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Natural selection is one of the key mechanisms by which evolution proceeds. It is the process 
by which different allelic types become more or less common in successive generations of a 
population due to differential genotypic responses to the environment. In this thesis I 
investigate genome wide patterns of natural selection in hominids. 

I investigated the prevalence of balancing selection in the human genome using a novel 
method based on the McDonald-Kreitman (MK) test framework. Having shown that this test is 
robust to demographic change and that it can also give a direct estimate of the number of 
shared polymorphisms that are directly maintained by balancing selection, I applied this 
method to population genomic data from humans, finding that more than a thousand non-
synonymous polymorphisms are subject to balancing selection. 

It has been shown that the rate of adaptive evolution can be affected by numerous factors at 
the gene level and the site level. I correlated the rates of adaptive (𝜔𝑎) and non-adaptive (𝜔𝑛𝑎) 
evolution with four gene-level factors: recombination rate, gene age, gene length, and gene 
expression. For each factor I controlled for the other three factors in turn, finding a significant 
positive correlation between recombination rate and rates of adaptive and non-adaptive 
evolution. 

I also investigated the correlation between the rates of adaptive and non-adaptive evolution 
and four site-level factors: relative solvent accessibility, amino acid volume difference, amino 
acid polarity difference and a measure of evolutionary dissimilarity, pN/pS, finding similar 
correlations to those found previously in Drosophilids, except in the case of pN/pS, where the 
slope of the relationship is significantly lower in hominids. This can be explained by contracting 
population size along the human and chimpanzee lineages. The statistic pN/pS is strongly 
correlated to the mean strength of selection acting against deleterious mutations, and this is 
expected to attenuate the relationship between the rate of adaptive evolution and pN/pS as we 
observe.  

Effective population size (Ne) is an important quantity in determining the effectiveness of 
selection. It can vary not only between species but also across genomes. I investigate patterns 
of diversity across the human genome. Neutral diversity is expected to be a function of the 
mutation rate, effective population size and mean genealogy length. Surprisingly I find that the 
variation in diversity is less than the variation in the mutation rate, inferred from de novo 
mutation data. This suggests that the effective population size of a genomic region is 
negatively related to the mutation rate. I fit models and find that the effects of linked selection 
must be strong to explain the observed data.   
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1. General Introduction 

 

1.1 Evolution at the molecular level 

The field of population genetics arose out of the mathematical frameworks developed by 

Ronald Fisher, Sewell Wright and John Haldane in the early 20th century. The principal concern 

of the field is the study of genetic variation within and between populations; its origin; 

frequency; phenotypic significance; and distribution in space and time. In the following 

sections I will provide an overview the mechanisms that cause changes in allele frequencies 

over time: genetic drift, natural selection, gene flow and mutation.  

 

1.1.1 Genetic drift 

Genetic drift is the random sampling of individuals contributing to the next generation. In finite 

populations such random sampling can result in deviations from the previous generation’s 

gamete frequencies. Under the Wright-Fisher model (Fisher, 1922; Wright, 1931) the 

probability that a neutral allele (i.e. in the absence of natural selection) goes to fixation is 
𝑖

2𝑁
; 
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where 𝑖 is the current frequency of the allele in the population, and N is the population size. 

Consequently, the probability that this allele is lost from the population is 1 −
𝑖

2𝑁
. Across 

generations, the expected allele frequencies remain constant. The variance in allele frequency 

from generation to generation of allele 𝑝 is 𝑝(1 − 𝑝) 𝑁⁄ , It is evident that the variance in allele 

frequency is larger in smaller populations (i.e. drift is much more effective in smaller 

populations than larger ones). Figure 1.1 shows results of Wright-Fisher simulations of genetic 

drift run in. As population size increases the distribution of allele frequencies becomes less 

noisy as drift becomes less effective at taking alleles to extreme frequencies, and ultimately to 

fixation or loss. 

 

Figure 1.1: Simulations of genetic drift under the Wright-Fisher model, simulated for 100 

generations (x-axis), with 50 replicates each. y-axis is the frequency of allele, p.  Each column is 

a different starting allele frequency; each row is a different population size. Figure created in R 

(R Core Team, 2021), using GGPlot2 (Wickham, 2016). 



14 
 

There are numerous assumptions made by the Wright-Fisher model, including a constant 

population size, discrete and non-overlapping generations, panmixia and an equal sex ratio. 

Because every individual is equally likely to reproduce, the number of offspring is binomially 

distributed and this therefore determines the variance in allele frequency.  In reality all natural 

populations will break many of these assumptions. For example, human populations undergo 

recombination and generations tend to overlap. Violating these assumptions has a significant 

effect on the evolutionary impact of genetic drift. So far we have discussed population size in 

terms of 𝑁, the census population size. The effective population size (𝑁𝑒) is the size of an ideal 

population that has the same strength of genetic drift as the real, nonideal population. Drift is 

more effective if 𝑁𝑒 < 𝑁 because the population is actually smaller than under the Wright-

Fisher model. Where 𝑁𝑒  ≠ 𝑁 we can use the coalescent to determine 𝑁𝑒. 

Where random loss of lineages forward in time is described by the process of genetic drift, the 

coalescent process describes the backward in time “coalescing” of genetic lineages. The history 

of a sample of size 𝑛 comprises 𝑛 − 1 coalescent events. A coalescent event occurs when two 

genetic lineages fuse into a common ancestral lineage. The single lineage remaining at the final 

coalescent event is the most recent common ancestor of the sample (Kingman, 1982). The 

probability that two lineages coalesced 𝑡 generations ago is, 

 
Pr(𝑡) = (1 −

1

2𝑁
)

𝑡−1 1

2𝑁
    

 

(1.1) 

Handily 𝑁𝑒 can be used in place of 𝑁 in equation 1.1 (Charlesworth, 2009), and derive the 

expected time to coalescence for two lineages as,  

 
𝐸(𝑡) =  ∑ 𝑡

∞

𝑡=1

(1 −
1

2𝑁𝑒
)

𝑡−1 1

2𝑁𝑒
 = 2𝑁𝑒  

 

(1.2) 
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The mean time to coalescence for two randomly selected neutral alleles is therefore 2𝑁𝑒  The 

total number of generations separating two alleles is 2𝑡, or 4𝑁𝑒 (because the expectation of 𝑡 

is 2𝑁𝑒). The probability that two alleles chosen at random differ is therefore given by, 

 𝜃 = 4𝑁𝑒𝜇 (1.3) 

 Where µ is the per site per generation mutation rate (Kimura, 1983). Finally, since there are 

2𝑁 copies of any single mutational site in the gene pool, the total input of neutral mutations 

per generation is 2𝑁𝜇. Because the probability of fixation of a neutral mutation is 
1

2𝑁
 the 

overall rate of neutral evolution is, 

 
𝑅𝑎𝑡𝑒 𝑜𝑓 𝑛𝑒𝑢𝑡𝑟𝑎𝑙 𝑒𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = 2𝑁𝜇 ×

1

2𝑁
=  𝜇 

(1.4) 

 

Although we have shown that the strength of drift is inversely proportional to population size, 

equation 1.4 shows that genetic drift is an important evolutionary force in all populations, 

regardless of their size. 

 

1.1.2 Natural Selection 

Although the theory of natural selection is attributed to Charles Darwin and Alfred Russel 

Wallace (Darwin and Wallace, 1858), several other scholars predating Darwin and Wallace 

published similar ideas, going as far back as Al-Jahiz in the 9th century (Zirkle, 1941). Natural 

selection is the biological driver of adaptation; the process by which species evolve towards 

the optima of their environment. The fitness of an organism indicates how close to the 

optimum it is. The visualisation of fitness as a multi-dimensional landscape was first conceived 

of by Sewall Wright (1932) and fitness (or adaptive) landscapes have become a cornerstone of 

the study of adaptation in population and quantitative genetics. 
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Figure 1.2: An example of an adaptive landscape. The mean fitness of the population is 

determined by the frequencies of allele A and allele B within the population. Figure created in 

R (R Core Team, 2021), using GGPlot2 (Wickham, 2016). 

 

Figure 1.2 shows a simple 2-loci adaptive landscape model, where the mean fitness of a 

population is determined by the frequencies of alleles A and B within it. The area of high 

fitness is called a peak and represents the fitness optimum. Although figure 1.2 is particularly 

simplistic, in reality a fitness landscape will be multi-dimensional, with numerous alleles 

affecting the mean fitness within the population. 

At the genotype level, the fitness of a genotype is determined by its selection coefficient, 𝑠, 

relative to the two other possible genotypes: 

Genotype 𝐴𝐴 𝐴𝑎 𝑎𝑎 

Fitness 1  1 + 𝑠ℎ 1 + 𝑠 
   

The dominance coefficient, ℎ, determines the fitness of the heterozygous genotype. If ℎ > 1 

the heterozygous genotype (𝐴𝑎) is fitter than either homozygous genotype (𝐴𝐴 or 𝑎𝑎). This is 

known as heterozygous advantage. Complete dominance occurs when ℎ = 1; the dominant 
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allele completely masks the effect of the recessive allele. This is in contrast to incomplete 

dominance (0 < ℎ < 1), where the dominant allele fails to completely mask the recessive 

allele, and an additive or blending of both allelic effects occurs. Finally ℎ = 0 results in 

complete recessivity, where the 𝐴 allele is completely recessive, and masked by the 𝑎 allele.  

 

It is worth briefly discussing the limits of adaptationism. Appearing in cultural theory as 

functionalism (Levins and Lewontin, 1977), and in evolutionary biology as an explainer and 

source of hypothesis generation, adaptationism conceives of the existence of certain problems 

to be solved by organisms (in the biological case). Any process by which species evolve 

towards the optima of their environment implies that there is a pre-existent form, problem or 

ideal to which the adaptation is taking place, and fails to account for the complex relationship 

between organism and environment (Bergelson et al. 2021); and between chance, contingency 

and necessity (Xie et al. 2021). With the application of methods such as approximate Bayesian 

computation to jointly estimate the effects of demographic history and the strength of 

selection (Johri et al. 2020), there is potential to develop null models that are able to capture 

some of this complexity. These methods are discussed in more detail in section 6.3.2. 

 

Although there are many forms of natural selection, including directional, balancing, 

stabilising, diversifying, and purifying selection, in this thesis I consider both directional and 

balancing selection, and so will pay particular focus to both here. 

 

1.1.3 Mutation and the distribution of fitness effects 

The only source of new genetic information (Hodgkinson and Eyre-Walker, 2011), mutations 

lead to genetic variation between cells, individuals and species (Charlesworth, 2010; 
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Hodgkinson and Eyre Walker, 2011). The rate at which mutations appear throughout the 

genome varies considerably at various scales (Lynch, 2010; Hodgkinson and Eyre-Walker, 

2011). The fate of a particular mutation depends on the evolutionary forces acting on it. A 

mutation which is contributing to the genetic material of the offspring starts segregating in a 

population. Its fate (whether it fixes in the population; is lost; or continues to segregate as a 

polymorphism) is dependent on numerous evolutionary processes including those mentioned 

at the start of this section - genetic drift, selection, and gene flow.  

 

Mutations can be broadly classified as harmful, beneficial or neutral, though it is more realistic 

to assume a distribution of fitness effects (Kimura, 1983; Gillespie, 1991), called a DFE. The DFE 

has been harnessed to gain insight into the maintenance of genetic variation (Charlesworth et 

al. 1995); the evolution of sex and recombination (Peck et al. 1997); and the impact of 

effective population sizes (Charlesworth, 2009). DNA sequence data can be used to infer 

characteristics of the DFE by fitting a distribution of selective effects to the site frequency 

spectrum (which is the distribution of allele frequencies) (Eyre-Walker et al., 2006; Keightley 

and Eyre-Walker, 2007; Boyko et al., 2008; Schneider et al., 2011). Two sets of sites are 

considered, one which is assumed to be under selection and one which is assumed to be 

effectively neutral (commonly introns or synonymous sites are used). This latter category is 

used to estimate the mutation rate and control for the impact of demography.  

 

There are two notable assumptions of such methods. It is unlikely that the DFE is truly 

captured by a relatively simple distribution (e.g. a gamma distribution is used to model the DFE 

in humans) (Eyre-Walker and Keightley, 2007). Secondly, free recombination is assumed. In the 

latter case, this assumption has been shown to hold in all scenarios except those in which 

linkage is very strong (Boyko et al., 2008; Eyre-Walker and Keightley, 2009; Keightley and Eyre-

Walker, 2010). Finally, DFE inference tends to be limited to the genome-wide level. On rare 
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occasions it may be possible to infer the DFE for individual genes if they are extremely large, 

with a substantial number of sequenced individuals (Keightley and Eyre Walker, 2010).  

 

 

1.1.4 The neutral theory of molecular evolution 

Until the late 1960s almost all evolutionary changes were attributed to directional natural 

selection. Fisher had famously rejected any significant evolutionary role for genetic drift in the 

1930s (Fisher, 1930). It was in this context that Motoo Kimura published his paper estimating 

the substitution rate of mutations occurring in protein-coding genes (Kimura, 1968) in humans 

as 1.8 nucleotide substitutions per year. Previously Haldane had estimated the substitution 

rate as 1.5 nucleotide substitutions per year (Haldane, 1957), which exceeded his own 

estimated upper limit (a problem known as “Haldane’s dilemma”). Resolving this paradox had 

been the initial motivation for Kimura, and he posited that this excess of nucleotide 

substitutions was due to genetic drift. A year later King and Jukes had independently reached a 

similar conclusion (King and Jukes, 1969).  

 

The neutral theory claimed that the observed variation within and between species was driven 

by the random fixation of selectively neutral mutations (Kimura, 1983). The majority of 

mutations are either neutral or strongly deleterious (and therefore efficiently removed from 

the population by selection). Positive selection therefore makes a negligible contribution to 

between-species divergence. The major extension of the neutral theory came in 1973 when 

Tomoko Ohta incorporated slightly deleterious mutations (𝑠 ≈
1

2𝑁𝑒
) (Ohta, 1974). Ohta 

emphasised the role of population size in what is known as the nearly neutral theory, as drift is 

more effective in smaller populations.  
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Though there has been some debate in the period since the neutral theory was first published 

(including the recent reigniting of the selectionist vs neutralist debate (see Kern and Hahn, 

2018 and Jensen et al. 2019), the neutral theory has become the central framework for 

generating null hypotheses. To demonstrate that a sequence is subject to selection, it must be 

shown that this sequence has not evolved neutrally, which forms the null hypothesis. In the 

next section I discuss the most commonly used tests that use the predictions of the neutral 

theory as their null hypothesis. 

 

1.2 Detecting positive selection 

Methods to detect selection can broadly be split into two categories – outlier and aggregate 

methods. Outlier methods compute statistics across a genomic region, and are commonly used 

to detect selective sweeps (see section 1.2.1). By contrast aggregate methods combine data 

from multiple sites, leveraging the additional power of a large number of loci. The trade-off of 

this increased power is that it is not possible to identify specific targets of selection with 

aggregate methods. Although I will discuss some outlier methods developed to detect 

balancing selection further on in this introduction, throughout this thesis I have used aggregate 

methods to detect selection.  

 

1.2.1 Selective sweeps 

The name selective sweep refers to the reduction in diversity that accompanies the increase in 

frequency of an advantageous mutation. Selective sweeps leave a complex spatial signature 

along the genome (see figure 1.3) that can be leveraged to develop novel neutrality tests, or 

improve the power of those that already exist. For example, using an explicit model of a 
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selective sweep, Kim and Stephan’s method (Kim and Stephan, 2002) calculates the expected 

frequency spectrum for a site as a function of its distance from a beneficial mutation. It is then 

possible to estimate the location and strength of a selective sweep by fitting data to this 

model. Methods such as this allow researchers to identify genomic regions containing putative 

targets of selection by conducting genome wide scans.  

 

Figure 1.3: Selective sweeps and their effects on genetic diversity. a) and b) The classic 

model of a hard sweep. A new beneficial mutation (red) enters the population and rapidly 

increases in frequency. Eventually it fixes in the population (b). In doing so it drags some of 

the surrounding neutral genetic variation that is in linkage with it (i.e. its haplotype) to 

fixation, thereby significantly reducing neutral diversity around it. This phenomenon is 

known as genetic hitchhiking (Maynard-Smith and Haigh, 1974). c) If an allele that already 

exists in the population suddenly becomes beneficial it can spread through the population 

and fix, along with surrounding neutral variation. This is known as a soft sweep from 
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standing genetic variation. The reduction in genetic diversity around the selected site is 

dependent on the history of the causative variant (compare the dotted line and the filled 

line that show differing dips in diversity). d) Natural selection purges deleterious alleles 

(yellow), and in the process neutral variation linked to the deleterious alleles will also be 

purged, thereby reducing genetic diversity. If the removed variants are slightly 

deleterious, the site frequency spectrum is skewed towards rare alleles (Charlesworth et 

al. 1993). This is known as background selection.  Blue circles represent neutral alleles, 

whilst red circles represent beneficial alleles. 

 

Figure 1.3 shows how genetic diversity around the selected locus is affected by selection. As a 

positively selected mutation increases in frequency within a population, linked neutral 

variation increases in frequency too, reducing diversity at loci around the selected site. The 

severity of this decrease in genetic diversity is dependent on several factors including the ratio 

of the strength of positive selection to the recombination rate, and the nature of the sweep 

itself. If a positively selected mutation occurs in a population and sweeps to rapid fixation 

(figure 1.3a), the reduction in diversity is severe as linked neutral variation sweeps to fixation 

with it. However, if a sweep occurs from standing genetic variation (i.e. if a neutral or 

deleterious allele becomes positively selected for), the dip in diversity will be dependent on 

the frequency of the allele in the population. If it is at an intermediate frequency for example, 

the advantageous mutation has already recombined onto multiple backgrounds, and therefore 

linked variation is unlikely to experience the increase in frequency witnessed in a hard sweep. 

In genomic regions with restricted recombination and recurrent hard sweeps levels of diversity 

are expected to be lower because linkage maintains association between selected sites and 

surrounding neutral variation without being broken up by recombination. Several studies have 

shown that variation in Drosophila genomes is lower in regions of low recombination (Aguade 

et al. 1989; Stephan and Langley, 1989; Miyashita, 1990; Berry et al. 1991; Begun and Aquadro, 
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1991; Begun and Aquadro, 1992; Martin-Campos et al. 1992; Stephan and Mitchell, 1992; 

Langley et al. 1993), which could either be caused by genetic hitchhiking (Maynard-Smith and 

Haigh, 1974) - the process by which positive selection will reduce neutral variation linked to 

the selective locus – or by background selection (see section 1.2.2).  However it is important to 

acknowledge that low recombination regions can produce an upward bias on detecting 

selection because of the increase in variance in most statistics in these regions. Selective 

sweeps also leave a much stronger signal in regions of low recombination, meaning that the 

statistical power of tests is a function of the recombination rate (Nielsen, 2005). 

 

The dip in diversity caused by a selective sweep can also be caused by demographic change, 

and it can be challenging to distinguish selection from demographic history by solely looking at 

diversity. For example, a population bottleneck causes an increase in the variance of the levels 

of diversity within a population, making it more difficult to detect regional dips caused by 

selective sweeps.  

 

1.2.2 Background selection 

Background selection (figure 1.3d) has a qualitatively similar effect to hitchhiking, in that it 

reduces local diversity (Charlesworth et al. 1993) and skews the site frequency spectrum 

towards rare variants (Braverman et al. 1995) via negative selection against deleterious 

mutations. Initial work by Charlesworth et al. (1993) showed that diversity in a 

nonrecombining genomic regions will be reduced as a function of the proportion of copies of 

the region that contain deleterious mutations. Further work (Hudson and Kaplan, 1995; 

Nordberg et al. 1996) incorporated recombination rates into the equations derived by 

Charlesworth et al. (1993), quantifying how low recombining regions are affected by BGS. 

Recent studies show that BGS is a major factor affecting variation in nucleotide diversity across 
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large genomic windows (>100Kbp) in both Drosophila melanogaster (Comeron, 2014) and in 

humans (McVicker, 2009), to the extent that some (e.g. Comeron, 2014) have argued that BGS 

is the null model for detecting other modes of selection. The necessity of developing an 

appropriate null model that accounts for genetic drift (as modulated by a population’s 

demographic history) and the distribution of fitness effects of direct and indirect purifying 

selection will be discussed at length in the discussion section of this thesis. 

 

1.2.3 Evidence of decreases in diversity in humans 

Selective sweeps are rare within humans. Hernandez et al. (2011) examined resequencing data 

from 179 human genomes for evidence of selective sweeps. Although they found that diversity 

decreases near exons and conserved non-coding regions, the dip in diversity around human-

specific amino acid substitutions is no more pronounced than around synonymous 

substitutions. They also found that amino acid and putative regulatory sites are not 

significantly enriched in highly differentiated alleles between populations, relative to the 

genome background. These results were recapitulated in full by Fu and Akey (2013). Although 

these observations imply that selective sweeps have been rare in recent human history (over 

the past ~250,000 years), several other studies concluded that sweeps have been common. 

Williamson et al. (2007) identified 101 regions within the human genome with very strong 

evidence of selective sweeps, with as much as 10% of the genome affected by linkage to a 

selective sweep. In his review of 21 genome-wide scans for recent or ongoing positive 

selection in humans, Akey (2009) found that although ~14% of the genome (containing ~23% 

of genes) was identified as being under positive selection in at least one study, only 20% of 

those regions were identified in multiple studies, suggesting a high false positive rate. It is 

important to note that these signatures of selective sweeps are equally consistent with 
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background selection. There is currently no clear consensus as to which force is more 

important in the evolution of humans. 

 

1.2.4 The McDonald-Kreitman test and its variants 

Distinguishing between synonymous and non-synonymous substitutions in protein coding 

sequences (Li et al. 1985; Nei and Gojobori, 1986) forms the basis of many aggregate statistics, 

the simplest of which is ω, the ratio of non-synonymous to synonymous substitutions (dN/dS). 

It is important to note the assumption that synonymous mutations are neutral (see section 

6.2.1 for further discussion of this assumption). In the absence of selection, dN = dS. Under 

purifying selection deleterious mutations are eliminated before they can go to fixation, and 

therefore dN < dS. It is only under positive directional selection, where non-synonymous 

mutations are favoured that dN > dS, indicating a higher rate of fixation in non-synonymous 

than synonymous substitutions. It is necessary for implementations of the dN/dS test to 

account for mutational bias (where certain mutations are more probable than others - e.g. in 

many species transition mutations occur more frequently than would be expected under 

neutrality (Stoltzfus and Norris, 2016) and multiple substitutions (which are more likely to 

occur with greater divergence times)). Because most sites are constrained during most of their 

evolution, it is unlikely that dN > dS across entire protein coding regions within genes. It is 

therefore common to target only specific sites. 

 

The dN/dS test only accounts for rates of substitution, but the neutral theory hypothesises that 

both the divergence between species (substitution) and the diversity within a species 

(polymorphism) are driven primarily by random genetic drift (Kimura, 1983). Thus, the 

proportions of non-synonymous to synonymous polymorphism (Pn/Ps) within a species are 

equal to the proportion of non-synonymous to synonymous substitutions (Dn/Ds) between 
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species under neutrality. This forms the null model of the McDonald-Kreitman (MK) test 

(1991), which compares variation at putatively neutral sites with variation at potentially 

selected sites. An elevation of Dn/Ds over Pn/Ps indicates an excess of fixed differences and is 

taken as evidence of positive directional selection (because advantageous mutations are 

expected to rapidly sweep through a population and become fixed differences between 

populations).  A derivative of the MK test estimates the proportion of nucleotide substitutions 

at a class of sites that are driven by positive selection as (Charlesworth, 1994; Smith and Eyre-

Walker, 2002), 

𝛼 = 1 −
d𝑆𝑝𝑁

𝑑𝑁𝑝𝑆
 

                                                                                                                                                                             

(1.5) 

Where pN/ pS is the ratio of diversity at putatively functional (i.e. non-synonymous) sites and 

putatively neutral (i.e. synonymous) sites. α is therefore the proportion of substitutions fixed 

by natural selection. Estimates of α can be biased for several reasons. Slightly deleterious 

mutations can segregate in a population before being eliminated (Ohta, 1973), thereby leading 

to an underestimate of α by inflating pN/ pS. A simple method for minimising the impact of 

slightly deleterious mutations is to exclude polymorphisms below a certain threshold 

frequency (Fay et al. 2001; Charlesworth and Eyre-Walker, 2008) or to calculate α for different 

frequency bins (Messer and Petrov, 2013). More sophisticated methods infer the DFE of 

deleterious (Fay et al. 2001; Smith and Eyre-Walker, 2002; Bierne and Eyre-Walker, 2004; Eyre-

Walker et al. 2006; Keightley and Eyre-Walker, 2007; Eyre-Walker and Keightley, 2009; 

Stoletzki and Eyre-Walker, 2011) and beneficial (Galtier, 2016; Tataru et al. 2017) mutations 

from polymorphism data. By fitting a DFE to the SFS observed in a population sample, these 

methods explicitly model the contribution of deleterious mutations to polymorphism and 

divergence at specific frequency categories. The inferred DFE is used to predict the numbers of 
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substitutions originating from neutral and slightly deleterious mutations between the two 

species. If there is a greater number of observed substitutions than expected, the difference 

can be attributed to advantageous substitutions, yielding an estimate of α.  

 

As table 1.1. shows, estimates of α vary greatly between different datasets, with the number 

of loci sampled and the choice of outgroup species contributing to this variation. Notably the 

highest estimate of α by Fay et al. (2001) used different genes for divergence than for 

polymorphism data. A clearer picture has started to emerge as larger datasets have become 

available.  The largest study by Boyko et al. (2008) estimated that between 10 and 20% of 

protein coding loci are adaptively evolving.  
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Outgroup species Locus type 

Number of 

loci 

α (% of adaptive 

substitutions) Reference 

Mouse Protein 330 0 Zhang, 2005 

Old-world monkey Protein 149 0 Zhang and Li, 2005 

 

Protein 182/106a 35 Fay et al. 2001 

Chimpanzee Protein 13,500 0–9 

Chimpanzee Sequencing 

and Analysis Consortium, 

2005 

 

Protein 289 20 Zhang and Li, 2005 

 

5' flank 305 0.11b Keightley et al. 2005 

 

3' flank 305 0.14b Keightley et al. 2005 

 

Protein 4916 6 Bustamante et al. 2005 

 Protein 47,576 10-20 Boyko et al. 2008 

 Non-coding 255 0.11-0.14 

Eyre-Walker and Keightley, 

2009 

 Protein 47,576 0.13 Messer and Petrov, 2013 

 Protein 50,543 0.25 Zhen et al. 2021 

Table 1.1: Estimates of α in humans. Where authors provided confidence intervals, α is given 

as a range. Otherwise only the point estimate is provided.  a Numbers of genes differ for 

divergence (182) and polymorphism (106). b Authors split region into two, and calculated the 

average of the estimates given for the 1–500 base pair region and the 501–1000 region. 

 

1.2.5 Rates of adaptive and non-adaptive evolution 

Along with α, the other major statistic used to infer the rate of adaptive evolution is 𝜔𝑎. 𝜔𝑎 is 

the rate of adaptive non-synonymous substitutions relative to the mutation rate and is given 
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by 𝜔𝑎 = 𝜔 − 𝜔𝑛𝑎 where 𝜔𝑛𝑎 denotes the portion of the 𝜔 ratio contributed by neutral and 

deleterious mutations. 𝜔𝑛𝑎 is referred to as the rate of non-adaptive evolution, and is a 

measure of negative constraint – the lower the rate of non-adaptive evolution, the more 

constraint there is on the locus in question. Because α is the proportion of adaptive amino-acid 

substitutions and is estimated as 𝜔𝑎/𝜔, it is contingent on both 𝜔𝑎 and 𝜔𝑛𝑎, making it 

unsuitable for disentangling the effects of positive and negative selection. Conversley, 𝜔𝑎 is 

normalised by the mutation rate (e.g. Castellano et al. 2016), and therefore cannot be used to 

evaluate the impact of mutation rate. The most appropriate statistic is therefore dependent on 

the question that is being addressed. In chapters 3 and 4, we seek to understand which factors 

affect the rates of adaptive and non-adaptive evolution, and therefore the most suitable 

statistics to estimate are 𝜔𝑎 and 𝜔𝑛𝑎. 

 

 

1.2.6 Balancing selection 

How genetic variation is maintained, either in the form of DNA sequence diversity or 

quantitative genetic variation, remains one of the central problems of population genetics and 

the role that balancing selection plays in this process remains unknown. Balancing selection 

encapsulates several selective mechanisms that increase variability within a population. These 

include heterozygote advantage (also referred to as overdominance), frequency dependent 

selection, and spatio-temporal variability (Nielsen, 2005). These are expected to leave some 

similar signatures in genomic data that are detectable at different timescales, and upon which 

the various statistical tests for detection of the process are built. A balanced polymorphism 

originates in an ancestral population in one of two ways; either from a new mutation or from 

standing genetic variation due to a change in selection pressures. The rarer of the two alleles 

will increase to some intermediate frequency before the ancestral population divides to yield 

two or more descendent populations. If the balanced polymorphism originates from a de novo 
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mutation, then it will cause a partial selective sweep. In doing so it may potentially drag 

several neutral synonymous polymorphisms to high frequency in linkage disequilibrium (LD) 

(Fijarczyk and Babik, 2015). The pattern of increased homozygosity around the balanced locus 

(along with the elevated haplotype frequency) can be detected by linkage-based methods such 

as the Extended Haplotype Homozygosity (EHH) method (Sabeti et al, 2002). This method looks 

for alleles with unusually long-range LD when accounting for population frequency (because a 

partial selective sweep causes a rise in allele frequency that is rapid enough that 

recombination is not able to break down the haplotype on which selection occurs). Other 

methods have built on this logic, including the integrated haplotype score (iHS) (Voight et al. 

2006). A major confounder however is that partial selective sweeps can indicate both positive 

directional selection and balancing selection, with the signatures being indistinguishable. This 

signal is only detectable for very recent balancing selection (up to 0.04Ne generations old 

(Fijarczyk and Babik, 2015), as recombination will eventually break up the long range 

associations generated via linkage. 

