see that those jet flavours with the

closes mean to one in both of the previous pT bins, gluon- and c-jets, have the most stable mean

throughout the range of pT bins. I also see that in every case the mean for jets with a pT between

0 GeV and 30 GeV, out lowest pT bin, is significantly lower than the mean for jets within the next

pT bin, between 30 GeV and 60 GeV.
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Figure 6.76: Jet response of gluon-jets with soft drop grooming of strength Z cut = 0.1 applied,
in the pT range 30 GeV to 60 GeV (b) and 200 GeV to 250 GeV (b)
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Figure 6.77: Mean jet response of all jet flavours with soft drop grooming of strength Z cut = 0.1
applied.
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Following the application of soft drop grooming on the reco-jets, there are some interesting

results. We show the results for gluon-jets in both bins in Figure 6.76, the results for “bad” bins

of all flavours in Figure F.3 and for “good” bins of all flavours in Figure F.4. Looking first for the

change in jet response for those jets of 30GeV ≤ pT < 60GeV first note that all the mean values

are reduced. This is expected, as the reco-jet is losing pT as clusters are groomed away, but

the reference truth-particle jet is not. There is an average reduction in the mean of 11%. For

tau-jets this brings the mean value closer to unity, especially in the case of 1-pronged tau-jets.

For all non-tau flavours this leads to moving further away from unity, most by 7 or 8%. The

standard deviation for all “bad” bins also increases by close to 15%.

Moving onto the “good” bins, with jets of 200GeV ≤ pT < 250GeV, again the mean is re-

duced, with an average of 7%. Once again tau-jets move closer to unity, particularly 1-pronged

tau, which had the highest value before. All other jet flavours move further away from unity by

close to 6%. The effect that soft drop grooming has on tau-flavoured jets (and most obviously

on 1-pronged tau-jets) indicates once again that there are significant contributions present in

ungroomed reco-jets, that are not present in either reco-jets with soft drop grooming applied,

or in truth-particle jets. The standard deviation for 1-pronged tau, uniquely, is reduced by

12.5% following application of soft drop grooming, with all other flavours increasing between

12 and 25%.

Ultimately it appears that the application of soft drop grooming to these reco-jets has not

necessarily improved the resolution in reference to ungroomed truth-particle jets, other than

in the case of tau-flavoured jets. The results for ungroomed reco tau-jets (and particularly 1-

pronged tau()-jets) when compared to ungroomed truth-particle jets indicates the presence of

extraneous energy that is removed definitely following application of soft drop grooming.

6.13 Soft Drop Grooming on b-tagged Jets in ATLAS Data

This set of studies will focus on analysis of the ATLAS data sample discussed in Section 6.2.1.

Comparisons of JSS observables of flavour-tagged reco-jets undergoing soft drop grooming are

undertaken made between this data sample and a number of MC simulation samples. The MC

simulation samples that have been selected for these studies have weighted pile-up distribu-

tions to match conditions from ATLAS in 2018, as described in Section 6.2. The first of these

studies explored the chosen MC simulation of t t̄ events, known as “t t̄2”, and how it compares

to the t t̄ samples used in the previous studies in this chapter.

6.13.1 Soft Drop Grooming with t t̄ 2

The first investigation undertaken for the MC simulation sample t t̄ 2 is a comparison between

truth-flavour-tagged jets. In Figure 6.78 a comparison between the number of clusters in un-

groomed truth-flavour-tagged jets can be seen for two samples, t t̄ 2 and t t̄ (the MC simulation

sample used through the previous studies in this chapter).
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Figure 6.78: Number of clusters for ungroomed jets, from the previously used t t̄ sample (a) and
the new t t̄ 2 sample (b).

These two sets of distributions show the same pattern (with very minor differences) for

number of clusters in each of the truth-flavour-tagged sets of reco-jets. Firstly, tau-jets, partic-

ularly 1-pronged tau-jets, have a narrow distribution with a high peak at the lowest number of

clusters. Secondly, b-, c- and gluon-jets have broader distributions with peaks at higher num-

ber of clusters (and close to one another). Finally, uds-jets lie somewhere between the two.

Following the application of soft drop grooming with a strength of Z cut = 0.10 to jets from

each of these samples, it can be seen that this pair of distributions matches very closely, once

again. This is shown in In Figure 6.79. In each case, tau-jets change the most following the

application of grooming. Both sets of distributions show the tau-flavour-tagged jets, particu-

larly 1-pronged, with very high peaks at two clusters, the minimum number of clusters allowed

in a reco-jet. In each case, this suggests the reco-jets have a well-defined hard-core, such that

wider-angled, softer clusters meet the requirement to be groomed away.

In both samples, gluon-jets appear to be almost unaffected compared to other flavours

of jet. The peak of these distributions move from about 17 clusters to about 15, suggesting

very few clusters are being groomed away. As discussed previously, this indicates that these

gluon-jets lack a well-defined hard-core, and, therefore, there is no well-defined wide-angle,

soft radiation to be groomed. Once again, the effect on quark-jets lies in-between; uds-jets are

the most groomed of the three quark-flavours and b -jets are the least.

The same comparison can be made for jet mass of these jet flavours. Looking at the distri-

bution of jet mass for these two sample in Figure 6.80, it can be seen that once again the results

are very close. Jets that are flavour-tagged as tau-jets have a narrower distribution and have the

lowest peak, at a value of 6 GeV. Through gluon-, uds- and c-jets onto b -jets, the distributions

steadily get broader with lower peaks at higher values. The peak value of jet mass for b -jets in
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Figure 6.79: Number of clusters for jets soft drop groomed, with strength Z cut = 0.10, from the
previously used t t̄ sample (a) and the new t t̄ 2 sample (b).

each sample is 9 GeV and 10 GeV for t t̄ and t t̄2, respectively.
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Figure 6.80: Jet mass for ungroomed jets, from the previously used t t̄ sample (a) and the new
t t̄ 2 sample (b).

Applying soft drop grooming with a strength of Z cut = 0.10 reveals a familiar pattern in

Figure 6.81: the jet mass distributions for t t̄ and t t̄ 2 are once again very similar. In both cases

tau-jets have been most heavily groomed, now with a narrow peak at 1 GeV. This is followed by

b-, c- and uds-jets, respectively, which now have distributions that are much more similar to

one another, each now with a peak at 5 GeV or 6 GeV. The least groomed are gluon-jets, with a

peak that has moved only from 7 GeV to 6 GeV.
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Figure 6.81: Jet mass for jets soft drop groomed, with strength Z cut = 0.10, from the previously
used t t̄ sample (a) and the new t t̄ 2 sample (b).

In each of these cases, the jet mass has not changed as much as the number of clusters by

the application of grooming, indicating that those clusters groomed away were soft. The jet-

flavours with the distributions most changed (i.e. the tau-flavoured jets) indicate that those

flavour-tagged jets have more well-defined hard cores, such that softer clusters meet the re-

quirement for grooming. Those jets with less change (such as the gluon-jets in particular),

indicate a less well-defined hard-core.

Ultimately, despite the fact that these two MC simulation samples are weighted to differ-

ent pile-up distributions, t t̄ matched to ATLAS data from 2017 and t t̄ 2 matched to data from

2018, the results they show are very similar. In all cases, this grooming reduces the number of

clusters in jets, and decreases the jet mass to a lesser extent. The flavour-tagged jets from these

two samples, both before and after the application of soft drop grooming, show the same pat-

terns and behaviour as one another. In both samples, tau-jets show the most distinctive and

dramatic effect of grooming, with many jets groomed down to the minimum of two clusters, in-

dicating that the well-defined hard cores within these jets are distinct enough from soft, wide-

angled radiation. This is particularly true for 1-pronged tau-jets. Gluon-jets in both of these

samples are the least effected by grooming, suggesting much less well-defined internal struc-

ture. Those jets flavour-tagged as quarks, b, c and uds, lie between these flavours, with each

more groomed that the last, respectively.

Soft Drop Grooming All b-Tagged Jets.

