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A history of the universe in primordial black holes

Primordial black holes (PBHs) are a unique type of astrophysical object. Formed
in the early universe but persisting to the present day, they offer an incredible
probe for studying the physics of both the early and late universe. Additionally,
they provide a natural dark matter candidate without requiring physics beyond
the standard model, although there are many constraints on the fraction they can
contribute across a broad range of PBH masses.

In this thesis, PBHs are studied at both early and late times. Their forma-
tion from large overdensities is examined and choices in the calculation of their
abundance are considered. These choices are shown to have a limited effect on the
PBH abundance and mass distribution, although they will become important in
the future. Additionally, robust constraints on the primordial power spectrum are
calculated for present and future detections.

The detailed shape of the PBH mass distribution is important for constrain-
ing the population. Fitting late universe observables with the mass distribution
calculated from the power spectrum would be computationally expensive, so it is
necessary to use simple parametrisations that capture the underlying shape. A num-
ber of these parametrisations are tested against the numerical calculation, and it
is found that two of these consistently outperform the often-assumed lognormal, at
the cost of an extra fitting parameter.

Finally, the possibility that PBHs could explain the LIGO merger events is stud-
ied by applying a detailed model of the PBH merger rate and the detection prob-
ability of the LIGO instrument. Distributions of the merger rate are produced
for a number of observables, indicating that the mass ratio could be an important
quantity for distinguishing between astrophysical and primordial black hole mergers.
A simple statistical test is carried out to demonstrate that PBHs can explain the
totality of the LIGO events, with an appropriate abundance and mass distribution.
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Chapter 1

Introduction

This thesis concerns the study of primordial black holes (PBHs) as a dark matter

candidate and a probe of the early universe on small scales, as well as a poten-

tial explanation for the gravitational waves seen by the LIGO–Virgo collaboration.

Chapter 1 presents a broad overview of the relevant background for this thesis.

Section 1.1 considers modern cosmology, the need for inflation, and the method of

characterising early universe physics with the primordial power spectrum. A dis-

cussion of PBH formation and properties is given in section 1.2, contrasted with

equivalent information about astrophysical black holes in section 1.3. Finally, see

section 1.4 for an introduction to gravitational wave sources and their detection.

Chapters 2–4 contain the research carried out for this thesis. In chapter 2,

we consider the formation of PBHs from inflation, including a detailed calculation

of the PBH mass distribution and robust constraints on the power spectrum. In

chapter 3, we extend our study of the PBH mass distribution, considering its shape

and demonstrating the need for accurate models for use in Markov Chain Monte

Carlo (MCMC) analyses. Finally, chapter 4 considers the possibility of PBH mergers

providing the signals detected by the LIGO–Virgo collaboration, demonstrating that

PBHs can explain all 10 events in the O1O2 catalogue, and that the mass ratio may

be a significant observable in distinguishing between primordial and astrophysical

mergers. Throughout this thesis we set c = 1.
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1.1 Cosmology, inflation, and the power spectrum

1.1.1 Hot big bang cosmology

Any work in modern cosmology must begin with Einstein’s general theory of relativ-

ity [1]. The calculation of gravitational interactions in this theory ultimately begins

with the spacetime metric gµν . The application of this theory to the entire uni-

verse relies on the cosmological principle: the universe is homogeneous and isotropic

on large scales. Homogeneity means that the universe is the same everywhere, and

isotropy means that the universe looks the same in every direction. These postulates

have been shown to hold by simulation and observation [2,3], although there is some

uncertainty about the scale below which homogeneity breaks down [4–6]. In terms

of the metric, the cosmological principle forces the spatial shape to be one of three

choices: flat, spherical, or hyperbolic. Additionally, it ensures that the temporal part

of the metric can have no coordinate dependence, and that the spatial part can only

grow or shrink with time. This leads to the Friedmann-Lemaître-Robertson-Walker

(FLRW) metric, whose line element ds2 is

ds2 = dt2 − a2(t)
[ 1
1−Kr2 dr2 + r2(dθ2 + sin2 dφ2)

]
, (1.1)

where t, r, θ, and φ are the temporal and spatial coordinates, K describes the spatial

curvature and a(t) is the scale factor. Application of the Einstein equations using

this metric leads to the conclusion that the universe is expanding. A key result of this

analysis is that the early universe was very hot, before cooling as it expanded. This

led to the prediction of the cosmic microwave background (CMB), whose discovery

cemented the “big bang” theory as the standard cosmological model.
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1.1.2 The cosmic microwave background

The cosmic microwave background (CMB) is one of the oldest and most studied of

all cosmological signals. Predicted in 1948 by Gamow, Alpher, and Herman [7, 8],

its discovery in 1965 by Penzias and Wilson1 [10] was a turning point in the path

to modern cosmology, and it provides information on the content and history of our

universe to the present day. The CMB comes from the epoch of recombination, the

point at which the universe cooled enough to allow neutral hydrogen to form. Before

this point, continual scattering with charged particles made the universe opaque to

photons. After the formation of hydrogen atoms, the universe became transparent

and the photons could decouple from the other particles and travel freely through

space. These photons constitute the CMB, and represent the furthest back in time

the universe can be studied using electromagnetic radiation.

Before recombination, the photons were in thermal equilibrium with the other

particles, which gives the CMB a blackbody spectrum. Since its emission in the early

universe, the CMB photons have been redshifted, which corresponds to a reduction

of the blackbody temperature. The CMB temperature today is 2.735± 0.06 K [11],

which provides information on when recombination happened. However, there could

be deviations to the blackbody spectrum caused by processes that affect the thermal

equilibrium before recombination. These are known as spectral distortions, and

are relevant when considering the formation of very heavy primordial black holes

(see chapter 2). Additionally, the CMB shows very small anisotropies that provide

information about the early universe, as well as the components of the universe such

as dark matter and dark energy [12].

While the prediction and discovery of the CMB provided clear evidence for the

big bang theory, it also presented a problem in the uniformity of the blackbody

across the sky. This suggests that the whole universe was in thermal equilibrium at

the epoch of recombination. However, application of the traditional big bang theory
1The CMB had previously been detected in 1941 by Andrew McKellar who measured the coldest

temperature in interstellar space as 2.3 K using CN doublet excitation lines, although this was not
identified as the CMB temperature until much later [9].
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implies that at this time only small patches of the universe would be in thermal

equilibrium. This was termed the horizon problem, and demonstrated that the big

bang model must be modified to create a period when the whole universe was in

thermal equilibrium.

1.1.3 Cosmic inflation

In the 15 years following the discovery of the CMB, two additional problems were

identified with the big bang theory: the flatness problem and the monopole problem.

The flatness problem arises from the observation that the density of the universe is

very close to the critical density required to make the universe spatially flat [13].

According to big bang cosmology, the expansion of the universe causes an increase in

spatial curvature, implying that to achieve the flatness observed today, the universe

must have begun in a highly fine-tuned state of flatness. The monopole problem is

based on the fact that Grand Unified Theories (GUTs) are expected to produce a

significant density of magnetic monopoles. However, no such monopoles have been

observed, necessitating a method to reduce their density throughout the universe.

To solve all of these problems, a period of exponential expansion in the very early

universe was posited by a number of people in the early 1980s, termed inflation by

Alan Guth [14–18]. Problems in this theory were alleviated independently by a

number of groups, in what became known as new inflation [19–21]. This exponen-

tial period pushes different parts of space out of causal contact, drives the spatial

curvature to flat, and reduces the density of monopoles by rapidly increasing the

volume of space they inhabit. Therefore, the inflationary theory elegantly solves the

horizon, flatness, and monopole problems.

The most commonly used inflationary scenario introduces a scalar field φ, known

as the inflaton, minimally coupled to gravity through the Einstein-Hilbert action,

S =
∫

d4x
√
−g

[
M2

P

2 R + Lφ

]
, (1.2)
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where g is the determinant of the metric, MP is the reduced Planck mass, R is the

Ricci scalar and Lφ is the inflaton Lagrangian, given by

Lφ = 1
2∂µφ∂

µφ− V (φ), (1.3)

where ∂µ = ∂
∂xµ

and V (φ) is the inflaton potential. In eqs. (1.2) and (1.3) we use the

mostly negative metric signature corresponding to the line element given in eq. (1.1).

During inflation, the inflaton dominates the energy density of the universe, so other

fields in the action have been ignored. Extremisation of this action leads to the

usual Friedmann equations,

H2 = 1
3M2

P

ρ, (1.4)

Ḣ = − 1
2M2

P

(ρ+ P ), (1.5)

where H = ȧ/a is the Hubble parameter, ρ is the background energy density, P is

the background pressure and a dot indicates a derivative with respect to time. As

stated above, the energy density and pressure are dominated by the inflaton field

during inflation, and can be written in terms of the inflaton field and its potential

as

ρ = 1
2 φ̇

2 + V (φ), (1.6)

P = 1
2 φ̇

2 − V (φ). (1.7)

The action also gives the equation for the dynamics of the inflaton field,

φ̈+ 3Hφ̇+ ∂φV = 0, (1.8)

typically referred to as the (coupled) Klein-Gordon equation for the inflaton.
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The inflaton potential is the part of this model that determines how inflation

works. The main goal of inflation is to produce a period of exponential expansion

long enough to explain the cosmological problems discussed above. Recalling the

definition of the Hubble parameter

H = ȧ

a
= d ln(a)

dt , (1.9)

where a is the scale factor, it is clear that exponential expansion can be achieved if

H is constant. Comparing to eq. (1.5), this corresponds to P = −ρ, which can be

realised if the kinetic energy can be neglected compared to the potential energy in

eqs. (1.6) and (1.7). This leads to the slow-roll approximation, where the φ̈ term in

eq. (1.8) can be neglected, corresponding to an overdamped system.

Of great importance during inflation are the causal (or particle) horizon and the

Hubble horizon. The causal horizon describes the maximum distance from which a

particle travelling at the speed of light could have reached the observer at the current

time, while the Hubble horizon is the boundary between objects moving away from

the observer slower or faster than the speed of light. If two objects are separated by

a causal horizon larger than the Hubble horizon, they are said to be out of causal

contact, and cannot interact with one another. During inflation, the Hubble horizon

is constant, while the expansion of the universe grows the causal horizon, leading

to objects that were once in causal contact becoming causally separated from one

another. This is how inflation solves the horizon problem.

The inflationary dynamics are commonly studied through the first two quantities

in the Hubble hierarchy,

εH = − Ḣ

H2 , (1.10)

ηH = ˙εH
εHH

. (1.11)
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In the slow-roll approximation, these reduce to simpler forms derived from the in-

flaton potential,

εH = εV , (1.12)

ηH = −2ηV + 4εV , (1.13)

with

εV = M2
P

2

(
∂φV

V

)2

, (1.14)

ηV = M2
P

∂2
φV

V
. (1.15)

These parameters control the expansion rate and duration of inflation respectively.

To be in the slow-roll regime, εV << 1 and |ηV | << 1. Care must be taken to use

the general definitions εH and ηH in cases where inflation leaves the slow-roll regime,

as is required for the production of primordial black holes.

In addition to solving the horizon, flatness, and monopole problems, inflation

provides a means to explain the overdensities that seed large scale structure, through

the medium of quantum perturbations on top of the background evolution described

above. The magnitude and scale of these overdensities are typically considered using

the primordial power spectrum.

1.1.4 The primordial power spectrum

The quantum fluctuations that seed large scale structure can be treated as pertur-

bations of the inflaton field,

φ(x, t) = φ(t) + δφ(x, t). (1.16)
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Adding this perturbation to the action and carrying out the extremisation at second

order gives the equation of motion for the field perturbations,

δ̈φ+ 3H ˙δφ− 1
a2 ∇2δφ+ ∂2

φV δφ = 0. (1.17)

It is common to express these equations in Fourier space, allowing different k modes

to be decoupled. This gives

δ̈φ+ 3H ˙δφ+ k2

a2 δφ+ ∂2
φV δφ = 0. (1.18)

Since these perturbations are random, their effect must be considered in a statistical

manner. This is done using the correlation of the perturbations at two different

spatial positions, but at equal times. In Fourier space, this is identified with the

power spectrum Pδφ(k, t), defined by

〈δφ(k, t)δφ(k′, t)〉 = 2π2

k3 Pδφ(k, t)δ(k + k′), (1.19)

where δ(k + k′) is a Dirac delta function.

While Pδφ is a relevant quantity during inflation, it becomes less convenient

afterwards, when the inflaton has decayed into other fields. Therefore, it is necessary

to construct a parameter that describes these overdensities after the end of inflation.

This is done by considering each perturbation to be a separate FLRW universe with

a curvature K, more commonly parametrised in terms of the curvature perturbation

ζ as

ds2 = dt2 − a2(t)e2ζdx2. (1.20)

The curvature perturbation is an improvement over the inflaton perturbation, but it

is still problematic in that it is a gauge variant quantity. To overcome this, a gauge

invariant version can be determined. This is known as the comoving curvature
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perturbation, and is related to the curvature perturbation by

R = ζ + δρ

3(ρ+ P ) . (1.21)

In the comoving gauge, δρ = 0 and hence R = ζ. Additionally, in the super-horizon

regime, where the causal horizon at scale k is larger than the Hubble horizon, δρ can

be neglected and the two definitions are again equivalent. Therefore, it is common

to see R and ζ used interchangeably, as is done throughout this thesis.

Converting eq. (1.18) to this variable gives the equation of motion for R,

R̈+ (3 + ηH)HṘ+ k2

a2R = 0, (1.22)

known as the Mukhanov-Sasaki equation [22, 23]. The comoving curvature pertur-

bation power spectrum is then defined as for the inflaton perturbation,

〈R(k, t)R(k′, t)〉 = 2π2

k3 PR(k, t)δ(k + k′). (1.23)

The time dependence of this power spectrum is not important, since we only care

about the impact these perturbations have on the evolution of the universe long after

inflation. In slow-roll, this late-time effect is fixed by the phenomenon of freeze-out,

where the evolution stops once the causal horizon at a scale k overtakes the horizon

corresponding to the scale of the Hubble parameter H. Therefore, the late-time

perturbations are described by the power spectrum evaluated at freeze-out,

PR(k) = PR(k, t)|k=aH . (1.24)

When not in slow-roll, such as in the ultra-slow-roll phase described in section 1.2.1,

freeze-out does not necessarily apply and the power spectrum must be evaluated

after the end of the non-slow-roll phase, i.e.

PR(k) = PR(k, t > tend). (1.25)
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Observation of the CMB anisotropies provides a measurement of this power

spectrum on large scales of PR(k) ≈ 2 × 10−9 with a very mild k dependence.

However, no such measurements exist on smaller scales, allowing freedom for the

power spectrum to grow to much larger values, potentially generating interesting

observables, or objects such as primordial black holes.

1.2 Primordial black holes

Primordial black holes (PBHs) [24–26] inhabit a unique position in both cosmology

and astrophysics. Their formation in the early universe (see section 1.2.1) allows

them to act as a probe of the physics at these times. However, the no-hair the-

orem states that information about the formation of a black hole is lost, and the

resulting black hole can be described in terms of only three parameters: its mass,

spin, and electric charge [27–29]. This means that PBHs in the late universe are

only distinguishable from black holes formed from stars by these three properties

(see section 1.2.2). PBHs also have the potential to explain some or all of the dark

matter content of the universe, characterised through fPBH, the fraction of dark

matter in the form of PBHs. Constraints on this fraction cover a broad range of

masses, and are discussed in section 1.2.3. The detection of binary black hole merger

events by the LIGO–Virgo collaboration (LVC) over the last 6 years has renewed

interest in PBHs, due to the observation of some properties not trivially explained

by astrophysics [30–35].

1.2.1 Formation mechanisms

Collapse of inflationary overdensities

The most commonly studied mechanism for forming PBHs is the collapse of large

overdensities generated by the inflaton perturbations. These overdensities are char-

acterised by the density contrast δ = δρ
ρ
, where δρ is the local change in pressure
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relative to ρ, the background density2. If the density contrast exceeds a critical

value δc, then a PBH will be formed. This critical value is very large, so it is quite

improbable to achieve a density contrast large enough to form a PBH. To connect

this back to the inflationary physics discussed in sections 1.1.3 and 1.1.4 the variable

δ must be related to the comoving curvature perturbation R, which is done using

eq. (C.1). In standard slow-roll inflation, the power spectrum for the comoving

curvature perturbation R is approximately constant at PR ∼ 10−9, and no PBHs

form. To generate even a single PBH in a Hubble volume, the power spectrum

must grow to PR > 10−3, as can be seen in fig. 2.6. As discussed in section 1.1.4,

there are no measurements on the small scales relevant to PBHs, although there are

some constraints, as can be seen in fig. 2.5. For a given power spectrum, there is

a well-defined procedure for obtaining the PBH abundance and mass distribution,

described in section 2.2, where there is also a discussion of the different choices and

how they affect the final result.

To grow the power spectrum to the amplitudes required for PBHs to form re-

quires going beyond slow-roll inflation. An enhancement of the power spectrum

at a scale k corresponds to the inflaton spending more time at that scale than at

other scales. This means the inflaton must slow down, and so this period is re-

ferred to as ultra-slow-roll (USR). Typically, USR inflation is realised by modifying

the inflaton potential V (φ) to become much shallower at the relevant scales, by

including a feature such as an inflection point or even a short period where the po-

tential increases [36–41]. This type of potential is shown in fig. 1.1. It has recently

been shown that USR can also be realised by increasing the inflaton velocity with

a steeper potential before slowing it back down to the original velocity, since the

quick transition is what is required to obtain USR [42].
2Often, the compaction function C is used, which acts as a smoothed version of δ.
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V (φ)

φ

SR
USR

Figure 1.1: Inflaton potential V (φ) with an ultra-slow-roll (USR) period. The infla-
ton begins in a slow-roll (SR) phase, generating the power spectrum on CMB scales.
It then passes through a plateau, causing a phase of USR and power spectrum
growth, before speeding up again to end the inflationary period.

If there is primordial non-Gaussianity, the distribution of δ may be skewed to-

wards higher values, making PBH formation more probable. Since the PBH abun-

dance is exponentially sensitive to the overdensities, even a small amount of non-

Gaussianity can significantly increase the population of PBHs.

While inflaton perturbations is the most studied method to produce PBHs and

is the one considered throughout this thesis, there are a number of alternative for-

mation scenarios.

Alternative formation scenarios

There are a number of mechanisms to form PBHs that do not involve the inflaton

perturbations, and hence would evade the requirement of a large power spectrum

amplitude. These include, but are not limited to, multi-field inflation, collapse of

cosmic strings, bubble wall collisions, scalar condensate collapse, and collapse of

domain walls. See [43] for a review of these methods.
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Equation of state effects

A change in the equation of state can affect the critical density δc, and hence the

abundance of PBHs. Any reduction in pressure will enhance the PBH abundance on

the relevant scales. Such a reduction would be provided by a phase transition, either

a non-standard model transition that creates a period of early matter domination

[44], or standard model cases such as the QCD phase transition, which enhances

the production of PBHs with masses of order the solar mass [45]. Alternatively, a

period of early matter domination can be realised as part of the reheating phase

after inflation [46].

1.2.2 Physical properties

The no-hair theorem ensures that in the late universe long after their formation,

PBHs are mathematically identical to any other black hole, i.e. their behaviour

depends only on their mass and spin3. Even so, PBHs can behave very differently

to astrophysical black holes, in terms of the mass and spin values they can have.

Mass

The mass of a PBH can be significantly different to that of an astrophysical black

hole in a number of ways. As described in section 1.3.1, astrophysical black hole

formation is complex, and there are suggestions of two gaps in their allowed masses.

On the contrary, PBH formation is much simpler, and there are no disallowed regions

in their mass distribution. Additionally, the degeneracy pressure that prevents the

collapse of stars into black holes is not present when PBHs form, meaning that while

an astrophysical black hole could never have a mass smaller than M�, a PBH could

form with a mass as little as 10−18 M� and still persist to the present day. These are

important distinctions, as significant evidence of compact objects in the astrophysi-

cal mass gaps or strong evidence of a single compact object with m < M� could be
3In principle the electric charge can also be important, but electromagnetic repulsion prevents

black holes from forming with significant charge, and any charge attained by accretion of charged
particles would quickly neutralise by attraction of particles of the opposite charge.
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“smoking gun” evidence for PBHs. A few mass gap objects have been observed by

the LVC [32–34], although these could be attributed to second generation mergers.

No sub-solar mass objects have been observed so far [47–49], although these are

computationally challenging to discover and there are ways to obtain mergers with

non-detectable sub-solar mass components [50].

The PBH mass distribution ψ is a central theme of this thesis. A good description

of ψ is essential for determining the behaviour of PBHs and how they relate to

late-time observables and constraints, and also for tracking back those constraints

to their formation and hence to constraints on the power spectrum. The precise

method of calculating the mass distribution is a matter of some discussion, with a

number of choices affecting the result. These choices are considered in chapter 2,

where we demonstrate that the differences are currently unimportant, although as

more accurate constraining mechanisms become available, they will have to be taken

into account.