 

A less transient signal is that of an excess of common polymorphism that builds up subsequent 

to the partial sweep that occurs as a result of balancing selection. The partial sweep skews the 

SFS from the expected L shape under neutrality towards an excess of alleles at intermediate 

frequencies. There are several methods that quantitatively measure this divergence from 

neutrality, including Fu and Li’s F and D statistics (Fu and Li, 1993), and Tajima’s D, which 

calculates the difference between the mean number of pairwise differences and the number 

of segregating sites (Tajima, 1989). Whilst this signal is maintained long enough to detect 

balancing selection that is older than 0.04𝑁𝑒  generations, these methods are extremely 

sensitive to demography, and so it is essential to either use a demographic model when 

forming a null hypothesis, or use an outlier approach (because the whole genome will be 
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affected). The signal of excess common polymorphism decays as the distance from the 

balanced polymorphism increases. DeGiorgio et al. (2014) introduced the composite likelihood 

ratio test, T2, that models the effect of balancing selection on the genealogy at neutral loci that 

are linked to the target locus. The T2 test utilises the allele frequency spectrum to calculate the 

conditional probability of observing a specific number of ancestral alleles within a specific 

region, accounting for the distance from the target site. Using simulations, the authors show 

that these tests have greater power than Tajima’s D for detecting balancing selection under a 

range of demographic scenarios. Bitarello et al. (2018) use correlated allele frequencies (and 

therefore the aforementioned skew in the SFS) as the basis for their non-central deviation 

statistic, which measures the extent to which the local SFS deviates from expectations under 

balancing selection.  

 

With older balancing selection the increased diversity around a selected locus is only 

distinguishable over a narrow genomic region, because recombination breaks down 

associations between the selected site and surrounding variation that it is linked to. A widely 

used test for this signature is the HKA test (Hudson et al. 1987). According to the neutral 

theory of molecular evolution, the within-species diversity is correlated with between-species 

divergence (Kimura, 1983). The HKA test compares the fit of polymorphism and divergence 

data against this null hypothesis. As with other methods that compare levels of polymorphism 

and substitution, the HKA test is susceptible to demography which must be accounted for 

when forming a null model. The T1 test (sister to the T2 test mentioned above) also uses this 

signature of increased diversity. This method estimates the composite likelihood that a site is 

under balancing selection given the distribution of polymorphisms around the target 

(DeGiorgio et al. 2014). 
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After a long enough divergence time between the two species, all shared neutral 

genetic variation will either have gone to fixation or been lost. Any remaining shared 

polymorphisms are being maintained by balancing selection. This is a signature of the 

oldest balancing selection, aka ancient balancing selection. Asthana et al. (2005) found 

a low incidence of ancestral polymorphism shared between humans and chimpanzees. 

The authors found eight SNPs that occur in the same genomic position in humans and 

chimpanzees with the same sequence changes (e.g. A to C in both genomes). Of these 

eight, only three shared polymorphisms occurred at non-synonymous sites. However, 

none of these sites show the signature of common polymorphism in the regions 

surrounding them. Four of these eight polymorphisms occurred at highly mutable CpG 

sites. Hodgkinson et al. (2009) have shown that the excess of coincident SNPs between 

humans and chimpanzees is due to recurrent mutation. To rule out ancestral 

polymorphism as a cause of this excess they looked for SNPs shared between humans 

and Macaques. Due to the much longer divergence times between humans and 

macaques (species that diverged 23-24 Mya compared to 6-10 Mya between humans 

and chimpanzees), the expectation is that very few polymorphisms will be shared 

between the two species. However, the authors identified a significant excess of 

shared SNPs, suggesting inheritance is not the cause of this excess of coincident SNPs. 

Subsequent work by Johnson and Hellmann (2011) found that the SFS for coincident 

SNPs is skewed towards rare variants; if most of these were ancestral polymorphisms 

they would have a relatively uniform SFS. 

 

More recently, Leffler et al. (2013) identified multiple regions in which the same 

haplotypes were segregating in both humans and chimpanzees, reasoning that if a 



33 
 

polymorphism has been maintained since the ancestral split, a short ancestral segment 

should be preserved around the selected site. To filter out cases of recurrent mutation, 

they focused on cases with a minimum of two shared SNPs within 4 kilobases and in 

significant LD in both humans and chimpanzees.  In six cases they found ancestral 

polymorphism shared between the two species.  

 

The drawback of approaches that focus on the signature of trans-species 

polymorphism is that all shared neutral genetic variation that is not in linkage with the 

balanced polymorphism must have gone to fixation in at least one of the two 

populations. This makes the test weak because balancing selection must persist for a 

long enough time that all shared neutral polymorphisms are either lost or fixed in at 

least one of the two populations. In chapter 2 I demonstrate a simple solution to this 

problem using neutral genetic variation to inform us as to what to expect under 

neutrality.  

 

1.3 Effective population size (𝑁𝑒) 

As mentioned in section 1.1.1, 𝑁𝑒 has become one of the fundamental quantities in population 

genetics, determining the level of neutral genetic diversity and the efficacy of natural selection 

in a given population. The product of 𝑁𝑒  and the mutation rate per generation is an estimate 

of the expected neutral diversity in a population (Kimura, 1991), whilst the product of 𝑁𝑒  and 

the strength of selection, s, of a mutation determines the effectiveness of selection. 
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1.3.1 The effect of 𝑁𝑒 on the rate of adaptive evolution 

Population genetic theory predicts that α should be correlated to 𝑁𝑒. When 𝑁𝑒 = 𝑁 (i.e. the 

effective population size is equal to the census population size), the probability of fixation of a 

new mutation is approximately, 

2𝑠 (1 − 𝑒−4𝑁𝑠)⁄  

                         (1.6) 

where s is the strength of selection. From equation 1.6 we can see that as 𝑁𝑒  increases so too 

does the probability to fixation, because the proportion of effectively neutral mutations 

increases. For an advantageous mutation in which 𝑁s >> 1, the probability of fixation in 

equation 1.6 becomes approximately 2s.  

 

Mutation is the other relevant force here. Since there are 2𝑁 copies of any single mutational 

site in the gene pool, the total input of mutations per generation is 2𝑁𝜇 (as discussed in 

section 1.1.1). If we then multiply the probability of fixation by the population mutation rate, 

which is the rate at which beneficial mutations occur, the rate of adaptation is then 4𝑁𝜇𝑠 per 

generation. Crucially, it is important to note that the effective population size is influencing the 

rate of adaptation in two ways – by affecting the proportion of mutations on which selection is 

effective, but also by affecting the population mutation rate. 

 

Previous studies have suggested that the proportion of adaptive substitutions is correlated to 

the effective population size. Species with high effective population sizes, including Drosophila, 

house mice, bacteria, and some plant species show patterns of widespread adaptive amino 

acid substitution (Bustamante et al. 2002; Smith and Eyre-Walker, 2002; Sawyer et al. 2003; 

Bierne and Eyre-Walker, 2004; Charlesworth and Eyre-Walker, 2006; Haddrill et al. 2010; 
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Ingvarsson, 2010; Slotte et al. 2010; Strasburg et al. 2011; Moutinho et al. 2019), whilst several 

studies have found little evidence of adaptive substitution in species with small effective 

population sizes such as hominids (Chimpanzee Sequencing and Analysis Consortium, 2005; 

Zhang and Li, 2005; Boyko et al. 2008; Eyre-Walker and Keightley, 2009; Gossmann et al. 2010). 

There are notable exceptions, however. Despite being thought to have a larger effective 

population size, Drosophila simulans appears not to have undergone more adaptive evolution 

than Drosophila melanogaster (Andolfatto et al. 2011), and the yeast Saccharomyces 

paradoxus shows little evidence of adaptive evolution, despite having a presumably large 𝑁𝑒  

(Liti et al. 2009; Gossmann et al. 2012). 

 

There is also evidence that the positive correlation between α and 𝑁𝑒  can be explained by the 

variation in the number of effectively neutral substitutions, because the proportion of 

effectively neutral mutations is negatively correlated to 𝑁𝑒  across numerous species (Popadin, 

2007; Piganeau, 2009), and α is dependent on both the rates of effectively neutral and 

advantageous substitution because 𝛼 =
𝐷𝑎𝑑𝑎𝑝𝑡𝑖𝑣𝑒

𝐷𝑎𝑑𝑎𝑝𝑡𝑖𝑣𝑒+𝐷𝑛𝑜𝑛𝑎𝑑𝑎𝑝𝑡𝑖𝑣𝑒
 , where 𝐷𝑎𝑑𝑎𝑝𝑡𝑖𝑣𝑒 and 

𝐷𝑛𝑜𝑛𝑎𝑑𝑎𝑝𝑡𝑖𝑣𝑒 are the rates of adaptive and nonadaptive substitutions respectively. The 

methods used to estimate the rate of adaptive evolution by inferring the DFE of deleterious 

(Fay et al. 2001; Smith and Eyre-Walker, 2002; Bierne and Eyre-Walker, 2004; Eyre-Walker et 

al. 2006; Eyre-Walker and Keightley, 2009; Stoletzki and Eyre-Walker, 2011) and beneficial 

(Galtier, 2016; Tataru et al. 2017) mutations mentioned above allow estimation of both the 

rate of nonadaptive (𝜔𝑛𝑎 = 𝑑𝑁
𝑛𝑎 𝑑𝑆⁄ ) and the rate of adaptive (𝜔𝑎 = 𝜔 − 𝜔𝑛𝑎) 

nonsynonymous substitution, thereby disentangling the effects of positive and negative 

selection. Whilst previous studies (Gossman et al. 2010; Gossman et al. 2012; Galtier, 2016; 

Rouselle and Galtier, 2019) have found no correlation between ωa and 𝑁𝑒  in plants, Strasburg 

et al. (2011) found a significant positive correlation between ωa and 𝑁𝑒  in sunflowers. It is 
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notable that Gossman et al. mostly considered species with low 𝑁𝑒, whilst some species in the 

Strasbourg et al. dataset have a much larger 𝑁𝑒. This positive correlation could be explained by 

a higher rate of adaptive substitution, or by population size change. A smaller historic 

population size relative to the current population size will artifactually inflate α and ωa.  

 

A final consideration is that of population size changes. Because selection is more effective in 

larger populations, weakly deleterious mutations are purged by purifying selection. In smaller 

populations these weakly deleterious mutations are more likely to fix through genetic drift. If 

there has been population size expansion such that the effective population for the 

polymorphism data is much greater than for the divergence data, selection is more effective 

on weakly deleterious mutations in the current population (population phase) than the historic 

population (divergence phase) and hence the proportion of non-synonymous to synonymous 

polymorphisms is less than one would expect, giving the evidence that there is more constraint 

than there was during the divergence phase.  

 

1.3.2 Variation in 𝑁𝑒 across the genome 

𝑁𝑒  can also vary across the genome due to the effects of selection at a focal site on the 

behaviour of variants at nearby sites, due to genetic hitchhiking (Smith and Haigh, 1974) and 

background selection (Charlesworth et al. 1993), both of which are expected to reduce 𝑁𝑒, 

resulting in lower levels of genetic diversity and the reduced effectiveness of selection. This 

effect is exacerbated in regions of low recombination because the associations due to linked 

selection are not broken up. There are three lines of evidence that show there is variation in 

𝑁𝑒  within a genome. First, genetic diversity has been shown to be correlated to recombination 

rate, but recombination rate is not correlated to neutral divergence. Levels of neutral diversity 

have been shown to correlate to the recombination rate in Drosophila (Begun and Aquadro, 
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1992), humans (Lercher and Hurst, 2002; Hellman et al. 2003), and some plant species 

(Tenaillon et al. 2004; Roselius et al. 2005), which might be explained by mutation rate (µ) 

variation (because the amount of neutral diversity is proportional to Neµ). However, these 

same studies (with the exception of Lercher and Hurst, 2002 and Hellman et al. 2003 who find 

that divergence and recombination are correlated) show that neutral sequence divergence 

between species (which is expected to be proportional to the mutation rate) is not correlated 

to the rate of recombination (in Drosophila: Begun and Aquadro, 1992; in plants: Roselius et al. 

2005). In humans, Hellman et al. (2003) found a correlation between neutral divergence and 

recombination rate but show that this correlation is not sufficient to fully explain the 

correlation between diversity and the recombination rate. However, Smith et al (2018) found 

that almost all variation in diversity could be explained by variation in the mutation rate in 

humans.  

The second line of evidence follows from the first, with deviations from the expectation that 

levels of neutral divergence and diversity are proportional to one another (since both depend 

on the neutral mutation rate) (Kimura, 1968; Kimura, 1983) being caused by variation in 𝑁𝑒. 

Using derivatives of the HKA test (Hudson et al. 1987; Ingvarsson, 2004; Wright and 

Charlesworth, 2004; Innan, 2006), deviations from the neutral expectation have been shown in 

plants (Roselius et al. 2005; Schmid et al. 2005), the Z chromosome in chickens (Sundstrom et 

al. 2004), humans (Zhang et al. 2002) and Drosophila (Moriyama and Powell, 1996; Machado 

et al. 2002).  

Finally, variation in 𝑁𝑒  should also manifest as variation in the efficacy of selection within a 

genome. In Drosophila it has been shown that the ratio of non-synonymous to synonymous 

polymorphisms, Pn/Ps, is higher in low recombination regions of the genome (Presgraves, 2005; 

Gossman et al. 2011; Castellano et al. 2018; Castellano et al. 2019), whilst the rate of non-

synonymous to synonymous substitution, dN/dS, is positively correlated to the recombination 
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rate (Betancourt and Presgraves, 2002). These correlations are attributed to low 

recombination regions of the genome having a low effective population size, and therefore 

reduced efficacy of selection (Betancourt et al. 2009). Pn/Ps is negatively correlated to the 

recombination rate because regions with low 𝑁𝑒  have less effective selection and therefore 

slightly deleterious mutations are able to segregate in the population. The direction of the 

correlation between dN/dS and the recombination rate is dependent on the prevalence of 

advantageous mutations. Where they are common, the correlation is expected to be positive 

due to the higher mutation rate and selection acting on a greater proportion of mutations. 

Where advantageous mutations are rare, the correlation between dN/dS and the 

recombination rate is likely to be negative because selection against slightly deleterious 

mutations is more effective in low recombination regions (Gossman et al. 2011). 

Though the existence of variation in 𝑁𝑒  across the genome is well established, there is still 

much work to be done in quantifying this variation. Gossmann et al (2011) found modest 

variation in 𝑁𝑒  across genes in 10 eukaryotic species (including humans, Drosophila 

melanogaster, Arabidopsis thaliana and Saccharomyces paradoxus.  

 

1.4 Human demographic history 
 

A critical factor when using neutrality tests to detect selection is the confounding effect of 

demography. A well-known example is that of Tajima’s D rejecting neutrality if a population 

bottleneck has occurred (Simonsen et al. 1995; Andolfatto and Przeworski, 2000; Przeworski et 

al. 2000; Nielsen, 2001; Stajich and Hahn, 2005; Wall et al. 2002), because a bottleneck can 

leave a similar footprint to a selective sweep, including a dip in diversity (Galtier et al. 2000; 

Barton, 1998). As discussed in section 1.2.2, the effective population size has an effect on 

estimates of the rate of adaptive evolution. It has also been shown that the MK test can 

generate artifactual evidence of adaptive evolution if some non-synonymous mutations are 
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slightly deleterious and the population in question has undergone recent expansion. This will 

result in the efficacy of selection being greater during the polymorphism phase (when the 

population is larger) than during the divergence phase (where the population size is smaller) 

(McDonald and Kreitman, 1991; Eyre-Walker, 2002). The reverse is also true, where population 

contraction can artifactually depress estimates of the rate of adaptive evolution. 

 

Humans have undergone a complex demographic history. Although the effective population 

size in humans has increase since the Out-Of-Africa migration, this new effective population 

size is still considerably reduced from that in the human-chimpanzee ancestor (Hobolth et al. 

2007; Burgess and Yang, 2008; Prado-Martinez et al. 2013; Schrago, 2014).  

 

1.4.1 Inferring human population demography 

There have been two types of approach used to infer population demographic history. 

Pairwise sequentially Markovian coalescent (PSMC)-type methods use whole genome 

sequence data from a small number of individuals (1-4) to infer the demographic history of the 

entire population (McVean and Cardin, 2005; Li and Durbin, 2011; Schiffels and Durbin, 2014). 

First, the local time to most recent common ancestor (TMRCA) is estimated for small genomic 

regions. The distribution of these coalescent times can then be used to infer an overarching 

demographic history. The main benefit of PSMC methods is that they only require a few 

individual genomes to infer the demographic history of the whole population. Examples of the 

application of PSMC methods applied to human populations include Li and Durbin (2011); Kidd 

et al. (2012); Schiffels and Durbin (2014); 1000 Genomes Project Consortium (2015); Henn et 

al. (2016); Malaspinas et al. (2016); Mallick et al. (2016) and Pagani et al. (2016). A notable 

concern over the accuracy of demographic models obtained using PSMC methods was raised 

by Mazet et al. (2015) who found that instead of estimating a measure of population size, 
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PSMC methods capture the inverse instantaneous coalescent rate (IICR), which only 

corresponds to the effective population size if the population is panmictic. It is therefore 

necessary to account for population structure and gene flow to avoid false positive signals of 

population expansion or contraction, which is a well-known issue of demographic inference 

(Ptak and Przeworski, 2002; Chikhi et al. 2010; Peter et al. 2010; Gattepaille et al. 2013; Heller 

et al. 2013; Mazet et al. 2015; Orozco-terWengel, 2016). 

 

The second approach to inferring a population’s demographic history is to from the SFS, which 

represents the distribution of alleles at varying frequencies in a sample of individuals from a 

population (Nielsen, 2000; Wakeley, 2009). The distribution of SNPs in a population is directly 

affected by that population’s demographic history. For example, population expansion can 

lead to an excess of rare variants (Tajima, 1989; Slatkin and Hudson, 1991; Keinan and Clark, 

2012). Unlike PSMC methods, SFS-based methods have been shown to accurately estimate 

population growth (Nelson et al. 2012; Tenessen et al. 2012; Gazave et al. 2014; Bhaskar et al. 

2015; Gao and Keinan, 2016). However the main drawback is requiring a greater number of 

individuals to be sequenced than with PSMC methods. 

 

Gutenkunst et al. (2009) and Gravel et al. (2011) inferred human demographic history using an 

SFS-based method using a diffusion approximation, finding that the Eurasian split is followed 

by a period of exponential growth in both the European and Asian populations, whilst the 

African population maintains a relatively stable demography. Beichman et al. (2017) tested the 

accuracy of the Gravel et al. (2011) model for three human populations from the 1000 

genomes dataset (1000 Genomes Project Consortium, 2015): CUE, CHB and YRI by comparing 

the distribution of expected heterozygosity from data simulated under the Gravel et al. (2011) 
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model with empirical 1000 genomes data, as well as computing the observed and expected 

SFS. In both cases they found that the model fits the data well.  

 

What emerges is a complex model of human demographic history, with the aforementioned 

population contraction from the human-chimpanzee ancestor, followed by later population 

expansion in the European and Asian populations. This means that demography is likely to 

affect estimates of positive selection both between humans and chimpanzees, and between 

human populations. 

 

1.5 Thesis scope 

In this thesis I focus on patterns of positive selection across the human genome, and the 

factors that affect these patterns. The analyses are conducted using human data from the 

1000 genomes dataset (1000 Genomes Project Consortium, 2015).  

 

In chapter 2 I develop and apply a novel method to determine the prevalence of balancing 

selection in the human genome. Where previous methods that interpret shared polymorphism 

between populations as a signal of balancing selection are limited  by requiring a long enough 

divergence time to ensure that all shared neutral genetic variation has become fixed or lost in 

at least one of the two populations, this new method uses this neutral genetic variation as a 

null model, providing information on the expectation in the absence of balancing selection. I 

use forward simulations to develop an understanding of how demography affects the method. 

I apply this method to human continental populations in an attempt to understand the 

frequency of balancing selection in humans. 
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In chapter 3 I look at site level factors that affect the rates of adaptive and nonadaptive 

evolution in humans. I correlate the rates of adaptive and nonadaptive evolution with relative 

solvent accessibility, measures amino acid physiochemical dissimilarity (volume and polarity), 

and evolutionary dissimilarity (pn/ps). I also show how population contraction or expansion can 

attenuate the correlation between a factor and the rate of adaptive evolution, if that factor is 

also correlated to the mean strength of selection against deleterious mutations. 

 

In chapter 4 I look at gene level factors that affect the rates of adaptive and nonadaptive 

evolution in humans. I correlate the rates of adaptive and nonadaptive evolution with four 

factors: recombination rate, gene age, gene length and gene expression. For each factor I 

individually control for each of the other three factors to understand which factors are driving 

evolution in humans. I also look at gene function by estimating rates of evolution in GO 

categories for both viral interacting proteins (VIPs) and non-viral interacting proteins (nonVIPs) 

to understand the extent to which viruses drive evolution in humans. 

In chapter 5 I revisit the question of what factors determine the level of neutral diversity 

across the human genome using the number of SNPs from the 1000 genomes dataset (The 

1000 Genomes Project Consortium, 2015) and de novo mutations (DNMs) from three datasets 

(Francioli et al. 2015; Wong et al. 2016; Jonson et al. 2017). We show that the inferred 

distribution of mutation rates is actually broader than the distribution of SNPs. This leads us to 

explore models in which the effects of linked selection are dependent upon the mutation rate. 
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2. A new test demonstrates that 

balancing selection maintains 

hundreds of non-synonymous 

polymorphisms in the human 

genome 
 

 

2.1 Abstract 

The role that balancing selection plays in the maintenance of genetic diversity remains 

unresolved. Here we introduce a new test, based on the McDonald-Kreitman test, in which the 

number of polymorphisms that are shared between populations is contrasted to those that are 

private at selected and neutral sites. We show that this simple test is robust to a variety of 

demographic changes, and that it can also give a direct estimate of the number of shared 

polymorphisms that are directly maintained by balancing selection. We apply our method to 

population genomic data from humans and conclude that more than a thousand non-

synonymous polymorphisms are subject to balancing selection. 
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2.2 Introduction 

How genetic variation is maintained, either in the form of DNA sequence diversity or 

quantitative genetic variation, remains one of the central problems of population genetics. 

Balancing selection encapsulates several selective mechanisms that increase variability within 

a population. These include heterozygote advantage (also referred to as overdominance), 

frequency dependent selection, and selection that varies through space and time (Nielsen, 

2005). However, although there are some clear examples of each type of selection (Allison, 

1956; Nosil et al. 2018), the overall role that balancing selection plays in maintaining genetic 

variation, either directly, or indirectly through linkage, remains unknown.  

 

A number of methods have been developed to detect the signature of balancing selection 

(Hughes and Nei, 1988; Asthana et al. 2005; Bubb et al. 2006; Andres et al. 2009; Leffler et al. 

2013; DeGiorgio et al. 2014; Gao et al. 2015; Hunter-Zinck and Clark, 2015; Fijarczyk and Babik, 

2015; Sheehan and Song, 2016; Siewert and Voight, 2017; Bitarello et al. 2018). Application of 

these methods have identified a number of loci subject to balancing selection, largely in the 

human genome, in which most of this research has taken place. However, these methods are 

generally quite complex to apply, often leveraging multiple population genetic signatures of 

balancing selection and many require simulations to determine the null distribution. 

Furthermore, they do not readily yield an estimate of the number of polymorphisms that are 

directly subject to balancing selection, as opposed to being in linkage disequilibrium. Here we 

introduce a method that is simple to apply and which generates a direct estimate of the 

number of polymorphisms subject to balancing selection. 

 

One signature of balancing selection that has been utilised in several studies is the sharing of 

polymorphisms between species (Asthana et al. 2004; Leffler et al. 2013; Gao et al. 2015). If 
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the species are sufficiently divergent that they are unlikely to share neutral polymorphisms, 

then shared genetic variation can be attributed to balancing selection. These studies have 

concluded that there are relatively few balanced polymorphisms that are shared between 

humans and chimpanzees (Asthana et al. 2004; Leffler et al. 2013). However, this test is likely 

to be weak because humans and chimpanzees diverged millions of years in the past and it is 

unlikely that any shared selection pressures will be maintained over that time period.  

 

The major problem with approaches that consider the sharing of polymorphisms between 

species or populations is differentiating selectively maintained polymorphisms from neutral 

variation inherited from the common ancestor. This problem can be solved by comparing the 

number of shared polymorphisms at sites which are selected, to those that are neutral. We 

expect the number of shared polymorphisms at selected sites to be lower than at neutral sites 

because many mutations at selected sites are likely to be deleterious, and hence unlikely to be 

shared. However, we can estimate the proportion that are effectively neutral by considering 

the ratio of polymorphisms, which are private to one of the two populations or species, at 

selected versus neutral sites. Although the method can be applied to any group of neutral and 

selected sites that are interspersed with one another we will characterise it in terms of non-

synonymous and synonymous sites. Let the numbers of polymorphisms that are shared 

between two populations or species be SN and SS at non-synonymous and synonymous sites 

respectively, and the numbers that are private to one of the populations be RN and RS 

respectively. Let us assume that synonymous mutations are neutral and non-synonymous 

mutations are either neutral or strongly deleterious. Then it is evident that 
𝑆𝑁

𝑆𝑆
=

𝑅𝑁

𝑅𝑆
= 𝑓, 

where 𝑓 is the proportion of the non-synonymous mutations that are neutral. However, if 

there is balancing selection acting on some non-synonymous SNPs and this selection persists 
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for some time such that the balanced polymorphisms are shared between populations then 

𝑆𝑁

𝑆𝑆
>

𝑅𝑁

𝑅𝑆
. A simple test of balancing selection is therefore whether Z > 1 where 

𝑍 =
𝑆𝑁 𝑆𝑆⁄

𝑅𝑁 𝑅𝑆⁄
 

(2.1) 

This is a simple corollary of the McDonald-Kreitman test for adaptive divergence between 

species (McDonald and Kreitman, 1991). It can be shown, under some simplifying assumptions 

in which synonymous mutations are neutral and non-synonymous mutations are strongly 

deleterious, neutral or subject to balancing selection, that an estimate of the proportion of 

non-synonymous mutations subject directly to balancing selection is 𝛼𝑏 = 1 −
𝑆𝑆𝑅𝑁

𝑆𝑁𝑅𝑆
 (see 

results section). In this analysis, we perform population genetic simulations to investigate 

whether the method can detect the signature of balancing selection and assess whether the 

method is robust to demographic change. Second, we apply the method to human population 

genetic data. We show that the method is robust and we estimate that substantial numbers of 

non-synonymous polymorphisms are maintained by balancing selection in humans. 

 

2.3 Methods and Materials 

2.3.1 Human data 

Human variation data was obtained from 1000 genomes Grch37.p13 vcf files (The 1000 

Genomes Project Consortium, 2015). Variants were annotated using Annovar’s hg19 database 

(Wang and Li, 2010). The annotated data was then parsed to remove multi-nucleotide 

polymorphisms and indels. Because 1000 genomes data provides allele frequencies for the 

non-reference allele rather than the minor allele, the minor allele frequency for each 

superpopulation and also for the global minor allele frequency was calculated. We used 1000 
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genomes from the African, South Asian, East Asian and European populations. The American 

population was removed due to the fact that it is an admixed population. GO category 

information was obtained from Ensembl’s BioMart data mining tool (Yates et al. 2019). We 

used pyrho demography-aware recombination rate maps (Spence and Song, 2019) for analyses 

that control for recombination rate.   

 

2.3.2 Simulations 

All simulations were run using the SLiM software platform (Haller and Messer, 2019). 

Parameter values were taken from human estimates. Almost all simulations were of a 288bp 

locus, this being the average size of a human exon (Yates et al. 2020). Unless otherwise stated, 

the scaled recombination rate and scaled mutation rate were set at r = 1.1 x 10-8 (Dumont and 

Payseur, 2008); µ= 2.5 x 10-8 (Nachman and Crowell, 2000) in the ancestral population. The 

distribution of fitness effects was assumed to be a gamma distribution and the shape and 

mean strength of selection estimates for humans were taken from Eyre-Walker et al. (2006) (β 

= 0.23; mean Nes = 425). For Drosophila estimates were taken from Keightley and Eyre-Walker 

(2007) (β = 0.35; mean Nes = 1800); again these were values in the ancestral population. Unless 

dominance was fixed, it was calculated using the model of Huber et al. (2018), which was 

estimated from Arabidopsis. The Huber model varies the dominance coefficient depending on 

the selection coefficient of the mutation, where the dominance coefficient increases with the 

strength of selection. It’s formula is ℎ = 𝑓(𝑠) =
1

1

𝜃𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡
−𝜃𝑟𝑎𝑡𝑒𝑠

  where 𝜃𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 defines the 

values of ℎ at 𝑠 = 0 and 𝜃𝑟𝑎𝑡𝑒 determines how quickly ℎ approaches zero with decreasing 

negative selection coefficient. We set 𝜃𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 to 0.5 so that all mutations with a selection 

coefficient of 𝑠 = 0 have a dominance coefficient, ℎ = 0.5, and 𝜃𝑟𝑎𝑡𝑒 = 41225.56. This 

assumes an inverse relationship between ℎ and 𝑠, which gives the highest log likelihood score 

of the relationships compared by Huber et al. (2018). For balancing selection simulations, we 
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assume a model of heterozygote advantage and the strength of selection was sampled from a 

distribution such that the equilibrium frequency was uniformly distributed between 0 and 1; 

however, it should be noted that some balanced polymorphisms with low equilibrium 

frequencies were lost in one of the descendent populations. These simulations were discarded. 

The balanced polymorphism is introduced at the centre of the 288bp region. Two million 

successful simulation runs were conducted for each model.  