Truth-level information is not available in data from the ATLAS detector, only from MC simula-

tion samples; therefore, for comparisons between the two to be made, a common jet-flavour-

tagging method must be established. This will be achieved by using traditional b-tagging meth-
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ods, as described in Section 6.4.3, as the only means of flavour-tagging any jets passing the

standard selection process used so far.

Figure 6.82(a) displays the number of clusters for all b-tagged jets in the t t̄ 2 MC sample that

pass the standard selection process after application of each strength of soft drop grooming.

As can be seen, the general trend reflects that seen in jets of other flavours and from other

samples. As the grooming strength is increased, the distribution for number of steadily narrows

and shifts to a lower value. Ungroomed, the peak number of clusters for these jets is at 16, after

a grooming strength of Z cut = 0.10 has been applied, this peak has moved to 3 clusters and

after a grooming of strength Z cut = 0.20 the peak has already reached the minimum number

of clusters required in a jet to be included, at two clusters. Comparing this to for truth-flavour

tagged jets, it can see the results of grooming are most similar to those jets truth-flavour tagged

as b -jets.
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Figure 6.82: The effects of different soft drop grooming strengths on number of clusters (a) and
the jet mass (b) for all b-tagged jets in t t̄ 2.

Figure 6.82(b) shows the jet mass of these same jets, once again, after different strengths of

soft drop grooming has been applied. The distribution steadily narrows and shifts to a lower

value as the grooming strength increases. This rate of change after applying grooming is less

than that for number of clusters, indicating that those cluster that are groomed away are soft,

and contribute proportionally little mass. Applying a soft drop grooming of Z cut = 0.10 shifts

the peak value of jet mass from 10 GeV to 6 GeV, once again this matches closely with the results

for those jets truth-flavour tagged as b -jets.

6.13.2 Soft Drop Grooming with t t̄ 2Sel

Following these exploratory studies with the sample t t̄ 2, an investigation the effects of soft drop

grooming on JSS observables for all b-tagged jets in different samples was undertaken. One of
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these samples is data from the ATLAS experiment, discussed in Section 6.2.1. In order to make

a closer comparison between this data and the two MC simulation samples used in this section

of the analysis, the event selection discussed in Section 6.3.2 was applied. This set of event

selection criteria is used to select t t̄ pair production events with leptonic and semi-leptonic

decays. As no truth-level information is available in ATLAS data, the only flavour-tagging process

I will use is traditional b-tagging methods, as described in Section 6.4.3. Any jets passing these

selections and flavour-tagging will be studied here.

Firstly, I shall apply these event- and object-selections to the sample t t̄ 2. This new sample,

with these selections applied, is labelled t t̄ 2Sel . Figure 6.83 displays the number of clusters for

all b-tagged jets in the t t̄ 2Sel MC sample following application of different soft drop grooming.

Before the application of soft drop grooming, the distribution of number of clusters within all b-

tagged jets looks to be similar to previous results. The distribution is fairly broad and peaks at 16

clusters. Following the application of soft drop grooming, the familiar change in distribution is

seen: the peak becomes narrower and shifts to a lower number of clusters as they are groomed

away from jets. After application of soft drop with a strength of Z cut = 0.10, the peak is at 5

clusters. The peak reaches the minimum number of clusters necessary for selection, at two

clusters, following a grooming strength of Z cut = 0.20.
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Figure 6.83: The effects of different soft drop grooming strengths on number of clusters (a) and
the jet mass (b) for all b-tagged jets in t t̄ 2Sel .

Figure 6.83 shows the effect on jet mass when applying soft drop grooming. As increas-

ingly strong soft drop grooming is applied, the distribution of jet mass shifts to smaller values

and becomes narrower. For each strength of soft drop grooming, however, this change is less

than for number of clusters in these jets. This suggests that the clusters being groomed away

have proportionally little mass compared to the clusters that remain within the jet. Initially jet

mass has a peak at 9 GeV, but following application of soft drop grooming with a strength of

Z cut = 0.10, the peak value is at 6 GeV. Both sets of results, for number of clusters and jet mass,



188 6.13 Soft Drop Grooming on b-tagged Jets in ATLAS Data

is comparable to results for all b-tagged jets in t t̄ 2, as well as results for jets truth-flavour tagged

as b -jets.

Figure 6.84 shows a direct comparison for the number of clusters in all b-tagged jets. This is

shown both from t t̄ 2, where the standard selection processes used throughout this chapter has

been applied, and from t t̄ 2Sel , where the event- and object-selections have been chosen for

direct comparison to ATLAS data. Before the application of soft drop grooming, these two distri-

butions look very similar; however, applying soft drop grooming with a strength of Z cut = 0.10

reveals some difference in behaviour between the two sets of jets. Jets from the sample with

the additional selection criteria applied are less likely to have clusters groomed away. This in-

dicates that they have a less well-defined hard-core. This new result reflects more closely the

distribution of those jets that are truth-flavour tagged as b-jets.
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(b) Soft drop strength Z cut = 0.10

Figure 6.84: Number of clusters for all b-tagged jets from both t t̄ 2 and t t̄ 2Sel samples with no
soft drop grooming applied (a) and with soft drop grooming of strength Z cut = 0.10 applied (b).

Displayed in Figure 6.85 is a comparison of jet mass for jets from these two samples. Ini-

tially, there is some difference between the two: the jet mass distribution for jets from t t̄ 2Sel

is slightly narrower and peaks at a slightly lower value. Ungroomed jets from t t̄ 2 have a higher

mass, despite having the same number of clusters, indicating that the clusters from jets in the

t t̄ 2Sel sample are slightly softer. Following the application of soft drop grooming of strength

Z cut = 0.10, the distributions for jet mass look much more similar. Distributions for jet mass

have changed less than for the respective distributions for number of clusters, reflecting the

results seen in previous studes in this analysis.

6.13.3 Soft Drop Grooming with ATLAS Data and t t̄ MC.

This section of the analysis will focus on all b-tagged jets from ATLAS data, discussed in Sec-

tion 6.2.1. In order to make a closer comparison between this data and MC simulation samples
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(b) Soft drop strength Z cut = 0.10

Figure 6.85: Jet mass for all b-tagged jets from both t t̄ 2 and t t̄ 2Sel samples with no soft drop
grooming applied (a) and with soft drop grooming of strength Z cut = 0.10 applied (b).

used in this section of the analysis, the event selection discussed in Section 6.3.2 is applied.

This set of event selection criteria is used to select t t̄ pair production events with leptonic and

semi-leptonic decays [?].

The effects of soft drop grooming on number of clusters within all b-tagged jets from this

ATLAS data sample can be seen in Figure 6.86(a). Each of the distributions seen lare comprable

with previously observed results. Before grooming is applied, a broader distribution with a peak

at 14 clusters is seen. As with jets from MC simulations, as successively stronger strengths of soft

drop grooming is applied, the distribution becomes more narrow and shifts to a lower number

of clusters. Following grooming of strength Z cut = 0.10, the distribution has shifted to fewer

clusters, and now peaks at a value of 10 or 11 clusters. Once a grooming strength of Z cut = 0.15

is reached, the distribution starts to peak at the minimum number of clusters for a jet, at two

clusters. When comparing to results from the t t̄ MC simulation samples previously studied in

this analysis, this distribution appears to lie somewhere between those for jets truth-flavour

tagged as b -jets and those truth-flavour tagged as gluon-jets.

Figure 6.86(b) shows the effect of soft drop grooming on the mass of all b-tagged jets from

ATLAS. As before, the general trend of grooming effects can be seen here the same as in pre-

vious results: successively higher strengths of soft drop grooming makes the distribution of

jet mass more narrow and shifts it to lower values. This change is slower and more steady

than the change in number of clusters, suggesting that the cluster groomed away are making

proportionally-small contributions to the mass of the jet. Before any soft drop grooming is

applied, the distribution peaks at 7 GeV. This peak moves to a value of 5 GeV following applic-

ation of soft drop grooming strength Z cut = 0.10. These distributions and changes from soft

drop grooming seem to lie somewhere between those for truth-flavour tagged gluon-jets and

the quark-jets (uds, c, b) from the MC simulated studies previously.
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Figure 6.86: The effects of different soft drop grooming strengths on number of clusters (a) and
the jet mass (b) for all b-tagged jets in ATLAS data.