One thing that is universally agreed upon is that the initial mass m of a PBH

follows a critical scaling in the density contrast,

m = KMH(δ − δc)γ, (1.26)

where K and γ are constant scaling factors, δc is the critical overdensity required

to form a PBH and MH is the mass contained within the Hubble horizon at the

formation time. This critical collapse ensures that, while there may be a maximum

PBH mass determined by the position and shape of the peak in the power spec-

trum, the mass can extend to arbitrarily small values, creating an enhancement of

the low-mass tail of the mass distribution. This is examined in chapter 3, where

we demonstrate that the commonly used lognormal model for the PBH mass dis-

tribution fails to describe the shape when critical collapse dominates, and propose

some alternative models that may match the numerical mass distribution better for

narrow as well as broad power spectrum widths.
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There is an assumption inherent in the above reasoning, which is that the PBH

mass distribution does not change between the formation time and the late uni-

verse. One obvious case where this will not be true is if accretion is significant for

PBHs. This has been considered for a number of years [51–53], and has the effect of

skewing the mass distribution to heavier masses, although there are still a number

of uncertainties in the result.

Spin

Much like the mass, the PBH spin is expected to be quite different to that of

astrophysical black holes. While the collapse of stars is expected to produce a black

hole with a very large spin, the formation of PBHs instead predicts a very small

spin [54–57]. This is an important result, and could act as a discriminator between

astrophysical and primordial black holes for measurements such as the LVC merger

events [58,59]. The LIGO instrument is sensitive to a combination of the spins called

the effective spin parameter χeff, and the LVC has found that the vast majority of

merger events have χeff posteriors consistent with zero [30, 35]. As with the mass,

the potential effect of accretion will cause the PBH spins to increase significantly

away from zero [60].

Clustering

Constraints on PBHs in the late universe typically assume that they are not clus-

tered, i.e. that they follow a Poissonian spatial distribution. Whether any clustering

would alleviate or tighten constraints has been a matter of debate, but it is now

universally agreed that PBHs formed from inflaton perturbations should be unclus-

tered if the initial perturbations are Gaussian in nature [61–66]. In the case of

non-Gaussianity, or clustering after formation, there are significant implications for

late-time observables such as the merger rate [67–74]
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1.2.3 Constraints

The abundance of PBHs, or equivalently the fraction of dark matter they constitute,

fPBH, can be constrained by a number of techniques that span the entire range of

masses they could have. The constraints fall into two categories: those for PBHs

that evaporated before the present day, and constraints for PBHs that have not yet

evaporated. While only the second category of PBHs is of interest as an explanation

of dark matter, evaporated PBHs can still provide useful constraints on the early

universe physics when they formed, particularly the amplitude of the primordial

power spectrum. Constraints on evaporated PBHs are focused on examining their

effect on early universe events, such as Big Bang nucleosynthesis (BBN) and the

CMB, and their contribution to energetic backgrounds, such as those for γ-rays and

cosmic rays.

For non-evaporated PBHs, there are many more methods to apply constraints

that vary depending on the mass being observed. Firstly, low mass PBHs will still be

evaporating, and will have constraints from the γ-ray and cosmic ray backgrounds.

This provides a steeply sloped constraint below 10−16 M�. Between 10−10 M� and

M�, the dominant constraints are from lensing searches, looking for compact objects

passing in front of background sources. These provide a constraint of fPBH . 10−2.

Between 102 M� and 105 M�, the lack of CMB anisotropies caused by PBH accretion

provides an extremely tight constraint of fPBH . 10−8. From 105 M� to 1010 M�,

the dominant constraints mostly come from dynamical effects, based on encounters

between PBHs and other astrophysical objects. These encounters subdivide into

collisions, pass-bys that disrupt orbits or cause tidal disruption depending on the

mass of the PBH, and PBHs clustering together due to dynamical friction. Most

constraints in this mass range give fPBH . 10−3, although dynamical friction reaches

down to 10−4. At the largest masses, there are constraints from ensuring that cosmic

structures do not form too early due to the presence of PBHs. This gives a constraint

of fPBH . 10−3 at 1011 M�. Finally, there is a constraint from binary black hole

merger events observed by the LVC, which gives fPBH . 10−2 at ∼ 102 M� and from
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the non-detection of sub-solar mass mergers, giving fPBH . 10−1 at ∼ 10−1–1 M�.

Potential constraints in the 1–102 M� range are discussed in [43] but are not shown in

fig. 1.2. With future detectors and upgrades to the existing detectors, gravitational

waves will provide a significantly tighter constraint compared to the other methods

in this mass range. It should be noted that many of these constraints are subject

to astrophysical uncertainties or assumptions that may be incorrect (see [43] for

further discussion of the assumptions and uncertainties inherent in each constraint),

and some have appeared and disappeared over time. Recently, a window has opened

up between 10−16 M� and 10−10 M� in which PBHs could constitute the entirety

of the dark matter [75]. The tightest constraints from each method are shown in

fig. 1.2.
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Figure 1.2: Constraints on fPBH for PBHs that have not evaporated by the present
day. Evaporation constraints are shown in red, lensing constraints in orange, gravi-
tational wave constraints in yellow, constraints from accretion in green, constraints
from dynamical effects in blue and constraints from cosmic structure in purple. Data
from [43] and references therein.



18

This is not quite the whole story, as there are also constraints that can be applied

to PBHs through other effects caused by a large power spectrum amplitude. These

fall into two categories: spectral distortions in the CMB, and a contribution to the

stochastic gravitational-wave background from scalar-induced gravitational waves

(SIGWs). These effects are discussed in chapter 2, and show that PBHs cannot

form with masses greater than ∼ 104 M�. Future constraints will be even more

prescriptive, and will rule out the possibility of PBHs across the entire late-time

mass range, apart from two small windows at ∼ 10−16 M� and ∼ 10−4 M�.

Constraints on fPBH are typically presented for a monochromatic PBH mass

distribution, i.e. all PBHs have the same mass. This is not possible to generate in

practice, due to the effects of critical collapse ensuring an extended mass distribution

even for a delta function peak in the power spectrum (which is itself unphysical).

Therefore, the effect of moving to an extended mass distribution has been studied

[76, 77], showing that the constraints can change, typically broadening them, and

hence closing windows that are open when considering the monochromatic case. For

an extensive review of all the constraining mechanisms for fPBH, as well as other

discussion about the constraints, see [43].

1.3 Astrophysical black holes

While primordial black holes are still hypothetical, there is clear evidence that some

form of black hole exists in the universe. The only emission directly from a black hole

is Hawking radiation, which is extremely difficult to observe. Therefore, black holes

must be detected through mediating effects [78]. These can be broadly classified as

gravitational effects (modification of the orbits of stars around the black hole [79],

gravitational waves [80]) and signals from matter surrounding the black hole (X-ray

emission from the accretion disk [81], Event Horizon Telescope image [82]). These

detected black holes are typically assumed to have formed astrophysically, from the

collapse of heavy stars at the end of their life cycles.
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1.3.1 Formation and mass gaps

There are three types of black holes predicted or known to exist. At the heavy

end are supermassive black holes (SMBHs), with m & 105 M�. These are believed

to inhabit the centre of all galaxies, and form by accretion onto seeds from the

earliest stars, although there are some problems growing these seeds quickly enough

to explain very distant SMBHs [83, 84]. From ∼ 102–105 M� are the intermediate

mass black holes (IMBHs), candidates of which have been detected in our galaxy

and nearby galaxies [33, 85–87]. Finally, and of most interest to this thesis, are

stellar-mass black holes, with masses ∼ 1–100 M�.

Astrophysical black holes are formed at the end of the stellar life cycle. When a

star runs out of light elements to fuse, the radiation pressure falls off, and the stellar

matter is no longer supported against the gravitational effects of its mass. The star

then collapses in on itself, creating a region of very high density. For heavy stars,

the outer layers of stellar matter are typically ejected in a supernova event, and a

stellar remnant is left behind. The mass of this remnant will be significantly smaller

than the mass of the original star before collapse. Below a certain mass, known

as the Tolman-Oppenheimer-Volkoff (TOV) limit [88], the degeneracy pressure be-

tween free neutrons is enough to prevent further gravitational collapse. However,

if the remnant exceeds the TOV limit, then nothing can prevent the gravitational

collapse and a black hole will be formed. There are many uncertainties regarding

the behaviour of these stellar remnants, so the TOV limit is not precisely known.

Recent calculations place it at ∼ 2.3 M� [89, 90], but there are claimed detections

of heavier neutron stars [91,92].

Through observational and theoretical means, it has been suggested that the

stellar-mass black hole distribution may have two gaps: a lower one between the

heaviest neutron star and the lightest black hole (∼ 2.5–5 M�), and an upper one at

∼ 50–150 M�. As stated above, there are many uncertainties about stellar remnants

close to the TOV limit, but observational evidence from X-ray binaries has implied

the existence of the lower mass gap [93–95], although it has been suggested that
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systematic errors could remove the evidence [96], or that the objects in this gap

may be unobservable with the techniques applied so far [97]. The upper mass gap

is motivated by more theoretical arguments. As the star collapses, pair production

(the creation of a particle and its corresponding antiparticle) happens very efficiently,

destabilising the star [98]. This ends in one of two ways, depending on the mass

of the helium core in the star. If the helium core is ∼ 30–64 M�, then the stellar

matter pulses, shedding mass until stability can be reached again. This is known

as a pulsational pair-instability supernova [99–104], and leads to a reduced stellar

remnant mass, and hence a reduced black hole mass. If the helium core is ∼ 64–

135 M�, then the destabilisation incurred by pair-production is so large that it causes

the entire star to be ripped apart. This is known as a pair-instability supernova

[105–107], and leaves no stellar remnant behind, and hence no black hole. The

combination of these two effects leads to the upper gap in the black hole mass

distribution. The LVC has detected objects that fall into each of these mass gaps

[33,34], although it is possible that these objects are the result of previous mergers,

such as the remnant object produced from the binary neutron star event GW170817

[108].

1.3.2 Binaries

Astrophysical binary black holes (BBHs) can form in two ways. In highly dense

environments, such as globular clusters, binaries can form from the encounter of

two independently formed black holes [109, 110]. This is referred to as dynamical

formation, and is aided by dynamical friction causing black holes to sink to the

centre of the clusters. These binaries are also subject to scattering with other black

holes or binaries due to the high density of these objects, the importance of which

is discussed below.

The other way of producing a BBH is through the common envelope scenario,

where each star in a binary star system becomes a black hole in turn [111,112]. This

process is more complicated than dynamical formation, as it is tied to the stellar
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evolution as well as the black hole physics. The dynamics are described by the Roche

lobe of the two stars, and mass transfer between them by Roche lobe overflow. The

Roche lobe describes the area that contains all material gravitationally bound to a

star in a binary system. At the end of a heavy star’s life, it will expand and its

size will exceed its Roche lobe, at which point mass will start to transfer to the

companion in the binary. If the companion cannot accrete matter fast enough, then

the two Roche lobes will merge and form a common envelope of matter around both

stars. Each of the stars will then accrete matter in turn until they collapse into

black holes.

One property of both these methods is that the resulting BBHs will have sim-

ilar masses [113]. In the common envelope scenario, this is because the stars that

eventually form the black holes are sharing the same surrounding matter, leading

to an equilibrium in the masses. For the dynamical formation mechanism, one

might imagine that there is no preferred mass ratio, since the binaries are formed by

chance encounters. However, since the black holes collect due to dynamical friction,

the most massive ones fall to the centre first, followed by smaller and smaller ones

in turn. This means that the black holes that form binaries tend to be of similar

masses. Additionally, the highly dense environment means that scattering is com-

mon, either with another binary or a single black hole. These scattering events tend

to exchange black holes between binaries, favouring the formation of binaries with

similar mass black holes.

1.4 Gravitational waves

Gravitational waves are propagating solutions of the Einstein equations. First pro-

posed by Heaviside in 1893 by analogy to the electromagnetic waves that arise

from Maxwell’s equations [114], they were formalised and named as “gravitational
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waves” by Poincaré in 1905 based on the Lorentz transformations4 [115], and finally

derived explicitly from Einstein’s general theory of relativity in 1916 [119]. Doubts

about the physical reality of these solutions persisted for decades, with even Einstein

switching sides multiple times. By the late 1950s, it was generally accepted that the

solutions were physical, and work began on detecting them, beginning with Weber

bars [120,121] and culminating in the modern gravitational wave detectors and the

first detection by LIGO in 2015 [80]. See [122] for a comprehensive discussion of the

history of gravitational waves.

1.4.1 Gravitational wave sources

Gravitational waves can be produced by a number of astrophysical mechanisms, and

typically fall into three categories: transient, continuous, and stochastic. Transient

signals appear for a short time and then disappear again, continuous signals are

approximately constant in frequency and persist over a very long time period, and

the stochastic background is the result of the superposition of many high redshift

sources that are impossible to resolve individually. Of interest to this thesis are

transient signals from compact binary coalescences and the stochastic background.

Compact binary mergers

Transient signals from compact binary mergers are the most discussed gravitational

wave signals at the moment, thanks to the LVC detections [30, 35]. These signals

are produced from the final stages of the orbit and subsequent coalescence of two

compact objects. The signal is split into three phases: inspiral, merger, and ring-

down. The inspiral phase occurs as the components orbit each other, moving closer

together as they lose energy by the emission of the gravitational waves. This leads

to a distinctive signal known as a “chirp”, characterised by an increase in frequency

and amplitude as the components near each other and speed up. There is a mass
4Poincaré actually wrote two articles with the same title: the first in June 1905 [115], followed

by a significantly extended version written in July 1905 and published in January 1906 [116].
Both include the term “gravitational wave”, and downplay the significance of their results to the
developing field of relativity as minor additions to Lorentz’s 1904 paper [117,118].
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scale associated with this phase known as the chirp mass, which can be written in

terms of the component masses m1 and m2, as

M = (m1m2) 3
5

(m1 +m2) 1
5
, (1.27)

and can also be approximately related to the gravitational wave frequency f and its

time derivative ḟ as

M≈
( 5

96π
− 8

3f−
11
3 ḟ
) 3

5
. (1.28)

Being directly related to the gravitational wave frequency, this is often the best-

constrained mass scale for a merger event. When the surfaces of the compact ob-

jects touch, the merger phase begins, as the two components coalesce into one final

remnant object. This happens very quickly and produces the strongest gravitational

waves. Afterwards, there is a ringdown phase, during which the remnant object re-

leases excess energy and settles into its final state. These phases provide information

on the properties of the final remnant object, and can be used to test the general

theory of relativity by comparing the remnant properties predicted from the inspi-

ral phase with those determined from the merger and ringdown phases. Figure 1.3

shows the waveform for the LIGO merger event GW150914, with the chirp effect

clearly visible.

The compact objects involved in binary merger events can be black holes, neu-

tron stars, or white dwarfs. Mergers involving white dwarfs are outside the frequency

band of current detectors, so compact binary mergers can only fall into three cat-

egories: binary black holes (BBHs), binary neutron stars (BNSs), and a mixed

neutron star–black hole merger (NSBH). Distinguishing between the categories is

typically done using a combination of the chirp mass and the tidal deformability. A

chirp mass M . 2 M� is assumed to be a BNS, M & 4.5 M� is assumed to be a

BBH, and any other events are considered as NSBHs [30]. Tidal deformability mea-

sures how much the shape of the compact object changes due to the gravitational
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forces imparted by its companion. Black holes should have zero tidal deformability,

whereas neutron stars will deform shortly before the merger phase [108]. Detection

of an electromagnetic counterpart also indicates that at least one of the component

objects must be a neutron star, as in the case of GW170817 [123].

Figure 1.3: Waveform of the gravitational wave emitted by the inspiral, merger,
and ringdown of the binary black hole coalescence GW150914 detected by the LVC.
Image adapted from [80].

Stochastic background

The stochastic gravitational wave background (SGWB) is produced by all the signals

that are unable to be individually detected. There are many possible contributions

to the SGWB, both astrophysical and cosmological. The astrophysical background

includes binary mergers, non-spherical gravitational collapse, and unstable rapidly

rotating objects such as neutron stars. The cosmological background contributions

are more hypothetical, and typically represent a departure from standard cosmology.

These include details of the inflationary and reheating phases, phase transitions, and

cosmic strings. The primary component of interest to this thesis are scalar-induced

gravitational waves (SIGWs) arising from large amplitudes of the primordial power

spectrum [124–126], which are also required for the production of PBHs.
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A non-detection of the SGWB at a certain amplitude is an indication that any

potential contributions producing such an amplitude cannot exist. For SIGWs, this

allows constraints to be placed on the primordial power spectrum amplitude. How-

ever, the opposite statement is not quite so simple. If a signal is detected, it may arise

from a number of possible components, either astrophysical or cosmological, and

distinguishing between components can be complicated. An excess of gravitational

waves was recently observed by the NANOGrav collaboration using the method of

pulsar timing arrays [127] (see section 1.4.2 for details of how this method works). If

this were an SGWB sourced by SIGWs, it would imply a power spectrum amplitude

large enough that there would be an associated PBH production [128–130].

1.4.2 Gravitational wave detectors

The detection of gravitational waves is often categorised as either direct or indirect.

A direct detector searches for the effect of the local passing of a gravitational wave,

while an indirect detection is found by examining the properties of astrophysical

objects that emit gravitational waves. The first claimed detections of gravitational

waves were made by Weber in 1968 and 1969 using a Weber bar, an example of

a resonant antenna [120, 121]. However, issues regarding the rate of energy loss

from the galactic centre were raised, and future attempts by other groups failed to

reproduce the results [122]. A more robust detection was made in 1979 using an

indirect method. In 1974, Hulse and Taylor discovered a binary system consisting

of a neutron star and a pulsar. Doppler shifting of the radio signals emitted by

the pulsar allowed the orbital properties of the binary to be determined, showing a

decay of the orbit consistent with the energy lost by the emission of gravitational

waves [131]. Most modern gravitational wave detectors utilise interferometry or

pulsar timing arrays. These methods are described in the following sections.
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Interferometry and the LIGO–Virgo collaboration

Interferometry is a technique that has been used in physics for over a century. This

method involves splitting light with a well-defined wavelength into two beams that

travel over different paths, then measuring the phase shift caused by the differ-

ent optical path lengths (OPLs) once the beams have been recombined. The first

interferometer was constructed by Michelson in 1881 as a means to detect the lu-

miniferous æther [132], and later used in the famous Michelson–Morley experiment

of 1887 [133]. This type of interferometer consists of two arms that are perpendicular

to each other, with a beam splitter at the intersection of the two arms and mirrors

at the other ends. Initially designed to observe the changing speed of light moving

either perpendicular or parallel to the æther, this mechanism is also sensitive to a

change in the length of the arms, such as that caused by a passing gravitational

wave.

The application of interferometry to gravitational wave detection was first sug-

gested by Gertenshtěın and Putsovǒıt in 1962 [134], and again by Braginskĭı in

1966 [135], although neither of these suggestions were acted upon. A number of

groups independently had the same idea, and began building prototypes in the

1970s, notably Forward and Weiss [122]. This method then grew in popularity as

larger and larger interferometers were funded and constructed, leading to the world-

wide network of detectors in use today. The method is identical to the Michelson

interferometer, but with the change in OPL sourced by a different phenomenon. As

a gravitational wave passes, it stretches space in one direction and shrinks it in the

perpendicular direction. Shortly afterwards, the stretched and shrunk directions

swap as a different part of the gravitational wave moves past. For the interferom-

eter, this results in one arm being longer than the other, and hence a phase shift

when the light is recombined. To develop an observable signal, the OPL must be

approximately a quarter of the wavelength of the gravitational wave, which requires
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extremely long arms (∼750 km for binary mergers of stellar-mass compact objects).

This is obviously infeasible to construct, so the light is cycled up and down the arms

many times to produce the required OPL.

The most famous interferometer detector is of course the Laser Interferometer

Gravitational-wave Observatory (LIGO) in the USA, funded in 1988, with construc-

tion beginning in 1994. This consists of two detectors, at Hanford, Washington and

Livingston, Louisiana, each of which is a Michelson interferometer with 4 km arms.

These detectors are ∼3000 km apart, such that there is a significant time difference

between the arrival of a gravitational wave at each detector. This helps to ensure

that the signal is astrophysical rather than terrestrial, and also allows the source to

be localised, although not with great precision. This localisation can be improved

with the addition of more detectors across a larger area. The first of these additional

detectors is the Virgo detector, located at Santo Stefano a Macerata in Italy, and

consisting of 2 km arms. The significant improvement in localisation provided by

this additional detector can be seen by comparing the GW170814 event to previ-

ous events detected only by the LIGO detectors [136]. These two collaborations are

jointly referred to as the LIGO–Virgo collaboration (LVC), and have released details

of 50 gravitational wave candidates, comprising BBH and BNS mergers, as well as

some unclassified events [30, 35]. The detections from the first two observing runs

and notable events from the O3a run are shown in fig. 1.4.

More detectors will allow better localisation and classification of signals, as well

as the detection of weaker sources by combining the signals from multiple detec-

tors. The KAGRA detector is located in the Kamioka mine in Japan, and has 3 km

arms. It began operation in February 2020, and combined with LIGO and Virgo

has detected two mixed NSBH mergers [138]. A further detector known as LIGO-

India is planned to be set up in Aundha Nagnath, India, moved from the LIGO

Hanford site where there are currently two identical detectors. This will greatly
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improve source localisation, improving the chances of successfully carrying out elec-

tromagnetic follow-up observations, which will open up multimessenger studies of

astrophysical phenomena [139,140].