 

For the generic simulations (i.e. not those involving the human demographic model) the 

ancestral population size was set at 200. This was allowed to equilibrate for 15N generations 

before a balanced polymorphism was introduced 5N generations before the population was 

split into two. The descendant populations were then sampled every 0.05N generations up to 

20N generations after the split. We ran five different generic simulations: (i) simulations in 

which the ancestral population was duplicated, (ii) vicariance simulations in which the 

ancestral population was divided between the daughter populations in splits of 0.5N-0.5N; 

0.75N-0.25N; 0.9N-0.1N, (iii) variance simulations in which the descendant populations 

expanded, iv) dispersal simulations, in which some variable fraction (0.5N; 0.25N; 0.1N) of the 

ancestral population is duplicated to form the dispersal population, and the ancestral 

population continues as the other daughter population, and v) dispersal with population 

increase of the dispersal population. The dispersal population starts as 0.1N and expands 

exponentially 2 to 10x its original size after 21N generations. Scenarios ii-v were repeated with 

migration rates of 0.01N and 0.001N of the ancestral population size between the descendant 

populations. 

 

We also ran some simulations under the human demographic model of Gravel et al. (2011); for 

details of the demographic structure of the simulation (Gravel et al. 2011). The distribution of 
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fitness effects for deleterious mutations was assumed to be a gamma distribution using the 

parameters estimated from the African superpopulation using the GammaZero model within 

the Grapes software (Galtier N. , 2016); the parameters are similar to those estimated by Eyre-

Walker et al (2006), and used in the generic simulations (Gamma shape = 0.17 and Mean Nes = 

1144). We chose to infer the DFE for the African superpopulation because this is currently the 

largest dataset available for a population that has been inferred to be relatively stable. 

Dominance was calculated using the Huber model discussed above. Sampling of all populations 

(African, East Asian and European) was conducted at the end of the simulation (i.e. the 

equivalent of the present day).  

 

2.4 Results 

2.4.1 Simulations 

We propose a new test for balancing selection in which the ratio of selected to neutral 

polymorphisms is compared between those that are shared between populations or species 

and those that are private to populations or species. To explore the properties of our method 

to detect balancing selection we ran a series of simulations in which an ancestral population 

splits to yield two descendent populations. We initially simulated loci under a simple stationary 

population size model where the ancestral population is duplicated to form two equally sized 

populations (equal to each other and the ancestral population). This is an unrealistic scenario, 

but it has the advantage that it involves no demographic change in the transition from 

ancestral to descendent populations. We assume that synonymous mutations are neutral and 

we explore the consequences of different selective models for non-synonymous mutations. If 

all non-synonymous mutations are neutral, then as expected 𝑍 = 1 (figure 2.1a), and if we 

make some of the non-synonymous mutations deleterious, drawing their selection coefficients 

from a gamma distribution, as estimated from human polymorphism data (Eyre-Walker et al. 
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2006) we find that 𝑍 < 1 (figure 2.1a). Again, this is expected because slightly deleterious 

mutations (SDMs) are likely to contribute more to the level of private than shared 

polymorphism. If we simulate a locus in which most non-synonymous mutations are 

deleterious, drawn from a gamma distribution, but each locus contains a single balanced 

polymorphism that is shared between populations then 𝑍 > 1 (figure 2.1a). It is important to 

note that the density of balanced polymorphisms is high in these simulations because we have 

simulated a short exon, of just 288bp, the average length in humans, and each one contains a 

balanced polymorphism. If we were to reduce the density of balanced polymorphisms then Z 

can be less than one even if there is balancing selection operating.  

 

Slightly deleterious mutations tend to depress the value of Z because they are more likely to 

segregate within a population, than to be shared between populations that diverged sometime 

in the past. There are two potential strategies for coping with this tendency. We can test for 

the presence of balancing selection as a function of the frequencies of the polymorphisms in 

the population, because SDMs will tend to be enriched amongst the rarer polymorphisms in 

the population. A similar approach has been used successfully to ameliorate the effects of 

SDMs in the classic MK approach for estimating the rate of adaptive evolution between species 

(Fay et al. 2001; Charlesworth and Eyre-Walker, 2008; Messer and Petrov, 2013). Or we can 

explicitly model the generation of shared and private polymorphisms under a realistic 

demographic and selection model to control for the effects of SDMs. We focus our attention 

here on the first of these strategies, although we touch on the latter strategy in the discussion. 

We apply the frequency filter to both the private and shared polymorphisms; this is necessary 

because if we applied the filter only to the private polymorphisms, we could be comparing 

high frequency private polymorphisms, with a low ratio of RN to RS, because SDMs have been 

excluded, to low frequency shared polymorphisms, which may contain many SDMs and hence 
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have a high value of SN/SS; this can yield artefactual evidence of balancing selection. This could 

be exacerbated if some of the SDMs are recessive. To investigate the effects of polymorphism 

frequency on our estimate of Z we divided polymorphisms into 5 bins of 0.1 (we did not orient 

SNPs); for shared polymorphisms we estimated their frequency as the unweighted mean 

frequency from the two populations.  

 

If we simulate a population in which non-synonymous mutations are deleterious, whose 

effects are drawn from a gamma distribution, we find that 𝑍 < 1 but this is less marked for the 

high frequency categories, as we expect. For the lowest frequency category Z decreases as a 

function of the time to most recent common ancestor, whereas for the higher frequency 

categories it is either unaffected or increases slightly (figure 2.1b). If we include a balanced 

polymorphism, introduced prior to the population split and subject to strong selection, into 

the model, which still also includes deleterious mutations, we find that 𝑍 > 1 for all frequency 

bins except the lowest one (figure 2.1c). In each case Z increases as a function of the time since 

the population split; this is to be expected because Z is related to the proportion of shared 

polymorphisms that are subject directly to balancing selection (see below), and as time 

progresses, so neutral and SDMs go to fixation or loss in one or both of the descendant 

populations. Note, once again that the level of balancing selection in these simulations is high 

because every locus contains a balanced polymorphism. 
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Figure 2.1: Stationary population size simulations, in which the ancestral population is 

duplicated to form two daughter populations of the same size to each other and the ancestor. 

Each simulation was repeated 2 million times. The time to the most recent common ancestor 

(tMRCA) is measured in N generations, where N is the population size. A Z value of greater 

than 1 indicates a greater proportion of shared non-synonymous polymorphisms than private 

non-synonymous polymorphism, which is a signal of balancing selection. For b-c) private 

polymorphisms have been binned by minor allele frequency, in bins of size 0.1.  a) - 

simulations of neutral genetic variation only; a) – orange & b) neutral and deleterious 

variation; a) – green & c) neutral, deleterious and balanced polymorphisms. 

 

The simulation above does not take into account the demographic effects that a division in a 

population involves. We therefore performed more realistic simulations which involve 

vicariance and dispersal scenarios with and without migration between the sampled 

populations (Appendix A, figures A1-A10). We also simulated with and without expansion after 

separation. We performed all simulations under two distributions of fitness effects (DFE), 

which were estimated from human and Drosophila melanogaster populations. In the 

vicariance scenario the ancestral population splits into two daughter populations of equal or 

unequal sizes. In the dispersal scenario a single daughter population is generated by 

duplicating part of the ancestral population, which remains the same size as it was before; we 
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vary the daughter population size. In both cases, we explore the consequences of expansion 

after separation of the populations. 

 

None of the simulated demographic scenarios is capable of generating Z values greater than 1 

under either DFE - the method does not seem to generate false positives (Appendix figures A1-

A10). However, it is worth noting that a more severe difference in the size of the descendant 

populations results in depressed Z values in the smaller of the two populations, suggesting 

demography can affect the value of Z. In all cases the value of Z is smallest for the lowest 

frequency category, those polymorphisms with frequencies <0.1, and this frequency category 

often shows a dramatic difference to the other categories. We therefore suggest combining 

the polymorphisms above 0.1 when data is limited. As expected, we find that Z<1 in all 

simulations when we sum all polymorphisms with frequencies > 0.1 (Appendix figures A11 and 

A12). 

 

2.4.2 Estimating the level of balancing selection  

One of the great advantages of our method is that it gives an estimate of the number of 

polymorphisms that are directly affected by balancing selection, under a simple model of 

evolution. Let us assume that synonymous mutations are neutral and that non-synonymous 

mutations are strongly deleterious, neutral or subject to balancing selection; we further 

assume that all balanced polymorphisms arose before the two populations split. Then the 

expected numbers of non-synonymous, RN, and synonymous, RS, private polymorphisms are  

𝑅𝑠 = 𝜃𝜌𝑊   

𝑅𝑁 = 𝜃𝜌𝑊𝑓         (2.2) 
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where 𝜃 = 4𝑁𝑒𝑢, Ne is the effective population size and u is the mutation rate per site per 

generation. 𝜌 is the proportion of polymorphisms that are private to the population, W is 

Watterson’s coefficient and f is the proportion of non-synonymous mutations that are neutral, 

(1-f) being deleterious or subject to balancing selection. 

 

In deriving expressions for SN and SS we have to take into account that a balanced 

polymorphism can maintain neutral variation in linkage disequilibrium that may also be shared 

between populations. If we have b balanced non-synonymous polymorphisms and each of 

those maintains x neutral mutations in linkage disequilibrium, then the expected values of SN 

and SS are 

𝑆𝑆 = 𝜃(1 − 𝜌)𝑊 + 𝑏𝑥    

𝑆𝑁 = 𝜃(1 − 𝜌)𝑊𝑓 + 𝑏 + 𝑏𝑥𝑓       (2.3) 

It is then straightforward to show that the proportion of shared non-synonymous 

polymorphisms that are directly maintained by balancing selection is 

 

𝛼𝑏 = 1 −
1

𝑍
= 1 −

𝑆𝑆𝑅𝑁

𝑆𝑁𝑅𝑆
=

𝑏

𝑆𝑁
       (2.4) 

 

This is clearly an unrealistic model in several respects. First, it can be expected that there are 

slightly deleterious mutations in many populations and this will lead to an underestimation of 

𝛼𝑏; second, it is likely that new balanced polymorphisms will be arising all the time and these 

will contribute to private polymorphism, increasing RN/RS and leading to a conservative 

estimate of 𝛼𝑏. 
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2.4.3 Data analysis - humans 

We have shown that the method has the potential to detect balancing selection under realistic 

evolutionary models. We therefore applied our method to human data from the 1000 

genomes project (The 1000 Genomes Project Consortium, 2015) focussing on four populations 

– Africans, Europeans, East Asians and South Asians. We find that Z >1 when private 

polymorphisms from the African population are used for all population comparisons if the 

frequency of private and shared polymorphisms >0.1; we also find that Z>1 in the South Asian 

and East Asian population comparison when using South Asian private polymorphisms and 

polymorphisms with frequencies > 0.1 (Figure 2.2). For several comparisons we have no 

polymorphisms at the relevant frequencies, and many of the confidence intervals on our 

estimates of Z are large. As a consequence, we combined the data for all polymorphisms with 

frequencies > 0.1 (Figure 2.2, right-most point in each panel). The patterns above are 

replicated; Z is significantly greater than one when we use private polymorphisms from Africa, 

and in the comparison between the East and South Asian populations, but Z<1 otherwise. In 

some cases, the Z value for the combined data can appear inconsistent with the Z values from 

the individual frequency categories – for example, in the European-South Asian comparison 

the combined Z value is greater than the Z value for 0.1-0.2 despite the fact that this is the only 

Z value above 0.1. This is because there are polymorphisms with frequencies >0.2, but there 

are not enough to yield a valid estimate of Z. 

Although, the values of Z are not consistently > 1 across populations, the results suggest that 

there is balancing selection operating. Our simulations show that Z is consistently <1 when 

there is no balancing selection, and that the value of Z differs between the two population 

comparisons if the populations have undergone different demographies. We therefore infer 

that there is balancing selection maintaining polymorphisms between populations. 
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Figure 2.2: The value of Z plotted against the frequency of shared and private polymorphisms, 

calculated for 1000 genome data from Africans (AFR), East Asians (EAS), Europeans (EUR) and 

South Asians (SAS). In each panel we show the value of Z for a comparison of two populations 

using the private polymorphisms from each, the population used being indicated in the plot 

legend. Data binned by minor allele frequency bins of size 0.1 on the x-axis. Final bin is 0.1-0.5 

(i.e. all data minus the lowest frequency bin). Confidence intervals were generated by 

bootstrapping the data by gene 100 times. Only datapoints in which there were at least 20 

polymorphisms for all polymorphism categories were plotted, because the confidence 

intervals were very large otherwise.  

 

If we estimate 𝛼𝑏 to those comparisons in which Z is significantly greater than 1, we estimate 

that approximately 12% of the non-synonymous shared polymorphisms between the African 

and other human populations are subject to balancing selection, as well as between the Asian 

populations (Table 2.1). These estimates are likely to be underestimates because there will still 

be SDMs segregating in our data, even though we have removed the lowest frequency variants 

(see simulation results). The proportions suggest that ~500 polymorphisms, which are shared 

between the African and other populations, are maintained by balancing selection. We 

estimate rather more are maintained between the two Asian populations, although the 

confidence intervals on this estimate are large. If we combine data across the non-African 

populations, we estimate that ~1400 polymorphisms are shared between African and non-

African populations in total because of balancing selection (Table 2.1). The fact that the 

estimate from the African-non-African comparison is larger than the estimate from the African 

versus each individual population, suggests that many of the balanced polymorphisms shared 

between populations are unique to each population pair – i.e. there are balanced 
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polymorphisms shared between African and European populations, that are not shared 

between Africans and East Asians. 

 

Target population 

Comparative 

population 
 αb  αb_low  αb_high b blow bhigh 

African nonAfrican 0.12 0.09 0.14 1420 1077 1737 

African European 0.04 0.01 0.06 577 176 926 

African East Asian 0.05 0.03 0.06 657 401 882 

African South Asian 0.03 0.01 0.05 507 182 796 

South Asian East Asian 0.09 0.00 0.19 1273 18 2594 

Table 2.1: Estimates of the proportion of shared non-synonymous polymorphisms under 

balancing selection, αb, and the number of polymorphisms, b, being directly maintained by 

balancing selection for population comparisons in which Z>1. 95% confidence intervals were 

generated by bootstrapping the data by gene 100 times. 

 

A concern in any analysis of human population genetic data is the influence of biased gene 

conversion (BGC). This process tends to increase the number and allele frequencies of AT>GC 

mutations, and reduce the number and allele frequencies of GC>AT mutations. If this process 

differentially affects synonymous and non-synonymous sites and shared and private 

polymorphisms, then it could potentially lead to Z>1. To investigate whether BGC has an effect 

we performed two analyses. In the first, we divided our genes according to whether they were 

in high and low recombining regions, dividing the data at the median recombination rate (RR). 

Our two groups differ substantially in their mean rate of recombination (mean RR in low group 

= 1.2 x 10-7 centimorgans per site and high group = 1.8 x 10-6 centimorgans per site). We find 

that Z is actually higher in the low RR regions, although not significantly so (Table 2.2), which 

suggests that BGC is not responsible for the comparisons in which Z > 1.  
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mean recombination rate sN sS rN rS Z Zlow Zhigh 

1.20E-09 7023 7447 553 653 1.114 1.066 1.160 

1.80E-08 7767 8514 604 702 1.060 1.021 1.103 

Table 2.2: Estimates of Z for data split by median recombination rate. Confidence intervals 

were generated by bootstrapping genes 100 times. 

 

In the second test of the influence of BGC on the value of Z we limited our analysis to 

mutations that are not affected by BGC – i.e. G<>C and A<>T mutations. This reduces our 

dataset by about 80%. As a consequence, we summed the data for all polymorphisms with 

frequencies >0.1. We find that our estimate is largely unchanged from that when all 

polymorphisms are included, however the confidence intervals are increased substantially so 

that Z is only significantly greater than one for the African-non-African, and the South versus 

East Asian comparisons (Table 2.3). Our two tests suggest that our results are not affected by 

BGC. 

Target 

population 

Comparative 

population 

all polymorphism data filtered for BGC 

Z Zlow Zhigh Z Zlow Zhigh 

African non-African 1.13 1.10 1.17 1.12 1.03 1.21 

African East Asian 1.05 1.03 1.07 1.00 0.95 1.05 

African European 1.04 1.01 1.07 1.01 0.93 1.10 

African South Asian 1.04 1.01 1.06 1.04 0.98 1.09 

South Asian East Asian 1.10 1.00 1.23 1.36 1.04 1.73 

Table 2.3: Testing the effects of BGC for population comparisons which show Z>1 using all 

polymorphisms with frequencies > 0.1. To control for BGC the analysis was restricted to A<>T 

and G<>C SNPs. 95% confidence intervals were generated by bootstrapping the data by gene 

100 times. 
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2.4.4 Groups of genes 

We can potentially apply our test of balancing selection to individual genes or groups of genes, 

where we have enough data. Balancing selection has been implicated in the evolution of 

immune related genes (e.g. Bitarello et al. 2018, Weedel and Conway, 2010, Hughes and Nei, 

1988, Hedrick, 2002), particularly major histocompatibility complex (MHC), or human 

leukocyte antigen genes (HLA) (Aguilar et al. 2004 and Paterson, 1998). To investigate whether 

we could detect this signature in our data, we split our dataset into HLA and non-HLA genes 

(The MHC sequencing consortium, 1999). Due to a lack of private polymorphisms, we 

combined all frequency categories >0.1. We found Z was significantly greater in HLA than non-

HLA genes for all population comparisons except Europeans and South Asians using European 

private polymorphisms (Appendix figure A13). However, the value of Z is greater than one in 

population comparisons in which African private polymorphisms are used, consistent with 

balancing selection maintaining variation in the HLA region. We estimate that a very 

substantial proportion of non-synonymous genetic variation is being maintained by balancing 

selection, although the confidence intervals on our estimates are large; roughly 50% of the 

shared non-synonymous SNPs are being maintained by balancing selection between African 

and non-African populations in the HLA region and this equates to approximately 200 

polymorphisms (Table 2.4) 

 

However, the signature of balancing selection that we have detected across all genes is not 

simply due to the HLA genes. We find that Z>1 in non-HLA genes in most population 

comparisons in which Z>1 for all genes, except in the comparison of East and South Asian 

populations (Table 2.5); in most cases these estimates of Z are significantly greater than 1. We 

estimate that >1000 of non-synonymous polymorphisms are subject to balancing selection 
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amongst the polymorphisms shared by African and non-African populations, with several 100 

shared between each of the populations and the African population.  

 

target comparative αb αb_low αb_low b blow bhigh 

AFR nonAFR 0.702 -0.011 0.779 299 Na 332 

AFR EAS 0.287 -0.005 0.502 134 Na 234 

AFR EUR 0.731 0.317 0.820 338 147 379 

AFR SAS 0.529 0.307 0.694 247 143 324 

EAS SAS -0.307 Na 0.292 Na Na 133 

Table 2.4: Estimates of the proportion of shared non-synonymous polymorphisms under 

balancing selection, αb, and the number of polymorphisms being directly maintained by 

balancing selection, b, for population comparisons in the HLA region for population 

comparisons in which Z>1 when using all genes. Estimates for polymorphisms with frequency > 

0.1. Confidence intervals were generated by bootstrapping the data by gene 100 times. 

 

target comparative αb αb_low αb_low b blow bhigh 

AFR nonAFR 0.101 0.077 0.127 1193 907 1502 

AFR EAS 0.033 0.016 0.049 453 227 678 

AFR EUR 0.024 -0.001 0.049 355 Na 716 

AFR SAS 0.021 0.001 0.041 293 19 587 

EAS SAS -1.254 -1.981 -0.833 Na Na Na 

Table 2.5. Estimates of the proportion of shared non-synonymous polymorphisms under 

balancing selection, αb, in non-HLA genes, and the number of polymorphisms being directly 

maintained by balancing selection, b, for population comparisons in which Z>1 when using all 

genes.  Confidence intervals were generated by bootstrapping the data by gene 100 times. 
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If we run our analysis grouping genes by their GO category and restricting the analysis to those 

groups that have at least 100 polymorphisms with frequencies >0.1 we find 683 categories in 

which Z is significantly greater than 1 in at least population comparison and we list those 

significant in 5 or more population comparisons in Table 2.6. One of these GO categories, 

“nucleic acid binding” is shared across 7 of the 14 population comparisons, “endoplasmic 

reticulum membrane” across 6 population comparisons; amongst those categories shared 

among 5 are “viral process” and “immune system process”, but there are many others which 

are surprising including “protein import into the nucleus”. Eighty-five categories are shared 

between 4 or more population comparisons, and 155 amongst three or more population 

comparisons. These include 7 categories related to immunity (including immune system 

process which is significant in 5 population comparisons), and 40 categories that are linked to 

antigen presentation though not classified as immune-related categories. There are also 5 

viral-related categories (including viral process which is significant in 5 population 

comparisons).  
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GO category 

Number of population 

comparisons 

nucleic acid binding 7 

endoplasmic reticulum membrane 6 

response to stimulus 5 

viral process 5 

zinc ion binding 5 

DNA binding 5 

nucleus 5 

immune system process 5 

chromatin binding 5 

keratinization 5 

intermediate filament 5 

positive regulation of transcription by RNA polymerase II 5 

chromosome 5 

Table 2.6. GO categories in which Z is significantly greater than one in at least 5 population 

comparisons. 

 

2.4.5 Individual genes 

We applied our statistic to individual human genes, combining all frequency bins (0-0.5) due to 

a lack of polymorphism. We tested for significance using a one-tailed Fisher’s exact test. Of the 

14,261 genes we analysed 514 had Z>1 in at least one population comparison. Eighteen of 

these were nominally significant at p<0.1, but no gene was individually significant when we 

corrected for multiple testing using a Bonferroni correction. Eighteen genes have Z>1 in at 

least 9 population comparisons; note that since populations share polymorphisms, we cannot 

combine the evidence for balancing selection across these populations (Table 2.7). Four of 

these genes MUC4, RP1L1, PKD1L2 and ZAN have Z>1 in all population comparisons. We 

correlated Z with gene length to see if longer genes invariably have higher estimates of Z. 
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However we found no significant correlation when fitting a linear regression to the correlation 

between Z and gene length (r=0.07, p>0.1). 

 

Gene symbol Number of population comparisons in which Z>1 Gene length 

MUC4 14 44,732 

RP1L1 14 105,838 

PKD1L2 14 119,495 

ZAN 14 64,202 

C1orf167 13 27,798 

SPTBN5 12 45,907 

MKI67 12 29,764 

DNAH14 11 503,030 

WDFY4 10 298,080 

FAM230G 10 15,567 

CMYA5 9 110,404 

CRIPAK 9 4,442 

SYNE2 9 464,534 

FSIP2 9 94,486 

GREB1 9 160,447 

ALMS1 9 239,408 

MUC19 9 177,437 

CENPF 9 61,376 

Table 2.7. Genes with Z>1 in 9 or more population comparisons. Z was estimated for all 14 

population comparisons for each gene. Gene lengths are included for the 18 genes listed here. 

 

If we use the 514 genes and do a GO enrichment analysis, we find multiple GO categories 

enriched for these genes including immune response categories with 3-fold enrichment. The 

most highly enriched categories are involved in energy production and conversion (including 

dynein binding) and intracellular transport (including microtubule motor activity).  
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2.5 Discussion 

We propose a new method for detecting and quantifying the amount of balancing selection 

that is operating on polymorphisms, in which the numbers of non-synonymous and 

synonymous polymorphisms that are shared between populations and species are compared 

to those that are private. The method is analogous to the McDonald-Kreitman test used to test 

and quantify the amount of adaptive evolution between species (McDonald and Kreitman, 

1991). We show that our test is robust to the presence of slightly deleterious mutations under 

simple demographic models of population division, expansion and migration. When we apply 

our method to data from human populations, we find evidence that hundreds of non-

synonymous polymorphisms are being directly maintained by balancing selection in human 

populations. 

 

Our method for detecting balancing selection is simple to apply and appears to be robust to 

changes in demography. The classic MK test of adaptive evolution between species can 

generate artefactual evidence of adaptive evolution if there are SDMs and there has been 

population size expansion  (McDonald and Kreitman, 1991; Eyre-Walker, 2002); this is because 

SDMs that might have been fixed when the effective population size was small, no longer 

segregate once the population size is large. A similar bias does not appear to affect our test, 

although we have only investigated two DFEs and a limited number of demographic scenarios. 

Our test is likely to be more robust than the classic MK test because the shared polymorphisms 

are affected by the demographic changes that affect the private polymorphisms; i.e. if the 

population expands this will increase the effectiveness of natural selection on both the private 

and the shared polymorphisms. However, although our method seems to be relatively robust 

to changes in demography, in the sense that it does not generate artefactual evidence of 

balancing selection, it is evident that demography does affect the chance of balancing 
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selection being identified, because the values of Z depend on the demography and which 

population the private polymorphisms are taken from (Figure 2.2). 

 

The method can in principle be applied to any pair of populations or species. However, the test 

is likely to be weak when the populations/species are closely related for two reasons. First, 

there will be relatively few private polymorphisms, and second, the proportion of shared 

polymorphisms that are subject to balancing selection is likely to be low, because so many 

neutral polymorphisms are shared between populations because of recent common ancestry. 

As the populations/species diverge so the number of private polymorphisms will increase, and 

the proportion of shared polymorphisms that are balanced will increase. Of course, as the time 

of divergence increases so the selective conditions that maintained the polymorphism are 

likely to change and the polymorphism might become neutral, or subject to directional 

selection. Our method is also likely, like all methods, to be better at detecting balanced 

polymorphisms that are common, because most populations are dominated by large numbers 

of rare neutral variants. Finally, our method requires that the neutral and selected sites are 

interdigitated; the method is therefore easy to apply to protein coding sequences, but may be 

more difficult to apply to other types of variation, such as that which affects gene expression. 

 

A great advantage of our method is that it gives an estimate of the proportion and number of 

shared polymorphisms that are directly subject to balancing selection, under a set of 

simplifying assumptions. However, the method is likely to yield underestimates of the 

proportion of balanced polymorphisms, under a more realistic models of evolution. We have 

assumed, in deriving αb, that all non-synonymous mutations are either strongly deleterious, 

neutral or subject to balancing selection. However, a substantial fraction of non-synonymous 

mutations appear to be slightly deleterious in humans (Cargill et al. 1999; Fay et al. 2001; Eyre-
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Walker et al. 2002; Hughes et al. 2003; Asthana et al. 2007) and other species (Fay et al. 2001; 

Eyre-Walker et al. 2002; Hughes, 2005; Charlesworth and Eyre-Walker, 2006) – i.e. they are 

deleterious, but sufficiently weakly selected that they contribute to polymorphism. Under 

stationary population size assumptions – i.e. in which the ancestral population is duplicated to 

form the daughter populations - this will lead to an underestimate of Z because SDMs tend to 

contribute more to private than shared polymorphism, and hence inflate RN/RS relative to SN/SS 

(Figure 2.1). Under more realistic demographic models, in which at least one of the derived 

populations is reduced, this is expected to depress Z in the population that is being reduced 

because more SDMs will tend to segregate in smaller populations hence inflating RN/RS 

(compare Figure 2.1 to Appendix figures A2 and A3). Simulations suggest there is however a 

slight increase in Z using private polymorphisms from the larger of the populations but these Z 

values never exceed 1 (Appendix figures A2 and A3). The second reason that we are likely 

underestimating the number of balanced polymorphisms using our simple method is that we 

assume that there are no balanced polymorphisms that are private to each population; these 

would inflate RN/RS. Private balanced polymorphisms might arise from an ancestral 

polymorphism that is lost from one of the daughter populations, or one that arises de novo. A 

more realistic model of balancing selection is one in which balanced polymorphisms are 

continually generated with the selective forces persisting for some time before they dissipate 

(Sellis et al. 2011) and the balanced polymorphism is lost. The process of population division 

itself is likely to lead to the loss of many balanced polymorphisms as the environment shifts in 

the two daughter populations.  

 

A potential solution to the tendency for our method to underestimate Z is to simulate data 

under a realistic demographic model assuming that there is no balancing selection, and 

interpret the observed values of Z that are greater than simulated values, as evidence of 
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balancing selection. A similar approach has been used to estimate the rate of adaptive 

evolution between species (e.g. Eyre-Walker and Keightley, 2009; Boyko et al. 2008; Schneider 

et al. 2011; Galtier, 2016; Tataru et al. 2017). However, there are challenges in this approach; 

in particular, we need an accurate demographic model. We have performed simulations under 

the commonly used human demographic model inferred by Gravel et al. (2011) estimating the 

DFE from the current African population; we chose the African population because it has been 

subject to relatively modest demographic change. Our observed Z values do not match the 

simulated values (Appendix figure A14); in particular we find that the observed values of Z are 

substantially greater than the simulated amongst the low frequency polymorphisms. However, 

the model of Gravel et al. does not fit the SFS of the individual populations of 1000 genome 

data; for example, in the African population there are far too many singleton SNPs even 

amongst the putative neutral synonymous mutations (Appendix figure A15). The lack of fit is 

perhaps not surprising; Gravel et al. inferred their model using 80 chromosomes per 

population, whereas the 1000 genome data contains >1000 chromosomes per population. 

Furthermore, the inference of a demographic model should take into account the influence of 

biased gene conversion and background selection, which appear to be pervasive factors in the 

human genome (Pouyet et al. 2018), so these simulations will be complex. 

 

It might be argued that the evidence of balancing selection is weak because we typically find 

Z>1 using the private polymorphism from only one of the two populations. However, we have 

been unable to find a demographic model in which there is no balancing selection and Z>1 – 

note that we never observe Z>1 under the Gravel et al. model of human demography even 

when we change the parameters of the DFE and demographic model; furthermore, we find 

that simulations which involve different demographies in the two populations generate 



69 
 

different Z values for the two populations, so there is an expectation in many species that we 

will observe Z values that differ between populations.  

 

Values of Z in excess of one could potentially be due to biased gene conversion; we expect BGC 

to increase the allele frequency of AT>GC mutations and to decrease the frequency of GC>AT 

mutations; this will tend to make AT>GC mutations more likely to be shared between 

populations than GC>AT mutations. Since the GC-content at the third codon position is 

typically higher than the GC content at the first two positions, this will mean that there are 

more non-synonymous AT>GC mutations than synonymous, and hence more shared non-

synonymous than synonymous polymorphisms. However, our results do not appear to be 

affected by BGC; results are similar between genes in high and low recombination rate regions 

of the human genome (Table 2.2), and our point estimates of Z are largely unaffected by 

restricting the analysis to SNPs which are unaffected by BGC, although the confidence intervals 

increase substantially (Table 2.3).  