A direct comparison between all b-tagged jets from ATLAS data can be made to jets from

the t t̄ MC simulation sample with the same event- and object- selection applied, t t̄ 2Sel . First,

the distributions for number of clusters, shown in Figure 6.87 is compared. Before soft drop

grooming is applied, the shape of the two distributions are very similar, the only notable differ-

ence is that all b-tagged jets from t t̄ 2Sel have a slightly higher number of clusters than those

jets from data. The distribution for data peaks at a value of 14 clusters, whereas for t t̄ 2Sel it

is 16. This suggests that the jets that compose our t t̄ 2Sel sample are more likely to possess a

higher number of clusters.

Following the application of soft drop grooming with a strength of Z cut = 0.10, it can be

seen that jets from t t̄ 2Sel are more likely to be groomed, suggesting they have a more well-

defined hard-core. The distribution for number of clusters from t t̄ 2Sel now peaks at a value of

5 clusters. This is closer to the results for truth-flavour tagged b -jets than those jets from data

are. Jets from data now peak at a value of 10 clusters. They seem to lie somewhere between jets

truth-flavour tagged as b -jets and gluon-jets.

This same comparison can be made for values of jet mass, shown in Figure 6.87. Before

grooming is applied, the two distributions are very similar. Jets from data peak at a slightly

lower value of 7 GeV, which is closes to the value for jets from MC samples truth-flavour tagged

as uds- or gluon-jets, and the distribution for jets from t t̄ 2Sel peaks at 9 clusters, which is

the same as jets from MC samples truth-flavour tagged as b -jets. The similarities and slight

difference between ungroomed jets from these two samples seem to suggest a similar cluster

to mass ratio to one another.

After a soft drop grooming of strength Z cut = 0.10 has been applied, proportionally less

mass has been removed. This indicates that those clusters removed were proportionally soft.
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(b) Soft drop strength Z cut = 0.10

Figure 6.87: Number of clusters for all b-tagged jets from both t t̄ 2 and ATLAS data samples with
no soft drop grooming applied (a) and with soft drop grooming of strength Z cut = 0.10 applied
(b).
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(b) Soft drop strength Z cut = 0.10

Figure 6.88: Jet mass for all b-tagged jets from both t t̄ 2 and ATLAS data samples with no soft
drop grooming applied (a) and with soft drop grooming of strength Z cut = 0.10 applied (b).
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This is especially true for jets from t t̄ 2Sel , which lost noticeably more clusters, but only slightly

more mass. This is indicative of t t̄ 2Sel having a more well-defined hard-core. Following the

grooming, both distributions look more similar to one another, and are now very close. The

distribution for jets from data now peaks at a value of 5 GeV, and is comparable to jets from

the MC samples that are truth-flavour tagged as uds- and c-jets. The distribution for jets from

t t̄ 2Sel , however, peaks at a value of 6 GeV, which matches those jets truth-flavour tagged as b-

or gluon-jets. Overall these results seem to indicate that b-tagged jets from t t̄ 2Sel and ATLAS

data are similar to one another, with some differences. Jets from t t̄ 2Sel seem to have a slightly

more well-defined hard-core than jets from data and are very similar to those jets that are truth-

flavour tagged as b -jets. This would suggest that b-tagged jets from this t t̄ 2Sel sample are

dominated by jets that would be truth-flavour tagged as b -jets, as would be expected from

a combination of t t̄ pair production (where 90.25 % of decays produce 2 b -jets and 9.5 % of

decays produce 1) with b-tagging applied (where 60 % of b -jets are found and other flavours

are rejected).

Those jets from data that are b-tagged seem to behave somewhere between jets from MC

simulation samples that are truth-flavour tagged as b -jets and gluon-jets. This suggests that,

despite the application of both a t t̄ event selection and b-tagging object-selection, the compos-

ition of these remaining b-tagged jets from ATLAS data involves a significant portion of non-b-

jets that are most likely gluon-jets. The results also indicate small, but noticeable contributions

from other flavours such as uds- or c-jets.

6.13.4 Soft Drop Grooming with ATLAS Data and t t̄ and Dijet MC.

In order to more thoroughly assess the results attained so far from ATLAS data, a final com-

parison was made to the MC simulation sample of dijet production events, discussed in Sec-

tion 6.2.2. First the effects of applying soft drop grooming to all b-tagged jets from this MC

sample was explored. This dijet sample has been selected with the same event- and object-

selections as t t̄ 2Sel and the ATLAS data (this selection is discussed in Section 6.3.2.

Figure 6.89(a) shows the effect of different strengths of soft drop grooming on the number

of clusters in all b-tagged jets from this dijet sample. As successively stronger soft drop groom-

ing is applied, the distribution number of clusters narrows and the peak value shifts quickly to

the minimum value of two clusters. Before grooming, this peak is at 16 clusters, but after the

application of Z cut = 0.05, the “weakest” level of grooming applied, the peak has already moved

to 2, with a second, slightly lower peak at 10 cluster. Once application of strength Z cut = 0.10

has been applied, the first peak at two clusters is by far the more dominant. This indicate that

after grooming, those jets that remain have a well-defined hard-core with those proportionally

softer clusters that were initially included being groomed away. This result looks like a mix of

the different truth-flavour tagged jets studied previously in t t̄ samples, particularly with con-

tributions from tau- or uds- jets, which are most groomed at this strength.

Figure 6.89(b) shows the effect of soft drop grooming on the mass of these jets. The effect
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Figure 6.89: The effects of different soft drop grooming strengths on number of clusters (a) and
the jet mass (b) for all b-tagged jets in the dijet MC simulation sample.

of soft drop grooming on jet mass is that the distributions become narrower and shift to lower

values of jet mass. This effect is less than that for number of clusters. This indicates, as seen

before, that the clusters removed by this grooming are soft, and are contributing proportionally

less to the mass of the jets. Before grooming is applied, the peak of the distribution is at 7 GeV.

Following the application of soft drop grooming strength Z cut = 0.10, this peak has moved to

6 GeV. As before, these results for b-tagged jets in the dijet sample, with a t t̄ selection applied,

look like a mix of the different distributions for truth-flavour tagged jets from t t̄ MC samples

Next direct comparison of these results with all b-tagged jets from ATLAS data and from

the t t̄ 2Sel MC sample was done. The first of these comparisons is shown in Figure 6.90(a).

Before grooming is applied, the distributions for number of clusters are all similar in shape. The

two MC samples peak at slightly higher values, perhaps indicating better cluster finding. The

dijet peaks at the highest value, indicating that b-tagged jets from this sample contain more

clusters. The different effects of applying soft drop grooming of strength Z cut = 0.10 is shown in

Figure 6.90(b). Applying this grooming effects the b-tagged jets in the dijet sample much more

than from the other two samples, indicating more jets with well-defined hard cores or more

soft clusters at a wide angle. Number of clusters for b-tagged jets from data are the lest effected

of the three sets, indicating jets here have less well-defined hard-cores. Jets from t t̄ 2Sel behave

very similarly to those jets truth-flavour tagged as b -jets, and therefore the composition of

these b-tagged jets from t t̄ 2Sel are likely to be mostly correctly tagged b -jets. The difference in

the other samples indicate that their compositions are not as “pure” and contain more jets that

have been “mistagged” as b -jets. Jets from data appear to behave similar to a composition of

b- and light- flavoured jets, such as gluon or uds. Jets from the dijet MC sample appear to show

attributes similar to a blend of all flavours, with some jets being very heavily groomed (similar

to tau- and uds-jets) and some less so (more similar to gluons).
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(b) Soft drop strength Z cut = 0.10

Figure 6.90: Number of clusters for all b-tagged jets from both t t̄ 2 and dijets MC simulation
samples and ATLAS data samples with no soft drop grooming applied (a) and with soft drop
grooming of strength Z cut = 0.10 applied (b).