Figure 1.4: Binary merger events detected by the LIGO–Virgo Collaboration. Previ-
ous detections of black holes and neutron stars by electromagnetic means are shown
in purple and yellow. The events shown here are from the first two observing runs
(O1 and O2), as well as notable events from the O3a run, including three that have
constituents in or close to one of the astrophysical mass gaps. Image from [137].

Pulsar timing arrays

An alternative method to detect gravitational waves comes from the timing of pul-

sars. Pulsars are rapidly rotating compact objects (mostly neutron stars) with

strong magnetic fields. The rotating magnetic field leads to the emission of electro-

magnetic beams from the poles of the pulsar. If the earth is in the path of these

beams, pulsars are observable as a series of pulses of electromagnetic radiation at

fixed time intervals. As discussed above, pulsars will lose energy by the emission

of gravitational waves and their rotation will slow. However, on shorter timescales,

they can be treated as having a constant period and can therefore be used as precise
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clocks. If a gravitational wave from another source passes between the pulsar and

the earth, the time between subsequent pulses will be modified slightly, analogous

to the changing length of the arms in an interferometric detector. Once the period

of a pulsar is known, this tiny deviation can be detected and used to infer the ex-

istence of the passing gravitational wave. However, there are many astrophysical

uncertainties that make this process complicated. To overcome this, observers can

look for a signal that appears in many pulsars by correlating the individual signals

together. Combining many pulsars in this way is described as a pulsar timing array

(PTA) [141–143].

There are three main collaborations currently applying the PTA technique to

search for gravitational waves. These are the Parkes Pulsar Timing Array (PPTA),

the European Pulsar Timing Array (EPTA), and the North American Nanohertz

Observatory for Gravitational waves (NANOGrav) collaboration. The three groups

have also collaborated under the name International Pulsar Timing Array (IPTA),

which also includes the planned Indian Pulsar Timing Array (InPTA). Additional

projects are also in the works [144]. It must be made clear that the gravitational

waves detected using this method are not those produced by the pulsars themselves,

but unrelated ones passing between the pulsars and the earth. The requirement

of correlating many pulsars means that the gravitational wave signals must last

long enough to be seen multiple times. There are a number of sources potentially

detectable by this method, but in this thesis the stochastic background is of primary

concern. As discussed in section 1.4.1, constraints can be placed on the primordial

power spectrum via the mechanism of SIGWs. Constraints from the NANOGrav

collaboration are shown in fig. 2.5.

Future detectors

If the current state of gravitational wave detectors is exciting, then the future is

even more bright, with a plethora of ground- and space-based detectors utilising

interferometric and PTA techniques proposed or planned for the next few decades
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ready to significantly improve the amount of gravitational wave signals and the

science based on them. Although many are yet to receive funding, the number of

proposals indicates the interest in the field and the likelihood of future projects

receiving funding.

Two proposed ground-based interferometer detectors are the Einstein Telescope

(ET) and the LIGO Cosmic Explorer (CE), both of which hope to begin observations

in the 2030s at frequencies similar to the current LIGO band. The ET will have

10 km arms in a triangular setup and the CE will have 40 km arms in the traditional

L-shape. These will be sensitive to the same signals as the current interferometer

detectors such as LIGO, but with greatly enhanced sensitivity [145,146]. A further

ground-based detector is the Square Kilometer Array (SKA). This is a large radio

telescope project with many science goals, including the detection of gravitational

waves using the PTA method [147]. Construction is scheduled for the end of 2021.

Moving to space offers a number of benefits for gravitational wave detection, par-

ticularly the removal of many noise sources produced terrestrially. Many detectors

have been proposed (all utilising interferometry), most notably the Laser Interferom-

eter Space Antenna (LISA), which is funded and is planned to launch in 2034 [148].

This consists of three arms arranged in an equilateral triangle, with an approximate

arm length of 2.5× 106 km. This will primarily probe the mergers of compact bina-

ries at the massive and supermassive scales, as well as the stochastic gravitational

background [149]. Other proposed interferometric space-based detectors include the

Japanese DECIGO [150] and the Chinese TianQin [151] and Taiji [152].

These future detectors will have the ability to confirm or deny the existence of

PBHs across virtually the entire un-evaporated mass range, as described in chapter 2

(see fig. 2.6).
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Chapter 2

The power spectrum on small

scales: robust constraints and

comparing PBH methodologies

Andrew D. Gow1, Christian T. Byrnes1, Philippa S. Cole1, and Sam Young2

1) Department of Physics and Astronomy, University of Sussex, Brighton BN1 9QH, United

Kingdom

2) Max Planck Institute for Astrophysics, Karl-Schwarzschild-Strasse 1, 85748 Garching bei

Muenchen, Germany

We compare primordial black hole (PBH) constraints on the power spectrum and

mass distributions using the traditional Press–Schechter formalism, peaks theory,

and a recently developed version of peaks theory relevant to PBHs. We show that,

provided the PBH formation criteria and the power spectrum smoothing are treated

consistently, the constraints only vary by ∼ 10% between methods (a difference that

will become increasingly important with better data). Our robust constraints from

PBHs take into account the effects of critical collapse, the non-linear relation between

ζ and δ, and the shift from the PBH mass to the power spectrum peak scale. We

show that these constraints are remarkably similar to the pulsar timing array (PTA)

constraints impacting the black hole masses detected by LIGO and Virgo, but that
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the µ-distortion constraints rule out supermassive black hole (SMBH) formation and

potentially even the much lighter mass range of ∼ (1–100) M� that LIGO–Virgo

probes.

2.1 Introduction

Primordial black holes (PBHs) could have formed in the early universe from the

collapse of density perturbations [24–26]. Although there are no confirmed detec-

tions of PBHs, there are tentative hints for their existence and in particular a lot of

recent interest has focused on whether the Laser Interferometer Gravitational-wave

Observatory (LIGO) has detected PBHs [153, 154]. Assuming that PBHs formed

from the collapse of large amplitude perturbations shortly after horizon entry dur-

ing radiation domination, there is an approximate one-to-one relation between the

scale at which the primordial power spectrum has a large amplitude peak and the

mass of PBHs that form. See [43,155,156] for reviews.

In order for PBHs to form, the amplitude of the power spectrum must become

orders of magnitude larger than the value of 2 × 10−9 measured on large scales,

e.g. via observations of the cosmic microwave background (CMB) [157]. Precisely

how much larger it must become is a matter of active research, with significantly

differing values being quoted in the literature, typically varying between O(10−3)

and O(10−2) with values at the lower end quoted in e.g. [158, 159]. O(10−1) values

have also been considered in e.g. [160]. Since the power spectrum amplitude is only

logarithmically sensitive to the allowed energy density fraction of PBHs, this varia-

tion has little to do with the different PBH masses or constraints being considered

and instead is primarily due to differences in the theoretical techniques being used

to relate the power spectrum amplitude to the abundance of PBHs. Primordial

non-Gaussianity also has an important impact on the required power spectrum am-

plitude, see e.g. [161–168], but we will not consider that issue further in this paper.
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However, we do include an accurate approximation for the significant correction

arising due to the non-linear relation between the density contrast and curvature

perturbation, the importance of which has only recently been quantified [169–173].

In this paper we make the first detailed study of how the PBH mass distribution

differs when using Press–Schechter or peaks theory as well as a recently developed

treatment of peaks theory [174], which solves a problem for PBHs related to the

cloud-in-cloud problem. When a PBH forms, the final mass depends on both the

amplitude and scale of the perturbation from which it forms [175], and the new

treatment of peaks theory ensures that the amplitude of peaks are evaluated at the

correct scale, giving the correct mass distribution and abundance. We also consider

the sensitivity to the choice of the window function. We show that, provided that

all quantities are calculated in a self-consistent way—for example, the choice of

window function must be reflected in the collapse threshold δc—all techniques and

window functions lead to quite consistent results whereby the uncertainty in the

power spectrum amplitude is only of order 10%. This is a much smaller variation

than [176] found even due to just the choice of the window function alone, consistent

with the corrections accounted for in [177]. We also note that, throughout this paper,

we assume a fixed value for the collapse threshold of primordial perturbations. In

reality, the exact value of the collapse threshold depends on the specific shape of

each individual perturbation, and neglecting this gives an additional uncertainty of

order a few percent [177–180].

The uncertainty in the initial conditions necessary to generate a required number

of PBHs has important implications for relating observations of PBHs to observa-

tions of the associated enhanced amplitude of the primordial perturbations. This

can be done, for example, via the observation of a stochastic background of gravita-

tional waves measurable by pulsar timing arrays (PTAs) which measure frequencies

corresponding to a horizon scale which could have formed the black holes observed
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by LIGO and Virgo. In general, understanding how to map from a PBH abundance

to a power spectrum constraint is important for our understanding of the initial

conditions of the universe and the constraints on models of inflation.

In the next section we introduce the calculation of the PBH mass distribution.

In section 2.3 we discuss how the result depends on the calculation technique and

window function and we use these results to calculate robust constraints on the pri-

mordial power spectrum in section 2.4, in particular showing that the pulsar timing

array constraints are not inconsistent with the formation of LIGO mass PBHs. We

conclude in section 2.5, and some technical details of the observational constraints

and the non-linear mapping from the curvature perturbation to the density contrast

are contained in appendices B and C.

2.2 Obtaining the PBH mass distribution

The procedure for obtaining the mass distribution from the power spectrum is similar

for all three methods considered, and is based on connecting the PBH abundance

ΩPBH to the mass fraction β = ρPBH(ti)
ρ(ti) , where ρPBH is the mean energy density in

PBHs, ρ is the total background energy density, and ti is the time at which the

PBHs form. This mass fraction is then related to the power spectrum. In every

case, the PBH abundance is calculated from the mass fraction using

ΩPBH =
∫

d(lnR) Req

R
β(R), (2.1)

where R is the horizon scale at the time the PBH is forming, Req is the horizon scale

at matter-radiation equality and the ratio takes into account the relative growth of

the PBH fraction during radiation domination. The form of β(R) is different for

each method, see eqs. (2.6), (2.8), and (2.10). The abundance is then related to the

PBH mass function f(m) through

f(m) = 1
ΩCDM

dΩPBH

d(lnm) , (2.2)
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which satisfies the normalisation condition

∫
d(lnm) f(m) = fPBH = ΩPBH

ΩCDM
. (2.3)

This can then be related to the mass distribution ψ(m) through

ψ(m) = 1
fPBH

f(m)
m

, (2.4)

which is a PDF and hence satisfies the normalisation condition

∫
dm ψ(m) = 1. (2.5)

The relation between β(R) and the power spectrum then depends on the method

used. In this paper, three methods are considered: a Press–Schechter-like calculation

(PS), the traditional peaks theory method (TP) described in the classic BBKS

paper [181], and a modified peaks theory derived by Young and Musso (YM) [174].

Recently, other variations of peaks theory have also been developed and applied

to PBHs. Ref. [172] proposed a method relating peaks in the curvature perturbation

to peaks in the density field, with the caveat that the power spectrum is sufficiently

narrow such that peaks of only one scale exist. Since we will here consider peaks

in the power spectrum with a non-negligible width, we will not further consider the

calculations presented in [172]1. Ref. [183] proposed a similar method to [174], with

two major differences. The first is that a top-hat window function is used instead

of a Gaussian window function. The second difference is that, as well as extending

peaks theory itself, [183] simultaneously attempted to account for the non-linear

relation for the density contrast2. However, as discussed further in appendix A,

the top-hat window function has significant drawbacks making it unsuitable for use
1A new paper, released at a similar date to this work, claims to have solved this issue [182],

and applies peaks theory to ∆ζ, which is proportional to the (linear component of the) density
contrast—meaning that it is similar to the peaks theory calculation considered here.

2The authors made use of an analytic relationship between the linear and non-linear fields.
The expression is valid only at the centre of spherically symmetric peaks when a top-hat window
function is used, and it is not clear this is a valid equation to use to represent the entire field.
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in this paper without an additional cut-off. We will therefore focus on comparing

previous “traditional” calculations with the YM calculation, which is expected to be

an improvement on traditional peaks theory by correctly accounting for the initial

scale and amplitude of perturbations in calculating the final PBH mass.

Ref. [173] discusses many complex points related to calculating the PBH abun-

dance from the primordial power spectrum in detail. However, the calculation of

the PBH abundance in [173] makes numerous simplifying assumptions, using peaks

theory in a method similarly to that presented in [184]. The calculations used in this

paper improve upon this by accounting for the non-linearity of the density contrast,

a non-zero width of the power spectrum, and the dependence of PBH mass upon

both the scale and amplitude of the perturbations from which it formed.

In the Press–Schechter formalism, the mass fraction is related to a probability

distribution in the compaction function C by

β(R) = 2
∫ ∞
Cc

dC m

MH

P (C), (2.6)

where the compaction is a smoothed version of the density contrast δ (see eq. (C.4)).

The probability density function is given by

P (C) = 1√
2πσ0(R)

exp
(
− C2

2σ0(R)2

)
, (2.7)

and the mass ratio m/MH takes into account the effect of critical collapse. In

traditional peaks theory, the mass fraction is related to the number density of peaks,

n, through

β(R) = (2π) 3
2R3

∫ ∞
Cc

dC m

MH

n

(
C

σ0(R)

)
, (2.8)

where the number density is a function of ν = C/σ0, given by [181]

n(ν) = 1
33/2(2π)2

(
σ1

σ0

)3
ν3 exp

(
−1

2ν
2
)
. (2.9)
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The modified peaks theory developed in [174] also has β related to n in a similar

way to eq. (2.8), but with a factor of R4 rather than R3, i.e.

β(R) = (2π) 3
2R4

∫ ∞
Cc

dC m

MH

n

(
C

σ0(R)

)
. (2.10)

This is required to counteract an extra inverse spatial dimension in the number

density, given by

n(ν) = 16
√

2
33/2π5/2

σRR

σ2
√

1− γ2
0,2R

7

(
σ0

σ1

)3
αν4 exp

−1 + 16σ2
0

R4σ2
2
− 8σ0γ0,2

R2σ2

1− γ2
0,2

ν2

2

 , (2.11)

where σRR, γ0,2, and α are related to the width parameters σn(R) (see [174] for more

details). These width parameters relate the probability density (in Press–Schechter)

or number density (in the peaks theories) to the power spectrum through the relation

σ2
n(R) =

∫ ∞
0

dk
k
k2nPδR(k), (2.12)

where PδR(k) is the compaction power spectrum, related to the power spectrum for

ζ through

PδR(k) = 16
81(kR)4W 2(k,R)Pζ(k). (2.13)

W (k,R) is a window function applied to the power spectrum. In this paper, two

window functions are considered: a real-space top-hat3, given in Fourier-space by

WTH(k,R) = 3sin(kR)− kR cos(kR)
(kR)3 , (2.14)

3It should be noted that we have modified the top-hat window function to remove a ringing
effect at large-R (see appendix A for details).
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and a Gaussian window function modified by a factor of 2 in the exponent as sug-

gested in [177],

WG(k,R) = exp
(
−(kR)2

4

)
. (2.15)

It should be noted that, in the case of the modified Gaussian window function, the

compaction referred to by C above is not technically the compaction, but is rather a

“compaction-like” function. The compaction (or compaction-like function) is related

to the PBH mass through the critical collapse equation,

m = KMH(C − Cc)γ, (2.16)

where K, Cc, and γ are numerical factors that depend on the window function used

to smooth the power spectrum, as well as the shape of the density perturbation [173,

178, 180]. The values K ≈ 3.3, Cc ≈ 0.45, and γ ≈ 0.36 (commonly referred to as

the Musco criteria) were derived for the top-hat window function [175,185,186], but

are regularly used for other window functions. This has been highlighted in recent

work, where different window functions cause a large deviation in the amplitude of

power spectrum constraints, but this difference is not so significant if these numerical

values are handled consistently for each window function [177]. We will take the

values stated in [174]: K = 4 and Cc = 0.55 for the top-hat window function, and

K = 10 and Cc = 0.25 for the modified Gaussian window function. For both window

functions we take γ = 0.36.

In this paper we will frequently consider a power spectrum with a lognormal

peak, as a simple parametrisation of a peaked power spectrum with a position and

width that can be easily tuned. The form is

Pζ = A
1√

2π∆
exp

(
− ln2(k/kp)

2∆2

)
(2.17)
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with amplitude A, peak position kp, and width ∆. This has been appropriately

normalised such that the constraint on A becomes independent of ∆ in the limit of

a narrow peak, and it matches the delta function power spectrum Aδ(ln(k/kp)) in

this limit. We show this later in table 2.2. The integral of this power spectrum over

ln k is A, independent of the value of ∆. The width ∆ is a free parameter, and we

will normally choose two representative values for the width, ∆ = 0.3 as a narrow

peak which results in a PBH mass distribution not very different from that due

to a delta-function power spectrum, and ∆ = 1 as a broad peak which is roughly

what one would expect if the inflaton field dynamics change over a time-scale of 1

e-folding during inflation. We note that such a peak should not be extrapolated to

values of k very different in magnitude from kp (and of course the power spectrum

needs to match the quasi scale-invariant spectrum observed on CMB scales), but in

practice we have checked that both the power spectrum constraints and the PBH

mass distribution do not depend on the shape of the peak when sufficiently far from

the peak position (where the power spectrum amplitude is significantly smaller than

the peak value). We are therefore not concerned (for the values of ∆ we focus on)

that a lognormal peak exhibits a growth steeper than k4 on scales far from the peak,

even though this is the approximate maximum growth rate of the power spectrum

in canonical single-field inflation [187–189]. A steeper growth can be achieved in

e.g. multifield inflation [190,191].

It is convenient to state the peak scale kp in terms of the horizon mass it corre-

sponds to, using the relation derived by comparing the temperature of the radiation

within the horizon mass with the temperature at matter-radiation equality in [192],

MH = 1√
2
Meq

(
geq

g

)1/6 (
keq

k

)2

≈ 17
(

g∗
10.75

)− 1
6
(

k

106 Mpc−1

)−2

M�, (2.18)

where g∗ is the number of relativistic degrees of freedom. We define the horizon

mass at the peak of the power spectrum as

MH,P = MH(kp). (2.19)
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2.3 Variability of the mass distribution

2.3.1 Effect of the calculation method and window function

Constraints on the PBH abundance can be used to place constraints on the ampli-

tude of the primordial power spectrum. If the black holes in the LIGO merger events

are considered to be primordial in origin, a fit of the masses and number of events

can be used to constrain the PBH mass distribution, and hence the power spectrum.

Recent studies have shown that, in this case, fPBH would have to lie between 10−2

and 10−3, and would be closer to the lower of these two values [69,193–195].

See, however, recent papers [72, 74, 196, 197] discussing the effect of interactions

between binary and single PBHs, which suggests that a much larger value for fPBH

is possible provided that PBH binaries are sufficiently disrupted by other PBHs.

Ref. [72] studied such 3-body interactions within extremely dense PBH clusters

thought to form at high redshift when fPBH ≈ 1, finding that the large majority of

binaries in such clusters are expected to be disrupted, therefore not contributing to

the merger rate observable today, implying that PBHs could make up the entirety of

dark matter. Ref. [196] studied similar interactions within Milky Way-type haloes,

finding that the coalescence times can change significantly due to the interactions,

especially when the PBH abundance is low. In addition, the effect of initial clustering

of PBHs (due to primordial non-Gaussianity) on the merger rate was studied in [71],

showing that this results in large uncertainties in the merger rate. Combined, these

papers cast significant doubt on constraints on the PBH abundance coming from

the observed merger rate.

However, in order to proceed with the comparison presented here, we will assume

that the constraints are valid. Therefore, for each method and window function

described above, we determine the power spectrum amplitude required to generate

an fPBH in the range 10−2 < fPBH < 10−3, chosen as fPBH = 2×10−3. The resulting

amplitudes are shown in table 2.1. It should be noted that these amplitudes are
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defined for power spectrum peaks centered on the LIGO mass range, and would be

significantly different on different scales. The full procedure for obtaining constraints

on the power spectrum across all scales is described in section 2.4.

Table 2.1: Power spectrum amplitudes required to generate fPBH = 2 × 10−3, with
masses in the LIGO range. The two window functions are Gaussian (G) and top-
hat (TH), and the three methods are Press–Schechter (PS), traditional peaks theory
(TP), and the modification to peaks theory calculated in [174] (YM). The modified
peaks theory cannot be applied in the case of a delta function peak, or with the
top-hat window function, so these combinations are not shown.

Window Function, Method
P peak G, PS G, TP G, YM TH, PS TH, TP
δ-function 3.21× 10−3 2.93× 10−3 N/A 3.47× 10−3 2.94× 10−3

∆ = 0.3 4.14× 10−3 3.78× 10−3 3.55× 10−3 4.84× 10−3 4.13× 10−3

∆ = 1.0 8.92× 10−3 8.14× 10−3 7.70× 10−3 1.11× 10−2 9.56× 10−3

It can be seen that, when being careful with the combination of the window

function and the corresponding critical collapse values, all the amplitudes are of

the same order. When changing either the method or the window function while

keeping the other fixed, the difference in the required amplitude is . 20%. The

biggest difference when taking both the window function and the calculation method

into account is ∼ 32%. We note that the maximum value of the power spectrum

does not vary nearly as much when ∆ changes as suggested by table 2.1 due to

our parametrisation of the power spectrum definition (2.17). Choosing a different

normalisation by leaving out the division by ∆ would instead lead to a divergent

value of the power spectrum amplitude in the limit ∆→ 0, instead of a value which

matches the delta function power spectrum.