 

We estimate that there ~500 balanced polymorphisms shared between the African and each of 

the other human populations, ~1250 shared between the Asian populations and ~1400 shared 

between the African and non-African populations; these are likely to be underestimates due to 

the presence of slightly deleterious mutations. The fact that we estimate that ~1400 shared 

non-synonymous polymorphisms are being maintained between African and non-African 

populations, but only ~500 between each of the individual populations and the African 

population suggests, that many of the polymorphisms shared between the African and each 

individual population are unique – i.e. many polymorphisms shared between Africans and 

Europeans, may not be shared between Africans and Asians. These numbers are substantial, 

but are consistent with those of Bitarello et al. (2018) who estimated that ~8% of human genes 
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show some evidence of long-term balancing selection, and many of these signatures are 

shared between populations. However, their method could not determine whether the 

balanced polymorphisms were coding or noncoding mutations.  

 

As expected, we find evidence of balancing selection affecting the HLA or MHC genes (Table 

2.4) (Hughes and Nei; 1988; Hedrick, 1998). However, we find evidence of balancing selection 

even when these genes are removed from the analysis (Table 2.5). The analysis of GO 

categories shows that numerous categories show evidence of balancing selection across 

multiple population comparisons. Some of these are expected, but many are not, such as 

“nucleic acid binding”, which is significant in 7 of the 14 population comparisons.  

 

No individual gene is significant when we control for multiple testing, however, several genes 

have Z>1 in multiple population comparisons including 10 which are shared across at least 10 

of the 14 population comparisons. Three of these overlap with previous genome-wide scans of 

selection, namely the protein-coding gene DNAH14, implicated in brain compression and 

encoding axenomal dynein (Voight et al. 2006); MUC4, implicated in biliary tract cancer 

(Tennessen and Akey, 2011); and ZAN, which encodes a protein involved in sperm adhesion, 

previously implicated in balancing selection and positive selection in human populations 

(Gasper and Swanson, 2006). Two of these ten genes are associated with tumours. MKI67 

expression is associated with a higher tumour grade and early disease recurrence (Yang et al. 

2017), and WDFY4 plays a critical role in the regulation of certain viral and tumour antigens in 

dendritic cells (Theisen et al. 2019). PKD1L2 is associated with polycystic kidney disease and 

RP1L1 variants are associated with several retinal diseases including occult macular dystrophy 

(Davidson et al. 2013). SPTBN5 encodes for the cytoskeletal protein spectrin, that plays a role 

in maintaining cytoskeletal structure (Huh et al. 2001) and C1orf167 expresses open reading 
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frame protein that is highly expressed in the testis (Fagerberg et al. 2014). Finally, FAM230G is 

highly expressed in testes (Delihas, 2018). 

 

Twenty-five of the 514 with Z>1 genes overlap with those genes identified by Bitarello et al. 

(2018), but this is similar to the level of overlap expected at random; i.e. they observed that 

7.9% of protein coding genes overlapped regions identified by their method as being subject to 

balancing selection, and we identified 514 candidates; so we expect 0.079 x 514 = 41 by 

chance alone. The lack of a significant overlap is possibly not surprising; we have applied our 

method to non-synonymous variation, whereas the method of Bitarello et al. (2018) considers 

all variation. Furthermore, the method of Bitarello et al. (2018) is most powerful at detecting 

balancing selection over long time periods; in the case of humans, over periods of millions of 

years. In contrast, we have applied our method to populations that diverged 10,000’s of years 

ago.  

 

It is possible that the signature of balancing selection is caused by a form of associated 

overdominance, in which neutral alleles at a locus are linked to different deleterious recessive 

alleles at other loci. For example, let us imagine that we have two closely linked loci at which 

we have deleterious alleles; let the A2 allele be the recessive allele at the A locus and the B2 

allele at the B locus. Now consider a third neutral locus with alleles C1 and C2. If C1 is in 

linkage disequilibrium (LD) with the A2 allele, and C2 is in LD with the B2 allele, then C1C2 

heterozygous individuals will have higher fitness than C1C1 and C2C2 homozygotes. This form 

of selection can lead to the maintenance of genetic variation (Zhao and Charlesworth 2016) in 

low recombination rate regions. However, Z is not substantially greater in regions of low 

recombination so AOD seems an unlikely explanation (Table 2.2). 
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2.6 Conclusion 

We present a new approach to test for the presence of balancing selection and to the number 

of polymorphisms that are directly affected by it. Our method appears to be robust to 

demographic change. Application of the method to human population genetic data suggests 

that 100s of non-synonymous polymorphisms shared between populations are being 

maintained by balancing selection. 
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3. Site level factors that affect the 

rate of adaptive evolution in 

humans and chimpanzees; the 

effect of contracting population size 
 

 

3.1 Abstract 

It has previously been shown in other species that the rate of adaptive evolution is higher at 

sites that are more exposed in a protein structure and lower between amino acid pairs that are 

more dissimilar. We have investigated whether these patterns are found in the divergence 

between humans and chimpanzees using an extension of the MacDonald-Kreitman test. We 

confirm previous findings and find that the rate of adaptive evolution, relative to the rate of 

mutation, is higher for more exposed amino acids, lower for amino acid pairs that are more 

dissimilar in terms of their polarity, volume and lower for amino acid pairs that are subject to 

stronger purifying selection, as measured by the ratio of the numbers of non-synonymous to 

synonymous polymorphisms (pN/pS). However, the slope of this latter relationship is 

significantly shallower than in Drosophila species. We suggest that this is due to the population 
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contraction that has occurred since humans and chimpanzees diverged. We demonstrate 

theoretically that population size reduction can generate an artefactual positive correlation 

between the rate of adaptive evolution and any factor that is correlated to the mean strength 

of selection acting against deleterious mutations, even if there has been no adaptive evolution 

(the converse is also expected). Our measure of selective constraint, pN/pS, is negatively 

correlated to the mean strength of selection, and hence we would expect the correlation 

between the rate of adaptive evolution to also be negatively correlated to pN/pS, if there is no 

adaptive evolution. The fact that our rate of adaptive evolution is positively correlated to pN/pS 

suggests that the correlation does genuinely exist, but that is has been attenuated by 

population size contraction. 

 

3.2 Introduction 

The rate of adaptive evolution in protein coding genes varies at several different levels. First, 

the rate of adaptive evolution appears to differ between species. Some species, including 

many plants (Bustamante et al. 2002; Barrier et al. 2003; Schmid et al. 2005; Gossman et al. 

2010; also see Strasburg et al. 2009; Ingvarsson et al. 2010; Slotte et al. 2010) and the yeasts of 

the genus Saccharomyces (Gossman et al. 2012), appear to go through very little adaptive 

evolution, whilst many other species, including Drosophilids (Smith and Eyre-Walker 2002; 

Sawyer et al. 2003; Eyre-Walker and Keightley 2009; Haddrill et al. 2010), rodents (Halligan et 

al. 2010) and many multicellular animals (Galtier 2016; Rousselle et al. 2019), go through 

extensive adaptive evolution. The reasons for this variation remain unclear. It has been 

suggested that population size might be a factor; if adaptation is mutation limited, then one 

might expect species with large population sizes to adapt faster because they will generate the 

required mutation faster. There is some evidence that species with large population sizes 

undergo significantly faster adaptive evolution (Gossman et al. 2012; Bataillon et al. 2015; 
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Corbett-Detig et al. 2015; Rousselle et al. 2019), though in Galtier (2016) the correlation with 

ωa is non-significant. Furthermore, it is unclear whether species are ever limited by the supply 

of mutations - there appears to be abundant genetic variation for most traits - and even if they 

are limited, species with large population sizes are predicted to be closer to their optimal 

fitness, and hence they may not have to adapt as much as species with small population sizes 

(Lourenco et al. 2013). 

 

At the next level down, there appears variation in the rate of adaptation between genes. This 

is in part due to differences in function, with genes involved in immunity (Clark et al. 2003; 

Nielsen et al. 2005; Chimpanzee Sequencing and Analysis Consortium, 2005; Sackton et al. 

2007; Obbard et al. 2009), interaction with viruses (Enard, et al. 2016) and male reproductive 

success (Proschel et al. 2006; Haerty et al. 2007) having high rates of adaptive evolution. Other 

factors also seem to be important, with the rate of adaptive evolution being higher in genes 

that recombine frequently (Presgraves, 2005; Betancourt et al. 2009; Arguello et al. 2010; 

Mackay et al 2012; Campos et al. 2014; Castellano et al. 2016; Moutinho et al. 2019), are 

located in regions of the genome with low functional DNA density (Castellano et al. 2016), 

have high mutation rates (Castellano et al. 2016) and reside on the X-chromosome (MacKay et 

al. 2012; Langley et al. 2012; Campos et al. 2014). Genes that have lower expression levels (Pal 

et al. 2001; Subramanian and Kumar, 2004; Wright et al. 2004; Rocha and Danchin, 2004; 

Lemos et al. 2005) or shorter coding sequence length (Zhang, 2000; Lipman et al. 2002; Liao et 

al. 2006), also seem to have higher rates of adaptation. 

 

Finally, there appears to be variation at the site level. This variation has been widely 

documented in site-level tests that compare the rate of non-synonymous to synonymous 
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substitution (for example, Liberles et al. 2012). A number of factors seem to affect rates of 

adaptive evolution at the site level including protein secondary structure (Goldman et al. 1998; 

Guo et al. 2004; Choi et al. 2006) and the relative solvent accessibility (RSA) (Goldman et al. 

1998; Choi et al. 2007; Lin et al. 2007; Franzosa and Xia 2009); RSA is a measure of how buried 

an amino acid is. In both Drosophila and Arabidopsis species, the rate of adaptive non-

synonymous substitution is positively correlated to the relative solvent accessibility (RSA) 

(Moutinho et al. 2019). This suggests that amino acids on the surface of a protein have higher 

rates of adaptive substitution than those that are buried (Perutz et al. 1965; Overington et al. 

1992; Goldman et al. 1998; Bustamante et al. 2000; Dean et al. 2002; Choi et al. 2006; Lin et al. 

2007; Conant and Stadler 2009; Franzosa and Xia 2009; Ramsey et al. 2011). It has also been 

shown that amino acids that differ strongly in their physio-chemical properties, have lower 

rates of adaptive evolution than those that are more similar (Bergman and Eyre-Walker, 2019; 

though see Gojobori et al. 2007 and Chen et al. 2019). Finally, Bergman and Eyre-Walker 

(2019) also showed that amino acids pairs that are subject to high levels of negative selection 

have lower rates of adaptive substitution; they measured the level of negative selection using 

the ratio of the number of non-synonymous to synonymous polymorphisms, pN/pS. 

 

In our analysis we consider whether the rate of adaptive evolution between humans and 

chimpanzees is correlated to several site level factors previously shown to be particularly 

important in other species - RSA and various measures of the difference between amino acids, 

and the overall level of negative selection acting on amino acid pairs. We find negative 

correlations between the rate of adaptive evolution and the difference in amino acid physio-

chemical properties, and a positive correlation between the rate of adaptive evolution and RSA 

and our measure of negative selection.  
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3.3 Materials and methods 

3.3.1 Data 

We obtained gene sequences from Ensembl’s biomart (Yates et al. 2020) for the human 

GRCh38.p13 genome build and for the Pan_tro_3.0 chimpanzee genome build. Orthologous 

genes were aligned using MUSCLE (Edgar, 2004). After filtering out genes with gaps that were 

not multiples of three we were left with 16,344 pairwise alignments. Numbers of synonymous 

and non-synonymous substitutions per site were obtained using PAML’s codeml (Yang, 2007) 

program. We used polymorphism data from the African superpopulation of the 1000 genomes 

dataset (The 1000 Genomes Consortium, 2015) to construct our site frequency spectra, with 

rates of adaptive and non-adaptive evolution estimated using Grapes (Galtier, 2016), under 

the “GammaZero” model. We chose African data because the African population is thought to 

have undergone less complex demographic changes then other human populations 

(Gutenkunst et al. 2009; Gravel et al. 2011). We fitted a weighted regression to our estimates 

of the rate of evolution, weighting by the reciprocal of the variance for each estimate of ωa and 

ωna. The confidence interval and variance on our estimates of ωa and ωna were obtained by 

bootstrapping the dataset by gene 100 times. 

 

3.3.2 RSA analysis 

In order to obtain structural information for each protein sequence, we ran blastp (Schaffer, 

2001) to assign each protein sequence to a PDB structure, and respective chain. Rather than 

setting a cut-off, we used sequences with the maximum identity by using the “pdbaa” library 

and an E-value threshold of 10-10. We filtered sequences with the maximum identity and in 

instances of multiple matches, the match with the lowest E-value was kept. The corresponding 

PDB structures were further processed to only keep the corresponding chain per polymer. PDB 

manipulation and analysis were carried on using the R package “bio3d” (Grant et al. 2006). 
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Values for solvent accessibility (SA) per residue were obtained using the “dssp” program with 

default options. To map SA values to each residue of the protein sequence a pairwise 

alignment between each protein and the respective PDB sequence was performed with 

MAFFT, allowing gaps in both sequences in order to increase the block size of sites aligned. The 

final data set comprised a total of 7,984,041 sites with SA information. We computed the RSA 

by dividing SA by the amino-acid’s solvent accessible area (Tien et al. 2013), giving us a final 

dataset of 3,505,615 sites for which we have RSA information. 

These sites were grouped into 20 RSA bins of roughly equal size in terms of the number of 

sites, with rates of adaptive and non-adaptive evolution estimated for each bin. These rates 

were correlated with the mean RSA of each bin. 

 

3.3.3 Amino acid dissimilarity analysis 

For the amino acid dissimilarity analysis we followed the methodology outlined in Bergman 

and Eyre-Walker (2019), with amino acid polarity and volume scores taken from data available 

in the AAindex1 database (Kawashima et al. 2008). We compared the SFS for a particular 

amino acid pair with synonymous data from 4-fold degenerate codons separated by the same 

mutational step. For example, alanine and glycine are separated by a single nucleotide change 

(C<>G at second position). Therefore, we used the SFS and divergence for all 4-fold degenerate 

codons separated by a single C<>G mutational step in estimating ωa and ωna. For amino acids 

separated by more than one mutational step (e.g. a C<>G or an A<>T mutational step), we 

used a weighted average SFS from the SFSs for the mutational types at 4-fold sites, weighting 

by the frequency of the respective codons as in Bergman and Eyre-Walker (2019). 

For the analysis involving pN/pS we used a hypergeometric distribution to resample the SFS, 

and generate two SFSs, one used to estimate rates of adaptive and non-adaptive evolution, 

and one used to estimate pN/pS. 
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3.4 Results 

3.4.1 Theory 

It is well established that MK-type methods lead to biased estimates of the rate of adaptive 

evolution if the effective population size differs between the divergence and polymorphism 

phases (McDonald and Kreitman 1991; Eyre-Walker 2002). Could changes in effective 

population size also artefactually affect the relationship between the rate of adaptive 

evolution and another genomic variable, such as the difference in physico-chemical properties 

between two amino acids? 

 

Let us assume that synonymous mutations are neutral and non-synonymous mutations are 

neutral or subject to negative selection. The ratio of the non-synonymous to synonymous 

substitution rates 𝜔 = 𝜔𝑎 + 𝜔𝑛𝑎 where 𝜔𝑎 and 𝜔𝑛𝑎 are the rate of adaptive and non-adaptive 

non-synonymous substitution relative to the rate of synonymous substitution, which is an 

estimate of the mutation rate under this model. Hence, 

𝜔𝑎 = 𝜔 − 𝜔𝑛𝑎         (1) 

If we assume that all non-synonymous are deleterious with effects drawn from a gamma 

distribution then  

𝜔 ≈
𝑘

(𝑁𝑑𝑠̅)𝛽          (2) 

(Welch et al. 2008) where Nd is the effective population size during the divergence phase, k is a 

constant,  is the shape parameter of the gamma distribution and 𝑠̅ is the mean absolute 

strength of selection acting against deleterious mutations.  
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We can also write a simple expression for 𝜔𝑛𝑎. This is estimated in MK type approaches from 

polymorphism data, using the site frequency spectra (SFS) at synonymous and non-

synonymous sites, to estimate the distribution of fitness effects (DFE) at non-synonymous 

sites. This DFE is then used to infer 𝜔𝑛𝑎. Hence  

𝜔𝑛𝑎 =
𝑘

(𝑁𝑝𝑠̅)
𝛽         (3) 

where NP is the effective population size pertaining to the polymorphism data.  

Substituting equation 2 and 3 into 1 we have 

𝜔𝑎 =
𝑘

(𝑁𝑑𝑠̅)𝛽 −
𝑘

(𝑁𝑝𝑠̅)
𝛽 =

𝑘((𝑁𝑝𝑠̅)
𝛽

−(𝑁𝑑𝑠̅)𝛽)

(𝑁𝑝𝑠̅)
𝛽

(𝑁𝑑𝑠̅)𝛽
=

𝑘((𝑁𝑝 𝑁𝑑⁄ )
𝛽

−1)

(𝑁𝑝𝑠̅)
𝛽     (4) 

From this equation it is evident that a>0 if Np>Nd , and a<0 if Np<Nd as we expect. However, 

of more interest is the fact that the over- or under-estimation of a depends on 𝑠̅, the mean 

strength of selection acting against deleterious mutations. With population size expansion we 

predict that a will be overestimated but that the magnitude of this overestimation will 

decrease as the mean strength of selection increases. Conversely, with population size 

contraction a will be under-estimated and this underestimation will diminish as the mean 

strength of selection increases. Hence, under population size expansion we expect a negative 

correlation between 𝜔𝑎  and any variable that is correlated to the mean absolute strength of 

selection acting against deleterious mutations and a positive correlation with population 

contraction, if there is no adaptive evolution.  

 

If we note that 

𝑝𝑁

𝑝𝑆
=

𝑚

(𝑁𝑝𝑠̅)
𝛽        (5) 
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(Welch et a. 2006), where m is a constant which depends on how many chromosomes have 

been sampled, then equation 4 can be rewritten as  

𝜔𝑎 = 𝑘 (
(𝑁𝑝 𝑁𝑑⁄ )

𝛽
−1

𝑚
)

𝑝𝑁

𝑝𝑆
       (6) 

Hence, we expect 𝜔𝑎 to be positively and linearly correlated to pN/pS if there was been 

population size expansion and negatively correlated if there has been contraction, if there is 

no adaptive evolution occurring.  

 

An alternative measure of the rate of adaptive evolution is the proportion of substitutions that 

are fixed by positive selection. Under our model this becomes 

𝛼 =
𝜔𝑎

𝜔
= 1 − (

𝑁𝑑

𝑁𝑝
)

𝛽

       (7) 

As expected, if Np>Nd then >0, and if Np<Nd then >0, however the magnitude of this bias is 

independent of the strength of selection acting upon deleterious mutations. 

 

What do we expect if there has been adaptive evolution? Let the rate of adaptive evolution, 

relative to the mutation rate, potentially be a function of the mean strength of selection acting 

against deleterious mutations, 𝐴(𝑠̅). Then equation 2 becomes 

𝜔 ≈
𝑘

(𝑁𝑑𝑠̅)𝛽 + 𝐴(𝑠̅)        (7) 

which leads to a revision of equations 4 and 6  

𝜔𝑎 =
𝑘((𝑁𝑝 𝑁𝑑⁄ )

𝛽
−1)

(𝑁𝑝𝑠̅)
𝛽 + 𝐴(𝑠̅) 𝜔𝑎 = (

(𝑁𝑝 𝑁𝑑⁄ )
𝛽

−1

𝑚
)

𝑝𝑁

𝑝𝑆
+ 𝐴(𝑠̅)    (8) 
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Thus, if the rate of adaptive evolution is independent of the mean strength of selection acting 

against deleterious mutations, i.e. 𝐴(𝑠̅) = 𝑎, then it is evident that our predictions, derived 

under the assumption of no adaptive evolution, hold – e.g. population contraction will induce 

an artefactual positive correlation between 𝜔𝑎 and a variable that is correlated to the mean 

strength of selection against deleterious mutations. If the rate of adaptive evolution is 

correlated to the mean strength of selection, then this will tend to either increase or decrease 

the strength of the relationship.  

 

3.4.2 Data analysis 

Given the theoretical predictions derived above, is it of interest to examine patterns of 

adaptive evolution in the divergence of humans and chimpanzees, two species for which we 

know a substantial amount about their long-term demographic history; they appear to have 

undergone a population size contraction since they split. We have investigated whether 

several site-level factors affect the rate of adaptive and non-adaptive evolution in hominids – 

relative solvent accessibility (RSA), and measures of physio-chemical (volume and polarity) and 

an estimate of the average level of negative selection acting on mutations between two amino 

acids (pN/pS). We measure the rates of adaptive and non-adaptive evolution using the statistics 

ωa and ωna, which are respectively estimates of the rate of adaptive and non-adaptive 

evolution relative to the mutation rate. Both statistics were estimated using an extension of 

the McDonald-Kreitman method (McDonald and Kreitman, 1991), in which the pattern of 

substitution and polymorphism at neutral and selected sites is used to infer the rates of 

substitution, taking into account the influence of slightly deleterious mutations. We use the 

method implemented in GRAPES (Galtier, 2016), which is a maximum likelihood 

implementation of the second method proposed by Eyre-Walker and Keightley (2009).  
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3.4.3 Relative solvent accessibility 

Previous studies have shown that amino acid residues at the surface of proteins evolve faster 

than those at the core (Goldman et al. 1998; Choi et al. 2006; Lin et al. 2007; Franzosa and Xia, 

2009). These studies do not distinguish whether this higher substitution rate is due to reduced 

selective constraints on exposed residues or an increased rate of adaptive substitutions (or 

both). Moutinho et al (2019) disentangled these effects by estimating both the rates of 

adaptive and non-adaptive evolution across several RSA categories in Drosophila and 

Arabidopsis, finding positive correlations between RSA and the rates of both adaptive and non-

adaptive substitution. Their findings suggest that both reduced negative selection and a higher 

rate of adaptive evolution operate on more exposed residues. We find a significant correlation 

between the rate of adaptive evolution and RSA (r=0.486, p<0.001) when we use a weighting 

by the reciprocal of the variance of the rate of adaptive or non-adaptive evolution.  However, 

the correlation with the rate of non-adaptive evolution is non-significant (r=0.001, p=0.324) 

(figure 3.1). To check that our grouping scheme did not adversely affect our results, we 

repeated our analysis randomly allocating genes to RSA bins, estimating the rate of adaptive 

evolution and re-estimating the slope of the relationship between ωa and ωna; in none of 100 

randomised datasets did we see a correlation as strong as that observed for ωa in the real data. 
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Figure 3.1: Estimates of ωa and ωna plotted against mean relative solvent accessibility. Data 

binned into 20 RSA bins of roughly equal number of sites. For each analysis, a weighted linear 

regression is fitted to the data. The respective significance of each correlation is shown in the 

plot legend (*P < 0.05; **P < 0.01; ***P < 0.001; “.” 0.05 ≤ P < 0.10) for ωa and ωna). Regression 

is weighted by the reciprocal of the variance for each estimate of ωa and ωna, which were 

estimated by bootstrapping the data by gene 100 times for each data point.  

 

3.4.4 Amino acid dissimilarity 

To investigate whether the rates of adaptive and non-adaptive evolution are affected by amino 

acid dissimilarity, we estimated ωa and ωna between all 75 pairs of amino acids that are 

separated by a single mutational step in hominids. Bergman and Eyre-Walker (2019) found 
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negative correlations between measures of amino acid dissimilarity (differences in volume and 

polarity) and ωa between Drosophila species. We find that the rate of adaptive substitution is 

significantly negatively correlated to volume (r = -0.290, p = 0.018) and polarity (r = -0.269, 

p = 0.027) (figures 2a and 2b) when we fit a weighted linear regression to the data, suggesting 

that the rate of adaptive evolution is higher between more physiochemically similar amino 

acids. Similar negative correlations are observed for the rate of non-adaptive evolution 

(volume: r = -0.545, p < 0.001; polarity: r = -0.170, p<0.001). The slopes are significantly 

steeper for ωna (Table 3.1); however, this appears to be simply because rates of non-adaptive 

evolution are greater than rates of adaptive evolution; when we divide ωa and ωna by their 

means, the slopes are not significantly different (Table 3.1).  

 

  ωa ωna  

Statistic Rescaled Slope SE Slope SE Sig. 

volume No -0.00027 0.000098 -0.0010 0.00026 0.012 

polarity No -0.0064 0.0020 -0.022 0.0054 0.010 

volume Yes -0.0054 0.0020 -0.0051 0.0013 n.s. 

polarity Yes -0.13 0.042 -0.11 0.027 n.s. 

Table 3.1. The slope of the relationship between ωa and ωna and the volume and polarity; 

rescaled values are where ωa and ωna have been divided by their means. Significance was 

measured using an analysis of variance. 

 

The difference in polarity and volume are not significantly correlated to each other (r=0.122, 

p=0.258), so it seems likely that both volume and polarity have an influence over the rate of 

adaptive and non-adaptive evolution. A multiple regression confirms this for ωna with both 

factors being highly significant and of similar influence, as judged by standardised regression 
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coefficients (volume bs = -0.29, p = 0.015; polarity bs = -0.31, p = 0.008). For ωa, only 

polarity is significant (volume bs = -0.19, p = 0.14; polarity bs = -0.27, p = 0.036); the loss of 

significance for volume is probably due to a loss of power due to lack of data; in multiple 

regression we are effectively holding one variable constant and testing whether the other 

remains significant. 

  

 

Figure 3.2: The adaptive and non-adaptive substitution rate plotted against the difference in a) 

volume, b) polarity and c) the ratio of nonsynonymous to synonymous polymorphisms, pN2/pS2. 

In c) the polymorphisms are split by sampling from a hypergeometric distribution, with one set 

used to calculate rates of adaptive and non-adaptive substitution and the other to estimate 

the polymorphism statistics. A weighted linear regression is fitted to the data, weighted by the 

variance of each estimate. The respective significance of each correlation is shown in the 

legend (*P < 0.05; **P < 0.01; ***P < 0.001; “.” 0.05 ≤ P < 0.10). 

 

Volume and polarity reflect only two of the multiple ways in which amino acids differ. As an 

alternative measure of amino acid dissimilarity Bergman and Eyre-Walker (2019) suggest using 
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the ratio of non-synonymous to synonymous polymorphism; pN/pS is expected to decrease as 

the strength of selection against deleterious mutations increases. We find that hominids are 

consistent with this expectation as pN/pS is negatively correlated with both amino acid volume 

difference (r = -0.456, p < 0.001) and polarity difference (r = -0.269, p = 0.047). Polymorphism 

data is used to estimate both the rates of adaptive and non-adaptive substitution, meaning 

that pN/pS is not statistically independent of either measure. To account for this source of 

sampling error we follow the method of Bergman and Eyre-Walker (2019), resampling the site 

frequency spectrum using a hypergeometric distribution to generate two independent spectra. 

One of these is used to estimate pN/pS (referred to as pN2/pS2) and the other is used to estimate 

ωa and ωna, therefore removing the nonindependence between pN/pS and ωa and ωna. We find 

that ωa is positively correlated to pN2/pS2 (r = 0.419, p<0.001) in hominids, consistent with 

previous findings in Drosophila (Bergman and Eyre-Walker, 2019). Consistent with our 

physicochemical dissimilarity correlations, ωna is also shows a positive correlation with pN/pS, 

but a stronger one (r = 0.882, p < 0.001) (figure 3.2c). 

 

It is possible that the correlations between ωa and ωna and various site level factors are 

interrelated; for example, the positive correlation between ωa and RSA might be due to amino 

acids that are found exposed on the surface of proteins being one mutational step closer to 

similar amino acids. However, there is no correlation between the average RSA of an amino 

acid and the average difference in volume or polarity to its one mutation step neighbours 

(RSA-volume: r=-0.171, p=0.471; RSA-polarity: r=0.059, p=0.803 – supplementary figure B1).  
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3.4.5 Biased gene conversion 

Biased gene conversion can potentially impact estimates of the rate of adaptive evolution, 

since it increases the fixation probability of Weak (W) to Strong (S) alleles relative to S>W 

neutral alleles, more than it increases levels of W>S polymorphisms relative to S>W 

polymorphisms; a problem exacerbated by differences in base composition between 

synonymous and non-synonymous sites (Galtier and Duret, 2007; Berglund et al. 2009; 

Ratnakumar et al. 2010; Rousselle et al. 2020). To investigate whether the correlation between 

the rates of adaptive and non-adaptive evolution and our measures of amino acid dissimilarity 

are due to BGC we restricted the analysis to polymorphisms and substitutions that involve 

nucleotide changes that are unaffected by BGC – i.e. A<>T and G<>C changes. This reduces our 

dataset substantially removing 80% of our substitutions and polymorphisms, and reducing the 

amino acid analysis to just 12 amino acid pairs. However we find that the correlations between 

ωa, RSA, volume and pN/pS all remain significant with only the correlation to  polarity 

becoming non-significant (RSA: r = 0.260, p < 0.05; volume: r=-0.576, p<0.01; polarity: r=-

0.166, p<0.1; pN2/pS2: r =0.796, p<0.001); the correlations between the rate of non-adaptive 

evolution, ωna, and volume and pN2/pS2 remain significant  (RSA: r=0.011, p=0.370; volume: 

r=0.513, p<0.01; polarity: r=0.115, p=0.150; pN2/pS2: r=0.804, p<0.001).  