The same comparison can be made for jet mass, see Figure 6.91(a). Before grooming is

applied, the distributions are similar in shape, but with some key differences. Jets from the

t t̄ 2Sel sample are likely to have a higher mass that those jets from dijet or data. The distribution

of t t̄ 2Sel is, once again, very similar to that of truth-flavour tagged b -jets from previous studies,

suggesting that many of these are b-tagged jets. The distribution for dijet is most different from

t t̄ 2Sel , and data, with a noticeably broader distribution and with its peak at the lowest value.

Once these jets have been groomed, the distributions for jet mass look closer, see Figure 6.91(b).

In each case, the change in jet mass is less than the change in number of clusters, indicating

that those clusters that have been groomed away were soft, and contributed proportionally

less mass to jets. Here it is harder to harder to distinguish between possible contributions from

underlying truth-flavour tagged jets, as the distributions from b-, c-, uds- and gluon-jets each

look similar, although a large contribution from tau-jets can be discounted, as their distribution

is obviously different.

6.13.5 Conclusions from Soft Drop Grooming with ATLAS Data.

In summary, these results display the the distributions for number of clusters and jet mass for

all b-tagged jets taken from t t̄ and dijet MC samples and from ATLAS data (each with a matching

t t̄ event- and object-selection applied). It was observed that these jets will behave somewhat

similarly under application of soft drop grooming, but with some key differences. Distribu-

tions for jets from t t̄ 2Sel look a lot like distributions for jets truth-flavour tagged as b -jets. This

would suggest that b-tagged jets from this t t̄ 2Sel sample are dominated by jets that would be

truth-flavour tagged as b -jets, as would be expected from a combination of t t̄ pair production

(where 90.25 % of decays produce 2 b -jets and 9.5 % of decays produce 1) withan additional t t̄
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(b) Soft drop strength Z cut = 0.10

Figure 6.91: Jet mass for all b-tagged jets from both t t̄ 2 and dijets MC simulation samples and
ATLAS data samples with no soft drop grooming applied (a) and with soft drop grooming of
strength Z cut = 0.10 applied (b).

selection and b-tagging applied (where 60 % of b -jets are found and other flavours are rejec-

ted).

Results from ATLAS data appear to lie somewhere between those for jets truth-flavour tagged

as b- and gluon-jets. This indicates that applying t t̄ selection and b-tagging has found a b -jet

rich set of jets; however, the frequency ,and subsequent mistagging, of other jet flavours, such

as gluon or light jets, is still common enough to effect the results.

Jets from the MC sample seem to behave in a way that indicates a mix of flavours. The

application of t t̄ event-selection and b-tagging is still likely to be rejecting those types that are

would not be truth-flavour tagged as b -jets, but the frequency of these other jet types must be

high enough to still contribute in a way that visibly shapes results. This is as expected, as dijet

events will be dominated by jets from light quarks and gluons.

Overall, it appears that the use of soft drop grooming on b-tagged jets from different samples

leads to some difference in results. Therefore, studying JSS observables following the applica-

tion of soft drop grooming could be a useful tool in identifying the source of jets especially

when combined with relevant event- and object-selections, such as use of traditional b-tagging

methods.
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CONCLUSIONS

Nothing has such power to broaden

the mind as the ability to investigate

systematically and truly all that

comes under thy observation in life.

Marcus Aurelius

The observation of the Higgs boson in 2012 opened the gateway to exploring and testing

new physics at the LHC. A decisive and rigorous test of the predictions of the SM will be the in-

vestigation of the Yukawa coupling between its heaviest particle, the top quark, and the Higgs

Boson. A direct measurement of this Yukawa coupling is possible in the t t̄ H production chan-

nel. Background at the LHC is dominated by multijet production, meaning the understanding

of jet physics is critical to analyses in ATLAS. The importance of jet understanding is underlined

by the nature of the Higgs decay channel with the highest branching ratio, (H → bb̄), and its

dominant background, t t̄ pair production with additional hadronic jets. All of these processes

involve significant hadronic output, and of particular importance is an understanding of b-jets.

Optimisation of jet reconstruction, both in the ATLAS trigger and in offline analyses, relies

on development of innovative techniques and processes, such as improved jet-tracking in the

trigger, and utilisation of JSS and novel grooming methods offline.

Studies of potential trigger developments, such as implementation of the FTK, are invalu-

able in illuminating pathways to potential future improvements. This is increasingly true as

accurate jet reconstruction becomes more complex due to higher levels of pile-up at the LHC.

The need to address shortcomings in traditional jet grooming algorithms, such as the hand-

ling of NGL, gives novel methods like soft drop grooming a unique advantage over the alternat-

ives.

To investigate the potential benefits of soft drop grooming, analyses were undertaken with

different strengths applied to flavour-tagged small jets, reconstructed from either calorimeter

clusters or truth particles. This process was applied to jets both from t t̄ , t t̄ H and dijet MC

simulation and from ATLAS data. Different variables from these jets, including the JSS observ-

ables number of clusters and jet mass, were analysed before and after application of soft drop
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grooming.

Both the jet mass and number of calorimeter clusters in these jets are reduced following

this grooming. Common patterns appear for each of the different jet flavours and samples

analysed, but with some key distinctions. Proportionally less jet mass is removed by soft drop

grooming than the number of clusters that are groomed away. This is due to soft drop groom-

ing removing soft, wide-angled radiation, with lower mass contributions, from these jets. Jets

with differing truth-flavour tags are affected to different extents by the same grooming strength,

revealing differences in the internal structure of the jets.

Application of soft drop grooming has a particularly strong effect on those jets flavour-

tagged as tau-jets, reflecting the prominence of prong-like structure within jets, and their con-

trast with softer components. One effect of this is the increased likelihood in tau-jets to be

groomed below two clusters – particularly 1-pronged tau . Gluons demonstrate the opposite

behaviour, only presenting changes from soft drop grooming at higher strengths. This is in-

dicative the less well-defined hard structure within the jet. Applying different strengths of soft

drop grooming reveals thresholds for the various jet flavours to be more or less affected by the

grooming.

These varying reactions to grooming can by employed to differentiate between jets of dif-

ferent origin. The first area in which this has been preliminarily successful is the distinction

between “real” and “fake” tau jets. The distinctive features shown by tau-jets also looks to be a

promising tool for improving understanding of tau-jet-finding at ATLAS. The accentuated tau-

jet features following grooming can enhance differences from other jet flavours, and may assist

in finding “lost” tau-jets, missed by traditional tagging methods. The study also looks particu-

larly at jets from gluons and jets from u, d and s quarks. Separation of these different “light” jet

flavours in these MC samples can also be improved following grooming.

An investigation into the effects of soft drop grooming on those jets truth-flavour tagged

as b-jets that have either been found or missed by traditional b-tagging methods was also un-

dertaken. These studies may inform how the use of soft-drop grooming could be used to un-

derstand the differences in these jets. This also enabled exploration of b-jets from t t̄ and t t̄ H

MC simulations. Little difference is seen in the results here, as expected, but improving under-

standing of how these jets behave under grooming will inform future studies.

Further to this, comparisons of jets constructed from truth-particles with those constructed

from calorimeter clusters are made. Applying soft drop grooming of strength Z cut = 0.05 to

cluster jets generally improves agreement with truth-particle jets, most evident in quark-jets. In

gluon-jets, however, a strong agreement before application of soft drop grooming is observed,

and they remain best ungroomed. Also demonstrated is the effects of soft drop grooming on the

truth-particle jets themselves. It is seen that they are less altered by the grooming than cluster

jets, indicating less contamination from soft-radiation. The effects of soft drop grooming on

JES and JER, is explored. What is observed is that, generally, these tend to worsen following

grooming. This is likely due to the differing effect on reconstructed jets and truth jets.
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The final analysis section makes comparisons between 2018 data from the ATLAS experi-

ment and two different MC samples: t t̄ and dijet. An additional t t̄ selection is applied before

this comparison, and all reconstructed jets b-tagged by traditional methods are studied. Fa-

miliar patterns are seen in the distributions of JSS observables, number of clusters and jet mass.