We can also examine the amount of variability in the shapes of the mass distri-

bution generated with different methods/window functions. The effect of changing

the method is shown in fig. 2.1, for the Gaussian window function. The results

for the top-hat case are similar. The mass distribution generated by a delta peak

is shown in red, and the distribution for a lognormal peak with ∆ = 1 in blue,

with both peaks centered on MH,P = 4 M� because this generates PBHs in the

LIGO mass range. All the distributions are normalised to one, and correspond to



42

fPBH = 2 × 10−3. We find that the Press–Schechter (PS, solid) and peaks theory

(TP, dashed) methods yield very similar results, while the modified peaks theory

(YM, dotted) yields a marginally taller and narrower mass distribution.

PS: δ

PS: Δ=1
TP: δ

TP: Δ=1
YM: Δ=1
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Figure 2.1: Difference between PBH mass distributions calculated using different
methods, while keeping the window function fixed. The Gaussian window func-
tion is used in every case. The red curves are for the delta function peak in the
power spectrum, and the blue curves are for the lognormal peak with ∆ = 1.
The Press–Schechter (PS), traditional peaks (TP), and modified peaks (YM) meth-
ods are shown with solid, dashed, and dotted lines respectively. All lines have
fPBH = 2× 10−3.

Figure 2.2 shows the effect of changing the window function, again for the delta

function (red) and ∆ = 1 lognormal (blue) cases, both with MH,P = 4 M�. All the

distributions have been calculated using traditional peaks theory. The distributions

calculated using the Gaussian and top-hat window functions are shown as solid

and dashed lines respectively. The distributions from the two window functions are

similar, but with a small shift in the peak position. Additionally, it can be seen from

figs. 2.1 and 2.2 that there is a shift in the peak mass between the delta function

power spectrum, and the ∆ = 1 case. In the next section, we examine this shift in

more detail for a range of power spectrum widths.
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Figure 2.2: Difference between PBH mass distributions calculated using different
window functions, using the traditional peaks theory (TP) method. The red and
blue curves correspond to a delta function power spectrum and a lognormal with
∆ = 1 respectively. The solid and dashed lines are calculated using the Gaussian
and top-hat window functions respectively. All lines have fPBH = 2× 10−3.

We have shown that the different calculation methods result in an O(10%) shift

in the required power spectrum amplitude, and a small difference in the shape and

position of the mass distribution. We expect the BBKS peaks method (TP) to

provide a more accurate result than the Press–Schechter (PS) case, since it can

be viewed as a generalisation and collapses to the PS case under certain assump-

tions [198], and that the modified version (YM) be better than TP, since it is a

direct extension. Although the differences are small, they will become important in

the future as experiments that can probe the PBH mass distribution become more

accurate. For the remainder of this work, we will use the modified Gaussian window

function in eq. (2.15) and the traditional peaks theory (TP) method. This allows

comparisons between other works that use the TP method and the results in this

paper, which can then be compared between the different methods based on the

differences highlighted here.
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2.3.2 Effect of the peak width ∆

As shown in section 2.3.1, the calculated mass distributions have a shift in the peak

position which depends on the width of the power spectrum peak used. Additionally,

we expect the width of the mass distribution to increase. We can demonstrate these

effects by calculating the mass distributions for a range of values of ∆ between zero

(i.e. a delta function peak) and two. The result of these calculations is shown in

fig. 2.3.
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Figure 2.3: PBH mass distribution for different power spectrum peak widths ∆. The
peak position kp of the power spectrum is the same in every case, and corresponds
to MH,P = 4 M�. All lines have fPBH = 2× 10−3. As ∆ increases, the peak in the
mass distribution shifts to smaller masses and spans a broader range of mass scales.

It is immediately apparent that, even for the unphysical choice of a delta function

peak in the power spectrum, there is a minimum width in the mass distribution,

associated with the critical collapse effect described in section 2.2. It can also be

seen that for very narrow peaks in the primordial power spectrum, the resulting

mass distribution hardly varies until ∆ & 0.1. Beyond that point, the shift of

the peak and the increased width become apparent. This means that whilst a

monochromatic mass spectrum is unrealistic, studying a mass distribution with the

minimum width due to critical collapse and a delta function power spectrum may

be a good approximation to a physically realisable PBH mass distribution. The
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increasing width is also obvious, and can be quantified by fitting a lognormal mass

distribution (the shape expected for PBHs arising from a smooth, symmetric peak)

to data generated from the curves, and comparing the widths of these lognormals.

The lognormal mass distribution is given by

ψ(m) = 1√
2πσψm

exp
(
− ln2(m/mc)

2σ2
ψ

)
, (2.20)

where mc is the mean of the distribution and σψ is the width (note the subscript

to avoid confusion with the σn(R) parameters appearing in section 2.2). The re-

sulting lognormal parameters are shown in table 2.2, and show that, as expected,

the width of the calculated mass distribution increases with the peak width, as well

as the amplitude required to keep fPBH fixed. This minimum width appears to be

much larger than is required in order for PBH decay to result in a sufficiently rapid

transition from an early matter dominated era (caused by low mass PBHs) to radi-

ation domination to generate an observable stochastic background of gravitational

waves [199].

Table 2.2: Comparison of the amplitude A required to generate fPBH = 2 × 10−3,
the ratio of the mean PBH mass mc to the power spectrum peak mass MH,P , and
the mass distribution width σψ for different power spectrum peak widths ∆.

∆ A mc/MH,P σψ
0 (Delta) 2.93× 10−3 6.21 0.374

0.01 2.94× 10−3 6.21 0.374
0.05 2.96× 10−3 6.17 0.375
0.10 3.04× 10−3 6.09 0.377
0.30 3.78× 10−3 5.52 0.395
0.50 4.89× 10−3 5.07 0.430
1.00 8.14× 10−3 4.39 0.553
2.00 1.51× 10−2 3.35 0.864

A noteworthy point here is that the typical mass of a PBH is actually significantly

larger than the horizon mass corresponding to the scale at which the power spectrum

peaks, mc/MH,P > 1. At first glance, this statement may seem to be in disagreement

with previous works where the expected PBH mass has been shown to be smaller
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than the horizon mass at re-entry. Physically, this apparent discrepancy is due to

the fact that, if there is a narrow peak in the ζ power spectrum at a scale kp, the

resultant perturbations will, on average, have a significantly larger characteristic

scale rm. In the calculation presented here, this manifests itself in the fact that the

variance σ2
0(R) peaks at a larger value of R than that corresponding to the scale kp

(as calculated in [180] for example). Thus, the final mass of PBHs is smaller than the

horizon mass corresponding to rm, but larger than the horizon mass corresponding

to kp. The important conclusion drawn from this is that constraints on the PBH

abundance for a given mass of PBH correspond to constraints on the primordial

power spectrum at a larger value of k than have previously been calculated.

Now we have a clear picture of how the different method and window function

choices affect the mass distribution ψ and the amplitude required to generate a fixed

fPBH, we can calculate the constraints on the power spectrum from PBHs, being

careful about the consistency of our window function and critical collapse choices.

We show the procedure for obtaining these constraints, and the final constraint

plots, in the next section.

2.4 The constraints on the power spectrum

2.4.1 Relevant constraints and how they are calculated

Whilst calculating the PBH abundance with different methods has a huge effect on

the abundance and mass distribution, we have shown that the resultant uncertainty

in constraints on the power spectrum is relatively small. We will now consider how

observational limits on the PBH abundance, as well as a swathe of other observa-

tional probes, constrain the amplitude of the primordial power spectrum. The key

additional constraints on small scales come from cosmic µ-distortions [200] and a

stochastic background of gravitational waves, which could be generated with a large

amplitude due to the non-linear coupling between the scalar and tensor perturba-

tions around the time of horizon entry [201, 202]. The calculation of many of these
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constraints follows closely the procedure presented in [187], and we therefore rele-

gate the details to appendix B. However, we describe the constraints from PBHs in

detail here, and we also highlight that constraints from PTAs have been updated to

use the improved analysis of the NANOGrav 11 year data set [203]. There are ad-

ditional small-scale constraints on the power spectrum, including for example those

from y-distortions [204,205], 21 cm observations [206–210] and the non-detection of

ultra-compact minihaloes [160,211–214]. We do not display the former because the

combination of CMB constraints and µ-distortion constraints are more competitive

on commensurate scales, and we do not display either of the latter because they de-

pend on the dark matter model. Big Bang nucleosynthesis constraints are discussed

in e.g. [215–217].

2.4.2 Constraints due to the gravitational wave background

Large amplitude scalar perturbations re-entering the horizon after inflation induce

gravitational waves as a second-order effect. These contribute to the stochastic

gravitational background, which pulsar timing arrays (PTAs) are trying to detect

and/or constrain by looking for global changes in the time of arrival of pulses from

a population of millisecond pulsars over a period of O(10) years. Details of the

calculation of the GW power spectrum are contained in appendix B.2.

Translating this power spectrum to ΩGWh
2 with eq. (B.4), we can then compare

the predicted signal with PTA constraints from the NANOGrav 11 year data set.4

We choose this data set because the new analysis takes errors in the modelling of the

solar system ephemeris into account. This can have a large effect on the constraints

which will need to be factored into the previous NANOGrav 9 year constraints [218],

as well as those from other arrays such as the European Pulsar Timing Array (EPTA)

[219] which have previously been used to constrain the primordial power spectrum

with induced gravitational waves. Those constraints should now be revised upwards,
4During the refereeing process, NANOGrav released their 12.5 year dataset [127] which showed

possible evidence for a signal due to a stochastic gravitational wave background. This is un-
confirmed, but understanding the origin of this signal could have significant implications for the
induced gravitational wave constraints discussed in this work.
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but the analysis would need to be redone in each case to quantify by exactly how

much. Based on the current analyses, the constraint on the characteristic strain

hc improves by a factor of a third at the frequency of the tightest constraint, and

improves by up to a factor of 5 at the highest frequencies between the 9 year and

11 year datasets. The resulting improvement on the primordial power spectrum

constraint is shown in figure B.1 of appendix B.3. Since the NANOGrav data set

has pulsar timing data for 11 years of observations, it does not extend to quite as

large scales as does the EPTA data, which is from 18 years of observations. This

means that our constraints do not span as wide a range of scales (and hence PBH

masses) as previous constraints in the literature show, but the constraints we do

show are more robust to errors in solar system ephemeris modelling. We also avoid

confusion over different analyses from different data sets, and are able to use the

free spectrum constraints on ΩGWh
2 consistently throughout.

These constraints (taken from the bottom panel of fig. 3 in [203]) are the 2-σ

constraints derived as a function of frequency so as to represent the sensitivity to

monochromatic signals. This means that we will construct our constraints based

on finding the limiting amplitude of the lognormal power spectrum to which the

NANOGrav constraints would be sensitive. One could do a more sophisticated

analysis, taking into account the fact that confidence in a detection would become

even stronger if there are also weaker detections of a given signal on larger or smaller

frequencies than where the strongest detection would come. We choose to show just

the 2-σ constraints for clarity. We convert from frequency to scale with k = 2πc/f

and then find the minimum value of A for which ΩGW,NGh
2 = ΩGW,signalh

2, i.e.

Aconstraint = Min

√√√√ ΩGW,NG(k)h2

ΩGW,signal(k, kp)h2

 (2.21)

for each kp. The minimum value of A for each kp is found by scanning over all values

of k for which NANOGrav has sensitivity. We plot the results in figs. 2.5 and 2.6

for ∆ = 0.3 and ∆ = 1, where again to be clear, the constraint on PR at a given
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k represents the maximum amplitude A for a lognormal power spectrum centered

at k = kp such that the induced second-order gravitational waves would not be in

conflict with the PTA constraints from the NANOGrav 11 year data set.

2.4.3 Constraints from PBHs

Constraints on primordial black holes are normally presented in terms of either fPBH

or the mass fraction β, so a method is required to relate these to the power spectrum

amplitude. A relation between fPBH (or equivalently ΩPBH) and A is complicated

by the fact that the redshifting factor in eq. (2.1) means that the required ampli-

tude to generate a fixed fPBH varies with the peak positions (as demonstrated in

section 2.3.1). In general, the best way to overcome this would be to produce a

relation for A as a function of both fPBH and the relevant mass scale. However, this

is computationally expensive, and so a simplified approach is necessary. We can

find an approximation by relating the power spectrum amplitude to a parameter

that does not vary with the peak position, which we achieve by modifying eq. (2.1),

adjusting the redshift factor by introducing a new scale R∗, such that

ΩPBH∗ =
∫

d(lnR) R∗
R
β(R). (2.22)

If R∗ is chosen to be close enough to the peak scale in the power spectrum, then

the relation between this quantity and the power spectrum amplitude will be in-

dependent of the peak position. This quantity cannot be treated exactly as the

abundance, because the abundance is calculated in the super-horizon regime before

PBHs form, whereas this is at some later time, corresponding to when the horizon

scale is R∗. This quantity can be related to the constraints for PBHs using

ΩPBH = Req

R∗
ΩPBH∗. (2.23)
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The relation between the power spectrum amplitude and ΩPBH∗ for all three methods

is shown in fig. 2.4 for the ∆ = 1 (left) and ∆ = 0.3 (right) cases. The modified

Gaussian window function is used in every case. It can be seen that there is a shift

in the amplitude required between the methods, as was observed earlier. However,

comparing the scale of changes to the power spectrum amplitude between the CMB

value of 10−9 and these values, the differences are unimportant. For the constraint

plots shown in figs. 2.5 and 2.6, the traditional peaks theory method (TP) is used.
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Figure 2.4: Relation between power spectrum amplitude A and ΩPBH∗ for the three
methods. The power spectrum peak widths are ∆ = 1 (left) and ∆ = 0.3 (right).
All lines use the Gaussian window function.

To obtain constraints on the power spectrum, ΩPBH∗ must be related to con-

straints on either β or fPBH. We will use the PBH constraints stated in [43] for

β′, which is a version of the mass fraction β with common parameters normalised

out. These constraints are calculated assuming that all the PBHs form at the same

time (or equivalently, the same scale R), but it is possible to relate the constraints

to ΩPBH∗, and hence determine the constraints on the amplitude for the calculation

used throughout this paper, where PBHs form over a range of different scales. We

obtain this relation from eqs. (6) and (8) from [43] (reproduced here for clarity):

β(mc) = 7.06× 10−18γ−1/2
(

h

0.67

)2 (
g∗,i

106.75

)1/2
(

mc

1015 g

)1/2

ΩPBH(mc), (2.24)

β′(mc) = γ1/2
(

h

0.67

)−2 (
g∗,i

106.75

)−1/2
β(mc), (2.25)
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where the monochromatic PBH mass M in [43] has been substituted for the mean

lognormal mass mc (the constraints do not change significantly when considering

a reasonably narrow PBH mass distribution [76, 77]). It can immediately be seen

that, combining eqs. (2.24) and (2.25),

β′(mc) = 7.06× 10−18
(

mc

1015 g

)1/2

ΩPBH(mc). (2.26)

Since solar mass PBHs are of special interest, it is sensible to rescale the mass

fraction to be in terms of solar masses, giving

β′(mc) = 7.06× 10−18
(

2× 1018 mc

M�

)1/2

ΩPBH(mc) (2.27)

= 10−8
(
mc

M�

)1/2

ΩPBH(mc). (2.28)

Inverting this relation gives ΩPBH as a function of mc in solar masses,

ΩPBH(mc) = 108
(
mc

M�

)−1/2

β′(mc). (2.29)

We can then be relate this to the quantity ΩPBH∗ using eq. (2.23) to give

ΩPBH∗(mc) = 108 R∗
Req

(
mc

M�

)−1/2

β′(mc). (2.30)

For convenience, we have chosen R∗ such that the corresponding mass scale M∗ is

approximately mc. Therefore,

ΩPBH∗(mc) = 108
(
mc

Meq

)1/2 (
mc

M�

)−1/2

β′(mc) (2.31)

= 108
(
Meq

M�

)−1/2

β′(mc). (2.32)
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Substituting in the value of the horizon mass at matter-radiation equality, Meq =

2.8× 1017 M�, the relation becomes

ΩPBH∗(mc) ≈ 0.2 β′(mc). (2.33)

Recent papers [169–173] have discussed the effect of the non-linear relation be-

tween the curvature perturbation ζ and the density contrast δ on the PBH abun-

dance. The point is that, even if the level of primordial non-Gaussianity of ζ is

taken to be zero, δ will not have a Gaussian distribution, and subsequently nor will

the compaction. The non-linearity is difficult to account for, especially if window

functions other than a top-hat are considered. This is discussed in some detail in

appendix C, with the conclusion that constraints on the power spectrum will be ap-

proximately 1.98 times weaker once the non-linearity is included in the calculation.

We include this factor in the PBH lines in figs. 2.5 and 2.6.

By applying the method described in this section, we are taking into account the

effects of critical collapse (making sure it is treated consistently with the choice of

window function), the shift between the PBH mass and the peak scale kp, and the

non-linear relation between ζ and δ. This is the first time that all of these effects

have been captured simultaneously.

2.4.4 Summarising all the constraints

In fig. 2.5 we put together the key observational constraints to show the principal

current constraints on the primordial power spectrum. The power spectrum has

been accurately measured on large scales whilst PBHs constrain—albeit weakly—

a far larger range of scales. We do not show PBH constraints on masses close

to matter-radiation equality because we always assume PBHs form during radia-

tion domination, and the smallest scale constrained corresponds to a PBH with

mc ∼ 10−24 M�, which evaporates around the time of Big Bang nucleosynthesis.
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Figure 2.5: Current constraints on the power spectrum amplitude from PBH, PTA,
and µ-distortion sources, as well as the measured one- and three-sigma constraints
from the CMB. The constraints for ∆ = 0.3 (which are tighter for the PBH con-
straints, and narrower for the other constraints) are shown in red, and the constraints
for ∆ = 1 are shown in blue. The PBH, PTA, and µ-distortion constraints are shown
with solid, long-dashed, and short-dashed lines respectively.

By coincidence the PTA measurements constrain the power spectrum amplitude

to almost the same amplitude as the non-detection of PBHs, meaning that there

is a potential tension between the PTA bounds and any claim that LIGO detected

PBHs (see fig. 2.5). This has been studied by various groups [187, 220–228], with

no consensus reached on how severe the tension is. For example, [224] claim that

fPBH < 10−6 over a significant range of PBH masses and the power spectrum con-

straint plots in [187] appear to show a significant tension. The impact of the PBH

density profile was studied in depth in [173] but the PTA constraint was not varied

to reflect changes in the shape of the primordial power spectrum. By making a care-

ful study of the power spectrum amplitude required to generate PBHs, including the

important reduction in the PBH constraining power due to the non-linear relation
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between ζ and δ, and using improved NANOGrav constraints, we have shown that

there is no significant tension between generating LIGO mass PBHs and the PTA

constraints.

We note that the slight overlap between the PBH and PTA constraint lines is not

significant given the remaining O(10%) uncertainty in the amplitude of the PBH

constraint, and that there should also be about anO(10%) reduction in the PBH line

at about the M� scale caused by the reduction in the equation-of-state parameter

during the QCD transition. See [45] for further discussion, and [229] for extensions to

other masses where there is a smaller reduction in pressure within standard model

physics. A study of non-standard expansion histories (such as an early matter

dominated epoch) are beyond the scope of this paper [230]. Nonetheless, because

the PBH amplitude only depends very weakly on the value of fPBH it is clear that the

PTA collaborations should be very close to detecting a stochastic gravitational wave

background even if only one of the compact objects which LIGO has detected was

a PBH, for example the secondary mass object in the recently detected event which

falls into the mass gap between neutron stars and astrophysical black holes [34]. It

seems plausible that the associated stochastic background could be detectable with

current PTA data if a dedicated search was made by using specific GW templates

generated by power spectra that cause LIGO mass PBHs to form.

The cosmic µ-distortion places an upper limit on the maximum PBH mass which

can be generated by the collapse of large amplitude perturbations shortly after

horizon re-entry. The maximum mass decreases as the power spectrum width ∆

increases, but even for a narrow peak with ∆ = 0.3 the initial PBH mass cannot be

much greater than 104 M�, which is much smaller than the supermassive BHs seen

in the centre of most galaxies even at high redshift, with masses 106–109 M�, whose

origin remains a mystery. However, such large PBHs could still act as a seed to

the SMBHs [207], and the constraints can be evaded if the initial perturbations are

extremely non-Gaussian [231] although one then needs to evade the strong Planck

constraints on dark matter isocurvature modes [232, 233]. For even broader power
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spectra the µ-distortion constraints rule out an ever greater range of PBH masses,

and for ∆ = 2 they extend as far as the peak PTA constraint and thereby even rule

out LIGO mass PBHs. Since such a wide peak in the primordial power spectrum

provides the preferred PBH mass distribution width when fitting to LIGO data,

it appears that the µ-distortions may surprisingly provide a stronger constraint on

models in which all LIGO black holes are PBHs than the PTA constraints. Of course

this conclusion may also depend on the assumed shape of the power spectrum peak.