 

3.4.6 Are the correlations artefactual? 

In summary, we have shown that ωa is significantly positively correlated to RSA and pN/pS, and 

negatively correlated to the difference in polarity and volume. Could these correlations be 

explained as an artefact of population size contraction. The method we have used to estimate 

𝜔𝑎 generates an estimate of the mean absolute strength of selection acting against deleterious 

mutations. We find that log(|𝑠|̅) is positively correlated to volume (r=0.205, p=0.08) and 

polarity (r=0.310, p=0.008) and significantly negatively correlated to pN/pS (r=-0.880, p<0.001) 
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but there is no correlation with RSA (r=-0.088, p=0.704) (Figure 3.3). Thus, if there was no 

adaptive evolution, or the rate of adaptive evolution was independent of the variable being 

investigated (e.g. the difference in polarity), then we would expect 𝜔𝑎 to be positively 

correlated to the difference in volume and polarity, and negatively correlated to pN/pS. In fact, 

we observe the opposite pattern in each case suggesting that these correlations are not an 

artefact of population size contraction, but are genuine. 

 

 

Figure 3.3: log(meanS) plotted against a) volume difference, b) polarity difference, c) 

pN2/pS2, d) mean RSA. The respective significance of each correlation is shown in the 

plot legend, (*P < 0.05; **P < 0.01; ***P < 0.001; “.” 0.05 ≤ P < 0.10) based on an 

unweighted regression fit to the data. 
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3.4.7 Comparison to Drosophila 

It is of interest to ask how the slopes of the relationships between ωa and each factor 

compares to those previously estimated in Drosophila species (Bergman and Eyre-Walker 

2019; Moutinho et al. 2019).  We find that the slope is not significantly different for RSA, 

volume and polarity. However, the slope between ωa and pN/pS is much steeper in 

Drosophilids than in hominids (Table 3.2). This might be because of population contraction. For 

each genomic variable, population size contraction is expected to reduce the slope of the 

relationship between ωa and the factor in the human-chimp comparison, except for RSA which 

is not correlated to the mean strength of selection. However, the relationship between log(|𝑠|̅) 

and pN/pS is much stronger and steeper than for the other variables; if we standardise the 

variables by subtracting the mean and dividing by the standard deviation the slopes between 

log(|𝑠|̅) and each factor are: RSA = -0.101, Volume b = 0.862, Polarity, b= 1.30, pN/pS = -3.90. 

Hence, we might expect population contraction to have a disproportionate effect on the 

relationship between ωa and pN/pS. 
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Hominids (this analysis) Drosophila (Bergman 

and Eyre-Walker 2019)  

Sig. 

Dataset Independent 

variable 

Slope SE of slope Slope SE of slope 
 

Original RSA 0.13 0.029 0.078 0.0065 n.s. 

Original ΔVol -0.00026 0.00010 -0.00027 0.000061 n.s. 

Original ΔPol -0.0064 0.0020 -0.0047 0.0011 n.s. 

Original pN/pS 0.061 0.019 0.29 0.029 <0.001 

Rescaled RSA 1.6 0.36 1.6 0.13 n.s. 

Rescaled ΔVol -0.0054 0.0020 -0.011 0.0024 n.s. 

Rescaled ΔPol -0.13 0.042 -0.18 0.041 n.s. 

Rescaled pN/pS 1.3 0.40 11 1.1 <0.001 

Table 3.2. Slopes of the regressions between ωa and measures of amino acid dissimilarity in 

hominid and Drosophila datasets. In the rescaled analyses, the ωa values have been divided by 

their mean. The slopes for the Drosophila analysis were obtained from the results supplied by 

Bergman and Eyre-Walker (2019). 
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3.5 Discussion 

One of the main weaknesses of methods that estimate the rate of adaptive evolution using a 

McDonald-Kreitman type approach, is their sensitivity to changes in the effective population 

size; with an expansion in population size, these methods overestimate the rate of adaptive 

evolution, and with a contraction they underestimate it (Eyre-Walker 2002). Here, we 

demonstrate an additional problem; MK-style methods are also susceptible to producing 

artefactual correlations between the rate of adaptive evolution, scaled relative to the 

mutation rate, and another variable, such as amino acid dissimilarity, if that variable is 

correlated to the mean absolute strength of selection acting against deleterious mutations. 

This then might call into question previous correlations of this type. For example, it has been 

observed that pN/pS, for pairs of amino acids separated by one mutational step, is negatively 

correlated to the mean strength of selection in Drosophilids (Bergman and Eyre-Walker 2019); 

hence the positive correlation between ωa and pN/pS across pairs of amino acids in these 

species (Bergman and Eyre-Walker 2019) could simply be an artefact of population size 

expansion, although there is no evidence that population size expansion has affected the 

species involved. There might be no adaptive evolution, and if there is adaptive evolution, its 

rate may not be correlated to pN/pS. In future, attempts should be made to estimate the mean 

strength of selection acting against deleterious mutations and investigate whether this is 

correlated to the factor in question; for example, if we are investigating whether the rate of 

adaptive evolution is correlated to the rate of recombination, we should investigate whether 

the mean strength of selection is correlated to the rate of recombination. If it is, then we 

should be cautious about interpreting our results unless we know something about the 

demographic history of the species. 

 



93 
 

Humans and chimpanzees are potentially useful because both their ancestral and current 

effective population sizes have been estimated; analyses suggest that the human-chimp 

ancestral population size was considerably larger than the current effective population size of 

either species (Holboth et al. 2007; Burgess and Yang 2008; Prado-Martinez et al. 2013; 

Schrago, 2014). Given the correlations we observe between each factor we have considered 

and the mean strength of selection, we predict, under population size contraction, that the 

correlations should be opposite to those observed. Hence, it seems that the correlations 

between ωa and RSA, Δvolume, Δpolarity and pN/pS are all genuine, in hominids at least, and 

this lends to support to the notion that similar correlations in Drosophila and Arabidopsis 

species are also real. However, some caution should be exercised because although we know 

something about the effective population of the ancestral and current populations of humans 

and chimpanzees, we know little about the population size between these two timepoints; it is 

possible the ancestral population contracted shortly after the species diverged and has 

subsequently re-expanded towards the present; under this scenario the effective population 

during the divergence phase could have been lower than that during the polymorphism phase. 

 

Population contraction leads to an underestimate of the rate of adaptive evolution when using 

MK-style methods (McDonald and Kreitman 1990; Eyre-Walker 2002). As a consequence, Zhen 

et al. (2021) have argued that the rate of adaptive evolution between humans and 

chimpanzees has been underestimated, and that they have undergone higher rates of adaptive 

evolution than Drosophila species. In fact, the average of 𝜔𝑎 across amino acid pairs is 

significantly higher in hominids than Drosophila (hominids, mean 𝜔𝑎 = 0.0488 (SE = 0.0072; 

Drosophila mean 𝜔𝑎 = 0.0258 (SE = 0.0024); t-test t = 3.01, p<0.001), so hominids seem to be 

adapting faster relative to the mutation rate even without taking into account population 
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contraction. What is perhaps surprising is that 𝜔𝑎 is not negative even when we correlate it 

against factors that appear to influence it. The observed value of 𝜔𝑎 is expected to be equal to 

𝜔𝑎(𝑜𝑏𝑠) = 𝜔𝑎(𝑡𝑟𝑢𝑒) + 𝜔𝑎(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)    (7) 

Where 𝜔𝑎(𝑡𝑟𝑢𝑒) is the true value, and 𝜔𝑎(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑) is the value predicted in the absence of 

adaptive evolution from equation 4 or 6; i.e. it is the bias in the estimate due to the differences 

in the effective population size between the divergence and polymorphism phases. For 

example, 𝜔𝑎 is positively correlated to RSA, however, even those sites with very low RSA, have 

a positive estimate of 𝜔𝑎.This seems surprising and suggests that adaptive evolution is more 

prevalent than we thought in hominids. However, predicting how much is difficult because we 

do not know how the effective population size has changed during the divergence of humans 

and chimpanzees. 

 

We confirm the findings of Moutinho et al. (2019) with respect to RSA - more exposed amino 

acid residues have higher rates of adaptive evolution. Moutinho et al. (2019) also showed that 

the rate of non-adaptive evolution is positively correlated to RSA. These observations are 

consistent with two models of evolution; either the fitness landscape is relatively flat for more 

exposed residues, or the mutational steps are relatively small. It is difficult to differentiate 

between these models.  

 

We also confirm the results of Bergman and Eyre-Walker (2018) – rates of adaptive and non-

adaptive evolution are lower between more dissimilar amino acids. It seems likely that these 

correlations are due to the mutational steps being smaller and hence that adaptive evolution 

proceeds via small steps in this component of evolution. Chen et al. (2019) apparently came to 

a different conclusion, but their analysis largely focussed on a statistic that is related to the 
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proportion of substitutions that are adaptive, and hence conflates the pattern of adaptive and 

non-adaptive evolution. In fact, consistent with their findings and those of Bergman and Eyre-

Walker (2018), we find the proportion of substitutions that are adaptive is uncorrelated to 

either the difference in volume or polarity (volume: r=-0.012, p=0.707; polarity: r=0.0003, 

p=0.314). 

 

In summary, we demonstrate that population size change can lead to an artefactual 

correlation between a measure of adaptive evolution and any variable related to the mean 

strength of selection against deleterious mutations. Our analysis in hominids suggests that 

there are genuine negative correlations between 𝜔𝑎 and amino acid dissimilarity and positive 

correlations between 𝜔𝑎 and RSA and a measure of negative selection acting on mutations 

between pairs of amino acid mutations, because under population size contraction we would 

expect the opposite. 

 

We set out to investigate whether several site-level factors affect the rate of adaptive and non-

adaptive evolution in hominids – relative solvent accessibility (RSA), and measures of physio-

chemical (volume and polarity) and the level of negative selection acting on mutations 

between two amino acids (pN/pS). We measure the rates of adaptive and non-adaptive 

evolution using the statistics ωa and ωna, which are respectively estimates of the rate of 

adaptive and non-adaptive evolution relative to the mutation rate. Both statistics were 

estimated using an extension of the McDonald-Kreitman method (McDonald and Kreitman, 

1991), in which the pattern of substitution and polymorphism at neutral and selected sites is 

used to infer the rates of substitution, taking into account the influence of slightly deleterious 

mutations. We use the method implemented in GRAPES (Galtier, 2016), which is a maximum 
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likelihood implementation of the second method proposed by Eyre-Walker and Keightley 

(2009). 
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4. Factors that affect the rates of 

adaptive and non-adaptive 

evolution at the gene level in 

humans and chimpanzees 
 

 

4.1 Abstract 

The rate of amino acid substitution has been shown to be correlated to a number of factors 

including the rate of recombination, the age of the gene, the length of the protein, mean 

expression level and gene function. However, the extent to which these correlations are due to 

adaptive and non-adaptive evolution has not been studied in detail, at least not in hominids. 

We find that the rate of adaptive evolution is significantly positively correlated to the rate of 

recombination, protein length and gene expression level, and negatively correlated to gene 

age. The correlations remain significant when each factor is controlled for in turn, except when 

controlling for expression in an analysis of protein length; and they also remain significant, or 

marginally significant, when biased gene conversion is controlled for. However, the positive 
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correlations could be an artefact of population size contraction. We also find that the rate of 

non-adaptive evolution is negatively correlated to each factor, and all these correlations 

survive controlling for each other and biased gene conversion. Finally, we examine the effect 

of gene function on rates of adaptive and non-adaptive evolution; we confirm that virus 

interacting proteins (VIPs) have higher rates of adaptive and lower rates of non-adaptive 

evolution, but we also demonstrate that there is significant variation in the rate of adaptive 

and non-adaptive evolution between GO categories when removing VIPs. We estimate that 

the VIP/non-VIP axis explains about 5-8x more of the variance in evolutionary rate than GO 

categories. 

 

4.2 Introduction 

There is substantial variation in the rate of evolution between different genes within a 

genome; some genes, such as those coding for histones, evolve very slowly, whereas many 

genes involved in immunity evolve rapidly (Clark et al. 2003; Chimpanzee Sequencing and 

Analysis Consortium, 2005; Nielsen et al. 2005; Sackton et al. 2007; Obbard et al. 2009). The 

reasons for this variation have been extensively studied and a number of factors appear to 

influence or be correlated to the rate of protein evolution including function (e.g. Proschel et 

al. 2006; Haerty et al. 2007; Obbard et al. 2009), mutation rate (Taddei et al. 1997; Tenaillon et 

al. 1999; Giraud et al. 2001; Denamur and Matic, 2006; Lynch et al. 2016), recombination rate 

(RR), gene expression, gene length and position in the protein interaction network. 

Correlations with other factors, such as essentiality, appear to be less clear (Hurst and Smith, 

1999). Any one of these patterns could be due to adaptive or non-adaptive evolution, but the 

relative roles of these two different evolutionary processes have rarely been studied. 
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At the functional level, genes involved in immunity, tumor suppression, apoptosis and 

spermatogenesis have been shown to have higher rates of adaptive evolution in hominids 

(Clark, et al., 2003; Nielsen, et al., 2005; Chimpanzee Sequencing and Analysis Consortium, 

2005). Particularly striking is the amount of adaptive evolution that appears to occur in virus-

interacting genes, which appear to account for 30% of all adaptive substitutions in hominids, 

whilst these genes only constitute 13% of the proteome by length (Enard et al. 2016). In 

Drosophila it has been shown that male-biased genes, such as testes specific genes, have 

higher rates of adaptive evolution (Proschel et al. 2006; Haerty et al. 2007), as do genes 

involved in immunity (Sackton et al. 2007; Obbard et al. 2009). The dominant role of VIPs in 

hominid adaptive evolution begs the question of whether there is variation between other 

categories of genes, and how much of the variation in the rate of adaptive evolution is 

partitioned between the VIP and non-VIP categories. The role of gene function in determining 

non-adaptive evolution has not been addressed in detail. 

 

The rate of protein sequence evolution has been shown to be correlated to gene expression, 

with highly expressed genes having lower rates of protein evolution in both eukaryotes (Pal et 

al. 2001; Subramanian and Kumar, 2004; Wright et al. 2004; Lemos et al. 2005) and 

prokaryotes (Rocha and Danchin, 2004). Moutinho et al. (2019) has shown that this correlation 

is due to both adaptive and non-adaptive evolution in Drosophila suggesting that gene 

expression constrains the rate of adaptive substitution as well as the effect of purifying 

selection. In Arabidopsis the correlation with expression seems to be largely associated with 

non-adaptive evolution (Moutinho et al. 2019). The role of gene length has also been studied, 

with several studies showing that smaller genes evolve more rapidly (Zhang, 2000; Lipman et 

al. 2002; Liao et al. 2006). Again, this appears to be due to both adaptive and non-adaptive 
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evolution, in Drosophila species, but possibly only due to non-adaptive evolution in 

Arabidopsis (Moutinho et al. 2019).  

 

Genes differ not only in function, expression, and length, but also in age (Lynch, 2002; Daubin 

and Ochman, 2004; Tautz and Domazet-Loso, 2011; Neme and Tautz, 2013). Multiple studies 

have shown that phylostraigraphically young genes (i.e. those genes whose recognised 

homologs are only present in closely related species (Domazet-Loso et al. 2007) evolve faster 

than old genes (Thornton and Long, 2002; Domazet-Loso and Tautz, 2003; Krylov et al. 2003; 

Daubin and Ochman, 2004; Alba and Castresena, 2005; Wang et al. 2005; Cai et al. 2006; Wolf 

et al. 2009; Cai and Petrov, 2010; Zhang et al. 2010; Vishnoi et al. 2010; Tautz and Domazet-

Loso, 2011; Cui et al. 2015). Cai and Petrov (2010) found clear evidence for the role of non-

adaptive evolution in this relationship but no evidence for adaptive evolution. However, there 

is an expectation that young genes will be further from their evolutionary optimum than old 

genes, and hence that they should undergo rapid adaptive evolution when they are born. 

There is some limited evidence for this; the jingwei gene, which appeared very recently in the 

Drosophila phylogeny is evolving very rapidly, with 80% of the amino acid substitutions 

estimated to have been due to adaptive evolution (Long and Langley, 1993).  

 

Recombination is expected to affect the probability that both advantageous and deleterious 

mutations are fixed, due to its ability to reduce Hill-Robertson interference between selected 

mutations (Hill and Robertson 1966; Marais and Charlesworth, 2003). Rates of adaptation have 

been shown to be strongly positively correlated to recombination rate in Drosophila 

(Presgraves, 2005; Betancourt et al. 2009; Arguello et al. 2010; Mackay et al 2012; Campos et 

al. 2014; Castellano et al. 2016; Moutinho et al. 2019) and Arabidopsis (Moutinho et al. 2019), 
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and rates of non-adaptive evolution to be negatively correlated in both Drosophila and 

Arabidopsis species (Moutinho et al. 2019). 

 

In summary, a number of factors have been shown to correlate to rates of protein evolution, 

and in some of these cases the relative roles of adaptive and non-adaptive evolution have 

been disentangled. However, relatively little work has been done on these questions in 

hominids. We addressed these questions by considering the role of gene age, RR, gene 

expression, protein length and gene function in determining rates of both adaptive and non-

adaptive evolution. To disentangle the effects of adaptive and non-adaptive evolution we use 

an extension of the McDonald-Kreitman test which estimates these quantities taking into 

account the distribution fitness effects of new mutations. 

 

4.3 Materials and methods 

4.3.1 Data 

We obtained orthologous human and chimpanzee gene sequences from Ensembl’s biomart 

(Yates et al. 2019) for the human GRCh38.p14 and Pan_tro_3.0 genome builds. We aligned 

these orthologos using MUSCLE (Edgar, 2004). After filtering out genes with gaps that were not 

a multiple of 3 we were left with 16,344 pairwise alignments. Proportions of synonymous and 

non-synonymous substitutions were estimated using codeml from the PAML package (Yang, 

2007) program. We used polymorphism data from the African superpopulation of the 1000 

genomes dataset (The 1000 Genomes Consortium, 2015) to construct our site frequency 

spectra, with rates of adaptive (ωa) and non-adaptive (ωna) evolution estimated using Grapes 

(Galtier, 2016), under the “GammaZero” model. We used African SNPs because the African 

population has been subject to relatively simple demographic processes (Gravel et al. 2011) 
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Confidence intervals on our estimates of ωa and ωna were generated by bootstrapping the 

dataset by gene. 

 

Gene ages were obtained from Litman et al. (Litman and Stein, 2019). In this dataset genes are 

ranked by phylostratigraphic category based on their earliest ortholog. Gene lengths were 

obtained by taking the total coding sequence length of each protein, whilst gene expression 

data was obtained from the Expression Atlas database (Papatheodorou et al. 2019). We 

estimated the mean expression value across tissues for each gene. Recombination rate maps 

were obtained from Spence and Song (2019), and the mean recombination rate was calculated 

for each gene. GO category information was obtained from Ensembl’s Biomart (Ashburner et 

al. 2000; The Gene Ontology Consortium, 2021; Yates et al. 2019). 

 

4.3.2 Correlating factors with rates of adaptive and non-adaptive evolution 

To correlate the rates of adaptive and non-adaptive evolution with each of recombination rate, 

protein length and gene expression we binned our genes into 20 roughly equal sized bins. For 

gene age we binned data by phylostratigraphic category. To control for biased gene conversion 

in our recombination rate analysis we restricted the analysis to those polymorphisms and 

substitutions that are unaffected by biased gene conversion – i.e. A<>T and G<>C changes. This 

reduced our dataset to about 20% of its previous size. 

 

We then reran the analysis for each factor, individually controlling for each of the other three 

factors in turn.  We controlled for each factor by taking the values of the co-correlate close to 

the modal value. We took the modal value and 0.5 standard deviations either side which 
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reduces the standard deviation of the co-correlate within each analysis. Because this reduces 

the data set considerably, we also ran an analysis in which we predicted the correlation 

coefficient between Y and X under the assumption that they are only correlated to each other 

because they are both correlated to Z. If R(YZ) is the correlation between Y and Z, then R(YZ)^2 

is the proportion of variance in Y explained by Z, and vice versa. Hence, the proportion of 

variance explained in Y by X, because of their mutual correlation to Z is R(YZ)^2 x R(XZ)^2. 

Hence the expected correlation coefficient between Y and X is   

R(YX) = S * Sqrt(r^2(YZ) * r^2(XZ))                                                                                         (1) 

where S = +1 if r(YZ)*r(XZ) is positive and S = -1 if r(YZ)*r(XZ) > 0 is negative. To assess 

significance we grouped genes according to X variable, and then within each group we 

generated a bootstrap dataset. We estimated ωa, ωna, the mean value of X and Z for each 

group and the observed and predicted correlations between ωa, ωna, mean X and mean Z. We 

tabulated the number of bootstrap replicates in which predicted R(YX)/observed R(YX) > 1. We 

performed 100 bootstrap replicates for each analysis. 

 

4.3.3 Gene function analysis 

Genes were divided by GO category and rates of adaptive and non-adaptive evolution were 

estimated for each category (note genes can contribute to multiple categories). For the VIP 

analysis we split each GO category into two groups – VIP and non-VIP genes, as per (Enard et 

al. 2016). To test whether there was significant variation in ωa and ωna across GO categories we 

shuffled data between gene labels; i.e. for each gene we have its synonymous and non-

synonymous site frequency spectra and numbers of synonymous and non-synonymous 

substitutions. This data was randomly assigned to gene labels, hence preserving the covariance 

structure of the data - i.e. the fact that a gene can contribute to multiple GO categories. 
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We are interested in the extent to which the rate of adaptive and non-adaptive evolution is 

determined by whether its a VIP gene versus other GO categorisations. We can do this by a 

partitioning the variance in a two-way analysis of variance where the dimensions are VIP/non-

VIP, and GO category. However, to estimate the variances we need to balance the data so that 

the error variance is the same for all cells in the two-way ANOVA. We did this by 

downsampling the data using a hypergeometric distribution, such that each cell had 200,000 

combined non-synonynous and synonymous sites. To estimate the error variance we split the 

SFS and substitution data into two halves using a hypergeometric distribution and estimated 

ωa and ωna for each set; hence we have for each combination of VIP/non-VIP and Go category 

two estimates of the rate of adaptive and non-adaptive evolution, where the error variances 

for these estimates should be approximately equal. 

 

4.4 Results 

We set out to investigate whether a number of gene-level factors affect the rate of adaptive 

and non-adaptive evolution in primates – the rate of recombination (RR), gene age, the level of 

gene expression, gene length and gene function. We measure the rates of adaptive and non-

adaptive evolution using the statistics ωa and ωna, which are estimates of the rate of evolution 

relative to the mutation rate. We estimated both statistics using an extension of the 

MacDonald-Kreitman method, in which the pattern of substitution and polymorphism at 

neutral and selected sites is used to infer the rates of substitution, taking into account the 

influence of slightly deleterious mutations. We use the method implemented in Grapes 

(Galtier, 2016), which is a maximum likelihood implementation of the second method 

proposed by Eyre-Walker and Keightley (2009). Note that genes are grouped together 

according to the factors analysed, since most genes have relatively little polymorphism data, 

and this makes estimating the rate of adaptive evolution for individual genes is impractical. 
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We estimated ωa and ωna for 16,344 genes for the divergence between humans and 

chimpanzees using African SNPs from the 1000 genomes data. We find that the average rate of 

adaptive evolution is approximately five-fold lower than the rate of non-adaptive evolution (ωa 

= 0.037 [0.035,0.039] versus ωna = 0.192 [0.190,0.194]). The proportion of substitutions that 

are adaptive, alpha, is estimated to be 0.162, which is close to previous recent estimates (Eyre-

Walker and Keightley, 2009; Boyko et al. 2008; Messer and Petrov 2013). 

  

4.4.1 Adaptive evolution 

The rate of adaptation is expected to be retarded in regions of low recombination because of 

Hill-Robertson interference, and we do indeed find that the rate of adaptive evolution is 

significantly positively correlated to the rate of recombination in hominids (Figure 4.1a; 

(r=0.737, p<0.001)). A similar positive correlation has previously been observed in Drosophila 

(Presgraves, 2005; Betancourt et al. 2009; Arguello et al. 2010; Mackay et al. 2012; Campos et 

al. 2014; Castellano et al. 2016). In the most detailed study of this relationship in Drosophila, 

Castellano et al. (2016) found that the rate of adaptive evolution increases with RR, but that it 

asymptotes, suggesting that above a certain level of recombination, Hill-Robertson 

interference has little effect. However, we do not observe an asymptote using our grouping 

scheme (figure 4.1a). However, there is a large difference in average recombination between 

the two groups with the highest recombination rate. We therefore repeated the analysis with 

50 mean recombination bins; although we still observe a significant positive correlation 

between ωa and RR (r=0.582, p<0.001), the analysis failed to reveal a clear signal of an 

asymptote (Appendix figure C1).  
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Figure 4.1: Estimates of ωa and ωna plotted against mean recombination rate (a), gene 

age (b), mean gene expression (c) and mean protein length (d). The respective 

significance of each correlation is shown in the plot legend, (*P < 0.05; **P < 0.01; 

***P < 0.001; “.” 0.05 ≤ P < 0.10) for ωa and ωna). An unweighted regression is fitted to 

the estimates of ωa and ωna.  a)  ωa and ωna plotted against the natural log of the mean 

recombination rate for genes binned into 20 recombination bins of equal size. b)  ωa and ωna 

plotted against the natural log of the gene age for genes binned into 19 phylostratigraphic age 

bins. c)  ωa and ωna plotted against the log of the mean gene expression for genes binned into 
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20 expression bins of equal size. d)  ωa and ωna plotted against the log of the mean protein 

length for genes binned into 20 bins of equal size. 

 

Young genes have been shown to evolve faster than old genes (Thornton and Long, 2002; 

Domazet-Loso and Tautz, 2003; Krylov et al. 2003; Daubin and Ochman, 2004; Alba and 

Castresena, 2005; Wang et al. 2005; Cai et al. 2006; Wolf et al. 2009; Cai and Petrov, 2010; 

Zhang et al. 2010; Vishnoi et al. 2010; Tautz and Domazet-Loso, 2011; Cui et al. 2015). There is 

an expectation that young genes will undergo faster rates of adaptive evolution because they 

are further from their adaptive optima (Wright, 1931; 1932), and we find a significant negative 

correlation between ωa with gene age (r=-0.404, p=0.012) in hominids (figure 4.1b). 

Highly expressed genes have been shown to exhibit lower rates of protein evolution in both 

eukaryotes (Pal, et al., 2001; Subramanian and Kumar, 2004; Wright, et al., 2004; Lemos, et al., 

2005) and prokaryotes (Rocha and Danchin, 2004). Moutinho, et al. (2019) found significant 

negative correlations in Drosophila species between ωa and both gene expression and protein 

length. Intriguingly, the correlations are reversed in hominids, with both correlations being 

significantly positive (gene expression: r=0.642, p=0.002; protein length: r=0.597, p=0.005) 

(figures 4.1c and 4.1d).   

 

4.4.2 Independent effects 

Our measure of adaptive evolution, ωa, is significantly positively correlated to RR, expression 

and protein length, and negatively to gene age. However, the rate of recombination, gene age, 

gene expression and protein length are all significantly, or marginally significantly, correlated 

to each other (Table 4.1) so it is of interest to determine whether each factor has an 
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independent effect on the rate of adaptive evolution. The correlation between Y and X, might 

be due to the fact that each is correlated to a third factor Z, and with no variation in Z there is 

no correlation between Y and X. To investigate this, we conducted two analyses. In the first 

instance, we repeated our analyses controlling for each factor in turn by taking the values of 

the co-correlate close to the modal value. We took the modal value and 0.5 standard 

deviations either side; this significantly reduced the standard deviation of the co-correlate 

within each analysis, largely controlling for this factor (Table 4.1). However, controlling for 

each factor this way reduces the data set considerably, so we also ran an analysis in which we 

calculated the expected correlation between two variables assuming that the only reason they 

are correlated is because of their correlation to a third variable. It can be shown that if the 

correlation between Y and Z is rYZ and that between X and Z is rXZ, then expected correlation 

between Y and X due to the covariation with Z is rXY = Sign * Sqrt(rYZ^2 rXZ^2), where Sign is 

positive if both rYZ and rXZ are positive or negative, and negative otherwise.  

 

 

gene 

expression gene length 

recombination 

rate CV 

CV of near modal 

values 

gene age 0.868 (***) 0.860 (***) -0.621 (**) 1.385 0.381 

gene expression  0.437 (***) -0.035 (***) 1.451 0.411 

gene length   0.101 (***) 1.727 0.496 

recombination 

rate    1.143 0.325 

Table 4.1: Correlations between the gene age, gene expression, gene length and 

recombination rate; logs were taken of all variables. The CV column is the coefficient of 

variation of the factor for all data. The final column is the CV of the restricted data (i.e. when 

we control for the factor in question by subsetting the dataset to include only genes with the 

modal value + 0.5 standard deviations). 



109 
 

Our two analyses suggest that there is a direct association between ωa and RR; when we 

control for age and length, we find that although the correlation is no longer significant when 

we control for either variable, the correlation does remain positive, and the observed 

correlations are significantly greater than predicted correlation. The analysis also suggests that 

there is a direct association between ωa and age, because the correlation remains significantly 

negative when we control for RR, and the predicted correlation is significantly smaller in 

magnitude than the observed correlation. However, the results with gene expression and 

length are less clear; when each variable is controlled for in the analysis of the other, the 

correlation becomes non-significant. The observed correlation between ωa and expression is 

marginally significantly greater than the predicted correlation, using length as the covariate, 

whereas the opposite is not true; this would seem to suggest that there is a direct correlation 

between ωa and expression, and that the correlation between ωa and length is due to the fact 

that both are correlated to expression. However, the evidence is not strong in support of this 

hypothesis.  