Differences in how jets from these samples behave indicate the varying composition of those

jets b-tagged from each. Jets from the t t̄ sample, t t̄ 2Sel , behave very similarly to jets that have

been truth-flavour tagged as b-jets. This is indicative of the dominance of b-jets in this sample.

Distribution from both ATLAS data and the dijet MC sample suggest a more complex composi-

tion, consisting of varying flavours of jets, some of which having been mistagged as b-jets.

Statistical uncertainty of any result gained could ultimately be improved by increasing stat-

istics – more MC sample events and more data from the ATLAS detector would lead to greater

reliability in results for both trigger and soft drop studies.

Future studies of soft drop grooming with small jets could also include more JSS variables,

potentially combined with multivariate analysis with and use of machine learning techniques

such as a BDT. This could also improve comparison of jets found through traditional tagging

methods (b-tagging or identification of τ leptons) to truth-flavour tagged jets in MC samples.

Studies on jet response could be improved by including jet calibration stages in jet reconstruc-

tion.

Ultimately, more time and further studies following these investigation will hopefully lead

to a greater understanding of the possibilities of utilising using soft drop grooming and JSS vari-

ables to improve understanding of jet reconstruction, searches for the Higgs and, therefore, the

search for physics beyond the SM.

During this thesis I have covered two analyses. I have shown that the tighter clustering

about the matched-jet centre, lead track and primary vertex in the jets built from HLT tracks is

not present in jets built from FTK tracks, and propose this is due to the global nature of FTK track-

finding. This result is much closer to results seen from the more detailed process of Offline

track-finding in events, and leads to benefits, such as more low-pT tracks being found in FTK

events than HLT events. These differences are likely to improve tracking within jets, ultimately

improving the efficiency and reliability of jet reconstruction in ATLAS. In particular, the ability

to rapidly identify b-jets has the potential to allow lower pT thresholds for jet triggers; this will

be very helpful for analyses such as H → bb̄ [202]. Improved track finding is also crucial for

countering the effects of pile-up, which will be a major challenge in the future high luminosity

running of the LHC.

I have also shown the results of my studies using the soft drop grooming method on recon-

structed jets to give further insight into the properties of jets from different origins. My studies

of tau-jets showed for the first time that the soft drop groomed jet mass can assist in improving

the purity of tau jet samples. Utilising the soft-drop jet mass alongside existing tau jet iden-

tification methods may help identification of more tau jets, whilst rejecting higher levels of

background that come with using a looser working point.
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The ability to discriminate between jets initiated by light quarks and those initiated by

gluons is a potentially powerful tool in searches for new physics. I have shown that the soft

drop jet mass has some discrimination power between light quark and gluon initiated jets.

Correctly identifying b-jets at ATLAS is of great importance, particularly in terms of Higgs

and top quark measurements. Current b-tagging methods, when implemented at a high ef-

ficiency working point, suffer from impurity mainly from misidentified c-jets. I have shown

that the soft drop jet mass is an effective new tool in distinguishing between c and b jets, with

potential for inclusion in the existing multivariate ATLAS flavour tagging methods.

I have also shown that the soft drop jet mass for b-jets is consistent for several configura-

tions across the different complex final states of t t̄ and t t̄ H , as predicted by the POWHEGMC

generator.

Finally, I have compared the number of clusters in, and the jet mass of, b-tagged jets from

ATLAS data and MC simulation samples following of application of t t̄ selection criteria and soft

drop grooming. I observed a number of key similarities and differences between these samples,

and demonstrated that soft drop grooming has potential to become a useful tool in the search

for b-jets at ATLAS.

Ultimately, this all leads to a greater understanding of jet physics in ATLAS and can aid future

searches for new physics beyond the SM.
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Figure A.1: Number of Clusters for all flavour jets, groomed with strength Z cut = 0.05, (a),
Z cut = 0.10, (b), Z cut = 0.15, (c), Z cut = 0.20, (d), Z cut = 0.25, (e), Z cut = 0.30, (f)
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Figure A.2: Jet Mass for all flavour jets, groomed with strength Z cut = 0.05, (a), Z cut = 0.10, (b),
Z cut = 0.15, (c), Z cut = 0.20, (d), Z cut = 0.25, (e), Z cut = 0.30, (f)
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(f)

Figure A.3: Jet Mass at each strength of soft drop grooming for uds-, (a), gluon-, (b), b-, (c), c-,
(d), 1-pronged tau -, (e) and 3-pronged tau -jets, (f)
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Figure B.1: Jet Mass for tau-flavour jets, groomed with strength Z cut = 0.05, (a), Z cut = 0.10, (b),
Z cut = 0.15, (c), Z cut = 0.20, (d), Z cut = 0.25, (e), Z cut = 0.30, (f)
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Figure B.2: Number of Clusters for all jets, including lost taus, groomed with strength
Z cut = 0.05, (a), Z cut = 0.10, (b), Z cut = 0.15, (c), Z cut = 0.20, (d), Z cut = 0.25, (e), Z cut = 0.30, (f)
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Figure B.3: Jet Mass for all flavour jets, including lost taus, groomed with strength Z cut = 0.05,
(a), Z cut = 0.10, (b), Z cut = 0.15, (c), Z cut = 0.20, (d), Z cut = 0.25, (e), Z cut = 0.30, (f)
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Figure B.4: Number of Clusters for all jets, including lost taus, groomed with strength
Z cut = 0.05, (a), Z cut = 0.10, (b), Z cut = 0.15, (c), Z cut = 0.20, (d), Z cut = 0.25, (e), Z cut = 0.30, (f)
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Figure B.5: Jet Mass for all flavour jets, including lost taus, groomed with strength Z cut = 0.05,
(a), Z cut = 0.10, (b), Z cut = 0.15, (c), Z cut = 0.20, (d), Z cut = 0.25, (e), Z cut = 0.30, (f)



210 Appendix B

Number of Clusters

F
ra

ct
io

n 
of

 lo
st

 ta
us

 J
et

s

0

0.05

0.1

0.15

0.2

0.25

0.3

ungroomed
=0.05cutz
=0.10cutz
=0.15cutz
=0.20cutz
=0.25cutz
=0.30cutz

ungroomed
=0.05cutz
=0.10cutz
=0.15cutz
=0.20cutz
=0.25cutz
=0.30cutz

ungroomed
=0.05cutz
=0.10cutz
=0.15cutz
=0.20cutz
=0.25cutz
=0.30cutz

ungroomed
=0.05cutz
=0.10cutz
=0.15cutz
=0.20cutz
=0.25cutz
=0.30cutz

ungroomed
=0.05cutz
=0.10cutz
=0.15cutz
=0.20cutz
=0.25cutz
=0.30cutz

ungroomed
=0.05cutz
=0.10cutz
=0.15cutz
=0.20cutz
=0.25cutz
=0.30cutz

ungroomed
=0.05cutz
=0.10cutz
=0.15cutz
=0.20cutz
=0.25cutz
=0.30cutz

ATLAS Simulation
 R=0.4 lost taus jetstanti-k

tt
8YTHIA + POWHEGP

Number of Clusters

0 5 10 15 20 25 30 35 40

R
at

io
 w

ith
 s

of
te

r 
gr

oo
m

in
g

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
ungroomed

=0.05cutz
=0.10cutz
=0.15cutz
=0.20cutz
=0.25cutz
=0.30cutz

ungroomed
=0.05cutz
=0.10cutz
=0.15cutz
=0.20cutz
=0.25cutz
=0.30cutz

ungroomed
=0.05cutz
=0.10cutz
=0.15cutz
=0.20cutz
=0.25cutz
=0.30cutz

ungroomed
=0.05cutz
=0.10cutz
=0.15cutz
=0.20cutz
=0.25cutz
=0.30cutz

ungroomed
=0.05cutz
=0.10cutz
=0.15cutz
=0.20cutz
=0.25cutz
=0.30cutz

ungroomed
=0.05cutz
=0.10cutz
=0.15cutz
=0.20cutz
=0.25cutz
=0.30cutz

ungroomed
=0.05cutz
=0.10cutz
=0.15cutz
=0.20cutz
=0.25cutz
=0.30cutz

(a)