Future constraints from µ-distortions and the gravitational wave background will

significantly affect the PBH landscape. To examine the maximum extent of these

future constraints, we calculate the PBH lines in the case that zero PBHs form in

the observable universe. This is done using the method described in [234], partic-

ularly eq. (7) of that paper, but with β replaced with the ΩPBH∗ parameter used

in this paper. For reasons summarised in [234], these extreme constraints might

actually apply to the case of evaporated PBHs. Extremely tight constraints on fPBH

for MPBH & 10−6 M� are also possible if the majority of dark matter consists of

“standard” WIMPs [153, 235–239]. We show the tightest possible PBH constraints

in fig. 2.6, as well as future µ-distortion constraints from a detector like the Pri-

mordial Inflation Explorer (PIXIE) [240], and future gravitational wave background

constraints from the Square Kilometre Array (SKA), the Laser Interferometer Space

Antenna (LISA), and the Einstein Telescope (ET)5. The SKA constraints are de-

rived from the sensitivity curve calculated in [241], the LISA constraints are derived

from the most optimistic sensitivity curve in fig. 1 of [242], and the ET constraints

are derived from fig. 13 of [145].

It can be seen that the SKA constraints are so tight that a non-detection will

indicate that no PBHs can exist in the LIGO range of masses, and hence that

the LIGO merger events cannot possibly be explained with a primordial origin.

Additionally, the combined effect of the µ-distortion, SKA, LISA, and ET constraints
5Note that free spectrum sensitivity curves, as were used to calculate the PTA constraints, are

not available for the future detectors SKA, LISA, and ET, so instead we have used the sensitivity
curves that are derived assuming a power-law for the gravitational wave frequency spectrum.
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removes the possibility of any PBHs existing over an extremely broad range of masses

in the case of a non-detection, leaving only the space below ∼ 10−22 M�, and two

small pockets at ∼ 10−17–10−14 M� and ∼ 10−6–10−3 M�.
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Figure 2.6: Future constraints on the power spectrum amplitude from PBH, grav-
itational wave background, and µ-distortion sources, as well as the measured one-
and three-sigma values from the CMB. The PBH curves indicate the amplitude re-
quired to generate only a single PBH in the observable universe. The constraints
for ∆ = 0.3 (which are tighter for the PBH constraints, and narrower for the other
constraints) are shown in red, and the constraints for ∆ = 1 are shown in blue.
The PBH constraints are shown with a solid line, and the ET, LISA, SKA, and
µ-distortion constraints are shown with longest to shortest dashes respectively.

2.5 Conclusions

We have made the first detailed analysis of how the PBH mass distribution shape

and amplitude varies between three different techniques to calculate the primordial

mass distribution: Press–Schechter, traditional peaks theory and a newly developed

peaks theory variation. We also consider two choices of the window function, a

real-space top-hat and a modified Gaussian. We show that the amplitude of the pri-

mordial power spectrum only varies by O(10%) for different choices, far smaller than

may have been expected based on the large range of values of the power spectrum
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amplitude considered in the literature. A substantial variation remains depending

on the shape of the peak in the primordial power spectrum, but this reflects a change

in the physical theory rather than a change in methodology. The results are sum-

marised in table 2.1 while fig. 2.1 shows that the mass distribution shape hardly

changes depending on the calculation technique. These differences, while not signif-

icant now, will be important for future data that probe the PBH mass distribution

accurately, at which point an improvement of the TP method, such as the Young–

Musso technique, should be used. We also show that the PBH mass distribution

becomes broader as the power spectrum peak becomes broader, as highlighted in

fig. 2.3. In the limit of a narrow lognormal peak (∆ . 0.3) the mass distribution

tends to a constant width which is set by critical collapse, making a peak of this

width a well-motivated choice.

We have also calculated robust constraints on the primordial power spectrum

from PBHs, taking into account the effects of critical collapse and the non-linear

relation between ζ and δ, as well as the choice of window function and the relation

between the PBH mass scale and the peak power spectrum scale. This leads to

tighter constraints that are shifted to different values of k compared to those pre-

sented in [43]. We show a summary of all of the key bounds on the amplitude of the

primordial power spectrum in fig. 2.5. We stress that all the constraints must be

recalculated when the shape of the primordial power spectrum peak is varied, and

in the figure we choose ∆ = 0.3 as a representative narrow peak and ∆ = 1 as a

broader peak. In both cases the PTA constraints (we use a recently improved data

set from the NANOGrav collaboration) are almost identical to those from PBHs

in the mass range that LIGO also probes. This interesting coincidence means that

it is premature to rule out the possibility that LIGO detected PBHs that formed

from large amplitude density perturbations during radiation domination, but if that

is the case then there is a realistic hope that the PTA measurements will detect

a stochastic background of gravitational waves in the near future and a dedicated

analysis should be made. We note that the non-linear relation between ζ and δ
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weakens the PBH constraints by about a factor of 2, and had we not taken this

into account (and normally it is not taken into account) we would have erroneously

concluded that the PTA constraints do not come close to ruling out the formation

of LIGO mass PBHs. However, we caution that if all BH binaries detected by LIGO

were due to PBHs then the PBH mass distribution should be so broad (σψ ≈ 0.8

corresponding to ∆ = 2) that the cosmic µ-distortion constraints spread to rela-

tively small masses and alternative shapes of the primordial power spectrum which

are more “top-hat”-like than the lognormal power spectrum studied here should be

considered.

In fig. 2.6 we show constraints on the primordial power spectrum that could be

achieved in the foreseeable future (assuming there is no detection) from a PIXIE-

like experiment measuring µ-distortions and searches for a stochastic background of

gravitational waves. The gravitational wave constraints show SKA constraints on

pulsar timings, plus LISA and ET constraints. The PBH constraints show the am-

plitude required to generate a single PBH within the observable universe, provided

that they form from Gaussian-distributed perturbations entering the horizon during

radiation domination. This shows that apart from two narrow mass ranges around

10−4 M� and 10−16 M�, there will be no remaining window for un-evaporated PBHs

to exist today.

Acknowledgements

CB thanks Qing-Guo Huang for correspondence, and we thank Eiichiro Komatsu

for useful comments on a draft of this paper. AG is funded by a Royal Soci-

ety Studentship by means of a Royal Society Enhancement Award. CB acknowl-

edges support from the Science and Technology Facilities Council [grant number

ST/T000473/1]. PC acknowledges support from the Science and Technology Fa-

cilities Council [grant number ST/N504452/1]. SY is supported by a Humboldt

Research Fellowship for Postdoctoral researchers.



59

Chapter 3

An accurate model for the

primordial black hole mass

distribution from a peak in the

power spectrum

Andrew D. Gow1, Christian T. Byrnes1, and Alex Hall2

1) Department of Physics and Astronomy, University of Sussex, Brighton BN1 9QH, United

Kingdom

2) Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill,

Edinburgh EH9 3HJ, United Kingdom

We examine the shape of the primordial black hole mass distribution arising from

a peak in the primordial power spectrum. In light of improvements to the modelling,

we revisit the claim that the effects of critical collapse produce a distribution that

is not described by the commonly assumed lognormal, showing that this conclusion

remains valid. We propose some alternative models that may better describe the

shape, both for the case of narrow power spectrum peaks where critical collapse

determines a minimum width of the mass distribution, and for much broader peaks

where the peak shape is significant. We highlight the skew-lognormal and a gener-
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alised model motivated by the physics of critical collapse as the best of these possible

alternatives. These models can be used as an accurate and fast approximation to the

numerically calculated mass distribution, allowing for efficient implementation in an

MCMC analysis. We advocate the use of one of these two models instead of the

lognormal with sufficiently accurate data, such as future LIGO–Virgo observations,

or when considering strongly mass dependent constraints on the PBH abundance.

3.1 Introduction

Since the idea of primordial black holes (PBHs) was first postulated half a century

ago [24–26], a lot of progress has been made in studying constraints on their abun-

dance as well as possible signs that they have been detected. Until quite recently,

most constraints on the PBH abundance assumed a monochromatic mass distri-

bution which has the advantage of simplicity, since this is the unique case where

a constraint at any given mass can be made without considering the constraints

on other, similar masses. See e.g. [43, 155, 156, 243, 244] for reviews. However, the

phenomenon of critical collapse means that a range of PBH masses are generated

from large amplitude perturbations re-entering the horizon even if the perturbation

spectrum has power at only one wavenumber [175, 185, 245, 246], due to the spread

in amplitudes of modes at that scale. Therefore, as one would intuitively expect, a

monochromatic mass distribution is not physically realistic, no matter how narrowly

peaked the primordial power spectrum might be1.

While the community was focused on making order-of-magnitude constraints to

the PBH abundance and simple “yes/no” answers to whether PBHs of a given mass

could constitute the entirety of dark matter, the approximation of a monochromatic

mass distribution was adequate. However, in recent times there has been a vigorous

debate about exactly what fraction of the dark matter could be contained in PBHs

with a mass of order the solar mass, for example to fit to lensing surveys or the
1In practise there is also a limit to how narrow the primordial power spectrum can be, with the

limits depending on the model of inflation, see e.g. [187–191,247,248].
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LIGO–Virgo detection of gravitational waves. Many, but not all, constraints allowed

an order one fraction of PBHs to be in dark matter. See e.g. [153,154] for very recent

reviews. These constraints come from a wide range of methods as well as probing

a wide range of redshifts, and there is the possibility that accretion makes the

constraints time dependent in a mass dependent manner [53,195,249]. Finally there

are some hints that LIGO–Virgo may have detected PBHs, for example due to the

low spin of most of the detected events [58,60] as well as some objects which fall into

or close to the lower and upper mass gaps commonly considered for astrophysical

formation channels [32–34, 197, 250], although these can be explained with specific

astrophysical models [251,252].

For all of the above reasons, it has now become commonplace to consider ex-

tended mass distributions. By far the most commonly considered case is the lognor-

mal mass distribution, and constraints for this distribution were made by e.g. [76,77]

(see [253] for the first related reference to this mass distribution in the PBH context).

Broad mass distributions, such as a power law, or one with a spike at around one

solar mass motivated by the QCD transition have also been considered [45,254], but

in this paper we will focus on the more commonly studied case of a mass distribution

generated by a single symmetric peak in the primordial power spectrum.

The lognormal mass distribution is frequently applied irrespective of its width,

either in the form of priors allowing narrow widths (see e.g. [255–257]), or in the case

of explicitly considering a very narrow case (see e.g. [199]). However, it has been

known for almost 25 years that for sufficiently narrow peaks in the power spectrum,

the effects of critical collapse dominate. This creates a minimum width for the mass

distribution, as discussed in [258]; table II in that work gives a minimum lognormal

width of 0.37 based on a simple least squares fit to the numerical mass distribution

calculated for a delta function peak in the power spectrum2. Additionally, it is

known that critical collapse causes the mass distribution shape to be significantly
2A different value of 0.26 was stated in [76], although this did not involve a full calculation of the

mass distribution from a power spectrum peak, instead applying a method of moments approach
to compare the lognormal with the critical collapse motivated shape in [245].
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non-lognormal [185,245]. A large amount of work has been carried out on the mass

distribution calculation since this deviation was first demonstrated, including the

integration over all formation epochs mentioned but not pursued in [185] (see [45],

and e.g. [174,177,183,258–261] for further discussion of the calculation). This leads

to two questions: does the conclusion of non-lognormality for narrow power spectrum

peaks still hold and if so, is there a model for the PBH mass distribution that can

accurately describe its behaviour for a broad range of power spectrum peak widths?

While the most rigorous choice is carrying out the full calculation of the mass dis-

tribution from the power spectrum, this can be computationally expensive, making

it unsuitable for e.g. Bayesian model selection calculations. Therefore, it is necessary

to use models which allow an approximate capturing of the numerical mass distri-

bution. Different constraints require the mass distribution to be narrow or broad, so

it is essential to use a model that describes the numerical mass distribution for all

these cases. In the following, we show that the lognormal assumption does indeed

still break down for the narrowest widths, and propose some alternative models that

can achieve a better fit over a large range of widths.

3.2 Modelling the PBH mass distribution

3.2.1 The numerical mass distribution

In order to test the validity of the lognormal mass distribution, we need a robust

method of determining the PBH mass distribution corresponding to a particular

peak in the primordial power spectrum. For this purpose, we use an accurate model

for PBH formation described in Gow et al. [258]. The procedure is to first relate

the power spectrum peak to the PBH abundance ΩPBH(m), and then determine the

mass distribution, given by

ψ(m) = 1
ΩPBH

dΩPBH

dm . (3.1)
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This is a probability distribution, and hence satisfies the condition
∫

dm ψ(m) = 1,

as will all the models we consider later.

The procedure to obtain the mass distribution is described in detail in section 2

of [258]. It incorporates the effects of critical collapse, and is robust to modelling

choices at the 10% level. In this paper, we will use the traditional peaks theory

method with the modified Gaussian window function stated in eq. (15) of [258, arXiv

version]. We additionally choose the same lognormal form for the primordial power

spectrum peak,

Pζ = A
1√

2π∆
exp

(
− ln2(k/kp)

2∆2

)
, (3.2)

which has a peak at kp and a width ∆. The normalisation is chosen such that∫ dk
k
Pζ(k) = A, and means that this peak matches the case of a (Dirac) delta

function Aδ(ln(k/kp)) in the limit ∆ → 0. The peak position is chosen such that

the mass distribution peaks at ∼ 35 M�. As noted in [258], a broader power spec-

trum peak not only results in a broader mass distribution, but also a shift of the

peak to lower masses. To ensure that the calculated mass distributions all peak at

approximately the same mass, the position of the power spectrum peak is shifted

accordingly. For the delta function case, kp = 1.6 × 106 Mpc−1, corresponding to

a horizon mass of MH = 7 M�. It should also be noted that in the LIGO mass

range, there is an enhancement caused by the softening of the equation of state

during the QCD phase transition [45, 229, 262, 263]. We have neglected this effect

so that the results regarding the optimal models are reliable at other mass scales.

When considering a given mass range, any relevant thermal effects should be taken

into account, which may mean that the models presented here need to be modified,

but the relative ability of these models to fit the underlying distribution are not

expected to change.
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Figure 3.1: The numerical mass distribution calculated for a range of power spectrum
peak widths. The peak positions are chosen for each width such that the resulting
distribution peaks at ∼ 35 M�.

We can see from fig. 3.1 that, taking into account the changes to the mass

distribution calculation over the last 25 years, the non-lognormality seen in [185,

245] is still valid, with the narrowest peaks showing significant deviation from the

symmetric shape expected for a lognormal mass distribution. We must now consider

the question of whether an alternative model can capture the detailed shape of the

mass distribution over a large range of widths significantly better than the lognormal

case.

3.2.2 Fitting the mass distribution

To find the best fitting mass distribution model, we use a χ2 statistic,

χ2 = 1
ψ2
peak

∑
i

[ψnum(mi)− ψmodel(mi)]2wi, (3.3)

with the weightings given by

wi =
(
ψnum(mi)
ψpeak

)2

. (3.4)
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We make this choice such that the peak receives more weight than the tails, since

the majority of observational techniques are most sensitive to the masses around

the peak. The squared power is motivated by considering a fit to the LIGO merger

rate data, where the merger rate is (roughly) proportional to ψ2. The overall nor-

malisation by ψ2
peak is similar to fitting ψ/ψpeak, and ensures that the χ2 values can

be compared not only between models, but also for the same model with different

widths.

The data are drawn from the numerical mass distribution, and consist of 100

values spaced equally in log mass. We choose a log-spacing because the constraints

on the mass distribution stretch over many orders of magnitude, and the low-mass

tail must be fitted with comparable weight to the high-mass tail in order to ensure

that relevant constraints are not missed. The lower mass tail is especially relevant for

e.g. microlensing constraints if we want a peak in the LIGO range, or evaporation

constraints for a peak in the asteroid mass band. The limits are set arbitrarily

to encompass the top four orders of magnitude of the distribution. The weighting

applied to the χ2 statistic should mean that any part of the mass distribution outside

of these limits will contribute negligibly to the best fit.

3.2.3 Models

In this section, we present various parametrisations considered for the PBH mass

distribution.

Lognormal

The de-facto standard mass distribution considered for PBHs generated from a rea-

sonably narrow, smooth, symmetric peak in the power spectrum is the lognormal,

given by

ψL(m) = 1√
2πσm

exp
(
− ln2(m/mc)

2σ2

)
, (3.5)
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where mc is the mean of mψ(m) and σ is the width. There are a number of alter-

native distributions to the lognormal that may fit the numerical mass distribution

better over the whole range of power spectrum peak widths. The ones chosen for

testing in this work are described in the following sections.

Gaussian

This is simply a standard Gaussian distribution, given by

ψG(m) = 1√
2πσ

exp
(
−(m−mc)2

2σ2

)
, (3.6)

with mc the mean and σ the width. It should be noted that this distribution allows

for negative masses, which are clearly unphysical. However, if the fit is good, the

fraction of negative masses should be negligible.

Skew-normal

The skew-normal is a modification to the Gaussian distribution which introduces

skewness by multiplying the Gaussian PDF with a Gaussian CDF modified with a

parameter α. The definition is

ψSN(m) = 1√
2πσ

exp
(
−(m−mc)2

2σ2

)[
1 + erf

(
α
m−mc√

2σ

)]
. (3.7)

As for the Gaussian, this distribution can produce negative masses, although the

fraction is expected to be small for a good fit.

Skew-lognormal

The skew-lognormal is virtually identical to the skew-normal, but with the mass

terms switched for log-mass terms, and an additional factor of 1/m to preserve the

normalisation over mass, i.e.,

ψSL(m) = 1√
2πσm

exp
(
− ln2(m/mc)

2σ2

)[
1 + erf

(
α

ln(m/mc)√
2σ

)]
. (3.8)
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It can be seen that, excluding the last bracket, this is simply the lognormal mass

distribution, hence the name skew-lognormal. Since this is defined in log-space, it

is superior to the skew-normal in that it avoids producing negative masses.

Critical collapse models

Motivated by the mass distribution dominated by critical collapse effects calculated

in [185,245], and later models based upon this form [76,129], we introduce a critical

collapse model class, given in general by

ψCC(m) = β

mf

[
Γ
(
α + 1
β

)]−1 (
m

mf

)α
exp

−( m

mf

)β , (3.9)

where the PBH mass is given by the critical collapse equation

m = KMH(δ − δc)γ, (3.10)

whereMH is the horizon mass at formation, K is a dimensionless constant, γ ≈ 0.36

is a universal scaling exponent which is independent of the initial shape of the density

fluctuations and δc is the minimum overdensity required for PBH formation [175].

In this class, we consider three models, defined as follows:

• CC1: α = β = γ−1, γ = 0.36

This is the most simple model, motivated entirely by the critical collapse cal-

culations. It is identical to the form stated in [245], and has been numerically

checked for small δ − δc in [175]. It has just one parameter, to fit the location

of the distribution.

• CC2: α = β = γ−1, γ variable

The shape of this model is identical to the above case, in that both tails are

described by γ. However, in this case, we allow γ to float to find the best fit.

This is motivated by the demonstration in [264] that the value γ = 0.36 does
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not hold for larger values of δ − δc, and a modification to the critical collapse

parameters K and γ could yield a better fit across the whole range. This

model has two parameters, to fit the location and shape of the distribution.

• CC3: α, β variable

This is a generalisation of the critical collapse model, disconnecting the be-

haviour of the two tails. It has three parameters, to fit the location and the

shape of each tail.

Location parameter

The location parameters stated in the parametrisations above can be extremely

sensitive to the width of the mass distribution, causing problems in the fitting pro-

cedure. To overcome this, we reparametrise most of the models in terms of their

peak mass mp, which we have held approximately fixed for all of the numerical

mass distributions. The transformations between the peak mass and the location

parameters defined above are given below.

Table 3.1: Transformation of location parameter to peak mass mp for each model.
Model Transformation

Lognormal mc = mpe
σ2

Gaussian mc = mp

Skew-normal N/A
Skew-lognormal N/A

CC1&2 mf = mp

CC3 mf = mp

(
β
α

)1/β

For the skew-normal and skew-lognormal there is no analytical form for the peak

mass. There is an approximate transformation derived from numerical fits [265], but

this does not hold for the broadest cases. Therefore, for the skew-normal and skew-

lognormal we retain the location parameters mc and ln(mc) defined above. For these

two models these location parameters are stable enough to avoid numerical errors

during fitting.
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3.2.4 Fit results

We obtain fits to the numerical mass distribution calculated from a peak in the

power spectrum by minimisation of eq. (3.3). We consider a large range of power

spectrum peak widths, from the limiting case of a delta function up to a very broad

case of ∆ = 5. The optimised model fits are shown in fig. 3.2 for three representative

cases: a delta function, ∆ = 1, and ∆ = 5. It is immediately apparent that the

lognormal is outperformed by the vast majority of the models for the narrowest

case. However, it can be seen that many of these models begin to fail as the width

increases, and are completely wrong for the broadest case.
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Figure 3.2: Optimal model fits to the numerical mass distribution for three repre-
sentative power spectrum widths ∆ = 0 (delta function), ∆ = 1, and ∆ = 5. The
mass limits are chosen to contain the top 10% of the numerical mass distribution,
to highlight the deviation of the models near the peak.