 

There is another factor that needs to be controlled for in any analysis of age - fast evolving 

genes are harder to identify in more distant species, and this can lead to an artefactual 

correlation between the age of a gene and the rate of evolution. The distribution of non-

synonymous substitution rates is bimodal, with many genes having dN = 0. We took genes 

around the second mode, those with rates between 0.002 and 0.007. This reduces our dataset 

from 15,439 to 4,961 genes, and as a consequence we had to combine multiple age categories 

together. We find no significant correlation between ωa and age when we do this (r=0.413, 

p=0.270), suggesting that the correlation between ωa and age might be an artifact of the 

problems in identifying fast evolving genes in older taxa. 
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Y variate X variate Observed r Z variate Observed r - 
controlling for 

Z 

Predicted r Predicted/o
bserved > 1 

ωa RR 0.74*** Age 0.25 0.15 0 

ωa RR 0.74*** Length 0.43 0.086 0 

ωa Age -0.40* RR -0.58* -0.093 0.02 

ωa Expression 0.64** Length 0.00 0.38 0.03 

ωa Length 0.60** RR 0.64** 0.091 0 

ωa Length 0.60** Expression 0.25 0.37 0.13 

       

ωna RR -0.73*** Length -0.54* -0.34 0 

ωna Age -0.91*** Expression -0.76** -0.76 0 

ωna Age -0.91*** Length -0.87*** -0.75 0 

ωna Expression -0.98*** Age -0.74*** -0.90 0 

ωna Expression -0.98*** Length -0.61** -0.95 0.01 

ωna Length -0.94*** RR -0.91*** -0.42 0 

ωna Length -0.94*** Age -0.49* -0.88 0 

ωna Length -0.94*** Expression -0.71*** -0.89 0 

Table 4.2. The observed and predicted slope between Y and X assuming the relationship is 

solely due to the correlation between each variable and a third factor Z. 
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4.4.3 Controlling for BGC 

Biased gene conversion can potentially impact estimates of the rate of adaptive evolution, 

either by increasing the fixation probability of S over W neutral alleles (Galtier & Duret, 2007; 

Berglund et al. 2009; Ratnakumar et al. 2010; Rousselle et al. 2020), or by promoting the 

fixation of slightly deleterious S alleles (Duret and Galtier, 2009; Glemin, 2010; Necsulea et al. 

2011; Lachance and Tishkoff, 2014; Rousselle et al. 2019). To investigate whether BGC affects 

our results we can leverage some of the results above. The correlation between ωa and either 

age and gene length remains if we control for RR (Table 4.2) (Appendix figures, C3a and C6a 

respectively), so it seems that BGC is unlikely to be responsible for these correlations. If we 

control for RR in the regression between ωa and expression, we find that the correlation 

remains, suggesting that this correlation is also not due to BGC (r=0.449, p<0.001) (Appendix 

figure C5a). 

 

To investigate whether the correlation between ωa and RR is due to BGC we performed a 

different analysis restricting the analysis to those polymorphisms and substitutions that are 

unaffected by BGC – i.e. A<>T and G<>C changes. This reduces our dataset to about 20% of its 

previous size. We find that there is still a positive correlation although this is only marginally 

significant (r = 0.102, p = 0.093) (Appendix figure, C2).  

 

Hence we can conclude that ωa is positively correlated to RR, and negatively correlated to gene 

age. For the gene length and expression analyses, we are unable to convincingly disentangle 

the effects of these factors from one another and so cannot draw any conclusion about their 

individual effects on the rate of adaptive evolution. 
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4.4.4 Non-adaptive evolution 

We repeated the analysis above for the rate of non-adaptive evolution. We find that ωna is 

highly significantly negatively correlated to RR, gene age, length and expression (Table 4.2; 

Figure 4.1). All of these correlations remain significant when controlling for potentially 

confounding factors, and the observed correlation is significantly greater in magnitude than 

the predicted correlation (Table 4.2). Hence, we can conclude that all four factors have 

significant independent effects on ωna. As with the analysis of ωa it is possible that these 

correlations are due to BGC. However, if we control for RR in our analyses we find that all the 

negative correlations persist (gene age: r = -0.886, p < 0.001; gene length: r = -0.910 p < 0.001; 

gene expression: r = 0.989, p < 0.001). In the case of the correlation between ωna and RR, if we 

restrict the analysis to G<>C and A<>T mutations we find that the correlation persists (r=-

0.648, p<0.001). 

 

4.4.5 Gene function 

In the second part of our analysis, we consider the effect of gene function on the rate of 

adaptive and non-adaptive evolution. It has previously been demonstrated that genes whose 

products interact with viruses – viral interacting proteins (VIPs) – have higher rates of adaptive 

evolution than other genes in primates (Enard et al. 2016). We confirm this pattern. In our 

analysis, in which we have used a different method and statistic to estimate the rate of 

adaptive evolution, we find that the rate of adaptive evolution amongst VIPs is approximately 

40% greater than in non-VIPs (ωa = 0.052 versus 0.032), a difference that is highly significant 

(p<0.001). This pattern is consistent across almost all GO categories that have at least 100 

genes, supporting the results of Enard et al. (2016) (figure 4.2).  
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It is evident however, that there is substantial variation between GO categories for non-VIP 

genes, and this variation is significant, taking into account that individual genes can contribute 

to multiple GO categories (p=0.0012). This pattern is replicated if we include GO categories 

which do not include VIP proteins (p=0.0010). The GO categories which have the highest rate 

of adaptive evolution are ubiquitin protein ligase binding, and protein kinase binding (table 

4.3). 

GO category ωa ωa low ωa high 

ubiquitin protein ligase binding 0.0843 0.0702 0.0995 

protein kinase binding 0.0804 0.0698 0.0914 

sequence-specific DNA binding 0.0735 0.0633 0.0842 

DNA-binding transcription 

factor activity 

0.0719 0.0628 0.0812 

transcription factor complex 0.0682 0.0496 0.0883 

transcription by RNA 

polymerase II 

0.0673 0.0518 0.0836 

negative regulation of apoptotic 

process 

0.0671 0.0552 0.0796 

chromatin organization 0.0669 0.0567 0.0775 

DNA-binding transcription 

activator activity 

0.0649 0.0524 0.078 

transcription coactivator 

activity 

0.0648 0.0519 0.0786 

 Table 4.3: Top 10 GO categories, ranked by rate of adaptive substitution. 
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Figure 4.2: Estimates of ωa (top) and ωna (bottom) for GO categories that contain >100 viable 

VIP and non-VIP genes. 

  

What are the relative contributions of GO category and VIP status to the variation in the rate 

of adaptive evolution – i.e. is most of the variation in the rate of adaptive evolution due to 

whether the gene encodes a VIP or not, or is most of the variation due to other functional 

considerations? To investigate this, we performed a two-way analysis of variance on ωa and 

estimated the variance components. We find that the distinction between VIP and non-VIP 

contributes approximately 5x the variance in ωa as the variation between GO categories, 

suggesting that whether a gene encodes a VIP has a major effect on its rate of adaptation 

(Appendix table, C2). 

 

But what of non-adaptive evolution? If we divide our data into genes that interact with viruses 

and those that do not, we find that rates of non-adaptive evolution are substantially higher in 
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non-VIP genes (ωna = 0.198 vs 0.101), as Enard et al. (2018) found, a pattern that is replicated 

across GO categories (Figure 4.2). There is substantial and significant variation in ωna across GO 

categories excluding VIP genes (p<0.001). If we partition the variance between VIP/non-VIP 

and GO categories we find that the distinction between VIP and non-VIP contributes over 8x 

the variance in ωna as the variation between GO categories, suggesting that whether a gene 

encodes a VIP has a major effect on its rate of non-adaptive evolution (Appendix table, C3) as 

well as its rate of adaptation. 

 

There is substantial variation in the rate of non-adaptive evolution between GO categories for 

non-VIP genes, and this variation is significant, taking into account that individual genes can 

contribute to multiple GO categories (p > 0.001). This pattern is replicated if we include GO 

categories which do not include VIP proteins (p > 0.001). The GO categories that have the 

highest non-VIP rates of non-adaptive evolution are both related to immune system response 

(table 4.4).  
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GO category ωna ωna low ωna high 

immune system process 0.297 0.283 0.310 

innate immune response 0.264 0.248 0.279 

chromosome 0.262 0.249 0.274 

protein C-terminus binding 0.246 0.228 0.264 

centrosome 0.243 0.232 0.253 

DNA repair 0.236 0.223 0.249 

signal transduction 0.225 0.219 0.231 

neutrophil degranulation 0.218 0.206 0.229 

extracellular region 0.217 0.211 0.223 

proteolysis 0.204 0.195 0.214 

Table 4.4: Top 10 GO categories, ranked by rate of non-adaptive substitution 

 

4.5 Discussion 

It has been previously shown that the rate of evolution correlates to a number of factors 

including RR (Presgraves, 2005; Betancourt et al. 2009; Arguello et al. 2010; Mackay et al 2012; 

Campos et al. 2014; Castellano et al. 2016; Moutinho et al. 2019), gene age (Thornton and 

Long, 2002; Domazet-Loso and Tautz, 2003; Krylov et al. 2003; Daubin and Ochman, 2004; Alba 

and Castresena, 2005; Wang, et al., 2005; Cai, et al., 2006; Wolf, et al., 2009; Cai and Petrov, 

2010; Zhang et al. 2010; Vishnoi et al. 2010; Tautz and Domazet-Loso, 2011; Cui, et al., 2015), 

expression level (Pal et al. 2001; Rocha and Danchin, 2004; Subramanian and Kumar, 2004; 

Wright et al. 2004; Lemos et al. 2005; Moutinho et al. 2019) and protein length (Zhang, 2000; 
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Lipman et al. 2002; Liao et al. 2006; Moutinho et al. 2019). In addition, the rate of evolution 

has been shown to vary with gene function (Clark et al. 2003; Nielsen et al. 2005; Chimpanzee 

Sequencing and Analysis Consortium, 2005). In this study we have correlated each of these 

factors to ωa and ωna in hominids, allowing us to disentangle the effects of adaptive and non-

adaptive evolution. We find that ωa is correlated to all four factors, but that when we control 

for each factor in turn, there is evidence for an independent influence of RR, gene age and 

probably gene expression. These correlations remain when controlling for the effects of biased 

gene conversion as well. However, the correlation with gene age could be an artefact of fast 

evolving genes having higher rates of adaptive evolution and being more difficult to identify in 

older taxa; when we control for the rate at which a protein evolves the negative correlation 

between ωa and gene age becomes non-significant suggesting that this pattern might be an 

artefact.  

 

In contrast, we find that all four factors have significant independent effects on ωna, and that 

all of these remain significant when we control for each in turn. Several studies on both 

Eukaryotes (Pal et al. 2001; Subramanian and Kumar 2004; Wright et al. 2004; Lemos et al. 

2005; Moutinho et al. 2019) and Prokaryotes (Rocha and Danchin 2004) have demonstrated 

that more highly expressed genes have lower rates of protein sequence evolution. Our results 

support these previous findings, with the negative correlation between ωna and gene 

expression suggesting that more highly expressed genes are under greater constraint in 

hominids. Drummond et al. (2005) suggest a general hypothesis that more highly expressed 

genes evolve slowly (i.e. are under higher selective constraint) because of the selection against 

the expression level cost of protein misfolding, wherein selection acts by favoring protein 

sequences that accumulate less translational missense errors. We also find a significant 

negative correlation between ωna and gene length. This supports former studies that have 
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shown that smaller genes evolve more rapidly (Zhang 2000; Lipman et al. 2002; Liao et al. 

2006; Moutinho et al. 2019), suggesting that smaller protein-coding regions are under more 

relaxed purifying selection.  

 

4.5.1 Gene function analyses 

Our analyses of VIP and non-VIP genes show that a high proportion of the variance in protein 

evolution in hominids is accounted for by whether or not a gene interacts with viruses, a result 

that corroborates Enard et al.’s (2016) findings. By disentangling the rates of adaptive and non-

adaptive evolution, we find that VIP genes are under greater constraint than nonVIPs, and that 

despite this greater level of constraint, VIPs exhibit a higher rate of adaptive evolution. We 

also estimate the variance components using two-way analyses of variance, finding that the 

distinction between VIP and non-VIP contributes about 5x the variance in ωa, and 8x the 

variance in ωna as the variation between GO categories, suggesting that whether a gene 

encodes a VIP has a major effect on its rate of adaptation and non-adaptation (Appendix table, 

C2). These results could explain why there appears to be little variation in the rate of adaptive 

evolution across biological functions categorised using Gene Ontology (Bierne and Eyre-

Walker, 2004), with viruses acting across a range of biological functions likely to be a key factor 

in these estimates. 

 

Our study is likely to underestimate the amount of adaptive evolution attributable to viruses, 

for reasons outlined by Enard et al (2016). Briefly, we used the categorisation of VIPs and non-

VIPs provided by Enard et al (2016). However new VIPs are being discovered regularly, 

suggesting there are many VIPs that were not included in our analysis. Secondly, the 

categorisation of VIP and non-VIP necessarily cannot account for proteins that adapt to viruses 
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but do not physically interact with them (e.g. in proteins that are upstream or downstream of 

VIPs in signalling cascades).   

 

4.5.2 No asymptote in the correlation between ωa and RR 

Both Campos et al. (2014) and Castellano et al. (2016) found that there is a positive 

relationship between the rate of adaptive evolution and RR in Drosophila. However, Castellano 

et al. (2016) showed that the positive correlation between RR and ωa asymptotes in 

Drosophila, suggesting that above a certain level of recombination Hill-Robertson interference 

has little effect. In this study we find no evidence of this asymptote in hominids for either the 

rate of adaptive or non-adaptive evolution, suggesting that most coding sequences may 

experience some level of HRi. This is perhaps not unexpected. The level of HRi will depend on 

several factors - the effectiveness of recombination in breaking down associations, the density 

of selected sites and the mutation rate to alleles that are subject to selection; if weakly 

selected mutations are responsible for HRi then the effective population size and the level of 

nearly neutral genetic diversity will also be important. Recombination is a considerably more 

effective force in Drosophila; linkage disequilibrium (LD) decays over a scale of 10s of base 

pairs (Mackay et al. 2012) rather than the 10,000s that we observe in humans (The 1000 

Genomes Project Consortium, 2015). This 1000-fold difference in the effectiveness of 

recombination is likely to more than compensate for the fact that humans have ~20-fold 

greater genome size, and a higher rate of deleterious mutation (2.1 in humans (Lesecque et al., 

2012) to 1.2 in Drosophila (Haag-Liautard et al., 2007) respectively). 
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4.5.3 Gene age 

Cai and Petrov (2010) found that older genes exhibit a lower rate of protein evolution (as 

measured by the Ka/Ks ratio) than younger genes. The authors demonstrated that this was at 

least in part due to stronger purifying selection acting on older genes than on younger ones, by 

showing that levels of non-synonymous to synonymous polymorphism were lower in older 

genes. Our findings corroborate these results, with the strong negative correlation between 

ωna and gene age showing that older genes are under a lower rate of protein evolution than 

younger genes. However, we also find a significant negative correlation between gene age and 

the rate of adaptive evolution, ωa, whilst Cai and Petrov found no such correlation. There are 

two potential causes of this discrepancy. Firstly, for this analysis Cai and Petrov group genes by 

their age based on lineage specificity (LS), that is, how specifically a gene and orthologs of a 

gene are distributed on a given phylogeny (Cai et al. 2006), whilst we group our genes by 

phylostratigraphic category (PL), that is, where genes are ranked by phylostratigraphic 

category based on their earliest ortholog (Domazet-Loso et al. 2007). Each method has its 

limitations. Because the LS method relies on the phylogenetic profiles of individual genes, Cai 

and Petrov removed genes with patchy distributions (Cai et al. 2006), resulting in 10,032 of 

20,150 genes being removed from the dataset for having irregular phylogenetic profiles. The 

PL method relies on parsimony and assumes that a gene family can be lost, but cannot re-

evolve in different lineages (Domazet-Loso et al. 2007), meaning that those genes that would 

be removed using the LS method are maintained in the PL method. By using the PL method, 

our dataset contained 15,439 grouped into 19 phylostratigraphic bins. Secondly, Cai and 

Petrov obtained divergence and polymorphism data from the compiled Applera dataset 

(Bustamante et al. 2005; Lohmueller, et al., 2008) of 39 humans (19 African Americans and 20 

European Americans), whilst we have used data from the 661 African samples within the 1000 

genomes dataset (The 1000 Genomes Project Consortium, 2015). Notably, the African 

population has undergone a more stable demographic history than Europeans, who carry 
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proportionally more deleterious genetic variation, which Lohmueller et al (2008) ascribe to the 

bottleneck encountered by the Eurasian population at the time of the migration out of Africa. 

This higher proportion of segregating deleterious alleles will inevitably affect estimates of the 

rate of adaptive evolution, but not the Ka/Ks ratio (the latter of which yields a strong 

correlation with gene age using both the PL and LS methods in Cai and Petrov’s study). 

 

4.5.4 The effect of population contraction 

It has been shown previously that the MK test can generate artifactual evidence of adaptive 

evolution if some nonsynonymous mutations are slightly deleterious and the population in 

question has undergone recent expansion, because selection is more effective during the 

polymorphism phase than during the divergence phase (McDonald and Kreitman, 1991; Eyre-

Walker, 2002). Although, the effective population size in humans has increased recently, the 

effective population size is considerably reduced from that in the human-chimpanzee ancestor 

(Hobolth et al. 2007; Burgess and Yang 2008; Prado-Martinez et al. 2013; Schrago, 2014). This 

population contraction can depress the signal of adaptive evolution in humans. Furthermore, 

we show elsewhere (unpublished ref) that if a factor, for example gene age, is correlated to 

the mean strength of selection against deleterious mutations, population size change will 

generate an artifactual correlation between that factor and the rate of adaptive evolution. The 

direction of this correlation depends on the direction of the correlation between the mean 

strength of selection acting against deleterious mutations and the factor in question and 

whether the population has expanded or contracted; for example, if factor X is positively 

correlated to the mean strength of selection (i.e. selection is stronger against genes with large 

values of X), then population contraction will induce an artifactual positive correlation 

between ωa and X.  
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Figure 4.3 shows that all four factors are positively correlated to the mean strength of 

selection against deleterious mutations, estimated from the site frequency spectrum (gene 

age: r=0.916, p<0.001; RR: r=0.828, p<0.001; gene length: r=0.818, p<0.001; gene expression: 

r=0.948, p<0.001). Population contraction undergone by humans should therefore tend to 

induce a positive correlation between ωa, gene age and RR. This artifactual positive correlation 

is contrary to the negative correlation that we observe (Figure 4.1). This may be one reason 

why we observe a weaker correlation between gene age and the rate of adaptive evolution in 

hominids compared with Drosophila and Arabidopsis species (Moutinho et al. unpublished).  

However, population contraction might also be responsible for the positive correlation 

between ωa and RR.  
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Figure 4.3: Correlation between the log of the mean strength of selection against deleterious 

mutations and gene age (top left), RR (top right), gene length (bottom left), gene expression 

(bottom right). A linear regression has been fitted to each dataset.  

 

Because ωna is estimated exclusively from polymorphism phase data, we do not expect the 

correlations between ωna and our four factors to be attenuated by the population contraction. 

 

In summary, we observe a significant correlation between the rate of adaptive evolution, RR, 

gene age, protein length and gene expression. However, we can only be confident that there is 

a genuine correlation between ωa and expression; the correlation between ωa and RR might be 
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due to an artifactual effect of population size contraction, and the correlation between ωa and 

age might be due to the problems of identifying rapidly evolving genes, with high values of ωa, 

in more distant taxa. The correlation between ωa and length could be due to the fact that both 

are correlated to gene expression. In contrast, the rate of non-adaptive evolution is 

independently negatively correlated to all factors. We quantify the proportion of variance in 

the rate of adaptive and non-adaptive evolution that is due to whether a gene interacts with 

viruses or not, and show that this single factor explains 5-8 more variance, than any other 

categorisation of genes encapsulated in GO categories.  
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5. Why does genetic variation vary 

so little across the human genome?  
 

5.1 Abstract 

Genetic diversity varies across the human genome, however the reasons for this variation are 

not fully understood. We examine variation in the level of genetic diversity in non-overlapping 

10KB windows masking those regions of the genome that are thought to be directly affected 

by natural selection. We show that diversity varies by ~3-fold across the genome and that this 

variation in genetic diversity is correlated to rate of mutation, the density of selected sites and 

the rate of recombination. These correlations suggest that the level of diversity is affected by 

both the mutation rate and effects of selection at linked sites. We estimate the distribution of 

mutation rates using de novo mutation (DNM) data, and find that the distribution is broader 

than the distribution of SNP densities. We also find that the slope of the relationship between 

SNP and DNM densities is shallower than might be expected. We demonstrate that both of 

these observations are consistent with a model in which the effects of linked selection in 

reducing diversity, are dependent upon the mutation rate. However, a simple model implies 

that the effects of linked selection are widespread, reducing genetic diversity by an average of 
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50%; the effects of linked selection are also highly variable, generating some regions with 

minimal effects of linked selection and others in which diversity is reduced by 80%.  

 

5.2 Introduction 

Genetic diversity is known to vary across the genomes of many species. The primary evidence 

for this variation comes from the observation that the level of genetic variation is correlated to 

the rate of recombination, which was first described in Drosophila melanogaster in the 

landmark paper by Begun and Aquadro (1992); such correlations have been observed in 

diverse multicellular animals, plants and fungi (Cutter and Payseur 2013) and even some 

bacteria (Vigue and Eyre-Walker, 2019).  

 

This variation in diversity might arise from several sources. It is known that the mutation rate 

can vary across the genome. This has been particularly well studied in humans and other 

primates (Matassi et al. 1999; Webster et al. 2004; Tyekucheva et al. 2008; Terekhanova et al. 

2017). The analysis of de novo mutation (DNM) data from human trios (an offspring and their 

parents) provides particularly compelling evidence for this variation (Michaelson et al. 2012; 

Francioli et al. 2015; Smith et al. 2018). In some species, in which there is a correlation 

between diversity and RR, there is also a correlation between divergence in putatively neutral 

sequences and RR suggesting that RR is mutagenic and the mutation rate varies across the 

genome (Cutter and Payseur, 2013). This was first observed in humans (Lercher and Hurst, 

2002; Hellmann et al. 2003; Hellmann et al. 2005), however it has also been observed in a 

small number of other species (Cutter and Payseur, 2013).  
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The variation in diversity could also be due to the direct or indirect effects of natural selection. 

The density of selected sites varies across genomes, however, in many species the density of 

selected sites is so low that it is thought that this not a major source of variation in diversity 

across the genome; for example, only 5-10% of the human genome is thought to be subject to 

selection (Chiaromonte et al. 2003; Smith et al. 2004; Cooper et al. 2005; Asthana et al. 2007; 

Garber et al. 2009; Davydov et al. 2010; Meader et al. 2010; Pollard et al. 2010; Ponting and 

Hardison, 2010; Linblad-Toh et al. 2011; Ward and Kellis, 2012; Rands et al. 2014). 

Furthermore, most analyses attempt to control for these effects by focussing on diversity that 

is likely to be neutral. However, selection can have indirect effects on diversity through the 

processes of genetic hitch-hiking (Maynard Smith and Haigh, 1976) and background selection 

(Charlesworth et al. 1993); these are often characterized as causing variation in the effective 

population size across the genome. Evidence for the variation in the effective population size 

across the genome comes from three sources. First, in many species there is a correlation 

between diversity and the RR (Cutter and Payseur, 2013). This potentially could be due to 

recombination being mutagenic, but there is no correlation between a measure of the 

mutation rate, the divergence between species and the RR, in most species in which there is a 

correlation between diversity and the RR – in Cutter and Payseur’s (2013) compilation studies 

only 3 out of 14 studies that show a correlation between diversity and RR, also show a 

correlation between divergence and RR. However, some caution should be exercised with 

these results, because it is known from studies in humans that the mutation rate evolves 

relatively rapidly at both a regional (Terekhanova et al. 2017; Smith et al. 2018) and a site level 

(Harris, 2015). Variation in divergence can also be a consequence of variation in the depth of 

the genealogy in the ancestor of the two species, something that is well documented in 

humans (McVicker et al. 2009). The divergence between species may therefore not give a good 

estimate of the variation in the mutation rate. The second line of evidence for variation in the 

effective population size comes from a negative correlation between diversity and the density 
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of linked sites, that has been observed in a number of species (Cutter and Payseur 2013; 

Castellano et al. 2019); this is expected because the effects of linked selection are expected to 

depend on both the RR and the number of selected sites. The third line of evidence for 

variation in the effective population size comes from a study in which Gossman et al. (2011) 

estimated the distribution of Ne by simultaneously considering diversity and divergence at 

putatively neutral sites; they found significant evidence of variation in Ne across the genomes 

of 6 out 10 species, but the estimates of the variation in Ne were modest. Finally, it has been 

observed that a measure of the efficiency of natural selection, the ratio of the number of non-

synonymous to synonymous or non-coding diversity, is correlated to diversity across genomes 

(Gossman et al. 2011; Murray et al. 2017; Castellano et al. 2018; Castellano et al. 2020; Chen et 

al. 2020), consistent with variation in the effective population size across a genome. 

 

In many species biased gene conversion is thought to act (Duret and Galtier 2009), and this can 

potentially affect diversity across a genome, although this has not been extensively studied, 

despite the fact that biased gene conversion is widespread (Eyre-Walker 1993; Montoya-

Burgos et al. 2003; Meunier and Duret 2004; Webster et al. 2004; Webster et al. 2005; 

Spencer et al. 2006; Mancera et al. 2008; Escobar et al. 2011; Pessia et al. 2012; 

Lesecque et al. 2013; Williams et al. 2015; Halldorsson et al. 2016; Smeds et al. 2016; 

Keith et al. 2016; Long et al. 2018; Galtier et al. 2018; Smith et al. 2018) and there is a 

correlation between diversity and the RR. Finally, there is an expectation that diversity will 

vary simply because of variation in the coalescent process; i.e. we expect variation in diversity 

even for neutral loci with the same mutation rate, no linked selection and no biased gene 

conversion, because the genealogy will vary between regions. In estimating the variation in Ne, 

Gossman et al. (2011) considered models in which there is no intra-locus recombination and 
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hence substantial variation in the genealogy; they still find significant variation in diversity that 

could not be attributed to variation in the genealogy or the mutation rate. 

 

Humans were one of the first species in which a correlation between diversity and RR was 

described (Nachman et al. 1998; Nachman et al. 2001). However, in contrast to Drosophila, 

subsequent studies also showed that the divergence between humans and other species was 

correlated to the RR, which suggested that the correlation might be due to a mutagenic effect 

of recombination (Lercher and Hurst, 2002; Hellmann et al. 2003; Hellmann et al. 2005), a 

conjecture which is supported by more recent investigations of recombination and mutation 

(Pratto et al. 2014; Arbeithuber et al. 2015). However, despite the mutagenic effects of RR, 

Hellmann et al. (2005) concluded that diversity was correlated to the RR, even controlling for 

this mutational effect, suggesting a role for linked selection in determining diversity levels 

across the human genome. Recently, Castellano et al. (2019) have revisited this question in 

humans and other hominids and shown that levels of putatively neutral diversity at the 50KB 

scale are correlated equally to the RR, the density of selected sites and a measure of the 

mutation rate, the divergence in putatively non-coding sequences. However, both the studies 

of Hellman et al. (2005) and Castellano et al. (2019) used divergence between species as a 

measure of the mutation rate, and given the speed at which the mutation rate evolves (Harris  

2015; Tekehanova et al. 2017; Smith et al. 2018), this might be a relatively poor measure of the 

mutation rate that pertains to extant genetic diversity. Using DNM data, Smith et al. (2018) 

show that more than 70% of the variation in diversity at the 100KB and 1MB scale can be 

explained in terms of variation in the mutation rate. This then might suggest that there is 

relatively little variation in Ne across the genome, although this variation can be detected. In 

their analysis, Castellano et al. (2019) show that a measure of the effectiveness of selection, 
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the ratio of non-synonymous to non-coding SNPs, is correlated to both RR and the level of non-

coding diversity in several hominid species.  

 

Here we revisit the question of what factors determine the level of neutral diversity across the 

human genome using SNP and DNM data. We confirm previous results – that the level of 

diversity is correlated to measures of the mutation rate, the density of selected sites and the 

rate of recombination. However, we demonstrate that the inferred distribution of mutation 

rates is broader than the distribution of SNPs. This leads us to explore a model in which the 

effects of linked selection are dependent upon the mutation rate. 

 

5.3 Materials and methods 

5.3.1 Data 

Human variation data was obtained from 1000 genomes Grch37.p13 vcf files (The 1000 

Genomes Project Consortium, 2015). Variants were annotated using Annovar’s hg19 database 

(Wang and Li, 2010). We considered SNPs from European populations since the de novo 

mutation (DNM) data had been obtained from European individuals (Wong et al. 2016, 

Jonsson 2017). 

 

DNM data from the studies of Wong et al. (2016) and Jonsson et al. (2017) were obtained from 

the supplementary materials of the papers. Wong et al. do not specify the nucleotide change 

associated with the DNM.  

 

Recombination rate maps were obtained from Spence and Song (2019). 
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5.3.2 Statistical analysis 

Variation in the number of DNMs and SNPs per window is composed of two factors, systematic 

variation in the underlying process, for example the mutation rate, and sampling error; this is 

particularly pertinent to the distribution of DNMs because we have less than halve a DNM on 

average per window. To estimate the underlying mutation rate, or in the case of SNPs, the 

product of the mutation rate, effective population size and mean genealogy length, we assume 

that the rate of the underlying process is gamma distributed, and that the observed number of 

DNMs or SNPs is Poisson distributed around the expectation (although it is not certain that 

SNPs will be Poisson distributed). For example, the mutation rate per site for window I might 

be ui; we therefore expect to observe on average lkui DNMs where l is the length of the 

window and k is a constant which reflects the sampling scheme (the number of chromosomes 

sampled and the demography of the population). The observed number of DNMs is assumed 

to be a Poisson variate with a mean of lkui. The resultant distribution is a negative binomial 

and we can estimate the underlying gamma distribution by maximising the likelihood. 