Jet mass [GeV]

F
ra

ct
io

n 
of

 lo
st

 ta
us

 J
et

s

0

0.05

0.1

0.15

0.2

0.25

ungroomed
=0.05cutz
=0.10cutz
=0.15cutz
=0.20cutz
=0.25cutz
=0.30cutz

ungroomed
=0.05cutz
=0.10cutz
=0.15cutz
=0.20cutz
=0.25cutz
=0.30cutz

ungroomed
=0.05cutz
=0.10cutz
=0.15cutz
=0.20cutz
=0.25cutz
=0.30cutz

ungroomed
=0.05cutz
=0.10cutz
=0.15cutz
=0.20cutz
=0.25cutz
=0.30cutz

ungroomed
=0.05cutz
=0.10cutz
=0.15cutz
=0.20cutz
=0.25cutz
=0.30cutz

ungroomed
=0.05cutz
=0.10cutz
=0.15cutz
=0.20cutz
=0.25cutz
=0.30cutz

ungroomed
=0.05cutz
=0.10cutz
=0.15cutz
=0.20cutz
=0.25cutz
=0.30cutz

ATLAS Simulation
 R=0.4 lost taus jetstanti-k

tt
8YTHIA + POWHEGP

Jet mass [GeV]

0 5 10 15 20 25 30 35 40

R
at

io
 w

ith
 s

of
te

r 
gr

oo
m

in
g

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
ungroomed

=0.05cutz
=0.10cutz
=0.15cutz
=0.20cutz
=0.25cutz
=0.30cutz

ungroomed
=0.05cutz
=0.10cutz
=0.15cutz
=0.20cutz
=0.25cutz
=0.30cutz

ungroomed
=0.05cutz
=0.10cutz
=0.15cutz
=0.20cutz
=0.25cutz
=0.30cutz

ungroomed
=0.05cutz
=0.10cutz
=0.15cutz
=0.20cutz
=0.25cutz
=0.30cutz

ungroomed
=0.05cutz
=0.10cutz
=0.15cutz
=0.20cutz
=0.25cutz
=0.30cutz

ungroomed
=0.05cutz
=0.10cutz
=0.15cutz
=0.20cutz
=0.25cutz
=0.30cutz

ungroomed
=0.05cutz
=0.10cutz
=0.15cutz
=0.20cutz
=0.25cutz
=0.30cutz

(b)

Figure B.6: Jet Mass at each strength of soft drop grooming for lost taus
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Figure B.7: Number of Clusters for all jets, including lost taus, groomed with strength
Z cut = 0.05, (a), Z cut = 0.10, (b), Z cut = 0.15, (c), Z cut = 0.20, (d), Z cut = 0.25, (e), Z cut = 0.30, (f)
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Figure B.8: Jet Mass for all flavour jets, including lost taus, groomed with strength Z cut = 0.05,
(a), Z cut = 0.10, (b), Z cut = 0.15, (c), Z cut = 0.20, (d), Z cut = 0.25, (e), Z cut = 0.30, (f)
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Figure B.9: Number of Clusters for all jets, including lost taus, groomed with strength
Z cut = 0.05, (a), Z cut = 0.10, (b), Z cut = 0.15, (c), Z cut = 0.20, (d), Z cut = 0.25, (e), Z cut = 0.30, (f)



214 Appendix B

Jet mass [GeV]

 
 lo

st
 ta

us
F

ra
ct

io
n 

of
 J

et
s

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

lost taus
uds
gluon
b
c

lost taus
uds
gluon
b
c

lost taus
uds
gluon
b
c

lost taus
uds
gluon
b
c

lost taus
uds
gluon
b
c

ATLAS Simulation
 R=0.4 jetst=0.05 anti-kcutz

tt
8YTHIA + POWHEGP

Jet mass [GeV]

0 5 10 15 20 25 30 35 40

R
at

io
 w

ith
 lo

st
 ta

us
 je

ts

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
lost taus
uds
gluon
b
c

lost taus
uds
gluon
b
c

lost taus
uds
gluon
b
c

lost taus
uds
gluon
b
c

lost taus
uds
gluon
b
c

(a)

Jet mass [GeV]

 
 lo

st
 ta

us
F

ra
ct

io
n 

of
 J

et
s

0

1

2

3

4

5

6

lost taus
uds
gluon
b
c

lost taus
uds
gluon
b
c

lost taus
uds
gluon
b
c

lost taus
uds
gluon
b
c

lost taus
uds
gluon
b
c

ATLAS Simulation
 R=0.4 jetst=0.10 anti-kcutz

tt
8YTHIA + POWHEGP

Jet mass [GeV]

0 5 10 15 20 25 30 35 40

R
at

io
 w

ith
 lo

st
 ta

us
 je

ts

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
lost taus
uds
gluon
b
c

lost taus
uds
gluon
b
c

lost taus
uds
gluon
b
c

lost taus
uds
gluon
b
c

lost taus
uds
gluon
b
c

(b)

Jet mass [GeV]

 
 lo

st
 ta

us
F

ra
ct

io
n 

of
 J

et
s

0

1

2

3

4

5

6

7

lost taus
uds
gluon
b
c

lost taus
uds
gluon
b
c

lost taus
uds
gluon
b
c

lost taus
uds
gluon
b
c

lost taus
uds
gluon
b
c

ATLAS Simulation
 R=0.4 jetst=0.15 anti-kcutz

tt
8YTHIA + POWHEGP

Jet mass [GeV]

0 5 10 15 20 25 30

R
at

io
 w

ith
 lo

st
 ta

us
 je

ts

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
lost taus
uds
gluon
b
c

lost taus
uds
gluon
b
c

lost taus
uds
gluon
b
c

lost taus
uds
gluon
b
c

lost taus
uds
gluon
b
c

(c)

Jet mass [GeV]

 
 lo

st
 ta

us
F

ra
ct

io
n 

of
 J

et
s

0

1

2

3

4

5

6

7

8

9

lost taus
uds
gluon
b
c

lost taus
uds
gluon
b
c

lost taus
uds
gluon
b
c

lost taus
uds
gluon
b
c

lost taus
uds
gluon
b
c

ATLAS Simulation
 R=0.4 jetst=0.20 anti-kcutz

tt
8YTHIA + POWHEGP

Jet mass [GeV]

0 5 10 15 20 25 30

R
at

io
 w

ith
 lo

st
 ta

us
 je

ts

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
lost taus
uds
gluon
b
c

lost taus
uds
gluon
b
c

lost taus
uds
gluon
b
c

lost taus
uds
gluon
b
c

lost taus
uds
gluon
b
c

(d)

Jet mass [GeV]

 
 lo

st
 ta

us
F

ra
ct

io
n 

of
 J

et
s

0

2

4

6

8

10

lost taus
uds
gluon
b
c

lost taus
uds
gluon
b
c

lost taus
uds
gluon
b
c

lost taus
uds
gluon
b
c

lost taus
uds
gluon
b
c

ATLAS Simulation
 R=0.4 jetst=0.25 anti-kcutz

tt
8YTHIA + POWHEGP

Jet mass [GeV]

0 5 10 15 20 25 30

R
at

io
 w

ith
 lo

st
 ta

us
 je

ts

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
lost taus
uds
gluon
b
c

lost taus
uds
gluon
b
c

lost taus
uds
gluon
b
c

lost taus
uds
gluon
b
c

lost taus
uds
gluon
b
c

(e)