We can compare the models more carefully by examining their reduced χ2 values.

Figure 3.3 shows the χ2
ν values for all the models and widths considered. Here we

can see again that, while there are many models that outperform the lognormal for

the narrowest cases, a large number of them fail as the width increases, where they
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cannot generate the appropriate skewness. However, it can be seen that two models,

the skew-lognormal and the generalised critical collapse model, consistently provide

a more accurate fit than the lognormal. These models also have the benefit of not

producing negative masses, although the models which do allow this are deemed

irrelevant by their failure to fit the broadest cases anyway. The reduced χ2 values

are provided in table D.1.
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Figure 3.3: Reduced χ2 values for the models and widths considered. Lower (more
negative) values indicate a better fit.

The comparison between the lognormal and the two models that consistently

outperform it can be seen graphically in fig. 3.4, where the best fit lognormal is

shown with a long-dashed red line, the skew-lognormal with a mid-dashed blue line,

and the generalised critical collapse model with a short-dashed green line. The

numerical distribution calculated from the power spectrum is shown with a solid

black line.

It is evident from these plots that modelling the PBH mass distribution across a

broad range of widths is a challenging task, as it requires negative skewness in log-

space for the narrowest cases, before a change to symmetrical and then positively

skewed distributions. The model best suited for the job is the generalised critical

collapse model, which can produce the negative skewness exceptionally well, but be-
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gins to fail when positive skewness is required. The skew-lognormal acts oppositely,

with a failure to produce enough negative skewness, but an improvement for the

positive skewness regime.
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Figure 3.4: Plots of the lognormal (red, long-dashed), skew-lognormal (blue, mid-
dashed) and generalised critical collapse (green, short-dashed) fits to the numerical
mass distribution generated by a lognormal peak in the power spectrum (black,
solid). The mass limits are chosen to contain the top 10% of the numerical mass
distribution, to highlight the deviation of the models near the peak.
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Of course, there is a price to pay for achieving this matching, and that is the

introduction of an additional parameter. Both of the best-fitting models have three

parameters, as opposed to the two required for the lognormal. However, the impor-

tance of accurately describing the shape of the tails of the distribution cannot be

overstated. Failure to capture this shape can result in incorrect conclusions about

the acceptability of a particular model. For example, if we are looking for PBHs in

the LIGO mass range, we must ensure that the tails of the distribution do not con-

flict with the microlensing constraints on the low-mass side and the CMB anisotropy

constraints on the high-mass end. Similarly, for PBHs in the recently reopened as-

teroid mass window, a significant underfitting of the low-mass tail, such as that

displayed by the lognormal model for the narrower widths, could suggest that PBHs

can evade all the constraints, whereas a more accurate model would show that they

are in tension with the evaporation limits.

Table 3.2: Fitted parameter values for the skew-lognormal and generalised critical
collapse distributions with different power spectrum widths. For the skew-lognormal
model, we also provide the peak mass mp determined by numerical maximisation.
It should be noted that ln(mc) and mp are not independent and only ln(mc) is
determined by the fit for the skew-lognormal model. The peak mass is included
only for comparison to the fitted parameter in the critical collapse model.

Parameters
SL CC3

Width ∆ ln (mc) σ α mp mp α β
δ 4.13 0.55 −2.27 40.9 40.8 3.06 2.12

0.1 4.13 0.55 −2.24 40.9 40.8 3.09 2.08
0.3 4.15 0.57 −2.07 40.9 40.7 3.34 1.72
0.5 4.21 0.60 −1.82 40.8 40.7 3.82 1.27
1.0 4.40 0.71 −1.31 40.8 40.8 5.76 0.51
2.0 4.88 0.97 −0.66 40.6 40.6 18.9 0.0669
5.0 5.41 2.77 1.39 32.9 35.1 13.9 0.0206

In table 3.2, we provide the optimal model parameters for the best two models,

the skew-lognormal and the generalised critical collapse model, for the widths con-

sidered. This allows fits of these analytical approximations to be crudely compared

to the power spectrum details without the necessity of recalculating the full mass

distribution. However, it should be noted that although these more accurate mod-
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els provide a significant improvement over the lognormal, even they fail to capture

the detailed shape deep into the tails, and the only truly rigorous way to determine

whether PBHs are not excluded in a given range is to calculate the mass distribution

from the power spectrum peak.

3.3 Conclusions

We have carried out a thorough examination of the PBH mass distribution arising

from a peak in the primordial power spectrum, re-evaluating the validity of the log-

normal approximation to the mass distribution. We confirm that the modifications

to the PBH mass distribution calculation over the last 25 years do not change the

conclusion that the lognormal model is still unable to accurately capture the shape

of the distribution generated from sufficiently narrow peaks, with ∆ < 1. We com-

pare a set of alternative models using a weighted χ2 statistic, and show that over

a large range of peak widths, the lognormal is outperformed by the skew-lognormal

and a generalised form motivated by the effects of critical collapse.

This deviation between the lognormal assumption and the PBHmass distribution

calculated for a specific power spectrum peak will have important consequences for

physical inferences made from accurate data, such as the LIGO–Virgo observations.

In a related previous paper [255], we considered the skew-lognormal as part of a

detailed Bayesian analysis of the LIGO–Virgo O1O2 dataset. The limited sample

size means that the difference in the mass distribution does not significantly affect

the results, but the difference will become increasingly important with the accurate

data in the O3 run and future runs.

An accurate model of the PBH mass distribution will also be relevant in other ar-

eas, such as making accurate constraints on the PBH abundance. These constraints

are typically presented for a monochromatic mass distribution, but extended mass

distributions have been considered, see e.g. [76, 77]. The constraints for extended

mass distributions are typically similar to the monochromatic case, but the differ-

ences become important when determining the validity of specific extended mass



74

distributions, particularly in the case of fPBH ∼ 1, where the tails of the distribu-

tions may be in tension with constraints. In these cases, an accurate model of the

mass distribution is essential, to avoid drawing an incorrect conclusion about the

validity of the distribution. This is especially important in areas where there are ex-

tremely tight constraints, such as those from CMB anisotropies and evaporation, of

particular interest for the LIGO and asteroid mass windows respectively. For cases

involving fitting to accurate data or tight constraints, we advocate the use of the

skew-lognormal or generalised critical collapse model, to ensure that the conclusions

drawn are valid.

If the shape of the power spectrum peak deviates from that considered here,

either by considering other symmetric peaks or non-symmetric peaks, the shape of

the numerical mass distribution will naturally alter as well. It is expected that for

the case of ∆ . 1, this would not change the conclusions, since critical collapse

dominates the mass distribution shape in this regime. However, for much broader

peaks, the detailed shape of the peak will be important, and may affect the results

stated here. Nonetheless, we believe that in general, a three-parameter model will

be required to capture the full shape of the mass distribution across a broad range

of widths.
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Chapter 4

Primordial black hole merger

rates: distributions for multiple
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We have calculated the detectable merger rate of primordial black holes (PBHs),

as a function of the redshift, as well as the binary’s mass ratio, total mass and chirp

mass (observables that have not previously been explored in great detail for PBHs).

We consider both the current and design sensitivity of LIGO and five different PBH

mass functions, as well as showing a comparison to a predicted astrophysical black

hole merger rate. We show that the empirical preference for nearly equal-mass

binaries in current LIGO–Virgo data can be consistent with a PBH hypothesis once

observational selection effects are taken into account. However, current data do

exclude some PBH mass distributions, and future data may be able to rule out the

possibility that all observed BH mergers had a primordial origin.
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4.1 Introduction

Primordial black holes (PBHs) were first considered by Zel’dovich and Novikov [24],

and were heavily studied by Hawking and Carr [25, 26]. Since then, the field has

generated an extensive literature; for a review of the current state of research, see

[155] and [156]. As they interact only via gravity, PBHs are a natural dark matter

(DM) candidate without requiring physics beyond the standard model. The fraction

of DM that can be composed of PBHs, fPBH, has been well constrained by a number

of methods [156]. One of these methods is provided by the detection of gravitational

wave signals by the Laser Interferometer Gravitational-wave Observatory (LIGO).

During the O1 and O2 runs, LIGO detected 10 binary black hole (BBH) mergers [30].

The detector has recently finished its O3a run (the first half of the O3 sensitivity

run) lasting from 1 April to 1 October 2019, and has detected 21 mergers with

> 90% probability of being BBHs. Some unexpected properties of the detected

mergers in the O1O2 dataset, such as the high mass and low effective spin, led to

the suggestion that the mergers may be primordial in origin [67,266,267], and that

they could explain an excess of power in the cosmic infrared background, although

this requires fPBH ∼ 1 [268]. The aim of our current paper is to investigate this

possibility in more detail, attempting to model properties such as the BBH mass

ratios, allowing for observational selection effects that bias the rates with which

different binaries are detected.

A major goal of any PBH analysis is to place constraints on fPBH. There are a

number of methods for placing limits on this parameter, over a large range of mass

scales. In the LIGO range of ∼1–100 M�, the relevant constraining techniques are

microlensing events [269–272] and CMB accretion effects [273,274]. A summary plot

of these limits (and other limits on different mass scales) can be seen in fig. 10 of [156,

published version]. In this range, the tightest constraint on fPBH comes from either

CMB accretion limits or from the LIGO events themselves (fig. 17 of [156, published

version]), depending on the sound speed of baryonic matter compared to the relative

baryon to dark matter velocity [274]. This means that, even with fPBH < 1, all of
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the LIGO events could be of primordial origin. However, the constraints discussed

above have all been determined for a monochromatic PBH mass distribution. This

case is unrealistic based on the typical formation mechanisms, and so some effort has

been made into determining equivalent limits for extended mass functions [76, 77].

If PBHs exist, it is of extreme importance that their mass distribution be ac-

curately characterised. We have made the first study of several parameters related

to the masses in PBH scenarios, such as the total mass M , the chirp massM, and

the mass ratio q = m2/m1. The LIGO convention is that m2 is the smaller mass,

and hence 0 < q 6 1. The PBH mass distribution is already observationally con-

strained, and with future data it will be possible to determine the distribution and

its parameters to a high degree of accuracy, or perhaps even rule out any possible

PBH mass distribution as the origin of all the detected LIGO events.

A particular motivation for considering the mass ratio q is that the LIGO data

have central q values that are all statistically consistent with equal mass mergers.

One may wonder whether such a strong correlation in mass is plausible for PBHs with

a broad mass function, and much of our paper is devoted to considering this question.

Of course, the same issue of principle arises if the BHs are of astrophysical origin, but

it seems that q could naturally be close to unity in this case [109,110,112,113], while

PBH binaries, having a very different formation mechanism, would not necessarily

have such a strong tendency. It is interesting to consider whether the current LIGO

data favour a particular q value, but the LIGO selection effects discussed below

(which have a preference for equal mass mergers) must be taken into account. A

recent analysis of the LIGO data showed that, for a mass distribution based on a

power-law form, q > 0.6 is favoured [275].

Additional observables could also be used to distinguish between mergers of

primordial and astrophysical origin. A recent paper by Gerosa et al. [276] obtained

merger rate distributions for astrophysical black holes against three observables:
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the total mass M , redshift z, and the mass ratio q. It is desirable to have the same

distributions for PBHs so a comparison between the primordial and astrophysical

cases can be drawn.

The intrinsic merger rate for PBHs is obtained by considering the number density

of PBHs, and their interactions. A binary is formed when the gravitational attrac-

tion between two adjacent PBHs dominates over the Hubble flow. The surrounding

PBHs, as well as other forms of DM, then generate a tidal force that determines

the angular momentum of the binary, which in turn determines how long the binary

takes to merge. The intrinsic merger rate as a function of time can then be obtained.

This calculation has been carried out in a number of ways by various groups, for

monochromatic [67, 277–280] and extended PBH mass distributions [68, 193], most

recently by Raidal et al. [69], whose method we use for the following calculations.

In section 4.2 the theoretical process for obtaining the intrinsic merger rate for

PBHs is described, and is briefly shown in its numerical form. Section 4.3 explains

how to determine the rate of detections expected by LIGO for a given intrinsic

merger rate. The resulting distributions for the detectable merger rate are shown

in section 4.4, and a comparison of different PBH mass distributions is considered

in section 4.5. Finally, the merger rate expected for the LIGO O1O2 sensitivity is

compared to the detected merger events in section 4.6.

4.2 Intrinsic merger rate from PBHs

To determine the intrinsic merger rate of PBHs, a number of factors must be con-

sidered. First, there is the number density of PBHs of a given mass, which is related

to the mass distribution ψ(m). Then, the fraction of these that form binaries must

be determined, and the angular momentum distribution must be taken into account

to determine the number of PBH binaries that will result in mergers at time t. This

procedure will give the merger rate assuming that the binaries are not disrupted

between their formation and merger. Even a small alteration in the angular mo-

mentum j of the binary will cause a significant change in the merger time τ , due



79

to the relation τ ∝ j7 [281]. This assumption was considered by Ali-Haïmoud et

al. [278], who estimated that little disruption occurs, but Raidal et al. [69] carried

out simulations and argued that significant disruption may occur for fPBH & 10−1.

A more recent work by Vaskonen and Veermäe determined the lower bound on the

merger rate including the impact of disruptions for fPBH & 0.1, and found that it

remained too large compared with the LIGO observed merger rate [282].

An additional consideration in finding the merger rate is the clustering of PBHs.

If this is an important factor, then it could considerably alter the merger rate at a

given time. This has been a topic of some debate, but it is now generally agreed

that, for Gaussian initial conditions, the spatial distribution of PBHs is Poissonian

[61,62,65,283]. Primordial non-Gaussianity can strongly change the initial clustering

of PBHs [64,66,70,232,233] and the subsequent merger rate [71] (see also [63]).

The merger rate calculation performed by Raidal et al. [69] yielded the following

equations, reproduced here for convenience:

dR = S × dR0, (4.1)

where dR is the differential merger rate, S is a suppression factor (given by eq. (2.37)

in [69, published version]) that depends on the component masses m1 and m2, the

fraction of dark matter in PBHs fPBH, and the rescaled deviation of matter density

perturbations σM, and

dR0 = 1.6× 106

Gpc3 yr
f

53
37

PBH η
− 34

37

(
M

M�

)− 32
37 ( t

t0

)− 34
37
ψ(m1)ψ(m2) dm1 dm2 (4.2)

is the unsuppressed differential merger rate, where η = m1m2/M
2 is the symmetric

mass ratio, M is the total mass of the system, t is the proper time, t0 is the age of

the universe, and ψ(m) is the mass distribution of PBHs, normalised to unity. The

suppression factor S depends on the average number N̄(y) of PBHs in a spherical



80

shell of radius y. Raidal et al. determine a value of this to ensure minimal disruption

of the binary for fPBH < 10−1, given by eq. (3.5) in [69, published version]. We use

this value for the following calculations.

The mass distribution used in [69] is a lognormal, given by the form

ψ(m) = 1√
2πσm

exp
(
− ln2(m/mc)

2σ2

)
, (4.3)

where mc is the median of the distribution (also the mean of mψ(m)) and σ de-

scribes the width. This is a common choice for the PBH mass distribution, as it

well approximates the class of distributions for PBHs formed from peaks in the

power spectrum [76]. Raidal et al. [69] carried out a fit to the LIGO data for this

mass distribution, although they did not incorporate the full detectability proce-

dure described in section 4.3, instead using a step function in the signal to noise

ratio. Their best fit parameters are mc = 20 M� and σ = 0.6, and we will begin by

considering these values for the mass distribution. The mass distribution with these

parameters is shown in fig. 4.1.
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Figure 4.1: Lognormal mass distribution with mc = 20 M� and σ = 0.6.
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A common alternative form for the mass distribution is f(m), which satisfies

∫
d ln(m) f(m) = fPBH. (4.4)

This is related to the above mass distribution by the relation

ψ(m) = 1
fPBH

f(m)
m

. (4.5)

The total intrinsic (source-frame) merger rate in Gpc−3 yr−1 can be obtained from

the differential merger rate by applying the integration

R =
∫

dm1

∫
dm2

dR
dm1dm2

(4.6)

for source-frame masses m1 and m2, and with a fixed value of proper time t. The

result of this (or a similar) equation with t = t0 is often compared with the LIGO

estimate for the intrinsic merger rate [67, 193, 267, 278–280]. However, in obtain-

ing their estimate of the intrinsic merger rate, the LIGO collaboration assumes a

mass distribution, so this estimate could differ significantly compared to the PBH

calculation if a very different mass distribution is used. For further details on this

estimation method, see section VII of [30, published version]. To overcome this

problem, the ground-based rate of detections in yr−1 can be found, which can then

be directly compared to the LIGO measurements, rather than their intrinsic rate

estimate. Distributions of this type in the component masses can be seen in [193]

with fPBH chosen to fix the intrinsic merger rate to R = 100 Gpc−3 yr−1, although

these distributions do not take into account the dependence of the detectability on

the component masses. The process for finding the ground-based detection rate is

described in the following section.
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4.3 Detectability and ground-based detection rate

To obtain the ground-based detection rate, we must weight the different parts of the

intrinsic merger rate with the ability of the LIGO instrument to detect the resulting

waveform. This detectable merger rate is calculated using

Rdet =
∫

dz
∫

dm1

∫
dm2

1
1 + z

dVc
dz pdet(z,m1,m2) dR

dm1dm2
(z), (4.7)

where Vc is the comoving volume and pdet is the detection probability [284]. This

detection probability is obtained by simulating merger waveforms and passing them

through the LIGO detection pipeline to find the signal to noise ratio (SNR) in

a single detector for a certain set of parameters. The angular dependence of the

detection probability may be well approximated by the function p(ω), where ω is

the projection parameter defined in eq. (2) in [276, arXiv version], with the detection

probability given by

pdet(z,m1,m2) =
∫ 1

ρthr/ρopt(z,m1,m2)
dω p(ω), (4.8)

where ρopt is the SNR for a merger happening face-on to the detector located directly

above the detector and ρthr is a threshold SNR above which it is assumed that the

signal is detected, typically taken as ρthr = 8 [276]. The noise curve used is the design

sensitivity curve (aLIGOZeroDetHighPower). This process is carried out using the

public code gwdet written by Davide Gerosa [285]. The resulting probability is

plotted against the component masses in fig. 4.2, at z = 0.2 and z = 0.5.

The method described above does not take into account the spin of the compo-

nent BHs. In principle the dependence of the SNR on these spins should be taken

into account. Since PBH spins are expected to be very small at formation [54,57,286],

we avoid this computationally expensive step by computing waveform approximants

having zero spin. The difference in spin has also been considered as another observ-

able that could be used for distinguishing between mergers of astrophysical and
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primordial origin [58, 287]. There is the possibility that, although the PBH spin is

small at formation, they could spin up between formation and merger. However,

this is likely to be a small effect [56]. Assuming the detection probability varies little

over the range around zero where PBH spins are expected to lie, then taking zero

spin is a good approximation.
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Figure 4.2: Detection probability pdet(m1,m2) at z = 0.2 (left) and z = 0.5 (right).
Note that all three scales are in log-space. The white area indicates pdet < 0.1,
and the grey triangle indicates that the case m2 < m1 is chosen by LIGO for their
analysis.

4.4 Detectable merger rate for LIGO observables

Distributions of the detectable merger rate against four observables have been gener-

ated by Monte Carlo integration of eq. (4.7) using the AdaptiveQuasiMonteCarlo

integrator in Mathematica . These distributions are shown in fig. 4.3. The four

observables are total mass M , redshift z, mass ratio q, and chirp mass M. The

first three of these observables are chosen for comparison with detectable merger

rate distributions recently determined by Gerosa et al. [276] for astrophysical black

holes, using the Startrack code for stellar evolution and the Precession code

to add spins, with the same detectability process described above [276]. The fourth

observable, M, is chosen because this is the observable best constrained by LIGO

for lower mass mergers. There is no astrophysical curve publicly available at the

time of writing for this observable, as it was not calculated in [276]. Three values
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of fPBH are shown, with the largest being 10−1. Above this value, the merger rate

calculation is unreliable due to the high probability of the binary being disrupted

between formation and merger [69].
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Figure 4.3: Merger rate distributions in total mass M , redshift z, mass ratio q, and
chirp massM for a lognormal mass distribution with σ = 0.6, at design sensitivity.
The distributions for astrophysical black holes from [276] are shown in green for the
first three plots.

The distributions for the total mass M and the chirp massM follow the compo-

nent mass distribution shown in fig. 4.1 closely, with the peaks lying where one

would expect by taking the peak of the individual lognormal mass distribution

(mc = 20 M�, σ = 0.6) and calculating the resulting values of M and M. The

distribution for the mass ratio q seems to favour q ≈ 0.6, but is fairly flat from q = 1
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down to q ≈ 0.4. After this, there is a steep drop-off, due to a combination of the

width and detectability factors. It can be seen that the major dependence on fPBH

is simply a global multiplier, scaling the curves up or down. However, there are

other dependencies, such as the fPBH = 10−3 curve being flatter at high observable

values than the curves with higher fPBH values for the total mass M and chirp mass

M.