 

It is helpful to approximate the gamma distribution using a lognormal distribution since the 

product or ratio of two lognormally distributed variates is itself lognormal; for gamma 

distributions with shape parameters > 6 the fit is good (appendix figure D3). To infer the 

relationship between the gamma distribution and best fitting lognormal, we generated 

100,000 random samples from gamma distributions with shape parameters between 2 and 

1024 and a mean of one. To this data we fit a log normal distribution using maximum 

likelihood. The relationship between the shape parameter of the lognormal distribution and 

the log of the shape parameter of the gamma distribution is well approximated by a 4th order 

polynomial (appendix figure D12):  = 1 - 0.4534 ln() + 0.08222 ln()2 - 0.006194 ln()3 + 
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0.0001141 ln()4 where  is the shape parameter of the lognormal distribution and  is the 

shape parameter of the gamma distribution. Both distributions are assumed to have a mean of 

one. 

 

To investigate whether the slope of the regression between SNP density and DNM density is 

what we would expect in a model in which the effective population size of a genomic region is 

independent of the mutation rate we simulated data as follows; for the ith window we 

sampled a relative mutation rate, ui, (scaled such that the mean is one) from a lognormal 

distribution with a shape parameter estimated from the DNM data. This mutation rate was 

multiplied by the number of sites present in the genome build and with Phastcons score <0.5, 

wi, and the mean number of DNMs per site, 𝐷̅, to generate the expected number of DNMs for 

the window. 

𝐷𝑖̂ = 𝑢𝑖𝑤𝑖𝐷̅       

We then generated a random Poisson variate with this expectation. To simulate the number of 

SNPs in the window we followed a similar process, multiplying the mutation rate by the 

number of bases in the window, the mean number SNPs per base pair, 𝑆̅, and another random 

variate drawn from a lognormal distribution, hi, representing the variation in the effective 

population size and the mean genealogy length.  

𝑆𝑖̂ = 𝑢𝑖𝑤𝑖ℎ𝑖𝑆̅      

 

Again, we generated a random Poisson variate with this expected value. For each window we 

calculated the number of DNMs and SNPs per site, and we divided this by the mean number of 

DNMs and SNPs per site across windows so the normalised mean number of DNMs and SNPs 

per window was unity.  



133 
 

 

We investigated the fit of models in which the effective population size was a function of the 

mutation rate. We followed a simulation scheme similar to that described above, but in 

generating the expected number of SNPs in each window we assumed that the effective 

population size was a function of the mutation rate f(ui) and we multiplied this by a random 

variate drawn from a lognormal distribution which represents the variation in Ne not due to 

variation in the mutation rate and the variation due to variance in the mean genealogy length, 

ki. 

𝑆𝑖̂ = 𝑢𝑖𝑤𝑖𝑘𝑖𝑆̅𝑓(𝑢𝑖)    

We simulated 250,000 windows of 10,000bp each. As in the simulation above we calculated 

the number of DNMs and SNPs per site for each window and then normalised these so the 

mean across windows in each case was equal to one. We estimated the slope of the regression 

between the number SNPs and DNMs per site, and fit a lognormal to the distribution of the 

number of SNPs per site. Since we have two unknown parameters in our model, the parameter 

governing the relationship between the effective population size and the mutation rate, and 

the parameter associated with the distribution of residual variation in Ne and the mean 

genealogy length, and two observations, it should be possible to fit the model perfectly to the 

data under many circumstances. However, fitting the model is not straightforward since the 

values from the model are not known without error, because they are simulated; most 

maximisation algorithms would struggle. We therefore took the following approach. We 

initially generated simulated datasets in which the residual variation was assumed to be zero, 

since this residual variation does not affect the slope of the relationship between the number 

of SNPs and DNMs per site. We varied the parameter governing the relationship between Ne 

and the mutation rate over parameter values close to that value that would fit the data; this 

was found by trial and error. We then regressed the slope from the simulation against the 
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parameter value and used this to estimate the parameter value that best fit the data (see 

appendix figure D6 for an example). Having obtained this value, we simulated datasets using 

this value and varying the parameter associated with the residual variation. Again, we 

regressed the shape parameter of the distribution fitted to the simulated data against the 

parameter value and used linear regression to infer the parameter value that best fit the data. 

The observed value of the slope of the regression between the numbers of SNPs and DNMs 

per site and the shape parameter of the lognormal fit to the distribution of SNPs per site are 

known with little error; however, the shape parameter of the mutation rate distribution is 

estimated with some error; we take into account this error by estimating the parameters of 

the best fitting model for the 95% CIs for the shape parameter.  

 

5.4 Results 

Genetic diversity is known to vary across the human genome. To quantify this variation, we 

divided the genome up into 10KB windows; this is the smallest window size for which we can 

reliably estimate the distribution of mutation rates from de novo mutation data, something 

that is important for understanding the variation (see below). The distribution of SNPs per bp 

varies substantially from windows that contain no SNPs to those that have more than 3-times 

the average diversity (Figure 5.1a). The regions of the genome with very little diversity may be 

due to problems in calling SNPs in certain regions of the genome; on average there are 85 SNPs 

per window in the dataset that we are using and many of these windows have 10KB in the 

human genome build that these SNPs have been mapped to, but there are some windows with 

no SNPs. We therefore trimmed the data excluding the regions of the genome with the 1.5% of 

the lowest diversity values. After this trimming there is still substantial variation with some 

regions having half the diversity of the mean and others with almost twice as much variation 

(Figure 5.1b). This distribution of SNPs per window is reasonably well described by a log-
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normal distribution with a shape parameter of 0.26 (SE = 0.00) (with the mean normalised to 

unity) (Figure 5.1b). Fitting a distribution is useful for subsequent modelling work, and the log-

normal is convenient because the product or ratio of two log-normally distributed variates, is 

itself log-normally distributed.  
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A) 

 

B) 

 

Figure 5.1: The distribution of the number of SNPs per bp, normalised so the mean is one. A) 

All windows, B) excluding the 1.5% of windows with the lowest levels of diversity. A log-normal 

distribution is fitted to this data. 

 

 

 



137 
 

A) 

 

B) 

 

C) 

 

 

0 1 2 3 4

0.0090

0.0095

0.0100

0.0105

No. of DNMs per window

S
N

P
p

e
r

b
p



138 
 

Figure 5.2: The number of SNPs per bp in 10KB windows as a function of (A) DNM density, (B) 

log(RR) and (C) the density of selected sites. The data have been binned into 20 equal sized 

bins in panels (B) and (C). 

 

There are a number of potential reasons for this variation in diversity across the human 

genome: it could be due to variation in the mutation rate, the direct or indirect effects of 

selection, or biased gene conversion. To investigate the role that mutation rate variation might 

have on genetic diversity we used two sets of de novo mutation (DNM) data; ~98,000 

autosomal DNMs from Jonsson et al. (2017) and ~25,000 autosomal DNMs from Wong et al. 

(2016). We find there is a highly significant correlation between SNP and DNM density 

(Jonsson: r = 0.056, p < 0.001; Wong: r = 0.015, p < 0.001) (Figure 5.2A); the correlations are 

low in part because there is substantial sampling error associated with the DNM data, since 

there are < 0.5 DNMs per window in each dataset. We can estimate how strong the correlation 

might be if all the variation in SNP density was due to mutation rate variation by following the 

method of Francioli et al. (2015); we assume that the SNP density yields an error free estimate 

of the mutation rate, and then simulate DNMs according to this distribution of mutation rates. 

In this simulation we observe the expected correlation between SNP and DNM density is 0.18 

and 0.093 for Jonsson and Wong datasets respectively; i.e. the correlations are 31 and 16% as 

strong as they could be if all the variation in diversity was due to variation in the mutation rate. 

This is in sharp contrast to a similar analysis at the 100KB and 1MB scales in which the 

observed correlation is about 70% the expected value (Smith et al. 2018). 

 

Direct selection probably generates relatively little variation in diversity across the human 

genome, because only ~8% of the human genome is estimated to be under the effects of 

selection (Rands et al. 2014). Furthermore, we have excluded all sites with Phastcons scores > 



139 
 

0.5. In contrast, the indirect effects of selection are thought to widespread in the human 

genome and decrease diversity by an average of 15-20% (McVicker et al. 2009; Murphy et al. 

2021). Consistent with this, we find highly significant correlations between diversity and 

log(RR) (r = -0.16, p<0.001) (Figure 5.2B), and diversity and the density of selected sites, as 

inferred from those with Phastcons scores > 0.5 (r = -0.19, p < 0.001) (Figure 5.2C). In a 

multiple regression these two factors and DNM density all remain highly significant (p < 0.001). 

Perhaps surprisingly the effects associated with RR and the density of selected sites are fairly 

similar as judged by standardised regression coefficients (RR: bs = 0.15; density of selected 

sites: bs = -0.19; DNM per bp: bs = 0.058). However, it should be appreciated that there are 

unknown levels of sampling error associated with each of these variables (Phastcons score is 

only a proxy for the sites under selection) and hence the multiple regression should be 

interpreted with caution. 

 

The effects of biased gene conversion on the levels of genetic diversity have not been 

extensively studied. If we focus our analysis on SNPs that are not subject to BGC, we find the 

distribution of SNP density is very similar to the distribution including all SNPs (appendix figure 

D1); and the fitted lognormal distribution has a shape = 0.30, not very different to shape 

estimated using all SNPs of 0.26. This suggests that BGC is not a major factor generating 

variation in diversity across the genome; if anything, it decreases the variance.  

 

5.4.1 Distribution of mutation rates 

We have shown that diversity across the genome is correlated to the mutation rate and that it 

is also likely affected by linked selection. To further investigate the role that mutation rate 

variation plays in the distribution of diversity across the genome we estimated the distribution 

of mutation rates across the genome from the distribution of DNMs per window by fitting a 
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gamma distribution of rates across windows, taking into account the sampling error associated 

with having so few SNPs. The two DNM mutation datasets give similar estimates of the 

distribution of mutation rates (Jonsson gamma shape parameter  = 7.13; Wong  = 5.34) 

(appendix figure D2). A gamma distribution fits the distribution of DNMs for the Jonsson and 

Wong DNM datasets, although in the case of the Jonsson data, a goodness-of-fit rejects the 

gamma distribution (p < 0.0001); this is primarily driven by 17 windows that have 6 or more 

DNMs (Figure 5.3).  
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A) 

 

B) 

 

Figure 5.3: The observed (blue) and expected (magenta) number of windows with a certain 

number of DNMs per window for A) Jonsson and B) Wong DNMs. The expected number is 

from the fitted gamma distribution. Note the Y-axis is on a log scale.  

 

If we approximate the gamma distribution with a log-normal distribution so that the 

distribution of mutation rates and SNP density are comparable we find the shape parameter of 

the mutation rate distribution (Jonsson shape = 0.39 (SE = 0.00); Wong shape = 0.45 (0.01)) is 
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significantly broader than the distribution of SNPs (0.26 (0.00)). The log-normal distribution 

approximates the gamma well for these parameter values (appendix figures D3, D4).  

 

It is surprising that the mutation rate distribution is so broad, since we might naively have 

expected the distribution of SNPs to have a larger variance than the distribution of mutation 

rates since the number of SNPs in a window is a product of the mutation rate, the effective 

population size and the average genealogy length; each of these factors should generate 

variance in addition to that associated with the variance in the mutation rate. There are a 

number of potential reasons why the mutation rate distribution might be broader than the 

SNP distribution. First, the method to estimate the distribution of the mutation rate might be 

biased upwards given the very low number of DNMs per window in the two datasets – 0.36 

and 0.092 DNMs per 10KB in Jonsson and Wong respectively. To investigate this we simulated 

data; we find that the method is slightly biased upwards when the shape parameter is greater 

than 0.3, but not sufficiently to explain the discrepancy (Table 5.1). 

 

As a further test of whether we are overestimating the variation in the mutation rate we 

estimated the number of substitutions that have occurred along the human lineage since the 

split between humans and chimpanzees in our 10KB windows. We find that a log-normal 

distribution with a shape parameter of 0.32 (0.00) fits the distribution well (appendix figure 

D5). As expected, the distribution is narrower than the distribution of mutation rates, but it is 

still significantly broader than the distribution of SNPs.  
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Number of DNMs per window Shape Mean simulated shape (SE) 

0.092 0.2 0.15 (0.02) 

0.092 0.3 0.31 (0.02) 

0.092 0.4 0.42 (0.01) 

0.092 0.5 0.56 (0.01) 

0.36 0.2 0.21 (0.01) 

0.36 0.3 0.30 (0.01) 

0.36 0.4 0.43 (0.00) 

0.36 0.5 0.57 (0.00) 

Table 5.1. Performance of the method to infer the shape parameter of the mutation rate 

distribution. Ten simulated datasets of 250,000 windows were generated and the shape 

parameter estimated as in the data analysis; note that the data were simulated assuming the 

mutation rate was lognormally distributed; we then estimated the rate assuming the rate was 

gamma distributed before approximating this gamma with a log-normal distribution.  

 

The second potential explanation for why the mutation rate distribution is broader than the 

SNP distribution, is that the mutation rate has evolved such that the mutation rate that 

pertains to the polymorphism data is not the same as that measured in pedigree studies. The 

mutation rate at the 100KB and 1MB scale is known to evolve (Terekhanova et al. 2017; Smith 

et al. 2018) but the speed at which it would have to evolve to explain the discrepancy between 

the SNP and mutation rate distributions would have to be very rapid. If we imagine that the 

mutation rate for a region changes instantaneously to a new value drawn from some 

distribution then the variance in the average mutation rate after t episodes is V/t. The average 

shape parameter of the mutation rate distribution is 0.39 and 0.45 for the Jonsson and Wong 

datasets, and this translates into variances of 0.16 and 0.21; the shape parameter for the SNP 
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distribution is 0.26 and this translates into a variance of 0.070. Hence the mutation rate in 

region would have had to change completely 2-3-times over the average age of 

polymorphisms in the population to explain the discrepancy between the inferred variance in 

the mutation rate and variance in the distribution of SNPs. Given that the distribution of 

substitution density along the human lineage is only slightly narrower than the distribution of 

mutation rates, this explanation is clearly not correct. 

 

A third possible explanation for the discrepancy between the SNP and mutation rate 

distributions is biased gene conversion; if the strength of BGC is correlated to the mutation 

rate, then it might reduce the variance in SNP density. DNM density is correlated to log(RR) but 

the relationship is very weak (r = 0.026, p < 0.001); the mutation rate is also very weakly 

negatively correlation to the proportion of sites with Phastcons scores > 0.5 (r = -0.0076, p < 

0.001). However, as we have shown above, the variance in SNP density is largely unaffected by 

restricting the analysis to mutations that are unaffected by BGC – G<>C and A<>T mutations 

(appendix figure D1). 

 

The most likely explanation is that the effective population size depends on the mutation rate. 

This is not unexpected; it is believed that the effective population varies across a genome 

through the action of linked selection, either in the form of background selection or genetic 

hitch-hiking. The strength of background selection is expected to depend on the mutation rate 

(Charlesworth et al. 1994; Nordborg et al. 1996; Hudson and Kaplan 1995). In the case of hitch-

hiking, the effective population size is expected to depend on the mutation rate if adaptation is 

limited by the supply of mutations, for which there is some evidence (Gossmann et al. 2012; 

paper by Besenbacher et al. 2019; Rousselle et al. 2020; though see Galtier 2016).  
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To test whether the effective population size is correlated to the mutation rate we considered 

the slope of the regression between the number of SNPs per site and the number of DNMs per 

site. Under a model in which the effective population size and mutation rate are uncorrelated, 

SNP density should be linearly related to the mutation rate with an intercept of zero and a 

slope of one, if we normalise the SNP and DNM densities such that they are unity. 

Unfortunately, this simple prediction only applies if we know the mutation rate without error, 

which we do not. Sampling error in the DNMs per window will reduce the predicted slope. To 

investigate whether the observed slope is less than we might predict under a model in which 

the mutation rate and Ne are uncorrelated, we simulated data under a model in which we 

randomly sampled mutations rates, mean genealogy lengths and effective population sizes 

from lognormal distributions. The number of DNMs was generated as a random Poisson 

variate of the mutation rate. For each simulated dataset we estimated the slope of the 

regression between the number of SNPs per window, and the mean DNMs per window (both 

normalised so their mean was unity). We investigated the effects of varying the shape 

parameter of each distribution, but as expected only the shape parameter of the mutation rate 

distribution affected the slope; the shape parameters of the mean genealogy length and Ne 

distributions have no effect on the expected slope because they only affect the dependent 

variable.  

 

The observed slope between SNP and DNM density using the DNMs from Jonsson is 0.0096 

(0.0003) and this is significantly lower than the mean simulated slope of 0.054 (0.000); for the 

Wong DNMs the corresponding slopes are 0.0013 (0.0002) and 0.0080 (0.000), and these are 

also significantly different; hence the observed slope is less than expected under a model in 
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which the mutation rate and effective population are uncorrelated to each other; the slopes 

are consistent with the effective population being negatively correlated to the mutation rate.  

 

To investigate the matter further we attempted to fit a model in which Ne is a function of the 

mutation rate. We have two observations that the model needs to explain: the slope of the 

relationship between SNP and DNM density, and the variation in the distribution of the SNP 

density. In our model we randomly sampled mutation rates (u) from a log-normal distribution 

with the shape parameter estimated from the DNM data, and from this we generated a 

simulated number of DNMs using a Poisson distribution. The expected Ne was related to the 

mutation rate assuming a model of exponential decay: f(u) = e- u, where  is a constant which 

describes how fast Ne declines as a function the mutation rate, u. This is the expected 

relationship under a model of background selection. We also randomly sampled a variate from 

a lognormal distribution representing the product of the residual variation in effective 

population size (i.e. variation in the effective population size not explained by variation in the 

mutation rate) and the mean genealogy length - ki. The expected number of SNPs in the ith 

window is therefore equal to 𝑆𝑖̂ = 𝑢𝑖𝑤𝑖𝑘𝑖𝑆̅𝑓(𝑢𝑖) where wi is the number of nucleotides in the 

window, 𝑆̅ is the average number of SNPs per site and 𝑓(𝑢𝑖) is the function that relates the Ne 

to the mutation rate. The realised number of SNPs was generated as a random Poisson deviate 

with this expectation. 

 

Our simple model fits the data and the parameter estimates are similar for the Jonsson and 

Wong datasets of DNMs (Table 5.2) (Figure 5.3). Note that we have two observations, which 

are estimated with very little error, and two parameters in the model, so in principle the 

model can fit perfectly. However, our estimate of the shape parameter of the mutation rate 

distribution is subject to some level of uncertainty so we fit our model using the maximum 
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likelihood estimate of the mutation rate shape parameter, and its 95% confidence intervals, 

inferred from the likelihood surface. The model predicts that diversity is substantially reduced 

by linked selection (Figure 5.3); with a mean reduction of ~50%. Under this model there is also 

substantial variation in Ne across the genome due to variation in the mutation rate (Figure 5.4). 
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DNM data Su Linked selection 

parameter 

Sgn Mean diversity relative 

to no linked selection 

Jonsson lower 95% 0.36 0.72 0.23 0.50 

Jonsson ML 0.38 0.74 0.23 0.50 

Jonsson upper 95% 0.40 0.75 0.22 0.49 

Wong lower 95% 0.37 0.83 0.24 0.46 

Wong ML 0.44 0.84 0.22 0.46 

Wong upper 95% 0.51 0.84 0.19 0.47 

Jonsson 0.30 0.66 0.24 0.53 

Jonsson 0.25 0.55 0.24 0.58 

Jonsson 0.20 0.34 0.22 0.71 

Wong 0.30 0.81 0.25 0.46 

Wong 0.25 0.75 0.25 0.48 

Wong 0.20 0.64 0.25 0.53 

Table 5.2. Parameter estimates under a simple exponential model in which the Ne is a function 

of the mutation rate (Ne(u) = e- u). Parameters are estimated for the ML estimates of the shape 

parameter of the mutation rate distribution, Su, and its 95% confidence intervals. Sgn is the 

shape parameter of the distribution for the residual variation.  
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Figure 5.3. The relationship between Ne and the relative mutation rate, normalised such that 

the mean is one, estimated assuming Ne(u) = e- u using estimates of the mutation rate 

distribution from the Jonsson (blue) and Wong (yellow) DNM datasets. 

 

 

Figure 5.4. The distribution in effective population size, the degree to which diversity is 

reduced by linked selection, caused by variation in the mutation rate under the model in which 

Ne(u) = e- u. 
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5.5 Discussion 

There is substantial variation in the level of genetic diversity across the human genome. We 

have investigated the factors that are correlated to this variation in diversity and find, as 

others have done, that both the mutation rate (Castellano et al. 2019) and linked selection 

(McVicker et al. 2009; Hernandez et al. 2011; Murphy et al. 2021) seem to play a role. 

However, we estimate the distribution of mutation rates from de novo mutation data, and find 

that the distribution of mutation rates is substantially broader than the distribution of SNP 

density. This is surprising since the density of SNPs should depend upon the mutation rate, the 

effective population size and the mean genealogy length, so we might naively expect the total 

variance in SNP density to be greater than the variance in the mutation rate. It seems likely 

that the variance in SNP density is smaller than the variance in the mutation rate because the 

effects of linked selection depend on the mutation rate and hence as the mutation rate 

increases, so diversity tends to increase, but at the same time the effective population size is 

decreased. We show that a simple model, in which the effective population size is correlated 

to the mutation rate, can explain two salient observations – why the distribution of SNP 

density is so narrow, and why the slope of the relationship between SNP and DNM density is 

so shallow. However, the model implies that background selection is extremely prevalent in 

the human genome, reducing diversity by an average of ~50%. The model also suggests that 

the effects of linked selection vary across the genome substantially, with some regions 

experiencing a decrease in diversity of ~20% and others ~80% simply due to variation in the 

mutation rate; this is not factoring in variation in Ne due to variation in the density of selected 

sites or recombination rate.  

 

Our model is attempting to explain two observations; why the variance in the mutation rate 

distribution is greater than the variance in the density of SNPs, and why the slope of the 
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relationship between SNP and DNM density is shallow. We should be cautious about our 

estimate of the mutation rate distribution since this is inferred from DNM data, and it is 

evident that there are biases in these datasets; for example, the density of DNMs depends on 

GC-content, but this relationship differs between different DNM datasets, including the two 

used here, at the 100KB and 1MB scale (Smith et al. 2018). It is therefore possible that the 

variance in the mutation rate distribution is being over-estimated due to variance associated 

with these biases; although, the two datasets give similar estimates for the amount of 

variation there is at the 10KB scale. To investigate how sensitive our analyses are to the 

estimate of the mutation rate distribution we simulated data assuming the mutation rate 

distribution had less variance. As expected, we find that as we reduce the variance in the 

mutation rate distribution, the estimated relationship between the effective population size 

and mutation rate becomes less steep (Table 5.2). As a consequence, the inferred level of 

background selection is reduced, but even halving the shape parameter of the mutation rate 

distribution yields a mean reduction in diversity of 29%. 

 

Is our model credible? The model predicts that on average linked selection reduces diversity by 

an average of 50% in the human genome. This is far higher than two previous estimates of 15-

20% (McVicker et al. 2009; Murphy et al. 2021). These two analyses and ours take very 

different approaches to inferring the level of linked selection over very different scales. 

McVicker et al. (2009) and Murphy et al. (2021) identify sites that might be subject to selection 

from conservation across species. They then estimate the distribution of fitness effects that 

under a background selection model would generate the observed levels of diversity. The 

model of Murphy et al. (2021) explains an impressive 60% of the variance in diversity at the 

1MB scale, although it only explains 15% of the variance at the 10KB scale; the relatively poor 

performance of the method at smaller scales might be due to variance in the mutation rate or 
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genealogy length, variance that is averaged out at larger scales or it might be due to the 

inability to identify those sites that are under selection and contributing to background 

selection. In contrast, we are inferring the presence of linked selection and its scale indirectly. 

Potentially these two approaches could be combined. 

 

How much of the genome needs to be subject to selection to reduce diversity by 50% on 

average? In their analysis, Murphy et al. (2021) find that the 6% of sites with the highest CADD 

scores, an evolutionary measure of the selection acting at a site, reduce diversity by 

approximately 17% across the human genome. Hence, a reduction of 50% in our model might 

be compatible with ~18% of the human genome being subject to selection; this is much 

greater than previous estimates – for example, Rands et al. (2014) estimate that only 8% of the 

human genome is constrained by natural selection. However, although Rands et al. (2014) take 

into account the turnover of constrained DNA they assume that all sites within a functional 

category turn-over at the same rate; if there is substantial variation in turnover rate then the 

amount of DNA subject to selection might be much greater than previously thought. In 

Drosophila, Charlesworth (2012) estimated that background selection reduces diversity by 

about 50%; however, Drosophila has a far shorter genetic map length than humans (290cM 

(Catcheside, 1977) versus 3600cM (Ott, 1999), and higher density of selected sites. 

 

The model allows there to be residual variation that affects the density of SNPs across the 

genome, and we estimate the shape parameter of this distribution to be 0.23 and 0.22 using 

the DNM data from Jonsson et al. (2017) and Wong et al. (2016) respectively. This residual 

variation comes from two sources; variation in the mean genealogy length and variation in the 

effective population size that is not associated with variation in the mutation rate; this arises 

through variation in the density of selected sites and the recombination rate. We have found 
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that whilst diversity is correlated to both recombination rate and the density of selected sites, 

neither explains very much of the variance in diversity. How much variation in the genealogy 

length do we expect? To investigate this, we simulated a 10kb locus subject to a level of 

recombination, that was homogeneous across the locus, for a sample size of 1000 

chromosomes – the European sample from the 1000 genome project contains 1006 

chromosomes; for each simulation we measured the average genealogy length across the 

locus and then we fit a log-normal distribution to the distribution of mean genealogy lengths. 

The distribution of mean genealogy lengths is well approximated by a lognormal distribution 

(appendix figure D6), and the relationship between the shape parameter of the lognormal and 

the log of Ner is well approximated by a logistic equation (appendix figure D7). The mean Ner 

value in humans is approximately 0.0002 – there is approximately 1 cM per MB (Dumont and 

Payseur 2007 Evolution) and the effective population size of humans is ~20,000 (Wall and 

Przeworski, 2000; Voight et al. 2005), which means the distribution of mean genealogy lengths 

has a predicted shape parameter of 0.014. This implies that there is little variation in the mean 

genealogy length between windows with an average rate of recombination. This is an 

underestimate because most recombination in humans is concentrated in hotspots (McVean 

et al. 2004; Myers et al. 2005; Coop and Przeworski, 2007; Pratto et al. 2014). However, even 

when there is no recombination the shape parameter of the distribution is 0.17, which is 

substantially less the residual variation included in our model. Thus, under our model there is 

some residual variation that can be attributed to variation in the effective population size that 

is not due to variation in the mutation rate. Estimating this source of variation is not 

straightforward because it is difficult to identify all sites under selection. 

 

As an aside we find that both the lognormal (appendix figures D6, D8) and the gamma 

distributions (appendix figure D10) fit the distribution of mean genealogy lengths. 
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Furthermore, for the gamma distribution the shape parameter is a simple linear function of 

the log of the sample size (appendix figure D11). For the lognormal distribution the 

relationship between the shape parameter and the log sample size is slightly curvilinear. These 

relationships may prove useful in future work. 

 

We have investigated patterns of diversity across the human genome. We find, as others have 

before, that diversity is correlated to rates of mutation, the density of selected sites and the 

rate of recombination. However, we show for the first time that the distribution of mutation 

rates is broader than the distribution of SNPs. A model in which the effective population size of 

a genomic region is correlated to the mutation rate fits the data. However, our simple model 

implies that diversity is decreased by ~50% across the human genome by the action of linked 

selection, and that the effects of linked selection vary substantially across the genome. 
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6. General Discussion 
 

 

 

The main focus of this thesis has been to increase our understanding of the patterns of natural 

selection in humans, and the factors that affect these patterns and rates of evolution at the 

molecular level. Each of the projects described in chapters 2 to 5 have touched on different 

aspects that contribute to our understanding of natural selection in humans. Here I will briefly 

summarise each project in turn, the consequences of my results for our understanding of 

human evolution, and the further work they necessitate. 

 

6.1 Chapter summary 

In Chapter 2 we developed and applied a novel method for detecting balancing selection using 

polymorphism data. Previous methods have used the presence of non-synonymous 

polymorphisms shared between two populations as evidence of balancing selection. These 

methods require that a long enough divergence time has passed to ensure that all shared 

neutral genetic variation to have reached fixation or loss in at least one of the two populations, 
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making these methods most effective at detecting ancient or long-term balancing selection. By 

comparing proportion of shared non-synonymous to synonymous polymorphism at shared and 

neutral sites, we are able to gain greater power for detecting balancing selection on shorter 

timescales. Through extensive simulations we have shown that although our method is robust 

to demography, estimates can still be depressed by demographic change, and therefore must 

be accounted for. We applied our method to human continental populations, finding large 

numbers of balanced polymorphisms being maintained between all populations.  

 

In chapters 3 and 4 I investigated numerous factors that affect the rate of evolution in humans, 

both at the gene level and at the site level. In chapter 3, I looked at gene-level factors that 

affect the rates of adaptive and non-adaptive evolution between humans and chimpanzees. It 

has been shown that the rate of evolution correlates to recombination rate (RR), gene age, 

protein length, and gene expression in multiple species. We correlated each factor with the 

rates of adaptive and non-adaptive evolution, controlling for each other factor individually. By 

disentangling the rate of adaptive and non-adaptive evolution, we show that the rate of 

adaptive evolution, ωa is correlated to all four factors in hominids, but that when we control 

for each factor in turn, there is evidence for an independent influence of RR, gene age and 

probably gene expression. These correlations remain when controlling for the effects of biased 

gene conversion. We also find that all four factors have significant independent effects on the 

rate of non-adaptive evolution, ωna, and that all of these remain significant when we control 

for each in turn. We also considered the effect of gene function on the rate of adaptive and 

non-adaptive evolution. By splitting genes into GO categories and splitting the genes in each 

GO category by whether they code for viral interacting proteins (VIPs) or not, we confirm 

Enard et al.’s findings that VIPs have higher rates of adaptive evolution than other genes in 

primates. We also show that VIPs have a lower rate of non-adaptive evolution than other 



157 
 

genes in primates. Using a two-way analysis of variance on the rates of adaptive and non-

adaptive evolution and the estimated variance components, we show that the distinction 

between VIP and non-VIP contributes several times more to the variance in ωa and ωna than the 

variation between GO categories, suggesting that whether a gene encodes a VIP has a major 

effect on its rate of adaptive and non-adaptive evolution. 