Jet mass [GeV]

 
 lo

st
 ta

us
F

ra
ct

io
n 

of
 J

et
s

0

2

4

6

8

10

12

14

lost taus
uds
gluon
b
c

lost taus
uds
gluon
b
c

lost taus
uds
gluon
b
c

lost taus
uds
gluon
b
c

lost taus
uds
gluon
b
c

ATLAS Simulation
 R=0.4 jetst=0.30 anti-kcutz

tt
8YTHIA + POWHEGP

Jet mass [GeV]

0 5 10 15 20 25 30

R
at

io
 w

ith
 lo

st
 ta

us
 je

ts

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
lost taus
uds
gluon
b
c

lost taus
uds
gluon
b
c

lost taus
uds
gluon
b
c

lost taus
uds
gluon
b
c

lost taus
uds
gluon
b
c

(f)

Figure B.10: Jet Mass for all flavour jets, including lost taus, groomed with strength Z cut = 0.05,
(a), Z cut = 0.10, (b), Z cut = 0.15, (c), Z cut = 0.20, (d), Z cut = 0.25, (e), Z cut = 0.30, (f)
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Figure B.11: Number of Clusters at each strength of soft drop grooming for real and fake taus
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Figure B.12: Jet Mass at each strength of soft drop grooming for real and fake taus
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Figure B.13: Number of Clusters for tau-flavour jets, groomed with strength Z cut = 0.05, (a),
Z cut = 0.10, (b), Z cut = 0.15, (c), Z cut = 0.20, (d), Z cut = 0.25, (e), Z cut = 0.30, (f), all normalised
to the number of real taus for each prong value.
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Figure B.14: Jet Mass for tau-flavour jets, groomed with strength Z cut = 0.05, (a), Z cut = 0.10, (b),
Z cut = 0.15, (c), Z cut = 0.20, (d), Z cut = 0.25, (e), Z cut = 0.30, (f), all normalised to the number of
real taus for each prong value.
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Figure C.1: Number of Clusters for quark- and gluon-flavour jets, groomed with strength
Z cut = 0.05, (a), Z cut = 0.10, (b), Z cut = 0.15, (c), Z cut = 0.20, (d), Z cut = 0.25, (e), Z cut = 0.30, (f),
all normalised to the number of uds jets.
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Figure C.2: Jet Mass for quark- and gluon-flavour jets, groomed with strength Z cut = 0.05, (a),
Z cut = 0.10, (b), Z cut = 0.15, (c), Z cut = 0.20, (d), Z cut = 0.25, (e), Z cut = 0.30, (f), all normalised
to the number of uds jets.
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Figure C.3: Number of Clusters for quark- and gluon-flavour jets, groomed with strength
Z cut = 0.05, (a), Z cut = 0.10, (b), Z cut = 0.15, (c), Z cut = 0.20, (d), Z cut = 0.25, (e), Z cut = 0.30, (f),
all normalised to the number of uds jets.
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Figure C.4: Jet Mass for quark- and gluon-flavour jets, groomed with strength Z cut = 0.05, (a),
Z cut = 0.10, (b), Z cut = 0.15, (c), Z cut = 0.20, (d), Z cut = 0.25, (e), Z cut = 0.30, (f), all normalised
to the number of uds jets.
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Figure D.1: Number of Clusters for tagged and untagged b-jets, groomed with strength
Z cut = 0.05, (a), Z cut = 0.10, (b), Z cut = 0.15, (c), Z cut = 0.20, (d), Z cut = 0.25, (e), Z cut = 0.30, (f),
all normalised to the number of tagged b jets.
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Figure D.2: Jet Mass for tagged and untagged b-jets, groomed with strength Z cut = 0.05, (a),
Z cut = 0.10, (b), Z cut = 0.15, (c), Z cut = 0.20, (d), Z cut = 0.25, (e), Z cut = 0.30, (f), all normalised
to the number of tagged b jets.
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Figure D.3: Number of Clusters for tagged and untagged b-jets, groomed with strength
Z cut = 0.05, (a), Z cut = 0.10, (b), Z cut = 0.15, (c), Z cut = 0.20, (d), Z cut = 0.25, (e), Z cut = 0.30, (f),
all normalised to the number of tagged b jets.
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Figure D.4: Jet Mass for tagged and untagged b-jets, groomed with strength Z cut = 0.05, (a),
Z cut = 0.10, (b), Z cut = 0.15, (c), Z cut = 0.20, (d), Z cut = 0.25, (e), Z cut = 0.30, (f), all normalised
to the number of tagged b jets.
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Figure D.5: Number of Clusters for tagged and untagged b-jets, groomed with strength
Z cut = 0.05, (a), Z cut = 0.10, (b), Z cut = 0.15, (c), Z cut = 0.20, (d), Z cut = 0.25, (e), Z cut = 0.30, (f),
all normalised to the number of tagged b jets.
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Figure D.6: Jet Mass for tagged and untagged b-jets, groomed with strength Z cut = 0.05, (a),
Z cut = 0.10, (b), Z cut = 0.15, (c), Z cut = 0.20, (d), Z cut = 0.25, (e), Z cut = 0.30, (f), all normalised
to the number of tagged b jets.
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Figure D.7: Number of Clusters for tagged and untagged b-jets, groomed with strength
Z cut = 0.05, (a), Z cut = 0.10, (b), Z cut = 0.15, (c), Z cut = 0.20, (d), Z cut = 0.25, (e), Z cut = 0.30, (f),
all normalised to the number of tagged b jets.



232 Appendix D

Jet mass [GeV]

 
 th

is
 fl

av
F

ra
ct

io
n 

of
 J

et
s

0

0.02

0.04

0.06

0.08

0.1

uds
gluon
b
c
tau (1p)
tau (3p)

uds
gluon
b
c
tau (1p)
tau (3p)

uds
gluon
b
c
tau (1p)
tau (3p)

uds
gluon
b
c
tau (1p)
tau (3p)

uds
gluon
b
c
tau (1p)
tau (3p)

uds
gluon
b
c
tau (1p)
tau (3p)

ATLAS Simulation
 R=0.4 jetst=0.05 anti-kcutz

tt
8YTHIA + POWHEGP

Jet mass [GeV]

0 5 10 15 20 25 30 35 40

R
at

io
 w

ith
 b

 je
ts

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
uds
gluon
b
c
tau (1p)
tau (3p)

uds
gluon
b
c
tau (1p)
tau (3p)

uds
gluon
b
c
tau (1p)
tau (3p)

uds
gluon
b
c
tau (1p)
tau (3p)

uds
gluon
b
c
tau (1p)
tau (3p)

uds
gluon
b
c
tau (1p)
tau (3p)

(a)

Jet mass [GeV]

 
 th

is
 fl

av
F

ra
ct

io
n 

of
 J

et
s

0
0.02

0.04
0.06

0.08
0.1

0.12

0.14
0.16
0.18

0.2

uds
gluon
b
c
tau (1p)
tau (3p)

uds
gluon
b
c
tau (1p)
tau (3p)

uds
gluon
b
c
tau (1p)
tau (3p)

uds
gluon
b
c
tau (1p)
tau (3p)

uds
gluon
b
c
tau (1p)
tau (3p)

uds
gluon
b
c
tau (1p)
tau (3p)

ATLAS Simulation
 R=0.4 jetst=0.10 anti-kcutz

tt
8YTHIA + POWHEGP

Jet mass [GeV]

0 5 10 15 20 25 30 35 40

R
at

io
 w

ith
 b

 je
ts

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
uds
gluon
b
c
tau (1p)
tau (3p)

uds
gluon
b
c
tau (1p)
tau (3p)

uds
gluon
b
c
tau (1p)
tau (3p)

uds
gluon
b
c
tau (1p)
tau (3p)

uds
gluon
b
c
tau (1p)
tau (3p)

uds
gluon
b
c
tau (1p)
tau (3p)

(b)