As can be seen in fig. 4.3, the distributions for total mass M and redshift z

seem to match the astrophysical distribution quite closely at low redshift, but the

astrophysical rate drops for redshifts above z ≈ 1.5 as it follows the stellar formation

rate, while the primordial rate continues growing and becomes the dominant merger

source, as can be seen in fig. 10 of [69, published version]. All the rates tend to zero

as the redshift tends to zero, due to the volume factor in eq. (4.7). In contrast to

the above two cases, the distribution for the mass ratio q shows a clear difference

between the astrophysical distribution and any of the primordial curves. This could

therefore be a useful observable for distinguishing between mergers of astrophysical

and primordial origin. As can be seen, the astrophysical distribution tends to favour

higher q values, which is to be expected considering the formation mechanisms

[109, 110, 112, 113]. The current LIGO data also favour high mass ratios [275], and

with future data, the allowed width and shape of the PBH mass distribution could

be seriously constrained.

It is also interesting to know how the merger rate is distributed across multiple

observables. 2D plots of the merger rate against four sets of parameters were cre-

ated. These are the component masses (m1, m2), and the three combinations of the

redshift z, the chirp massM, and the mass ratio q. These distributions are shown

in fig. 4.4. The distribution in (m1, m2) exhibits the expected behaviour following

the mass distribution, with a peak between 10 M� and 20 M�, and then a drop off

to higher masses. The distribution in (q,M) shows that, away from the chirp mass

peak, there is no detectable merger rate for low q values.
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The distributions involving redshift show that nothing can be detected past

z ≈ 1.6, even at design sensitivity. The (z,M) distribution peaks at the same chirp

mass value as the other 1D and 2D distributions, but drops off very rapidly with

redshift. Also, it can be seen that the larger chirp mass values can be detected

out to much higher redshifts, due to the larger amplitude of the gravitational wave

produced. The same is true of the higher q values in the (z, q) distribution.
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Figure 4.4: 2D merger rate distributions in individual masses, mass ratio q, chirp
mass M and redshift z for a lognormal mass distribution with σ = 0.6, at design
sensitivity. All plots have fPBH = 10−2. The white area corresponds to no significant
merger rate, and the grey triangle indicates the LIGO choice m2 < m1.

For the two distributions involving the chirp massM, we can take vertical slices

and produce 1D distributions over a given chirp mass range, to better demonstrate

the sensitivity of the merger rate to the chirp mass. These are shown in fig. 4.5. It

can be seen for both of the observables that the low chirp mass curve begins above

the medium chirp mass curve, but then drops below as the value on the respective
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horizontal axes is increased. For the redshift distribution, this is because the low

chirp mass binaries have a low detection probability, and so have a very limited

z-range.
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Figure 4.5: Merger rate distributions in redshift z and mass ratio q for a lognormal
mass distribution with σ = 0.6 at design sensitivity, binned by chirp massM. Both
plots have fPBH = 10−2.

1D and 2D distributions of the detectable merger rate have been generated for

the lognormal mass distribution in eq. (4.3), with the parameters mc = 20 M� and

σ = 0.6 given in [69]. However, while this is a plausible form for the mass function

and its parameters, it is not the only option. Therefore, it is interesting to consider

how these merger rate distributions change for other PBH mass distributions.

4.5 Comparison of different PBH mass distribu-

tions

4.5.1 Lognormal width parameter σ

While the best fit values in [69] for the lognormal mass distribution are mc = 20 M�

and σ = 0.6, the full angular dependence for the detectability was not incorporated,

and so it is of interest to consider the merger rate distributions for other widths. The

method above was carried out for a second lognormal distribution with the same mc



88

but with σ = 0.3, and also for a monochromatic distribution δ(m−mc) which is the

limit of the lognormal distribution as σ → 0. Both of these additional distributions

had the same mc = 20 M�. For typical PBH formation scenarios, critical collapse

imposes a minimum width on the mass distribution, and so a monochromatic dis-

tribution is not realistic. However, the monochromatic distribution is still useful

for comparison and demonstration of the properties affecting the merger rate. A

comparison of the distributions is shown in fig. 4.6.
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For M , q, and M, the monochromatic distribution is represented by a single

point, since there is only one value of each observable it can take. InM andM, it can

be seen that reducing the width of the mass distribution leads to a reduction of the

width of the merger rate distribution, as expected. It also leads to an enhancement

of the peak. For q, the width reduction suppresses low q values, also to be expected,

since a narrower distribution has a smaller difference between the highest and lowest

probable masses. For z, the narrower mass distribution leads to an enhancement

across the whole range because, for a given total mass, equal mass mergers are easier

to detect. 2D distributions for the lognormal distribution with σ = 0.3 are shown

in fig. E.2.

For the monochromatic distribution, there are some further parameters that

can be considered due to the simplicity of the function. These are fPBH, the mass

of the monochromatic distribution mc, and the rescaled deviation of matter den-

sity perturbations at the time of binary formation σM, given just after eq. (2.24)

in [69, published version]. The value of σM is usually taken as 0.006 on scales re-

lating to black hole masses of order 1–103 M�, corresponding to the deviation of

density perturbations σeq = 0.005 in [278] and [279]. However, this value is found

by extrapolating the power spectrum amplitude and spectral index measured from

the CMB. Since PBH formation typically requires some type of peak in the power

spectrum on relevant scales, this could quite dramatically change the value of σM,

or even give it a strong dependence on the black hole mass, and so this value is very

uncertain [69, 278]. A detailed study on the angular momentum sources excluding

PBHs outside the binary, including the variability of σM, was carried out by Garriga

et al. [288].

Figure 4.7 shows the dependence of the detectable merger rate for a monochro-

matic distribution on the three parameters mc, fPBH, and σM. The dependence on

fPBH looks very similar to the plot of the intrinsic merger rate on this parameter
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in fig. 3 of [69, published version]. This is expected, since the detectability and

comoving volume factors do not introduce any additional dependence on fPBH, so

the only difference is the monochromatic vs. lognormal mass distribution.
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In the bottom panel of fig. 4.7, the detectable merger rate has been normalised

by removing the global dependence on fPBH, leaving only the fPBH dependence in

the suppression factor S. This is to better highlight the relationship between the

merger rate and the two parameters σM and fPBH, which have a degeneracy in S.

The curves follow the same shape as each other, but with the peak in a different

place that is determined by the relationship between fPBH and σM. To the right of
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the peak, the torque on the binary is dominated by the matter perturbations, leading

to binaries that have not yet merged. To the left of the peak, there is insufficient

torquing from matter perturbations, and the binaries merged at redshifts too high

to be detected by LIGO. However, on the left of the peak, the merger rate tends to a

constant value, determined by the torquing generated by other PBHs, which is fixed

by the value of fPBH. It can also be seen that the normalised merger rate varies by

up to an order of magnitude for different values of σM. This is enough to shift the

LIGO constraints yielding different optimised mass distribution parameters, and so

further study of the degeneracy of observables with the currently unknown value of

σM is required.

4.5.2 Power-law distribution

Another commonly considered distribution for the masses of primordial (and astro-

physical) black holes is a power-law (∝ m−α). The parameters for this model are

the power to which the mass is raised and the lower/upper mass cutoffs if appli-

cable. A scale-invariant primordial power spectrum generates α = 3/2, due to the

enhancement of the PBH energy density relative to the background radiation energy

density after they have formed [76,244]. With both a lower and upper mass cutoff1,

the normalised mass distribution is

ψ(m) = (α− 1)
[
m
−(α−1)
min −m−(α−1)

max

]−1
m−α. (4.9)

However, if the minimum mass is chosen to be too small, the suppression factor S

in the merger rate calculation described above heavily suppresses the result. This is

probably because a power-law mass distribution heavily favours the lighter end of

the mass spectrum, meaning there are far more of these than there are heavier black

holes. Physically, if there is a large population of lighter black holes and a smaller

population of heavier black holes, then it will still be the heavier black holes that

will merge as the lighter ones will not contribute significantly to the gravitational
1In practice, unless the mass function is close to scale invariant, only one cutoff is important.
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force that causes a binary to form. However, the calculation described in [69], while

being very thorough, does not capture this effect because it assumes that a PBH will

form a binary with its nearest neighbour, rather than the neighbour contributing

the largest gravitational force. In the equations, this manifests itself as a strong

dependence on the average mass m̄, and a suppression of the resulting merger rate.

To determine if this effect is important, and if so how problematic it is, the merger

rates of three power-law mass distributions were calculated. Each mass distribution

had the same values of α = 3/2 and mmax = 100 M�, but had different mmin values

(5 M�, 1 M�, and 0.1 M�). For each distribution, the value of fPBH was chosen

such that the number density of PBHs with masses in the range 1–100 M� was

the same. Physical intuition would suggest that the total number of merger events

with masses in this range would be similar for all three distributions. However, the

intrinsic merger rate calculated using eq. (4.6) varied by two orders of magnitude

between the distributions with minimum masses of 5 M� and 1 M�, and by 30 orders

of magnitude between 5 M� and 0.1 M�. This is clearly a very significant problem

that prevents the study of very broad mass distributions.

While it remains unclear how broad the mass distribution can be before this

effect starts to become important, it is still desirable to compare the lognormal

distribution with a power-law distribution. Therefore, the analysis was rerun with

two power-law distributions. Both had α = 3/2 and mmax = 100 M�. The minimum

mass for the two distributions was mmin = 5 M� and 10 M� respectively. However,

due to the problem described above, it is not clear if these results are reliable. The

1D merger rate distributions for these mass distribution can be seen in fig. E.1, and

the 2D distributions are shown in figs. E.3 and E.4.

Another mass distribution of interest is that of PBHs generated at the QCD

phase transition. For a scale invariant power spectrum, this formation gives a mass

distribution like a power-law with α = 3/2, but with an excess at around 1 M�,

caused by the reduction in pressure at the QCD transition [45]. However, the rele-

vant range of this mass distribution is extremely large (four orders of magnitude),
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and so it is affected by the broadness problem discussed above. This mass distribu-

tion remains of interest due to its physical motivation, and should be studied once

a reliable calculation of the merger rate for broad mass distributions is available.

4.6 Current LIGO data and constraints

In the above sections, the detection probability pdet was calculated using the default

power spectral density (PSD) for the LIGO noise. This is the design sensitivity noise

curve (aLIGOZeroDetHighPower). To compare to current LIGO data, a different

PSD must be used. Therefore, the process above was carried out again with a

detection probability generated using the aLIGOEarlyHighSensitivityP1200087

PSD, which is a good approximation of the O1 and O2 sensitivities.

Figure 4.8 shows the same plots as in fig. 4.3, but for the O1O2 detectability. The

posterior probability distributions for the 10 LIGO binary black hole (BBH) events

are shown in the top panel of each plot [30]. For all four observables, we can see that

none of the posteriors has a distribution that drastically disagrees with the shapes of

the merger rate curves. The expected number of events in a given observable range

can be found by summing the merger rate curves over this range and multiplying by

the total observing time of the O1O2 dataset, which is 0.46 yr. We can also consider

the other mass distributions. Figure 4.9 shows the O1O2 merger rate distributions

for the lognormal distribution with the widths σ = 0.6 and 0.3, and the power-law

distribution with mmin = 5 M� and mmin = 10 M�.
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Figure 4.8: Merger rate distributions in total mass M , redshift z, mass ratio q, and
chirp massM for the lognormal mass distribution with σ = 0.6, at O1O2 sensitivity.
The top panel in each plot shows the LIGO posteriors for the 10 BBH events.
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Figure 4.9: Merger rate distributions in total mass M , redshift z, mass ratio q, and
chirp mass M for a lognormal mass distribution with σ = 0.3 and σ = 0.6, and
a power-law mass distribution with mmin = 5 M� and mmin = 10 M�, at O1O2
sensitivity. The top panel in each plot shows the LIGO posteriors for the 10 BBH
events. All plots have fPBH = 10−2.

2D distributions were also produced for this sensitivity. The first of these,

Rdet vs. (m1, m2) is shown in fig. 4.10 for the four mass distributions considered (the

two lognormal distributions with different widths, and the two power-law distribu-
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tions with different minimum masses). The black points show the LIGO values from

the ten events and their 90% confidence ranges (note that these are 1D marginalised

error bars, and the full contour would not just follow the shape of the errors). All

the data points lie in the lower triangle due to the LIGO analysis imposingm2 < m1.
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Figure 4.10: 2D merger rate distributions in individual masses for the four mass
distributions considered, at O1O2 sensitivity. The top row has the lognormal mass
distribution with widths σ = 0.6 (left) and 0.3 (right), and the bottom row has the
power-law mass distribution with minimum mass 5 M� (left) and 10 M� (right).
All plots have fPBH = 10−2. The white area indicates no significant merger rate and
the grey triangle indicates the choice m2 < m1. The LIGO values and their 90%
confidence limits are shown in black.

It can be seen by eye that some of these PBH models fail quite badly to match

the observed locations of the LIGO events, whereas others look more acceptable. A

statistical procedure is required to compare the observed and predicted distributions

on them1–m2 plane so that we can quantify the acceptability of the different models.

This is relatively straightforward, but is made harder by the complex shape of the

LIGO event posteriors in the m1–m2 plane that depends on the true parameters of

the event (since these dictate the SNR of the detection). We are currently pursuing
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a Bayesian inference of the PBH scenario using the LIGO events, but we present

here a simplified attempt to quantify how well the PBH model fits the data. We

attempt to capture the posteriors by assuming that all events have measurement

error distributions that are independently lognormal in m1 and m2, adopting a

typical rms of 0.2 in lnm (the final p-values are not highly sensitive to this choice).

With this assumption, we can smooth our distribution on the m1–m2 plane and

hence convert it to a 2D function from which the observed data can be treated as

random error-free samples (note that the smoothing is performed in the symmetric

m1–m2 plane before folding to impose the convention m2 < m1, and preserves the

total merger rate over the m1–m2 plane).

In order to carry out the statistical comparison, there are two relevant questions:

(1) is the observed number of events consistent with expectation? and (2) is the

distribution over the m1–m2 plane correct? For the former, we have 10 events, and

the likelihood of this number is to be computed using a Poisson distribution based

on the predicted number from integration over the m1–m2 plane and multiplying

by the observing time. As the Poisson distribution is exponentially sensitive to the

expected number µ, the probability can drop off rapidly as µ moves away from the

observed number of events. The expected value for each case is shown in table 4.1,

with the corresponding probabilities adjacent. For the 2D distribution, we normalise

the rate distribution over the m1–m2 plane to obtain a 2D probability density. This

could then be compared with the data using the 2D Kolmogorov-Smirnov (KS)

test [289]. The only drawback with this approach is that the KS test is rather

insensitive to whether a few points lie in an area of the plane with zero density, as

does seem to be the case here. We therefore prefer a simpler statistic, which is just

the overall likelihood of the data (product of the 2D density at the location of the

10 events). The expected distribution of this statistic can be readily obtained by

drawing 10 points independently and at random from the 2D distribution multiple

times. In this way, we can identify models whose likelihood is sufficiently low that

they can be ruled out at an interesting level of significance. Thus we obtain two
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two-tailed frequentist p-values based on the absolute number of events and on their

distribution. For the present purpose, it is probably the second of these that is of

more interest, since it addresses directly the initial question of whether the PBH

model can consistently generate nearly equal mass binaries.

Table 4.1: Expected number µ and probability p of the LIGO results based on the
number of observed mergers N = 10 with observing time T = 0.46 yr, and their
distribution in the m1–m2 plane for four PBH mass distributions: A = Lognormal
(mc = 20 M�, σ = 0.6), B = Lognormal (mc = 20 M�, σ = 0.3), C = Power-law
(mmin = 5 M�, α = 3/2), D = Power-law (mmin = 10 M�, α = 3/2).

Test N m1–m2

fPBH 10−2 10−3 10−2 10−3

Model µ p µ p p p

A 31 1.2× 10−5 1.6 1.3× 10−6 0.15 0.37
B 47 6.4× 10−11 1.9 4.1× 10−6 . 10−4 5× 10−4

C 15 0.12 0.96 6.3× 10−9 2× 10−4 0.30
D 37 1.5× 10−7 2.0 9.3× 10−6 0.15 0.45

The results of this exercise are collected in table 4.1 for the four extended mass

distributions discussed above, labelled A–D as in the caption to table 4.1, and for two

values of fPBH each (10−2 and 10−3). It can be seen that only model C is compatible

at the 5% level with the LIGO number of observed mergers for either of the values of

fPBH. For the other models, fPBH = 10−2 significantly overproduces merger events,

while for all the models fPBH = 10−3 does not produce enough, assuming that all the

LIGO events are of primordial origin. For any of these models, it will be possible to

choose a value of fPBH between 10−2 and 10−3 that will match the observed number

of events. The test of the m1–m2 plane shows better agreement, with only model B

and model C at fPBH = 10−2 disfavoured at the 5% level. These three probabilities

are limited by shot noise due to the number of samples. While the global factor of

fPBH has been normalised out, there is still a non-trivial degeneracy between this

parameter and the shape of the merger rate distribution in the m1–m2 plane. The

p-values for model C vary greatly between the 10−2 and 10−3 case, due to the rapid

suppression of the merger rate for higher values of m1 and m2 with fPBH = 10−2.

This is likely to be an effect of the broadness problem discussed in section 4.5.2,
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and so the small p-value for model C with fPBH = 10−2 should be taken with some

hesitation. It is clear however, that a PBH scenario can explain the shape of the

merger rate distribution in the m1–m2 plane and, with an appropriate fPBH for

normalisation, the total number of observed mergers.

4.7 Conclusions

Since the LIGO–Virgo collaborations have begun the era of direct gravitational

wave detection, there has been great interest in the origin of the black holes whose

mergers they have detected. We have focused on observational methods to discrim-

inate between primordial and astrophysical black holes. We have explored a larger

range of observables as a probe of the PBH scenario than have been greatly ex-

plored previously, with a particular focus on the mass ratio of the BHs that merged.

Astrophysical BHs which form from a common envelope may dynamically equalise

their masses and hence predict q ≈ 1, while still forming a large range of masses

between different binary pairs [109, 110, 112, 113]. In contrast, PBHs form before

they become part of a binary system, suggesting that q ∼ 1 is only likely to occur if

the PBH mass distribution is narrow. However, a narrow mass distribution may be

in tension with the broad range of chirp (or total) masses observed in the 10 binary

black hole merger events detected by LIGO–Virgo to date.

In order to analyse this problem, we have made merger rate distributions incor-

porating the LIGO detectability for the O1O2 LIGO–Virgo sensitivity curves, and

compared to the LIGO data from the O1 and O2 runs. A rough analysis shows

that the LIGO data have begun to apply constraints on the form and parameters

of the PBH mass distribution, which is only possible using the detectable merger

rate. Three types of PBH mass distribution were considered: lognormal, power-law,

and monochromatic, although the monochromatic distribution is already ruled out

by the variation in masses detected by LIGO. Table 4.1 shows the results of this

analysis, indicating that the narrow lognormal (model B) is disfavoured at the 5%

level.



100

We have also calculated the expected detectable merger rate distributions at

LIGO design sensitivity for the mass ratio q, redshift z, total mass M and the

chirp massM, and compared the results to distributions generated for astrophysical

BHs. These distributions, which take into account the detection probability of any

given merger, overcome the problem of comparing the intrinsic PBH merger rate

to the intrinsic merger rate estimated by LIGO, each of which assumes a different

mass distribution for the component black holes. The LIGO estimation method is

described in section VII of [30].

With the many new events expected to be detected by LIGO in the future,

the PBH mass distribution can be probed in great detail, and following on from

the methods developed in this paper, the best fits for any form of the PBH mass

distribution can be found. A complication in these fits would be the uncertainty

of the source of any given merger. In the future, a fit simultaneously incorporating

the two potential BH populations (primordial and astrophysical) should be made,

and it may be possible to rule out all of the BHs being primordial in origin. One

potential discriminant is the spin of the BHs, which is expected to be negligibly

small for PBHs formed during radiation domination [58]. Even if the spin cannot

discriminate, it must be taken into account for astrophysical BHs, which may have

significant spins. We are currently pursuing a fully Bayesian inference of the PBH

merger scenario with current (and future) LIGO data.

Uncertainties in the PBH merger rate calculation remain an open issue. The

method applied in this paper from [69] builds a strong framework for the merger

rate calculation, but there are further considerations, such as the torquing effects

from matter and radiation perturbations [288], and the uncertainty of how frequently

binaries are disrupted between formation and merger [69, 278]. We have also found

that the current calculation cannot be used in the case of a very broad mass dis-

tribution. Detailed simulations and further analytic developments of PBH binary

formation, disruption, and merger events are essential to ensure that the fits to the

current and future LIGO data are accurate.
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Chapter 5

Conclusions and future work

Many questions about our universe remain unanswered. What are the natures of

dark matter and dark energy? How did the universe begin and evolve? What

provided the seeds for the structure we see today? Primordial black holes may

provide the answers to some of these challenges. They can provide an explanation

for some or all of the dark matter in the universe today. Additionally, their formation

in the early universe means that they are a unique probe of the physics at those

times, such as inflation. Crucially, they provide insight on the small-scale behaviour,

far away from the knowledge we have from the CMB. In this thesis, we have studied

PBHs at different stages in the history of the universe, from their formation at very

early times to binary mergers detectable at present with instruments such as LIGO.