 

In chapter 4, I looked at site-level factors that affect the rates of adaptive and non-adaptive 

evolution between humans and chimpanzees. Previous studies have observed strong 

correlations between the rate of adaptive evolution and amino acid dissimilarity (as measured 

by the difference in polarity, volume or Pn/Ps between amino acids), and the rate of adaptive 

evolution and relative solvent accessibility in Drosophila melanogaster. We found similar 

correlations in hominids for each of these factors except pN/pS, where the correlation is much 

weaker than in Drosophila. We suggest that this pattern can be explained by the population 

contraction in humans since the human-chimpanzee split, which tends to reduce genuine 

correlations between the rate of adaptive evolution and amino acid dissimilarity. We show 

that population size increases can artifactually generate negative correlations between an 

estimate of the rate of adaptive evolution and the mean strength of selection against 

deleterious mutations, even if there is no adaptive evolution, and that the reverse is true in 

cases of population contraction. In this case, we find that pN/pS is strongly correlated to the 

mean strength of selection against deleterious mutations, and therefore the correlation with 

the rate of adaptive evolution is greatly attenuated. 

 

In chapter 5, I attempted to estimate the variation in effective population size across the 

human genome. Genetic diversity is known to vary across the genomes of many species. For 

neutral diversity this variation is due to variation in the rate of mutation, the genealogy length 
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and the effective population size, with variation in the effective population size being due to 

linked selection. We sought to understand the extent to which these two factors contribute to 

the variation in genetic diversity in humans. We divided the human genome up into non-

overlapping 10KB windows, and quantified the variation in SNP density, and the variation in 

the mutation rate using de novo mutation data. We find greater variation in the mutation rate 

than variation in diversity. We explored a number of explanations for this, and conclude that it 

is most likely due to a negative relationship between the effects of linked selection and the 

mutation rate; this is expected since the power of linked selection can depend on the mutation 

rate. However, our models suggest that linked selection is extremely prevalent in the human 

genome, reducing diversity by more than 40% on average. 

 

Taken together these projects contribute to our understanding of the prevalence of natural 

selection in humans. In the following section I will highlight some of the limitations of the 

methods developed and applied in this thesis. 

 

6.2 Limitations 

There are typically two approaches to modelling a system: abstraction involves leaving 

elements out whilst maintaining a literal description of the system being modelled, whilst 

idealisation treats elements within a system as having features they clearly do not have in 

reality, in order to produce a description that fictionalises in the service of simplification 

(Godfrey-Smith, 2009). Population genetic data describes complex systems and therefore 

modelling tends to use the approach of idealisation via a number of assumptions ascribed to 

the model. Here I briefly describe some of these assumptions and the limitations they impose 

on the research presented in this thesis. 
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6.2.1 Limitations of MK-type tests 

Chapters 2, 3 and 4 all utilise methods that have a basis in the MK test (McDonald and 

Kreitman, 1991). In each analysis our dataset has consisted solely of coding regions of the 

human genome, despite evidence that selection also acts in noncoding regions in humans 

(Kryukov et al. 2005; Drake et al. 2006; Pollard et al. 2006; Asthana et al. 2007; Katzman et al. 

2007).  

 

MK-type methods require information on the amount of variation and divergence occurring at 

neutral and non-neutral sites. MK-type methods assume that certain classes of sites within the 

genome can be categorised as neutrally evolving. For simplicity, it is common to classify all 

synonymous sites as neutrally evolving, though it is likely that this is not the case for this entire 

class of sites (Hershberg and Petrov, 2008; Kudia et al. 2009). Little work has been done thus 

far in understanding to what extent this biases estimates of evolution for MK-type tests, 

though it has been shown that weak purifying selection does act on synonymous sites, biasing 

estimates of positive selection upwards (Eyre-Walker et al. 2002; Andolfatto, 2005). Halligan 

and Keightley (2006) have proposed using fast evolving sites of short introns as an alternative 

neutral site class, but it has been shown in Drosophila melanogaster that these sites tend to 

have similar levels of polymorphism and divergence as synonymous sites (Parsch et al. 2010). 

 

6.2.2 Biased gene conversion 

Patterns of codon usage can be influenced by forces such as GC-biased gene conversion 

(gBGC), a segregation bias that favours G and C alleles over A and T alleles in regions of high 

recombination (Duret and Galtier, 2009; Mugal et al. 2015). The occurrence of gBGC has been 

experimentally demonstrated in a wide range of organisms (Eyre-Walker 1993; Montoya-

Burgos et al. 2003; Meunier and Duret 2004; Webster et al. 2004; Webster et al. 2005; Spencer 
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et al. 2006; Mancera et al. 2008; Escobar et al. 2011; Pessia et al. 2012; Lesecque et al. 2013; 

Williams et al. 2015; Halldorsson et al. 2016; Smeds et al. 2016; Keith et al. 2016; Long et al. 

2018; Galtier et al. 2018; Smith et al. 2018). It can both mimic positive selection by increasing 

the fixation probability of G or C (S) over A or T (W) neutral alleles (Galtier and Duret 2007; 

Berglund et al. 2009; Ratnakumar et al. 2010), and promotes the fixation of slightly deleterious 

GC alleles (Duret and Galtier 2009; Glémin 2010; Necşulea et al. 2011; Lachance and Tishkoff 

2014). Although Corcoran et al. (2018) showed that failing to control for the effects of gBGC 

can lead to an overestimation of α, it remains unclear as to how gBGC affects estimates of ωa 

and ωna. There are two methods for controlling for BGC, either by restricting the analysis to 

those polymorphisms and substitutions that are unaffected by BGC – i.e. A<>T and G<>C 

changes, or by controlling for recombination rate (as BGC is effective in highly recombining 

regions (Duret and Galtier, 2009; Mugal et al. 2015). Across the four projects we applied the 

former strategy where viable, and the latter in other cases. The former directly controls for 

BGC and is therefore preferable, but inevitably a great deal of data is lost. For instance, in 

chapter 3 applying this method reduced our dataset to about 20% of its previous size, resulting 

in a loss of significance in our results. In chapter 2 we applied both methods and found in both 

cases that we lost significance in our results. Despite the considerably larger datasets available 

to population geneticists today, we will need more still before we can control for BGC and still 

estimate results meaningfully. 

 

6.2.3 Demographic models  

In chapter 2 it became apparent that the model of human demography used in our simulations 

(Gravel et al. 2011), fit our 1000 genomes African data (The 1000 Genomes Project 

Consortium, 2015) poorly. We showed that in the African population there are far too many 

singleton SNPs even amongst the putative neutral synonymous mutations. The lack of fit is 
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perhaps not surprising; Gravel et al. inferred their model using 80 chromosomes per 

population, whereas the 1000 genome data contains >1000 chromosomes per population. 

Furthermore, the inference of a demographic model should take into account the influence of 

biased gene conversion and background selection, which appear to be pervasive factors in the 

human genome (Pouyet et al. 2018), so these simulations will be complex. However, Beichman 

et al. (2017) showed that the Gutenkunst et al. (2009) model of human demography (which is 

similar to the Gravel et al. (2011) model) actually fits the 1000 genomes data remarkably well 

when sampling 10 random unrelated individuals from the 1000 genomes YRI population. We 

attempted to replicate Beichman et al.’s findings by sampling the same 10 individuals from the 

YRI population and filtering out sites that do not pass the 1000 genomes “strict mask” filter 

(The 1000 Genomes Project Consortium, 2015), and simulating the Gravel et al. (2011) 

demographic model using neutral genetic variation only (i.e. there was no selection involved in 

our models). We sampled 10 individuals from our simulated data and compared the site 

frequency spectra for the observed and simulated data. We then repeated this analysis, this 

time sampling all 661 African individuals in the 1000 genomes data (The 1000 Genomes Project 

Consortium, 2015), and sampling 661 individuals from our simulations. Figure 6.1 shows the 

comparisons of these site frequency spectra. 

 

Figure 6.1: Folded SFS comparisons between observed and simulated data for the Beichman et 

al. (2017) samples (left) and for all African samples (right). For the comparison on the right, 

frequency categories are combined using a scheme of 1, 2-3, 4-7, 8-15, 16-31 etc). 



162 
 

 

We find the simulated SFS fits the observed SFS well for the Beichman et al. (2017) samples 

(figure 5.1 left), but poorly for the 661 African samples, with a tendency for the Gravel model 

to underestimate the number of low frequency variants and overestimate the number of 

variants at intermediate frequency (figure 5.1 right). These results suggest that the increase in 

the number of sampled chromosomes affects how well the Gravel et al. (2011) demographic 

model fits the 1000 genomes data (The 1000 Genomes Project Consortium, 2015). It is 

unsurprising that the Beichman et al. (2017) samples fit the data well, as fewer chromosomes 

are sampled than were used to estimate the Gravel et al. (2011) model. To understand how 

the fit changes with increasing numbers of sampled individuals, we sampled a varying number 

of individuals and compared the observed and simulated SFS. To summarise the difference in 

fit we estimated the mean square error for each different sample size, and plotted the results 

(figure 6.2). 

 

Figure 6.2:  Mean squared error of comparisons between observed and simulated data for 

varying numbers of sampled individuals. A linear regression has been fitted to the estimates. 
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There is a strong correlation between the number of sampled individuals and the mean 

squared error of the fit between the observed and simulated SFS, suggesting that inferring a 

human demographic model from the larger datasets that are now being generated and used in 

research is likely to be pivotal to ensuring the reliability of neutrality tests. Joint estimation of 

demographic models is discussed further in section 6.3.2. 

 

6.2.4 Population size change 

A more suitable human demographic model is necessary to model the polymorphism phase of 

human evolution. However demographic models alone do not provide us with information 

about the divergence phase (meaning the population history of the human-chimpanzee 

ancestor), which is required for estimating rates of evolution using MK-type methods that 

compare polymorphism and divergence data (McDonald and Kreitman, 1990). It has been 

shown that population size change between the divergence phase and polymorphism phase of 

population history leads to either an underestimate (in the case of population contraction) or 

an overestimate (in the case of expansion) of the rate of adaptive evolution (McDonald and 

Kreitman, 1990; Eyre-Walker, 2002). This is due to the effect of Ne on the efficacy of selection 

against SDMs (this is explored in more detail in section 1.3.1 of this thesis). For example, if a 

large past population undergoes population contraction, selection will have been more 

effective at removing SDMs in the large past population than after the contraction. This will 

result in fewer SDMs fixing in the past population, which will then be segregating in the 

contracted population resulting in an underestimate of 𝜔𝑎. In chapter 3 we showed that 

population size change can also attenuate the correlation between a variable and the rate of 

adaptive evolution if that variable is also correlated to the mean strength of selection against 
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deleterious mutations (mean s). The stronger the correlation between that variable and mean 

s, the greater the signal is attenuated. 

 

These effects of population size are relevant to human population genetics because although 

Ne in humans has increased since the human-chimpanzee split (Gutenkunst et al. 2009; Gravel 

et al. 2011), overall estimates of Ne in humans are still considerably lower than that of the 

human-chimpanzee ancestor (Holboth et al. 2007; Burgess and Yang 2008; Prado-Martinez et 

al. 2013; Schrago, 2014). This population contraction will result in underestimates of 𝜔𝑎 

between humans and chimpanzees. It will also attenuate the correlation between any variable 

and 𝜔𝑎, if that variable is correlated to mean S. In chapter 3 we showed that our measure of 

evolutionary dissimilarity between amino acids (pN/pS) was strongly negatively correlated to 

mean s, resulting in a much weaker correlation between 𝜔𝑎 and pN/pS in hominids than 

Drosophila.   

 

6.3 Moving forward 

The results obtained in this thesis open up several avenues of further research, in terms of 

estimating natural selection in humans, the limitations of the methods applied, and the 

application of novel methods to other species. 

 

6.3.1 Looking at other species 

By virtue of an understandable curiosity to understand our own species, human population 

genetic datasets are some of the largest and most comprehensively annotated available. 

Throughout this thesis we have made use of human data from the 1000 genomes project (The 

1000 Genomes Project Consortium, 2015), containing data for 2,504 individuals across 26 
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populations. Other animal species for which extremely comprehensive datasets exist include 

Drosophila and mice. One particularly useful avenue of further research would be to apply our 

novel method for estimating the frequency of balancing selection across the genome (see 

chapter 2) to Drosophila species. Like other tests for balancing selection that compare the 

number of polymorphisms at selected and neutral sites, our method gains power as tMRCA 

increases, as shared neutral genetic variation is lost or fixed within at least one of the two 

populations being compared. Of course we must also consider that a balanced polymorphism 

can maintain neutral variation in linkage disequilibrium (LD) that may also be shared between 

populations. Recombination is the force that can break up linkage, and it is notable that 

recombination is a considerably more effective force in Drosophila (where LD decays over a 

scale of 10s of base pairs (Mackay et al. 2012)) than in humans (where LD decay is in the order 

of 10,000 base pairs (The 1000 Genomes Project Consortium, 2015)). We would therefore 

expect our method for detecting balancing selection to have more power in Drosophila than in 

humans, though there are many other factors to consider (including demographic history – 

discussed in chapter 2). 

 

6.3.2 Joint inference of demographic models 

As discussed in section 6.2.3, there is a pressing need for a human demographic model 

inferred from the 1000s of chromosomes that are now available to researchers, that also 

accounts for BGS and BGC. Because demographic models assume sites evolve neutrally, it is 

necessary to parameterise them from regions of the genome that are free from the effects of 

linked selection (Pouyet et al. 2018). One approach is to identify functional elements in the 

genome and filter out regions that are in close proximity, leaving only regions that are free 

from the effects of linked selection. However, methods used to identify conserved elements 
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(e.g. Siepel et al. 2005) can be susceptible to the failure of identifying rapidly evolving and/or 

weakly selected regions.  

 

In recent years computationally demanding approaches such as approximate Bayesian 

computation and machine learning have become viable for demographic inference. Both 

methods have a similar underlying logic: Simulate data under a chosen model, sampling the 

parameters of interest from plausible ranges (using the literature to determine these ranges), 

and compare summary statistics from the observed and simulated data. The parameter 

estimates that give the best fit are chosen. This is the basic idea behind ABC and machine 

learning approaches.  

 

Johri et al. (2020) have utilised a novel statistical framework to develop an appropriate null 

model in Drosophila melanogaster. The authors jointly estimated the effects of population 

history and the DFE using an ABC framework, whilst accounting for the effects of background 

selection (BGS). A similar approach would be appropriate for inferring a null model for 

humans. 

 

6.3.3 Conclusion 

The research in this thesis furthers our understanding of patterns of natural selection in 

humans, whilst highlighting numerous limitations that point the way forward for further 

research. 
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Appendix A: Chapter 2 supplementary material 
 

 

Target 

population 

Comparative 

population 

all polymorphism data filtered for BGC 

Z Zlow Zhigh Z Zlow Zhigh 

African non-African 1.13 1.10 1.17 1.12 1.03 1.21 

African East Asian 1.05 1.03 1.07 1.00 0.95 1.05 

African European 1.04 1.01 1.07 1.01 0.93 1.10 

African South Asian 1.04 1.01 1.06 1.04 0.98 1.09 

South Asian East Asian 1.10 1.00 1.23 1.36 1.04 1.73 

Table A1: Testing the effects of BGC for population comparisons which show Z>1. Confidence 

intervals were generated by bootstrapping the data by gene 100 times. 

 

 

target comparative Z Zlow Zhigh α αb_low αb_low b blow bhigh 

AFR nonAFR 3.354 0.989 4.533 0.702 -0.011 0.779 299 Na 332 

AFR EAS 1.403 0.995 2.007 0.287 -0.005 0.502 134 Na 234 

AFR EUR 3.714 1.465 5.568 0.731 0.317 0.820 338 147 379 

AFR SAS 2.123 1.443 3.272 0.529 0.307 0.694 247 143 324 

Table A2: Estimates of Z for HLA genes only. Confidence intervals were generated by 

bootstrapping the data by gene 100 times. 
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target comparative Z Zlow Zhigh α αb_low αb_low b blow bhigh 

AFR nonAFR 1.112 1.083 1.146 0.101 0.077 0.127 1193 907 1502 

AFR EAS 1.034 1.017 1.052 0.033 0.016 0.049 453 227 678 

AFR EUR 1.025 0.999 1.052 0.024 -0.001 0.049 355 Na 716 

AFR SAS 1.021 1.001 1.043 0.021 0.001 0.041 293 19 587 

Table A3: Estimates of Z for non-HLA genes only. Confidence intervals were generated by 

bootstrapping the data by gene 100 times. 
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Figure A1: Vicariance simulations in which the ancestral population splits to form two daughter 

populations of the size specified in the panel. Each column is a separate set of simulations, 

with the top row plotting Z against tMRCA (measured in N generations, where N is the 

population size) for the larger daughter population, and the bottom row the smaller. 

Deleterious mutations are drawn from a gamma DFE with parameters inferred from human 

population data. 
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Figure A2: Dispersal simulations in which a single daughter population disperses from the 

ancestral population. Each column is a separate set of simulations, with the top row plotting Z 

against tMRCA (measured in N generations, where N is the population size) for the ancestral 

population, and the bottom row the daughter population. Deleterious mutations are drawn 

from a gamma DFE with parameters inferred from human population data. 
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Figure A3: Vicariance expansion simulations in which both daughter populations expand. The 

ancestral population (of size N=200) splits to form two daughter populations of size N=100. 

Both daughter populations go on to expand in size. In the left column the daughter 

populations double in size. In the right panel they reach 10x their initial size. Deleterious 

mutations are drawn from a gamma DFE with parameters inferred from human population 

data. 
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Figure A4: Vicariance expansion simulations in which only one daughter population expands. 

The ancestral population (of size N=200) splits to form two daughter populations of size 

N=100. One daughter population (upper panels) goes on to expand in size. In the left column 

the daughter populations double in size. In the right panel they reach 10x their initial size. 

Deleterious mutations are drawn from a gamma DFE with parameters inferred from human 

population data.  
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Figure A5: Dispersal expansion simulations in which a single daughter population disperses 

from the ancestral population and then expands. The ancestral population (of size N=200) 

splits to form a daughter population of size N=100, which expands to the final population size 

shown in the panel. Each column is a separate set of simulations, with the top row plotting Z 

against tMRCA (measured in N generations, where N is the population size) for the ancestral 

population, and the bottom row the daughter population. Deleterious mutations are drawn 

from a gamma DFE with parameters inferred from human population data. 
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Figure A6: Vicariance simulations in which the ancestral population splits to form two daughter 

populations of the size specified in the panel. Each column is a separate set of simulations, 

with the top row plotting Z against tMRCA (measured in N generations, where N is the 

population size) for the larger daughter population, and the bottom row the smaller. 

Deleterious mutations are drawn from a gamma DFE with parameters inferred from 

Drosophila melanogaster population data. 

  



225 
 

 

Figure A7: Dispersal simulations in which a single daughter population disperses from the 

ancestral population. Each column is a separate set of simulations, with the top row plotting Z 

against tMRCA (measured in N generations, where N is the population size) for the ancestral 

population, and the bottom row the daughter population. Deleterious mutations are drawn 

from a gamma DFE with parameters inferred from Drosophila melanogaster population data. 
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Figure A8: Vicariance expansion simulations in which both daughter populations expand. The 

ancestral population (of size N=200) splits to form two daughter populations of size N=100. 

Both daughter populations go on to expand in size. In the left column the daughter 

populations double in size. In the right panel they reach 10x their initial size. Deleterious 

mutations are drawn from a gamma DFE with parameters inferred from Drosophila 

melanogaster population data. 
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Figure A9: Vicariance expansion simulations in which only one daughter population expands. 

The ancestral population (of size N=200) splits to form two daughter populations of size 

N=100. One daughter population (upper panels) goes on to expand in size. In the left column 

the daughter populations double in size. In the right panel they reach 10x their initial size. 

Deleterious mutations are drawn from a gamma DFE with parameters inferred from 

Drosophila melanogaster population data. 
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Figure A10: Dispersal expansion simulations in which a single daughter population disperses 

from the ancestral population and then expands. The ancestral population (of size N=200) 

splits to form a daughter population of size N=100, which expands to the final population size 

shown in the panel. Each column is a separate set of simulations, with the top row plotting Z 

against tMRCA (measured in N generations, where N is the population size) for the ancestral 

population, and the bottom row the daughter population. Deleterious mutations are drawn 

from a gamma DFE with parameters inferred from Drosophila melanogaster population data. 
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Figure A11: Simulations with for combined 0.1-0.5 minor allele frequencies. Each panel is a 

separate simulated scenario, with population sizes listed in the panel legend. The first number 

is for the filled in data lines, denoting the ancestral population in dispersal scenarios, and for 

the larger population in the vicariance scenarios. The second number is for the dotted data 

lines, denoting the daughter population in dispersal scenarios, and the smaller population in 

the vicariance scenarios. For more details on each scenario please see figures A1-10. 

Deleterious mutations are drawn from a gamma DFE with parameters inferred from human 

population data. 
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Figure A12: Simulations with for combined 0.1-0.5 minor allele frequencies. Each panel is a 

separate simulated scenario, with population sizes listed in the panel legend. The first number 

is for the filled in data lines, denoting the ancestral population in dispersal scenarios, and for 

the larger population in the vicariance scenarios. The second number is for the dotted data 

lines, denoting the daughter population in dispersal scenarios, and the smaller population in 

the vicariance scenarios. For more details on each scenario please see supplementary figures 

S1-10. Deleterious mutations are drawn from a gamma DFE with parameters inferred from 

Drosophila melanogaster population data. 
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Figure A13: Simulations using the Gravel model of human demography (Gravel et al, 2011). 

Shown are the observed (filled circles) and simulated (crosses) values of Z. Each column 

represents a different population comparison. From left to right: Africans (AFR) and East Asians 

(EAS), Africans and Europeans (EUR), Europeans and East Asians. The population name in the 

upper left indicates which set of private polymorphisms are used to calculate Z in each 

population comparison. The x-axis represents private polymorphism minor allele frequency 

bins. Confidence intervals generated by bootstrapping. 
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Figure A14: Comparison of simulated (under the Gravel et al. (2011) model of human 

demography) and observed SFS from the African population.  
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Appendix B: Chapter 3 supplementary material 
 

 

Figure B1: Average RSA of an amino acid and the average difference in volume or polarity to its 

one mutation step neighbours.  
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Figure B2: Estimates of ωa and ωna plotted against mean relative solvent accessibility, 

controlling for volume difference (left) and polarity difference (right). Data binned into 20 RSA 

bins of roughly equal size. For each analysis, a weighted linear regression is fitted to the data. 

The respective significance of each correlation is shown in the plot legend, (*P < 0.05; 

**P < 0.01; ***P < 0.001; “.” 0.05 ≤ P < 0.10) for ωa and ωna). Regression is weighted by the 

reciprocal of the variance for each estimate of ωa and ωna, which were estimated by 

bootstrapping the data by gene 100 times for each data point.  
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Figure B3: The adaptive and non-adaptive substitution rate plotted against the difference in a) 

volume, b) polarity, controlling for relative solvent accessibility. A weighted linear regression is 

fitted to the data, weighted by the variance of each estimate. The respective significance of 

each correlation is shown in the legend, (*P < 0.05; **P < 0.01; ***P < 0.001; “.” 

0.05 ≤ P < 0.10). 
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Appendix C: Chapter 4 supplementary material 
 

 

  gene expression gene length recombination rate 

gene age 0.868 (***) 0.860 (***) -0.621 (**) 

gene expression  0.437 (***) -0.035 (***) 

gene length   0.101 (***) 

 

Table S1: Linear regression correlations between gene age, gene expression, gene length and 

recombination rate. (*P < 0.05; **P < 0.01; ***P < 0.001; “.” 0.05 ≤ P < 0.10). 
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      Both fixed Both random 

Term Number MS Variance Variance 

Residual 2 5.2E-05 0.000052 0.000052 

VIP 2 0.02919 0.00112054 0.001120538 

GO 13 0.00097 0.000229 0.000229 

Table C2: Estimated variance components from two-way analysis of variance on ωa for GO 

categories with 200,000 sites or more. 
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Both fixed Both random 

Term Number MS Variance Variance 

Residual 2 0.000017 0.000017 0.000017 

VIP 2 0.000983 3.7154E-05 3.71538E-05 

GO 13 0.000034 4.25E-6 4.25E-06 

Table C3: Estimated variance components from two-way analysis of variance on ωna for GO 

categories with 200,000 sites or more. 

  

  



239 
 

 

Figure C1: Estimates of ωa and ωna plotted against the log of the mean recombination rate for 

genes binned into 50 recombination bins of equal size. An uweighted linear regression is fitted 

to the data. The respective significance of each correlation is shown in the plot legend, 

(*P < 0.05; **P < 0.01; ***P < 0.001; “.” 0.05 ≤ P < 0.10) for ωa and ωna). 

 

  



240 
 

 

Figure C2: Estimates of ωa and ωna plotted against the log of the mean recombination rate, 

controlling for biased gene conversion, for genes binned into 20 recombination bins of equal 

size. An unweighted linear regression is fitted to the data. The respective significance of each 

correlation is shown in the plot legend, (*P < 0.05; **P < 0.01; ***P < 0.001; “.” 0.05 ≤ P < 0.10) 

for ωa and ωna). 
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Figure C3: Estimates of ωa and ωna plotted against log gene age for genes binned into 

phylostratigraphic age categories, controlling for a) recombination rate; b) gene length; c) gene 

expression. An unweighted linear regression is fitted to the data. The respective significance of 

each correlation is shown in the plot legend, (*P < 0.05; **P < 0.01; ***P < 0.001; “.” 

0.05 ≤ P < 0.10) for ωa and ωna). 
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Figure C4: Estimates of ωa and ωna plotted against the log of the mean recombination rate for 

genes binned into 20 recombination bins of equal size, controlling for a) gene age; b) gene 

length; c) gene expression. An unweighted linear regression is fitted to the data. The 

respective significance of each correlation is shown in the plot legend, (*P < 0.05; **P < 0.01; 

***P < 0.001; “.” 0.05 ≤ P < 0.10) for ωa and ωna). 

  



243 
 

 

Figure C5: Estimates of ωa and ωna plotted against the log of the mean gene expression for 

genes binned into 20 mean expression bins of equal size, controlling for a) recombination rate; 

b) gene age; c) gene length. An unweighted linear regression is fitted to the data. The 

respective significance of each correlation is shown in the plot legend, (*P < 0.05; **P < 0.01; 

***P < 0.001; “.” 0.05 ≤ P < 0.10) for ωa and ωna). 
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Figure C6: Estimates of ωa and ωna plotted against the log of the mean gene length for genes 

binned into 20 mean length bins of equal size, controlling for a) recombination rate; b) gene 

age; c) gene expression. An unweighted linear regression is fitted to the data. The respective 

significance of each correlation is shown in the plot legend, (*P < 0.05; **P < 0.01; 

***P < 0.001; “.” 0.05 ≤ P < 0.10 for ωa and ωna). 
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Appendix D: Chapter 5 supplementary material 

 

 

Figure D1. The distribution of SNP density across 10KB windows for SNPs unaffected by BGC. 

The density has been normalised such that the mean is one, and the 1.5% of windows with the 

lowest SNP density have been removed. Also shown is the fitted lognormal distribution, which 

has a shape parameter of 0.31. The graph is ragged because many windows have single digit 

numbers of SNPs; the variation around each peak is then generated by variation in the number 

of sites in each window. 
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Figure D2. Comparing the gamma distribution fitted to the Jonsson (blue) and Wong (orange) 

DNM datasets. 
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Figure D3. Fit of the lognormal distribution to the gamma. Panels show the fit of the lognormal 

distribution to the distribution of 100,000 random samples from gamma distributions with 

shape parameters of (A) 4, (B) 6, (C) 8 and (D) 32. The estimated lognormal shape parameters 

are 0.53, 0.43, 0.36 and 0.18 respectively. 
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A) 

 

B) 

 

Figure D4. A comparison of the gamma distribution (orange) fitted to the DNM data, and the 

lognormal distribution (blue) approximating this distribution for the (A) Jonsson and (B) Wong 

datasets. 
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Figure D5. The distribution of substitutions per site estimated to have occurred along the 

human lineage since humans and chimpanzees split, along with the fitted lognormal 

distribution which has a shape parameter of 0.32. 
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Figure D6. The fit of the lognormal distribution to the distribution of mean genealogy lengths 

as a function of the product of the effective population size and the rate of recombination, Ner 

for a sample of 1000 chromosomes when the population size is stationary. 
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Figure D7. A logistic equation fitted to the relationship between the shape parameter of the 

mean genealogy length and the log of Ner for a sample size of 1000 chromosomes. The logistic 

equation takes the form 𝑆𝑔̅ =
0.172

1+𝑒(0.636(𝐿𝑜𝑔10(𝑁𝑒𝑟)+0.747) 
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Figure D8. The fit of the lognormal distribution to the distribution of mean genealogy lengths 

for sample sizes of 10, 100, 500, 1000 and differing levels of recombination. 
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Figure D9. The relationship between the shape parameter of the lognormal distribution fitted 

to the distribution of mean genealogy lengths as a function of sample size for different values 

of Ner. 
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Figure D10. The fit of the gamma distribution to the distribution of mean genealogy lengths for 

sample sizes of 10, 100, 500, 1000 and differing levels of recombination. 
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Figure D11. The relationship between the shape parameter of the gamma distribution fitted to 

the distribution of mean genealogy lengths as a function of sample size for different values of 

Ner. 
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Figure D12. Relationship between estimated lognormal shape parameter and the log of the 

gamma shape parameter used to simulate the data. The fitted equation has the form  = 1 - 

0.4534 ln() + 0.08222 ln()2 - 0.006194 ln()3 + 0.0001141 ln()4 where  is the shape 

parameter of the lognormal distribution and  is the shape parameter of the gamma 

distribution. Both distributions are assumed to have a mean of one. 
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