Jet mass [GeV]

 
 th

is
 fl

av
F

ra
ct

io
n 

of
 J

et
s

0

0.05

0.1

0.15

0.2

0.25

0.3

uds
gluon
b
c
tau (1p)
tau (3p)

uds
gluon
b
c
tau (1p)
tau (3p)

uds
gluon
b
c
tau (1p)
tau (3p)

uds
gluon
b
c
tau (1p)
tau (3p)

uds
gluon
b
c
tau (1p)
tau (3p)

uds
gluon
b
c
tau (1p)
tau (3p)

ATLAS Simulation
 R=0.4 jetst=0.15 anti-kcutz

tt
8YTHIA + POWHEGP

Jet mass [GeV]

0 5 10 15 20 25 30

R
at

io
 w

ith
 b

 je
ts

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
uds
gluon
b
c
tau (1p)
tau (3p)

uds
gluon
b
c
tau (1p)
tau (3p)

uds
gluon
b
c
tau (1p)
tau (3p)

uds
gluon
b
c
tau (1p)
tau (3p)

uds
gluon
b
c
tau (1p)
tau (3p)

uds
gluon
b
c
tau (1p)
tau (3p)

(c)

Jet mass [GeV]

 
 th

is
 fl

av
F

ra
ct

io
n 

of
 J

et
s

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

uds
gluon
b
c
tau (1p)
tau (3p)

uds
gluon
b
c
tau (1p)
tau (3p)

uds
gluon
b
c
tau (1p)
tau (3p)

uds
gluon
b
c
tau (1p)
tau (3p)

uds
gluon
b
c
tau (1p)
tau (3p)

uds
gluon
b
c
tau (1p)
tau (3p)

ATLAS Simulation
 R=0.4 jetst=0.20 anti-kcutz

tt
8YTHIA + POWHEGP

Jet mass [GeV]

0 5 10 15 20 25 30

R
at

io
 w

ith
 b

 je
ts

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
uds
gluon
b
c
tau (1p)
tau (3p)

uds
gluon
b
c
tau (1p)
tau (3p)

uds
gluon
b
c
tau (1p)
tau (3p)

uds
gluon
b
c
tau (1p)
tau (3p)

uds
gluon
b
c
tau (1p)
tau (3p)

uds
gluon
b
c
tau (1p)
tau (3p)

(d)

Jet mass [GeV]

 
 th

is
 fl

av
F

ra
ct

io
n 

of
 J

et
s

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

uds
gluon
b
c
tau (1p)
tau (3p)

uds
gluon
b
c
tau (1p)
tau (3p)

uds
gluon
b
c
tau (1p)
tau (3p)

uds
gluon
b
c
tau (1p)
tau (3p)

uds
gluon
b
c
tau (1p)
tau (3p)

uds
gluon
b
c
tau (1p)
tau (3p)

ATLAS Simulation
 R=0.4 jetst=0.25 anti-kcutz

tt
8YTHIA + POWHEGP

Jet mass [GeV]

0 5 10 15 20 25 30

R
at

io
 w

ith
 b

 je
ts

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
uds
gluon
b
c
tau (1p)
tau (3p)

uds
gluon
b
c
tau (1p)
tau (3p)

uds
gluon
b
c
tau (1p)
tau (3p)

uds
gluon
b
c
tau (1p)
tau (3p)

uds
gluon
b
c
tau (1p)
tau (3p)

uds
gluon
b
c
tau (1p)
tau (3p)

(e)

Jet mass [GeV]

 
 th

is
 fl

av
F

ra
ct

io
n 

of
 J

et
s

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

uds
gluon
b
c
tau (1p)
tau (3p)

uds
gluon
b
c
tau (1p)
tau (3p)

uds
gluon
b
c
tau (1p)
tau (3p)

uds
gluon
b
c
tau (1p)
tau (3p)

uds
gluon
b
c
tau (1p)
tau (3p)

uds
gluon
b
c
tau (1p)
tau (3p)

ATLAS Simulation
 R=0.4 jetst=0.30 anti-kcutz

tt
8YTHIA + POWHEGP

Jet mass [GeV]

0 5 10 15 20 25 30

R
at

io
 w

ith
 b

 je
ts

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
uds
gluon
b
c
tau (1p)
tau (3p)

uds
gluon
b
c
tau (1p)
tau (3p)

uds
gluon
b
c
tau (1p)
tau (3p)

uds
gluon
b
c
tau (1p)
tau (3p)

uds
gluon
b
c
tau (1p)
tau (3p)

uds
gluon
b
c
tau (1p)
tau (3p)

(f)

Figure D.8: Jet Mass for tagged and untagged b-jets, groomed with strength Z cut = 0.05, (a),
Z cut = 0.10, (b), Z cut = 0.15, (c), Z cut = 0.20, (d), Z cut = 0.25, (e), Z cut = 0.30, (f), all normalised
to the number of tagged b jets.
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Figure D.9: Number of Clusters for tagged and untagged b-jets, groomed with strength
Z cut = 0.05, (a), Z cut = 0.10, (b), Z cut = 0.15, (c), Z cut = 0.20, (d), Z cut = 0.25, (e), Z cut = 0.30, (f),
all normalised to the number of tagged b jets.
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Figure D.10: Jet Mass for tagged and untagged b-jets, groomed with strength Z cut = 0.05, (a),
Z cut = 0.10, (b), Z cut = 0.15, (c), Z cut = 0.20, (d), Z cut = 0.25, (e), Z cut = 0.30, (f), all normalised
to the number of tagged b jets.
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Figure D.11: Number of Clusters for tagged and untagged b-jets, groomed with strength
Z cut = 0.05, (a), Z cut = 0.10, (b), Z cut = 0.15, (c), Z cut = 0.20, (d), Z cut = 0.25, (e), Z cut = 0.30, (f),
all normalised to the number of tagged b jets.
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Figure D.12: Jet Mass for tagged and untagged b-jets, groomed with strength Z cut = 0.05, (a),
Z cut = 0.10, (b), Z cut = 0.15, (c), Z cut = 0.20, (d), Z cut = 0.25, (e), Z cut = 0.30, (f), all normalised
to the number of tagged b jets.
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Figure E.1: NCLUS for t t̄ H jets of different flavours
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Figure E.2: Jet mass for t t̄ H jets of different flavours
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Figure E.3: Jet mass for ungroomed t t̄ H and t t̄ jets of different flavours
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Figure E.4: Jet mass for t t̄ H and t t̄ jets of different flavours with soft drop grooming of strength
Z cut = 0.10 applied
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Figure E.5: Sample comparison of Number of Clusters for groomed b-jets in t t̄ H and t t̄
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Figure E.6: Sample comparison of jet mass for groomed b-jets in t t̄ H and t t̄
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Figure E.7: Sample comparison of Number of Clusters for groomed b-jets in t t̄ H and t t̄
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Figure E.8: Sample comparison of jet mass for groomed b-jets in t t̄ H and t t̄
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Figure F.1: Jet Response of ungroomed uds-, (a), gluon-, (b), b-, (c), c-, (d), 1-pronged tau -, (e)
and 3-pronged tau -jets, (f)
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Figure F.2: Jet Response of ungroomed uds-, (a), gluon-, (b), b-, (c), c-, (d), 1-pronged tau -, (e)
and 3-pronged tau -jets, (f)
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Figure F.3: Jet Response of SDb0z1 uds-, (a), gluon-, (b), b-, (c), c-, (d), 1-pronged tau -, (e) and
3-pronged tau -jets, (f)
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Figure F.4: Jet Response of groomed uds-, (a), gluon-, (b), b-, (c), c-, (d), 1-pronged tau -, (e) and
3-pronged tau -jets, (f)
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Figure F.5: Mean Jet Response of ungroomed uds-, (a), gluon-, (b), b-, (c), c-, (d), 1-pronged
tau -, (e) and 3-pronged tau -jets, (f)
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Figure F.6: Jet Response of SDb0z1 uds-, (a), gluon-, (b), b-, (c), c-, (d), 1-pronged tau -, (e) and
3-pronged tau -jets, (f)
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