Beginning in the past, we examined the formation of PBHs from large inflaton

overdensities in chapter 2. While there are well-defined procedures to calculate the

PBH abundance and mass distribution from a known peak in the primordial power

spectrum, there are a number of effects that must be taken into account carefully,

such as critical collapse and the non-linear relation between ζ and δ. Additionally,

there are different methods, e.g. Press–Schechter vs. peaks theory, as well as the

choice of window function applied to the power spectrum, that may modify the

result of the calculation. We carried out a thorough test of these choices, finding

that the power spectrum required to produce a fixed PBH abundance only differed by

O (10%) between the different choices, with a similar shape for the resulting mass
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distribution. This shows that these choices are currently unimportant, although

these differences will become important when considering accurate data from future

experiments. Furthermore, we calculated robust constraints on the primordial power

spectrum from PBH sources, and compared with those from pulsar timing arrays

and µ-distortions, showing that PBHs with masses less than ∼ 104 M� are not in

tension with other constraints. However, future constraints from µ-distortions and

the stochastic gravitational wave background will change this result, and a non-

detection in a PIXIE-like experiment, as well as the SKA, LISA, and the Einstein

telescope will rule out the possibility of PBHs existing across the vast majority of

masses which have not evaporated by the present day.

Although the procedure to obtain the PBH mass distribution is well known and

currently resistant to alternative choices in the method and window function, it is

computationally expensive to calculate, making it infeasible for use in optimisation

procedures such as an MCMC analysis. Therefore, models that capture the shape

of the distribution in a simple function are required. The most commonly used

model is the lognormal, although work from almost 25 years ago suggested that this

will not capture the underlying shape when the effects of critical collapse dominate

the calculation [185, 245]. In chapter 3, we confirmed that this 25 year old conclu-

sion remains valid despite modifications to the PBH mass distribution calculation

such as the integration over all formation times, and tested a number of alternative

models that have the potential to capture the underlying shape more accurately.

We found that two three-parameter models (the skew-lognormal and a generalised

model motivated by the physics of critical collapse) provide a significant improve-

ment over the lognormal across a broad range of power spectrum peak widths, and

suggest that one of these models be used in the case of accurate datasets or strongly

mass-dependent constraints, such as those from PBH evaporation.

Moving towards the present, we considered the mergers of PBHs and the pos-

sibility that they can explain the LIGO gravitational wave detections in chapter 4.

Utilising a detailed model of PBH binary formation and merger, we produced distri-
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butions of the detectable PBH merger rate across a number of key observables, such

as the chirp mass and mass ratio, for the LIGO O1O2 and design sensitivities. We

compared the design sensitivity distributions to publicly available analogues for the

mergers of astrophysical black holes, highlighting the mass ratio as the observable

most likely to be able to distinguish between primordial and astrophysical merger

events. We also carried out a statistical test comparing the O1O2 merger rates to

the 10 detected events in LIGO’s GWTC-1 [30], showing that PBHs could satis-

factorily explain these signals, although the PBH abundance and mass distribution

have to be chosen quite carefully. In a related work not included in this thesis [255],

we carried out a Bayesian model comparison for the 10 O1O2 events between the

primordial scenario and two simple parametrisations used by LIGO with some as-

trophysical motivation, We tested a range of PBH mass distributions based on the

lognormal, including the skew-lognormal discussed in chapter 3. We found that

the PBH scenario is heavily disfavoured compared to the astrophysical parametri-

sations, although a mixed model may still be required to explain these and future

LIGO signals.

If the past and present have been exciting for PBHs, the future looks even

brighter. As discussed in chapter 2, future gravitational wave detectors have the

sensitivity required to rule out large power spectrum values, and hence PBHs formed

from inflaton perturbations across a very large range of masses. This would force a

shift towards considering other formation methods, such as those briefly discussed

in section 1.2.1. Alternatively, this can be framed in a more optimistic way for

the field, as the statement that if even a single PBH formed from inflation exists

within these sensitive ranges, the associated gravitational waves will be detected by

one of these experiments. Such a detection would fundamentally change our entire

view of inflation and early universe cosmology, requiring a new paradigm of models

that can provide these large power spectrum amplitudes. If the NANOGrav excess

of gravitational waves is demonstrated to be a stochastic background caused by

scalar-induced gravitational waves, it is very likely there will be PBHs in this mass
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range. The late-time effects of PBHs will also become more and more probeable,

with the increasing network of gravitational wave detectors leading to a large growth

in the number of binary black hole merger events in the 1–100 M� range. As these

events become more numerous, it will become apparent whether astrophysical black

holes from various channels can explain them, or whether a primordial component is

required as well. The PBH mass distribution will be crucial in making such a state-

ment, and more work must be done to ensure that its calculation is valid. The choice

of method and window function considered in chapter 2 will become important, and

the physically correct options will need to be determined, probably through the use

of simulations. Other factors will also have to be taken into account, such as non-

Gaussianities and inflationary effects such as quantum diffusion. For a field that is

over 50 years old, there are no signs that PBHs are done yet.
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Appendices

A Ringing in the top-hat window function

Here we explain our procedure to produce constraints when using a real-space top-

hat window function, which corresponds to a rapidly oscillating window function in

Fourier-space, with consequent convergence issues. The width parameter σ0(R) is

shown in fig. A.1 for a delta function peak (left) and the lognormal widths ∆ = 0.3

(middle) and ∆ = 1 (right).
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Figure A.1: Width parameter σ0(R) for a delta function power spectrum (left), and
a lognormal peak with widths ∆ = 0.3 (middle) and ∆ = 1 (right). The ringing
peaks visible in the delta case merge to a constant height as ∆ increases.

It can be seen that the oscillatory nature of the top-hat window function leads

to a ringing effect in the width parameter σ0(R). For broader peaks in the power

spectrum, this ringing effect merges into a constant height for large values of R. This

leads to a divergent integral when evaluating eq. (2.1), and so the mass distribution

cannot be calculated with this window function without some form of adjustment. It

is common to suppress the large-R constant effect using a transfer function, but this

method is not compatible with other parts of our calculation (i.e. [177]). Therefore,

we take an alternative approach, which is to adjust the calculation of σn(R) in
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eq. (2.12) with a large-k cutoff. This is placed at the point where the window

function reaches its first trough, which is at 4.49/R. This solves the divergence

problem and removes the ringing/constant effect, but it must be noted that the

window function is technically not a true top-hat any more.

B Observational constraints

B.1 Constraints due to spectral distortions of the CMB

Spectral distortions of the energy spectrum of the CMB are able to constrain the

primordial power spectrum on small scales. They quantify deviations from the

black-body temperature distribution of the CMB, caused by energy injection and

removal from the plasma in the early universe. A large boost in the primordial power

spectrum at a particular scale or over a range of scales will lead to fluctuations in

the density of the baryons and photons as a function of scale after reheating. This

means that the photon distributions on different scales will be described by dif-

ferent blackbodies, and as those photons mix via Thomson scattering, a spectral

distortion will be induced if Compton scattering, Double Compton scattering and

Bremsstrahlung processes aren’t efficient enough to bring them into equilibrium.

So-called y-distortions quantify late-time processes and place constraints on larger

modes k < 3 Mpc−1, whilst µ-distortions quantify earlier energy injection and re-

moval and hence constrain the smaller scales, up to k ≈ 104 Mpc−1 which will be

most interesting for PBH production. The final µ-distortions induced by the scalar

perturbations can be approximated by [204]

µ ≈
∫ ∞
kmin

dk

k
PR(k)Wµ(k), (B.1)
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with k-space window functions of the form

Wµ(k) ≈ 2.27

exp

−
 k̂

1360

2/1 +
 k̂

260

0.3

+ k̂

340


− exp

−
 k̂

32

2

 ,
(B.2)

where k̂ = k/1 Mpc−1 and kmin ≈ 1 Mpc−1. Given a particular form for the

power spectrum, this can be used to compute the total induced µ- or y-distortion.

Comparing this with observations then results in constraints on the primordial power

spectrum.

The Far-InfraRed Absolute Spectrophotometer (FIRAS) instrument on board

the COsmic Background Explorer (COBE) satellite measured spectral distortions

to be smaller than ∆ργ/ργ < 6 × 10−5 [290], and a proposed future detector such

as the Primordial Inflation Explorer (PIXIE) [291], or a more recent proposal [292],

aims for constraints of ∆ργ/ργ < 8 × 10−9. To calculate the constraints on the

amplitude of the power spectrum due to the COBE/FIRAS observations, we insert

eq. (2.17) into eq. (B.1) and set µ = 9×10−5 which is the 2-σ constraint. We can then

rearrange for A and compute the integral over k, plotting the constraint on A for

each kp. Our results for lognormal power spectra of widths ∆ = 0.3 and ∆ = 1 are

shown in fig. 2.5. For complete clarity, the constraint on PR at a given k represents

the maximum amplitude A for a lognormal power spectrum centered at k = kp so

as not to induce µ-distortions that would be in conflict with the COBE/FIRAS

constraint of µ < 9× 10−5.
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B.2 The stochastic gravitational wave background

Here we summarise how the GW background can be calculated given a primordial

power spectrum, adding more details to section 2.4.2. The contribution to the tensor

power spectrum from the square of the scalar power spectrum is given by [124,125]

Ph(τ, k) = 4
∫ ∞

0
dv
∫ 1+v

|1−v|
du
(

4v2 − (1 + v2 − u2)2

4vu

)2

I2(v, u, kτ)PR(kv)PR(ku),

(B.3)

where u = |k − k̃|/k, v = k̃/k and k̃ is the wavelength corresponding to the scalar

source. I(v, u, kτ) is a highly oscillatory function which contains the source informa-

tion. We solve this integral numerically but note that it can be solved analytically

in some regimes [126]. The observational quantity related to this power spectrum is

the energy density of gravitational waves given by

ΩGW(τ, k) = ρGW(τ, k)
ρtot(τ) = 1

24

(
k

aH

)2

Ph(τ, k). (B.4)

If we assume that the entire contribution to any stochastic background detection

is from the tensor power spectrum in eq. (B.3), then constraints on the stochastic

background can be translated to constraints on the scalar power spectrum. This

is a conservative constraint, as there may be other unresolved astrophysical contri-

butions to the signal. If a detection is made, as opposed to an upper limit on the

amplitude from non-detection, spectral information of the signal will be required to

distinguish between the possible sources. To calculate the constraints on the primor-

dial power spectrum, we first calculate ΩGWh
2 today as a function of k by inserting

the lognormal power spectrum in eq. (2.17) with given kp and ∆ into eq. (B.3),

pulling out the amplitude A which is the quantity that we aim to constrain. We

perform this integral numerically once for each value of ∆, and the results can be

shifted post-integration for any value of kp.
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B.3 Updated NANOGrav dataset

The 11 year NANOGrav dataset [203] includes improved modelling of the solar

system ephemeris which make the constraints on the stochastic gravitational wave

background weaker than they would be with previous models of these effects. That

makes the improvement on the primordial power spectrum constraints between the

11 year dataset and the 9 year dataset [218] not as large as one might hope based

purely on the improved sensitivity. This solar system ephemeris modelling effect also

applies to other pulsar timing array observations from, for example, EPTA [219].

Therefore all of the constraints from these datasets need to be revised upwards by

taking into account the better model for the solar system ephemeris. For this reason,

we choose to use the 11 year NANOGrav dataset alone, despite the fact that the

EPTA dataset reaches lower frequencies, and as a guide to the improvement between

datasets we show the constraint on the amplitude of the primordial power spectrum

for a lognormal power spectrum with width ∆ = 1 for both the 9 year and 11 year

datasets in figure B.1.
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Figure B.1: Constraints on the amplitude of the primordial power spectrum due
to NANOGrav pulsar timing array observations from the 9 year (purple, dashed)
and 11 year (black, solid) datasets. For both datasets, constraints are for lognormal
power spectra with width ∆ = 1.
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C The non-linear relationship between ζ and δ

In recent years, there has been a large amount of literature discussing the fact

that, even if the curvature perturbation ζ is Gaussian, the density contrast will not

be [169–173], due to the non-linear relationship between the two parameters. In the

super-horizon limit, the relationship between the two parameters can be calculated

with a gradient-expansion approach. At first order in gradients, the full non-linear

relationship, in polar coordinates and assuming spherical symmetry, is given by

δNL = δρ

ρb
(r, t) = −4(1 + ω)

5 + 3ω

( 1
aH

)2
e−5ζ(r)/2∇2eζ(r)/2, (C.1)

whilst the linear relation is

δL = δρl
ρb

= −2(1 + ω)
5 + 3ω

( 1
aH

)2
∇2ζ. (C.2)

For simplicity, we will set the equation-of-state parameter w = 1/3 from here on.

We can define a time-independent component of the density contrast,

δTI(x, R) = (R aH)2 δNL, (C.3)

where R is taken to be the scale of the perturbation. The compaction function

C(x, R) is obtained by calculating the mass excess δM within a sphere of radius R,

and dividing by R, which corresponds to smoothing the time-independent compo-

nent of the density contrast with a top-hat smoothing function,

C(x, R) = δM

R
=
∫

d3y δTI(x− y)W (y,R). (C.4)

Performing this integral gives an expression for the compaction function at the centre

of spherically symmetric peaks:

C(x, R) = CL −
3
8C

2
L, (C.5)
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where CL is the expression one would obtain using the linear relation above,

CL = 2
3Rζ

′(R), (C.6)

where the prime denotes a derivative with respect to the smoothing scale R.

The rare, large-amplitude peaks from which PBHs form are well approximated by

spherically-symmetric peaks [181], and so the above equation can be used to relate

relevant peaks in CL to peaks in the compaction C. We note that the compaction

has a maximum value, Cmax = 2/3, corresponding to CL = 4/3. For higher values of

CL, the compaction decreases—perturbations of this type correspond to a case for

which PBH formation has not been simulated. For this reason, only perturbations

with CL < 4/3 are typically considered – although in practice this has little effect

on the PBH abundance since such large values of CL are exponentially suppressed.

If we then wish to calculate parameters related to the PBH abundance, we can

simply replace the equation for the PBH mass, eq. (2.16), with a corresponding

equation which relates the PBH mass to the linear, Gaussian component of the

compaction instead

m = kMH(CL −
3
8C

2
L − Cc)γ. (C.7)

In order to make an analytic estimate for how constraints on the power spectrum

are affected by this non-linearity, we can make a simple assumption that all peaks

which form PBHs are close to the critical amplitude (since the abundance of signif-

icantly larger peaks is exponentially suppressed). In this simple case, and assuming

Cc = 0.55 (the case for the top-hat window function, see eq. (2.14)), the critical

amplitude for the linear component of the compaction is Cc,L ≈ 0.77, i.e. we can

assume that peaks in the linear field need to have an amplitude 1.41 times larger

than if we assumed a linear relation between ζ and δ, as in eq. (C.2). Therefore, the

power spectrum (which is proportional to the variance of perturbations) should be

approximately 1.412 = 1.98 times greater. We can test this approximation by com-
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paring the full calculation of the amplitude required to generate a fixed abundance

fPBH = 2 × 10−3 in the linear and non-linear cases. For the two lognormal power

spectra considered in this paper, with widths ∆ = 1 and 0.3, the approximation

holds to the precision of two decimal places stated above. Although this validity

may vary with the position of the peak, we assume it holds globally for the results

shown in figs. 2.5 and 2.6.

For the top-hat window function, there is a relatively simple analytic relationship

relating the compaction function to the curvature perturbation (which we assume

to be Gaussian). However, we note that if one instead uses a Gaussian window

function, as we have considered in this paper, there is no analytic solution, and

accounting for the non-linearity becomes complicated. When looking at individ-

ual perturbations, it is trivial to show that the amplitude of the compaction (or

“compaction-like”) function calculated with both a top-hat or Gaussian window

function is proportional to the amplitude of the perturbation. Therefore, we expect

the non-linearities described above to have a similar effect on constraints on the

power spectrum, whether a top-hat or Gaussian function is used.
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D Reduced χ2 values

Table D.1 shows the reduced χ2 values for each of the mass distribution models considered, across the full range of power spectrum peak

widths ∆.

Table D.1: χ2
ν values for different models and power spectrum widths.

Model
Width ∆ Lognormal Gaussian Skew-normal Skew-lognormal CC1 CC2 CC3

δ 3.67× 10−4 4.15× 10−5 1.03× 10−5 8.55× 10−6 3.37× 10−4 9.88× 10−6 5.78× 10−7

0.1 3.58× 10−4 4.56× 10−5 1.01× 10−5 8.32× 10−6 3.97× 10−4 1.16× 10−5 6.72× 10−7

0.3 2.96× 10−4 8.76× 10−5 8.54× 10−6 6.61× 10−6 1.06× 10−3 2.93× 10−5 1.39× 10−6

0.5 2.16× 10−4 1.91× 10−4 6.58× 10−6 4.32× 10−6 3.00× 10−3 7.11× 10−5 1.98× 10−6

1.0 8.25× 10−5 7.15× 10−4 2.02× 10−5 9.33× 10−7 1.62× 10−2 2.56× 10−4 1.04× 10−6

2.0 5.57× 10−6 2.41× 10−3 3.98× 10−4 8.90× 10−8 7.01× 10−2 7.09× 10−4 5.47× 10−8

5.0 6.93× 10−5 5.51× 10−3 3.40× 10−3 2.90× 10−6 1.47× 10−1 1.74× 10−3 1.11× 10−4



149

E Additional merger rate plots

E.1 Design sensitivity plots

Figure E.1 shows the design sensitivity merger rate distributions for the two log-

normal mass distributions and the two power-law distributions. The astrophysical

distributions are shown in green.
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Figure E.1: Merger rate distributions in total mass M , redshift z, mass ratio q, and
chirp mass M for a lognormal mass distribution with σ = 0.3 and σ = 0.6, and
a power-law mass distribution with mmin = 5 M� and mmin = 10 M�, at design
sensitivity. The distributions for astrophysical black holes from [276] are shown in
green for the first three plots. All plots have fPBH = 10−2.
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Figures E.2 to E.4 show the design sensitivity 2D distributions for a lognor-

mal mass distribution with mc = 20 M� and σ = 0.3, and two power-law mass

distributions with α = 3/2 and mmin = 5 M� and 10 M� respectively.
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Figure E.2: 2D merger rate distributions in individual masses, mass ratio q, chirp
mass M and redshift z for a lognormal mass distribution with σ = 0.3, at design
sensitivity. All plots have fPBH = 10−2. The white area indicates no significant
merger rate and the grey triangle indicates the choice m2 < m1. The colorbar limits
are the same as in fig. 4.4 for comparison.
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Figure E.3: 2D merger rate distributions in individual masses, mass ratio q, chirp
mass M and redshift z for a power-law mass distribution with mmin = 5 M�,
at design sensitivity. All plots have fPBH = 10−2. The white area indicates no
significant merger rate and the grey triangle indicates the choice m2 < m1. The
colorbar limits are the same as in fig. E.4 for comparison.
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Figure E.4: 2D merger rate distributions in individual masses, mass ratio q, chirp
mass M and redshift z for a power-law mass distribution with mmin = 10 M�,
at design sensitivity. All plots have fPBH = 10−2. The white area indicates no
significant merger rate and the grey triangle indicates the choice m2 < m1. The
colorbar limits are the same as in fig. E.3 for comparison.
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E.2 O1O2 sensitivity plots

Figures E.5 to E.7 show the O1O2 sensitivity 2D distributions for the four mass

distributions in the observables (M, q), (M, z), and (q, z) respectively. The LIGO

values and their 1D marginalised 90% confidence limits are shown by the black dots

and their error bars.
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Figure E.5: 2D merger rate distributions in mass ratio q and chirp mass M for
the four mass distributions considered, at O1O2 sensitivity. The top row has the
lognormal mass distribution with widths σ = 0.6 (left) and 0.3 (right), and the
bottom row has the power-law mass distribution with minimum mass 5 M� (left)
and 10 M� (right). All plots have fPBH = 10−2. The white area indicates no
significant merger rate. The colorbar limits are the same for the top two plots
(lognormal distribution), and for the bottom two plots (power-law distribution).
The LIGO values and their 90% confidence limits are shown in black.
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Figure E.6: 2D merger rate distributions in redshift z and chirp massM for the four
mass distributions considered, at O1O2 sensitivity. The top row has the lognormal
mass distribution with widths σ = 0.6 (left) and 0.3 (right), and the bottom row has
the power-law mass distribution with minimum mass 5 M� (left) and 10 M� (right).
All plots have fPBH = 10−2. The white area indicates no significant merger rate.
The colorbar limits are the same for the top two plots (lognormal distribution), and
for the bottom two plots (power-law distribution). The LIGO values and their 90%
confidence limits are shown in black.
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Figure E.7: 2D merger rate distributions in redshift z and mass ratio q for the four
mass distributions considered, at O1O2 sensitivity. The top row has the lognormal
mass distribution with widths σ = 0.6 (left) and 0.3 (right), and the bottom row has
the power-law mass distribution with minimum mass 5 M� (left) and 10 M� (right).
All plots have fPBH = 10−2. The white area indicates no significant merger rate.
The colorbar limits are the same for the top two plots (lognormal distribution), and
for the bottom two plots (power-law distribution). The LIGO values and their 90%
confidence limits are shown in black.
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